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Preface

One of the most important areas of application of laser radiation is biomedical
optics. Here, laser sources are used for diagnosis, therapy, or surgery.

Note that for the development of new methods of laser biomedical diagnostics, a
detailed study of the propagation of light in biological tissues is required, as the-
oretical studies improve the understanding of the optical measurements, increase
capacity, reliability, and usefulness of optical technologies.

To solve these problems in the first place, the most informative indicators of the
functioning of the organism must be chosen. These indicators are the results of the
analysis of peripheral blood. Peripheral blood provides the complete information on
the status of the human organism. A comprehensive study of the characteristics of
light scattering and absorption can quickly detect intact physiological and mor-
phological changes in the cells due to thermal, chemical, antibiotic treatments, etc.

The choice of the laser beam to study the structure of biological particles is
conditioned by the fact that it does not induce gross pathological changes, and
diagnostics will ensure effective use of all the coherence properties of laser radia-
tion, monochromatic directional.

Note that for laser processing of the biological environment, it is also necessary
to perform a selective thermal influence facility located in the environment. For
these purposes, it is necessary for a selection of optimal spectral, temporal, and
energy characteristics of the laser source.

The main parameter to reach selectivity (choice) is the wavelength of the radi-
ation. If we choose a wavelength of light which is absorbed by the object, but not
absorbed by the surrounding tissues, the selectivity is achieved.

However, such a situation is ideal and cannot always be achievable in practice.
Considerable value is also placed on the duration of treatment, the size of the object,
the depth of its location.

After laser irradiation on biological tissues, factors such as the movement of
blood through the vessels and thermoregulation are need to be considered.

Blood flow can have a significant impact on the result of exposure if it is
dependent on the degree of thermal damage to the tissue, because blood flow may
be an additional and sufficiently effective mechanism for heat removal from the site
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of exposure. Note that this effect may influence both the efficiency and the safety
of the procedure, because it violates the local heating.

Thus, the optimization of the laser emitter for selective heating of multicom-
ponent media is an ambiguous problem.

For these purposes various mathematical models have been developed, which
are usually designed to solve a specific task. In most cases, the problem of choice
of the laser source and its performance are decided on the basis of the absorption
and relaxation times of the objects (media). Modeling of this kind is usually
designed to solve the problem of optimizing the parameters of the laser transmitter
and evaluate the results obtained under the influence of the preselected laser on the
biological environment. In order to correctly construct a mathematical model that
describes the interaction of laser radiation with tissue, it is first and foremost a
establish good understanding of the structure of biological tissues, their optical and
thermal properties, as well as the main effects in the propagation of radiation in
biological tissues.

The monograph discusses problems related to the study of mechanisms of
interaction of laser radiation with biological tissues, the study of effects of laser
interaction with biological tissues methods of the asymptotic theory of diffraction,
and computer modeling. By virtue of models described in the monograph, on the
basis of result of influence of laser biological tissue under certain conditions, can be
consistently changed to input characteristics to produce an optimization of the
spectral and energy parameters of laser emitters to achieve the desired effect in each
case.

The book presents the original results of theoretical studies of electromagnetic
waves in media-simulating biological-layered structure. Concepts and methods for
studying the laser radiation interaction with multicomponent heterogeneous tissue
with a complex structure of the asymptotic theory of diffraction methods are pre-
sented. These methods can serve as the basis for creating a software for the
biomedical diagnostics.

The monograph is addressed to researchers and specialists in biomedical physics
interested in the development and application of laser and optical diagnostic
methods in medical research.

The monograph consists of ten chapters.
In Chap. 1, we consider the structure and optical properties of biological tissues,

blood, and human skin.
In Chap. 2, we expand methods of light scattering for the quantitative study

of the optical characteristics of the tissue, and the results of theoretical and
experimental studies of photon transport in biological tissues.

In Chap. 3, we describe the optical characteristics, namely, dispersion and
absorption spectra of an ensemble of spherical particles randomly oriented inside an
optical cavity. The study is based on the self-consistent matching of new data from
the inhomogeneous optical cavity with data from the scattering of an ensemble of
spherical particles of different size, randomly oriented in free space.
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In Chap. 4, we discuss a mathematical model for calculating the interaction of
laser radiation with a turbid medium and a model for the prediction of the optical
characteristics of blood (refractive index and absorption coefficient) and for the
determination of the rate of blood flow in the capillary bed under irradiation of a
laser beam is proposed.

In Chap. 5, we construct an electrodynamic model, which makes it possible to
vary the electrophysical parameters of a biological structure in calculations with
allowance for roughness.

In Chap. 6, the mathematical model is proposed for predicting optical charac-
teristics (refractive index and absorption coefficient) of a biotissue being simulated,
which is probed in vivo by a laser beam. Blood corpuscles, in this case, are
simulated by particles of irregular shape and various sizes, which are oriented
arbitrarily in free space.

In Chap. 7, the mathematical model is proposed for detection of the function of
size distribution of form for blood cells. Using the mathematical model, we can
theoretically calculate the size distribution function for particles of irregular shape
with a variety of forms and structures of inclusions that simulate blood cells in the
case of in vivo and determine the degree of aggregation, for example, the platelet
for the in vivo case.

In Chap. 8, we construct a mathematical model, which allows us to vary the
electrical parameters and structure of the simulated biological tissue with fibrillar
structure for in vivo case.

In Chap. 9, we expand a mathematic model for predicting the absorption
spectrum and dispersion of a section of a biological structure consisting of epi-
dermis, upper layer of the derma, blood, and lower layer of the derma and placed in
the cavity of an optical resonator.

In Chap. 10, we discuss a mathematical model, which makes it possible to vary
the characteristic sizes of roughness, the electrophysical parameters of the biolog-
ical sample under investigation, and its geometrical characteristics and to establish
the relations between these parameters and biological properties of the biological
tissue being modeled, as well as to calculate theoretically the absorption spectra of
optically thin biological samples placed into the cavity of an optical resonator.

In Chap. 11, we propose a mathematical model for calculation of the hyper-
thymia of a multilayer biological structure under the action of laser radiation.

In Chap. 12, the mathematical model is proposed for determination of the optical
parameters on the basis of spectrophotometric data and we consider general
structure models' interaction of laser radiation with a biotissue.

Before closing, we want to acknowledge our sincere thanks to colleague Prof.
A. P. Golovitskii for a critical reading of the manuscript. Our thanks are to Springer
Nature, in particular, Dr. Habil Claus E. Ascheron.

St. Petersburg, Russia Kirill Kulikov
Tatiana Koshlan
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Chapter 1
Methods Describing the Interaction
of Laser Radiation with Biological
Tissues

Abstract We consider the structure and optical properties of biological tissues,
blood and thermophysical characteristics of the elements in the skin tissue.

1.1 Introduction

Scattering and absorption of electromagnetic radiation are widely used in various
fields of science and technology to study the structure and properties of heteroge-
neous environment. Theoretical models, techniques of experimental research and
methods of data interpretation were developed by specialists of various disciplines
(from astrophysics to laser ophthalmology), so there are differences in traditions
and terminology barriers that impede the efficient interaction of different schools
of thought. For example, experts in the field of atmospheric optics and astrophysics
use the ideology of natural radiation transport equation, but for interpretation of
data, small-angle X-ray and neutron scattering - more familiar language - using the
apparatus of the correlation functions and structure factor scattering.

Due to the large variety and structural complexity of the biological environment
the development of adequate models of optical scattering and absorption of light is
often the most difficult part of the study. These models cover almost all the major
sections of optical dispersion media: a simple single-scattering approximation, inco-
herent multiple scattering, which is described by the transport equation, and the mul-
tiple scattering of electromagnetic waves in condensed systems interacting lenses or
irregularities.

Before proceeding to the consideration of principles of mathematical models to
calculate the interaction of laser radiation with biological structures and objects of
different degrees of complexity and organization, consider the structure and optical
properties of biological tissues.

© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-94114-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94114-1_1&domain=pdf


2 1 Methods Describing the Interaction of Laser Radiation with Biological Tissues

1.2 The Structure and Optical Properties of Biological
Tissues

From the point of view of controlling the optical parameters of tissues the fibrous
tissues (sclera eyes, dermis of skin, dura, etc.) are of the most interest makes. Fibrous
tissue make up approximately 50% of body weight. Loose connective tissue of fatty
tissue, dens, tendons and intermuscular fascial layers, derma of skin and an intraor-
ganic stroma of parenchymatous organs, neuroglia and peritoneum are all connecting
fabrics or fibrotic thanks to the existing characteristics of fibrillar structures [1]. All
varieties of fibrous tissue in spite of their morphological differences, are built an
common, with the same principles, which mainly include the following [1]: (a) the
connective tissue contains cells, but compared to other tissues there are fewer. As a
result, the amount of intercellular substance is larger than the cellular elements; (b)
the connective tissue is characterized by the presence of fibrous (fibrous) structures
- collagen, elastin and reticular fibers, which are the main structural elements of the
fibrous tissue, and surrounded by intercellular substance; (c) the connective tissue is
rich with the intercellular substance when has a very difficult chemical composition.
The characteristic component of the structure in fibrous tissue (tendons, cartilage,
the dermis of the skin, eye sclera, etc.) are the collagen fibers. They carry protec-
tive functions. For collagen, the specific amino-acid structure and a unique spatial
location of polypeptide chains is a characteristic. As opposed to other proteins, large
number of amino acids are contained in collagen: glycine, proline, hydroxyproline,
lysine, oksilizin. Collagen makes up 25–30% of the total protein in adult, or 6% of
total body weight [2]. The molecule of collagen consists of three polypeptide chains
forming structure of a threefold spiral. The length of the collagen molecule is 280
nm, the diameter of 1.4–1.5nm [3].

The Structure and Optical Properties of the Skin

Human skin is an example of a multicomponent turbid biological medium and it is
very difficult to describe the construction of the models. Optical characteristics of
such complex environment as a whole depend on many factors. To correctly build
the model of the skin and the description of optical properties one needs to get some
understanding in the biological features of the structure of skin (see Fig. 1.1).

Skin consists of two main layers [4]. The external layer is the multilayered flat
keratinized epithelium - epidermis. The average thickness of the epidermis, of which
there is relatively little change in thickness, is approximately 100µm [5]. Epidermis
consists of two various layers of cells: an external, corneal layer of dry acaryocytes
(Stratum corneum) and inside cellular layers, i.e. actual epidermis from which, after
modification, there are superficial cells: (Living epidermis) [6]. Themain type of cells
in this epitelialny continuum is the epidermalny cell, most often called keratinotsity,
so called because the family of fibrous proteins is keratins. The epidermis unites
subpopulation of migrating cells of treelike types: melanocytes and melanosomes
are pigment-producing melanin; Langerhans cells, considered as monokletki derived
from bone marrow, and Merkel cells, considered as derivatives of keratinocytes [2].
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Fig. 1.1 Biological structure of the human skin: 1 epidermic; 2 dermis; 3 hypodermic fatty tissue;
4 muscle, lifting the hair; 5 oil gland; 6 fatty secret; 7 hair ; 8 capillaries; 9 oscule; 10 sweat; 11
keratin (corneal layer); 12 nerve ending; 13 nerve; 14 fat lobule; 15 sweat gland; 16 blood vessels;
17 hair sac

Epidermis is constantly in a state of renovation: the division of basal keratinocytes,
some daughter cells move out, and then they separate, go to the upper layers and
attach to the corneal layer. Normal human epidermis is renewed in a period which
lasts 45–75 days [2]. The leading mechanism in the difficult and multi-stage process
directed on the formation of a corneal layer of skin is the formation of a keratin:
the main protein in epidermis. In the process of cellular replacement, the epidermis
forms the pigment melanin, which is a polymer - granules which are 30–400nm in
diameter [7]. Melanin is produced in melanocytes, containing large number of struc-
tural organelles: melanosomes filled with pigment. Melanosomes have a diameter of
about 400nm [7].

Under the epidermis is dense fiber tissue and elastinic tissue, which is called the
dermis. Dermis is themain component and volume of the skin. The average thickness
of the dermis is about 1500–2000µm [8]. In the dermis there are the elements of the
vascular and nervous systems, the excretory gland. Under the skin is the hypodermis.
Hypodermis is a subcutaneous tissue,which is a fatty and connective tissue of varying
thickness citebriggman.

The dermis is separated from the epidermal basal membrane and gradually goes
into the subcutaneous fatty tissue. The composition of the dense connective tissue
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in the dermis includes collagen and elastin fibers with a diameter of about 60nm,
packed in bundles of fibers with a diameter about 60 nanometers called - lamels, and
an amorphous substance (interfibrilyarny gel), of salt and water. Connective tissue
contains widely branched vascular structures of the skin, the nervous network and
epithelial glands. Derma is randomly divided into two anatomical areas: papillary
(Stratum papillary dermis) and reticular (Stratum reticulare dermis) [9]. More subtle
is the so-called papillary dermis, the outer part of the dermal connective tissue that
is formed under the epidermis.

Papillary dermis contains more free distribution of elastin and collagen fibers than
the reticular layer. Bundles of collagen fibers of papillary dermis are 0.3–3.0µm in
diameter. Papillary dermis also contains lymphatic plexus and blood vessels. The
secondmajor part of derma, and the underlying papillary dermis, is called the reticular
dermis. Vascular structure of the skin is clearly divided into two systems: a system
of vessels that provide nourishment skin and deep, mainly subcutaneous, and arterial
and larger venous capillaries which perform the function of heat exchangers of blood
with the environment [2].

Biological tissues, such as skin, are optically inhomogeneous absorbing media
with an average refractive index greater than that of air, so the boundary between
biological object-air part of the radiation is reflected (Fresnel reflection), and the
remaining part penetrates the tissue. The skin is characterized by a significant light
scattering, i.e., it is highly scattering turbid medium, because it consists of a large
number of scattering centers randomly distributed in the volume. The degree of
scattering depends on the wavelength of the radiation and the optical properties of
biological tissues.

Absorption of light is a physical phenomenon, which characterizes the energy
loss when light passes through the biological structure (skin) [10]. The energy of the
absorbed light transfered into heat is spent on photochemical reactions or released in
the form of radiation luminescence. The absorption spectra of any tissue, including
skin, determined by the presence of all biologically important molecules involved in
double bonds (chromophores of skin), and containing water in biological tissues. In
the epidermis the role of chromophores perform various fragments comprising the
amino acids and nucleic acids, absorbing light in the ultra-violet wavelength range
[11]. In the visible spectrum one of the most prevailing chromophores of skin is
the pigment melanin [2]. The absorption spectrum of melanin has no pronounced
absorption bands; however, it effectively absorbs in all spectral regions from 300 to
1200 nm.In the near ultraviolet radiation and visible regions of the spectrum, aside
from melanin, the basic skin chromophores are bilirubin, vitamins, flavins, flavin
ferments, carotenoids, phycobilins, phytochrome, and others, as well as elastin and
collagen fibers [12].

The dermis of the skin include blood vessels, which contain hemoglobin, the
absorption spectrum of which significantly affects the absorption spectrum of the
skin. The higher the content of blood in the dermis, the greater absorption of its
radiation at corresponding to the absorption of blood. Therefore, when calculating
the optimal parameters of the radiation blood content in the dermis and the diameter of
blood vessels should be considered. In the in vivo biological tissue hemoglobin binds
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oxygen present in the blood. The absorption spectra of the two forms of hemoglobin
are slightly different from each other: oxyhemoglobin has an absorption band near
405nm (Sore band) and the characteristic double peak absorption in the area of 545–
575nm; deoksigemoglobin strongly absorbs near 430nm and a weak close to 550nm
[13, 14].

In the infrared region of the spectrum all biomolecules have quite intense vibra-
tional absorption bands.

Starting with λ = 1500nm and above, the absorption spectrum of the skin is
largely determined by the absorption spectrum of water.

The absorption of subcutaneous fatty tissue is defined as absorption bands of
lipids, water, and β- carotene. The main absorption band of fatty tissue lies in the
ultraviolet and infrared regions of the spectrum. Skin tissue is characterized by a
significant light scattering, as it consists of a large number of randomly distributed
scattering centers in volume [15]. Light scattering happens because of fluctuations
in the density of scatterer and refractive index fluctuations in the volume of tissue.

The nature of scattering depends on the correlation of the wavelength of the
scattered radiation and the size of the light scattering particles, and the ratio of the
refractive index of the scattering particle and its environment [16]. Light scattering
in media consisting of a large number of particles is significantly different from the
scattering of light by individual particles.

This is explained by firstly the interference of thewaves scattered by the individual
particles with each other and with the incident wave, and second, in many cases,
multiple scattering effects are important (reradiation), when the light is scattered by
a single particle, others are dissipated again and thirdly, the interaction between the
particles does not allow them to consider independent movement.

To account for multiple scattering and absorption of the laser the beam is broad-
ened and attenuated during propagation in the skin.Volume scattering is the cause of a
significant proportion of the radiation propagation in the reverse direction (backscat-
tering). Cell membranes, nucleus and organelles are the main scatterers in many
biological tissues. The absorbed light is converted into heat, is reradiated as fluores-
cence or phosphorescence, and spent photobiochemistry reaction.

The absorption spectrum is determined by the type of dominant absorption centers
andwater content in the tissue. The natural photo of laser radiation of biological tissue
is determined by its composition and the absorption coefficient at the wavelength of
radiation. The ultraviolet and infrared (λ > 2nm) spectral region dominates the
absorption and scattering, and the contribution is relatively small and shallow. Light
penetrates into the biological tissue, only to one ormore cell layers in the short-visible
and spectrum of light penetration depth for a typical tissue that is 0.5–2.5mm. In
this case the main role is absorption and thus scattering, which predominates in
the reflected radiation from the skin (affects approximately 15–50% of the incident
beam). At wavelengths from 600–1500nm scattering prevails over absorption and
penetration depth is increased to 8–10mm.

Depending on the type of tissue the wavelength of the reflection coefficient can
vary widely. Thus, the optical properties of biological tissue are determined by its
structure, physiological condition, the level of hydration, homogeneity, specific vari-
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ance, the nature of the measurements in-vivo - in-vitro and others. The attenuation
of the laser beam in biological tissue follows the exponential law. The intensity of
the collimated radiation is estimated under Bouguer law. Other important optical
parameters of the tissue is the optical depth penetration.

The significant value of the scattering anisotropy of biological tissues andmultiple
scattering gets a deviation from the Bouguer law. In the description of the effects that
occur in the tissues under the influence of radiation, absorption of water is important
because it is the main component of most tissues. The human body contains from
about 55–65% water. An adult with a body weight of 65kg contains an average of
40 liters of water, of which about 25L is inside cells, 15L are in the extracellular
fluids. Water is the primary medium in which many chemical reactions take place
and the physical and chemical processes (assimilation, dissimilation, osmosis, diffu-
sion, transport and others) that important for life. In the ultraviolet, visible and near
infrared wavelengths the absorption coefficient of water is very small. In these areas,
the absorption of tissue determines the absorption spectra of pigments, especially
for the skin - the absorption spectra of melanin and blood count (hemoglobin and
oxyhemoglobin). Melanin absorption is the most important component of the total
absorption of the epidermis and the stratum corneum.

For the calculation of interest the optical density (OD) of the epidermis is needed,
which is the result of the following product:

OD = μmelanin · h,

where μmelanin is the absorption coefficient of melanin, h is the thickness of the
epidermis.

Optical density depends on the amount of melanin in the basal layer, which
depends on many factors, the main one of which is the type of skin. Note that
the dermis is very different from the epidermis in the composition and structure.
The scattering coefficient of the dermis stronger at shorter wavelengths. Scattering
plays a major role in determining the depth of penetration of radiation at different
wavelengths in the dermis. Therefore, longer wavelengths penetrate deeper rather
than shorter. It is explained by the presence of melanin, which absorbs more shorter
wavelengths than long.According to [15] for a sample consisting of the epidermis and
dermis, the depth of which is 0.15–0.2mm (wavelength 632.8nm) and 0.21–0.4nm
(wavelength 675nm).

1.3 Structure and Optical Properties of Blood

Blood is one of the most important biological fluids. Blood is the liquid part of
the plasma (57% of blood volume) and suspended in its cell (enzymatic) elements
(43%). Plasma consist from 90–91% water; 6.5–8.0% are protein molecules and the
remaining 2% are lowmolecular substances. In addition, the blood contains platelets
99% of the blood cells are red blood cells, and 1% are white blood cells and platelets.
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Fig. 1.2 The absorption spectra of hemoglobin and oxyhemoglobin

Red blood cells have a biconcave disk shape with a diameter of about 7µm and
a thickness varying from 1–2 µm center to the edges. The cell contains hemoglobin
molecules that easily join the oxygenmolecules, when they are converted into oxyhe-
moglobin. Accordingly, we have different venous and arterial blood. The hematocrit
is volume percentage of red blood cells in whole blood.

The most important parameter is also the oxygen saturation (OS), defined as the
ratio of oxygenated hemoglobin to total hemoglobin. The absorption of the blood
is determined mainly by water absorption, hemoglobin and oxyhemoglobin. The
absorption spectra of these pigments is shown in Fig. 1.2 [17]. If the hematocrit
increases, this means that the number of red blood cells is increasing and there is an
increase in the scattering. At higher hematocrit H > 0.5 erythrocytes stick together,
forming a homogeneous mass absorbed by hemoglobin and scattering occurs on the
plasma cavity located between the masses of red blood cells. This section contains
the optical parameters of the biological structures without their temperature depen-
dences. Note that with increasing temperature the optical characteristics of tissues
and their components will change.

Now consider the basic principles ofmathematical models to calculate the interac-
tion of laser radiation with a turbid medium. One example of such an environment is
human biological tissue. Biological tissue is a multilayer medium containing various
inclusions, such as, for example, blood vessels, in which the blood moves. Con-
sider the main approaches in the theory of mathematical models that describe the
interaction of laser radiation with multi-layered turbid media.
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Chapter 2
Overview of Theoretical Approaches
to the Analysis of Light Scattering

Abstract We propose methods of light scattering for the quantitative study of the
optical characteristics of the tissue, and the results of theoretical and experimental
studies of photon transport in biological tissues.

2.1 Introduction

One important aspect of the development of modern medicine is the early detection
of diseases. To solve this problem it is necessary to select the most informative
indicators of the functioning of the organism, such measurements are the results of
the analysis of peripheral blood. As we know the blood is made up of the following
elements: white blood cells, red blood cells and platelets, the optical properties of
biological objects help to solve a number of problems for the diagnosis of various
pathological processes in the body. In medical diagnostic methods are divided into
�invasive� and �non-invasive�. Invasive methods assume such an action on the
prototype system, such as is going through some changes (X-rays) in the organs or
tissues. Non-invasive methods are methods in which information about an object is
obtainedwithout disturbance of the internal structure of the body.Considering that the
classification is from a physical viewpoint we can say that completely non-invasive
methods do not exist in the very nature of the measurement procedure. It is correct to
describe all methods of diagnosis to some degree as perturbation, introduced into the
prototype system, and those where a disturbance is minimal considered non-invasive
methods. As such, a new area of diagnostics was now actively developed, which
uses optical techniques. With the optical point of view of biological tissue (including
bioliquid: blood, lymph, etc.) it can be divided into two broad classes:

1. strongly scattering (skin, vascular wall, blood);
2. weakly scattering (tissue of the eye: cornea, crystalline lens) [1, 2].
This chapter describes the use of light scattering techniques for a highly scattering

biological structure.
Todevelopnewmethods of laser biomedical diagnostics onemust study in detailed

the peculiarities of the process of light propagation in biological tissues, as theoretical
studies improveunderstandingof the opticalmeasurements, reliability andusefulness
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of optical technologies. The use of light scattering techniques for biological particles
was developed in the articles based on the Mie theory for single, two and three
particles [3].

With the help of a two-layer model of the sphere one hase described light-
scattering properties of suspensions of erythrocyte [4, 5].

Note that the first articles involving the exact theory of electromagnetic waves of
a two-layer sphere considered a model of biological particles [6, 7]:

1. the refractive index of the particle and its shape;
2. parts inside the particle, i.e, antrum, small inhomogeneities [8, 9].
These studies have identified the optical properties of the typical representatives of

biological particles: angular dependence of the red blood cells, in reducing platelets,
which are associated with changes in cell shape. Effects of aggregation and disper-
sion.

As also the different characteristics of the native cell were evaluated [10, 11].
However, elucidating the physical mechanisms of living systems and the devel-

opment of pathological changes requires new methods for studying living matter
and the manipulation of biological structures. Thus, in the optics of scattering media
there are three main directions.

The first direction. This direction is connected with the solution of diffraction
problems for the individual plates and the linking characteristics of the absorption
and scattering of the optical geometry and structural parameters of the particles. In
this field of research a number of new methods and algorithms has been developed
to obtain quantitative results for a broad class of sizes, shapes, structures, and optical
parameters of the particles.

The second direction of light scattering theory is associated with the equation of
radiative transfer. This equation uses the photometric values and phenomenological
characteristics of the environment, namely, the scattering coefficient, absorption and
scattering function of volume. In the multiple scattering theory of transport phe-
nomenology is taken into account and based on the law of conservation of energy
and the concept of radiation intensity.

The third direction of scattering theory, electrodynamics consideres statistically
inhomogeneous media. This approach takes into account the multiple scattering of
waves (MSW) in the discrete or continuous irregularities and the vector nature of the
electromagnetic field. The theory of multiple scattering of waves is based on simple
physical principles. First, we assume that we know the spatial configuration of all
the particles and their statistical properties. Secondly, it is assumed that we know
scattering operator of a single particle, which describes the scattered field for a given
excited field. Note that the excited field is the sum of the incident field and the field of
multiple scattering from all other particles, because we consider the electrodynamic
of system interaction with multipole oscillators. Thus,to find an excited field with all
possible orders of scattering from all the interacting particles, is the main difficulty
of the theory.

Various versions of this theory differ primarily only in the ways of approximate
calculation of the excited field with the statistical properties of the ensemble, which
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describes the spatial configuration and the optical properties of lenses If the excited
field is found, further analysis concerns the calculation from the scattered fields of
individual particles and the addition of these fields with phase shifts. Since we are
considering random fields, calculating the observed photometric is needed to use
the correlation analysis. In the theory of multiple scattering of waves the theory of
coherent radiation propagation in a medium close-packed lenses has been developed
in detail, the main result of which is the output of the dispersion equation for the
effective wave number describing the propagation of a coherent field in a medium
different from the wave number of free space. This dispersion equation takes into
account the optical properties of the scatterers and the statistical properties of their
spatial location. Note that in the derivation of the dispersion equation simplifying
assumptions are made. For example, the use of quasi-crystalline approximation to
decouple the infinite chain of equations of multiple scattering, and to describe the
pairing correlations in the positions of the particles using the Percus-Yevick. A fun-
damental feature of the theory of MSW is that the optical properties of interacting
particles differ from those characteristics which are obtained by solving the scatter-
ing problem for an isolated particle. For example, the extinction cross-section of the
particles in the cluster do not coincide with the usual calculation of Mie theory. Even
in the simplest case of two completely identical spheres in the contact cross section
of each particle depends on the orientation of the bisfery in relation to the incident
plane wave. Effects of this type are said to be “collective” or “cooperative” effects of
the scattering of interacting particles. In general, the cooperative effects of multiple
scattering are the two components and their calculation is rather complex. However,
for biological systems the situation is simplified by the fact that the optical properties
of interacting particles are usually not much different from those of the environment.
The analysis of the conditions for the applicability of a specific version of the theory
of light scattering is a nontrivial problem, which requires taking into account the
coherence properties of the incident light, the size, concentration, and optical prop-
erties of the particles, the time of stability of the microstructure of the medium (i.e.,
the characteristic relaxation times of fluctuations), the geometric parameters of the
scattering sample, the characteristics of the photodetector, etc. Note that in this paper
we consider only the first two of the main approaches in the theory of scattering for
highly scattering tissue.

2.2 Optical Properties of Tissues with Multiple Scattering

In this section we consider light scattering methods for the quantitative study of the
optical characteristics of the tissue, and the results of theoretical and experimental
studies of photon transport in biological tissues. The theoretical analysis is based on
a stationary or non-stationary radiation transfer theory for strongly scattering media,
as well as numerical Monte-Carlo method, which is used to solve the problems of
scattering in multilayered biological tissues with complex boundary conditions.
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2.3 Stationary Theory of Radiative Transfer

Transport theory the theory of radiative transfer was developed by Schuster in
1903 [12]. Transport theory does not include diffraction effects. In the classical
theory of radiative transfer, considering the wave field as a combination of incoherent
radiation beams, the basic concept is the radiation intensity (or brightness) I (r, s),
which determines the average energy flux dP through the surface element dα that
is concentrated in a solid angle dΩ near the direction s of the frequency interval
(ν, ν + dν):

dP = I (r, s) cos θdαdΩdν (2.1)

Stationary equation of radiative transfer theory for monochromatic light has the form
[13]:

∂ I (r, s)
∂s

= −μt I (r, s) + μs

4π

∫
4π

I (r, s′)p(s, s′)dΩ ′, (2.2)

where I (r, s) is ray intensity at the point r in the direction s, p(s, s′) is phase function
of the scattering, dΩ is unit solid angle in the direction s′,μs is scattering coefficient,
μt = μa + μs is coefficient of the total interaction, μa is coefficient of absorption.
We assume that there are no light sources inside the medium.

The boundary condition for the equation (2.2) is:

I (r, s)|(sn)<0 = IQ(r, s) + RI (r, s)|(sn)>0, r ∈ ∂Γ, (2.3)

where IQ(r, s) is boundary distribution of radiation intensity generated by external
sources, n is outward normal to the ∂Γ at r, R is the operator of reflection.

The phase function p(s, s′) describes the scattering properties of the medium and
is the probability density function of the scattering of photons in the direction of the
s′ which move in the direction of s. The phase function p(s, s′) can be defined as a
table form, derived from measurements or represented by an analytic expression.

In many practical cases, the phase function is well approximated using the empir-
ical Henie-Greenstein function

p(θ) = 1

4π

1 − g2

(1 + g2 − 2g cos(θ))3/2
,

where g is the scattering anisotropy factor,

∂ Iri (r, s)
∂s

= −μt Iri (r, s), (2.4)

Iri is theweakened incident intensity. Note that the expression (2.4) coincideswith
the Bouguer law for the scattering medium. This means that for the weak incident
intensity in the transport theory Bouguer law is valid for all optical thicknesses.
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The total intensity is determined as

I (r, s) = Iri (r, s) + Id(r, s), (2.5)

and satisfies the equation (2.2) while diffuse intensity is determined by the equation

∂ Id(r, s)
∂s

= −μt Id(r, s) + μs

4π

∫
4π

Id(r, s′)p(s, s′)dΩ ′ + εri (r, s), (2.6)

where εri (r, s) is the function of the equivalent source.
The scalar equation (2.2) is used in optics to describe light in cases where polar-

ization effects can be ignored.
Exact solutions of the transport equation and the integral equation for the radiation

intensity are obtained only for a small number of special cases. Examples of this kind
for which solutions are found and stored in a suitable form for the calculations are
coplanar problems and problems with isotropic scattering.

We consider several approximations that are often used in optics of biosystems.

2.4 Approximate Methods for Solving the Transport
Equation

First order approximation. In the case of weak scattering the scattering medium is
sparse, and the scattering volume is not large, solving the transport equation can be
obtained by iteration.

In the first approximation, the iterative solution of the radiative transfer equation
produces a result, known as a first order approximation transfer theory [14]. In this
approach it is assumed that the total intensity incident on the particles is approxi-
mately equal to the incident intensity weakened, which is known. Consequently the
solution to the first-order approximation of the form [14] is:

I (r, s) = Iri (r, s) + Id(r, s) (2.7)

Id(r, s) =
∫ s

0
exp[−(τ − τ1)]

[
μs

4π

∫
4π

Iri d(r, s′)p(s, s′)dΩ ′
]
ds′, (2.8)

where Iri is the weakened incident intensity, Id is the diffuse intensity, τ , τ1 are
optical paths,

τ =
∫ s

0
ρμt ds, τ1 =

∫ s1

0
ρμt ds
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and ρ is the total number of particles per unit volume. Note that the solution to
the first-order approximation is valid for optically thin and weakly scattering media
(τ < 1, Λ < 0.5) when the intensity of the transmitted wave (coherent component)
is described by the Bouguer law. In the case of a very sharp incident beam (eg, laser
light) first order approximation is valid for more dense tissues (τ < 1, Λ < 0.5),
where Λ = μs/μt − is the single scattering albedo.

Diffusion approximation. This approach suggests that diffusion intensity encoun-
ters many particles and disperses them nearly uniformly in all directions, so it is
the almost isotropic angular distribution [12]. Diffused illumination components can
be represented in the form of spherical harmonics of Legendre polynomial [15]. We
consider only first two terms in the expansion in the series, then we have the diffusion
approximation, which is written as

Ls(r, s) = 1

4π

∫
4π

Ls(r, s)dΩ + 3

4π

∫
4π

Ls(r, s′)s′ · sdΩ =

= L0(r) + 3

4π
F(r) · s, (2.9)

where L0(r) is the indexaverage diffuse intensity, F(r) is the diffuse flux vector
oriented along the direction of the unit vector s. The first of these equations expresses
Fick law (power density is proportional to the gradient of light), which describes the
increase or decrease of the power flux density due to absorption and scattering of
collimated and diffuse components:

F(r) = − 1

3μσ

∇ϕs(r) + μsg

μσ

E(r, s0) · s0, (2.10)

where μσ = μa + (1 − g)μs is transport damping factor. The second equation is
described in the following expression:

∇ · F(r) = −μaϕs(r) + μs E(r, s0) (2.11)

Thus, in the stationary case, the transport equation in the diffusion approximation
can be written as [15]:

∇2ϕs(r) − 3μaμσϕs(r) + 3μsμσ E(r, s0) − 3μsg · ∇(E(r, s0)s0) = 0 (2.12)

Biological tissues scatter light mainly in the forward direction. As a result, the dif-
fusion approximation is not always a good approximation of the theory of radiation
transport near sources or boundaries. To improve the situation we include the delta
function in the definition of the phase function [15]:

p(s, s′) = (1 − f )p′(s, s′) + f δ(1 − s · s′) 1

2π
. (2.13)
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This representation is called the Delta-Eddington approximation.
The diffusion equation in this case can be written using the new variables:

μ′
t = μa + μ′

t , μ
′
s = μs(1 − f ), p′(s, s′), f = g2, g′ = g

g + 1

These coefficients correspond to a phase function of type Henie-Greenstein approx-
imation. Transformation p → p′ (p′ is new phase function) is a mathematical trans-
formation. Changes occur in the source region and borders, and this is especially
important for a strong forward scattering.

Delta-Eddington approximate reduces the degree scattering direction (g′ < g).
The boundary condition for the solution of the transport equation can be written

as: ∫
2π

Ls(r, ξ)(ξ · n)dΩ = 0, (2.14)

where n is the unit normal vector.
The boundary condition for solving the transport equation in the diffusion approx-

imation at the boundaries with air can be written as [15]:

1 − r21
1 + r21

· ϕs(r)
2

+ μsg

μσ

E(r, ξ0)n − 1

3μσ

∇ϕs(r)n = 0 (2.15)

where r21 is reflection coefficient at the air-biological tissue.
It is necessary to distinguish three types of boundaries with air which are as

follows: the higher boundary towhich the radiation drops, the side boundaries and the
lower boundary of the tissue. For these kinds of boundaries the reflection coefficients
are different. For the upper boundary, through which radiation from the air enters the
scattering medium, this coefficient has the form [16]

r21 = 1 −
(

1

n2

)2

for the lower and side boundaries, through which radiation from the environment
goes into the air the factor has the following form:

r21 = cos2 θc + cos3 θc

2 − cos2 θc + cos3 θc
,

where

θc = arcsin

(
1

n2

)
.

At internal borders the given condition is equality flow.
The diffusion theory is a good approximation in cases where the anisotropy of

scattering is small (g ≤ 0.1) and scattering albedo is largeΛ −→ 1. Formany tissues
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the scattering anisotropy factor is g ≈ 0.6 − 0.9, and in some cases, for example
blood, can reach values of 0.990–0.999 [17]. This substantially restricts applicability
of the diffusion approximation. Several papers were devoted to the study of the
accuracy of the diffusion approximation [18]. Based on the comparison of solutions
of the diffusion equation with the results of the Monte-Carlo simulation[19] (see
below) one concluded that the diffusion approximation may be a solution on some
orders from the truth. In optics the tissues simpler methods have been found for
solving the transport equation, such as the two-flux Kubelka-Munk model, three-,
four-and seven-flux models [12].

Two-and multiflux approximation. This theory is based on the model of the two
light beams propagating in the forward and backward directions. The main assump-
tion of this theory is that the radiation intensity is diffuse. Inside the tissue diffuse flux
is divided into two parts: L1 the flow in the direction of incident radiation and flux
scattered back L2. For the absorption and scattering of diffuse radiation we introduce
two Kubelka-Munk coefficients: AKM and SKM .

We have two differential equations

dL1

dz
= −SKM L1 − AKML1 + SKM L2

dL2

dz
= −SKM L2 − AKML2 + SKM L1,

where z is the average direction of the incident radiation.
Coefficients AKM and SKM values μa and μs are written as follows [12]: AKM =

2μa , SKM = μs .
TheKubelka-Munk theory is a special case ofmultiflux theory,where the transport

equation is transformed into a matrix differential equation which takes into account
the intensity of the radiation in the direction of many of the individual solid angles.

The two-flux theory is not applicable to describe the incident on a medium colli-
mated beam. In this case, we use the four-flux theory. The Four-flux theory [12] takes
into account two counter diffuse flux as the Kubelka-Munk theory, as well as two
collimated laser beams, the external incident and reflected from the back surface of
the sample The Seven- flux theory is a three-dimensional representation of the inci-
dent laser beam and the scattering of radiation in a semi-infinite medium [20]. Note
that the Kubelka-Munk theory can only be applied to a one-dimensional geometry of
the system. The numerical approximation of the transport equation can be obtained
by the Monte-Carlo method.

Monte-Carlo method. The general scheme of the Monte-Carlo method is based on
the central limit theorem of probability theory. General properties of theMonte-Carlo
method:

• absolute convergence of the solution is of order 1
N ;

• independence of the error on the number of tests is of order approximate 1√
N• the main method reducing the error is the maximum variance reduction;
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• the error does not affect the dimension of the problem;
• simple structure of the computational algorithm;

From the viewpoint of the solutions of the equation for radiative transfer the
Monte-Carlo method is a computer simulation of the random motion of N photons
[14]. To obtain reasonable approximation to one have consider a large number of
photons because the accuracy of the results is proportional to

√
N . The main idea

of the method is the registration of effects of absorption and scattering throughout
the optical path of a photon through a non-transparent environment. The distance
between two collisions is chosen from a logarithmic distribution, using a random
number generated by a computer. To take into account absorption, each photon is
assigned a weight.

If there is scattering, a new direction propagation is chosen according to phase
function and other random number. This procedure is repeated as long as the photon
does not come out of the considered volume or the weight reaches a certain value.
The Monte-Carlo method includes five main steps: generation of the source photon
trajectory, absorption, destruction, registration [14].

1. Generation of photon source. The photons are generated on the surface of the
medium. Their spatial and angular distribution corresponds to the distribution
of the incident radiation (for example, a Gaussian beam).

2. The generation of the trajectory. After generation of a photon the distance to
the first collision is determined. We expect that the absorbing and scattering
particles are randomly distributed in opaque medium. Then, the value of free
path is 1/ρσx , where ρ is particle number density and σx is the scattering cross-
section. Random number 0 < ξ1 < 1 is generated by computer and the distance
to the next collision L(ξ1) is calculated from the expression

L(ξ1) = − ln ξ1

ρσx
.

Since ∫ 1

0
ln ξ1dξ1 = −1,

average quantity L(ξ1) is 1/ρσx . From this we obtain a scattering point. The
scattering angle is determined by the second random number ξ2 in accordance
with the phase functions, such as Henie-Greenstein function. The polar angle �

is determined by the expression � = 2πξ3, where ξ3 is a third random number
between 0 and 1.

3. Absorption. To take into account the absorption, we assigned weight to each
photon. At the point of entry to the opaque medium, the weight of a photon is
equal to 1. Theweight decreases by absorption in accordancewith the expression
exp[−μa L(ξ1)]. As an alternative to assigning weights a fourth random number
ξ4 can be added (0 < ξ4 < 1).
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We assume that the scattering takes place only when, ξ4 < a is where optical
albedo,

a = μs

μa + μs
.

if ξ4 < a photon is absorbed, which is analogous to step 4.
4. Destruction. This step is used only when assigning a weight to each photon in

step 3. When the weight reaches a certain value, the photon is eliminated. Then
a new photon emits and the program continues with step 1.

5. Registration. After repeating steps 1–4 for a sufficient number of photons, a map
of the trajectories is calculated and accumulated in the computer. Thus, it may
be obtained by a statistical report on portions of the incident photons absorbed
by the medium, and the spatial and angular distribution of the photons emerging
from it.

We consider one of the variants of the construction algorithm of the Monte-Carlo
method. The modeling medium is defined by the following parameters: Lave is the
thickness, μs is the scattering coefficient and μa is the absorption coefficient, g is
the cosine of the scattering angle, n is the relative refractive index.

The incident impulse consists of one million photons within the medium along
the z-axis perpendicular to the surface (x, y) at the point (0, 0, 0). Calculations are
made in a three-dimensional Cartesian coordinate system. After entry of the photon
the mean free path of a photon in the medium, and the scattering angles θ and ϕ are
determined. The scattering angle p(θ) is defined by the scattering phase function. In
the general case p(s, s ′) = p(θ)p(ϕ) where s is incident direction, s ′ is scattering
direction of photon. Note, particles of medium are spherically symmetrical particles,
when we have absorption and scattering. This approximation is used in similar cases,
and based on the fact that in the process of passage through a medium with strong
scattering of a photon interacts with particles from different angles. We can therefore
use the average of the scattering indicatrix.

Thus, if you use this approach, we have p(ϕ) = 1
2π . In the case of tissue with

strong scattering as a function of the phase of the scattering phase function p(θ)

Henie-Greenstein can be applied, from which we obtain an expression for the angle
θ :

θ = cos−1

⎡
⎢⎣
1 + g2 −

[
1−g2

1+g2−2gRandom

]2
2g

⎤
⎥⎦ ,

where Random is random number uniformly distributed in the range (0,1). At each
step θ angle is relative to the �old� direction of propagation, the angle ϕ is in a
plane perpendicular to the �new� direction of movement.

The free path of photon is:

p(L) =
[
1

l ph

] l

e
l ph

,



2.4 Approximate Methods for Solving the Transport Equation 19

where mean free path of photon is

l ph = 1

μa + μs

Since ∫ ∞

0
p(L)dL = 1.

For the calculation of the mean free path we take random number ξ ∈ (0, 1):

ξ =
∫ L

0
p(l)dl.

The number ξ , which is uniformly distributed in the interval (0, 1), is given as
computer generated random number.

Thus, the free path of a photon is:

L = −l ph ln(l − ξ).

After that onemodels the interaction of a photonwith a particle of themedium,which
can be either absorbing or scattering center. The probability of photon scattering on
the particle is

ps = μs

μs
+ μa,

The probability of absorption is:

pa = μa

μs
+ μa = 1 − ps .

If the generator produces a randomnumber in the range (0, p), then the photon is con-
sidered to be scattered, otherwise it is absorbed. The total layer of the medium along
the z-axis virtually divided into a number of thinner layers having equal thickness
to which data arrays correspond. In each array the number of absorbed or scattered
photons is recorded. Thus, the spatial resolution of the depth of the sample is

1

Lave
.

If the photon is scattered, its new direction and coordinates are calculated with the
following formulas::

x = x0 + L sin θ cosϕ,

y = y0 + L sin θ sin ϕ,
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z = z0 + L cos θ,

where x0, y0, z0 are the �old� coordinates of photon. If the photon is absorbed,
then we start the next one. Next, all the coordinates are translated in the original
coordinates. Calculation continues as long as the photon is not absorbed or leaves
the detector. At the boundaries of the medium-to-air total internal reflection is:

θ = sin−1

(
1

n

)
,

where n is refractive index of medium. Note that the use of Monte-Carlo method is
based on the use of macroscopic optical properties of the mediumwhich are assumed
to be homogeneouswithin small volumes of tissue and simulation by theMonte-Carlo
method does not account for details of the energy distribution of radiation inside an
individual cell.

2.5 The Nonstationary Theory of Radiative Transfer

Using the nonstationary transfer theory, we can analyze the response time of the scat-
tering tissue [21]. This analysis is important for justification of noninvasive optical
methods using measurement reflection or transmission of tissue with a time resolu-
tion [1, 22, 23]. The nonstationary equation of radiative transfer theory is [21]:

∂ I (r, s, t)
∂s

+ t2
∂ I (r, s, t)

∂t
= −μt I (r, s, t)+

+ μs

4π

∫
4π

[∫ t

−∞
I (r, s′, t) f (t, t ′)dt

]
p(s, s′)dΩ ′, (2.16)

where t is time, t2 is the average time between the interactions,

f (t, t ′) = 1

t1
exp

(
− t − t ′

t1

)
,

t1 is the first moment of the distribution function f (t, t ′) and it means the duration of
the individual act of scattering, t → 0, f (t, t ′) → δ(t − t ′), I (r, s, t) is ray intensity.
Equation (2.16) satisfies the boundary conditions (2.3) for (r, s) → (r, s, t). If the
direction I (r, s, t) is insignificant compared to the isotropic component, then (2.16)
is transformed into a diffusion equation [12, 23]

(
∇2 − cμaD

−1 − D−1 ∂

∂t

)
U (r, t) = −Q(r, t), (2.17)
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if μa = 0 the diffusion equation is equivalent to the heat conduction equation.
The solution of the diffusion equation (2.17) for media with constrained geometry

requires that the source function of the boundary conditions were set as follows [21,
24]:

1. During the sensing medium directional beam radiation source of the diffuse
component is not localized on the surface of the medium, but at a certain depth.

2. Boundary condition for the classical diffusion problem can be written as

U (r, t)|r=Ω = 0,

whereΩ is surface bounding the region of space where the diffusion takes place.

In the case of diffusion of radiation, this condition must be modified to account
for the influence of the light reflection at the boundary.

Solution of the diffusion of radiation in bounded regions space can be obtained
using standard techniques of solving boundary-value problems, for example in the
areas in the form of a half-space [25]. Note that the important question is of the
influence of absorption on the transport properties of the scattering medium. The
diffusion theory of radiation diffusion coefficient is

D = c

3(μa + (1 − g)μs)
.

However, in [23, 25] it is written that a better match between the experiment and the
diffusion theory achieved if D is of the form

D = c

3(1 − g)μs
,

This allows us to analyze the statistics of the optical paths in the case of an absorbing
medium by calculating the probability density p(s) for non-absorbing medium with
the specified μs and g.

We note that there have been various attempts to modify the diffusion approx-
imation in order to obtain an analytical description of the radiative transfer near
the scattering medium, and also for cases of strong absorption and anisotropic scat-
tering. Thus, in [26] the description of the radiative transfer is examined using a
three-dimensional telegraph equation.

2.6 Methods for Measuring Optical Parameters
of Biological Tissues

To measure optical parameters of biological tissues (absorption coefficient, scatter-
ing coefficient) different methods are used. These methods can be divided into two
classes: direct and indirect. The direct methods are the methods which are based on
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the basic concepts and definitions, such as Bouguer law:

I (z) = (1 − R)Io exp(−μt z), (2.18)

where R is the reflection coefficient, Io is the intensity of the incident light, μt is the
absorption coefficient and z is depth.

The measured parameters are the scattering function or lighting inside the volume
of the medium. The advantages of these methods include the comparative simplicity
of analytical expressions that are used in data processing. The disadvantages of
direct methods are related to the need of strict implementation of the experimental
conditions, the relevant models: the single scattering for thin samples, the refraction
of light on the edges of of the cuvette.

Indirect methods involve solving the inverse scattering problem using specific
theoretical model of light propagation in the medium. Indirect methods are divided
into iterative and noniterative. Noniterative methods use the equations in which the
optical properties are determined by the parameters associated with the measured
values. Note, in case in vitro measurements of the parameters of samples of bio-
logical tissues we can use method of integrating the two spheres combined with
measurements of the collimated transmission.

It consists of consistent or simultaneous measurement of three parameters: the
collimated transmission, diffuse transmission Td and diffuse reflection Rd . For deter-
mining the optical parameters of the tissue from thesemeasurements one can use var-
ious theoretical equations or numerical methods (two-and multi-flux model, inverse
Monte-Carlo method), which establish the relationship between the absorption coef-
ficient, the scattering coefficient with the measured parameters. In the simplest case,
we can take a two-flux the Kubelka-Munk model [27]:

S = ln

(
1 − Rd(a − b)

Td

)
; K = S(a − 1);

a = 1 − T 2
d + R2

d

2Rd
; b = (a2 − 1)1/2;

K = 2μa; S = 3

4
μs(1 − g) − 1

4
μa;

μt = μa + μs;μ′
s = μs(1 − g) > μa .

Determination μt of collimated transmission measurements on the basis of (2.18)
allows us, with the help of experimental data Td , Rd to find all three of the optical
parameters of tissue: μa, μs, g. The Kubelka-Munk model, three-, four-, and seven-
flux [20], [27]−[28] are the basis of of indirect noniterative methods.
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2.7 Methods for Solving Inverse Problems of Scattering
Theory

One method of solving the inverse scattering problem is the inversion method of
adding-doubling [28]. The inversion method of adding-doubling includes the fol-
lowing steps:

1. assignment of expected optical parameters;
2. calculation of reflection and transmission using themethod of adding-doubling;
3. comparison of the calculated values of the reflection and transmission with the

measured;
4. repetition of the procedure to obtain coherent data with a given precision.
The method is used with the following assumptions: the distribution of light is

independent of time, the samples have homogeneous optical properties, the geometry
of the samples is an infinite plane-parallel layer final thickness, tissue has a homo-
geneous index of refraction, internal reflection at the boundaries is described by
Fresnel law and the light is not polarized The inversion method of adding-doubling
was successfully used in finding the optical parameters of the dermis [29].

2.8 Resume

This chapter describes methods for modeling the interaction of light with biological
tissue: the diffusion approximation, the theory of radiative transfer, variousmulti-flux
theories and the Monte-Carlo method.

Note the most significant limitations and disadvantages of these methods:

1. The theory of radiative transfer is true for sufficiently distant scatterers.
2. The diffusion approximation can not be applied at a wavelength λ = 0.514µm.

It also is not applicable near the surface of the object at the input of the light
beam, where single scattering is predominant.

3. Amajor shortcoming of theMonte-Carlomethod is that in order to obtain precise
results with help program must be passed a large number of photons.

4. Modeling of Monte-Carlo does not account for the details of the distribution of
radiation inside a single cell.

These reasons have defined the development of a new approach of mathematical
modeling of the interaction of light with biological particles and biological tissue
through the application of asymptotic methods in the theory of diffraction.

This approach enabled:

1. the investigation of the optical properties of an ensemble of randomly oriented
spherical particles (hemocytes) in the cavity optical linear resonator;

2. the calculation of the refractive index of the blood and to determine the speed
blood of an flow in the capillary at a wavelength λ = 0.63µm for the case in
vivo;
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3. the investigation of the optical characteristics of the simulated biological struc-
ture with roughness, when the characteristic size of unevenness on the surface
is much greater than the wavelength, by the classical methods of the theory of
diffraction;

4. the evaluation of the effect of roughness on the spectral characteristics of the
simulated biological structure;

5. the calculation of the preliminary parameters of the laser radiation field, to iden-
tify and study the effects of responses of laser irradiation at different levels of
organization of living matter;

6. the description of the quantitatively and qualitatively normalized spectra of laser
radiation on the oxy-and deoxygemoglobin and the selection of the optimal
wavelength for the effective action of laser radiation on biological structures;

7. the study the effectiveness of absorption not only by blood but also in biological
tissues, and the investigation of the kinetics of the denaturation of tissue in order
to develop the optimal mode of operation and technical characteristics of laser
used in biomedical research;

8. theoretically calculate the size distribution function for particles of irregular
shape with a variety forms and structures of inclusions that simulate blood cells
in the case of in vivo and determine the degree of aggregation, for example, the
platelet for case in vivo.
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Chapter 3
Study of Electrophysical Characteristics
of Blood Formed Elements Using
Intracavity Laser Spectroscopy

Abstract We study optical characteristics of an ensemble of arbitrarily oriented
particles are studied in an optical cavity. The study is based on the self-consistent
conjugation with respect to nonuniform optical cavities with the results of scattering
by an ensemble of arbitrarily oriented spherical particles with different shapes and
structures. A new electrodynamic model for the interaction of laser radiation with
blood cells is constructed with allowance for the structure of cells for the prediction
of optical properties in vivo and for study the polarization characteristics, absorption
curves for an ensemble of spherical particles with a nonconcentric inclusion that
are placed in a resonator cavity. Quantitative estimates are made that can be used
to predict how biophysical and biochemical processes in a biological tissue may
influence its optical properties.

3.1 Introduction

There has been considerable recent interest in the application of laser methods in
various branches of science and technology including physics, chemistry, biology,
and medicine. Laser sources are employed in medicine for diagnostics, therapy, and
surgery. Informative parameters that characterize vital activity are primarily cho-
sen in such problems. Note the important analysis of peripheral blood, which flows
in organs and tissues, since the corresponding results can be used to characterize
a living organism. A comprehensive analysis of the parameters of light scattering
and absorption allows rapid intact determination of physiological and morphologi-
cal modifications in cells due to temperature, chemical, etc., effects. It is known that
blood consists of the following blood cells: leucocytes, erythrocytes, and thrombo-
cytes [1, 2]. The study of the optical properties of such biological objects makes
it possible to solve several important problems in diagnostics of pathologies. To
develop a mathematical model of the interaction of laser radiation with complicated
blood cells, we must consider the corresponding geometrical structures.
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First, we consider the cells with the highest concentration in blood (erythrocytes).
An erythrocyte is a cell that has the shape of a biconcave disk. The cell does not
contain a nucleus and a specific protein (hemoglobin) is the main component of
cytoplasm. In normal blood, from 70 to 80% of erythrocytes have the spherical
biconcave shape and different shapes are possible for the remaining 20–30% of the
cells (e.g., spherical, oval, bowl-shaped, etc.). The erythrocyte shape is sensitive to
several diseases: in particular, sickle cells are typical of sicklemia [1, 2].

Leucocytes are blood cells that can be divided into granulocytes, which exhibit
granules, and agranulocytes, which are free of granules. Neutrophils, eosinophils,
and basophils are classified as granulocytes [1, 2].

A neutrophil is a circular cell with an uncommon rod-shaped nucleus. Neutrophils
with rod-shaped and lobed nuclei are young and mature cells, respectively. Most
neutrophils in blood are cells with lobed nuclei (65%), and the content of the plane-
nucleus cells is no greater than 5%.

Similarly to the neutrophil, an eosinophil is a circular cell with rod-shaped or
lobed nucleus. The cytoplasm of this cell contains relatively large granules with
identical sizes and shapes [1, 2].

A basophil is a circular cell with the rod-shaped or lobed nucleus. The cytoplasm
contains granules with different sizes and shapes [1, 2].

Monocytes and lymphocytes are classified as agranulocytes.
Monocytes and lymphocytes are classified as agranulocytes. A monocyte is an

agranulocyte (i.e., a cell that does not contain granules) with an almost triangular
shape and a large nucleus that can be circular, beanlike, etc.

A lymphocyte is a circular cell with a variable size and a relatively large circular
nucleus. Lymphocytes are formed from lymphoblasts in bone marrow, where the
remaining blood cells are formed, and exhibit several divisions in the course of
maturation.

A thrombocyte is a relatively small circular or oval nucleus-free cell. In this work,
we construct an electrodynamic model of the interaction of laser radiation with blood
cells for the prediction of the electrophysical properties. Optical intracavity methods
are efficient tools for the study of processes in complicated biological systems.

The problem consists of three consecutive stages.
At the first stage, we consider the scattering by a particle in which the nucleus is

shifted relative to the center. Note the variable position of the nucleus in the cell. In
particular, the nucleus is often located at the center in young and embryo cells. The
growth of the cell and an increase in the rate of metabolic processes may lead to a
shift of the nucleus, which is always embedded in cytoplasm.

At the second stage, we solve the problem of multiple scattering by an ensemble
of spheres that is used to simulate the biological medium (blood formed elements)
in the optical cavity. In this case, we self-consistently take into account the multiple
scattering by a set of particles with nonconcentric inclusions and propose a solution
for the eigenfrequencies of the optical cavity with a cuvette that contains particles
with complicated structures.
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At the third stage, we investigate the numerical problem of optical characteristics
for an ensemble of spherical particles with a non concentric inclusion that are placed
in a resonator cavity.

Chapter is based on the results of the [3, 4].

3.2 Vector Spherical Harmonics

We assume that a cuvette with a sample of biotissues that simulates blood formed
elements is placed in the vicinity of the Z axis in region Ω of a linear cavity.
In the first approximation, we also assume that the particles that simulate blood
formed elements, in particular, erythrocytes are spherical particles and the remain-
ing blood formed elements are represented as spheres with nonconcentric inclusions
(see Fig. 3.1).

We assume that the particle sizes exceed the incident radiation wavelength; i.e.,
ka j > 1, where a j is the radius of the j th particle.

Let a plane, linearly polarized electromagnetic wave be incident on a group of
uniform particles with radii a j and refractive indices N j = n(o) j + iχ j , where j
is the particle number. The wave propagates in a random direction. The particle
ensemble is considered in a three-dimensional coordinate system with the origin at
the center of the particle j0. The radius vector of any other j th particle is denoted
as r j0, j . The field in the vicinity of the j0-particle, perturbed by other particles, is
determined from the Maxwell equations

rotH = ikE, rotE = −ikH, divE = 0, divH = 0,

where k is the wave number.
Let us introduce a vector such that M = ∇ × (rψ), where ψ is a scalar function

and r is the radius vector, ∇ · M = 0. If we use the vector identities,

∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B,

∇ · (A · B) = A × (∇ × B) + B × (∇ × A) + B(∇ · A) + (A · ∇)B,

Fig. 3.1 Linear resonator
with the cell containing the
erythrocyte monolayer
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then we obtain
∇2M + k2M = ∇ × (r(∇2ψ + k2ψ)). (3.1)

From (3.1) it follows thatM satisfies the wave equation ifψ is a solution to the scalar
wave equation

∇2ψ + k2ψ = 0 (3.2)

Then
M = −r × ∇ψ

whence it follows thatM is perpendicular to r.
Let us construct fromM another vector function

N = 1

k
∇ × M,

which also satisfies the vector wave equation

∇2N + k2N = 0.

Therefore, M and N have all the required properties of an electromagnetic field:
they satisfy the vector wave equation, they are divergence-free, the curl of M is
proportional to N, and the curl of N is proportional to M. Thus, the problem of
finding solutions to the field equations reduces to the comparatively simpler problem
of finding solutions to the scalar wave equation. We shall call the scalar function ψ

a generating function for the vector harmonics M and N; the vector r is sometimes
called the guiding vector. The choice of generating functions is dictated by whatever
symmetry may exist in the problem. In this chapter we are interested in scattering
by a sphere; therefore, we choose functions ψ that satisfy the wave equation in
spherical polar coordinates. Let us rewrite scalar wave equation (3.2) in the spherical
coordinate system.

1

r2
∂

∂r

(
r2

∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂φ2
+ k2ψ = 0

The solution of this equation in the spherical coordinate system has the form:

ψmn = Pm
n (cos θ)eimφz Jn (kr),

where z Jn is any of the four spherical functions:

jn(p) =
√

π

2p
Jn+ 1

2
(p), yn(p) =

√
π

2p
Yn+ 1

2
(p), (3.3)

h(1)
n = jn(p) + i, yn(p), h

(2)
n = jn(p) − iyn(p). (3.4)
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The vector spherical harmonics produced by ψmn are:

Mmn = ∇ × (rψmn), Nmn = ∇ × Mmn

k
. (3.5)

Writing expressions (3.5) component by component, we obtain:

MJ
mn =

[
m

sin θ
Pm
n (cos θ)ieθ − ∂

∂θ
Pm
n (cos θ)eφ

]
z Jn (kr)eimφ, (3.6)

NJ
mn = n(n + 1)Pm

n (cos θ)er
z Jn (kr)

kr
eimφ + ∂

∂θ
Pm
n (cos θ)

1

kr

∂

∂
r z Jn (kr)×

× eimφeθ + i
m

sin θ
Pm
n (cos θ)

1

kr

∂

∂r

[
r z Jn (kr)eimφ

]
eφ (3.7)

The vector harmonicsMJ
mn,N

J
mn will be used when solving the problem of scattering

at a random j th particle surrounded by other scattering particles of arbitrary radii
and refractive indices. When found, this solution will be used as a constituent to
solve the more complicated problem of the epigenous of the optical cavity with an
ensemble of scattering particles inside.

3.3 Scattering by a Particle with a Shifted Nucleus

Note the practical interest in the solution to the problem of scattering by a particle
in which the nucleus is shifted relative to the center, since the central position of the
nucleus is analyzed in [5, 6].

In this section, we consider the scattering by biological particles, in particular,
blood formed elements with spherical shapes and complicated structures, since the
presence of the nucleus and cytoplasm is possible. We neglect the cellular mem-
brane, since it is very thin and insignificantly affects the light scattering. Figure 3.2
demonstrates the scattering geometry. Here, a is the radius of cell nucleus and b is
the radius of cytoplasm. Figure 3.2 demonstrates the scattering geometry. Here, a is
the radius of cell nucleus and b is the radius of cytoplasm.

We expand the wave that is incident on the surface of the jth particle in terms of
vector spherical harmonics. Thus, we obtain

Ei ( j) =
∞∑
n=1

n∑
m=−n

Enm[p j
nmN

1
nm + q j

nmM
1
nm], (3.8)
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Fig. 3.2 Scattering by a
spherical particle with a
nonconcentric inclusion

Hi( j) = k

ωμ

∞∑
n=1

n∑
m=−n

Enm[q j
nmN

1
nm + p j

nmM
1
nm]. (3.9)

Consider the expression for the field that is scattered by the jth particle. At rela-
tively large distances from the particle, the scattered field must be a divergent spher-
ical wave. Therefore, we employ functions h(1)

n :

h(1)
n ∼ (−i)n exp[ikr ]/[ikr ], kr � n2

Then, we have

Es( j) =
∞∑
n=1

n∑
m=−n

Enm[a j
nmN

3
nm + b j

nmM
3
nm],

Hs( j) = k

ωμ

∞∑
n=1

n∑
m=−n

Enm[b j
nmN

3
nm + a j

nmM
3
nm].

The field in the vicinity of the center of the sphere of the jth particle is represented
as

EI1( j) =
∞∑
n=1

n∑
m=−n

i Enm[d j
nm1

N1
nm + c j

nm1
M1

nm], (3.10)

HI1( j) = k j
1

ωμ
j
1

∞∑
n=1

n∑
m=−n

Enm[c j
nm1

N1
nm + d j

nm1
M1

nm]. (3.11)

For the jth particle, the field in intervalb ≤ r ≤ a (in theO1x1y1z1 coordinate system)
is written as
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EI2( j) =
∞∑
n=1

n∑
m=−n

Enm[d j
nm2o

N3
nm + c j

nm2o
M3

nm+

+ f j
nm2o

M4
nm + g j

nm2o
N4

nm], (3.12)

HI2( j) = k j
2

ωμ
j
2

∞∑
n=1

n∑
m=−n

Enm[d j
nm2o

M3
nm + c j

nm2o
N3

nm+

+ f j
nm2o

N4
nm + g j

nm2o
M4

nm]. (3.13)

The field of the spherical inclusion of the jth particle (in the O2x2y2z2 coordinate
system) is represented as

EI2(inclusion)
( j) =

∞∑
n=1

n∑
m=−n

Enm[d j
nm2

N3
nm + c j

nm2
M3

nm+

+ f j
nm2

M4
nm + g j

nm2
N4

nm], (3.14)

HI2(inclusion)
( j) = k j

2

ωμ
j
2

∞∑
n=1

n∑
m=−n

Enm[d j
nm2

M3
nm + c j

nm2
N3

nm+

+ f j
nm2

N4
nm + g j

nm2
M4

nm], (3.15)

where

Emn = |E0|i n[2n + 1] (n − m)!
(n + m)! .

To determine scattering coefficients a j
mn and b

j
mn for the spherical particle with the

shifted nucleus, we must use summation theorems based on the recurrence approach
in the calculation of scalar and vector coefficients that emerge due to translation of
spherical vector harmonics from the coordinate system centered at the main sphere
to the coordinate system that is bound to the center of the spherical inclusion [7]:

M(q)

nm,2 =
∞∑

n′=0

Am,q
n′n M

(q)

n′m,1 + Bm,q
n′n N(q)

n′m,1, (3.16)

N(q)

nm,2 =
∞∑

n′=0

Bm,q
n′n M(q)

n′m,1 + Am,q
n′n N

(q)

n′m,1, (3.17)

Here, q is the order of the spherical Bessel functions (q = 3, 4). This relationship is
valid at r > |d|, where d is the intercenter distance and An,m,q

n′ and Bn,m,q
n′ are given
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by [7, 8]

An,m,q
n′ = C (n,m,q)

n′ − k1d

n′ + 1

√
(n′ − m + 1)(n′ + m + 1)

(2n′ + 1)(2n′ + 3)
C (n,m,q)

n′+1 −

k1d

n′

√
(n′ − m)(n′ + m)

(2n′ + 1)(2n′ − 1)
C (n,m,q)

n′−1 , (3.18)

Bn,m,q
n′ = −ik1md

n′(n′ + 1)
C (nm,q)

n′ ,C (0,0,q)

n′ = √
(2n′ + 1) j ′n(k1d),

C (−1,0,q)

n′ = −√
(2n′ + 1) j ′n(k1d), (3.19)

C (n+1,0,q)

n′ = 1

n + 1

√
2n + 3

2n′ + 1

[
n′

√
2n + 1

2n′ − 1
C (n,0,q)

n′−1 + n

√
2n′ + 1

2n − 1
C (n−1,0,q)

n′

]

− 1

n + 1

√
2n + 3

2n′ + 1

[
(n′ + 1)

√
2n + 1

2n′ + 3
C (n,0,q)

n′+1

]
, (3.20)

C (n,m,q)

n′ =
√

(n′ − m + 1)(n′ + m)(2n′ + 1)√
(n − m + 1)(n + m)(2n′ + 1)

C (n,m−1,q)

n′ −

−k1d

√
(n′ − m + 2)(n′ − m + 1)

(2n′ + 3)(n − m + 1)(n + m)(2n′ + 1)
C (n,m−1,q)

n′+1 −

−k1d

√
(n′ + m)(n′ + m − 1)

(2n′ − 1)(n − m + 1)(n + m)(2n′ + 1)
C (n,m−1,q)

n′−1 ,

C (n,m,q)

n′ = C (n,−m,q)

n′ , (3.21)

A(n,m,3)
n′ = A(n,m,4)

n′ = A(n,−m,3)
n′ = A(n,m)

n′ , (3.22)

B(n,m,3)
n′ = B(n,m,4)

n′ = B(n,−m,3)
n′ = B(n,m)

n′ , (3.23)

C (n,m,3)
n′ = C (n,m,4)

n′ = C (n,−m,3)
n′ = C (n,m)

n′ . (3.24)

When d = 0, we have A(n,m)
n′ = δn′n , B

(n,m)
n′ = 0. We substitute expressions (3.16)

and (3.17) in formulas (3.14) and (3.15) to obtain
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EI2(inclusion)
( j) =

∞∑
n=1

n∑
m=−n

Enm

[
d j
nm2

[ ∞∑
n′=0

Am,3
n′n M

(3)
n′m,1 + Bm,3

n′n N
(3)
n′m,1

]]
+

+Enm

[
c j
nm2

[ ∞∑
n′=0

Bm,3
n′n M

(3)
n′m,1 + Am,3

n′n N
(3)
n′m,1

]]
+

+Enm

[
f j
nm2

[ ∞∑
n′=0

Am,4
n′n M

(4)
n′m,1 + Bm,4

n′n N
(4)
n′m,1

]]
+

Enm

[
g j
nm2

[ ∞∑
n′=0

Bn,m,4
n′n M(3)

n′m,1 + Am,4
n′n N

(4)
n′m,1

]]
, (3.25)

HI2(inclusion)
( j) = k j

2

ωμ
j
2

∞∑
n=1

n∑
m=−n

Enm

[
c j
nm2

[ ∞∑
n′=0

Am,3
n′n M

(3)
n′m,1 + Bm,3

n′n N
(3)
n′m,1

]]
+

+Enm

[
d j
nm2

[ ∞∑
n′=0

Bm,3
n′n M

(3)
n′m,1 + Am,3

n′n N
(3)
n′m,1

]]
+

+Enm

[
g j
nm2

[ ∞∑
n′=0

Am,4
n′n M

(4)
n′m,1 + Bm,4

n′n N
(4)
n′m,1

]]
+

Enm

[
f j
nm2

[ ∞∑
n′=0

Bn,m,4
n′n M(3)

n′m,1 + Am,4
n′n N

(4)
n′m,1

]]
, (3.26)

These expressions are represented as

EI2(inclusion)
( j) =

∞∑
n=1

n∑
m=−n

∞∑
n′=0

Enm

[
d j
nm2

Am,3
n′n + c j

nm2
Bm,3
n′n

]
M(3)

n′m,1+

+
∞∑
n=1

n∑
m=−n

∞∑
n′=0

Enm

[
c j
nm2

Am,3
n′n + d j

nm2
Bm,3
n′n

]
N(3)

n′m,1+

+
∞∑
n=1

n∑
m=−n

∞∑
n′=0

Enm

[
f j
nm2

Am,4
n′n + g j

nm2
Bm,4
n′n

]
M(4)

n′m,1+ (3.27)

+
∞∑
n=1

n∑
m=−n

∞∑
n′=0

Enm

[
g j
nm2

Am,4
n′n + + f j

nm2
Bm,4
n′n

]
N(4)

n′m,1,
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HI2(inclusion)
( j) = k j

2

ωμ
j
2

∞∑
n=1

n∑
m=−n

∞∑
n′=0

Enm

[
d j
nm2

Am,3
n′n + c j

nm2
Bm,3
n′n

]
N(3)

n′m,1+

+
∞∑
n=1

n∑
m=−n

∞∑
n′=0

Enm

[
c j
nm2

Am,3
n′n + d j

nm2
Bm,3
n′n

]
M(3)

n′m,1+

+
∞∑
n=1

n∑
m=−n

∞∑
n′=0

Enm

[
f j
nm2

Am,4
n′n + g j

nm2
Bm,4
n′n

]
N(4)

n′m,1+ (3.28)

+
∞∑
n=1

n∑
m=−n

∞∑
n′=0

Enm

[
g j
nm2

Am,4
n′n + f j

nm2
Bm,4
n′n

]
M(4)

n′m,1

The comparison of expressions (3.27) and (3.12) and expressions (3.28) and (3.15)
yields the following relationships:

∞∑
n=1

n∑
m=−n

c j
nm2o

M3
nm =

∞∑
n=1

n∑
m=−n

∞∑
n′=0

[
d j
nm2

Am,3
n′n + c j

nm2
Bm,3
n′n

]
M(3)

n′m (3.29)

∞∑
n=1

n∑
m=−n

d j
nm2o

N3
nm =

∞∑
n=1

n∑
m=−n

∞∑
n′=0

[
c j
nm2

Am,3
n′n + d j

nm2
Bm,3
n′n

]
N(3)

n′m,1 (3.30)

∞∑
n=1

n∑
m=−n

f j
nm2o

M4
nm =

∞∑
n=1

n∑
m=−n

∞∑
n′=0

[
f j
nm2

Am,4
n′n + g j

nm2
Bm,4
n′n

]
M(4)

n′m,1 (3.31)

∞∑
n=1

n∑
m=−n

g j
nm2o

N4
nm =

∞∑
n=1

n∑
m=−n

∞∑
n′=0

[
g j
nm2

Am,4
n′n + f j

nm2
Bm,4
n′n

]
N(4)

n′m,1 (3.32)

∞∑
n=1

n∑
m=−n

c j
nm2o

N3
nm =

∞∑
n=1

n∑
m=−n

∞∑
n′=0

[
d j
nm2

Am,3
n′n + c j

nm2
Bm,3
n′n

]
N(3)

n′m (3.33)

∞∑
n=1

n∑
m=−n

d j
nm2o

M3
nm =

∞∑
n=1

n∑
m=−n

∞∑
n′=0

[
c j
nm2

Am,3
n′n + d j

nm2
Bm,3
n′n

]
M(3)

n′m,1 (3.34)

∞∑
n=1

n∑
m=−n

f j
nm2o

N4
nm =

∞∑
n=1

n∑
m=−n

∞∑
n′=0

[
f j
nm2

Am,4
n′n + g j

nm2
Bm,4
n′n

]
N(4)

n′m,1 (3.35)

∞∑
n=1

n∑
m=−n

g j
nm2o

M4
nm =

∞∑
n=1

n∑
m=−n

∞∑
n′=0

[
g j
nm2

Am,4
n′n + f j

nm2
Bm,4
n′n

]
M(4)

n′m,1 (3.36)
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Scalar multiplication of expression (3.29) byM3
ki and integration using orthogonality

of spherical harmonics yield

c j
ki2o

=
∞∑
n=0

[
d j
ni2

Ai,3
nk + c j

ni2
Bi,3
n,k

]
, (3.37)

This expression can be represented as

c j
nm2o

=
∞∑

n′=0

[
d j
n′m2

Am,3
n′n + c j

n′m2
Bm,3
n′n

]
, (3.38)

Similar relationships are obtained for remaining expressions (3.30)–(3.32):

c j
nm2o

=
∞∑

n′=0

[
d j
n′m2

Am,3
n′n + c j

n′m2
Bm,3
n′n

]
, (3.39)

d j
nm2o

=
∞∑

n′=0

[
c j
n′m2

Am,3
n′n + d j

n′m2
Bm,3
n′n

]
, (3.40)

f j
nm2o

=
∞∑

n′=0

[
f j
n′m2

Am,4
n′n + g j

n′m2
Bm,4
n′n

]
, (3.41)

g j
nm2o

=
∞∑

n′=0

[
g j
n′m2

Am,4
n′n + f j

n′m2
Bm,4
n′n

]
. (3.42)

With allowance for formulas (3.23) and (3.24), expressions (3.40) and (3.42) are
represented as

d j
nm2o

=
∞∑

n′=0

[
d j
n′m2

Am
n′n + c j

n′m2
Bm
n′n

]
, (3.43)

c j
nm2o

=
∞∑

n′=0

[
c j
n′m2

Am
n′n + d j

n′m2
Bm,3
n′n

]
, (3.44)

f j
nm2o

=
∞∑

n′=0

[
f j
n′m2

Am
n′n + g j

n′m2
Bm,4
n′n

]
, (3.45)

g j
nm2o

=
∞∑

n′=0

[
g j
n′m2

Am
n′n + f j

n′m2
Bm
n′n

]
. (3.46)
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Expressions (3.43) and (3.46) establish relationships of the coefficients for the sphere
that is located at the center of the coordinate system and the sphere that is shifted
relative to the center.

The boundary conditions are written as

[EI1( j) − EI2( j)]|r2=b × er = 0, [HI1( j) − HI2( j)]|r2=b × er = 0, (3.47)

[Ei ( j) + Es( j) − EI1( j)]|r1=a × er = [Hi ( j) + Hs( j) − HI1( j)]r1=a × er (3.48)

EI1θ
( j)|r2=b = EI2θ

( j)|r2=b, EI1φ
( j)|r2=b = EI2φ

( j)|r2=b, (3.49)

HI1θ
( j)|r2=b = HI2θ

( j)|r2=b, HI1φ
( j))|r2=b = HI2φ

( j)|r2=b, (3.50)

Eiθ ( j)|r1=a + Esθ ( j)|r1=a = EI1θ
( j)|r1=a, (3.51)

Eiφ( j)|r1=a + Esφ( j)|r1=a = EI1φ
( j)|r1=a, (3.52)

Hiθ ( j)|r1=a + Hsθ ( j)|r1=a = HI1θ
( j)|r1=a, (3.53)

Hiφ( j)|r1=a + Hsφ( j)|r1=a = HI1φ
( j)|r1=a . (3.54)

Substituting the expressions for the fields that are expanded in terms of vector spheri-
cal harmonics with allowance for relationships (3.43)−(3.46) in boundary conditions
(3.49)−(3.54) and taking into account the orthogonality of the spherical harmonics,
we derive a system of equations for unknown coefficients. Note that the scattering
coefficients that are found using this system can be represented as

a j
mn = a j

n1 p
p j
mn + a j

n1q
q j
mn, b

j
mn = b j

n1 p
p j
mn + b j

n1q
q j
mn, (3.55)

where

b j
n1 p

= −b j
n11p

b j
n21

, b j
n1q

= −b j
n11q

b j
n21

,

b j
n11p

= (Am
n′n)

(2)ψn((ka) j )ξ
′(2)
n ((ka) j )ξ (1)

n ((k1a) j )F21ξ
′(1)
n ((k1a) j )+

+(Am
n′n)

2ψn((ka) j )F12ξ
′(1)
n ((k1a) j )ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )+

+(Am
n′n)

2ψn((ka) j )F12(ξ
′(1)
n ((k1a) j ))2ξ (1)

n ((ka) j )F21−

−(Am
n′n)

2ψn((ka) j )ξ
′(2)
n ((k1a) j )ξ

′(1)
n ((ka) j )F21ξ

(1)
n ((k1a) j )−

−(Am
n′n)

2ψn((ka) j )F12ξ
′(1)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ (2)

n ((k1a) j )−
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−(Bm
n′n)

2ψn((ka) j )F21ξ
′(2)
n ((k1a) j )ξ (1)

n ((ka) j )ξ
′(1)
n ((k1a) j )−

−(Bm
n′n)

2ψn((ka) j )F12ξ
′(1)
n ((k1a) j )ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )−

−(Bm
n′n)

2ψn((ka) j )F12F21(ξ
′(1)
n ((k1a) j )2ξ (1)

n ((ka) j )+

+(Bm
n′n)

2ψn((ka) j )F21ξ
(2)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ

′(1)
n ((k1a) j )+

+(Bm
n′n)

2ψn((ka) j )F12ξ
(1)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )−

−(Am
n′n)

2ψ ′
n((ka) j )F21ξ

(2)
n ((k1a) j )ξ (1)

n ((ka) j )ξ
′(1)
n ((k1a) j )−

−(Am
n′n)

2ψ ′
n((ka) j )F12ξ

(1)
n ((k1a) j )ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )+

+(Am
n′n)

2ψ ′
n((ka) j )F21ξ

(2)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ (1)

n ((k1a) j )+

+(Am
n′n)

2ψ ′
n((ka) j )F12ξ

(1)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )+

+(Am
n′n)

2ψ ′
n((ka) j )F12F21(ξ

(1)
n ((k1a) j ))2ξ

′(1)
n ((ka) j )+

+(Bm
n′n)

2ψ ′
n((ka) j )F12ξ

(1)
n ((ka) j )ξ (2)

n ((k1a) j )ξ
′(1)
n ((k1a) j )+

+(Bm
n′n)

2ψ ′
n((ka) j )F21ξ

(1)
n ((ka) j )ξ (1)

n ((k1a) j )ξ
′(2)
n ((k1a) j )−

−(Bm
n′n)

2ψ ′
n((ka) j )F21ξ

(2)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ (1)

n ((k1a) j )−

−(Bm
n′n)

2ψ ′
n((ka) j )F21ξ

(2)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ (1)

n ((k1a) j )−

−(Bm
n′n)

2ψ ′
n((ka) j )F12ξ

(1)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ (2)

n ((k1a) j )−

−(Bm
n′n)

2ψ ′
n((ka) j )F12F21(ξ

(1)
n ((k1a) j ))2ξ

′(1)
n ((ka) j )+

+ [
(Am

n′n)
2 − (Bm

n′n)
2] ψn((ka) j )(ξ (2)

n ((k1a) j ))2ξ (1)
n ((ka) j )+

+ [
(Am

n′n)
2 − (Bm

n′n)
2
]
ψ ′

n((ka) j )(ξ (2)
n ((k1a) j ))2ξ

′(1)
n ((ka) j )−

−(Am
n′n)

2ψn((ka) j )(ξ
′(2)
n ((k1a) j ))2ξ

′(1)
n ((ka) j )ξ (2)

n ((k1a) j )+

+(Bm
n′n)

2ψn((ka) j )(ξ
′(2)
n ((k1a) j ))2ξ

′(1)
n ((ka) j )ξ (2)

n ((k1a) j )+

+(Am
n′n)

2ψ ′
n((ka) j )(ξ (2)

n ((k1a) j ))2ξ (1)
n ((ka) j )ξ

′(2)
n ((k1a) j )+
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+(Bm
n′n)

2ψ ′
n((ka) j )(ξ (2)

n ((k1a) j ))ξ (1)
n ((ka) j )(ξ

′(2)
n ((k1a) j ))−

−(Am
n′n)

2ψn((ka) j )F12F21(ξ
′(1)
n ((k1a) j ))ξ

′(1)
n ((ka) j )(ξ (1)

n ((k1a) j ))+

(Bm
n′n)

2ψn((ka) j )F12F21(ξ
′(1)
n ((k1a) j ))ξ

′(1)
n ((ka) j )(ξ (1)

n ((k1a) j ))−

−(Am
n′n)

2ψ ′
n((ka) j )F12F21(ξ

(1)
n ((k1a) j ))ξ (1)

n ((ka) j )(ξ
′(1)
n ((k1a) j ))+

+(Bm
n′n)

2ψ ′
n((ka) j )F12F21(ξ

(1)
n ((k1a) j ))ξ

′(1)
n ((k1a) j )ξ (1)

n ((ka) j ),

b j
n11q

= −(Am
n′n)(B

m
n′n)F21ψn((ka) j )(ξ (2)

n ((k1a) j ))2ξ
′(1)
n ((ka) j )ξ

′(1)
n ((k1a) j )−

−(Am
n′n)(B

m
n′n)F12ψn((ka) j )(ξ (1)

n ((k1a) j ))ξ
′(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )+

+(Am
n′n)(B

m
n′n)F21ψ

′
n((ka) j )(ξ (2)

n ((k1a) j ))ξ (1)
n ((ka) j )ξ

′(1)
n ((k1a) j )+

+(Am
n′n)(B

m
n′n)F12ψ

′
n((ka) j )(ξ (1)

n ((k1a) j ))ξ (1)
n ((ka) j )ξ

′(2)
n ((k1a) j )−

−(Am
n′n)(B

m
n′n)F12ψ

′
n((ka) j )(ξ (1)

n ((ka) j ))ξ (2)
n ((k1a) j )ξ

′(1)
n ((k1a) j )−

−(Am
n′n)(B

m
n′n)F12ψ

′
n((ka) j )(ξ (1)

n ((ka) j ))ξ (2)
n ((k1a) j )ξ

′(1)
n ((k1a) j )−

−(Am
n′n)(B

m
n′n)F21ψ

′
n((ka) j )(ξ (1)

n ((ka) j ))ξ (1)
n ((k1a) j )ξ

′(2)
n ((k1a) j )+

+(Am
n′n)(B

m
n′n)F21ψn((ka) j )(ξ

′(2)
n ((k1a) j ))ξ

′(1)
n ((ka) j )ξ (1)

n ((k1a) j )+

+(Am
n′n)(B

m
n′n)F12ψn((ka) j )(ξ

′(1)
n ((k1a) j ))ξ

′(1)
n ((ka) j )ξ (2)

n ((k1a) j ),

b j
n21 = −ξ (1)

n ((ka) j )(Am
n′n)

2ξ
′(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )ξ (1)

n ((k1a) j )F21−

−ξ (1)
n ((ka) j )(Am

n′n)
2ξ

′(1)
n ((ka) j )ξ

′(1)
n ((k1a) j )ξ (2)

n ((k1a) j )F12−

−ξ
′(1)
n ((ka) j )(Am

n′n)
2ξ (1)

n ((ka) j )ξ (2)
n ((k1a) j )ξ

′(1)
n ((k1a) j )F21−

−ξ
′(1)
n ((ka) j )(Am

n′n)
2ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )ξ (1)

n ((k1a) j )F12+

+ξ
′(1)
n ((ka) j )(Am

n′n)
2ξ

′(1)
n ((ka) j )ξ (2)

n ((k1a) j )ξ (1)
n ((k1a) j )F21+

+ξ
′(1)
n ((ka) j )(Am

n′n)
2ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )ξ (1)

n ((k1a) j )F12+

+ξ
′(1)
n ((ka) j )(Am

n′n)
2ξ

′(1)
n ((ka) j )(ξ (1)

n ((k1a) j ))2F12F21+
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+ξ (1)
n ((ka) j )(Bm

n′n)
2ξ

′(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )ξ (1)

n ((k1a) j )F21+

+ξ (1)
n ((ka) j )(Bm

n′n)
2ξ

′(1)
n ((ka) j )ξ (2)

n ((k1a) j )ξ
′(1)
n ((k1a) j )F12−

−ξ
′(1)
n ((ka) j )(Bm

n′n)
2ξ

′(1)
n ((ka) j )ξ (2)

n ((k1a) j )ξ (1)
n ((k1a) j )F21−

−ξ
′(1)
n ((ka) j )(Bm

n′n)
2ξ

′(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )ξ (1)

n ((k1a) j )F12−

−ξ
′(1)
n ((ka) j )(Bm

n′n)
2ξ

′(1)
n ((ka) j )(ξ (1)

n ((k1a) j ))2F21F12+

+ξ
′(1)
n ((ka) j )(Bm

n′n)
2ξ (1)

n ((ka) j )ξ (2)
n ((k1a) j )ξ

′(1)
n ((k1a) j )F21+

+ξ
′(1)
n ((ka) j )(Bm

n′n)
2ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )ξ (1)

n ((k1a) j )F12−

−ξ (1)
n ((ka) j )(Am

n′n)
2ξ

′(1)
n ((ka) j )ξ

′(1)
n ((k1a) j )ξ (1)

n ((k1a) j )F21F12−

−ξ
′(1)
n ((ka) j )(Am

n′n)
2ξ (1)

n ((ka) j )ξ
′(1)
n ((k1a) j )ξ (1)

n ((k1a) j )F21F12+

+ξ (1)
n ((ka) j )(Bm

n′n)
2ξ

′(1)
n ((ka) j )ξ

′(1)
n ((k1a) j )ξ (1)

n ((k1a) j )F21F12+

+ξ
′(1)
n ((ka) j )(Bm

n′n)
2ξ (1)

n ((ka) j )ξ
′(1)
n ((k1a) j )ξ (1)

n ((k1a) j )F21F12+

+ [
(Am

n′n)
2 − (Bm

n′n)
2
]
(ξ

′(1)
n ((ka) j ))2(ξ (2)

n ((k1a) j ))2

+ [
(Am

n′n)
2 − (Bm

n′n)
2] (ξ (1)

n ((ka) j ))2(ξ
′(2)
n ((k1a) j ))2+

+(ξ (1)
n ((ka) j ))2(Am

n′n)
2ξ

′(2)
n ((k1a) j )ξ

′(1)
n ((k1a) j )F21+

+(ξ (1)
n ((ka) j ))2(Am

n′n)
2ξ

′(1)
n ((k1a) j )ξ

′(2)
n ((k1a) j )F12+

(ξ (1)
n ((ka) j ))2(Am

n′n)
2(ξ

′(1)
n ((k1a) j ))2F21F12−

−ξ (1)
n ((ka) j )(Am

n′n)
2ξ

′(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )ξ (2)

n ((k1a) j )−

−ξ
′(1)
n ((ka) j )(Am

n′n)
2ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )ξ (2)

n ((k1a) j )+

+ξ (1)
n ((ka) j )(Bm

n′n)
2ξ

′(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )ξ (2)

n ((k1a) j )−

−(ξ (1)
n ((ka) j ))2(bmn′n)

2ξ
′(2)
n ((ka) j )ξ

′(1)
n ((k1a) j )F21−

−(ξ (1)
n ((ka) j ))2(Bm

n′n)
2ξ

′(1)
n ((k1a) j )ξ

′(2)
n ((k1a) j )F12−
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(ξ (1)
n ((ka) j ))2(Am

n′n)
2(ξ

′(1)
n ((ka) j ))2F12F21+

+ξ
′(1)
n ((ka) j )(Bm

n′n)
2ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )ξ (2)

n ((k1a) j ),

a j
n1 p

= a j
n11p

a j
n21

, a j
n1q

= a j
n11q

a j
n21

,

where

a j
n11q

= −(Am
n′n)

(2)ψn((ka) j )ξ
′(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )ξ (2)

n ((k1a) j )+

+(Bm
n′n)

2ψn((ka) j )ξ
′(1)
n ((k1a) j )ξ

′(2)
n ((ka) j )ξ (2)

n ((k1a) j )+

+(Bm
n′n)

2ψ ′
n((ka) j )(ξ

′(2)
n ((k1a) j ))ξ (1)

n ((ka) j )ξ (1)
n ((ka) j )ξ (2)

n ((k1a) j )

−(Am
n′n)

2ψ ′
n((ka) j )ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )ξ (2)

n ((k1a) j )+

+ [
(Am

n′n)
2 − (Bm

n′n)
2
]
ψn((ka) j )(ξ

′(2)
n ((k1a) j ))2(ξ (1)

n ((ka) j ))2−

− [
(Bm

n′n)
2 − (Am

n′n)
2
]
ψ ′

n((ka) j )ξ
′(1)
n ((ka) j )(ξ (2)

n ((k1a) j ))2+

+(Am
n′n)

2ψn((ka) j )F12ξ
′(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )+

+(Am
n′n)

2ψn((ka) j )F12F21((ξ
′(1)
n ((k1a) j ))2ξ (1)

n ((ka) j )+

−(Am
n′n)

2ψn((ka) j )F21ξ
(2)
n ((k1a) j )ξ

′(1)
n ((k1a) j )ξ

′(1)
n ((k1a) j )+

−(Am
n′n)

2ψn((ka) j )F12ξ
′(1)
n ((ka) j )ξ (1)

n ((k1a) j )ξ
′(2)
n ((k1a) j )+

+(Bm
n′n)

2ψn((ka) j )F21ξ
′(1)
n ((ka) j )ξ (1)

n ((k1a) j )ξ (2)
n ((k1a) j )+

+(Bm
n′n)

2ψ ′
n((ka) j )F12ξ

′(1)
n ((ka) j )ξ

′(1)
n ((k1a) j )ξ (2)

n ((k1a) j )−

−(Bm
n′n)

2ψn((ka) j )F21ξ
(1)
n ((ka) j )ξ

′(2)
n ((k1a) j )ξ

′(1)
n ((k1a) j )−

−(Bm
n′n)

2ψn((ka) j )F12ξ
(1)
n ((k1a) j )ξ

′(1)
n ((k1a) j )ξ

′(2)
n ((k1a) j )+

+(Bm
n′n)

2ψn((ka) j )F12F21(ξ
(1)
n ((ka) j ))(ξ

′(1)
n ((k1a) j ))2+

+(Bm
n′n)

2ψ ′
n((ka) j )F21ξ

(2)
n ((k1a) j )ξ (2)

n ((k1a) j )ξ
′(1)
n ((k1a) j )+

+(Bm
n′n)

2ψ ′
n((ka) j )F12ξ

(1)
n ((ka) j )ξ (1)

n ((k1a) j )ξ
′(2)
n ((k1a) j )−
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−(Bm
n′n)

2ψ ′
n((ka) j )F21ξ

(2)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ (1)

n ((k1a) j )−

−(Bm
n′n)

2ψ ′
n((ka) j )F12ξ

(2)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ (1)

n ((k1a) j )−

−(Bm
n′n)

2ψ ′
n((ka) j )F12F21ξ

′(1)
n ((ka) j )(ξ (1)

n ((k1a) j ))2−

−(Am
n′n)

2ψ ′
n((ka) j )F21(ξ

(1)
n ((ka) j ))(ξ

′(2)
n ((ka) j ))ξ (1)

n ((k1a) j )−

−(Am
n′n)

2ψ ′
n((ka) j )F12ξ

(2)
n ((k1a) j )ξ (1)

n ((ka) j )ξ (1)
n ((k1a) j )+

+(Am
n′n)

2ψ ′
n((ka) j )ξ (1)

n ((ka) j )ξ (1)
n ((k1a) j )ξ (2)

n ((k1a) j )F21+

+(Am
n′n)

2ψ ′
n((ka) j )(ξ (1)

n ((ka) j ))ξ (1)
n ((k1a) j )ξ (2)

n ((k1a) j )F12+

+(Am
n′n)

2ψ ′
n((ka) j )(ξ (1)

n ((k1a) j ))2ξ
′(1)
n ((ka) j )F21F12+

+(Am
n′n)

2ψn((ka) j )(ξ
′(2)
n ((k1a) j ))ξ (1)

n ((ka) j )(ξ
′(1)
n ((k1a) j ))−

−(Am
n′n)

2ψn((ka) j )F12F21(ξ
′(1)
n ((ka) j ))ξ

′(1)
n ((k1a) j )(ξ (1)

n ((k1a) j ))+

(Bm
n′n)

2ψn((ka) j )F12F21(ξ
′(1)
n ((ka) j ))ξ

′(1)
n ((k1a) j )(ξ (1)

n ((k1a) j ))−

a j
n11p

= −(Am
n′n)(B

m
n′n)F21ψ

′
n((ka) j )(ξ (2)

n ((k1a) j ))2ξ
′(1)
n ((ka) j )ξ (1)

n ((ka) j )−

+(Bm
n′n)

2F12ψ
′
n((ka) j )(ξ (1)

n ((ka) j ))ξ
′(1)
n ((k1a) j )ξ (1)

n ((k1a) j )+

−(Am
n′n)

2F21ψ
′
n((ka) j )(ξ

′(1)
n ((k1a) j ))ξ (1)

n ((ka) j )ξ (1)
n ((k1a) j )−

−(Am
n′n)(B

m
n′n)F12ψn((ka) j )(ξ

′(1)
n ((k1a) j ))ξ

′(1)
n ((ka) j )ξ (2)

n ((k1a) j )+

+(Am
n′n)(B

m
n′n)F21ψ

′
n((ka) j )(ξ (1)

n ((ka) j ))ξ
′(2)
n ((k1a) j )ξ (1)

n ((k1a) j )+

+(Am
n′n)(B

m
n′n)F12ψ

′
n((ka) j )(ξ (1)

n ((ka) j ))ξ (2)
n ((k1a) j )ξ

′(1)
n ((k1a) j ),

a j
n21 = (−ξ (1)

n ((ka) j ))2(Am
n′n)

2(ξ
′(2)
n ((k1a) j ))2 + F12ξ

′(1)
n ((k1a) j )ξ (2)

n ((k1a) j )+

+F21ξ
(1)
n ((k1a) j ) + ((Am

n′n))
2ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )+

+F12ξ
′(1)
n ((k1a) j )ξ

′(1)
n ((ka) j )

[
(ξ (2)

n ((k1a) j ) + ξ (1)
n ((k1a) j )F21

]+

+ξ
′(1)
n ((ka) j )(Am

n′n)
2ξ (1)

n ((ka) j ) + F12ξ
′(1)
n ((k1a) j )ξ (1)

n ((ka) j )ξ
′(2)
n ((k1a) j )+
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+F21ξ
′(1)
n ((ka) j ) − (Am

n′n)
2ξ

′(1)
n ((ka) j )ξ (2)

n ((ka) j )+

+F12ξ
′(1)
n ((ka) j )ξ (1)

n ((k1a) j )
[
ξ (2)
n ((k1a) j ) + ξ (1)

n ((k1a) j )F21
] −

−ξ (1)
n ((ka) j )(Bm

n′n)
2ξ

′(1)
n ((k1a) j ) + F12ξ

′(1)
n ((ka) j )ξ

′(1)
n ((k1a) j )ξ (2)

n ((k1a) j )+

+F21ξ
(1)
n ((k1a) j ) + (Bm

n′n)
2ξ

′(1)
n ((k1a) j )ξ (1)

n ((ka) j )2 + +F12ξ
′(1)
n ((k1a) j )ξ

′(2)
n ((ka) j )2+

+F21ξ
′(1)
n ((k1a) j ) + (Bm

n′n)
2ξ

′(1)
n ((ka) j )+

+F12ξ
(1)
n ((k1a) j )ξ

′(1)
n ((ka) j )ξ (2)

n ((k1a) j ) + F21ξ
(1)
n ((k1a) j )−

−ξ
′(1)
n ((ka) j )(Bm

n′n)
2 + F12ξ

(1)
n ((k1a) j )ξ

(1)
n ((ka) j )ξ

′(2)
n ((k1a) j ) + +F21ξ

′(1)
n ((k1a) j ),

where

F12 = m j
1ξ

′(2)
n ((k1b) j )ψn((k2b) j ) − m j

2ξ
(2)
n ((k1b) j )ψ ′

n((k2b)
j )

m j
2ξ

(1)
n ((k1b) j )ψ ′

n((k2b)
j ) − m j

1ξ
′(1)
n ((k1b) j )ψn((k2b) j )

,

F21 = m j
2ξ

′(2)
n ((k1b) j )ψn((k2b) j ) − m j

1ξ
(2)
n ((k1b) j )ψ ′

n((k2b)
j )

m j
1ξ

(1)
n ((k1b) j )ψ ′

n((k2b)
j ) − m j

2ξ
′(1)
n ((k1b) j )ψn((k2b) j )

,

ψn(ρ) = ρ jn(ρ), ξ (1)
n (ρ) = ρh(1)

n (ρ), ξ (2)
n (ρ) = ρh(2)

n (ρ)- are RiccatiBessel func-
tions; prime denotes differentiation, k = kno, k1 = km j

1, k2 = km j
2, m

j
1, m

j
2 are and

nucleus, respectively, no is refractive index of the medium, a j is the , b j is the radius
cytoplasm of the jth particle k is the wavenumber.

For a body of revolution, the vector spherical harmonics are represented as [9]:

M(q)

nm,2 =
∞∑

n′=0

D(nm)
m ′ M(q)

nm,1, N(q)

nm,2 =
∞∑

n′=0

D(nm)
m ′ N(q)

nm,1,

D(n,m)
m ′ = e[i(m ′α+mγ )]

[
(n + m ′)!(n − m ′)!
(n + m)!(n − m)!

] 1
2

×

×
∑

σ

(
n + m

n − m ′ − σ

)(
n − m

σ

)
(−1)n+m−σ ×
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×
[
cos

[
β

2

]]2σ+m ′+m [
sin

[
β

2

]]2n−2σ−m−m

,

where α, β γ are Euler angles.

3.4 Scattering by a Group of Spherical Objects

The electromagnetic field that is incident on the surface of the jth particle consists of
two parts: original incident field and the field that is scattered by a group of particles
in a medium with refractive index N. Then, the following expressions are valid [3]:

Ei( j) = E0( j) +
∑
l 	= j

Es(l, j), (3.56)

Hi( j) = H0( j) +
∑
l 	= j

Hs(l, j), (3.57)

whereEs(l, j) andHs(l, j) are the sums of fields scattered at the j th particle. Indices
l and j imply the transfer from the l to j coordinate system. The incident wave is
defined in the following way:

E0(j) = −
∞∑
n=1

n∑
m=−n

i Emn[p j, j
mnN

1
mn + q j, j

mnM
1
mn], (3.58)

H0( j) = − k

ωμ

∞∑
n=1

n∑
m=−n

i Emn[q j, j
mnN

1
mn + p j, j

mnM
1
mn] (3.59)

The incident waves are considered in respect to the center of the j th particle, i.e., in
the j th coordinate system.

The orientation of the wave vector k at an angle α to the axis z is defined as

k = k(ex sin α cosβ + ey sin α sin β + ez cosα),

where β is the angle between the axis x and the vector k component in the plane xy,
andα is the angle ofwave incidence in respect to the axis z. Usually, two polarizations
of the incident wave are considered; i.e., p- and s-polarizations. For definiteness, we
consider the p polarization. In this case, coefficients p j, j

mn , q
j, j
mn used in the expression

for the incident field have the form

p j, j
mn = exp[ik · r j0, j ]p0mn, q j, j

mn = exp[ik · r j0, j ]q0
mn
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where

q0
mn = 1

n(n + 1)

[
∂

∂α
Pm
n (cosα) cosβ − i

m

sin α
Pm
n (cosα) sin β

]
,

p0mn = 1

n(n + 1)

[
∂

∂α
Pm
n (cosα) cosβ − i

m

sin α
Pm
n (cosα) sin β

]
.

In order to describe the scattering at an j th particle, we use the summation theorems
for the vector-spherical functions [7]:

Mmn =
∞∑

ν=0

ν∑
μ=−ν

[AOmn
μν M

′
μν + BOmn

μν N
′
μν],

Nmn =
∞∑

ν=0

ν∑
μ=−ν

[BOmn
μν M

′
μν + AOmn

μν N
′
μν].

Mmn,Nmn are the basis vector-spherical wave functions defined with the center at
the point O ,M

′
μν,N

′
μν are similar functions with the center at the point O ′,M′

μν and
N

′
μν have the form identical to Mmn,Nmn . Here,

AOmn
μν (l, j) = (−1)μiν−n 2ν + 1

2ν(ν + 1)

n+ν∑
p=|n−ν|

(−i)p[n(n + 1)+

+ν(ν + 1) − p(p + 1)]α(m, n,−μ, ν, p)h1p(kr(l, j))×

× Pm−μ
p (cos θ(l, j))e

i(m−μ)φl, j , (3.60)

BOmn
μν (l, j) = (−1)μiν−n 2ν + 1

2ν(ν + 1)

n+ν∑
p=|n−ν|

(−i)pb[m, n,−μ, ν, p, p − 1]×

× h1p(kr(l, j))P
m−μ
p (cos θ(l, j))e

i(m−μ)φl, j , (3.61)

b(m, n,−μ, ν, p, p − 1) = 2p + 1

2p − 1
[(ν − μ)(ν + μ + 1)]×

×2p + 1

2p − 1
[α(m, n,−μ − 1, ν, p − 1) − (p − m + μ)(p − m + μ − 1)]×

×2p + 1

2p − 1
[α(m, n,−μ + 1, ν, p − 1) + 2μ(p − m + μ)]×
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×2p + 1

2p − 1
α(m, n,−μ, ν, p − 1),

where

α(m, n, μ, ν, p) = 2p + 1

2

(p − m − μ)!
(p + m + μ)!

∫ 1

−1
Pm
n (x)Pμ

ν (x)Pm+μ
p (x)dx .

In these expressions rl, j , θl, j , φl, j are the spherical coordinates at the center of the
lth particle in the j th coordinate system. From the summation theorems it follows
that

M3
mn(l) =

∞∑
ν=0

ν∑
μ=−ν

[AOmn
μν (l, j)M1

μν( j) + BOmn
μν (l, j)N1

μν( j)], (3.62)

N3
mn(l) =

∞∑
ν=0

ν∑
μ=−ν

[BOmn
μν (l, j)M1

μν( j) + AOmn
μν (l, j)N1

μν( j)]. (3.63)

Let us derive expressions for the scattered field from (3.58) taking into account
(3.62) and (3.63); we obtain

Es(l, j) = −
∞∑
n=1

n∑
m=−n

i Emn[pl, jmnN
1
mn + ql, jmnM

1
mn], (3.64)

Hs(l, j) = − k

μω

∞∑
n=1

n∑
m=−n

Emn[ql, jmnN
1
mn + pl, jmnM

1
mn], (3.65)

where

pl, jmn = −
∞∑

ν=1

ν∑
μ=−ν

[alμν A
μν
mn(l, j) + blμνB

μν
mn(l, j)],

ql, jmn = −
∞∑

ν=1

ν∑
μ=−ν

[alμνB
μν
mn(l, j) + blμν A

μν
mn(l, j)],

Aμν
mn = Eμν

Emn
AOμν

mn = iν−n (2μ + 1)(n + m)!(ν − μ)!
(2n + 1)(n − m)!(ν + μ)! AO

μν
mn,

Bμν
mn = Eμν

Emn
BOμν

mn = iν−n (2μ + 1)(n + m)!(ν − μ)!
(2n + 1)(n − m)!(ν + μ)! BO

μν
mn.

Substituting (3.8), (3.59), (3.64) into (3.58), we obtain
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p j
mn = p j, j

mn −
L∑

l 	= j

∞∑
ν=1

ν∑
μ=−ν

[alμν A
μν
mn(l, j) + blμνB

μν
mn(l, j)], (3.66)

q j
mn = q j, j

mn −
L∑

l 	= j

∞∑
ν=1

ν∑
μ=−ν

[alμνB
μν
mn(l, j) + blμν A

μν
mn(l, j)]. (3.67)

The system of linear algebraic equations that makes it possible to find coeffi-
cients and with allowance for multiple scattering for j particles with nonconcentric
inclusions:

a j
mn = a j

n1 p
[p j, j

mn −
L∑

l 	= j

∞∑
ν=1

ν∑
μ=−ν

[alμν A
μν
mn(l, j) + blμνB

μν
mn(l, j)]]+

+a j
n1q

[q j, j
mn −

L∑
l 	= j

∞∑
ν=1

ν∑
μ=−ν

[alμνB
μν
mn(l, j) + blμν A

μν
mn(l, j)]],

b j
mn = b j

n1q
[q j, j

mn −
L∑

l 	= j

∞∑
ν=1

ν∑
μ=−ν

[alμν A
μν
mn(l, j) + blμνB

μν
mn(l, j)]]+

+b j
n1 p

[p j, j
mn −

L∑
l 	= j

∞∑
ν=1

ν∑
μ=−ν

[alμνB
μν
mn(l, j) + blμν A

μν
mn(l, j)]],

n = 1, 2, 3, 4, 5, . . . ,m = 0, 1, 2, 3, 4, 5, . . . , n

(3.68)

A matrix representation of this system of equations is written as

(
a j

b j

)
= T j

1

⎡
⎣(

p j, j

q j, j

)
+

∑
l 	= j

(
A(l, j) B(l, j)
B(l, j) A(l, j)

) (
a j

b j

)⎤
⎦ + (3.69)

(
T j
2

) ⎡
⎣(

p j, j

q j, j

)
+

∑
l 	= j

(
A(l, j) B(l, j)
B(l, j) A(l, j)

)(
a j

b j

)⎤
⎦ ,

or (
a j

b j

)
= T j

12

⎡
⎣(

p j, j

q j, j

)
+

∑
l 	= j

(
A(l, j) B(l, j)
B(l, j) A(l, j)

) (
a j

b j

)⎤
⎦ , (3.70)
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T j
12 = T j

1 + T j
2 , T j

1 =
(
a j
n1 p 0
0 b j

n1q

)
, T j

2 =
(

0 a j
n1q

b j
n1 p 0

)
,

System (3.70) must be solved with the aid of the method of reduction in which a
finite number of equations and a finite number of unknown quantities are considered
and a stable algorithm of biconjugate gradients [10, 11] is employed.

When coefficients a j
mn and b

j
mn are found using system (3.70), the expressions for

the scattered field in the principal coordinate system can be written as

Es =
∞∑
n=1

n∑
m=−n

i Emn[a j
mnN

3
mn + b j

mnM
3
mn], (3.71)

Hs = k

ωμ

∞∑
n=1

n∑
m=−n

i Emn[b j
mnN

3
mn + a j

mnM
3
mn], (3.72)

where

a j
mn =

L∑
l=1

∞∑
ν=1

ν∑
μ=−ν

[alμν A
μν
mn(l, j0) + blμνB

μν
mn(l, j0)],

b j
mn =

L∑
l=1

∞∑
ν=1

ν∑
μ=−ν

[alμνB
μν
mn(l, j0) + blμν A

μν
mn(l, j0)].

The system for the coefficients a j
mn, b

j
mn can be simplified if we consider a part of the

field that is forward-or backward-scattered by the particles at small angles relative
to the Z axis.

The expressions for the scattered field in the far-field zone are represented as

Esθ ∼ E0
eikr

−ikr

∞∑
n=1

n∑
m=−n

(2n + 1)
(n − m)!
(n + m)! [a

j
mnτmn + b j

mnπmn]eimφ (3.73)

Esφ ∼ E0
eikr

−ikr

∞∑
n=1

n∑
m=−n

(2n + 1)
(n − m)!
(n + m)! [a

j
mnπmn + b j

mnτmn]eimφ, (3.74)

where

τmn = ∂

∂θ
Pm
n (cos θ), πmn = m

sin θ
Pm
n (cos θ)

Symbol (∼) indicates asymptotic interpretation of expressions (3.73) and (3.74),
which follow from expression (3.71) at (kr � 1). We consider the scattering at
relatively large distances from the jth particle. Therefore, the electric vectors of the
scattered field are parallel to the electric field of the incident field, so that only the
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component differs from zero in the far-field zone. Note that we consider a part of the
scattered field inside the cavity.

Expressions (3.73) and (3.74) can be simplified:

Esθ ∼ E0
eikr

−ikr

∞∑
n=1

n∑
m=−n

(2n + 1)

n(n + 1)
[a j

mnτn + b j
mnπn]

Esφ ∼ E0
eikr

−ikr

∞∑
n=1

n∑
m=−n

(2n + 1)

n(n + 1)
[a j

mnπn + b j
mnτn], (3.75)

where

τn = ∂

∂θ
Pn(cos θ), πn = 1

sin θ
Pn(cos θ)

Similar expressions can be derived for magnetic field H.

3.5 Numerical Study of the Algebraic Equations

To solve problems of light scattering of dielectric bodies, simulating, for example,
blood cells, it is often a problem solving ill-conditioned linear algebraic systems
equations. Numerical analysis shows that the use of iterative methods is an effec-
tive step to solve linear algebraic systems with an ill-conditioned matrix. The most
effective and stable method of iteration are projection methods, and particularly that
of their class, which is associated with designing the Krylov subspace [10, 12].

Algorithm of Krylov subspace methods include two steps:
1. Construct a basis in the Krylov subspace.
2. The calculation of correcting the corrective
To calculate the correcting corrective amendments the following approaches were

used

1. The Ritz–Galerkin method. The residual construction is orthogonal to Krylov’s
subspace. This approach is used in such methods, as a method of conjugate
gradients and a method of a full orthogonalization.

2. The minimum residual approach. At each iteration, minimizing the norm of
the residual. The approach used in the method of minimal residual for Krylov
subspace and generalized minimal residual method.

3. The Petrov–Galerkin approach. The methods in this class are based on the con-
struction of biorthogonal basis.

Thesemethods have several advantages: they are stable, thanks to technology orthog-
onalization allowing efficient parallelization andworkwith different types of precon-
ditioners, and these methods can be used for systems with nonsymmetric matrices.
Thus, by solving a system of linear equations (3.68) a stable algorithm biconjugate
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gradient is used. This method is based on a quadratic conjugate gradient method,
but does not allow the accumulation of rounding errors and unstable behavior of
the residual [12]. The dependence of the relative residual norm on the number of
iterations for the predetermined method of bioconjugate gradients (Fig. 3.2a).

The calculations showed that the use of iterative methods without additional mod-
ification is not reasonable, because in most cases the iterative methods have shown
unsatisfactory convergence. Therefore, iterative methods have been used with pre-
conditioning, as it improves the convergence to the desired solution [11].

We consider the following system linear algebraic equations

Ax = b (3.76)

where b is vector of free members, x is vector of unknowns and A is matrix (N × N )

coefficients of the system.
Let M be is nonsingular matrix (N × N ). Multiplying (3.76) by the matrix M−1,

we obtain the system
M−1Ax = M−1b, (3.77)

The system is same exact solution x∗, because M is nonsingular matrix.
The process transition from (3.76) to (3.77) for the purpose of improving the

characteristics of the matrix to accelerate the convergence of the solution is called
preconditioning, and the matrix M−1 is matrix preconditioner. Methods of precondi-
tioning can be divided into two types: explicit and implicit. The preconditioning can

0 50 100 150 200 250 300 350
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Fig. 3.3 The dependence of the relative residual norm on the number of iterations for the predeter-
mined method of bioconjugate gradients for the following parameters: the number of particles in
the layer being simulated was assumed to be ten, the relative refractive index is 1.035 + 0.00001i ,
radius of the particle is 3.5 µm
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Fig. 3.4 Dependence of the
relative residual norm on the
number of iterations for the
predetermined method of
bioconjugate gradients for
the following parameters: the
number of particles in the
layer being simulated was
assumed to be ten, the
relative refractive index is
1.035 + 0.00001i , radius of
the particle is 3.5 µm
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be introduced into the scheme of the method without the need for explicit calculation
of the matrix product.

Thus, an explicit preconditioning requires finding the matrix M−1 and matrix
multiplication preconditioning on vector in each iteration. If we consider the implicit
method for solving linear algebraic equation, in this case it is necessary to solve linear
algebraic equation with the matrix M in each iteration.

Themajority ofmethods in both types of preconditioning is based on the represen-
tation of the product of two matrices L andU , i.e. M = LU (LU is decomposition).
We solve the linear algebraic equation with the preconditioner in the form of LU -
decomposition. Figures3.3 and 3.4 shows the relative residual norm of the iteration
number for preconditionedmethods of bioconjugate gradients and indicates sufficient
convergence of the method. From the graphs follows the conclusion of a sufficiently
stable convergence of the method (Fig. 3.5).

The array of the number of iterations has a step of 0.1.

3.6 Scattering Matrix

In what follows, we will need the elements of the scattering matrix, which relates
the Stokes parameters of the incident and scattered fields

Ls = SLi ,

where Li is the Stokes vector of the incident field, Ls is the Stokes vector of the
scattered field, and S is the 4 × 4 scattering matrix. Elements of this matrix are
expressed in terms of the elements of the 2 × 2 matrix that relates the orthogonal
components of electric vectors of the scattered (E‖s , E⊥s) and incident (E‖i , E⊥i )
electromagnetic waves,
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Fig. 3.5 Dependence of the relative residual norm on the number of iterations for the predetermined
method of bioconjugate gradients for the following parameters: the number of particles in the layer
being simulated was assumed to be ten, the nucleus diameter is 4 × 10−6 m; the diameter of the
cytoplasm is 6 × 10−6 m and blood plasma are, respectively 1.31 + j0.0001, 1.32 + j0.0001, and
1.52, d = 1.6 × 10−7 m

(
E‖s
E⊥s

)
=

(
Esθ

−Esφ

)
= eikr−ikz

−ikr

(
S2 S3
S4 S1

) (
E‖i
E⊥i

)
. (3.78)

To write the field scattering forward (backward) in the small-angle vicinity of the
wave propagation direction, it is sufficient to use the diagonal representation of the
scattering matrix S

S =

⎛
⎜⎜⎝
S11 0 0 0
0 S22 0 0
0 0 S33 0
0 0 0 S44

⎞
⎟⎟⎠ ,

where

S11 = 1

2
[|S2|2 + |S1|2] = S22,

S33 = 1

2
[S1S∗

2 + S2S
∗
1 ] = S44.
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Here the sign (*) denotes the complex conjugation, and the expressions for the
scattering amplitudes S1 and S2 of the passed (θ = 0) and reflected (θ = π) waves
have the form

S2(0) = S1(0) = 1

2

∞∑
n=1

n∑
m=−n

(2n + 1)[amn + bmn], (3.79)

S2(π) = −S1(π) = 1

2

∞∑
n=1

n∑
m=−n

(2n + 1)(−1)n[amn − bmn]. (3.80)

Expressions (3.79) and (3.80) will be subsequently used to calculate the frequencies
of the eigenmodes in the optical cavity with an ensemble of spherical particles.

3.7 Eigenmodes of the Optical Cavity Containing a Cell
of Spherical Particles

Since the eigenmodes of annular and linear resonators change differently when an
inhomogeneous medium is introduced into them, for definiteness we will consider
the simplest, linear resonator. The resonator scheme is shown in Fig. 3.1.

We assume that the plane of the resonator optical contour is the symmetry plane.
This assumption is necessary to justify both the subsequent separation of variables
in the field equations and the small degree of depolarization of the field transmitted
through the layer of spherical particles. The closed system of equations for the field
E in a cross section orthogonal to the optical contour of a two-mirror resonator can
be written, analogously to [13], in the form

E± = (I + R1R2)E
±, (3.81)

where I is the matrix operator describing eigenmodes of the cavity without the
medium, and R1, R2 are the same for the cavity with themedium. After the separation
of variables in (3.81), the expanded integral equation for a coordinate cofactor of the
scalar component U of the eigenmode field at a resonator mirror has the form

U (ξ) =
√ ∓i

2πB
exp [±ikL]

∫ ∞

−∞
exp [ln[R1(x1)R2(x1)]]× (3.82)

× exp
[
(±i(Ax21 + Dξ 2 − 2ξ x1)/(2B)

]
U (x1)dx1,

where the signs (−) and (+) correspond to the field at the left- and right-handmirrors,
respectively,? R1 and R2 are the scalar functions of the form
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R1 = S(0) exp

[
− i

z11
+ 1

2

x21
z211

]
, R2 = S(π) exp

[
i

z22
− 1

2

x21
z222

]
, (3.83)

x1 = √
kx , z11 = z1k, z22 = z2k, S(0) and S(π) are the scattering amplitudes for the

transmitted and reflected waves, respectively, A, B,C and D are the wave matrix
elements of the resonator without particles (effect of the particles is accounted for
the coefficients R1 and R2), z11, z22 are the distances from the particle layer along
the resonator optical axis (the distances larger than these asymptotic formulas (3.75)
for the scattered field are valid)

Expressions (3.83) are obtained by the Taylor expansion of the distance r used in
(3.78) from the coordinate origin to the observation point on condition that

x2/z2 � 1

(small-angle assumption). The field distribution at the mirrors of the resonator with
a particle layer in the domain Ω (see Fig. 3.1), is determined from the solution of
integral equation (3.82) and has the form

Un(x1)
± = 1

2nn!�π
Hn

( x1
�

)
×

×exp

[
∓i(n + 1/2)g̃ + (ε − δ) + ln(ρ1) ± ikL + ln[S(0)S(π)] ± i x21

q

]
.

Therewith, the resonator eigenmodes are expressed by the formula

ωn = c
2πq + (n + 1/2)g̃ − i((ε − δ) + ln(ρ1) + ln[S(0)S(π)])

LN
, (3.84)

where c is the speed of light in vacuum, q is the number of longitudinal mode, n is the
number of transverse mode q � n, L is the resonator length, N is the environment
refractive index,

� =
√
sin g̃

B
, g̃ = arccos

[
Ã + D

2

]
, ε = i

z22
, δ = − i

z11
,

Ã =
[
A + i

2z222
− i

2z211

]
,
1

q
=

⎡
⎣ Ã + D

2
+ i

√
1 − ( Ã + D)2

4
− Ã

⎤
⎦ (2B)−1,

ρ1 = ρk is the dimensionless thickness of the particle layer and Hn are the Hermitian
polynomials.

Formula (3.84) implicitly defines the rather complicated relation between the
frequencies of the resonator eigenmodes and the electrical parameters of the particles,



56 3 Study of Electrophysical Characteristics of Blood …

such as the real and imaginary parts of their refractive indices, dimensions, etc. This
formula cannot be further simplified without loss of information, and, hence, the
relations between the mode frequencies and parameters of the medium and resonator
should be analyzed numerically.

The model is implemented in a software package that allows automatic variations
in themeasured real and imaginary parts of the refractive indices and sizes of particles
on a single setup. Such an approach makes it possible to reveal correlations of the
electrophysical parameters and biological properties of blood formed elements. The
optical parameters of blood cells must substantially supplement a detailed analysis
of blood owing to more precise characterization of the cells. The model for the
estimation of the refractive indices and sizes of blood formed elements and the
intracavity measurements can be more informative and accurate in comparison with
the existing methods that employ cavity-free models.

3.8 Numerical Calculations for the Resonator
with a Simulated Medium and Conclusions

A very important area of application of laser radiation is biomedical optics. Using
optical techniques, one can study mechanisms behind the interaction of cells with
the environment and their response to changes in the physical properties of the
medium and thereby gain information about an ensemble of living cells, including
blood corpuscles (hemocytes), which play a key role in different physicochemical
interactions. The advantage of laser radiation (laser beam) in studying biological
particles is that it does not cause crude pathomorphological changes in the tissue. At
the same time, laser diagnostics effectively utilizes such properties of laser radiation
as coherency, monochromaticity, and directionality. Development of new methods
of laser biomedical diagnostics requires a theoretical analysis of light propagation
in biological tissues. The presence of an adequate theory will make it possible to
better appreciate optical measurement data and raise the potential, reliability, and
usefulness of optical technologies.

It is believed that such an approach will expand the information content of the
intracavity method in analyzing the dependences of the optical characteristics on the
radiation wavelength. In this work, we simulate the absorption versus the wavelength
dependence for different parameters of the medium being simulated. The simulation
demonstrates the feasibility of this method for studying biological structures of vari-
ous configurations, such as an ensemble of spherulated particles with a nonconcentric
inclusion (hemocyte suspensions). Erythrocytes have largely a spherical doubly con-
cave shape. However, in general, the shape of an erythrocyte depends on intracellular
factors and the environment. Sometimes, erythrocytesmay be spherical, for example,
when the cell is in a hypotonic solution.
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A mathematical model was constructed and the respective software was devised
that allowed us to perform a numerical experiment at different parameters of the
problem. Some of the results are presented below.

Consider a layer of spherical particles in an optical resonator cavity. Its parameters
are the following: the mirror distance is L = 11cm; the radii of mirrors M1 and M2

are 100.0 and 46.3cm, respectively; the radiation wavelength of a helium-neon laser
is λ = 0.63µm; z1 = 6000λ; and z2 = 6005λ. Thickness ρ of the layer is set equal
to the diameter of the particles, the distance between which in the plane orthogonal
to the optical axis of the cavity is taken to be equal to 10λ, From formula (3.84),
one can calculate the refractive index of the particles, n0(λ) + iχ(λ) at given cavity
frequency ωn . In the given case, we put n = 0, so that ω0 is the frequency of the
fundamental mode.

Experiments were carried out with spherulated particles containing a nonconcen-
tric inclusion. The number of spherulated particles was set equal to five. Let the
parameters of the spherulated particles be the following: the nucleus diameter is 4
× 10−6m; the diameter of the cytoplasm is 6 × 10−6m; and the refractive indices of
the nucleus, cytoplasm, and blood plasma are, respectively 1.31 + j0.0001, 1.32 +
j0.0001, and 1.52.

Some of the hemocytes have a nucleus. The nucleus is not always placed at the
center. Itmaybe spherical, ovoid, etc. It seems topical to study the spectral response of
various biological samples to a change in the nucleus position under laser irradiation.
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Fig. 3.6 Imaginary part of the refractive index of the leukocyte nucleus versus the wavelength for
d = 1.6 · 10−7
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Fig. 3.7 Imaginary part of the refractive index of the leukocyte nucleus versus the wavelength for
d = 1.8 · 10−7

Figures 3.6 and 3.7 plot the imaginary (χ ) part of the refractive index of hemocytes
with a nonconcentric inclusionof a different radius versus thewavelength for different
positions of the nucleus.

It is seen that the range of χ is close to the experimental range of the complex
refractive index of the hemocyte nucleus obtainedwithout using the intracavitymodel
[14, 15]. Also, themodel is fairly sensitive to the position of the nucleus relative to the
center. This makes it possible to gain a deeper insight into physiological processes
in the organism, since the shape and size of the nucleus may vary, often together
with metabolism changes, and the shift of the nucleus may be due to the hemocyte
damage or impairment of a hemocyte [16].

The same dependences may be simulated for lasers with other parameters and
used to process experimental data, specifically, for hemocytes.

Figures 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13 illustrate the cross section of multi-
ple scattering by a set of spherulated particles with a nonconcentric inclusion of a
different radius in the far-field region for different positions of the nucleus.

The scattering cross section is given by

Csca = Wscat

Ii
,

where Ii is the incident light intensity

Wscat =
∫
A
Sscat · erd A, Sscat = c

8π
Re[E j

scat × H j∗
scat ],
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Fig. 3.8 Cross section of scattering by an ensemble of spherulated particles with a nonconcentric
inclusion at d = 1.7 · 10−7 m for p-polarized
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Fig. 3.9 Cross section of scattering by an ensemble of spherulated particles with a nonconcentric
inclusion at d = 1.7 · 10−7 m for s-polarized
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Fig. 3.10 Cross section of scattering by an ensemble of spherulated particles with a nonconcentric
inclusion at d = 1.7 · 10−7 m for nonpolarized incident light
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Fig. 3.11 Cross section of scattering by an ensemble of spherulated particles with a nonconcentric
inclusion of a different radius at d = 1.687 · 10−7 m for p-polarized
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Fig. 3.12 Cross section of scattering by an ensemble of spherulated particles with a nonconcentric
inclusion of a different radius at d = 1.687 · 10−7 m for s-polarized
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Fig. 3.13 Cross section of scattering by an ensemble of spherulated particles with a nonconcentric
inclusion of a different radius at d = 1.687 · 10−7 m for nonpolarized incident light
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Then,

Wscat = 1

2
Re

∫ 2π

0

∫ π

0

[
EsθH

∗
sφ − EsφH

∗
sθ

]
r2 sin θdθdφ,

where

Esθ ∼ E0
eikr

−ikr

∞∑
n=1

n∑
m=−n

(2n + 1)

n(n + 1)
[amnτn + bmnπn],

Esφ ∼ E0
eikr

−ikr

∞∑
n=1

n∑
m=−n

(2n + 1)

n(n + 1)
[amnπn + bmnτn],

Hsθ ∼ E0
eikr

−ikr

k

ωμ

∞∑
n=1

n∑
m=−n

(2n + 1)

n(n + 1)
[bmnτn + amnπn],

Hsφ ∼ E0
eikr

−ikr

k

ωμ

∞∑
n=1

n∑
m=−n

(2n + 1)

n(n + 1)
[bmnπn + amnτn],

τn = ∂

∂θ
Pn(cos θ), πn = 1

sin θ
Pn(cos θ).

Of undeniable interest is to study the polarization characteristics of an ensem-
ble of spherulated particles with a nonconcentric inclusion. It is known that the
polarization characteristics of scattered radiation contain more information about
the microstructure and also the geometrical and optical properties of scatterers and
serve as a sensitive tool in optical diagnostics.

Figures 3.14, 3.15, 3.16 and 3.17 plot the polarization characteristics of the radia-
tion scattered byhemocyte suspensions against the scattering angle.Here, normalized
Stokes parametersU and V were determined through S33 and S34, which are the nor-
malized components of the scattering matrix for spherical particles. As follows from
the plots, the Stokes parameters are highly sensitive not only to the refractive index
of the particles with a nonconcentric inclusion but also to the position of the nucleus.
It is also seen that the interval 60◦ < θ < 90◦ (θ is the scattering angle) is of interest
for experimental investigation, since here oscillations are the least pronounced.

Thus, the model suggested for estimating the absorption factor of hemocytes
combined with an intracavity experiment may, in our opinion, be more adequate
than the available methods based on cavity-free models. An undeniable advantage
of our approach is that data for the imaginary part of the refractive index, hemocyte
size, and other parameters can be obtained simultaneously on the same setup. The
model allows one to determine the spectral distributions of the optical parameters
of a biological medium and trace the variation of these parameters under the action
of various factors causing changes in the functional and morphological state of a
biological tissue. In addition, using this model, one can simultaneously gain data for
the variation of the optical parameters and characteristic sizes of biological tissues
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Fig. 3.14 Stokes parameters versus the scattering angle for the hemocyte suspension models at
d = 1.7 · 10−7
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Fig. 3.15 Stokes parameters versus the scattering angle for the hemocyte suspension models at
d = 1.7 · 10−7
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Fig. 3.16 Stokes parameters versus the scattering angle for the hemocyte suspension models at
d = 1.687 · 10−7
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Fig. 3.17 Stokes parameters versus the scattering angle for the hemocyte suspension models at
d = 1.687 · 10−7
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with different structures using the same setup. Thus, it seems very likely to find a
correlation between the electrophysical parameters of a biological substance and its
biological properties using this approach.
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Chapter 4
Mathematical Models of the Interaction
of Laser Radiation with Turbid Media

Abstract We construct the mathematical model for calculating the interaction of
laser radiation with a turbid medium and the model for the prediction of the optical
characteristics of blood (refractive index and absorption coefficient) and for the
determination of the rate of blood flow in the capillary bed under irradiation of a
laser beam is proposed.

4.1 Introduction

Now we proceed to the consideration of the principles of construction of mathemat-
ical models for calculating the interaction of laser radiation with a turbid medium.
Turbid is called medium in which there is the absorption and scattering of radiation.
One example of this is human skin tissue. As was noted in Chap. 1, the skin is a live
multi-media containing various inclusions, such as, for example, blood vessels. Let’s
consider the basic periods of construction of the mathematical models describing the
interaction of laser radiationwith immunocompetentmultilayered turbidmedia, such
as human skin. (see Fig. 4.1). First we described the object of study. After that optical
and physical parameters of all its components are defined. Next step is the calcu-
lation of the radiation in the environment, and (on some models) the calculation of
the temperature fields. Distinctions between models become already appreciable at
a period geometry construction. In most cases the skin is represented in the form of
sequence of layers with various optical and thermophysical properties. The number
of layers of the skin can vary from one to seven. The simple geometry includes only
derma. The simplest geometry includes only the dermis [1]. This simplified model
is used, for example, to simulate the treatment of acne laser light with a wavelength
of 1450nm.

The greatest number of layers of model is presented in [2]. Here, seven layers
are located in skin: a cornual layer, epidermis, the upper derma, a derma with a
superficial plexus of vessels, the lower derma, a derma with a deep plexus of vessels
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Fig. 4.1 The Scheme for the
construction of models that
describe the interaction laser
light with objects
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Fig. 4.2 Skin model. 1 the
cornual layer, 2 epidermis, 3
the upper derma, 4 derma
with a superficial plexus of
vessels, 5 the lower derma, 6
derma with a deep plexus of
vessels, 7 hypoderm
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and a hypoderm (see Fig. 4.2). Each of layer has the optical characteristics. However
such detailed separation of a skin into layers is used only for optical calculation.

Some authors identify the blood as a separate layer with the characteristics of
pure blood, or as an object within the tissue. A single blood vessel is sometimes
rectangular [3], or more cylindrical forms are usually placed in the dermis. The
example of a model of the skin to the blood vessels of cylindrical form is shown in
Fig. 4.3 [4].

In most cases the vessel wall has the same properties as a surrounding tissue.
Models with vessels are located in the dermis, usually used to obtain the distribution
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Fig. 4.3 Model of the skin
with the blood vessels

derma

epidermis

0.6 mm
z

r

of light intensity and temperature inside the veins. Optical properties are generally
considered to be constant for a given wavelength and independent of temperature.

In article [5] it is assumed that the skin consists of the epidermis and dermis.
Incident light first passes through the epidermis, where the largest coefficient has
melanin, so the optical properties of the epidermis considered equal properties of
melanin. The transmitted wave gets into the dermis, where it is mostly absorbed
by hemoglobin, present in the surface layer of the dermis. The remaining radiation
diffusely reflected from the collagen present in the rest of the dermis, and then
passes through the layers of hemoglobin and melanin, partially absorbed. Such a
description of the passage of light through the skin is used to calculate the coefficients
of pigmentation and erythema.

In [3, 4] one describes another method for calculating the intensity distribution
within the vessel. With the solution of the problem of electromagnetic diffraction on
an infinite circular cylinder, the component of the electric field inside the cylindrical
vessel is searched. These results let calculate the distribution function of heat sources
inside the vessel.

4.2 An Electrodynamic Model of the Optical
Characteristics of Blood and Capillary Blood Flow Rate

Application of lasers in biomedical investigations is based on the large variety of
effects of interaction of light with biological objects. Optical methods are the most
promising and are comparatively safe methods of study, being among the so-called
noninvasive methods. However, the application of optical methods requires adequate
theoretical models, whose development presents considerable difficulties.

It should be noted that a number of theoretical and experimental studies have
been devoted to similar questions [6, 7]. In [6], the propagation of optical radiation
through a biological medium (human skin) was modeled by the stochastic Monte
Carlo method, which combines calculation schemes of real photon paths and the
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method of statistical weights. In [7], the absolute average flow rate of a biological
fluid in microcapillaries and the flow direction were determined experimentally.

In this study, we will use an electrodynamic model, which makes it possible.

1. to vary such parameters of a biological structure as the real and imaginary parts
of the refractive index of the blood, epidermis, upper dermis, and lower dermis;

2. to ascertain dependences between these parameters and the biological properties
of blood irradiated by a laser beam;

3. to determine the rate of the blood flow in the capillary bed. This allows one to
diagnose diseases whose manifestation is related with a decrease in the effective
diameter of capillaries and with changes in the biophysical properties of blood.

Chapter is based on the result of the [8].
The biological tissue is represented in the form of layers with different optical

characteristics (the epidermis, upper dermis, blood, and lower dermis), which are
irradiated by a laser beam. The system of blood vessels is located in the upper layer
of the dermis.

4.3 Reflection of a Plane Wave from a Layer with a Slowly
Varying Thickness

In this section, we will find the coefficient of reflection from a layer with a slowly
varying thickness.

Fig. 4.4 Schematic diagram
of a model biological
medium
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We will consider the optical system shown in Fig. 4.4. The system consists of
four regions with different refractive indicesthe epidermis, the upper dermis, a blood
vessel, and the lower dermis.

In order to attain the maximum possible correspondence between the structure of
ourmodelmedium and that of the real object of study, wewill represent the interfaces
between the layers of the model medium in the form of curved surfaces

zi = hi (x, y), hi (x, y) = ci sin(ai x + bi y). (4.1)

In these expressions ci , ai , bi are arbitrary constants obeying the conditions ai �
1, bi � 1, ci � 1, (i = 1, 3).

Let a plane s- or p- polarized wave be incident on a layer at an angle θ .

Einc = exp(ik1x x + ik1y y − ik1z z),

where
k1x = kn1 sin(θ) sin(φ), k1y = kn1 sin(θ) cos(φ),

k1z = kn1 cos(θ) (4.2)

The reflected field must be found. We consider only the case of the p polarization.
We will write the Maxwell equations for the j th layer of the medium,

rotE = −iωμ0μ j H, rotH = iωε0ε j E, divE = 0, divH = 0 (4.3)

Then, the electromagnetic field in the j th layer of the medium will satisfy the fol-
lowing wave equation

�E + k2n2j E = 0,�H + k2n2j H = 0, (4.4)

where k2 = ω2ε0μ0, n j is the complex refractive index of the j th layer ( j = 1, 5),
n j = noj + iχ j . We introduce the contracted coordinates

ξ1 = εx, ξ2 = εy, ξ3 = εz. (4.5)

We will assume that the thicknesses of the layers H1, H2 and H3 are slowly varying
functions of the variables x and y. Let the ratio of the characteristic thickness of a
layer to the characteristic linear size L be denoted as ε; then we obtain

H1(x, y) = h1(ξ1, ξ2)|ξ1=εx,ξ2=εy,

H2(x, y) = h2(ξ1, ξ2)|ξ1=εx,ξ2=εy,

H3(x, y) = h3(ξ1, ξ2)|ξ1=εx,ξ2=εy .



72 4 Mathematical Models of the Interaction of Laser Radiation with Turbid Media

The conditions that the tangential components of E and H should be continuous at
the interfaces between media lead to the following boundary conditions

E1|ξ3=0 = E2|ξ3=0, E2|ξ3=εh1(ξ1,ξ2) = E3|ξ3=εh1(ξ1,ξ2), (4.6)

E3|ξ3=εh2(ξ1,ξ2) = E4|ξ3=εh2(ξ1,ξ2),

E4|ξ3=εh3(ξ1,ξ2) = E5|ξ3=εh3(ξ1,ξ2), (4.7)

1

n21

∂E1

∂ξ3
|ξ3=0 = 1

n22

∂E2

∂ξ3
|ξ3=0, (4.8)

1

n22

(
∂

∂ξ3
− ε

∂h1
∂ξ1

∂

∂ξ1
− ε

∂h1
∂ξ2

∂

∂ξ2

)
E2|ξ3=εh1(ξ1,ξ2) =

= 1

n23

(
∂

∂ξ3
− ε

∂h1
∂ξ1

∂

∂ξ1
− ε

∂h1
∂ξ2

∂

∂ξ2

)
E3|ξ3=εh1(ξ1,ξ2), (4.9)

1

n23

(
∂

∂ξ3
− ε

∂h2
∂ξ1

∂

∂ξ1
− ε

∂h2
∂ξ2

∂

∂ξ2

)
E3|ξ3=εh2(ξ1,ξ2) =

= 1

n24

(
∂

∂ξ3
− ε

∂h2
∂ξ1

∂

∂ξ1
− ε

∂h2
∂ξ2

∂

∂ξ2

)
E4|ξ3=εh2(ξ1,ξ2), (4.10)

1

n24

(
∂

∂ξ3
− ε

∂h3
∂ξ1

∂

∂ξ1
− ε

∂h3
∂ξ2

∂

∂ξ2

)
E4|ξ3=εh3(ξ1,ξ2) =

= 1

n25

(
∂

∂ξ3
− ε

∂h3
∂ξ1

∂

∂ξ1
− ε

∂h3
∂ξ2

∂

∂ξ2

)
E5|ξ3=εh3(ξ1,ξ2). (4.11)

Since H1, H2, and H3 are slowly varying functions of x and y, it is natural to seek
the reflected field in the form of waves with slowly varying amplitudes and quickly
oscillating phases:

E1 = exp

(
i

ε
τinc(ξ1, ξ2, ξ3)

)
+ exp

(
i

ε
τ1re f (ξ1, ξ2, ξ3)

)
×

× A(ξ1, ξ2, ξ3, εx , εy), (4.12)

E2 = exp

(
i

ε
τ2elap(ξ1, ξ2, ξ3)

)
B+(ξ1, ξ2, ξ3, εx , εy)+

+ exp

(
i

ε
τ3re f (ξ1, ξ2, ξ3)

)
B−(ξ1, ξ2, ξ3, εx , εy), (4.13)
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E3 = exp

(
i

ε
τ3elap(ξ1, ξ2, ξ3)

)
C+(ξ1, ξ2, ξ3, εx , εy)+

+ exp

(
i

ε
τ4re f (ξ1, ξ2, ξ3)

)
C−(ξ1, ξ2, ξ3, εx , εy), (4.14)

E4 = exp

(
i

ε
τ4elap(ξ1, ξ2, ξ3)

)
D+(ξ1, ξ2, ξ3, εx , εy)+

exp

(
i

ε
τ5re f (ξ1, ξ2, ξ3)

)
D−(ξ1, ξ2, ξ3, εx , εy), (4.15)

E5 = exp

(
i

ε
τ5elap(ξ1, ξ2, ξ3)

)
E(ξ1, ξ2, ξ3, εx , εy). (4.16)

Here, A, B±,C±, D± and E are the amplitudes, τ1re f , τ2elap, τ3re f , τ3elap,
τ4re f , τ5re f and τ5elap are unknown functions.By substituting thefields E1, E2, E3, E4

into (4.4), we obtain the equations for the amplitudes and eikonals:

ε2�A + iε(2∇A∇τ1re f + A�τ1re f ) + A(k2n22 − ∇τ1re f ) = 0, (4.17)

ε2�B+ + iε(2∇B+∇τ2elap + B+�τ2elap) + B+(k2n22 − ∇τ2elap)+

ε2�B− + iε(2∇B−∇τ3re f + B−�τ3re f )+

+ B−(k2n23 − ∇τ3re f ) = 0, (4.18)

ε2�C+ + iε(2∇C+∇τ3elap + C+�τ3elap) + C+(k2n23 − ∇τ3elap)+

+ε2�C− + iε(2∇C−∇τ4re f + C−�τ4re f )+

+ C−(k2n24 − ∇τ4re f ) = 0, (4.19)

ε2�D+ + iε(2∇D+∇τ4elap + D+�τ4elap) + D+(k2n24 − ∇τ4elap)+

+ε2�D− + iε(2∇D−∇τ5re f + D−�τ5re f )+

+ D−(k2n25 − ∇τ5re f ) = 0, (4.20)

ε2�E + iε(2∇E∇τ5elap + E�τ5elap)+

+ E(k2n25 − ∇τ5elap) = 0, (4.21)
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The amplitudes A, B±,C±, D± and E are sought in the form of series in powers of
small parameters εx and εy .

A(ξ1, ξ2, ξ3, εx , εy) =
∞∑
i=0

∞∑
j=0

Ai j (ξ1, ξ2, ξ3)(ε
i
x · ε j

y), (4.22)

B(ξ1, ξ2, ξ3, εx , εy) =
∞∑
i=0

∞∑
j=0

B+
i j (ξ1, ξ2, ξ3)(ε

i
x · ε j

y)+

+
∞∑
i=0

∞∑
j=0

B−
i j (ξ1, ξ2, ξ3)(ε

i
x · ε j

y), (4.23)

C(ξ1, ξ2, ξ3, εx , εy) =
∞∑
i=0

∞∑
j=0

C+
i j (ξ1, ξ2, ξ3)(ε

i
x · ε j

y)+

+
∞∑
i=0

∞∑
j=0

C−
i j (ξ1, ξ2, ξ3)(ε

i
x · ε j

y), (4.24)

D(ξ1, ξ2, ξ3, εx , εy) =
∞∑
i=0

∞∑
j=0

D+
i j (ξ1, ξ2, ξ3)(ε

i
x · ε j

y)+

+
∞∑
i=0

∞∑
j=0

D−
i j (ξ1, ξ2, ξ3)(ε

i
x · ε j

y), (4.25)

E(ξ1, ξ2, ξ3, εx , εy) =
∞∑
i=0

∞∑
j=0

Ei j (ξ1, ξ2, ξ3)(ε
i
x · ε j

y). (4.26)

From (4.17)–(4.21) we obtain the equations for the eikonals

k2n22 − ∇τ1re f = 0, k2n22 − ∇τ2elap = 0, (4.27)

k2n23 − ∇τ3re f = 0, k2n23 − ∇τ3elap = 0, (4.28)

k2n24 − ∇τ4re f = 0, k2n24 − ∇τ4elap = 0, (4.29)

k2n25 − ∇τ5re f = 0, k2n25 − ∇τ5elap = 0. (4.30)

and amplitudes
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∇A00∇τ1re f = 0, 2i∇Ai j∇τ1re f + �Ai−1, j−1 = 0, (4.31)

∇B+
00∇τ2elap = 0, 2i∇B+

i j∇τ2elap + �B+
i−1, j−1 = 0, (4.32)

∇B−
00∇τ3re f = 0, 2i∇B−

i j∇τ3re f + �B−
i−1, j−1 = 0, (4.33)

∇C+
00∇τ3elap = 0, 2i∇C+

i j∇τ3elap + �C+
i−1, j−1 = 0, (4.34)

∇C−
00∇τ4re f = 0, 2i∇C−

i j∇τ4re f + �C−
i−1, j−1 = 0, (4.35)

∇D+
00∇τ4elap = 0, 2i∇D+

i j∇τ4elap + �D+
i−1, j−1 = 0, (4.36)

∇D−
00∇τ5re f = 0, 2i∇D−

i j∇τ5re f + �D−
i−1, j−1 = 0, (4.37)

∇E00∇τ5elap = 0, 2i∇Ei j∇τ5elap + �Ei−1, j−1 = 0. (4.38)

By solving (4.27)–(4.38) with regard to (4.22)–(4.26), we obtain the eikonals for the
reflected and transmitted fields and the ray amplitudes A, B, C , D, and E (as the
first approximation).

τ1re f = k2xξ1 + k2yξ2 + k2zξ3, k22x + k22y + k22z = k2n22, (4.39)

τ2elap = k2xξ1 + k2yξ2 − k ′
2zξ3, k22x + k22y + k ′2

2z = k2n22, (4.40)

τ3re f = k3xξ1 + k3yξ2 + k ′
3zξ3, (4.41)

τ3elap = k3xξ1 + k3yξ2 − k ′
3zξ3, k23x + k23y + k ′2

3z = k2n23, (4.42)

τ4re f = k4xξ1 + k4yξ2 + k ′
4zξ3, (4.43)

τ4elap = k4xξ1 + k4yξ2 − k ′
4zξ3, k

2
4x + k24y + k ′2

4z = k2n24, (4.44)

τ5re f = k5xξ1 + k5yξ2 + k ′
5zξ3, k25x + k25y + k ′2

5z = k2n25, (4.45)

τ5elap = k5xξ1 + k5yξ2 − k5zξ3, k25x + k25y + k25z = k2n25, (4.46)

where

k jx = kn j sin(θ) sin(φ), k jy = kn j sin(θ) cos(φ), k jz = kn j cos(θ), j = 2, 5

A(ξ1, ξ2, ξ3, εx , εy) = A

00(t0) + εx

[
A

10(t0) + ξ3A0000(t0)

] +

+εy
[
A

01(t0) + ξ3A0000(t0)

]+
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+ εxεy
[
A

11(t0) + ξ3A0000(t0)

] + O(ε2), (4.47)

t0 = ξ1 + ξ2
k2y
k2z

− ξ3
k2x
k2z

, A0000(t0) = − 1

2i

∂2A

00(t0)

∂t20

k2n22
k32z

,

B(ξ1, ξ2, ξ3, εx , εy) = B
+
00 (t1) + εx

[
B
+
10 (t1) + B+

0000(t1)ξ3
] +

+εy
[
B
+
01 (t1) + B+

0000(t1)ξ3
] + εxεy

[
B
+
11 (t1) + B+

0000(t1)ξ3
] + B
−

00 (t2)+

+εx
[
B
−
01 (t1) + B−

0000(t1)ξ3
] + εy

[
B
−
01 (t2) + B−

0000(t2)ξ3
]

+ εxεy
[
B
−
11 (t2) + B−

0000(t2)ξ3
] + O(ε2), (4.48)

B+
0000(t1) = 1

2i

∂2

∂t21
B
+
00 (t1)

k2n22
k ′3
2z

, B−
0000(t2) = − 1

2i

∂2

∂t22
B
−
00 (t2)

k2n22
k ′3
3z

,

t1 = ξ1 + ξ2
k2y
k ′
2z

+ ξ3
k2x
k ′
2z

, t2 = ξ1 + ξ2
k3y
k ′
3z

− ξ3
k3x
k ′
3z

C(ξ1, ξ2, ξ3, εx , εy) = C
+
00 (t3) + εx

[
C
+
10 (t3) + C+

0000(t3)ξ3
] +

εy
[
C
+
01 (t3) + C+

0000(t1)ξ3
] + εxεy

[
C
+
11 (t3) + C+

0000(t1)ξ3
] + C
−

00 (t4)+

+εx
[
C
−
10 (t4) + C−

0000(t4)ξ3
] + εy

[
C
−
01 (t2) + C−

0000(t4)ξ3
] +

+ εxεy
[
C
−
11 (t4) + C−

0000(t4)ξ3
] + O(ε2), (4.49)

C+
0000(t3) = 1

2i

∂2

∂t23
C
+
00 (t3)

k2n22
k ′3
3z

, C−
0000(t4) = − 1

2i

∂2

∂t24
C
−
00 (t4)

k2n22
k ′3
4z

t3 = ξ1 + ξ2
k3y
k ′
3z

+ ξ3
k3x
k ′
3z

, t4 = ξ1 + ξ2
k4y
k ′
4z

− ξ3
k4x
k ′
4z

D(ξ1, ξ2, ξ3, εx , εy) = D
+
00 (t5) + εx

[
D
+

10 (t5) + D+
0000(t5)ξ3

]+

+εy
[
D
+

01 (t5) + C+
0000(t5)ξ3

] + εxεy
[
D
+

11 (t5) + D+
0000(t5)ξ3

] + D
−
00 (t6)+

+εx
[
D
−

10 (t6) + D−
0000(t6)ξ3

] + εy
[
D
−

01 (t6) + D−
0000(t6)ξ3

]+

+ εxεy
[
D
−

11 (t6) + D−
0000(t6)ξ3

] + O(ε2), (4.50)

D+
0000(t5) = 1

2i

∂2

∂t25
D
+

00 (t5)
k2n22
k ′3
4z

, D−
0000(t6) = − 1

2i

∂2

∂t26
D
−

00 (t6)
k2n22
k ′3
5z

,
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t5 = ξ1 + ξ2
k4y
k ′
4z

+ ξ3
k4x
k ′
4z

, t6 = ξ1 + ξ2
k5y
k ′
5z

− ξ3
k5x
k ′
5z

E(ξ1, ξ2, ξ3, εx , εy) = E

00(t7) + εx

[
E

10(t7) + ξ3E0000(t7)

]+ (4.51)

+εy
[
E

01(t7) + ξ3E0000(t7)

] + εxεy
[
E

11(t7) + ξ3E0000(t7)

] + O(ε2),

E0000(t7) = 1

2i

∂2E

00(t7)

∂t27

k2n22
k35z

, t7 = ξ1 + ξ2
k5y
k5z

+ ξ3
k5x
k5z

.

The substitution of (4.12)–(4.16) into (4.6)–(4.11) with regard to (4.39)–(4.46)
and (4.47)–(4.51) gives rise to a recurrent system of equations for the successive
determination of terms of series (4.22)–(4.26).

1 + A

00 = B
+

00 + B
−
00 ,

B
+
00 exp(−h1ik

′
2z) + B
−

00 exp(h1ik
′
3z) = C
+

00 exp(−h1ik
′
3z) + C
−

00 exp(h1ik
′
4z),

C
+
00 exp(−h2ik

′
3z) + C
−

00 exp(h2ik
′
4z) = D
+

00 exp(−h2ik
′
4z) + D
−

00 exp(h2ik
′
5z)

D

00+ exp(−h3ik

′
4z) + D
−

00 exp(h3ik
′
5z) = E


00 exp(−h3ik5z),

1

n21

(
−ik1z + ik2z A



00

)
= 1

n22

(
−ik ′

2z B

+
00 + ik ′

3z B

−
00

)
,

1

n22

(
−ik ′

2z B

+
00 exp(−h1ik

′
2z) + ik ′

3z B

−
00 exp(h1ik

′
3z)

)
=

= 1

n23

(
−ik ′

3zC

+
00 exp(−h1ik

′
3z) + ik ′

4zC

−
00 exp(h1ik

′
4z)

)
,

1

n23

(
−ik ′

3zC

+
00 exp(−h2ik

′
3z) + ik ′

4zC

−
00 exp(h2ik

′
4z)

)
=

= 1

n24

(
−ik ′

4z D

+
00 exp(−h2ik

′
4z) + ik ′

5z D

−
00 exp(h2ik

′
5z)

)
,

1

n24

(
−ik ′

4z D

+
00 exp(−h2ik

′
4z) + ik ′

5z D

−
00 exp(h2ik

′
5z)

)
=

= 1

n25

(
−ik5z E



00 exp(−h3ik5z)

)
.
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From this system, one can find the reflection coefficient in the principal approxima-
tion for the reflected field.

Now, we will pass to the derivation of the formulas for the reflection of a Gaussian
beam. This problem will be solved by expansion of counter propagating waves in
terms of plane waves in the region of medium 1, their reflection by layer 2, and
reverse transformation with a subsequent Huygens–Fresnel integral transformation
to obtain the field in the initial section.

4.4 Reflection of a Gaussian Beam from a Layer
with a Slowly Varying Thickness

Let a Gaussian beam with an arbitrary transverse field distribution be incident on a
layer at an angle θ . We will relate the coordinate system (x ′, y′, z′) to the direction
of incidence of the beam. The reflected field will be sought in the coordinate system
(x ′′, y′′, z′′). Let the incident field have the form along the straight line z′ = 0

Einc|z′=0 = Φ(ξ ′
1, ξ

′
2)|ξ ′

1=εx ′,ξ ′
2=εy′ .

Let the function Φ runs sufficiently rapidly to zero starting from the distances of the
order of O(1/ε)-axis of z′. We will write the identity:

Φ(ξ ′
1, ξ

′
2) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp[ik∧

1xξ
′
1 + ik∧

1yξ
′
2]dk∧

1xdk
∧
1y

∫ ∞

−∞

∫ ∞

−∞
×

× exp[−ik∧
1xξ

∧
1 − ik∧

1yξ
∧
2 ]Φ(ξ∧

1 , ξ∧
2 )dξ∧

1 dξ∧
2 .

Then, the incident field can be represented as

Einc = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk∧

1xdk
∧
1y×

× exp[−i z′
√
k2n21 − ε2x2k2∧1x − ε2y2k2∧1y + ik∧

1xξ
′
1 + ik∧

1yξ
′
2]×

×
∫ ∞

−∞

∫ ∞

−∞
dξ∧

1 dξ∧
2 exp[−ik∧

1xξ
∧
1 − ik∧

1yξ
∧
2 ]Φ(ξ∧

1 , ξ∧
2 )

We note that the incident field satisfies the Helmholtz equation. By expanding the
exponent of the exponential into a series in terms of a small parameter, we obtain
the following expression for the field:

Einc = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk∧

1xdk
∧
1y×
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× exp

[
−i z′

(
1 − 0.5ε2y2k2∧1y

n21k
2

− 0.5ε2x2k2∧1x
n21k

2
− ε2x2ε2y2k2∧1x k2∧1y

4n41k
4

+ O(ε4)

)]
×

× exp[ik∧
1xεx

′ + ik∧
1yεy

′]
∫ ∞

−∞

∫ ∞

−∞
dξ∧

1 dξ∧
2 exp[−ik∧

1xξ
∧
1 − ik∧

1yξ
∧
2 ]Φ(ξ∧

1 , ξ∧
2 ).

If |k∧
1x | � k, |k∧

1y | � k, the square root in the exponential

√
k2n21 − ε2x2k2∧1x − ε2y2k2∧1y

can be expanded into a series in which only terms quadratic in k1x and k1y would be
retained. Then,

Einc = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk∧

1xdk
∧
1y×

× exp

[
−i z′

(
1 − 0.5ε2y2k2∧1y

n21k
2

− 0.5ε2x2k2∧1x
n21k

2
+ O(ε4)

)
+ ik∧

1xεx
′ + ik∧

1yεy
′
]

×

×
∫ ∞

−∞

∫ ∞

−∞
dξ∧

1 dξ∧
2 exp[−ik∧

1xξ
∧
1 − ik∧

1yξ
∧
2 ]Φ(ξ∧

1 , ξ∧
2 ).

Let us relate the coordinate systems (x ′, y′, z′) and (x, y, z)

kn1x
′ = k11x + k12y + k13z,

kn1y
′ = k21x + k22y + k23z,

kn1z
′ = k31x + k32y + k33z,

k11 = kn1a11, k12 = kn1a12, k13 = kn1a13, k21 = kn1a21, (4.52)

k22 = kn1a22, k23 = kn1a23, k31 = kn1a31, k32 = kn1a32, k33 = kn1a33, (4.53)

a11 = cos(ϕ) cos(ψ) − sin(ϕ) cos(θ) sin(ψ), (4.54)

a12 = − sin(ϕ) cos(ψ) − cos(ϕ) cos(θ) sin(ψ), (4.55)

a13 = sin(θ) sin(ψ), (4.56)

a21 = cos(ϕ) sin(ψ) + sin(ϕ) cos(θ) cos(ψ), (4.57)

a22 = − sin(ϕ) sin(ψ) + cos(ϕ) cos(θ) cos(ψ), (4.58)
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a33 = cos(θ), a23 = − sin(θ) cos(ψ), a31 = sin(ϕ) sin(θ), (4.59)

a32 = cos(ϕ) sin(θ). (4.60)

In the coordinate system (x, y, z), the incident field is written as

Einc = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk∧

1xdk
∧
1y×

× exp[i(xk1x + yk1y − zk1z)
∫ ∞

−∞

∫ ∞

−∞
dξ∧

1 dξ∧
2 exp[−ik∧

1xξ
∧
1 − ik∧

1yξ
∧
2 ]Φ(ξ∧

1 , ξ∧
2 ),

where

k1x = −
[
k31

(
1 − ε2y2k2∧1y

2k2n21
− ε2x2k2∧1x

2k2n21

)
+ ε

k∧
1x

kn1
k11 − ε

k∧
1y

kn1
k21

]
+

+ O(ε4), (4.61)

k1y = −
[
k32

(
1 − ε2y2k2∧1y

2k2n21
− ε2x2k2∧1x

2k2n21

)
+ ε

k∧
1x

kn1
k12 − ε

k∧
1y

kn1
k22

]
+

+ O(ε4), (4.62)

k1z =
[
k33

(
1 − ε2y2k2∧1y

2k2n21
− ε2x2k2∧1x

2k2n21

)
+ ε

k∧
1x

kn1
k13 − ε

k∧
1y

kn1
k23

]
+

+ O(ε4). (4.63)

4.5 The Reflected Field

Upon reflection, each spectral component exp[i xk1x + iyk1y − i zk1z] gives rise to
a reflected wave A(ξ1, ξ2, ξ3, k1x , k1y) exp[i xk1x + iyk1y + i zk1z], where A is the
amplitude determined by formula (4.47) and k1x , k1y and k1z are given by formulas
(4.61)–(4.63). The reflected field will be written as

Eref = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk∧

1xdk
∧
1y exp(i xk1x + iyk1y + i zk1z)

A(ξ1, ξ2, ξ3, k1x , k1y)
∫ ∞

−∞

∫ ∞

−∞
dξ∧

1 dξ∧
2 exp(−ik∧

1xξ
∧
1 − ik∧

1yξ
∧
2 )Φ(ξ∧

1 , ξ∧
2 ).



4.5 The Reflected Field 81

We note that reflected field also satisfies the Helmholtz equation. Let us pass to the
coordinate system (x ′′, y′′, z′′), related to the reflected field:

kn1x = k11x
′′ + k21y

′′ + k31z
′′,

kn1y = k12x
′′ + k22y

′′ + k32z
′′,

kn1z = k13x
′′ + k23y

′′ + k33z
′′,

where k11, k12, k13, k21, k22, k23, k31, k32, k33 are determined by relations (4.52)–
(4.60). In this coordinate system, the reflected field takes the form

Eref = exp(−i(k + O(ε4))z′′)
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk∧

1xdk
∧
1y×

× exp

[
−z′′i

(
−ε2y2k∧

1y

2k2n21
− ε2x2k∧

1x

2k2n21
+ O(ε3)

)]
×

× exp[ik∧
1xξ

′′
1 (a211 + a22a12 + a213) + ik∧

1yξ
′′
1 (a21a11 + a222 + a23a13)+

+ik∧
1xξ

′′
2 (a11a21 + a222a13a23) + ik∧

1yξ
′′
2 (a221 + a12a22 + a223)]A(ξ1, ξ2, ξ3, k1x , k1y)×

×
∫ ∞

−∞

∫ ∞

−∞
dξ∧

1 dξ∧
2 exp(−ik∧

1xξ
∧
1 − ik∧

1yξ
∧
2 )Φ(ξ∧

1 , ξ∧
2 ). (4.64)

In order to calculate the field of the reflected beam, one needs to reexpand the
amplitude A in terms of a small parameter, substitute this expansion into the for-
mula for the reflected field, and perform the integration. In the coordinate system
(x ′′, y′′, z′′), the reflected field in the section z′′ = 0 related to the ray takes the form

Eref = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk∧

1xdk
∧
1y exp[ik∧

1xξ
′′
1 (a211 + a22a12 + a213)+

+ik∧
1yξ

′′
1 (a21a11 + a222 + a23a13)+

+ik∧
1xξ

′′
2 (a11a21 + a222 + a13a23) + ik∧

1yξ
′′
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∫ ∞

−∞

∫ ∞

−∞
dξ∧

1 dξ∧
2 exp(−ik∧

1xξ
∧
1 − ik∧

1yξ
∧
2 )×

× Φ(ξ∧
1 , ξ∧

2 ) + O(ε2) (4.65)

By expanding A in terms of a small parameter ε at z′′ = 0, we have
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kn1
+ O(ε2). (4.66)

The substitution of (4.66) into (4.65) and integration yield the following expres-
sion for the reflected field along the beam axis z′′ = 0:

Eref = A

oo(ξ

′′∼
1 + ξ ′′∼

2 , k1y, k1x )Φ(ξ ′′
1 , ξ ′′

2 )

α
− (4.67)
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εykoy
ikn1α

[
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]
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+O(ε2).

Note that the reflected field depends on the parameters of the incident beam
(the angle of incidence, the field distribution in a fixed section), the geometry of
the boundaries of the reflecting medium, the refractive index. The reflected field is
represented as the sum of the principal and the correction terms of the asymptotic of
the small parameter with precision O(ε2).

For fixed parameters of the system are two main factors that determine the distor-
tion of the field of the incident beam upon reflection. The first factor, call it geometric,
is described by the term in square brackets in (4.67). The reflected field is obtained
by multiplying the incident beam field to the local reflection coefficient of a plane
wave of unit amplitude incident on the medium at the same angle as the beam.

The second factor is called it the diffusion. It described by the term in the curly
brackets of (4.67). This term describes the distortion of the beam reflected by the
transverse to the direction of propagation of the reflected beam diffusion amplitude.
It should be noted that the reflection formulas were obtained for the field of a beam
with an arbitrary transverse distribution incident at an arbitrary angle to a certain
surface of a body with an arbitrary refractive index for the s- and p- polarization of
the incident beam. The results are represented as an asymptotic form with a small
parameter having the meaning of the ratio of the characteristic scale of variation of
the profile of the boundary of the body to the characteristic distance over which this
variation took place. The calculations were performed with an error of the order of
the quadratic terms of the asymptotic form. The resultant formulas are finite for any
values of the system parameters except the angle of incidence of the beam.

The formulas are nonuniform on the angle of incidence. Upon an increase in the
angle of incidence, the correction terms of the asymptotic form will also increase,
which shows a growing distortion of the beam. When the angle of incidence is equal
90◦ then the wave beam is completely destroyed. Thus, the reflection formulas are
valid in the range 0◦−89◦.

The expressions for the reflected H . field are derived in a similar manner. In what
follows, we consider the reflected field in the main approximation.

4.6 Calculation of the Rate of Blood Flow in a Capillary

In order to calculate the rate of the blood flow in a capillary, we will use the Galilean
transformation. For definiteness, the blood vessel is assumed to be oriented along
the Ox axis. Then

x = x ′ + υx t, y = y′. (4.68)
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We will substitute the formula (4.68) into (4.69) and expand the latter expression
into Taylor series in terms of υx , retaining only linear terms. The substitution of this
expansion into (4.69) yields the dependence of the intensity on the rate of blood flow
in the capillary at the time instant t . The intensity of radiation is determined as

I = |E⊥|2 + |E‖|2, (4.69)

E⊥ = cos(θ)Ez + sin(θ)Ex ,

E‖ = sin(θ)Ez − cos(θ)Ex ,

where Ex and Ez are given by the following expressions

∂Ez

∂y
− ∂Ey

∂z
= −iωμ0μ j Hx ,

∂Ex

∂z
− ∂Ez

∂x
= −iωμ0μ j Hy, (4.70)

∂Ey

∂x
− ∂Ex

∂y
= −iωμ0μ j Hz,

∂Hz

∂y
− ∂Hy

∂z
= iωε0ε j Ex , (4.71)

∂Hx

∂z
− ∂Hz

∂x
= iωε0ε j Ey,

∂Hy

∂x
− ∂Hx

∂y
= iωε0ε j Ez . (4.72)

Formulas (4.70)–(4.72) correspond to the system of the Maxwell equations (4.3) in a
Cartesian coordinate system. Thus, we obtained formulas allowing one to determine
the explicit dependence of the intensity of laser radiation as a function of the refractive
index and absorption coefficient for the system of blood vessels located in the upper
dermis on the rate of blood flow in the capillary bed at the time instant t and on the
coordinate system.

The following investigation and the analysis of the dependences presented will
be performed by numerical methods.

4.7 Numerical Calculations for a Model Medium
and Conclusions

Let us consider the model medium shown in Fig. 4.4. The parameters of the medium
are as follows. The refractive indices of the layers are equal to no2 = 1.50, no3 = 1.40,
no4 = 1.35, no5 = 1.40; the characteristic thicknesses of the layers are d2 = 65 · 10−6,
d3 = 565 · 10−6, d4 = 90 · 10−6, no1 = 1,χ1 = 0, χ2 = χ3 = χ4 = χ5 = 10−5, a1 =
−0.0024, b1 = 0.020, a2 = 0.021, b2 = 0.030, a3 = 0.041, b3 = 0.051, c1 = c2 =
c3 = 10−2 and the wavelength is λ = 0.63µm (the radiation wavelength of a He−Ne
laser).
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Fig. 4.5 Dependences of the intensity of radiation of a HeNe laser at a wavelength of 0.63µm on
(a, b), θ = 0◦, ϕ = 0◦, ψ = 0◦, χ = 10−5(absorption coefficient of blood) and refractive indices
of blood n4 = 1.35 (a) and n4 = 1.35003 (b)
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Fig. 4.6 a The refractive index and absorption coefficient of blood; b the rate of blood flow in the
capillary vessel at an instant t in the vicinity of the point x ′ = 0.0001, y′ = 0.0001 (b)

In Fig. 4.5a and b, the dependence of the intensity of radiation on the coordinate
system is shown for a multilayer absorbing and scattering medium, which models
human skin, for different values of the refractive index of blood. It should be noted
that, in comparison with the values of the refractive index of blood given in [9], our
model is rather stable and is sensitive to a change in this parameter up to the fifth
decimal place. This makes possible a more exact diagnostics of various pathological
processes related to changes in the electrophysical properties of blood.

The dependences of the intensity of the laser radiation on the refractive index
and absorption coefficient for the system of blood vessels in the upper dermis are
presented in Fig. 4.6a.
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Fig. 4.7 The rate of blood flow in the capillary vessel at an instant t(thickness of the epidermis
is 65µm; thickness of the upper dermis is 600µm; thickness of the blood is 85µm, refraction
coefficients epidermis, upper dermis, blood and lower dermis are 1.4500 + j · 10−5; 1.400 + j ·
10−5; 1.300 + j · 10−5; 1.400 + j · 10−5)

In Fig. 4.6b, the intensity of the laser radiation is shown as a function of the rate
of blood flow in a capillary at the time instant t in the vicinity of some point x ′, y′.
These quantitative estimates allow one to determine a change in the rate of the blood
flow in the capillary bed, which makes possible the study of physiological processes
occurring in skin.

Note that the principle of measuring blood flow velocity is based on the interfer-
ence of a stationary laser beam of light on a system of rough layers, one of which
(blood-bearing) can be represented as moving with the blood flow velocity vx .

Therefore, the movement of the blood will lead to a pseudoperiodic time variation
of the intensity with a characteristic time on the order of

δx

vx
,

where δx is the characteristic horizontal size of roughness. Figures4.7 and 4.8 illus-
trate the rate of blood flow in the capillary vessel at an instant t.



4.7 Numerical Calculations for a Model Medium and Conclusions 87

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 v, cm/c

 I,
 W

/c
m

2

Fig. 4.8 The rate of blood flow in the capillary vessel at an instant t(thickness of the epidermis
is 65µm; thickness of the upper dermis is 600µm; thickness of the blood is 70µm, refraction
coefficients epidermis, upper dermis, blood and lower dermis are 1.4500 + j · 10−5; 1.400 + j ·
10−5; 1.300 + j · 10−5; 1.400 + j · 10−5)

The dependences presented can be used for the prediction of changes in the optical
properties of blood and in the rate of the blood flow in the capillary bed caused by
various biophysical, biochemical, and physiological processes. Similar dependences
canbe calculated for laserswith other parameters. Thequantitative estimates obtained
can be applied to processing and interpreting of experimental data.
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Chapter 5
Study of the Optical Characteristics
of a Biotissue with Large-Scale
Inhomogeneities

Abstract We construct the electrodynamic model which makes it possible to vary
the electrophysical parameters of a biological structure in calculationswith allowance
for roughness (real and imaginary parts of the refractive index of the epidermis, the
upper layer of the derma, and blood) and to establish the dependences between these
parameters and the biological properties of blood under the action of laser radiation
in vivo.

5.1 Introduction

It should be noted that the study of propagation of light in randomly inhomogeneous
media is mainly based on the classical methods of the transport theory. However,
the application of the radiation transport theory is not always effective in the study
of propagation of light in randomly inhomogeneous media (in particular, biological
media). It is well known that most biological surfaces are not planar but are rather
loose randomly rough media, in which the size of roughness are larger than the
wavelength of radiation illuminating them. The roughness of the surfaces affects the
characteristics of propagation and scattering of waves. A wave incident on a rough
surface is not only reflected specularly, but is also scattered in all other directions.
The spatial000 parameters of the light beam interacting with a rough interface in
this case obviously change to a certain extent as compared to the case when radi-
ation is incident on a smooth surface. However, the classical transport theory fails
to indicate how the spatial parameters of the beam may change when it intersects
the rough interface between two media [1]. Thus, the disregard of rough boundaries
in the transport theory requires the application of classical methods of the theory
of diffraction of electromagnetic waves from randomly rough surfaces. In this con-
nection, it is important to. investigate the optical characteristics of the biological
structure taking roughness (when the characteristic size of roughness on the sur-
face is much larger than the wavelength) with the help of the classical methods of
diffraction theory. A number of publications in which light scattering from a rough
surface was studied [1–4] are worth men tioning. For example, the scattering of light
from a rough surface with random Gaussian fluctuations of roughness was studied
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in [1]. The case of coarse roughness was considered, when the parameters (standard
deviation and correlation radius) are much larger than the wavelength. In [3], light
scattering from an anisotropic rough surface was also considered. Scattering of light
from a rough cylindrical surface was studied in [4]. In [2], scattering of light from a
rough dielectric surface was analyzed (both theoretically and numerically).

Here, we construct an electrodynamic model which makes it possible to vary the
electrophysical parameters of a biological structure in calculations with allowance
for roughness (real and imaginary parts of the refractive index of the epidermis, the
upper layer of the derma, and blood) and to establish the dependences between these
parameters and the biological properties of blood under the action of laser radiation
for case in vivo. The problem consists of three consecutive stages. At the first stage,
the problem of light scattering from a rough boundary is solved and the coefficient
of reflection of a plane wave from a smoothly irregular layer simulating the given
biological medium is determined taking into account the roughness of the interface
in the case when the size of the roughness is larger than the wavelength of radiation
illuminating them.

At the second stage, we solve the problem of reflection of a Gaussian beam with
an arbitrary cross section. The problem is solved by expanding the fields of counter
propagating waves in plane waves in the domain of medium 1 and their reflection
by layer 2 and inverse transformation followed by the Huygens-Fresnel integral
transformation to obtain the field in the initial reference cross section (see Chap.4).
At the third stage, the dependence of the radiation intensity on the refractive index
is determined for a system of blood vessels in the upper layer of the dermis and the
effect of roughness on the electrophysical characteristics of the biological sample
being simulated is analyzed. The structure simulated consists of three regions with
different refractive indices (epidermis, upper layer of the dermis, and blood vessel)
illuminated by a laser beam for case in vivo.

The chapter is based on the results of the [5, 6].

5.2 Scattering of a Plane Wave from the Rough Surface

The surfaces of real bodies (in particular, in biology) are not perfectly smooth to a
certain extent. For this reason, reflection and refraction of the waves at these surfaces
are accompanied by the effects which are not observed for smooth surfaces. Rigorous
methods for solving the problem in the case of a rough surface do not exist. The
problem can be solved only approximately under certain constraints imposed on the
size and shape of roughness. For calculating the scattered field, the small-perturbation
method and the Kirchhoff (tangential plane) method are used. In this work, we will
use the Kirchhoff method for calculating the scattered field. To solve the formulated
problem, we will use the Kirchhoff approximation. To apply the Kirchhoff method
correctly, we make the assumption concerning the smoothness of inhomogeneities.
At each point, the wave field can be represented as the sum of incident field (Einc)
and reflected field (Eref ).
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Let us write the expressions for the field scattered by a certain smooth rough
surface z = H(x, y) in the Kirchhoff approximation. We select a certain region S of
this surface, whose linear size is much larger than the mean size of the roughness,
which in turn is much larger than the wavelength. We assume that there are no
elements of the surface shadowed from the incident wave or scattered wave.

Let us suppose that a plane s- or p- monochromatic wave is incident on a rough
surface; the unit wave amplitude has the form

Einc(r) = e−ik1r.

The observation will be carried out in the Fraunhofer zone of domain S and in the
direction of wave vector k. In this zone, the elementary waves of all elements of the
scattering domain can be treated as plane waves.

Fields E and H can be expressed in terms of certain scalar function (e.g., E) that
satisfies the equation

�E + k2E = 0 (5.1)

with boundary conditions of the form [7, 8]

Eref |z=H(x,y) = (1 + V )Einc|z=H(x,y), (5.2)

∂Eref

∂n
|z=H(x,y) = (1 − V )

∂Einc

∂n
|z=H(x,y), (5.3)

where k2 = ω2ε0μ0, V is the reflection coefficient depending on physical parameters
of the medium, and n is the unit vector of the outward normal. It should be borne in
mind that the formulas for the reflection coefficient for the s- or p- polarization are
different.

It should be noted that using the Kirchhoff method, we solve not the boundary-
value problem of diffraction, but a simpler problem that basically differs from it (i.e.,
the problem with a preset discontinuity of the field and of its normal derivative on
the surface). Thus, in contrast to the perturbation method considered in Chap.9, in
which the applicability limits of the results can be indicated for a wide class of special
cases and the next terms of the expansion can be calculated from the known small
parameters, the results obtained using the Kirchhoff method cannot be treated as the
expansion of the exact solution into a series in a small parameter (e.g., the ratio of
the wavelength to the characteristic linear size of the body at which diffraction takes
place).

It is well known that the values of E inside the domain are connected with E and
∂E
∂n on the surface bounding this domain by the Green formula

E(r) =
∮
S

[
E(r′)

∂G(r, r′)
∂n

− ∂E(r′)
∂n

G(r, r′)
]
dS, (5.4)

where G(r, r′)is the Green function, which has the form



92 5 Study of the Optical Characteristics of a Biotissue …

G(r, r′) = 1

4π

e−ikR

R
, R = |r − r′|.

Taking into account expression (5.4), we obtain

E(r) = Einc(r) +
∮
S

[
Eref (r′)

∂G(r, r′)
∂n

− ∂Eref (r′)
∂n

G(r, r′)
]
dS (5.5)

∮
S

[
Einc(r′)

∂G(r, r′)
∂n

− ∂Einc(r′)
∂n

G(r, r′)
]
dS = 0. (5.6)

Expression (5.6) implies that all sources of the field lie within the surface. Sub-
tracting expression (5.6) from (5.5), we arrive to the formula

E(r) = Einc(r) +
∮
S

[
(Einc(r′) − Eref (r′))

∂G(r, r′)
∂n

]
−

−
[
∂Einc(r′)

∂n
− ∂Eref (r′)

∂n

]
G(r, r′)dS. (5.7)

Substituting the value of the field and its derivative into this expression, we obtain

E(r) = Einc(r) +
∮
S
V

[
Einc(r′)

∂G(r, r′)
∂n

− ∂Einc(r′)
∂n

G(r, r′)
]
dS. (5.8)

We will henceforth consider only the scattered field defined as

Escat (r) =
∮
S
V

[
Einc(r′)

∂G(r, r′)
∂n

− ∂Einc(r′)
∂n

G(r, r′)
]
dS. (5.9)

Substituting into this formula the approximate expression for the derivative of
eikR/R with respect to n and the corresponding approximate expression for eikR/R,
which are defined as [9]

∂G

∂n
∼= 1

4π

e−ikr

r

∂ei(k,r)

∂n
= 1

4π

e−ikr

r
i(n,k)ei(k,r),

∂Einc

∂n
∼= 1

4π

e−ikr

r

∂e−i(k1,r)

∂n
=

= 1

4π

e−ikr

r
i(n,k1)e−i(k1,r),

eikR

R
∼= 1

4π

eikr

r
ei(k,r), (5.10)

we obtain

Escat (r) = i
e−ikr

4πr
q

∮
S
V

[
nei(q,r)] dS, (5.11)



5.2 Scattering of a Plane Wave from the Rough Surface 93

where

q = k − k1, dS = dxdy

α
, n =

(
α

∂H

∂x
, α

∂H

∂y
,−α

)
, (5.12)

α = 1√
(1 + ( ∂H

∂x )2 + ( ∂H
∂y )2

.

This gives

ndS =
[
∂H

∂x
,
∂H

∂y
,−1

]
dxdy, (q, r) = qx x + qy y + qzH(x, y), (5.13)

∂ei(q,r)

∂x
= i

[
qx + qz

∂H

∂x

]
ei(q,r), (5.14)

∂ei(q,r)

∂y
= i

[
qy + qz

∂H

∂y

]
ei(q,r), (5.15)

nei(q,r)dS =
[
∂ei(q,r)

i∂x
− qxe

i(q,r),
∂ei(q,r)

i∂y
− qye

i(q,r),−qze
i(q,r)

]
dxdy

qz
. (5.16)

Substituting expression (5.16) into (5.11) and taking into account relations
(5.12)−(5.15), we obtain

Escat (r) = i
e−ikr

4πr

∮
S0

V

[−q2

qz
+ 1

iqz
qx

∂

∂x
+ 1

iqz
qy

∂

∂y

]
ei(q,r)dxdy, (5.17)

where qx = −k(sin θs cosϕs − sin θi ), qy = −k sin θs sin ϕs, qz = −k(cos θi +
cos θs), θs is the scattering angle, θi is the angle of incidence and ϕs is the azimuthal
angle.

Note that in formula (5.17) we have passed from integration over surface S to
integration over its projection S0 onto the plane z = 0. Let us write expression (5.17)
in the form

Escat (x, y) = −i
e−ikr

4πr

q2

qz

[∮
S0

V
[
ei(qx x+qy y+qz H(x,y))

]
dxdy

]
+

+ i
e−ikr

4πr

[∮
S0

V

[
qx
qz

[
qx + qz

∂H(x, y)

∂x

]
+ qy

qz

[
qy + ∂H(x, y)

∂y

]]]
× (5.18)

×ei(qx x+qy y+qz H(x,y))dxdy.

It should be noted that the second part of formula (5.18) gives the edge effect.
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5.3 The Scattered Field on the Fractal Surface

It should be noted that many biological tissues (in particular, dermis) exhibit optical
inhomogeneity [10, 11]; in this case, the surface of the outer dermis of the biolog-
ical structure being modeled can be described by the following 2D range-limited
Weierstrass function:

H2(x, y) = σ

√√√√
[

2(1 − q2(D2−3)
2 )

M2(1 − q2(D2−3)N
2 )

]
× (5.19)

×
N−1∑
n=0

q(D2−3)n
2

M∑
m=1

c2 sin

[
K2q

n
2

[
a2x cos

2πm

M2
+ b2y sin

2πm

M2

]
+ ϕnm

]
,

where a2, b2, c2 are arbitrary constants obeying the conditions a2 � 1, b2 � 1,
c2 � 1.

In formula (5.19) q2 > 1 is the parameter of the spatial-frequency scaling, D2

is the fractal dimension, K2 is the principal spatial wave number, N2 and M2 are
the numbers of harmonics, ϕnm is the arbitrary phase which is distributed uniformly
in the interval [−π, π ], and σ is the standard deviation. Function H2(x, y) is self-
similar and has derivatives. The surface based on this function has many scales, and
the roughness can change depending on the scale under consideration.

To describe the rough surface numerically, parameters like the correlation interval,
the standard deviation, and spatial autocorrelation coefficient are normally used. The
possibility of using these statistical parameters for estimating the effect of the fractal
dimension and other parameters on the roughness of the surface was considered in
[12]. For this purpose, the dependence of the mean correlation interval on D for
various values of q and the dependence of the mean correlation interval on q for
various values of D are investigated numerically. It is shown that inhomogeneities
of the fractal surface are mainly controlled by quantity D. Note that the fractal
surface presumes the presence of roughness of all scales relative to the wavelength
of the scattered wave. The features of scattering of waves by the fractal surface are
determined by the fact the surface is not differentiable; thus, the fractal front, which
is not differentiable, has no normal. However, the chords connecting the values of the
characteristic heights of roughness at certain distances have a finite root-mean-square
slope. In this case, the hypothesis of a fractal chaotic surface is introduced; it is equal
to the length over which the slopes of the surface are close to unity [13]. Thus, two
scattering models have been adopted at present; the first is the model with fractal
heights, while the second is the model with fractal slopes of roughness. In the second
model, we note that it is once differentiable and has a slope that varies continuously
from point to point. This allows us to analyze our model in the geometrical optics
approximation.
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Substituting expression (5.19) into (5.18), we obtain

Escat (x, y) = −i
e−ikr

4πr

q2

qz

∮
S0

V exp

[
qx x + qy y + qzc

N−1∑
n=0

q(D2−3)n
2

]
×

× exp

[
M∑

m=1

c2 sin K2q
n
2

[
a2x cos

2πm

M2
+ b2y sin

2πm

M2

]
+ ϕnm

]
dxdy =

= −i
e−ikr

4πr

q2

qz

∮
S0

V
N−1∏
n=0

M∏
m=1

exp
[
qx x + qy y + qzcq

(D2−3)n
2

]
×

× exp

[
c2 sin K2q

n
2

[
a2x cos

2πm

M2
+ b2y sin

2πm

M2

]
+ ϕnm

]
dxdy, (5.20)

where

c = σ

√√√√
[

2(1 − q2(D2−3)
2 )

M2(1 − q2(D2−3)N
2 )

]
.

We will use the representation of the uth-order Bessel function of the first kind in
the form of a power series

eikz sin φ =
∞∑

u=−∞
Ju(z)e

iuφ. (5.21)

We substitute expression (5.21) into (5.20),which gives

Escat (x, y) = −i
e−ikr

4πr

q2

qz

∮
S0

V
N−1∏
n=0

M∏
m=1

∞∑
u=−∞

Junm (qzcq
(D2−3)n
2 )× (5.22)

× exp

[
qx x + qy y + iu

[
c2K2q

n
2

[
a2x cos

[
2πm

M2

]
+ b2y sin

[
2πm

M2

]
+ ϕnm

]]]
.

We can write this expression in the form

Escat (x, y) = −i
e−ikr

4πr

q2

qz

∮
S0

V
∞∑

uM,N−1=−∞

N−1∏
n=0

M∏
m=1

Junm (qzcq
(D2−3)n
2 )×

× exp

[
c2i K2

[
N−1∑
n=0

qn
2

M∑
m=1

unma2x cos

[
2πm

M2

]]
+ qx x

]
× (5.23)
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× exp

[
c2i K2

[
N−1∑
n=0

qn
M∑

m=1

unmb2y sin

[
2πm

M2

]]
+ qy y

]
exp

[
i
N−1∑
n=0

M∑
m=1

unmϕnm

]
.

If we consider scattering from a finite area element of size 2Lx × 2Ly for −Lx ≤
x ≤ Lx and −Ly ≤ y ≤ Ly , then taking expression (5.23) into account analogously
to [13], we obtain the following expression for the scattered field:

Escat (x, y) = −i
e−ikr

πr

q2

qz

∞∑
uM,N−1=−∞

N−1∏
n=0

M∏
m=1

Junm (qzcq
(D2−3)n
2 )×

× exp

[
i
N−1∑
n=0

M∑
m=1

unmϕnm

]
sin(Lxϑx )

ϑx

sin(Lyϑy)

ϑy
+ �k, (5.24)

where �k gives the edge effect, and,

ϑx = qx + c2K2

[
N−1∑
n=0

qn
2

M∑
m=1

unma2x cos

[
2πm

M2

]]
,

ϑy = qy + c2K2

[
N−1∑
n=0

qn
2

M∑
m=1

unmb2y sin

[
2πm

M2

]]
.

5.4 Reflection of a Plane Wave from a Layer
with Allowance for Surface Roughness

Having derived the expression for the field scattered by a certain smooth uneven sur-
face z = H(x, y) in the Kirchhoff approximation in the case when the characteristic
size of roughness on the surface considerably exceeds the wavelength, we consider
the problem of reflection of a plane wave from a layer with a slowly varying thickness
taking the roughness into account.

Let us consider the followingoptical scheme.The systemconsists of three domains
with difference refractive indices(epidermis, the upper layer of the dermis, blood
vessel). To attain the best agreement between the structure and the actual object under
investigation, we represent the interfaces between the layers of the model medium in
the form of certain surfaces zi = Hi (x, y), i = 1, 2, where z1 = H1(x, y) is defined
by expression (4.1) and z2 = H2(x, y) is defined by expression (5.19).

Let us suppose that a plane s- or p- polarized wave is incident on the layer at an
angle θ . We consider only the case of the p polarization. We must find the reflected
field.
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We will seek the reflected field in the form of waves with slowly varying ampli-
tudes and rapidly oscillating phases

E1 = exp

(
i

ε
τinc(ξ1, ξ2, ξ3)

)
+ exp

(
i

ε
τ1re f (ξ1, ξ2, ξ3)

)
A(ξ1, ξ2, ξ3), (5.25)

E2 = exp

(
i

ε
τ2tr (ξ1, ξ2, ξ3)

)
B+(ξ1, ξ2, ξ3)+

+ exp

(
i

ε
τ3re f (ξ1, ξ2, ξ3)

)
B−(ξ1, ξ2, ξ3), (5.26)

E3 = exp

(
i

ε
τ3elap(ξ1, ξ2, ξ3)

)
C+(ξ1, ξ2, ξ3)+

+ exp

(
i

ε
τ4re f (ξ1, ξ2, ξ3)

)
C−(ξ1, ξ2, ξ3) + Escat (ξ1, ξ2), (5.27)

where Escat (ξ1, ξ2) in the general form is defined by expression (5.24).

E4 = exp

(
i

ε
τ4elap(ξ1, ξ2, ξ3)

)
D(ξ1, ξ2, ξ3), (5.28)

and τ1inc, τ1re f , τ2elap, τ3re f , τ3elap, τ4re f , τ4elap are defined in Chap.4.
Amplitudes A, B±, C± and D are sought in the form of power series on for small

parameter εx , εy , the expressions for the amplitudes are defined analogously to the
method described in Chap.4.

Substitution of expressions (5.25)–(5.28) into (4.6)–(4.11) generates a recurrence
system of equations. For the reflected field, this system leads to reflection coefficient
A taking into account the roughness at the interface with themedium being simulated
in the case when the characteristic size of roughness on the surface is much larger
then the wavelength of incident radiation.

1 + A�
00 = B�+

00 + B�−
00 ,

B�+
00 exp(−h1ik

′
2z) + B�−

00 exp(h1ik
′
3z) = C�+

00 exp(−h1ik
′
3z) + C�−

00 exp(h1ik
′
4z)

+Escat (ξ1, ξ2, ξ3)|ξ3=εh1(ξ1,ξ2),

C�+
00 exp(−h2ik

′
3z) + C�−

00 exp(h2ik
′
4z) + Escat (ξ1, ξ2, ξ3)|ξ3=εh1(ξ1,ξ2) =

D�+
00 exp(−h2ik

′
4z) + D�−

00 exp(h2ik
′
5z),

D�
00+ exp(−h3ik

′
4z) + D�−

00 exp(h3ik
′
5z) = E�

00 exp(−h3ik5z)
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1

n21

(
−ik1z + ik2z A

�
00

)
= 1

n22

(
−ik ′

2z B
�+
00 + ik ′

3z B
�−
00

)
,

1

n22

(
−ik ′

2z B
�+
00 exp(−h1ik

′
2z) + ik ′

3z B
�−
00 exp(h1ik

′
3z)

)
=

= 1

n23

(
−ik ′

3zC
�+
00 exp(−h1ik

′
3z) + ik ′

4zC
�−
00 exp(h1ik

′
4z)

)
+

+ 1

n23

∂

∂ξ3
Escat (ξ1, ξ2, ξ3)|ξ3=εh1(ξ1,ξ2),

1

n23

(
−ik ′

3zC
�+
00 exp(−h2ik

′
3z) + ik ′

4zC
�−
00 exp(h2ik

′
4z)

)
+

+ 1

n23

∂

∂ξ3
Escat (ξ1, ξ2, ξ3)|ξ3=εh1(ξ1,ξ2) =

= 1

n24

(
−ik ′

4z D
�+
00 exp(−h2ik

′
4z) + ik ′

5z D
�−
00 exp(h2ik

′
5z)

)
,

1

n24

(
−ik ′

4z D
�+
00 exp(−h2ik

′
4z) + ik ′

5z D
�−
00 exp(h2ik

′
5z)

)
=

= 1

n25

(
−ik5z E

�
00 exp(−h3ik5z)

)
.

The expression for the reflection of aGaussian beamwith an arbitrary cross section
is defined by expression (4.67). The expressions for the reflected H field are derived
in a similar manner.

The radiation intensity is defined by expression (4.69) and Substitution of expres-
sions (4.67) into (4.69) and thus, at the given stage, we have derived the expressions
that make it possible to determine the explicit dependence of the intensity of laser
radiation on the refractive index and the absorption coefficient for a system of blood
vessels in the upper layer of the dermis. Further analysis of the above dependences
will be carried out using numerical methods.
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5.5 Numerical Calculations for a Model Medium
and Conclusions

Let us consider the optical system being simulated. The system consists of three
domains with different refractive indices (epidermis, the outer layer of the dermis,
and a blood vessel). The system has the following parameters. Refractive indices
of the layers are n◦

2 = 1.33, n◦
3 = 1.35, n◦

4 = 1.35 and the characteristic thicknesses
of the layers are d1 = 65 · 10−6, d2 = 565 · 10−6, n◦

1 = 1, χ1 = 0, χ2 = χ3 = χ4 =
10−5, a1 = −0.0987, b1 = 0.09920, c1 = 0.07749, a2 = 0.007, b2 = 0.0089, c2 =
0.0089, wavelength is λ = 0.63µm (center of the line of a He−Ne laser), q2 = 1.01,
K2 = 6, N2 = 2, M2 = 3, D2 = 2.9, σ = 1; i.e., function H2(x, y) is normalized to
σ = 1. Note that the values of parameters ai , bi and ci , i = 1, 2 are selected so
that the shape of the surface corresponds best to the shape of the interface with
the corresponding layer in the structure of the normal human dermis. In numerical
calculations, the edge effect was not taken into account.

Figure 5.1 shows the dependence of the intensity of scattered field on fractal
dimension D. The curve in Fig. 5.1 shows that the scattering intensity increases, then
the relief of the surface becomes more complicated (fractal dimension D increases).
This effect can be explained by an increasing contribution of secondary scattering
from fine roughness as compared to that in the case of a smoother surface.

Figure 5.2 shows the radiation intensity for specific values of electrophysical
parameters and q2, K2, D2, N2, M2 ai , bi , ci , i = 1, 2 for a multilayer absorbing
medium and scattering medium simulating the human dermis. It can be seen from
Fig. 5.2 that the Gaussian beam splits.

Figures5.3a, b show the dependences of the laser radiation intensity on the re-
fractive index and absorption coefficient for a system of blood vessels in the outer
layer of the dermis for various absorption coefficients of the epidermis and dermis.

Fig. 5.1 Dependence of the
squared modulus of the
scattered field on fractal
dimension D

sc
at

2
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Fig. 5.2 Radiation intensity
for specific values of
parameters and for θ = 00,
ϕ = 00, ψ = 00
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It should be noted that the model constructed here is quite sensitive to changes in
the electrophysical parameters of the biological structure being simulated (in partic-
ular, to the absorption coefficient). The model constructed here makes it possible to
vary the inhomogeneities of a rough surface, the electrophysical parameters of the
biological samples under investigation, and the geometrical parameters and to estab-
lish the dependences between these parameters and the biological properties of the
biotissue being simulated. Thus, this model can be used for measuring the spectral
differences between the normal and pathological tissues in vivo experiments taking
into account large-scale inhomogeneities, aimed at the development of a spectral
autograph for determining pathological changes in the biological samples, which are
associated with a variation of the electrophysical properties of the epidermis, outer
dermis, and blood.

Analogous dependences can be obtained for lasers with other parameters and
can be used for processing of the experimental absorption curves of the biological
structures under investigation with regard to large-scale inhomogeneities.

The dependences given above can be used for predicting changes in the optical
properties of blood in the capillary channel, which are associated with various bio-
physical, biochemical, and physiological processes in the blood; these dependences
can also be calculated for lasers with other parameters; and the quantitative estimates
can also be applicable for experimental data processing and interpretation.

The model considered here will be extended by considering scattering from large-
scale inhomogeneities with allowance for multiple scattering to obtain a more ad-
equate description of reflection from the rough interface in simulated biological
structures of various morphologies.
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Fig. 5.3 Dependence of the
laser radiation intensity on
refractive index n4 and
absorption coefficient χ4 for
a system of blood vessels in
the outer layer of the dermis
for the absorption coefficient
of the epidermis and dermis
χ4 = 10−4 ; b the same as in
a but for χ4 = 10−5
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Chapter 6
Light Scattering by Dielectric Bodies
of Irregular Shape in a Layered Medium

Abstract The mathematical model proposed for predicting optical characteristics
(refractive index and absorption coefficient) of a biotissue being simulated, which is
probed in vivoby a laser beam.Blood corpuscles in this case are simulatedbyparticles
of irregular shape and various sizes, which are oriented arbitrarily in free space.Using
the mathematical model constructed earlier, optical characteristics (refractive index
and absorption coefficient) of the biotissue being simulated, probed in vivo by a
laser beam, are analyzed. The action spectra of the laser radiation power absorbed by
oxyhemoglobin and deoxihemoglobin of blood, which are associatedwith selectivity
of absorption of radiation by these hemoglobin derivatives, are calculated.

6.1 Introduction

In this chapter, we analyze optical and geometrical characteristics of particles simu-
lating erythrocytes in the upper layer of the dermis. It should be noted that hemorheo-
logical andmicrocirculation disorders occupy the leading place in the pathogenesis of
many diseases as well as states and complications. Functional properties of erythro-
cytes that form the major part of blood cells play the leading role in the formation of
such pathological states. The erythrocyte as a physical object is characterized by the
geometrical size, refractive index, and mechanical properties such as elasticity and
deformability. For this reason, analysis of various characteristics of erythrocytes (in
particular, their size, shape, and refractive index) in connection with various diseases
of the blood system is of certain theoretical and undoubtedly of practical importance.

The possibility of theoretical construction of optical characteristics of dielectric
particles of various shapes and structures has been studied in a number of publications
[1–4].

We will solve the problem of scattering from bodies of an arbitrary shape by the
method of integral equations, which is known as the extended boundary conditions
method (EBCM) [5, 6]. It should be noted that this method gives the exact solution
to the problem of light scattering by a particle of an arbitrary shape in the form
of infinite series; however, the maximal number of expansion terms required for
attaining a reasonable accuracy depends on the shape, size, and refractive index of
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the scatterer. We have constructed a mathematical model that makes it possible to
vary the electrophysical and geometrical parameters (thickness of the layers) of the
biological structure being simulated and to represent the result in the form of a graph
describing the dependence of the laser radiation intensity on the electrophysical
characteristics of the model structure for each version being analyzed.

The problem consists of several steps. At the first step, it is necessary to find the
coefficient of reflection of a plane wave from a smoothly irregular layer simulating a
given biological structure which consist of two continuous layers and the third layer
containing inhomogeneous inclusions simulating blood cells with different refractive
indices.

At the second step, it is necessary to solve the problem of reflection of a Gaussian
beam with an arbitrary cross section for the above conditions (see Chap.4). The
construction of these parts is auxiliary. In this study, we precisely solve the problem
of light scattering from particles of irregular shapes, which simulate erythrocytes
oriented arbitrarily in free space, taking into account their multiple scattering, as
well as the problem of simulating the efficiency of light absorption by the main
derivatives of hemoglobin: oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) of
human blood in the upper layers of human dermis.

Chapter is based on the results of the [7–9].

6.2 Matrix Formulation of Scattering for the j th Particle
of an Arbitrary Shape

From the standpoint of biomedical optics, whole blood is a highly concentrated
turbidmedium, whose scattering and absorption properties aremainly determined by
erythrocytes. For this reason, we will consider in this section erythrocytes present in
blood and their optical properties, disregarding the effect of other blood corpuscles on
light scattering; this does not affect the generality and correctness of the formulation
of the problem.

In some publications, an erythrocyte is considered as a homogeneous sphere
whose volume is the same as that of the erythrocyte [10, 11]; this can be treated as
the first approximation (see Chap.3), and it is expedient to consider the erythrocyte
as a body of an irregular shape.

Let us suppose that a plane linearly polarized electromagnetic wave is incident on
a group of homogeneous particles simulating erythrocyteswith radii a j and refractive
indices N j , where j are the numbers of particles. The direction of the incident wave is
arbitrary. The group of particles is considered in the 3D systemof coordinateswith the
origin at the center of a particle with certain number j0. We denote by r j0, j the radius
vector of any other j th particle.We always assume that the surface (denoted by s) of a
particle is quite regular and satisfies the Green theorem, and surface s of the scatterer
has a continuous single-valued normal n at each point. We consider only the simple
harmonic time dependence with circular frequency ω, omitting factor exp(−iωt)
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everywhere. We assume that the size of a particle simulating the erythrocyte is larger
than the wavelength of incident radiation; i.e., ka j > 1, where a j is the radius of the
j th particle simulating the erythrocyte.

We write the system of Maxwell equations for the field in the vicinity of the j0th
particle, which is distorted by other particles:

∇ × H = −ikεE,∇ × E = ikμH, divE = 0, divH = 0.

At the boundary of the particle with the surrounding medium, we must impose
the boundary conditions

n × Ei − n × Es = n × EI , n × Hi − n × Hs = n × HI , (6.1)

where k is the wavenumber, ε is the permittivity of the medium,μ is the permeability
of the medium, Es is the scattered field, EI is the incident field, and Ei is the internal
field. The expressions for these fields will be given below.

The total field can be written in the form E(r ′) = EI (r ′) + Es(r ′). According to
[12], we can write the corresponding integral equation

EI (r
′) + ∇ ×

∫
s
n × E(r)G(r, r ′)ds + i

kε
∇ × ∇ ×

∫
s
n × H(r)×

× G(r, r ′)ds = 0, (6.2)

where G(r, r ′) is the Green function defined as [12]:

G(r, r ′) = ik

π

∞∑
n=1

n∑
m=−n

(−1)mEmn[M3
−mn(kr, θ, ϕ) · M1

mn(kr
′, θ ′, ϕ′)+

+ N3
−mn(kr, θ, ϕ)N1

mn(kr
′, θ ′, ϕ′)], (6.3)

for r > r ′ and

G(r, r ′) = ik

π

∞∑
n=1

n∑
m=−n

(−1)mEmn[M1
−mn(kr, θ, ϕ) · M3

mn(kr
′, θ ′, ϕ′)+

+ N1
−mn(kr, θ, ϕ)N3

mn(kr
′, θ ′, ϕ′)], (6.4)

for r ′ > r , where Mmn , Nmn , M−mn , N−mn are vector spherical harmonics.
Note that the vector spherical harmonics should be chosen on the basis of invari-

ance (in the sense of closeness) property; namely, under the rotation of the system
of coordinates, vector spherical harmonics Mmn and Nmn should be transformed
independently.
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The required properties of invariance are satisfied by the following spherical
harmonics [12]:

MJ
mn(kr) = (−1)mdnz

J
n (kr)Cmn(θ) exp(imϕ), (6.5)

NJ
mn(kr) = (−1)mdn

[
n(n + 1)

kr
z Jn (kr)Pmn(θ) + 1

kr
z Jn (kr)Bmn(θ)

]
×

× exp(imϕ), (6.6)

Bmn(θ) = iθ
d

dθ
dnom(θ) + iϕ

im

sin(θ)
dnom(θ), (6.7)

Cmn(θ) = iθ
im

sin(θ)
dnom(θ) − iϕ

d

dθ
dnom(θ), (6.8)

Pmn(θ) = ir dn
om(θ), dn =

√
(2n + 1)

4n(n + 1)
, (6.9)

where z Jn is any of four spherical functions form (3.4),

dn
om(θ) = (−1)n−m

2nn!
[
(n + m)!
(n − m)!

]1/2

(1 − cos2(θ))−m/2×

× dn−m

(dcos(θ))n−m
[(1 − cos2(θ)n].

Let us write the expansion of the incident wave on the surface of the j th particle
in the vector spherical harmonics:

EI ( j) = −
∞∑
n=1

n∑
m=−n

i Emn[p j
mnN

1
mn + q j

mnM
1
mn]. (6.10)

The expression for the internal field at the j th particle in vector spherical harmon-
ics is:

Ei ( j) = −
∞∑
n=1

n∑
m=−n

i Emn[d j
mnN

1
mn + c j

mnM
1
mn], (6.11)

The expansion for the field scattered by the j th particle in vector spherical har-
monics has the form

Es( j) =
∞∑
n=1

n∑
m=−n

i Emn[a j
mnN

3
mn + b j

mnM
3
mn], (6.12)



6.2 Matrix Formulation of Scattering for the j th Particle … 107

Following [12], we substitute expansions (6.10), (6.11) and (6.12) with allowance
for expressions (6.3), (6.4), andboundary conditions (6.1) into integral equation (6.2);
this gives

ik2

π

∫
s

∞∑
n=1

n∑
m=−n

(−1)m[c j
mnn × M1

m ′n′ + d j
mnn × N1

m ′n′ ]
(
N3−mn
M3−mn

)
ds+

+ ik2

π

√
ε1

μ1

∫
s

∞∑
n=1

n∑
m=−n

(−1)m[c j
mnn × N1

m ′n′ + d j
mnn × M1

m ′n′ ]×

×
(
M3−mn
N3−mn

)
ds = −

(
p j
mn

q j
mn

)

or, in matrix form,

(
I 211 + m̃ · I 121 I 221 + m̃ · I 111
I 221 + m̃ · I 111 I 121 + m̃ · I 211

) (
d j

c j

)
= −i

(
p j

q j

)
, (6.13)

where m̃ is the relative refraction index of the particle and

ik2

π

∫
s

∞∑
n=1

n∑
m=−n

(−1)m[c j
mnn × M1

m ′n′ + d j
mnn × N1

m ′n′ ]
(
N1−mn
M1−mn

)
ds+

+ ik2

π

√
ε1

μ1

∫
s

∞∑
n=1

n∑
m=−n

(−1)m[c j
mnn × N1

m ′n′ + d j
mnn × M1

m ′n′ ]×

×
(
M1−mn
N1−mn

)
ds = −

(
a j
mn

b j
mn

)

or, in matrix form,

(
a j

b j

)
= −i

(
I ′21
1 + m̃ · I ′12

1 I ′22
1 + m̃ · I ′11

1

I ′22
1 + m̃ · I ′11

1 I ′12
1 + m̃ · I ′21

1

) (
d j

c j

)
. (6.14)

Combining expressions (6.13) and (6.14), we obtain

(
a j

b j

)
= −

(
I ′21
1 + m̃ · I ′12

1 I ′22
1 + m̃ · I ′11

1

I ′22
1 + m̃ · I ′11

1 I ′12
1 + m̃ · I ′21

1

)(
I 211 + m̃ · I 121 I 221 + m̃ · I 111
I 221 + m̃ · I 111 I 121 + m̃ · I 211

)−1

×

(×) (
p j

q j

)
. (6.15)
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Denoting matrices by Q11
01 and Q31

01 we can write expression (6.15) in the form

(
a j

b j

)
= T j

1

(
p j

q j

)
, T j

1 = −Q11
01(k, k1) · [Q31

01(k, k1)]−1. (6.16)

The elements of matrix T j
1 can be expressed in the form of surface integrals:

I 111mnm′n′ = α(−1)m
∫
s
[M3

(−mn)(kr) × M1
(m ′n′)(k1r)]ndS, (6.17)

I 121mnm′n′ = α(−1)m
∫
s
[M3

(−mn)(kr) × N1
(m ′n′)(k1r)]ndS, (6.18)

I 211mnm′n′ = α(−1)m
∫
s
[N3

(−mn)(kr) × M1
(m ′n′)(k1r)]ndS, (6.19)

I 221mnm′n′ = α(−1)m
∫
s
[N3

(−mn)(kr) × N1
(m ′n′)(k1r)]ndS, (6.20)

I ′11
1mnm′n′ = α(−1)m

′
∫
s
[M1

(−mn)(kr) × M1
(m ′n′)(k1r)]ndS, (6.21)

I ′12
1mnm′n′ = α(−1)m

′
∫
s
[M1

(−mn)(kr) × N1
(m ′n′)(k1r)]ndS, (6.22)

I ′21
1mnm′n′ = α(−1)m

′
∫
s
[N1

(−mn)(kr) × M1
(m ′n′)(k1r)]ndS, (6.23)

I ′22
1mnm′n′ = α(−1)m

′
∫
s
[N1

(−mn)(kr) × N1
(m ′n′)(k1r)]ndS, (6.24)

where α = k2/π .

6.3 Explicit Expressions for the Integrals with Vector
Products of Vector Spherical Functions

Let us write the expression for the normal of the object in the Cartesian system of
coordinates:

n = nx i + nyj + nzk,
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where i, j and k are the unit vectors of the corresponding system. According to [13],
for an arbitrarily oriented body, we have

ndS =
[

∂(y, z)

∂(θ, ϕ)
i + ∂(z, x)

∂(θ, ϕ)
j + ∂(x, y)

∂(θ, ϕ)
k
]

,

whence

nxdS = [
rr′ϕ sin(ϕ) + r2 sin2(θ) cos(ϕ) − rr′θ sin(θ) cos(ϕ)

]
dθdϕ,

nydS = [−rr′ϕ cos(ϕ) + r2 sin2(θ) sin(ϕ) − rr′θ sin(θ) sin(ϕ)
]
dθdϕ,

nzdS = [
r2 sin2(θ) sin(θ) cos(θ) − rr′θ sin

2(θ)
]
dθdϕ.

Using the formulas for transformation from the Cartesian coordinates into spherical
coordinates, we obtain

nrdS = [
sin(θ) cos(ϕ)nx + sin(θ) sin(ϕ)ny + cos(θ)nz

]
dθdϕ = r2 sin(θ)dθdϕ,

nθdS = [
cos(θ) cos(ϕ)nx + cos(θ) sin(ϕ)ny − sin(θ)nz

]
dθdϕ = −rr′θ sin(θ)dθdϕ,

nϕdS = [− sin(ϕ)nx + cos(ϕ)ny
]
dθdϕ = −rr′ϕdθdϕ.

Substituting the expression for ndS, N1
mn,M

1
mn , N

3
mn andM

3
mn into surface integrals

(6.17)−(6.24), we obtain

I 11mnm′n′ = (−1)(m+m′)
∫ π

0
i(mdnom(θ)bn

′
om′(θ) + m′dnom(θ)bn

′
om′(θ)),

[∫ 2π

0
c1mnm′n′(θ, φ)dϕ

]
dθ (6.25)

I 12mnm′n′ = (−1)(m+m′)
∫ π

0
−(bnom(θ)bn

′
om′(θ) sin(θ) + mm′dnom(θ)dn

′
om′(θ)/ sin(θ))×

×
[∫ 2π

0
c2mnm′n′(θ, φ)dϕ

]
− n(n + 1)

x
dnom(θ)bn

′
om′(θ) sin(θ)

[∫ 2π

0
c3mnm′n′(θ, φ)dϕ

]
−

− i
n′(n′ + 1)

x1
dnom(θ)dn

′
om′(θ) sin(θ)

[∫ 2π

0
c4mnm′n′(θ, φ)dϕ

]
dθ, (6.26)
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I 21mnm′n′ = (−1)(m+m′)
∫ π

0

n′(n′ + 1)

x1
bnom(θ)dn

′
om′(θ) sin(θ)

[∫ 2π

0
c3mnm′n′(θ, φ)dϕ

]
−

−im
n′(n′ + 1)

x1
dnom(θ)dn

′
om′(θ)/ sin(θ)

[∫ 2π

0
c4mnm′n′(θ, φ)dϕ

]
+

+(mm′dn
om(θ)dn

′
om′(θ)/sin(θ)+

+ bnom(θ)bn
′

om′(θ)sin(θ)

[∫ 2π

0
c5mnm′n′(θ, φ)dϕ

]
dθ, (6.27)

I 22mnm′n′ = (−1)(m+m′)
∫ π

0
i(mdnom(θ)bn

′
om′ (θ) + m′dn′

om′ (θ)bnom(θ))

[∫ 2π

0
c6mnm′n′ (θ, φ)dϕ

]
+

+n′(n′ + 1)

x1
bnom(θ)dn

′
om′ (θ)

[∫ 2π

0
c7mnm′n′ (θ, φ)dϕ

]
− n(n + 1)

x
dnom(θ)bn

′
om′ (θ)×

×
[∫ 2π

0
c8mnm′n′ (θ, φ)dϕ

]
+ im

n′(n′ + 1)

x1
dnom(θ)dn

′
om′ (θ)

[∫ 2π

0
c9mnm′n′ (θ, φ)dϕ

]
+

+ im′ n(n + 1)

x
dnom(θ)dn

′
om′ (θ)

[∫ 2π

0
c10mnm′n′ (θ, φ)dϕ

]
dθ, (6.28)

I ′11
mnm′n′ = (−1)(m+m′)

∫ π

0
i(mdnom(θ)bn

′
om′(θ) + m′dnm(θ)bn

′
om′(θ))×

×
[∫ 2π

0
f 1mnm′n′(θ, φ)dϕ

]
dθ (6.29)

I ′12mnm′n′ = (−1)(m+m′)
∫ π

0
−(bnom(θ)bn

′
om′(θ) sin(θ) + mm′dnom(θ)dn

′
om′(θ)/ sin(θ))×

×
[∫ 2π

0
f2mnm′n′(θ, φ)dϕ

]
− n(n + 1)

x
dnom(θ)bn

′
om′(θ) sin(θ)

[∫ 2π

0
f3mnm′n′(θ, φ)dϕ

]
−

− i
n′(n′ + 1)

x1
dnom(θ)dn

′
om′(θ) sin(θ)

[∫ 2π

0
f4mnm′n′(θ, φ)dϕ

]
dθ, (6.30)
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I ′21
mnm′n′ = (−1)(m+m′)

∫ π

0

n′(n′ + 1)

x1
bnom(θ)dn

′
om′(θ) sin(θ)

[∫ 2π

0
f3mnm′n′(θ, φ)dϕ

]
−

−im
n′(n′ + 1)

x1
dnom(θ)dn

′
om′(θ)/ sin(θ)

[∫ 2π

0
f4mnm′n′(θ, φ)dϕ

]
+

+ (mm′dn
om(θ)dn

′
om′(θ)/sin(θ)+ (6.31)

+bnom(θ)bn
′

om′(θ)sin(θ)

[∫ 2π

0
f5mnm′n′(θ, φ)dϕ

]
dθ,

I ′22
mnm′n′ = (−1)(m+m′)

∫ π

0
i(mdnom(θ)bn

′
om′ (θ) + m′dn′

om′ (θ)bnom(θ))

[∫ 2π

0
f6mnm′n′ (θ, φ)dϕ

]
+

+n′(n′ + 1)

x1
bnom(θ)dn

′
om′ (θ)

[∫ 2π

0
f7mnm′n′ (θ, φ)dϕ

]
− n(n + 1)

x
dnom(θ)bn

′
om′ (θ)×

×
[∫ 2π

0
f8mnm′n′ (θ, φ)dϕ

]
+ im

n′(n′ + 1)

x1
dnom(θ)dn

′
om′ (θ)

[∫ 2π

0
f9mnm′n′ (θ, φ)dϕ

]
+

+ im′ n(n + 1)

x
dnom(θ)dn

′
om′(θ)

[∫ 2π

0
f10mnm′n′(θ, φ)dϕ

]
dθ, (6.32)

where
c1mnm′n′(θ, φ) = exp[i�m′m]hn(x) jn(x1)r2(θ, φ),

c2mnm′n′(θ, φ) = exp[i�m′m]un(x) jn(x1)r2(θ, φ),

c3mnm′n′(θ, φ) = exp[i�m′m]hn(x) jn(x1)dr(θ, φ)

dθ
,

c4mnm′n′(θ, φ) = exp[i�m′m]hn(x) jn(x1)dr(θ, φ)

dθ
,

c5mnm′n′(θ, φ) = exp[i�m′m]hn(x)vn(x1)r2(θ, φ),

c6mnm′n′(θ, φ) = exp[i�m′m]un(x)vn(x1)r2(θ, φ),

c7mnm′n′(θ, φ) = exp[i�m′m]un(x) jn(x1)dr(θ, φ)

dϕ
,

c8mnm′n′(θ, φ) = exp[i�m′m]hn(x)vn(x1)dr(θ, φ)

dϕ
,
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c9mnm′n′(θ, φ) = exp[i�m′m]un(x) jn(x1)dr(θ, φ)

dθ
,

c10mnm′n′(θ, φ) = exp[i�m′m]hn(x)vn(x1)dr(θ, φ)

dθ
,

f1mnm′n′(θ, φ) = exp[i�m′m] jn(x) jn(x1)r2(θ, φ),

f2mnm′n′(θ, φ) = exp[i�m′m]vn(x) jn(x1)r2(θ, φ),

f3mnm′n′(θ, φ) = exp[i�m′m] jn(x) jn(x1)dr(θ, φ)

dθ
,

f4mnm′n′(θ, φ) = exp[i�m′m] jn(x) jn(x1)dr(θ, φ)

dθ
,

f5mnm′n′(θ, φ) = exp[i�m′m] jn(x)vn(x1)r2(θ, φ),

f6mnm′n′(θ, φ) = exp[i�m′m]vn(x)vn(x1)r2(θ, φ),

f7mnm′n′(θ, φ) = exp[i�m′m]vn(x) jn(x1)dr(θ, φ)

dϕ
,

f8mnm′n′(θ, φ) = exp[i�m′m] jn(x)vn(x1)dr(θ, φ)

dϕ
,

f9mnm′n′(θ, φ) = exp[i�m′m]vn(x) jn(x1)dr(θ, φ)

dθ
,

f10mnm′n′(θ, φ) = exp[i�m′m] jn(x)vn(x1)dr(θ, φ)

dθ
,

where

un(x) = 1

x

d

dx
(xhn(x)), vn(x) = 1

x

d

dx
(x jn(x)),

�m ′m = (m ′ − m), bnom(θ) = d

dθ
dnom(θ), x = k · r(θ, φ)

x1 = m̃ · k · r(θ, φ), k = 2π/λ, λ is the wavelength of incident radiation and r(θ, φ)

is the equation of the particle surface in the spherical system of coordinates.
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6.4 Matrix Formulation of Scattering for the j th Bilayer
Particle of an Arbitrary Shape

Specific properties of biological particles (blood corpuscles) require a more sophisti-
cated andmore adequatemodel due to the existence of a core and a plasmamembrane
in the object under investigation.

Let r1 be the radius of the cell core and r2 be the radius of the plasma membrane.
We consider scattering of a plane electromagnetic wave by the jth inhomogeneous
particle of irregular shape (see Fig. 6.1). Surface S1 is defined in coordinate system
O1x1y1z1, while surface S2 is defined in coordinate system O2x2y2z2.

We write the system of Maxwell equations for the corresponding fields:

∇ × Hs = −ikεEs,∇ × Es = ikμHs

for domain D,
∇ × H1 = −ikε1E1∇ × E1 = ikμ1H1

for domain S1, and

∇ × H2 = −ikε2E2,∇ × E2 = ikμ2H2

for domain S2.
These fields must satisfy the following boundary conditions:

n2 × E1 = n2 × E2,n2 × H1 = n2 × H2

for domain S1 and

n1 × E1 − n1 × Es = n1 × EI, n1 × H1 − n1 × Hs = n1 × HI,

Fig. 6.1 The geometry of
heterogeneous particles

S2

D

r

r

n1

S1

2

1

n2
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for domain S2, where k is the wavenumber, ε is the permittivity of the medium, μ

is the permeability of the medium, ε1 is the permittivity of the cell core, ε2 is the
permittivity of the plasmamembrane,Es is the scattered field,EI is the incident field,
E1 is the internal field, and E2 will be defined below.

Let us write the following integral equations [14]:

EI (r1) + ∇ ×
∫
s2

n1 × E1(r
′
1)G(r1, r

′
1)ds(r

′
1) + i

kε
∇ × ∇ ×

∫
s2

n1 × H1(r
′
1)×

× G(r1, r
′
1)ds(r

′
1) = 0, (6.33)

−∇ ×
∫
s2

[n2 × E2(r
′
1)]G(r1, r

′
1)ds(r

′
1)−

− i

kε2
∇ × ∇ ×

∫
s2

[n2 × H2(r
′
1)]G(r1, r

′
1)ds(r

′
1)+

+∇ ×
∫
s1

[n1 × E1(r
′′
1 )]G(r1, r

′′
1 )ds(r ′′

1 ) + i

kε1
∇ × ∇ ×

∫
s1

[n1 × H1(r
′′
1 )]×

×G(r1, r
′′
1 )ds(r ′′

1 ) = 0,

where G(r, r ′) and G(r, r ′′) are the Green functions.
The expression for the field scattered by the j th particle has the form

Es( j) =
∞∑
n=1

n∑
m=−n

i Emn[a j
mnN

3
mn + b j

mnM
3
mn], (6.34)

Let us write the expansion of the wave incident on the surface of the j th particle
in vector spherical harmonics

EI( j) = −
∞∑
n=1

n∑
m=−n

i Emn[p j
mnN

1
mn + q j

mnM
1
mn]. (6.35)

In view of the finiteness of the field at the center, the internal field of the particle in
the region 0 ≤ r ≤ r1(i.e., in the vicinity of the center of the particle) can be written
in the form

E1( j) = −
∞∑
n=1

n∑
m=−n

i Emn[d j
mnN

1
mn + c j

mnM
1
mn], (6.36)
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In the region r1 ≤ r ≤ r2, the internal field can be written as [14, 15]

E2( j) = −
∞∑
n=1

n∑
m=−n

i Emn[α j
mnN

1
mn + β j

mnM
1
mn+

+ γN3
mn + δ j

mnM
3
mn] (6.37)

Proceeding analogously to the case of scattering from a homogeneous particle
of an irregular shape, we obtain the solution to the scattering problem for a bilayer
particle of an arbitrary geometry:

(
a j

b j

)
= T j

2

(
p j

q j

)
, (6.38)

T j
2 = −[Q11

2 (k, k2) + Q13
2 (k, k2)] · D[[Q31

2 (k, k2) + Q33
2 (k, k2)] · D]−1, where

D = S12 · T j
01 · S21, T j

01 = −Q11
01(k2, k1) · [Q31

01(k2, k1)]−1

(
Q

)13
2 =

(
K 13 + m2/m · J 13 I 13 + m2/m · L13

L13 + m2/m · I 13 J 13 + m2/m · K 13

)
, (6.39)

(
Q

)31
2 =

(
K 31 + m2/m · J 31 I 31 + m2/m · L31

L13 + m2/m · I 31 J 31 + m2/m · K 31

)
, (6.40)

(
Q

)11
2 =

(
K 11 + m2/m · J 11 I 11 + m2/m · L11

L11 + m2/m · I 11 J 11 + m2/m · K 11

)
, (6.41)

(
Q

)33
2 =

(
K 33 + m2/m · J 33 I 33 + m2/m · L33

L13 + m2/m · I 33 J 33 + m2/m · K 33

)
, (6.42)

(
Q

)11
01 =

(
I ′21
2 + m1/m2 · I ′12

2 I ′22
2 + m1/m2 · I ′11

2
I ′22
2 + m1/m2 · I ′11

2 I ′12
2 + m1/m2 · I ′21

2

)
, (6.43)

(
Q

)31
01 =

(
I 212 + m1/m2 · I 122 I 222 + m1/m2 · I 112
I 222 + m1/m2 · I 112 I 122 + m1/m2 · I 212

)
, (6.44)

m1 is the refractive index of the core, m2 is the refractive index of the plasma mem-
brane, m is the refractive index of the medium and matrix elements Q31

01, Q
11
01, Q

13
2 ,

Q31
2 , Q11

2 and Q33
2 can be expressed in the form of surface integrals:

K 31
mnm′n′ = α(−1)m

∫
s
[N3

(−mn)(kr) × M1
(m ′n′)(k2r)]ndS, (6.45)
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J 31
mnm′n′ = α(−1)m

∫
s
[M3

(−mn)(kr) × N1
(m ′n′)(k2r)]ndS, (6.46)

I 31mnm′n′ = α(−1)m
∫
s
[N3

(−mn)(kr) × N1
(m ′n′)(k2r)]ndS, (6.47)

L31
mnm′n′ = α(−1)m

∫
s
[M3

(−mn)(kr) × M1
(m ′n′)(k2r)]ndS, (6.48)

K 13
mnm′n′ = α(−1)m

∫
s
[N1

(−mn)(kr) × M3
(m ′n′)(k2r)]ndS, (6.49)

J 13
mnm′n′ = α(−1)m

∫
s
[M1

(−mn)(kr) × N3
(m ′n′)(k2r)]ndS, (6.50)

I 13mnm′n′ = α(−1)m
∫
s
[N1

(−mn)(kr) × N3
(m ′n′)(k2r)]ndS, (6.51)

L13
mnm′n′ = α(−1)m

∫
s
[M1

(−mn)(kr) × M3
(m ′n′)(k2r)]ndS, (6.52)

K 11
mnm′n′ = α(−1)m

∫
s
[N1

(−mn)(kr) × M1
(m ′n′)(k2r)]ndS, (6.53)

J 11
mnm′n′ = α(−1)m

∫
s
[M1

(−mn)(kr) × N1
(m ′n′)(k2r)]ndS, (6.54)

I 11mnm′n′ = α(−1)m
∫
s
[N1

(−mn)(kr) × N1
(m ′n′)(k2r)]ndS, (6.55)

L11
mnm′n′ = α(−1)m

∫
s
[M1

(−mn)(kr) × M1
(m ′n′)(k2r)]ndS, (6.56)

K 33
mnm′n′ = α(−1)m

∫
s
[N3

(−mn)(kr) × M3
(m ′n′)(k2r)]ndS, (6.57)

J 33
mnm′n′ = α(−1)m

∫
s
[M3

(−mn)(kr) × N3
(m ′n′)(k2r)]ndS, (6.58)

I 33mnm′n′ = α(−1)m
∫
s
[N3

(−mn)(kr) × N3
(m ′n′)(k2r)]ndS, (6.59)

L33
mnm′n′ = α(−1)m

∫
s
[M3

(−mn)(kr) × M3
(m ′n′)(k2r)]ndS, (6.60)
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I 112mnm′n′ = α(−1)m
∫
s
[M3

(−mn)(k2r) × M1
(m ′n′)(k1r)]ndS, (6.61)

I 122mnm′n′ = α(−1)m
∫
s
[M3

(−mn)(k2r) × N1
(m ′n′)(k1r)]ndS, (6.62)

I 212mnm′n′ = α(−1)m
∫
s
[N3

(−mn)(k2r) × M1
(m ′n′)(k1r)]ndS, (6.63)

I 222mnm′n′ = α(−1)m
∫
s
[N3

(−mn)(k2r) × N1
(m ′n′)(k1r)]ndS, (6.64)

I ′11
2mnm′n′ = α(−1)m

′
∫
s
[M1

(−mn)(k2r) × M1
(m ′n′)(k1r)]ndS, (6.65)

I ′12
2mnm′n′ = α(−1)m

′
∫
s
[M1

(−mn)(k2r) × N1
(m ′n′)(k1r)]ndS, (6.66)

I ′21
2mnm′n′ = α(−1)m

′
∫
s
[N1

(−mn)(k2r) × M1
(m ′n′)(k1r)]ndS, (6.67)

I ′22
2mnm′n′ = α(−1)m

′
∫
s
[N1

(−mn)(k2r) × N1
(m ′n′)(k1r)]ndS, (6.68)

where α = k2/π , S12 = τ 11R(α, β, γ ), matrix S12 connects vector spherical waves
defined in coordinate system O1x1y1z1 with those defined in coordinate system
O2x2y2z2 (see Fig. 6.1) and can be expressed in the form of the product of the
matrix of transfer from one coordinate system to the other and the rotation matrix
S21 = R(−γ,−β,−α)τ 33 is the matrix that describes the inverse transformation,
where R(−γ,−β,−α) = R−1(α, β, γ ) and τ 33, τ 11 are defined in [14],

R(α, β, γ ) =
(
Rmn,m ′n′(α, β, γ ) 0

0 Rmn,m ′n′(α, β, γ )

)
,

Rmn,m ′n′(α, β, γ ) = Dn
mm ′(α, β, γ )δnn′ ,

Dn
mm ′(α, β, γ ) = (−1)(m+m ′) exp(imα)d∼m

mm ′(β) exp(im ′γ ),

where D are Wigner functions, which are determined by the matrix elements of the
irreducible representation of weight n on the rotation group [16] or as the matrix
elements of the operator rotation D(α, β, γ ) in the JM- representation :

<JM |D(α, β, γ )|J ′M ′ >= δJ J ′ DJ
mm ′(α, β, γ ).



118 6 Light Scattering by Dielectric Bodies of Irregular …

Functions Dn
mm ′(α, β, γ ) can be represented as the product of three factors, each of

which depends on only one Euler angle [17]

Dn
mm ′(α, β, γ ) = exp(−imα)dn

mm ′(β) exp(−im ′γ ),

where dn
mm ′(β) are Wigner functions and satisfy the conditions of unitarity

[
D−1(α, β, γ )

]n
mm ′ = [

D∗(α, β, γ )
]n
mm ′ ,

n∑
m=−n

D∗
mm ′(α, β, γ )Dn∗

mm ′(α, β, γ ) =
n∑

m=−n

Dn
mm ′(α, β, γ )Dn−1

mm ′(α, β, γ ) = δm ′m1

and orthogonality

2n + 1

8π2

∫ 2π

0
dα

∫ π

0
sin βdβ

∫ 2π

0
dγ Dn

mm ′(αβγ )D
n∗
1

m1m ′
1
(αβγ ) = δnn′δmm1δm ′m ′

1
,

For function dn
mm ′(β), we have

∫ π

0
sin βdβdn

mm ′(β)dn′
mm ′(β) = 2

2n + 1
δnn′ .

Functions dn
mm ′(β) satisfy the following relations

m

sin β
dn
om(β)|=1/2δm1 [n(n+1)]1/2

β=0 ,
d

dβ
dn
om(β)|=1/2mδm1 [n(n+1)]1/2

β=0 ,

m

sin β
dn
om(β) = 1/2[n(n + 1)]1/2[dn

1m(β) + dn
−1m(β)],

d

dβ
dn
om(β) = 1/2[n(n + 1)]1/2[dn

1m(β) − dn
−1m(β)],

dn
mm ′(β)dm1m ′

1
(β) =

n+n′∑
n1=|n−n′ |

Cn1m+m1
nmn′m1

C
n1m ′+m ′

1

nm ′n′m ′
1
dn1
m+m1m ′+m ′

1
(β),

where Cn1m+m1
nmn′m1

, C
n1m ′+m ′

1

nm ′n′m ′
1
are the Clebsch–Gordan coefficients

dn
mm ′(β) = (−1)m

′−mdn
−m−m ′(β) = (−1)m

′−mdn
m ′m(β).

The product of two D-functions D′n1
m1m1

(αβγ ) Dn2
m2m ′

2
(αβγ ) can be written as the

following sum [17]:
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Dn1
m1m ′

1
(αβγ )Dn2

m2m ′
2
(αβγ ) =

n1+n2∑
n3=|n1−n2|

Cn3m1+m2
n1m1n2m2

Dn3
m1+m2m ′

1+m ′
2
(αβγ )C

n3m ′
1+m ′

2

n1m ′
1n2m

′
2
.

The formula of addition for D-functions of Wigner is [17]

n∑
m∼=−n

Dn
mm∼(α1β1γ1)D

n
m∼m ′(α2β2γ2) = Dn

mm ′(αβγ ),

whereα1, β1, γ1 are Euler’s angles and characterize the rotation of the coordinate sys-
tem S → S1, α2, β2, γ2–S1 → S2, resulting rotation angles S → S2–α, β, γ relative
to the original (S) coordinate system.

Recurrence relation for the calculation of the Wigner functions is

n
√

(n + 1)2 − m2
√

(n + 1)2 − q2dn+1
qm (β)+

+(n + 1)
√
n2 − q2

√
n2 − m2dn−1

qm (β) = (2n + 1(n(n + 1) cosβ − mq)dn
qm(β),

with initial conditions

dn∗
qm = (−1)(q−m+|q−m|)

2n∗

[
(2n∗)!

(|q − m|)!(|q + m|)!
]1/2

(1 − cosβ)|q−m|/2×

×(1 + cosβ)|q+m|/2, n∗ = max(|m|, |q|).

Thus, the expansion coefficients of scattered and incident fields are connected
by the linear transformation of the T -matrix that is invariant to the direction of
propagation of incident radiation in a fixed system of coordinates and depends on
the physical and geometrical characteristics of the scatterer (such as the refractive
index, the size relative to the wavelength of light, and morphology). The above
representation of the T - matrix method has certain advantages as compared to other
representations, which lie in the use of vector spherical harmonics invariant to the
rotation of the coordinate system and in the symmetric form of the representation
of the main relations. It should be noted that the method of the T -matrix is a direct
generalization of the standardMie theory to the case of nonspherical particles. Indeed,
if a scatterer is spherically symmetric, then the T -matrix becomes diagonal, and the
diagonal elements are defined to within the sign by the relevant Mie coefficients an
and bn .

Note that the numerical calculation of the integrals with the vector products of the
vector spherical functions for an arbitrary body of revolution is problematic in the
case when the size of a scattering object is much larger than the wavelength of light.
This is due to the fact that the integrand in the formula for computing elements of
matrix Q11

01, Q
31
01, Q

32
2 , Q33

2 , Q11
2 , Q13

2 may oscillate in very large limits, which leads
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to loss of accuracy. The process of numerical inversion of matrix Q11
01, Q

31
01, Q

32
2 , Q33

2
is poorly substantiated and also becomes unstable. Note that this is observed for
particles with zero or a very small imaginary part of the refractive index.

It was shown in [18, 19] that effective approaches to improving the convergence
of computations, which are based on the EBCM, are as follows.

1. Computation of elements of thematrix and its inversion using fourfold accuracy.
2. Inversion of the Q matrix using the LU factorization method. The electromag-

netic field of the wave incident on the surface of the j th particle consists of two
parts: the field of the initial wave and the field of the wave scattered by a group of
other particles located in the surrounding medium. Then, we can write the following
expression

Ei( j) = E0( j) +
∑
l 
= j

Es(l, j), (6.69)

where Es(l, j) is the sum of the fields scattered at the j th particle. Subscripts l and
j imply the transition from the l to the j coordinate system.

The incident field is defined as

E0( j) = −
∞∑
n=1

n∑
m=−n

i Emn[p j0, j
mn N1

mn(kr) + q j0, j
mn M1

mn(kr)]. (6.70)

Waves are incident relative to the center of each j th particle (i.e., in the j th system of
coordinates). The expansion coefficients of the incident plane electromagnetic wave
have the form [12]:

p j0, j
mn = 4π(−1)mindnC∗

mn(θinc)Einc(kinc, r j0, j ) exp(−imϕinc),

q j0, j
mn = 4π(−1)min−1dnB∗

mn(θinc)Einc(kinc, r j0, j ) exp(−imϕinc),

where Einc(kinc, r j0, j ) is the linear polarization vector, kinc is the wave vector, the
asterisk indicates complex conjugation, dn , Bmn and Cmn are defined by formulas
(6.7)−(6.9). Let us write the expression for the scattered field:

Es(l, j) = −
∞∑
n=1

n∑
m=−n

i Emn[pl, jmnN
1
mn + ql, jmnM

1
mn], (6.71)

where coefficients pl, jmn, q
l, j
mn are defined in Chap.3.

Combining expressions (6.35), (6.69) and (6.70) and taking into account relation
(6.38), we obtain an infinite system of linear algebraic equations for the j th particle
of an arbitrary shape:



6.4 Matrix Formulation of Scattering for the j th Bilayer Particle of an Arbitrary Shape 121

(
a j

b j

)
= T j

2

⎡
⎣

(
p j0, j

q j0, j

)
+

∑
l 
= j

(
A(l, j) B(l, j)
B(l, j) A(l, j)

) (
a j

b j

)⎤
⎦ , (6.72)

where coefficients A(l, j), B(l, j) are defined in Chap.3. The solution of the system
of linear equations (6.72) was carried out using the stable algorithm of biconju-
gate gradients (BiCGSTAB). Having determined coefficients a j

mn, b
j
mn and from this

system, we can write the expression for the scattered field in the main system of
coordinates

Es =
∞∑
n=1

n∑
m=−n

i Emn[amnN3
mn + bmnM3

mn]. (6.73)

The component-wise form of the scattered field is given by

Esθ ∼ E0
eikr

−ikr

∞∑
n=1

n∑
m=−n

(2n + 1)
(n − m)!
(n + m)! [amnτmn + bmnπmn]eimφ, (6.74)

Esφ ∼ E0
eikr

−ikr

∞∑
n=1

n∑
m=−n

(2n + 1)
(n − m)!
(n + m)! [amnπmn + bmnτmn]eimφ, (6.75)

where

τmn = ∂

∂θ
Pm
n (cos θ), πmn = m

sin θ
Pm
n (cos θ).

Symbol (∼) indicates that expressions (6.74) and (6.75) following from (6.73) are
treated asymptotically for (kr � 1). Since we consider here the scattering at large
distance from the j th particle, the electric vectors of the scattered field are parallel to
the electric vector of the incident field; i.e., only the θ component differs from zero
in the far zone, and expressions (6.74) and (6.75) can be simplified:

Esθ ∼ E0
eikr

−ikr

∞∑
n=1

n∑
m=−n

(2n + 1)

n(n + 1)
[amnτn + bmnπn] (6.76)

Esφ ∼ E0
eikr

−ikr

∞∑
n=1

n∑
m=−n

(2n + 1)

n(n + 1)
[amnπn + bmnτn], (6.77)

where

τn = ∂

∂θ
Pn(cos θ), πn = 1

sin θ
Pn(cos θ)

Analogous expressions can also be obtained for magnetic field components Hsφ and
Hsθ .
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6.5 Reflection of a Plane Wave from a Layer
with a Slowly Varying Thickness

Let us consider the following optical scheme. The system consists of four regions
with difference refractive indices(epidermis, the upper layer of the dermis, blood
cells,the lower layer of the dermis) (see Fig. 6.2).

To attain the best agreement between the structure and the actual object under
investigation, we represent the interfaces between the layers of the model medium
in the form of certain surfaces zi = Hi (x, y), i = 1, 3.

Let us suppose that a plane s- or p- polarized wave is incident on the layer at an
angle θ . We consider only the case of the p polarization. We must find the reflected
field.

We will seek the reflected field in the form of waves with slowly varying ampli-
tudes and rapidly oscillating phases

E1 = exp

(
i

ε
τinc(ξ1, ξ2, ξ3)

)
+ exp

(
i

ε
τ1re f (ξ1, ξ2, ξ3)

)
A(ξ1, ξ2, ξ3, εx , εy),

(6.78)

E2 = exp

(
i

ε
τ2tr (ξ1, ξ2, ξ3)

)
B+(ξ1, ξ2, ξ3, εx , εy)+

+ exp

(
i

ε
τ3re f (ξ1, ξ2, ξ3)

)
B−(ξ1, ξ2, ξ3, εx , εy), (6.79)

Fig. 6.2 Schematic diagram
of biological medium
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E3 = exp

(
i

ε
τ3elap(ξ1, ξ2, ξ3)

)
C+(ξ1, ξ2, ξ3, εx , εy)+

+ exp

(
i

ε
τ4re f (ξ1, ξ2, ξ3)

)
C−(ξ1, ξ2, ξ3, εx , εy), (6.80)

E4 = exp

(
i

ε
τ4elap(ξ1, ξ2, ξ3)

)
D+(ξ1, ξ2, ξ3, εx , εy)+

exp

(
i

ε
τ5re f (ξ1, ξ2, ξ3)

)
D−(ξ1, ξ2, ξ3, εx , εy)+

+ E4θscat (ξ1, ξ2, ξ3) (6.81)

E5 = exp

(
i

ε
τ5elap(ξ1, ξ2, ξ3)

)
E(ξ1, ξ2, ξ3, εx , εy), (6.82)

where E4θscat is defined by formula (6.76) and τ1inc,τ1re f , τ2elap, τ3re f , τ3elap, τ4re f ,
τ4elap are defined in Chap.4. Amplitudes A, B±,C±, D±, E are sought in the form of
power series in small parameter εx , εy , the expressions for the amplitudes are defined
analogously to the method described in Chap.4.

Substitution of expressions (8.1)−(8.5) into (4.6)−(4.11) generates a recurrence
system of equations. For the reflected field, this system leads to reflection coefficient
A. The expression for the reflection of a Gaussian beam with an arbitrary cross
section is defined analogously to the method described in Chap.4.

6.6 Spectrum of Action of Laser Radiation
on the Hemoglobin Derivatives

Let us consider themathematical simulation of the spectral efficiency of light absorp-
tion by the main blood hemoglobin derivatives: oxyhemoglobin(HbO2) and deoxy-
hemoglobin(Hb) of human blood in the upper layers of the human dermis.

It should be noted that the mechanism of action of laser radiation on biological
structures are not completely clear as yet; several processes (namely, photoinduced
dissociation of oxyhemoglobin of blood, which is accompanied by the molecular
oxygen liberation and a local increase in its concentration in blood [20, 21]); as
a result of this photochemical reaction, deoxyhemoglobin is formed, and an opto-
oxygen effect is observed [20–22], which is responsible for the liberation of singlet
oxygen from triplet oxygen dissolved in the cells. It should be noted that the above
processes depend on the efficiency of light absorption by blood and, hence, on the
radiation wavelength and the radiation power density at a given depth.
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In analysis of the efficiency of photochemical and photophysical processes, we
will use the concept of action spectrum. The spectrum of light action on a tissue
component is the total power of radiation absorbed by this component in unit volume
of the medium when monochromatic light of unit power density is incident on the
surface of the medium [20]:

KHbO2(λ) = Cv · H · f · S · μa(HbO2)(λ)×

×
∫
4π

I (λ, x, y,m j
τ , x

j
τ ,Ω)dΩ, (6.83)

KHb(λ) = Cv · H · f · (1 − S) · μa(Hb)(λ)×

×
∫
4π

I (λ, x, y,m j
τ , x

j
τ ,Ω)dΩ, (6.84)

Kblood(λ) = KHbO2(λ) + KHb(λ), (6.85)

where dΩ = sin θdθdϕ is the solid angle, KHbO2 , KHb, Kblood are the action spec-
tra of light on oxyhemoglobin, deoxyhemoglobin, and blood, respectively, H is the
capillary hematocrit(volume concentration of erythrocytes in blood); f is the vol-
ume concentration of hemoglobin in erythrocytes, S is the degree of oxygenation
of blood (ratio of the concentration of oxyhemoglobin to the total concentration
of hemoglobin), I (x, y,m j

τ , x
j
τ ,Ω) is the intensity and defined by formula (4.69),

μa(HbO2)(λ) are the absorption spectra of oxyhemoglobin, μa(Hb)(λ) are the absorp-
tion spectra of deoxyhemoglobin [23], m j

τ = N j
τ /no, N

j
τ is the complex refractive

index of the j th particle for the τ concentric layer, no is the refractive index of the
surrounding medium, x j

τ = ka j
τ , j = 1...N , τ = 1, 2, where a j

τ -is the radius of the
j th particle with concentric layer τ .

Thus, at this stage, we use formulas (6.83)−(6.85) to connect the action spectra of
oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) and blood of the biotissue under
investigation as functions of the wavelength of laser radiation taking into account
the electrophysical parameters of the biological structure being simulated such as
the real and imaginary parts of the refractive indices and sizes.

Let us consider the choice of the values for hematocrit. It was shown in [24] that
the hematocrit in capillaries can be smaller than in arteries and veins; for example,
when blood flows into capillaries from the artery through a narrow arteriole, the
hematocrit can decrease from 0.5 to 0.068. Such a decrease in the hematocrit is
known as the Fahraeus effect [25]. Such a variation of the hematocrit can apparently
be explained by the following circumstances [20]:

1. A considerable portion of blood flows from the artery to a microvessel from the
near-wall region in which the plasma concentration is elevated. Note that the specific
manifestations of the Fahraeus effect depend on various characteristics of the blood
flow and the metabolic activity of tissues [20]. It was shown in [24] that when the
blood flows through the expanded arteriole, the hematocrit in the capillary decreases
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from 0.5 to 0.38. However, in [26] the inverse Fahraeus effect was observed, when
the values of the hematocrit in a capillary were higher than in great vessels.

2. Insufficient deformation of erythrocytes prevents their flow into a narrow cap-
illary.

Thus, according to [20, 26], the value of the hematocrit can be chosen as 0.4.

6.7 Numerical Calculations for a Model Medium
and Conclusions

Let us consider a model medium with the following characteristics. Typical layer
thicknesses are equal to d2 = 65 · 10−6, d3 = 565 · 10−6, d4 = 90 · 10−6, n◦

1 = 1,
χ1 = 0, χ2 = χ3 = χ4 = χ5 = 10−5, refractive indices of the layers are n◦

2 = 1.50,
n◦
3 = 1.40, n◦

4 = 1.35, n◦
5 = 1.40 and the following values of parameters are a1 =

−0.0024, b1 = 0.020, a2 = 0.021, b2 = 0.030, a3 = 0.041, b3 = 0.051, c1 = c2 =
c3 = 10−2. The values of parameters for the interfaces between the layers are chosen
so that the shape of the surface is maximally close to the shape of the boundary of the
corresponding layer in the structure of the normal human dermis, and wavelength is
λ = 0.63µm (center of the line of a He−Ne laser).

Since the erythrocyte contains no cell organelles, its cellularmembrane is very thin
and does not noticeably affect the scattering of light; consequently, the erythrocyte
can be treated as a homogeneous scatterer. Thus, our computations were performed
for monolayer spherulated particles simulating erythrocytes; the number of particles
in the layer being simulated was assumed to be ten for the following parameters: the
relative refractive index for the first five spherulated erythrocytes was assumed to
be 1.035 + 10−5i ; for the remaining erythrocytes, it was set as 1.033 + 10−5i , for
a particle radius of 4.3µm, H = 0.4, f = 0.08, S = 0.75, Cv = 0.0595 [27]. All
computations were performed up to 32 decimal places.

Figure6.3a, b illustrates the distribution of radiation intensity for multilayer
medium absorbing and scattering light, which simulates human dermis for specific
electrophysical and geometrical characteristics of the biological structure being sim-
ulated. The dependences of the laser radiation intensity on the refractive index and
absorption coefficient of the epidermis for various electrophysical parameters of the
biotissue under investigation are shown in Fig. 6.4a, b.

It should be noted that the model constructed here is quite sensitive to varia-
tions of the refractive index of the biological structure being simulated; the model
also permits the variation of electrophysical parameters of the biological sample
under investigation, its geometrical parameters, and the establishment of the relation
between these parameters and the biological properties of the biotissue being sim-
ulated. Thus, this model can be used for measuring in vivo the spectral differences
between the normal and pathological tissues for determining pathological changes
in the biosamples under investigation, which are associated with a variation of elec-
trophysical properties of epidermis and blood corpuscles in the upper layer of the
dermis.
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Fig. 6.3 Radiation intensity
distribution for a multilayer
medium absorbing and
scattering light for specific
parameters θ = 0◦, ϕ = 0◦,
ψ = 0◦ and a refractive
index of epidermis is
1.303 + 10−3i and the
refractive index of the dermis
is 1.301 + 10−3i ; b
refractive index of epidermis
is 1.303 + 10−4i and the
refractive index of the dermis
is 1.301 + 10−4i
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Figure6.5a, b shows the normalized spectra of action of laser radiation on oxy- and
deoxyhemoglobin. The simulation of the action spectra of the laser radiation power
absorbed by oxyhemoglobin and deoxihemoglobin of blood is performed using the
theory of the T -matrix in the spectral range from 300 to 800nm. The choice of this
spectral interval is dictated by the fact that inmost availablemethods, the transparency
window in the wavelength range from 650 to 1200nm is used for optical probing
of biotissues [28]. Note that the spectral interval from 400 to 600nm is diagnostic
because the main absorption bands of blood (Sore band 420nm, absorption bands α

and β of oxyhemoglobin at 545 and 575nm) lie in this spectral interval.
The spectral dependences of the refractive indices of the dermis and epidermis

were described by the following expressions [29]:

n(λ) = 1.30904 − 434.60068

λ2
+ 1.60647 · 109

λ4
− 1.28111 · 1014

λ6



6.7 Numerical Calculations for a Model Medium and Conclusions 127

Fig. 6.4 Dependences of the
laser radiation intensity on
the refractive index and
absorption coefficient of the
epidermis. The refractive
index of the upper layer of
the dermis is 1.6 + 0.001i
(a) and 1.36 + 0.0001i (b)
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n(λ) = 1.68395 − 1.87232 · 104
λ2

+ 1.09644 · 1010
λ4

− 8.64842 · 1014
λ6

Note that analogous results of analysis of the action spectra of laser radiation
on oxy- and deoxihemoglobin were obtained in [20]. Certain differences between
the results given in [20] and in Fig. 6.5a, b are due, first, to the use of oxy- and
deoxihemoglobin for the initial absorption spectra; second, the knowledge of the
spectral dependences of the refractive index of the epidermis, dermis, and the average
refractive index of blood corpuscles is required for a more adequate description of
propagation of laser radiation in biological media, while in our calculations, the
averaged refractive index of the epidermis, dermis, and the averaged refractive index
of blood corpuscles were used.

Thus, the model constructed in this study makes it possible not only to select
optimalwavelengths for effective actionof laser radiationonbiological structures, but
also to analyze the effectiveness of absorptionnot only byblood, but also bybiotissues
like melanin of the epidermis. The above dependences can be used for predicting
the changes in the optical properties of blood in the capillary channel, which are
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Fig. 6.5 a Normalized
action spectra for laser
radiation for oxyhemoglobin;
b normalized action spectra
for laser radiation for
deoxihemoglobin

300 350 400 450 500 550 600 650 700 750 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
bO

nm

nm

(a)

(b)

300 350 400 450 500 550 600 650 700 750 800

H
b

0.1

0.05

0.15

0.2

0.25

0.3

0.35

0.4

0.45
0.5

0

2

associated with various biophysical, biochemical, and physiological processes, and
can be computed for lasers with other parameters; the quantitative estimates obtained
in this study can be applied for processing and interpreting experimental data.

We have described the mathematical model for calculating the optical characteris-
tics and for analyzing the biophysical processes of propagation of light in amultilayer
biotissue in the case of the interactionwith noncoagulating laser radiation. Themodel
was implemented in the form of a software package, which makes it possible to vary
automatically the composition of biological objects, their electrophysical parameters,
characteristic thicknesses of layers, as well as characteristic sizes of various biolog-
ical structures under investigation on the same setup for recording the dependence
between these parameters. This makes the software developed here an effective and
convenient tool for investigations in biomedical optics.
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Chapter 7
Modeling of the Optical Characteristics
Fibrillar Structure

Abstract Wedescribe themathematicalmodel,which allowsus to vary the electrical
parameters and structure of the simulated biological tissue with fibrillar structure for
case in vivo.

7.1 Introduction

At present optical diagnostic methods tissues occupy a leading position because of
their high information content, and also their relative simplicity and low cost.

There are numerous diagnostic techniques, such as optical coherence tomography,
confocal microscopy, fluorescence spectroscopy, diffuse optical tomography, that
require knowledge of the optical properties and the dynamics of diffusion of various
of medicinal substances in various biological tissues.

In spite of significant advances in the development of fundamental bases and
practical applications of optical methods tissues, actual problems at present are the
increasing effects and expanded functionality possibilities of existing diagnostic tech-
niques.

Note that at present the degree of development of representations about the prop-
agation of light in multiple scattering media with a fibrillar structure that consist of
partially oriented fibers are insufficient.

Such objects represent the considerable interest for biomedical applications. We
note some articles devoted to research optical anisotropy of the tissue with fibrillar
structure.

In [1] are presented the results of the theoretical analysis optical anisotropy of
multiply scattering fibrillar tissues, conducted on the basis of models of effective
anisotropic medium with experimental data on double refraction in vivo derma of
rat. The article [2] is devoted to the question of dynamics immersion blooming
different types of biological fabrics, construction models and methods to describe
the propagation light emissionwith different types of polarization through anisotropic
tissue. In the article [3] one studies the problem of anisotropic scattering of light in
biological tissues, which have cylindrical structure (e.g., collagen) by the Monte-
Carlo method.
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The obtained results make it possible to determine the optical properties of the
tissue, they are also useful for the diagnosis of early changes tissues.

Thus becomes important to use the mathematical modeling of physical processes
proceeding in biological samples of different types in conditions of laser irradiation.

The problem consists of several parts. In the first part, we consider the problem
of light scattering on a system of parallel dielectric cylinders, modeling collagen
fibers. In the second part we consider the problem of reflection of a Gaussian beam
with an arbitrary cross-section plane wave from a smoothly irregular layer modeling
biological tissue with fibrillar structure. In the third part of the numerical simulations
we investigate the question of electrical characteristics of the biological sample.

7.2 Scattering on a Parallel Cylinders

In this section, we consider the distribution of polarized radiation in multiple scat-
tering media the example of the dermis.

The structure of the dermis are collagen fibers, consisting of parallel beams of an
average thickness 50–100nm, connected by glycosaminoglycans and proteoglycans
[4], then applied to the analysis of the effect of the morphological characteristics
of multiple scattering in randomly inhomogeneous media with fibrillar structure
regarded in the modeled medium that consists of parallel dielectric cylinders with
identical refraction complex coefficient are ncyl and radius a.

In this case, the cylinders are distributed in an isotropic dielectric medium with
a complex refractive refraction are no. The distance between the cylinder and the
wavelength incident radiation are comparable and we believe that the cylinders are
oriented along the Z -axis.

Let the cylinders at an angle θ be incident by the plane polarized wave in this
case, the Cartesian coordinate system OXZY is used as a fixed reference system, ϕ
is the azimuthal angle. We consider only the simple harmonic time dependence of
the angular frequency ω, and the factor exp(−iωt) is omitted.

Note that cylindrical coordinates of primary field incident wave are E, H admits
a representation as superposition of electric and magnetic fields types.

Thus in solving the problem, we consider two cases of the polarization of the
incident wave. Note that the scattered on the cylinders field can be found, depending
on the polarization primary field through the magnetic U and the electric V Hertz
potential. In this case, the values potentialsU , V associated with the vector E,H by
the following relations:

E = i

k
� × � ×(ezU ) + � × (ezV ), (7.1)

H = −no � ×(ezU ) + i

k
� × � ×(ezV ) (7.2)
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and satisfy the wave equations:

ΔU + n2ok
2U = 0,

ΔV + n2ok
2V = 0.

We write the relations for longitudinal, azimuthal and radial component of the elec-
tric and magnetic fields which expressed through U , V in cylindrical coordinates
(ρ, ϕ, z):

Eρ = ∂2U

∂ρ∂z
, Eϕ = 1

ρ

∂2U

∂ϕ∂z
, Ez = ∂2U

∂z2
+ k2n2oU, (7.3)

Hρ = −no
ρ

∂U

∂ϕ
, Hϕ = no

∂U

∂ρ
, Hz = 0 (7.4)

Hρ = ∂2V

∂ρ∂z
, Hϕ = 1

ρ

∂2V

∂ϕ∂z
, Hz = ∂2V

∂z2
+ k2n2oV, (7.5)

Eρ = −no
ρ

∂V

∂ϕ
, Eϕ = no

∂V

∂ρ
, Ez = 0, (7.6)

where U , V is

1

ρ

[
∂

∂ρ

[
ρ

∂U

∂ρ

]
+ 1

ρ

[
∂2U

∂ϕ2

]]
+ ∂2U

∂z2
+ k2n2oU = 0,

1

ρ

[
∂

∂ρ

[
ρ

∂V

∂ρ

]
+ 1

ρ

[
∂2V

∂ϕ2

]]
+ ∂2V

∂z2
+ k2n2oV = 0.

The field incident on the surface relative to j th cylinder consists of several parts:
the initial incident waves, the primary wave scattered by the j th cylinder and wave
scattered on all other cylinders. Then we can write general expression for the scalar
field potential functions U , V :

U j = U j
inc(R j p) +U j

scat (R j p) +
N∑

k �= j

Uk
scat (Rkp), (7.7)

V j = V j
inc(R j p) + V j

scat (R j p) +
N∑

k �= j

V k
scat (Rkp), (7.8)

where U j
inc(R j p),V

j
inc(R j p) are potential incident field on the surface of the j th

cylinder,U j
scat (R j p), V

j
scat (R j p) are potential of primary scattered wave at j-th cylin-

der, Uk
scat (Rkp), V k

scat (Rkp) are potential of the scattered field at all other cylinders.
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Expressions of the form (7.7)−(7.8) can be written as

(
U j

V j

)
=

(
U j

inc(R j p)

V j
inc(R j p)

)
+

(
U j

scat (R j p)

V j
scat (R j p)

)
+

N∑
k �= j

(
Uk

scat (Rkp)

V k
scat (Rkp)

)
. (7.9)

The potential of the incident field for the case p- and s- polarization is the following
form

U j
inc(R j p) = e−ikz sin θe−ikR j p , V j

inc(R j p) = 0, (7.10)

V j
inc(R j p) = e−ikz sin θe−ikR j p ,U j

inc(R j p) = 0. (7.11)

Using the expansion of a plane wave by a cylindrical wave functions and substituting
(7.12) for (7.10)−(7.11), we obtain

eikρ sin θ =
∞∑

n=∞
(−i)n Jn(kρ)einθ , (7.12)

U j
inc(R j p) = e−ikz sin θ

∞∑
n=∞

(−i)n Jn(kR j p cos θno)e
inϕeinγ j p , V j

inc(R j p) = 0,

(7.13)

V j
inc(R j p) = e−ikz sin θ

∞∑
n=∞

(−i)n Jn(kR j p cos θno)e
inϕeinγ j p ,U j

inc(R j p) = 0,

(7.14)
γ j p is angle to j th cylinder (see Fig. 7.1).

Combining the expressions (7.13)–(7.14) we obtain

Fig. 7.1 Geometric
illustration of scattering by
cylinders
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(
U j

inc(R j p)

V j
inc(R j p)

)
=

(
α

1 − α

)
e−ikz sin θ

∞∑
n=∞

(−i)n Jn(kR j p cos θno)e
inϕeinγ j p , (7.15)

where α = 1 for the case p polarization, and α = 0 for the case s polarization.
Analogous to [5] we write the expression for the scattered field at the j th cylinder
through scalar potential functions:

U j
scat (R j p) = −e−ikz sin θ

∞∑
n=∞

(−i)nH 2
n (kR j p cos θno)e

inγ j p a j
n , (7.16)

V j
scat (R j p) = −e−ikz sin θ

∞∑
n=∞

(−i)nH 2
n (kR j p cos θno)e

inγ j p b j
n, (7.17)

or
(
U j

scat (R j p)

V j
scat (R j p)

)
= −e−ikz sin θ

∞∑
n=∞

(−i)nH 2
n (kR j p cos θno)e

inγ j p

(
a j
n

b j
n

)
, (7.18)

where (
a j
n

b j
n

)
=

(
αa j

n
I + (1 − α)a j

n
I I

αb j
n
I + (1 − α)b j

n
I I

)
, (7.19)

a j
n
I
,b j

n
I
a j
n
I I
, a j

n
I
,b j

n
I
a j
n
I I
, b j

n
I I

are scattering coefficients on the cylinder for
p- polarization and for s- polarization.

By the addition theorem for a pair of cylinders we have [6]

einψk H 2
n (kRkp cos θno) =

∞∑
s=−∞

∞∑
n=−∞

H 2
s−n(kR jk cos θno))×

× Jn(kR j p cos θno))e
isψs . (7.20)

The potential of the scattered field for all other cylinders considering expression
(7.20) is

Uk
scat (Rkp) = −e−ikz sin θ

N∑
k �= j

∞∑
s=−∞

∞∑
n=−∞

(−i)seinγ j p ein(s−n)γk j H 2
s−n(kR jk cos θno)×

× Jn(kR j p cos θno)a
k
s (7.21)
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V k
scat (Rkp) = −e−ikz sin θ

N∑
k �= j

∞∑
s=−∞

∞∑
n=−∞

(−i)seinγ j p ein(s−n)γk j H 2
s−n(kR jk cos θno)×

× Jn(kR j p cos θno)b
k
s (7.22)

or (
U j

scat (Rkp)

V j
scat (Rkp)

)
= −e−ikz sin θ

N∑
k �= j

∞∑
s=−∞

∞∑
n=−∞

(−i)seinγ j pG jn
ks ×

× Jn(kR j p cos θno)

(
aks
bks

)
(7.23)

where
G jn

ks = ein(s−n)γk j H 2
s−n(kR jk cos θno). (7.24)

We substitute in (7.9) expression (7.15), (7.18) and (7.23) and then obtain [7]

(
U j

V j

)
= e−ikz sin θ

N∑
k �= j

∞∑
s=−∞

∞∑
n=−∞

(−i)neinγ j p

[(
α

1 − α

)
einϕ −

(
aks
bks

)
G jn

ks

]
×
(7.25)

×Jn(kR j p cos θno) − e−ikz sin θ

N∑
k �= j

∞∑
s=−∞

∞∑
n=−∞

(−i)neinγ j p

(
a j
n

b j
n

)
H 2

n (kR j p cos θno),

where G jn
ks defined by the formula (7.24).

To find the unknown coefficients aks , b
k
s , we must use the boundary conditions

on the surface of each cylinder. These boundary conditions require the continuity of
the tangential component of the electric and magnetic vectors on the surface of the
cylinders. The use of the boundary conditions is analogous to [5] following a system
of linear algebraic equations for finding the unknown coefficients aks , b

k
s :

N∑
k �= j

∞∑
s=−∞

∞∑
n=−∞

[[
δ jkδns + (1 − δ jk)G

jn
ks a

j
n
I
]
aks + (1 − δ jk)G

jn
ks a

j
n
I I
bks

]
=

= e−ikz sin θeinθ (αa j
n
I + (1 − α)a j

n
I I

) (7.26)

N∑
k �= j

∞∑
s=−∞

∞∑
n=−∞

[
1 − δ jk)G

jn
ks b

j
n
I
aks +

[
(δ jkδns + (1 − δ jk)G

jn
ks b

j
n
I I

]
bks

]
=

= e−ikz sin θeinθ (αb j
n
I + (1 − α)b j

n
I I

) (7.27)
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or in the matrix form
(

δ jkδns + (1 − δ jk)G
jn
ks a

j
n
I

(1 − δ jk)G
jn
ks a

j
n
I I

(1 − δ jk)G
jn
ks b

j
n
I

δ jkδns + (1 − δ jk)G
jn
ks b

j
n
I I

) (
aks
bks

)
= (7.28)

= e−ikz sin θeinϕ

(
αa j

n
I + (1 − α)a j

n
I I

αb j
n
I + (1 − α)b j

n
I I

)

where δ jk , δns is Kronecker symbol.
The expressions for the components of the vector E, H can be found through the

Hertz potentialsU , V . The substitution of (7.18) with a glance (7.28) in (7.3)−(7.6)
gives the corresponding relations longitudinal, azimuthal and radial component of
electric and magnetic field.

E(scat)R jp
= −k cos θnoe

−ikz sin θ
N∑
j=1

∞∑
n=∞

(−i)neinγ j p

[
sin θH

′(2)
n a j

n + i

k cos θR jp
H (2)
n b j

n

]
,

E(scat)γ j p
= k cos θnoe

−ikz sin θ
N∑
j=1

∞∑
n=∞

(−i)neinγ j p

[
− i

k cos θR jp
sin θH (2)

n a j
n + H

′(2)
n b j

n

]
,

E(scat)z = −ik cos2 θnoe
−ikz sin θ

N∑
j=1

∞∑
n=∞

(−i)neinγ j p
[
H (2)
n a j

n

]
, (7.29)

H(scat)R jp
= k cos θnoe

−ikz sin θ
N∑
j=1

∞∑
n=∞

(−i)neinγ j p

[
− sin θH

′(2)
n a j

n + i

k cos θR jp
H (2)
n b j

n

]
,

H(scat)γ j p
= −k cos θnoe

−ikz sin θ
N∑
j=1

∞∑
n=∞

(−i)neinγ j p

[
i

k cos θR jp
sin θH (2)

n a j
n − H

′(2)
n b j

n

]
,

H(scat)z = −ik cos2 θnoe
−ikz sin θ

N∑
j=1

∞∑
n=∞

(−i)neinγ j p
[
H (2)
n b j

n

]
. (7.30)

7.3 Reflection of a Plane Wave from a Layer with the
Fibrillar Structure

In this section, we consider the problem reflection of a plane wave from a layer with
a slowly varying thickness. Consider the optical system, which consists of several
areas with different refraction indices (the epidermis, the upper layer of the dermis
with fibrillar structure, blood cells, and the lower layer of the dermis).
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It should be noted that, to better match the real structure of the object under
investigation, the interfaces between the layers are represented by wavy surface
zi = Hi (x, y), i = 1, 3.

Let a plane s- or p-polarizedwave be incident to a layer at an angle θ . The reflected
field must be found. We consider only the case of the p polarization.

We seek the reflected field in the form of waves with slowly varying amplitudes
and quickly oscillating phases (see Chaps. 4, 5 and 6):

E1 = exp

(
i

ε
τinc(ξ1, ξ2, ξ3)

)
+ exp

(
i

ε
τ1re f (ξ1, ξ2, ξ3)

)
A(ξ1, ξ2, ξ3), (7.31)

E2 = exp

(
i

ε
τ2elap(ξ1, ξ2, ξ3)

)
B+(ξ1, ξ2, ξ3)+

+ exp

(
i

ε
τ3re f (ξ1, ξ2, ξ3)

)
B−(ξ1, ξ2, ξ3) (7.32)

E3 = exp

(
i

ε
τ3elap(ξ1, ξ2, ξ3)

)
C+(ξ1, ξ2, ξ3)+

+ exp

(
i

ε
τ4re f (ξ1, ξ2, ξ3)

)
C−(ξ1, ξ2, ξ3) + Escat (ξ1, ξ2, ξ3), (7.33)

E4 = exp

(
i

ε
τ4elap(ξ1, ξ2, ξ3)

)
D+(ξ1, ξ2, ξ3)+

+ exp

(
i

ε
τ5re f (ξ1, ξ2, ξ3)

)
D−(ξ1, ξ2, ξ3) + Eθscat (ξ1, ξ2, ξ3), (7.34)

E5 = exp

(
i

ε
τ5elap(ξ1, ξ2, ξ3)

)
E(ξ1, ξ2, ξ3), (7.35)

where (7.33) is scattering on the parallel cylinders which simulate fibrillar structure
and determined by the expression (7.29), Eθscat is scattering on the inhomogeneous
particles with an irregular shape, which simulate red blood cells and determined by
expression (6.76), τinc, τ1re f , τ2elap, τ3re f , τ3elap, τ4re f , τ4elap, τ5re f , τ5elap are defined
in Chap.4. Amplitudes A, B±, C±, D±, E are sought in the form of series in powers
of small parameters εx , εy , Note that the expression for the amplitudes is determined
by the method described in Chap.4.

The substitution of (7.31)−(7.35) in the boundary conditions of the type (4.6)−
(4.11) generates the recursive system of equations. From this system, one can find
the reflection coefficient in the principal approximation for the reflected field.
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Let us briefly consider the problem of reflection of a Gaussian beam with an arbi-
trary cross section. This problem can be solved by expansion of counter propagating
waves in terms of plane waves in the region of medium 1, their reflection by layer 2,
and reverse transformation with a subsequent Huygens-Fresnel integral transforma-
tion to obtain the field in the initial section (see Chap. 4). The laser radiation intensity
is defined by the form (4.69) of Chap.4.

Substituting the expression (4.67) in (4.69) for the condition that the simulated
layer is fibrillar structure we obtain the dependence of the laser radiation intensity
for electrical parameters of the modeled biological structure.

7.4 Numerical Calculations for a Model Medium
and Conclusions

Let us consider a model medium with the following characteristics: refractive
indices of the layers are equal to n◦

2 = 1.50, n◦
3 = 1.40, n◦

4 = 1.35, n◦
5 = 1.40, the

characteristic thicknesses of the layers amount to d2 = 65 · 10−6, d3 = 565 · 10−6,
d4 = 90 · 10−6, n◦

1 = 1, χ1 = 0, χ2 = χ3 = χ4 = χ5 = 10−5 and the following val-
ues of parametersa1 = −0.0024, b1 = 0.020, a2 = 0.021, b2 = 0.030, a3 = 0.041,
b3 = 0.051, c1 = c2 = c3 = 10−2.

The values of parameters a1, b1, a2, b2, a3, b3, c1, c2, and c3 are chosen for
the interface of each layer so that the surface shape are as close as possible to the
interface shape of the corresponding layer in the structure of human skin, and the
wavelength is λ=0.63 µm (center of the line of a He–Ne laser).

The calculations were performed for monolayer particle spherulated modeling
red blood cells, while the number of particles in the simulated layer is assumed to
be ten, with the following parameters: the relative refractive index for the first five
spherulated erythrocytes was assumed to be 1.035 + 10−5i , for others it was set as
1.033 + 10−5i for a particle radius of 4.3µm, number of cylindersmodeling collagen
fibers in the layer was assumed to be nine, the radius cylinder was assumed to be
1 · 10−10, 1 · 10−6, 2 · 10−6, 1 · 10−6, 1 · 10−6, 3 · 10−6, 1 · 10−6, 1 · 10−6, 2 · 10−6.
Note that in the numerical calculationswewas considered the normal incidence of the
electromagnetic wave and the reflected fieldwas regarded in themain approximation.

Figure7.2 shows the cross-section of the scattering field in the case of multiple
scattering on the group, closely spaced cylinders, different radii in the far-field.

To consider scattering in the far field in expression (7.29), we replace of theHankel
function by its asymptotic representation for kl � 1:

H 2
n (kl) ∼

√
2

πkl
e−i(kl−(2n+1)π/4), l = R cos θn0, γ j p ∼ γ,∀ j.
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Fig. 7.2 Cross-Section of
the scattering field in the
cylinder group with
refractive index equal to 1.34
and s-polarization (a),
p-polarization (b), not
polarization (c)
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In this case, the scattering cross section is defined a

Cscat = Wscat

Ii
,

where Ii is incident intensity

Wscat =
∫
A
Sscat · erd A, Sscat = c

8π
Re[E j

scat × H j∗
scat ],

E j
scat = i

k
� × � ×(ezU

j
scat ) + � × (ezV

j
scat ),

H j
scat = −no � ×(ezU

j
scat ) + i

k
� × � ×(ezV

j
scat ),

U j
scat , V

j
scat defined by the expression (7.18).

Figure 7.3 shows the distribution of intensity radiation for absorbing multilayer
and scatters light medium simulating human skin for specific electrical and geomet-
rical characteristics of the simulated biological structure with the fibrillar structure.

Dependence of the intensity laser radiation on the coefficient refraction and
absorption of the dermis with different electrical characteristics of the simulated
tissue are shown in Fig. 7.4a, b.

It implies from the graph that with increasing absorption the simulated biological
structure the intensity decreases consistent with the general theoretical concepts.

Thus, we can conclude that themodel sufficiently sensitive to changes in electrical
parameters, the simulated biological structure, in particular the coefficient absorption.

The model constructed allows variation of the optical parameters of the stud-
ied biological sample and the geometric characteristics, installing the relationship
between themand the biological properties of the simulated tissue. Thus, by using this

Fig. 7.3 Intensity
distribution for the modeled
biological structure for
specific values of the
parameters and θ = 0◦,
ϕ = 0◦, ψ = 0◦
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Fig. 7.4 Dependence of the
intensity laser radiation on
the coefficient refraction and
absorption of the dermis with
the absorption coefficient
other layers assumed to be
equal χ = 0.00001 (a) and
χ = 0.01 (b)
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mathematical model we can measure spectral differences of normal and pathological
tissue in the case of in vivo with the fibrillar structures for constructing a spectral
autograph to assess determining pathological changes in the investigated biological
samples, related to the change of electrophysical properties of the epidermis, the
upper dermis and blood.

These dependences can be used to predict changes in the optical properties of the
dermis, caused by therein various biophysical, biochemical and physiological pro-
cesses, and they can also be calculated for lasers with different parameters, and well
as the quantitative estimates which can be applied to processing and interpretation
of experimental data.

The constructed model allows to determine not only the spectral distribution
of the optical parameters of the biological environment associated with the light
absorption in the upper layers the simulated biological fibrillar structure, but also the
changes taking place under various factors that change functional and morphological
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condition of tissue and gives the possibility of simultaneous receipt of one plant
aggregate results by varying the optical properties and characteristics the dimensions
of the biological structure of the various structures.
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Chapter 8
Theoretical Determination the Function
of Size Distribution for Blood Cells

Abstract The mathematical model proposed for detection the the function of size
distribution of form for blood cells. Using the mathematical model we can theoret-
ically calculate the size distribution function for particles of irregular shape with a
variety forms and structures of inclusions that simulate blood cells in the case of in
vivo and determine the degree of aggregation, for example, the platelet for case in
vivo, which may indicate the presence of pathogenesis.

8.1 Introduction

Regulation of erythrocytes’ volume plays an important role in the life of an organism,
and therefore the ratio of the surface area to the volume of these cells is an important
parameter in determining the rheological properties of blood [1]. This makes it very
important to develop methods that can effectively determine the globule distribution
functions by size. Note that the blood test is one of the main tools of modern medical
diagnostics. Erythrocytes (red blood cells) are blood’smain cells, where they perform
mainly transport and buffer functions. An important role in this process is played
by the state of the cells themselves-their size, shape, deformability [2]. A change in
the dispersion (width) of the distribution of cells size by 1% leads to an increase in
the risk of mortality by 14% for patients with cardiovascular diseases [3]. Measure-
ment of erythrocyte deformability gives additional medical information, especially
important for the treatment of diseases such as sickle cell anemia, tropical malaria,
diabetes mellitus, strokes, etc., [4]. Normal human erythrocytes have the form of
a biconcave disk. Unlike most other cells, mammalian erythrocytes are devoid of
nuclei. In addition, in contrast to platelets, also lacking a nucleus, red blood cells
are more resistant to external influences [5], because their task is not activated in
response to changes in the environment’s composition, but to resistance to periodic
deformations during circulation. All this explains why red blood cells are a common
object of research. The development of methods for determining the properties of
matter, in particular, the determination of distribution functions by globule size by
scattering characteristics, is an important problem with which a number of biomed-
ical, biophysical and geophysical problems are related. Cell volume is one of the
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main indicators of the functional and structural state of the cell [5]. Normally, a
cell’s volume regulation is performed by a number of interrelated physiological and
biochemical processes [5, 6]. It is known that in some pathological conditions this
regulation is disturbed [7–9]. In this chapter, a mathematical model has been devel-
oped to determine the distribution of blood cells by size. Normal human erythrocytes
were chosen as the experimental model system for determining average sizes. From
a mathematical point of view, the problem of reconstructing the globule distribution
function in size and shape reduces to solving Fredholm integral equations of the first
order. Note that in this approach we use the Tikhonov regularization method [10] and
the use of a priori information on smoothness, non-negativity, and finiteness of the
solution of the inverse problem. Most of the work on mathematical modeling in this
area is devoted to solving an integral equation that relates an unknown distribution
and a diffraction pattern. The kernel of this equation is a function describing the
diffraction pattern corresponding to a single particle of a given shape. As the shape
of a single particle, we will use a sphere or a cylinder [11]. For medical applications
related to the operational diagnosis of erythrocytes, it is important that rapid analysis
can be performed in the shortest possible time. Therefore, it is relevant to search for
fairly simple but at the same time informative models in combination with analytical
estimates of the basic parameters of unknown distributions that will allow us to apply
newmathematical approaches to modeling without involving resource-intensive cal-
culations.

In this chapter, we analyze geometrical characteristics of particles simulating
erythrocytes in the upper layer of the dermis.

The problem consists of several steps. At the first stage, it is necessary to find the
coefficient of reflection of a plane wave from a smoothly irregular layer simulating a
given biological structure which consist of two continuous layers and the third layer
containing inhomogeneous inclusions simulating blood cells with different refractive
indices.

At the second stage, it is necessary to solve the problem of reflection of a with
an arbitrary cross section for the above conditions (see Chap.4). The construction of
these parts is auxiliary.

At the third stage, we solve the problem of detection the of form for blood cells.

8.2 Reflection of a Plane Wave from a Layer
with a Slowly Varying Thickness

For detection the the function of size distribution of form of blood, it is necessary to
find the reflected field in the layer consisting irregularly shaped particles of various
sizes and coefficients refraction.

It will be determined as follows: Eblood = Ere f − Eskin , where Ere f is reflected
field from all the simulated optical system Eskin is reflected field of layers: the
epidermis, the upper layer of the dermis.
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Let us consider the following optical scheme. The system consists of four regions
with difference refractive indices(epidermis, the upper layer of the dermis, blood
cells,the lower layer of the dermis) (see Fig. 6.2).

To attain the best agreement between the structure and the actual object under
investigation, we represent the interfaces between the layers of the model medium
in the form of certain surfaces zi = Hi (x, y), i = 1, 3.

Let us suppose that a plane s- or p- polarized wave is incident on the layer at an
angle θ . We consider only the case of the p polarization. We must find the reflected
field.

We will seek the reflected field in the form of waves with slowly varying ampli-
tudes and rapidly oscillating phases

E1 = exp

(
i

ε
τinc(ξ1, ξ2, ξ3)

)
+ exp

(
i

ε
τ1re f (ξ1, ξ2, ξ3)

)
A(ξ1, ξ2, ξ3, εx , εy),

(8.1)

E2 = exp

(
i

ε
τ2tr (ξ1, ξ2, ξ3)

)
B+(ξ1, ξ2, ξ3, εx , εy)+

+ exp

(
i

ε
τ3re f (ξ1, ξ2, ξ3)

)
B−(ξ1, ξ2, ξ3, εx , εy), (8.2)

E3 = exp

(
i

ε
τ3elap(ξ1, ξ2, ξ3)

)
C+(ξ1, ξ2, ξ3, εx , εy)+

+ exp

(
i

ε
τ4re f (ξ1, ξ2, ξ3)

)
C−(ξ1, ξ2, ξ3, εx , εy), (8.3)

E4 = exp

(
i

ε
τ4elap(ξ1, ξ2, ξ3)

)
D+(ξ1, ξ2, ξ3, εx , εy)+

exp

(
i

ε
τ5re f (ξ1, ξ2, ξ3)

)
D−(ξ1, ξ2, ξ3, εx , εy)+

+ E4θscat (ξ1, ξ2, ξ3) (8.4)

E5 = exp

(
i

ε
τ5elap(ξ1, ξ2, ξ3)

)
E(ξ1, ξ2, ξ3, εx , εy), (8.5)

where E4θscat is defined by formula (6.76) and τ1inc,τ1re f , τ2elap, τ3re f , τ3elap, τ4re f ,
τ4elap are defined in Chap.4. Amplitudes A, B±,C±, D±, E are sought in the form of
power series in small parameter εx , εy , the expressions for the amplitudes are defined
analogously to the method described in Chap. 4.

Substitution of expressions (8.1)–(8.5) into (4.6)–(4.11) generates a recurrence
system of equations for reflected field from all the simulated optical system (Ere f )
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this system leads to reflection coefficient A and similar system of equations can
be derived for reflected field of layers: the epidermis, the upper layer of the derms
(Eskin), The expression for the reflection of a Gaussian beam with an arbitrary cross
section is defined analogously to the method described in Chap.4.

Determine the intensity:

Iblood(θ, λ) = |E(blood)⊥ |2 + |E(blood)‖|2,

where

E(blood)⊥ = cos(θ)Ezblood + sin(θ)Exblood ,

E(blood)‖ = sin(θ)Ezblood − cos(θ)Exblood ,

where Ex and Ez are given by the following expressions

∂Ez

∂y
− ∂Ey

∂z
= −iωμ0μ j Hx ,

∂Ex

∂z
− ∂Ez

∂x
= −iωμ0μ j Hy, (8.6)

∂Ey

∂x
− ∂Ex

∂y
= −iωμ0μ j Hz,

∂Hz

∂y
− ∂Hy

∂z
= iωε0ε j Ex , (8.7)

∂Hx

∂z
− ∂Hz

∂x
= iωε0ε j Ey,

∂Hy

∂x
− ∂Hx

∂y
= iωε0ε j Ez . (8.8)

Formulas (8.6)−(8.8) correspond to the system of the Maxwell equations (4.3) in a
Cartesian coordinate system. Thus, we obtained formulas allowing one to determine
the explicit dependence of the intensity of laser radiation as a function of the refractive
index and absorption coefficient for the system of blood vessels located in the upper
dermis.

8.3 The Function of Size Distribution or Red Blood Cells

For defining the function of size distribution ψ(ρ) we write the linear Fredholm
integral equation the first kind

Iblood(θ, λ) =
∫ ρmax

ρmin

si (θ, ρ, λ)ψ(ρ)dρ, (8.9)

where i = 1, 5, ρ is radius of the particle, Iblood(θ, λ) coefficient scattering for a
fixed angle θ , si (θ, ρ, λ) is kernel of the integral equation, which is defined as the
scattering of light by individual non-spherical particles with irregular inclusion of
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modeling blood cells (erythrocytes, leukocytes, platelets, lipoproteins of low density
and lipoproteins of high density). For the numerical determination of f (ρ should be
used Tikhonov regularization method [12].

8.3.1 Tikhonov Regularization Method

We consider the Fredholm integral equation of the first kind with smooth kernel
K (x, s)

Au =
∫ b

a
K (x, s)u(s)ds = f (x), x ∈ [c, d] (8.10)

where f (x) = Iblood(θ, λ), K (x, s) = si (θ, ρ, λ) a ≡ ρmin and b ≡ ρmax , u(s) =
ψ(ρ).

We assume that K (x, s) a real function that is continuous in the rectangle
G = ([c, d]) × [a, b]) and f (x) ∈ L2[c, d].

We also employ approximation fδ(x) of function f (x) such that || f (x) −
fδ(x)||L2 ≤ δ.
Based on the a priori assumptions, we suppose that u(s) is a piecewise smooth

function and choose U = W 1
p[a, b]. Let function K(x, s) be changed by func-

tion Kh(x, s), such that ||K (x, s) − Kh(x, s)||L2(G) ≤ h. Then, we have ||A −
Ah ||W 1

2 −→L2
≤ h, where Ah is an integral operator that corresponds to kernel

Kh(x, s).
Using the Tikhonov procedure for the construction of the regularization algorithm

[12, 13], we proceed from expression (8.10) to the minimization of the smoothing
functional

Mα[u] = ||Ahu − fδ||2L2
+ α||u||2W 1

2
→ min, (8.11)

where

||u||2 =
∫ b

a
u2(s)ds, ||u′||2 =

∫ b

a
(u′(s))2ds, ||Ahu − fδ||2 =

=
∫ d

c

[∫ b

a
K (x, s)u(s)ds − f (x)

]2

dx,

Then, expression (8.11) is represented as

Mα[u] =
∫ d

c

[∫ b

a
K (x, s)u(s)ds − f (x)

]2

dx+

+ α

[∫ b

a
u2(s)ds +

∫ b

a
(u′(s))2ds

]
→ min . (8.12)
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The Tikhonov condition [12, 13] follows from condition (8.12):

(A∗
h Ah + αC)uα = A∗

h f

Here, Ah is the operator from W 1
2 [a, b] L2[c, d], A∗

h is the conjugate operator
with respect to Ah ,A∗

h is the operator from L2[c, d] W 1
2 [a, b], and C is the operator

the matrix of which is determined in [12, 13].
In the above formulation, we consider operator Ah of the original integral equation

that acts from L2[a, b] to L2[c, d] (i.e., the information regarding the smoothness of
the exact solution is missing). Then, the smoothing functional is written as

Mα[u] = ||Ahu − fδ||2L2
+ α||u||2L2

→ min

and the Tikhonov equation is represented as

(A∗
h Ah + αE)uα = A∗

h f,

where E is the unity operator.
Note that function uα that minimizes functional (8.11) or (8.12) depends on reg-

ularization parameter α. To determine the regularization parameter, we employ the
method of relative residual ||Auα − f ||

f
= δ (8.13)

Thus, expression (8.13) makes it possible to automatically determine the regulariza-
tion parameter.

8.4 Numerical Calculations for a Model Medium
and Conclusions

Let us consider a model medium with the following characteristics. Typical layer
thicknesses are equal to d2 = 65 · 10−6, d3 = 565 · 10−6, d4 = 90 · 10−6, n◦

1 = 1,
χ1 = 0, χ2 = χ3 = χ4 = χ5 = 10−5, refractive indices of the layers are n◦

2 = 1.50,
n◦
3 = 1.40, n◦

4 = 1.35, n◦
5 = 1.40 and the following values of parameters are a1 =

−0.0024, b1 = 0.020, a2 = 0.021, b2 = 0.030, a3 = 0.041, b3 = 0.051, c1 = c2 =
c3 = 10−2. The values of parameters for the interfaces between the layers are chosen
so that the shape of the surface is maximally close to the shape of the boundary of the
corresponding layer in the structure of the normal human dermis, and wavelength is
λ = 0.63µm (center of the line of a He−Ne laser).

Since the erythrocyte contains no cell organelles, its cellularmembrane is very thin
and does not noticeably affect the scattering of light; consequently, the erythrocyte
can be treated as a homogeneous scatterer. Thus, our computations were performed
for monolayer spherulated particles simulating erythrocytes; the number of particles
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Fig. 8.1 Function of size
distribution for red blood
cells
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in the layer being simulated was assumed to be ten for the following parameters: the
relative refractive index for the first five spherulated erythrocytes was assumed to
be 1.035 + 10−5i ; for the remaining erythrocytes, it was set as 1.033 + 10−5i , for a
particle radius of 4.3µm. All computations were performed up to 32 decimal places.

Figure8.1 show the function of size distribution for blood corpuscle (erythrocyte).
Based on the mathematical model (8.9) we can theoretically calculate the size distri-
bution function for particles of irregular shape with a variety forms and structures of
inclusions that simulate blood cells in the case of in vivo and determine the degree
of aggregation, for example, the platelet for case in vivo, which may indicate the
presence of pathogenesis.

We have described the mathematical model for calculating the function of size
distribution for blood corpuscle of propagation of light in a multilayer biotissue
in the case of the interaction with noncoagulating laser radiation. The model was
implemented in the form of a software package, which makes it possible to vary
automatically the composition of biological objects, their electrophysical parame-
ters, characteristic thicknesses of layers, as well as characteristic sizes of various
biological structures under investigation on the same setup for recording the depen-
dence between these parameters. Thismakes the software developed here an effective
and convenient tool for investigations in biomedical optics.

In this chapter, a mathematical model has been developed that allows one to cal-
culate the dispersion and the particle size distribution function from the experimental
data, taking into account the different models of light scattering by particles. The
model allows one to dynamically change the geometry of an individual particle,
graphically visualize the work of numerical methods of regularizing inverse prob-
lems and compare their work with the use of a priori dependencies and estimates,
which is very important for the application of the results obtained inmedical practice.
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Chapter 9
Study of Optical Properties of Biotissues
by the Intracavity Laser Spectroscopy
Method

Abstract We describe a mathematic model for predicting the absorption spectrum
and dispersion of a section of a biological structure consisting of epidermis, upper
layer of the derma, blood, and lower layer of the derma and placed in the cavity of
an optical resonator. It should be noted that the biological structure was represented
by layers with different optical and geometrical parameters illuminated by a laser
beam.

9.1 Introduction

Optical methods (including traditional optical spectroscopy) based on analysis of
reflection, transmission, and fluorescence spectra of biological tissues play an impor-
tant role among modern physical methods of analysis in biology and medicine. The
most effective methods that make it possible to study processes in complex biolog-
ical systems are optical intracavity techniques. The application of intracavity laser
spectroscopy makes it possible to obtain more exact estimates of optical parameters
of the medium, which cannot be detected by conventional methods. Optical methods
make it possible to analyze processes without violating (modifying) living struc-
tures in complex biosystems. However, the application of these methods requires
the development of appropriate mathematical models for better understanding the
process of interaction of a laser beam with a biological object and for extending
potentialities, reliability, and availability of optical technologies, which would make
it possible to theoretically predict electrophysical parameters as characteristics of the
structural state of biological tissues (including human derma). The determination of
optical indices of a biological tissue is a complicated problem due to the complex
and heterogeneous structure of the tissue itself. Modern techniques for determining
optical parameters of biosystems involve the solution of the inverse scattering prob-
lem for various theoretical models such as the Monte Carlo method [1, 8], diffusion
approximation [2–4], and KubelkaMunk method of flow models [5–7].

In this study, mathematical model is constructed, which makes it possible to
vary electrophysical and geometrical parameters (layer thickness) of the section of
a biological tissue being modeled and to represent the result in the form of a graph
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describing the dependence of the real and imaginary parts of the refractive index of
the model structure on the wavelength (dispersion curves and absorption spectra) for
each version of calculations.

The problem includes several stages. At the first stage, the reflectance of a plane
wave from a smoothly irregular layer simulating a given biological structure must
be determined (see Chap.4).

At the second stage, we must solve the problem of reflection of a Gaussian beam
with an arbitrary cross section from a smoothly irregular layer simulating the given
biological structure. The problem is solved by expanding the fields of counterprop-
agating waves in plane waves in region 1 of the medium and their reflection from
layer 2 and carrying out inverse transformation followed by the Huygens–Fresnel
integral transformation to obtain the field in the initial reference cross section after
the circumvention of the cavity (see Chap. 4). The constructions at these stages are
auxiliary.

We consider here natural oscillations of a linear resonator loadedwith a layermod-
eling a given biological structure. The constructions are based on solving auxiliary
problems of the first and second stages.

Chapter is based on the results of the [9, 10].

9.2 Integral Equation for Natural Oscillations
of Field in a Resonator

Let a cell with a sample of a biological tissue (tissue section) be located in the vicinity
of the Z axis in domain � of the cavity.

Since natural oscillations in ring and linear resonators are retuned in different
ways upon the introduction of inhomogeneities in the cavity, we will consider for
definiteness the simpler case of a linear resonator. We can write the integral equation

Φ(ξ ′
1) = γ

∫ ∞

−∞
K1(ξ

′
1, ξ

′′
1 )Eref (Φ(ξ ′′

1 , ξ ′′
2 ))dξ ′′

1 , (9.1)

where Eref (Φ(ξ ′′
1 , ξ ′′

2 )) is a linear combination of Φ(ξ ′′
1 , ξ ′′

2 ) and its derivatives and
is defined in the Chap.4, and K1(ξ

′
1, ξ

′′
1 ) is the kernel of the integral transformation

of the field,

K1(ξ
′
1, ξ

′′
1 ) =

√
k

2π i B
e

ik
2B (Aξ ′′

1 +Dξ ′2
1 −2ξ ′

1ξ
′′
1 )+ikL ,

It should be noted that a characteristic feature of (9.1) is the presence of the
derivative of function Φ(ξ ′

1) in the integrand. We will seek Φ and γ in the form of
a power expansion in small parameter ε characterizing the smoothness of variations
in the properties of the medium over a wavelength; i.e.,

Φ = ψ0 + εϕ01 + O(ε2) (9.2)
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γ = ψ1 + εϕ11 + O(ε2) (9.3)

We substitute expansions (9.2) and (9.3) into the integral equation (9.1). Then, in
the main approximation, we obtain

ψ±
0 (ξ ′

1) = ψ1

[∫ ∞

−∞
K1(ξ

′
1, ξ

′′
1 )S00(ξ

′′
1 , ξ ′′

2 )ψ0(ξ
′′
1 )dξ ′′

1

]
(9.4)

Multiplying (9.1) by ψ1S00(ξ ′
1, ξ

′
2)ψ

±
0 (ξ ′

1), integrating with respect to ξ ′
1, and tak-

ing into account themain approximation of (9.4), we obtain the following corrections
to eigenvalues:

ϕ11 = ±ψ1

[∫ ∞

−∞
ψ+

0 ψ−
0 Sx (ξ

′′
1 , ξ ′′

2 )dξ ′′
1 −

∫ ∞

−∞
ψ±

0

∂Sx (ξ ′′
1 , ξ ′′

2 )

∂kx

∂ψ∓
0

∂ξ ′′
1

dξ ′′
1

]
�−1,

� =
[∫ ∞

−∞
ψ+

0 ψ−
0 S00(ξ

′′
1 , ξ ′′

2 )dξ ′′
1

]
,

where

S00(ξ
′′
1 , ξ ′′

2 ) = A�
oo(ξ

′′∼
1 + ξ ′′∼

2 , k1y, k1x )

α
, (9.5)

Sx (ξ
′′
1 , ξ ′′

2 ) = 1

α

[
A�
10(ξ

′′∼
1 + ξ ′′∼

2 , k1y, k1x ) + k13
kn1

ξ ′′
1 A0000(ξ

′′∼
1 + ξ ′′∼

2 , k1y, k1x )

]
,

∂Sx (ξ ′′
1 , ξ ′′

2 )

∂kx
=

[
kox

ikn1α

[
∂A�

oo(ξ
′′∼
1 + ξ ′′∼

2 , k1y, k1x )

∂k1x
+ ∂A�

oo(ξ
′′∼
1 + ξ ′′∼

2 , k1y , k1x )

∂k1y

]]
,

quantities α, k13, kox , A�
oo(ξ

′′∼
1 + ξ ′′∼

2 , k1y, k1x ), A�
1o(ξ

′′∼
1 + ξ ′′∼

2 , k1y, k1x ) and
A0000(ξ

′′∼
1 + ξ ′′∼

2 , k1y, k1x ) are defined in Chap.4.
The solution to (9.4) was sought in the form of a power series expansion in the

eigenfunctions of an ideal resonator:

ψ±
0 =

∑
n

ãn E
±
n (ξ ′′

1 ), (9.6)

where field E±
n (ξ ′′

1 ) can be represented as the sum of counterpropagating waves

E±
n (ξ ′′

1 ) = E+
n (ξ ′′

1 ) + E−
n (ξ ′′

1 ),

E+
n (ξ ′′

1 ) = CnHn

(
ξ ′′
1 · √

2

ω

)
exp

(
−i(n + 1/2)g + ikL + iξ ′′2

1

q+

)
,
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E−
n (ξ ′′

1 ) = CnHn

(
ξ ′′
1 · √

2

ω

)
exp

(
i(n + 1/2)g − ikL − iξ ′′2

1

q−

)
.

Let us write the matrix equation for determining coefficients ãn

ãm = ψ1

∑
n

ãmnãn, (9.7)

where

ãmn = e−i(n+1/2)ge−i(m+1/2)g
∫ ∞

−∞
CmCne

−ξ ′′2
1 Hn(ξ

′′
1 )Hm(ξ ′′

1 )S00(ξ
′′
1 , ξ ′′

2 )dξ ′′
1 ,

g = arccos

[
A + D

2

]
, Cn =

√
1

2nn!ωπ
, Cm =

√
1

2mm!ωπ
, ω =

√
sin g

B
,

1

q
=

[
A + D

2
+ i

√
1 − (A + D)2

4
− A

]
(2B)−1

A, B and D are the elements of the wave matrix of the resonator; L is the res-
onator length; Hn , Hm are Hermitean polynomials; k = 2π/λ is the wavenumber
and S00(ξ ′′

1 , ξ ′′
2 ) is defined by expression (9.5).

Matrix system (9.7) is a system of homogeneous linear algebraic equations, which
is used for determining the transverse modes of the resonator by formula (9.6) after
the calculation of eigenvectors, while the eigenfrequencies of these modes can be
found from the equality of the determinant of this system to zero. Thus, at this stage,
the frequencies of natural oscillations of the optical resonator loaded with the sample
of the biological tissue under investigation were connected by formula (9.7) with the
electrophysical parameters of this biological structure, such as the real and imaginary
parts of their refractive indices and sizes.

Further testing and analysis of the above dependences will be carried out using
numerical methods.

9.3 Numerical Calculations for a Model Medium
and Conclusions

Let us consider an optical resonator with a model medium which has the following
parameters: the distance L between the mirrors is 11cm; radii of mirrors M1 and M2

are 100.0 and 46.3cm, respectively.
It should be noted that, for better matching to the real structure of the object

under investigation, the interfaces between the layers are represented by wavy sur-
face z1 = H1(x, y), z2 = H2(x, y), z3 = H3(x, y), where H1(x, y) = c1 sin(a1x +
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b1y),H2(x, y) = c2 sin(a2x + b2y), H3(x, y) = c3 sin(a3x + b3y), c1, a1, b1, c2, a2,
b2, c3, a3, b3 are some arbitrary constants. The arbitrarily preset constants are:
a1 = −0.0024, b1 = 0.020, a2 = 0.021, b2 = 0.030, a3 = 0.041, b3 = 0.051, c1 =
c2 = c3 = 10−2. The values of parameters a1, b1, a2, b2, a3, b3, c1, c2, c3 are selected
for the interfaces between the layers so that the shape of the surface matches as close
as possible to the interface between the corresponding layers in the structure of the
normal human derma. All calculations were carried out for the principal transverse
mode.

Figure9.1a, b show the dependence of the imaginary part of the refractive index
(absorptance) of the epidermis on the wavelength. It can be seen from the curves
that the refractive index of the epidermis in the ultraviolet range is high. This is
apparently due to the fact that, at a given wavelength, light in the surface layer is
strongly absorbed, mainly by melanin.

The dependence of the real part of the refractive index of the epidermis on the
wavelength is shown in Fig. 9.2a, b. It can be seen from Fig. 9 that themaximal values
of the real part of the refractive index of the epidermis are attained for wavelengths
for which the values of the refractive index of the epidermis are minimal and vice
versa, which is in conformity with the general theoretical concepts. It should be
noted that the mathematical model constructed here is quite sensitive to change in
the optical parameters of the model medium and that the ranges of quantities n2 (real
part of the refractive index of the epidermis) and χ2 (imaginary part of the refractive
index of the epidermis) are close to experimental values of the complex refractive
index for the biological structure being modeled that were obtained without using
the intracavity model [11].

nmnm

n2 n2(a) (b)

Fig. 9.1 a Dependence of the real part of the refractive index of the epidermis on wavelength
for the following parameters of the model medium: the imaginary part of the refractive index of
the epidermis is 0.00001, he refractive index of the upper derma is 1.3 + 0.00001i , the refractive
index of blood is 1.3509 + 0.00001i , the refractive index of the lower derma is 1.3 + 0.00001i , the
thicknesses of the epidermis, upper derma, and blood are 64, 600 and 80µm, b Dependence of the
real part of the refractive index of the epidermis on wavelength for the following parameters of the
model medium: the imaginary part of the refractive index of the epidermis is 0.00001, he refractive
index of the upper derma is 1.3 + 0.00001i , the refractive index of blood is 1.35 + 0.00001i , the
refractive index of the lower derma is 1.45 + 0.00001i , the thicknesses of the epidermis, upper
derma, and blood are 65, 80 and 600µm,respectively
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(a) (b)

nm nm
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Fig. 9.2 aDependence of the imaginary part of the refractive index of the epidermis on wavelength
for the following parameters of the model medium: the real part of the refractive index of the
epidermis is 1.3, the refractive index of the upper derma is 1.33 + 0.00001i , the refractive index of
blood is 1.35 + 0.00001i , the refractive index of the lower derma is 1.45 + 0.00001i , the thicknesses
of the epidermis, upper derma, and blood are 65, 600 and 80µm, respectively. bDependence of the
imaginary part of the refractive index of the epidermis on wavelength for the following parameters
of the model medium: the real part of the refractive index of the epidermis is 1.3, the refractive
index of the upper derma is 1.33 + 0.00001i , the refractive index of blood is 1.3501 + 0.00001i ,
the refractive index of the lower derma is 1.45 + 0.00001i , the thicknesses of the epidermis, upper
derma, and blood are 65µm, 600µm and 80µm, respectively

The model constructed here makes it possible to determine not only the spectral
distributions of optical parameters of a biological medium, which are associated with
absorption of light in the upper layers of the biological structure being simulated,
but also their variations occurring under the action of various factors leading to a
change in the functional and morphological state of the biological tissue. The model
also makes it possible to obtain simultaneously on the same setup an aggregate of
results of variation of electrophysical parameters and characteristic sizes of various
biological structures under investigation.

Thus, using the mathematical model constructed here, it is possible to measure
the spectral differences in normal and pathological tissues in vitro for constructing
a spectral autograph to assess pathological changes in biological samples under
investigation.

Analogous dependences can be calculated for laserswith other parameters and can
be used for processing experimental dispersion and absorption curves for biological
tissues.

References

1. J. Qu, C. MacAulay, S. Lam et al., Laser-induced fluorescence spectroscopy at endoscopy:
tissue optics, Monte Carlo modeling, and in vivo measurements. Opt. Eng. 34(11), 3334–3343
(1995)

2. R.A.J. Groenhuis, H.A. Ferverda, J.J. Ten Bosch, Scattering and absorption of turbid materials
determined from reflection measurements 1: Theory. Appl. Opt. 22(16), 2456–2462 (1983)

3. J.L. Karagiannes, Z. Zhang, B. Grossweiner et al., Applications of the 1-D diffusion approxi-
mation to the optics of tissues and tissue phantoms. Appl. Optics. 28(12), 2311–2317 (1989)



References 159

4. D.J. Maitland, J.T. Walsh, J.B. Prystowsky, Optical properties of human gallbladder tissue and
bile. Appl. Opt. 32(4), 586–591 (1993)

5. M.J.C. Van Gemert, G.A.C. Schets, M.S. Bishop et al., Optics of tissue in a multi-layer slab
geometry. Laser Life Sci. 1(2), 1–18 (1988)

6. M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg et al., Skin optics. IEEE J. Biomed.
Eng. 36(12), 1146–1154 (1989)

7. K.M. Giryayev, N.A. Ashurbekov, O.V. Kobzev, Optical studies of biological tissues: determi-
nation of the scattering and absorption coefficients. Lett. J. Tech. Phys. 21, 48–52 (2003)

8. V.V. Tuchin, S.R. Utz, I.V. Yaroslavskii, Tissue optics, light distribution, and spectroscopy.
Opt. Eng. 33, 3178–3176 (1994)

9. K.G. Kulikov, Study of electrophysical characteristics of blood formed elements using intra-
cavity laser spectroscopy. I. Simulation of light scattering by an ensemble of biological cells
with complicated structures. Tech. Phys. 59(4), 576–587 (2014)

10. K.G. Kulikov, Simulation of electrophysical properties of biological tissues by the intracavity
laser spectroscopy method. Tech. Phys. 54(3), 435–439 (2009)

11. V.V. Tuchin, Lasers and Fiber Optics in Biomedical Studies (Saratovsky Univ, Saratov, 1998)



Chapter 10
Study of the Optical Characteristics
of Thin Layer of the Biological Sample

Abstract We construct the mathematical model, which makes it possible to vary
the characteristic sizes of roughness, the electrophysical parameters of the biological
sample under investigation, and its geometrical characteristics and to establish the
relations between these parameters and biological properties of the biological tissue
beingmodeled, as well as to calculate theoretically the absorption spectra of optically
thin biological samples placed into the cavity of an optical resonator.

10.1 Introduction

Most biological surfaces are rough to a certain extent. The roughness of the surface
affects the characteristics of wave propagation and scattering (namely, the character-
istics of a wave propagating over such a surface differ from analogous characteristics
in the case of propagation over a smooth surface). Awave incident on a rough surface
not only reflects specularly, but is also scattered in all other directions. In analysis of
scattering from a rough surface, the extent of roughness of the surface is connected
with the wavelength of incident radiation and depends on the direction of wave
propagation and scattering. In this connection, it is important to study the effect of
roughness on the spectral characteristics of the biological structure being simulated.

It should be noted that using a resonator, it is possible to obtain more exact esti-
mates of optical parameters of the medium taking into account the roughness, which
cannot be detected using conventional methods. Thus, it is expedient to consider
the problem of natural oscillations of a linear resonator loaded with an optically thin
layer simulating a certain biological structure. The biological structure is represented
by an optically thin layer with certain optical and geometrical characteristics, which
is illuminated by a laser beam.

The problem includes the following three consecutive stages. At the first stage, the
problem of scattering from the rough boundary had to be solved and the coefficient of
reflection of a plane wave from a smoothly irregular layer must be determined taking
into account the roughness of the boundary simulating the given biological medium.
At the second stage, the problem of reflection of a Gaussian beam with an arbitrary
cross section had to be solved. The problem was solved by expanding the fields
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of counterpropagating waves in plane waves in the region of medium 1 and their
reflection from layer 2 using inverse transformation followed by HuygensFresnel
integral transformation to obtain the field in the initial reference cross section after
the circumvention of the resonator (see Chap. 4). At the third stage, the effect of
roughness on the spectral characteristics of the biological sample being simulated
was investigated.

Chapter is based on the results of the [1, 2].

10.2 Scattering of a Plane Wave from a Rough Surface

As noted above, the surfaces of real bodies (in particular, in biology) are not always
perfectly smooth to a certain extent; for this reason, reflection and refraction of
waves from such surfaces are accompanied by phenomena which are not observed
in the case of perfectly smooth interfaces. The form of scattering from a rough
surface is determined by the set of the following factor: the degree of smoothness
is determined by the relation between the wavelength of incident radiation and the
geometrical parameters of the surface; the polarization of the primary wave as well
as the reflecting and refracting properties of the substance also play a significant role.
Rigorous methods for solving problems in the case of a rough surface do not exist.

The problem can be solved only approximately under certain constraints imposed
on the size and shape of roughness. The scattered field is calculated using the method
of small perturbations and the Kirchhoff method. In this study, we are using the small
perturbation method for calculating the scattered field.

To apply the small perturbation method correctly, we assume that roughness of
the surface under investigation is small and gently sloping on the wavelength scale
are small and gently sloping on the wavelength scale. The slope of roughness indi-
cates [3] that the inclination of the surface is small on the average; i.e., σ 2

H/ l2H � 1,
where σ 2

H ≡ 〈H 2〉 is the standard deviation from the unperturbed surface z = 0 and
lH is the characteristic size of irregularities. The smallness of irregularities means
that moments 〈Hm〉 are small as compared to the relevant powers of the wavelength,
〈Hm〉 � λm ; in particular, σ 2

H � λ2. As a result, for small and gently sloping irreg-
ularities, we can use the expansion of the boundary conditions as well as the sought
solutions into a power series in small parameters H/λ � 1 and σH/ lH � 1 (i.e.,
we apply the perturbation method). Let us suppose that a plane monochromatic of
unit amplitude is incident on a rough surface. We consider two media with refractive
indices n1 and n2. The equation of the surface has the form z = H(x, y); we assume

that
∣
∣ ∂H

∂x

∣
∣ � 1,

∣
∣
∣
∂H
∂y

∣
∣
∣ � 1.

We denote by E1 and E2 the amplitudes of the electric field in the upper and lower
media, respectively. The electric field amplitude E1 in the upper medium satisfies
the equation

∂2E1

∂x2
+ ∂2E1

∂y2
+ ∂2E1

∂z2
+ k2n21E1 = 0 (10.1)
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while electric field amplitude E2 in the lower medium satisfies the equation

∂2E2

∂x2
+ ∂2E2

∂y22
+ ∂2E2

∂z2
+ k2n22E2 = 0 (10.2)

where k is the wavevector and n j is the complex refractive index n j = noj + iχ j , j =
1, 2 with the boundary conditions in the form

E1|z=H(x,y) = E2|z=H(x,y), (10.3)

1

n21

∂E1

∂n
|z=H(x,y) = 1

n22

∂E2

∂n
|z=H(x,y), (10.4)

where n is the unit vector of the outward normal with the following components:

n =
(

α
∂H

∂x
, α

∂H

∂y
,−α

)

, α = 1√
(1 + ( ∂H

∂x )2 + ( ∂H
∂y )2

.

We must find the reflected field taking into account the roughness of the interface
between the media. We consider only the case of the p polarization. We expand
boundary condition (10.3) into a power series in H :

(E1) |z=0 + H

(
∂E1

∂z

)

z=0

+ H 2

2

(
∂2E1

∂z2

)

z=0

+ · · · .

= (E2) |z=0 + H

(
∂E2

∂z

)

z=0

+ H 2

2

(
∂2E2

∂z2

)

z=0

+ · · · (10.5)

Let us consider the boundary condition of type (10.4).

∂E1

∂n
|z=H(x,y) = 1

n21

∂E1

∂n
|z=H(x,y) = 1

n21

(

nx
∂E1

∂x
+ ny

∂E1

∂y
+ nz

∂E1

∂z

)

=

= 1

n21

(

α
∂H

∂x
+ · · · .

)
∂

∂x

(

E1|z=0 + H
∂E1

∂z
|z=0 + · · ·

)

+ (10.6)

+ 1

n21

(

α
∂H

∂y
+ · · · .

)
∂

∂y

(

E1|z=0 + H
∂E1

∂z
|z=0 + · · ·

)

−

− 1

n21

(

α + (∇H)2

2
− · · ·

) (
∂E1

∂z
|z=0 + H

∂2E1

∂z2
|z=0 + H 2

2

∂3E1

∂z3
|z=0 + · · ·

)

=
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= α
1

n21

(

−∂E1

∂z
|z=0 + ∂E1

∂x

∂H

∂x
|z=0 + ∂E1

∂y

∂H

∂y
|z=0

)

+

+α
1

n21

(

−H
∂2E1

∂z2
|z=0 + H

∂2E1

∂x∂z
|z=0 · ∂H

∂x
+ ∂2E1

∂y∂z
|z=0 · ∂H

∂y

)

−

−α
1

n21

(
∂E1

∂z
|z=0

(∇H)2

2
+ H 2

2

∂3E1

∂z3
|z=0 + · · ·

)

.

∂E2

∂n
|z=H(x,y) =

= α
1

n22

(

− ∂E2
∂z

|z=0 + ∂E2
∂x

∂H

∂x
|z=0 + ∂E2

∂y

∂H

∂y
|z=0 − H

∂2E2
∂z2

|z=0 + H
∂2E2
∂x∂z

|z=0 · ∂H

∂x

)

+

+ α
1

n22

(
∂2E2

∂y∂z
|z=0 · ∂H

∂y
− ∂E2

∂z
|z=0

(∇H)2

2
+ H 2

2

∂3E2

∂z3
|z=0 + · · ·

)

. (10.7)

Then, a boundary condition of type (10.4) taking into account (10.6) and (10.7)
assumes the form

1

n21

(

∂E1
∂z

|z=0 − ∂E1
∂x

∂H

∂x
|z=0 − ∂E1

∂y

∂H

∂y
|z=0 + H

∂2E1
∂z2

|z=0 − H
∂2E1
∂x∂z

|z=0 · ∂H

∂x

)

−

− 1

n21

(
∂2E1

∂y∂z
|z=0 · ∂H

∂y
+ ∂E1

∂z
|z=0

(∇H)2

2
+ H 2

2

∂3E1

∂z3
|z=0

)

= (10.8)

= 1

n22

(
∂E2

∂z
|z=0 − ∂E2

∂x

∂H

∂x
|z=0 − ∂E2

∂y

∂H

∂y
|z=0 + H

∂2E2

∂z2
|z=0 − H

∂2E2

∂x∂z
|z=0 · ∂H

∂x

)

−

− 1

n22

(
∂2E2

∂y∂z
|z=0 · ∂H

∂y
+ ∂E2

∂z
|z=0

(∇H)2

2
+ H 2

2

∂3E2

∂z3
|z=0

)

.

We will seek the reflected field in medium 1 and the field transmitted to medium 2
in the form

E1(x, y, z) = Einc(x, y, z) +
∞

∑

n=0

En
01(x, y, z), (10.9)

E2(x, y, z) =
∞

∑

n=0

En
02(x, y, z), (10.10)
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(we omit factor exp(−iωt for brevity), where Einc(x, y, z) is the primary monochro-
matic field incident on the rough surface, E0

01(x, y, z) is the amplitude of the reflected
wave, and E0

02(x, y, z) is the amplitude of the transmitted wave. The remaining terms
of series (10.9) and (10.10) are propagating and attenuating scattered modes in the
upper and lower media. Substituting relations (10.9) and (10.10) into (10.7) and
(10.8), we obtain the boundary conditions for successive approximations of the field:

Einc|z=0 + E0
01|z=0 = E0

02|z=0, (10.11)

E1
01|z=0 + H

(
∂Einc

∂z

)

z=0

+ H

(
∂E0

01

∂z

)

z=0

=

= H

(
∂E0

02

∂z

)

z=0

+ E1
02|z=0, (10.12)

E2
01|z=0 + H

∂E1
01

∂z
|z=0 + H 2

2

(
∂E2

inc

∂z2
+ ∂2E0

01

∂z2

)

z=0

=

= E0
02 + H

(
∂E1

02

∂z

)

z=0

+ E1
02|z=0 +

(
H 2

2

∂2E0
02

∂z2

)

z=0

, (10.13)

1

n21

(
∂Einc

∂z
+ ∂E0

01

∂z

)

z=0

= 1

n22

(
∂E0

02

∂z

)

z=0

, (10.14)

1

n21

((
∂E1

01

∂z

)

z=0

−
(

∂Einc

∂x
+ ∂E0

01

∂x

)

z=0

∂H

∂x
−

(
∂Einc

∂y
+ ∂E0

01

∂y

)

z=0

∂H

∂y

)

+

+ 1

n21
H

(
∂2E0

01

∂z2

)

z=0

=

= 1

n22

((
∂E1

02

∂z

)

z=0

−
(

∂E0
02

∂x

)

z=0

∂H

∂x
−

(
∂E0

02

∂y

)

z=0

∂H

∂y

)

+

+ 1

n22

(

H

(
∂2E0

02

∂z2

)

z=0

)

, (10.15)

1

n21

((
∂E2

01

∂z

)

z=0

−
(

∂Einc

∂x
+ ∂E1

01

∂x

)

z=0

∂H

∂x
−

(
∂Einc

∂y
+ ∂E1

01

∂y

)

z=0

∂H

∂y

)

+

+ 1

n21
H

((
∂2Einc

∂z2
+ ∂2E1

01

∂z2

)

z=0

)

+
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+ 1

n21

(

H

(
∂2Einc

∂x∂z
+ ∂2E1

01

∂x∂z

)

z=0

· ∂H

∂x
− H

(
∂2Einc

∂y∂z
+ ∂2E1

01

∂y∂z

)

z=0

· ∂H

∂y

)

+

+ 1

n21

((
∂Einc

∂z
+ ∂E1

01

∂z

)

z=0

(∇H)2

2
+ H 2

2

(
∂3Einc

∂z3
+ ∂3E1

01

∂z3

)

z=0

)

=

= 1

n22

((
∂E2

02

∂z

)

z=0

−
(

∂E1
02

∂x

)

z=0

∂H

∂x
−

(
∂E1

02

∂y

)

z=0

∂H

∂y
+ H

(
∂2E1

02

∂z2

)

z=0

)

+

1

n22

(

H

(
∂2E1

02

∂x∂z

)

z=0

· ∂H

∂x
− H

(
∂2E1

02

∂y∂z

)

z=0

· ∂H

∂y
+

(
∂E1

01

∂z

)

z=0

(∇H)2

2

)

+

+ 1

n22

H 2

2

(
∂3E1

01

∂z3

)

z=0

. (10.16)

We assume that the perturbation of the interface between two media is described by
a certain periodic function H(x + 2a, y + 2a) = H(x, y). In accordance with the
periodicity conditions, function H(x, y) can be expanded into a Fourier series. We
assume that the number of harmonics in this series is finite; this gives

H(x, y) =
M

∑

m=0

N
∑

n=0

Hmn exp(iλnx) exp(iλm y), (10.17)

where
λn = πn

a
, λm = πm

a
.

Taking into account relations (10.9) and (10.17), wewill seek the field in the upper
medium in the form

E1 = exp(iτinc(x, y, z)) +
M

∑

m=0

N
∑

n=0

B−
mnHmn exp(iλnx) exp(iλm y)×

× exp(iτre f (x, y, z)) (10.18)

and the field in the lowermediumwill be sought, taking into account relations (10.10)
and (10.17), in the form

E2 =
M

∑

m=0

N
∑

n=0

B+
mnHmn exp(iλnx) exp(iλm y) exp(iτtr (x, y, z)), (10.19)
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where

τinc(x, y, z) = k1x x + k1y y − k1z z, τre f = k1x x + k1y y + k1z z, τ2tr = k2x x + k2y y − k′
2z z,

k1x = kn1 sin(θ) sin(φ), k1y = kn1 sin(θ) cos(φ), k1z = kn1 cos(θ),

k2x = kn2 sin(θ) sin(φ), k2y = kn2 sin(θ) cos(φ), k2z = kn2 cos(θ).

Substituting relations (10.18) and (10.19) into (10.1)–(10.2), we find that these equa-
tions hold under the following conditions:

k21x + k21y + k21z + λ2
n + λ2

m = k2n21, k22x + k22y + k22z + λ2
n + λ2

m = k2n22.

We substitute expressions (10.18) and (10.19) into (10.11)–(10.16), multiply the
result by (10.11)–(10.16) exp(−iλn1x) exp(−iλm1 y) and integrate over the period;
this gives a system of linear equations in B+ and B−. Solving the resultant system,we
obtain corrections to the amplitude transmission and reflections coefficients, which
have the form

B− = B−
00 + H 2B−

00 =
(

1 +
N

∑

n=0

M
∑

m=0

H 2
mnk1(−2k2 + 2αre f − αtr )

)

B−
00 (10.20)

B+ = B+ + H 2B−
00 =

(

1 + 0.5k1k2

N
∑

n=0

M
∑

m=0

H 2
mn((k1 − k2) + 2αre f − 2αtr )

)

B+
00,

(10.21)
where k1 = kn1, k2 = kn2, αre f = k1x + k1y + k1z, αtr = k2x + k2y − k ′

2z .
Substituting σ 2 for H 2

mn in expressions (10.20)−(10.21), we obtain

B− = B−
00 + H 2B−

00 = (1 + σ 2k1(−2k2 + 2αre f − αtr ))B
−
00, (10.22)

B+ = B+
00 + H 2B−

00 = (1 + 0.5k1k2σ
2((k1 − k2) + 2αre f − 2αtr ))B

+
00, (10.23)

where B+ is the amplitude of the reflected wave for the rough interface between the
two media and B− is the amplitude of the transmitted wave for the rough interface
between the media. We define σ as the standard deviation of the rough interface
profile from the unperturbed boundary.

Having determined the corrections to the amplitude transmission and reflection
coefficients, we formulate the problem of reflection of a plane wave from a layer
with a slowly varying thickness taking into account the roughness of the surface.

Let us consider an optical system. The system consists of two regions with
different refraction indices. To attain the maximal conformity with the structure
of the actual object of investigation, we represent the interface between the layer
of the model medium in the form of a undulated surface z = H(x, y), where
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H(x, y) = c sin(ax + by), a, b and c are certain arbitrarily defined constant, such
that a � 1, b � 1, c � 1.

Let us suppose that a plane s- or p- polarized wave is incident on the layer at an
angle θ . We consider only the case of the p polarization. We must find the reflected
field. We will seek the reflected field in the form of waves with slowly varying
amplitudes and rapidly oscillating phases:

E1 = exp

(
i

ε
τinc(ξ1, ξ2, ξ3)

)

+ exp

(
i

ε
τ1re f (ξ1, ξ2, ξ3)

)

×

× A(ξ1, ξ2, ξ3, εx , εy), (10.24)

E2 = exp

(
i

ε
τ2tr (ξ1, ξ2, ξ3)

)

B+(ξ1, ξ2, ξ3, εx , εy)+

exp

(
i

ε
τ3re f (ξ1, ξ2, ξ3)

)

B−(ξ1, ξ2, ξ3, εx , εy), (10.25)

E3 = exp

(
i

ε
τ3tr (ξ1, ξ2, ξ3)

)

C(ξ1, ξ2, ξ3, εx , εy). (10.26)

We seek amplitudes A and C in the form of power series in small parameters εx , εy
(see Chap.4) It should be noted that the expressions for amplitudes B± taking into
account relations (10.22)−(10.23) have the form

B+(ξ1, ξ2, ξ3, εx , εy) =
∞

∑

i=0

∞
∑

j=0

B+
(00)i j (ξ1, ξ2, ξ3)×

× (1 + F1)(ε
i
x · ε j

y), (10.27)

B−(ξ1, ξ2, ξ3, εx , εy) =
∞

∑

i=0

∞
∑

j=0

B−
(00)i j (ξ1, ξ2, ξ3)×

× (1 + F2)(ε
i
x · ε j

y), (10.28)

where F1 = 0.5k1k2σ 2((k1 − k2) − 2αre f + 2αtr ), F2 = σ 2k1(−2k2−2αre f +αtr ).
Note that the expressions for amplitudes A, C , B± are defined analogously to

the method described on Chap. 4. Substitution of expressions (10.24)−(10.26) into
(4.6)−(4.11) generates a recurrent system of equations. From this system for the
reflected field, we find reflection coefficient A taking into account the roughness of
the interface with the medium being simulated.

The expression for the reflection of a Gaussian beam with an arbitrary cross
section is defined analogously to the method described in Chap.4. We note that



10.2 Scattering of a Plane Wave from a Rough Surface 169

the expression which connects the frequency of natural oscillations of the optical
resonator loaded with the sample of the biological tissue under investigation with
electrophysical parameters of this biological structure such as real and imaginary
parts of their refractive indices and sizes are described in Chap. 9.

10.3 Numerical Calculations for a Resonator with Chosen
Parameters and Conclusions

Let us consider an optical resonator with a model medium (sample of biotissue) with
the following parameters: the distance L = 11 cm between the mirrors, radii of the
mirrors are M1 = 100cm and M2 = 46.3cm. The arbitrarily chosen constants are
a = −0.0024, b = 0.020, c = 10−2. The values of parameters a, b and c are chosen
for the interface between the layer being simulated so that the shape of the surface is
in the best conformity with the shape of the interface of the corresponding layer in the
structure of the biological sample being simulated; the thickness of the sample being
simulated was 0.3µm. All calculations were made for the fundamental transverse
mode of a linear resonator.

Figure10.1a, b show the dependence of the absorption coefficient of the biological
sample being simulated on the wavelength for σ = 0 and σ = 0.3nm, where σ is
defined as the standard deviation of the profile of the rough boundary from the
unperturbed boundary. It follows from the graphs that the absorption coefficient of

Fig. 10.1 Dependence of
the absorption coefficient of
the biological sample being
simulated on the wavelength
for the following parameters
of the model medium: the
real part of the refractive
index of the sample being
simulated is 1.3, σ = 0 (a),
σ = 0.3nm (b)

nm

nm
500

10-5,

10-5,

(a)

(b)
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the biological sample in the ultraviolet range is large, while the absorption coefficient
in the visible range decreases and remains almost unchanged.

Thus, the model constructed here makes it possible to analyze the biophysical
characteristics associated with absorption of light in optically thin layers on account
of small-scale inhomogeneities. This also makes it possible to vary (on the same
setup) the biological objects and their electrophysical parameters, as well as char-
acteristic thicknesses of the layers and the characteristic sizes of roughnesses of the
biological structure to determine the dependence between these parameters. Using
this approach systematically, it will probably be possible to find correlations between
electrophysical parameters of the biological structure being simulated and its bio-
logical properties.

It should be noted that by varying the absorption coefficient of the biological
tissue, one can use this model for in vitro measurements of the spectral characteristic
of the biological tissue taking into account small-scale inhomogeneities to construct
the spectral autograph for determining pathological changes in the biological samples
under investigation.

Analogous dependences can be calculated for lasers with other parameters and
used for processing of experimental absorption curves for biological structures under
investigation taking into account small-scale inhomogeneities.
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Chapter 11
Simulation of the Thermal Processes

Abstract We propose the mathematical model for calculation of the hyperthymia
of a multilayer biological structure under the action of laser radiation. For the case in
vivo, the dependences of the temperature field on the refractive index and absorption
coefficient of the biological tissue under study (epidermis, the upper derma layer,
the lower derma layer, blood and its corpuscles) are determined. The obtained quan-
titative estimates can be used to predict the changes in the optical properties of the
biological structure that are caused by the biophysical, biochemical, and physiolog-
ical processes during the action of a nonpolarized monochromatic radiation flow on
the structure surface.

11.1 Introduction

Laser therapy belongs to promising and dynamically developing fields in modern
medicine. The therapeutic action of laser radiation is related to the hypothermia of
biological tissue, which requires a model for the calculation of the temperature field
in the tissue subjected to low-intensity (noncoagulating) laser radiation. There exist
a number of works dealing with the problems of the mathematical simulation of the
laser radiation distribution inmultilayer biological tissue andwith the related thermal
processes. In most works [1, 2], researchers have calculated the temperature fields
appearing during the irradiation of biological tissue by a low-intensity laser beam
at various times. For example, to find the depth profile of the absorbed energy in
irradiated tissue, researchers used various numerical methods, including the discrete
coordinate method [3], finite-difference schemes [1], the Green function method [1],
and the Monte Carlo method [4]. The last method is effective for complex geometry
of a biological sample.

However, an analysis of the thermal effect of laser radiation should not be purely
physical, since it has to include biological (biophysical) studies of the response of the
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organism. Thus, the problem of the thermal effect of laser radiation can be divided
into four problems to be solved successively [5]:

(1) the description of the laser radiation energy distribution;
(2) the determination of the absorption characteristics of the biological material;
(3) an analysis of the temperature distribution in irradiated tissue; and
(4) the study of the biological (biochemical, physiological) changes in the tissue

caused by an increase in the temperature.

In this chapterwe construct amathematicalmodel that can vary the electrophysical
parameters of a biological structure (the real and imaginary parts of the refractive
indices of blood and its corpuscles, epidermis, the upper derma layer, the lower derma
layer) and the characteristic sizes of blood corpuscles and can find relations between
them and the biological properties of blood by allowing for the laser-induced heating
of biological tissue. As a result, we can perform in vivo analysis of the temperature
distribution as a function of the electrophysical parameters of the biological structure
under study. In the first part of this work, we consider the problem of the scattering of
a plane electromagnetic wave by a three-layer spherical particle simulating a blood
cell (see Chap.3). In the second part, we analyze the more complex case of the
reflection of a plane wave using a biological sample consisting of two continuous
layers and one layer with heterogeneous inclusions that simulate blood cells with
different refractive indices and briefly examine the problem of the reflection of a
Gaussian beam with an arbitrary cross section under the conditions given above and
the problem of determining the dependence of the radiation intensity on the refractive
index for a system of blood vessels located in the upper derma layer (see Chaps. 4,
6). These parts have an auxiliary character. In the third part, we solve the problem of
the heating of a blood vessel under the action of a laser beam incident on the outer
surface of a biological structure.

Chapter is based on the results of the [6, 7].

11.2 Mathematical Model for Heating of Biological Tissue
by Laser Radiation

We propose a mathematical model for the heating of a blood vessel by laser radiation
incident on the outer skin surface. In this model, we use dimensional variables. The
laser radiation incident on the skin surface is absorbed by the biological tissue layers
(epidermis, derma) and the blood hemoglobin, increasing the temperature in the
subskin layers and inside blood vessels. In the general case, the simulation of the
thermal processes in biological tissue requires the solution of the three-dimensional
equation

(c · ρ)−1 · div(λ · gradT (r, t)) + Q(r,m j
τ , x

j
τ ) = ∂T

∂t
, (11.1)
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where c is the specific heat, ρ is the density, λ is the thermal conductivity,
m j

τ = N j
τ /no, N

j
τ is the complex refractive index of the j th particle for the τ th

concentric layer, no is the refractive index of the environment, x j
τ = ka j

τ , j = 1...N ,
τ = 1, 3, where a j

τ is the radius of the jth particle with τ th concentric layers, T (r, t)
is the desired temperature distribution and Q(r,m j

τ , x
j
τ ) is the volume power density

distribution of the heat loads in the biological tissue that are induced by its absorp-
tion. This distribution was found at the stage of solving the optical problem.Wewrite
Q(r,m j

τ , x
j
τ ) in the form [8]:

Q(r,m j
τ , x

j
τ ) = E0

τp
μφ(r,m j

τ , x
j
τ ),

where φ(r,m j
τ , x

j
τ ) is a intensity at r(x, y, z), divided to a unit power density on the

surface in the simulated biological structure,
∫
4π I (λ,m j

τ , x
j
τ , r, θ, ϕ)d
 is intensity,

where I (λ,m j
τ , x

j
τ , r, θ, ϕ) determined from (4.69), d
 = sin θdθdϕ is the solid

angle, μ is the absorption coefficient of the medium, Eo is the radiation power
density and τp is pulse duration.

Since the model includes a few of the skin layers, then (11.1) has been solved
for each of them separately. For areas where vessels are not anatomically, thermal
calculation was based on (11.1) . In areas in which vessels are present (in the upper
layer of the dermis) we added more heat sources, which are caused by the flow of
blood. In this layer, we have

(c · ρ)−1 · div(λ · gradT (r, t)) + Q(r,m j
τ , x

j
τ ) + Qblood(r, t, T ) = ∂T

∂t
, (11.2)

where
Qblood(r, t, T ) = c · ρ(ρblood f (t, T ) · (Tblood − T (r, t)),

ρblood is density blood, Tblood is temperature blood, f (t, T ) is the density of the flow
of blood into the tissues.

Let’s write the boundary conditions. In a linearized form, the interaction of the
outer skin surface with the environment (convection) can be described by the bound-
ary conditions of the third kind [1]

(

λ
∂T

∂z
− A(T − To)

)

|z=0 = 0, (11.3)

where A is the reduced heat-transfer coefficient and, T0 is the initial temperature.

T |t=0,z=0 = 34◦, T |t=0,z=h1(x,y) = 37◦. (11.4)

Expression (11.4)means that the temperature changeswith the depth from 34◦ to 37◦.
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At the interface between the i th and (i + 1)th layers (z = hi (x, y)), the following
continuity conditions of the heat flow and temperature are met:

(

λi
∂Ti
∂z

− λ(i+1)
∂T(i+1)

∂z

)

|z=hi (x,y) = 0 (11.5)

(
Ti − T(i+1)

) |z=hi (x,y) = 0, (11.6)

where hi (x, y) is determined from (4.1).
When solving set of (11.1)–(11.6), we obtain

(a) the temperature distribution over layers along the propagation direction of the
laser beam; and

(b) the dependence of the temperature on the optical properties of the biological
tissue, which can be used to study the effect of the temperature field on the
electrophysical parameters of the biological tissue for the case in vivo.

For further investigation and analysis of the dependences obtained, we will use
numerical methods.

11.3 Numerical Calculations Using a Model Medium
and Conclusions

To numerically solve the set of (11.1)–(11.6), we construct an implicit iteration
scheme on a spacetimemesh, the boundary conditions for temperature being replaced
by their finiteanalogs [9].We consider themodelmedium that is shown in Fig. 6.1 and
has the following parameters [10]: the characteristic layer thicknesses are d2 = 65 ·
10−6, n◦

2 = 1.50, n◦
3 = 1.40, n◦

4 = 1.35, n◦
5 = 1.40 n◦

1 = 1,χ1 = 0, χ2 = χ3 = χ4 =
χ5 = 10−5, the wavelength is λ = 0.63 µm (center of the line of a He−Ne laser).
The arbitrarily specified constants are a1 = −0.0024, b1 = 0.020, a2 = 0.021, b2 =
0.030, a3 = 0.041, b3 = 0.051, c1 = c2 = c3 = 10−2. The values of parameters a1,
b1, a2, b2, a3, b3, c1, c2 and c3 are chosen for the interface of each layer so that the
surface shape are as close as possible to the interface shape of the corresponding
layer in the structure of human skin, the thermal conductivity (W/(mK)), the specific
heat J/(kg), and the density ×10−3(kg/m3) are 0.498, 3.2 and 1 for the first layer,
0.266, 3.7 and 1.6 for the second layer, 0.530, 3.6 and 1 for the third layer, 0.266, 3.7
and 1.6 for the fourth layer, and the heat-transfer coefficient is 0.009 Wcm−2 K−1.
The calculations were performed for two-layer particles simulating red corpuscles.
Each layer was taken to have ten particles, the speed of blood flow in the dermis is
15mL/(min 100g), pulse duration is 20c, the radiation power density is 1W/m2.

Figure 11.1a and b shows the time-dependent temperature distribution in the
direction of the incident radiation (z axis) for a multilayer light-absorbing and scat-
tering medium that simulates human skin and its components at various refractive
indices. The upper layer of the simulated biological tissue (epidermis) is seen to be
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Fig. 11.1 Spatial temperature distribution in the incident radiation direction as a function of time
t in the vicinity of the heliumneon laser radiation line (0.63 µm). At the initial time t = 0, the
temperature of the medium is 34◦. The medium parameters are as follows: the real value of the
refractive index of the cytoplasm of the biological particle is a 1.35 or b 1.45, the imaginary value
of the refractive index of the refractive index of the cytoplasm of the biological particle is 0.0001,
the real value of the refractive index of the plasma membrane of the biological particle is a 1.23 or b
1.43, the imaginary value of the refractive index of the plasma membrane of the biological particle
is 0.0001, the radius of the cytoplasm of the biological particle is 3µm, and the radius of the plasma
membrane of the biological particle is a 2 or b 2.3 µm. b The real value of the refractive index
of the plasma membrane of the biological particle is 1.43, the imaginary value of the refractive
index of the plasma membrane of the biological particle is 0.0001, the radius of the cytoplasm of
the biological particle is 3 µm, and the radius of the plasma membrane of the biological particle is
2.3 µm

significantly heated, which is likely to be related to the fact that the light is strongly
absorbed by melanin in the surface layer at the given wavelength (see Chap.1). We
can also conclude that the surface temperature exceeds approximately 45◦ at the tenth
second of the continuous action of laser radiation (Fig. 10.1b), and tissue necrosis or
thermal burn can appear. Thus, with the model, we can estimate the thermal action
of laser radiation on biological tissue, choose the optimum action time to provide
uniform and long-term heating of the tissue by excluding negative reactions, and
determine the boundaries of destruction and tissue necrosis. It should be noted that
our mathematical model is rather sensitive to the changes in the refractive indices of
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the simulated biological tissue and its components that are induced by nonpolarized
monochromatic radiation flow.

The following effect obtained in the model experiment is of interest. We got a
linear relation between the temperature field distribution of the incident radiation and
the refractive indices of the simulated biological tissue. As a result, this model can be
used to predict changes in the electrophysical properties of the biological structure
subjected to laser radiation for the case in vivo.

Our model can vary the composition, the electrophysical parameters, the thermo-
physical characteristics, and the characteristic layer thickness of biological objects,
as well as the characteristic sizes of the biological structure under study, in one appa-
ratus in order to analyze the biophysical processes related to the thermal action of
laser radiation on the upper skin layers.

Using such a simulation, we can both find the preliminary parameters of the laser
radiation field and reveal the effects of the responses to laser irradiation at various
levels of organization of living matter.

On the whole, the results of simulating the thermal fields of laser radiation can
be used to improve laser thermotherapy and biostimulation methods and can serve
as the basis for the mathematical support of the experimental determination of the
optical and thermophysical parameters.

11.4 The Mathematical Model of Thermo-chemical
Denaturation of Biological Structure

The results of calculations of the temperature field in a simulated biological structure
can be used to assess the kinetics of denaturation of tissue. Note that the models of
thermo-chemical denaturation of biological structures such as corneal tissue and
skin was considered in [11, 12]. The correct solution to estimate the kinetics of
thermal decomposition of biological structures is difficult, because the biochemical
composition of the cells is complex. However, the necessary practical estimates
accuracy could be achieved with the introduction of a number of assumptions [13].
The basis of biochemical reactions stimulated by heat, are such processes as break
chemical bonds, the conformational transition. This class includes reactions and
thermal denaturation of proteins and lipids, enzymes, etc.

To describe such reactions we use the kinetic equation of irreversible chemical
reaction of the first order, where the temperature dependence of the reaction rate
constant K (T ) is Arrhenius law:

d f

dt
= −K (T ) f, K (T ) = kT

h
exp

(−ΔH − TΔS

RT

)

, (11.7)
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Fig. 11.2 The threshold
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where f is the relative concentration of the protein molecules, t is time, ΔH is
enthalpy of activation, ΔS is entropy of activation, R is universal gas constant, h is
Planck constant, k is Boltzmann constant.

When solving equations (11.1)−(11.6) and (11.7) it is possible to determine the
radiant exposure which causes the primary disorders, simulated biological structure,
in particular, the dermis.

Criterion for such a disorder is decrease in the dimensionless concentration of the
original protein of the initial value f = 1 before f = exp(−1). This value radiant
exposure is the threshold.

Figure 11.2 shows the calculated dependence of the threshold energy density
of helium-neon laser on the laser pulse duration, ΔH is 430000J/mol and ΔS is
940J/(mol K) [14, 15]. As follows from the figure, with increasing duration of
exposure there is a sharp increase in the consumption of energy required for create
the threshold conditions of coagulation. This phenomenon can be explained by the
loss of selectivity effects, spreading the temperature field, and as a consequence,
increasing the heated volume. Thus, the mathematical model can be considered for
use the development of optimal regime and technical characteristics of lasers used
in biomedical research.
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Chapter 12
Determination of the Optical Parameters
on the Basis of Spectrophotometric Data

Abstract The mathematical model is proposed for determination of the optical
parameters on the basis of spectrophotometric data.

12.1 Introduction

Modern medical technologies are based on fundamental research in biophysics,
physics, mathematics, chemistry, and biology. The rapid development of new optical
methods used in various fields of biology and medicine to study the permeability
of cell membranes, the diffusion of substances in cellular structures, the photody-
namic and photothermal destruction of cells and tissues, as well as to develop new
approaches in photodynamic therapy, optical tomography, optical biopsy etc., drives
the need to determine the biophysical characteristics of biological tissues.

Knowledge of the optical characteristics of biological tissues is one of the key
factors in the development of mathematical models that adequately describe the
propagation of light in biological tissues, which in turn is of fundamental importance
for the development of new optical methods used in various fields of biology and
medicine. Note that non-invasive spectrophotometry methods allow in vivo (in situ)
estimation of the biochemical composition of human soft tissues and their dynamics
over time, including the study of short-term and rhythmic fluctuations of all the
observed parameters that arise as a result of rhythmic work of the cardiovascular and
neuro-reflex systems. The most easily determined parameters in the tissues are: the
percentage of different hemoglobin fractions (oxyhemoglobin, reduced hemoglobin,
etc.) in the blood, the water saturation of tissues (their hydration), the content of
melanin, fat, collagen, keratin, porphyrins and a number of other important enzymes
in the surface tissues. The study of short-term fluctuations in the parameters of
peripheral microhemodynamics on time intervals of 3–5min allows us to evaluate
the functional state of the vascular bed of biological tissues. And the evaluation of
long-term changes in the recorded parameters throughout the day, weeks and months
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allowsmonitoring the effectiveness of the patient’s treatment and evaluating the effect
of various individual treatment procedures. Therefore, non-invasive laser diagnostics
(spectrophotometry) in medicine can be effective in a wide variety of fields, from
oncology and dermatology to occupational pathology, physiotherapy and other areas
of medicine. In clinical medical practice, spectrophotometry is used to diagnose the
functional state of biological tissues and organs. The method has such advantages as
non-invasiveness and a significant depth of penetration of probing radiation in the
red and near-infrared range.

Spectrophotometry as a method is based on a transmission of radiation through
the sample under study and recording backscattered radiation. The recorded attenu-
ated radiation contains information about the properties of the bio-object, primarily
about the absorption and scattering of radiation in the tissue. In the modern techni-
cal implementation, the method makes it possible to quantify the optical parameters
(refractive index and absorption coefficient) of biological tissue. Thus, having infor-
mation on the spectral dependence of these parameters, one can reveal the dynamics
of the physiological, morphological and biochemical characteristics of biological
tissues. In particular, the analysis of the absorption coefficient spectra of biological
tissuesmakes it possible to determine the concentration of endogenous chromophores
(melanin, hemoglobin, bilirubin, etc.).

In this chapter, we solve the following problem: on the basis of spectrophotometric
data of reflection R(λ) for nmeasurements intensity of the reflectedwaves to develop
a numerical method (for all the investigated diapason wavelength) for determination
n j ( refractive index) j th layer etc. Note that this task is a the inverse problem.

12.2 Algorithm for Solving the Inverse Problem

An algorithm for solving the inverse problem consist of approximation the imaginary
part the dielectric constant linear combination of basis functions and the use of the
Kramers–Kronig relation for the calculation of the real part this function.

�ε j = ε0 j +
n∑

i=1

Ai j exp[−(ω − ωi j )
2/Δi j ],�ε j = 1 + 1

π
v.p.

∫ +∞

−∞
�ε j

ω∗ − ω
dω∗,

where ε0 j , ωi j , Δi j , Ai j are desired parameters, by which optimization is performed.

�(ε j ) =
∫

λ

n∑

i=1

[Ri (λ) − Ri (λ, ε j )]2dλ −→ min,

where Ri (λ, ε j ) is coefficient reflection of the simulated biological tissue (see
Chaps. 3–7), ε j determined from the relations Kramers–Kronig. Thus, it is possible
to determine from the measured intensities the reflected waves, the complex refrac-
tive index of the j th layer of the simulated biological tissue. Since the absorption
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coefficient (imaginary part of the refractive index) and the real part of the refractive
index can be expressed through real and imaginary parts of the dielectric constant:

n j = 1√
2

[[�ε2j + �ε2j
]1/2 + �ε j

]1/2
, χ j = 1√

2

[[�ε2j + �ε2j
]1/2 − �ε j

]1/2
,

χ j is absorption coefficient, n j is real part refractive index j th layer.
The following is a general structure models interaction of laser radiation with a

biotissue for determination coefficient reflection of the simulated biological config-
uration.

12.3 General Structure Models Interaction of Laser
Radiation with a Biotissue

Study of Optical Characteristics of Blood Formed Elements Using Intracavity
Laser Spectroscopy for Case In vitro

Input parameters:

m j (λ)

1 ,m j
2(λ) are complex refractive index of cytoplasm and nucleus

for j th particles,
d is shifted nucleus of j th particle,
ρ is thickness of the layer,
M1, M2 ara the radii of mirrors,
L is the mirror distance.

Output parameters:

ω = ω(m j
1(λ),m j

1(λ), d) are frequencies of the resonator eigenmodes

Experimental measurement:

Frequencies of the resonator eigenmodes,
Absorption spectra of the nucleus, cytoplasm, and blood cells.

Calculate:

1. Stokes parameters are highly sensitive not only to the refractive index of the
particles with a nonconcentric inclusion but also to the position of the nucleus.

2. m j
1(λ) is dependence of the imaginary and of the real parts of the index refraction

of the nucleus, cytoplasm of blood cells for different values of d.

AnElectrodynamicModel of theOptical Characteristics of Blood andCapillary
Blood Flow Rate for Case In vivo
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Input parameters:

n j (λ) + iχ j (λ) is refractive index of the j th layer,
d j is thickness of the j th layer,
λ is the wavelength.

Output parameters:

I = I (υx , t, n j , χ j , d j ) are the dependences of the intensity of the laser radiation
on the refractive index and absorption coefficient
for the system of blood vessels in the upper dermis

Experimental measurement:

I = I (υx , t, n j , χ j , d j ) is reflected signal on simulated biological structures.

Calculate:

1. υx (t) is rate of blood flow in a capillary at the time instant t,
2. I = I (n j , χ j , d j ) are the spectral characteristics for simulated biological struc-

tures.

Study of the Optical Characteristics of a Biotissue with Large-Scale Inhomo-
geneities for Case In vivo

Input parameters:

n j (λ) + iχ j (λ) is refractive index of the j th layer,
d j is thickness of the j th layer,
λ is the wavelength,
D is fractal dimension,
σ is the standard deviation,
q is the parameter of the spatial-frequency scaling,
M ,N are the numbers of harmonics.

Output parameters:

I = I (n j , χ j , d j , σ, D, q) is the dependences of the laser radiation intensity
on the refractive index and absorption coefficient
for a system of blood vessels in
for various absorption
coefficients of the epidermis and dermis.
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Experimental measurement:

I = I (n j , χ j , d j , σ, D, q) is reflected signal on simulated
biological structures.

Calculate:

I = I (n j , χ j , d j , σ, D, q)−the dependences of the laser radiation intensity
on the refractive index and absorption coefficient
for a system of blood vessels in
the outer layer of the dermis for various absorption
coefficients of the epidermis and dermis.

Light Scattering by Dielectric Bodies of Irregular Shape in a Layered Medium
for Case In vivo

Input parameters:

n j (λ) + iχ j (λ)is refractive index of the j th layer,
d j is thickness of the j th layer,
λ is the wavelength,
r i1 is the radius of the cell nucleus of the i th particle,
r i2is the radius of the plasma membrane of the i th particle,
mi

1(λ) is refractive index of the cell nucleus of the i th particle,
mi

2(λ) is refractive index of the plasma membrane
of the i th particle,
H is the hematocrit in the capillary,
f is the volume concentration of hemoglobin in erythrocytes,
S is the degree of oxygenation of blood.

Output parameters:

I = I (n j , χ j ,mi
1,m

i
2, r

i
1, r

i
2, S, H, f, d j ) is the dependence of the laser radiation

intensity on the refractive index
epidermis, derma, blood corpuscles,
theoretical determination the function of size distribution for blood cells.

Experimental measurement:

I = I (n j , χ j ,mi
1,m

i
2, r

i
1, r

i
2, S, H, f, d j ) is reflected signal on simulated biological

structure

Calculate:

1. I = I (n j , χ j ,mi
1,m

i
2, r

i
1, r

i
2, S, H, f, d j ),

2. KHbO2 is the normalized spectra of action of laser radiation on oxyhemoglobin,
3. KHb is the normalized spectra of action of laser radiation on deoxyhemoglobin,
4. the function of size distribution for blood cells.
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Modeling of the Optical Characteristics Fibrillar Structure for Case In vivo

Input parameters:

n j (λ) + iχ j (λ) is refractive index of the j th layer,
d j is thickness of the j th layer,
λ is the wavelength,
ai1 is radius i th particle (red blood cell),
ai2is radius i th cylinder (collagenic fibers)
mi (λ)is refractive index of i th
red blood cell.

Output parameters:

I = I (n j , χ j ,mi , ai1, a
i
2, d j )− is the dependences of the laser radiation intensity

on the refractive index and absorption coefficient
epidermis, derma, blood corpuscles.

Experimental measurement:

I = I (n j , χ j ,mi , ai1, a
i
2, d j ) is reflected signal on simulated

biological structures.

Calculate:

I = I (n j , χ j ) are spectral measurements on simulated
biological structures for mi , ai1, a

i
2, d j .

Study of Optical Properties of Biotissues by the Intracavity Laser Spectroscopy
Method for Case In vitro

Input parameters:

n j (λ) + iχ j (λ) is refractive index of the j th layer,
d j is thickness j th layer,
M1, M2 are the radii of mirrors,
L is the mirror distance

Output parameters:

ω = ω(d j , n j , iχ j ) are frequencies of the resonator eigenmodes

Experimental measurement:

χ j (λ) is dependence of the imaginary part of the refractive index
on simulated biological structures for j th layer.

Calculate:

1. n j (λ) is dependence of the real part of the refractive index epidermis,
2. χ j (λ) is dependence of the imaginary part of the refractive index epidermis
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Study of the Optical Characteristics of Thin Layer of the Biological Sample for
Case In vitro

Input parameters:

n j (λ) + iχ j (λ) is refractive index of the j th layer,
d j is thickness j th layer,
M1,M2 are the radii of mirrors,
L is the mirror distance.
σ is the standard deviation of the profile of the rough boundary from the unperturbed
boundary

Output parameters:

ω = ω(d j , n j , iχ j , σ )are frequencies of the resonator eigenmodes

Experimental measurement:

χ j (λ) is dependence of the imaginary part of the refractive index
on simulated biological structures for j th layer.

Calculate:

1. n j (λ) is dependence of the real part of the refractive index epidermis
2. χ j (λ) is dependence of the imaginary part of the refractive index epidermis

Simulation of the Thermal Processes for Case In vivo

Input parameters:

n j (λ) + iχ j (λ)is refractive index of the j th layer,
d j is thickness j th layer,
mk

1 is refractive index of the cytoplasm
mk

2 is refractive index of the plasma membrane
ak1 is the radius of the cytoplasm of kth particle,
ak2 is the radius of the plasma membrane of kth particle,
c j
0 is specific heat capacity j th layer,

Λ j is heat conductivity coefficient j th layer,
ρ j is density j th layer,
μ is absorption coefficient,
Eo is radiant energy density,
τp is pulse duration,
ρblood is density blood,
Tblood is temperature blood,
f (t, T ) is the density of the flow of blood into the tissues,
is the reduced heat-transfer coefficient,
T0 is the initial temperature,
ΔH is enthalpy of activation,
ΔS is entropy of activation,
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Output parameters:

T (r, t, d j , n j , χ j ,mk
1,m

k
2, a

k
1 , a

k
2 , c

j
0 ,Λ

j , ρ j , Eo, τp, ρblood , Tblood , f (t, T ), A,ΔH,ΔS)

is spatial temperature distribution

Experimental measurement:

Threshold energy exposure.

Calculate:

1. Temperature distribution in the direction of the incident radiation
(z axis) for a multilayer light-absorbing and scattering
medium that simulates human skin and its components at various parameters
value
(d j , n j , χ j ,mk

1,m
k
2, a

k
1, a

k
2, c

j
0,Λ

j , ρ j , Eo, τp, ρblood , Tblood , f (t, T ), A),

2. Estimation the kinetics of denaturation of tissue.
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Absorption coefficient, 6, 84, 98
Absorption coefficient of melanin, 6
Absorption curves, 158
Absorption spectrum, 153
Amplitude, 81, 167, 168
Arrhenius law, 176
Assimilation, 6
Asymptotic methods in the theory of diffrac-

tion, 23

B
Basal keratinocytes, 3
Basal layer, 6
Basophils, 28
Bessel function of the first kind, 95
Biological structure, 104, 171, 176
Biological tissues, 1, 4, 14, 158, 180
Biotissue, 124, 125
Blood, 4, 6, 100, 123, 125, 142, 157
Blood cells, 104, 122, 137, 138
Blood plasma, 57
Blood vessel, 4, 7, 85, 96, 172
Boltzmann constant, 177
Bouguer law, 6, 12

C
Capillary vessel, 86
Cartesian coordinate system, 84, 132
Cell membranes, 179
Clebsch-Gordan coefficients, 118
Coefficient of absorption, 12
Coefficient of the total interaction, 12
Collagen fibers, 132

Complex refractive indices of cytoplasm, 44
Concentric layer, 124
Cytoplasm, 57, 175

D
Decomposition, 52
Delta-Eddington approximation, 15
Density, 173
Density blood, 173
Deoxyhemoglobin, 104, 123
Derma, 131
Dermis, 6, 68
Dermis of skin, 2
Dielectric constant, 181
Diffuse flux vector, 14
Diffusion, 6
Diffusion approximation, 15, 21
Dissimilation, 6
Distribution function, 20
Dura, 2

E
Eigenfrequencies, 156
Electromagnetic waves, 52
Enthalpy of activation, 177
Entropy of activation, 177
Eosinophils, 28
Epidermal basal membrane, 3
Epidermis, 6, 67, 69, 96, 99, 122, 142, 157
Erythrocyte, 10, 28, 29, 104, 124, 125

F
Fahraeus effect, 124
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Fiber tissue, 3
Fibrillar structure, 2, 132, 139, 141
First-order approximation, 13
Fourier series, 166
Fractal dimension, 94, 99
Fractal surface, 94
Fraunhofer zone, 91
Fredholm integral equation, 148
Fresnel law, 23
Function of size distribution, 146
Fundamental mode, 57

G
Galilean transformation, 83
Gaussian beam, 78, 90, 98, 104, 123, 132,

139, 146, 154, 161, 168
Green functions, 114

H
Helmholtz equation, 78
Hematocrit, 7, 56, 124
Hemocyte, 56
Hemoglobin, 4, 6, 28, 69, 104, 172
Henie-Greenstein approximation, 15
Henie-Greenstein function, 12
Human dermis, 123
Huygens-Fresnel integral transformation,

78, 90, 139, 154

I
Initial temperature, 173
Integral equation, 107, 154
Intensity, 84
Inverse Monte-Carlo method, 20
Inverse problem, 180
Inverse scattering problem, 23
Isotropic component, 20

K
Kinetic equation, 176
Kirchhoff approximation, 91, 96
Kirchhoff method, 90, 91, 162
Kramers-Kronig relation„ 180
Krylov subspace, 50
Kubelka-Munk coefficients, 16
Kubelka-Munk theory, 16

L
Leucocytes, 28

Light scattering particles, 5
Linear polarization vector, 120
Linear resonator, 54, 154, 169
Lower derma, 67
LU factorization method, 120
Lymphocyte, 28

M
Matrix preconditioner, 51
Maxwell equations, 29, 71, 84, 105, 113
Melanin, 4, 6, 69
Method of bioconjugate gradients, 51
Mie theory, 10, 119
Minimum residual, 50
Monte-Carlo method, 11, 16, 22, 131
Monte-Carlo simulation, 16
Multilayered biological tissues, 11
Multiple Scattering of Waves (MSW), 10

N
Neutrophil, 28
Nonsingular matrix, 51
Nonstationary equation of radiative transfer

theory, 20
Nucleus, 57

O
Operator of reflection, 12
Optical characteristics, 2
Optical Density (OD), 6
Osmosis, 6
Oxygenated hemoglobin, 7
Oxygen saturation, 7
Oxyhemoglobin, 6

P
Papillary dermis, 4
Perturbation method, 91, 162
Petrov–Galerkin approach, 50
Phase function, 12, 14
Phase function of the scattering, 12
Planck constant, 177
Plasma membrane, 114, 115
Potential functions, 133
Preconditioner, 52

Q
Quadratic conjugate gradient method, 51
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R
Radius cytoplasm, 44
Radius of cell nucleus, 31, 44
Random number, 18
Rapidly oscillating phases, 72
Reduced heat-transfer coefficient, 173
Reflected field, 71, 78, 80–82, 97, 138
Reflection coefficient, 97, 168
Refractive index, 115, 157
Regularization parameter, 150
Relative refraction index, 107
Relative residual, 150
Resonator mirror, 54
RiccatiBessel functions, 44
Ritz–Galerkin method, 50
Roughness, 89

S
Scattering amplitudes, 54
Scattering anisotropy factor, 12
Scattering coefficients, 12, 33, 38
Scattering matrix, 53, 62
Scattering phase function, 18
Sclera eyes, 2
Shifted nucleus, 33
Skin, 68, 85
Small-angle X-ray, 1
Spherical Bessel functions, 33
Spherical coordinates, 47
Spherical inclusion, 33
Spherical system of coordinates, 112
Stable algorithmof biconjugate gradients, 49
Stationary Theory of Radiative Transfer, 12
Stokes parameters, 52, 63

Summation theorems, 46, 47
System of linear algebraic equations, 48
System of linear equations, 121

T
Temperature blood, 173
Thermal conductivity, 173
Thicknesses, 71
Three-dimensional equation, 172
Thrombocyte, 28
Tikhonov equation, 150
Tikhonov regularization method, 149
Tissue of the eye, 9
T -matrix, 119
Total hemoglobin, 7
Turbid media, 7, 67
Two-flux Kubelka-Munk model, 16

U
Universal gas constant, 177
Upper derma, 67

V
Vector spherical harmonics, 38, 44, 105, 106

W
Wavelength, 5, 56, 67, 84, 99, 124, 125, 139,

158, 162
Wave number, 29, 44, 105, 114
Weierstrass function, 94
Wigner functions, 117, 118
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