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Preface

The teaching of rational analytical mechanics is supported by the learning of
solving examples, exercises and classical and more recent problems. This collection
of forty solved exercises is intended to be a pedagogical tool that explains step by
step the resolution of the forty exercises carefully chosen for their importance in
classical mechanics, celestial mechanics and quantum mechanics.

This collection of exercises comprises six chapters:

1. Lagrange Equations
2. Hamilton Equations
3. First Integral and Variational Principle
4. Canonical Transformations
5. Hamilton–Jacobi Equations
6. Phase Integral and Angular Frequencies

Each chapter begins with a brief theoretical reminder before the proposed
exercises, which are solved in detail. We particularly emphasized the last two
chapters because of the importance and flexibility of Hamilton–Jacobi’s method in
solving many mechanical problems in classical mechanics as well as quantum and
celestial mechanics.

The forty proposed and solved exercises and problems address the following
themes:
in classical mechanics:

– the harmonic oscillator with one dimension (Exercises 7, 20, 21, 34) and three
dimensions (36)

– the double (1, 27) and simple (35) pendulum
– particles subjected to different potentials and constrains (2, 6, 24, 25, 29)
– free particles (9, 22, 23)
– movement of solids (3, 4)
– sliding and rotating masses, the Watt regulator (5, 8)

v



– minimization problems (10–12)
– canonical transformations (13–20)
– unconventional mechanics (26)

in electromagnetism:

– Stark effect (31, 33)
– double Coulomb field (32)

in celestial mechanics:

– the classical (28, 38) and relativistic (39) Kepler’s problem
– the problem of Mercury’s perihelion advance (40)

in quantum mechanics:

– Schrödinger equation (30)
– the Bohr atom (37)

This collection of exercises gathers for the most part exercises given at the
beginning of the 1980s in the Physics Department of the Faculty of Sciences of the
University of Kinshasa, Congo, and complemented by other more recent exercises.

This collection of exercises is intended for students in the second year of their
bachelor’s and first year of their master’s studies in Faculties of Sciences and
Polytechnic Schools, who are taking or have taken a course in “Analytical
Mechanics”. A basic knowledge of integral calculus is a prerequisite. However, the
method of resolution of integrals is indicated and the reader is referred to classical
tables of integrals.

It is a pleasure to thank Profs. A. Deprit, N. Rouche, P. Y. Willems and
D. Johnson from the Catholic University of Louvain, Louvain-la-Neuve, Belgium;
Prof. D. Huylebrouck from the Catholic University of Leuven, Belgium; and
Prof. H. Pollack from the University of Kinshasa, Congo.

Beijing, China Vladimir Pletser
2018 Assistant Professor, Department of Physics

Faculty of Sciences, University of Kinshasa, Congo
Catholic University of Louvain

Louvain-la-Neuve, Belgium (1982–85)
Senior Physicist—Engineer, European Space Research
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European Space Agency (ESA)

Noordwijk, The Netherlands (1985–2016)
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Chapter 1
Lagrange Equations

Joseph-Louis Lagrange, Comte (born Turin, Italy, January 25, 1736 – died Paris,
France, April 10, 1813) was a Franco-Italian mathematician and astronomer. A
brilliant self-taught, he was appointed a professor in 1755, aged 19. In 1766,
on the recommendation of Euler and d’Alembert, Lagrange succeeded Euler
as the director of mathematics at the Prussian Academy of Sciences in Berlin,
Prussia, where he stayed for over twenty years, producing volumes of work and
winning several prizes of the French Academy of Sciences. He made significant
contributions to the fields of analysis, number theory, and both classical and
celestial mechanics. Lagrange’s treatise on analytical mechanics (Mécanique
analytique, 1788–1789), written in Berlin presented the most comprehensive
treatment of classical mechanics since Newton and formed a basis for the devel-
opment of mathematical physics in the nineteenth century. After moving from
Berlin to Paris in 1787, he became a member of the French Academy of Sci-
ences. He became the first professor of analysis at the École Polytechnique upon

© Springer Nature Singapore Pte Ltd. 2018
V. Pletser, Lagrangian and Hamiltonian Analytical Mechanics:
Forty Exercises Resolved and Explained, UNITEXT for Physics,
https://doi.org/10.1007/978-981-13-3026-1_1
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2 1 Lagrange Equations

its opening in 1794, was a founding member of the Bureau des Longitudes, and
became a Senator in 1799. Within mathematical analysis, Lagrange researched
extensively into the calculus of variations, and in the process, invented the vari-
ation of parameters. He also devised ways of using differential calculus to solve
problems pertaining to theory of probabilities.

1.1 Reminder

1.1.1 Generalized Coordinates

For a system of N particles, the coordinates q1, q2, . . . , qn , where n is the degree of
freedom, are the generalized coordinates that are independent of each other.

1.1.2 Kinetic Energy

If the system is such that time t does not intervene in the transformation equations,
the kinetic energy T reads as the sum for the N particles of the product of the mass
of each particle mν by the square of the generalized velocity q̇ν of this particle

T = 1

2

N∑

ν=1

mν q̇
2
ν (1.1)

where q̇ν = dqν/dt is the generalized velocity corresponding to the generalized
coordinate qν . Note that q̇2

ν may also sometimes be written as the product of two
different generalized velocities q̇αq̇β .

If the system is such that the time t intervenes in the transformation equations,
the expression of kinetic energy (1.1) will contain linear terms in q̇ν .

1.1.3 Generalized Forces

Let Fν be forces acting on the ν particles with radius vectors rν . One calls

φα =
N∑

ν=1

Fν
∂rν
∂qα

(1.2)

the generalized force associated with the generalized coordinate qα.
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1.1.4 Lagrange Equations

Generally speaking, Lagrange’s equations read as follows

d

dt

(
∂T

∂q̇α

)
− ∂T

∂qα
= φα (1.3)

If the system is conservative, i.e. if all forces derive fromapotentialV , the generalized
forces φα read

φα = − ∂V

∂qα
(1.4)

Conversely, the potential V can obviously be written

V = −
∫

φαdqα (1.5)

One introduces then the Lagrangian L

L = T − V (1.6)

and Lagrange’s equations become simpler,

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= 0 (1.7)

If only part of the forces derives from a potential V and that other forces φ′
α are not

conservative (for example, friction forces, or in general, all forces proportional to
velocity1), Lagrange equations become

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= φ′

α (1.8)

1.1.5 Generalized Moment

One defines the conjugate moment or generalized moment associated with the gen-
eralized coordinate qα

pα = ∂T

∂q̇α
(1.9)

1Except the Coriolis force.



4 1 Lagrange Equations

If the system is conservative, i.e. if the forces are derived from a potential, then we
have

pα = ∂L

∂q̇α
(1.10)

1.1.6 Lagrange Equations for Systems with Constraints

If there are constraints on a system, these must be taken into account in the Lagrange
equations. Suppose there is a number c of constraints C , with c < n for the system
not to be blocked (n is the number of degrees of freedom of the system), and that
these c constraints can be written as c constraint equations

n∑

α=1

Cμ,αdqα + Cμ,t dt = 0 (1.11)

with 1 ≤ μ ≤ c. Lagrange equations read then

d

dt

(
∂T

∂q̇α

)
− ∂T

∂qα
= φα +

c∑

μ=1

λμCμ,α (1.12)

where the c parameters λμ are called Lagrange’s multipliers.
If the system is conservative, Lagrange equations (1.7) are used with the

Lagrangian
d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
=

c∑

μ=1

λμCμ,α (1.13)

Physically, Lagrange multipliers are associated with constraint forces acting on the
system. When determining Lagrange multipliers, the effect of constraint forces is
essentially taken into account without explicitly calculating them.

1.1.7 Lagrange Equations with Impulse Forces

If the forces Fν acting on a system are such that

lim
τ→0

∫ τ

0
Fνdt = Iν (1.14)

where τ represents an interval of time during which the forces Fν are applied to the
system. One calls the forces Fν impulse forces and Iν impulse.



1.1 Reminder 5

Lagrange’s equations then become
(

∂T

∂q̇α

)

p

−
(

∂T

∂q̇α

)

a

= Fα (1.15)

where the instants p (posterior) and a (anterior) refer respectively to after and before
the shock and Fαare generalized impulses

Fα =
N∑

ν=1

Iν
∂rν
∂qα

(1.16)

1.2 Exercises

1.2.1 Exercise 1 : Double Pendulum

Find Lagrange’s equations of the motion of a double pendulum oscillating in a
plane in a uniform gravity field.

Proof The system has two degrees of freedom, n = 2, and is without constraints
(c = 0). The generalized coordinates are the angles ϕ1 and ϕ2 relative to the local
vertical of rigid rods of negligible mass and length l1 and l2 (Fig. 1.1).

For the point of mass m1, the kinetic energy and potential read

T1 = m1l21 ϕ̇
2
1

2
(1.17)

V1 = −m1g l1 cosϕ1 (1.18)

For the point of mass m2, the square of its velocity v2 read

Fig. 1.1 Double pendulum
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v22 =
[
d

dt
(l1 sinϕ1 + l2 sinϕ2)

]2

+
[
d

dt
(l1 cosϕ1 + l2 cosϕ2)

]2

= [l1 cosϕ1ϕ̇1 + l2 cosϕ2ϕ̇2]
2 + [−l1 sinϕ1ϕ̇1 − l2 sinϕ2ϕ̇2]

2

= l21 ϕ̇
2
1 + l22 ϕ̇

2
2 + 2l1l2 cos (ϕ1 − ϕ2) ϕ̇1ϕ̇2

and its kinetic energy and potential read

T2 = m2

2

(
l21 ϕ̇

2
1 + l22 ϕ̇

2
2 + 2l1l2 cos (ϕ1 − ϕ2) ϕ̇1ϕ̇2

)
(1.19)

V2 = −m2g (l1 cosϕ1 + l2 cosϕ2) (1.20)

The Lagrangian is

L = (T1 + T2) − (V1 + V2)

=
(
m1 + m2

2

)
l21 ϕ̇

2
1 + m2

2
l22 ϕ̇

2
2 + m2l1l2 cos (ϕ1 − ϕ2) ϕ̇1ϕ̇2

+ (m1 + m2) g l1 cosϕ1 + m2g l2 cosϕ2 (1.21)

Lagrange’s first equation is written

d

dt

(
∂L

∂ϕ̇1

)
− ∂L

∂ϕ1
= 0

with

∂L

∂ϕ̇1
= (m1 + m2) l

2
1 ϕ̇1 + m2l1l2 cos (ϕ1 − ϕ2) ϕ̇2

d

dt

(
∂L

∂ϕ̇1

)
= (m1 + m2) l

2
1 ϕ̈1 + m2l1l2 [cos (ϕ1 − ϕ2) ϕ̈2

− sin (ϕ1 − ϕ2) ϕ̇2 (ϕ̇1 − ϕ̇2)]
∂L

∂ϕ1
= −m2l1l2ϕ̇1ϕ̇2 sin (ϕ1 − ϕ2) − (m1 + m2) g l1 sinϕ1

yielding

(m1 + m2) l1ϕ̈1 + m2l2
[
cos (ϕ1 − ϕ2) ϕ̈2 + sin (ϕ1 − ϕ2) ϕ̇

2
2 + (m1 + m2) g sinϕ1

]
= 0

(1.22)
Lagrange’s second equation is written

d

dt

(
∂L

∂ϕ̇2

)
− ∂L

∂ϕ2
= 0

with
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∂L

∂ϕ̇2
= m2l

2
2 ϕ̇2 + m2l1l2 cos (ϕ1 − ϕ2) ϕ̇1

d

dt

(
∂L

∂ϕ̇2

)
= m2l

2
2 ϕ̈2 + m2l1l2 [cos (ϕ1 − ϕ2) ϕ̈1

− sin (ϕ1 − ϕ2) ϕ̇1 (ϕ̇1 − ϕ̇2)]
∂L

∂ϕ2
= m2l1l2ϕ̇1ϕ̇2 sin (ϕ1 − ϕ2) − m2g l2 sinϕ2

yielding

l2ϕ̈2 + l1
[
cos (ϕ1 − ϕ2) ϕ̈1 − sin (ϕ1 − ϕ2) ϕ̇

2
1

] + g sinϕ2 = 0 (1.23)

�

1.2.2 Exercise 2: Particle on a Paraboloid

In a uniformgravityfield, a particle ofmassmmoveswithout friction on the inner
surface of a paraboloid of revolution x2 + y2 = az. Find the motion equations.

Proof The system has three degrees of freedom, n = 3. The system configuration
and axial symmetry with respect to the Z axis lead to the choice of cylindrical
coordinates (ρ,ϕ, z) as generalized coordinates (Fig. 1.2). The system is subject to

Fig. 1.2 Particle inside a
paraboloid
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one constraint (c = 1): the mass point m must move on the inner surface of the
paraboloid of equation x2 + y2 = az in Cartesian coordinates or, as ρ2 = x2 + y2

ρ2 = az (1.24)

in cylindrical coordinates. Differentiating (1.24) yields

2� δ� − a δz = 0 (1.25)

which, from (1.11), gives C1,ρ = 2ρ, C1,ϕ = 0, C1,z = −a et C1,t = 0.
The kinetic energy, potential and Lagrangian read respectively

T = m

2

(
ρ̇2 + ρ2ϕ̇2 + ż2

)

V = mgz

L = m

2

(
ρ̇2 + ρ2ϕ̇2 + ż2

) − mgz

Lagrange equations (1.13) are then written

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= λ1C1,α (1.26)

For qα = ρ,

∂L

∂ρ̇
= mρ̇

d

dt

(
∂L

∂ρ̇

)
= mρ̈

∂L

∂�
= mρϕ̇2

yielding
mρ̈ − mρϕ̇2 = 2ρλ1 (1.27)

For qα = ϕ,

∂L

∂ϕ̇
= mρ2ϕ̇

d

dt

(
∂L

∂ϕ̇

)
= mρ2ϕ̈ + 2mρρ̇ϕ̇

∂L

∂ϕ
= 0
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yielding
mρ2ϕ̈ + 2mρρ̇ϕ̇ = 0 (1.28)

For qα = z,

∂L

∂ ż
= mż

d

dt

(
∂L

∂ ż

)
= mz̈

∂L

∂ϕ
= −mg

yielding
mz̈ + mg = −aλ1 (1.29)

To these three Lagrange equations with four variables, one adds the constraint equa-
tion (1.24) derived with respect to time

2ρρ̇ − aż = 0 (1.30)

This gives four equations in ρ, ϕ, z et λ1. �

1.2.3 Exercise 3: Sphere Rolling on Another Sphere

A sphere of radius a and mass m is on top of another sphere of radius b. The
first sphere is moved slightly and starts rolling without slipping. Find the motion
equations.

Fig. 1.3 Sphere rolling
without slipping on another
sphere
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Proof The system has two degrees of freedom (n = 2). Given the system configu-
ration, one chooses as generalized coordinates the two angles ϕ and ψ defined as
follows (Fig. 1.3). At the initial instant, the sphere of radius a is on top of the sphere
of radius b. The contact point is called A on the sphere of radius a and B on the
sphere of radius b. After some time, the line passing through the centres of the two
spheres shifted by an angle ϕ with respect to the radius reaching the initial contact
point B on the sphere of radius b and from an angle of ψ with respect to the radius
reaching the initial point of contact A on the sphere of radius a. The angles ϕ and ψ
are counted positively in the clockwise direction.

The system has one constraint, rolling without slipping, which results in the equa-
tion

bϕ̇ = aψ̇ (1.31)

or
bϕ = aψ (1.32)

as ϕ = 0 and ψ = 0 at the initial instant when points A and B were combined.
Kinetic energy includes two terms: the first for the movement of rotation of the

centre of mass of the sphere of radius a around the sphere of radius b and the second
term for the rotation of the sphere of radius a around its centre, yielding

T = 1

2
m (a + b)2 ϕ̇2 + 1

2
I ω2 (1.33)

where I is the moment of inertia of the sphere equal to I = 2
5ma2 and ω is the

instantaneous rotation velocity of the sphere of radius a whose value is ω = ϕ̇ + ψ̇.
The kinetic energy is then

T = 1

2
m (a + b)2 ϕ̇2 + 1

5
ma2

(
ϕ̇ + ψ̇

)2
(1.34)

Taking as a reference the horizontal plane passing through the centre of the sphere
of radius b, the potential is

V = mg (a + b) cosϕ (1.35)

The Lagrangian reads

L = 1

2
m (a + b)2 ϕ̇2 + 1

5
ma2

(
ϕ̇ + ψ̇

)2 − mg (a + b) cosϕ (1.36)

Lagrange equations (1.13) are then written

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= λ1C1,α (1.37)
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The constraint equation (1.32) gives after differentiation

b ∂ϕ − a ∂ψ = 0 (1.38)

which leads to C1,ϕ = b et C1,ψ = −a.
For qα = ϕ

∂L

∂ϕ̇
= m (a + b)2 ϕ̇ + 2

5
ma2

(
ϕ̇ + ψ̇

)

d

dt

(
∂L

∂ϕ̇

)
= m (a + b)2 ϕ̈ + 2

5
ma2

(
ϕ̈ + ψ̈

)

∂L

∂ϕ
= mg (a + b) sinϕ

Lagrange’s first equation reads

m (a + b)2 ϕ̈ + 2

5
ma2

(
ϕ̈ + ψ̈

) − mg (a + b) sinϕ = bλ1 (1.39)

For qα = ψ

∂L

∂ψ̇
= 2

5
ma2

(
ϕ̇ + ψ̇

)

d

dt

(
∂L

∂ψ̇

)
= 2

5
ma2

(
ϕ̈ + ψ̈

)

∂L

∂ψ
= 0

Lagrange’s second equation reads

2

5
ma2

(
ϕ̈ + ψ̈

) = −aλ1 (1.40)

Deriving the constraint equation (1.31) with respect to time, we have ψ̈ = b
a ϕ̈, that

is replaced in (1.40) to obtain

λ1 = −2

5
m (a + b) ϕ̈ (1.41)

By substituting by (1.40) and (1.41) in (1.39), one obtains finally

ϕ̈ = 5g

7 (a + b)
sinϕ (1.42)

�
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1.2.4 Exercise 4: Truck Descending a Slope

A truck with four identical wheels runs down a slope freewheeling , i.e. with the
motor disengaged, without braking or slipping. Each wheel is considered to be
a homogeneous disc of radius r and mass m. The rest of the truck, i.e. wheels
not included, has a mass M . To a point A of the truck is suspended an object of
non-negligible mass m ′, and of moment of inertia I with respect to a horizontal
axis perpendicular to the velocity of A and passing through A. All considered
movements are frictionless and parallel to the plane of the Figure.
(1) Give the Lagrange equations of the system.
(2) Give a first integral of the system.
(3) Show that the system can take, for appropriate initial conditions, amovement
inwhich the inclination of the object ofmassm ′and the truck acceleration remain
both constant.
(4) Calculate this angle of inclination in case 3 and show that it is not zero or
equal to a right angle if the road followed by the truck is neither horizontal nor
vertical.
(5) Show that, if the wheel mass can be neglected, the angle of inclination in
case 3 can be equal to the slope inclination.

Proof (1) Let γ be the slope angle with the horizontal, and l the distance from the
centre of inertia G of the object of mass m ′ to the suspension point A (Fig. 1.4).

The system has two degrees of freedom (n = 2): the linear displacement of the
truck and the oscillation of the suspended object. Given the system configuration,
one chooses as generalized coordinates x , the abscissa C of the hub of a rear wheel
along an axis parallel to the slope and counted from a point O of reference, and θ,
the angle made by AG with the downward vertical.

The kinetic energy consists of three terms: the first for the rotational movement
of the four wheels of the truck, the second for the linear displacement of the truck
and the third for the oscillation movement of the suspended object, i.e.

Fig. 1.4 Truck descending a
slope
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T = T4wheels + Ttruck + Tobject (1.43)

The kinetic energy of the four wheels is obviously four times the kinetic energy of
a wheel, which consists of two terms: the first due to the inertia of the wheel in its
rotation movement around the hub and the second due to the linear displacement of
the wheel (more precisely, the linear displacement of the centre of mass of the wheel
supposed to be in the middle of the wheel), i. e.

T4wheels = 4T1wheel (1.44)

= 4

(
Iwheel ω̇

2

2
+ mẋ2

2

)
(1.45)

where ω̇ is the instantaneous angular velocity of the wheel rotation and Iwheel is the
moment of inertiawith respect to the centre of thewheel considered as ahomogeneous
disc of radius r and mass m, i.e. Iwheel = mr2

2 . It then comes from (1.45)

T4wheels = 4

(
mr2ω̇2

4
+ mẋ2

2

)
(1.46)

= 4

(
mẋ2

4
+ mẋ2

2

)
(1.47)

= 3mẋ2 (1.48)

where one used in (1.46) the fact that ẋ = r ω̇, which is the condition of rolling
without slipping.

The truck’s kinetic energy is simply

Ttruck = Mẋ2

2
(1.49)

and the kinetic energy of the suspended object also comprises two terms: the first
due to the inertia of the object in its oscillation movement and the second due to the
linear displacement of the centre of inertia of the object, i.e.

Tobject = I θ̇2

2
+ m ′v2object

2
(1.50)

The velocity vobject of the object is that of the object’s centre of mass which can be
assumed to be identical to the centre of inertia G of the object. It is found by deriving
with respect to time the coordinate along the X axis of the G point, i.e.



14 1 Lagrange Equations

vobject = d xOG

dt
= d

dt
(xOC + xCA + xAG) (1.51)

= d

dt
(x + xCA + l sin (θ + γ)) (1.52)

= ẋ + l θ̇ cos (θ + γ) (1.53)

where the distance xCA between the rear wheel hub and the suspension point of the
object is assumed to be constant. It then comes from (1.50) with (1.53)

Tobjet = I θ̇2

2
+ m ′

2

(
ẋ + l θ̇ cos (θ + γ)

)2
(1.54)

which gives for total kinetic energy (1.43)

T = 3mẋ2 + Mẋ2

2
+ I θ̇2

2
+ m′

2

(
ẋ + l θ̇ cos (θ + γ)

)2 (1.55)

=
(
6m + M + m′

2

)
ẋ2 + m′l ẋ θ̇ cos (θ + γ) +

(
I + m′l2 cos2 (θ + γ)

2

)
θ̇2 (1.56)

The potential has also three terms and is written

V = (V4wheels + Vtruck) + Vobject (1.57)

= − (4m + M) gx sin γ − m ′g (x sin γ + l cos θ) (1.58)

= − (
4m + M + m ′) gx sin γ − m ′gl cos θ (1.59)

The Lagrangian reads then

L =
(
6m + M + m ′

2

)
ẋ2 + m ′l ẋ θ̇ cos (θ + γ) +

(
I + m ′l2 cos2 (θ + γ)

2

)
θ̇2

+ (
4m + M + m ′) gx sin γ + m ′gl cos θ (1.60)

For the generalized coordinate x , we find

∂L

∂ ẋ
= (

6m + M + m ′) ẋ + m ′l θ̇ cos (θ + γ) (1.61)

d

dt

(
∂L

∂ ẋ

)
= (

6m + M + m ′) ẍ + m ′l θ̈ cos (θ + γ) − m ′l θ̇2 sin (θ + γ) (1.62)

∂L

∂x
= (

4m + M + m ′) g sin γ (1.63)

Lagrange’s first equation reads

(
6m + M + m′) ẍ + m′l θ̈ cos (θ + γ) − m′l θ̇2 sin (θ + γ) − (

4m + M + m′) g sin γ = 0
(1.64)
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For the generalized coordinate θ, we find

∂L

∂θ̇
= m′l ẋ cos (θ + γ) +

(
I + θ̇2m′l2 cos2 (θ + γ)

)
θ̇ (1.65)

d

dt

(
∂L

∂θ̇

)
= m′l ẍ cos (θ + γ) − m′l ẋ θ̇ sin (θ + γ) (1.66)

+
(
I + m′l2 cos2 (θ + γ)

)
θ̈ − 2m′l2 cos (θ + γ) sin (θ + γ) θ̇2 (1.67)

∂L

∂θ
= −m′l ẋ θ̇sin (θ + γ) − m′l2θ̇2 cos (θ + γ) sin (θ + γ) − m′gl sin θ (1.68)

Lagrange’s second equation reads

m ′l ẍ cos (θ + γ) + (
I + m ′l2 cos2 (θ + γ)

)
θ̈ (1.69)

−m ′l2 cos (θ + γ) sin (θ + γ) θ̇2 + m ′gl sin θ = 0 (1.70)

(2) A first integral of the movement is given by T + V = E where E is a constant,
the total energy of the system as there is no friction or other energy losses, which
yields

(
6m+M+m ′

2

)
ẋ2 + m ′l ẋ θ̇ cos (θ + γ) +

(
I+m ′l2 cos2(θ+γ)

2

)
θ̇2 (1.71)

− (
4m + M + m ′) gx sin γ − m ′gl cos θ = E (1.72)

(3) For θ constant, i.e. θ̇ = θ̈ = 0, Lagrange’s first equation (1.64) yields

ẍ =
(
4m + M + m ′

6m + M + m ′

)
g sin γ (1.73)

The acceleration of the truck and the inclination of the object can therefore be constant
together.
(4) In this case 3, Lagrange’s second equation reduces to

ẍ cos (θ + γ) + g sin θ = 0 (1.74)

By replacing ẍ by (1.73), one obtains

(
4m + M + m ′

6m + M + m ′

)
sin γ cos (θ + γ) + sin θ = 0 (1.75)

or

θ = arctan

(
sin γ cos γ

sin2 γ − (
6m+M+m ′
4m+M+m ′

)
)

(1.76)
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As the road taken by the truck is neither horizontal nor vertical, i.e. 0 < γ < π
2 , θ

can’t be nil or equal to π
2 .

(5) If thewheels have a negligiblemass in front of those of the truck and the suspended
object, i.e. m � M + m ′, we have from (1.76)

tan θ ≈ sin γ cos γ

sin2 γ − 1
= − tan γ (1.77)

and θ ≈ −γ. The inclination of the object can therefore be (almost) equal to the
slope. �

1.2.5 Exercise 5: Sliding and Rotating Masses

A mass m is attached to two rigid bars of the same length l and without mass.
The top bar is connected to a fixed point of a vertical axis and the bottom bar
is attached to another mass m sliding freely and without friction on the vertical
axis. All connections are ideal, i.e. without friction. The entire system is rotating
at constant angular velocity ω around the vertical axis in a uniform gravity field.
What are the equilibrium positions of the system?

Proof Let’s call the two masses m respectively P1 rotating around the axis and P2
sliding on the axis (Fig. 1.5). There is only one degree of freedom (n = 1) as both
masses are linked and connected to the vertical axis. The only generalized coordinate
is the angle θ made by the two bars with the vertical axis.2

One first looks for Lagrange’s equations of the system. In Cartesian coordinates
with the Z axis along the downward vertical, the coordinates of the positions of the
two masses are respectively

Fig. 1.5 Masses sliding and
rotating around a vertical
axis

2One notices that the two angles θ can only be equal as long as they are comprised between 0 and
π
2 , 0 ≤ θ ≤ π

2 .
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(x1, y1, z1) = (l sin θ cos (ωt) , l sin θ sin (ωt) , l cos θ) (1.78)

(x2, y2, z2) = (0, 0, 2l cos θ) (1.79)

where the angle ωt is counted positively from an X axis horizontal (not shown in the
figure). The velocity coordinates are then written as follows:

(ẋ1, ẏ1, ż1) = ((
l θ̇ cos θ cos (ωt) − lω sin θ sin (ωt)

)
,

(
l θ̇ cos θ sin (ωt) + lω sin θ cos (ωt)

)
, −l θ̇ sin θ

)
(1.80)

(ẋ2, ẏ2, ż2) = (
0, 0, −2l θ̇ sin θ

)
(1.81)

The velocity squares of the two masses read then v21 = l2
(
θ̇2 + ω2 sin2 θ

)
and v22 =

4l2θ̇2 sin2 θ. The kinetic energy, potential and Lagrangian read

T = m

2

(
v21 + v22

) = ml2

2

(
θ̇2 + (

ω2 + 4θ̇2
)
sin2 θ

)
(1.82)

V = −mg (z1 + z2) = −3mgl cos θ (1.83)

L = ml2

2

(
θ̇2 + (

ω2 + 4θ̇2
)
sin2 θ

) + 3mgl cos θ (1.84)

With

∂L

∂θ̇
= ml2θ̇

(
1 + 4 sin2 θ

)
(1.85)

d

dt

(
∂L

∂θ̇

)
= ml2

(
θ̈
(
1 + 4 sin2 θ

) + 8θ̇2 sin θ cos θ
)

(1.86)

∂L

∂θ
= ml2

(
ω2 + 4θ̇2

)
sin θ cos θ − 3mgl sin θ (1.87)

Lagrange’s equation reads after simplification,

θ̈
(
1 + 4 sin2 θ

) + (
4θ̇2 − ω2

)
sin θ cos θ + 3

g

l
sin θ = 0 (1.88)

At equilibrium, angular velocities and accelerations must be nil, θ̈ = θ̇ = 0, which
replaced in (1.88) yields

(
−ω2 cos θ + 3

g

l

)
sin θ = 0 (1.89)

which gives the equation of dynamic equilibrium in θ which has three solutions:

θ = 0 or π for sin θ = 0, and θ = arccos
(

3g
ω2l

)
for the other term.

The first solution θ = 0 corresponds to a stable equilibrium with the two masses
aligned along the vertical axis. The second solution θ = π corresponds to an unstable
equilibrium with mass P2 at the upper fixed attachment point and mass P1 above it.
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Here the two angles θ are different, that of P2 is nil and that of P1 is equal to π. These
two solutions are independent of the rotation velocity ω and mass m.

As the function arccos x is only defined for arguments x such that −1 ≤ x ≤ 1,
for the third solution to be possible, one must have

ω ≥
√
3g

l
(1.90)

which means that for slow rotations such as ω <

√
3g
l , there are only the first two

dynamic equilibrium solutions for θ = 0 and π that exist. For faster rotations such
as condition (1.90) is fulfilled, there is a third dynamic equilibrium position whose
angular value θ depends on the speed of rotation ω but always independent of the
massm.When the rotation velocityω increases indefinitely, the angle θ tends towards
π
2 , i.e. ω → ∞ ⇒ θ → π

2 . �



Chapter 2
Hamilton Equations

Sir William Rowan Hamilton (born 4 August 1805 and died 2 September 1865
in Dublin, Ireland) was an Irish mathematician, astronomer, and mathemati-
cal physicist, who made important contributions to classical mechanics, optics,
geometry and algebra. Raised by his uncle from the age of three, Hamilton learnt
several foreign languages and became first a linguist. Hamilton was then part of
a school of mathematicians associated with Trinity College in Dublin, which he
entered at age 18. He studied both classics and mathematics, and was appointed
Professor of Astronomy just prior to his graduation in 1827, at age 22. He then
took up residence at Dunsink Observatory where he spent the rest of his life.
His studies of mechanical and optical systems led him to discover new mathe-
matical concepts and techniques. His best-known contribution to mathematical
physics is the reformulation of Newtonian mechanics, now called Hamiltonian
mechanics. This work has proven central to the modern study of classical field
theories such as electromagnetism, and to the development of quantummechan-
ics. Many of the fundamental concepts used in quantum mechanics have been
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Forty Exercises Resolved and Explained, UNITEXT for Physics,
https://doi.org/10.1007/978-981-13-3026-1_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3026-1_2&domain=pdf
https://doi.org/10.1007/978-981-13-3026-1_2


20 2 Hamilton Equations

named “Hamiltonian” in his honor.Hismost important discoverywas the algebra
of quaternions in 1843 and later on, of the biquaternion algebra, which provided
representational tools for Minkowski space and the Lorentz group early in the
twentieth century.

2.1 Reminder

2.1.1 Hamiltonian

One defines the Hamiltonian H as

H =
n∑

α=1

pαq̇α − L (2.1)

H is therefore a function H (pα, qα, t) of generalized coordinates qα and of gen-
eralized moments pα = ∂L

∂q̇α
. In other words, all generalized velocities q̇α of the

Lagrangian are replaced by the generalized moments in the Hamiltonian.

2.1.2 Hamilton Equations

Hamilton equations read

ṗα = − ∂H

∂qα
(2.2)

q̇α = ∂H

∂ pα
(2.3)

So we have 2n equations whose degree does not exceed q̇ while we had n equations
of Lagrange whose maximum degree was q̈ .

2.1.3 Conservative System

If the system is conservative, i.e. all forces derive from a potential, then H represents
the total energy of the system

H = T + V (2.4)
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2.1.4 Expression of the Hamiltonian in Different
Coordinate Systems

In spherical coordinates (r, θ,ϕ)

H = 1

2m

(
p2r + p2θ

r2
+ p2ϕ

r2 sin2 θ

)
+ V (r, θ,ϕ) (2.5)

In cylindrical coordinates (ρ,ϕ, z)

H = 1

2m

(
p2ρ + p2ϕ

ρ2
+ p2z

)
+ V (ρ,ϕ, z) (2.6)

In parabolic coordinates (ξ, η,ϕ)

H = 2

m

(
ξ p2ξ + η p2η

ξ + η
+ p2ϕ

4ξη

)
+ V (ξ, η,ϕ) (2.7)

In elliptical coordinates (ξ, η,ϕ)

H = 1

2mσ2
(
ξ2 − η2

)
((

ξ2 − 1
)
p2ξ +

(
1 − η2

)
p2η +

(
1

ξ2 − 1
+ 1

1 − η2

)
p2ϕ

)
+ V (ξ, η,ϕ)

(2.8)

where 2σ is the distance between the two foci or the two attractive points.

2.2 Exercises

2.2.1 Exercise 6: Particle in a Plane with Central Force

Aparticle ofmassm ismoving in the plane (X,Y )under the influence of a central
force depending only on its distance to the origin. Find Hamilton equations of
movement.

Proof The system has two degrees of freedom (n = 2). One chooses polar coordi-
nates (r, θ) as generalized coordinates (see Fig. 2.1). The kinetic energy reads

T = 1

2
m

(
ṙ2 + r2θ̇2

)
(2.9)
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Fig. 2.1 Particle in a plane
with central force

The potential due to the central force is isotropic in the plane (X,Y ) and is written
generally V (r). The Lagrangian reads

L = 1

2
m

(
ṙ2 + r2θ̇2

) − V (r) (2.10)

The generalized moments are derived as follows

pr = ∂L

∂ṙ
= mṙ ⇒ ṙ = pr

m
(2.11)

pθ = ∂L

∂θ̇
= mr2θ̇ ⇒ θ̇ = pθ

mr2
(2.12)

The Hamiltonian (2.1) reads

H = (
pr ṙ + pθθ̇

) −
[
1

2
m

(
ṙ2 + r2θ̇2

) − V (r)

]
(2.13)

Replacing ṙ and θ̇ by (2.11) and (2.12) in (2.13) yields

H = p2r
2m

+ p2θ
2mr2

+ V (r) (2.14)

Hamilton’s equations (2.2), (2.3) are then written for qα = r

ṙ = ∂H

∂ pr
= pr

m
(2.15)

ṗr = −∂H

∂r
= p2θ

mr3
− ∂V (r)

∂r
(2.16)

and for qα = θ
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θ̇ = ∂H

∂ pθ
= pθ

mr2
(2.17)

ṗθ = −∂H

∂θ
= 0 (2.18)

We deduce from (2.18) that pθ is a constant of the movement and that θ is a cyclic
coordinate (see next chapter). �

2.2.2 Exercise 7: Harmonic Oscillator

The harmonic oscillator is a mass m attached to a massless spring of stiffness k
and attached to a fixed point. The mass slides without friction on a horizontal
support. Give Hamilton equations of movement.

Proof The systemhas one degree of freedom (n = 1).One chooses as the generalized
coordinate the horizontal distance q between the current position x and the position
at rest x0 of the centre of mass of the mass m, i.e. q = x − x0 (see Fig. 2.2). The
spring restoring force is −kq .

The kinetic energy, potential and Lagrangian read

T = 1

2
mq̇2 (2.19)

V = 1

2
kq2 (2.20)

L = 1

2

(
mq̇2 − kq2

)
(2.21)

The generalized moment p is found by

p = ∂L

∂q̇
= mq̇ ⇒ q̇ = p

m
(2.22)

The Hamiltonian reads

Fig. 2.2 Harmonic oscillator
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H = pq̇ − 1

2

(
mq̇2 − kq2

)
(2.23)

= p2

2m
+ kq2

2
(2.24)

Hamilton equations are

q̇ = ∂H

∂ p
= p

m
(2.25)

ṗ = −∂H

∂q
= −kq (2.26)

The movement equation of the harmonic oscillator is deduced from (2.25), (2.26)

q̈ = − k

m
q (2.27)

�



Chapter 3
First Integral and Variational Principle

3.1 Reminder

3.1.1 Cyclic Coordinate

A generalized coordinate qα is cyclic or ignorable when

∂L

∂qα
= 0 (3.1)

i.e. the coordinate does not appear in the Lagrangian (but the generalized velocity
q̇α can appear in L). Lagrange’s equations then reduce to

d

dt

(
∂L

∂q̇α

)
= 0 (3.2)

or
∂L

∂q̇α
= pα = constant (3.3)

and, by definition, the conjugatedmoment pα is constant. In Exercise 6, pθ is constant
and one verifies that θ does not appear in L . The constant conjugated moment pα is
called a constant of movement. This allows to directly determine a first integral of
the movement, i.e. that it is easy to write the movement trajectory equation.

3.1.2 Poisson Brackets

For two functions of two variables p and q and of time t , f (p, q, t) and g (p, q, t),
one defines the Poisson brackets of these two functions by

© Springer Nature Singapore Pte Ltd. 2018
V. Pletser, Lagrangian and Hamiltonian Analytical Mechanics:
Forty Exercises Resolved and Explained, UNITEXT for Physics,
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[ f, g] =
n∑

i=1

(
∂ f

∂qi

∂g

∂ pi
− ∂ f

∂ pi

∂g

∂qi

)
(3.4)

The Poisson bracket has the following algebraic properties:

[ f, g] = − [g, f ] (anticommutativity) (3.5)

[ f, f ] = 0 (3.6)

[ f, k] = 0 if k = constant (3.7)

[( f1 + f2) , g] = [ f1, g] + [ f2, g] (3.8)

[( f1 f2) , g] = f1 [ f2, g] + f2 [ f1, g] (3.9)

[(k f ) , g] = k [ f, g] if k = constant (3.10)
∂

∂t
[ f, g] =

[
∂ f

∂t
, g

]
+

[
f,

∂g

∂t

]
(3.11)

[ f, [g, h]] + [g, [h, f ]] + [h, [ f, g]] = 0 (Jacobi identity) (3.12)

that can be demonstrated directly by application of the definition (3.4).
The total time derivative of a function f can be written in function of the Hamil-

tonian H as

d f

dt
= [ f, H ] + ∂ f

∂t
(3.13)

The function f (q, p, t) is a first integral if and only if

d f

dt
= 0 ⇐⇒ [ f, H ] + ∂ f

∂t
= 0 (3.14)

The equations of movement can be written as

[qi , H ] = ∂H

∂ pi
(3.15)

[pi , H ] = − ∂H

∂qi
(3.16)

because one has q̇i = [qi , H ] et ṗi = [pi , H ].

3.1.3 Theorem of Poisson

Theorem. If f (q, p, t) and g (q, p, t) are two first integrals of the movement, their
Poisson bracket [ f, g] is also a first integral of the movement.
This theorem leads to the following corollaries:
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• if f is a first integral of the movement, ∂ f
∂t is also a first integral of the movement.

• if f and all following derivatives up to the order (n − 1) are first integrals of the
movement, then ∂n f

∂tn is also an first integral of the movement.

It should be noted that this process does not work indefinitely; it soon appears that
the new first integrals are no longer independent of each other.

3.1.4 Euler Equation

A common problem in mathematics is to find a curve y = Y (x) joining two points
x = a and x = b such that the integral

∫ b
a F

(
x, y, y′) dx (with y′ = dy

dx ) is either
maximum or minimum. When this condition is met, it is said that the curve Y (x) is
extremal. This condition is shown to be equivalent to

d

dx

(
∂F

∂y′

)
− ∂F

∂y
= 0 (3.17)

which is Euler’s equation.
Similarly in mechanics, one considers the Lagrangian of a system L = T − V

as a function of which one would like to determine the extremal curve between two
instants t1 and t2, i.e. such that the integral

∫ t2
t1
L (q, q̇, t) dt ismaximumorminimum.

This condition is equivalent to the Euler equation applied to the Lagrangian, which
yields Lagrange equation (1.7) of the movement.

3.1.5 Variational Principle

This finding prompted Hamilton to state the Variational Principle:
“A conservative mechanical system evolves from instant t1 to instant t2 in such a way
that the action integral

∫ t2
t1
L (q, q̇, t) dt has an extremal value”.

Inmost problems, the extremal value will beminimal and this principle is often noted

in the form of δ
(∫ t2

t1
L (q, q̇, t) dt

)
= 0.

3.1.6 Application in Optics: Fermat Principle

All geometric optics can be based on Fermat Principle:
“Light travels from one point to another over trajectories such that the travel time is
minimal locally” (i.e., minimal for each element of the trajectory).

https://doi.org/10.1007/978-981-13-3026-1_1


28 3 First Integral and Variational Principle

This Fermat Principle is a variational principle such as time T taken by a light beam

between two points x1 and x2 is minimum, i.e. δ (T ) = δ
(∫ x2

x1
L dt

)
= 0, where L

is here the “optical” Lagrangian, equivalent to the mechanical Lagrangian (1.6). The
trajectories of the light rays follow equations similar to those of Euler and Lagrange
(see Exercise 12).

3.2 Exercises

3.2.1 Exercise 8: Watt Regulator

In a uniform gravity field, two equal masses m are attached at the ends of two
rigid bars of same length l revolving around a vertical axis. The inclination of
these two bars with respect to the vertical axis can vary by means of a slide
(sliding without friction on the vertical axis) and to which are fixed two small
support barsmounted on free articulations. This system is called aWatt regulator
and allows to stabilize the rotation velocity of the vertical axis.
(1) Give the first integrals of movement.
(2) How does this system stabilize the rotation velocity of the vertical axis?

Proof (1) The system has two degrees of freedom (n = 2). One chooses as gener-
alized coordinates the two angles, respectively θ, the inclination of each of the two
bars with respect to the vertical axis and ϕ, the rotation angle of the plane of the two
bars with respect to a fixed direction (see Fig. 3.1).

The kinetic energy, potential and Lagrangian read

T = ml2
(
θ̇2 + ϕ̇2 sin2 θ

)
(3.18)

V = −2mgl cos θ (3.19)

L = ml2
(
θ̇2 + ϕ̇2 sin2 θ

) + 2mgl cos θ (3.20)

Fig. 3.1 Watt regulator

https://doi.org/10.1007/978-981-13-3026-1_1
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The generalized coordinate ϕ does not appear explicitly in the Lagrangian, so it is
cyclic. The first integral of movement is given by

∂L

∂ϕ̇
= 2ml2ϕ̇ sin2 θ = constant = pϕ (3.21)

which corresponds to the projection of the kinetic moment on the vertical axis (i.e.
the product of the distance of the mass m to the vertical axis by the mass m and by
the linear velocity of rotation).

As the system is conservative (there is no friction), the second integral of the
movement is given by the energy conservation

E = T + V = constant (3.22)

= ml2
(
θ̇2 + ϕ̇2 sin2 θ

) − 2mgl cos θ (3.23)

which yields

θ̇2 + ϕ̇2 sin2 θ − 2
g

l
cos θ = E

ml2
= constant (3.24)

(2) The Eq. (3.21) explains the dynamic stability of the system: if the inclination
θ is constant, the rotation velocity ϕ̇ remains constant. If ϕ̇ increases, then sin2 θ
decreases; if ϕ̇ decreases, then sin2 θ increases. �

3.2.2 Exercise 9: First Integral of a Free Material Point

Consider a free material point whose Hamiltonian in Cartesian coordinates is

H = 1

2m

3∑
i=1

p2i (3.25)

with pi = mẋi .
(1) Show that the function f (p1, x1, t) = p1t

m − x1 is a first integral of move-
ment.
(2) Show that successive derivatives of f are also first integrals of movement.
(3) Show that this process is not infinite.
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Proof (1) Suppose that f (p1, x1, t) is a first integral; then by (3.14), [ f, H ] + ∂ f
∂t =

0, with

[ f, H ] =
3∑

i=1

(
∂ f

∂xi

∂H

∂ pi
− ∂ f

∂ pi

∂H

∂xi

)
= − p1

m
(3.26)

∂ f

∂t
= p1

m
(3.27)

The sum of (3.26) et (3.27) is nil, so d f
dt = 0 and f is indeed a first integral.

(2) One knows two first integrals of movement: the function f and the total energy
E or Hamiltonian H for a conservative system. One can assume that the system is
conservative in this case. So, by Poisson’s theorem, the bracket [ f, H ] is also a first
integral.

Now, it has been shown that [ f, H ] + ∂ f
∂t = 0 or ∂ f

∂t = − [ f, H ], so ∂ f
∂t is also

a first integral. One has then the relations
[

∂ f
∂t , H

]
+ ∂2 f

∂t2 = 0, and if ∂ f
∂t is a first

integral, then ∂2 f
∂t2 will be too. And so forth, ∂n f

∂tn will be a first integral because
∂n f
∂tn = −

[
∂n−1 f
∂tn−1 , H

]
.

(3) This process is not infinite because already in the case of a free particle ∂2 f
∂t2 =

∂
∂t

(
∂ f
∂t

)
= ∂

∂t

( p1
m

) = 0. All subsequent first integrals will also be nil. �

3.2.3 Exercise 10: Brachistochrone Problem

In a uniform gravity field, a particle of massm glides without friction on a curve
in a vertical plane.
(1) Find the time taken by the particle to travel along the curve between two
points, if the initial state is at rest.
(2) Determine the form of the curve so that this time is minimum.

Proof LetC be the curve to be determined, P the particle of massm and coordinates
(x, y) and s the curvilinear abscissa of P . One takes two points on the curve such
that the first one is the origin O and the second is point A of coordinates (x f , y f )

(see Fig. 3.2).
(1) A first integral of movement is given by the total energy conservation, i.e. the
sum of potential and kinetic energies at points O and P are equal

mgy f + 0 = mg
(
y f − y

) + m

2

(
ds

dt

)2

(3.28)
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Fig. 3.2 Particle on a curve

where we took the horizontal plane passing through A as a reference for the potential
energy and where ds

dt is the instantaneous velocity of P at time t . From (3.28), we
find successively

ds

dt
= √

2gy (3.29)

dt = ds√
2gy

(3.30)

where the+ sign is chosen in front of the radical in (3.29) because s increases when t
increases. One finds the time t f taken by the particle to go from O to A by integrating
(3.30)

t f =
s=A∫

s=O

ds√
2gy

(3.31)

As ds =
√
(dx)2 + (dy)2 = √

1 + y′2dx with y′ = dy
dx , which introduced in (3.31)

yields

t f = 1√
2g

x f∫
0

√
1 + y′2

y
dx (3.32)

(2) For the time t f to be minimum, (3.17) must be verified, i.e. d
dx

(
∂F
∂y′

)
= ∂F

∂y with

F =
√

1+y′2
y , yielding

1 + y′2 + 2yy′′ = 0 (3.33)

with y′′ = d2 y
dx2 . To find the form of the curve, one must solve the Eq. (3.33). Let

y′ = u, yielding y′′ = du
dx = du

dy
dy
dx = du

dy u. The Eq. (3.33) becomes successively after
transformation,
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1 + u2 + 2yu
du

dy
= 0 (3.34)

2u du

1 + u2
+ dy

y
= 0 (3.35)

One integrates the equation (3.35) with the integration constant equal to ln b where
b is a constant, giving successively

ln
(
1 + u2

) + ln y = ln b (3.36)(
1 + u2

)
y = b (3.37)

u =
√
b − y

y
(3.38)

dx =
√

y

b − y
dy (3.39)

where u has been replaced by u = y′ = dy
dx . One integrates the equation (3.39) with

the variable change y = b sin2 θ with the integration constant equal to c. One finds
then the parametric equations of the curve

x = b

2
(2θ − sin 2θ) + c (3.40)

y = b

2
(1 − cos 2θ) (3.41)

The geometrical conditions on the curve are such that (1) c = 0 because the curve
passes through the origin; (2) by taking ϕ = 2θ and a = b/2, a is determined by the
condition of the curve passing by the point A

(
x f , y f

)
. One finally finds

x = a (ϕ − sinϕ) (3.42)

y = a (1 − cosϕ) (3.43)

Fig. 3.3 Brachistochrone and cycloid
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which is the parametric equation of a cycloid, a curve described by a fixed point on a
circle when this circle rolls without slipping on a straight line. The brachistochrone
curve is a portion of this cycloid (Fig. 3.3). �

3.2.4 Exercise 11: Minimum Surface of Revolution

A complete revolution is described around a X axis by a segment of curve
C between the two points P (x1, y1) and P ′ (x2, y2) such that the obtained
revolution surface S is minimal.
(1) Show that the surface S is expressed by

S = 2π

x2∫
x1

y
√
1 + y′2dx (3.44)

(2) Show that the differential equation of the curve C is

yy′′ = 1 + y′2 (3.45)

(3) Determine the shape of the curve C so that the surface S is minimal.

Proof Let C the curve segment between the points P (x1, y1) and P ′ (x2, y2). The
X axis is selected as the axis of rotation (see Fig. 3.4).
(1) The surface S of revolution generated by the rotation of the curve segment C
around the X axis is given by Theorem of Guldin

Fig. 3.4 Surface of
revolution
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S = 2π ls rs (3.46)

where s, ls and rs are respectively the curvilinear abscissa, the length of the curve
segment C and the distance of the centre of gravity of the curve segment C to
the X axis. With ds =

√
(dx)2 + (dy)2 = √

1 + y′2dx where y′ = dy
dx , one has by

definition

ls =
s=P ′∫

s=P

ds =
x2∫

x1

√
1 + y′2dx (3.47)

rs =
∫ s=P ′
s=P y ds∫ s=P ′
s=P ds

=
∫ x2
x1

y
√
1 + y′2dx∫ x2

x1

√
1 + y′2dx

(3.48)

By replacing in (3.46), one obtains (3.44).

(2) For the surface S to be minimal, (3.17) must be verified, or d
dx

(
∂F
∂y′

)
= ∂F

∂y with

F = y
√
1 + y′2, which yields immediately (3.45) with y′′ = d2 y

dx2 .
(3) To find the form of the curve, the Eq. (3.45) must be solved. Let y′ = u, which
yields y′′ = du

dx = du
dy

dy
dx = du

dy u. The Eq. (3.45) becomes successively after transfor-
mation,

1 + u2 − yu
du

dy
= 0 (3.49)

u du

1 + u2
− dy

y
= 0 (3.50)

The Eq. (3.50) is integrated with the integration constant equal to ln b where b is a
constant, which gives successively

1

2
ln

(
1 + u2

) − ln y = ln b (3.51)√
1 + u2 = by (3.52)

u =
√
b2y2 − 1 (3.53)

dx = dy√
b2y2 − 1

(3.54)

where u has been replaced by u = y′ = dy
dx . The Eq. (3.54) is integrated with the

integration constant equal to c. Then one obtains successively
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x = 1

b
ln

(
by +

√
b2y2 − 1

)
+ c (3.55)

eb(x−c) = by +
√
b2y2 − 1 (3.56)√

b2y2 − 1 = eb(x−c) − by (3.57)

b2y2 − 1 = (
eb(x−c) − by

)2
(3.58)

y = eb(x−c) + e−b(x−c)

2b
= a cosh

(
x − c

a

)
(3.59)

where a = 1
b as been posed in (3.59). The two constants a and c can be determined

by the condition that the curve C passes through the two end points P (x1, y1) et
P ′ (x2, y2). The integration constant c can also be eliminated by translating the origin
of the axes along the X axis of a length equal to c, which finally gives

y = a cosh
( x
a

)
(3.60)

that is the equation of a catenary, i.e. a set of small chains connected to each other
and attached by the extremities at a certain height above the ground (the attachment
points can be at different heights as in our case). The revolution surface is called a
catenoid and is a minimal surface of revolution. �

It should be noted that this minimal surface of revolution is also the one formed
by a soap film obtained after dipping two parallel circular loops in soapy water.

3.2.5 Exercise 12: Optical Path and Fermat Principle

(1) Calculate generally the optical path of a light beam in a medium of refractive
index η.
(2) Show that the optical path is a straight line in a medium of constant refractive
index, η = constant.
(3) Calculate the optical path in the atmosphere above a flat, sandy and very hot
desert, where the refractive index depends on the altitude y above ground and can
be represented by the relation η = η0 (1 − ay), with a a constant characteristic
of the medium and whose unit is the inverse of a distance.
(4) Deduce the distance between an observer lost in the desert and an oasis
he sees from an angle arctan

(
1
2

)
above the horizontal (one neglects Earth’s

curvature).

Proof (1) The velocity v of light in a medium of refractive index η and the velocity
c of light in vacuum are linked by the relation
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v = c

η
(3.61)

with obviously η > 1.
Suppose that the light beam must propagate from a point P1 to a point P2 and

that the path of the light beam is in a plane containing P1 and P2,1 i.e. that the
optical trajectory is a plane curve of equation y = y (x) passing through P1 and
P2. Calling ds the length of the infinitesimal trajectory along y (x), described in an
infinitesimal time dt , the time T12 taken by the light between the two points P1 and
P2 of coordinates respectively (x1, y1) and (x2, y2), reads generally

T12 =
P2∫

P1

dt =
P2∫

P1

ds

v
= 1

c

P2∫
P1

ηds (3.62)

As ds =
√
(dx)2 + (dy)2 = √

1 + y′2dx where y′ = dy
dx , (3.62) becomes

T12 = 1

c

x2∫
x1

η
√
1 + y′2dx (3.63)

and the “optical” Lagrangian L reads

L = η
√
1 + y′2

c
(3.64)

Note that the refractive index η may not be constant and may depend on the optical
path, i.e. of x and y, η = η (x, y).

Applying the Fermat Principle, one minimizes the travel time of the light beam
T12, which is given by Euler equation (3.17) with the “optical” Lagrangian L (3.64).
By replacing by

∂L
∂y′ = ηy′

c
√
1 + y′2 (3.65)

d

dx

(
∂L
∂y′

)
= 1

c

⎡
⎣

((
∂η
∂x + y′ ∂η

∂y

)
y′ + ηy′′

)
√
1 + y′2 − ηy′2y′′√(

1 + y′2)3
⎤
⎦ (3.66)

∂L
∂y

=
∂η
∂y

√
1 + y′2

c
(3.67)

1If this is not the case, the real non-planar trajectory can be broken down into a series of trajectory
elements that can be locally approximated by plane trajectory elements in planes tangential to the
real trajectory element.
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Equation (3.17) becomes, after simplification,

y′′ + y′2 + 1

η

(
∂η

∂x
y′ − ∂η

∂y

)
= 0 (3.68)

(2) In a medium of constant refractive index η, one has ∂η
∂x = ∂η

∂y = 0, and (3.68)
reduces to y′′ = 0, so y′ is constant and y (x) = c1x + c2 where c1 et c2 are integra-
tion constants. The optical path is therefore a straight line in a medium of constant
refractive index η.
(3) If η = η0 (1 − ay), one has ∂η

∂x = 0, ∂η
∂y = −η0a and (3.68) becomes

y′′ + a
(
y′2 + 1

)
(1 − ay)

= 0 (3.69)

After changing variable u = 1
a − y, which gives successively y = 1

a − u, y′ = −u′
et y′′ = −u′′, (3.69) becomes

− u′′ +
(
u′2 + 1

)
u

= 0 (3.70)

or
uu′′ − u′2 − 1 = 0 (3.71)

This non-linear second degree differential equation is solved (see 6.111, Kamke,
1943) in

u = 1

c1
cosh (c1x + c2) (3.72)

or

y = 1

a
− 1

c1
cosh (c1x + c2) (3.73)

where c1 and c2 are integration constants. The optical path is therefore described by
a hyperbolic function.
(4) Let the lost observer in the desert be in x = 0 and the oasis in x = L . As the oasis
is viewed by the observer under an angle arctan

(
1
2

)
, the boundary conditions on

the optical path y (x) are respectively y(x=0) = 0, y(x=L) = 0 and y′
(x=0) = 1

2 . From
(3.73), one has

y′ = − sinh (c1x + c2) (3.74)

For y′
(x=0) = 1

2 , one finds y′
(x=0) = − sinh (c2) = 1

2 , i.e. c2 =
− arcsin h( 12 ) = − ln

(
1+√

5
2

)
≈ −0.48121. For the condition y(x=0) = 0, one finds

from (3.73) y(x=0) = 1
a − 1

c1
cosh (c2) = 0, i.e.. c1 = a cosh

(
ln

(
1+√

5
2

))
= a

√
5

2 .

Replacing in (3.73), one finds the expression of the optical path
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y = 1

a

(
1 − 2

√
5

5
cosh

(
a
√
5

2
x − ln

(
1 + √

5

2

)))
(3.75)

The last condition y(x=L) = 0 in (3.75) yields the distance L

y(x=L) = 1

a

(
1 − 2

√
5

5
cosh

(
a
√
5

2
L − ln

(
1 + √

5

2

)))
= 0 (3.76)

which yields cosh
(
a
√
5

2 L − ln
(
1+√

5
2

))
=

√
5
2 , or L = 2

√
5

5a

(
arccos h

(√
5
2

)
+

ln
(
1+√

5
2

))
= 4

√
5

5a ln
(
1+√

5
2

)
. �

If a = 1/km, the oasis is at L ≈ 860 m; if a = 0.5/km, L ≈ 1722 m; if
a = 0.25/km, L ≈ 3443 m.



Chapter 4
Canonical Transformations or Contact
Transformations

4.1 Reminder

4.1.1 Canonical Transformations

The ease with which mechanical problems can be solved depends on the choice of
the generalized coordinates used. Therefore, it is interesting to examine the transfor-
mations of a system of coordinates and moments to another system.

If we call pα and qα on one hand and Pα and Qα on the other hand respectively
old and new moments and coordinates, the transformation is Pα = Pα (pα, qα, t)
and Qα = Qα (pα, qα, t). One considers only the transformations, called canonical
transformations or contact transformations, for which there is a function H, called
Hamiltonian in the new coordinates such as

Ṗα = − ∂H
∂Qα

(4.1)

Q̇α = ∂H
∂Pα

(4.2)

where Pα and Qα are the canonical moments and coordinates. The Lagrangian and
Hamiltonian in the old and new coordinates are respectively

L (pα, qα, t) and H =
n∑

α=1

pαq̇α − L (4.3)

L (Pα, Qα, t) and H =
n∑

α=1

Pα Q̇α − L (4.4)

© Springer Nature Singapore Pte Ltd. 2018
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4.1.2 Condition for a Transformation to be Canonical

Theorem Transformation Pα = Pα (pα, qα, t) and Qα = Qα (pα, qα, t) is canoni-
cal if

(∑n
α=1 [pαdqα] − ∑n

α=1 [PαdQα]
)
is an exact differential.

To recall, (Adp + Bdq) is an exact differential if and only if ∂A
∂q = ∂B

∂p .

4.1.3 Generating Functions

By Hamilton’s Variational Principle, the canonical transformations Pα = Pα

(pα, qα, t) and Qα = Qα (pα, qα, t) must be such that the integrals
∫ t2
t1
L dt and∫ t2

t1
L dt are both extremal, i.e. that one needs to have simultaneously δ

∫ t2
t1
L dt = 0

and δ
∫ t2
t1
L dt = 0, which is satisfied if there is a generating function G such that

dG
dt = L − L.
One supposes that G is a function of time and two of the old and new coordinates

and moments. Let’s take for example the old coordinates qα and new moments Pα;
one has G = T (qα, Pα, t). It can be demonstrated that

pα = ∂T

∂qα

(4.5)

Qα = ∂T

∂Pα

(4.6)

H = ∂T

∂t
+ H (4.7)

with

Ṗα = − ∂H
∂Qα

(4.8)

Q̇α = ∂H
∂Pα

(4.9)

Other groupings may be taken, e. g. U = U (qα, Qα, t), or V = V (Qα, pα, t), or
W = W (Pα, pα, t), etc.
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4.2 Exercises

4.2.1 Exercise13: Canonical Transformation 1

Demonstrate that the transformation

P = 1

2

(
p2 + q2) (4.10)

Q = arctan

(
q

p

)
(4.11)

is canonical.

Proof This can be demonstrated by two methods.
(1) First method:
Let H (p, q) and H (P, Q) the two Hamiltonians. The moments and coordinates p
and q are canonical coordinates, so

ṗ = −∂H

∂q
(4.12)

q̇ = ∂H

∂p
(4.13)

One can also write

ṗ = ∂p

∂P
Ṗ + ∂p

∂Q
Q̇ (4.14)

q̇ = ∂q

∂P
Ṗ + ∂q

∂Q
Q̇ (4.15)

and

∂H

∂q
= ∂H

∂P

∂P

∂q
+ ∂H

∂Q

∂Q

∂q
(4.16)

∂H

∂p
= ∂H

∂P

∂P

∂p
+ ∂H

∂Q

∂Q

∂p
(4.17)

From (4.10) and (4.11), one has respectively

∂P

∂q
= q and

∂P

∂p
= p (4.18)

∂Q

∂q
= p(

p2 + q2
) and

∂Q

∂p
= −q(

p2 + q2
) (4.19)
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Taking the partial derivative of (4.10) and (4.11) with respect to P , one obtains
respectively

1 = p
∂p

∂P
+ q

∂q

∂P
(4.20)

0 = p ∂q
∂P − q ∂p

∂P(
p2 + q2

) (4.21)

Similarly, deriving partially (4.10) and (4.11) with respect to Q, one obtains respec-
tively

0 = p
∂p

∂Q
+ q

∂q

∂Q
(4.22)

1 = p ∂q
∂Q − q ∂p

∂Q(
p2 + q2

) (4.23)

From (4.20), one has
∂q

∂P
= 1 − p ∂p

∂P

q
(4.24)

that is replaced in (4.21) to obtain, after simplification by q
(
p2 + q2

)
,

∂p

∂P
= p(

p2 + q2
) (4.25)

Again, from (4.20), one has
∂p

∂P
= 1 − q ∂q

∂P

p
(4.26)

that is replaced in (4.21) to obtain, after simplification by p
(
p2 + q2

)
,

∂q

∂P
= q(

p2 + q2
) (4.27)

From (4.22), one has
∂p

∂Q
= − q

p

∂q

∂Q
(4.28)

that is replaced in (4.23), to obtain

∂q

∂Q
= p (4.29)
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Again, from (4.22), one has
∂q

∂Q
= − p

q

∂p

∂Q
(4.30)

that is replaced in (4.23), to obtain

∂p

∂Q
= −q (4.31)

From (4.14) and (4.15), and replacing by (4.25), (4.31), (4.27), and (4.29), one obtains
respectively

ṗ = p(
p2 + q2

) Ṗ − q Q̇ (4.32)

q̇ = q(
p2 + q2

) Ṗ + pQ̇ (4.33)

Similarly, from (4.16) and (4.17), and replacing by (4.18) and (4.19), one obtains
respectively

∂H

∂q
= q

∂H
∂P

+ p(
p2 + q2

) ∂H
∂Q

(4.34)

∂H

∂p
= p

∂H
∂P

− q(
p2 + q2

) ∂H
∂Q

(4.35)

Replacing respectively (4.32) and (4.34) on one hand, and (4.33) and (4.35) on the
other hand, in the definition of the canonical coordinates (4.12) and (4.13), one
obtains

p(
p2 + q2

) Ṗ − q Q̇ = −q
∂H
∂P

− p(
p2 + q2

) ∂H
∂Q

(4.36)

q(
p2 + q2

) Ṗ + pQ̇ = p
∂H
∂P

− q(
p2 + q2

) ∂H
∂Q

(4.37)

Multiplying (4.36) by p and (4.37) by q and adding the resulting equations on one
hand, and multiplying (4.36) by q and (4.37) by p and subtracting the equations thus
obtained on the other hand, one finds

Ṗ = −∂H
∂Q

(4.38)

Q̇ = ∂H
∂P

(4.39)

which clearly shows that the coordinates and transformation are canonical.
(2) Second method:
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By the above theorem, the transformation is canonical if
(∑n

α=1 pαdqα−∑n
α=1 PαdQα

)
is an exact differential. In this case, by differentiating (4.11) and

replacing by (4.10), one finds

p dq − P dQ = p dq − 1

2

(
p2 + q2

) (
p dq − q dp

p2 + q2

)
(4.40)

= p dq − 1

2
p dq + 1

2
q dp = d

(
1

2
pq

)
(4.41)

which is indeed an exact differential, showing that the transformation is
canonical. �

4.2.2 Exercise14: Canonical Transformation 2

Demonstrate that the transformation

Q = log

(
sin p

q

)
(4.42)

P = q cot p (4.43)

is canonical.

Proof With dQ = cot p dp − dq, let us show that p dq − P dQ is an exact differ-
ential

p dq − P dQ = p dq − q cot p (cot p dp − dq) (4.44)

= (p + cot p) dq − (
q cot2 p

)
dp (4.45)

= d (q (p + cot p)) (4.46)

which is indeed an exact differential and the transformation is canonical. �

4.2.3 Exercise15: Canonical Transformation 3

Demonstrate that the transformation

Q = p (4.47)

P = −q (4.48)

is canonical.
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Proof Immediate as P dQ = −q dp, one has p dq − P dQ = p dq +
q dp = d (pq). �

4.2.4 Exercise16: Canonical Transformation 4

Demonstrate that the transformation

Q = q tan p (4.49)

P = ln (sin p) (4.50)

is canonical.

Proof As dQ = tan p dq + q
cos2 p dp, one has

p dq − P dQ = p dq − ln (sin p)

(
tan p dq + q

cos2 p
dp

)
(4.51)

= (p − ln (sin p) tan p) dq −
(
q ln (sin p)

cos2 p

)
dp (4.52)

= d (q (p − ln (sin p) tan p)) (4.53)

which is an exact differential and the transformation is canonical. �

4.2.5 Exercise17: Canonical Transformation 5

Is the transformation

Q = exp (p) (4.54)

P = exp (q) (4.55)

canonical?

Proof As dQ = exp (p) dp, one has p dq − P dQ = p dq − exp (p + q) dp,
which is not an exact differential and the transformation is not canonical. �
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4.2.6 Exercise18: Canonical Transformation 6

(1) Is the transformation

Q = log
(
1 + √

q cos p
)

(4.56)

P = 2
√
q sin p

(
1 + √

q cos p
)

(4.57)

canonical?
(2) If so, give a generating function.

Proof (1) As dQ =
(
cos p
2
√
q dq − √

q sin p dp
)

/
(
1 + √

q cos p
)
, one has

p dq − P dQ = p dq − 2
√
q sin p

(
1 + √

q cos p
)
( cos p

2
√
q dq − √

q sin p dp

1 + √
q cos p

)

(4.58)

= (p − sin p cos p) dq + 2q sin2 p dp (4.59)

= d (q (p − sin p cos p)) (4.60)

which is an exact differential and the transformation is canonical.
(2) If dU is an exact differential, then

dU (p, q) = ∂U

∂p
dp + ∂U

∂q
dq (4.61)

∂2U

∂p∂q
= ∂2U

∂q∂p
(4.62)

Identifying (4.61) to (4.59) and replacing sin p cos p = 1
2 sin (2p), one obtains

∂U

∂p
= 2q sin2 p (4.63)

∂U

∂q
= p − sin (2p)

2
(4.64)

From (4.63), one has
∂U = 2q sin2 p dp (4.65)

that can be integrated

U =
∫

2q sin2 p dp (4.66)

= qp − q
sin (2p)

2
+ α (q) (4.67)



4.2 Exercises 47

where α (q) is a function of q only and independent from p. Differentiating (4.67)
with respect to q, one obtains

∂U

∂q
= p − sin (2p)

2
+ α′ (q) (4.68)

that can be identified to (4.64), which yields α′ (q) = 0 or α (q) = c, where c is a
constant. One finds then the generating function

U = q

(
p − sin (2p)

2

)
+ c (4.69)

�

4.2.7 Exercise19: Canonical Transformation 7

For which values of α and β is the following transformation canonical?

Q = qα cos (βp) (4.70)

P = qα sin (βp) (4.71)

Proof As dQ = αqα−1 cos (βp) dq − βqα sin (βp) dp, one has

p dq − P dQ = p dq − qα sin (βp)
(
αqα−1 cos (βp) dq − βqα sin (βp) dp

)

(4.72)

=
(
p − αq2α−1 sin (βp) cos (βp)︸ ︷︷ ︸

)
dq +

(
βq2α sin2 (βp)︸ ︷︷ ︸

)
dp

A B (4.73)

The condition ∂A
∂p = ∂B

∂q for (4.73) to be an exact differential yields

1 − αβq2α−1
(
cos2 (βp) − sin2 (βp)

) = 2αβq2α−1 sin2 (βp) (4.74)

that reduces to
αβq2α−1 = 1 (4.75)

from which one finds α = 1
2 et β = 2. �
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4.2.8 Exercise20: Canonical Transformation 8 and
Harmonic Oscillator 2

(1) For which value of α is the following transformation canonical?

Q = arcsin

(
q

(
P

α
A−α

)− 1
2

)
(4.76)

p =
(
P

α
Aα

) 1
2

cos Q (4.77)

where A is a constant.
(2) Show that a generating function yielding this canonical transformation is

S = αAαq2 cot Q (4.78)

(3) If A = km, apply this transformation to theHamiltonian of the one dimension
harmonic oscillator, where m is the mass and k the spring stiffness. What can
you say about the new coordinate Q?

Proof (1) By the theorem of Sect. 4.1.2, the transformation (4.76), (4.77) is canonical
if p dq − P dQ is an exact differential. Expressions for P and dQ need to be found
first.

From (4.76) and (4.77), one has successively

q =
√

PA−α

α
sin Q (4.79)

p =
√

PAα

α
cos Q (4.80)

Dividing (4.79) by (4.80), it follows successively

q

p
= A−α tan Q (4.81)

Q = arctan

(
Aα q

p

)
(4.82)

dQ = Aα

(
p dq − q dp

p2 + A2αq2

)
(4.83)

Similarly, adding the squares of q (4.79) multiplied by Aα and of p (4.80), one has

P = αA−α
(
A2αq2 + p2

)
(4.84)
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Replacing P and dQ by (4.84) and (4.83) in p dq − P dQ, one obtains

p dq − P dQ = p dq − (
αA−α

(
A2αq2 + p2

)) (
Aα

(
p dq − q dp

p2 + A2αq2

))
(4.85)

= p dq − α (p dq − q dp) (4.86)

= (1 − α) p dq + αq dp (4.87)

One must have (1 − α) = α, i.e. α = 1
2 for

p dq − P dQ = p dq + q dp

2
= d

( pq

2

)
(4.88)

to be an exact differential, showing that the transformation is canonical.
(2) For S (q, Q) (4.78) to be a generating function, (4.5) and (4.6) must be verified
for S (q, Q) to be of the form U = U (qα, Qα, t), i.e. here p = ∂S

∂q and P = ∂S
∂Q .

Replacing α by 1
2 , one finds

p = ∂S

∂q
= A

1
2 q cot Q (4.89)

P = ∂S

∂Q
= − A

1
2 q2

2 sin2 Q
(4.90)

If dS is an exact differential, then

∂2S

∂q∂Q
= ∂2S

∂Q∂q
(4.91)

Relation (4.91) is verified as it can be seen by deriving partially (4.89) with respect
to Q and (4.90) with respect to q

∂2S

∂q∂Q
= ∂2S

∂Q∂q
= − A

1
2 q

sin2 Q
(4.92)

and S is indeed a generating function.
(3) From Exercise7, the Hamiltonian of the one dimension harmonic oscillator
reads H = p2

2m + kq2

2 (2.24). If A = km, the generating function (4.78) becomes

S =
√
km
2 q2 cot Q. The new Hamiltonian (4.7) found with this generating function S

reads

H = ∂S

∂t
+ p2

2m
+ kq2

2
(4.93)

=
√
km

2

(
2qq̇ cot Q − q2 Q̇

sin2 Q

)
+ p2

2m
+ kq2

2
(4.94)

https://doi.org/10.1007/978-981-13-3026-1_2
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with the time derivative of the new coordinate (4.9) and the newmoment (4.8) being

Q̇ = ∂H
∂P

= 0 (4.95)

Ṗ = −∂H
∂Q

=
√
2kmqq̇

sin2 Q
(4.96)

From Q̇ = 0 in (4.95), one deduces that the new coordinate Q is constant. �



Chapter 5
Hamilton–Jacobi Equations

5.1 Reminder

5.1.1 Hamilton–Jacobi Equations

If one can find a canonical transformation leading to H = 0, then the equations

Ṗα = − ∂H
∂Qα

(5.1)

Q̇α = ∂H
∂Pα

(5.2)

yield that Pα and Qα are constant, i.e. that Pα and Qα are ignorable coordinates (to
recall, 1 ≤ α ≤ n where n is the degree of freedom). Through this transformation,
one can find pα and qα and thereby determine the movement of the system. All come
down to find the right generating function.

FromEq. (4.7)H = ∂S
∂t + H , it can be seen that ifH = 0, this generating function

must satisfy the partial differential equation

∂S

∂t
+ H (pα, qα, t) = 0 (5.3)

or, as pα = ∂S
∂qα

(4.5),
∂S

∂t
+ H

(
∂S

∂qα
, qα, t

)
= 0 (5.4)

This Eq. (5.4) is called the Hamilton–Jacobi equation.

© Springer Nature Singapore Pte Ltd. 2018
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5.1.2 Solution of Hamilton–Jacobi Equations

Equation (5.4) contains (n + 1) independent variables q1, q2, . . . , qn and t . One of
the solutions is called the complete solution that contains (n + 1) constants.

By omitting an arbitrary additive constant (which can always be done, for exam-
ple an integration constant of the movement that will be determined by the initial
conditions) and designating the n remaining constants by β1,β2, . . . ,βn (none of
these constants is additive), the solution can be written

S = S (q1, q2, . . . , qn,β1,β2, . . . ,βn, t) (5.5)

When this solution is obtained, we can determine the old moments by pα = ∂S
∂qα

(4.5). Similarly, if we identify the new moments Pα with the constants βα, then

Pα = βα (5.6)

Qα = ∂S

∂βα
= γα (5.7)

where γα are constants, which is obvious with H = 0 since the transformation is
canonical, (5.2) yields that Qα are constants.

Using this method, we will find the qα as function of the βα, γα and t , which will
give the movement of the system.

5.1.3 Time Independent Hamiltonian

This case corresponds to the case where H is constant and is the total energy of the
system.

To find the complete solution of the Hamilton–Jacobi equation in this case, it is
often better to write the solution in the form of

S = S1 (q1) + S2 (q2) + · · · + Sn (qn) + St (t) (5.8)

where each function S1, S2,…, Sn , St is only dependent on one variable only (method
of variable separation). When the Hamiltonian is independent of time, one finds that

St (t) = −E t (5.9)

and the time-independent part ofS can be written

S = S1 (q1) + S2 (q2) + · · · + Sn (qn) (5.10)

https://doi.org/10.1007/978-981-13-3026-1_4


5.1 Reminder 53

The Hamilton–Jacobi equation reduces then from (5.4) to

H

(
∂S

∂qα
, qα

)
= E (5.11)

where E is a constant that represents the total energy of the system. This Eq. (5.11)
can be found again by posing that a generating function S is independent of time,
which yields

pα = ∂S

∂qα
(5.12)

Qα = ∂S

∂Pα
(5.13)

5.2 Exercises

5.2.1 Exercise 21: Harmonic Oscillator 3

Give the Hamilton–Jacobi equation of the one dimension harmonic oscillator
with a mass m and spring stiffness k.

Proof The one dimension harmonic oscillator was already treated in Exercise 7.
The kinetic energy, potential, Lagrangian, moment and Hamiltonian are given by
Eqs. (2.19)–(2.24). The Hamiltonian H = p2

2m + kq2

2 (2.24) is independent of time
and the system is conservative, H is therefore the total energy of the system. The
Hamilton–Jacobi equation (5.4) reduces here to

∂S

∂t
+ 1

2m

(
∂S

∂q

)2

+ kq2

2
= 0 (5.14)

From (5.8), let us pose as solution S = Sq (q) + St (t), which introduced in (5.14)
yields

1

2m

(
dSq
dq

)2

+ kq2

2
= −dSt

dt
(5.15)

One poses both sides of (5.15) equal to a constant β

1

2m

(
dSq
dq

)2

+ kq2

2
= β (5.16)

dSt
dt

= −β (5.17)

https://doi.org/10.1007/978-981-13-3026-1_2
https://doi.org/10.1007/978-981-13-3026-1_2
https://doi.org/10.1007/978-981-13-3026-1_2


54 5 Hamilton–Jacobi Equations

As the system is conservative, i.e. there is no loss of energy and the Hamiltonian
does not depend on time, the constant β is the constant total energy E of the conser-
vative system, β = E . Replacing in (5.16), the resolution with respect to Sq yields
successively

dSq =
√
2m

(
E − kq2

2

)
dq (5.18)

Sq =
∫ √

2m

(
E − kq2

2

)
dq (5.19)

and, similarly, (5.17) is solved with respect to St , giving

St = −E t (5.20)

and where integration constants were omitted in (5.19) and (5.20). The solution
S = Sq (q) + St (t) is then

S =
∫ √

2m

(
E − kq2

2

)
dq − E t (5.21)

One identifies E with the new moment P and we then have for the new coordinate
Q

P = E (5.22)

Q = ∂S

∂P
= ∂S

∂E
(5.23)

= ∂

∂E

(∫ √
2m

(
E − kq2

2

)
dq − E t

)
(5.24)

=
√
2m

2

∫
dq√

E − kq2

2

− t (5.25)

Since the new coordinate Q is constant and set equal to γ, (5.25) becomes

√
2m

2

∫
dq√

E − kq2

2

= t + γ (5.26)

Integrating (5.26) (see 2.271-4, Gradshteyn and Ryzhik, 2007; 14.237, Spiegel,
1974), one obtains √

m

k
arcsin

(
q

√
k

2E

)
= t + γ (5.27)
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and solving (5.27) with respect to q, it comes

q =
√
2E

k
sin

(√
k

m
(t + γ)

)
(5.28)

The constants E and γ are to be determined by the initial conditions. �

5.2.2 Exercise 22: Free Falling Particle

Determine by Hamilton–Jacobi’s method the motion of a particle of mass m
initially at rest and falling freely vertically in a uniform gravity field.

Proof There is one degree of freedom (n = 1). One chooses the height z in Cartesian
coordinates as the generalized coordinate. The potential V reads V = mgz. The
Lagrangian and Hamiltonian read respectively

L = mż2

2
− mgz (5.29)

H = mż2

2
+ mgz (5.30)

As pz = ∂L
∂ ż , one finds from (5.29) pz = mż and ż = pz

m . The Hamiltonian becomes

H = p2z
2m

+ mgz (5.31)

which is independent of time. So one has a conservative system and H is the total
energy of the system. The Hamilton–Jacobi equation (5.4) reduces here to

∂S

∂t
+ 1

2m

(
∂S

∂z

)2

+ mgz = 0 (5.32)

From (5.8), one writes the complete solutionS = Sz (z) + St (t), which introduced
in(5.32) gives

1

2m

(
dSz
dz

)2

+ mgz = −dSt
dt

(5.33)

Both sides of (5.33) are set equal to a constant E , which is the total energy of the
system, as it is conservative,
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1

2m

(
dSz
dz

)2

+ mgz = E (5.34)

dSt
dt

= −E (5.35)

which yield respectively

Sz =
∫ √

2m (E − mgz)dz (5.36)

St = −Et (5.37)

where integration constants were omitted. The solution S = Sz (z) + St (t) is then

S =
∫ √

2m (E − mgz)dz − E t (5.38)

One identifies E with the newmoment P and one then has for the new coordinate Q

P = E (5.39)

Q = ∂S

∂P
= ∂S

∂E
(5.40)

= ∂

∂E

(√
2m (E − mgz)dz − E t

)
(5.41)

=
√
m

2

∫
dz√

E − mgz
− t (5.42)

As the new coordinate Q is constant and set equal to γ, one obtains successively
from (5.42) and with (2.242-1, Gradshteyn and Ryzhik, 2007; 14.84, Spiegel, 1974)
for the integration,

√
m

2

∫
dz√

E − mgz
= t + γ (5.43)

√
m

2

(
2
√
E − mgz

−mg

)
= t + γ (5.44)

One solves (5.44) for z which gives

z = −
⎛
⎝gt2

2
+ gγ︸︷︷︸ t +

(
gγ2

2
− E

mg

)
︸ ︷︷ ︸

⎞
⎠ (5.45)

= −
(

gt2

2
+ v0 t + z0

)
(5.46)
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which is the classical equation of the uniformly accelerated rectilinear movement.
As the particle is at rest before falling, the initial velocity v0 = gγ is nil, yielding
γ = 0. (5.45) becomes then

z = −gt2

2
+ E

mg
(5.47)

Tofind the value of E , one identifies E
mg

to the initial height z0, which gives E = mgz0
which is the potential energy and the total energy E of the systembefore the beginning
of the fall. (5.47) becomes finally

z = −gt2

2
+ z0 (5.48)

One notices the negative sign in front of the first term of (5.48) as the height z
decreases when time t increases during the fall. �

5.2.3 Exercise 23: Ballistic Flight of a Projectile

(1) Determine by Hamilton–Jacobi’s method the movement of a projectile of
mass m in ballistic flight in a uniform gravity field and launched with an initial
velocity v0 and angle α on the horizontal.
(2) Give the value of the launch angle to obtain themaximumhorizontal distance
achieved by the projectile.

Proof (1) The problem has two degrees of freedom and one chooses as gen-
eralized coordinates the horizontal distance x and height y in Cartesian coor-
dinates (see Fig. 5.1). The initial conditions for t = 0 are: (x0, y0) = (0, 0) and
(ẋ0, ẏ0) = (v0 cosα, v0 sinα). The potential is V = mgy, and the Lagrangian and
Hamiltonian read respectively

L = m

2

(
ẋ2 + ẏ2

) − mgy (5.49)

Fig. 5.1 Projectile launched
with an angle α on the
horizontal
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H = m

2

(
ẋ2 + ẏ2

) + mgy (5.50)

= 1

2m

(
p2x + p2y

) + mgy (5.51)

as px = ∂L
∂ ẋ = mẋ and py = ∂L

∂ ẏ = mẏ yielding respectively ẋ = px
m and ẏ = py

m in

(5.51). As one has also px = ∂S
∂x and py = ∂S

∂y , the Hamilton–Jacobi equation reads

∂S

∂t
+ 1

2m

((
∂S

∂x

)2

+
(

∂S

∂y

)2
)

+ mgy = 0 (5.52)

The complete solution (5.8) isS = Sx (x) + Sy (y) + St (t) and (5.52) yields

1

2m

((
dSx
dx

)2

+
(
dSy
dy

)2
)

+ mgy = −dSt
dt

(5.53)

The two sides of (5.53) are set equal to a constant E , yielding

1

2m

(
dSy
dy

)2

+ mgy = E − 1

2m

(
dSx
dx

)2

(5.54)

St = −E t (5.55)

where E is the total energy of the system, as theHamiltonian does not depend on time,
the system is conservative (any other loss of energy through friction is neglected).
Both sides of (5.54) are set equal to a constant β, yielding

Sx =
∫ √

2m (E − β)dx (5.56)

Sy =
∫ √

2m (β − mgy)dy (5.57)

and the complete solution becomes

S =
∫ √

2m (E − β)dx +
∫ √

2m (β − mgy)dy + −E t (5.58)

The movement equations yield successively first for ∂S
∂E = γ1,

∫
m dx√

2m (E − β)
− t = γ1 (5.59)

√
m

2 (E − β)
x = t + γ1 (5.60)
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x =
√
2 (E − β)

m
(t + γ1) (5.61)

and then for ∂S
∂β

= γ2,

−
∫

m dx√
2m (E − β)

+
∫

m dy√
2m (β − mgy)

= γ2 (5.62)

−
√

m

2 (E − β)
x −

√
2

m

√
β − mgy

g
= γ2 (5.63)

Solving (5.63) for y, it comes

y = − mg

4 (E − β)
x2 − gγ2

√
m

2 (E − β)
x +

(
β

mg
− gγ2

2

2

)
(5.64)

The initial condition (x0, y0) = (0, 0) for t = 0 applied to (5.61) and (5.64) yields

respectively γ1 = 0 and γ2 =
√

2β
mg2

, which simplifies the expression of y (5.64)

y = − mg

4 (E − β)
x2 −

√
β

E − β
x (5.65)

The time derivative of (5.65) reads then

ẏ = −
(

mg

2 (E − β)
x +

√
β

E − β

)
ẋ (5.66)

The initial conditions x0 = 0 and (ẋ0, ẏ0) = (v0 cosα, v0 sinα) applied to (5.66)
yield β = E sin2 α and relations (5.65) and (5.61) simplify in

y = − mg

4E cos2 α
x2 + tanα x (5.67)

x =
√
2E

m
cosα t (5.68)

(5.67) and (5.68) give respectively y in function of x and x in function of t . Replacing
x by (5.68) in (5.67), one obtains y in function of t

y = −gt2

2
+

√
2E

m
sinα t (5.69)



60 5 Hamilton–Jacobi Equations

One can replace the constant total energy of the system E by the initial kinetic energy

E = mv20
2 , which replaced in (5.67)–(5.69) yield finally

y = − g

2v2
0 cos

2 α
x2 + tanα x (5.70)

x = v0 cosα t (5.71)

y = −gt2

2
+ v0 sinα t (5.72)

(2) To determine the value ofα thatmaximizes the horizontal distance x , one searches
for the values of x that intersect the X axis for y = 0. (5.70) yields

(
− g

2v2
0 cos

2 α
x + tanα

)
x = 0 (5.73)

that cancels out for x = 0 and x = v20
g
sin (2α). This latter value is maximum for

sin (2α) = 1, i.e. for α = 45◦. �

5.2.4 Exercise 24: Particle Sliding on an Inclined Plane

In a uniform gravity field, use Hamilton–Jacobi’s method to determine the
motion of a particle of mass m initially at rest and sliding without friction
on an inclined plane forming an angle α with the horizontal.

Proof The problem has one degree of freedom (n = 1) and one chooses as the
generalized coordinate the distance x from the starting point x0 and along the inclined
plane of length l (see Fig. 5.2). So, one has for initial conditions: x(t=0) = x0 and
ẋ(t=0) = 0. The potential is written V = mg (l − x) sinα, yielding the Lagrangian
and Hamiltonian

L = mẋ2

2
− mg (l − x) sinα (5.74)

H = mẋ2

2
+ mg (l − x) sinα (5.75)

Fig. 5.2 Particle sliding on
an inclined plane
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= p2x
2m

+ mg (l − x) sinα (5.76)

where in (5.76), ẋ has been replaced by px
m from px = ∂L

∂ ẋ = mẋ . As one has also
px = ∂S

∂x , the Hamilton–Jacobi equation reads

∂S

∂t
+ 1

2m

(
∂S

∂x

)2

+ mg (l − x) sinα = 0 (5.77)

From (5.8), the complete solution becomes S = Sx (x) + St (t), which allows to
rewrite (5.77) as

1

2m

(
dSx
dx

)2

+ mg (l − x) sinα = −dSt
dt

(5.78)

Both sides of (5.78) are set equal to a constant E, which is the total energy of the
system, as it is conservative (as one has a frictionless sliding),

1

2m

(
dSx
dx

)2

+ mg (l − x) sinα = E (5.79)

dSt
dt

= −E (5.80)

yielding successively

Sx =
∫ √

2m (E − mg (l − x) sinα)dx (5.81)

St = −E t (5.82)

The complete solution becomes

S =
∫ √

2m (E − mg (l − x) sinα)dx − E t (5.83)

and the equation of movement ∂S
∂E = γ gives successively

√
m

2

∫
dx√

E − mg (l − x) sinα
= γ + t (5.84)

√
m

2

(
2
√
E − mg (l − x) sinα

mg sinα

)
= γ + t (5.85)

with (2.242-1, Gradshteyn and Ryzhik, 2007; 14.84, Spiegel, 1974) for the integra-
tion. The expression of x is obtained from (5.85)
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x = g sinα

2
t2 + gγ sinα︸ ︷︷ ︸ t +

(
g sinαγ2

2
+ l − E

mg sinα

)
︸ ︷︷ ︸

(5.86)

= g sinα

2
t2 + v0 t + x0 (5.87)

As the particle is at rest initially, the initial velocity v0 = gγ sinα is nil which yields
γ = 0. (5.86) then becomes

x = g sinα

2
t2 + l − E

mg sinα
(5.88)

To find the value of E , we identify l − E
mg sinα

as the initial position x0, which gives
E = mg sinα (l − x0)which is the potential energy and total energy E of the system
before the start of the movement. (5.88) becomes finally

x = g sinα

2
t2 + x0 (5.89)

�

5.2.5 Exercise 25: Connected Particles Sliding on Inclined
Surfaces

In a uniformgravity field, useHamilton–Jacobi’smethod to determine themove-
ment of two particles of masses m1 and m2, sliding without friction and con-
nected by a rope of negligible mass passing through a pulley at the top of two
inclined planes having angles α1 and α2 on the horizontal.

Proof Let the length of the rope connecting the two masses be l. So, there’s only
one degree of freedom (n = 1) as the two masses are connected together. One takes
as generalized coordinate the position x of one of the two masses from the top as
described in the Fig. 5.3.

Fig. 5.3 Two particles
connected and sliding
without friction on two
inclined planes
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The initial condition for t = 0 is x = 0. The potential is

V = −m1g x sinα1 − m2g (l − x) sinα2 (5.90)

and the kinetic energy is written T = ẋ2

2 (m1 + m2), which gives for the Lagrangian
and Hamiltonian

L = ẋ2

2
(m1 + m2) + m1g x sinα1 + m2g (l − x) sinα2 (5.91)

H = ẋ2

2
(m1 + m2) − m1g x sinα1 − m2g (l − x) sinα2 (5.92)

= p2x
2 (m1 + m2)

− m1g x sinα1 − m2g (l − x) sinα2 (5.93)

as px = ∂L
∂ ẋ = ẋ (m1 + m2), yielding ẋ = px

m1+m2
. As px = ∂S

∂x , the Hamilton
equation-Jacobi reads

∂S

∂t
+ 1

2 (m1 + m2)

(
∂S

∂x

)2

− m1g x sinα1 − m2g (l − x) sinα2 = 0 (5.94)

The complete solution (5.8) becomes S = Sx (x) + St (t) and (5.94) yields

1

2 (m1 + m2)

(
dSx
dx

)2

− m1g x sinα1 − m2g (l − x) sinα2 = −dSt
dt

(5.95)

The two sides of (5.95) are set equal to a constant E , which gives

St = −E t (5.96)

Sx =
∫ √

2 (m1 + m2) (E + m1g x sinα1 + m2g (l − x) sinα2)dx (5.97)

where E is the constant total energy of the conservative system as sliding is without
friction. The equation of movement ∂S

∂E = γ yields successively

√
m1 + m2

2

∫
dx√

x (m1g sinα1 − m2g sinα2) + (E + m2g l sinα2)
= t + γ

(5.98)
√
2 (m1 + m2)

√
x (m1g sinα1 − m2g sinα2) + (E + m2g l sinα2)

m1g sinα1 − m2g sinα2
= t + γ

(5.99)

2 (m1 + m2)
x (m1g sinα1 − m2g sinα2) + (E + m2g l sinα2)

(m1g sinα1 − m2g sinα2)
2 = (t + γ)2

(5.100)
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which gives for x

x = (t + γ)2 (m1g sinα1 − m2g sinα2)

2 (m1 + m2)
− E + m2g l sinα2

m1g sinα1 − m2g sinα2
(5.101)

The initial condition x = 0 for t = 0 yields

γ =
√
2 (m1 + m2) (E + m2g l sinα2)

m1g sinα1 − m2g sinα2
(5.102)

The constant total energy E can be replaced by the potential energy (5.95) at the
initial moment t = 0 for x = 0, resulting in

E = V = −m2g l sinα2 (5.103)

which, replaced in (5.102), yields that γ = 0. (5.101) become finally

x = (m1g sinα1 − m2g sinα2)

2 (m1 + m2)
t2 (5.104)

�

5.2.6 Exercise 26: Unconventional Mechanics

One considers a physical system whose dynamics is governed by the Hamilto-
nian

H(p, q, t) = λp2q2 (5.105)

with λ > 0.
(1) Give Hamilton equations and find the Lagrangian from which this Hamilto-
nian derives.
(2)WithΛ(P, Q, t) = 0, deduct from the solution of theHamilton–Jacobi equa-
tion the generating function G = T (qα, Pα, t) such that (4.5) and (4.6) are
satisfied and find the expressions of q (P, Q, t) and of p (P, Q, t).
(3) Verify that these solutions satisfy the equations of movement.

Proof (1) The system has clearly a single degree of freedom (n = 1) as a single
coordinate q is given in the Hamiltonian (5.105).

Hamilton’s equations (2.2, 2.3) read

ṗ = −∂H

∂q
= −2λp2q (5.106)

https://doi.org/10.1007/978-981-13-3026-1_4
https://doi.org/10.1007/978-981-13-3026-1_4
https://doi.org/10.1007/978-981-13-3026-1_2
https://doi.org/10.1007/978-981-13-3026-1_2
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q̇ = ∂H

∂ p
= 2λpq2 (5.107)

To find the Lagrangian, it suffices to reverse the relation (2.1) with n = 1

L = p (q, q̇) q̇ − H (p, q) (5.108)

= q̇2

2λq2
− λ (pq)2 (5.109)

= q̇2

2λq2
− λ

(
q̇

2λq

)2

(5.110)

= q̇2

4λq2
(5.111)

where (5.105) has replaced H and q̇
2λq2 from (5.107) has replaced p (q, q̇) in (5.108),

and q̇
2λq from (5.107) has replaced the product pq in (5.109).

(2) Hamilton–Jacobi equation (5.4) ∂S
∂t + H = 0 has the complete solution

S = Sq (q) + St (t). The separation of variables gives St = −βt , with β constant.
Although the Hamiltonian (5.105) does not directly dependent on time t , we know
a priori nothing about the system. So, we cannot consider it conservative and β may
not be the total energy of the system.The other term of the solution reads and yields
successively

λq2
(
dSq
dq

)2 = β (5.112)

dSq
dq =

√
β
λ
1
q (5.113)

Sq =
√

β
λ

∫ dq
q =

√
β
λ
ln q (5.114)

The complete solution therefore reads

S =
√

β

λ
ln q − βt (5.115)

One identifies the constant β to the new moment P and one obtains the generating
function

G = T (q, P, t) =
√

P

λ
ln q − Pt (5.116)

from which one deducts with (4.5) and (4.6)

p = ∂T

∂q
=

√
P

λ

1

q
(5.117)

https://doi.org/10.1007/978-981-13-3026-1_2
https://doi.org/10.1007/978-981-13-3026-1_4
https://doi.org/10.1007/978-981-13-3026-1_4
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Q = ∂T

∂P
= ln q

2
√

λP
− t (5.118)

Inverting (5.118), one finds

q (t) = exp
(
2
√

λP (Q + t)
)

(5.119)

which can be replaced in (5.117) to find out

p (t) =
√

P

λ
exp

(
−2

√
λP (Q + t)

)
(5.120)

(3) For verification, one calculates first q̇ (t) and ṗ (t) from (5.119) and (5.120)

q̇ (t) = 2
√

λPq (t) (5.121)

ṗ (t) = −2
√

λP p (t) (5.122)

One finds from (5.117), √
P = √

λp (t) q (t) (5.123)

which is inserted in (5.121) and (5.122), to find

q̇ (t) = 2λp (t) q (t)2 (5.124)

ṗ (t) = −2λp (t)2 q (t) (5.125)

that are identical to the Hamilton equations of movement (5.107) et (5.106). �

5.2.7 Exercise 27: Double Pendulum 2

Show that the Hamilton–Jacobi method is longer andmore complicated than the
Lagrange method to calculate the movement of the double pendulum of same
length and mass.

Proof Referring to Exercise 1, the variables and parameters are changed as follows:
ϕ1 = θ,ϕ2 = ϕ, l1 = l2 = l andm1 = m2 = m. The kinetic energy and potential for
both masses read respectively

T =
(m
2
l2θ̇2

)
+

(m
2
l2θ̇2 + m

2
l2ϕ̇2 + ml2θ̇ϕ̇ cos (θ − ϕ)

)
(5.126)

= ml2
(

θ̇2 + ϕ̇2

2
+ θ̇ϕ̇ cos (θ − ϕ)

)
(5.127)
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V = (−mgl cos θ) + (−mgl (cos θ + cosϕ)) (5.128)

= −mgl (2 cos θ + cosϕ) (5.129)

The Lagrangian is written then

L = ml2
(

θ̇2 + ϕ̇2

2
+ θ̇ϕ̇ cos (θ − ϕ)

)
+ mgl (2 cos θ + cosϕ) (5.130)

leading to conjugated moments

pθ = ∂L

∂θ̇
= ml2

(
2θ̇ + ϕ̇ cos (θ − ϕ)

)
(5.131)

pϕ = ∂L

∂ϕ̇
= ml2

(
ϕ̇ + θ̇ cos (θ − ϕ)

)
(5.132)

yielding respectively

θ̇ = pθ

2ml2
− ϕ̇ cos (θ − ϕ)

2
(5.133)

ϕ̇ = pϕ

ml2
− θ̇ cos (θ − ϕ) (5.134)

Replacing θ̇ by (5.133) in (5.134), one obtains

ϕ̇ = 2pϕ − pθ cos (θ − ϕ)

ml2
(
1 + sin2 (θ − ϕ)

) (5.135)

where the equality 2 − cos2 (θ − ϕ) = 1 + sin2 (θ − ϕ) was used. Replacing now ϕ̇
by (5.135) in (5.133), one finds

θ̇ = pθ − pϕ cos (θ − ϕ)

ml2
(
1 + sin2 (θ − ϕ)

) (5.136)

The Hamiltonian reads

H = ml2
(

θ̇2 + ϕ̇2

2
+ θ̇ϕ̇ cos (θ − ϕ)

)
− mgl (2 cos θ + cosϕ) (5.137)

Replacing ϕ̇ et θ̇ by respectively (5.135) and (5.136) in (5.137), one finds

H =
p2θ
2 + p2ϕ − pθ pϕ cos (θ − ϕ)

ml2
(
1 + sin2 (θ − ϕ)

) − mgl (2 cos θ + cosϕ) (5.138)

As pθ = ∂S
∂θ

and pϕ = ∂S
∂ϕ

, Hamilton–Jacobi equation (5.4) reads
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∂S
∂t + 1

ml2(1+sin2(θ−ϕ))

(
1
2

(
∂S
∂θ

)2 +
(

∂S
∂ϕ

)2 − ∂S
∂θ

∂S
∂ϕ

cos (θ − ϕ)

)

−mgl (2 cos θ + cosϕ) = 0 (5.139)

The complete solution (5.8) becomes S = Sθ (θ) + Sϕ (ϕ) + St (t) and (5.139)
yields

1
ml2(1+sin2(θ−ϕ))

(
1
2

( dSθ

dθ

)2 +
(
dSϕ

dϕ

)2 − dSθ

dθ

dSϕ

dϕ
cos (θ − ϕ)

)

−mgl (2 cos θ + cosϕ) = − dSt
dt (5.140)

One sets both sides of (5.140) equal to a constant E , yielding St = −E t and

1
ml2(1+sin2(θ−ϕ))

(
1
2

( dSθ

dθ

)2 +
(
dSϕ

dϕ

)2 − dSθ

dθ

dSϕ

dϕ
cos (θ − ϕ)

)

−mgl (2 cos θ + cosϕ) = E (5.141)

where E is the total energy of the conservative system. Then one has to separate the
variables θ and ϕ in (5.141), but since both variables are taken in a multiplication
of functions containing them in the term dSθ

dθ

dSϕ

dϕ
cos (θ − ϕ), the variable separation

method will not work here and one must change generalized coordinates.
It is then concluded that Hamilton–Jacobi’s method for this simplified case of

the double pendulum is longer and more complicated than Lagrange’s method of
Exercise 1. �

5.2.8 Exercise 28: Classical Problem of Kepler

Use the Hamilton–Jacobi method to solve the problem of Kepler for a particle
of mass m moving in an inverse square law force field.

Proof The problem is planar and one chooses the polar coordinates (r, θ) as gener-
alized coordinates. The Hamiltonian has been calculated in Exercise 6, (2.14). The
potential V (r) is here V (r) = − K

r where K is a constant dependent on the masses
in presence. So one has

H = 1

2m

(
p2r + p2θ

r2

)
− K

r
(5.142)

As pr = ∂S
∂r and pθ = ∂S

∂θ
from (4.5), Hamilton–Jacobi equation (5.4) reads

https://doi.org/10.1007/978-981-13-3026-1_2
https://doi.org/10.1007/978-981-13-3026-1_4
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∂S

∂t
+ 1

2m

((
∂S

∂r

)2

+ 1

r2

(
∂S

∂θ

)2
)

− K

r
= 0 (5.143)

Writing the complete solution

S = Sr (r) + Sθ (θ) + St (t) (5.144)

for the variable separation method, the replacing in (5.143) yields

1

2m

((
dSr
dr

)2

+ 1

r2

(
dSθ

dθ

)2
)

− K

r
= −dSt

dt
(5.145)

One sets both sides of (5.145) equal to a constant β1, yielding respectively

1

2m

((
dSr
dr

)2

+ 1

r2

(
dSθ

dθ

)2
)

− K

r
= β1 (5.146)

dSt
dt

= −β1 ⇒ St = −β1t = −E t (5.147)

As the system is conservative,β1 is the total energy E of the system.Aftermultiplying
(5.146) by 2mr2, one has

(
dSθ

dθ

)2

= r2
(
2m

(
E + K

r

)
−

(
dSr
dr

)2
)

(5.148)

The left side (5.148) depends only on θ and the right side depends only on r ; each
side is then obviously constant. One sets them equal to a constant β2. One obtains
then (

dSθ

dθ

)2

= β2 (5.149)

r2
(
2m

(
E + K

r

)
−

(
dSr
dr

)2
)

= β2 (5.150)

But as θ is a cyclic coordinate or ignorable (it does not appear in the expression of
the Lagrangian (2.10)), one has pθ = ∂S

∂θ
= dSθ

dθ
, and (5.149) yields β2 = p2θ , which,

replaced in (5.149) and (5.150), yields

(
dSθ

dθ

)
= √

β2 = pθ ⇒ Sθ = pθθ (5.151)

r2
(
2m

(
E + K

r

)
−

(
dSr
dr

)2
)

= p2θ (5.152)

https://doi.org/10.1007/978-981-13-3026-1_2
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From (5.152), it comes successively

dSr =
√
2m

(
E + K

r

)
− p2θ

r2
dr (5.153)

Sr =
∫ √

2m

(
E + K

r

)
− p2θ

r2
dr (5.154)

Replacing in (5.144), one obtains the complete solution

S =
∫ √

2m

(
E + K

r

)
− p2θ

r2
dr + pθθ − E t (5.155)

Then, one identifies pθ and E with the new moments, respectively Pr and Pθ, one
obtains then by (5.7) the new coordinates Qr and Qθ, that are set equal to two new
constants, γ1 and γ2, which yields

Qr = ∂S

∂Pr
= ∂S

∂ pθ
= ∂

∂ pθ

⎛
⎝∫ √

2m

(
E + K

r

)
− p2θ

r2
dr

⎞
⎠ + θ = γ1

(5.156)

Qθ = ∂S

∂Pθ
= ∂S

∂E
= ∂

∂E

⎛
⎝∫ √

2m

(
E + K

r

)
− p2θ

r2
dr

⎞
⎠ − t = γ2

(5.157)

After differentiation under the integral sign, (5.156) and (5.157) becomes respec-
tively

∫
pθ

r2
√
2m

(
E + K

r

) − p2θ
r2

dr = θ − γ1 (5.158)

∫
m√

2m
(
E + K

r

) − p2θ
r2

dr = t + γ2 (5.159)

For the rest of the resolution, one considers three cases: (1) E < 0 1, (2) E = 0, and
(3) E > 0.
For case (2) with E = 0, solving (5.158) for r in function of θ gives successively
(see 2.246, Gradshteyn and Ryzhik, 2007; 14.87, Spiegel, 1974)

1As long as the expression under the radical sign (5.158) and (5.159) remains non-negative (see
further).
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∫
pθ

r
√
2mKr − p2θ

dr = θ − γ1 (5.160)

2 arctan

(√
2mKr

p2θ
− 1

)
= θ − γ1 (5.161)

r =
p2θ
mK

1 + cos (θ − γ1)
(5.162)

The resolution of (5.159) for r in function of t yields successively (see 2.242-1,
Gradshteyn and Ryzhik, 2007; 14.85, Spiegel, 1974)

∫
m r√

2mKr − p2θ

dr = t + γ2 (5.163)

(
mKr + p2θ

) √
2mKr − p2θ

3mK 2
= t + γ2 (5.164)

One solves then (5.164) for r to obtain an expression of r in function of time t .
For cases (1) and (3) with E �= 0, the resolution of (5.158) for r in function of θ
gives successively (see 2.266, Gradshteyn and Ryzhik, 2007; 14.283, Spiegel, 1974)
as r is always positive,

∫
pθ

r
√
2mEr2 + 2mKr − p2θ

dr = θ − γ1 (5.165)

arcsin

⎛
⎝ r − p2θ

mK

r
√
1 + 2p2θ E

mK 2

⎞
⎠ = θ − γ1 (5.166)

r =
p2θ
mK

1 +
√
1 + 2 p2θ E

mK 2 cos
(
θ − γ1 + π

2

) (5.167)

with the condition for case (1)where E < 0 that |E | ≤ mK 2

2p2θ
(where |E | is the absolute

value of E). The other Eq. (5.159) becomes successively (see 2.264-2, Gradshteyn
and Ryzhik, 2007; 14.281, Spiegel, 1974)

∫
m r√

2mEr2 + 2mKr − p2θ

dr = t + γ2 (5.168)
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√
2mEr2 + 2mKr − p2θ

2E
− mK

2E
I (r) = t + γ2 (5.169)

where I (r) is the integral

I (r) =
∫

dr√
2mEr2 + 2mKr − p2θ

(5.170)

For case (1) where E < 0, the integral I (r) (5.170) becomes (see 2.264-1, Grad-
shteyn and Ryzhik, 2007; 14.280, Spiegel, 1974)

I (r) =
∫

dr√
−2m |E | r2 + 2mKr − p2θ

(5.171)

= − 1√
2m |E | arcsin

⎛
⎝ 1 − 2|E |

K r√
1 − 2|E |p2θ

mK 2

⎞
⎠ (5.172)

and (5.169) becomes, after replacing E by − |E |,

−
√

−2m |E | r2 + 2mKr − p2θ

2 |E | − 1

2
√

2|E3|
mK 2

arcsin

⎛
⎝ 1 − 2|E |

K r√
1 − 2|E |p2θ

mK 2

⎞
⎠ = t + γ2

(5.173)
that yields a relation between the radial distance r and time t .

For case (3) where E > 0, the integral I (r) (5.170) yields (see 2.264-1, Grad-
shteyn and Ryzhik, 2007; 14.280, Spiegel, 1974)

I (r) = 1√
2mE

ln

(
2
√
2mE

(
2mEr2 + 2mKr − p2θ

) + 4mEr + 2mK

)

(5.174)

= 1√
2mE

ln

⎛
⎝4mK

⎛
⎝

√
E

K

(
E

K
r2 + r − p2θ

2mK

)
+ E

K
r + 1

2

⎞
⎠

⎞
⎠
(5.175)

which, replaced in (5.169), gives another relation the radial distance r and
time t . �
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5.2.9 Additional Note on the Classical Problem of Kepler

This exercise is especially important because it illustrates the problem of Kepler
of two body movement. In the expression of the potential V , the constant K is
K = GMm where G is the constant of gravitation (G ≈ 6.674×10−11Nm2/kg2

or m3/kg s2) and M is the mass of the attractive body (e.g. the Sun) around which
the particle of mass m (e.g. a planet) describes the Keplerian movement. Relations
(5.162) and (5.167) are alike in their forms (except for an integration constant), i.e.
the ratio of a constant to the sum of unity and the product of another constant by the
cosine of the position angle. It is shown in celestial mechanics (see for example: Roy,
1988) that the equation of the orbit is a conic whose general form in polar coordinates
is

r = p

1 + e cos θ
(5.176)

where the angular polar coordinate θ is called the true anomaly and is counted
positively counter clockwise from a reference line passing through the pericentre2

and the conic focus, and p and e are constants describing the orbit, specifically p
here is the semi-latus rectum (or orbital parameter (paramètre de l’orbite) in French),
equal to

p = p2θ
mK

(5.177)

where pθ is the angular momentum of the particle of massm, and e is the eccentricity
equal to

e =
√
1 + 2

Ep2θ
K 2m

(5.178)

For the three cases of values of the total energy E of the above system:
(1) − K 2m

2p2θ
≤ E < 0 ⇒ 0 ≤ e < 1: the orbit is an ellipse.

(2) E = 0 ⇒ e = 1: the orbit is a parabola;
(3) E > 0 ⇒ e > 1: the orbit is a hyperbola.

Note that for E = − K 2m
2p2θ

, i.e. e = 0, the orbit is a circle.

Relations (5.162) and (5.167) are then identical to (5.176) if one sets γ1 = 0 for
the case (2) of a parabolic orbit and γ1 = π

2 for cases (1) and (3) of elliptic and
hyperbolic orbits.

2Closest point of the orbit to the focus; in particular, perigee or perihelion in the case of an orbit
around respectively the Earth or the Sun.
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5.2.10 Exercise 29: Particle and Potential in − K cos θ
r2

A particle of mass m moves in a force field whose potential in spherical coordi-
nates is V = − K cos θ

r2 . Use the Hamilton–Jacobi method to find the movement
equations.

Proof Choosing the spherical coordinates as generalized coordinates (see Fig. 5.4),
positions and velocities read respectively

x = r sin θ cosϕ (5.179)

y = r sin θ sinϕ (5.180)

z = r cos θ (5.181)

ẋ = ṙ sin θ cosϕ + r θ̇ cos θ cosϕ − r ϕ̇ sin θ sinϕ (5.182)

ẏ = ṙ sin θ sinϕ + r θ̇ cos θ sinϕ + r ϕ̇ sin θ cosϕ (5.183)

ż = ṙ cos θ − r θ̇ sin θ (5.184)

The kinetic energy, Lagrangian and Hamiltonian read respectively

T = m

2
v2 = m

2

(
ẋ2 + ẏ2 + ż2

)
(5.185)

= m

2

(
ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ

)
(5.186)

L = T − V = m

2

(
ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ

) + K cos θ

r2
(5.187)

H = T + V = m

2

(
ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ

) − K cos θ

r2
(5.188)

Fig. 5.4 Particle in spherical
coordinates
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The generalised moments pα = ∂L
∂q̇α

read and yield

pr = mṙ ⇒ ṙ = pr
m

(5.189)

pθ = mr2θ̇ ⇒ θ̇ = pθ

mr2
(5.190)

pϕ = mr2 sin2 θϕ̇ ⇒ ϕ̇ = pϕ

mr2 sin2 θ
(5.191)

The Hamiltonian (5.188) becomes then

H = 1

2m

(
p2r + p2θ

r2
+ p2ϕ

r2 sin2 θ

)
− K cos θ

r2
(5.192)

As pr = ∂S
∂r , pθ = ∂S

∂θ
and pϕ = ∂S

∂ϕ
from (4.5), the Hamilton–Jacobi equation

(5.4) becomes

∂S

∂t
+ 1

2m

((
∂S

∂r

)2

+ 1

r2

(
∂S

∂θ

)2

+ 1

r2 sin2 θ

(
∂S

∂ϕ

)2
)

− K cos θ

r2
= 0

(5.193)
As theHamiltonian is independent of time, one setsS = Sr (r) + Sθ (θ) + Sϕ (ϕ) −
E t where E is the total energy of the conservative system; (5.193) becomes

1

2m

((
dSr
dr

)2

+ 1

r2

(
dSθ

dθ

)2

+ 1

r2 sin2 θ

(
dSϕ

dϕ

)2
)

− K cos θ

r2
= E (5.194)

Multiplying by 2mr2 and rearranging (5.194), it comes

r2
(
dSr
dr

)2

− 2mEr2 = −
(
dSθ

dθ

)2

− 1

sin2 θ

(
dSϕ

dϕ

)2

+ 2mK cos θ (5.195)

One sets both sides of (5.195) equal to β1, which yields

r2
(
dSr
dr

)2

− 2mEr2 = β1 (5.196)

−
(
dSθ

dθ

)2

− 1

sin2 θ

(
dSϕ

dϕ

)2

+ 2mK cos θ = β1 (5.197)

Multiplying sin2 θ and rearranging (5.197), it comes

(
dSϕ

dϕ

)2

= sin2 θ

(
2mK cos θ − β1 −

(
dSϕ

dϕ

)2
)

(5.198)

https://doi.org/10.1007/978-981-13-3026-1_4
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One sets both sides of (5.198) equal to β2, which gives

(
dSϕ

dϕ

)2

= β2 (5.199)

sin2 θ

(
2mK cos θ − β1 −

(
dSθ

dθ

)2
)

= β2 (5.200)

But as ϕ is a cyclic coordinate or ignorable (it does not appear in the expression of
the Lagrangian (5.187)), one has pϕ = ∂S

∂ϕ
= dSϕ

dϕ
, and (5.199) yields that β2 = p2ϕ,

which replaced in (5.200), yields after rearranging

dSθ

dθ
=

√
2mK cos θ − p2ϕ

sin2 θ
− β1 (5.201)

One obtains then respectively from (5.196), (5.201) and (5.199), omitting the inte-
gration constants,

Sr =
∫ √

2mE + β1

r2
dr (5.202)

Sθ =
∫ √

2mK cos θ − p2ϕ
sin2 θ

− β1dθ (5.203)

Sϕ = pϕϕ (5.204)

and the complete solution S reads

S =
∫ √

2mE + β1

r2
dr +

∫ √
2mK cos θ − p2ϕ

sin2 θ
− β1dθ + pϕϕ − Et

(5.205)
The equations of movement are found by derivingS (5.205) with respect to β1 and
pϕ, yielding successively on one hand

∂S

∂β1
= γ1 (5.206)

∂

∂β1

⎛
⎝∫ √

2mE + β1

r2
dr +

∫ √
2mK cos θ − p2ϕ

sin2 θ
− β1dθ

⎞
⎠ = γ1 (5.207)

∫
dr

2r
√
2mEr2 + β1

+
∫

dθ

2
√
2mK cos θ − p2ϕ

sin2 θ
− β1

= γ1 (5.208)
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and on the other hand
∂S

∂ pϕ
= γ2 (5.209)

∂

∂ pϕ

⎛
⎝∫ √

2mK cos θ − p2ϕ
sin2 θ

− β1dθ + pϕϕ

⎞
⎠ = γ2 (5.210)

∫
dθ

sin2 θ

√
2mK cos θ − p2ϕ

sin2 θ
− β1

+ ϕ = γ2 (5.211)

Solving simultaneously (5.208) and (5.211), one finds the expressions of r and
of θ. �

5.2.11 Exercise 30: Schrödinger Equation

The Schrödinger equation generally reads

− �
2

2m
�ψ + Vψ = i �

∂ψ

∂t
(5.212)

where � is the Laplacian operator, V = mc2, m is the mass, c is the speed of
light and ψ is a wave function of complex values of x , y, z and t

ψ = e
( i

�

)
S(x,y,z,t)

(5.213)

(1) Which conditions the function S (x, y, z, t) must satisfy in order to apply
the method of Hamilton–Jacobi?
(2) Which solution of the time independent Schrödinger equation

�
2

2m
�ψ + (E − V ) ψ = 0 (5.214)

leads under the same conditions to the Hamilton–Jacobi equation for the char-
acteristic function of Hamilton?

Preliminary note

The Schrödinger equation (5.212) can be written successively
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1

2m

(
−�

2 ∂2ψ

∂x2
− �

2 ∂2ψ

∂y2
− �

2 ∂2ψ

∂z2

)
+ Vψ = i �

∂ψ

∂t
(5.215)

1

2m

((
�

i

∂

∂x

)2

ψ +
(

�

i

∂

∂y

)2

ψ +
(

�

i

∂

∂z

)2

ψ

)
+ Vψ = i �

∂ψ

∂t
(5.216)

One can now replaces the operators
(

�

i
∂

∂xi

)
of ψ by the conjugate moments pxiof

the Hamilton–Jacobi equation, which yields

1

2m

(
p2x + p2y + p2z

) + Vψ = i �
∂ψ

∂t
(5.217)

Proof (1) Let (5.213) be a solution. One has then successively

∂ψ

∂t
= i

�
ψ

∂S

∂t
(5.218)

∂ψ

∂x
= i

�
ψ

∂S

∂x
(5.219)

∂2ψ

∂x2
= i

�

(
∂ψ

∂x

∂S

∂x
+ ψ

∂2S

∂x2

)
(5.220)

= i

�

((
i

�
ψ

∂S

∂x

)
∂S

∂x
+ ψ

∂2S

∂x2

)
(5.221)

= ψ

(
− 1

�2

(
∂S

∂x

)2

+ i

�

∂2S

∂x2

)
(5.222)

where (5.219) was introduced in (5.220). One replaces by (5.218) and (5.222) in
Schrödinger equation (5.215), which yields successively

ψ

2m

[((
∂S

∂x

)2
− i�

∂2S

∂x2

)
+

((
∂S

∂y

)2
− i�

∂2S

∂y2

)
+

((
∂S

∂z

)2
− i�

∂2S

∂z2

)]
+ Vψ = −ψ

∂S

∂t

(5.223)

1

2m

[((
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2
)

− i�

(
∂2S

∂x2
+ ∂2S

∂y2
+ ∂2S

∂z2

)]
+ V = −∂S

∂t
(5.224)

As V and S are real in (5.224), the coefficient of the imaginary part must be nil, i.e.

�S = ∂2S

∂x2
+ ∂2S

∂y2
+ ∂2S

∂z2
= 0 (5.225)

(2) Replacing by (5.222) in the time independent Schrödinger equation (5.214), one
finds
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1

2m

[((
∂S

∂x

)2
+

(
∂S

∂y

)2
+

(
∂S

∂z

)2
)

− i�

(
∂2S

∂x2
+ ∂2S

∂y2
+ ∂2S

∂z2

)]
− (E − V ) = 0

(5.226)
Under the same conditions (5.225), one obtains

1

2m
(∇S)2 − E + V = 0 (5.227)

where ∇ is the gradient operator. As one has in this equation − ∂S
∂t = E , i.e. the total

energy of the system if it is conservative, one has that H = T + V , which yields

T = 1

2m
(∇S)2 (5.228)

�

5.2.12 Exercise 31: Stark Effect

An electron of charge e− moves in the field of a nucleus of charge +Ze where
Z is the atomic number, and subject to the effect of an external constant electric
field E (Stark effect).
(1) Give the Hamilton–Jacobi equation in spherical coordinates and show that
a change of variables is inevitable.
(2) Give the Hamiltonian in generalized coordinates (q1, q2, q3) defined by the
transformation

q1 = r (1 − cos θ) (5.229)

q2 = r (1 + cos θ) (5.230)

q3 = ϕ (5.231)

and give the general form of the equations of motion.
(3) Give the equations of movement by the Hamilton–Jacobi method using the
parabolic coordinates as generalized coordinates.

Proof (1) Without loss of generality, one chooses the direction of the E field along
the vertical axis Z . The potential V acting on the electron is the superposition of
two potential due to the nucleus − Ze2

r and to the external electric field +e E z or
+e E r cos θ in spherical coordinates and where the + sign is due to the fact that the
electrons go back up the electric field (see Fig. 5.5), yielding
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Fig. 5.5 Electron in
movement around a nucleus
and subject to an electric
field E

V = − Ze2

r
+ e E r cos θ (5.232)

The Lagrangian and Hamiltonian in spherical coordinates (see also (2.5)) are written

L = m

2

(
ṙ2 + r2θ̇2 + r2 sin2 θ ϕ̇2

) + Ze2

r
− e E r cos θ (5.233)

H = 1

2m

(
p2r + p2θ

r2
+ p2ϕ

r2 sin2 θ

)
− Ze2

r
+ e E r cos θ (5.234)

The coordinate ϕ is ignorable as it does not appear explicitly in the Lagrangian. The
conjugate moment pϕ is thus constant and a constant of movement. With pr = ∂S

∂r ,
pθ = ∂S

∂θ
and pϕ = ∂S

∂ϕ
, the Hamilton–Jacobi equation reads

∂S

∂t
+ 1

2m

((
∂S

∂r

)2
+ 1

r2

(
∂S

∂θ

)2
+ 1

r2 sin2 θ

(
∂S

∂ϕ

)2
)

− Ze2

r
+ e E r cos θ = 0

(5.235)

The complete solution (5.8) becomesS = Sr (r) + Sθ (θ) + Sϕ (ϕ) + St (t) and
(5.235) yields

1

2m

((
dSr
dr

)2
+ 1

r2

(
dSθ

dθ

)2
+ 1

r2 sin2 θ

(
dSϕ

dϕ

)2
)

− Ze2

r
+ e E r cos θ = −dSt

dt
= E

(5.236)
where both sides were set equal to a constant E , the total energy of the conservative
system, yielding St = −E t and

1

2m

(
r2

(
dSr
dr

)2

+
(
dSθ

dθ

)2

+ 1

sin2 θ

(
dSϕ

dϕ

)2
)

− Ze2r + e E r3 cos θ = E r2

(5.237)

https://doi.org/10.1007/978-981-13-3026-1_2
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As in Exercise 28, variable separation is not possible here because the last term of
the left side of (5.237) contains a multiplication of functions of the two variables r
and θ. Therefore, one must change generalized coordinates.

(2) One applies then the transformation of generalized coordinates (5.229)–
(5.231) from spherical coordinates to these new coordinates. Taking the time deriva-
tive of (5.229)–(5.231), one obtains

q̇1 = ṙ (1 − cos θ) + r sin θ θ̇ (5.238)

q̇2 = ṙ (1 + cos θ) − r sin θ θ̇ (5.239)

q̇3 = ϕ̇ (5.240)

From (5.238) and (5.239), one finds

ṙ = q̇1 + q̇2
2

(5.241)

Let us look for an expression for θ̇. From (5.229) and (5.230), one finds

r = q1 + q2
2

(5.242)

cos θ = q2 − q1
2r

= q2 − q1
q1 + q2

(5.243)

Deriving (5.243), one has

− sin θ θ̇ = 2 (q1q̇2 − q2q̇1)

(q1 + q2)
2 (5.244)

Replacing sin θ by
√
1 − cos2 θ with (5.243), one obtains successively

sin θ = 2
√
q1q2

q1 + q2
(5.245)

θ̇ = (−q1q̇2 + q2q̇1)√
q1q2 (q1 + q2)

(5.246)

Replacing by (5.241), (5.246), (5.240), (5.245) and (5.242) in the Lagrangian (5.233),
one finds

L = m

2

((
q̇1 + q̇2

2

)2
+ (−q1q̇2 + q2q̇1)

2

4q1q2
+ q1q2q̇3

2

)
+ 2Ze2

q1 + q2
− e E

(
q2 − q1

2

)

(5.247)
One has then the conjugate moments
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p1 = ∂L

∂q̇1
= m

4

(
q̇1 + q̇2 + (−q1q̇2 + q2q̇1)

q1

)
= mq̇1

4

(
q1 + q2

q1

)
(5.248)

p2 = ∂L

∂q̇2
= m

4

(
q̇1 + q̇2 − (−q1q̇2 + q2q̇1)

q2

)
= mq̇2

4

(
q1 + q2

q2

)
(5.249)

p3 = ∂L

∂q̇3
= mq1q2q̇3 (5.250)

One remarks that the coordinate q3 = ϕ is cyclic and the conjugate moment p3 is
then constant and a constant of movement.

Inverting Eqs. (5.248)–(5.250), one finds respectively

q̇1 = 4p1
m

(
q1

q1 + q2

)
(5.251)

q̇2 = 4p2
m

(
q2

q1 + q2

)
(5.252)

q̇3 = p3
mq1q2

(5.253)

The Hamiltonian reads then

H = 2

m

(
q1 p21 + q2 p22

q1 + q2

)
+ p23

2mq1q2
− 2Ze2

q1 + q2
+ e E

(
q2 − q1

2

)
(5.254)

Onewrites the complete solution (5.8)S = S1 (q1) + S2 (q2) + S3 (q3) + St (t) and
(5.4) yields

2

m (q1 + q2)

(
q1

(
dS1
dq1

)2

+ q2

(
dS2
dq2

)2
)

+ 1

2mq1q2

(
dS3
dq3

)2

− 2Ze2

q1 + q2

+ e E
(
q2 − q1

2

)
= −dSt

dt

(5.255)

One sets both sides of (5.255) equal to a constant E , the total energy of the con-
servative system, yielding St = −E t . One remarks that the term which included
the multiplication of functions of the two variables (the one with the electric field
E) in (5.237) and that did not allow the variable separation in the case of spherical
coordinates is replaced here by a term with a difference of two variables in (5.255),
which now renders the variable separation possible. One then isolates the term in q3
in (5.255), yielding



5.2 Exercises 83

(
2

m (q1 + q2)

(
q1

(
dS1
dq1

)2
+ q2

(
dS2
dq2

)2
)

− 2Ze2

q1 + q2
+ e E

(
q2 − q1

2

)
− E

)
q1q2

= − 1

2m

(
dS3
dq3

)2

(5.256)
One sets both sides of (5.256) equal to a constant −β1, yielding S3 = √

2mβ1q3
and as the conjugate moment p3 = ∂S

∂q3
= ∂S3

∂q3
is constant, one has β1 = p23

2m and
S3 = p3q3. On the other hand, one also has

2
m(q1+q2)

(
q1

(
dS1
dq1

)2 + q2
(
dS2
dq2

)2) − 2Ze2
q1+q2

+ e E
( q2−q1

2

) − E + β1
q1q2

= 0

(5.257)

2
m

(
q1

(
dS1
dq1

)2 + q2
(
dS2
dq2

)2) − 2Ze2 + e E
(

q22−q21
2

)
− E (q1 + q2) + (q1 + q2)

β1
q1q2

= 0

(5.258)

Separating the terms in q1 from those in q2 in (5.258) and setting the two sides equal
to a new constant β2 yield

2q1
m

(
dS1
dq1

)2

− e E q21
2

− E q1 + β1

q1
− 2Ze2 = −2q2

m

(
dS2
dq2

)2

− e E q22
2

+ E q2 − β1

q2
= β2

(5.259)
Solving for S1 and S2, one obtains

S1 =
∫ √

m

2

(
e E q1

2
+ E + β2 + 2Ze2

q1
− β1

q2
1

)
dq1 (5.260)

S2 =
∫ √

m

2

(
−e E q2

2
+ E − β2

q2
− β1

q2
2

)
dq2 (5.261)

and the complete solution reads then

S =
∫ √

m

2

(
e E q1

2
+ E + β2 + 2Ze2

q1
− β1

q2
1

)
dq1

+
∫ √

m

2

(
−e E q2

2
+ E − β2

q2
− β1

q2
2

)
dq2 + √

2mβ1q3 − E t

(5.262)

The movement equations are ∂S
∂E = γ1, ∂S

∂β1
= γ2 et ∂S

∂β2
= γ3, i.e.
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∂S

∂E
= 1

2

√
m

2

⎛
⎝∫

q1dq1√
e E q3

1
2 + E q2

1 + (
β2 + 2Ze2

)
q1 − β1

+
∫

q2dq2√
− e E q3

2
2 + E q2

2 − β2q2 − β1

⎞
⎠ − t = γ1 (5.263)

∂S

∂β1
= 1

2

√
m

2

⎛
⎝−

∫
dq1

q1

√
e E q3

1
2 + E q2

1 + (
β2 + 2Ze2

)
q1 − β1

−
∫

dq2

q2

√
− e E q3

2
2 + E q2

2 − β2q2 − β1

+ 2q3√
β2

⎞
⎠ = γ2 (5.264)

∂S

∂β2
= 1

2

√
m

2

⎛
⎝∫

dq1√
e E q3

1
2 + E q2

1 + (
β2 + 2Ze2

)
q1 − β1

−
∫

dq2√
− e E q3

2
2 + E q2

2 − β2q2 − β1

⎞
⎠ = γ3 (5.265)

with β1 = p23
2m .

(3) To write the potential V = − Ze2

r + e E z (5.232) in parabolic coordinates, one
applies the following transformations of Cartesian coordinates (x, y, z) in parabolic
coordinates (ξ, η,ϕ)

(x, y, z) =
(√

ξη cosϕ ,
√

ξη sinϕ ,
ξ − η

2

)
(5.266)

and with

r =
√
x2 + y2 + z2 = ξ + η

2
(5.267)

one obtains

V = − 2Ze2

ξ + η
+ e E

(
ξ − η

2

)
(5.268)

The Hamiltonian (2.7) in parabolic coordinates reads then

H = 2

m

(
ξ p2ξ + η p2η

ξ + η
+ p2ϕ

4ξη

)
− 2Ze2

ξ + η
+ e E

(
ξ − η

2

)
(5.269)

One notice that the coordinate ϕ is again cyclic. The Hamilton–Jacobi equation (5.4)
reads

https://doi.org/10.1007/978-981-13-3026-1_2
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∂S

∂t
+ 2

m

(
ξ

ξ + η

(
∂S

∂ξ

)2
+ η

ξ + η

(
∂S

∂η

)2
+ 1

4ξη

(
∂S

∂ϕ

)2
)

− 2Ze2

ξ + η
+ e E

(
ξ − η

2

)
= 0

(5.270)
The complete solution (5.8) readsS = Sξ (ξ) + Sη (η) + Sϕ (ϕ) + St (t) and (5.270)
becomes

2

m

(
ξ

ξ + η

(
dSξ

dξ

)2

+ η

ξ + η

(
dSη

dη

)2

+ 1

4ξη

(
dSϕ

dϕ

)2
)

− 2Ze2

ξ + η
+ e E

(
ξ − η

2

)
= −dSt

dt

(5.271)
One sets both sides equal to a constant E , the total energy of the conservative system,
giving St = −E t . One isolates then the term containing ϕ, yielding

ξη

(
2

m

(
ξ

ξ + η

(
dSξ

dξ

)2
+ η

ξ + η

(
dSη

dη

)2
)

− 2Ze2

ξ + η
+ e E

(
ξ − η

2

)
− E

)
= − 1

2m

(
dSϕ

dϕ

)2

(5.272)

One sets both sides of (5.272) equal to a constant −β1, yielding Sϕ = √
2mβ1ϕ

and as the conjugate moment pϕ = ∂S
∂ϕ

= ∂Sϕ

∂ϕ
is constant, one has β1 = p2ϕ

2m and
Sϕ = pϕqϕ. On the other hand, one has also

ξη

(
2

m

(
ξ

ξ + η

(
dSξ

dξ

)2
+ η

ξ + η

(
dSη

dη

)2
)

− 2Ze2

ξ + η
+ e E

(
ξ − η

2

)
− E

)
+ β1 = 0

(5.273)
The terms depending of variables ξ and η are separated to obtain

2

m
ξ

(
dSξ

dξ

)2

− 2Ze2 + e E
ξ2

2
− E ξ + β1

ξ
= − 2

m
η

(
dSη

dη

)2

+ e E
η2

2
+ E η − β1

η
= β2

(5.274)
where one sets both sides of (5.274) equal to a new constant β2, yielding respectively

Sξ =
∫ √

m

2

(
−e E

ξ

2
+ E + β2 + 2Ze2

ξ
− β1

ξ2

)
dξ (5.275)

Sη =
∫ √

m

2

(
e E

η

2
+ E − β2

η
− β1

η2

)
dη (5.276)

and finally

S =
∫ √

m

2

(
−e E

ξ

2
+ E + β2 + 2Ze2

ξ
− β1

ξ2

)
dξ

+
∫ √

m

2

(
e E

η

2
+ E − β2

η
− β1

η2

)
dη + √

2mβ1ϕ + −E t (5.277)

The movement equations are ∂S
∂E = γ1, ∂S

∂β1
= γ2 and ∂S

∂β2
= γ3, yielding
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∂S

∂E
= 1

2

√
m

2

⎛
⎝∫

ξ dξ√
− e E ξ3

2 + E ξ2 + (
β2 + 2Ze2

)
ξ − β1

+
∫

η dη√
e E η3

2 + E η2 − β2η − β1

⎞
⎠ − t = γ1 (5.278)

∂S

∂β1
= 1

2

√
m

2

⎛
⎝−

∫
dξ

ξ
√

− e E ξ3

2 + E ξ2 + (
β2 + 2Ze2

)
ξ − β1

−
∫

dη

η
√

e E η3

2 + E η2 − β2η − β1

+ 2ϕ√
β1

⎞
⎠ = γ2 (5.279)

∂S

∂β2
= 1

2

√
m

2

⎛
⎝∫

dξ√
− e E ξ3

2 + E ξ2 + (
β2 + 2Ze2

)
ξ − β1

−
∫

dη√
e E η3

2 + E η2 − β2η − β1

⎞
⎠ = γ3 (5.280)

with β1 = p2ϕ
2m .

Equations (5.278)–(5.280) are identical to equations (5.263)–(5.265) of the second
case. The transformation (5.229)–(5.231) is in fact the transformation from spherical
coordinates to parabolic coordinates. �

5.2.13 Exercise 32: Particle in a Double Coulomb Field

Give the equations of movement by the method of Hamilton–Jacobi of a particle
P of mass m moving in a Coulomb field of two fixed points at a distance 2σ
from each other.

Proof Without loss of generality, let the two points A1 and A2 (A1 above A2) be on
the Z axis and with cylindrical coordinates (0, 0,±σ). The distances of the point P ,
of cylindrical coordinates (ρ,ϕ, z), to the two points A1 and A2 are respectively r1
and r2 (see Fig. 5.6).

The Coulomb field of two fixed points reads

V = α1

r1
+ α2

r2
(5.281)
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Fig. 5.6 Particle subjected
to a Coulomb field of two
fixed points

One chooses elliptic coordinates (ξ, η,ϕ) as generalized coordinates. One passes
from cylindric coordinates (ρ,ϕ, z) to elliptic coordinates (ξ, η,ϕ) as follows:

ρ = σ
√(

ξ2 − 1
) (
1 − η2

)
(5.282)

ϕ = ϕ (5.283)

z = σξη (5.284)

The elliptic coordinates ξ and η vary between values 1 ≤ ξ < ∞ and−1 ≤ η ≤ +1.
Distances r1 and r2 of point P to the two fixed points A1 and A2 can be written in
cylindric coordinates

r1 =
√

(z + σ)2 + ρ2 (5.285)

r2 =
√

(z − σ)2 + ρ2 (5.286)

Applying transformations (5.282)–(5.284), one obtains distances r1 and r2 in elliptic
coordinates

r1 = σ (ξ + η) (5.287)

r2 = σ (ξ − η) (5.288)

The potential (5.281), with distances (5.287) and (5.288), reads
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V = α1

σ (ξ + η)
+ α2

σ (ξ − η)
(5.289)

= (α1 + α2) ξ + (α2 − α1) η

σ
(
ξ2 − η2

) (5.290)

The Hamiltonian in elliptic coordinates is written (2.8) with the potential (5.290)

H = 1

2mσ2
(
ξ2 − η2

)
((

ξ2 − 1
)
p2ξ + (

1 − η2
)
p2η +

(
1

ξ2 − 1
+ 1

1 − η2

)
p2ϕ

)

+ (α1 + α2) ξ + (α2 − α1) η

σ
(
ξ2 − η2

) (5.291)

One observes that the coordinate ϕ is cyclic. The Hamilton–Jacobi equation (5.4)
∂S
∂t + H = 0 has the complete solutionS = Sξ (ξ) + Sη (η) + Sϕ (ϕ) + St (t). The
first variable separation yields St = −E t , with E the constant total energy of the
conservative system, and

1

2mσ2
(
ξ2 − η2

)
((

ξ2 − 1
) (

dSξ

dξ

)2

+
(
1 − η2

)(
dSη

dη

)2

+
(

1

ξ2 − 1
+ 1

1 − η2

) (
dSϕ

dϕ

)2
)

+ (α1 + α2) ξ + (α2 − α1) η

σ
(
ξ2 − η2

) = E (5.292)

One isolates the term in
(
dSϕ

dϕ

)2
by multiplying (5.292) by 2mσ2

(
ξ2 − 1

) (
1 − η2

)
.

As coordinate ϕ is cyclic, the conjugate moment pϕ = dSϕ

dϕ
is constant, yielding

Sϕ = pϕϕ. The other part of (5.292) gives

(
ξ2−1

)(
1−η2

)
(ξ2−η2)

((
ξ2 − 1

) (
dSξ

dξ

)2 + (
1 − η2

) (
dSη

dη

)2 + 2mσ ((α1 + α2) ξ + (α2 − α1) η)

)

−2mσ2E
(
ξ2 − 1

) (
1 − η2

) + p2ϕ = 0 (5.293)

One multiplies (5.293) by (ξ2−η2)
(ξ2−1)(1−η2)

and one separates the terms depending on ξ

and on η to obtain

(
ξ2 − 1

) (
dSξ

dξ

)2 + 2mσ (α1 + α2) ξ − 2mσ2Eξ2 + p2ϕ
(ξ2−1)

=

−
[(
1 − η2

) (
dSη

dη

)2 + 2mσ (α2 − α1) η + 2mσ2Eη2 + p2ϕ
(1−η2)

]
= β

(5.294)

where both sides were set equal to a constant β. One finds then the solutions

https://doi.org/10.1007/978-981-13-3026-1_2
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Sξ =
∫ √√√√2mσ2Eξ2 − 2mσ (α1 + α2) ξ + β − p2ϕ

(ξ2−1)

ξ2 − 1
dξ (5.295)

Sη =
∫ √√√√−2mσ2Eη2 − 2mσ (α2 − α1) η − β − p2ϕ

(1−η2)

1 − η2
dη (5.296)

The complete solution reads

S =
∫ √√√√2mσ2Eξ2 − 2mσ (α1 + α2) ξ + β − p2ϕ

(ξ2−1)

ξ2 − 1
dξ (5.297)

+
∫ √√√√−2mσ2Eη2 − 2mσ (α2 − α1) η − β − p2ϕ

(1−η2)

1 − η2
dη + pϕϕ − E t

(5.298)

and one obtains the movement equations by deriving (5.297) with respect to E, then
to pϕ and then to β by setting the derivatives equal to constants ∂S

∂E = γ1, ∂S
∂ pϕ

= γ2

and ∂S
∂β

= γ3. �

5.2.14 Exercise 33: Particle in Coulomb and Uniform Fields

Find the equations of movement by the method of Hamilton–Jacobi of a particle
P of mass m moving in a field resulting from the superposition of a Coulomb
field and a uniform field.

Proof Without loss of generality, let the Z axis be aligned along the uniform field
in the opposite direction, and the fixed point producing the Coulomb field be at the
axes origin. The distance of the point P of cylindrical coordinates (ρ,ϕ, z), to the
fixed point is ρ. The potential resulting from the superposition of the two fields reads

V = α

ρ
− Fz (5.299)

One chooses the parabolic coordinates as generalized coordinates and one can pass
from cylindrical coordinates to parabolic coordinates with the transformation (5.266)

and (5.267) ρ = ξ+η
2 and z = ξ−η

2 , yielding

V = 2α

ξ + η
− F (ξ − η)

2
(5.300)
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The Hamiltonian in parabolic coordinates reads (2.7)

H = 2

m

(
ξ p2ξ + η p2η

ξ + η
+ p2ϕ

4ξη

)
+ 2α

ξ + η
− F (ξ − η)

2
(5.301)

The Hamilton–Jacobi equation (5.4) ∂S
∂t + H = 0 has the complete solution S =

Sξ (ξ) + Sη (η) + Sϕ (ϕ) + St (t). The first variable separation gives St = −E t , with
constant E , the total energy of the conservative system, and

2

m

(
ξ

ξ + η

(
dSξ

dξ

)2

+ η

ξ + η

(
dSη

dη

)2

+ 1

4ξη

(
dSϕ

dϕ

)2
)

+ 2α

ξ + η
− F (ξ − η)

2
− E = 0

(5.302)

One sees that the coordinate ϕ is cyclic, and thus
(
dSϕ

dϕ

)2 = p2ϕ yielding Sϕ = pϕϕ.

One multiplies (5.302) by m(ξ+η)

2 and one separates the terms in ξ and in η, yielding
with β constant

ξ

(
dSξ

dξ

)2

+ p2ϕ
4ξ

+ mα − mF

4
ξ2 − mE

2
ξ = −

(
η

(
dSη

dη

)2

+ p2ϕ
4η

+ mF

4
η2 − mE

2
η

)
= β

(5.303)
It comes further

Sξ =
∫

1

ξ

√
mF

4
ξ3 + mE

2
ξ2 + (β − mα) ξ − p2ϕ

4
dξ (5.304)

Sη =
∫

1

η

√
−mF

4
η3 + mE

2
η2 − βη − p2ϕ

4
dη (5.305)

The complete solution S finally reads

S =
∫

1

ξ

√
mF

4
ξ3 + mE

2
ξ2 + (β − mα) ξ − p2ϕ

4
dξ

+
∫

1

η

√
−mF

4
η3 + mE

2
η2 − βη − p2ϕ

4
dη + pϕϕ − E t

(5.306)

One obtains the movement equations by deriving (5.306) with respect to E , then to
pϕ and then to β, setting the derivatives equal to constants ∂S

∂E = γ1, ∂S
∂ pϕ

= γ2 and
∂S
∂β

= γ3. �

https://doi.org/10.1007/978-981-13-3026-1_2


Chapter 6
Phase Integral and Action-Angle
Variables

6.1 Reminder

6.1.1 Phase Integral

Hamilton’s method is useful in the search for solutions to a periodic mechanical
system. In this case, the projection of the movement of the representative point in
the phase space on any plane (pα, qα) is a closed curve.

The line integral

Jα =
∮
Cα

pαdqα (6.1)

is called phase integral or action variable, with 1 ≤ α ≤ n, where n is the number
of degrees of freedom. One can show that S = S (q1, ..., qn, J1, ..., Jn), i.e. that
the J1, ..., Jn are function of only the βα, with pα = ∂S

∂qα
and ωα = ∂S

∂ Jα
, where one

wrote ωα instead of Qα.
Hamilton equations (4.1) and (4.2) become

J̇α = − ∂H
∂ωα

(6.2)

ω̇α = ∂H
∂ Jα

(6.3)

withH = E , the total energy of the conservative system which depends only on the
constants Jα.
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6.1.2 Frequency and Angular Variable

Equation (6.3) yields

ωα = ∂H
∂ Jα

t + cα (6.4)

with cα a constant. One sets

fα = ∂H
∂ Jα

(6.5)

where fα is a constant frequency, yielding that ωα is an angular variable. In addition,
(6.2) is such that ∂H

∂ωα
= 0, yielding that Jα is a constant, that is the phase integral.

6.2 Exercises

6.2.1 Exercise34: Harmonic Oscillator 4

Determine the frequencies of the harmonic oscillator.

Proof FromExercise6, theHamiltonian reads H = p2

2m + kq2

2 (2.24). TheHamilton–
Jacobi equation (5.14) was found in Exercise20. The complete solution (5.21)

is S = ∫ √
2m

(
E − kq2

2

)
dq − E t and the solution in q is (5.28) q =

√
2E
k sin

(√
k
m (t + γ)

)
, where E is the total energy of the conservative system.

A complete cycle is such as successively:

• q = −
√

2E
k for

√
k
m (t + γ) = − π

2 or sin
(√

k
m (t + γ)

)
= −1;

• q = +
√

2E
k for

√
k
m (t + γ) = π

2 or sin
(√

k
m (t + γ)

)
= +1;

• q = −
√

2E
k for

√
k
m (t + γ) = − π

2 or sin
(√

k
m (t + γ)

)
= −1.

The action variable (6.1) reads, with p = ∂S
∂q =

√
2m

(
E − kq2

2

)
,

J =
∮ √

2m

(
E − kq2

2

)
dq (6.6)

https://doi.org/10.1007/978-981-13-3026-1_2
https://doi.org/10.1007/978-981-13-3026-1_5
https://doi.org/10.1007/978-981-13-3026-1_5
https://doi.org/10.1007/978-981-13-3026-1_5
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= 2

√
2E
k∫

−
√

2E
k

√
2m

(
E − kq2

2

)
dq (6.7)

= 4
√
mk

√
2E
k∫

0

√
2E

k
− q2dq (6.8)

= 4
√
mk

⎡
⎣q

2

√
2E

k
− q2 + β

k
arcsin

q√
2E
k

⎤
⎦

√
2β
k

0

(6.9)

= 4
√
mk

(
E

k

π

2

)
= 2πE

√
m

k
(6.10)

where (2.271-3, Gradshteyn and Ryzhik, 2007; 14.244, Spiegel, 1974) was used to
solve the integral in (6.8). One reverses (6.10) to find

E = J

2π

√
k

m
(6.11)

As E = H, the total energy of the system, one finds the frequency (6.5) taking the
total and not partial derivative of (6.11), as there is only one degree of freedom,

f = dH
d J

= dE

d J
= 1

2π

√
k

m
(6.12)

�

6.2.2 Exercise35: Small Oscillations of the Pendulum

(1) Find the action variable or variables of themovement of the simple pendulum.
(2) In the case where the simple pendulum perform small oscillations, determine
the frequency or frequencies by an approximatemethod and by an exact method.

Proof (1) The system has only one degree of freedom (n = 1) and the generalized
coordinate θ is chosen as shown in the Fig. 6.1. The double pendulum had been
treated in Exercise1, where the first pendulum had as potential (1.18). The kinetic
energy, potential, and Hamiltonian read respectively here

https://doi.org/10.1007/978-981-13-3026-1_1
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Fig. 6.1 Simple pendulum

T = ml2θ̇2

2
(6.13)

V = −mgl cos θ (6.14)

H = ml2θ̇2

2
− mgl cos θ (6.15)

The conjugate moment is pθ = ∂L
∂θ̇

= ml2θ̇, yielding θ̇ = pθ

ml2 . The Hamiltonian
(6.15) becomes

H = p2θ
2ml2

− mgl cos θ (6.16)

The Hamilton–Jacobi equation (5.4) ∂S
∂t + H = 0 becomes

∂S

∂t
+ 1

2ml2

(
∂S

∂θ

)2

− mgl cos θ = 0 (6.17)

and has the complete solution S = Sθ (θ) + St (t). The variable separation gives
St = −Et , with constant E , the total energy of the conservative system, and

1

2ml2

(
dSθ

dθ

)2

− mgl cos θ − E = 0 (6.18)

yielding

Sθ =
∫ √

2ml2 (mgl cos θ + E)dθ (6.19)

The action variable Jθ = ∮
pθdθ (6.1) reads, with pθ = ∂S

∂θ
=√

2ml2 (mgl cos θ + E), and considering that on a full cycle, θ varies from θmax

to −θmax and then from −θmax back to θmax , i.e. by symmetry of the movement, 4
times the part from 0 to θmax

https://doi.org/10.1007/978-981-13-3026-1_5
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Jθ = 4

θmax∫

0

√
2ml2 (mgl cos θ + E)dθ (6.20)

= 4ml
√
2gl

θmax∫

0

√
cos θ + E

mgl
dθ (6.21)

As E is the total energy of the conservative system, at the instant when the pendulum
is at its maximum elongation, θ = θmax , the kinetic energy is nil and the total energy
is the potential energy that is maximum, i.e.

E = −mgl cos θmax (6.22)

yielding
E

mgl
= − cos θmax (6.23)

From (6.22), one sees that:

– for θmax = 0, the total energy E is minimal, E = −mgl, and the pendulum is at
rest;

– for θmax = π, the total energy E is maximal, E = mgl, and the pendulum is in a
vertical position in unstable equilibrium above the attachment point.

The action variable reads then

Jθ = 4ml
√
2gl

θmax∫

0

√
cos θ − cos θmaxdθ (6.24)

(2) For small oscillations, one considers that −θmax ≤ θ ≤ θmax and θmax � 1, i.e.
that the maximum amplitude of the oscillations is much smaller than 1 rad., say less
than 10%, or θmax ≤ 0.1 rad ≈ 5◦.
(2.1) In the approximate case, one develops cos θ in Taylor series,

cos θ =
∞∑
i=0

(−1)i
θ2i

(2i)! (6.25)

≈ 1 − θ2

2
(6.26)

and one retains only the first two terms for small oscillations, −θmax ≤ θ ≤ θmax

and θmax � 1, which gives (6.26), with an error of the order of θ4. For θ = θmax , it
comes from (6.23) and (6.26)

θmax ≈
√
2

(
E

mgl
+ 1

)
(6.27)
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Replacing by (6.26) and (6.27) in (6.24), it comes successively (see 2.271-3, Grad-
shteyn and Ryzhik, 2007; 14.244, Spiegel, 1974),

Jθ ≈ 4ml
√

gl

θmax∫

0

√
θ2max − θ2dθ (6.28)

≈ 4ml
√

gl

[
θ

2

√
θ2max − θ2 + θ2max

2
arcsin

(
θ

θmax

)]θmax

0

(6.29)

≈ 4ml
√

gl

[
θ2max

2
(arcsin (1) − arcsin (0))

]
(6.30)

≈ 4ml
√

gl

[
θ2max

2

π

2

]
(6.31)

≈ 4ml
√

gl

[
π

2

(
E

mgl
+ 1

)]
(6.32)

≈ 2π

√
l

g
(E + mgl) (6.33)

where (6.27) was used in (6.31). Since

E = H ≈ Jθ

2π

√
g

l
− mgl (6.34)

is the total energy of the system, one finds the frequency (6.5)

fθ = ∂H
∂ Jθ

≈ 1

2π

√
g

l
(6.35)

which is the value of the frequency of small isochronous oscillations of the pendulum,
to a very good approximation.
(2.2) The complete resolution of the integral in (6.24), i.e. without the approxima-
tion (6.26), involves a change of variable and then two complete elliptic integrals.
Replacing by (6.23) in (6.24) and substituting cos θ by

(
1 − 2 sin2

(
θ
2

))
yield

Jθ = 8ml
√

gl sin

(
θmax

2

) θmax∫

0

√√√√1 − sin2
(

θ
2

)
sin2

(
θmax
2

)dθ (6.36)

With the change of variable

sinϕ = sin
(

θ
2

)
sin

(
θmax
2

) (6.37)
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or

ϕ = arcsin

⎛
⎝ sin

(
θ
2

)
sin

(
θmax
2

)
⎞
⎠ (6.38)

one obtains successively

dθ = 2 sin

(
θmax

2

)√
1 − sin2 ϕ

1 − sin2
(

θ
2

)dϕ (6.39)

θ = 0 ⇒ ϕ = 0 (6.40)

θ = θmax ⇒ ϕ = π

2
(6.41)

Replacing (6.37) and (6.39)–(6.41) and setting p = sin
(

θmax
2

)
in (6.36), one has

Jθ = 16ml
√

gl p2

π
2∫

0

cos2 ϕ√
1 − p2 sin2 ϕ

dϕ (6.42)

The integral I in (6.42) is solved after some algebraic manipulations

I =
π
2∫

0

cos2 ϕ√
1 − p2 sin2 ϕ

dϕ =
π
2∫

0

1 − sin2 ϕ√
1 − p2 sin2 ϕ

dϕ (6.43)

=
π
2∫

0

1√
1 − p2 sin2 ϕ

dϕ +
π
2∫

0

− sin2 ϕ√
1 − p2 sin2 ϕ

dϕ (6.44)

=
π
2∫

0

1√
1 − p2 sin2 ϕ

dϕ + 1

p2

π
2∫

0

−p2 sin2 ϕ + 1 − 1√
1 − p2 sin2 ϕ

dϕ (6.45)

=
(
p2 − 1

)
p2

π
2∫

0

1√
1 − p2 sin2 ϕ

dϕ + 1

p2

π
2∫

0

1 − p2 sin2 ϕ√
1 − p2 sin2 ϕ

dϕ (6.46)

=
(
p2 − 1

)
p2

π
2∫

0

1√
1 − p2 sin2 ϕ

dϕ + 1

p2

π
2∫

0

√
1 − p2 sin2 ϕdϕ (6.47)

= 1

p2
[(
p2 − 1

)
F (p;ϕ) + E (p;ϕ)

] π
2

0 (6.48)
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where F (p;ϕ) and E (p;ϕ) are the incomplete elliptic integrals of the first and sec-
ond kinds defined by (see 5.111-1-2, Gradshteyn and Ryzhik, 2007; 34.1-3, Spiegel,
1974; 62.3.1-2, Spanier et Oldham, 1987)

F (p;ϕ) =
ϕ∫

0

dϑ√
1 − p2 sin2 ϑ

(6.49)

E (p;ϕ) =
ϕ∫

0

√
1 − p2 sin2 ϑdϑ (6.50)

of module p and argument ϕ. For a nil argument, ϕ = 0, F (p; 0) = E (p; 0) = 0
and for an argument ϕ = π

2 , F
(
p; π

2

) = K (p) and E
(
p; π

2

) = E (p) (see 62.7.1,
Spanier et Oldham, 1987), whereK (p) and E (p) are the complete elliptic integrals
of the first and second kinds defined by the integrals from 0 to π

2 (see 5.111-1-2,
Gradshteyn and Ryzhik, 2007; 34.2-4, Spiegel, 1974; 61.3.1-2, Spanier et Oldham,
1987)

K (p) =
π
2∫

0

dϑ√
1 − p2 sin2 ϑ

(6.51)

E (p) =
π
2∫

0

√
1 − p2 sin2 ϑdϑ (6.52)

and by the series (see 61.6.1-2, Spanier et Oldham, 1987)

K (p) = π

2

∞∑
j=0

[(
(2 j − 1)!!
(2 j)!! p j

)2
]

(6.53)

= π

2

(
1 + 1

4
p2 + 9

64
p4 + 25

256
p6 + · · ·

)
= π

2
sK (6.54)

E (p) = −π

2

∞∑
j=0

[
1

2 j − 1

(
(2 j − 1)!!
(2 j)!! p j

)2
]

(6.55)

= π

2

(
1 − 1

4
p2 − 3

64
p4 − 5

256
p6 − · · ·

)
= π

2
sE (6.56)

where (2n)!! = 2 × 4 × · · · × 2n is the double factorial of 2n.
Replacing by (6.51) and (6.52) in (6.48) and then by (6.54) and (6.56), it comes

successively
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I = 1

p2
(
E (p) + (

p2 − 1
)
K (p)

)
(6.57)

= 1

p2
(
(E (p) − K (p)) + p2K (p)

)
(6.58)

= 1

p2

(
π p2

4

(
1 + 1

8
p2 + 3

64
p4 + 25

1024
p6 + · · ·

))
(6.59)

= π

4
s (6.60)

where s is the series in (6.59). Replacing in the expression (6.42) of Jθ, it comes

Jθ = 4πml
√

gl p2s (6.61)

= 2πml
√

gl

(
E

mgl
+ 1

)
s (6.62)

= 2π

√
l

g
(E + mgl) s (6.63)

where p2 in (6.61) was replaced by 1
2

(
E
mgl + 1

)
from (6.23).

One finds then the total energy by reverting (6.63)

E = H = Jθ

2πs

√
g

l
− mgl (6.64)

and the frequency (6.5) by taking the total derivative of (6.64) and noting also that s
depends indirectly of Jθ

fθ = dH
d Jθ

= 1

2π

√
g

l

d

d Jθ

(
Jθ

s

)
(6.65)

= 1

2πs

√
g

l

(
1 − Jθ

ds
d Jθ

s

)
(6.66)

= 1

2πs

√
g

l

(
1 − Jθ

s d Jθ

ds

)
(6.67)

= 1

2πs

√
g

l

(
1 − Jθ

ds
dp

s d Jθ

dp

)
(6.68)

where one used d Jθ

ds = d Jθ

dp
dp
ds in (6.67). As one has from (6.61),

d Jθ

dp
= 4πml

√
gl

(
2ps + p2

ds

dp

)
(6.69)
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the substitution in (6.68) and the simplification with (6.61) yield

fθ = 1

2πs

√
g

l

⎛
⎝1 − p2s ds

dp

s
(
2ps + p2 ds

dp

)
⎞
⎠ (6.70)

= 1

2πs

√
g

l

(
1 − p ds

dp

2s + p ds
dp

)
(6.71)

= 1

2π

√
g

l

(
1

s + p
2
ds
dp

)
(6.72)

From the expression (6.59) of s, one has

p

2

ds

dp
= p

2

(
1

4
p + 3

16
p3 + 75

512
p5 + · · ·

)
(6.73)

= 1

8
p2 + 3

32
p4 + 65

1024
p6 + · · · (6.74)

that, added to s (6.59), finally yields

s + p

2

ds

dp
= 1 + 1

4
p2 + 9

64
p4 + 25

256
p6 + · · · (6.75)

which is the series sK in (6.54) of the development in series of 2K(p)
π

. The frequency
fθ can finally be written indistinctly

fθ = 1

2π

√
g

l

(
π

2K (p)

)
= 1

4K (p)

√
g

l
(6.76)

= 1

2π

√
g

l

⎛
⎜⎜⎝ 1
∑∞

j=0

[(
(2 j−1)!!
(2 j)!! p j

)2]
⎞
⎟⎟⎠ (6.77)

= 1

2π

√
g

l

(
1

1 + 1
4 p

2 + 9
64 p

4 + 25
256 p

6 + · · ·

)
(6.78)

= 1

2πsK

√
g

l
(6.79)

Replacing p by sin
(

θmax
2

)
, the series sK reads also as

sK = 1 + 1

4
sin2

(
θmax

2

)
+ 9

64
sin4

(
θmax

2

)
+ 25

256
sin6

(
θmax

2

)
+ · · · (6.80)
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For θmax � 1, one has sin
(

θmax
2

)
≈ θmax

2 , and sK can be approximated by

sK ≈ 1 + 1

16
θ2max + 9

1024
θ4max + 25

16384
θ6max + · · · (6.81)

which remains all the more close to 1 that θmax is small. By replacing sK by 1 in
(6.65), one finds the classic value of the period of small isochronous oscillations
(6.35). �
The case of pendulum large oscillations is treated in several text books and articles
(see e.g. Baker and Blackburn, 2005; Belendez et al. 2007; Fulcher and Davis, 1976).
Illustrations can be found in (Belendez et al. 2007).

6.2.3 Exercise36: Three Dimension Harmonic Oscillator

(1) Determine by the method of the angular variables the eigenfrequencies of
the three dimension harmonic oscillator with three different restoring forces.
One supposes that the weight of the harmonic oscillator is negligible in front of
the vertical resultant of the spring forces.
(2) One defines an isotropic oscillator as a two or three dimension harmonic
oscillator having equal oscillation frequencies. Express the energy of a three
dimension isotropic oscillator in function of only one of the action variables.

Proof The one dimension harmonic oscillator was studied in the Exercises 6, 19,
20 and 33. Here, the system has three degrees of freedom (n = 3). It is assumed
that there is no interaction between the movements of the three axes1 One uses the

Fig. 6.2 Three dimension
harmonic oscillator

1In the contrary case, see paragraph 23, pg 65 of (Landau et Lifshitz, 1969).
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three Cartesian coordinates (x, y, z) as generalized coordinates, representing the
differences between the components along the three axes of the current position and
the position at rest at equilibrium (x0, y0, z0) (see Fig. 6.2). The restoring constants
or stiffnesses of the three springs are kx , ky and kz .

By similarity with (2.24), the Hamiltonian is written

H = p2x + p2y + p2z
2m

+ kx x2 + ky y2 + kzz2

2
(6.82)

The Hamilton–Jacobi equation (5.4) ∂S
∂t + H = 0 reads with pα = ∂S

∂α

∂S

∂t
+ 1

2m

((
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2
)

+ kx x2 + ky y2 + kzz2

2
= 0

(6.83)
and has the complete solutionS = Sx (x) + Sy (y) + Sz (z) + St (t). The first vari-
able separation yields St = −E t , with constant E , the total energy of the conserva-
tive system. The other variable separations yield successively

1

2m

(
dSx
dx

)2

+ kx x2

2
+ 1

2m

(
dSy
dy

)2

+ ky y2

2
− E = −

(
1

2m

(
dSz
dz

)2

+ kzz2

2

)
= −β1

(6.84)

Sz =
∫ √

2m

(
β1 − kzz2

2

)
dz (6.85)

1

2m

(
dSx
dx

)2

+ kx x2

2
− E + β1 = −

(
1

2m

(
dSy
dy

)2

+ ky y2

2

)
= −β2 (6.86)

Sy =
∫ √

2m

(
β2 − ky y2

2

)
dy (6.87)

Sx =
∫ √

2m

(
E − β1 − β2 − kx x2

2

)
dx (6.88)

with constants β1 and β2. The complete solution S reads then

S =
∫ √

2m

(
E − β1 − β2 − kx x2

2

)
dx +

∫ √
2m

(
β2 − ky y2

2

)
dy

+
∫ √

2m

(
β1 − kzz2

2

)
dz − E t

(6.89)

https://doi.org/10.1007/978-981-13-3026-1_2
https://doi.org/10.1007/978-981-13-3026-1_5
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The conjugate moments read

px = ∂S

∂x
=
√
2m

(
E − β1 − β2 − kx x2

2

)
(6.90)

py = ∂S

∂y
=
√
2m

(
β2 − ky y2

2

)
(6.91)

pz = ∂S

∂z
=
√
2m

(
β1 − kzz2

2

)
(6.92)

One considers that a complete cycle corresponds to the movement from the position
of equilibrium (at rest) to the maximum position, then back through the position of
equilibrium to the minimum position and then back to the equilibrium position, i.e.
by symmetry of movement, four times the part from the position of equilibrium to
the maximum position. Action variables (6.1) then read

Jx =
∮

pxdx = 4

xmax∫

0

√
2m

(
E − β1 − β2 − kx x2

2

)
dx (6.93)

Jy =
∮

pydy = 4

ymax∫

0

√
2m

(
β2 − ky y2

2

)
dy (6.94)

Jz =
∮

pzdz = 4

zmax∫

0

√
2m

(
β1 − kzz2

2

)
dz (6.95)

with the conditions to ensure that the integrals in (6.93)–(6.95) are real, i.e. that the
term under the radical sign is non-negative at any time of the movement.

As there is no interaction between the movements along the three axes, one can
consider that the total energy is the sumof the energies of each of the threemovements
along the three axes, i.e.

E = Ex + Ey + Ez (6.96)

At maximum elongations, for x = xmax , y = ymax and z = zmax , the kinetic energy
is nil, the potential energy is maximum and one has

Ex = kx x2max

2
(6.97)

Ey = ky y2max

2
(6.98)

Ez = kzz2max

2
(6.99)
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In (6.93)–(6.95), (E − β1 − β2), β2 and β1 are the energies respectively Ex , Ey and
Ez of movements along the axes X , Y and Z .

The action variables (6.93)–(6.95) becomes

Jx = 4

xmax∫

0

√
2m

(
kx x2max

2
− kx x2

2

)
dx = 4

√
mkx

xmax∫

0

√
x2max − x2dx (6.100)

Jy = 4

ymax∫

0

√
2m

(
ky y2max

2
− ky y2

2

)
dy = 4

√
mky

ymax∫

0

√
y2max − y2dy (6.101)

Jz = 4

zmax∫

0

√
2m

(
kzz2max

2
− kzz2

2

)
dz = 4

√
mkz

zmax∫

0

√
z2max − z2dz (6.102)

These three integrals are easily solved (see 2.271-3, Gradshteyn and Ryzhik, 2007;
14.244, Spiegel, 1974)

Jx = 4
√
mkx

[
x
√
x2max − x2

2
+ x2max

2
arcsin

(
x

xmax

)]xmax

0

(6.103)

= 4
√
mkx

(
x2max

2
arcsin (1)

)
(6.104)

= 4
√
mkx

(
Ex

kx

π

2

)
= 2πEx

√
m

kx
(6.105)

One finds similarly

Jy = 2πEy

√
m

ky
(6.106)

Jz = 2πEz

√
m

kz
(6.107)

Reversing (6.105)–(6.107), one finds the total energy (6.96)

E = 1

2π
√
m

(
Jx
√
kx + Jy

√
ky + Jz

√
kz
)

(6.108)

As here E = H, one finds the three frequencies (6.5)

fx = ∂H
∂ Jx

= 1

2π

√
kx
m

(6.109)

fy = ∂H
∂ Jy

= 1

2π

√
ky
m

(6.110)
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fz = ∂H
∂ Jz

= 1

2π

√
kz
m

(6.111)

(2) If the harmonic oscillator is isotropic, the three springs are identical, i.e. having the
same stiffness k = kx = ky = kz and the same maximum elongation xmax = ymax =
zmax , which makes the energies of each of the three movements along the three axes
Ex (6.97), Ey (6.98) and Ez (6.99) equal, Ex = Ey = Ez = E

3 , and three action
variables Jx (6.100), Jy (6.101) and Jz (6.102) equal, Jx = Jy = Jz = J . Thus, one
finds directly from (6.108) that the total energy E is

E = 3J

2π

√
k

m
(6.112)

�

6.2.4 Exercise37: Energy in a Bohr Atom

The classic model of an atom consists of a cloud of electron of charge −e
describing orbits in a central force field around a nucleus of charge Ze such as
the force acting on a electron is

−→
F = − Ze2−→r

r3
(6.113)

where −→r is the vector position of the electron with respect to the nucleus and
Z is the atomic number.
In Bohr’s atomic quantum theory, phase integrals are integer multiples of Planck
constant h

∮
prdr = n1h (6.114)

∮
pθdθ = n2h (6.115)

and n = n1 + n2 (n, n1, n2 ∈ N0) is called the orbital quantum number. The
gravitational attraction between the nucleus and the electron and the weight of
the electron are negligible.
(1) Show that the total energy of the system is represented by discrete values.
(2) What is the expression of this energy?
(3) Can we still calculate the angular variables and frequencies of the system?
Why?
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Proof (1–2) The movement in a central force field in 1/r2 is planar. So, there are
two degrees of freedom (n = 2). One chooses as generalized coordinates the two
dimension polar coordinates (r, θ). One finds from (6.113) the magnitude of the
force F = − Ze2

r2 , from which one obtains the potential V = − Ze2

r . The Hamiltonian
in polar coordinates reads from (2.5)

H = 1

2m

(
p2r + p2θ

r2

)
− Ze2

r
(6.116)

with m the electron mass.
As pr = ∂S

∂r et pθ = ∂S
∂θ

, the Hamilton–Jacobi equation (5.4) reads

∂S

∂t
+ 1

2m

((
∂S

∂r

)2

+ 1

r2

(
∂S

∂θ

)2
)

− Ze2

r
= 0 (6.117)

and has the complete solutionS = Sr (r) + Sθ (θ) + St (t). The first variable sepa-
ration yields St = −E t , with constant E , the total energy of the conservative system.
As the generalized coordinate θ is ignorable (it does not appear in the Lagrangian),
the conjugated moment pθ = ∂S

∂θ
is constant and a constant of movement. The other

variable separation yields successively

(
dSθ

dθ

)2

= r2
(
2m

(
E + Ze2

r

)
−
(
dSr
dr

)2
)

= p2θ (6.118)

Sθ = pθθ (6.119)

Sr =
∫ √

2m

(
E + Ze2

r

)
− p2θ

r2
dr (6.120)

and the complete solution reads

S =
∫ √

2m

(
E + Ze2

r

)
− p2θ

r2
dr + pθθ − E t (6.121)

The phase integrals are

Jr =
∮

prdr =
∮ √

2m

(
E + Ze2

r

)
− p2θ

r2
dr = n1h (6.122)

Jθ =
∮

pθdθ = pθ

∮
dθ = 2π pθ = n2h (6.123)

https://doi.org/10.1007/978-981-13-3026-1_2
https://doi.org/10.1007/978-981-13-3026-1_5
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where the last equalities in (6.122) and (6.123) come from (6.114) and (6.115). From
(6.123), one obtains

pθ = n2
h

2π
(6.124)

A complete cycle is such that the coordinate r varies from its minimal value r = rmin

to its maximal value r = rmax and then again to its minimal value r = rmin . By
symmetry of movement, the complete cycle for r is twice the part from r = rmin to
r = rmax . From (6.122), one finds then

Jr = 2

rmax∫

rmin

√
2m

(
Er2 + Ze2r

)− p2θ

r
dr = n1h (6.125)

The values of rmin and rmax correspond to extremums, minimum and maximum, of

the function
∫ √

2m(Er2+Ze2r)−p2θ
r dr in (6.125), in other words, to the solutions of√

2m(Er2+Ze2r)−p2θ
r = 0. There are three possible solutions, the first two correspond

to the zeros of the trinomial under the radical sign of the numerator,

rextr =
−mZe2 ±

√
m2Z2e4 + 2mEp2θ

2mE
=

Ze2
(

−1 ±
√
1 + 2Ep2θ

mZ2e4

)

2E
(6.126)

and the third corresponds to the denominator tending to infinity, i.e. rextr → ∞. One
can reject the latter possibility as we know that the atom in its normal state is stable,
i.e. that the electrons are in orbits whose radius keeps finite value. As in Exercise19,
one considers that the electron is in an orbit of a general elliptic shape, i.e. with a
negative total energy, such as

− Z2e4m

2p2θ
≤ E < 0 (6.127)

Writing E = − |E | (where vertical bars denote the absolute value), (6.126) yields

r min
max

=
Ze2

(
1 ∓

√
1 − 2|E |p2θ

mZ2e4

)

2 |E | (6.128)

with rmin (resp. rmax ) corresponding to the − (resp. +) sign in front of the radical
sign. The integral of (6.125) is solved (see 2.267-1, Gradshteyn and Ryzhik, 2007;
14.288, Spiegel, 1974) as

Jr = 2

([√
2m

(− |E | r2 + Ze2r
)− p2θ

]rmax

rmin

+ mZe2 I1 − p2θ I2

)
(6.129)
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where integrals I1 and I2 are

I1 =
rmax∫

rmin

dr√
2m

(− |E | r2 + Ze2r
)− p2θ

(6.130)

I2 =
rmax∫

rmin

dr

r
√
2m

(− |E | r2 + Ze2r
)− p2θ

(6.131)

With the values (6.128) of rmin and rmax , the first term of (6.129) is nil and the action
variable Jr (6.129) becomes

Jr = 2
(
mZe2 I1 − p2θ I2

)
(6.132)

The integrals (6.130) and (6.131) yield (see 2.264-1, Gradshteyn and Ryzhik, 2007;
14.280, Spiegel, 19742 and 2.266, Gradshteyn and Ryzhik, 2007; 14.283, Spiegel,
1974)

I1 = − 1√
2m |E |

⎡
⎣arcsin

⎛
⎝ 1 − 2|E |

Ze2 r√
1 − 2|E |p2θ

mZ2e4

⎞
⎠
⎤
⎦

rmax

rmin

(6.133)

= − 1√
2m |E |

⎡
⎣arcsin

⎛
⎝1 − 2|E |

Ze2 rmax√
1 − 2|E |p2θ

mZ2e4

⎞
⎠− arcsin

⎛
⎝1 − 2|E |

Ze2 rmin√
1 − 2|E |p2θ

mZ2e4

⎞
⎠
⎤
⎦

(6.134)

= − 1√
2m |E | [arcsin (−1) − arcsin (+1)] (6.135)

= − 1√
2m |E |

(
−π

2
− π

2

)
= π√

2m |E | (6.136)

I2 = 1

pθ

⎡
⎣arcsin

⎛
⎝ r − p2θ

mZe2

r
√
1 − 2|E |p2θ

mZ2e4

⎞
⎠
⎤
⎦

rmax

rmin

(6.137)

= 1

pθ

⎡
⎣arcsin

⎛
⎝1 − p2θ

mZe2rmax√
1 − 2|E |p2θ

mZ2e4

⎞
⎠− arcsin

⎛
⎝1 − p2θ

mZe2rmin√
1 − 2|E |p2θ

mZ2e4

⎞
⎠
⎤
⎦ (6.138)

= 1

pθ
[arcsin (+1) − arcsin (−1)] = π

pθ
(6.139)

where rmin and rmax were replaced by (6.128) in (6.134) and (6.138).

2Remark that the coefficient (−2m |E |) of the term in r2 is negative.
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The action variable Jr (6.132) reads then with (6.136) and (6.139)3

Jr = πZe2

√
2m

|E | − 2π pθ (6.142)

Substituting pθ by its value (6.124), Jr by (6.114) and reversing (6.142), one finds
the energy E expression

E = −2π2mZ2e4

n2h2
(6.143)

where n = n1 + n2 is a natural integer. The energy E is therefore represented by
discrete values and is no longer continuous. One notes also that the condition (6.127)
yields that n ≥ 2π pθ

h .
(3) One cannot calculate the frequencies because fα = ∂H

∂ Jα
(6.5) and that here, Jr

and Jθ are represented by discrete and not continuous values. One cannot derive with
respect to discrete non-continuous values. �

6.2.5 Exercise38: Classical Kepler Problem 2

(1) Determine the frequencies of the Kepler problem for elliptic orbits.
(2) Is this method applicable to the cases of parabolic and hyperbolic orbits?
Why?

Proof (1) The Kepler problem was studied in Exercise22, where one found the

Hamiltonian (5.142) H = 1
2m

(
p2r + p2θ

r2

)
− K

r and the complete solution (5.155)

S = ∫ √
2m

(
E + K

r

)− p2θ
r2 dr + pθθ − E t , where E is the total energy of the con-

servative system and pθ is the constant conjugated angular moment.
A complete cycle is such that the coordinate θ varies from 0 to 2π and that

the coordinate r varies from its minimum value r = rmin
4 to its maximum value

3One notes that the value of Jr can be calculated faster and easier by using the method of the residue
theory (Spiegel, 1964). From (6.122), one finds directly

Jr = 2πi

(√
−p2θ + mZe2√

2mE

)
(6.140)

= −2π pθ + 2πmZe2√
2m |E | (6.141)

4Distance of the point of the orbit called pericentre; in particular, perigee or perihelion for orbits
around the Earth or the Sun.

https://doi.org/10.1007/978-981-13-3026-1_5
https://doi.org/10.1007/978-981-13-3026-1_5
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r = rmax
5 and then again to its minimum value r = rmin . By symmetry of movement,

the complete cycle for r is twice the part from the pericentre to the apocentre.

The action variables (6.1) are written, with pr = ∂S
∂r =

√
2m

(
E + K

r

)− p2θ
r2 and

pθ = ∂S
∂θ

,

Jθ = ∮
pθdθ =

2π∫

0

pθdθ = 2π pθ (6.144)

Jr =
∮ √

2m

(
E + K

r

)
− p2θ

r2
dr (6.145)

= 2

rmax∫

rmin

√
2m

(
Er2 + Kr

)− p2θ

r
dr (6.146)

The values of rmin and rmax corresponding to extremums, minimum and maximum,

of the function
∫ √

2m(Er2+Kr)−p2θ
r dr in (6.146), in other words to the solutions of√

2m(Er2+Kr)−p2θ
r = 0. There are three possible solutions, the first two correspond to

the zeros of the trinomial under the radical sign of the numerator,

rextr =
−mK ±

√
m2K 2 + 2mEp2θ

2mE
=

K

(
−1 ±

√
1 + 2Ep2θ

mK 2

)

2E
(6.147)

and the third corresponds to the denominator tending to infinity, i.e.

rextr → ∞ (6.148)

Among these three possibilities, the two values of r that will be rmin and rmax will
depend on the values of E .

One considers like in Exercise22 the three cases:

(1) − K 2m
2p2θ

≤ E < 0: the orbit is an ellipse;

(2) E = 0: the orbit is a parabola;
(3) E > 0: the orbit is a hyperbola.

For the cases (1) and (3) where E 
= 0, the integral of (6.146) is solved as follows
(see 2.267-1, Gradshteyn and Ryzhik, 2007; 14.288, Spiegel, 1974)

5Distance of the point of the orbit called apocentre; in particular, apogee or aphelion.
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Jr = 2

([√
2m

(
Er2 + Kr

)− p2θ

]rmax

rmin

+ mK I1 − p2θ I2

)
(6.149)

where the integrals I1 and I2 are

I1 =
rmax∫

rmin

dr√
2m

(
Er2 + Kr

)− p2θ

(6.150)

I2 =
rmax∫

rmin

dr

r
√
2m

(
Er2 + Kr

)− p2θ

(6.151)

For the case (1) of the elliptic orbit, one knows that the distance r is bounded and
thus, the third solution rextr → ∞ is not possible, and only the two roots rextr (6.147)
are to be considered. As in this case,− K 2m

2p2θ
≤ E < 0, one replaces E by − |E | and

the expression (6.147) of rextr becomes

r min
max

=
K

(
1 ∓

√
1 − 2|E |p2θ

mK 2

)

2 |E | (6.152)

where the superior − (respectively inferior +) sign in front of the radical sign cor-
responds to rmin (respectively rmax ).

With these values (6.152) of rmin and rmax , the first term of (6.149) is nil and the
action variable Jr (6.149) becomes

Jr = 2
(
mK I1 − p2θ I2

)
(6.153)

The integrals (6.150) and (6.151) yield (see 2.264-1, Gradshteyn and Ryzhik, 2007;
14.280, Spiegel, 19746 and 2.266, Gradshteyn and Ryzhik, 2007; 14.283, Spiegel,
1974)

I1 = − 1√
2m |E |

⎡
⎢⎢⎣arcsin

⎛
⎜⎜⎝

1 − 2|E |
K r√

1 − 2|E |p2θ
mK 2

⎞
⎟⎟⎠

⎤
⎥⎥⎦
rmax

rmin

(6.154)

= − 1√
2m |E |

⎡
⎢⎢⎣arcsin

⎛
⎜⎜⎝
1 − 2|E |

K rmax√
1 − 2|E |p2θ

mK 2

⎞
⎟⎟⎠− arcsin

⎛
⎜⎜⎝
1 − 2|E |

K rmin√
1 − 2|E |p2θ

mK 2

⎞
⎟⎟⎠

⎤
⎥⎥⎦ (6.155)

= − 1√
2m |E | [arcsin (−1) − arcsin (+1)] (6.156)

6Note that the coefficient (−2m |E |) of the term en r2 is negative.
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= − 1√
2m |E |

(
−π

2
− π

2

)
= π√

2m |E | (6.157)

I2 = 1

pθ

⎡
⎣arcsin

⎛
⎝ r − p2θ

mK

r
√
1 − 2|E |p2θ

mK 2

⎞
⎠
⎤
⎦

rmax

rmin

(6.158)

= 1

pθ

⎡
⎣arcsin

⎛
⎝ 1 − p2θ

mKrmax√
1 − 2|E |p2θ

mK 2

⎞
⎠− arcsin

⎛
⎝ 1 − p2θ

mKrmin√
1 − 2|E |p2θ

mK 2

⎞
⎠
⎤
⎦ (6.159)

= 1

pθ
[arcsin (+1) − arcsin (−1)] = π

pθ
(6.160)

where rmin and rmax were replaced in (6.155) and (6.159) by (6.152).
The action variable Jr (6.153) reads then with (6.157) and (6.160)7

Jr = πK

√
2m

|E | − 2π pθ (6.163)

The sum of the action variables (6.163) and (6.144) is then

Jr + Jθ = πK

√
2m

|E | (6.164)

As

E = H = − 2π2mK 2

(Jr + Jθ)
2 (6.165)

is the total energy of the conservative system, one finds the frequencies (6.5)

fr = ∂H
∂ Jr

= 4π2mK 2

(Jr + Jθ)
3 (6.166)

fθ = ∂H
∂ Jθ

= 4π2mK 2

(Jr + Jθ)
3 (6.167)

7One simplifies again the calculations by using the method of the residue theory (Spiegel, 1964).
When applied to (6.145), it yields

Jr = 2πi

(√
−p2θ + mK√

2mE

)
(6.161)

= −2π pθ + 2πmK√
2mE

(6.162)



6.2 Exercises 113

These two frequencies are equal.One says then that the system is degenerated because
the two frequencies are indistinguishable.
(2) For the case (3) of the hyperbolic orbit, as on the one hand, the coordinate r is
not bounded, and on the other hand E > 0, the smaller of the two roots rextr (6.147)
is negative and since the polar coordinate r must always be positive, this negative
root cannot be considered. One has then

rmin =
K

(
−1 +

√
1 + 2Ep2θ

mK 2

)

2E
(6.168)

rmax → ∞ (6.169)

The integral (6.150) becomes (see 2.264-1, Gradshteyn and Ryzhik, 2007; 14.280,
Spiegel, 19748)

I1 = 1√
2mE

⎡
⎣ln

⎛
⎝4mE

⎛
⎝
√
r2 + K

E
r − p2θ

2Em
+ r + K

2E

⎞
⎠
⎞
⎠
⎤
⎦

rmax

rmin

(6.170)

The integral I2 has the form (6.158). Replacing rmax by the limit (6.169), it comes
that the action variable Jr (6.149) tends also toward infinity, Jr → ∞.

For the case (2) of the parabolic orbit, as E = 0, (6.146) reduces to

Jr = 2

rmax∫

rmin

√
2mKr − p2θ

r
dr (6.171)

where rmin = p2θ
2mK and rmax → ∞. The integral in (6.171) is solved as (see 2.225-1,

Gradshteyn and Ryzhik, 2007; 14.92, Spiegel, 1974 and 2.224-5, Gradshteyn and
Ryzhik, 2007; 14.87, Spiegel, 19749)

Jr = 4

[√
2mKr − p2θ − pθ arctan

√
2mK

p2θ
r − 1

]rmax

rmin

(6.172)

and here also, it comes that the action variable Jr (6.172) tends toward infinity,
Jr → ∞.

In the two cases of hyperbolic and parabolic orbits, the action variables are infinite
and frequencies are indeterminate. �

8Note that the coefficient (2mE) of the term in r2 is positive.
9Note that the independent term, i.e. −p2θ , is negative.
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6.2.6 Exercise39: Relativistic Kepler Problem

If one applies the theory of relativity to the Keplerian movement of a particle of
mass m moving in a central force field, the Hamiltonian is given by

H =
√(

p2r + p2θ
r2

)
c2 + m2c4 − K

r
(6.173)

where c is the speed of light.
(1) Calculate the expression of the total energy of the system in function of
action variables.
(2) Give the frequencies of the movement.
(3) The system established through the classical Kepler problem is said to be
degenerate. Can we say the same in the relativistic case? Why?

Proof (1) With pr = ∂S
∂r and pθ = ∂S

∂θ
, the Hamilton–Jacobi equation (5.4) ∂S

∂t +
H = 0 reads

∂S

∂t
+
√√√√
((

∂S

∂r

)2

+ 1

r2

(
∂S

∂θ

)2
)
c2 + m2c4 − K

r
= 0 (6.174)

and has the complete solutionS = Sr (r) + Sθ (θ) + St (t). The first variable sepa-
ration yields St = −E t , with constant E , the total energy of the conservative system.
The other variable separations yield successively

√(
dSr
dr

)2

+ 1

r2

(
dSθ

dθ

)2

+ m2c2 =
K
r + E

c
(6.175)

(
dSr
dr

)2

+ 1

r2

(
dSθ

dθ

)2

=
(

K
r + E

c

)2

− m2c2 (6.176)

(
dSθ

dθ

)2

= r2

⎛
⎝−

(
dSr
dr

)2

+
(

K
r + E

c

)2

− m2c2

⎞
⎠ = p2θ (6.177)

As the generalized coordinate θ is ignorable (it does not appear in the Lagrangian),
the conjugated moment pθ = ∂S

∂θ
is constant and a constant of movement, which

yields successively
Sθ = pθθ (6.178)

https://doi.org/10.1007/978-981-13-3026-1_5


6.2 Exercises 115

(
dSr
dr

)2

=
(

K
r + E

c

)2

− m2c2 − p2θ
r2

(6.179)

Sr =
∫ √√√√

(
K
r + E

c

)2

− m2c2 − p2θ
r2

dr (6.180)

The complete solution reads

S =
∫ √√√√

(
K
r + E

c

)2

− m2c2 − p2θ
r2

dr + pθθ − E t (6.181)

A complete cycle is such that the coordinate θ varies from 0 to 2π and that the coor-
dinate r varies from r = rmin to r = rmax and then again to r = rmin . By symmetry
of movement, the complete cycle corresponds to twice the part from r = rmin to
r = rmax .

The action variables (6.1) read, with pr = ∂S
∂r =

√( K
r +E
c

)2 − m2c2 − p2θ
r2 ,

Jθ = ∫ 2π
0 pθdθ = 2π pθ (6.182)

Jr = ∮ √( K
r +E
c

)2 − m2c2 − p2θ
r2 dr (6.183)

=
∮ √(

K 2

c2
− p2θ

)
1

r2
+ 2EK

c2
1

r
+
(
E2

c2
− m2c2

)
dr (6.184)

= 2

c

rmax∫

rmin

√(
E2 − m2c4

)
r2 + 2EKr + (

K 2 − p2θc
2
)

r
dr (6.185)

Similarly to (6.147) and (6.148), the values of rmin and rmax correspond to solutions

of
√
(E2−m2c4)r2+2EKr+(K 2−p2θc

2)
r = 0. There are three possible solutions, the first two

correspond to the zeros of the trinomial under the radical sign of the numerator,

rextr =
EK ±

√
K 2m2c4 − (

m2c4 − E2
)
p2θc

2

m2c4 − E2
(6.186)

and the third corresponds to the denominator tending to infinity, i.e. rextr → ∞.
Among these three possibilities, which of the two values of r will be rmin and rmax will
depend on the values of E . As the total energy E of the system cannot be larger than
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mc2,10 i.e. E < mc2, the denominator is always positive. Furthermore, the expression

under the radical sign must be positive, i.e. E > mc2
√
1 − K 2

p2θc
2 with

K
c < pθ for the

expression under the radical sign to be also positive. The two combined conditions
yield √

1 − K 2

p2θc
2
<

E

mc2
< 1 ; K

c
< pθ (6.187)

One obtains then the expressions of rmin and rmax

rmin =
EK −

√
K 2m2c4 − (

m2c4 − E2
)
p2θc

2

m2c4 − E2
(6.188)

rmax =
EK +

√
K 2m2c4 − (

m2c4 − E2
)
p2θc

2

m2c4 − E2
(6.189)

The two conditions (6.187) also ensure that rmin is always positive.
The integral of (6.185) is solved as follows (see 2.267-1, Gradshteyn and Ryzhik,

2007; 14.288, Spiegel, 1974)

Jr = 2

c

([√(
E2 − m2c4

)
r2 + 2EKr + (

K 2 − p2θc
2
)]rmax

rmin

+ EK I1 +
(
K 2 − p2θc

2
)
I2

)

(6.190)

where the integrals I1 and I2 are

I1 =
rmax∫

rmin

dr√(
E2 − m2c4

)
r2 + 2EKr + (

K 2 − p2θc
2
) (6.191)

I2 =
rmax∫

rmin

dr

r
√(

E2 − m2c4
)
r2 + 2EKr + (

K 2 − p2θc
2
) (6.192)

As rmin and rmax are the zeros of the trinomial under the radical sign of the first term
of (6.190), this first term vanishes.

The integrals (6.191) and (6.192) give (see 2.264-1,Gradshteyn andRyzhik, 2007;
14.280, Spiegel, 197411 and 2.266, Gradshteyn and Ryzhik, 2007; 14.283, Spiegel,
197412)

10The cases E ≥ mc2 will not be addressed.
11Note that the coefficient

(
E2 − m2c4

)
of the term in r2 is negative.

12Note that the coefficient
(
K 2 − p2θc

2
)
of the independent term is negative.
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I1 = − 1√
m2c4 − E2

⎡
⎣arcsin

⎛
⎝ − (

m2c4 − E2
)
r + EK√

K 2m2c4 − (
m2c4 − E2

)
p2θc

2

⎞
⎠
⎤
⎦

rmax

rmin

(6.193)

= − 1√
m2c4 − E2

[arcsin (−1) − arcsin (+1)] (6.194)

= − 1√
m2c4 − E2

(
−π

2
− π

2

)
= π√

m2c4 − E2
(6.195)

I2 = 1√
p2θc

2 − K 2

⎡
⎣arcsin

⎛
⎝ EKr + (

K 2 − p2θc
2
)

r
√
K 2m2c4 − (

m2c4 − E2
)
p2θc

2

⎞
⎠
⎤
⎦

rmax

rmin

(6.196)

= 1√
p2θc

2 − K 2
[arcsin (+1) − arcsin (−1)] = π√

p2θc
2 − K 2

(6.197)

where rmin and rmax were replaced in (6.193) and (6.196) by (6.188) and (6.189).
The action variable Jr (6.190) reads then with (6.195) and (6.197)13

Jr = 2π

c

(
EK√

m2c4 − E2
−
√
p2θc

2 − K 2

)
(6.200)

= 2πEK

c
√
m2c4 − E2

−
√
4π2 p2θ − 4π2K 2

c2
(6.201)

= 2πEK

c
√
m2c4 − E2

−
√
J 2
θ − 4π2K 2

c2
(6.202)

where one used (6.182) in (6.201).
One finds the energy E from (6.202)

E = mc2√√√√√1 +
⎛
⎝ 2πK

c

(
Jr+

√
J 2θ − 4π2K2

c2

)
⎞
⎠

2
(6.203)

(2) As E = H, one finds the frequencies (6.5)

13Here also, Jr can be calculated easier and faster by the method of the residue theory (Spiegel,
1964). The lines from (6.185) to (6.197) can be replaced by: Applying the residue theory to (6.184),
it comes that

Jr = 2πi

⎛
⎝
√(

K 2

c2
− p2θ

)
+

EK
c2√

E2

c2
− m2c2

⎞
⎠ (6.198)

= 2π

c

(
−
√
p2θc

2 − K 2 + EK√
m2c4 − E2

)
(6.199)
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fr = ∂H
∂ Jr

= 4π2mK 2√√√√
((

Jr +
√
J 2
θ − 4π2K 2

c2

)2

+ 4π2K 2

c2

)3
(6.204)

fθ = ∂H
∂ Jθ

= 4π2mK 2√√√√
((

Jr +
√
J 2
θ − 4π2K 2

c2

)2

+ 4π2K 2

c2

)3

Jθ√
J 2
θ − 4π2K 2

c2

(6.205)

(3) These frequencies are no more equal as for the classic Kepler problem in the
previous Exercise38. The system in this formalism is no longer degenerated because
the orbit is not closed any more, although remaining constrained to a plane. One
notes that, if the terms 4π2K 2

c2 in (6.204) and (6.205) are neglected, for example by
making c to tend to infinity (c → ∞), one finds again the frequencies (6.166) and
(6.167) of the classic Kepler problem, which are equal. �

6.2.7 Exercise40: Advance of Mercury Perihelion

Preliminary Note

In the Theory of general relativity of gravitation, Einstein set as a postulate that any
inertial mass is also a gravitational mass and thus a source of gravitational force. By
introducing the Riemannian geometry in physics, Einstein showed that one can bring
together in one entity space, time and matter, which can be considered as a curved
portion of a four dimension space.

In this formalism, a geodesic such as

d̄s
2 = −c2dt2 + dx2 + dy2 + dz2 (6.206)

is called a Minkowski line element and expresses the “distance” in a four dimension
space, with time t and c the speed of light. Time became a geometric property of
space, or more exactly, of a new entity, the “space-time continuum”.

The principle of Least Action

δ

τ2∫

τ1

d̄s = 0 (6.207)

expresses the movement of a particle that is free from external forces.
One makes a point transformation to pass from rectangular coordinates to curvi-

linear coordinates
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d̄s =
√√√√ 3∑

i=0

gikdqidqk (6.208)

with gik the ten elements of a symmetrical 4 × 4 matrix of the metric tensor. For
example, for the Minkowski line element, one has⎛
⎜⎜⎝

g00 g01 g02 g03
g01 g11 g12 g13
g02 g12 g22 g23
g03 g13 g23 g33

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠.

For the movement of planets in the theory of general relativity, Einstein passes
from a revolution in a central force field in a three-dimensional Newtonian space to
a purely geodesic movement, i.e. a movement of a particle without forces in a four
dimension space with a Riemannian structure.

Einstein’s theory generalizes Newton gravitational potential to a system of ten
field quantities, which are the ten components of the four dimension Riemann line
element.

One can generalize the equation of Newton potential to Einstein field equations
that gives the gravitational field of the Sun, as long as this field has spherical sym-
metry. This result is given by the line element of Schwarzschild in polar coordinates

d̄s
2 =

(
1 − α

r

)
dx24 − dr2

1 − α
r

− r2
(
dθ2 + sin2 θ dϕ2

)
(6.209)

where α is a constant distance parameter to be determined. For α = 0, one finds
again the “flat” Minkowski element line (6.206) in polar coordinates (disregarding
a convention − sign).

From there on, the problem of the movement of planets under the action of a
central body becomes equivalent to the evaluation of geodesics in a Riemannian
space with the line item (6.209), which means in other words, to find the solution to
a dynamic problem whose Hamiltonian reads

H = p24
1 − α

r

−
(
1 − α

r

)
p2r − 1

r2

(
p2θ + p2ϕ

sin2 θ

)
(6.210)

On the other hand, in the Poincaré-Minkowski theory, which is based on general rel-
ativity and adapted from Newton equations of planetary movement, the Hamiltonian
reads

H = 1(
m + V

c2
)2
(
p24 − p2r − p2θ

r2

)
(6.211)
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where V is the scalar gravitational potential, V = −GMm
r , G the constant of gravi-

tation, M and m the masses of respectively the Sun and of a planet.
One of the successes of Einstein’s general relativity theory is to have brought in

1915 an elegant solution to the more than 60 years old problem of the advance of
Mercury perihelion,14 whose observed value is ηobs = 43.1" ± 0.4 /century (where
" means arc seconds).

Exercise Statement

Knowing that the semi-major axis a and the eccentricity e of the orbit of Mer-
cury are a ≈ 5.7909 × 1010 m and e ≈ 0.20563 and that Mercury describes
415 revolutions per century, calculate the advance of the of Mercury perihelion,
according to the four following steps.
(1) Starting from the Hamiltonian (6.210), give an expression of the generalized
coordinate θ in function of r in a planar approximation.
(2) Assuming that the constant distance parameter α is small with respect to
planetary radial distances, α � r , show that the approximate analytical expres-
sion of θ includes two movements, one yielding a cumulative precession effect
on each revolution, the other yielding a small periodic effect.
(3) Comparing the Hamiltonian (6.210) in the planar approximation and the
Hamiltonian (6.211), find an expression for the distance parameter α and show
that it is indeed small with respect to planetary radial distances, α � r .
(4) Calculate the advance of Mercury perihelion.

Proof (1) Due to the spherical symmetry, one can reduce the problem to a movement
in a plane with ϕ = π

2 . So, one can treat the problem with only three (instead of four)
pairs of canonical variables. The Hamiltonian (6.210) becomes

H = p24
1 − α

r

−
(
1 − α

r

)
p2r − p2θ

r2
(6.212)

The Hamiltonian does not explicitly depend on θ and x4. These two coordinates are
then ignorable and one can substitute the constant conjugated moments

pθ = −A (6.213)

p4 = AB (6.214)

where A and B are constants, which replaced in (6.212) yields

H = A2B2

1 − α
r

−
(
1 − α

r

)
p2r − A2

r2
(6.215)

14The perihelion is the point of the orbit where the radial distance r is minimal, or the point of the
orbit at which a planet is closest to the Sun.
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with only one variable r remaining.What interests us is not themovement in function
of time, i.e. r = r (t) or θ = θ (t), but the geometric orbit r = r (θ). Therefore, the
Hamilton equations (2.3) read

ṙ = ∂H

∂ pr
= −2

(
1 − α

r

)
pr (6.216)

θ̇ = ∂H

∂ pθ
= −2pθ

r2
= 2A

r2
(6.217)

Dividing (6.216) by (6.217) yields

dr

dθ
= −r2

A

(
1 − α

r

)
pr (6.218)

Another condition is for the system to be conservative, i.e. for the total energy to
be constant, which gives another relation between r and pr . Let us set this constant
equal to unity E = H = 1 in (6.215), which yields

pr =
√√√√ A2B2

1− α
r

− A2

r2 − 1

1 − α
r

(6.219)

which, replaced in (6.218), gives

dθ = − dr

r2
√(

1 − α
r

) (
B2

1− α
r

− 1
r2 − 1

A2

) (6.220)

where the sign in front of the radical sign is chosen such as θ increases for increasing
r . After changing the variable ρ = 1

r in (6.220), it comes

θ =
∫

dρ√
(1 − αρ)

(
B2

1−αρ
− ρ2 − 1

A2

) (6.221)

The denominator of (6.221) is the square root of a cubic function of ρ. The integration
would lead to an elliptic integral.
(2) Assuming that the constant distance parameterα is small with respect to planetary

radial distances, α � r or αρ � 1, the term
(

1
1−αρ

)
in (6.221) can be developed in

series of Taylor, neglecting terms of degree higher than the second for

B2

1 − αρ
≈ B2

(
1 + αρ + (αρ)2

)
(6.222)

https://doi.org/10.1007/978-981-13-3026-1_2
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and of degree higher than the first for

1√
1 − αρ

≈ 1 + αρ

2
(6.223)

Their replacement in (6.221) yield

θ ≈
∫ (

1 + αρ
2

)
dρ√

− (
1 − α2B2

)
ρ2 + αB2ρ − (

1
A2 − B2

) =
∫

N

D
dρ (6.224)

that is integrable in elementary functions instead of an elliptic integral. The trinomial
under the radical to the denominator of (6.224) can be put in the form

D =
√

− (
1 − α2B2

)
(ρ − ρ1) (ρ − ρ2) (6.225)

where ρ1 and ρ2 are the zeros of the trinomial such as

ρ1 + ρ2 = αB2

1 − α2B2
(6.226)

ρ1ρ2 =
1
A2 − B2

1 − α2B2
(6.227)

Let us set ρ0 = ρ1+ρ2
2 and b = ρ1−ρ2

2 and let us change the variable again ρ = ρ0 + u.
The denominator (6.225) becomes

D =
√√√√(

1 − α2B2
) ((ρ1 − ρ2

2

)2

−
(

ρ −
(

ρ1 + ρ2

2

))2
)

(6.228)

=
√(

1 − α2B2
) (
b2 − u2

)
(6.229)

Replacing in (6.224) yields

θ ≈
∫ (

1 + αρ0
2 + αu

2

)
du√(

1 − α2B2
) (
b2 − u2

) (6.230)

≈ 1 + αρ0
2√

1 − α2B2

∫
du√

b2 − u2
+

α
2√

1 − α2B2

∫
u du√
b2 − u2

(6.231)

The term under the radical sign in the factor of (6.231) is close to 1,
(
1 − α2B2

) ≈ 1
as, with ρ1 + ρ2 = 2ρ0, multiplying (6.226) by α yields α2B2 = 2αρ0

1+2αρ0
≈ 2αρ0

(1 − 2αρ0) ≈ 2αρ0 � 1. The factors in front of the two integrals of (6.231) can
then be approximated by
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1 + αρ0
2√

1 − α2B2
≈ 1 + αρ0

2√
1 − 2αρ0

≈ 1 + αρ0
2

1 − αρ0
≈
(
1 + αρ0

2

)
(1 + αρ0) (6.232)

≈ 1 + 3αρ0

2
+ α2ρ20

2
≈ 1 + 3αρ0

2
(6.233)

α
2√

1 − α2B2
≈ α

2
(1 + αρ0) ≈ α

2
+ α2ρ0

2
≈ α

2
(6.234)

where the terms in α2 are finally neglected in (6.233) and (6.234). After replacement
in (6.231), it comes

θ ≈
(
1 + 3αρ0

2

)∫
du√

b2 − u2
+ α

2

∫
u du√
b2 − u2

(6.235)

The evolution of the angle θ is thus the sum of two movements given by these two
integrals. The first integral of (6.235) is solved (see 2.271-4, Gradshteyn and Ryzhik,
2007; 14.237, Spiegel, 1974) in

θ ≈
(
1 + 3αρ0

2

)
arcsin

(u
b

)
(6.236)

Reversing (6.236) and returning to initial variables, i.e. replacing u = ρ − ρ0 = 1
r −

1
r0
, one obtains

1

r
≈ 1

r0
+ b sin

(
θ

1 + 3αρ0
2

)
(6.237)

which is the focal equation of an ellipse, except for an adjustment factor ( 3αρ0
2 ) which

yields to a small precession of the ellipse in its own plane. This means that the angle
between two successive perihelia is not 2π, but 2π + 3παρ0.

The second integral of (6.235) gives (see 2.271-7, Gradshteyn and Ryzhik, 2007;
14.238, Spiegel, 1974)

θ ≈ −α

2

√
b2 − u2 (6.238)

with u = ρ − ρ0 = 1
r − ρ0, which yields

θ ≈ −α

2

√(
b2 − ρ20

)+ ρ0

r
− 1

r2
(6.239)

This component of the evolution of θ yields only a periodic disturbance of the orbit
too small to be observed and which has no cumulative effect, while the advance of
the perihelion appears each revolution and is a cumulative effect, measurable after
around a hundred revolutions.
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(3) To find the value of the distance parameter α, one has to compare the two Hamil-
tonians (6.212) and (6.211). Setting the mass of the planet equal to unity, m = 1, it
comes for the first term in p4 in both Hamiltonians that

1 − α

r
=
(
1 + V

c2

)2

= 1 − 2GM

rc2
+ G2M2

r2c4
(6.240)

or, neglecting the last second degree term,

α ≈ 2GM

c2
(6.241)

With the values G ≈ 6.672 × 10−11 m3/kg s2, M ≈ 2 × 1030 kg, c ≈ 3 × 108m/s,
one obtains α ≈ 2.94 × 103 m ≈ 3 km, which is called the gravitational radius or
the Schwarzschild radius and which corresponds to the radius of a black hole that
would have the mass of the Sun. This distance is very small compared to the radii of
planetary orbits (typically, in the solar system from 5.8 × 1010 to 4.5 × 1012 m for
Mercury to Neptune), the product (αρ) is then of the order of 10−7 to 10−9, which
justifies the approximations made of the Taylor series expansions for

(
1 − α

r

)
.

(4) In the case of Mercury, the cumulative effect of the perihelion advance becomes
very pronounced. If a is the semi-major axis ofMercury’s orbit and e his eccentricity,
one has ρ0 = 1

a(1−e2)
, the inverse of the perihelion distance. The perihelion advance

for each revolution is then

η = 3παρ0 ≈ 6πGM

a
(
1 − e2

)
c2

(6.242)

With a ≈ 5.7909 × 1010 m and e ≈ 0.20563 for Mercury, one finds approximately
0.1s of arc per revolution. As Mercury describes 415 revolutions per century, the
calculated perihelion advance is

ηcalc = 43.03" ± 0.03 /century (6.243)

while the observed value is ηobs = 43.1" ± 0.4 /century. �

This famous result, in very good agreement with the observed value for Mercury,
was the first experimental proof of the general relativity theory.

One can also calculate the advance of the perihelion of Venus, Earth and Mars,
which are also in good agreement with observations, respectively 8.62, 3.84 and
1.35seconds of arc per century.



Selected Bibliography

Textbooks on Classical Mechanics

Arnold V.I., “Mathematical Methods of Classical Mechanics”, Springer Verlag, New
York, 1978.
Brouwer D. and Clemence G.M., “Methods of Celestial Mechanics”, Academic
Press, New York, 1961.
Deprit A. and Rouche N., “Mécanique Rationnelle”, Tomes 1 and 2, Vander Éditeur,
Louvain, 1970.
Goldstein H., “Classical Mechanics”, Addison Wesley, 2nd edition, 1980.
Landau L.D. and Lifshitz E.M., “Mechanics”, Course of Theoretical Physics, Vol.
1, 2nd ed., Pergamon Press, Oxford, 1969.
Roy A.E., “Orbital motion”, 3rd ed., Adam Hilger, Bristol, 1988.
Spiegel M.R., “Theoretical Mechanics”, Schaum’s Outline séries in Sciences,
McGraw-Hill, New York, 1967.
Texier C., “Mécanique Quantique”, 2nd edition, Dunod, Paris, 2014.

References and Mathematical Tables

Gradshteyn I.S., Ryzhik I.M., “Table of Integrals, Series, and Products”, 7th ed.,
Academic Press, Elsevier, London, 2007.
Kamke E., “Differentialgleichungen, Lösungsmethoden und Lösungen”, 2 Auflage,
Akademische VerlagsGesellschaft Becker & Erler Kom. Ges., Leipzig, 1943.
Milne-Thomson L.M., “Elliptic Integrals”, in “Handbook of Mathematical Func-
tions”, M. Abramowitz and I.A. Stegun eds., National Bureau of Standards, 10th ed.,
Washington, 587–626, 1972.
Spanier J. and Oldham K.B., “An Atlas of Functions”, Hemisphere Publ. Corp.,
Springer-Verlag, Berlin, 1987.

© Springer Nature Singapore Pte Ltd. 2018
V. Pletser, Lagrangian and Hamiltonian Analytical Mechanics:
Forty Exercises Resolved and Explained, UNITEXT for Physics,
https://doi.org/10.1007/978-981-13-3026-1

125

https://doi.org/10.1007/978-981-13-3026-1


126 Selected Bibliography

Spiegel M. R., “Formules et Tables de Mathématiques”, Série Schaum, McGraw-
Hill, Paris, 1974.
Spiegel M. R., “Complex Variables”, Série Schaum, McGraw-Hill, 1964 (ISBN 2-
7042-0020-3).

References on the Pendulum Problem

Baker G.L., Blackburn J.A., “The Pendulum: A Case Study in Physics”, Oxford,
New York, 2005.
Belendez A., Pascual C., Mendez D.I., Belendez T., Neipp C., “Exact solution for the
nonlinear pendulum”, Revista Brasileira de Ensino de Fisica, v. 29, n. 4, p. 645–648,
2007
(http://www.scielo.br/pdf/rbef/v29n4/a24v29n4.pdf).
Fulcher L.P., Davis B.F., “Theoretical and experimental study of the motion of the
simple pendulum”, American Journal of Physics, 44, 51, 1976.

http://www.scielo.br/pdf/rbef/v29n4/a24v29n4.pdf


Index

A
Action variable, 91, 92, 94, 104, 108, 110,

111, 115
Advance of Mercury perihelion, 118
Angular variable, 92, 105
Apocentre, 110

B
Ballistic flight, 57
Black hole, 124
Bohr atom, 105
Brachistochrone, 30

C
Canonical coordinates, 39
Canonical transformation, 39, 40, 44
Cartesian coordinates, 8, 16, 55, 102
Catenary, 35
Catenoid, 35
Classical Kepler problem, 68, 73, 109
Conjugate moment, 3
Conservative system, 3, 20, 29
Constant of movement, 23, 25, 80, 106, 114
Constraint, 4, 8
Constraint equation, 11
Contact transformation, 39
Coulomb field, 86, 89
Cyclic coordinate, 23, 25, 29, 69, 76, 80, 88,

106, 114, 120
Cycloid, 33
Cylindrical coordinates, 7, 21, 86, 89

D
Degenerate system, 113, 118
Degree of freedom, 2, 51
Double pendulum, 5, 66
Dynamic equilibrium, 17
Dynamic stability, 29

E
Eccentricity, 73, 120
Eigenfrequency, 101
Elliptical coordinates, 21
Elliptic coordinates, 87
Elliptic integral, 98, 121
Elliptic orbit, 73, 109
Equilibrium positions, 16
Euler equation, 27
Exact differential, 40, 44, 48

F
Fermat Principle, 27, 35
First integral, 12, 15, 26, 29, 30
Forces of impulse, 4
Free fall, 55
Frequency, 92, 105, 117

G
Generalized coordinate, 2
Generalized forces, 2
Generalized impulses, 5
Generalized moment, 3
Generating function, 40, 47, 48, 51, 65
Geodesic, 118
Gliding without friction, 30

© Springer Nature Singapore Pte Ltd. 2018
V. Pletser, Lagrangian and Hamiltonian Analytical Mechanics:
Forty Exercises Resolved and Explained, UNITEXT for Physics,
https://doi.org/10.1007/978-981-13-3026-1

127

https://doi.org/10.1007/978-981-13-3026-1


128 Index

H
Hamilton equations, 19, 21, 23, 24, 64, 91,

121
Hamiltonian, 20, 22, 23, 26, 29, 39, 41, 48,

52, 53, 55, 60, 63, 64, 67, 68, 74, 79,
82, 84, 88, 90, 92, 93, 102, 106, 109,
114, 119, 120

Hamilton–Jacobi, 51, 53, 55, 57, 60, 62, 65,
66, 68, 74, 77, 79, 86, 89, 92, 94, 102,
106, 114

Harmonic oscillator, 23, 47, 48, 53, 92
Hyperbolic orbit, 73, 113

I
Ignorable coordinates, 51
Impulse, 4
Isotropic oscillator, 101

K
Kinetic energy, 2

L
Lagrange equations, 3, 5, 8, 10, 12, 14
Lagrange’s multipliers, 4
Lagrangian, 3, 23, 25, 27, 28, 39, 53, 55, 60,

63, 64, 67, 69, 74, 80
Line integral, 91

M
Minimum surface, 33
Minkowski, 118
Moment of inertia, 12
Moment of inertia of a disc, 13
Moment of inertia of a sphere, 10

N
Newton, 119

O
Optical Lagrangian, 28, 36
Optical path, 35

P
Parabolic coordinates, 21, 84, 89
Parabolic orbit, 73, 113
Paraboloid, 7
Pericentre, 73, 109, 120

Phase integral, 91, 106
Phase space, 91
Poisson brackets, 25
Polar coordinates, 73, 106, 119
Precession, 123

R
Refractive index, 35
Relativistic Kepler problem, 114
Residue theory, 109, 112
Riemann, 118
Rolling without slipping, 10, 13, 33
Rotation, 10

S
Schrödinger equation, 77
Schwarzschild, 119, 124
Semi-major axis, 120
Separation of variables, 52, 65, 81, 85, 88,

94, 102, 106, 114
Sliding without friction, 23, 60, 62
Small isochronous oscillations, 96
Space-time continuum, 118
Spherical coordinates, 21, 74, 79
Stable equilibrium, 17
Stark effect, 79

T
Theorem of Guldin, 33
Theorem of Poisson, 26, 30
Theory of Poincaré-Minkowski, 119
Theory of relativity, 114, 118
Theory of residue, 117
Three dimension harmonic oscillator, 101
Total energy, 15, 20, 30, 52, 55, 58, 61, 63,

68, 69, 75, 82, 88, 91, 92, 94, 102,
106, 109, 112, 114, 121

True anomaly, 73

U
Unstable equilibrium, 17, 95

V
Variable separation, 69
Variational Principle, 27

W
Watt regulator, 28


	Preface
	Contents
	1 Lagrange Equations
	1.1 Reminder
	1.1.1 Generalized Coordinates
	1.1.2 Kinetic Energy
	1.1.3 Generalized Forces
	1.1.4 Lagrange Equations
	1.1.5 Generalized Moment
	1.1.6 Lagrange Equations for Systems with Constraints
	1.1.7 Lagrange Equations with Impulse Forces

	1.2 Exercises
	1.2.1 Exercise 1 : Double Pendulum
	1.2.2 Exercise 2: Particle on a Paraboloid
	1.2.3 Exercise 3: Sphere Rolling on Another Sphere
	1.2.4 Exercise 4: Truck Descending a Slope
	1.2.5 Exercise 5: Sliding and Rotating Masses


	2 Hamilton Equations
	2.1 Reminder
	2.1.1 Hamiltonian
	2.1.2 Hamilton Equations
	2.1.3 Conservative System
	2.1.4 Expression of the Hamiltonian in Different  Coordinate Systems

	2.2 Exercises
	2.2.1 Exercise 6: Particle in a Plane with Central Force
	2.2.2 Exercise 7: Harmonic Oscillator


	3 First Integral and Variational Principle
	3.1 Reminder
	3.1.1 Cyclic Coordinate
	3.1.2 Poisson Brackets
	3.1.3 Theorem of Poisson
	3.1.4 Euler Equation
	3.1.5 Variational Principle
	3.1.6 Application in Optics: Fermat Principle

	3.2 Exercises
	3.2.1 Exercise 8: Watt Regulator
	3.2.2 Exercise 9: First Integral of a Free Material Point
	3.2.3 Exercise 10: Brachistochrone Problem
	3.2.4 Exercise 11: Minimum Surface of Revolution
	3.2.5 Exercise 12: Optical Path and Fermat Principle


	4 Canonical Transformations or Contact Transformations
	4.1 Reminder
	4.1.1 Canonical Transformations
	4.1.2 Condition for a Transformation to be Canonical
	4.1.3 Generating Functions

	4.2 Exercises
	4.2.1 Exercise13: Canonical Transformation 1
	4.2.2 Exercise14: Canonical Transformation 2
	4.2.3 Exercise15: Canonical Transformation 3
	4.2.4 Exercise16: Canonical Transformation 4
	4.2.5 Exercise17: Canonical Transformation 5
	4.2.6 Exercise18: Canonical Transformation 6
	4.2.7 Exercise19: Canonical Transformation 7
	4.2.8 Exercise20: Canonical Transformation 8 and Harmonic Oscillator 2


	5 Hamilton–Jacobi Equations
	5.1 Reminder
	5.1.1 Hamilton–Jacobi Equations
	5.1.2 Solution of Hamilton–Jacobi Equations
	5.1.3 Time Independent Hamiltonian

	5.2 Exercises
	5.2.1 Exercise 21: Harmonic Oscillator 3
	5.2.2 Exercise 22: Free Falling Particle
	5.2.3 Exercise 23: Ballistic Flight of a Projectile
	5.2.4 Exercise 24: Particle Sliding on an Inclined Plane
	5.2.5 Exercise 25: Connected Particles Sliding on Inclined Surfaces
	5.2.6 Exercise 26: Unconventional Mechanics
	5.2.7 Exercise 27: Double Pendulum 2
	5.2.8 Exercise 28: Classical Problem of Kepler
	5.2.9 Additional Note on the Classical Problem of Kepler
	5.2.10 Exercise 29: Particle and Potential in -Kcosθr2
	5.2.11 Exercise 30: Schrödinger Equation
	5.2.12 Exercise 31: Stark Effect
	5.2.13 Exercise 32: Particle in a Double Coulomb Field 
	5.2.14 Exercise 33: Particle in Coulomb and Uniform Fields


	6 Phase Integral and Action-Angle Variables
	6.1 Reminder
	6.1.1 Phase Integral
	6.1.2 Frequency and Angular Variable

	6.2 Exercises
	6.2.1 Exercise34: Harmonic Oscillator 4
	6.2.2 Exercise35: Small Oscillations of the Pendulum
	6.2.3 Exercise36: Three Dimension Harmonic Oscillator
	6.2.4 Exercise37: Energy in a Bohr Atom
	6.2.5 Exercise38: Classical Kepler Problem 2
	6.2.6 Exercise39: Relativistic Kepler Problem
	6.2.7 Exercise40: Advance of Mercury Perihelion


	 Selected Bibliography
	Textbooks on Classical Mechanics
	References and Mathematical Tables
	References on the Pendulum Problem

	Index



