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 Preface
Objectives
The main objective of a basic mechanics course should be to develop in the engineering stu-
dent the ability to analyze a given problem in a simple and logical manner and to apply to its 
solution a few fundamental and well-understood principles. This text is designed for the first 
course in mechanics of materials—or strength of materials—offered to engineering students in 
the sophomore or junior year. The authors hope that it will help instructors achieve this goal 
in that particular course in the same way that their other texts may have helped them in statics 
and dynamics. To assist in this goal, the seventh edition has undergone a complete edit of the 
language to make the book easier to read.

General Approach
In this text the study of the mechanics of materials is based on the understanding of a few basic 
concepts and on the use of simplified models. This approach makes it possible to develop all 
the necessary formulas in a rational and logical manner, and to indicate clearly the conditions 
under which they can be safely applied to the analysis and design of actual engineering struc-
tures and machine components.

Free-body Diagrams Are Used Extensively. Throughout the text free-body diagrams 
are used to determine external or internal forces. The use of “picture equations” will also help 
the students understand the superposition of loadings and the resulting stresses and 
deformations.

The SMART Problem-Solving Methodology is Employed. New to this edition of the 
text, students are introduced to the SMART approach for solving engineering problems, whose 
acronym reflects the solution steps of Strategy, Modeling, Analysis, and Reflect & T hink. This 
methodology is used in all Sample Problems, and it is intended that students will apply this 
approach in the solution of all assigned problems.

Design Concepts Are Discussed Throughout the Text Whenever Appropriate. A dis-
cussion of the application of the factor of safety to design can be found in Chap. 1, where the 
concepts of both allowable stress design and load and resistance factor design are presented.

A Careful Balance Between SI and U.S. Customary Units Is Consistently Main-
tained. Because it is essential that students be able to handle effectively both SI metric units 
and U.S. customary units, half the concept applications, sample problems, and problems to be 
assigned have been stated in SI units and half in U.S. customary units. Since a large number 
of problems are available, instructors can assign problems using each system of units in what-
ever proportion they find desirable for their class.

Optional Sections Offer Advanced or Specialty Topics. Topics such as residual stresses, 
torsion of noncircular and thin-walled members, bending of curved beams, shearing stresses in 
non-symmetrical members, and failure criteria have been included in optional sections for 
use in courses of varying emphases. To preserve the integrity of the subject, these topics are 
presented in the proper sequence, wherever they logically belong. Thus, even when not 

NEW
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x Preface

covered in the course, these sections are highly visible and can be easily referred to by the 
students if needed in a later course or in engineering practice. For convenience all optional 
sections have been indicated by asterisks.

Chapter Organization
It is expected that students using this text will have completed a course in statics. However, 
Chap. 1 is designed to provide them with an opportunity to review the concepts learned in that 
course, while shear and bending-moment diagrams are covered in detail in Secs. 5.1 and 5.2. 
The properties of moments and centroids of areas are described in Appendix A; this material 
can be used to reinforce the discussion of the determination of normal and shearing stresses 
in beams (Chaps. 4, 5, and 6).
 The first four chapters of the text are devoted to the analysis of the stresses and of the 
corresponding deformations in various structural members, considering successively axial load-
ing, torsion, and pure bending. Each analysis is based on a few basic concepts: namely, the 
conditions of equilibrium of the forces exerted on the member, the relations existing between 
stress and strain in the material, and the conditions imposed by the supports and loading of the 
member. The study of each type of loading is complemented by a large number of concept 
applications, sample problems, and problems to be assigned, all designed to strengthen the 
students’ understanding of the subject.
 The concept of stress at a point is introduced in Chap. 1, where it is shown that an axial 
load can produce shearing stresses as well as normal stresses, depending upon the section 
considered. The fact that stresses depend upon the orientation of the surface on which they 
are computed is emphasized again in Chaps. 3 and 4 in the cases of torsion and pure bending. 
However, the discussion of computational techniques—such as Mohr’s circle—used for the 
transformation of stress at a point is delayed until Chap. 7, after students have had the oppor-
tunity to solve problems involving a combination of the basic loadings and have discovered for 
themselves the need for such techniques.
 The discussion in Chap. 2 of the relation between stress and strain in various materials 
includes fiber-reinforced composite materials. Also, the study of beams under transverse loads 
is covered in two separate chapters. Chapter 5 is devoted to the determination of the normal 
stresses in a beam and to the design of beams based on the allowable normal stress in the 
material used (Sec. 5.3). The chapter begins with a discussion of the shear and bending-
moment diagrams (Secs. 5.1 and 5.2) and includes an optional section on the use of singularity 
functions for the determination of the shear and bending moment in a beam (Sec. 5.4). The 
chapter ends with an optional section on nonprismatic beams (Sec. 5.5).
 Chapter 6 is devoted to the determination of shearing stresses in beams and thin-walled 
members under transverse loadings. The formula for the shear flow, q 5 VQyI, is derived in 
the traditional way. More advanced aspects of the design of beams, such as the determination 
of the principal stresses at the junction of the flange and web of a W-beam, are considered in 
Chap. 8, an optional chapter that may be covered after the transformations of stresses have 
been discussed in Chap. 7. The design of transmission shafts is in that chapter for the same 
reason, as well as the determination of stresses under combined loadings that can now include 
the determination of the principal stresses, principal planes, and maximum shearing stress at 
a given point.
 Statically indeterminate problems are first discussed in Chap. 2 and considered through-
out the text for the various loading conditions encountered. Thus, students are presented at an 
early stage with a method of solution that combines the analysis of deformations with the 
conventional analysis of forces used in statics. In this way, they will have become thoroughly 
familiar with this fundamental method by the end of the course. In addition, this approach 
helps the students realize that stresses themselves are statically indeterminate and can be com-
puted only by considering the corresponding distribution of strains.
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 The concept of plastic deformation is introduced in Chap. 2, where it is applied to the 
analysis of members under axial loading. Problems involving the plastic deformation of circu-
lar shafts and of prismatic beams are also considered in optional sections of Chaps. 3, 4, and 
6. While some of this material can be omitted at the choice of the instructor, its inclusion in 
the body of the text will help students realize the limitations of the assumption of a linear 
stress-strain relation and serve to caution them against the inappropriate use of the elastic 
torsion and flexure formulas.
 The determination of the deflection of beams is discussed in Chap. 9. The first part of 
the chapter is devoted to the integration method and to the method of superposition, with an 
optional section (Sec. 9.3) based on the use of singularity functions. (This section should be 
used only if Sec. 5.4 was covered earlier.) The second part of Chap. 9 is optional. It presents 
the moment-area method in two lessons.
 Chapter 10, which is devoted to columns, contains material on the design of steel, alumi-
num, and wood columns. Chapter 11 covers energy methods, including Castigliano’s theorem.

Supplemental Resources for Instructors
Find the Companion Website for Mechanics of Materials at www.mhhe.com/beerjohnston. 
Included on the website are lecture PowerPoints, an image library, and animations. On the site 
you’ll also find the Instructor’s Solutions Manual (password-protected and available to instruc-
tors only) that accompanies the seventh edition. The manual continues the tradition of excep-
tional accuracy and normally keeps solutions contained to a single page for easier reference. 
The manual includes an in-depth review of the material in each chapter and houses tables 
designed to assist instructors in creating a schedule of assignments for their courses. The various 
topics covered in the text are listed in Table I, and a suggested number of periods to be spent 
on each topic is indicated. Table II provides a brief description of all groups of problems and a 
classification of the problems in each group according to the units used. A Course Organization 
Guide providing sample assignment schedules is also found on the website.
 Via the website, instructors can also request access to C.O.S.M.O.S., the Complete Online 
Solutions Manual Organization System that allows instructors to create custom homework, 
quizzes, and tests using end-of-chapter problems from the text.

McGraw-Hill Connect Engineering provides online presentation, 
assignment, and assessment solutions. It connects your students 
with the tools and resources they’ll need to achieve success. With 

Connect Engineering you can deliver assignments, quizzes, and tests online. A robust set of 
questions and activities are presented and aligned with the textbook’s learning outcomes. As 
an instructor, you can edit existing questions and author entirely new problems. Integrate 
grade reports easily with Learning Management Systems (LMS), such as WebCT and Black-
board—and much more. ConnectPlus® Engineering provides students with all the advantages 
of Connect Engineering, plus 24/7 online access to a media-rich eBook, allowing seamless 
integration of text, media, and assessments. To learn more, visit www.mcgrawhillconnect.com.

McGraw-Hill LearnSmart is available as a 
standalone product or an integrated feature of McGraw-Hill Connect Engineering. It is an adap-
tive learning system designed to help students learn faster, study more efficiently, and retain 
more knowledge for greater success. LearnSmart assesses a student’s knowledge of course con-
tent through a series of adaptive questions. It pinpoints concepts the student does not under-
stand and maps out a personalized study plan for success. This innovative study tool also has 
features that allow instructors to see exactly what students have accomplished and a built-in 
assessment tool for graded assignments. Visit the following site for a demonstration. www.
LearnSmartAdvantage.com
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Powered by the intelligent and adaptive LearnSmart 
engine, SmartBook is the first and only continuously adaptive reading experience available 
today. Distinguishing what students know from what they don’t, and honing in on concepts they 
are most likely to forget, SmartBook personalizes content for each student. Reading is no longer 
a passive and linear experience but an engaging and dynamic one, where students are more 
likely to master and retain important concepts, coming to class better prepared. SmartBook 
includes powerful reports that identify specific topics and learning objectives students need 
to study.

Craft your teaching resources to match the way you teach! With McGraw-
Hill Create, www.mcgrawhillcreate.com, you can easily rearrange chapters, combine material 
from other content sources, and quickly upload your original content, such as a course syllabus 
or teaching notes. Arrange your book to fit your teaching style. Create even allows you to per-
sonalize your book’s appearance by selecting the cover and adding your name, school, and 
course information. Order a Create book and you’ll receive a complimentary print review copy 
in 3–5 business days or a complimentary electronic review copy (eComp) via email in minutes. 
Go to www.mcgrawhillcreate.com today and register to experience how McGraw-Hill Create 
empowers you to teach your students your way.
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xiii

Guided Tour
Chapter Introduction. Each chapter begins 
with an introductory section that sets up the purpose 
and goals of the chapter, describing in simple terms 
the material that will be covered and its application 
to the solution of engineering problems. Chapter 
Objectives provide students with a preview of chap-
ter topics.

Chapter Lessons. The body of the text is divided 
into units, each consisting of one or several theory 
sections, Concept Applications, one or several 
Sample Problems, and a large number of homework 
problems. The Companion Website contains a 
Course Organization Guide with suggestions on each 
chapter lesson.

Concept Applications. Concept Appli-
cations are used extensively within individ-
ual theory sections to focus on specific 
topics, and they are designed to illustrate 
specific material being presented and facili-
tate its understanding.

Sample Problems. The Sample Prob-
lems are intended to show more compre-
hensive applications of the theory to the solution of engineering 
problems, and they employ the SMART problem-solving methodology 
that students are encouraged to use in the solution of their assigned 
problems. Since the sample problems have been set up in much the 
same form that students will use in solving the assigned problems, 
they serve the double purpose of amplifying the text and demonstrat-
ing the type of neat and orderly work that students should cultivate in 
their own solutions. In addition, in-problem references and captions 
have been added to the sample problem figures for contextual linkage 
to the step-by-step solution.

Homework Problem Sets. Over 25% of the nearly 1500 home-
work problems are new or updated. Most of the problems are of a prac-
tical nature and should appeal to engineering students. They are 
primarily designed, however, to illustrate the material presented in the 
text and to help students understand the principles used in mechanics 
of materials. The problems are grouped according to the portions of 
material they illustrate and are arranged in order of increasing diffi-
culty. Answers to a majority of the problems are given at the end of the 
book. Problems for which the answers are given are set in blue type in 
the text, while problems for which no answer is given are set in red.

1
Introduction—

Concept of Stress
Stresses occur in all structures subject to loads. This chapter 
will examine simple states of stress in elements, such as in 
the two-force members, bolts and pins used in the structure 
shown.

Objectives
• Review of statics needed to determine forces in members of 

simple structures.

• Introduce concept of stress.

• Define diff erent stress types: axial normal stress, shearing stress 
and bearing stress.

• Discuss engineer’s two principal tasks, namely, the analysis and 
design of structures and machines.

• Develop problem solving approach.

• Discuss the components of stress on diff erent planes and under 
diff erent loading conditions.

• Discuss the many design considerations that an engineer should 
review before preparing a design.

bee98233_ch01_002-053.indd   2-3 11/8/13   1:45 PM

Concept Application 1.1
Considering the structure of Fig. 1.1 on page 5, assume that rod BC is 
made of a steel with a maximum allowable stress sall 5 165 MPa. Can 
rod BC safely support the load to which it will be subjected? The mag-
nitude of the force FBC in the rod was 50 kN. Recalling that the diam-
eter of the rod is 20 mm, use Eq. (1.5) to determine the stress created 
in the rod by the given loading.

 P 5 FBC 5 150 kN 5 150 3 103 N

 A 5 pr2 5 pa20 mm

2
b2

5 p110 3 1023 m22 5 314 3 1026 m2

 s 5
P
A

5
150 3 103 N

314 3 1026 m2 5 1159 3 106 Pa 5 1159 MPa

Since s is smaller than sall of the allowable stress in the steel used, rod 
BC can safely support the load.

bee98233_ch01_002-053.indd   9 11/7/13   3:27 PM

REFLECT and THINK: We sized d based on bolt shear, and then 
checked bearing on the tie bar. Had the maximum allowable bearing 
stress been exceeded, we would have had to recalculate d based on 
the bearing criterion.

Sample Problem 1.2
The steel tie bar shown is to be designed to carry a tension force of 
magnitude P 5 120 kN when bolted between double brackets at A 
and B. The bar will be fabricated from 20-mm-thick plate stock. For the 
grade of steel to be used, the maximum allowable stresses are 
s 5 175  MPa, t 5 100 MPa, and sb 5 350 MPa. Design the tie bar by 
determining the required values of (a) the diameter d of the bolt, (b) the 
dimension b at each end of the bar, and (c) the dimension h of the bar.

STRATEGY: Use free-body diagrams to determine the forces needed 
to obtain the stresses in terms of the design tension force. Setting these 
stresses equal to the allowable stresses provides for the determination 
of the required dimensions.

MODELING and ANALYSIS:

 a. Diameter of the Bolt. Since the bolt is in double shear (Fig. 1), 
F1 5 1

2 P 5 60 kN.

t 5
F1

A
5

60 kN
1
4p d2     100 MPa 5

60 kN
1
4p d2     d 5 27.6 mm

Use  d 5 28 mm ◀

At this point, check the bearing stress between the 20-mm-thick plate 
(Fig. 2) and the 28-mm-diameter bolt.

 sb 5
P

td
5

120 kN

10.020 m2 10.028 m2 5 214 MPa , 350 MPa    OK

 b. Dimension b at Each End of the Bar. We consider one of the 
end portions of the bar in Fig. 3. Recalling that the thickness of the 
steel plate is t 5 20 mm and that the average tensile stress must not 
exceed 175 MPa, write

s 5
1
2 P

ta
    175 MPa 5

60 kN

10.02 m2a    a 5 17.14 mm

b 5 d 1 2a 5 28 mm 1 2(17.14 mm)  b 5 62.3 mm ◀

 c. Dimension h of the Bar. We consider a section in the central 
portion of the bar (Fig. 4). Recalling that the thickness of the steel plate 
is t 5 20 mm, we have

s 5
P
th

    175 MPa 5
120 kN

10.020 m2h    h 5 34.3 mm

Use  h 5 35 mm ◀

A B

d
F1 �   P

P

F1

F1

1
2

b

h

t 5 20 mm

d

P

P' � 120 kN
a

t

a

db

1
2

P1
2

P 5 120 kN

t 5 20 mm

h

Fig. 1 Sectioned bolt.

Fig. 2 Tie bar geometry.

Fig. 3 End section of tie bar.

Fig. 4 Mid-body section of tie bar.

bee98233_ch01_002-053.indd   19 11/7/13   3:27 PM
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xiv Guided Tour

Chapter Review and Summary. Each chapter ends 
with a review and summary of the material covered in that 
chapter. Subtitles are used to help students organize their 
review work, and cross-references have been included to help 
them find the portions of material requiring their special 
attention.

Review Problems. A set of review problems is included 
at the end of each chapter. These problems provide students 
further opportunity to apply the most important concepts 
introduced in the chapter.

Computer Problems. Computers make it possible for 
engineering students to solve a great number of challenging 
problems. A group of six or more problems designed to be 
solved with a computer can be found at the end of each chap-
ter. These problems can be solved using any computer 
language that provides a basis for analytical calculations. 
Developing the algorithm required to solve a given problem 
will benefit the students in two different ways: (1) it will help 
them gain a better understanding of the mechanics principles 
involved; (2) it will provide them with an opportunity to apply 
the skills acquired in their computer programming course to 
the solution of a meaningful engineering problem.

44

Review and Summary
This chapter was devoted to the concept of stress and to an introduction 
to the methods used for the analysis and design of machines and load-
bearing structures. Emphasis was placed on the use of a free-body diagram
to obtain equilibrium equations that were solved for unknown reactions. 
Free-body diagrams were also used to find the internal forces in the vari-
ous members of a structure.

Axial Loading: Normal Stress
The concept of stress was first introduced by considering a two-force 
member under an axial loading. The normal stress in that member 
(Fig. 1.41) was obtained by

 s 5
P
A

 (1.5)

 The value of s obtained from Eq. (1.5) represents the average stress
over the section rather than the stress at a specific point Q of the section. 
Considering a small area DA surrounding Q and the magnitude DF of the 
force exerted on DA, the stress at point Q is

 s 5 lim
¢Ay0

 
¢F
¢A

 (1.6)

 In general, the stress s at point Q in Eq. (1.6) is different from the 
value of the average stress given by Eq. (1.5) and is found to vary across 
the section. However, this variation is small in any section away from the 
points of application of the loads. Therefore, the distribution of the normal 
stresses in an axially loaded member is assumed to be uniform, except in 
the immediate vicinity of the points of application of the loads.
 For the distribution of stresses to be uniform in a given section, the 
line of action of the loads P and P9 must pass through the centroid C. Such 
a loading is called a centric axial loading. In the case of an eccentric axial 
loading, the distribution of stresses is not uniform.

Transverse Forces and Shearing Stress
When equal and opposite transverse forces P and P9 of magnitude P are 
applied to a member AB (Fig. 1.42), shearing stresses t are created over 
any section located between the points of application of the two forces. 

A

P'

P

Fig. 1.41 Axially loaded 
member with cross section 
normal to member used to 
define normal stress.

A C B

P

P�

Fig. 1.42 Model of transverse resultant forces on 
either side of C resulting in shearing stress at section C.
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Review Problems
 1.59 In the marine crane shown, link CD is known to have a uniform 

cross section of 50 3 150 mm. For the loading shown, determine 
the normal stress in the central portion of that link.

Fig. P1.59

A
D

C

B

3 m25 m15 m

35 m

80 Mg

15 m

1.60 Two horizontal 5-kip forces are applied to pin B of the assembly 
shown. Knowing that a pin of 0.8-in. diameter is used at each 
connection, determine the maximum value of the average nor-
mal stress (a) in link AB, (b) in link BC.

Fig. P1.60

B

A

C

0.5 in.

0.5 in.

1.8 in.

1.8 in.

45�

60�

5 kips
5 kips

1.61 For the assembly and loading of Prob. 1.60, determine (a) the 
average shearing stress in the pin at C, (b) the average bearing 
stress at C in member BC, (c) the average bearing stress at B in 
member BC.
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Computer Problems
The following problems are designed to be solved with a computer.

 1.C1 A solid steel rod consisting of n cylindrical elements welded together 
is subjected to the loading shown. The diameter of element i is denoted 
by di and the load applied to its lower end by Pi, with the magnitude Pi of 
this load being assumed positive if Pi is directed downward as shown and 
negative otherwise. (a) Write a computer program that can be used with 
either SI or U.S. customary units to determine the average stress in each 
element of the rod. (b) Use this program to solve Probs. 1.1 and 1.3.

 1.C2 A 20-kN load is applied as shown to the horizontal member ABC. 
Member ABC has a 10 3 50-mm uniform rectangular cross section and 
is supported by four vertical links, each of 8 3 36-mm uniform rectan-
gular cross section. Each of the four pins at A, B, C, and D has the same 
diameter d and is in double shear. (a) Write a computer program to cal-
culate for values of d from 10 to 30 mm, using 1-mm increments, (i) the 
maximum value of the average normal stress in the links connecting pins 
B and D, (ii) the average normal stress in the links connecting pins C
and E, (iii) the average shearing stress in pin B, (iv) the average shearing 
stress in pin C, (v) the average bearing stress at B in member ABC, and 
(vi) the average bearing stress at C in member ABC. (b) Check your pro-
gram by comparing the values obtained for d 5 16 mm with the answers 
given for Probs. 1.7 and 1.27. (c) Use this program to find the permissible 
values of the diameter d of the pins, knowing that the allowable values 
of the normal, shearing, and bearing stresses for the steel used are, 
respectively, 150 MPa, 90 MPa, and 230 MPa. (d) Solve part c, assuming 
that the thickness of member ABC has been reduced from 10 to 8 mm.

Element n

Element 1

Pn

P1

Fig. P1.C1

Fig. P1.C2

0.2 m
0.25 m

0.4 m

20 kN

C

B

A
D

E
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xv

 a Constant; distance
 A, B, C, . . . Forces; reactions
 A, B, C, . . . Points
 A, A Area
 b Distance; width
 c Constant; distance; radius
 C Centroid
 C1, C2, . . . Constants of integration
 CP Column stability factor
 d Distance; diameter; depth
 D Diameter
 e Distance; eccentricity; dilatation
 E Modulus of elasticity
 f Frequency; function
 F Force
 F.S. Factor of safety
 G Modulus of rigidity; shear modulus
 h Distance; height
 H Force
 H, J, K Points
 I, Ix, . . . Moment of inertia
 Ixy, . . . Product of inertia
 J Polar moment of inertia
 k Spring constant; shape factor; bulk 

modulus; constant
 K Stress concentration factor; torsional 

spring constant
 l Length; span
 L Length; span
 Le Effective length
 m Mass
 M Couple
 M, Mx, . . . Bending moment
 MD Bending moment, dead load (LRFD)
 ML Bending moment, live load (LRFD)
 MU Bending moment, ultimate load (LRFD)
 n Number; ratio of moduli of elasticity; 

normal direction
 p Pressure
 P Force; concentrated load
 PD Dead load (LRFD)
 PL Live load (LRFD)

 PU Ultimate load (LRFD)
 q Shearing force per unit length; shear 

flow
 Q Force
 Q First moment of area
 r Radius; radius of gyration
 R Force; reaction
 R Radius; modulus of rupture
 s Length
 S Elastic section modulus
 t Thickness; distance; tangential 

deviation
 T Torque
 T Temperature
 u, v Rectangular coordinates
 u Strain-energy density
 U Strain energy; work
 v Velocity
 V Shearing force
 V Volume; shear

w Width; distance; load per unit length
 W, W Weight, load
 x, y, z Rectangular coordinates; distance; 

displacements; deflections
x, y, z Coordinates of centroid

 Z Plastic section modulus
a, b, g Angles

a Coefficient of thermal expansion; 
influence coefficient

g Shearing strain; specific weight
gD Load factor, dead load (LRFD)
gL Load factor, live load (LRFD)
d Deformation; displacement
e Normal strain
u Angle; slope
l Direction cosine
n Poisson’s ratio
r Radius of curvature; distance; density
s Normal stress
t Shearing stress
f Angle; angle of twist; resistance factor
v Angular velocity

List of Symbols
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1
Introduction—

Concept of Stress
Stresses occur in all structures subject to loads. This chapter 
will examine simple states of stress in elements, such as in 
the two-force members, bolts and pins used in the structure 
shown.

Objectives
• Review of statics needed to determine forces in members of 

simple structures.

• Introduce concept of stress.

• Define diff erent stress types: axial normal stress, shearing stress 
and bearing stress.

• Discuss engineer’s two principal tasks, namely, the analysis and 
design of structures and machines.

• Develop problem solving approach.

• Discuss the components of stress on diff erent planes and under 
diff erent loading conditions.

• Discuss the many design considerations that an engineer should 
review before preparing a design.

bee98233_ch01_002-053.indd   3bee98233_ch01_002-053.indd   3 11/15/13   9:41 AM11/15/13   9:41 AM



Introduction
The study of mechanics of materials provides future engineers with the 
means of analyzing and designing various machines and load-bearing 
structures involving the determination of stresses and deformations. This 
first chapter is devoted to the concept of stress.
 Section 1.1 is a short review of the basic methods of statics and their 
application to determine the forces in the members of a simple structure 
consisting of pin-connected members. The concept of stress in a member 
of a structure and how that stress can be determined from the force in the 
member will be discussed in Sec. 1.2. You will consider the normal stresses
in a member under axial loading, the shearing stresses caused by the appli-
cation of equal and opposite transverse forces, and the bearing stresses
created by bolts and pins in the members they connect.
 Section 1.2 ends with a description of the method you should use 
in the solution of an assigned problem and a discussion of the numerical 
accuracy. These concepts will be applied in the analysis of the members of 
the simple structure considered earlier.
 Again, a two-force member under axial loading is observed in 
Sec. 1.3 where the stresses on an oblique plane include both normal and 
shearing stresses, while Sec. 1.4 discusses that six components are required 
to describe the state of stress at a point in a body under the most general 
loading conditions.
 Finally, Sec. 1.5 is devoted to the determination of the ultimate 
strength from test specimens and the use of a factor of safety to compute 
the allowable load for a structural component made of that material.

1.1  REVIEW OF THE METHODS 
OF STATICS

Consider the structure shown in Fig. 1.1, which was designed to support 
a 30-kN load. It consists of a boom AB with a 30 3 50-mm rectangular 
cross section and a rod BC with a 20-mm-diameter circular cross section. 
These are connected by a pin at B and are supported by pins and brackets 
at A and C, respectively. First draw a free-body diagram of the structure by 
detaching it from its supports at A and C and showing the reactions that 
these supports exert on the structure (Fig. 1.2). Note that the sketch of the 
structure has been simplified by omitting all unnecessary details. Many of 
you may have recognized at this point that AB and BC are two-force mem-
bers. For those of you who have not, we will pursue our analysis, ignoring 
that fact and assuming that the directions of the reactions at A and C are 
unknown. Each of these reactions are represented by two components: Ax 
and Ay at A, and Cx and Cy at C. The equilibrium equations are.

1l o MC 5 0:  Ax10.6 m2 2 130 kN2 10.8 m2 5 0

 Ax 5 140 kN (1.1)

1
y  o Fx 5 0: Ax 1 Cx 5 0 

 Cx 5 2Ax    Cx 5 240 kN (1.2)

1x o Fy 5 0: Ay 1 Cy 2 30 kN 5 0 

 Ay 1 Cy 5 130 kN (1.3)

 Introduction

 1.1 REVIEW OF THE 
METHODS OF STATICS

1.2 STRESSES IN THE 
MEMBERS OF A 
STRUCTURE

1.2A Axial Stress
1.2B Shearing Stress

 1.2C Bearing Stress in Connections
 1.2D Application to the Analysis and 

Design of Simple Structures
 1.2E Method of Problem Solution

1.3 STRESS ON AN OBLIQUE 
PLANE UNDER AXIAL 
LOADING

1.4 STRESS UNDER GENERAL 
LOADING CONDITIONS; 
COMPONENTS OF STRESS

1.5 DESIGN 
CONSIDERATIONS

 1.5A Determination of the Ultimate 
Strength of a Material

 1.5B Allowable Load and Allowable 
Stress: Factor of Safety

 1.5C Factor of Safety Selection
 1.5D Load and Resistance Factor 

Design

4 Introduction—Concept of Stress

Photo 1.1 Crane booms used to load and unload 
ships.
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1.1 Review of The Methods of Statics 5

We have found two of the four unknowns, but cannot determine the other 
two from these equations, and no additional independent equation can 
be obtained from the free-body diagram of the structure. We must now 
dismember the structure. Considering the free-body diagram of the boom 
AB (Fig. 1.3), we write the following equilibrium equation:

1l o MB 5 0: 2Ay 
10.8 m2 5 0    Ay 5 0 (1.4)

Substituting for Ay from Eq. (1.4) into Eq. (1.3), we obtain Cy 5 130 kN. 
Expressing the results obtained for the reactions at A and C in vector form, 
we have

A 5 40 kNy     Cx 5 40 kNz     Cy 5 30 kNx

Fig. 1.1 Boom used to support a 30-kN load.

800 mm

50 mm

30 kN

600 mm

d 5 20 mm

C

A

B

30 kN

0.8 m

0.6 m

B

Cx

Cy

Ay

C

AAx

Fig. 1.2 Free-body diagram of boom showing 
applied load and reaction forces.

30 kN

0.8 m

Ay By

A BAx Bz

Fig. 1.3 Free-body diagram of member AB freed 
from structure.
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6 Introduction—Concept of Stress

Note that the reaction at A is directed along the axis of the boom AB and 
causes compression in that member. Observe that the components Cx 
and Cy of the reaction at C are, respectively, proportional to the horizontal 
and vertical components of the distance from B to C and that the 
reaction at C is equal to 50 kN, is directed along the axis of the rod BC, 
and causes tension in that member.
 These results could have been anticipated by recognizing that AB 
and BC are two-force members, i.e., members that are subjected to forces 
at only two points, these points being A and B for member AB, and B and 
C for member BC. Indeed, for a two-force member the lines of action of 
the resultants of the forces acting at each of the two points are equal and 
opposite and pass through both points. Using this property, we could have 
obtained a simpler solution by considering the free-body diagram of pin B. 
The forces on pin B, FAB and FBC, are exerted, respectively, by members 
AB and BC and the 30-kN load (Fig. 1.4a). Pin B is shown to be in equi-
librium by drawing the corresponding force triangle (Fig. 1.4b).
 Since force FBC is directed along member BC, its slope is the same 
as that of BC, namely, 3/4. We can, therefore, write the proportion

FAB

4
5

FBC

5
5

30 kN

3

from which

FAB 5 40 kN  FBC 5 50 kN

Forces F9AB and F9BC exerted by pin B on boom AB and rod BC are equal 
and opposite to FAB and FBC (Fig. 1.5).

Fig. 1.4 Free-body diagram of boom’s joint B and 
associated force triangle.

(a) (b)

FBC
FBC

FAB FAB

30 kN

30 kN

3
5

4
B

Fig. 1.5 Free-body diagrams of two-force 
members AB and BC.

FAB F'AB

FBC

F'BCB

A B

C

C

D

B

D

FBC

FBC F'BC

F'BC

Fig. 1.6 Free-body diagrams of sections of rod BC.

 Knowing the forces at the ends of each member, we can now deter-
mine the internal forces in these members. Passing a section at some arbi-
trary point D of rod BC, we obtain two portions BD and CD (Fig. 1.6). Since 
50-kN forces must be applied at D to both portions of the rod to keep them 
in equilibrium, an internal force of 50 kN is produced in rod BC when a 
30-kN load is applied at B. From the directions of the forces FBC and F9BC 
in Fig. 1.6 we see that the rod is in tension. A similar procedure enables 
us to determine that the internal force in boom AB is 40 kN and is in 
compression.
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1.2 Stresses in the Members of a Structure 7

1.2  STRESSES IN THE MEMBERS 
OF A STRUCTURE

1.2A  Axial Stress
In the preceding section, we found forces in individual members. This is 
the first and necessary step in the analysis of a structure. However it does 
not tell us whether the given load can be safely supported. Rod BC of the 
example considered in the preceding section is a two-force member and, 
therefore, the forces FBC and F9BC acting on its ends B and C (Fig. 1.5) are 
directed along the axis of the rod. Whether rod BC will break or not under 
this loading depends upon the value found for the internal force FBC, the 
cross-sectional area of the rod, and the material of which the rod is made. 
Actually, the internal force FBC represents the resultant of elementary forces 
distributed over the entire area A of the cross section (Fig. 1.7). The average 

Fig. 1.7 Axial force represents the resultant 
of distributed elementary forces.

A

FBCFBC A� �

Fig. 1.8 (a) Member with an axial load. 
(b) Idealized uniform stress distribution at an 
arbitrary section.

(a) (b)

A

P
A

P' P'

P

� �

Fig. 1.9 Small area DA, at an arbitrary cross 
section point carries/axial DF in this axial member.

P'

Q

�A

�F

intensity of these distributed forces is equal to the force per unit area, 
FBCyA, on the section. Whether or not the rod will break under the given 
loading depends upon the ability of the material to withstand the corre-
sponding value FBCyA of the intensity of the distributed internal forces.
 Let us look at the uniformly distributed force using Fig. 1.8. The 
force per unit area, or intensity of the forces distributed over a given sec-
tion, is called the stress and is denoted by the Greek letter s (sigma). The 
stress in a member of cross-sectional area A subjected to an axial load P
is obtained by dividing the magnitude P of the load by the area A:

s 5
P

A
 (1.5)

A positive sign indicates a tensile stress (member in tension), and a nega-
tive sign indicates a compressive stress (member in compression).
 As shown in Fig. 1.8, the section through the rod to determine the 
internal force in the rod and the corresponding stress is perpendicular to the 
axis of the rod. The corresponding stress is described as a normal stress. 
Thus, Eq. (1.5) gives the normal stress in a member under axial loading:
 Note that in Eq. (1.5), s represents the average value of the stress over 
the cross section, rather than the stress at a specific point of the cross section. 
To define the stress at a given point Q of the cross section, consider a small 
area DA (Fig. 1.9). Dividing the magnitude of DF by DA, you obtain the average 
value of the stress over DA. Letting DA approach zero, the stress at point Q is

s 5 lim
¢Ay0

 
¢F

¢A
 (1.6)

Photo 1.2 This bridge truss consists of two-force 
members that may be in tension or in compression.
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8 Introduction—Concept of Stress

 In general, the value for the stress s at a given point Q of the section 
is different from that for the average stress given by Eq. (1.5), and s is 
found to vary across the section. In a slender rod subjected to equal and 
opposite concentrated loads P and P9 (Fig. 1.10a), this variation is small 
in a section away from the points of application of the concentrated loads 
(Fig. 1.10c), but it is quite noticeable in the neighborhood of these points 
(Fig. 1.10b and d).
 It follows from Eq. (1.6) that the magnitude of the resultant of the 
distributed internal forces is

#dF 5 #
A

s dA

But the conditions of equilibrium of each of the portions of rod shown in 
Fig. 1.10 require that this magnitude be equal to the magnitude P of the 
concentrated loads. Therefore,

 P 5 #dF 5 #
A

s dA (1.7)

which means that the volume under each of the stress surfaces in Fig. 1.10 
must be equal to the magnitude P of the loads. However, this is the only 
information derived from statics regarding the distribution of normal 
stresses in the various sections of the rod. The actual distribution of 
stresses in any given section is statically indeterminate. To learn more 
about this distribution, it is necessary to consider the deformations result-
ing from the particular mode of application of the loads at the ends of the 
rod. This will be discussed further in Chap. 2.
 In practice, it is assumed that the distribution of normal stresses in 
an axially loaded member is uniform, except in the immediate vicinity of 
the points of application of the loads. The value s of the stress is then equal 
to save and can be obtained from Eq. (1.5). However, realize that when we 
assume a uniform distribution of stresses in the section, it follows from 
elementary statics† that the resultant P of the internal forces must be 
applied at the centroid C of the section (Fig. 1.11). This means that a uni-
form distribution of stress is possible only if the line of action of the concen-
trated loads P and P9 passes through the centroid of the section considered 
(Fig. 1.12). This type of loading is called centric loading and will take place 
in all straight two-force members found in trusses and pin-connected 
structures, such as the one considered in Fig. 1.1. However, if a two-force 
member is loaded axially, but eccentrically, as shown in Fig. 1.13a, the con-
ditions of equilibrium of the portion of member in Fig. 1.13b show that the 
internal forces in a given section must be equivalent to a force P applied 
at the centroid of the section and a couple M of moment M 5 Pd. This 
distribution of forces—the corresponding distribution of stresses—cannot 
be uniform. Nor can the distribution of stresses be symmetric. This point 
will be discussed in detail in Chap. 4.

(a) (b) (c) (d)

P' P' P' P'

P

�

�

�

Fig. 1.10 Stress distributions at different sections 
along axially loaded member.

Fig. 1.11 Idealized uniform stress distribution 
implies the resultant force passes through the cross 
section’s center.

C

� P

Fig. 1.12 Centric loading having resultant forces 
passing through the centroid of the section.

C

P

P' †See Ferdinand P. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 5th ed., 
McGraw-Hill, New York, 2008, or Vector Mechanics for Engineers, 10th ed., McGraw-Hill, 
New York, 2013, Secs. 5.2 and 5.3.
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1.2 Stresses in the Members of a Structure 9

 To be complete, our analysis of the given structure should also include 
the compressive stress in boom AB, as well as the stresses produced in the 
pins and their bearings. This will be discussed later in this chapter. You 
should also determine whether the deformations produced by the given 
loading are acceptable. The study of deformations under axial loads will be 
the subject of Chap. 2. For members in compression, the stability of the 
member (i.e., its ability to support a given load without experiencing a sud-
den change in configuration) will be discussed in Chap. 10.

Fig. 1.13 An example of simple eccentric loading.

MC
d

d

(a) (b)

P'P'

P

P

†The principal SI and U.S. Customary units used in mechanics are listed in tables inside 
the front cover of this book. From the table on the right-hand side, 1 psi is approximately 
equal to 7 kPa and 1 ksi approximately equal to 7 MPa.

Concept Application 1.1
Considering the structure of Fig. 1.1 on page 5, assume that rod BC is 
made of a steel with a maximum allowable stress sall 5 165 MPa. Can 
rod BC safely support the load to which it will be subjected? The mag-
nitude of the force FBC in the rod was 50 kN. Recalling that the diam-
eter of the rod is 20 mm, use Eq. (1.5) to determine the stress created 
in the rod by the given loading.

 P 5 FBC 5 150 kN 5 150 3 103 N

 A 5 pr2 5 pa20 mm

2
b2

5 p110 3 1023 m22 5 314 3 1026 m2

 s 5
P
A

5
150 3 103 N

314 3 1026 m2 5 1159 3 106 Pa 5 1159 MPa

Since s is smaller than sall of the allowable stress in the steel used, rod 
BC can safely support the load.

 When SI metric units are used, P is expressed in newtons (N) and A
in square meters (m2), so the stress s will be expressed in N/m2. This unit 
is called a pascal (Pa). How ever, the pascal is an exceedingly small quantity 
and often multiples of this unit must be used: the kilopascal (kPa), the 
megapascal (MPa), and the gigapascal (GPa):

 1 kPa 5 103 Pa 5 103 N/m2

 1 MPa 5 106 Pa 5 106 N/m2

 1 GPa 5 109 Pa 5 109 N/m2

 When U.S. customary units are used, force P is usually expressed in 
pounds (lb) or kilopounds (kip), and the cross-sectional area A is given in 
square inches (in2). The stress s then is expressed in pounds per square 
inch (psi) or kilopounds per square inch (ksi).†
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10 Introduction—Concept of Stress

1.2B Shearing Stress
The internal forces and the corresponding stresses discussed in Sec. 1.2A 
were normal to the section considered. A very different type of stress is 
obtained when transverse forces P and P9 are applied to a member AB
(Fig. 1.14). Passing a section at C between the points of application of the 
two forces (Fig. 1.15a), you obtain the diagram of portion AC shown in 

Concept Application 1.2
As an example of design, let us return to the structure of Fig. 1.1 on 
page 5 and assume that aluminum with an allowable stress sall 5

100 MPa is to be used. Since the force in rod BC is still P 5 FBC 5 50 kN 
under the given loading, from Eq. (1.5), we have

sall 5
P
A
    A 5

P
sall

5
50 3 103 N

100 3 106 Pa
5 500 3 1026 m2

and since A 5 pr2,

r 5 B
A
p

5 B
500 3 1026 m2

p
5 12.62 3 1023 m 5 12.62 mm

d 5 2r 5 25.2 mm

Therefore, an aluminum rod 26 mm or more in diameter will be 
adequate.

Fig. 1.14 Opposing 
transverse loads creating 
shear on member AB.

A B

P'

P

Fig. 1.15 This shows the resulting internal shear 
force on a section between transverse forces.

A C

A C

B

(a)

(b)

P

P

P�

P'

 The engineer’s role is not limited to the analysis of existing struc-
tures and machines subjected to given loading conditions. Of even greater 
importance is the design of new structures and machines, that is the selec-
tion of appropriate components to perform a given task.
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1.2 Stresses in the Members of a Structure 11

Fig. 1.15b. Internal forces must exist in the plane of the section, and their 
resultant is equal to P. These elementary internal forces are called shearing 
forces, and the magnitude P of their resultant is the shear in the section. 
Dividing the shear P by the area A of the cross section, you obtain the 
average shearing stress in the section. Denoting the shearing stress by the 
Greek letter t (tau), write

 tave 5
P

A
 (1.8)

 The value obtained is an average value of the shearing stress over 
the entire section. Contrary to what was said earlier for normal stresses, 
the distribution of shearing stresses across the section cannot be assumed 
to be uniform. As you will see in Chap. 6, the actual value t of the shearing 
stress varies from zero at the surface of the member to a maximum value 
tmax that may be much larger than the average value tave.

Photo 1.3 Cutaway view of a connection with a bolt in shear.

Fig. 1.16 Bolt subject to single shear.

C

D

A
F

E'B
E

F'

Fig. 1.17 (a) Diagram of bolt in single shear; 
(b) section E-E’ of the bolt.

C C

D

F

PE�E

(a) (b)

F

F'

 Shearing stresses are commonly found in bolts, pins, and rivets used 
to connect various structural members and machine components 
(Photo 1.3). Consider the two plates A and B, which are connected by a 
bolt CD (Fig. 1.16). If the plates are subjected to tension forces of magni-
tude F, stresses will develop in the section of bolt corresponding to the 
plane EE9. Drawing the diagrams of the bolt and of the portion located 
above the plane EE9 (Fig. 1.17), the shear P in the section is equal to F. 
The average shearing stress in the section is obtained using Eq. (1.8) by 
dividing the shear P 5 F by the area A of the cross section:

 tave 5
P
A

5
F
A

 (1.9)
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12 Introduction—Concept of Stress

 The previous bolt is said to be in single shear. Different loading situ-
ations may arise, however. For example, if splice plates C and D are used 
to connect plates A and B (Fig. 1.18), shear will take place in bolt HJ in 
each of the two planes KK9 and LL9 (and similarly in bolt EG). The bolts 
are said to be in double shear. To determine the average shearing stress in 
each plane, draw free-body diagrams of bolt HJ and of the portion of the 
bolt located between the two planes (Fig. 1.19). Observing that the shear 
P in each of the sections is P 5 Fy2, the average shearing stress is

 tave 5
P

A
5

Fy2

A
5

F

2A
 (1.10)

Fig. 1.20 Equal and opposite forces between 
plate and bolt, exerted over bearing surfaces.

A

C

D

d

t

F

P

F'

Fig. 1.21 Dimensions for calculating 
bearing stress area.

A d

t

Fig. 1.19 (a) Diagram of bolt in double shear; 
(b) section K-K’ and L-L’ of the bolt.

K

L

H

J

K'

L'
F

FC

FD

F
P

P

(a) (b)

Fig. 1.18 Bolts subject to double shear.

K
AB

L

E H

G J

C

D 

K'

L'

FF'

1.2C Bearing Stress in Connections
Bolts, pins, and rivets create stresses in the members they connect 
along the bearing surface or surface of contact. For example, consider 
again the two plates A and B connected by a bolt CD that were dis-
cussed in the preceding section (Fig. 1.16). The bolt exerts on plate A a 
force P equal and opposite to the force F exerted by the plate on the 
bolt (Fig. 1.20). The force P represents the resultant of elementary forces 
distributed on the inside surface of a half- cylinder of diameter d and of 
length t equal to the thickness of the plate. Since the distribution of 
these forces—and of the corresponding stresses—is quite complicated, 
in practice one uses an average nominal value sb of the stress, called 
the bearing stress, which is obtained by dividing the load P by the area 
of the rectangle representing the projection of the bolt on the plate sec-
tion (Fig. 1.21). Since this area is equal to td, where t is the plate thick-
ness and d the diameter of the bolt, we have

 sb 5
P

A
5

P

td
 (1.11)

1.2D  Application to the Analysis and 
Design of Simple Structures

We are now in a position to determine the stresses in the members and 
connections of various simple two-dimensional structures and to design 
such structures. This is illustrated through the following Concept 
Application.
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1.2 Stresses in the Members of a Structure 13

Normal Stress in Boom AB and Rod BC. As found in Sec. 1.1A, the 
force in rod BC is FBC 5 50 kN (tension) and the area of its circular cross 
section is A 5 314 3 1026 m2. The corresponding average normal stress 
is sBC 5 1159 MPa. However, the flat parts of the rod are also under 
tension and at the narrowest section. Where the hole is located, we have

A 5 120 mm2 140 mm 2 25 mm2 5 300 3 1026 m2

800 mm

50 mm

Q � 30 kN Q � 30 kN

20 mm

20 mm

25 mm

30 mm

25 mm

d � 25 mm

d � 25 mm
d � 20 mm

d � 20 mm

d � 25 mm

40 mm

20 mm

A

A
B

B

B

C

C

B

FRONT VIEW

TOP VIEW OF BOOM AB

END VIEW

TOP VIEW OF ROD BCFlat end

Flat end

600 mm

Fig. 1.22 Components of boom used to support 30 kN load.

(continued)

Concept Application 1.3
Returning to the structure of Fig. 1.1, we will determine the normal 
stresses, shearing stresses and bearing stresses. As shown in Fig. 1.22, 
the 20-mm-diameter rod BC has flat ends of 20 3 40-mm rectangular 
cross section, while boom AB has a 30 3 50-mm rectangular cross 
section and is fitted with a clevis at end B. Both members are con-
nected at B by a pin from which the 30-kN load is suspended by means 
of a U-shaped bracket. Boom AB is supported at A by a pin fitted into 
a double bracket, while rod BC is connected at C to a single bracket. 
All pins are 25 mm in diameter.
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14 Introduction—Concept of Stress

The corresponding average value of the stress is

1sBC2end 5
P

A
5

50 3 103 N

300 3 1026 m2 5 167.0 MPa

Note that this is an average value. Close to the hole the stress will actu-
ally reach a much larger value, as you will see in Sec. 2.11. Under an 
increasing load, the rod will fail near one of the holes rather than in 
its cylindrical portion; its design could be improved by increasing the 
width or the thickness of the flat ends of the rod.
 Recall from Sec. 1.1A that the force in boom AB is FAB 5 40 kN 
(compression). Since the area of the boom’s rectangular cross section is 
A 5 30 mm 3 50 mm 5 1.5 3 1023 m2, the average value of the normal 
stress in the main part of the rod between pins A and B is

sAB 5 2
40 3 103 N

1.5 3 1023 m2 5 226.7 3 106 Pa 5 226.7 MPa

Note that the sections of minimum area at A and B are not under 
stress, since the boom is in compression, and therefore pushes on the 
pins (instead of pulling on the pins as rod BC does).

Shearing Stress in Various  Connec tions. To determine the 
shearing stress in a connection such as a bolt, pin, or rivet, you first 
show the forces exerted by the various members it connects. In the 
case of pin C (Fig. 1.23a), draw Fig. 1.23b to show the 50-kN force 
exerted by member BC on the pin, and the equal and opposite force 
exerted by the bracket. Drawing the diagram of the  portion of the pin 
located below the plane DD9 where shearing stresses occur (Fig. 1.23c), 
notice that the shear in that plane is P 5 50 kN. Since the cross-
sectional area of the pin is

A 5 pr2 5 pa25 mm

2
b2

5 p112.5 3 1023 m22 5 491 3 1026 m2

the average value of the shearing stress in the pin at C is

tave 5
P
A

5
50 3 103 N

491 3 1026 m2 5 102.0 MPa

 Note that pin A (Fig. 1.24) is in double shear. Drawing the free-
body diagrams of the pin and the portion of pin located between the 
planes DD9 and EE9 where shearing stresses occur, we see that 
P 5 20 kN and

tave 5
P

A
5

20 kN

491 3 1026 m2 5 40.7 MPa

 Pin B (Fig. 1.25a) can be divided into five portions that are acted 
upon by forces exerted by the boom, rod, and bracket. Portions DE 
(Fig. 1.25b) and DG (Fig. 1.25c) show that the shear in section E is 
PE 5 15 kN and the shear in section G is PG 5 25 kN. Since the loading 

Fig. 1.23 Diagrams of the single 
shear pin at C.

50 kN

(a)

C

50 kN

(b)

Fb
D'

D

d � 25 mm

50 kN

(c)

P

Fig. 1.24 Free-body diagrams of 
the double shear pin at A.

(a)

40 kN

A

(c)

40 kN
P

P

(b)

40 kN

Fb

Fb

D'

E'

D

E

d � 25 mm

(continued)
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1.2 Stresses in the Members of a Structure 15

of the pin is symmetric, the maximum value of the shear in pin B is 
PG 5 25 kN, and the largest the shearing stresses occur in sections G
and H, where

tave 5
PG

A
5

25 kN

491 3 1026 m2 5 50.9 MPa

Bearing Stresses. Use Eq. (1.11) to determine the nominal bearing 
stress at A in member AB. From Fig. 1.22, t 5 30 mm and d 5 25 mm. 
Recalling that P 5 FAB 5 40 kN, we have

sb 5
P

td
5

40 kN

130 mm2 125 mm2 5 53.3 MPa

To obtain the bearing stress in the bracket at A, use t 5 2(25 mm) 5
50 mm and d 5 25 mm:

sb 5
P
td

5
40 kN

150 mm2 125 mm2 5 32.0 MPa

 The bearing stresses at B in member AB, at B and C in member 
BC, and in the bracket at C are found in a similar way.

Fig. 1.25 Free-body diagrams for 
various sections at pin B.

(a)

1
2 FAB � 20 kN

FBC � 50 kN

1
2 FAB � 20 kN

1
2 Q � 15 kN

1
2 Q � 15 kN

Pin B

D
E

G
H

J

(b)

1
2 Q � 15 kN

D
E

PE

(c)

1
2 FAB � 20 kN

1
2 Q � 15 kN

D

G PG

1.2E Method of Problem Solution
You should approach a problem in mechanics as you would approach an 
actual engineering situation. By drawing on your own experience and intu-
ition about physical behavior, you will find it easier to understand and for-
mulate the problem. Your solution must be based on the fundamental 
principles of statics and on the principles you will learn in this text. Every 
step you take in the solution must be justified on this basis, leaving no room 
for your intuition or “feeling.” After you have obtained an answer, you 
should check it. Here again, you may call upon your common sense and 
personal experience. If you are not completely satisfied with the result, you 
should carefully check your formulation of the problem, the validity of the 
methods used for its solution, and the accuracy of your computations.
 In general, you can usually solve problems in several different ways; 
there is no one approach that works best for everybody. However, we have 
found that students often find it helpful to have a general set of guidelines 
to use for framing problems and planning solutions. In the Sample 
Problems throughout this text, we use a four-step approach for solving 
problems, which we refer to as the SMART methodology: Strategy, 
Modeling, Analysis, and Reflect & Think:

 1. Strategy. The statement of a problem should be clear and precise, and 
should contain the given data and indicate what information is 
required. The first step in solving the problem is to decide what 
concepts you have learned that apply to the given situation and 
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16 Introduction—Concept of Stress

connect the data to the required information. It is often useful to work 
backward from the information you are trying to find: ask yourself what 
quantities you need to know to obtain the answer, and if some of these 
quantities are unknown, how can you find them from the given data.

 2. Modeling. The solution of most problems encountered will require that 
you first determine the reactions at the supports and internal forces and 
couples. It is important to include one or several free-body diagrams to 
support these determinations. Draw additional sketches as necessary 
to guide the remainder of your solution, such as for stress analyses.

 3. Analysis. After you have drawn the appropriate diagrams, use the 
fundamental principles of mechanics to write equilibrium equa-
tions. These equations can be solved for unknown forces and used 
to compute the required stresses and deformations.

 4. Reflect & Think. After you have obtained the answer, check it carefully. 
Does it make sense in the context of the original problem? You can 
often detect mistakes in reasoning by carrying the units through your 
computations and checking the units obtained for the answer. For 
example, in the design of the rod discussed in Concept Application 1.2, 
the required diameter of the rod was expressed in millimeters, which 
is the correct unit for a dimension; if you had obtained another unit, 
you would know that some mistake had been made.

 You can often detect errors in computation by substituting the 
numerical answer into an equation that was not used in the solution and 
verifying that the equation is satisfied. The importance of correct compu-
tations in engineering cannot be overemphasized.

Numerical Accuracy. The accuracy of the solution of a problem 
depends upon two items: (1) the accuracy of the given data and (2) the 
accuracy of the computations performed.
 The solution cannot be more accurate than the less accurate of these 
two items. For example, if the loading of a beam is known to be 75,000 lb 
with a possible error of 100 lb either way, the relative error that measures 
the degree of accuracy of the data is

100 lb

75,000 lb
5 0.0013 5 0.13%

To compute the reaction at one of the beam supports, it would be mean-
ingless to record it as 14,322 lb. The accuracy of the solution cannot be 
greater than 0.13%, no matter how accurate the computations are, and the 
possible error in the answer may be as large as (0.13y100)(14,322 lb) < 20 
lb. The answer should be properly recorded as 14,320 6 20 lb.
 In engineering problems, the data are seldom known with an accu-
racy greater than 0.2%. A practical rule is to use four figures to record 
numbers beginning with a “1” and three figures in all other cases. Unless 
otherwise indicated, the data given are assumed to be known with a com-
parable degree of accuracy. A force of 40 lb, for example, should be read 
40.0 lb, and a force of 15 lb should be read 15.00 lb.
 The speed and accuracy of calculators and computers makes the 
numerical computations in the solution of many problems much easier. 
However, students should not record more significant figures than can be 
justified merely because they are easily obtained. An accuracy greater 
than 0.2% is seldom necessary or meaningful in the solution of practical 
engineering problems.
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1.2 Stresses in the Members of a Structure 17

Sample Problem 1.1
In the hanger shown, the upper portion of link ABC is 3

8 in. thick and 
the lower portions are each 1

4 in. thick. Epoxy resin is used to bond 
the upper and lower portions together at B. The pin at A has a 3

8-in. 
diameter, while a 1

4-in.-diameter pin is used at C. Determine (a) the 
shearing stress in pin A, (b) the shearing stress in pin C, (c) the larg-
est normal stress in link ABC, (d) the average shearing stress on the 
bonded surfaces at B, and (e) the bearing stress in the link at C.

STRATEGY: Consider the free body of the hanger to determine the 
internal force for member AB and then proceed to determine the 
shearing and bearing forces applicable to the pins. These forces can 
then be used to determine the stresses.

MODELING:  Draw the free-body diagram of the hanger to deter-
mine the support reactions (Fig. 1). Then draw the diagrams of the 
various components of interest showing the forces needed to deter-
mine the desired stresses (Figs. 2-6).

ANALYSIS: 

Free Body: Entire Hanger. Since the link ABC is a two-force mem-
ber (Fig. 1), the reaction at A is vertical; the reaction at D is represented 
by its components Dx and Dy. Thus,

1l oMD 5 0: 1500 lb2 115 in.2 2 FAC 110 in.2 5 0
 FAC 5 1750 lb    FAC 5 750 lb    tension

 a. Shearing Stress in Pin A. Since this 3
8-in.-diameter pin is in 

single shear (Fig. 2), write

 tA 5
FAC

A
5

750 lb
1
4p10.375 in.22 tA 5 6790 psi ◀

 b. Shearing Stress in Pin C. Since this 1
4-in.-diameter pin is in 

double shear (Fig. 3), write

 tC 5

1
2 FAC

A
5

375 lb
1
4p 10.25 in.22 tC 5 7640 psi ◀

6 in.

7 in.

1.75 in.

5 in.

1.25 in.

10 in.

500 lb

A

B

C

D

E

5 in.

500 lb

10 in.

A D
Dx

FAC
Dy

E
C

Fig. 1 Free-body diagram of 
hanger.

750 lb
FAC 5 750 lb

-in. diameter3
8

A

Fig. 2 Pin A.

-in. diameter

FAC 5 750 lb

1
4

FAC 5 375 lb1
2

FAC 5 375 lb1
2

C

Fig. 3 Pin C.

(continued)
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18 Introduction—Concept of Stress

 c. Largest Normal Stress in Link ABC. The largest stress is 
found where the area is smallest; this occurs at the cross section at A 
(Fig. 4) where the 3

8-in. hole is located. We have

sA 5
FAC

Anet
5

750 lb

1  38 in.2 11.25 in. 2 0.375 in.2 5
750 lb

0.328 in2 sA 5 2290 psi ◀

 d. Average Shearing Stress at B. We note that bonding exists 
on both sides of the upper portion of the link (Fig. 5) and that the shear 
force on each side is F1 5 (750 lb)/2 5 375 lb. The average shearing 
stress on each surface is

 tB 5
F1

A
5

375 lb

11.25 in.2 11.75 in.2  tB 5 171.4 psi ◀

 e. Bearing Stress in Link at C. For each portion of the link 
(Fig. 6), F1 5 375 lb, and the nominal bearing area is (0.25 in.)(0.25 in.) 
5 0.0625 in2.

 sb 5
F1

A
5

375 lb

0.0625 in2 sb 5 6000 psi ◀

REFLECT and THINK: This sample problem demonstrates the need 
to draw free-body diagrams of the separate components, carefully con-
sidering the behavior in each one. As an example, based on visual 
inspection of the hanger it is apparent that member AC should be in 
tension for the given load, and the analysis confirms this. Had a com-
pression result been obtained instead, a thorough reexamination of 
the analysis would have been required.

375 lb F1 � 375 lb 

-in. diameter1
4

1
4 in.

Fig. 6 Link ABC section at C.

-in. diameter3
8

in.

1.25 in.

3
8

FAC

Fig. 4 Link ABC section at A.

FAC � 750 lb 

1.25 in.

1.75 in.

F2 F1

A

B

F1 � F2 �   FAC � 375 lb 1
2

Fig. 5 Element AB.
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1.2 Stresses in the Members of a Structure 19

REFLECT and THINK: We sized d based on bolt shear, and then 
checked bearing on the tie bar. Had the maximum allowable bearing 
stress been exceeded, we would have had to recalculate d based on 
the bearing criterion.

Sample Problem 1.2
The steel tie bar shown is to be designed to carry a tension force of 
magnitude P 5 120 kN when bolted between double brackets at A 
and B. The bar will be fabricated from 20-mm-thick plate stock. For the 
grade of steel to be used, the maximum allowable stresses are 
s 5 175  MPa, t 5 100 MPa, and sb 5 350 MPa. Design the tie bar by 
determining the required values of (a) the diameter d of the bolt, (b) the 
dimension b at each end of the bar, and (c) the dimension h of the bar.

STRATEGY: Use free-body diagrams to determine the forces needed 
to obtain the stresses in terms of the design tension force. Setting these 
stresses equal to the allowable stresses provides for the determination 
of the required dimensions.

MODELING and ANALYSIS:

 a. Diameter of the Bolt. Since the bolt is in double shear (Fig. 1), 
F1 5

1
2 P 5 60 kN.

t 5
F1

A
5

60 kN
1
4p d2     100 MPa 5

60 kN
1
4p d2     d 5 27.6 mm

Use  d 5 28 mm ◀

At this point, check the bearing stress between the 20-mm-thick plate 
(Fig. 2) and the 28-mm-diameter bolt.

 sb 5
P
td

5
120 kN

10.020 m2 10.028 m2 5 214 MPa , 350 MPa    OK

 b. Dimension b at Each End of the Bar. We consider one of the 
end portions of the bar in Fig. 3. Recalling that the thickness of the 
steel plate is t 5 20 mm and that the average tensile stress must not 
exceed 175 MPa, write

s 5

1
2 P

ta
    175 MPa 5

60 kN

10.02 m2a    a 5 17.14 mm

b 5 d 1 2a 5 28 mm 1 2(17.14 mm)  b 5 62.3 mm ◀

 c. Dimension h of the Bar. We consider a section in the central 
portion of the bar (Fig. 4). Recalling that the thickness of the steel plate 
is t 5 20 mm, we have

s 5
P

th
    175 MPa 5

120 kN

10.020 m2h    h 5 34.3 mm

Use  h 5 35 mm ◀

A B

d
F1 �   P

P

F1

F1

1
2

b

h

t 5 20 mm

d

P

P' � 120 kN
a

t

a

db

1
2

P1
2

P 5 120 kN

t 5 20 mm

h

Fig. 1 Sectioned bolt.

Fig. 2 Tie bar geometry.

Fig. 3 End section of tie bar.

Fig. 4 Mid-body section of tie bar.

bee98233_ch01_002-053.indd   19bee98233_ch01_002-053.indd   19 11/15/13   9:42 AM11/15/13   9:42 AM



20

 1.1 Two solid cylindrical rods AB and BC are welded together at B and 
loaded as shown. Knowing that d1 5 30 mm and d2 5 50 mm, 
find the average normal stress at the midsection of (a) rod AB, 
(b) rod BC.

Problems

Fig. P1.1 and P1.2

d1
d2

125 kN

125 kN

60 kN

C
A

B

0.9 m 1.2 m

1.3 Two solid cylindrical rods AB and BC are welded together at B and 
loaded as shown. Knowing that P 5 10 kips, find the average nor-
mal stress at the midsection of (a) rod AB, (b) rod BC.

Fig. P1.3 and P1.4

0.75 in.

1.25 in.

12 kips

P

B

C

25 in.

30 in.

A

1.2 Two solid cylindrical rods AB and BC are welded together at B and 
loaded as shown. Knowing that the average normal stress must not 
exceed 150 MPa in either rod, determine the smallest allowable 
values of the diameters d1 and d2.

1.4 Two solid cylindrical rods AB and BC are welded together at B
and loaded as shown. Determine the magnitude of the force P
for which the tensile stresses in rods AB and BC are equal.
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1.5 A strain gage located at C on the surface of bone AB indicates that 
the average normal stress in the bone is 3.80 MPa when the bone 
is subjected to two 1200-N forces as shown. Assuming the cross 
section of the bone at C to be annular and knowing that its outer 
diameter is 25 mm, determine the inner diameter of the bone’s 
cross section at C.

1.6 Two brass rods AB and BC, each of uniform diameter, will be 
brazed together at B to form a nonuniform rod of total length 
100 m that will be suspended from a support at A as shown. 
Knowing that the density of brass is 8470 kg/m3, determine 
(a) the length of rod AB for which the maximum normal stress in 
ABC is minimum, (b) the corresponding value of the maximum 
normal stress.

Fig. P1.5

1200 N

1200 N

C

A

B

Fig. P1.6

100 m

15 mm

10 mm
 b

 a

 B

 C

 A

 1.7 Each of the four vertical links has an 8 3 36-mm uniform rectan-
gular cross section, and each of the four pins has a 16-mm diameter. 
Determine the maximum value of the average normal stress in the 
links connecting (a) points B and D, (b) points C and E.

Fig. P1.7

0.2 m
0.25 m

0.4 m

20 kN

C

B

A
D

E
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 1.8 Link AC has a uniform rectangular cross section 1
8 in. thick and 

1 in. wide. Determine the normal stress in the central portion of 
the link.

 1.9 Three forces, each of magnitude P 5 4 kN, are applied to the 
structure shown. Determine the cross-sectional area of the uni-
form portion of rod BE for which the normal stress in that portion 
is 1100 MPa.

10 in. 8 in.

2 in.

12 in.

4 in.

30�

120 lb

120 lb

C

A

B

Fig. P1.8

Fig. P1.9

0.100 m

0.150 m 0.300 m 0.250 m

P P P 

E

A B C 
D 

Fig. P1.10

4 kips

308

u
6 in.

12 in.

D

C

B

A

 1.10 Link BD consists of a single bar 1 in. wide and 12 in. thick. Knowing 
that each pin has a 38-in. diameter, determine the maximum value 
of the average normal stress in link BD if (a) u 5 0, (b) u 5 908.

Fig. P1.11

9 ft

80 kips 80 kips 80 kips

9 ft 9 ft 9 ft

12 ft

B D F

H
GEC

A

1.11 For the Pratt bridge truss and loading shown, determine the aver-
age normal stress in member BE, knowing that the cross-sectional 
area of that member is 5.87 in2.
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1.12 The frame shown consists of four wooden members, ABC, DEF, 
BE, and CF. Knowing that each member has a 2 3 4-in. rectan-
gular cross section and that each pin has a 1

2-in. diameter, deter-
mine the maximum value of the average normal stress 
(a) in member BE, (b) in member CF.

Fig. P1.12

40 in.

45 in.

15 in.

4 in.

A
B C

D E F

4 in.

30 in.

30 in.

480 lb

 1.13 An aircraft tow bar is positioned by means of a single hydraulic 
cylinder connected by a 25-mm-diameter steel rod to two identi-
cal arm-and-wheel units DEF. The mass of the entire tow bar is 
200 kg, and its center of gravity is located at G. For the position 
shown, determine the normal stress in the rod.

Fig. P1.13

D

B

E

A

Dimensions in mm

100

450

250

850

1150

500 675 825

CG

F

 1.14 Two hydraulic cylinders are used to control the position of the 
robotic arm ABC. Knowing that the control rods attached at A
and D each have a 20-mm diameter and happen to be parallel in 
the position shown, determine the average normal stress in 
(a) member AE, (b) member DG.

Fig. P1.14

CA
B

E F G

D

200 mm150 mm

150 mm

300 mm

400 mm

600 mm
800 N
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 1.15 Determine the diameter of the largest circular hole that can be 
punched into a sheet of polystyrene 6 mm thick, knowing that the 
force exerted by the punch is 45 kN and that a 55-MPa average 
shearing stress is required to cause the material to fail.

 1.16 Two wooden planks, each 1
2 in. thick and 9 in. wide, are joined by 

the dry mortise joint shown. Knowing that the wood used shears 
off along its grain when the average shearing stress reaches 1.20 
ksi, determine the magnitude P of the axial load that will cause 
the joint to fail.

Fig. P1.16

2 in.
1 in.P' 2 in.

1 in. 9 in.
P

in.5
8

in.5
8

Fig. P1.17

0.6 in.

3 in. WoodSteel

PP'

Fig. P1.18

40 mm

8 mm

12 mm

P

10 mm

 1.17 When the force P reached 1600 lb, the wooden specimen shown 
failed in shear along the surface indicated by the dashed line. 
Determine the average shearing stress along that surface at the 
time of failure.

1.19 The axial force in the column supporting the timber beam shown 
is P 5 20 kips. Determine the smallest allowable length L of the 
bearing plate if the bearing stress in the timber is not to exceed 
400 psi.Fig. P1.19

6 in.

L

P

 1.18 A load P is applied to a steel rod supported as shown by an alu-
minum plate into which a 12-mm-diameter hole has been drilled. 
Knowing that the shearing stress must not exceed 180 MPa in the 
steel rod and 70 MPa in the aluminum plate, determine the larg-
est load P that can be applied to the rod.
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 1.20 Three wooden planks are fastened together by a series of bolts to 
form a column. The diameter of each bolt is 12 mm and the inner 
diameter of each washer is 16 mm, which is slightly larger than 
the diameter of the holes in the planks. Determine the smallest 
allowable outer diameter d of the washers, knowing that the aver-
age normal stress in the bolts is 36 MPa and that the bearing 
stress between the washers and the planks must not exceed 
8.5 MPa.

 1.21 A 40-kN axial load is applied to a short wooden post that is sup-
ported by a concrete footing resting on undisturbed soil. Deter-
mine (a) the maximum bearing stress on the concrete footing, 
(b) the size of the footing for which the average bearing stress in 
the soil is 145 kPa.

Fig. P1.20

d 12 mm

Fig. P1.21

P � 40 kN

b b

120 mm 100 mm

1.22 An axial load P is supported by a short W8 3 40 column of cross-
sectional area A 5 11.7 in2 and is distributed to a concrete foun-
dation by a square plate as shown. Knowing that the average 
normal stress in the column must not exceed 30 ksi and that the 
bearing stress on the concrete foundation must not exceed 3.0 ksi, 
determine the side a of the plate that will provide the most eco-
nomical and safe design.

 1.23 Link AB, of width b 5 2 in. and thickness t 5 1
4 in., is used to 

support the end of a horizontal beam. Knowing that the average 
normal stress in the link is 220 ksi and that the average 
shearing stress in each of the two pins is 12 ksi determine (a) the 
diameter d of the pins, (b) the average bearing stress in the link.

Fig. P1.22

a aP

Fig. P1.23

b
d

t

B

A

d
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Fig. P1.24 and P1.25

16 mm

750 mm

750 mm

12 mm

50 mm B

A

C

P

�

Fig. P1.26
45 mm

200 mm

100 mm 175 mm

D

F

E

A

C
B

P

208
u

Fig. P1.28

A

C

D E

B

12 in.

12 in.

15 in.

16 in. 16 in. 20 in.

1500 lb

 1.24 Determine the largest load P that can be applied at A when 
u 5 608, knowing that the average shearing stress in the 10-mm-
diameter pin at B must not exceed 120 MPa and that the average 
bearing stress in member AB and in the bracket at B must not 
exceed 90 MPa.

 1.25 Knowing that u 5 40° and P 5 9 kN, determine (a) the smallest 
allowable diameter of the pin at B if the average shearing stress 
in the pin is not to exceed 120 MPa, (b) the corresponding aver-
age bearing stress in member AB at B, (c) the corresponding aver-
age bearing stress in each of the support brackets at B.

1.26 The hydraulic cylinder CF, which partially controls the position 
of rod DE, has been locked in the position shown. Member BD is 
15 mm thick and is connected at C to the vertical rod by a 
9-mm-diameter bolt. Knowing that P 5 2 kN and u 5 758, deter-
mine (a) the average shearing stress in the bolt, (b) the bearing 
stress at C in member BD.

1.27 For the assembly and loading of Prob. 1.7, determine (a) the aver-
age shearing stress in the pin at B, (b) the average bearing stress 
at B in member BD, (c) the average bearing stress at B in member 
ABC, knowing that this member has a 10 3 50-mm uniform rect-
angular cross section.

 1.28 Two identical linkage-and-hydraulic-cylinder systems control the 
position of the forks of a fork-lift truck. The load supported by the 
one system shown is 1500 lb. Knowing that the thickness of 
member BD is 5

8 in., determine (a) the average shearing stress 
in the 1

2-in.-diameter pin at B, (b) the bearing stress at B in 
member BD.
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1.3 Stress on an Oblique Plane Under Axial Loading 27

1.3  STRESS ON AN OBLIQUE PLANE 
UNDER AXIAL LOADING

Previously, axial forces exerted on a two-force member (Fig. 1.26a) caused 
normal stresses in that member (Fig. 1.26b), while transverse forces 
exerted on bolts and pins (Fig. 1.27a) caused shearing stresses in those 
connections (Fig. 1.27b). Such a relation was observed between axial 
forces and normal stresses and transverse forces and shearing stresses, 
because stresses were being determined only on planes perpendicular to 
the axis of the member or connection. In this section, axial forces cause 
both normal and shearing stresses on planes that are not perpendicular 
to the axis of the member. Similarly, transverse forces exerted on a bolt or 
a pin cause both normal and shearing stresses on planes that are not 
perpendicular to the axis of the bolt or pin.

(a)

(b)

P

P

P'

P'

P'

�

Fig. 1.26 Axial forces on a two-force member. 
(a) Section plane perpendicular to member away 
from load application. (b) Equivalent force diagram 
models of resultant force acting at centroid and 
uniform normal stress.

Fig. 1.27 (a) Diagram of a bolt from a single-shear joint with a section plane normal 
to the bolt. (b) Equivalent force diagram models of the resultant force acting at the 
section centroid and the uniform average shear stress.

P'

PP

P' P'

�

(a) (b)

 Consider the two-force member of Fig. 1.26 that is subjected to axial 
forces P and P9. If we pass a section forming an angle u with a normal 
plane (Fig. 1.28a) and draw the free-body diagram of the portion of mem-
ber located to the left of that section (Fig. 1.28b), the equilibrium condi-
tions of the free body show that the distributed forces acting on the section 
must be equivalent to the force P.
 Resolving P into components F and V, respectively normal and tan-
gential to the section (Fig. 1.28c),

 F 5 P cos u    V 5 P sin u (1.12)

Force F represents the resultant of normal forces distributed over the sec-
tion, and force V is the resultant of shearing forces (Fig. 1.28d). The aver-
age values of the corresponding normal and shearing stresses are obtained 
by dividing F and V by the area Au of the section:

 s 5
F
Au

    t 5
V
Au

 (1.13)

Substituting for F and V from Eq. (1.12) into Eq. (1.13), and observing from 
Fig. 1.28c that A0 5 Au cos u or Au 5 A0ycos u, where A0 is the area of a 
section perpendicular to the axis of the member, we obtain

 s 5
P cos u

A0ycos u
    t 5

P sin u

A0ycos u

or

  s 5
P

A0
 cos2 u    t 5

P
A0

 sin u cos u (1.14)

P'

P'

P'

P

A
A0

�

P

V

F

P'

(a)

(c)

(b)

(d)

�

�

�

�

P

Fig. 1.28 Oblique section through a two-force 
member. (a) Section plane made at an angle u to the 
member normal plane, (b) Free-body diagram of left 
section with internal resultant force P. (c) Free-body 
diagram of resultant force resolved into components 
F and V along the section plane’s normal and 
tangential directions, respectively. (d ) Free-body 
diagram with section forces F and V represented as 
normal stress, s, and shearing stress, t.
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28 Introduction—Concept of Stress

 Note from the first of Eqs. (1.14) that the normal stress s is maxi-
mum when u 5 0 (i.e., the plane of the section is perpendicular to the axis 
of the member). It approaches zero as u approaches 908. We check that 
the value of s when u 5 0 is

 sm 5
P

A0
 (1.15)

The second of Eqs. (1.14) shows that the shearing stress t is zero for u 5 0 
and u 5 908. For u 5 458, it reaches its maximum value

 tm 5
P

A0
 sin 458 cos 458 5

P

2A0
 (1.16)

The first of Eqs. (1.14) indicates that, when u 5 458, the normal stress s9

is also equal to Py2A0:

 s¿ 5
P
A0

 cos2 458 5
P

2A0
 (1.17)

 The results obtained in Eqs. (1.15), (1.16), and (1.17) are shown 
graphically in Fig. 1.29. The same loading may produce either a normal 
stress sm 5 PyA0 and no shearing stress (Fig. 1.29b) or a normal and a 
shearing stress of the same magnitude s9 5 tm 5 Py2A0 (Fig. 1.29c and d), 
depending upon the orientation of the section.

1.4  STRESS UNDER GENERAL 
LOADING CONDITIONS; 
COMPONENTS OF STRESS

The examples of the previous sections were limited to members under 
axial loading and connections under transverse loading. Most structural 
members and machine components are under more involved loading 
conditions.
 Consider a body subjected to several loads P1, P2, etc. (Fig. 1.30). To 
understand the stress condition created by these loads at some point Q 
within the body, we shall first pass a section through Q, using a plane 
parallel to the yz plane. The portion of the body to the left of the section 
is subjected to some of the original loads, and to normal and shearing 
forces distributed over the section. We shall denote by DFx and DVx, 
respectively, the normal and the shearing forces acting on a small area DA 
surrounding point Q (Fig. 1.31a). Note that the superscript x is used to 
indicate that the forces DFx and DVx act on a surface perpendicular to the 
x axis. While the normal force DFx has a well-defined direction, the shear-
ing force DVx may have any direction in the plane of the section. We there-
fore resolve DVx into two component forces, DVx

y and DVx
z, in directions 

parallel to the y and z axes, respectively (Fig. 1.31b). Dividing the magni-
tude of each force by the area DA and letting DA approach zero, we define 
the three stress components shown in Fig. 1.32:

sx 5 lim
¢Ay0

 
¢F x

¢A

 txy 5 lim
¢Ay0

 
¢Vy

x

¢A
    txz 5 lim

¢Ay0
 
¢Vz

x

¢A
 

(1.18)

P'

(a) Axial loading

(b) Stresses for    � 0

m � P/A0

� 

(c) Stresses for    � 45°�

(d) Stresses for    � –45°�

�

' � P/2A0�

'� P/2A0�

m � P/2A0�

m � P/2A0�

P

Fig. 1.29 Selected stress results for 
axial loading.

P1
P4

P3

P2y

z

x

Fig. 1.30 Multiple loads on 
a general body.
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1.4 Stress Under General Loading Conditions; Components of Stress 29

Note that the first subscript in sx, txy, and txz is used to indicate that the 
stresses are exerted on a surface perpendicular to the x axis. The second 
subscript in txy and txz identifies the direction of the component. The 
normal stress sx is positive if the corresponding arrow points in the posi-
tive x direction (i.e., if the body is in tension) and negative otherwise. 
Similarly, the shearing stress components txy and txz are positive if the 
corresponding arrows point, respectively, in the positive y and z 
directions.
 This analysis also may be carried out by considering the portion of 
body located to the right of the vertical plane through Q (Fig. 1.33). The 
same magnitudes, but opposite directions, are obtained for the normal 
and shearing forces DFx, DVy

x, and DV z
x. Therefore, the same values are 

obtained for the corresponding stress components. However as the section 
in Fig. 1.33 now faces the negative x axis, a positive sign for sx indicates 
that the corresponding arrow points in the negative x direction. Similarly, 
positive signs for txy and txz indicate that the corresponding arrows point 
in the negative y and z directions, as shown in Fig. 1.33.
 Passing a section through Q parallel to the zx plane, we define the 
stress components, sy, tyz, and tyx. Then, a section through Q parallel to 
the xy plane yields the components sz, tzx, and tzy.
 To visualize the stress condition at point Q, consider a small cube 
of side a centered at Q and the stresses exerted on each of the six faces of 
the cube (Fig. 1.34). The stress components shown are sx, sy, and sz, 
which represent the normal stress on faces respectively perpendicular to 
the x, y, and z axes, and the six shearing stress components txy, txz, etc. 
Recall that txy represents the y component of the shearing stress exerted 
on the face perpendicular to the x axis, while tyx represents the x compo-
nent of the shearing stress exerted on the face perpendicular to the y axis. 
Note that only three faces of the cube are actually visible in Fig. 1.34 and 
that equal and opposite stress components act on the hidden faces. While 
the stresses acting on the faces of the cube differ slightly from the stresses 
at Q, the error involved is small and vanishes as side a of the cube 
approaches zero.

Fx

P2 P2

P1

y

z

x

y

z

x

P1

A

Fx�

�

�Vx�

Vx�

(a) (b)

Q Q

z

Vx� y

Fig. 1.31 (a) Resultant shear and normal forces, DV x and DF x, acting 
on small area DA at point Q. (b) Forces on DA resolved into forces in 
coordinate directions.

y

z

x

x

xy

Q

�

xz� �

Fig. 1.32 Stress components at point Q on the 
body to the left of the plane.

y

z

x

x

xy�

xz�

�

Q

Fig. 1.33 Stress components at point Q on the 
body to the right of the plane.

�yz
�yx

�xy

�xz�zx

�zy

�y

�z

�x

a

Qa

a

z

y

x
Fig. 1.34 Positive stress components at point Q.
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30 Introduction—Concept of Stress

Shearing stress components. Consider the free-body diagram of 
the small cube centered at point Q (Fig. 1.35). The normal and shearing 
forces acting on the various faces of the cube are obtained by multiplying 
the corresponding stress components by the area DA of each face. First 
write the following three equilibrium equations

 oFx 5 0    oFy 5 0    oFz 5 0 (1.19)

�x�A
�z�A

�y�A

Q

z

y

x

�zy�A

�yx�A
�yz�A

�xy�A

�zx�A  
�xz�A

Fig. 1.35 Positive resultant forces on a small element 
at point Q resulting from a state of general stress.

�yx�A

�yx�A

�xy�A

�xy�A �x�A

�x�A

�y�A

�y �A

x'

a
z'

y'

Fig. 1.36 Free-body diagram of small element 
at Q viewed on projected plane perpendicular to 
z’-axis. Resultant forces on positive and negative z’ 
faces (not shown) act through the z’-axis, thus do 
not contribute to the moment about that axis.

Since forces equal and opposite to the forces actually shown in Fig. 1.35 
are acting on the hidden faces of the cube, Eqs. (1.19) are satisfied. Con-
sidering the moments of the forces about axes x9, y9, and z9 drawn from 
Q in directions respectively parallel to the x, y, and z axes, the three addi-
tional equations are

 oMx¿ 5 0    oMy¿ 5 0    oMz¿ 5 0 (1.20)

Using a projection on the x9y9 plane (Fig. 1.36), note that the only forces 
with moments about the z axis different from zero are the shearing forces. 
These forces form two couples: a counterclockwise (positive) moment 
(txy DA)a and a clockwise (negative) moment 2(tyx DA)a. The last of the 
three Eqs. (1.20) yields

 1loMz 5 0:   (txy DA)a 2 (tyx DA)a 5 0

from which

 txy 5 tyx (1.21)
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1.5 Design Considerations 31

This relationship shows that the y component of the shearing stress 
exerted on a face perpendicular to the x axis is equal to the x component 
of the shearing stress exerted on a face perpendicular to the y axis. From 
the remaining parts of Eqs. (1.20), we derive.

tyz 5 tzy    tzx 5 txz (1.22)

 We conclude from Eqs. (1.21) and (1.22), only six stress compo-
nents are required to define the condition of stress at a given point Q, 
instead of nine as originally assumed. These components are sx , sy , sz , 
txy , tyz , and tzx . Also note that, at a given point, shear cannot take place 
in one plane only; an equal shearing stress must be exerted on another 
plane perpendicular to the first one. For example, considering the bolt 
of Fig. 1.29 and a small cube at the center Q (Fig. 1.37a), we see that 
shearing stresses of equal magnitude must be exerted on the two hori-
zontal faces of the cube and on the two faces perpendicular to the forces
P and P9 (Fig. 1.37b).

Axial loading. Let us consider again a member under axial loading. If 
we consider a small cube with faces respectively parallel to the faces of the 
member and recall the results obtained in Sec. 1.3, the conditions of stress 
in the member may be described as shown in Fig. 1.38a; the only stresses 
are normal stresses sx exerted on the faces of the cube that are perpen-
dicular to the x axis. However, if the small cube is rotated by 458 about the 
z axis so that its new orientation matches the orientation of the sections 
considered in Fig. 1.29c and d, normal and shearing stresses of equal mag-
nitude are exerted on four faces of the cube (Fig. 1.38b). Thus, the same 
loading condition may lead to different interpretations of the stress situa-
tion at a given point, depending upon the orientation of the element con-
sidered. More will be said about this in Chap. 7: Transformation of Stress 
and Strain.

1.5 DESIGN CONSIDERATIONS
In engineering applications, the determination of stresses is seldom an 
end in itself. Rather, the knowledge of stresses is used by engineers to 
assist in their most important task: the design of structures and machines 
that will safely and economically perform a specified function.

1.5A  Determination of the Ultimate 
Strength of a Material

An important element to be considered by a designer is how the material 
will behave under a load. This is determined by performing specific tests 
on prepared samples of the material. For example, a test specimen of steel 
may be prepared and placed in a laboratory testing machine to be sub-
jected to a known centric axial tensile force, as described in Sec. 2.1B. As 
the magnitude of the force is increased, various dimensional changes such 
as length and diameter are measured. Eventually, the largest force that 
may be applied to the specimen is reached, and it either breaks or begins 

(a) (b)

�

�

�

�

P

P'

Q

Fig. 1.37 Single-shear bolt with point Q chosen 
at the center. (b) Pure shear stress element at 
point Q.

(b)

(a)

�m �m
P

P'

P'

P

P

2A

z

x

y

'
45�

�x

�x P
A

P
2A

� '�

'�

'� �

�

�

Fig. 1.38 Changing the orientation of the stress 
element produces different stress components for 
the same state of stress. This is studied in detail in 
Chapter 7.

bee98233_ch01_002-053.indd   31bee98233_ch01_002-053.indd   31 11/15/13   9:42 AM11/15/13   9:42 AM



32 Introduction—Concept of Stress

to carry less load. This largest force is called the ultimate load and is 
denoted by PU. Since the applied load is centric, the ultimate load is 
divided by the original cross-sectional area of the rod to obtain the ulti-
mate normal stress of the material. This stress, also known as the ultimate 
strength in tension, is

 sU 5
PU

A
 (1.23)

 Several test procedures are available to determine the ultimate 
shearing stress or ultimate strength in shear. The one most commonly used 
involves the twisting of a circular tube (Sec. 3.2). A more direct, if less 
accurate, procedure clamps a rectangular or round bar in a shear tool 
(Fig. 1.39) and applies an increasing load P until the ultimate load PU for 
single shear is obtained. If the free end of the specimen rests on both of 
the hardened dies (Fig. 1.40), the ultimate load for double shear is 
obtained. In either case, the ultimate shearing stress tU is

 tU 5
PU

A
 (1.24)

 In single shear, this area is the cross- sectional area A of the speci-
men, while in double shear it is equal to twice the cross-sectional area.

1.5B  Allowable Load and Allowable 
Stress: Factor of Safety

The maximum load that a structural member or a machine component 
will be allowed to carry under normal conditions is considerably smaller 
than the ultimate load. This smaller load is the allowable load (sometimes 
called the working or design load). Thus, only a fraction of the ultimate-
load capacity of the member is used when the allowable load is applied. 
The remaining portion of the load-carrying capacity of the member is kept 
in reserve to assure its safe performance. The ratio of the ultimate load to 
the allowable load is used to define the factor of safety:†

 Factor of safety 5 F.S. 5
ultimate load

allowable load
 (1.25)

An alternative definition of the factor of safety is based on the use of 
stresses:

 Factor of safety 5 F.S. 5
ultimate stress

allowable stress
 (1.26)

These two expressions are identical when a linear relationship exists 
between the load and the stress. In most engineering applications, 

†In some fields of engineering, notably aeronautical engineering, the margin of safety is 
used in place of the factor of safety. The margin of safety is defined as the factor of safety 
minus one; that is, margin of safety 5 F.S. 2 1.00.

P

Fig. 1.39 Single shear test.

P

Fig. 1.40 Double shear test.
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1.5 Design Considerations 33

however, this relationship ceases to be linear as the load approaches its 
ultimate value, and the factor of safety obtained from Eq. (1.26) does not 
provide a true assessment of the safety of a given design. Nevertheless, the 
allowable-stress method of design, based on the use of Eq. (1.26), is widely 
used.

1.5C Factor of Safety Selection
The selection of the factor of safety to be used is one of the most impor-
tant engineering tasks. If a factor of safety is too small, the possibility 
of failure becomes unacceptably large. On the other hand, if a factor of 
safety is unnecessarily large, the result is an uneconomical or nonfunc-
tional design. The choice of the factor of safety for a given design appli-
cation requires engineering judgment based on many considerations.

 1. Variations that may occur in the properties of the member. The com-
position, strength, and dimensions of the member are all subject to 
small variations during manufacture. In addition, material proper-
ties may be altered and residual stresses introduced through heating 
or deformation that may occur during manufacture, storage, trans-
portation, or construction.

 2. The number of loadings expected during the life of the structure or 
machine. For most materials, the ultimate stress decreases as the 
number of load cycles is increased. This phenomenon is known as 
fatigue and can result in sudden failure if ignored (see Sec. 2.1F).

 3. The type of loadings planned for in the design or that may occur in 
the future. Very few loadings are known with complete accuracy—
most design loadings are engineering estimates. In addition, future 
alterations or changes in usage may introduce changes in the actual 
loading. Larger factors of safety are also required for dynamic, cyclic, 
or impulsive loadings.

 4. Type of failure. Brittle materials fail suddenly, usually with no prior 
indication that collapse is imminent. However, ductile materials, 
such as structural steel, normally undergo a substantial deformation 
called yielding before failing, providing a warning that overloading 
exists. Most buckling or stability failures are sudden, whether the 
material is brittle or not. When the possibility of sudden failure 
exists, a larger factor of safety should be used than when failure is 
preceded by obvious warning signs.

 5. Uncertainty due to methods of analysis. All design methods are 
based on certain simplifying assumptions that result in calculated 
stresses being approximations of actual stresses.

 6. Deterioration that may occur in the future because of poor 
maintenance or unpreventable natural causes. A larger factor of 
safety is necessary in locations where conditions such as corrosion 
and decay are difficult to control or even to discover.

 7. The importance of a given member to the integrity of the whole 
structure. Bracing and secondary members in many cases can be 
designed with a factor of safety lower than that used for primary 
members.

 In addition to these considerations, there is concern of the risk to 
life and property that a failure would produce. Where a failure would 
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34 Introduction—Concept of Stress

produce no risk to life and only minimal risk to property, the use of a 
smaller factor of safety can be acceptable. Finally, unless a careful design 
with a nonexcessive factor of safety is used, a structure or machine might 
not perform its design function. For example, high factors of safety may 
have an unacceptable effect on the weight of an aircraft.
 For the majority of structural and machine applications, factors of 
safety are specified by design specifications or building codes written by 
committees of experienced engineers working with professional societies, 
industries, or federal, state, or city agencies. Examples of such design 
specifications and building codes are

 1. Steel: American Institute of Steel Construction, Specification for 
Structural Steel Buildings

 2. Concrete: American Concrete Institute, Building Code Requirement 
for Structural Concrete

 3. Timber: American Forest and Paper Association, National Design 
Specification for Wood Construction

 4. Highway bridges: American Association of State Highway Officials, 
Standard Specifications for Highway Bridges

1.5D  Load and Resistance Factor 
Design

The allowable-stress method requires that all the uncertainties associated 
with the design of a structure or machine element be grouped into a 
single factor of safety. An alternative method of design makes it possible 
to distinguish between the uncertainties associated with the structure 
itself and those associated with the load it is designed to support. Called 
Load and Resistance Factor Design (LRFD), this method allows the 
designer to distinguish between uncertainties associated with the live 
load, PL (i.e., the active or time-varying load to be supported by the struc-
ture) and the dead load, PD (i.e., the self weight of the structure contribut-
ing to the total load).
 Using the LRFD method the ultimate load, PU, of the structure (i.e., 
the load at which the structure ceases to be useful) should be deter-
mined. The proposed design is acceptable if the following inequality is 
satisfied:

 gD PD 1 gL PL # fPU (1.27)

The coefficient f is the resistance factor, which accounts for the uncertain-
ties associated with the structure itself and will normally be less than 1. 
The coefficients gD and gL are the load factors; they account for the 
uncertainties associated with the dead and live load and normally will be 
greater than 1, with gL generally larger than gD. While a few examples and 
assigned problems using LRFD are included in this chapter and in 
Chaps. 5 and 10, the allowable-stress method of design is primarily used 
in this text.
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Sample Problem 1.3
Two loads are applied to the bracket BCD as shown. (a) Knowing that 
the control rod AB is to be made of a steel having an ultimate normal 
stress of 600 MPa, determine the diameter of the rod for which the 
factor of safety with respect to failure will be 3.3. (b) The pin at C is to 
be made of a steel having an ultimate shearing stress of 350 MPa. 
Determine the diameter of the pin C for which the factor of safety with 
respect to shear will also be 3.3. (c) Determine the required thickness 
of the bracket supports at C, knowing that the allowable bearing stress 
of the steel used is 300 MPa.

STRATEGY: Consider the free body of the bracket to determine the 
force P and the reaction at C. The resulting forces are then used with 
the allowable stresses, determined from the factor of safety, to obtain 
the required dimensions.

MODELING: Draw the free-body diagram of the hanger (Fig. 1), and 
the pin at C (Fig. 2).

ANALYSIS: 

Free Body: Entire Bracket. Using Fig. 1, the reaction at C is represented 
by its com ponents Cx and Cy.

  1 l oMC 5 0:     P(0.6 m) 2 (50 kN)(0.3 m) 2 (15 kN)(0.6 m) 5 0 P 5 40 kN

oFx 5 0: Cx 5 40 kN

oFy 5 0: Cy 5 65 kN C 5 2C 
2
x 1 C 

2
y 5 76.3 kN

 a. Control Rod AB. Since the factor of safety is 3.3, the allowable 
stress is

sall 5
sU

F.S.
5

600 MPa

3.3
5 181.8 MPa

For P 5 40 kN, the cross-sectional area required is

 Areq 5
P
sall

5
40 kN

181.8 MPa
5 220 3 1026 m2

  Areq 5
p

4
 dAB

2 5 220 3 1026 m2 dab 5 16.74 mm ◀

 b. Shear in Pin C. For a factor of safety of 3.3, we have

tall 5
tU

F.S.
5

350 MPa

3.3
5 106.1 MPa

(continued)

t t

A

D 

B

dAB

C

0.6 m

0.3 m 0.3 m

50 kN 15 kN

P

50 kN 15 kN0.6 m

0.3 m 0.3 m

D

B

C

P

Cx

Cy

C

C

dC

F2

F1
F1 � F2 � 

1
2

Fig. 1 Free-body diagram of bracket. 

Fig. 2 Free-body diagram 
of pin at point C.
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36 Introduction—Concept of Stress

As shown in Fig. 2 the pin is in double shear. We write

 Areq 5
Cy2

tall
5
176.3 kN2y2

106.1 MPa
5 360 mm2

 Areq 5
p

4
 dC 

2 5 360 mm2   dC 5 21.4 mm Use: dC 5 22 mm ◀

 c. Bearing at C.  Using d 5 22 mm, the nominal bearing area of 
each bracket is 22t. From Fig. 3 the force carried by each bracket is C/2 
and the allowable bearing stress is 300 MPa. We write

Areq 5
Cy2

sall
5
176.3 kN2y2

300 MPa
5 127.2 mm2

Thus, 22t 5 127.2  t 5 5.78 mm Use: t 5 6 mm ◀

REFLECT and THINK: It was appropriate to design the pin C first 
and then its bracket, as the pin design was geometrically dependent 
upon diameter only, while the bracket design involved both the pin 
diameter and bracket thickness.

Sample Problem 1.4
The rigid beam BCD is attached by bolts to a control rod at B, to a 
hydraulic cylinder at C, and to a fixed support at D. The diameters of 
the bolts used are: dB 5 dD 5 3

8 in., dC 5 1
2 in. Each bolt acts in double 

shear and is made from a steel for which the ultimate shearing stress 
is tU 5 40 ksi. The control rod AB has a diameter dA 5 7

16 in. and is 
made of a steel for which the ultimate tensile stress is sU 5 60 ksi. If 
the minimum factor of safety is to be 3.0 for the entire unit, determine 
the largest upward force that may be applied by the hydraulic cylinder 
at C.

STRATEGY: The factor of safety with respect to failure must be 3.0 
or more in each of the three bolts and in the control rod. These four 
independent criteria need to be considered separately.

MODELING: Draw the free-body diagram of the bar (Fig. 1) and 
the bolts at B and C (Figs. 2 and 3). Determine the allowable value 
of the force C based on the required design criteria for each part.

ANALYSIS:

Free Body: Beam BCD. Using Fig. 1, first determine the force at C 
in terms of the force at B and in terms of the force at D.

1l oMD 5 0:  B 114 in.2 2 C 18 in.2 5 0  C 5 1.750B (1)

1l oMB 5 0:  2D 114 in.2 1 C 16 in.2 5 0  C 5 2.33D (2)

(continued)

DC

B

A

6 in.

8 in.

D

DB

C

B C

6 in. 8 in.

Fig. 1 Free-body diagram of beam BCD. 

Fig. 3 Bearing loads at bracket support 
at point C.

d � 22 mm

t C1
2

C1
2

bee98233_ch01_002-053.indd   36bee98233_ch01_002-053.indd   36 11/15/13   9:42 AM11/15/13   9:42 AM
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Control Rod. For a factor of safety of 3.0

sall 5
sU

F.S.
5

60 ksi

3.0
5 20 ksi

Th e allowable force in the control rod is

B 5 sall1A2 5 120 ksi2  14p 1 7
16 in.22 5 3.01 kips

Using Eq. (1), the largest permitted value of C is

 C 5 1.750B 5 1.75013.01 kips2 C 5 5.27 kips ◀

Bolt at B. tall 5 tUyF.S. 5 (40 ksi)y3 5 13.33 ksi. Since the bolt is in 
double shear (Fig. 2), the allowable magnitude of the force B exerted 
on the bolt is

B 5 2F1 5 21tall A2 5 2113.33 ksi2 114p2 138 in.22 5 2.94 kips

From Eq. (1), C 5 1.750B 5 1.75012.94 kips2 C 5 5.15 kips ◀

Bolt at D. Since this bolt is the same as bolt B, the allowable force 
is D 5 B 5 2.94 kips. From Eq. (2)

 C 5 2.33D 5 2.3312.94 kips2 C 5 6.85 kips ◀

Bolt at C. We again have tall 5 13.33 ksi. Using Fig. 3, we write

 C 5 2F2 5 21tall A2 5 2113.33 ksi2 114 p2 112 in.22  C 5 5.23 kips ◀

C

F2

F2

1
2 in.

C � 2F2

Fig. 3 Free-body 
diagram of pin at point C.

F1

F1

B

3
8

in.

B � 2F1

Fig. 2 Free-body diagram 
of pin at point B.

Summary.  We have found separately four maximum allowable val-
ues of the force C. In order to satisfy all these criteria, choose the 
smallest value. C 5 5.15 kips ◀

REFLECT and THINK:  This example illustrates that all parts must 
satisfy the appropriate design criteria, and as a result, some parts have 
more capacity than needed.
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Problems
 1.29 Two wooden members of uniform rectangular cross section 

are joined by the simple glued scarf splice shown. Knowing that 
P 5 11 kN, determine the normal and shearing stresses in the 
glued splice.

 1.30 Two wooden members of uniform rectangular cross section are 
joined by the simple glued scarf splice shown. Knowing that the 
maximum allowable shearing stress in the glued splice is 620 kPa, 
determine (a) the largest load P that can be safely applied, 
(b) the corresponding tensile stress in the splice.

 1.31 The 1.4-kip load P is supported by two wooden members of uni-
form cross section that are joined by the simple glued scarf splice 
shown. Determine the normal and shearing stresses in the glued 
splice.

 1.32 Two wooden members of uniform cross section are joined by the 
simple scarf splice shown. Knowing that the maximum allowable 
tensile stress in the glued splice is 75 psi, determine (a) the larg-
est load P that can be safely supported, (b) the corresponding 
shearing stress in the splice.

1.33 A centric load P is applied to the granite block shown. Knowing 
that the resulting maximum value of the shearing stress in the 
block is 2.5 ksi, determine (a) the magnitude of P, (b) the orienta-
tion of the surface on which the maximum shearing stress occurs, 
(c) the normal stress exerted on that surface, (d) the maximum 
value of the normal stress in the block.

Fig. P1.29 and P1.30

75 mm

150 mm

45454545454545454545454545454545454545454545454545�������������

P'

P

Fig. P1.31 and P1.32

60�

5.0 in.
3.0 in.

P'

P

Fig. P1.33 and P1.34

6 in.

6 in.

P

1.34 A 240-kip load P is applied to the granite block shown. Deter-
mine the resulting maximum value of (a) the normal stress, 
(b) the shearing stress. Specify the orientation of the plane on 
which each of these maximum values occurs.
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 1.35 A steel pipe of 400-mm outer diameter is fabricated from 10-mm-
thick plate by welding along a helix that forms an angle of 208

with a plane perpendicular to the axis of the pipe. Knowing that 
a 300-kN axial force P is applied to the pipe, determine the nor-
mal and shearing stresses in directions respectively normal and 
tangential to the weld.

 1.36 A steel pipe of 400-mm outer diameter is fabricated from 10-mm-
thick plate by welding along a helix that forms an angle of 208

with a plane perpendicular to the axis of the pipe. Knowing that 
the maximum allowable normal and shearing stresses in the 
directions respectively normal and tangential to the weld are 
s 5 60 MPa and t 5 36 MPa, determine the magnitude P of the 
largest axial force that can be applied to the pipe.

 1.37 A steel loop ABCD of length 5 ft and of  3
8-in. diameter is placed 

as shown around a 1-in.-diameter aluminum rod AC. Cables BE
and DF, each of 1

2-in. diameter, are used to apply the load Q. 
Knowing that the ultimate strength of the steel used for the loop 
and the cables is 70 ksi, and that the ultimate strength of the alu-
minum used for the rod is 38 ksi, determine the largest load Q
that can be applied if an overall factor of safety of 3 is desired.

Fig. P1.35 and P1.36

208

P

Weld

10 mm

Fig. P1.37

12 in.

9 in. 1 in.

C

D

Q

A

9 in.

12 in.

F

Q'

B
E

in.1
2

in.3
8

1.38 Link BC is 6 mm thick, has a width w 5 25 mm, and is made of 
a steel with a 480-MPa ultimate strength in tension. What is the 
factor of safety used if the structure shown was designed to sup-
port a 16-kN load P?

1.39 Link BC is 6 mm thick and is made of a steel with a 450-MPa 
ultimate strength in tension. What should be its width w if the 
structure shown is being designed to support a 20-kN load P with 
a factor of safety of 3? Fig. P1.38 and P1.39

A B

C
D

480 mm

908

w

P
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 1.40 Members AB and BC of the truss shown are made of the same 
alloy. It is known that a 20-mm-square bar of the same alloy was 
tested to failure and that an ultimate load of 120 kN was re -
corded. If a factor of safety of 3.2 is to be achieved for both bars, 
determine the required cross-sectional area of (a) bar AB, 
(b) bar AC.

 1.41 Members AB and BC of the truss shown are made of the same 
alloy. It is known that a 20-mm-square bar of the same alloy was 
tested to failure and that an ultimate load of 120 kN was recorded. 
If bar AB has a cross-sectional area of 225 mm2, determine (a) the 
factor of safety for bar AB, (b) the cross-sectional area of bar AC
if it is to have the same factor of safety as bar AB.

 1.42 Link AB is to be made of a steel for which the ultimate normal 
stress is 65 ksi. Determine the cross-sectional area of AB for 
which the factor of safety will be 3.20. Assume that the link will be 
adequately reinforced around the pins at A and B.

Fig. P1.40 and P1.41

1.4 m

0.75 m

0.4 m

B

A

C

Fig. P1.42
1.4 ft

35�

B

A

C D
E

1.4 ft 1.4 ft

600 lb/ft

5 kips

1.43 Two wooden members are joined by plywood splice plates that 
are fully glued on the contact surfaces. Knowing that the clear-
ance between the ends of the members is 6 mm and that the 
ultimate shearing stress in the glued joint is 2.5 MPa, determine 
the length L for which the factor of safety is 2.75 for the loading 
shown.

Fig. P1.43

16 kN

L

125 mm

6 mm

16 kN

1.44 For the joint and loading of Prob. 1.43, determine the factor of 
safety when L 5 180 mm.
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 1.45 Three 3
4-in.-diameter steel bolts are to be used to attach the steel 

plate shown to a wooden beam. Knowing that the plate will sup-
port a load P 5 24 kips and that the ultimate shearing stress for 
the steel used is 52 ksi, determine the factor of safety for this 
design.

Fig. P1.45 and P1.46
P

Fig. P1.47

1
2

40 mm

d

c

b

P

1
2 P

 1.46 Three steel bolts are to be used to attach the steel plate shown to 
a wooden beam. Knowing that the plate will support a load 
P 5 28 kips, that the ultimate shearing stress for the steel used is 
52 ksi, and that a factor of safety of 3.25 is desired, determine the 
required diameter of the bolts.

 1.47 A load P is supported as shown by a steel pin that has been 
inserted in a short wooden member hanging from the ceiling. 
The ultimate strength of the wood used is 60 MPa in tension and 
7.5 MPa in shear, while the ultimate strength of the steel is 
145 MPa in shear. Knowing that b 5 40 mm, c 5 55 mm, and 
d 5 12 mm, determine the load P if an overall factor of safety of 
3.2 is desired.

 1.48 For the support of Prob. 1.47, knowing that the diameter of 
the  pin is d 5 16 mm and that the magnitude of the load is 
P 5 20 kN, determine (a) the factor of safety for the pin 
(b) the required values of b and c if the factor of safety for the 
wooden member is the same as that found in part a for the pin.
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1.49 A steel plate 14 in. thick is embedded in a concrete wall to anchor 
a high-strength cable as shown. The diameter of the hole in the 
plate is 34 in., the ultimate strength of the steel used is 36 ksi. and 
the ultimate bonding stress between plate and concrete is 
300 psi. Knowing that a factor of safety of 3.60 is desired when 
P 5 2.5 kips, determine (a) the required width a of the plate,
(b) the minimum depth b to which a plate of that width should 
be embedded in the concrete slab. (Neglect the normal stresses 
between the concrete and the end of the plate.)

Fig. P1.49

a

b
P

3
4

in.
1
4

in.

 1.50 Determine the factor of safety for the cable anchor in Prob. 1.49 
when P 5 2.5 kips, knowing that a 5 2 in. and b 5 6 in.

 1.51 Link AC is made of a steel with a 65-ksi ultimate normal stress and 
has a 1

4 3
1
2-in. uniform rectangular cross section. It is connected 

to a support at A and to member BCD at C by 3
4-in.-diameter pins, 

while member BCD is connected to its support at B by a 
5

16-in.-diameter pin. All of the pins are made of a steel with a 25-ksi 
ultimate shearing stress and are in single shear. Knowing that a 
factor of safety of 3.25 is desired, determine the largest load P that 
can be applied at D. Note that link AC is not reinforced around the 
pin holes.

 1.52 Solve Prob. 1.51, assuming that the structure has been redesigned 
to use 5

16-in.-diameter pins at A and C as well as at B and that no 
other changes have been made.

 1.53 Each of the two vertical links CF connecting the two horizontal 
members AD and EG has a 10 3 40-mm uniform rectangular 
cross section and is made of a steel with an ultimate strength in 
tension of 400 MPa, while each of the pins at C and F has a 
20-mm diameter and are made of a steel with an ultimate strength 
in shear of 150 MPa. Determine the overall factor of safety for the 
links CF and the pins connecting them to the horizontal 
members.

 1.54 Solve Prob. 1.53, assuming that the pins at C and F have been 
replaced by pins with a 30-mm diameter.

Fig. P1.51
P

6 in.

8 in.

4 in.

1
2

in.

A

B C D

Fig. P1.53
24 kN

C

A
B

E
D

F G

250 mm

400 mm

250 mm
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 1.55 In the structure shown, an 8-mm-diameter pin is used at A, and 
12-mm-diameter pins are used at B and D. Knowing that the ulti-
mate shearing stress is 100 MPa at all connections and that the 
ultimate normal stress is 250 MPa in each of the two links joining 
B and D, determine the allowable load P if an overall factor of 
safety of 3.0 is desired.

Fig. P1.55

180 mm200 mm

Top view

Side view
Front view

8 mm

20 mm
8 mm

8 mm

12 mm

12 mm

B C
B

D D

A

B CA

P

 1.56 In an alternative design for the structure of Prob. 1.55, a pin of 
10-mm-diameter is to be used at A. Assuming that all other speci-
fications remain unchanged, determine the allowable load P if an 
overall factor of safety of 3.0 is desired.

 *1.57 A 40-kg platform is attached to the end B of a 50-kg wooden 
beam AB, which is supported as shown by a pin at A and by a 
slender steel rod BC with a 12-kN ultimate load. (a) Using the 
Load and Resistance Factor Design method with a resistance 
factor f 5 0.90 and load factors gD 5 1.25 and gL 5 1.6, deter-
mine the largest load that can be safely placed on the platform. 
(b) What is the corresponding conventional factor of safety for 
rod BC ?

 *1.58 The Load and Resistance Factor Design method is to be used to 
select the two cables that will raise and lower a platform support-
ing two window washers. The platform weighs 160 lb and each 
of the window washers is assumed to weigh 195 lb with equip-
ment. Since these workers are free to move on the platform, 75% 
of their total weight and the weight of their equipment will be 
used as the design live load of each cable. (a) Assuming a resis-
tance factor f 5 0.85 and load factors gD 5 1.2 and gL 5 1.5, 
determine the required minimum ultimate load of one cable. 
(b) What is the corresponding conventional factor of safety for 
the selected cables?

Fig. P1.57

1.8 m

2.4 m

A B

C

Fig. P1.58

P P
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Review and Summary
This chapter was devoted to the concept of stress and to an introduction 
to the methods used for the analysis and design of machines and load-
bearing structures. Emphasis was placed on the use of a free-body diagram
to obtain equilibrium equations that were solved for unknown reactions. 
Free-body diagrams were also used to find the internal forces in the vari-
ous members of a structure.

Axial Loading: Normal Stress
The concept of stress was first introduced by considering a two-force 
member under an axial loading. The normal stress in that member 
(Fig. 1.41) was obtained by

 s 5
P

A
 (1.5)

 The value of s obtained from Eq. (1.5) represents the average stress
over the section rather than the stress at a specific point Q of the section. 
Considering a small area DA surrounding Q and the magnitude DF of the 
force exerted on DA, the stress at point Q is

 s 5 lim
¢Ay0

 
¢F

¢A
 (1.6)

 In general, the stress s at point Q in Eq. (1.6) is different from the 
value of the average stress given by Eq. (1.5) and is found to vary across 
the section. However, this variation is small in any section away from the 
points of application of the loads. Therefore, the distribution of the normal 
stresses in an axially loaded member is assumed to be uniform, except in 
the immediate vicinity of the points of application of the loads.
 For the distribution of stresses to be uniform in a given section, the 
line of action of the loads P and P9 must pass through the centroid C. Such 
a loading is called a centric axial loading. In the case of an eccentric axial 
loading, the distribution of stresses is not uniform.

Transverse Forces and Shearing Stress
When equal and opposite transverse forces P and P9 of magnitude P are 
applied to a member AB (Fig. 1.42), shearing stresses t are created over 
any section located between the points of application of the two forces. 

A

P'

P

Fig. 1.41 Axially loaded 
member with cross section 
normal to member used to 
define normal stress.

A C B

P

P�

Fig. 1.42 Model of transverse resultant forces on 
either side of C resulting in shearing stress at section C.
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These stresses vary greatly across the section and their distribution cannot
be assumed to be uniform.  However, dividing the magnitude P—referred 
to as the shear in the section—by the cross-sectional area A, the average 
shearing stress is:

 tave 5
P
A

 (1.8)

Single and Double Shear
Shearing stresses are found in bolts, pins, or rivets connecting two struc-
tural members or machine components. For example, the shearing stress 
of bolt CD (Fig. 1.43), which is in single shear, is written as

tave 5
P

A
5

F

A
 (1.9)

C

D

A
F

E'B
E

F'

Fig. 1.43 Diagram of a single-shear joint.
K

AB

L

E H

G J

C

D 

K'

L'

FF'

Fig. 1.44 Free-body diagram of a double-shear 
joint.

The shearing stresses on bolts EG and HJ (Fig. 1.44), which are both in double 
shear, are written as

tave 5
P
A

5
Fy2

A
 5

F
2A

 (1.10)

Bearing Stress
Bolts, pins, and rivets also create stresses in the members they connect 
along the bearing surface or surface of contact. Bolt CD of Fig. 1.43 creates 
stresses on the semicylindrical surface of plate A with which it is in contact 
(Fig. 1.45). Since the distribution of these stresses is quite complicated, 
one uses an average nominal value sb of the stress, called bearing stress.

sb 5
P
A

5
P
td

 (1.11)

A

C

D

d

t

F

P

F'

Fig. 1.45 Bearing stress from force P and the 
single-shear bolt associated with it.

Method of Solution
Your solution should begin with a clear and precise statement of the 
problem. Then draw one or several free-body diagrams that will be used 
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P'
�

P

Fig. 1.46 Axially loaded member 
with oblique section plane.
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Fig. 1.47 Positive stress components at point Q.

to write equilibrium equations. These equations will be solved for unknown 
forces, from which the required stresses and deformations can be com-
puted. Once the answer has been obtained, it should be carefully checked.
 These guidelines are embodied by the SMART problem-solving 
methodology, where the steps of Strategy, Modeling, Analysis, and Reflect 
& Think are used. You are encouraged to apply this SMART methodology 
in the solution of all problems assigned from this text.

Stresses on an Oblique Section
When stresses are created on an oblique section in a two-force member 
under axial loading, both normal and shearing stresses occur. Denoting 
by u the angle formed by the section with a normal plane (Fig. 1.46) 
and by A0 the area of a section perpendicular to the axis of the 
member, the normal stress s and the shearing stress t on the oblique 
section are

 s 5
P

A0
 cos2 u   t 5

P

A0
 sin u cos u (1.14)

We observed from these formulas that the normal stress is maximum and 
equal to sm 5 P/A0 for u 5 0, while the shearing stress is maximum and 
equal to tm 5 P/2A0 for u 5 458. We also noted that t 5 0 when u 5 0, 
while s 5 P/2A0 when u 5 458.

Stress Under General Loading
Considering a small cube centered at Q (Fig. 1.47), sx is the normal stress 
exerted on a face of the cube perpendicular to the x axis, and txy and txz

are the y and z components of the shearing stress exerted on the same 
face of the cube. Repeating this procedure for the other two faces of the 
cube and observing that txy 5 tyx, tyz 5 tzy, and tzx 5 txz, it was deter-
mined that six stress components are required to define the state of stress 
at a given point Q, being sx, sy, sz, txy, tyz, and tzx.

Factor of Safety
The ultimate load of a given structural member or machine component is 
the load at which the member or component is expected to fail. This is 
computed from the ultimate stress or ultimate strength of the material 
used. The ultimate load should be considerably larger than the allowable 
load (i.e., the load that the member or component will be allowed to carry 
under normal conditions). The ratio of the ultimate load to the allowable 
load is the factor of safety:

 Factor of safety 5 F.S. 5
ultimate load

allowable load
 (1.25)

Load and Resistance Factor Design
Load and Resistance Factor Design (LRFD) allows the engineer to distin-
guish between the uncertainties associated with the structure and those 
associated with the load.
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Review Problems
 1.59 In the marine crane shown, link CD is known to have a uniform 

cross section of 50 3 150 mm. For the loading shown, determine 
the normal stress in the central portion of that link.

Fig. P1.59

A
D

C

B

3 m25 m15 m

35 m

80 Mg

15 m

1.60 Two horizontal 5-kip forces are applied to pin B of the assembly 
shown. Knowing that a pin of 0.8-in. diameter is used at each 
connection, determine the maximum value of the average nor-
mal stress (a) in link AB, (b) in link BC.

Fig. P1.60

B

A

C

0.5 in.

0.5 in.

1.8 in.

1.8 in.

45�

60�

5 kips
5 kips

1.61 For the assembly and loading of Prob. 1.60, determine (a) the 
average shearing stress in the pin at C, (b) the average bearing 
stress at C in member BC, (c) the average bearing stress at B in 
member BC.
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1.62 Two steel plates are to be held together by means of 16-mm-
diameter high-strength steel bolts fitting snugly inside cylindri-
cal brass spacers. Knowing that the average normal stress must 
not exceed 200 MPa in the bolts and 130 MPa in the spacers, 
determine the outer diameter of the spacers that yields the most 
economical and safe design.

Fig. P1.62

Fig. P1.63

200 mm

80 mmM

60 mm

B

A

C

P

Fig. P1.64

60 lb

F

D

E

JC D

B

A

8 in.

2 in.

4 in. 12 in. 4 in.

6 in.

�

1.63 A couple M of magnitude 1500 N • m is applied to the crank 
of an engine. For the position shown, determine (a) the force 
P required to hold the engine system in equilibrium, (b) the 
average normal stress in the connecting rod BC, which has a 
450-mm2 uniform cross section.

 1.64 Knowing that link DE is 1
8 in. thick and 1 in. wide, determine 

the normal stress in the central portion of that link when 
(a) u 5 0, (b) u 5 908.
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 1.65 A 5
8-in.-diameter steel rod AB is fitted to a round hole near 

end C of the wooden member CD. For the loading shown, deter-
mine (a) the maximum average normal stress in the wood, (b) 
the distance b for which the average shearing stress is 100 psi 
on the surfaces indicated by the dashed lines, (c) the average 
bearing stress on the wood.

 1.66 In the steel structure shown, a 6-mm-diameter pin is used at 
C and 10-mm-diameter pins are used at B and D. The ultimate 
shearing stress is 150 MPa at all connections, and the ultimate 
normal stress is 400 MPa in link BD. Knowing that a factor of 
safety of 3.0 is desired, determine the largest load P that can be 
applied at A. Note that link BD is not reinforced around the pin 
holes.

Fig. P1.66

18 mm

Top view

Side view

Front view

160 mm 120 mm

6 mm

A

A

B
C 

B

D

C

B

D

P

Fig. P1.67

A

D 

B

C

0.4 m

30�

40�

0.8 m

0.6 m

P

Fig. P1.65

D
A

C
B

b

1500 lb

750 lb

750 lb

4 in.

1 in.

 1.67 Member ABC, which is supported by a pin and bracket at C and 
a cable BD, was designed to support the 16-kN load P as shown. 
Knowing that the ultimate load for cable BD is 100 kN, deter-
mine the factor of safety with respect to cable failure.
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 1.68 A force P is applied as shown to a steel reinforcing bar that 
has been embedded in a block of concrete. Determine the 
smallest length L for which the full allowable normal stress 
in the bar can be developed. Express the result in terms of 
the diameter d of the bar, the allowable normal stress sall

in the steel, and the average allowable bond stress tall

between the concrete and the cylindrical surface of the bar. 
(Neglect the normal stresses between the concrete and the 
end of the bar.)

Fig. P1.68

P
L d

Fig. P1.69 and P1.70

A

1.25 in.

2.4 kips

2.0 in.

B

�

1.69 The two portions of member AB are glued together along a 
plane forming an angle u with the horizontal. Knowing that the 
ultimate stress for the glued joint is 2.5 ksi in tension and 1.3 ksi 
in shear, determine (a) the value of u for which the factor of 
safety of the member is maximum, (b) the corresponding value 
of the factor of safety. (Hint: Equate the expressions obtained 
for the factors of safety with respect to the normal and shearing 
stresses.)

 1.70 The two portions of member AB are glued together along a 
plane forming an angle u with the horizontal. Knowing that the 
ultimate stress for the glued joint is 2.5 ksi in tension and 1.3 ksi 
in shear, determine the range of values of u for which the factor 
of safety of the members is at least 3.0.
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Computer Problems
The following problems are designed to be solved with a computer.

 1.C1 A solid steel rod consisting of n cylindrical elements welded together 
is subjected to the loading shown. The diameter of element i is denoted 
by di and the load applied to its lower end by Pi, with the magnitude Pi of 
this load being assumed positive if Pi is directed downward as shown and 
negative otherwise. (a) Write a computer program that can be used with 
either SI or U.S. customary units to determine the average stress in each 
element of the rod. (b) Use this program to solve Probs. 1.1 and 1.3.

 1.C2 A 20-kN load is applied as shown to the horizontal member ABC. 
Member ABC has a 10 3 50-mm uniform rectangular cross section and 
is supported by four vertical links, each of 8 3 36-mm uniform rectan-
gular cross section. Each of the four pins at A, B, C, and D has the same 
diameter d and is in double shear. (a) Write a computer program to cal-
culate for values of d from 10 to 30 mm, using 1-mm increments, (i) the 
maximum value of the average normal stress in the links connecting pins 
B and D, (ii) the average normal stress in the links connecting pins C
and E, (iii) the average shearing stress in pin B, (iv) the average shearing 
stress in pin C, (v) the average bearing stress at B in member ABC, and 
(vi) the average bearing stress at C in member ABC. (b) Check your pro-
gram by comparing the values obtained for d 5 16 mm with the answers 
given for Probs. 1.7 and 1.27. (c) Use this program to find the permissible 
values of the diameter d of the pins, knowing that the allowable values 
of the normal, shearing, and bearing stresses for the steel used are, 
respectively, 150 MPa, 90 MPa, and 230 MPa. (d) Solve part c, assuming 
that the thickness of member ABC has been reduced from 10 to 8 mm.

Element n

Element 1

Pn

P1

Fig. P1.C1

Fig. P1.C2

0.2 m
0.25 m

0.4 m

20 kN

C

B

A
D

E
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 1.C3 Two horizontal 5-kip forces are applied to pin B of the assembly 
shown. Each of the three pins at A, B, and C has the same diameter d and 
is in double shear. (a) Write a computer program to calculate for values 
of d from 0.50 to 1.50 in., using 0.05-in. increments, (i) the maximum value 
of the average normal stress in member AB, (ii) the average normal stress 
in member BC, (iii) the average shearing stress in pin A, (iv) the average 
shearing stress in pin C, (v) the average bearing stress at A in member AB, 
(vi) the average bearing stress at C in member BC, and (vii) the average 
bearing stress at B in member BC. (b) Check your program by comparing 
the values obtained for d 5 0.8 in. with the answers given for Probs. 1.60 
and 1.61. (c) Use this program to find the permissible values of the diam-
eter d of the pins, knowing that the allowable values of the normal, shear-
ing, and bearing stresses for the steel used are, respectively, 22 ksi, 13 ksi, 
and 36 ksi. (d) Solve part c, assuming that a new design is being investi-
gated in which the thickness and width of the two members are changed, 
respectively, from 0.5 to 0.3 in. and from 1.8 to 2.4 in.

a

bA

D 

B

C

12 in.18 in.

15 in.

P

Fig. P1.C4

Fig. P1.C3

B

A

C

0.5 in.

0.5 in.

1.8 in.

1.8 in.

45�

60�

5 kips
5 kips

 1.C4 A 4-kip force P forming an angle a with the vertical is applied as 
shown to member ABC, which is supported by a pin and bracket at C
and by a cable BD forming an angle b with the horizontal. (a) Knowing 
that the ultimate load of the cable is 25 kips, write a computer program 
to construct a table of the values of the factor of safety of the cable for 
values of a and b from 0 to 458, using increments in a and b correspond-
ing to 0.1 increments in tan a and tan b. (b) Check that for any given 
value of a, the maximum value of the factor of safety is obtained for 
b 5 38.668 and explain why. (c) Determine the smallest possible value 
of the factor of safety for b 5 38.668, as well as the corresponding value 
of a, and explain the result obtained.
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 1.C5 A load P is supported as shown by two wooden members of uni-
form rectangular cross section that are joined by a simple glued scarf 
splice. (a) Denoting by sU and tU , respectively, the ultimate strength of 
the joint in tension and in shear, write a computer program which, for 
given values of a, b, P, sU and tU , expressed in either SI or U.S. customary 
units, and for values of a from 5 to 858 at 58 intervals, can calculate (i) the 
normal stress in the joint, (ii) the shearing stress in the joint, (iii) the factor 
of safety relative to failure in tension, (iv) the factor of safety relative to 
failure in shear, and (v) the overall factor of safety for the glued joint. 
(b) Apply this program, using the dimensions and loading of the members 
of Probs. 1.29 and 1.31, knowing that sU 5 150 psi and tU 5 214 psi for 
the glue used in Prob. 1.29 and that sU 5 1.26 MPa and tU 5 1.50 MPa 
for the glue used in Prob. 1.31. (c) Verify in each of these two cases that 
the shearing stress is maximum for a 5 458.

 1.C6 Member ABC is supported by a pin and bracket at A, and by two 
links that are pin-connected to the member at B and to a fixed support 
at D. (a) Write a computer program to calculate the allowable load Pall 
for any given values of (i) the diameter d1 of the pin at A, (ii) the common 
diameter d2 of the pins at B and D, (iii) the ultimate normal stress sU in 
each of the two links, (iv) the ultimate shearing stress tU in each of the 
three pins, and (v) the desired overall factor of safety F.S. (b) Your pro-
gram should also indicate which of the following three stresses is critical: 
the normal stress in the links, the shearing stress in the pin at A, or the 
shearing stress in the pins at B and D. (c) Check your program by using 
the data of Probs. 1.55 and 1.56, respectively, and comparing the answers 
obtained for Pall with those given in the text. (d ) Use your program to 
determine the allowable load Pall, as well as which of the stresses is criti-
cal, when d1 5 d2 5 15 mm, sU 5 110 MPa for aluminum links, 
tU 5 100 MPa for steel pins, and F.S. 5 3.2.

Fig. P1.C6

180 mm200 mm

Top view

Side view
Front view

8 mm

20 mm
8 mm

8 mm

12 mm

12 mm

B C
B

D D

A

B CA

P

Fig. P1.C5

P
a

b

P'

�
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2
Stress and Strain—

Axial Loading
This chapter considers deformations occurring in structural 
components subjected to axial loading. The change in 
length of the diagonal stays was carefully accounted for in 
the design of this cable-stayed bridge.

Objectives
In this chapter, we will:

• Introduce students to the concept of strain.

• Discuss the relationship between stress and strain in diff erent 
materials.

• Determine the deformation of structural components under axial 
loading.

• Introduce Hooke’s Law and the modulus of elasticity.

• Discuss the concept of lateral strain and Poisson's ratio.

• Use axial deformations to solve indeterminate problems.

• Define Saint-Venant’s principle and the distribution of stresses.

• Review stress concentrations and how they are included in design.

• Define the diff erence between elastic and plastic behavior through 
a discussion of conditions such as elastic limit, plastic deformation, 
residual stresses.

• Look at specifi c topics related to fi ber-reinforced composite 
materials, fatigue, multiaxial loading.
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Introduction
An important aspect of the analysis and design of structures relates to the 
deformations caused by the loads applied to a structure. It is important to 
avoid deformations so large that they may prevent the structure from ful-
filling the purpose for which it was intended. But the analysis of deforma-
tions also helps us to determine stresses. Indeed, it is not always possible 
to determine the forces in the members of a structure by applying only 
the principles of statics. This is because statics is based on the assumption 
of undeformable, rigid structures. By considering engineering structures 
as deformable and analyzing the deformations in their various members, 
it will be possible for us to compute forces that are statically indeterminate.
The distribution of stresses in a given member is statically indeterminate, 
even when the force in that member is known.
 In this chapter, you will consider the deformations of a structural 
member such as a rod, bar, or plate under axial loading. First, the normal 
strain P in a member is defined as the deformation of the member per unit 
length. Plotting the stress s versus the strain e as the load applied to the 
member is increased produces a stress-strain diagram for the material 
used. From this diagram, some important properties of the material, such 
as its modulus of elasticity, and whether the material is ductile or brittle can 
be determined. While the behavior of most materials is independent of the 
direction of the load application, you will see that the response of fiber-
reinforced composite materials depends upon the direction of the load.
 From the stress-strain diagram, you also can determine whether 
the strains in the specimen will disappear after the load has been 
removed—when the material is said to behave elastically—or whether a 
permanent set or plastic deformation will result. 
 You will examine the phenomenon of fatigue, which causes struc-
tural or machine components to fail after a very large number of repeated 
loadings, even though the stresses remain in the elastic range.
 Sections 2.2 and 2.3 discuss statically indeterminate problems in 
which the reactions and the internal forces cannot be determined from 
statics alone. Here the equilibrium equations derived from the free-body 
diagram of the member must be complemented by relationships involving 
deformations that are obtained from the geometry of the problem.
 Additional constants associated with  isotropic materials—i.e., mate-
rials with mechanical characteristics independent of direction—are intro-
duced in Secs. 2.4 through 2.8. They include Poisson’s ratio, relating lateral 
and axial strain, the bulk modulus, characterizing the change in volume 
of a material under hydrostatic pressure, and the modulus of rigidity, con-
cerning the components of the shearing stress and shearing strain. Stress-
strain relationships for an isotropic material under a multiaxial loading 
also are determined.
 Stress-strain relationships involving modulus of elasticity, Poisson’s 
ratio, and the modulus of rigidity are developed for fiber-reinforced com-
posite materials under a multiaxial loading. While these materials are not 
isotropic, they usually display special orthotropic properties.
 In Chap. 1, stresses were assumed uniformly distributed in any given 
cross section; they were also assumed to remain within the elastic range. 
The first assumption is discussed in Sec. 2.10, while stress concentrations
near circular holes and fillets in flat bars are considered in Sec. 2.11. 
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2.1 An Introduction to Stress and Strain 57

Sections 2.12 and 2.13 discuss stresses and deformations in members made 
of a ductile material when the yield point of the material is exceeded, result-
ing in permanent plastic deformations and residual stresses.

2.1  AN INTRODUCTION TO 
STRESS AND STRAIN

2.1A  Normal Strain Under Axial 
Loading

Consider a rod BC of length L and uniform cross-sectional area A, which 
is suspended from B (Fig. 2.1a). If you apply a load P to end C, the rod 
elongates (Fig. 2.1b). Plotting the magnitude P of the load against the 
deformation d (Greek letter delta), you obtain a load-deformation diagram 
(Fig. 2.2). While this diagram contains information useful to the analysis 
of the rod under consideration, it cannot be used to predict the deforma-
tion of a rod of the same material but with different dimensions. Indeed, 
if a deformation d is produced in rod BC by a load P, a load 2P is required 
to cause the same deformation in rod B9C9 of the same length L but cross-
sectional area 2A (Fig. 2.3). Note that in both cases the value of the stress 
is the same: s 5 PyA. On the other hand, when load P is applied to a 
rod B0C0 of the same cross-sectional area A but of length 2L, a deformation 
2d occurs in that rod (Fig. 2.4). This is a deformation twice as large as the 
deformation d produced in rod BC. In both cases, the ratio of the deforma-
tion over the length of the rod is the same at dyL. This introduces the 
concept of strain. We define the normal strain in a rod under axial 
loading as the deformation per unit length of that rod. The normal 
strain, P (Greek letter epsilon), is

 P 5
d

L
 (2.1)

 Plotting the stress s 5 PyA against the strain P 5 dyL results in a 
curve that is characteristic of the properties of the material but does not 
depend upon the dimensions of the specimen used. This curve is called 
a stress-strain diagram.

Fig. 2.1 Undeformed and deformed axially-
loaded rod.

B B

C
C

L

A

P

�

(a) (b)

Fig. 2.2 Load-deformation diagram.

P

�

Fig. 2.3 Twice the load is required to 
obtain the same deformation d when 
the cross-sectional area is doubled.

2P

B�B�

C�
C�

L

2A

�

Fig. 2.4 The deformation is doubled when the 
rod length is doubled while keeping the load P and 
cross-sectional area A the same.

 P

B� B�

C�

C�

2L

A
2�
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58 Stress and Strain—Axial Loading

 Since rod BC in Fig. 2.1 has a uniform cross section of area A, the 
normal stress s is assumed to have a constant value PyA throughout the 
rod. The strain e is the ratio of the total deformation d over the total 
length L of the rod. It too is consistent throughout the rod. However, for 
a member of variable cross-sectional area A, the normal stress s 5 PyA 
varies along the member, and it is necessary to define the strain at a 
given point Q by considering a small element of undeformed length Dx 
(Fig. 2.5). Denoting the deformation of the element under the given 
loading by Dd, the normal strain at point Q is defined as

 P 5 lim
¢xy0

¢d
¢x

5
dd

dx
 (2.2)

 Since deformation and length are expressed in the same units, the 
normal strain P obtained by dividing d by L (or dd by dx) is a dimensionless 
quantity. Thus, the same value is obtained for the normal strain, whether 
SI metric units or U.S. customary units are used. For instance, consider a 
bar of length L 5 0.600 m and uniform cross section that undergoes a 
deformation d 5 150 3 1026 m. The corresponding strain is

P 5
d

L
5

150 3 1026 m

0.600 m
5 250 3 1026 m/m 5 250 3 1026

Note that the deformation also can be expressed in micrometers: d 5 150 mm 
and the answer written in micros (m):

P 5
d

L
5

150 mm

0.600 m
5 250 mm/m 5 250 m

When U.S. customary units are used, the length and deformation of the same 
bar are L 5 23.6 in. and d 5 5.91 3 1023 in. The corresponding strain is

P 5
d

L
5

5.91 3 1023  in.

23.6 in.
5 250 3 1026 in./in.

which is the same value found using SI units. However, when lengths and 
deformations are expressed in inches or microinches (min.), keep the origi-
nal units obtained for the strain. Thus, in the previous example, the strain 
would be recorded as either P 5 250 3 1026 in./in. or P 5 250 min./in.

2.1B Stress-Strain Diagram
Tensile Test. To obtain the stress-strain diagram of a material, a tensile 
test is conducted on a specimen of the material. One type of specimen is 
shown in Photo 2.1. The cross-sectional area of the cylindrical central por-
tion of the specimen is accurately determined and two gage marks are 
inscribed on that portion at a distance L0 from each other. The distance L0 
is known as the gage length of the specimen.
 The test specimen is then placed in a testing machine (Photo 2.2), 
which is used to apply a centric load P. As load P increases, the distance L 
between the two gage marks also increases (Photo 2.3). The distance L 
is measured with a dial gage, and the elongation d 5 L 2 L0 is recorded 

Fig. 2.5 Deformation of axially-loaded member 
of variable cross-sectional area.

� ��x+ x +

Q

Q

�x x 
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P

Photo 2.1 Typical tensile-test specimen. 
Undeformed gage length is L0.
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2.1 An Introduction to Stress and Strain 59

for each value of P. A second dial gage is often used simultaneously to 
measure and record the change in diameter of the specimen. From each 
pair of readings P and d, the engineering stress s is 

 s 5
P

A0
 (2.3)

and the engineering strain e is

 P 5
d

L0
 (2.4)

The stress-strain diagram can be obtained by plotting e as an abscissa 
and s as an ordinate.
 Stress-strain diagrams of materials vary widely, and different tensile 
tests conducted on the same material may yield different results, depend-
ing upon the temperature of the specimen and the speed of loading. How-
ever, some common characteristics can be distinguished from stress-strain 
diagrams to divide materials into two broad categories: ductile and brittle 
materials.
 Ductile materials, including structural steel and many alloys of other 
materials are characterized by their ability to yield at normal tempera-
tures. As the specimen is subjected to an increasing load, its length first 
increases linearly with the load and at a very slow rate. Thus, the initial 
portion of the stress-strain diagram is a straight line with a steep slope 

Photo 2.2 Universal test machine used to test tensile specimens.
Photo 2.3 Elongated tensile test specimen 
having load P and deformed length L . L0.

P

P9

bee98233_ch02_054-145.indd   59bee98233_ch02_054-145.indd   59 11/15/13   4:54 PM11/15/13   4:54 PM



60 Stress and Strain—Axial Loading

(Fig. 2.6). However, after a critical value sY of the stress has been reached, 
the specimen undergoes a large deformation with a relatively small 
increase in the applied load. This deformation is caused by slippage along 
oblique surfaces and is due primarily to shearing stresses. After a maxi-
mum value of the load has been reached, the diameter of a portion of the 
specimen begins to decrease, due to local instability (Photo 2.4a). This 
phenomenon is known as necking. After necking has begun, lower loads 
are sufficient for specimen to elongate further, until it finally ruptures 
(Photo 2.4b). Note that rupture occurs along a cone-shaped surface that 
forms an angle of approximately 458 with the original surface of the speci-
men. This indicates that shear is primarily responsible for the failure of 
ductile materials, confirming the fact that shearing stresses under an axial 
load are largest on surfaces forming an angle of 458 with the load (see 
Sec. 1.3). Note from Fig. 2.6 that the elongation of a ductile specimen after 
it has ruptured can be 200 times as large as its deformation at yield. The 
stress sY at which yield is initiated is called the yield strength of the mate-
rial. The stress sU corresponding to the maximum load applied is known 
as the ultimate strength. The stress sB corresponding to rupture is called 
the breaking strength.
 Brittle materials, comprising of cast iron, glass, and stone rupture 
without any noticeable prior change in the rate of elongation (Fig. 2.7). 
Thus, for brittle materials, there is no difference between the ultimate 
strength and the breaking strength. Also, the strain at the time of rupture 
is much smaller for brittle than for ductile materials. Note the absence of 
any necking of the specimen in the brittle material of Photo 2.5 and observe 
that rupture occurs along a surface perpendicular to the load. Thus, normal 
stresses are primarily responsible for the failure of brittle materials.†

Fig. 2.6 Stress-strain diagrams of two typical ductile materials.
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Photo 2.4 Ductile material tested specimens: 
(a) with cross-section necking, (b) ruptured.

†The tensile tests described in this section were assumed to be conducted at normal 
temperatures. However, a material that is ductile at normal temperatures may display 
the characteristics of a brittle material at very low temperatures, while a normally brittle 
material may behave in a ductile fashion at very high temperatures. At temperatures 
other than normal, therefore, one should refer to a material in a ductile state or to a 
material in a brittle state, rather than to a ductile or brittle material.
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2.1 An Introduction to Stress and Strain 61

 The stress-strain diagrams of Fig. 2.6 show that while structural steel 
and aluminum are both ductile, they have different yield characteristics. 
For structural steel (Fig. 2.6a), the stress remains constant over a large 
range of the strain after the onset of yield. Later, the stress must be 
increased to keep elongating the specimen until the maximum value sU 
has been reached. This is due to a property of the material known as 
strain-hardening. The yield strength of structural steel is determined dur-
ing the tensile test by watching the load shown on the display of the test-
ing machine. After increasing steadily, the load will suddenly drop to a 
slightly lower value, which is maintained for a certain period as the speci-
men keeps elongating. In a very carefully conducted test, one may be able 
to distinguish between the upper yield point, which corresponds to the 
load reached just before yield starts, and the lower yield point, which cor-
responds to the load required to maintain yield. Since the upper yield 
point is transient, the lower yield point is used to determine the yield 
strength of the material.
 For aluminum (Fig. 2.6b) and of many other ductile materials, the 
stress keeps increasing—although not linearly—until the ultimate strength 
is reached. Necking then begins and eventually ruptures. For such materi-
als, the yield strength sY can be determined using the offset method. For 
example the yield strength at 0.2% offset is obtained by drawing through 
the point of the horizontal axis of abscissa P 5 0.2% (or P 5 0.002), which 
is a line parallel to the initial straight-line portion of the stress-strain dia-
gram (Fig. 2.8). The stress sY corresponding to the point Y is defined as 
the yield strength at 0.2% offset.
 A standard measure of the ductility of a material is its percent 
elongation:

Percent elongation 5 100 
LB 2 L0

L0

where L0 and LB are the initial length of the tensile test specimen and its 
final length at rupture, respectively. The specified minimum elongation 
for a 2-in. gage length for commonly used steels with yield strengths up 
to 50 ksi is 21 percent. This means that the average strain at rupture should 
be at least 0.21 in./in.

Fig. 2.7 Stress-strain diagram for a 
typical brittle material.
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Photo 2.5 Ruptured brittle material specimen.

Fig. 2.8 Determination of yield 
strength by 0.2% offset method.
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62 Stress and Strain—Axial Loading

 Another measure of ductility that is sometimes used is the percent 
reduction in area:

Percent reduction in area 5 100 
A0 2 AB

A0

where A0 and AB are the initial cross-sectional area of the specimen and 
its minimum cross-sectional area at rupture, respectively. For structural 
steel, percent reductions in area of 60 to 70 percent are common.

Compression Test. If a specimen made of a ductile material is loaded 
in compression instead of tension, the stress-strain curve is essentially the 
same through its initial straight-line portion and through the beginning of 
the portion corresponding to yield and strain-hardening. Particularly 
noteworthy is the fact that for a given steel, the yield strength is the same 
in both tension and compression. For larger values of the strain, the ten-
sion and compression stress-strain curves diverge, and necking does not 
occur in compression. For most brittle materials, the ultimate strength in 
compression is much larger than in tension. This is due to the presence 
of flaws, such as microscopic cracks or cavities that tend to weaken the 
material in tension, while not appreciably affecting its resistance to com-
pressive failure.
 An example of brittle material with different properties in tension 
and compression is provided by concrete, whose stress-strain diagram is 
shown in Fig. 2.9. On the tension side of the diagram, we first observe a 
linear elastic range in which the strain is proportional to the stress. After 
the yield point has been reached, the strain increases faster than the stress 
until rupture occurs. The behavior of the material in compression is dif-
ferent. First, the linear elastic range is significantly larger. Second, rupture 
does not occur as the stress reaches its maximum value. Instead, the stress 
decreases in magnitude while the strain keeps increasing until rupture 
occurs. Note that the modulus of elasticity, which is represented by the 
slope of the stress-strain curve in its linear portion, is the same in tension 
and compression. This is true of most brittle materials.

Fig. 2.9 Stress-strain diagram for concrete shows difference in tensile and 
compression response.

Linear elastic range

Rupture, compression

Rupture, tension
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2.1 An Introduction to Stress and Strain 63

*2.1C True Stress and True Strain
Recall that the stress plotted in Figs. 2.6 and 2.7 was obtained by dividing 
the load P by the cross-sectional area A0 of the specimen measured before 
any deformation had taken place. Since the cross-sectional area of the 
specimen decreases as P increases, the stress plotted in these diagrams 
does not represent the actual stress in the specimen. The difference 
between the engineering stress s 5 PyA0 and the true stress st 5 PyA 
becomes apparent in ductile materials after yield has started. While the 
engineering stress s, which is directly proportional to the load P, decreases 
with P during the necking phase, the true stress st , which is proportional 
to P but also inversely proportional to A, keeps increasing until rupture of 
the specimen occurs.
 For engineering strain P 5 dyL0, instead of using the total elongation d 
and the original value L0 of the gage length, many scientists use all of the 
values of L that they have recorded. Dividing each increment DL of 
the distance between the gage marks by the corresponding value of L, the 
elementary strain DP 5 DLyL. Adding the successive values of DP, the true 
strain Pt is

Pt 5 o¢P 5 o1¢LyL2
With the summation replaced by an integral, the true strain can be 
expressed as:

 Pt 5 #
L

L0

 
dL
L

5 ln 
L
L0

 (2.5)

 Plotting true stress versus true strain (Fig. 2.10) more accurately 
reflects the behavior of the material. As already noted, there is no decrease 
in true stress during the necking phase. Also, the results obtained from 
either tensile or compressive tests yield essentially the same plot when 
true stress and true strain are used. This is not the case for large values of 
the strain when the engineering stress is plotted versus the engineering 
strain. However, in order to determine whether a load P will produce an 
acceptable stress and an acceptable deformation in a given member, engi-
neers will use a diagram based on Eqs. (2.3) and (2.4) since these involve 
the cross-sectional area A0 and the length L0 of the member in its unde-
formed state, which are easily available.

2.1D  Hooke’s Law; Modulus of Elasticity
Modulus of Elasticity. Most engineering structures are designed to 
undergo relatively small deformations, involving only the straight-line 
portion of the corresponding stress-strain diagram. For that initial portion 
of the diagram (Fig. 2.6), the stress s is directly proportional to the strain P:

 s 5 EP (2.6)

This is known as Hooke’s law, after Robert Hooke (1635–1703), an English 
scientist and one of the early founders of applied mechanics. The coefficient E 
of the material is the modulus of elasticity or Young’s modulus, after the 
English scientist Thomas Young (1773–1829). Since the strain P is a dimen-
sionless quantity, E is expressed in the same units as stress s—in pascals or 
one of its multiples for SI units and in psi or ksi for U.S. customary units.

Fig. 2.10 True stress versus true strain for a 
typical ductile material.
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64 Stress and Strain—Axial Loading

 The largest value of stress for which Hooke’s law can be used for a 
given material is the proportional limit of that material. For ductile materi-
als possessing a well-defined yield point, as in Fig. 2.6a, the proportional 
limit almost coincides with the yield point. For other materials, the pro-
portional limit cannot be determined as easily, since it is difficult to accu-
rately determine the stress s for which the relation between s and P 
ceases to be linear. For such materials, however, using Hooke’s law for 
values of the stress slightly larger than the actual proportional limit will 
not result in any significant error.
 Some physical properties of structural metals, such as strength, ductil-
ity, and corrosion resistance, can be greatly affected by alloying, heat treat-
ment, and the manufacturing process used. For example, the stress-strain 
diagrams of pure iron and three different grades of steel (Fig. 2.11) show that 
large variations in the yield strength, ultimate strength, and final strain (duc-
tility) exist. All of these metals possess the same modulus of elasticity—their 
“stiffness,” or ability to resist a deformation within the linear range is the 
same. Therefore, if a high-strength steel is substituted for a lower-strength 
steel and if all dimensions are kept the same, the structure will have an 
increased load-carrying capacity, but its stiffness will remain unchanged.
 For the materials considered so far, the relationship between normal 
stress and normal strain, s 5 EP, is independent of the direction of load-
ing. This is because the mechanical properties of each material, including 
its modulus of elasticity E, are independent of the direction considered. 
Such materials are said to be isotropic. Materials whose properties depend 
upon the direction considered are said to be anisotropic. 

Fiber-Reinforced Composite Materials. An important class of 
anisotropic materials consists of fiber- reinforced composite materials. 
These are obtained by embedding fibers of a strong, stiff material into a 
weaker, softer material, called a matrix. Typical materials used as fibers 
are graphite, glass, and polymers, while various types of resins are used as 
a matrix. Figure 2.12 shows a layer, or lamina, of a composite material 
consisting of a large number of parallel fibers embedded in a matrix. An 
axial load applied to the lamina along the x axis, (in a direction parallel to 
the fibers) will create a normal stress sx in the lamina and a corresponding 
normal strain Px , satisfying Hooke’s law as the load is increased and as 
long as the elastic limit of the lamina is not exceeded. Similarly, an axial 
load applied along the y axis, (in a direction perpendicular to the lamina) 
will create a normal stress sy and a normal strain Py , and an axial load 
applied along the z axis will create a normal stress sz and a normal 
strain Pz , all satisfy Hooke’s law. However, the moduli of elasticity Ex , Ey , 
and Ez corresponding, to each of these loadings will be different. Because 
the fibers are parallel to the x axis, the lamina will offer a much stronger 
resistance to a load directed along the x axis than to one directed along 
the y or z axis, and Ex will be much larger than either Ey or Ez .
 A flat laminate is obtained by superposing a number of layers or 
laminas. If the laminate is subjected only to an axial load causing tension, 
the fibers in all layers should have the same orientation as the load in 
order to obtain the greatest possible strength. But if the laminate is in 
compression, the matrix material may not be strong enough to prevent the 
fibers from kinking or buckling. The lateral stability of the laminate can be 
increased by  positioning some of the layers so that their fibers are 

Fig. 2.11 Stress-strain diagrams for iron and 
different grades of steel.
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2.1 An Introduction to Stress and Strain 65

perpendicular to the load. Positioning some layers so that their fibers are 
oriented at 308, 458, or 608 to the load also can be used to increase the 
resistance of the laminate to in-plane shear. Fiber-reinforced composite 
materials will be further discussed in Sec. 2.9, where their behavior under 
multiaxial loadings will be considered.

2.1E  Elastic Versus Plastic Behavior 
of a Material

Material behaves elastically if the strains in a test specimen from a given 
load disappear when the load is removed. The largest value of stress caus-
ing this elastic behavior is called the elastic limit of the material.
 If the material has a well-defined yield point as in Fig. 2.6a, the elastic 
limit, the proportional limit, and the yield point are essentially equal. In 
other words, the material behaves elastically and linearly as long as the 
stress is kept below the yield point. However, if the yield point is reached, 
yield takes place as described in Sec. 2.1B. When the load is removed, the 
stress and strain decrease in a linear fashion along a line CD parallel to the 
straight-line portion AB of the loading curve (Fig. 2.13). The fact that P does 
not return to zero after the load has been removed indicates that a perma-
nent set or plastic deformation of the material has taken place. For most 
materials, the plastic deformation depends upon both the maximum value 
reached by the stress and the time elapsed before the load is removed. The 
stress-dependent part of the plastic deformation is called slip, and the time-
dependent part—also influenced by the temperature—is creep.
 When a material does not possess a well-defined yield point, the 
elastic limit cannot be determined with precision. However, assuming the 
elastic limit to be equal to the yield strength using the offset method 
(Sec. 2.1B) results in only a small error. Referring to Fig. 2.8, note that the 
straight line used to determine point Y also represents the unloading 
curve after a maximum stress sY has been reached. While the material 
does not behave truly elastically, the resulting plastic strain is as small as 
the selected offset.
 If, after being loaded and unloaded (Fig. 2.14), the test specimen is 
loaded again, the new loading curve will follow the earlier unloading 
curve until it almost reaches point C. Then it will bend to the right and 
connect with the curved portion of the original stress-strain diagram. This 
straight-line portion of the new loading curve is longer than the corre-
sponding portion of the initial one. Thus, the proportional limit and the 

Fig. 2.13  Stress-strain response of ductile 
material loaded beyond yield and unloaded.
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Fig. 2.14 Stress-strain response of ductile material 
reloaded after prior yielding and unloading.
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66 Stress and Strain—Axial Loading

elastic limit have increased as a result of the strain-hardening that occurred 
during the earlier loading. However, since the point of rupture R remains 
unchanged, the ductility of the specimen, which should now be measured 
from point D, has decreased.
 In previous discussions the specimen was loaded twice in the same 
direction (i.e., both loads were tensile loads). Now consider that the sec-
ond load is applied in a direction opposite to that of the first one. Assume 
the material is mild steel where the yield strength is the same in tension 
and in compression. The initial load is tensile and is applied until point C 
is reached on the stress-strain diagram (Fig. 2.15). After unloading 
(point D), a compressive load is applied, causing the material to reach 
point H, where the stress is equal to 2sY. Note that portion DH of the 
stress-strain diagram is curved and does not show any clearly defined 
yield point. This is referred to as the Bauschinger effect. As the compressive 
load is maintained, the material yields along line HJ.
 If the load is removed after point J has been reached, the stress 
returns to zero along line JK, and the slope of JK is equal to the modulus 
of elasticity E. The resulting permanent set AK may be positive, negative, 
or zero, depending upon the lengths of the segments BC and HJ. If a ten-
sile load is applied again to the test specimen, the portion of the stress-
strain diagram beginning at K (dashed line) will curve up and to the right 
until the yield stress sY has been reached.
 If the initial loading is large enough to cause strain-hardening of the 
material (point C9), unloading takes place along line C9D9. As the reverse 
load is applied, the stress becomes compressive, reaching its maximum 
value at H9 and maintaining it as the material yields along line H9J9. While 
the maximum value of the compressive stress is less than sY, the total 
change in stress between C9 and H9 is still equal to 2sY.
 If point K or K9 coincides with the origin A of the diagram, the per-
manent set is equal to zero, and the specimen may appear to have returned 
to its original condition. However, internal changes will have taken place 
and, the specimen will rupture without any warning after relatively few 
repetitions of the loading sequence. Thus, the excessive plastic 
deformations to which the specimen was subjected caused a radical 
change in the characteristics of the material. Therefore reverse loadings 
into the plastic range are seldom allowed, being permitted only under 

Fig. 2.15 Stress-strain response for mild steel subjected to two 
cases of reverse loading.
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2.1 An Introduction to Stress and Strain 67

carefully controlled conditions such as in the straightening of damaged 
material and the final alignment of a structure or machine.

2.1F Repeated Loadings and Fatigue
You might think that a given load may be repeated many times, provided 
that the stresses remain in the elastic range. Such a conclusion is correct 
for loadings repeated a few dozen or even a few hundred times. However, 
it is not correct when loadings are repeated thousands or millions of 
times. In such cases, rupture can occur at a stress much lower than the 
static breaking strength; this phenomenon is known as fatigue. A fatigue 
failure is of a brittle nature, even for materials that are normally ductile.
 Fatigue must be considered in the design of all structural and 
machine components subjected to repeated or fluctuating loads. The 
number of loading cycles expected during the useful life of a component 
varies greatly. For example, a beam supporting an industrial crane can be 
loaded as many as two million times in 25 years (about 300 loadings per 
working day), an automobile crankshaft is loaded about half a billion 
times if the automobile is driven 200,000 miles, and an individual turbine 
blade can be loaded several hundred billion times during its lifetime.
 Some loadings are of a fluctuating nature. For example, the passage 
of traffic over a bridge will cause stress levels that will fluctuate about the 
stress level due to the weight of the bridge. A more severe condition occurs 
when a complete reversal of the load occurs during the loading cycle. The 
stresses in the axle of a railroad car, for example, are completely reversed 
after each half-revolution of the wheel.
 The number of loading cycles required to cause the failure of a spec-
imen through repeated loadings and reverse loadings can be determined 
experimentally for any given maximum stress level. If a series of tests is 
conducted using different maximum stress levels, the resulting data is 
plotted as a s-n curve. For each test, the maximum stress s is plotted as 
an ordinate and the number of cycles n as an abscissa. Because of the 
large number of cycles required for rupture, the cycles n are plotted on a 
logarithmic scale.
 A typical s-n curve for steel is shown in Fig. 2.16. If the applied 
maximum stress is high, relatively few cycles are required to cause rup-
ture. As the magnitude of the maximum stress is reduced, the number of 
cycles required to cause rupture increases, until the endurance limit is 
reached. The endurance limit is the stress for which failure does not occur, 
even for an indefinitely large number of loading cycles. For a low-carbon 
steel, such as structural steel, the endurance limit is about one-half of the 
ultimate strength of the steel.
 For nonferrous metals, such as aluminum and copper, a typical s-n 
curve (Fig. 2.16) shows that the stress at failure continues to decrease as the 
number of loading cycles is increased. For such metals, the fatigue limit is 
the stress corresponding to failure after a specified number of loading cycles.
 Examination of test specimens, shafts, springs, and other compo-
nents that have failed in fatigue shows that the failure initiated at a micro-
scopic crack or some similar imperfection. At each loading, the crack was 
very slightly enlarged. During successive loading cycles, the crack propa-
gated through the material until the amount of undamaged material was 
insufficient to carry the maximum load, and an abrupt, brittle failure 

Fig. 2.16 Typical s-n curves.
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68 Stress and Strain—Axial Loading

occurred. For example, Photo 2.6 shows a progressive fatigue crack in a 
highway bridge girder that initiated at the irregularity associated with the 
weld of a cover plate and then propagated through the flange and into the 
web. Because fatigue failure can be initiated at any crack or imperfection, 
the surface condition of a specimen has an important effect on the endur-
ance limit obtained in testing. The endurance limit for machined and pol-
ished specimens is higher than for rolled or forged components or for 
components that are corroded. In applications in or near seawater or in 
other applications where corrosion is expected, a reduction of up to 50% 
in the endurance limit can be expected.

2.1G  Deformations of Members Under 
Axial Loading

Consider a homogeneous rod BC of length L and uniform cross section of 
area A subjected to a centric axial load P (Fig. 2.17). If the resulting axial 
stress s 5 PyA does not exceed the proportional limit of the material, 
Hooke’s law applies and

 s 5 EP (2.6)

from which

 P 5
s

E
5

P
AE

 (2.7)

Recalling that the strain P in Sec. 2.1A is P 5 dyL

 d 5 PL  (2.8)

and substituting for P from Eq. (2.7) into Eq.(2.8):

 d 5
PL
AE

 (2.9)

 Equation (2.9) can be used only if the rod is homogeneous 
(constant E), has a uniform cross section of area A, and is loaded at its 
ends. If the rod is loaded at other points, or consists of several portions of 
various cross sections and possibly of different materials, it must be 
divided into component parts that satisfy the required conditions for the 
application of Eq. (2.9). Using the internal force Pi , length Li , cross-
sectional area Ai , and modulus of elasticity Ei , corresponding to part i, the 
deformation of the entire rod is

 d 5 a
i

PiLi

AiEi
 (2.10)

 In the case of a member of variable cross section (Fig. 2.18), the 
strain P depends upon the position of the point Q, where it is computed 
as P 5 ddydx (Sec. 2.1A). Solving for dd and substituting for P from Eq. (2.7), 
the deformation of an element of length dx is

dd 5 P dx 5
P dx

AE

The total deformation d of the member is obtained by integrating this 
expression over the length L of the member:

 d 5 #
L

0

 
P dx
AE

 (2.11)

Fig. 2.17 Undeformed and deformed axially- 
loaded rod.
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Photo 2.6 Fatigue crack in a steel girder of the 
Yellow Mill Pond Bridge, Connecticut, prior to 
repairs.

Fig. 2.18 Deformation of axially-loaded member 
of variable cross-sectional area.
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2.1 An Introduction to Stress and Strain 69

 Rod BC of Fig. 2.17, used to derive Eq. (2.9), and rod AD of Fig. 2.19 
have one end attached to a fixed support. In each case, the deformation d
of the rod was equal to the displacement of its free end. When both ends 
of a rod move, however, the deformation of the rod is measured by the rela-
tive displacement of one end of the rod with respect to the other. Consider 
the assembly shown in Fig. 2.20a, which consists of three elastic bars of 
length L connected by a rigid pin at A. If a load P is applied at B (Fig. 2.20b), 
each of the three bars will deform. Since the bars AC and AC9 are attached 
to fixed supports at C and C9, their common deformation is measured by 
the displacement dA of point A. On the other hand, since both ends of 
bar AB move, the deformation of AB is measured by the difference between 
the displacements dA and dB of points A and B, (i.e., by the relative displace-
ment of B with respect to A). Denoting this relative displacement by dByA, 

 dByA 5 dB 2 dA 5
PL
AE

  (2.12)

where A is the cross-sectional area of AB and E is its modulus of elasticity.

Concept Application 2.1
Determine the deformation of the steel rod shown in Fig. 2.19a under 
the given loads (E 5 29 3 106 psi).
 The rod is divided into three component parts in Fig. 2.19b, so

 L1 5 L2 5 12 in.     L3 5 16 in.

 A1 5 A2 5 0.9 in2     A3 5 0.3 in2

To find the internal forces P1, P2, and P3, pass sections through each 
of the component parts, drawing each time the free-body diagram of 
the portion of rod located to the right of the section (Fig. 2.19c). Each 
of the free bodies is in equilibrium; thus

 P1 5 60 kips 5 60 3 103 lb

 P2 5 215 kips 5 215 3 103 lb

 P3 5 30 kips 5 30 3 103 lb

Using Eq. (2.10)

 d 5 a
i

PiLi

AiEi
5

1

E
 aP1L1

A1
1

P2L2

A2
1

P3L3

A3
b

 5
1

29 3 106 c 160 3 1032 1122
0.9

  1
1215 3 1032 1122

0.9
1
130 3 1032 1162

0.3
d

 
 d 5

2.20 3 106

29 3 106 5 75.9 3 1023 in.

C D

30 kips

12 in. 12 in.
16 in.

75 kips 45 kips

A

A � 0.9 in2 A � 0.3 in2

B

(a)

(b)

(c)

C
D

C
D

30 kips

30 kips

30 kips

30 kips

75 kips 45 kips

45 kips

A

P3

P2

P1

B

C
D

B

75 kips 45 kips

321

Fig. 2.19 (a) Axially-loaded rod. (b) Rod 
divided into three sections. (c) Three 
sectioned free-body diagrams with internal 
resultant forces P1, P2 , and P3.

Fig. 2.20 Example of relative end displacement, 
as exhibited by the middle bar. (a) Unloaded. 
(b) Loaded, with deformation.

A�

B�

A
A

B

B

P

C' CC

L

C'

(a) (b)

Equation (2.11) should be used in place of (2.9) when both the cross-
sectional area A is a function of x, or when the internal force P depends 
upon x, as is the case for a rod hanging under its own weight.
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70 Stress and Strain—Axial Loading

Sample Problem 2.1
The rigid bar BDE is supported by two links AB and CD. Link AB is 
made of aluminum (E 5 70 GPa) and has a cross-sectional area of 
500 mm2. Link CD is made of steel (E 5 200 GPa) and has a cross-
sectional area of 600 mm2. For the 30-kN force shown, determine the 
deflection (a) of B, (b) of D, and (c) of E.

STRATEGY: Consider the free body of the rigid bar to determine the 
internal force of each link. Knowing these forces and the properties of 
the links, their deformations can be evaluated. You can then use sim-
ple geometry to determine the deflection of E.

MODELING: Draw the free body diagrams of the rigid bar (Fig. 1) 
and the two links (Fig. 2 and 3)

ANALYSIS: 

Free Body: Bar BDE (Fig. 1) 

 1lo MB 5 0: 2130 kN2 10.6 m2 1 FCD10.2 m2 5 0

 FCD 5 190 kN     FCD 5 90 kN  tension

1lo MD 5 0: 2130 kN2 10.4 m2 2 FAB10.2 m2 5 0

 FAB 5 260 kN      FAB 5 60 kN  compression

 a. Deflection of B. Since the internal force in link AB is compres-
sive (Fig. 2), P 5 260 kN and

dB 5
PL
AE

5
1260 3 103 N2 10.3 m2

1500 3 1026 m22 170 3 109 Pa2 5 2514 3 1026 m

 The negative sign indicates a contraction of member AB. Thus, the 
deflection of end B is upward:

 dB 5 0.514 mmx ◀

30 kN0.4 m
0.3 m

0.2 m
0.4 m

C

A

B D E

30 kN

0.2 m
0.4 m

B D

FAB FCD

E

(continued)

Fig. 1 Free-body diagram of rigid bar 
BDE. 

0.3 m

A

B

F'AB 5 60 kN

FAB 5 60 kN

A 5 500 mm2

E 5 70 GPa

Fig. 2 Free-body diagram 
of two-force member AB.

0.4 m

C

D

FCD 5 90 kN

FCD 5 90 kN

A 5 600 mm2

E 5 200 GPa

Fig. 3 Free-body diagram of 
two-force member CD.
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Sample Problem 2.2
The rigid castings A and B are connected by two 3

4-in.-diameter steel 
bolts CD and GH and are in contact with the ends of a 1.5-in.-diameter 
aluminum rod EF. Each bolt is single-threaded with a pitch of 0.1 in., 
and after being snugly fitted, the nuts at D and H are both tightened 
one-quarter of a turn. Knowing that E is 29 3 106 psi for steel and 
10.6 3 106 psi for aluminum, determine the normal stress in the rod.

STRATEGY: The tightening of the nuts causes a displacement of the 
ends of the bolts relative to the rigid casting that is equal to the differ-
ence in displacements between the bolts and the rod. This will give a 
relation between the internal forces of the bolts and the rod that, when 
combined with a free body analysis of the rigid casting, will enable you 
to solve for these forces and determine the corresponding normal 
stress in the rod.

MODELING: Draw the free body diagrams of the bolts and rod 
(Fig. 1) and the rigid casting (Fig. 2).

ANALYSIS: 

Deformations.

Bolts CD and GH. Tightening the nuts causes tension in the 
bolts (Fig. 1). Because of symmetry, both are subjected to the same 

 b. Deflection of D. Since in rod CD (Fig. 3), P 5 90 kN, write

 dD 5
PL
AE

5
190 3 103 N2 10.4 m2

1600 3 1026 m22 1200 3 109 Pa2
  5 300 3 1026 m  dD 5 0.300 mmw ◀

 c. Deflection of E. Referring to Fig. 4, we denote by B9 and D9

the displaced positions of points B and D. Since the bar BDE is rigid, 
points B9, D9, and E9 lie in a straight line. Therefore,

 
BB¿
DD¿

5
BH

HD
     

0.514 mm

0.300 mm
5
1200 mm2 2 x

x
    x 5 73.7 mm

 
EE¿
DD¿

5
HE

HD
     

dE

0.300 mm
5
1400 mm2 1 173.7 mm2

73.7 mm

dE 5 1.928 mmw ◀

REFLECT and THINK: Comparing the relative magnitude and direc-
tion of the resulting deflections, you can see that the answers obtained 
are consistent with the loading and the deflection diagram of Fig. 4.

(continued)

C

G

D

H

18 in.

E
A B

F

12 in.

400 mm

(200 mm – x)

 D 5 0.300 mm

200 mm

B'

E'

D'
B

H D E

d E

 B 5 0.514 mmd
d

x

Fig. 4 Deflections at B and D of rigid 
bar are used to find dE.

C

E F

G

D

P'b

P'rPr

P'b

Pb

Pb

H

Fig. 1 Free-body diagrams of bolts and 
aluminum bar. 
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72 Stress and Strain—Axial Loading

internal force Pb and undergo the same deformation d b. 
Therefore,

 db 5 1
PbLb

AbEb
5 1

Pb118 in.2
1
4 p10.75 in.22129 3 106 psi2 5 11.405 3 1026 Pb (1)

Rod EF. The rod is in compression (Fig. 1), where the magnitude of 
the force is Pr and the deformation dr :

 dr 5 2
 
 

PrLr

ArEr
5 2  

Pr112 in.2
1
4 p11.5 in.22110.6 3 106 psi2 5 20.6406 3 1026 Pr (2)

Displacement of D Relative to B. Tightening the nuts one-quarter 
of a turn causes ends D and H of the bolts to undergo a displacement 
of 1

4(0.1 in.) relative to casting B. Considering end D,

 dDyB 5
1
4 10.1 in.2 5 0.025 in. (3)

But dDyB 5 dD 2 dB, where dD and dB represent the displacements of D 
and B. If casting A is held in a fixed position while the nuts at D and H 
are being tightened, these displacements are equal to the deforma-
tions of the bolts and of the rod, respectively. Therefore,

 dDyB 5 db 2 dr  (4)

Substituting from Eqs. (1), (2), and (3) into Eq. (4),

 0.025 in. 5 1.405 3 1026 Pb 1 0.6406 3 1026 Pr  (5)

Free Body: Casting B (Fig. 2)

y
1

 oF 5 0: Pr 2 2Pb 5 0    Pr 5 2Pb (6)

Forces in Bolts and Rod Substituting for Pr from Eq. (6) into 
Eq. (5), we have

 0.025 in. 5 1.405 3 1026 Pb 1 0.6406 3 102612Pb2
 Pb 5 9.307 3 103 lb 5 9.307 kips

 Pr 5 2Pb 5 219.307 kips2 5 18.61 kips

Stress in Rod

 sr 5
Pr

Ar
5

18.61 kips
1
4 p11.5 in.22 sr 5 10.53 ksi ◀

REFLECT and THINK: This is an example of a statically indetermi-
nate problem, where the determination of the member forces could 
not be found by equilibrium alone. By considering the relative dis-
placement characteristics of the members, you can obtain additional 
equations necessary to solve such problems. Situations like this will be 
examined in more detail in the following section.

Pb

Pb

BPr

Fig. 2 Free-body diagram 
of rigid casting.
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 2.1 A nylon thread is subjected to a 8.5-N tension force. Knowing that 
E 5 3.3 GPa and that the length of the thread increases by 1.1%, 
determine (a) the diameter of the thread, (b) the stress in the 
thread.

 2.2 A 4.8-ft-long steel wire of 1
4 -in.-diameter is subjected to a 750-lb 

tensile load. Knowing that E 5 29 3 106 psi, determine (a) the 
elongation of the wire, (b) the corresponding normal stress.

 2.3 An 18-m-long steel wire of 5-mm diameter is to be used in the 
manufacture of a prestressed concrete beam. It is observed that 
the wire stretches 45 mm when a tensile force P is applied. Know-
ing that E 5 200 GPa, determine (a) the magnitude of the force P, 
(b) the corresponding normal stress in the wire.

 2.4 Two gage marks are placed exactly 250 mm apart on a 
12-mm-diameter aluminum rod with E 5 73 GPa and an ultimate 
strength of 140 MPa. Knowing that the distance between the gage 
marks is 250.28 mm after a load is applied, determine (a) the 
stress in the rod, (b) the factor of safety.

2.5 An aluminum pipe must not stretch more than 0.05 in. when it 
is subjected to a tensile load. Knowing that E 5 10.1 3 106 psi 
and that the maximum allowable normal stress is 14 ksi, deter-
mine (a) the maximum allowable length of the pipe, (b) the 
required area of the pipe if the tensile load is 127.5 kips.

 2.6 A control rod made of yellow brass must not stretch more than 
3 mm when the tension in the wire is 4 kN. Knowing that 
E 5 105 GPa and that the maximum allowable normal stress 
is 180 MPa, determine (a) the smallest diameter rod that 
should be used, (b) the corresponding maximum length of the 
rod.

 2.7 A steel control rod is 5.5 ft long and must not stretch more than 
0.04 in. when a 2-kip tensile load is applied to it. Knowing that 
E 5 29 3 106 psi, determine (a) the smallest diameter rod that 
should be used, (b) the corresponding normal stress caused by 
the load.

 2.8 A cast-iron tube is used to support a compressive load. Knowing 
that E 5 10 3 106 psi and that the maximum allowable change 
in length is 0.025%, determine (a) the maximum normal stress in 
the tube, (b) the minimum wall thickness for a load of 1600 lb if 
the outside diameter of the tube is 2.0 in.

 2.9 A 4-m-long steel rod must not stretch more than 3 mm and the 
normal stress must not exceed 150 MPa when the rod is sub-
jected to a 10-kN axial load. Knowing that E 5 200 GPa, deter-
mine the required diameter of the rod.

Problems
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2.10 A nylon thread is to be subjected to a 10-N tension. Knowing that 
E 5 3.2 GPa, that the maximum allowable normal stress is 
40 MPa, and that the length of the thread must not increase by 
more than 1%, determine the required diameter of the thread.

 2.11 A block of 10-in. length and 1.8 3 1.6-in. cross section is to sup-
port a centric compressive load P. The material to be used is a 
bronze for which E 5 14 3 106 psi. Determine the largest load 
that can be applied, knowing that the normal stress must not 
exceed 18 ksi and that the decrease in length of the block should 
be at most 0.12% of its original length.

2.12 A square yellow-brass bar must not stretch more than 
2.5 mm when it is subjected to a tensile load. Knowing that 
E 5 105 GPa and that the allowable tensile strength is 180 MPa, 
determine (a) the maximum allowable length of the bar, (b) the 
required dimensions of the cross section if the tensile load is 
40 kN.

 2.13 Rod BD is made of steel (E 5 29 3 106 psi) and is used to brace 
the axially compressed member ABC. The maximum force that 
can be developed in member BD is 0.02P. If the stress must not 
exceed 18 ksi and the maximum change in length of BD must not 
exceed 0.001 times the length of ABC, determine the smallest-
diameter rod that can be used for member BD.

 2.14 The 4-mm-diameter cable BC is made of a steel with E 5 
200 GPa. Knowing that the maximum stress in the cable must 
not exceed 190 MPa and that the elongation of the cable must 
not exceed 6 mm, find the maximum load P that can be applied 
as shown.

 2.15 A single axial load of magnitude P 5 15 kips is applied at end C 
of the steel rod ABC. Knowing that E 5 30 3 106 psi, determine 
the diameter d of portion BC for which the deflection of point C 
will be 0.05 in.

 2.16 A 250-mm-long aluminum tube (E 5 70 GPa) of 36-mm outer 
diameter and 28-mm inner diameter can be closed at both ends 
by means of single-threaded screw-on covers of 1.5-mm pitch. 
With one cover screwed on tight, a solid brass rod (E 5 105 GPa) 
of 25-mm diameter is placed inside the tube and the second cover 
is screwed on. Since the rod is slightly longer than the tube, it is 
observed that the cover must be forced against the rod by rotating 
it one-quarter of a turn before it can be tightly closed. Determine 
(a) the average normal stress in the tube and in the rod, (b) the 
deformations of the tube and of the rod.

Fig. P2.13

72 in.

54 in.

72 in.

B

A

C

D

P � 130 kips

Fig. P2.14

3.5 m

4.0 m

2.5 m

B

A C

P

Fig. P2.15

P

1.25-in. diameter

4 ft
3 ft

d

A

B
C

Fig. P2.16

36 mm 28 mm

25 mm

250 mm
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 2.17 The specimen shown has been cut from a 1
4-in.-thick sheet of 

vinyl (E 5 0.45 3 106 psi) and is subjected to a 350-lb tensile load. 
Determine (a) the total deformation of the specimen, (b) the 
deformation of its central portion BC.

Fig. P2.17

P 5 350 lb
A B C D

1 in. 1 in.

1.6 in. 2 in.

0.4 in.

1.6 in.

P 5 350 lb

Fig. P2.18

375 mm

1 mm

C

D A

B

P

Fig. P2.19 and P2.20

0.4 m

0.5 m

P

Q

20-mm diameter

60-mm diameter

A

B

C

 2.20 The rod ABC is made of an aluminum for which E 5 70 GPa. 
Knowing that P 5 6 kN and Q 5 42 kN, determine the deflection 
of (a) point A, (b) point B.

 2.21 For the steel truss (E 5 200 GPa) and loading shown, determine 
the deformations of members AB and AD, knowing that their 
cross-sectional areas are 2400 mm2 and 1800 mm2, respectively.

Fig. P2.21

4.0 m 4.0 m

2.5 m
D CA

B

228 kN

2.18 The brass tube AB (E 5 105 GPa) has a cross-sectional area of 
140 mm2 and is fitted with a plug at A. The tube is attached at B 
to a rigid plate that is itself attached at C to the bottom of an 
aluminum cylinder (E 5 72 GPa) with a cross-sectional area of 
250 mm2. The cylinder is then hung from a support at D. In order 
to close the cylinder, the plug must move down through  1  mm. 
Determine the force P that must be applied to the cylinder.

 2.19 Both portions of the rod ABC are made of an aluminum for which 
E 5 70 GPa. Knowing that the magnitude of P is 4 kN, determine 
(a) the value of Q so that the deflection at A is zero, (b) the cor-
responding deflection of B.
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2.22 For the steel truss (E 5 29 3 106 psi) and loading shown, 
determine the deformations of members BD and DE, know-
ing  that their cross-sectional areas are 2 in2 and 3 in2, 
respectively.

Fig. P2.23

6 ft 6 ft

5 ft

C

D E
A

B

28 kips 54 kips

Fig. P2.24

6 m

5 m

C

DA

B

P

Fig. P2.22

15 ft

8 ft

8 ft

8 ft

D

C

F

E

G

A

B

30 kips

30 kips

30 kips

 2.23 Members AB and BC are made of steel (E 5 29 3 106 psi) with 
cross-sectional areas of 0.80 in2 and 0.64 in2, respectively. For the 
loading shown, determine the elongation of (a) member AB,
(b) member BC.

 2.24 The steel frame (E 5 200 GPa) shown has a diagonal brace BD 
with an area of 1920 mm2. Determine the largest allowable load P
if the change in length of member BD is not to exceed 1.6 mm.

 2.25 Link BD is made of brass (E 5 105 GPa) and has a cross-sectional 
area of 240 mm2. Link CE is made of aluminum (E 5 72 GPa) and 
has a cross-sectional area of 300 mm2. Knowing that they support 
rigid member ABC, determine the maximum force P that can be 
applied vertically at point A if the deflection of A is not to exceed 
0.35 mm.Fig. P2.25

P

125 mm
225 mm

225 mm

150 mm

E

D

A B

C
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 2.26 Members ABC and DEF are joined with steel links (E 5 200 GPa). 
Each of the links is made of a pair of 25 3 35-mm plates. Determine 
the change in length of (a) member BE, (b) member CF.

 2.27 Each of the links AB and CD is made of aluminum (E 5 10.9 3 106 psi) 
and has a cross-sectional area of 0.2 in2. Knowing that they support 
the rigid member BC, determine the deflection of point E.

Fig. P2.26

260 mm

18 kN 18 kN240 mm

180 mm
C

D

E

F

A

B

Fig. P2.27

P = 1 kip

10 in.
22 in.

18 in.

A

E

D

B C

Fig. P2.28

12.5 in.

D

C
A

x

B50 lb 

16 in.
4 in.

E
1
16 in.

Fig. P2.30

h

A a

b

P

2.28 The length of the 3
32-in.-diameter steel wire CD has been adjusted 

so that with no load applied, a gap of 1
16 in. exists between the 

end B of the rigid beam ACB and a contact point E. Knowing that 
E 5 29 3 106 psi, determine where a 50-lb block should be placed 
on the beam in order to cause contact between B and E.

 2.29 A homogenous cable of length L and uniform cross section is 
suspended from one end. (a) Denoting by r the density (mass 
per unit volume) of the cable and by E its modulus of elasticity, 
determine the elongation of the cable due to its own weight. 
(b) Show that the same elongation would be obtained if the cable 
were horizontal and if a force equal to half of its weight were 
applied at each end.

 2.30 The vertical load P is applied at the center A of the upper section 
of a homogeneous frustum of a circular cone of height h, mini-
mum radius a, and maximum radius b. Denoting by E the modu-
lus of elasticity of the material and neglecting the effect of its 
weight, determine the deflection of point A.

 2.31 Denoting by P the “engineering strain” in a tensile specimen, 
show that the true strain is Pt 5 ln(1 1 P).

 2.32 The volume of a tensile specimen is essentially constant while 
plastic deformation occurs. If the initial diameter of the specimen 
is d1, show that when the diameter is d, the true strain is 
Pt 5 2 ln(d1/d).
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2.2  STATICALLY INDETERMINATE 
PROBLEMS

In the problems considered in the preceding section, we could always use 
free-body diagrams and equilibrium equations to determine the internal 
forces produced in the various portions of a member under given loading 
conditions. There are many problems, however, where the internal forces 
cannot be determined from statics alone. In most of these problems, the 
reactions themselves—the external forces— cannot be determined by 
simply drawing a free-body diagram of the member and writing the cor-
responding equilibrium equations. The equilibrium equations must be 
complemented by relationships involving deformations obtained by con-
sidering the geometry of the problem. Because statics is not sufficient to 
determine either the reactions or the internal forces, problems of this 
type are called statically indeterminate. The following concept applica-
tions show how to handle this type of problem.

Concept Application 2.2
A rod of length L, cross-sectional area A1, and modulus of elasticity E1, 
has been placed inside a tube of the same length L, but of cross-
sectional area A2 and modulus of elasticity E2 (Fig. 2.21a). What is the 
deformation of the rod and tube when a force P is exerted on a rigid 
end plate as shown?
 The axial forces in the rod and in the tube are P1 and P2, respec-
tively. Draw free-body diagrams of all three elements (Fig. 2.21b, c, d). 
Only Fig. 2.21d yields any significant information, as:

 P1 1 P2 5 P (1)

Clearly, one equation is not sufficient to determine the two unknown 
internal forces P1 and P2. The problem is statically indeterminate.
 However, the geometry of the problem shows that the deformations 
d1 and d2 of the rod and tube must be equal. Recalling Eq. (2.9), write

 d1 5
P1L

A1E1
     d2 5

P2L

A2E2
 (2)

Equating the deformations d1 and d2,

 
P1

A1E1
5

P2

A2E2
 (3)

Equations (1) and (3) can be solved simultaneously for P1 and P2:

P1 5
A1E1P

A1E1 1 A2E2
    P2 5

A2E2P

A1E1 1 A2E2

Either of Eqs. (2) can be used to determine the common deformation 
of the rod and tube.

P

P1 P'1

Tube (A2, E2)

Rod (A1, E1)

End
plate

(a)

(b)

(c)

(d)

L

P'2P2

P
P1

P2

Fig. 2.21 (a) Concentric rod and tube, 
loaded by force P. (b) Free-body diagram 
of rod. (c) Free-body diagram of tube. 
(d) Free-body diagram of end plate.
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2.2 Statically Indeterminate Problems 79

Superposition Method. A structure is statically indeterminate when-
ever it is held by more supports than are required to maintain its equilib-
rium. This results in more unknown reactions than available equilibrium 
equations. It is often convenient to designate one of the reactions as 
redundant and to eliminate the corresponding support. Since the stated 
conditions of the problem cannot be changed, the redundant reaction 
must be maintained in the solution. It will be treated as an unknown load
that, together with the other loads, must produce deformations compati-
ble with the original constraints. The actual solution of the problem con-
siders separately the deformations caused by the given loads and the 
redundant reaction, and by adding—or superposing—the results obtained. 
The general conditions under which the combined effect of several loads 
can be obtained in this way are discussed in Sec. 2.5.

Concept Application 2.3
A bar AB of length L and uniform cross section is attached to rigid 
supports at A and B before being loaded. What are the stresses in por-
tions AC and BC due to the application of a load P at point C 
(Fig. 2.22a)?
 Drawing the free-body diagram of the bar (Fig. 2.22b), the equi-
librium equation is

 RA 1 RB 5 P (1)

Since this equation is not sufficient to determine the two unknown 
reactions RA and RB, the problem is statically indeterminate.
 However, the reactions can be determined if observed from the 
geometry that the total elongation d of the bar must be zero. The elon-
gations of the portions AC and BC are respectively d1 and d2, so

d 5 d1 1 d2 5 0

Using Eq. (2.9), d1 and d2 can be expressed in terms of the correspond-
ing internal forces P1 and P2,

 d 5
P1L1

AE
1

P2L2

AE
5 0 (2)

Note from the free-body diagrams shown in parts b and c of Fig. 2.22c 
that P1 5 RA and P2 5 2RB. Carrying these values into Equation (2),

 RAL1 2 RBL2 5 0 (3)

Equations (1) and (3) can be solved simultaneously for RA and RB, as 
RA 5 PL2yL and RB 5 PL1yL. The desired stresses s1 in AC and s2 in 
BC are obtained by dividing P1 5 RA and P2 5 2RB by the cross-
sectional area of the bar:

s1 5
PL2

AL
    s2 5 2 

PL1

AL

P

L1

L2

RA

RB

(a) (b)

L

A

B

A

B

C C

P

RA

P

RA

RB RB

(a)

(b)

(c)

A

B

C P1

P2

(c)

Fig. 2.22 (a) Restrained bar 
with axial load. (b) Free-body 
diagram of bar. (c) Free-body 
diagrams of sections above and 
below point C used to determine 
internal forces P1 and P2.
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80 Stress and Strain—Axial Loading

Concept Application 2.4
Determine the reactions at A and B for the steel bar and loading shown 
in Fig. 2.23a, assuming a close fit at both supports before the loads are 
applied.
 We consider the reaction at B as redundant and release the bar 
from that support. The reaction RB is considered to be an unknown 
load and is determined from the condition that the deformation d of 
the bar equals zero.
 The solution is carried out by considering the deformation dL 
caused by the given loads and the deformation dR due to the redun-
dant reaction RB (Fig. 2.23b).
 The deformation dL is obtained from Eq. (2.10) after the bar has 
been divided into four portions, as shown in Fig. 2.23c. Follow the 
same procedure as in Concept Application 2.1:

 P1 5 0    P2 5 P3 5 600 3 103 N    P4 5 900 3 103 N

 A1 5 A2 5 400 3 1026 m2    A3 5 A4 5 250 3 1026 m2

L1 5 L2 5 L3 5 L4 5 0.150 m

Substituting these values into Eq. (2.10),

  dL 5 a
4

i51

PiLi

AiE
5 a0 1

600 3 103 N

400 3 1026 m2 

  1
600 3 103 N

250 3 1026 m2 1
900 3 103 N

250 3 1026 m2b 0.150 m

E
 

  dL 5
1.125 3 109

E
 (1)

 Considering now the deformation dR due to the redundant reac-
tion RB, the bar is divided into two portions, as shown in Fig. 2.23d

P1 5 P2 5 2RB

A1 5 400 3 1026 m2  A2 5 250 3 1026 m2

L1 5 L2 5 0.300 m

Substituting these values into Eq. (2.10), 

 dR 5
P1L1

A1E
1

P2L2

A2E
5 2 

11.95 3 1032RB

E
 (2)

Express the total deformation d of the bar as zero:

 d 5 dL 1 dR 5 0 (3)

and, substituting for dL and dR from Eqs. (1) and (2) into Eqs. (3),

d 5
1.125 3 109

E
2
11.95 3 1032RB

E
5 0

C

A

D

K

B

A 5 250 mm2 

A 5 400 mm2 

300 kN 

600 kN 150 mm

150 mm

150 mm

150 mm

(a)

A

300 kN 

600 kN 

A

300 kN 

600 kN 

A

L�� R�  � 0

RB RB 

(b)

C

K

D
3

4

2

1

A

B

300 kN 

600 kN 

(c)

150 mm

150 mm

150 mm

150 mm

C

1

2

A

B

RB

300 mm

300 mm

(d)

Fig. 2.23 (a) Restrained axially-loaded 
bar. (b) Reactions will be found by 
releasing constraint at point B and adding 
compressive force at point B to enforce 
zero deformation at point B. (c) Free-body 
diagram of released structure. 
(d) Free-body diagram of added reaction 
force at point B to enforce zero 
deformation at point B.

(continued)
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2.2 Statically Indeterminate Problems 81

Solving for RB,

RB 5 577 3 103 N 5 577 kN

 The reaction RA at the upper support is obtained from the free-
body diagram of the bar (Fig. 2.23e),

 1 x o Fy 5 0:    RA 2 300 kN 2 600 kN 1 RB 5 0

 RA 5 900 kN 2 RB 5 900 kN 2 577 kN 5 323 kN

 Once the reactions have been determined, the stresses and strains 
in the bar can easily be obtained. Note that, while the total deforma-
tion of the bar is zero, each of its component parts does deform under 
the given loading and restraining conditions.

C

A

300 kN 

600 kN 

B

RB

RA

(e)

Concept Application 2.5

Determine the reactions at A and B for the steel bar and loading of 
Concept Application 2.4, assuming now that a 4.5-mm clearance exists 
between the bar and the ground before the loads are applied (Fig. 2.24). 
Assume E 5 200 GPa.
 Considering the reaction at B to be redundant, compute the defor-
mations dL and dR caused by the given loads and the redundant reac-
tion RB. However, in this case, the total deformation is d 5 4.5 mm. 
Therefore,

 d 5 dL 1 dR 5 4.5 3 1023 m (1)

Substituting for dL and dR into (Eq. 1), and recalling that E 5 200 GPa 
5 200 3 109 Pa, 

d 5
1.125 3 109

200 3 109 2
11.95 3 1032RB

200 3 109 5 4.5 3 1023 m

Solving for RB,

RB 5 115.4 3 103 N 5 115.4 kN

The reaction at A is obtained from the free-body diagram of the bar 
(Fig. 2.23e):

1 x o Fy 5 0:    RA 2 300 kN 2 600 kN 1 RB 5 0

 RA 5 900 kN 2 RB 5 900 kN 2 115.4 kN 5 785 kN

CC

AA

B B

300 kN

600 kN

300 mm

4.5 mm

300 mm

A 5 250 mm2 

A 5 400 mm2 

d

Fig. 2.24 Multi-section bar of Concept 
Application 2.4 with initial 4.5-mm gap at 
point B. Loading brings bar into contact 
with constraint.

Fig. 2.23 (cont.) (e) Complete 
free-body diagram of ACB.
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82 Stress and Strain—Axial Loading

2.3  PROBLEMS INVOLVING 
TEMPERATURE CHANGES

Consider a homogeneous rod AB of uniform cross section that rests freely 
on a smooth horizontal surface (Fig. 2.25a). If the temperature of the rod is 
raised by DT, the rod elongates by an amount dT that is proportional to both 
the temperature change DT and the length L of the rod (Fig. 2.25b). Here 

 dT 5 a(DT)L (2.13)

where a is a constant characteristic of the material called the coefficient of 
thermal expansion. Since dT and L are both expressed in units of length, 
a represents a quantity per degree C or per degree F, depending whether 
the temperature change is expressed in degrees Celsius or Fahrenheit.

Fig. 2.25 Elongation of an 
unconstrained rod due to temperature 
increase.

A

L

L

B

B

(b)

A

(a)

T�

Fig. 2.26 Force P develops when the 
temperature of the rod increases while ends 
A and B are restrained.

L

(b)

A B

A B

P' P

(a)

 Associated with deformation dT must be a strain PT 5 dTyL. Recalling 
Eq. (2.13),

PT 5 aDT (2.14)

The strain PT is called a thermal strain, as it is caused by the change 
in  temperature of the rod. However, there is no stress associated with 
the strain PT .
 Assume the same rod AB of length L is placed between two fixed 
supports at a distance L from each other (Fig. 2.26a). Again, there is nei-
ther stress nor strain in this initial condition. If we raise the temperature 
by DT, the rod cannot elongate because of the restraints imposed on its 
ends; the elongation dT of the rod is zero. Since the rod is homogeneous 
and of uniform cross section, the strain PT at any point is PT 5 dTyL and 
thus is also zero. However, the supports will exert equal and opposite 
forces P and P9 on the rod after the temperature has been raised, to keep 
it from elongating (Fig. 2.26b). It follows that a state of stress (with no cor-
responding strain) is created in the rod.
 The problem created by the temperature change DT is statically 
indeterminate. Therefore, the magnitude P of the reactions at the supports 
is determined from the condition that the elongation of the rod is zero. 
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2.3 Problems Involving Temperature Changes 83

Using the superposition method described in Sec. 2.2, the rod is detached 
from its support B (Fig. 2.27a) and elongates freely as it undergoes the 
temperature change DT (Fig. 2.27b). According to Eq. (2.13), the corre-
sponding elongation is

dT 5 a(DT)L

Applying now to end B the force P representing the redundant reaction, 
and recalling Eq. (2.9), a second deformation (Fig. 2.27c) is

dP 5
PL
AE

Expressing that the total deformation d must be zero,

d 5 dT 1 dP 5 a1¢T2L 1
PL
AE

5 0

from which

P 5 2AEa(DT)

The stress in the rod due to the temperature change DT is

 s 5
P

A
5 2Ea1¢T2 (2.15)

 The absence of any strain in the rod applies only in the case of a 
homogeneous rod of uniform cross section. Any other problem involving a 
restrained structure undergoing a change in temperature must be ana-
lyzed on its own merits. However, the same general approach can be used 
by considering the deformation due to the temperature change and the 
deformation due to the redundant reaction separately and superposing 
the two solutions obtained.

Fig. 2.27 Superposition method to find force at point 
B of restrained rod AB undergoing thermal expansion. 
(a) Initial rod length; (b) thermally expanded rod length; 
(c) force P pushes point B back to zero deformation.

L

(b)

(c)

L

A

A B

B

P

(a)
T�

A B

P�
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84 Stress and Strain—Axial Loading

Concept Application 2.6

Determine the values of the stress in portions AC and CB of the steel 
bar shown (Fig. 2.28a) when the temperature of the bar is 2508F, know-
ing that a close fit exists at both of the rigid supports when the tem-
perature is 1758F. Use the values E 5 29 3 106 psi and a 5 6.5 3 10–6/8F 
for steel.
 Determine the reactions at the supports. Since the problem is 
statically indeterminate, detach the bar from its support at B and let it 
undergo the temperature change

¢T 5 12508F2 2 1758F2 5 21258F

The corresponding deformation (Fig. 2.28c) is

 dT 5 a1¢T2L 5 16.5 3 1026/8F2 121258F2 124 in.2
 5 219.50 3 1023 in.

Applying the unknown force RB at end B (Fig. 2.28d), use Eq. (2.10) to 
express the corresponding deformation dR. Substituting

L1 5 L2 5 12 in.

A1 5 0.6 in2    A2 5 1.2 in2

P1 5 P2 5 RB    E 5 29 3 106 psi

into Eq. (2.10), write

 dR 5
P1L1

A1E
1

P2L2

A2E

 5
RB

29 3 106 psi
 a 12 in.

0.6 in2 1
12 in.

1.2 in2b
 5 11.0345 3 1026 in./lb2RB

Expressing that the total deformation of the bar must be zero as a 
result of the imposed constraints, write

 d 5 dT 1 dR 5 0

 5 219.50 3 1023 in. 1 11.0345 3 1026 in./lb2RB 5 0

from which

RB 5 18.85 3 103 lb 5 18.85 kips

The reaction at A is equal and opposite.
 Noting that the forces in the two portions of the bar are P1 5 P2 
5 18.85 kips, obtain the following values of the stress in portions AC 
and CB of the bar:

Fig. 2.28 (a) Restrained bar. (b) Bar at 
1758F temperature. (c) Bar at lower 
temperature. (d) Force RB needed to 
enforce zero deformation at point B.

C
A

A 5 0.6 in2 A 5 1.2 in2

12 in.12 in.

B

(a)

(c)

(d)

RB

(b)
T�

R�

C
A

B

C

L1 L2

A
B

C

1 2

1 2

A
B

(continued)

bee98233_ch02_054-145.indd   84bee98233_ch02_054-145.indd   84 11/15/13   4:55 PM11/15/13   4:55 PM



2.3 Problems Involving Temperature Changes 85

 s1 5
P1

A1
5

18.85 kips

0.6 in2 5 131.42 ksi

s2 5
P2

A2
5

18.85 kips

1.2 in2 5 115.71 ksi

 It cannot emphasized too strongly that, while the total deforma-
tion of the bar must be zero, the deformations of the portions AC and 
CB are not zero. A solution of the problem based on the assumption 
that these deformations are zero would therefore be wrong. Neither 
can the values of the strain in AC or CB be assumed equal to zero. To 
amplify this point, determine the strain PAC in portion AC of the bar. 
The strain PAC can be divided into two component parts; one is the 
thermal strain PT produced in the unrestrained bar by the temperature 
change DT (Fig. 2.28c). From Eq. (2.14),

 PT 5 a ¢T 5 16.5 3 1026/8F2 121258F2
 5 2812.5 3 1026 in./in.

The other component of PAC is associated with the stress s1 due to the 
force RB applied to the bar (Fig. 2.28d). From Hooke’s law, express this 
component of the strain as

s1

E
5

131.42 3 103 psi

29 3 106 psi
5 11083.4 3 1026 in./in.

Add the two components of the strain in AC to obtain

 PAC 5 PT 1
s1

E
5 2812.5 3 1026 1 1083.4 3 1026

 5 1271 3 1026 in./in.

A similar computation yields the strain in portion CB of the bar:

 PCB 5 PT 1
s2

E
5 2812.5 3 1026 1 541.7 3 1026

 5 2271 3 1026 in./in.

The deformations dAC and dCB of the two portions of the bar are

 dAC 5 PAC1AC2 5 11271 3 10262 112 in.2
 5 13.25 3 1023 in.

 dCB 5 PCB1CB2 5 12271 3 10262 112 in.2
 5 23.25 3 1023 in.

Thus, while the sum d 5 dAC 1 dCB of the two deformations is zero, 
neither of the deformations is zero.
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86 Stress and Strain—Axial Loading

Sample Problem 2.3
The 1

2-in.-diameter rod CE and the 3
4-in.-diameter rod DF are attached 

to the rigid bar ABCD as shown. Knowing that the rods are made of 
aluminum and using E 5 10.6 3 106 psi, determine (a) the force in 
each rod caused by the loading shown and (b) the corresponding 
deflection of point A.

STRATEGY: To solve this statically indeterminate problem, you must 
supplement static equilibrium with a relative deflection analysis of the 
two rods.

MODELING: Draw the free body diagram of the bar (Fig. 1)

ANALYSIS: 

Statics. Considering the free body of bar ABCD in Fig. 1, note that 
the reaction at B and the forces exerted by the rods are indeterminate. 
However, using statics, 

1 l o MB 5 0:  110 kips2 118 in.2 2 FCE 
112 in.2 2 FDF 120 in.2 5 0

 12FCE 1 20FDF 5 180 (1)

Geometry. After application of the 10-kip load, the position of the 
bar is A9BC9D9 (Fig. 2). From the similar triangles BAA9, BCC9, and 
BDD9,

 
dC

12 in.
5
dD

20 in.
    dC 5 0.6dD (2)

 
dA

18 in.
5
dD

20 in.
    dA 5 0.9dD (3)

Deformations. Using Eq. (2.9), and the data shown in Fig. 3, write

dC 5
FCELCE

ACEE
    dD 5

FDFLDF

ADFE

Substituting for dC and dD into Eq. (2), write

dC 5 0.6dD    FCELCE

ACEE
5 0.6 

FDFLDF

ADFE

FCE 5 0.6 
LDF

LCE
 
ACE

ADF
 FDF 5 0.6 a30 in.

24 in.
b c

1
4p112 in.22
1
4p134 in.22 d  FDF  FCE 5 0.333FDF

Force in Each Rod. Substituting for FCE into Eq. (1) and recalling 
that all forces have been expressed in kips,

 1210.333FDF2 1 20FDF 5 180 FDF 5 7.50 kips ◀

 FCE 5 0.333FDF 5 0.33317.50 kips2 FCE 5 2.50 kips ◀

(continued)

Fig. 1 Free-body diagram of rigid 
bar ABCD. 

18 in.
12 in.

30 in.
24 in.

8 in.

10 kips

B

E

F

C DA

18 in.
12 in. 8 in.

FCE

By

Bx

FDF10 kips

B
C DA

18 in.
12 in. 8 in.

B
C' D'

C D
A

A' Ad Cd
Dd

30 in.
24 in.

Cd
Dd

C D

E

F

in.1
2

in.3
4

FCE FDF

Fig. 2 Linearly proportional 
displacements along rigid bar 
ABCD. 

Fig. 3 Forces and deformations 
in CE and DF.
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2.3 Problems Involving Temperature Changes 87

Deflections. The deflection of point D is

dD 5
FDFLDF

ADFE
5
17.50 3 103 lb2 Ê130 in.2

1
4p134 in.22110.6 3 106 psi2    dD 5 48.0 3 1023 in.

Using Eq. (3),

 dA 5 0.9dD 5 0.9148.0 3 1023 in.2 dA 5 43.2 3 1023 in. ◀

REFLECT and THINK: You should note that as the rigid bar rotates 
about B, the deflections at C and D are proportional to their distance 
from the pivot point B, but the forces exerted by the rods at these 
points are not. Being statically indeterminate, these forces depend 
upon the deflection attributes of the rods as well as the equilibrium 
of the rigid bar.

(continued)(continued)(continued)(continued)

Sample Problem 2.4
The rigid bar CDE is attached to a pin support at E and rests on the 
30-mm-diameter brass cylinder BD. A 22-mm-diameter steel rod AC 
passes through a hole in the bar and is secured by a nut that is snugly 
fitted when the temperature of the entire assembly is 208C. The tem-
perature of the brass cylinder is then raised to 508C, while the steel rod 
remains at 208C. Assuming that no stresses were present before the 
temperature change, determine the stress in the cylinder.

 Rod AC: Steel Cylinder BD: Brass
 E 5 200 GPa E 5 105 GPa
 a 5 11.7 3 1026/8C a 5 20.9 3 1026/8C

STRATEGY: You can use the method of superposition, considering 
RB as redundant. With the support at B removed, the temperature rise 
of the cylinder causes point B to move down through dT. The reaction 
RB must cause a deflection d1, equal to dT so that the final deflection 
of B will be zero (Fig. 2)

MODELING: Draw the free-body diagram of the entire assembly 
(Fig. 1).

ANALYSIS: 

Statics. Considering the free body of the entire assembly, write

1l o ME 5 0:  RA10.75 m2 2 RB10.3 m2 5 0   RA 5 0.4RB (1)

(continued)

C

A

B0.9 m

0.3 m

0.45 m 0.3 m

D

E

C

A

B

0.3 m0.45 m

D E

RA

RB

Ey

Ex

Fig. 1 Free-body diagram of bolt, 
cylinder and bar.
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88 Stress and Strain—Axial Loading

 Deflection dT. Because of a temperature rise of 508 2 208 5 308C, 
the length of the brass cylinder increases by dT. (Fig. 2a).

 dT 5 L1¢T2a 5 10.3 m2 Ê1308C2 Ê120.9 3 1026/8C2 5 188.1 3 1026 m w

 Deflection d1.  From Fig. 2b, note that dD 5 0.4dC and 
d1 5 dD 1 dByD.

 dC 5
RAL

AE
5

RA10.9 m2
1
4p10.022 m221200 GPa2 5 11.84 3 1029RA x

 dD 5 0.40dC 5 0.4111.84 3 1029RA2 5 4.74 3 1029RAx

 dByD 5
RBL

AE
5

RB10.3 m2
1
4p10.03 m221105 GPa2 5 4.04 3 1029RB x

Recall from Eq. (1) that RA 5 0.4RB , so

d1 5 dD 1 dByD 5 34.7410.4RB2 1 4.04RB 41029 5 5.94 3 1029RB x

But dT 5 d1: 188.1 3 1026 m 5 5.94 3 1029 RB RB 5 31.7 kN

Stress in Cylinder: sB 5
RB

A
5

31.7 kN
1
4p10.03 m22  sB 5 44.8 MPa ◀

REFLECT and THINK: This example illustrates the large stresses 
that can develop in statically indeterminate systems due to even mod-
est temperature changes. Note that if this assembly was statically 
determinate (i.e., the steel rod was removed), no stress at all would 
develop in the cylinder due to the temperature change.

(a) (b)

5
0.3 0.4   C0.75

(c)

C

C C

D
DD

E E

A AA

B
B B

RB

RA  

dT

dC dC

dD 5d dC

d1

Fig. 2 Superposition of thermal and restraint force deformations (a) Support at B removed. 
(b) Reaction at B applied. (c) Final position.
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Problems
 2.33 An axial centric force of magnitude P 5 450 kN is applied to the 

composite block shown by means of a rigid end plate. Knowing 
that h 5 10 mm, determine the normal stress in (a) the brass 
core, (b) the aluminum plates.

Fig. P2.33

40 mm

60 mm

Aluminum plates
(E = 70 GPa)

300 mm

Brass core
(E = 105 GPa) Rigid

end plateP

h

h

Fig. P2.35

4.5 ft

18 in.

P

Fig. P2.37 and P2.38

300 mm

60 mm

Aluminium shell
E � 70 GPa

Brass core
E � 105 GPa

25 mm

 2.34 For the composite block shown in Prob. 2.33, determine (a) the 
value of h if the portion of the load carried by the aluminum 
plates is half the portion of the load carried by the brass core, (b)
the total load if the stress in the brass is 80 MPa.

 2.35 The 4.5-ft concrete post is reinforced with six steel bars, each with a 
11

8-in. diameter. Knowing that Es 5 29 3 106 psi and Ec 5 4.2 3 106

psi, determine the normal stresses in the steel and in the concrete 
when a 350-kip axial centric force P is applied to the post.

 2.36 For the post of Prob. 2.35, determine the maximum centric force 
that can be applied if the allowable normal stress is 20 ksi in the 
steel and 2.4 ksi in the concrete.

2.37 An axial force of 200 kN is applied to the assembly shown by 
means of rigid end plates. Determine (a) the normal stress in the 
aluminum shell, (b) the corresponding deformation of the 
assembly.

2.38 The length of the assembly shown decreases by 0.40 mm when 
an axial force is applied by means of rigid end plates. Determine 
(a) the magnitude of the applied force, (b) the corresponding 
stress in the brass core.
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 2.39 A polystyrene rod consisting of two cylindrical portions AB and 
BC is restrained at both ends and supports two 6-kip loads as 
shown. Knowing that E 5 0.45 3 106 psi, determine (a) the reac-
tions at A and C, (b) the normal stress in each portion of the rod.

 2.40 Three steel rods (E 5 29 3 106 psi) support an 8.5-kip load P. 
Each of the rods AB and CD has a 0.32-in2 cross-sectional area 
and rod EF has a 1-in2 cross-sectional area. Neglecting the defor-
mation of bar BED, determine (a) the change in length of rod EF, 
(b) the stress in each rod.

Fig. P2.39

B

C

15 in.

25 in.
1.25 in.

A

6 kips6 kips

2 in.

Fig. P2.40

A

B

C

D

E

F

20 in.

16 in.

P

Fig. P2.41

180

40-mm diam. 30-mm diam.

120
100

Dimensions in mm

100

A C D E

60 kN 40 kN

BrassSteel B

Fig. P2.43

A
B

D E

F

C

550 mm

75 mm 100 mm

225 mm2 kN

Fig. P2.44

P

F

C

D

BA

E

12 in.12 in.12 in.

8 in.

10 in.

 2.41 Two cylindrical rods, one of steel and the other of brass, are 
joined at C and restrained by rigid supports at A and E. For 
the  loading shown and knowing that Es 5 200 GPa and 
Eb 5 105 GPa, determine (a) the reactions at A and E, (b) the 
deflection of point C.

 2.42 Solve Prob. 2.41, assuming that rod AC is made of brass and rod 
CE is made of steel.

 2.43 Each of the rods BD and CE is made of brass (E 5 105 GPa) and 
has a cross-sectional area of 200 mm2. Determine the deflection 
of end A of the rigid member ABC caused by the 2-kN load.

 2.44 The rigid bar AD is supported by two steel wires of 1
16-in. diameter 

(E 5 29 3 106 psi) and a pin and bracket at A. Knowing that the 
wires were initially taut, determine (a) the additional tension in 
each wire when a 220-lb load P is applied at D, (b) the corre-
sponding deflection of point D.
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 2.45 The rigid bar ABC is suspended from three wires of the same 
material. The cross-sectional area of the wire at B is equal to half 
of the cross-sectional area of the wires at A and C. Determine the 
tension in each wire caused by the load P shown.

 2.46 The rigid bar AD is supported by two steel wires of 1
16-in. diameter 

(E 5 29 3 106 psi) and a pin and bracket at D. Knowing that the 
wires were initially taut, determine (a) the additional tension in 
each wire when a 120-lb load P is applied at B, (b) the corre-
sponding deflection of point B. Fig. P2.45

P

A
D B

L L

C

L3
4

Fig. P2.46

D

P

B C

E

15 in.

8 in.8 in.8 in.

F

A

8 in.

Fig. P2.47

Brass core
     E � 105 GPa
         � 20.9  � 10–6/�C   

Aluminum shell
     E � 70 GPa
         � 23.6  � 10–6/�C   

25 mm

60 mm

�

�

Fig. P2.49

12 in.

1 in.1 in.

Steel core
E � 29 � 106 psi

Brass shell
E � 15 � 106 psi

in.1
4

in.1
4

in.1
4

in.1
4

 2.47 The aluminum shell is fully bonded to the brass core and the 
assembly is unstressed at a temperature of 158C. Considering 
only axial deformations, determine the stress in the aluminum 
when the temperature reaches 1958C.

 2.48 Solve Prob. 2.47, assuming that the core is made of steel 
(Es 5 200 GPa, as 5 11.7 3 1026/8C) instead of brass.

 2.49 The brass shell (ab 5 11.6 3 1026/8F) is fully bonded to the steel 
core (as 5 6.5 3 1026/8F). Determine the largest allowable 
increase in temperature if the stress in the steel core is not to 
exceed 8 ksi.
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 2.50 The concrete post (Ec 5 3.6 3 106 psi and ac 5 5.5 3 1026/8F) is 
reinforced with six steel bars, each of  7

8-in. diameter 
(Es 5 29 3 106 psi and as 5 6.5 3 1026/8F). Determine the normal 
stresses induced in the steel and in the concrete by a temperature 
rise of 658F.

 2.51 A rod consisting of two cylindrical portions AB and BC is 
restrained at both ends. Portion AB is made of steel (Es 5 200 GPa, 
as 5 11.7 3 1026/8C) and portion BC is made of brass (Eb 5 105 
GPa, ab 5 20.9 3 1026/8C). Knowing that the rod is initially 
unstressed, determine the compressive force induced in ABC 
when there is a temperature rise of 508C.

Fig. P2.50

6 ft

10 in.10 in.

Fig. P2.51

B

C

250 mm

300 mm

A

50-mm diameter

30-mm diameter

 2.52 A rod consisting of two cylindrical portions AB and BC is restrained 
at both ends. Portion AB is made of steel (Es 5 29 3 106 psi, 
as 5 6.5 3 1026/8F) and portion BC is made of aluminum 
(Ea 5 10.4 3 106 psi, aa 5 13.3 3 1026/8F). Knowing that the rod 
is initially unstressed, determine (a) the normal stresses induced 
in portions AB and BC by a temperature rise of 708F, (b) the cor-
responding deflection of point B.

2.53 Solve Prob. 2.52, assuming that portion AB of the composite rod 
is made of aluminum and portion BC is made of steel.

 2.54 The steel rails of a railroad track (Es 5 200 GPa, as 5 11.7 3 1026/8C) 
were laid at a temperature of 68C. Determine the normal stress 
in the rails when the temperature reaches 488C, assuming that 
the rails (a) are welded to form a continuous track, (b) are 10 m 
long with 3-mm gaps between them.

 2.55 Two steel bars (Es 5 200 GPa and as 5 11.7 3 1026/8C) are used 
to reinforce a brass bar (Eb 5 105 GPa, ab 5 20.9 3 1026/8C) that 
is subjected to a load P 5 25 kN. When the steel bars were fabri-
cated, the distance between the centers of the holes that were to 
fit on the pins was made 0.5 mm smaller than the 2 m needed. 
The steel bars were then placed in an oven to increase their length 
so that they would just fit on the pins. Following fabrication, the 
temperature in the steel bars dropped back to room temperature. 
Determine (a) the increase in temperature that was required to fit 
the steel bars on the pins, (b) the stress in the brass bar after the 
load is applied to it.

Fig. P2.52

A B C

1   -in. diameter1
2

24 in. 32 in.

2   -in. diameter1
4

Fig. P2.55

15 mm

40 mm

2 m

5 mmSteel

Brass

Steel

P�

P
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 2.56 Determine the maximum load P that can be applied to the brass 
bar of Prob. 2.55 if the allowable stress in the steel bars is 30 MPa 
and the allowable stress in the brass bar is 25 MPa.

2.57 An aluminum rod (Ea 5 70 GPa, aa 5 23.6 3 1026/8C) and a 
steel link (Es 5 200 GPa, as 5 11.7 3 1026/8C) have the dimen-
sions shown at a temperature of 208C. The steel link is heated 
until the aluminum rod can be fitted freely into the link. The 
temperature of the whole assembly is then raised to 1508C. 
Determine the final normal stress (a) in the rod, (b) in the link.

Fig. P2.60

Aluminum
 A 5 2000 mm2

 E 5 75 GPa
     5 23 3 10–6/8C

A B

300 mm 250 mm

0.5 mm

a

Stainless steel
 A 5 800 mm2

 E 5 190 GPa  
     5 17.3 3 10–6/8Ca

Bronze
 A � 2.4 in2

 E � 15 � 106 psi 
     � 12 � 10–6/�F

0.02 in.
14 in. 18 in.

�

Aluminum
 A � 2.8 in2

 E � 10.6 � 106 psi 
     � 12.9 � 10–6/�F�

Fig. P2.58 and P2.59

 2.58 Knowing that a 0.02-in. gap exists when the temperature is 758F, 
determine (a) the temperature at which the normal stress in the 
aluminum bar will be equal to 211 ksi, (b) the corresponding 
exact length of the aluminum bar.

 2.59 Determine (a) the compressive force in the bars shown after a 
temperature rise of 1808F, (b) the corresponding change in length 
of the bronze bar.

2.60 At room temperature (208C) a 0.5-mm gap exists between 
the  ends of the rods shown. At a later time when the 
temperature has reached 1408C, determine (a) the normal 
stress in the aluminum rod, (b) the change in length of the 
aluminum rod.

20

20 20
200

0.15

Dimensions in mm

30

A A

Section A-A

Fig. P2.57
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94 Stress and Strain—Axial Loading

2.4 POISSON’S RATIO
When a homogeneous slender bar is axially loaded, the resulting stress 
and strain satisfy Hooke’s law, as long as the elastic limit of the material 
is not exceeded. Assuming that the load P is directed along the x axis 
(Fig. 2.29a), sx 5 PyA, where A is the cross-sectional area of the bar, and 
from Hooke’s law,

 Px 5 sxyE (2.16)

where E is the modulus of elasticity of the material.
 Also, the normal stresses on faces perpendicular to the y and z axes 
are zero: sy 5 sz 5 0 (Fig. 2.29b). It would be tempting to conclude that 
the corresponding strains Py and Pz are also zero. This is not the case. In 
all engineering materials, the elongation produced by an axial tensile 
force P in the direction of the force is accompanied by a contraction in 
any transverse direction (Fig. 2.30).† In this section and the following 
sections, all materials are assumed to be both homogeneous and isotro-
pic (i.e., their mechanical properties are independent of both position
and direction). It follows that the strain must have the same value for any 
transverse direction. Therefore, the loading shown in Fig. 2.29 must have 
Py 5 Pz. This common value is the lateral strain. An important constant 
for a given material is its Poisson’s ratio, named after the French math-
ematician Siméon Denis Poisson (1781–1840) and denoted by the Greek 
letter n (nu).

 n 5 2 
lateral strain

axial strain
 (2.17)

or

 n 5 2 
Py

Px
5 2 

Pz

Px
 (2.18)

for the loading condition represented in Fig. 2.29. Note the use of a minus 
sign in these equations to obtain a positive value for n, as the axial and 
lateral strains have opposite signs for all engineering materials.‡ Solving 
Eq. (2.18) for Py and Pz  , and recalling Eq. (2.16), write the following rela-
tionships, which fully describe the condition of strain under an axial load 
applied in a direction parallel to the x axis:

 Px 5
sx

E
      Py 5 Pz 5 2 

nsx

E
 (2.19)

Fig. 2.29 A bar in uniaxial tension and a 
representative stress element.

z

y

x

x

(a)

(b)

P
A

� �

y 0� �

z 0� �

P

A

Fig. 2.30 Materials undergo transverse 
contraction when elongated under axial load.

P

P'

†It also would be tempting, but equally wrong, to assume that the volume of the rod 
remains unchanged as a result of the combined effect of the axial elongation and trans-
verse contraction (see Sec. 2.6).
‡However, some experimental materials, such as polymer foams, expand laterally when 
stretched. Since the axial and lateral strains have then the same sign, Poisson’s ratio of 
these materials is negative. (See Roderic Lakes, “Foam Structures with a Negative 
Poisson’s Ratio,” Science, 27 February 1987, Volume 235, pp. 1038–1040.)
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2.5 Multiaxial Loading: Generalized Hooke’s Law 95

2.5  MULTIAXIAL LOADING: 
GENERALIZED HOOKE’S LAW

All the examples considered so far in this chapter have dealt with slender 
members subjected to axial loads, i.e., to forces directed along a single 
axis. Consider now structural elements subjected to loads acting in the 
directions of the three coordinate axes and producing normal stresses sx  ,
sy  , and sz that are all different from zero (Fig. 2.32). This condition is a 

Concept Application 2.7

A 500-mm-long, 16-mm-diameter rod made of a homogenous, 
isotropic material is observed to increase in length by 300 mm, and to 
decrease in diameter by 2.4 mm when subjected to an axial 12-kN load. 
Determine the modulus of elasticity and Poisson’s ratio of the 
material.
 The cross-sectional area of the rod is

A 5 pr2 5 p18 3 1023 m22 5 201 3 1026 m2

Choosing the x axis along the axis of the rod (Fig. 2.31), write

 sx 5
P
A

5
12 3 103 N

201 3 1026  m2 5 59.7 MPa

 Px 5
dx

L
5

300 mm

500 mm
5 600 3 1026

 Py 5
dy

d
5

22.4 mm

16 mm
5 2150 3 1026

From Hooke’s law, sx 5 EPx  ,

E 5
sx

Px
5

59.7 MPa

600 3 1026 5 99.5 GPa

and from Eq. (2.18),

n 5 2 
Py

Px
5 2 

2150 3 1026

600 3 1026 5 0.25

12 kN

L � 500 mm

d � 16 mm
��y � – 2.4    

�� x � 300    

z

y

x

m

m

Fig. 2.31 Axially loaded rod.

Fig. 2.32 State of stress for 
multiaxial loading.

x�

y�

y�

x�
z�

z�
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96 Stress and Strain—Axial Loading

multiaxial loading. Note that this is not the general stress condition 
described in Sec. 1.3, since no shearing stresses are included among the 
stresses shown in Fig. 2.32.
 Consider an element of an isotropic material in the shape of a cube 
(Fig. 2.33a). Assume the side of the cube to be equal to unity, since it is always 
possible to select the side of the cube as a unit of length. Under the given 
multiaxial loading, the element will deform into a rectangular parallelepiped 
of sides equal to 1 1 Px , 1 1 Py , and 1 1 Pz , where Px , Py , and Pz denote the 
values of the normal strain in the directions of the three coordinate axes 
(Fig. 2.33b). Note that, as a result of the deformations of the other elements 
of the material, the element under consideration could also undergo a trans-
lation, but the concern here is with the actual deformation of the element, 
not with any possible superimposed rigid-body displacement.
 In order to express the strain components Px , Py , Pz in terms of the 
stress components sx , sy , sz , consider the effect of each stress component 
and combine the results. This approach will be used repeatedly in this 
text, and is based on the principle of superposition. This principle states 
that the effect of a given combined loading on a structure can be obtained 
by determining the effects of the various loads separately and combining 
the results, provided that the following conditions are satisfied:

 1. Each effect is linearly related to the load that produces it.
 2. The deformation resulting from any given load is small and does not 

affect the conditions of application of the other loads.

 For multiaxial loading, the first condition is satisfied if the stresses 
do not exceed the proportional limit of the material, and the second con-
dition is also satisfied if the stress on any given face does not cause defor-
mations of the other faces that are large enough to affect the computation 
of the stresses on those faces.
 Considering the effect of the stress component sx , recall from 
Sec. 2.4 that sx causes a strain equal to sxyE in the x direction and strains 
equal to 2nsxyE in each of the y and z directions. Similarly, the stress 
component sy , if applied separately, will cause a strain syyE in the y direc-
tion and strains 2nsyyE in the other two directions. Finally, the stress 
component sz causes a strain szyE in the z direction and strains 2nszyE 
in the x and y directions. Combining the results, the components of strain 
corresponding to the given multiaxial loading are

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

  Py 5 2 
nsx

E
1
sy

E
2
nsz

E
 (2.20)

 Pz 5 2 
nsx

E
2
nsy

E
1
sz

E

 Equations (2.20) are the generalized Hooke’s law for the multiaxial 
loading of a homogeneous isotropic material. As indicated earlier, these 
results are valid only as long as the stresses do not exceed the proportional 
limit and the deformations involved remain small. Also, a positive value 
for a stress component signifies tension and a negative value compression. 
Similarly, a positive value for a strain component indicates expansion in 
the corresponding direction and a negative value contraction.

Fig. 2.33 Deformation of unit cube under 
multiaxial loading: (a) unloaded; (b) deformed.
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*2.6 Dilatation and Bulk Modulus 97

*2.6  DILATATION AND BULK 
MODULUS

This section examines the effect of the normal stresses sx , sy , and sz on 
the volume of an element of isotropic material. Consider the element 
shown in Fig. 2.33. In its unstressed state, it is in the shape of a cube of 
unit volume. Under the stresses sx , sy , sz , it deforms into a rectangular 
parallelepiped of volume

v 5 (1 1 Px)(1 1 Py)(1 1 Pz)

Since the strains Px , Py , Pz are much smaller than unity, their products can 
be omitted in the expansion of the product. Therefore,

v 5 1 1 Px 1 Py 1 Pz

The change in volume e of the element is

e 5 v 2 1 5 1 1 Px 1 Py 1 Pz 2 1

Concept Application 2.8

The steel block shown (Fig. 2.34) is subjected to a uniform pressure 
on all its faces. Knowing that the change in length of edge AB is 
21.2 3 1023 in., determine (a) the change in length of the other two 
edges and (b) the pressure p applied to the faces of the block. Assume 
E 5 29 3 106 psi and n 5 0.29.

 a. Change in Length of Other Edges. Substituting sx 5 sy 5 
sz 5 2p into Eqs. (2.20), the three strain components have the 
common value

 Px 5 Py 5 Pz 5 2 
p

E
 11 2 2n2 (1)

Since

 Px 5 dxyAB 5 121.2 3 1023 in.2y14 in.2
 5 2300 3 1026 in./in.

obtain

Py 5 Pz 5 Px 5 2300 3 1026 in./in.

from which

 dy 5 Py1BC2 5 12300 3 10262 12 in.2 5 2600 3 1026 in.

 dz 5 Pz1BD2 5 12300 3 10262 13 in.2 5 2900 3 1026 in.

 b. Pressure. Solving Eq. (1) for p,

p 5 2 
EPx

1 2 2n
5 2 

129 3 106 psi2 12300 3 10262
1 2 0.58

p 5 20.7 ksi

2 in.

3 in.4  in.
z

y

A

B

D

C

x

Fig. 2.34 Steel block under uniform 
pressure p.
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98 Stress and Strain—Axial Loading

or

 e 5 Px 1 Py 1 Pz (2.21)

Since the element originally had a unit volume, e represents the change in 
volume per unit volume and is called the dilatation of the material. 
Substituting for Px, Py, and Pz from Eqs. (2.20) into (2.21), the change is

e 5
sx 1 sy 1 sz

E
2

2n1sx 1 sy 1 sz2
E

 e 5
1 2 2n

E
1sx 1 sy 1 sz2 (2.22)†

 When a body is subjected to a uniform hydrostatic pressure p, each 
of the stress components is equal to 2p and Eq. (2.22) yields

 e 5 2 
311 2 2n2

E
 p (2.23)

Introducing the constant

 k 5
E

311 2 2n2  (2.24)

Eq. (2.23) is given in the form

 e 5 2 
p

k
 (2.25)

The constant k is known as the bulk modulus or modulus of compression 
of the material. It is expressed in pascals or in psi.
 Because a stable material subjected to a hydrostatic pressure can 
only decrease in volume, the dilatation e in Eq. (2.25) is negative, and the 
bulk modulus k is a positive quantity. Referring to Eq. (2.24), 1 2 2n . 0 or 
n ,  12. Recall from Sec. 2.4 that n is positive for all engineering materials. 
Thus, for any engineering material,

 0 , n ,
1
2 (2.26)

Note that an ideal material having n equal to zero can be stretched in one 
direction without any lateral contraction. On the other hand, an ideal mate-
rial for which n 5

1
2 and k 5 ` is perfectly incompressible (e 5 0). Referring 

to Eq. (2.22) and noting that since n ,
1
2 in the elastic range, stretching an 

engineering material in one direction, for example in the x direction (sx . 0, 
sy 5 sz 5 0), results in an increase of its volume (e . 0).‡

†Since the dilatation e represents a change in volume, it must be independent of the 
orientation of the element considered. It then follows from Eqs. (2.21) and (2.22) that 
the quantities Px 1 Py 1 Pz and sx 1 sy 1 sz are also independent of the orientation of 
the element. This property will be verified in Chap. 7.
‡However, in the plastic range, the volume of the material remains nearly constant.
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2.7 Shearing Strain 99

2.7 SHEARING STRAIN
When we derived in Sec. 2.5 the relations (2.20) between normal stresses 
and normal strains in a homogeneous isotropic material, we assumed 
that no shearing stresses were involved. In the more general stress situa-
tion represented in Fig. 2.35, shearing stresses txy , tyz , and tzx are present 
(as well as the corresponding shearing stresses tyx , tzy , and txz). These 
stresses have no direct effect on the normal strains and, as long as all the 
deformations involved remain small, they will not affect the derivation nor 
the validity of Eqs. (2.20). The shearing stresses, however, tend to deform 
a cubic element of material into an oblique parallelepiped.

Concept Application 2.9

Determine the change in volume DV of the steel block shown in 
Fig. 2.34, when it is subjected to the hydrostatic pressure p 5 180 MPa. 
Use E 5 200 GPa and n 5 0.29.
 From Eq. (2.24), the bulk modulus of steel is

k 5
E

311 2 2n2 5
200 GPa

311 2 0.582 5 158.7 GPa

and from Eq. (2.25), the dilatation is

e 5 2 
p

k
5 2 

180 MPa

158.7 GPa
5 21.134 3 1023

Since the volume V of the block in its unstressed state is

V 5 (80 mm)(40 mm)(60 mm) 5 192 3 103 mm3

and e represents the change in volume per unit volume, e 5 DVyV,

DV 5 eV 5 (21.134 3 1023)(192 3 103 mm3)

DV 5 2218 mm3

Fig. 2.35 Positive stress components at point Q 
for a general state of stress.

zy�
yz� yx�

zx�z� x�

y�

z

y

x

xy�

xz�

Q
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100 Stress and Strain—Axial Loading

 Consider a cubic element (Fig. 2.36) subjected to only the shearing 
stresses txy and tyx applied to faces of the element respectively perpendi-
cular to the x and y axes. (Recall from Sec. 1.4 that txy 5 tyx .) The cube is 
observed to deform into a rhomboid of sides equal to one (Fig. 2.37). Two 
of the angles formed by the four faces under stress are reduced from p2  to 
p
2 2 gxy , while the other two are increased from p2  to p2  1 gxy . The small angle 
gxy (expressed in radians) defines the shearing strain corresponding to the 
x and y directions. When the deformation involves a reduction of the angle 
formed by the two faces oriented toward the positive x and y axes (as shown 
in Fig. 2.37), the shearing strain gxy is positive; otherwise, it is negative.
 As a result of the deformations of the other elements of the material, 
the element under consideration also undergoes an overall rotation. The 
concern here is with the actual deformation of the element, not with any 
possible superimposed rigid-body displacement.†

 Plotting successive values of txy against the corresponding values of 
gxy , the shearing stress-strain diagram is obtained for the material. (This 
can be accomplished by carrying out a torsion test, as you will see in 
Chap. 3.) This diagram is similar to the normal stress-strain diagram from 
the tensile test described earlier; however, the values for the yield strength, 
ultimate strength, etc., are about half as large in shear as they are in ten-
sion. As for normal stresses and strains, the initial portion of the shearing 
stress-strain diagram is a straight line. For values of the shearing stress that 
do not exceed the proportional limit in shear, it can be written for any 
homogeneous isotropic material that

 txy 5 Ggxy (2.27)

This relationship is Hooke’s law for shearing stress and strain, and the con-
stant G is called the modulus of rigidity or shear modulus of the material. 

Fig. 2.36 Unit cubic element subjected to 
shearing stress.
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xy
� 
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Fig. 2.37 Deformation of unit cubic 
element due to shearing stress.

y

x

xy
� 
2 �

xy


Fig. 2.38 Cubic element as viewed in xy-plane 
after rigid rotation.

y

x

xy
� 
2 �

xy

2
1

xy

2
1

Fig. 2.39 Cubic element as viewed in xy-plane 
with equal rotation of x and y faces.

† In defining the strain gxy , some authors arbitrarily assume that the actual deformation of 
the element is accompanied by a rigid-body rotation where the horizontal faces of the ele-
ment do not rotate. The strain gxy is then represented by the angle through which the other 
two faces have rotated (Fig. 2.38). Others assume a rigid-body rotates where the horizontal 
faces rotate through 1

2 gxy counterclockwise and the vertical faces through 1
2 gxy clockwise 

(Fig. 2.39). Since both assumptions are unnecessary and may lead to confusion, in this text 
you will associate the shearing strain gxy with the change in the angle formed by the two 
faces, rather than with the rotation of a given face under restrictive conditions.
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2.7 Shearing Strain 101

Since the strain gxy is defined as an angle in radians, it is dimensionless, 
and the modulus G is expressed in the same units as txy in pascals or in 
psi. The modulus of rigidity G of any given material is less than one-half, 
but more than one-third of the modulus of elasticity E of that material.†

 Now consider a small element of material subjected to shearing 
stresses tyz and tzy (Fig. 2.40a), where the shearing strain gyz is the change 
in the angle formed by the faces under stress. The shearing strain gzx is 
found in a similar way by considering an element subjected to shearing 
stresses tzx and txz (Fig. 2.40b). For values of the stress that do not exceed 
the proportional limit, you can write two additional relationships:

 tyz 5 Ggyz      tzx 5 Ggzx (2.28)

where the constant G is the same as in Eq. (2.27).
 For the general stress condition represented in Fig. 2.35, and as long 
as none of the stresses involved exceeds the corresponding proportional 
limit, you can apply the principle of superposition and combine the 
results. The generalized Hooke’s law for a homogeneous isotropic material 
under the most general stress condition is

  Px 5 1
sx

E
2
nsy

E
2
nsz

E

  Py 5 2 
nsx

E
1
sy

E
2
nsz

E

  Pz 5 2 
nsx

E
2
nsy

E
1
sz

E
 (2.29)

  gxy 5
txy

G
    gyz 5

tyz

G
    gzx 5

tzx

G
 

 An examination of Eqs. (2.29) leads us to three distinct constants, E, 
n, and G, which are used to predict the deformations caused in a given 
material by an arbitrary combination of stresses. Only two of these con-
stants need be determined experimentally for any given material. The next 
section explains that the third constant can be obtained through a very 
simple computation.

Fig. 2.40 States of pure shear in: (a) yz-plane; (b) xz-plane.

yz�

z

y

x

zy�

(a)

z

y

x

zx� xz�

(b)

†See Prob. 2.90.
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102 Stress and Strain—Axial Loading

2.8  DEFORMATIONS UNDER 
AXIAL LOADING—RELATION 
BETWEEN E, n, AND G

Section 2.4 showed that a slender bar subjected to an axial tensile load P 
directed along the x axis will elongate in the x direction and contract in 
both of the transverse y and z directions. If Px denotes the axial strain, the 
lateral strain is expressed as Py 5 Pz 5 2nPx, where n is Poisson’s ratio. 
Thus, an element in the shape of a cube of side equal to one and oriented 
as shown in Fig. 2.42a will deform into a rectangular parallelepiped of sides 
1 1 Px, 1 2 nPx, and 1 2 nPx. (Note that only one face of the element is 
shown in the figure.) On the other hand, if the element is oriented at 458 
to the axis of the load (Fig. 2.42b), the face shown deforms into a rhombus. 
Therefore, the axial load P causes a shearing strain g9 equal to the amount 
by which each of the angles shown in Fig. 2.42b increases or decreases.†

 The fact that shearing strains, as well as normal strains, result from 
an axial loading is not a surprise, since it was observed at the end of 
Sec. 1.4 that an axial load P causes normal and shearing stresses of equal 
magnitude on four of the faces of an element oriented at 458 to the axis of 
the member. This was illustrated in Fig. 1.38, which has been repeated 

Concept Application 2.10

A rectangular block of a material with a modulus of rigidity G 5 90 ksi 
is bonded to two rigid horizontal plates. The lower plate is fixed, while 
the upper plate is subjected to a horizontal force P (Fig. 2.41a). Know-
ing that the upper plate moves through 0.04 in. under the action of the 
force, determine (a) the average shearing strain in the material and 
(b) the force P exerted on the upper plate.

 a. Shearing Strain. The coordinate axes are centered at the mid-
point C of edge AB and directed as shown (Fig. 2.41b). The shearing 
strain gxy is equal to the angle formed by the vertical and the line CF 
joining the midpoints of edges AB and DE. Noting that this is a very 
small angle and recalling that it should be expressed in radians, write

gxy < tan gxy 5
0.04 in.

2 in.
    gxy 5 0.020 rad

 b. Force Exerted on Upper Plate. Determine the shearing stress 
txy in the material. Using Hooke’s law for shearing stress and strain,

txy 5 Ggxy 5 190 3 103 psi2 10.020 rad2 5 1800 psi

The force exerted on the upper plate is

P 5 txy A 5 11800 psi2 18 in.2 12.5 in.2 5 36.0 3 103 lb

P 5 36.0 kips

P

2.5 in.

2 in.

8 in.

(a)

P2 in.

0.04 in.

A

F
E

C
B

D

z

y

x
xy�

(b)

Fig. 2.41 (a) Rectangular block loaded 
in shear. (b) Deformed block showing the 
shearing strain.

Fig. 2.42 Representations of strain in an 
axially-loaded bar: (a) cubic strain element faces 
aligned with coordinate axes; (b) cubic strain 
element faces rotated 45° about z-axis.

y

x1

1

1 
 x	

1 � x�	

(a)

P

(b)

� 
22 '
 ' �� 


PP'

P'

†Note that the load P also produces normal strains in the element shown in Fig. 2.42b
(see Prob. 2.72).
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2.8 Deformations Under Axial Loading—Relation Between E, n, and G 103

here. It was also shown in Sec. 1.3 that the shearing stress is maximum on 
a plane forming an angle of 458 with the axis of the load. It follows from 
Hooke’s law for shearing stress and strain that the shearing strain g9 asso-
ciated with the element of Fig. 2.42b is also maximum: g9 5 gm .
 While a more detailed study of the transformations of strain is cov-
ered in Chap. 7, this section provides a  relationship between the maxi-
mum shearing strain g9 5 gm associated with the element of Fig. 2.42b 
and the normal strain Px in the direction of the load. Consider the pris-
matic element obtained by intersecting the cubic element of Fig. 2.42a by 
a diagonal plane (Fig. 2.43a and b). Referring to Fig. 2.42a, this new ele-
ment will deform into that shown in Fig. 2.43c, which has horizontal and 
vertical sides equal to 1 1 Px and 1 2 nPx . But the angle formed by the 
oblique and horizontal faces of Fig. 2.43b is precisely half of one of the 
right angles of the cubic element in Fig. 2.42b. The angle b into which this 
angle deforms must be equal to half of py2 2 gm . Therefore,

b 5
p

4
2
gm

2

Applying the formula for the tangent of the difference of two angles, 

tan b 5

tan 
p

4
2 tan 

gm

2

1 1 tan 
p

4
 tan 
gm

2

5

1 2 tan 
gm

2

1 1 tan 
gm

2

or since gmy2 is a very small angle,

 tan b 5

1 2
gm

2

1 1
gm

2

 (2.30)

From Fig. 2.43c, observe that

 tan b 5
1 2 nPx

1 1 Px
 (2.31)

Equating the right-hand members of Eqs. (2.30) and (2.31) and solving 
for gm, results in

gm 5
11 1 n2Px

1 1
1 2 n

2
 Px

Since Px V 1, the denominator in the expression obtained can be assumed 
equal to one. Therefore,

 gm 5 (1 1 n)Px (2.32)

which is the desired relation between the maximum shearing strain gm 
and the axial strain Px.
 To obtain a relation among the constants E, n, and G, we recall that, 
by Hooke’s law, gm 5 tmyG, and for an axial loading, Px 5 sxyE. 
Equation (2.32) can be written as

tm

G
5 11 1 n2sx

E

Fig. 2.43 (a) Cubic strain unit element, 
to be sectioned on a diagonal plane. 
(b) Undeformed section of unit element. 
(c) Deformed section of unit element.

1

1

(a)

1

1

�
4
1

(b)

1 � x�	

1 
 x	

�

(c)

Fig. 1.38 (repeated)

(b)

(a)

�m �m
P
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P
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45�

�x

�x P
A

P
2A

� '�

'�

'� �

�

�
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104 Stress and Strain—Axial Loading

Fig. 2.44 Orthotropic fiber-reinforced composite 
material under uniaxial tensile load.

Layer of
material

Fibers

Load

Load

y

z

x

(a)

y�

z�
x

x�

(b)

�

x�

or

E
G

5 11 1 n2sx

tm
 (2.33)

Recall from Fig. 1.38 that sx 5 PyA and tm 5 Py2A, where A is the cross-
sectional area of the member. Thus, sxytm 5 2. Substituting this value into 
Eq. (2.33) and dividing both members by 2, the relationship is

 
E

2G
5 1 1 n (2.34)

which can be used to determine one of the constants E, n, or G from the 
other two. For example, solving Eq. (2.34) for G,

G 5
E

211 1 n2  (2.35)

*2.9  STRESS-STRAIN 
RELATIONSHIPS FOR 
FIBER-REINFORCED 
COMPOSITE MATERIALS

Fiber-reinforced composite materials are fabricated by embedding fibers 
of a strong, stiff material into a weaker, softer material called a matrix. The 
relationship between the normal stress and the corresponding normal 
strain created in a lamina or layer of a composite material depends upon 
the direction in which the load is applied. Different moduli of elasticity, 
Ex , Ey , and Ez , are required to describe the relationship between normal 
stress and normal strain, according to whether the load is applied parallel 
to the fibers, perpendicular to the layer, or in a transverse direction.
 Consider again the layer of composite material discussed in Sec. 2.1D 
and subject it to a uniaxial tensile load parallel to its fibers (Fig. 2.44a). It 
is assumed that the properties of the fibers and of the matrix have been 
combined or “smeared” into a fictitious, equivalent homogeneous mate-
rial possessing these combined properties. In a small element of that layer 
of smeared material (Fig. 2.44b), the corresponding normal stress is sx

and sy 5 sz 5 0. As indicated in Sec. 2.1D, the corresponding normal 
strain in the x direction is Px 5 sxyEx , where Ex is the modulus of elasticity 
of the composite material in the x direction. As for isotropic materials, the 
elongation of the material in the x direction is accompanied by contrac-
tions in the y and z directions. These contractions depend upon the place-
ment of the fibers in the matrix and generally will be different. Therefore, 
the lateral strains Py and Pz also will be different, and the corresponding 
Poisson’s ratios are

 nxy 5 2 
Py

Px
  and  nxz 5 2 

Pz

Px
 (2.36)

Note that the first subscript in each of the Poisson’s ratios nxy and nxz in 
Eqs. (2.36) refers to the direction of the load and the second to the direc-
tion of the contraction.
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*2.9 Stress-Strain Relationships For Fiber-Reinforced Composite Materials 105

 In the case of the multiaxial loading of a layer of a composite mate-
rial, equations similar to Eqs. (2.20) of Sec. 2.5 can be used to describe the 
stress-strain relationship. In this case, three different values of the modulus 
of elasticity and six different values of Poisson’s ratio are involved. We write

  Px 5
sx

Ex
2
nyxsy

Ey
2
nzxsz

Ez

  Py 5 2 
nxysx

Ex
1
sy

Ey
2
nzysz

Ez
 (2.37)

  Pz 5 2 
nxzsx

Ex
2
nyzsy

Ey
1
sz

Ez

Equations (2.37) can be considered as defining the transformation of 
stress into strain for the given layer. It follows from a general property of 
such transformations that the coefficients of the stress components are 
symmetric:

 
nxy

Ex
5
nyx

Ey
  

nyz

Ey
5
nzy

Ez
  

nzx

Ez
5
nxz

Ex
 (2.38)

While different, these equations show that Poisson’s ratios nxy and nyx are 
not independent; either of them can be obtained from the other if the 
corresponding values of the modulus of elasticity are known. The same is 
true of nyz and nzy , and of nzx and nxz .
 Consider now the effect of shearing stresses on the faces of a small 
element of smeared layer. As discussed in Sec. 2.7 for isotropic materials, 
these stresses come in pairs of equal and opposite vectors applied to 
opposite sides of the given element and have no effect on the normal 
strains. Thus, Eqs. (2.37) remain valid. The shearing stresses, however, cre-
ate shearing strains that are defined by equations similar to the last three 
of Eqs. (2.29) of Sec. 2.7, except that three different values of the modulus 
of rigidity, Gxy , Gyz , and Gzx , must be used:

 gxy 5
txy

Gxy
  gyz 5

tyz

Gyz
  gzx 5

tzx

Gzx
 (2.39)

 The fact that the three components of strain Px , Py , and Pz can be 
expressed in terms of the normal stresses only and do not depend upon 
any shearing stresses characterizes orthotropic materials and distinguishes 
them from other anisotropic materials.
 As in Sec. 2.1D, a flat laminate is obtained by superposing a number 
of layers or laminas. If the fibers in all layers are given the same orienta-
tion to withstand an axial tensile load, the laminate itself will be ortho-
tropic. If the lateral stability of the laminate is increased by positioning 
some of its layers so that their fibers are at a right angle to the fibers of the 
other layers, the resulting laminate also will be orthotropic. On the other 
hand, if any of the layers of a laminate are positioned so that their fibers 
are neither parallel nor perpendicular to the fibers of other layers, the 
lamina generally will not be orthotropic.†

†For more information on fiber-reinforced composite materials, see Hyer, M. W., Stress 
Analysis of Fiber-Reinforced Composite Materials, DEStech Publications, Inc., Lancaster, 
PA, 2009.
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106 Stress and Strain—Axial Loading

Concept Application 2.11

A 60-mm cube is made from layers of graphite epoxy with fibers 
aligned in the x direction. The cube is subjected to a compressive load 
of 140 kN in the x direction. The properties of the composite material 
are: Ex 5 155.0 GPa, Ey 5 12.10 GPa, Ez 5 12.10 GPa, nxy 5 0.248, 
nxz 5 0.248, and nyz 5 0.458. Determine the changes in the cube 
dimensions, knowing that (a) the cube is free to expand in the y and 
z directions (Fig. 2.45a); (b) the cube is free to expand in the z direc-
tion, but is restrained from expanding in the y direction by two fixed 
frictionless plates (Fig. 2.45b).

y

z

140 kN

60 mm

60 mm

60 mm
140 kN

x

(a)

y

z

140 kN

60 mm

60 mm

Fixed
frictionless

plates

60 mm

140 kN

x

(b)

Fig. 2.45 Graphite-epoxy cube undergoing compression loading along the fiber 
direction; (a) unrestrained cube; (b) cube restrained in y direction.

 a. Free in y and z Directions. Determine the stress sx in the 
direction of loading.

sx 5
P

A
5

2140 3 103 N

10.060 m2 10.060 m2 5 238.89 MPa

Since the cube is not loaded or restrained in the y and z directions, we 
have sy 5 sz 5 0. Thus, the right-hand members of Eqs. (2.37) reduce 
to their first terms. Substituting the given data into these equations,

 Px 5
sx

Ex
5

238.89 MPa

155.0 GPa
5 2250.9 3 1026

 Py 5 2 
nxysx

Ex
5 2 

10.2482 1238.89 MPa2
155.0 GPa

5 162.22 3 1026

 Pz 5 2 
nxzsx

Ex
5 2 

10.2482 1238.69 MPa2
155.0 GPa

5 162.22 3 1026

The changes in the cube dimensions are obtained by multiplying the 
corresponding strains by the length L 5 0.060 m of the side of the cube:

 dx 5 PxL 5 12250.9 3 10262 10.060 m2 5 215.05 mm

 dy 5 PyL 5 1162.2 3 10262 10.060 m2 5 13.73 mm

 dz 5 PzL 5 1162.2 3 10262 10.060 m2 5 13.73 mm

(continued)
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*2.9 Stress-Strain Relationships For Fiber-Reinforced Composite Materials 107

 b. Free in z Direction, Restrained in y Direction. The stress in 
the x direction is the same as in part a, namely, sx 5 38.89 MPa. Since 
the cube is free to expand in the z direction as in part a, sz 5 0. But 
since the cube is now restrained in the y direction, the stress sy is not 
zero. On the other hand, since the cube cannot expand in the y direc-
tion, dy 5 0. Thus, Py 5 dy/L 5 0. Set sz 5 0 and Py 5 0 in the second 
of Eqs. (2.37) and solve that equation for sy :

 sy 5 aEy

Ex
b nxysx 5 a12.10

155.0
b10.2482 1238.89 MPa2

 5 2752.9 kPa

Now that the three components of stress have been determined, use 
the first and last of Eqs. (2.37) to compute the strain components Px 
and Pz . But the first of these equations contains Poisson’s ratio nyx , and 
as you saw earlier this ratio is not equal to the ratio nxy that was among 
the given data. To find nyx , use the first of Eqs. (2.38) and write

nyx 5 aEy

Ex
b nxy 5 a12.10

155.0
b10.2482 5 0.01936

Now set sz 5 0 in the first and third of Eqs. (2.37) and substitute the 
given values of Ex , Ey , nxz , and nyz , as well as the values obtained for 
sx , sy , and nyx , resulting in

  Px 5
sx

Ex
2
nyxsy

Ey
5

238.89 MPa

155.0 GPa
2
10.019362 12752.9 kPa2

12.10 GPa

 5 2249.7 3 1026

 Pz 5 2
nxzsx

Ex
2
nyzsy

Ey
5 2

10.2482 1238.89 MPa2
155.0 GPa

2
10.4582 12752.9 kPa2

12.10 GPa

 5 190.72 3 1026

The changes in the cube dimensions are obtained by multiplying the 
corresponding strains by the length L 5 0.060 m of the side of the 
cube:

 dx 5 PxL 5 12249.7 3 10262 10.060 m2 5 214.98 mm

 dy 5 PyL 5 102 10.060 m2 5 0

 dz 5 PzL 5 1190.72 3 10262 10.060 m2 5 15.44 mm

Comparing the results of parts a and b, note that the difference 
between the values for the deformation dx in the direction of the fibers 
is negligible. However, the difference between the values for the lateral 
deformation dz is not negligible when the cube is restrained from 
deforming in the y direction.
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108 Stress and Strain—Axial Loading

Sample Problem 2.5
A circle of diameter d 5 9 in. is scribed on an unstressed aluminum 
plate of thickness t 5

3
4 in. Forces acting in the plane of the plate later 

cause normal stresses sx 5 12 ksi and sz 5 20 ksi. For E 5 10 3 106 psi 
and n 5

1
3, determine the change in (a) the length of diameter AB, 

(b) the length of diameter CD, (c) the thickness of the plate, and (d) the 
volume of the plate.

STRATEGY: You can use the generalized Hooke’s Law to determine 
the components of strain. These strains can then be used to evaluate 
the various dimensional changes to the plate, and through the dilata-
tion, also assess the volume change.

ANALYSIS: 

Hooke’s Law.  Note that sy 5 0. Using Eqs. (2.20), find the strain in 
each of the coordinate directions.

Px 5 1
sx

E
2
nsy

E
2
nsz

E

 5
1

10 3 106 psi
Ê c 112 ksi2 2 0 2

1

3
Ê120 ksi2 d 5 10.533 3 1023 in./in.

 Py 5 2 

nsx

E
1
sy

E
2
nsz

E

 5
1

10 3 106 psi
Ê c21

3
Ê112 ksi2 1 0 2

1

3
Ê 120 ksi2 d 5 21.067 3 1023 in./in.

 Pz 5 2 

nsx

E
2
nsy

E
1
sz

E

 5
1

10 3 106 psi
Ê c21

3
Ê 112 ksi2 2 0 1 120 ksi2 d 5 11.600 3 1023 in./in.

 a. Diameter AB. The change in length is dByA 5 Px d.

dByA 5 Pxd 5 110.533 3 1023 in./in.2 19 in.2    
dByA 5 14.8 3 1023 in. ◀

 b. Diameter CD.
dCyD 5 Pzd 5 111.600 3 1023 in./in.2 19 in.2

dCyD 5 114.4 3 1023 in. ◀

 c. Thickness. Recalling that t 5
3
4 in.,

dt 5 Pyt 5 121.067 3 1023 in./in.2 134  in.2
dt 5 20.800 3 1023 in. ◀

 d. Volume of the Plate.  Using Eq. (2.21),

e 5 Px 1 Py 1 Pz 5 110.533 2 1.067 1 1.60021023 5 11.067 3 1023

¢V 5 eV 5 11.067 3 1023 3 115 in.2 115 in.2 134 in.2 4
¢V 5 10.180 in3 ◀

x�
z�

15 in.
15 in.

z

y

x

A
B

C

D
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Problems
 2.61 A standard tension test is used to determine the properties of an 

experimental plastic. The test specimen is a 5
8-in.-diameter rod and 

it is subjected to an 800-lb tensile force. Knowing that an elongation 
of 0.45 in. and a decrease in diameter of 0.025 in. are observed in 
a 5-in. gage length, determine the modulus of elasticity, the modu-
lus of rigidity, and Poisson’s ratio for the material.

 2.62 A 2-m length of an aluminum pipe of 240-mm outer diameter and 
10-mm wall thickness is used as a short column to carry a 640-kN 
centric axial load. Knowing that E 5 73 GPa and n 5 0.33, deter-
mine (a) the change in length of the pipe, (b) the change in its outer 
diameter, (c) the change in its wall thickness.

Fig. P2.61

 in. diameter
5.0 in.

P'

P

5
8

Fig. P2.62

640 kN

2 m

Fig. P2.63

10

200 mm

150 mm4
200 kN 200 kN

Fig. P2.64

2.75 kN2.75 kN

50 mm

A B

12 mm

 2.63 A line of slope 4:10 has been scribed on a cold-rolled yellow-brass 
plate, 150 mm wide and 6 mm thick. Knowing that E 5 105 GPa 
and n 5 0.34, determine the slope of the line when the plate is 
subjected to a 200-kN centric axial load as shown.

 2.64 A 2.75-kN tensile load is applied to a test coupon made from 1.6-
mm flat steel plate (E 5 200 GPa, n 5 0.30). Determine the result-
ing change (a) in the 50-mm gage length, (b) in the width of 
portion AB of the test coupon, (c) in the thickness of portion AB,
(d) in the cross-sectional area of portion AB.
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2.65 In a standard tensile test a steel rod of 22-mm diameter is 
subjected to a tension force of 75 kN. Knowing that n 5 0.30 and 
E 5 200 GPa, determine (a) the elongation of the rod in a 200-mm 
gage length, (b) the change in diameter of the rod.

 2.66 The change in diameter of a large steel bolt is carefully measured 
as the nut is tightened. Knowing that E 5 29 3 106 psi and n 5
0.30, determine the internal force in the bolt if the diameter is 
observed to decrease by 0.5 3 1023 in.

 2.67 The brass rod AD is fitted with a jacket that is used to apply a 
hydrostatic pressure of 48 MPa to the 240-mm portion BC of the 
rod. Knowing that E 5 105 GPa and n 5 0.33, determine (a) the 
change in the total length AD, (b) the change in diameter at the 
middle of the rod.

200 mm

22-mm diameter
75 kN 75 kN

Fig. P2.65

2.5 in.

Fig. P2.66

 2.68 A fabric used in air-inflated structures is subjected to a biaxial 
loading that results in normal stresses sx 5 18 ksi and sz 5 24 ksi. 
Knowing that the properties of the fabric can be approximated as 
E 5 12.6 3 106 psi and n 5 0.34, determine the change in length 
of (a) side AB, (b) side BC, (c) diagonal AC.

 2.69 A 1-in. square was scribed on the side of a large steel pressure 
vessel. After pressurization the biaxial stress condition at the 
square is as shown. Knowing that E 5 29 3 106 psi and n 5 0.30, 
determine the change in length of (a) side AB, (b) side BC, (c) 
diagonal AC.

Fig. P2.67

240 mm
600 mm

C

D

A

B

50 mm

Fig. P2.68

x�
z�

3 in.
4 in.

z

y

x

A

B

C

D

Fig. P2.69

y � 6 ksi�

x � 12 ksi�1 in.

A B

CD

1 in.
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 2.70 The block shown is made of a magnesium alloy for which 
E 5 45 GPa and n 5 0.35. Knowing that sx 5 2180 MPa, deter-
mine (a) the magnitude of sy for which the change in the height 
of the block will be zero, (b) the corresponding change in the area 
of the face ABCD, (c) the corresponding change in the volume of 
the block.

Fig. P2.70

40 mm

100 mm xz

y

x�

y�

C

BD

G

F

A

E

25 mm

Fig. P2.71

x�
z�z

y

x

A

B

C

D

Fig. P2.73

x�

y�

2.71 The homogeneous plate ABCD is subjected to a biaxial loading as 
shown. It is known that sz 5 s0 and that the change in length of 
the plate in the x direction must be zero, that is, Px 5 0. Denoting 
by E the modulus of elasticity and by n Poisson’s ratio, determine 
(a) the required magnitude of sx , (b) the ratio s0/Pz·

2.72 For a member under axial loading, express the normal strain P9

in a direction forming an angle of 458 with the axis of the load in 
terms of the axial strain Px by (a) comparing the hypotenuses of 
the triangles shown in Fig. 2.43, which represent respectively an 
element before and after deformation, (b) using the values of the 
corresponding stresses s9 and sx shown in Fig. 1.38, and the gen-
eralized Hooke’s law.

 2.73 In many situations it is known that the normal stress in a given 
direction is zero. For example, sz 5 0 in the case of the thin plate 
shown. For this case, which is known as plane stress, show that if 
the strains Px and Py have been determined experimentally, we 
can express sx , sy , and Pz as follows:

 sx 5 E 

Px 1 nPy

1 2 n2

 sy 5 E 

Py 1 nPx

1 2 n2

 Pz 5 2
n

1 2 n
 1Px 1 Py2
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 2.74 In many situations physical constraints prevent strain from 
occurring in a given direction. For example, Pz 5 0 in the case 
shown, where longitudinal movement of the long prism is pre-
vented at every point. Plane sections perpendicular to the longi-
tudinal axis remain plane and the same distance apart. Show that 
for this situation, which is known as plane strain, we can express 
sz , Px , and Py as follows:

 sz 5 n1sx 1 sy2
 Px 5

1

E
 3 11 2 n22sx 2 n11 1 n2sy 4

 Py 5
1

E
 3 11 2 n22sy 2 n11 1 n2sx 4

4.8 in.

3.2 in.

2 in. P

Fig. P2.75 a a

c

b

A

B

P

Fig. P2.77 and P2.78

Fig. P2.74

xx�

zz�

yy�
y

x

z (a) (b)

�

2.75 The plastic block shown is bonded to a rigid support and to a verti-
cal plate to which a 55-kip load P is applied. Knowing that for the 
plastic used G 5 150 ksi, determine the deflection of the plate.

 2.76 What load P should be applied to the plate of Prob. 2.75 to pro-
duce a 1

16-in. deflection?

 2.77 Two blocks of rubber with a modulus of rigidity G 5 12 MPa are 
bonded to rigid supports and to a plate AB. Knowing that 
c 5 100 mm and P 5 45 kN, determine the smallest allowable 
dimensions a and b of the blocks if the shearing stress in the 
rubber is not to exceed 1.4 MPa and the deflection of the plate is 
to be at least 5 mm.

 2.78 Two blocks of rubber with a modulus of rigidity G 5 10 MPa are 
bonded to rigid supports and to a plate AB. Knowing that b 5 200 
mm and c 5 125 mm, determine the largest allowable load P and 
the smallest allowable thickness a of the blocks if the shearing 
stress in the rubber is not to exceed 1.5 MPa and the deflection 
of the plate is to be at least 6 mm.
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 2.79 An elastomeric bearing (G 5 130 psi) is used to support a bridge 
girder as shown to provide flexibility during earthquakes. The 
beam must not displace more than 3

8 in. when a 5-kip lateral load 
is applied as shown. Knowing that the maximum allowable 
shearing stress is 60 psi, determine (a) the smallest allowable 
dimension b, (b) the smallest required thickness a.

8 in.

b

a

P

Fig. P2.79

150 mm
100 mm

30 mm

B

A

30 mm

P

Fig. P2.81 and P2.82

 2.80 For the elastomeric bearing in Prob. 2.79 with b 5 10 in. and 
a 5 1 in., determine the shearing modulus G and the shear 
stress t for a maximum lateral load P 5 5 kips and a maximum 
displacement d 5 0.4 in.

 2.81 A vibration isolation unit consists of two blocks of hard rubber 
bonded to a plate AB and to rigid supports as shown. Knowing 
that a force of magnitude P 5 25 kN causes a deflection 
d 5 1.5 mm of plate AB, determine the modulus of rigidity of the 
rubber used.

 2.82 A vibration isolation unit consists of two blocks of hard rubber 
with a modulus of rigidity G 5 19 MPa bonded to a plate AB and 
to rigid supports as shown. Denoting by P the magnitude of the 
force applied to the plate and by d the corresponding deflection, 
determine the effective spring constant, k 5 P/d, of the system.
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 *2.83 A 6-in.-diameter solid steel sphere is lowered into the ocean to a 
point where the pressure is 7.1 ksi (about 3 miles below the sur-
face). Knowing that E 5 29 3 106 psi and n 5 0.30, determine 
(a) the decrease in diameter of the sphere, (b) the decrease in 
volume of the sphere, (c) the percent increase in the density of 
the sphere.

 *2.84 (a) For the axial loading shown, determine the change in 
height  and the change in volume of the brass cylinder shown. 
(b) Solve part a, assuming that the loading is hydrostatic with 
sx 5 sy 5 sz 5 270 MPa.

 *2.85 Determine the dilatation e and the change in volume of the 8-in. 
length of the rod shown if (a) the rod is made of steel with  E 5
29 3 106 psi and n 5 0.30, (b) the rod is made of aluminum with 
E 5 10.6 3 106 psi and n 5 0.35.

 *2.86 Determine the change in volume of the 50-mm gage length seg-
ment AB in Prob. 2.64 (a) by computing the dilatation of the 
material, (b) by subtracting the original volume of portion AB 
from its final volume.

 *2.87 A vibration isolation support consists of a rod A of radius 
R1 5 10 mm and a tube B of inner radius R2 5 25 mm bonded to 
an 80-mm-long hollow rubber cylinder with a modulus of rigidity 
G 5 12 MPa. Determine the largest allowable force P that can be 
applied to rod A if its deflection is not to exceed 2.50 mm.

 *2.88 A vibration isolation support consists of a rod A of radius R1 and 
a tube B of inner radius R2 bonded to an 80-mm-long hollow 
rubber cylinder with a modulus of rigidity G 5 10.93 MPa. Deter-
mine the required value of the ratio R2/R1 if a 10-kN force P is to 
cause a 2-mm deflection of rod A.

 *2.89 The material constants E, G, k, and n are related by Eqs. (2.24) and 
(2.34). Show that any one of the constants may be expressed in 
terms of any other two constants. For example, show that 
(a) k 5 GE/(9G 2 3E) and (b) n 5 (3k 2 2G)/(6k 1 2G).

 *2.90 Show that for any given material, the ratio G/E of the modulus of 
rigidity over the modulus of elasticity is always less than 1

2 but 
more than 1

3. [Hint: Refer to Eq. (2.34) and to Sec. 2.1e.]

 *2.91 A composite cube with 40-mm sides and the properties shown is 
made with glass polymer fibers aligned in the x direction. The 
cube is constrained against deformations in the y and z directions 
and is subjected to a tensile load of 65 kN in the x direction. 
Determine (a) the change in the length of the cube in the x direc-
tion and (b) the stresses sx, sy, and sz.

 *2.92 The composite cube of Prob. 2.91 is constrained against deforma-
tion in the z direction and elongated in the x direction by 
0.035 mm due to a tensile load in the x direction. Determine (a) 
the stresses sx, sy, and sz and (b) the change in the dimension 
in the y direction.

s

E 5 105 GPa 

y 5 258 MPa

n 5 0.33

135 mm

85 mm

Fig. P2.84

11 kips11 kips

8 in.

1 in. diameter

Fig. P2.85

A

B

R1

80 mm

R2

P

Fig. P2.87 and P2.88

Fig. P2.91

Ex � 50 GPa 
Ey � 15.2 GPa 
Ez � 15.2 GPa 

�xz � 0.254
�xy � 0.254 
�zy � 0.428 

y

z
x
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2.10 Stress and Strain Distribution Under Axial Loading: Saint-Venant’s Principle 115

2.10  STRESS AND STRAIN 
DISTRIBUTION UNDER 
AXIAL LOADING: SAINT-
VENANT’S PRINCIPLE

We have assumed so far that, in an axially loaded member, the normal 
stresses are uniformly distributed in any section perpendicular to the axis 
of the member. As we saw in Sec. 1.2A, such an assumption may be quite 
in error in the immediate vicinity of the points of application of the loads. 
However, the determination of the actual stresses in a given section of the 
member requires the solution of a statically indeterminate problem.
 In Sec. 2.2, you saw that statically indeterminate problems involving 
the determination of forces can be solved by considering the deformations
caused by these forces. It is thus reasonable to conclude that the determina-
tion of the stresses in a member requires the analysis of the strains produced 
by the stresses in the member. This is essentially the approach found in 
advanced textbooks, where the mathematical theory of elasticity is used to 
determine the distribution of stresses corresponding to various modes of 
application of the loads at the ends of the member. Given the more limited 
mathematical means at our disposal, our analysis of stresses will be restricted 
to the particular case when two rigid plates are used to transmit the loads 
to a member made of a homogeneous isotropic material (Fig. 2.46).
 If the loads are applied at the center of each plate,† the plates will 
move toward each other without rotating, causing the member to get 
shorter, while increasing in width and thickness. It is assumed that the 
member will remain straight, plane sections will remain plane, and all ele-
ments of the member will deform in the same way, since this assumption 
is compatible with the given end conditions. Figure 2.47 shows a rubber 
model before and after loading.‡ Now, if all elements deform in the same 

Fig. 2.46 Axial load applied by rigid plates.

P

P'

Fig. 2.47 Axial load applied by rigid 
plates to rubber model.

(a) (b)

P

P′

†More precisely, the common line of action of the loads should pass through the cen-
troid of the cross section (cf. Sec. 1.2A).
‡Note that for long, slender members, another configuration is possible and will prevail 
if the load is sufficiently large; the member buckles and assumes a curved shape. This 
will be discussed in Chap. 10.
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116 Stress and Strain—Axial Loading

way, the distribution of strains throughout the member must be uniform. 
In other words, the axial strain Py and the lateral strain Px 5 2nPy are con-
stant. But, if the stresses do not exceed the proportional limit, Hooke’s law 
applies, and sy 5 EPy , so the normal stress sy is also constant. Thus, the 
distribution of stresses is uniform throughout the member, and at any point,

sy 5 1sy2ave 5
P
A

 If the loads are concentrated, as in Fig. 2.48, the elements in the 
immediate vicinity of the points of application of the loads are subjected to 
very large stresses, while other elements near the ends of the member are 
unaffected by the loading. This results in large deformations, strains, and 
stresses near the points of application of the loads, while no deformation 
takes place at the corners. Considering elements farther and farther from 
the ends, a progressive equalization of the deformations and a more uni-
form distribution of the strains and stresses are seen across a section of the 
member. Using the mathematical theory of elasticity found in advanced 
textbooks, Fig. 2.49 shows the resulting distribution of stresses across various 
sections of a thin rectangular plate subjected to concentrated loads. Note 

Fig. 2.48 Concentrated axial load applied 
to rubber model.

P

P'

Fig. 2.49 Stress distributions in a plate under concentrated axial loads.

b b
b1

2
b1

4 �min

�ave

�max

P
A�

�min �ave� 0.973

�max �ave� 1.027

�min �ave� 0.668

�max �ave� 1.387

�min �ave� 0.198

�max �ave� 2.575

PPPP

P'

that at a distance b from either end, where b is the width of the plate, 
the stress distribution is nearly uniform across the section, and the value of 
the stress sy at any point of that section can be assumed to be equal to the 
average value PyA. Thus, at a distance equal to or greater than the width of 
the member, the distribution of stresses across a section is the same, whether 
the member is loaded as shown in Fig. 2.46 or Fig. 2.48. In other words, 
except in the immediate vicinity of the points of application of the loads, 
the stress distribution is assumed independent of the actual mode of appli-
cation of the loads. This statement, which applies to axial loadings and to 
practically any type of load, is known as Saint-Venant’s principle, after the 
French mathematician and engineer Adhémar Barré de Saint-Venant 
(1797–1886).
 While Saint-Venant’s principle makes it possible to replace a given 
loading by a simpler one to compute the stresses in a structural member, 
keep in mind two important points when applying this principle:

 1. The actual loading and the loading used to compute the stresses 
must be statically equivalent.
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2.11 Stress Concentrations 117

2. Stresses cannot be computed in this manner in the immediate 
vicinity of the points of application of the loads. Advanced theoreti-
cal or experimental methods must be used to determine the distri-
bution of stresses in these areas.

 You should also observe that the plates used to obtain a uniform stress 
distribution in the member of Fig. 2.47 must allow the member to freely 
expand laterally. Thus, the plates cannot be rigidly attached to the member; 
assume them to be just in contact with the member and smooth enough not 
to impede lateral expansion. While such end conditions can be achieved for 
a member in compression, they cannot be physically realized in the case of 
a member in tension. It does not matter, whether or not an actual fixture can 
be realized and used to load a member so that the distribution of stresses in 
the member is uniform. The important thing is to imagine a model that will 
allow such a distribution of stresses and to keep this model in mind so that 
it can be compared with the actual loading conditions.

2.11 STRESS CONCENTRATIONS
As you saw in the preceding section, the stresses near the points of application 
of concentrated loads can reach values much larger than the average value of 
the stress in the member. When a structural member contains a discontinuity, 
such as a hole or a sudden change in cross section, high localized stresses can 
occur. Figures 2.50 and 2.51 show the distribution of stresses in critical sec-
tions corresponding to two situations. Figure 2.50 shows a flat bar with a cir-
cular hole and shows the stress distribution in a section passing through the 
center of the hole. Figure 2.51 shows a flat bar consisting of two portions of 
different widths connected by fillets; here the stress distribution is in the nar-
rowest part of the connection, where the highest stresses occur.
 These results were obtained experimentally through the use of a pho-
toelastic method. Fortunately for the engineer, these results are independent 
of the size of the member and of the material used; they depend only upon 
the ratios of the geometric parameters involved (i.e., the ratio 2ryD for a 
circular hole, and the ratios ryd and Dyd for fillets). Furthermore, the 
designer is more interested in the maximum value of the stress in a given 
section than the actual distribution of stresses. The main concern is to 
determine whether the allowable stress will be exceeded under a given load-
ing, not where this value will be exceeded. Thus, the ratio

K 5
smax

save
 (2.40)

is computed in the  critical (narrowest) section of the discontinuity. This ratio 
is the stress-concentration factor of the discontinuity. Stress- concentration fac-
tors can be computed in terms of the ratios of the geometric parameters 
involved, and the results can be expressed in tables or graphs, as shown  in 
Fig. 2.52. To determine the maximum stress occurring near a discontinuity in 
a given member subjected to a given axial load P, the designer needs to com-
pute the average stress save 5 PyA in the critical section and multiply the 
result obtained by the appropriate value of the stress-concentration factor K. 
Note that this procedure is valid only as long as smax does not exceed the 
proportional limit of the material, since the values of K plotted in Fig. 2.52 
were obtained by assuming a linear relation between stress and strain.

Fig. 2.50 Stress distribution near circular hole in 
flat bar under axial loading.

PP'

P'

r
D

d1
2

d1
2

�max

�ave

Fig. 2.51 Stress distribution near fillets in flat bar 
under axial loading.

PP'

P'

�max

�ave

dD

r
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118 Stress and Strain—Axial Loading

Fig. 2.52 Stress concentration factors for flat bars under axial loading. Note that the average stress must be computed across the narrowest 
section: save 5 P/td, where t is the thickness of the bar. (Source: W. D. Pilkey and D.F. Pilkey, Peterson’s Stress Concentration Factors, 3rd ed., 
John Wiley & Sons, New York, 2008.)
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(b) Flat bars with fillets

Concept Application 2.12

Determine the largest axial load P that can be safely supported by a 
flat steel bar consisting of two portions, both 10 mm thick and, respec-
tively, 40 and 60 mm wide, connected by fillets of radius r 5 8 mm. 
Assume an allowable normal stress of 165 MPa.
 First compute the ratios

D

d
5

60 mm

40 mm
5 1.50    r

d
5

8 mm

40 mm
5 0.20

Using the curve in Fig. 2.52b corresponding to Dyd 5 1.50, the value 
of the stress-concentration factor corresponding to ryd 5 0.20 is

K 5 1.82

Then carrying this value into Eq. (2.40) and solving for save,

save 5
smax

1.82

But smax cannot exceed the allowable stress sall 5 165 MPa. Substitut-
ing this value for smax, the average stress in the narrower portion 
(d 5 40 mm) of the bar should not exceed the value

save 5
165 MPa

1.82
5 90.7 MPa

Recalling that save 5 PyA,

P 5 Asave 5 140 mm2 110 mm2 190.7 MPa2 5 36.3 3 103 N

P 5 36.3 kN
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2.12 Plastic Deformations 119

2.12 PLASTIC DEFORMATIONS
The results in the preceding sections were based on the assumption of a 
linear stress-strain relationship, where the proportional limit of the mate-
rial was never exceeded. This is a reasonable assumption in the case of 
brittle materials, which rupture without yielding. For ductile materials, 
however, this implies that the yield strength of the material is not exceeded. 
The deformations will remain within the elastic range and the structural 
member will regain its original shape after all loads have been removed. 
However, if the stresses in any part of the member exceed the yield strength 
of the material, plastic deformations occur, and most of the results 
obtained in earlier sections cease to be valid. Then a more involved analy-
sis, based on a nonlinear stress-strain relationship, must be carried out.
 While an analysis taking into account the actual stress-strain relation-
ship is beyond the scope of this text, we gain considerable insight into plastic 
behavior by considering an idealized elastoplastic material for which the stress-
strain diagram consists of the two straight-line segments shown in Fig. 2.53. 
Note that the stress-strain diagram for mild steel in the elastic and plastic 
ranges is similar to this idealization. As long as the stress s is less than the yield 
strength sY, the material behaves elastically and obeys Hooke’s law, s 5 EP. 
When s reaches the value sY, the material starts yielding and keeps deforming 
plastically under a constant load. If the load is removed, unloading takes place 
along a straight-line segment CD parallel to the initial portion AY of the loading 
curve. The segment AD of the horizontal axis represents the strain  corresponding 
to the permanent set or plastic deformation resulting from the loading and 
unloading of the specimen. While no actual material behaves exactly as shown 
in Fig. 2.53, this stress-strain diagram will prove useful in discussing the plastic 
deformations of ductile materials such as mild steel.

Fig. 2.53 Stress-strain diagram for an idealized 
elastoplastic material.

D �A

C
Rupture

Y
�

�

Y

Concept Application 2.13

A rod of length L 5 500 mm and cross-sectional area A 5 60 mm2 is 
made of an elastoplastic material having a modulus of elasticity 
E 5 200 GPa in its elastic range and a yield point sY 5 300 MPa. The 
rod is subjected to an axial load until it is stretched 7 mm and the load 
is then removed. What is the resulting permanent set?
 Referring to the diagram of Fig. 2.53, the maximum strain repre-
sented by the abscissa of point C is

PC 5
dC

L
5

7 mm

500 mm
5 14 3 1023

However, the yield strain, represented by the abscissa of point Y, is

PY 5
sY

E
5

300 3 106 Pa

200 3 109 Pa
5 1.5 3 1023

The strain after unloading is represented by the abscissa PD of point D. 
Note from Fig. 2.53 that

 PD 5 AD 5 YC 5 PC 2 PY

 5 14 3 1023 2 1.5 3 1023 5 12.5 3 1023

The permanent set is the deformation dD corresponding to the strain PD . 
dD 5 PDL 5 112.5 3 10232 1500 mm2 5 6.25 mm
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120 Stress and Strain—Axial Loading

Concept Application 2.14

A 30-in.-long cylindrical rod of cross-sectional area Ar 5 0.075 in2 is 
placed inside a tube of the same length and of cross-sectional area 
At 5 0.100 in2. The ends of the rod and tube are attached to a rigid 
support on one side, and to a rigid plate on the other, as shown in the 
longitudinal section of Fig. 2.54a. The rod and tube are both assumed 
to be elastoplastic, with moduli of elasticity Er 5 30 3 106 psi and 
Et 5 15 3 106 psi, and yield strengths (sr)Y 5 36 ksi and (st)Y 5 45 ksi. 
Draw the load-deflection diagram of the rod-tube assembly when a 
load P is applied to the plate as shown.
 Determine the internal force and the elongation of the rod as it 
begins to yield

 1Pr2Y 5 1sr2YAr 5 136 ksi2 10.075 in22 5 2.7 kips

 1dr2Y 5 1Pr2YL 5
1sr2Y

Er
L 5

36 3 103 psi

30 3 106 psi
 130 in.2

 5 36 3 1023 in.

Since the material is elastoplastic, the force-elongation diagram of the 
rod alone consists of oblique and horizontal straight lines, as shown 
in Fig. 2.54b. Following the same procedure for the tube,

 1Pt2Y 5 1st2YAt 5 145 ksi2 10.100 in22 5 4.5 kips

 1dt2Y 5 1Pt2YL 5
1st2Y

Et
L 5

45 3 103 psi

15 3 106 psi
 130 in.2

 5 90 3 1023 in.

The load-deflection diagram of the tube alone is shown in Fig. 2.54c. 
Observing that the load and deflection of the rod-tube combination are

P 5 Pr 1 Pt  d 5 dr 5 dt

we draw the required load-deflection diagram by adding the ordinates 
of the diagrams obtained for both the rod and the tube (Fig. 2.54d). 
Points Yr and Yt correspond to the onset of yield.

Tube

Plate

30 in.

Rod
P

(a)

Pr (kips)

2.7

0 36

Yr

�r (10–3 in.)
(b)

Fig. 2.54 (a) Concentric rod-tube assembly 
axially loaded by rigid plate. (b) Load-
deflection response of the rod. (c) Load-
deflection response of the tube. (d) Combined 
load-deflection response of the rod-tube 
assembly.

P (kips)

4.5

7.2

0 36 90

Yr

Yt

� (10–3 in.)
(d)

Pt (kips)

1.8

4.5

0 36 90 �t (10–3 in.)
(c)

Yt
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2.12 Plastic Deformations 121

Concept Application 2.15

If the load P applied to the rod-tube assembly of Concept Application 
2.14 is increased from zero to 5.7 kips and decreased back to zero, 
determine (a) the maximum elongation of the assembly and (b) the 
permanent set after the load has been removed.

 a. Maximum Elongation. Referring to Fig. 2.54d, the load 
Pmax 5 5.7 kips corresponds to a point located on the segment YrYt of 
the load-deflection diagram of the assembly. Thus, the rod has reached 
the plastic range with Pr 5 (Pr)Y 5 2.7 kips and sr 5 (sr)Y 5 36 ksi. 
However the tube is still in the elastic range with

 Pt 5 P 2 Pr 5 5.7 kips 2 2.7 kips 5 3.0 kips

 st 5
Pt

At
5

3.0 kips

0.1 in2 5 30 ksi

 dt 5 PtL 5
st

Et
L 5

30 3 103 psi

15 3 106 psi
 130 in.2 5 60 3 1023 in.

The maximum elongation of the assembly is

dmax 5 dt 5 60 3 1023 in.

 b. Permanent Set. As the load P decreases from 5.7 kips to zero, 
the internal forces Pr and Pt both decrease along a straight line, as 
shown in Fig. 2.55a and b. The force Pr decreases along line CD paral-
lel to the initial portion of the loading curve, while the force Pt decreases 
along the original loading curve, since the yield stress was not exceeded 
in the tube. Their sum P will decrease along a line CE parallel to the 
portion 0Yr of the load-deflection curve of the assembly (Fig. 2.55c). 
Referring to Fig. 2.55c, the slope of 0Yr (and thus of CE) is

m 5
4.5 kips

36 3 1023 in.
5 125 kips/in.

The segment of line FE in Fig. 2.55c represents the deformation d9 of 
the assembly during the unloading phase, and the segment 0E is the 
permanent set dp after the load P has been removed. From triangle 
CEF,

d¿ 5 2 
Pmax

m
5 2 

5.7 kips

125 kips/in.
5 245.6 3 1023 in.

The permanent set is

 dP 5 dmax 1 d¿ 5 60 3 1023 2 45.6 3 1023

 5 14.4 3 1023 in.

Pr (kips)

2.7

0 60

Yr C

D

�r (10–3 in.)

(a)

Pt (kips)

3.0

0 60

Yt

C

C

FE

�

�

t (10–3 in.)

0

� 60 � 10–3 in.

� (10–3 in.)

(b)

P (kips)

4.5

5.7
Yr

Yt

(c)

'�

�

p

Pmax

max

Fig. 2.55 (a) Rod load-deflection response 
with elastic unloading (red dashed line). 
(b) Tube load-deflection response; note that 
the given loading does not yield the tube, so 
unloading is along the original elastic loading 
line. (c) Combined rod-tube assembly 
load-deflection response with elastic 
unloading (red dashed line).
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Stress Concentrations. Recall that the discussion of stress concentra-
tions of Sec. 2.11 was carried out under the assumption of a linear stress-
strain relationship. The stress distributions shown in Figs. 2.50 and 2.51, 
and the stress-concentration factors plotted in Fig. 2.52 cannot be used 
when plastic deformations take place, i.e., when smax exceeds the yield 
strength sY.
 Consider again the flat bar with a circular hole of Fig. 2.50, and 
let us assume that the material is elastoplastic, i.e., that its stress-strain 
diagram is as shown in Fig. 2.53. As long as no plastic deformation takes 
place, the distribution of stresses is as indicated in Sec. 2.11 (Fig. 2.50a). 
The area under the stress-distribution curve represents the integral 
es dA, which is equal to the load P. Thus this area and the value of smax 
must increase as the load P increases. As long as smax # sY, all of the 
stress distributions obtained as P increases will have the shape shown 
in Fig. 2.50 and repeated in Fig. 2.56a. However, as P is increased 
beyond PY corresponding to smax 5 sY (Fig. 2.56b), the stress-distribu-
tion curve must flatten in the vicinity of the hole (Fig. 2.56c), since the 
stress cannot exceed the value sY. This indicates that the material is 
yielding in the vicinity of the hole. As the load P is increased, the plastic 
zone where yield takes place keeps expanding until it reaches the edges 
of the plate (Fig. 2.56d). At that point, the distribution of stresses across 
the plate is uniform, s 5 sY, and the corresponding value P 5 PU of 
the load is the largest that can be applied to the bar without causing 
rupture.
 It is interesting to compare the maximum value PY of the load that 
can be applied if no permanent deformation is to be produced in the bar 
with the value PU that will cause rupture. Recalling the average stress, 
save 5 PyA, where A is the net cross-sectional area and the stress concen-
tration factor, K 5 smaxysave, write

 P 5 save A 5
smax A

K
 (2.41)

for any value of smax that does not exceed sY . When smax 5 sY (Fig. 2.56b), 
P 5 PY, and Eq. (2.40) yields

PY 5
sYA

K
 (2.42)

On the other hand, when P 5 PU (Fig. 2.56d), save 5 sY and

 PU 5 sYA (2.43)

Comparing Eqs. (2.42) and (2.43),

 PY 5
PU

K
 (2.44)

*2.13 RESIDUAL STRESSES
In Concept Application 2.13 of the preceding section, we considered a rod 
that was stretched beyond the yield point. As the load was removed, the 
rod did not regain its original length; it had been permanently deformed. 

Fig. 2.56 Distribution of stresses in elastic-
perfectly plastic material under increasing load.

(a)

(b)

(c)

�

� �max Y

Y

�max

  � 

� �ave � (d)

PY

P

PU

P

Y
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*2.13 Residual Stresses 123

However, after the load was removed, all stresses disappeared. You should 
not assume that this will always be the case. Indeed, when only some of 
the parts of an indeterminate structure undergo plastic deformations, as 
in Concept Application 2.15, or when different parts of the structure 
undergo different plastic deformations, the stresses in the various parts of 
the structure will not return to zero after the load has been removed. 
Stresses called residual stresses will remain in various parts of the 
structure.
 While computation of residual stresses in an actual structure can be 
quite involved, the following concept application provides a general 
understanding of the method to be used for their determination.

Concept Application 2.16

Determine the residual stresses in the rod and tube of Fig. 2.54a 
after the load P has been increased from zero to 5.7 kips and 
decreased back to zero.
 Observe from the diagrams of Fig. 2.57 (similar to those 
in the previous concept application) that, after the load P has 
returned to zero, the internal forces Pr and Pt are not equal to 
zero. Their values have been indicated by point E in parts a 
and b. The corresponding stresses are not equal to zero either 
after the assembly has been unloaded. To determine these 
residual stresses, first determine the reverse stresses s9r and 
s9t caused by the unloading and add them to the maximum 
stresses sr 5 36 ksi and st 5 30 ksi found in part a of Concept 
Application 2.15.
 The strain caused by the unloading is the same in both 
the rod and the tube. It is equal to d9yL, where d9 is the defor-
mation of the assembly during unloading found in Concept 
Application 2.15:

P¿ 5
d¿
L

5
245.6 3 1023 in.

30 in.
5 21.52 3 1023 in./in.

The corresponding reverse stresses in the rod and tube are

 s¿r 5 P¿Er 5 121.52 3 10232 130 3 106 psi2 5 245.6 ksi

 s¿t 5 P¿Et 5 121.52 3 10232 115 3 106 psi2 5 222.8 ksi

Then the residual stresses are found by superposing the 
stresses due to loading and the reverse stresses due to 
unloading.

 1sr2res 5 sr 1 s¿r 5 36 ksi 2 45.6 ksi 5 29.6 ksi

 1st2res 5 st 1 s¿t 5 30 ksi 2 22.8 ksi 5 17.2 ksi

Pr (kips)

2.7

0 60

Yr C

D
E

E

�r (10–3 in.)

(a)(a)

Pt (kips)

3.0

0 60

Yt

C

C

FE

�

�

t (10–3 in.)

0
� (10–3 in.)

(b)

P (kips)

4.5

5.7
Yr

Yt

(c)

'�p

Pmax

Fig. 2.57 (a) Rod load-deflection response with 
elastic unloading (red dashed line). (b) Tube 
load-deflection response; the given loading does 
not yield the tube, so unloading is along elastic 
loading line with residual tensile stress. (c) 
Combined rod-tube assembly load-deflection 
response with elastic unloading (red dashed line).
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124 Stress and Strain—Axial Loading

Temperature Changes. Plastic deformations caused by temperature 
changes can also result in residual stresses. For example, consider a small 
plug that is to be welded to a large plate (Fig. 2.58). The plug can be 

Fig. 2.58 Small rod welded 
to a large plate. 

A B

considered a small rod AB to be welded across a small hole in the plate. 
During the welding process, the temperature of the rod will be raised to 
over 10008C, at which point its modulus of elasticity, stiffness, and stress 
will be almost zero. Since the plate is large, its temperature will not be 
increased significantly above room temperature (208C). Thus, when the 
welding is completed, rod AB is at T 5 10008C with no stress and is 
attached to the plate, which is at 208C.
 As the rod cools, its modulus of elasticity increases. At about 5008C, 
it will approach its normal value of about 200 GPa. As the temperature 
of the rod decreases further, a situation similar to that considered in 
Sec. 2.3 and illustrated in Fig. 2.26 develops. Solving Eq. (2.15) for DT, 
making s equal to the yield strength, assuming sY 5 300 MPa for the 
steel used, and a 5 12 3 1026/8C, the temperature change that causes 
the rod to yield is

¢T 5 2 
s

Ea
5 2 

300 MPa

1200 GPa2 112 3 1026/8C2 5 21258C

So the rod starts yielding at about 3758C and keeps yielding at a fairly 
constant stress level as it cools down to room temperature. As a result of 
welding, a residual stress (approximately equal to the yield strength of the 
steel used) is created in the plug and in the weld.
 Residual stresses also occur as a result of the cooling of metals that 
have been cast or hot rolled. In these cases, the outer layers cool more 
rapidly than the inner core. This causes the outer layers to reacquire their 
stiffness (E returns to its normal value) faster than the inner core. When 
the entire specimen has returned to room temperature, the inner core will 
contract more than the outer layers. The result is residual longitudinal 
tensile stresses in the inner core and residual compressive stresses in the 
outer layers.
 Residual stresses due to welding, casting, and hot rolling can be 
quite large (of the order of magnitude of the yield strength). These stresses 
can be removed by reheating the entire specimen to about 6008C and then 
allowing it to cool slowly over a period of 12 to 24 hours.
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*2.13 Residual Stresses 125

Sample Problem 2.6
The rigid beam ABC is suspended from two steel rods as shown and 
is initially horizontal. The midpoint B of the beam is deflected 10 mm 
downward by the slow application of the force Q, after which the force 
is slowly removed. Knowing that the steel used for the rods is elasto-
plastic with E 5 200 GPa and sY 5 300 MPa, determine (a) the required 
maximum value of Q and the corresponding position of the beam and 
(b) the final position of the beam.

STRATEGY: You can assume that plastic deformation would occur 
first in rod AD (which is a good assumption—why?), and then check 
this assumption.

MODELING AND ANALYSIS: 

Statics.  Since Q is applied at the midpoint of the beam (Fig. 1),

PAD 5 PCE  and  Q 5 2PAD

Elastic Action (Fig. 2). The maximum value of Q and the maximum 
elastic deflection of point A occur when s 5 sY in rod AD.

 1PAD2max 5 sYA 5 1300 MPa2 1400 mm22 5 120 kN

  Qmax 5 21PAD2max 5 21120 kN2 Qmax 5 240 kN ◀

  dA1
5 PL 5

sY

E
 L 5 a300 MPa

200 GPa
b 12 m2 5 3 mm

2 m

2 m

5 m

2 m

Q

B

D

E

CA

AD 5 400 mm2

CE 5 500 mm2

Areas:

2 m 2 m

Q

PAD PCE
B

CA

Fig. 1 Free-body 
diagram of rigid beam. 

PAD (kN)

120

0 3 0 611 14 mm
Rod AD Rod CE

mm

120

PCE (kN)
HY Y

J

Fig. 2 Load-deflection diagrams for 
steel rods. 
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126 Stress and Strain—Axial Loading

Since PCE 5 PAD 5 120 kN, the stress in rod CE is

sCE 5
PCE

A
5

120 kN

500 mm2 5 240 MPa

The corresponding deflection of point C is

dC1
5 PL 5

sCE

E
 L 5 a240 MPa

200 GPa
b15 m2 5 6 mm

The corresponding deflection of point B is

dB1
5

1
2 1dA1

1 dC1
2 5

1
2 13 mm 1 6 mm2 5 4.5 mm

Since dB 5 10 mm, plastic deformation will occur.

Plastic Deformation. For Q 5 240 kN, plastic deformation occurs 
in rod AD, where sAD 5 sY 5 300 MPa. Since the stress in rod CE is 
within the elastic range, dC remains equal to 6 mm. From Fig. 3, the 
deflection dA for which dB 5 10 mm is obtained by writing

dB2
5 10 mm 5

1
2 1dA2

1 6 mm2  dA2
5 14 mm

3 mm 6 mm4.5 mm
A1 B1 C1

Q = 240 kN

14 mm
6 mm10 mm

A2
B2

C1

Q = 240 kN

Deflections for    B 5 10 mmd

Fig. 3 Deflection of fully-loaded 
beam.

d

11 mm

3 mm

6 mm

A2

A3
B2

C2

B3

C3

Q = 0

Final deflections

C = 0

Fig. 4 Beam’s final deflections 
with load removed.

Unloading.  As force Q is slowly removed, the force PAD decreases 
along line HJ parallel to the initial portion of the load-deflection dia-
gram of rod AD. The final deflection of point A is

dA3
5 14 mm 2 3 mm 5 11 mm

Since the stress in rod CE remained within the elastic range, note that 
the final deflection of point C is zero. Fig. 4 illustrates the final position 
of the beam.

REFLECT and THINK: Due to symmetry in this determinate problem, 
the axial forces in the rods are equal. Given that the rods have identical 
material properties and that the cross-sectional area of rod AD is 
smaller than rod CE, you would therefore expect that rod AD would 
reach yield first (as assumed in the STRATEGY step).
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Problems
 2.93 Knowing that, for the plate shown, the allowable stress is 125 MPa, 

determine the maximum allowable value of P when (a) r 5 12 mm, 
(b) r 5 18 mm.

 2.94 Knowing that P 5 38 kN, determine the maximum stress when 
(a) r 5 10 mm, (b) r 5 16 mm, (c) r 5 18 mm.

 2.95 A hole is to be drilled in the plate at A. The diameters of the bits 
available to drill the hole range from 12 to 11

2 in. in 14-in. increments. 
If the allowable stress in the plate is 21 ksi, determine (a) the 
diameter d of the largest bit that can be used if the allowable load 
P at the hole is to exceed that at the fillets, (b) the corresponding 
allowable load P.

Fig. P2.93 and P2.94

120 mm

60 mm r

P

15 mm

Fig. P2.95 and P2.96

A

d rf �

P

1
2 in.

1
83    in.

3
8 in.11

164    in.

Fig. P2.97

P

9 mm

9 mm

9 mm

96 mm 60 mm

A

rf

Fig. P2.98

rA 5 20 mm

rB 5 15 mm

B

A

64 mm

88 mm

P

t

2.96 (a) For P 5 13 kips and d 5 1
2 in., determine the maximum stress 

in the plate shown. (b) Solve part a, assuming that the hole at A 
is not drilled.

 2.97 Knowing that the hole has a diameter of 9 mm, determine (a) the 
radius rf of the fillets for which the same maximum stress occurs 
at the hole A and at the fillets, (b) the corresponding maximum 
allowable load P if the allowable stress is 100 MPa.

 2.98 For P 5 100 kN, determine the minimum plate thickness t
required if the allowable stress is 125 MPa.
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 2.99 (a) Knowing that the allowable stress is 20 ksi, determine the 
maximum allowable magnitude of the centric load P. (b) Deter-
mine the percent change in the maximum allowable magnitude 
of P if the raised portions are removed at the ends of the 
specimen.

Fig. P2.99

P

P

t 5

2 in.

3 in.

5
8 in.

r 5 1
4 in.

Fig. P2.100

3
4 in.

1
2 in.

1
2 in.

5 in.

1 in.

6

rf 5

P

L

B

A

P

Fig. P2.101 and P2.102

 2.100 A centric axial force is applied to the steel bar shown. Knowing 
that sall 5 20 ksi, determine the maximum allowable load P.

 2.101 The cylindrical rod AB has a length L 5 5 ft and a 0.75-in. diam-
eter; it is made of a mild steel that is assumed to be elastoplastic 
with E 5 29 3 106 psi and sY 5 36 ksi. A force P is applied to the 
bar and then removed to give it a permanent set dP . Determine 
the maximum value of the force P and the maximum amount dm 
by which the bar should be stretched if the desired value of dP is 
(a) 0.1 in., (b) 0.2 in.

 2.102 The cylindrical rod AB has a length L 5 6 ft and a 1.25-in. diam-
eter; it is made of a mild steel that is assumed to be elastoplastic 
with E 5 29 3 106 psi and sY 5 36 ksi. A force P is applied to the 
bar until end A has moved down by an amount dm. Determine 
the maximum value of the force P and the permanent set of the 
bar after the force has been removed, knowing (a) dm 5 0.125 in., 
(b) dm 5 0.250 in.
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2.103 Rod AB is made of a mild steel that is assumed to be elastoplastic 
with E 5 200 GPa and sY 5 345 MPa. After the rod has been 
attached to the rigid lever CD, it is found that end C is 6 mm too 
high. A vertical force Q is then applied at C until this point has 
moved to position C9. Determine the required magnitude of Q
and the deflection d1 if the lever is to snap back to a horizontal 
position after Q is removed.

Fig. P2.103

6 mm

9-mm diameter

0.4 m
0.7 m

1.25 m

C B
D

A

C�

1d

P

40-mm
diameter

30-mm
diameter

1.2 m

0.8 m

C

B

A

Fig. P2.105 and P2.106

2.104 Solve Prob. 2.103, assuming that the yield point of the mild steel 
is 250 MPa.

 2.105 Rod ABC consists of two cylindrical portions AB and BC; it is 
made of a mild steel that is assumed to be elastoplastic with 
E 5 200 GPa and sY 5 250 MPa. A force P is applied to the rod 
and then removed to give it a permanent set dP 5 2 mm. Deter-
mine the maximum value of the force P and the maximum 
amount dm by which the rod should be stretched to give it the 
desired permanent set.

 2.106 Rod ABC consists of two cylindrical portions AB and BC; it is 
made of a mild steel that is assumed to be elastoplastic with 
E 5 200 GPa and sY 5 250 MPa. A force P is applied to the rod 
until its end A has moved down by an amount dm 5 5 mm. Deter-
mine the maximum value of the force P and the permanent set 
of the rod after the force has been removed.
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 2.107 Rod AB consists of two cylindrical portions AC and BC, each with 
a cross-sectional area of 1750 mm2. Portion AC is made of a mild 
steel with E 5 200 GPa and sY 5 250 MPa, and portion BC is 
made of a high-strength steel with E 5 200 GPa and sY 5 345 
MPa. A load P is applied at C as shown. Assuming both steels to 
be elastoplastic, determine (a) the maximum deflection of C if P 
is gradually increased from zero to 975 kN and then reduced back 
to zero, (b) the maximum stress in each portion of the rod, (c) the 
permanent deflection of C.

 2.108 For the composite rod of Prob. 2.107, if P is gradually increased 
from zero until the deflection of point C reaches a maximum 
value of dm 5 0.3 mm and then decreased back to zero, deter-
mine, (a) the maximum value of P, (b) the maximum stress in 
each portion of the rod, (c) the permanent deflection of C after 
the load is removed.

 2.109 Each cable has a cross-sectional area of 100 mm2 and is made of 
an elastoplastic material for which sY 5 345 MPa and E 5 200 
GPa. A force Q is applied at C to the rigid bar ABC and is gradu-
ally increased from 0 to 50 kN and then reduced to zero. Knowing 
that the cables were initially taut, determine (a) the maximum 
stress that occurs in cable BD, (b) the maximum deflection of 
point C, (c) the final displacement of point C. (Hint: In part c, 
cable CE is not taut.)

Fig. P2.107

190 mm

190 mm

C

B

A

P

Fig. P2.109

1 m

A
B C

Q

D E

1 m

2 m

2.110 Solve Prob. 2.109, assuming that the cables are replaced by rods of 
the same cross-sectional area and material. Further assume that the 
rods are braced so that they can carry compressive forces.

 2.111 Two tempered-steel bars, each 3
16 in. thick, are bonded to a 1

2-in. 
mild-steel bar. This composite bar is subjected as shown to a cen-
tric axial load of magnitude P. Both steels are elastoplastic with 
E 5 29 3 106 psi and with yield strengths equal to 100 ksi and 
50 ksi, respectively, for the tempered and mild steel. The load P 
is gradually increased from zero until the deformation of the bar 
reaches a maximum value dm 5 0.04 in. and then decreased back 
to zero. Determine (a) the maximum value of P, (b) the maxi-
mum stress in the tempered-steel bars, (c) the permanent set 
after the load is removed.Fig. P2.111

P

14 in.

2.0 in.

P'

in.

1
2 in.

3
16 3

16

in.
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 2.112 For the composite bar of Prob. 2.111, if P is gradually increased 
from zero to 98 kips and then decreased back to zero, determine 
(a) the maximum deformation of the bar, (b) the maximum stress 
in the tempered-steel bars, (c) the permanent set after the load 
is removed.

 2.113 The rigid bar ABC is supported by two links, AD and BE, of uni-
form 37.5 3 6-mm rectangular cross section and made of a mild 
steel that is assumed to be elastoplastic with E 5 200 GPa and 
sY 5 250 MPa. The magnitude of the force Q applied at B is 
gradually increased from zero to 260 kN. Knowing that a 5 0.640 m, 
determine (a) the value of the normal stress in each link, (b) the 
maximum deflection of point B.

Fig. P2.113

1.7 m

1 m

2.64 m

C

B

E

D

A

Q
a

Fig. P2.116
L

BA

 2.114 Solve Prob. 2.113, knowing that a 5 1.76 m and that the magni-
tude of the force Q applied at B is gradually increased from zero 
to 135 kN.

 *2.115 Solve Prob. 2.113, assuming that the magnitude of the force Q
applied at B is gradually increased from zero to 260 kN and then 
decreased back to zero. Knowing that a 5 0.640 m, determine 
(a) the residual stress in each link, (b) the final deflection of point 
B. Assume that the links are braced so that they can carry com-
pressive forces without buckling.

 2.116 A uniform steel rod of cross-sectional area A is attached to 
rigid  supports and is unstressed at a temperature of 458F. The 
steel is assumed to be elastoplastic with sY 5 36 ksi and 
E 5 29 3 106 psi. Knowing that a 5 6.5 3 1026/8F, determine the 
stress in the bar (a) when the temperature is raised to 3208F, 
(b) after the temperature has returned to 458F.
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 *2.122 Bar AB has a cross-sectional area of 1200 mm2 and is made of a 
steel that is assumed to be elastoplastic with E 5 200 GPa and sY

5 250 MPa. Knowing that the force F increases from 0 to 520 kN 
and then decreases to zero, determine (a) the permanent deflec-
tion of point C, (b) the residual stress in the bar.

Fig. P2.121

Fig. P2.122

440 mm

a � 120 mm

F

C BA

 *2.123 Solve Prob. 2.122, assuming that a 5 180 mm.

 2.117 The steel rod ABC is attached to rigid supports and is unstressed 
at a temperature of 258C. The steel is assumed elastoplastic 
with E 5 200 GPa and sY 5 250 MPa. The temperature of both 
portions of the rod is then raised to 1508C. Knowing that 
a 5 11.7 3 1026/8C, determine (a) the stress in both portions of 
the rod, (b) the deflection of point C.

 *2.118 Solve Prob. 2.117, assuming that the temperature of the rod is 
raised to 150°C and then returned to 258C.

 *2.119 For the composite bar of Prob. 2.111, determine the residual 
stresses in the tempered-steel bars if P is gradually increased 
from zero to 98 kips and then decreased back to zero.

 *2.120 For the composite bar in Prob. 2.111, determine the residual 
stresses in the tempered-steel bars if P is gradually increased 
from zero until the deformation of the bar reaches a maximum 
value dm 5 0.04 in. and is then decreased back to zero.

 *2.121 Narrow bars of aluminum are bonded to the two sides of a thick 
steel plate as shown. Initially, at T1 5 708F, all stresses are zero. 
Knowing that the temperature will be slowly raised to T2 and then 
reduced to T1, determine (a) the highest temperature T2 that does 
not result in residual stresses, (b) the temperature T2 that will 
result in a residual stress in the aluminum equal to 58 ksi. Assume 
aa 5 12.8 3 1026/8F for the aluminum and as 5 6.5 3 1026/8F for 
the steel. Further assume that the aluminum is elastoplastic with 
E 5 10.9 3 106 psi and aY 5 58 ksi. (Hint: Neglect the small 
stresses in the plate.)

Fig. P2.117

BA C

A � 500 mm2
A� 300 mm2

150 mm 250 mm 
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Review and Summary
Normal Strain
Consider a rod of length L and uniform cross section, and its deformation d
under an axial load P (Fig. 2.59). The normal strain P in the rod is defined 
as the deformation per unit length:

P 5
d

L
  (2.1)

B B

C
C

L

A

P

d

(a) (b)

Fig. 2.59 Undeformed and deformed 
axially-loaded rod.

In the case of a rod of variable cross section, the normal strain at any given 
point Q is found by considering a small element of rod at Q:

 P 5 lim
¢xy0

 
¢d
¢x

5
dd
dx

 (2.2)

Stress-Strain Diagram
A stress-strain diagram is obtained by plotting the stress s versus the strain P
as the load increases. These diagrams can be used to distinguish between 
brittle and ductile materials. A brittle material ruptures without any notice-
able prior change in the rate of elongation (Fig. 2.60), while a ductile material 

Fig. 2.60 Stress-strain diagram for a typical 
brittle material.

Rupture

�

B�U ��

�
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yields after a critical stress sY (the yield strength) has been reached (Fig. 2.61). 
The specimen undergoes a large deformation before rupturing, with a 
relatively small increase in the applied load. An example of brittle material 
with different properties in tension and compression is concrete.

Hooke’s Law and Modulus of Elasticity
The initial portion of the stress-strain diagram is a straight line. Thus, for 
small deformations, the stress is directly proportional to the strain:

s 5 EP (2.6)

This relationship is Hooke’s law, and the coefficient E is the modulus of 
elasticity of the material. The proportional limit is the largest stress for 
which Eq. (2.4) applies.

Properties of isotropic materials are independent of direction, while prop-
erties of anisotropic materials depend upon direction. Fiber-reinforced 
composite materials are made of fibers of a strong, stiff material embedded 
in layers of a weaker, softer material (Fig. 2.62).

Elastic Limit and Plastic Deformation
If the strains caused in a test specimen by the application of a given load 
disappear when the load is removed, the material is said to behave elasti-
cally. The largest stress for which this occurs is called the elastic limit of 
the material. If the elastic limit is exceeded, the stress and strain decrease 
in a linear fashion when the load is removed, and the strain does not 
return to zero (Fig. 2.63), indicating that a permanent set or plastic defor-
mation of the material has taken place.

Fig. 2.61 Stress-strain diagrams of two typical ductile metal materials.
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Fatigue and Endurance Limit
Fatigue causes the failure of structural or machine components after a 
very large number of repeated loadings, even though the stresses remain 
in the elastic range. A standard fatigue test determines the number n of 
successive loading-and-unloading cycles required to cause the failure 
of a specimen for any given maximum stress level s and plots the 
resulting s-n curve. The value of s for which failure does not occur, 
even for an indefinitely large number of cycles, is known as the endur-
ance limit.

Elastic Deformation Under Axial Loading
If a rod of length L and uniform cross section of area A is subjected at its 
end to a centric axial load P (Fig. 2.64), the corresponding deformation is

 d 5
PL

AE
 (2.9)

Fig. 2.64 Undeformed and 
deformed axially-loaded rod.

�

L

C
C

A

B B

P

If the rod is loaded at several points or consists of several parts of various 
cross sections and possibly of different materials, the deformation d of the 
rod must be expressed as the sum of the deformations of its component 
parts:

d 5 a
i

PiLi

AiEi
 (2.10)

Statically Indeterminate Problems
Statically indeterminate problems are those in which the reactions and the 
internal forces cannot be determined from statics alone. The equilibrium 
equations derived from the free-body diagram of the member under con-
sideration were complemented by relations involving deformations and 
obtained from the geometry of the problem. The forces in the rod and in 
the tube of Fig. 2.65, for instance, were determined by observing that their 
sum is equal to P, and that they cause equal deformations in the rod 
and in the tube. Similarly, the reactions at the supports of the bar of 

Fig. 2.65 Statically indeterminate problem where 
concentric rod and tube have same strain but 
different stresses.

P

Tube (A2, E2)

Rod (A1, E1)

End plate 
L
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Fig. 2.66 could not be obtained from the free-body diagram of the bar 
alone, but they could be determined by expressing that the total elonga-
tion of the bar must be equal to zero.

Problems with Temperature Changes
When the temperature of an unrestrained rod AB of length L is increased 
by DT, its elongation is

dT 5 a1¢T2  L  (2.13)

where a is the coefficient of thermal expansion of the material. The cor-
responding strain, called thermal strain, is

PT 5 a¢T   (2.14)

and no stress is associated with this strain. However, if rod AB is restrained by 
fixed supports (Fig. 2.67), stresses develop in the rod as the temperature 
increases, because of the reactions at the supports. To determine the magni-
tude P of the reactions, the rod is first detached from its support at B (Fig. 2.68a). 

Fig. 2.66 (a) Axially-loaded statically-indeterminate 
member. (b) Free-body diagram.

P
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(a) (b)
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Fig. 2.67 Fully restrained bar of length L.

L
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Fig. 2.68 Determination of reactions for bar of Fig. 2.67 
subject to a temperature increase. (a) Support at B removed. 
(b) Thermal expansion. (c) Application of support reaction to 
counter thermal expansion.
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The deformation dT of the rod occurs as it expands due to of the temperature 
change (Fig. 2.68b). The deformation dP caused by the force P is required to 
bring it back to its original length, so that it may be reattached to the support 
at B (Fig. 2.68c).

Lateral Strain and Poisson’s Ratio
When an axial load P is applied to a homogeneous, slender bar 
(Fig. 2.69), it causes a strain, not only along the axis of the bar but in any 
transverse direction. This strain is the lateral strain, and the ratio of the 
lateral strain over the axial strain is called Poisson’s ratio:

 n 5 2  

lateral strain

axial strain
 (2.17)

Multiaxial Loading
The condition of strain under an axial loading in the x direction is

 Px 5
sx

E
       Py 5 Pz 5 2 

nsx

E
 (2.19)

A multiaxial loading causes the state of stress shown in Fig. 2.70. The 
resulting strain condition was described by the generalized Hooke’s law for 
a multiaxial loading.

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

  Py 5 2 

nsx

E
1
sy

E
2
nsz

E
 (2.20)

 Pz 5 2 

nsx

E
2
nsy

E
1
sz

E

Dilatation
If an element of material is subjected to the stresses sx , sy , sz , it will 
deform and a certain change of volume will result. The change in volume 
per unit volume is the dilatation of the material:

e 5
1 2 2n

E
 1sx 1 sy 1 sz2 (2.22)

Bulk Modulus
When a material is subjected to a hydrostatic pressure p,

 e 5 2 
p

k
 (2.25)

where k is the bulk modulus of the material:

k 5
E

311 2 2n2  (2.24)

Fig. 2.69 A bar in uniaxial tension.
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Fig. 2.70 State of stress for multiaxial loading.
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Shearing Strain: Modulus of Rigidity
The state of stress in a material under the most general loading condition 
involves shearing stresses, as well as normal stresses (Fig. 2.71). The 
shearing stresses tend to deform a cubic element of material into an 
oblique parallelepiped. The stresses txy and tyx shown in Fig. 2.72 cause 
the angles formed by the faces on which they act to either increase or 
decrease by a small angle gxy. This angle defines the shearing strain cor-
responding to the x and y directions. Defining in a similar way the shear-
ing strains gyz and gzx , the following relations were written:

txy 5 Ggxy  tyz 5 Ggyz  tzx 5 Ggzx (2.27, 28)

Fig. 2.71 Positive stress components at 
point Q for a general state of stress.
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Fig. 2.72 Deformation of unit cubic 
element due to shearing stress.
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which are valid for any homogeneous isotropic material within its propor-
tional limit in shear. The constant G is the modulus of rigidity of the mate-
rial, and the relationships obtained express Hooke’s law for shearing stress 
and strain. Together with Eqs. (2.20), they form a group of equations rep-
resenting the generalized Hooke’s law for a homogeneous isotropic mate-
rial under the most general stress condition.

While an axial load exerted on a slender bar produces only normal 
strains—both axial and  transverse—on an element of material oriented 
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along the axis of the bar, it will produce both normal and shearing strains 
on an element rotated through 458 (Fig. 2.73). The three constants E, n, 
and G are not independent. They satisfy the relation

E

2G
5 1 1 n (2.34)

This equation can be used to determine any of the three constants in terms 
of the other two.

Saint-Venant’s Principle
Saint-Venant’s principle states that except in the immediate vicinity of the 
points of application of the loads, the distribution of stresses in a given 
member is independent of the actual mode of application of the loads. This 
principle makes it possible to assume a uniform distribution of stresses in 
a member subjected to concentrated axial loads, except close to the points 
of application of the loads, where stress concentrations will occur.

Stress Concentrations
Stress concentrations will also occur in structural members near a discon-
tinuity, such as a hole or a sudden change in cross section. The ratio of 
the maximum value of the stress occurring near the discontinuity over the 
average stress computed in the critical section is referred to as the stress-
concentration factor of the discontinuity:

K 5
smax

save
  (2.40)

Plastic Deformations
Plastic deformations occur in structural members made of a ductile material 
when the stresses in some part of the member exceed the yield strength of 
the material. An idealized elastoplastic material is characterized by the 
stress-strain diagram shown in Fig. 2.74. When an indeterminate structure 

Fig. 2.73 Representations of strain in an 
axially-loaded bar: (a) cubic strain element with 
faces aligned with coordinate axes; (b) cubic strain 
element with faces rotated 45° about z-axis.

y

x1

1

1 	 x�

1 
 x��

(a)

P

(b)

� �22 '� ' 
� 	

PP'

P'

Fig. 2.74 Stress-strain diagram for an 
idealized elastoplastic material.
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undergoes plastic deformations, the stresses do not, in general, return to 
zero after the load has been removed. The stresses remaining in the various 
parts of the structure are called residual stresses and can be determined by 
adding the maximum stresses reached during the loading phase and the 
reverse stresses corresponding to the unloading phase.
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Review Problems
 2.124 The uniform wire ABC, of unstretched length 2l, is attached to 

the supports shown and a vertical load P is applied at the mid-
point B. Denoting by A the cross-sectional area of the wire and 
by E the modulus of elasticity, show that, for d << l, the deflec-
tion at the midpoint B is

d 5 l B3
P

AE

Fig. P2.124

P

l l

C
B

A�

Fig. P2.125

B

d

C

A

12 in.

18 in.

1.5 in.

2.25 in.

28 kips

E

D

28 kips

Fig. P2.126

C

B

A

3 in.

2 in.
30 kips 30 kips

P � 40 kips

40 in.

30 in.

 2.125 The aluminum rod ABC (E 5 10.1 3 106 psi), which consists 
of two cylindrical portions AB and BC, is to be replaced with 
a cylindrical steel rod DE (E 5 29 3 106 psi) of the same over-
all length. Determine the minimum required diameter d of the 
steel rod if its vertical deformation is not to exceed the defor-
mation of the aluminum rod under the same load and if the 
allowable stress in the steel rod is not to exceed 24 ksi.

2.126 Two solid cylindrical rods are joined at B and loaded as shown. 
Rod AB is made of steel (E 5 29 3 106 psi), and rod BC of brass 
(E 5 15 3 106 psi). Determine (a) the total deformation of the 
composite rod ABC, (b) the deflection of point B.

bee98233_ch02_054-145.indd   140bee98233_ch02_054-145.indd   140 11/15/13   4:55 PM11/15/13   4:55 PM



141

 2.127 The brass strip AB has been attached to a fixed support at A 
and rests on a rough support at B. Knowing that the coeffi-
cient of friction is 0.60 between the strip and the support at B,
determine the decrease in temperature for which slipping will 
impend.

Fig. P2.127

3 mm

A

B

40 mm
100 kg

20 mm

Brass strip:
    E � 105 GPa
    � � 20 
 10
6/�C

 2.128 The specimen shown is made from a 1-in.-diameter cylindrical 
steel rod with two 1.5-in.-outer-diameter sleeves bonded to the 
rod as shown. Knowing that E 5 29 3 106 psi, determine (a) 
the load P so that the total deformation is 0.002 in., (b) the cor-
responding deformation of the central portion BC.

 2.129 Each of the four vertical links connecting the two rigid hori-
zontal members is made of aluminum (E 5 70 GPa) and has a 
uniform rectangular cross section of 10 3 40 mm. For the load-
ing shown, determine the deflection of (a) point E, (b) point F,
(c) point G.

Fig. P2.128

2 in.

2 in.

3 in.

C

D

A

B

P'

P

1  -in. diameter

1-in. diameter

1
2

1  -in. diameter1
2

 2.130 A 4-ft concrete post is reinforced with four steel bars, each 
with a 3

4-in. diameter. Knowing that Es 5 29 3 106 psi and 
Ec 5 3.6 3 106 psi, determine the normal stresses in the steel 
and in the concrete when a 150-kip axial centric force P is 
applied to the post.

Fig. P2.129

24 kN

F

E

A
B

C

D

300 mm

250 mm

400 mm

250 mm

40 mm

G

Fig. P2.130

4 ft

8 in.
8 in.

P
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 2.131 The steel rods BE and CD each have a 16-mm diameter 
(E 5 200 GPa); the ends of the rods are single-threaded with a 
pitch of 2.5 mm. Knowing that after being snugly fitted, the nut 
at C is tightened one full turn, determine (a) the tension in rod 
CD, (b) the deflection of point C of the rigid member ABC.

Fig. P2.131

100 mm

2 m

A

CD

B E

3 m

150 mm

Fig. P2.132

8 in.

Aluminum shell

1.25 in.
Steel
core

0.75 in.

Fig. P2.133

3.5 in.

5.5 in. 2.2 in.

P

2.132 The assembly shown consists of an aluminum shell (Ea 5

10.6 3 106 psi, aa 5 12.9 3 1026/8F) fully bonded to a steel 
core (Es 5 29 3 106 psi, as 5 6.5 3 1026/8F) and is unstressed. 
Determine (a) the largest allowable change in temperature if 
the stress in the aluminum shell is not to exceed 6 ksi, (b) the 
corresponding change in length of the assembly.

 2.133 The plastic block shown is bonded to a fixed base and to a hori-
zontal rigid plate to which a force P is applied. Knowing that for 
the plastic used G 5 55 ksi, determine the deflection of the plate 
when P 5 9 kips.
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2.134 The aluminum test specimen shown is subjected to two equal 
and opposite centric axial forces of magnitude P. (a) Knowing 
that E 5 70 GPa and sall 5 200 MPa, determine the maximum 
allowable value of P and the corresponding total elongation of 
the specimen. (b) Solve part a, assuming that the specimen has 
been replaced by an aluminum bar of the same length and a 
uniform 60 3 15-mm rectangular cross section.

Fig. P2.134

150

300

75

150

P�

75

Dimensions in mm

P

15

r 5 6
60 

Fig. P2.135

L

C
P

P
k

m

B

B'
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 2.135 The uniform rod BC has cross-sectional area A and is made of a 
mild steel that can be assumed to be elastoplastic with a modu-
lus of elasticity E and a yield strength sY. Using the block-and-
spring system shown, it is desired to simulate the deflection of 
end C of the rod as the axial force P is gradually applied and 
removed, that is, the deflection of points C and C9 should be the 
same for all values of P. Denoting by m the coefficient of friction 
between the block and the horizontal surface, derive an expres-
sion for (a) the required mass m of the block, (b) the required 
constant k of the spring.

bee98233_ch02_054-145.indd   143bee98233_ch02_054-145.indd   143 11/15/13   4:55 PM11/15/13   4:55 PM



144

Computer Problems
The following problems are designed to be solved with a computer. Write 
each program so that it can be used with either SI or U.S. customary units 
and in such a way that solid cylindrical elements may be defined by either 
their diameter or their cross-sectional area.

 2.C1 A rod consisting of n elements, each of which is homogeneous and 
of uniform cross section, is subjected to the loading shown. The length of 
element i is denoted by Li, its cross-sectional area by Ai, modulus of elas-
ticity by Ei, and the load applied to its right end by Pi, the magnitude Pi of 
this load being assumed to be positive if Pi is directed to the right and 
negative otherwise. (a) Write a computer program that can be used to 
determine the average normal stress in each element, the deformation of 
each element, and the total deformation of the rod. (b) Use this program 
to solve Probs. 2.20 and 2.126.

 2.C2 Rod AB is horizontal with both ends fixed; it consists of n elements, 
each of which is homogeneous and of uniform cross section, and is sub-
jected to the loading shown. The length of element i is denoted by Li, its 
cross-sectional area by Ai, its modulus of elasticity by Ei, and the load 
applied to its right end by Pi, the magnitude Pi of this load being assumed 
to be positive if Pi is directed to the right and negative otherwise. (Note 
that P1 5 0.) (a) Write a computer program that can be used to determine 
the reactions at A and B, the average normal stress in each element, 
and the deformation of each element. (b) Use this program to solve Probs. 
2.41 and 2.42.

 2.C3 Rod AB consists of n elements, each of which is homogeneous and 
of uniform cross section. End A is fixed, while initially there is a gap d0 
between end B and the fixed vertical surface on the right. The length of 
element i is denoted by Li, its cross-sectional area by Ai, its modulus of 
elasticity by Ei, and its coefficient of thermal expansion by ai. After the 
temperature of the rod has been increased by DT, the gap at B is closed 
and the vertical surfaces exert equal and opposite forces on 
the rod. (a) Write a computer program that can be used to determine the 
magnitude of the reactions at A and B, the normal stress in each element, 
and the deformation of each element. (b) Use this program to solve Probs. 
2.59 and 2.60.

 2.C4 Bar AB has a length L and is made of two different materials of 
given cross-sectional area, modulus of elasticity, and yield strength. The 
bar is subjected as shown to a load P that is gradually increased from zero 
until the deformation of the bar has reached a maximum value dm and 
then decreased back to zero. (a) Write a computer program that, for each 
of 25 values of dm equally spaced over a range extending from 0 to a value 
equal to 120% of the deformation causing both materials to yield, can be 
used to determine the maximum value Pm of the load, the maximum 
normal stress in each material, the permanent deformation dp of the bar, 
and the residual stress in each material. (b) Use this program to solve 
Probs. 2.111 and 2.112.

Fig. P2.C1

Element n Element 1

Pn P1

Fig. P2.C2

Element n Element 1

Pn

P2

A
B

Fig. P2.C3

Element n Element 1

A
B

0�

Fig. P2.C4

Plate

�A1, E1, (  Y)1

L

�A2, E2, (  Y)2

P
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 2.C5 The plate has a hole centered across the width. The stress concen-
tration factor for a flat bar under axial loading with a centric hole is

K 5 3.00 2 3.13 a2r

D
b 1 3.66 a2r

D
b2

2 1.53 a2r

D
b3

where r is the radius of the hole and D is the width of the bar. Write a 
computer program to determine the allowable load P for the given values 
of r, D, the thickness t of the bar, and the allowable stress sall of the mate-
rial. Knowing that t 5

1
4 in., D 5 3.0 in. and sall 5 16 ksi, determine the 

allowable load P for values of r from 0.125 in. to 0.75 in., using 0.125 in. 
increments.

 2.C6 A solid truncated cone is subjected to an axial force P as shown. 
The exact elongation is (PL)y(2pc2E). By replacing the cone by n circular 
cylinders of equal thickness, write a computer program that can be used 
to calculate the elongation of the truncated cone. What is the percentage 
error in the answer obtained from the program using (a) n 5 6, 
(b) n 5 12, (c) n 5 60?

Fig. P2.C5

1
2 d

1
2 d

D
r PP9

Fig. P2.C6

L

A

B

c

P
2c
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3
Torsion

In the part of the jet engine shown here, the central shaft 
links the components of the engine to develop the thrust 
that propels the aircraft.

Objectives
In this chapter, you will:

• Introduce students to the concept of torsion in structural mem-
bers and machine parts

• Define shearing stresses and strains in a circular shaft subject to 
torsion

• Define angle of twist in terms of the applied torque, geometry of 
the shaft, and material

• Use torsional deformations to solve indeterminate problems

• Design shafts for power transmission

• Review stress concentrations and how they are included in torsion 
problems

• Describe the elastic-perfectly plastic response of circular shafts

• Analyze torsion for noncircular members

• Define the behavior of thin-walled hollow shafts
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148 Torsion

Introduction
In this chapter, structural members and machine parts that are in torsion
will be analyzed, where the stresses and strains in members of circular 
cross section are subjected to twisting couples, or torques, T and T9

(Fig. 3.1). These couples have a common magnitude T, and opposite 
senses. They are vector quantities and can be represented either by curved 
arrows (Fig. 3.1a) or by couple vectors (Fig. 3.1b).
 Members in torsion are encountered in many engineering appli-
cations. The most common application is provided by transmission 
shafts, which are used to transmit power from one point to another 
(Photo 3.1). These shafts can be either solid, as shown in Fig. 3.1, or 
hollow.

Photo 3.1 In this automotive power train, the shaft transmits power from the 
engine to the rear wheels.

 The system shown in Fig. 3.2a consists of a turbine A and an electric 
generator B connected by a transmission shaft AB. Breaking the system 
into its three component parts (Fig. 3.2b), the turbine exerts a twisting 
couple or torque T on the shaft, which then exerts an equal torque on the 
generator. The generator reacts by exerting the equal and opposite torque 
T9 on the shaft, and the shaft reacts by exerting the torque T9 on the 
turbine.
 First the stresses and deformations that take place in circular 
shafts will be analyzed. Then an important property of circular shafts 
is demonstrated: When a circular shaft is subjected to torsion, every 
cross section remains plane and undistorted. Therefore, while the vari-
ous cross sections along the shaft rotate through different angles, each 
cross section rotates as a solid rigid slab. This property helps to deter-
mine the distribution of shearing strains in a circular shaft and to con-
clude that the shearing strain varies linearly with the distance from the 
axis of the shaft.

Fig. 3.1 Two equivalent ways to represent a 
torque in a free-body diagram.

(a)

(b)

T

B

A

T'

T'

B

A
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 Deformations in the elastic range and Hooke’s law for shearing stress 
and strain are used to determine the distribution of shearing stresses in a 
circular shaft and derive the elastic torsion formulas.
 In Sec. 3.2, the angle of twist of a circular shaft is found when 
subjected to a given torque, assuming elastic deformations. The solu-
tion of problems involving statically indeterminate shafts is discussed in 
Sec. 3.3.
 In Sec. 3.4, the design of transmission shafts is accomplished by 
determining the required physical characteristics of a shaft in terms of its 
speed of rotation and the power to be transmitted.
 Section 3.5 accounts for stress concentrations where an abrupt 
change in diameter of the shaft occurs. In Secs. 3.6 to 3.8, stresses and 
deformations in circular shafts made of a ductile material are found 
when the yield point of the material is exceeded. You will then learn how 
to determine the permanent plastic deformations and residual stresses 
that remain in a shaft after it has been loaded beyond the yield point of 
the material.
 The last sections of this chapter study the torsion of noncircular 
members (Sec. 3.9) and analyze the distribution of stresses in thin-walled 
hollow noncircular shafts (Sec. 3.10).

Fig. 3.2 (a) A generator receives power at a constant number of revolutions per minute 
from a turbine through shaft AB. (b) Free-body diagram of shaft AB along with the driving 
and reacting torques on the generator and turbine, respectively.

B Rotation

Generator

A
Turbine

B

A T'

T'

T

(a)

(b)

T
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150 Torsion

3.1  CIRCULAR SHAFTS IN 
TORSION

3.1A The Stresses in a Shaft
Consider a shaft AB subjected at A and B to equal and opposite torques 
T and T9. We pass a section perpendicular to the axis of the shaft through 
some arbitrary point C (Fig. 3.3). The free-body diagram of portion BC of 
the shaft must include the elementary shearing forces dF, which are per-
pendicular to the radius of the shaft. These arise from the torque that 
portion AC exerts on BC as the shaft is twisted (Fig. 3.4a). The conditions 
of equilibrium for BC require that the system of these forces be equivalent 
to an internal torque T, as well as equal and opposite to T9 (Fig. 3.4b). 
Denoting the perpendicular distance r from the force dF to the axis of 
the shaft and expressing that the sum of the moments of the shearing 
forces dF about the axis of the shaft is equal in magnitude to the torque 
T, write

erdF 5 T

Since dF 5 t dA, where t is the shearing stress on the element of area dA, 
you also can write

er(t dA) 5 T (3.1)

 While these equations express an important condition that must be 
satisfied by the shearing stresses in any given cross section of the shaft, 
they do not tell us how these stresses are distributed in the cross section. 
Thus, the actual distribution of stresses under a given load is statically 
indeterminate (i.e., this distribution cannot be determined by the methods 
of statics). However, it was assumed in Sec. 1.2A that the normal stresses 
produced by an axial centric load were uniformly distributed, and this 
assumption was justified in Sec. 2.10, except in the neighborhood of con-
centrated loads. A similar assumption with respect to the distribution of 
shearing stresses in an elastic shaft would be wrong. Withhold any judg-
ment until the deformations that are produced in the shaft have been ana-
lyzed. This will be done in the next section.
 As indicated in Sec. 1.4, shear cannot take place in one plane only. 
Consider the very small element of shaft shown in Fig. 3.5. The torque 
applied to the shaft produces shearing stresses t on the faces perpen-
dicular to the axis of the shaft. However, the conditions of equilibrium 
(Sec. 1.4) require the existence of equal stresses on the faces formed by 
the two planes containing the axis of the shaft. That such shearing 

Fig. 3.3 Shaft subject to torques and a section 
plane at C.

B

A

C

TT'

Fig. 3.4 (a) Free body diagram of section BC with 
torque at C represented by the contributions of 
small elements of area carrying forces dF a radius r 
from the section center. (b) Free-body diagram of 
section BC having all the small area elements 
summed resulting in torque T.

B

C

B

C

(a)

(b)

dF
r

T

T′

T′

Fig. 3.5 Small element in shaft showing how 
shearing stress components act.

Axis of shaft

�
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3.1 Circular Shafts in Torsion 151

stresses actually occur in torsion can be demonstrated by considering a 
“shaft” made of separate slats pinned at both ends to disks, as shown in 
Fig. 3.6a. If markings have been painted on two adjoining slats, it is 
observed that the slats will slide with respect to each other when equal 
and opposite torques are applied to the ends of the “shaft” (Fig. 3.6b). 
While sliding will not actually take place in a shaft made of a homoge-
neous and cohesive material, the tendency for sliding will exist, showing 
that stresses occur on longitudinal planes as well as on planes perpen-
dicular to the axis of the shaft.†

3.1B Deformations in a Circular Shaft
Deformation Characteristics. Consider a circular shaft attached to a 
fixed support at one end (Fig. 3.7a). If a torque T is applied to the other 
end, the shaft will twist, with its free end rotating through an angle f 
called the angle of twist (Fig. 3.7b). Within a certain range of values of T, 
the angle of twist f is proportional to T. Also, f is proportional to the 
length L of the shaft. In other words, the angle of twist for a shaft of the 
same material and same cross section, but twice as long, will be twice as 
large under the same torque T.
 When a circular shaft is subjected to torsion, every cross section 
remains plane and undistorted. In other words, while the various cross 
sections along the shaft rotate through different amounts, each cross sec-
tion rotates as a solid rigid slab. This is illustrated in Fig. 3.8a, which shows 
the deformations in a rubber model subjected to torsion. This property is 
characteristic of circular shafts, whether solid or hollow—but not of mem-
bers with noncircular cross section. For example, when a bar of square 
cross section is subjected to torsion, its various cross sections warp and 
do not remain plane (Fig. 3.8b).
 The cross sections of a circular shaft remain plane and undistorted 
because a circular shaft is axisymmetric (i.e., its appearance remains the 
same when it is viewed from a fixed position and rotated about its axis 
through an arbitrary angle). Square bars, on the other hand, retain the 
same appearance only if they are rotated through 908 or 1808. Theoreti-
cally the axisymmetry of circular shafts can be used to prove that their 
cross sections remain plane and undistorted.

†The twisting of a cardboard tube that has been slit lengthwise provides another dem-
onstration of the existence of shearing stresses on longitudinal planes.

Fig. 3.6 Demonstration of shear in a shaft (a) undeformed; 
(b) loaded and deformed.

(a) (b)

TT'

Fig. 3.7 Shaft with fixed support and line AB 
drawn showing deformation under torsion loading: 
(a) unloaded; (b) loaded

L

(a)
A

B

B

(b)

A'

�
A

B

T

Fig. 3.8 Comparison of deformations in 
(a) circular and (b) square shafts.

(a)

(b)

T

T'

T'

T
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152 Torsion

 Consider points C and D located on the circumference of a given 
cross section, and let C9 and D9 be the positions after the shaft has been 
twisted (Fig. 3.9a). The axisymmetry requires that the rotation that would 
have brought D into D9 will bring C into C9. Thus, C9 and D9 must lie on 
the circumference of a circle, and the arc C9D9 must be equal to the arc 
CD (Fig. 3.9b). 
 Assume that C9 and D9 lie on a different circle, and the new circle 
is located to the left of the original circle, as shown in Fig. 3.9b. The same 
situation will prevail for any other cross section, since all cross sections 
of the shaft are subjected to the same internal torque T, and looking at 
the shaft from its end A shows that the loading causes any given circle 
drawn on the shaft to move away. But viewed from B, the given load looks 
the same (a clockwise couple in the foreground and a counterclockwise 
couple in the background), where the circle moves toward you. This con-
tradiction proves that C9 and D9 lie on the same circle as C and D. Thus, 
as the shaft is twisted, the original circle just rotates in its own plane. 
Since the same reasoning can be applied to any smaller, concentric circle 
located in the cross section, the entire cross section remains plane 
(Fig. 3.10).
 This argument does not preclude the possibility for the various con-
centric circles of Fig. 3.10 to rotate by different amounts when the shaft is 
twisted. But if that were so, a given diameter of the cross section would be 
distorted into a curve, as shown in Fig. 3.11a. Looking at this curve from 
A, the outer layers of the shaft get more twisted than the inner ones, while 
looking from B reveals the opposite (Fig. 3.11b). This inconsistency indi-
cates that any diameter of a given cross section remains straight (Fig. 3.11c); 
therefore, any given cross section of a circular shaft remains plane and 
undistorted.
 Now consider the mode of application of the twisting couples T 
and T9. If all sections of the shaft, from one end to the other, are to 
remain plane and undistorted, the couples are applied so the ends of the 
shaft remain plane and undistorted. This can be accomplished by apply-
ing the couples T and T9 to rigid plates that are solidly attached to the 
ends of the shaft (Fig. 3.12a). All sections will remain plane and undis-
torted when the loading is applied, and the resulting deformations will 
be uniform throughout the entire length of the shaft. All of the equally 
spaced circles shown in Fig. 3.12a will rotate by the same amount rela-
tive to their neighbors, and each of the straight lines will be transformed 
into a curve (helix) intersecting the various circles at the same angle 
(Fig. 3.12b).

Fig. 3.9 Shaft subject to twisting.

(b)

C'

D'

C

D

(a)

A

B

C'

D'

C

D

A

B

T'

T'

T

T

Fig. 3.10 Concentric circles at a cross section.

A

B

T
T'

Fig. 3.11 Potential deformations of diameter lines if section’s 
concentric circles rotate different amounts (a, b) or the same amount (c).

(a)

A

B

T
T'

A

B

(c)

T
T'

(b)

A

B

T'

T
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3.1 Circular Shafts in Torsion 153

Shearing Strains. The examples given in this and the following sec-
tions are based on the assumption of rigid end plates. However, loading 
conditions may differ from those corresponding to the model of Fig. 3.12. 
This model helps to define a torsion problem for which we can obtain 
an exact solution. By use of Saint-Venant’s principle, the results obtained 
for this idealized model may be extended to most engineering 
applications.
 Now we will determine the distribution of shearing strains in a cir-
cular shaft of length L and radius c that has been twisted through an 
angle f (Fig. 3.13a). Detaching from the shaft a cylinder of radius r, 
consider the small square element formed by two adjacent circles and 
two adjacent straight lines traced on the surface before any load is 
applied (Fig. 3.13b). As the shaft is  subjected to a torsional load, the ele-
ment deforms into a rhombus (Fig. 3.13c). Here the shearing strain g in 
a given element is measured by the change in the angles formed by the 
sides of that element (Sec. 2.7). Since the circles defining two of the sides 
remain unchanged, the shearing strain g must be equal to the angle 
between lines AB and A9B.
 Figure 3.13c shows that, for small values of g, the arc length AA9 is 
expressed as AA9 5 Lg. But since AA9 5 rf, it follows that Lg 5 rf, or

 g 5
rf

L
 (3.2)

where g and f are in radians. This equation shows that the shearing 
strain g at a given point of a shaft in torsion is proportional to the angle 
of twist f. It also shows that g is proportional to the distance r from the 
axis of the shaft to that point. Thus, the shearing strain in a circular shaft 
varies linearly with the distance from the axis of the shaft.
 From Eq. (3.2), the shearing strain is maximum on the surface of the 
shaft, where r 5 c.

 gmax 5
cf

L
 (3.3)

Eliminating f from Eqs. (3.2) and (3.3), the shearing strain g at a distance 
r from the axis of the shaft is

 g 5
r

c
 gmax (3.4)

3.1C Stresses in the Elastic Range
When the torque T is such that all shearing stresses in the shaft remain 
below the yield strength tY, the stresses in the shaft will remain below both 
the proportional limit and the elastic limit. Thus, Hooke’s law will apply, 
and there will be no permanent deformation.
 Recalling Hooke’s law for shearing stress and strain from Sec. 2.7, 
write

 t 5 Gg (3.5)

Fig. 3.12 Visualization of deformation 
resulting from twisting couples: 
(a) undeformed, (b) deformed.

(b)

(a)

T'

T

Fig. 3.13 Shearing strain deformation. (a) The 
angle of twist f. (b) Undeformed portion of shaft 
of radius r. (c) Deformed portion of shaft; angle 
of twist f and shearing strain g share the same arc 
length AA’.

L

L

(a)

(b)

(c)

L

B
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154 Torsion

where G is the modulus of rigidity or shear modulus of the material. Mul-
tiplying both members of Eq. (3.4) by G, write

Gg 5
r

c
 Ggmax

or, making use of Eq. (3.5),

 t 5
r

c
 tmax (3.6)

This equation shows that, as long as the yield strength (or proportional 
limit) is not exceeded in any part of a circular shaft, the shearing stress in 
the shaft varies linearly with the distance r from the axis of the shaft. 
Figure 3.14a shows the stress distribution in a solid circular shaft of 
radius c. A hollow circular shaft of inner radius c1 and outer radius c2 is 
shown in Fig. 3.14b. From Eq. (3.6),

 tmin 5
c1

c2
 tmax (3.7)

Fig. 3.14 Distribution of shearing stresses in a torqued shaft: 
(a) Solid shaft, (b) Hollow shaft.

max�max�
min�

(a) (b)

c

�

�

�

O
c1 c2 �

O

 Recall from Sec. 3.1A that the sum of the moments of the elementary 
forces exerted on any cross section of the shaft must be equal to the mag-
nitude T of the torque exerted on the shaft:

 er(t dA) 5 T (3.1)

Substituting for t from Eq. (3.6) into Eq. (3.1),

T 5 ert dA 5
tmax

c
er2 dA

The integral in the last part represents the polar moment of inertia J of the 
cross section with respect to its center O. Therefore,

 T 5
tmax  J

c
 (3.8)

or solving for tmax ,

 tmax 5
Tc
J

 (3.9)
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3.1 Circular Shafts in Torsion 155

Substituting for tmax from Eq. (3.9) into Eq. (3.6), the shearing stress at any 
distance r from the axis of the shaft is

 t 5
Tr

J
 (3.10)

Equations (3.9) and (3.10) are known as the elastic torsion formulas. Recall 
from statics that the polar moment of inertia of a circle of radius c is 
J 5

1
2 pc4. For a hollow circular shaft of inner radius c1 and outer radius c2, 

the polar moment of inertia is

 J 5
1
2pc2

4 2
1
2pc1

4 5
1
2p 1c2

4 2 c4
12 (3.11)

 When SI metric units are used in Eq. (3.9) or (3.10), T is given in 
N?m, c or r in meters, and J in m4. The resulting shearing stress is given 
in N/m2, that is, pascals (Pa). When U.S. customary units are used, T is 
given in lb?in., c or r in inches, and J in in4. The resulting shearing stress 
is given in psi.

Concept Application 3.1
A hollow cylindrical steel shaft is 1.5 m long and has inner and outer 
diameters respectively equal to 40 and 60 mm (Fig. 3.15). (a) What is 
the largest torque that can be applied to the shaft if the shearing stress 
is not to exceed 120 MPa? (b) What is the corresponding minimum 
value of the shearing stress in the shaft?
 The largest torque T that can be applied to the shaft is the torque 
for which tmax 5 120 MPa. Since this is less than the yield strength for 
any steel, use Eq. (3.9). Solving this equation for T, 

 T 5
Jtmax

c
  (1)

Recalling that the polar moment of inertia J of the cross section is 
given by Eq. (3.11), where c1 5

1
2 140 mm2 5 0.02 m and 

c2 5
1
2 160 mm2 5 0.03 m, write

J 5
1
2 p 1c4

2 2 c4
12 5

1
2 p 10.034 2 0.0242 5 1.021 3 1026 m4

Substituting for J and tmax into Eq. (1) and letting c 5 c2 5 0.03 m,

T 5
Jtmax

c
5
11.021 3 1026 m42 1120 3 106 Pa2

0.03 m
5 4.08 kN?m  

 The minimum shearing stress occurs on the inner surface of the 
shaft. Equation (3.7) expresses that tmin and tmax are respectively pro-
portional to c1 and c2:

tmin 5
c1

c2
 tmax 5

0.02 m

0.03 m
 1120 MPa2 5 80 MPa 

1.5 m

40 mm

60 mmT

Fig. 3.15 Hollow, fixed-end shaft 
having torque T applied at end.
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156 Torsion

 The torsion formulas of Eqs. (3.9) and (3.10) were derived for a shaft 
of uniform circular cross section subjected to torques at its ends. However, 
they also can be used for a shaft of variable cross section or for a shaft 
subjected to torques at locations other than its ends (Fig. 3.16a). The dis-
tribution of shearing stresses in a given cross section S of the shaft is 
obtained from Eq. (3.9), where J is the polar moment of inertia of that 
section and T represents the internal torque in that section. T is obtained 
by drawing the free-body diagram of the portion of shaft located on one 
side of the section (Fig. 3.16b) and writing that the sum of the torques 
applied (including the internal torque T) is zero (see Sample Prob. 3.1).
 Our analysis of stresses in a shaft has been limited to shearing 
stresses due to the fact that the element selected was oriented so that its 
faces were either parallel or perpendicular to the axis of the shaft (Fig. 3.5). 
Now consider two elements a and b located on the surface of a circular 
shaft subjected to torsion (Fig. 3.17). Since the faces of element a are 
respectively parallel and perpendicular to the axis of the shaft, the only 
stresses on the element are the shearing stresses

 tmax 5
Tc
J

 (3.9)

On the other hand, the faces of element b, which form arbitrary angles 
with the axis of the shaft, are subjected to a combination of normal and 
shearing stresses. Consider the stresses and resulting forces on faces that 

Fig. 3.16 Shaft with variable cross 
section. (a) With applied torques and section 
S. (b) Free-body diagram of sectioned shaft.

B

(a)

(b)

TC

TE

TB

TA

E

B

S

C

A

SE

TTB

TE

Fig. 3.17 Circular shaft with stress elements at 
different orientations.

a

max�
T

T'
b
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3.1 Circular Shafts in Torsion 157

are at 458 to the axis of the shaft. The free-body diagrams of the two tri-
angular elements are shown in Fig. 3.18. From Fig. 3.18a, the stresses 
exerted on the faces BC and BD are the shearing stresses tmax 5 TcyJ. The 
magnitude of the corresponding shear forces is tmax A0, where A0 is the 
area of the face. Observing that the components along DC of the two shear 
forces are equal and opposite, the force F exerted on DC must be perpen-
dicular to that face and is a tensile force. Its magnitude is

 F 5 21tmaxA02cos 458 5 tmaxA012 (3.12)

The corresponding stress is obtained by dividing the force F by the area A 
of face DC. Observing that A 5 A012,

 s 5
F
A

5
tmax A012

A012
5 tmax (3.13)

A similar analysis of the element of Figure 3.18b shows that the stress 
on the face BE is s 5 2tmax. Therefore, the stresses exerted on the faces 
of an element c at 458 to the axis of the shaft (Fig. 3.19) are normal 
stresses equal to 6tmax. Thus, while element a in Fig. 3.19 is in pure 
shear, element c in the same figure is subjected to a tensile stress on 
two of its faces and a compressive stress on the other two. Also note 
that all of the stresses involved have the same magnitude, TcyJ.†

 Because ductile materials generally fail in shear, a specimen sub-
jected to torsion breaks along a plane perpendicular to its longitudinal 
axis (Photo 3.2a). On the other hand, brittle materials are weaker in ten-
sion than in shear. Thus, when subjected to torsion, a brittle material 
tends to break along surfaces perpendicular to the direction in which ten-
sion is maximum, forming a 458 angle with the longitudinal axis of the 
specimen (Photo 3.2b).

Fig. 3.18 Forces on faces at 458 to shaft axis.

(a) (b)

C CB B

D E

maxA0�maxA0�

maxA0� maxA0�
45� 45�

F F'

Fig. 3.19 Shaft elements with only shearing 
stresses or normal stresses.

5
Tc
J

maxt 56
Tc
J

458s

a

T

T′
c

†Stresses on elements of arbitrary orientation, such as in Fig. 3.18b, will be discussed in 
Chap. 7.

(a) Ductile failure
T'

T

Photo 3.2 Shear failure of shaft subject to torque.

(b) Brittle failure
T'

T
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158 Torsion

Sample Problem 3.1
Shaft BC is hollow with inner and outer diameters of 90 mm and 
120 mm, respectively. Shafts AB and CD are solid and of diameter d. 
For the loading shown, determine (a) the maximum and minimum 
shearing stress in shaft BC, (b) the required diameter d of shafts AB 
and CD if the allowable shearing stress in these shafts is 65 MPa.

0.9 m

d

A

B

TC

TD

0.7 m

0.5 m

120 mm

d

C
D

TA � 6 kN · m 

 � 14 kN · m 

 � 26 kN · m 

 � 6 kN · m 

TB

Fig. 3 Shearing stress 
distribution on cross section.

c1 � 45 mm

c2 � 60 mm

2

1

�

�

(continued)

A TAB

x

TA � 6 kN · m 

Fig. 1 Free-body diagram 
for section to left of cut 
between A and B.

TB

A

B TBC

xx

TA � 6 kN · m 

 � 14 kN · m 

Fig. 2 Free-body diagram for 
section to left of cut between B 
and C.

STRATEGY: Use free-body diagrams to determine the torque in 
each shaft. The torques can then be used to find the stresses for shaft 
BC and the required diameters for shafts AB and CD.

MODELING: Denoting by TAB the torque in shaft AB (Fig. 1), we pass 
a section through shaft AB and, for the free body shown, we write

©Mx 5 0:    16 kN?m2 2 TAB 5 0    TAB 5 6 kN?m

We now pass a section through shaft BC (Fig. 2) and, for the free body 
shown, we have

©Mx 5 0:  16 kN?m2 1 114 kN?m2 2 TBC 5 0    TBC 5 20 kN?m

ANALYSIS: 

 a. Shaft BC. For this hollow shaft we have

J 5
p

2
1c4

2 2 c4
12 5

p

2
3 10.06024 2 10.04524 4 5 13.92 3 1026 m4

Maximum Shearing Stress.  On the outer surface, we have

tmax 5 t2 5
TBC c2

J
5
120 kN?m2 Ê10.060 m2

13.92 3 1026 m4   tmax 5 86.2 MPa b
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3.1 Circular Shafts in Torsion 159

Minimum Shearing Stress.  As shown in Fig. 3 the stresses are 
proportional to the distance from the axis of the shaft.

tmin

tmax
5

c1

c2
        tmin

86.2 MPa
5

45 mm

60 mm
  tmin 5 64.7 MPa b

 b. Shafts AB and CD.  We note that both shafts have the same 
torque T 5 6 kN?m (Fig. 4). Denoting the radius of the shafts by c and 
knowing that tall 5 65 MPa, we write

t 5
Tc

J
        65 MPa 5

16 kN?m2c
p

2
 c4

c3 5 58.8 3 1026 m3   c 5 38.9 3 1023 m

 d 5 2c 5 2138.9 mm2    d 5 77.8 mm b

Sample Problem 3.2
The preliminary design of a motor to generator connection calls for 
the use of a large hollow shaft with inner and outer diameters of 4 
in. and 6 in., respectively. Knowing that the allowable shearing 
stress is 12 ksi, determine the maximum torque that can be trans-
mitted by (a) the shaft as designed, (b) a solid shaft of the same 
weight, and (c) a hollow shaft of the same weight and an 8-in. outer 
diameter.

STRATEGY: Use Eq. (3.9) to determine the maximum torque using 
the allowable stress.

MODELING and ANALYSIS: 

 a. Hollow Shaft as Designed. Using Fig. 1 and setting tall 5 12 ksi, 
we write

J 5
p

2
1c4

2 2 c4
12 5

p

2
3 13 in.24 2 12 in.24 4 5 102.1 in4

Using Eq. (3.9), we write

 tmax 5
Tc2

J
        12 ksi 5

T 13 in.2
102.1 in4    T 5 408 kip?in. b

Fig. 4 Free-body diagram of 
shaft portion AB.

A

B

6 kN · m

6 kN · m

(continued)

8 ft

T'

T

6 in.4 in.

c2 � 3 in.

c1 � 2 in.

T

Fig. 1 Shaft as designed.
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160 Torsion

 b. Solid Shaft of Equal Weight. For the shaft as designed and 
this solid shaft to have the same weight and length, their cross-sectional 
areas must be equal, i.e. A1a2 5 A1b2.

 p 3 13 in.22 2 12 in.22 4 5 pc2
3   c3 5 2.24 in.

Using Fig. 2 and setting tall 5 12 ksi, we write

 tmax 5
Tc3

J
      12 ksi 5

T 12.24 in.2
p

2
12.24 in.24

    T 5 211 kip?in. b

Fig. 3 Hollow shaft with an 8-in. 
outer diameter, having equal weight.

c4 � 4 in.

c5

T

c3

T

Fig. 2 Solid shaft having equal weight.

 c. Hollow Shaft of 8-in. Diameter. For equal weight, the cross- 
sectional areas again must be equal, i.e., A1a2 5 A1c2 (Fig. 3). We deter-
mine the inside diameter of the shaft by writing

 p 3 13 in.22 2 12 in.22 4 5 p 3 14 in.22 2 c2
5 4   c5 5 3.317 in.

For c5 5 3.317 in. and c4 5 4 in.,

J 5
p

2
3 14 in.24 2 13.317 in.24 4 5 212 in4

With tall 5 12 ksi and c4 5 4 in.,

tmax 5
Tc4

J
     12 ksi 5

T14 in.2
212 in4   T 5 636 kip?in. b

REFLECT and THINK: This example illustrates the advantage 
obtained when the shaft material is further from the centroidal axis.
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Problems
 3.1 Determine the torque T that causes a maximum shearing stress 

of 70 MPa in the steel cylindrical shaft shown.

 3.2 For the cylindrical shaft shown, determine the maximum shearing 
stress caused by a torque of magnitude T 5 800 N?m.

 3.3 (a) Determine the torque T that causes a maximum shearing stress 
of 45 MPa in the hollow cylindrical steel shaft shown. (b) Determine 
the maximum shearing stress caused by the same torque T in a 
solid cylindrical shaft of the same cross-sectional area.

Fig. P3.1 and P3.2

T

18 mm

Fig. P3.3

2.4 m

30 mm

45 mmT

 3.4 (a) Determine the maximum shearing stress caused by a 
40-kip?in. torque T in the 3-in.-diameter solid aluminum shaft 
shown. (b) Solve part a, assuming that the solid shaft has been 
replaced by a hollow shaft of the same outer diameter and of 
1-in. inner diameter.

3.5 (a) For the 3-in.-diameter solid cylinder and loading shown, 
determine the maximum shearing stress. (b) Determine the inner 
diameter of the 4-in.-diameter hollow cylinder shown, for which 
the maximum stress is the same as in part a. Fig. P3.4

3 in.

4 ft

T

Fig. P3.5

T = 40 kip · in.

T'

3 in.
T'

T = 40 kip · in.

T

4 in.

(b)

(a)
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 3.6 A torque T 5 3 kN?m is applied to the solid bronze cylinder 
shown. Determine (a) the maximum shearing stress, (b) the 
shearing stress at point D, which lies on a 15-mm-radius circle 
drawn on the end of the cylinder, (c) the percent of the torque 
carried by the portion of the cylinder within the 15-mm radius.

 3.7 The solid spindle AB is made of a steel with an allowable shearing 
stress of 12 ksi, and sleeve CD is made of a brass with an allow-
able shearing stress of 7 ksi. Determine (a) the largest torque T
that can be applied at A if the allowable shearing stress is not to 
be exceeded in sleeve CD, (b) the corresponding required value 
of the diameter ds of spindle AB.

 3.8 The solid spindle AB has a diameter ds 5 1.5 in. and is made of 
a steel with an allowable shearing stress of 12 ksi, while sleeve 
CD is made of a brass with an allowable shearing stress of 7 ksi. 
Determine the largest torque T that can be applied at A.

 3.9 The torques shown are exerted on pulleys A, B, and C. Knowing 
that both shafts are solid, determine the maximum shearing 
stress in (a) shaft AB, (b) shaft BC.

Fig. P3.6

60 mm
30 mm

D
200 mmT � 3 kN · m

 3.10 The shafts of the pulley assembly shown are to be redesigned. 
Knowing that the allowable shearing stress in each shaft is 8.5 ksi, 
determine the smallest allowable diameter of (a) shaft AB, 
(b) shaft BC.

Fig. P3.7 and P3.8

4 in.

8 in.

ds

t � in.1
4

3 in.

D

C

A

B

T

Fig. P3.9 and P3.10

6.8 kip · in.

72 in.

C
10.4 kip · in.

3.6 kip · in.

B

48 in.A
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 3.11 Knowing that each of the shafts AB, BC, and CD consist of a solid 
circular rod, determine (a) the shaft in which the maximum 
shearing stress occurs, (b) the magnitude of that stress.

Fig. P3.11 and P3.12

D

dCD � 21 mm

B

dBC � 18 mm
C

60 N · m

48 N · m

A
dAB � 15 mm

144 N · m

3.12 Knowing that an 8-mm-diameter hole has been drilled through 
each of the shafts AB, BC, and CD, determine (a) the shaft in 
which the maximum shearing stress occurs, (b) the magnitude of 
that stress.

 3.13 Under normal operating conditions, the electric motor exerts a 
torque of 2.4 kN?m on shaft AB. Knowing that each shaft is solid, 
determine the maximum shearing stress in (a) shaft AB, (b) shaft BC, 
(c) shaft CD.

Fig. P3.13

54 mm

46 mm

46 mm

40 mm

A

B

C
D

E

TB = 1.2 kN · m
TC = 0.8 kN · m

TD = 0.4 kN · m

3.14 In order to reduce the total mass of the assembly of Prob. 3.13, a 
new design is being considered in which the diameter of shaft BC
will be smaller. Determine the smallest diameter of shaft BC for 
which the maximum value of the shearing stress in the assembly 
will not be increased.

 3.15 The allowable shearing stress is 15 ksi in the 1.5-in.-diameter 
steel rod AB and 8 ksi in the 1.8-in.-diameter brass rod BC. 
Neglecting the effect of stress concentrations, determine the larg-
est torque T that can be applied at A.

3.16 The allowable shearing stress is 15 ksi in the steel rod AB and 
8 ksi in the brass rod BC. Knowing that a torque of magnitude 
T 5 10 kip?in. is applied at A, determine the required diameter 
of (a) rod AB, (b) rod BC. Fig. P3.15 and P3.16

B

C

Brass

T
A

Steel
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3.17 The solid shaft shown is formed of a brass for which the allowable 
shearing stress is 55 MPa. Neglecting the effect of stress concen-
trations, determine the smallest diameters dAB and dBC for which 
the allowable shearing stress is not exceeded.

 3.18 Solve Prob. 3.17 assuming that the direction of TC is reversed.

 3.19 The solid rod AB has a diameter dAB 5 60 mm and is made of a 
steel for which the allowable shearing stress is 85 MPa. The pipe 
CD, which has an outer diameter of 90 mm and a wall thickness 
of 6 mm, is made of an aluminum for which the allowable shear-
ing stress is 54 MPa. Determine the largest torque T that can be 
applied at A.

Fig. P3.17 and P3.18

750 mm

600 mm

TB � 1200 N · m

TC � 400 N · m

dAB B

A

CdBC

Fig. P3.19 and P3.20

D

A

B

90 mm

dAB
C

T

3.20 The solid rod AB has a diameter dAB 5 60 mm. The pipe CD has 
an outer diameter of 90 mm and a wall thickness of 6 mm. Know-
ing that both the rod and the pipe are made of steel for which the 
allowable shearing stress is 75 MPa, determine the largest torque 
T that can be applied at A.

 3.21 A torque of magnitude T 5 1000 N?m is applied at D as shown. 
Knowing that the allowable shearing stress is 60 MPa in each 
shaft, determine the required diameter of (a) shaft AB, (b) shaft 
CD.

 3.22 A torque of magnitude T 5 1000 N?m is applied at D as shown. 
Knowing that the diameter of shaft AB is 56 mm and that the 
diameter of shaft CD is 42 mm, determine the maximum shear-
ing stress in (a) shaft AB, (b) shaft CD.

Fig. P3.21 and P3.22

A

100 mm

40 mmC

B
D

T � 1000 N · m
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 3.23 Under normal operating conditions a motor exerts a torque of 
magnitude TF at F. The shafts are made of a steel for which the 
allowable shearing stress is 12 ksi and have diameters 
dCDE 5 0.900 in. and dFGH 5 0.800 in. Knowing that rD 5 6.5 in. 
and rG 5 4.5 in., determine the largest allowable value of TF .

Fig. P3.23 and P3.24

F

TE
H

E

A

B
D

C

GrG

rDTF

3.24 Under normal operating conditions a motor exerts a torque of mag-
nitude TF 5 1200 lb?in. at F. Knowing that rD 5 8 in., rG 5 3 in., and 
the allowable shearing stress is 10.5 ksi in each shaft, determine the 
required diameter of (a) shaft CDE, (b) shaft FGH.

 3.25 The two solid shafts are connected by gears as shown and are 
made of a steel for which the allowable shearing stress is 7000 
psi. Knowing the diameters of the two shafts are, respectively, 
dBC 5 1.6 in. and dEF 5 1.25 in. determine the largest torque TC 
that can be applied at C.

B4 in.

2.5 in.

E

G

H

A

D

F

C TC

TF

Fig. P3.25 and P3.26

3.26 The two solid shafts are connected by gears as shown and are 
made of a steel for which the allowable shearing stress is 8500 psi. 
Knowing that a torque of magnitude TC 5 5 kip?in. is applied at 
C and that the assembly is in equilibrium, determine the required 
diameter of (a) shaft BC, (b) shaft EF.
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3.27 For the gear train shown, the diameters of the three solid shafts are:

  dAB 5 20 mm  dCD 5 25 mm  dEF 5 40 mm

  Knowing that for each shaft the allowable shearing stress is 
60 MPa, determine the largest torque T that can be applied.

 3.28 A torque T 5 900 N?m is applied to shaft AB of the gear train 
shown. Knowing that the allowable shearing stress is 80 MPa, 
determine the required diameter of (a) shaft AB, (b) shaft CD, 
(c) shaft EF.

 3.29 While the exact distribution of the shearing stresses in a hollow-
cylindrical shaft is as shown in Fig. P3.29a, an approximate 
value can be obtained for tmax by assuming that the stresses are 
uniformly distributed over the area A of the cross section, as 
shown in Fig. P3.29b, and then further assuming that all of the 
elementary shearing forces act at a distance from O equal to 
the mean radius 1

2 1c1 1 c22  of the cross section. This approxi-
mate value is t0 5 T/Arm, where T is the applied torque. Deter-
mine the ratio tmax /t0 of the true value of the maximum 
shearing stress and its approximate value t0 for values of c1/c2 
respectively equal to 1.00, 0.95, 0.75, 0.50, and 0. 

 3.30 (a) For a given allowable shearing stress, determine the ratio 
T/w of the maximum allowable torque T and the weight per 
unit length w for the hollow shaft shown. (b) Denoting by (T/w)0 
the value of this ratio for a solid shaft of the same radius c2, 
express the ratio T/w for the hollow shaft in terms of (T/w)0 and 
c1/c2 .

Fig. P3.27 and P3.28

B

C

75 mm

A

D

E

F

30 mm

90 mm

T

30 mm

Fig. P3.29

O O
c1

max

r

�

�

m
c2

0

(a) (b)

Fig. P3.30

c2

c1
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3.2 Angle of Twist in the Elastic Range 167

3.2  ANGLE OF TWIST IN THE 
ELASTIC RANGE

In this section, a relationship will be determined between the angle of 
twist f of a circular shaft and the torque T exerted on the shaft. The entire 
shaft is assumed to remain elastic. Considering first the case of a shaft of 
length L with a uniform cross section of radius c subjected to a torque T
at its free end (Fig. 3.20), recall that the angle of twist f and the maximum 
shearing strain gmax are related as

gmax 5
cf

L
 (3.3)

But in the elastic range, the yield stress is not exceeded anywhere in the 
shaft. Hooke’s law applies, and gmax 5 tmaxyG. Recalling Eq. (3.9),

gmax 5
tmax

G
5

Tc

JG
 (3.14)

Equating the right-hand members of Eqs. (3.3) and (3.14) and solving 
for f, write

f 5
TL

JG
 (3.15)

where f is in radians. The relationship obtained shows that, within the 
elastic range, the angle of twist f is proportional to the torque T applied to 
the shaft. This agrees with the discussion at the beginning of Sec. 3.1B.
 Equation (3.15) provides a convenient method to determine the 
modulus of rigidity. A cylindrical rod of a material is placed in a torsion 
testing machine (Photo 3.3). Torques of increasing magnitude T are applied 
to the specimen, and the  corresponding values of the angle of twist f in 
a length L of the specimen are recorded. As long as the yield stress of the 
material is not exceeded, the points obtained by plotting f against T fall 
on a straight line. The slope of this line represents the quantity JGyL, from 
which the modulus of rigidity G can be computed.

Fig. 3.20 Torque applied to fixed end shaft 
resulting in angle of twist f.

L

T
c

�

�max

Photo 3.3 Tabletop torsion testing machine.
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168 Torsion

Concept Application 3.2

What torque should be applied to the end of the shaft of Concept 
Application 3.1 to produce a twist of 28? Use the value G 5 77 GPa for the 
modulus of rigidity of steel.
 Solving Eq. (3.15) for T, write

T 5
JG

L
f

Substituting the given values

 G 5 77 3 109 Pa        L 5 1.5 m

 f 5 28a2p rad

3608
b 5 34.9 3 1023 rad

and recalling that, for the given cross section,

J 5 1.021 3 1026 m4

we have

 T 5
JG
L

 f 5
11.021 3 1026 m42 Ê177 3 109 Pa2

1.5 m
 134.9 3 1023 rad2

 T 5 1.829 3 103 N?m 5 1.829 kN?m

1.5 m

40 mm

60 mmT

Fig. 3.15 (repeated) Hollow, fixed-end 
shaft having torque T applied at end.

Concept Application 3.3

What angle of twist will create a shearing stress of 70 MPa on the inner 
surface of the hollow steel shaft of Concept Applications 3.1 and 3.2?
 One method for solving this problem is to use Eq. (3.10) to find 
the torque T corresponding to the given value of t and Eq. (3.15) to 
determine the angle of twist f corresponding to the value of T just 
found.
 A more direct solution is to use Hooke’s law to compute the shear-
ing strain on the inner surface of the shaft:

gmin 5
tmin

G
5

70 3 106 Pa

77 3 109 Pa
5 909 3 1026

Recalling Eq. (3.2), which was obtained by expressing the length of arc 
AA9 in Fig. 3.13c in terms of both g and f, we have

f 5
Lgmin

c1
5

1500 mm

20 mm
 1909 3 10262 5 68.2 3 1023 rad

To obtain the angle of twist in degrees, write

f 5 168.2 3 1023 rad2a 3608

2p rad
b 5 3.918
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3.2 Angle of Twist in the Elastic Range 169

 Equation (3.15) can be used for the angle of twist only if the shaft is 
homogeneous (constant G), has a uniform cross section, and is loaded 
only at its ends. If the shaft is subjected to torques at locations other than 
its ends or if it has several portions with various cross sections and pos-
sibly of different materials, it must be divided into parts that satisfy the 
required conditions for Eq. (3.15). For shaft AB shown in Fig. 3.21, four 
different parts should be considered: AC, CD, DE, and EB. The total angle 
of twist of the shaft (i.e., the angle through which end A rotates with 
respect to end B) is obtained by algebraically adding the angles of twist of 
each component part. Using the internal torque Ti , length Li , cross-sec-
tional polar moment of inertia Ji , and modulus of rigidity Gi , correspond-
ing to part i, the total angle of twist of the shaft is

 f 5 a
i

 
Ti Li

Ji Gi
 (3.16)

The internal torque Ti in any given part of the shaft is obtained by passing 
a section through that part and drawing the free-body diagram of the por-
tion of shaft located on one side of the section. This procedure is applied 
in Sample Prob. 3.3.
 For a shaft with a variable circular cross section, as shown in 
Fig. 3.22, Eq. (3.15) is applied to a disk of thickness dx. The angle by which 
one face of the disk rotates with respect to the other is

df 5
T dx

JG

where J is a function of x. Integrating in x from 0 to L, the total angle of 
twist of the shaft is

 f 5 #
L

0

 
T dx

JG
 (3.17)

 The shafts shown in Figs. 3.15 and 3.20 both had one end attached 
to a fixed support. In each case, the angle of twist f was equal to the angle 
of rotation of its free end. When both ends of a shaft rotate, however, the 
angle of twist of the shaft is equal to the angle through which one end of 
the shaft rotates with respect to the other. For example, consider the 
assembly shown in Fig. 3.23a, consisting of two elastic shafts AD and BE, 
each of length L, radius c, modulus of rigidity G, and attached to gears 
meshed at C. If a torque T is applied at E (Fig. 3.23b), both shafts will be 
twisted. Since the end D of shaft AD is fixed, the angle of twist of AD is 
measured by the angle of rotation fA of end A. On the other hand, since 
both ends of shaft BE rotate, the angle of twist of BE is equal to the differ-
ence between the angles of rotation fB and fE (i.e., the angle of twist is 
equal to the angle through which end E rotates with respect to end B). 
This relative angle of rotation, fE/B , is

fEyB 5 fE 2 fB 5
TL
JG

Fig. 3.21 Shaft with multiple cross-section 
dimensions and multiple loads.

TC

TD

TA

TB

A

C

B

E

D

Fig. 3.22 Torqued shaft with variable cross section.

x

A

dx
B

L

T'

T

Fig. 3.23 (a) Gear assembly for transmitting 
torque from point E to point D. (b) Angles of twist 
at disk E, gear B, and gear A.

(a)

(b)

C''

C

B

L

T

rB

E�

B�

A rA

C

Fixed end

B

L

A

D

A�

C'

E

E

Fixed support

D
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170 Torsion

3.3  STATICALLY 
INDETERMINATE SHAFTS

There are situations where the internal torques cannot be determined 
from statics alone. In such cases, the external torques (i.e., those exerted 
on the shaft by the supports and connections) cannot be determined from 
the free-body diagram of the entire shaft. The equilibrium equations must 
be complemented by relations involving the deformations of the shaft and 
obtained by the geometry of the problem. Because statics is not sufficient 
to determine external and internal torques, the shafts are statically inde-
terminate. The following Concept Application as well as Sample Prob. 3.5 
show how to analyze statically indeterminate shafts.

Concept Application 3.4

For the assembly of Fig. 3.23, knowing that rA 5 2rB, determine the angle 
of rotation of end E of shaft BE when the torque T is applied at E.
 First determine the torque TAD exerted on shaft AD. Observing 
that equal and opposite forces F and F9 are applied on the two gears 
at C (Fig. 3.24) and recalling that rA 5 2rB, the torque exerted on shaft 
AD is twice as large as the torque exerted on shaft BE. Thus, TAD 5 2T.
 Since the end D of shaft AD is fixed, the angle of rotation fA of 
gear A is equal to the angle of twist of the shaft and is

fA 5
TAD 

L

JG
5

2TL

JG

Since the arcs CC9 and CC 0 in Fig. 3.23b must be equal, rAfA 5 rBfB. So,

fB 5 1rAyrB2fA 5  2fA

Therefore,

fB 5 2fA 5
4TL

JG

Next, consider shaft BE. The angle of twist of the shaft is equal to the 
angle fEyB through which end E rotates with respect to end B. Thus,

fEyB 5
TBEL

JG
5

TL
JG

The angle of rotation of end E is obtained by

 fE 5 fB 1 fEyB

 5
4TL
JG

1
TL
JG

5
5TL
JG

Fig. 3.24 Gear teeth forces for gears A 
and B.

A
B

C

F

F'

rA rB
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3.3 Statically Indeterminate Shafts 171

Concept Application 3.5

A circular shaft AB consists of a 10-in.-long, 7
8-in.-diameter steel cylin-

der, in which a 5-in.-long, 5
8-in.-diameter cavity has been drilled from 

end B. The shaft is attached to fixed supports at both ends, and a 
90 lb?ft torque is applied at its midsection (Fig. 3.25a). Determine the 
torque exerted on the shaft by each of the supports.
 Drawing the free-body diagram of the shaft and denoting by TA 
and TB the torques exerted by the supports (Fig. 3.25b), the equilib-
rium equation is

TA 1 TB 5 90 lb?ft

Since this equation is not sufficient to determine the two unknown 
torques TA and TB, the shaft is statically indeterminate.
 However, TA and TB can be determined if we observe that the total 
angle of twist of shaft AB must be zero, since both of its ends are 
restrained. Denoting by f1 and f2, respectively, the angles of twist of 
portions AC and CB, we write

f 5 f1 1 f2 5 0

From the free-body diagram of a small portion of shaft including end 
A (Fig. 3.25c), we note that the internal torque T1 in AC is equal to TA; 
from the free-body diagram of a small portion of shaft including end 
B (Fig. 3.25d), we note that the internal torque T2 in CB is equal to TB. 
Recalling Eq. (3.15) and observing that portions AC and CB of the shaft 
are twisted in opposite senses, write

f 5 f1 1 f2 5
TAL1

J1G
2

TBLÊ2

J2G
5 0

Solving for TB,

TB 5
L1 

J2

L2 
J1

 TA

Substituting the numerical data gives

 L1 5 L2 5 5 in.

  J1 5
1
2p 1 7

16 in.24 5 57.6 3 1023 in4

  J2 5
1
2p 3 1 7

16 in.24 2 1 5
16 in.24 4 5 42.6 3 1023 in4

Therefore,

TB 5 0.740 TA

Substitute this expression into the original equilibrium equation:

1.740 TA 5 90 lb?ft

TA 5 51.7 lb?ft  TB 5 38.3 lb?ft

Fig. 3.25 (a) Shaft with central 
applied torque and fixed ends. 
(b) Free-body diagram of shaft AB. 
(c) Free-body diagrams for solid and 
hollow segments.

5 in.

5 in.

90 lb · ft
B

A

(a)

(b)

(c)

(d)

TBT1
T2

TA

TB

TA

A

A

C

B

B

90 lb · ft
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172 Torsion

Sample Problem 3.3
The horizontal shaft AD is attached to a fixed base at D and is sub-
jected to the torques shown. A 44-mm-diameter hole has been drilled 
into portion CD of the shaft. Knowing that the entire shaft is made of 
steel for which G 5 77 GPa, determine the angle of twist at end A.

B

D

C

A
0.2 m

0.4 m

0.6 m

60 mm

30 mm

250 N · m

2000 N · m44 mm

Fig. 1 Free-body diagram for finding 
internal torque in segment AB.

A x

TAB

250 N · m

(continued)

B

A

TBC

2000 N · m

250 N · m

x

Fig. 2 Free-body diagram for finding 
internal torque in segment BC.

STRATEGY: Use free-body diagrams to determine the torque in 
each shaft segment AB, BC, and CD. Then use Eq. (3.16) to deter-
mine the angle of twist at end A.

MODELING: 

 Passing a section through the shaft between A and B (Fig. 1), we 
find

©Mx 5 0: 1250 N?m2 2 TAB 5 0    TAB 5 250 N?m

Passing now a section between B and C (Fig. 2) we have

©Mx 5 0: 1250 N?m2 1 12000 N?m2 2 TBC 5 0   TBC 5 2250 N?m

Since no torque is applied at C,

TCD 5 TBC 5 2250 N?m
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3.3 Statically Indeterminate Shafts 173

ANALYSIS: 

Polar Moments of Inertia
Using Fig. 3

 JAB 5
p

2
 c4 5

p

2
 10.015 m24 5 0.0795 3 1026 m4

 JBC 5
p

2
 c4 5

p

2
 10.030 m24 5 1.272 3 1026 m4

  JCD 5
p

2
 1c2

4 2 c1
42 5

p

2
3 10.030 m24 2 10.022 m24 4 5 0.904 3 1026 m4

 Angle of Twist.  From Fig. 4, using Eq. (3.16) and recalling that 
G 5 77 GPa for the entire shaft, we have

fA 5 a
i

 
TiLi

JiG
5

1

G
aTABLAB

JAB
1

TBCLBC

JBC
1

TCDLCD

JCD
b

fA 5
1

77 GPa
c 1250 N?m2 Ê10.4 m2

0.0795 3 1026 m4 1
122502 Ê10.22

1.272 3 1026 1
122502 Ê10.62

0.904 3 1026 d
 5 0.01634 1 0.00459 1 0.01939 5 0.0403 rad

 fA 5 10.0403 rad2 3608

2p rad
 fA 5 2.318  b

Sample Problem 3.4
Two solid steel shafts are connected by the gears shown. Knowing that 
for each shaft G 5 11.2 3 106 psi and the allowable shearing stress is 
8 ksi, determine (a) the largest torque T0 that may be applied to end 
A of shaft AB and (b) the corresponding angle through which end A of 
shaft AB rotates.

STRATEGY: Use the free-body diagrams and kinematics to deter-
mine the relation between the torques and twist in each shaft seg-
ment, AB and CD. Then use the allowable stress to determine the 
torque that can be applied and Eq. (3.15) to determine the angle of 
twist at end A.

24 in.

0.75 in.

36 in.

0.875 in.
2.45 in.

A T0

D

C

B

1 in.

(continued)

Fig. 4 Representation of angle of twist 
at end A.

C

B
A

A

D

�

22 mm

15 mm
30 mm

30 mm

AB BC CD

Fig. 3 Dimensions for three 
cross sections of shaft.
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174 Torsion

MODELING: Denoting by F the magnitude of the tangential force 
between gear teeth (Fig. 1), we have

Gear B. oMB 5 0:  F10.875 in.2 2 T0 5 0  TCD 5 2.8T0 (1)

Gear C. oMC 5 0:  F12.45 in.2 2 TCD 5 0 

 Using kinematics with Fig. 2, we see that the peripheral motions 
of the gears are equal and write

 rBfB 5 rC fC        fB 5 fC

rC

rB
5 fC

2.45 in.

0.875 in.
5 2.8fC (2)

ANALYSIS: 

 a. Torque T0.  For shaft AB, TAB 5 T0 and c 5 0.375 in. (Fig. 3); 
considering maximum permissible shearing stress, we write

 t 5
TAB c

J
        8000 psi 5

T010.375 in.2
1
2p10.375 in.24  T0 5 663 lb?in. ◀

 For shaft CD using Eq. (1) we have TCD 5 2.8T0 (Fig. 4). With 
c 5 0.5 in. and tall 5 8000 psi, we write

 t 5
TCD c

J
         8000 psi 5

2.8T010.5 in.2
1
2p10.5 in.24   T0 5 561 lb?in. ◀

 The maximum permissible torque is the smaller value obtained 
for T0.
 T0 5 561 lb?in. ◀

 b. Angle of Rotation at End A.  We first compute the angle of 
twist for each shaft.
 Shaft AB.  For TAB 5 T0 5 561 lb?in., we have

fAyB 5
TABL

JG
5

1561 lb?in.2 Ê124 in.2
1
2p 10.375 in.24111.2 3 106 psi2 5 0.0387 rad 5 2.228

 Shaft CD.  TCD 5 2.8T0 5 2.8(561 lb?in.)

fCyD 5
TCDL

JG
5

2.81561 lb?in.2 Ê136 in.2
1
2p10.5 in.24111.2 3 106 psi2 5 0.0514 rad 5 2.958

 Since end D of shaft CD is fixed, we have fC 5 fC/D 5 2.958. Using 
Eq. (2) with Fig. 5, we find the angle of rotation of gear B is

fB 5 2.8fC 5 2.812.9582 5 8.268

For end A of shaft AB, we have

 fA 5 fB 1 fAyB 5 8.268 1 2.228 fA 5 10.488 ◀

C

TCD

F

F

rB � 0.875 in.
rC � 2.45 in.

B

TAB � T0

Fig. 1 Free-body diagrams of gears B and C.

36 in.

TCD

TCD

c � 0.5 in.

D

C

Fig. 4 Free-body diagram of shaft CD.

�C

C B

�B

rB � 0.875 in.
rC � 2.45 in.

Fig. 2 Angle of twists for gears B and C. 

Fig. 3 Free-body diagram of shaft AB.

24 in.
B

c � 0.375 in. A

TAB � T0

TAB � T0

Fig. 5 Angle of twist results.

C

B

D

A

�A � 10.48�

�B � 8.26�

�C � 2.95�
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3.3 Statically Indeterminate Shafts 175

Sample Problem 3.5
A steel shaft and an aluminum tube are connected to a fixed support 
and to a rigid disk as shown in the cross section. Knowing that the 
initial stresses are zero, determine the maximum torque T0 that can be 
applied to the disk if the allowable stresses are 120 MPa in the steel 
shaft and 70 MPa in the aluminum tube. Use G 5 77 GPa for steel and 
G 5 27 GPa for aluminum.

50 mm76 mm

8 mm

500 mm

Fig. 1 Free-body diagram of end cap. 

T1

T2

T0

(continued)

STRATEGY: We know that the applied load is resisted by both the 
shaft and the tube, but we do not know the portion carried by each 
part. Thus we need to look at the deformations. We know that both the 
shaft and tube are connected to the rigid disk and that the angle of 
twist is therefore the same for each. Once we know the portion of the 
torque carried by each part, we can use the allowable stress for each 
to determine which one governs and use this to determine the maxi-
mum torque.

MODELING: 
 We first draw a free-body diagram of the disk (Fig. 1) and find

 T0 5 T1 1 T2  (1)

 Knowing that the angle of twist is the same for the shaft and tube, 
we write

f1 5 f2:    T1L1

J1G1
5

T2L2

J2G2

T1 10.5 m2
12.003 3 1026 m42 127 GPa2 5

T2 10.5 m2
10.614 3 1026 m42 177 GPa2

 T2 5 0.874T1 (2)
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176 Torsion

ANALYSIS: We need to determine which part reaches its allowable 
stress first, and so we arbitrarily assume that the requirement talum # 
70 MPa is critical. For the aluminum tube in Fig. 2, we have

T1 5
talum 

J1

c1
5
170 MPa2 12.003 3 1026 m42

0.038 m
5 3690 N?m

Using Eq. (2), compute the corresponding value T2 and then find the 
maximum shearing stress in the steel shaft of Fig. 3.

T2 5 0.874T1 5 0.874 136902 5 3225 N?m

tsteel 5
T2c2

J2
5
13225 N?m2 10.025 m2

0.614 3 1026 m4 5 131.3 MPa

Fig. 2 Torque and angle of twist for 
hollow shaft.

30 mm

0.5 m

T1

1�

�J1 �    �(38 mm)4 � (30 mm)4�2

G1 � 27 GPa
Aluminum

� 2.003 	 10�6m4

38 mm

Fig. 3 Torque and angle of twist for 
solid shaft.

25 mm

T2

2�

�J1 �    �(25 mm)4�2

G1 � 77 GPa
Steel

� 0.614 	 10�6m4

0.5 m

Note that the allowable steel stress of 120 MPa is exceeded; the 
assumption was wrong. Thus, the maximum torque T0 will be obtained 
by making tsteel 5 120 MPa. Determine the torque T2:

T2 5
tsteel J2

c2
5
1120 MPa2  10.614 3 1026

  m42
0.025 m

5 2950 N?m

From Eq. (2), we have

2950 N?m 5 0.874T1  T1 5 3375 N?m 

Using Eq. (1), we obtain the maximum permissible torque:

T0 5 T1 1 T2 5 3375 N?m 1 2950 N?m

 T0 5 6.325 kN?m ◀

REFLECT and THINK: This example illustrates that each part must 
not exceed its maximum allowable stress. Since the steel shaft reaches 
its allowable stress level first, the maximum stress in the aluminum 
shaft is below its maximum.
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Problems
 3.31 Determine the largest allowable diameter of a 3-m-long steel rod 

(G 5 77.2 GPa) if the rod is to be twisted through 308 without 
exceeding a shearing stress of 80 MPa.

 3.32 The ship at A has just started to drill for oil on the ocean floor at 
a depth of 5000 ft. Knowing that the top of the 8-in.-diameter 
steel drill pipe (G 5 11.2 3 106 psi) rotates through two complete 
revolutions before the drill bit at B starts to operate, determine 
the maximum shearing stress caused in the pipe by torsion.

 3.33 (a) For the solid steel shaft shown, determine the angle of twist 
at A. Use G 5 11.2 3 106 psi. (b) Solve part a, assuming that the 
steel shaft is hollow with a 1.5-in. outer radius and a 0.75-in. 
inner radius.

Fig. P3.32

5000 ft

A

B

3.34 (a) For the aluminum pipe shown (G 5 27 GPa), determine the 
torque T0 causing an angle of twist of 2º. (b) Determine the angle 
of twist if the same torque T0 is applied to a solid cylindrical shaft 
of the same length and cross-sectional area.

Fig. P3.33

A

3 ft

1.5 in.

T = 60 kip · in. 

B

Fig. P3.34

2.5 m

40 mm
50 mm

A

B

T0
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 3.35 The electric motor exerts a 500 N?m-torque on the aluminum 
shaft ABCD when it is rotating at a constant speed. Knowing that 
G 5 27 GPa and that the torques exerted on pulleys B and C are 
as shown, determine the angle of twist between (a) B and C, 
(b) B and D.

Fig. P3.35

300 N · m 

A

200 N · m 

1 m

1.2 m

0.9 m

44 mm

40 mm

B

C

48 mm

D

3.36 The torques shown are exerted on pulleys A and B. Knowing that 
the shafts are solid and made of steel (G 5 77.2 GPa), determine the 
angle of twist between (a) A and B, (b) A and C.

 3.37 The aluminum rod BC (G 5 26 GPa) is bonded to the brass 
rod AB (G 5 39 GPa). Knowing that each rod is solid and has 
a diameter of 12 mm, determine the angle of twist (a) at B, 
(b) at C.

Fig. P3.36

30 mm

46 mm

C

A

B

TA � 300 N · m

TB � 400 N · m

0.9 m

0.75 m

 3.38 The aluminum rod AB (G 5 27 GPa) is bonded to the brass rod 
BD (G 5 39 GPa). Knowing that portion CD of the brass rod is 
hollow and has an inner diameter of 40 mm, determine the angle 
of twist at A.

Fig. P3.37

Brass

200 mm

300 mm

A

B

C

Aluminum

100 N · m

Fig. P3.38

400 mm

375 mm

250 mm

D

60 mm

36 mm

TA � 800 N · m

TB � 1600 N · m

C

B

A
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3.39 The solid spindle AB has a diameter ds 5 1.75 in. and is made of 
a steel with G 5 11.2 3 106 psi and tall 5 12 ksi, while sleeve CD
is made of a brass with G 5 5.6 3 106 psi and tall 5 7 ksi. Deter-
mine (a) the largest torque T that can be applied at A if the given 
allowable stresses are not to be exceeded and if the angle of twist 
of sleeve CD is not to exceed 0.3758, (b) the corresponding angle 
through which end A rotates.

Fig. P3.39 and P3.40

4 in.

8 in.

ds

t � in.1
4

3 in.

D

C

A

B

T

3.42 Two solid steel shafts, each of 30-mm diameter, are connected by 
the gears shown. Knowing that G 5 77.2 GPa, determine the 
angle through which end A rotates when a torque of magnitude 
T 5 200 N?m is applied at A.

Fig. P3.41

T
E

F B

A

4.5 in.

6 in.

12 in.

8 in.

6 in.

D

C

Fig. P3.42

30 mm

E

60 mm

30 mm

90 mm

0.5 m

0.1 m

0.2 m

0.4 m

0.2 m

B

D

C

A

T

 3.40 The solid spindle AB has a diameter ds 5 1.5 in. and is made of 
a steel with G 5 11.2 3 106 psi and tall 5 12 ksi, while sleeve CD
is made of a brass with G 5 5.6 3 106 psi and tall 5 7 ksi. 
Determine the largest angle through which end A can be rotated.

 3.41 Two shafts, each of 7
8-in. diameter, are connected by the gears 

shown. Knowing that G 5 11.2 3106 psi and that the shaft at F is 
fixed, determine the angle through which end A rotates when a 
1.2 kip?in. torque is applied at A.
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3.43 A coder F, used to record in digital form the rotation of shaft A, 
is connected to the shaft by means of the gear train shown, which 
consists of four gears and three solid steel shafts each of 
diameter d. Two of the gears have a radius r and the other two a 
radius nr. If the rotation of the coder F is prevented, determine 
in terms of T, l, G, J, and n the angle through which end A rotates.

Fig. P3.43

F

ED
nr r

C
l

TA

B

A

nr

l

l

r

 3.44 For the gear train described in Prob. 3.43, determine the angle 
through which end A rotates when T 5 5 lb·in., l 5 2.4 in., 
d 5 1

16 in., G 5 11.2 3 106 psi, and n 5 2.

 3.45 The design specifications of a 1.2-m-long solid circular transmis-
sion shaft require that the angle of twist of the shaft not exceed 
48 when a torque of 750 N?m is applied. Determine the required 
diameter of the shaft, knowing that the shaft is made of a steel 
with an allowable shearing stress of 90 MPa and a modulus of 
rigidity of 77.2 GPa.

 3.46 and 3.47 The solid cylindrical rod BC of length L 5 24 in. is attached 
to the rigid lever AB of length a 515 in. and to the support at C. 
Design specifications require that the displacement of A not 
exceed 1 in. when a 100-lb force P is applied at A. For the material 
indicated, determine the required diameter of the rod.

3.46 Steel: tall 5 15 ksi, G 5 11.2 3 106 psi.
3.47 Aluminum: tall 5 10 ksi, G 5 3.9 3 106 psi.

Fig. P3.46 and P3.47

A

L
a

P

B

C
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 3.48 The design of the gear-and-shaft system shown requires that steel 
shafts of the same diameter be used for both AB and CD. It is 
further required that tmax # 60 MPa and that the angle fD through 
which end D of shaft CD rotates not exceed 1.58. Knowing that 
G 5 77.2 GPa, determine the required diameter of the shafts.

 3.49 The electric motor exerts a torque of 800 N?m on the steel shaft 
ABCD when it is rotating at a constant speed. Design specifica-
tions require that the diameter of the shaft be uniform from 
A to D and that the angle of twist between A and D not exceed 
1.58. Knowing that tmax # 60 MPa and G 5 77.2 GPa, determine 
the minimum diameter shaft that can be used.

Fig. P3.48

A

100 mm

40 mmC

B
D

T 5 1000 N · m

400 mm

600 mm

Fig. P3.49

A

0.3 m

0.6 m

0.4 m C

B

500 N · m

300 N · m

D

 3.50 A hole is punched at A in a plastic sheet by applying a 600-N force 
P to end D of lever CD, which is rigidly attached to the solid cylin-
drical shaft BC. Design specifications require that the displace-
ment of D should not exceed 15 mm from the time the punch 
first touches the plastic sheet to the time it actually penetrates it. 
Determine the required diameter of shaft BC if the shaft is made 
of a steel with G 5 77.2 GPa and tall 5 80 MPa. Fig. P3.50

500 mm

300 mm
C

D

B

P

A

bee98233_ch03_146-208.indd   181bee98233_ch03_146-208.indd   181 11/15/13   11:41 AM11/15/13   11:41 AM



182

3.51 The solid cylinders AB and BC are bonded together at B and are 
attached to fixed supports at A and C. Knowing that the modulus 
of rigidity is 3.7 3 106 psi for aluminum and 5.6 3 106 psi for 
brass, determine the maximum shearing stress (a) in cylinder AB, 
(b) in cylinder BC.

 3.52 Solve Prob. 3.51, assuming that cylinder AB is made of steel, for 
which G 5 11.2 3 106 psi.

 3.53 The composite shaft shown consists of a 0.2-in.-thick brass jacket 
(G 5 5.6 3 106 psi) bonded to a 1.2-in.-diameter steel core 
(Gsteel 5 11.2 3 106 psi). Knowing that the shaft is subjected to 
5 kip?in. torques, determine (a) the maximum shearing stress in 
the brass jacket, (b) the maximum shearing stress in the steel 
core, (c) the angle of twist of end B relative to end A.

Fig. P3.51

18 in.

12 in.

1.5 in.

2.0 in.

A

C

B
T � 12.5 kip · in.

Aluminum

Brass

 3.54 The composite shaft shown consists of a 0.2-in.-thick brass jacket 
(G 5 5.6 3 106 psi) bonded to a 1.2-in.-diameter steel core 
(Gsteel 5 11.2 3 106 psi). Knowing that the shaft is being subjected 
to the torques shown, determine the largest angle through which 
it can be twisted if the following allowable stresses are not to be 
exceeded: tsteel 5 15 ksi and tbrass 5 8 ksi.

 3.55 Two solid steel shafts (G 5 77.2 GPa) are connected to a coupling 
disk B and to fixed supports at A and C. For the loading shown, 
determine (a) the reaction at each support, (b) the maximum 
shearing stress in shaft AB, (c) the maximum shearing stress in 
shaft BC.

Fig. P3.53 and P3.54
0.2 in.

Steel core

Brass jacket

6 ft

1.2 in.

T

T

A

B

Fig. P3.55

250 mm

38 mm

1.4 kN · m
50 mm

C 
200 mm

B

A

3.56 Solve Prob. 3.55, assuming that the shaft AB is replaced by a hollow 
shaft of the same outer diameter and 25-mm inner diameter.
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 3.57 and 3.58 Two solid steel shafts are fitted with flanges that are then 
connected by bolts as shown. The bolts are slightly undersized 
and permit a 1.58 rotation of one flange with respect to the other 
before the flanges begin to rotate as a single unit. Knowing that 
G 5 77.2 GPa, determine the maximum shearing stress in each 
shaft when a torque of T of magnitude 500 N?m is applied to the 
flange indicated.

   3.57 The torque T is applied to flange B.
3.58 The torque T is applied to flange C.

Fig. P3.57 and P3.58

36 mm

30 mm

900 mm

600 mm

C

B

D

A

T � 500 N · m

 3.59 The steel jacket CD has been attached to the 40-mm-diameter 
steel shaft AE by means of rigid flanges welded to the jacket and 
to the rod. The outer diameter of the jacket is 80 mm and its wall 
thickness is 4 mm. If 500-N?m torques are applied as shown, 
determine the maximum shearing stress in the jacket.

Fig. P3.59

B

C

D
E

A
T

T′

 3.60 A torque T is applied as shown to a solid tapered shaft AB. Show 
by integration that the angle of twist at A is

f 5
7TL

12pGc4 Fig. P3.60

B

L

A
T

2

c

2c
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 3.61 The mass moment of inertia of a gear is to be determined exper-
imentally by using a torsional pendulum consisting of a 6-ft 
steel wire. Knowing that G 5 11.2 3 106 psi, determine the 
diameter of the wire for which the torsional spring constant will 
be 4.27 lb?ft/rad.

 3.62 A solid shaft and a hollow shaft are made of the same material 
and are of the same weight and length. Denoting by n the ratio 
c1/c2, show that the ratio Ts/Th of the torque Ts in the solid shaft to 
the torque Th in the hollow shaft is (a) 211 2 n22/ 11 1 n22 if the 
maximum shearing stress is the same in each shaft, (b) (1 – n2)/
(1 1 n2) if the angle of twist is the same for each shaft.

 3.63 An annular plate of thickness t and modulus G is used to connect 
shaft AB of radius r1 to tube CD of radius r2. Knowing that a 
torque T is applied to end A of shaft AB and that end D of tube
CD is fixed, (a) determine the magnitude and location of the 
maximum shearing stress in the annular plate, (b) show that the 
angle through which end B of the shaft rotates with respect to end 
C of the tube is

fBC 5
T

4pGt
a 1

r2
1

2
1

r2
2

b

Fig. P3.61

Fig. P3.63

C

t

A

L2

L1

B

D

r1

r2

T
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3.4 Design of Transmission Shafts 185

3.4  DESIGN OF TRANSMISSION 
SHAFTS

The principal specifications to be met in the design of a transmission shaft 
are the power to be transmitted and the speed of rotation of the shaft. The 
role of the designer is to select the material and the dimensions of the 
cross section of the shaft so that the maximum shearing stress allowable 
will not be exceeded when the shaft is transmitting the required power at 
the specified speed.
 To determine the torque exerted on the shaft, the power P associ-
ated with the rotation of a rigid body subjected to a torque T is

 P 5 Tv (3.18)

where v is the angular velocity of the body in radians per second (rad/s). 
But v 5 2pf, where f is the frequency of the rotation, (i.e., the number of 
revolutions per second). The unit of frequency is 1 s21 and is called a hertz 
(Hz). Substituting for v into Eq. (3.18),

 P 5 2p f T (3.19)

 When SI units are used with f expressed in Hz and T in N?m, the 
power will be in N?m/s—that is, in watts (W). Solving Eq. (3.19) for T, the 
torque exerted on a shaft transmitting the power P at a frequency of rota-
tion f is

 T 5
P

2p f
 (3.20)

 After determining the torque T to be applied to the shaft and select-
ing the material to be used, the designer carries the values of T and the 
maximum allowable stress into Eq. (3.9).

 
J
c

5
T
tmax

 (3.21)

This also provides the minimum allowable parameter Jyc. When SI units 
are used, T is expressed in N?m, tmax in Pa (or N/m2), and Jyc in m3. For 
a solid circular shaft, J 5

1
2pc4, and Jyc 5

1
2pc3; substituting this value for 

Jyc into Eq. (3.21) and solving for c yields the minimum allowable value 
for the radius of the shaft. For a hollow circular shaft, the critical param-
eter is Jyc2, where c2 is the outer radius of the shaft; the value of this 
parameter may be computed from Eq. (3.11) to determine whether a given 
cross section will be acceptable.
 When U.S. customary units are used, the frequency is usually 
expressed in rpm and the power in horsepower (hp). Before applying 
Eq. (3.20), it is then necessary to convert the frequency into revolutions 
per second (i.e., hertz) and the power into ft?lb/s or in?lb/s using:

1 rpm 5
1

60
 s21 5

1

60
Hz

1 hp 5 550 ft?lb/s 5 6600 in?lb/s
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Concept Application 3.6

What size of shaft should be used for the rotor of a 5-hp motor operat-
ing at 3600 rpm if the shearing stress is not to exceed 8500 psi in the 
shaft?
 The power of the motor in in?lb/s and its frequency in cycles per 
second (or hertz)

P 5 15 hp2a6600 in?lb/s

1 hp
b 5 33,000 in?lb/s

f 5 13600 rpm2  1 Hz

60 rpm
5 60 Hz 5 60 s21

The torque exerted on the shaft is given by Eq. (3.20):

T 5
P

2p f
5

33,000 in?lb/s

2p 160 s212 5 87.54 lb?in.

Substituting for T and tmax into Eq. (3.21),

J
c

5
T
tmax

5
87.54 lb?in.

8500 psi
5 10.30 3 1023 in3

But Jyc 5
1
2pc3 for a solid shaft. Therefore,

 12pc3 5 10.30 3 1023 in3

 c 5 0.1872 in.

 d 5 2c 5 0.374 in.

A 3
8-in. shaft should be used.

When the power is given in in?lb/s, Eq. (3.20) yields the value of the torque 
T in lb?in. Carrying this value of T into Eq. (3.21), and expressing tmax in 
psi, the parameter Jyc is given in in3.

Photo 3.4 In a complex gear train, the maximum allowable 
shearing stress of the weakest member must not be exceeded.
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3.5  STRESS CONCENTRATIONS 
IN CIRCULAR SHAFTS

The torsion formula tmax 5 TcyJ was derived in Sec. 3.1C for a circular 
shaft of uniform cross section. Moreover, the shaft in Sec. 3.1B was loaded 
at its ends through rigid end plates solidly attached to it. However, torques 
are usually applied to the shaft through either flange couplings (Fig. 3.26a) 
or gears connected to the shaft by keys fitted into keyways (Fig. 3.26b). In 
both cases, the distribution of stresses in and near the section where the 
torques are applied should be different from that given by the torsion for-
mula. For example, high concentrations of stresses occur in the neighbor-
hood of the keyway shown in Fig. 3.26b. These localized stresses can be 
determined through experimental stress analysis methods or through the 
use of the mathematical theory of elasticity.

Concept Application 3.7

A shaft consisting of a steel tube of 50-mm outer diameter is to trans-
mit 100 kW of power while rotating at a frequency of 20 Hz. Determine 
the tube thickness that should be used if the shearing stress is not to 
exceed 60 MPa.
 The torque exerted on the shaft is given by Eq. (3.20):

T 5
P

2p f
5

100 3 103 W

2p 120 Hz2 5 795.8 N?m

From Eq. (3.21), the parameter Jyc2 must be at least equal to

 
J
c2

5
T
tmax

5
795.8 N?m

60 3 106 N/m2 5 13.26 3 1026 m3 (1)

But, from Eq. (3.10),

 
J
c2

5
p

2c2
 1c4

2 2 c4
12 5

p

0.050
3 10.02524 2 c4

1 4  (2)

Equating the right-hand members of Eqs. (1) and (2),

10.02524 2 c4
1 5

0.050
p

 113.26 3 10262
 c4

1 5 390.6 3 1029 2 211.0 3 1029 5 179.6 3 1029 m4

 c1 5 20.6 3 1023 m 5 20.6 mm

The corresponding tube thickness is

c2 2 c1 5 25 mm 2 20.6 mm 5 4.4 mm

A tube thickness of 5 mm should be used.

Fig. 3.26 Coupling of shafts using 
(a) bolted flange, (b) slot for keyway.

(a)

(b)
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188 Torsion

 The torsion formula also can be used for a shaft of variable circular 
cross section. For a shaft with an abrupt change in the diameter of its 
cross section, stress concentrations occur near the discontinuity, with 
the highest stresses occurring at A (Fig. 3.27). These stresses can be 
reduced using a fillet, and the maximum value of the shearing stress at 
the fillet is

 tmax 5 K 
Tc

J
 (3.22)

where the stress TcyJ is the stress computed for the smaller-diameter shaft 
and K is a stress concentration factor. Since K depends upon the ratio of 
the two diameters and the ratio of the radius of the fillet to the diameter 
of the smaller shaft, it can be computed and recorded in the form of a 
table or a graph, as shown in Fig. 3.28. However, this procedure for deter-
mining localized shearing stresses is valid only as long as the value of tmax 
given by Eq. (3.22) does not exceed the proportional limit of the material, 
since the values of K plotted in Fig. 3.28 were obtained under the assump-
tion of a linear relation between shearing stress and shearing strain. If 
plastic deformations occur, the result is a maximum stress lower than 
those indicated by Eq. (3.22).

Fig. 3.27 Shafts having two different 
diameters with a fillet at the junction.

D

d

A

Fig. 3.28 Plot of stress concentration factors for 
fillets in circular shafts. (Source: W. D. Pilkey and 
D. F. Pilkey, Peterson’s Stress Concentration Factors, 
3rd ed., John Wiley & Sons, New York, 2008.)

1.8

1.7

1.6

1.5

K

D

r

1.4

1.3

1.2

1.1

1.0
0 0.05 0.10 0.200.15 0.25 0.30

r/d

D
d  � 1.111

D
d  � 1.25

D
d   � 1.666

D
d � 2

D
d  � 2.5

d

bee98233_ch03_146-208.indd   188bee98233_ch03_146-208.indd   188 11/15/13   4:03 PM11/15/13   4:03 PM



3.5 Stress Concentrations in Circular Shafts 189

Sample Problem 3.6

The stepped shaft shown is to rotate at 900 rpm as it transmits power 
from a turbine to a generator. The grade of steel specified in the design 
has an allowable shearing stress of 8 ksi. (a) For the preliminary design 
shown, determine the maximum power that can be transmitted. (b) If 
in the final design the radius of the fillet is increased so that r 5

15
16 in., 

what will be the percent change, relative to the preliminary design, in 
the power that can be transmitted?

3.75 in. 9
16r �     in.

7.50 in.

(continued)

STRATEGY: Use Fig. 3.28 to account for the influence of stress con-
centrations on the torque and Eq. (3.20) to determine the maximum 
power that can be transmitted.

MODELING and ANALYSIS: 

 a. Preliminary Design. Using the notation of Fig. 3.28, we have: 
D 5 7.50 in., d 5 3.75 in., r 5

9
16 in. 5 0.5625 in.

D

d
5

7.50 in.

3.75 in.
5 2  

r
d

5
0.5625 in.

3.75 in.
5 0.15

A stress concentration factor K 5 1.33 is found from Fig. 3.28.

 Torque.  Recalling Eq. (3.22), we write

 tmax 5 K
Tc
J

  T 5
J
c

 
tmax

K
  (1)

where Jyc refers to the smaller-diameter shaft:

Jyc 5
1
2pc3 5

1
2p11.875 in.23 5 10.35 in3

and where

tmax

K
5

8 ksi

1.33
5 6.02 ksi
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190 Torsion

Substituting into Eq. (1), we find (Fig. 1) T 5 (10.35 in3)(6.02 ksi) 5 
62.3 kip?in.

 Power. Since f 5 1900 rpm2  1 Hz

60 rpm
5 15 Hz 5 15 s21, we write

 Pa 5 2p f  T 5 2p(15 s21)(62.3 kip?in.) 5 5.87 3 106 in?lb/s
 Pa 5 (5.87 3 106 in?lb/s)(1 hp/6600 in?lb/s) Pa 5 890 hp ◀

Fig. 1 Allowable torque for design 
having r 5 9/16 in. 

K 6.02 ksi

9
16r in.�Ta 62.3 kip · in.�

� �
max


m


Fig. 2 Allowable torque for design 
having r 5 15/16 in.

K 6.67 ksi

15
16r in.�Tb 69.0 kip · in.�

� �
max


m


 b. Final Design. For r 5
15
16 in. 5 0.9375 in.,

D
d

5 2  
r
d

5
0.9375 in.

3.75 in.
5 0.250  K 5 1.20

Following the procedure used previously, we write (Fig. 2)

tmax

K
5

8 ksi

1.20
5 6.67 ksi

T 5
J
c

 
tmax

K
5 110.35 in32 16.67 ksi2 5 69.0 kip?in.

Pb 5 2p f   T 5 2p115 s212 169.0 kip?in.2 5 6.50 3 106 in?lb/s

Pb 5 16.50 3 106 in?lb/s2 11 hp/6600 in?lb/s2 5 985 hp

 Percent Change in Power 

 Percent change 5 100 
Pb 2 Pa

Pa
5 100 

985 2 890

890
5 111% ◀

REFLECT and THINK: As demonstrated, a small increase in radius 
of the fillet at the transition in the shaft produces a significant change 
in the maximum power transmitted.

bee98233_ch03_146-208.indd   190bee98233_ch03_146-208.indd   190 11/15/13   11:41 AM11/15/13   11:41 AM



191

Problems
 3.64 Determine the maximum shearing stress in a solid shaft of 

1.5-in. diameter as it transmits 75 hp at a speed of (a) 750 rpm, 
(b) 1500 rpm. 

 3.65 Determine the maximum shearing stress in a solid shaft of 
12-mm diameter as it transmits 2.5 kW at a frequency of 
(a) 25 Hz, (b) 50 Hz.

 3.66 Using an allowable shearing stress of 4.5 ksi, design a solid steel 
shaft to transmit 12 hp at a speed of (a) 1200 rpm, (b) 2400 rpm.

 3.67 Using an allowable shearing stress of 50 MPa, design a solid steel 
shaft to transmit 15 kW at a frequency of (a) 30 Hz, (b) 60 Hz. 

 3.68 While a steel shaft of the cross section shown rotates at 120 rpm, 
a stroboscopic measurement indicates that the angle of twist is 
28 in a 4-m length. Using G 5 77.2 GPa, determine the power 
being transmitted.

Fig. P3.68

75 mm30 mm

Fig. P3.71

5 m

60 mm

25 mm

T

T′

Fig. P3.72

3.5 in.

t

 3.69 Determine the required thickness of the 50-mm tubular shaft of 
Concept Application 3.7, if it is to transmit the same power while 
rotating at a frequency of 30 Hz.

3.70 A steel drive shaft is 6 ft long and its outer and inner diameters 
are respectively equal to 2.25 in. and 1.75 in. Knowing that the 
shaft transmits 240 hp while rotating at 1800 rpm, determine 
(a) the maximum shearing stress, (b) the angle of twist of the 
shaft (G 5 11.2 3 106 psi).

 3.71 The hollow steel shaft shown (G 5 77.2 GPa, tall 5 50 MPa) 
rotates at 240 rpm. Determine (a) the maximum power that can 
be transmitted, (b) the corresponding angle of twist of the shaft.

 3.72 A steel pipe of 3.5-in. outer diameter is to be used to transmit a 
torque of 3000 lb?ft without exceeding an allowable shearing 
stress of 8 ksi. A series of 3.5-in.-outer-diameter pipes is available 
for use. Knowing that the wall thickness of the available pipes 
varies from 0.25 in. to 0.50 in. in 0.0625-in. increments, choose 
the lightest pipe that can be used.
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 3.73 The design of a machine element calls for a 40-mm-outer-
diameter shaft to transmit 45 kW. (a) If the speed of rotation is 
720 rpm, determine the maximum shearing stress in shaft a. (b) If 
the speed of rotation can be increased 50% to 1080 rpm, deter-
mine the largest inner diameter of shaft b for which the maxi-
mum shearing stress will be the same in each shaft.

3.74 Three shafts and four gears are used to form a gear train that will 
transmit power from the motor at A to a machine tool at F. (Bear-
ings for the shafts are omitted in the sketch.) The diameter of 
each shaft is as follows: dAB 5 16mm, dCD 5 20 mm, dEF 5 28 mm. 
Knowing that the frequency of the motor is 24 Hz and that the 
allowable shearing stress for each shaft is 75 MPa, determine the 
maximum power that can be transmitted.

 3.75 Three shafts and four gears are used to form a gear train that will 
transmit 7.5 kW from the motor at A to a machine tool at F. (Bear-
ings for the shafts are omitted in the sketch.) Knowing that the 
frequency of the motor is 30 Hz and that the allowable stress for 
each shaft is 60 MPa, determine the required diameter of each 
shaft.

 3.76 The two solid shafts and gears shown are used to transmit 16 hp 
from the motor at A operating at a speed of 1260 rpm, to a 
machine tool at D. Knowing that each shaft has a diameter of 
1 in., determine the maximum shearing stress (a) in shaft AB, 
(b) in shaft CD.

Fig. P3.73

d240 mm

(a) (b)

Fig. P3.74 and P3.75

C
150 mm

60 mm

B

A

F

60 mm
D

150 mm

E

3.77 The two solid shafts and gears shown are used to transmit 16 hp 
from the motor at A operating at a speed of 1260 rpm to a machine 
tool at D. Knowing that the maximum allowable shearing stress 
is 8 ksi, determine the required diameter (a) of shaft AB, (b) of 
shaft CD.

Fig. P3.76 and P3.77

C
5 in.

3 in.

D

A

B
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3.78 The shaft-disk-belt arrangement shown is used to transmit 3 hp 
from point A to point D. (a) Using an allowable shearing stress of 
9500 psi, determine the required speed of shaft AB. (b) Solve part 
a, assuming that the diameters of shafts AB and CD are, respec-
tively, 0.75 in. and 0.625 in.

 3.79 A 5-ft-long solid steel shaft of 0.875-in. diameter is to transmit 
18 hp between a motor and a machine tool. Determine the lowest 
speed at which the shaft can rotate, knowing that G 5 11.2 3 106 
psi, that the maximum shearing stress must not exceed 4.5 ksi, 
and the angle of twist must not exceed 3.58.

 3.80 A 2.5-m-long steel shaft of 30-mm diameter rotates at a frequency 
of 30 Hz. Determine the maximum power that the shaft can 
transmit, knowing that G 5 77.2 GPa, that the allowable shearing 
stress is 50 MPa, and that the angle of twist must not exceed 7.58.

 3.81 The design specifications of a 1.2-m-long solid transmission shaft 
require that the angle of twist of the shaft not exceed 48 when a 
torque of 750 N?m is applied. Determine the required diameter 
of the shaft, knowing that the shaft is made of a steel with an 
allowable shearing stress of 90 MPa and a modulus of rigidity of 
77.2 GPa.

 3.82 A 1.5-m-long tubular steel shaft (G 5 77.2 GPa) of 38-mm outer 
diameter d1 and 30-mm inner diameter d2 is to transmit 100 kW 
between a turbine and a generator. Knowing that the allowable 
shearing stress is 60 MPa and that the angle of twist must not 
exceed 38, determine the minimum frequency at which the shaft 
can rotate.

Fig. P3.84

90 mm
45 mm

r

Fig. P3.82 and P3.83

d1 � 38 mm d2

3.83 A 1.5-m-long tubular steel shaft of 38-mm outer diameter d1 is to 
be made of a steel for which tall 5 65 MPa and G 5 77.2 GPa. 
Knowing that the angle of twist must not exceed 48 when the shaft 
is subjected to a torque of 600 N?m, determine the largest inner 
diameter d2 that can be specified in the design.

 3.84 The stepped shaft shown must transmit 40 kW at a speed of 
720 rpm. Determine the minimum radius r of the fillet if an 
allowable stress of 36 MPa is not to be exceeded.

3.85 The stepped shaft shown rotates at 450 rpm. Knowing that 
r 5 0.5 in., determine the maximum power that can be transmit-
ted without exceeding an allowable shearing stress of 7500 psi.

Fig. P3.78

B

C

D

A

3
4 in.

5
8 in.

1
2r � 4    in.

1
8r 1    in.�

Fig. P3.85

6 in.5 in.

r
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 3.86 Knowing that the stepped shaft shown transmits a torque of 
magnitude T 5 2.50 kip?in., determine the maximum shearing 
stress in the shaft when the radius of the fillet is (a) r 5

1
8 in.,

(b) r 5
3

16 in. 

 3.87 The stepped shaft shown must rotate at a frequency of 50 Hz. 
Knowing that the radius of the fillet is r 5 8 mm and the allowable 
shearing stress is 45 MPa, determine the maximum power that 
can be transmitted.Fig. P3.86

2 in.

1.5 in.
r

T

T'

 3.88 The stepped shaft shown must transmit 45 kW. Knowing that the 
allowable shearing stress in the shaft is 40 MPa and that the 
radius of the fillet is r 5 6 mm, determine the smallest permis-
sible speed of the shaft.

 3.89 A torque of magnitude T 5 200 lb?in. is applied to the stepped 
shaft shown, which has a full quarter-circular fillet. Knowing that 
D 5 1 in., determine the maximum shearing stress in the shaft 
when (a) d 5 0.8 in., (b) d 5 0.9 in.

Fig. P3.87 and P3.88

60 mm

30 mm

T

T'

 3.90 In the stepped shaft shown, which has a full quarter-circular 
fillet, the allowable shearing stress is 80 MPa. Knowing that 
D 5 30 mm, determine the largest allowable torque that can 
be applied to the shaft if (a) d 5 26 mm, (b) d 5 24 mm.

 3.91 In the stepped shaft shown, which has a full quarter-circular 
fillet, D 5 1.25 in. and d 5 1 in. Knowing that the speed of the 
shaft is 2400 rpm and that the allowable shearing stress is 7500 psi, 
determine the maximum power that can be transmitted by the 
shaft.

Fig. P3.89, P3.90 and P3.91

r � �

D

(D d)1
2

d

Full quarter-circular fillet
extends to edge of larger shaft.
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*3.6  PLASTIC DEFORMATIONS 
IN CIRCULAR SHAFTS

Equations (3.10) and (3.15) for the stress distribution and the angle of twist 
for a circular shaft subjected to a torque T assume that Hooke’s law applied 
throughout the shaft. If the yield strength is exceeded in some portion of 
the shaft, or the material involved is a brittle material with a nonlinear 
shearing-stress-strain diagram, these relationships cease to be valid. This 
section will develop a more general method—used when Hooke’s law does 
not apply—to determine the distribution of stresses in a solid circular shaft 
and compute the torque required to produce a given angle of twist.
 No specific stress-strain relationship was assumed in Sec. 3.1B, 
when the shearing strain g varied linearly with the distance r from the 
axis of the shaft (Fig. 3.29). Thus,

 g 5
r

c
 gmax (3.4)

where c is the radius of the shaft.
 Assuming that the maximum value tmax of the shearing stress t has 
been specified, the plot of t versus r may be obtained as follows. We first 
determine from the shearing-stress-strain diagram the value of gmax cor-
responding to tmax (Fig. 3.30), and carry this value into Eq. (3.4). Then, for 
each value of r, we determine the corresponding value of g from Eq. (3.4) 
or Fig. 3.29 and obtain from the stress-strain diagram of Fig. 3.30 the 
shearing stress t corresponding to this value of g. Plotting t against 
r yields the desired distribution of stresses (Fig. 3.31).
 We now recall that, when we derived Eq. (3.1) in Sec. 3.1A, we 
assumed no particular relation between shearing stress and strain. We 
may therefore use Eq. (3.1) to determine the torque T corresponding to 
the shearing-stress distribution obtained in Fig. 3.31. Considering an 
annular element of radius r and thickness dr, we express the element of 
area in Eq. (3.1) as dA 5 2pr dr and write

T 5 #
c

0

rt12pr dr2
or

 T 5 2p#
c

0

r2t dr (3.23)

where t is the function of r plotted in Fig. 3.31.
 If t is a known analytical function of g, Eq. (3.4) can be used to express 
t as a function of r, and the integral in Eq. (3.23) can be determined analyti-
cally. Otherwise, the torque T can be obtained through numerical integra-
tion. This computation becomes more meaningful if we observe that the 
integral in Eq. (3.23) represents the second moment, or the moment of 
inertia, with respect to the vertical axis of the area in Fig. 3.31 located above 
the horizontal axis and bounded by the stress-distribution curve.
 The ultimate torque TU , associated with the failure of the shaft, can 
be determined from the ultimate shearing stress tU by choosing tmax 5 tU 
and carrying out the computations indicated earlier. However, it is often 

Fig. 3.29 Distribution of shearing strain for 
torsion of a circular shaft.

O
�

�

c

max�

Fig. 3.30 Nonlinear shearing-stress-strain 
diagram.

� � f(   )

�

�

�

max�

max�

Fig. 3.31 Shearing strain distribution for shaft 
with nonlinear stress-strain response.

�

O �c

max�
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196 Torsion

more convenient to determine TU experimentally by twisting a specimen 
until it breaks. Assuming a fictitious linear distribution of stresses, Eq. (3.9) 
can thus be used to determine the corresponding maximum shearing stress 
RT:

RT 5
TU 

c

J
 (3.24)

The fictitious stress RT is called the modulus of rupture in torsion. It can be 
used to determine the ultimate torque TU of a shaft made of the same mate-
rial but of different dimensions by solving Eq. (3.24) for TU. Since the actual 
and the fictitious linear stress distributions shown in Fig. 3.32 must yield the 
same value for the ultimate torque TU , the areas must also have the same 
moment of inertia with respect to the vertical axis. Thus, the modulus of 
rupture RT is always larger than the actual ultimate shearing stress tU.
 In some cases, the stress distribution and the torque T corresponding 
to a given angle of twist f can be determined from the equation of Sec. 3.1B 
for shearing strain g in terms of f, r, and the length L of the shaft:

 g 5
rf

L
 (3.2)

With f and L given, Eq. (3.2) provides the value of g corresponding to any 
given value of r. Using the stress-strain diagram of the material, obtain the 
corresponding value of the shearing stress t and plot t against r. Once the 
shearing-stress distribution is obtained, the torque T can be determined 
analytically or numerically.

*3.7  CIRCULAR SHAFTS MADE 
OF AN ELASTOPLASTIC 
MATERIAL

Consider the idealized case of a solid circular shaft made of an elastoplas-
tic material having the shearing-stress-strain diagram shown in Fig. 3.33. 
Using this diagram, we can proceed as indicated earlier and find the stress 
distribution across a section of the shaft for any value of the torque T.
 As long as the shearing stress t does not exceed the yield strength 
tY, Hooke’s law applies, and the stress distribution across the section is 
linear (Fig. 3.34a) with tmax given as:

 tmax 5
Tc
J

 (3.9)

Fig. 3.32 Stress distribution in circular shaft 
at failure.

O �

�

U�

c

RT

Fig. 3.33 Elastoplastic stress-strain diagram.

Y�

�

�

Fig. 3.34 Stress distributions for elastoplastic shaft at different stages of loading: (a) elastic, 
(b) impending yield, (c) partially yielded, and (d) fully yielded.

O

(d)




�c


Y

O

(c)




�c


Y

Y�O

(a)




�


max �  Y


c O

(b)




�


max �  Y


c
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*3.7 Circular Shafts Made of an Elastoplastic Material 197

As the torque increases, tmax eventually reaches the value tY (Fig. 3.34b). 
Substituting into Eq. (3.9) and solving for the corresponding value of the 
torque TY at the onset of yield

 TY 5
J
c

 tY  (3.25)

This value is the maximum elastic torque, since it is the largest torque for 
which the deformation remains fully elastic. For a solid circular shaft 
Jyc 5

1
2 pc 

3, we have

 TY 5
1
2 pc 

3tY  (3.26)

 As the torque is increased, a plastic region develops in the shaft 
around an elastic core of radius rY (Fig. 3.34c). In this plastic region, the 
stress is uniformly equal to tY, while in the elastic core, the stress varies 
linearly with r and can be expressed as

 t 5
tY

rY
 r (3.27)

As T is increased, the plastic region expands until, at the limit, the defor-
mation is fully plastic (Fig. 3.34d).
 Equation (3.23) is used to determine the torque T corresponding to 
a given radius rY of the elastic core. Recalling that t is given by Eq. (3.27) 
for 0 # r # rY and is equal to tY for rY # r # c,

 T 5 2p#
rY

0

r2 atY

rY
 rb dr 1 2p#

c

rY

 r
2tY dr

 5
1

2
 pr3

Y 
tY 1

2

3
 pc3tY 2

2

3
 pr3

Y 
tY

  T 5
2

3
 pc3tY   a1 2

1

4
 
r3

Y

c 
3b (3.28)

or in view of Eq. (3.26),

 T 5
4

3
 TY  a1 2

1

4
 
r3

Y

c 
3b (3.29)

where TY is the maximum elastic torque. As rY approaches zero, the torque 
approaches the limiting value

 Tp 5
4

3
 TY  (3.30)

This value, which corresponds to a fully plastic deformation (Fig. 3.34d), 
is the plastic torque of the shaft. Note that Eq. (3.30) is valid only for a solid 
circular shaft made of an elastoplastic material.
 Since the distribution of strain across the section remains linear 
after the onset of yield, Eq. (3.2) remains valid and can be used to express 
the radius rY of the elastic core in terms of the angle of twist f. If f is large 
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198 Torsion

enough to cause a plastic deformation, the radius rY of the elastic core is 
obtained by making g equal to the yield strain gY in Eq. (3.2) and solving 
for the corresponding value rY of the distance r. 

 rY 5
LgY

f
 (3.31)

Using the angle of twist at the onset of yield fY (i.e., when rY 5 c) and 
making f 5 fY and rY 5 c in Eq. (3.31), we have

 c 5
LgY

fY
 (3.32)

Dividing Eq. (3.31) by (3.32)—member by member—provides the 
relationship:†

 
rÊY

c
5
fY

f
 (3.33)

 If we carry the expression obtained for rYyc into Eq. (3.29), the 
torque T as a function of the angle of twist f is

 T 5
4

3
TY   a1 2

1

4
 
f3

Y

f3b (3.34)

where TY and fY are the torque and the angle of twist at the onset of yield. 
Note that Eq. (3.34) can be used only for values of f larger than fY. For 
f , fY, the relation between T and f is linear and given by Eq. (3.15). 
Combining both equations, the plot of T against f is as represented in 
Fig. 3.35. As f increases indefinitely, T approaches the limiting value 
Tp 5

4
3 TY  corresponding to the case of a fully developed plastic zone 

(Fig. 3.34d). While the value Tp cannot actually be reached, Eq. (3.34) indi-
cates that it is rapidly approached as f increases. For f 5 2fY, T is within 
about 3% of Tp, and for f 5 3fY, it is within about 1%.
 Since the plot of T against f for an idealized elastoplastic material 
(Fig. 3.35) differs greatly from the  shearing-stress-strain diagram (Fig. 3.33), 
it is clear that the shearing-stress-strain diagram of an actual material can-
not be obtained directly from a torsion test carried out on a solid circular 
rod made of that material. However, a fairly accurate diagram can be 
obtained from a torsion test if a portion of the specimen consists of a thin 
circular tube.‡ Indeed, the shearing stress will have a constant value t in 
that portion. Thus, Eq. (3.1) reduces to

T 5 rAt

where r is the average radius of the tube and A is its cross-sectional area. 
The shearing stress is proportional to the torque, and t easily can be com-
puted from the corresponding values of T. The corresponding shearing 
strain g can be obtained from Eq. (3.2) and from the values of f and L 
measured on the tubular portion of the specimen.

Fig. 3.35 Load-displacement relation for 
elastoplastic material.

0

Y

3  Y

TY

Tp �  4 TY

T

� �Y� 2  Y�

3

†Equation (3.33) applies to any ductile material with a well-defined yield point, since its 
derivation is independent of the shape of the stress-strain diagram beyond the yield 
point.
‡In order to minimize the possibility of failure by buckling, the specimen should be 
made so that the length of the tubular portion is no longer than its diameter.
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*3.8 Residual Stresses in Circular Shafts 199

*3.8  RESIDUAL STRESSES IN 
CIRCULAR SHAFTS

In the two preceding sections, we saw that a plastic region will develop in 
a shaft subjected to a large enough torque, and that the shearing stress t
at any given point in the plastic region may be obtained from the shearing-
stress-strain diagram of Fig. 3.30. If the torque is removed, the resulting 

Concept Application 3.8

A solid circular shaft, 1.2 m long and 50 mm in diameter, is subjected 
to a 4.60-kN?m torque at each end (Fig. 3.36). Assuming the shaft to 
be made of an elastoplastic material with a yield strength in shear of 
150 MPa and a modulus of rigidity of 77 GPa, determine (a) the radius 
of the elastic core, (b) the angle of twist of the shaft.

 a. Radius of Elastic Core. Determine the torque TY at the onset 
of yield. Using Eq. (3.25) with tY 5 150 MPa, c 5 25 mm, and

J 5
1
2pc4 5

1
2p125 3 1023 m24 5 614 3 1029 m4

write

TY 5
JtY

c
5
1614 3 1029 m42 1150 3 106 Pa2

25 3 1023 m
5 3.68 kN?m

Solving Eq. (3.29) for (rYyc)3 and substituting the values of T and TY, 
we have

arY

c
b3

5 4 2
3T

TY
5 4 2

314.60 kN?m2
3.68 kN?m

5 0.250

 
rY

c
5 0.630  rY 5 0.630125 mm2 5 15.8 mm

 b. Angle of Twist. The angle of twist fY is determined at the 
onset of yield from Eq. (3.15) as

fY 5
TYL

JG
5

13.68 3 103 N?m2 11.2 m2
1614 3 1029 m42 177 3 109 Pa2 5 93.4 3 1023 rad

Solving Eq. (3.33) for f and substituting the values obtained for fY and 
rYyc, write

f 5
fY

rYyc
5

93.4 3 1023 rad

0.630
5 148.3 3 1023 rad

or

f 5 1148.3 3 1023 rad2a 3608

2p rad
b 5 8.508

Fig. 3.36 Loaded circular shaft.

1.2 m

50 mm

4.60 kN · m

4.60 kN · m
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200 Torsion

reduction of stress and strain at the point considered will take place along 
a straight line (Fig. 3.37). As you will see further in this section, the final 
value of the stress will not, in general, be zero. There will be a residual 
stress at most points, and that stress may be either positive or negative. 
We note that, as was the case for the normal stress, the shearing stress will 
keep decreasing until it has reached a value equal to its maximum value 
at C minus twice the yield strength of the material.
 Consider again the idealized elastoplastic material shown in the 
shearing-stress-strain diagram of Fig. 3.33.  Assuming that the relationship 
between t and g at any point of the shaft remains linear as long as the 
stress does not decrease by more than 2tY, we can use Eq. (3.15) to obtain 
the angle through which the shaft untwists as the torque decreases back 
to zero. As a result, the unloading of the shaft is represented by a straight 
line on the T-f diagram (Fig. 3.38). Note that the angle of twist does not 
return to zero after the torque has been removed. Indeed, the loading and 
unloading of the shaft result in a permanent deformation characterized by

 fp 5 f 2 f9 (3.35)

where f corresponds to the loading phase and can be obtained from T by 
solving Eq. (3.34) with f9 corresponding to the unloading phase obtained 
from Eq. (3.15).
 The residual stresses in an elastoplastic material are obtained by 
applying the principle of superposition (Sec. 2.13). We consider, on one 
hand, the stresses due to the application of the given torque T and, on the 
other, the stresses due to the equal and opposite torque which is applied 
to unload the shaft. The first group of stresses reflects the elastoplastic 
behavior of the material during the loading phase (Fig. 3.39a). The second 
group has the linear behavior of the same material during the unloading 
phase (Fig. 3.39b). Adding the two groups of stresses provides the distribu-
tion of the residual stresses in the shaft (Fig. 3.39c).
 Figure 3.39c shows that some residual stresses have the same sense 
as the original stresses, while others have the opposite sense. This was to 
be expected since, according to Eq. (3.1), the relationship

 er1t dA2 5 0 (3.36)

must be verified after the torque has been removed.

Fig. 3.37 Shear stress-strain diagram for loading 
past yield, followed by unloading until compressive 
yield occurs.

0

Y

C
�

�

�

2  Y

Y�

Fig. 3.38 Torque-angle of twist response for 
loading past yield, followed by unloading.

0

T

T

TY

�

�
p� � �

Fig. 3.39 Stress distributions for unloading of shaft with elastoplastic material.

�

Y

Y

�
Y�

0 0 0

(a) (b) (c)

� � �

� � �c cc

�
Tc
J

�'m
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*3.8 Residual Stresses in Circular Shafts 201

Concept Application 3.9

For the shaft of Concept Application 3.8, shown in Fig. 3.36, determine 
(a) the permanent twist and (b) the distribution of residual stresses 
after the 4.60-kN?m torque has been removed.

 a. Permanent Twist. Recall from Concept Application 3.8 that 
the angle of twist corresponding to the given torque is f 5 8.508. The 
angle f9 through which the shaft untwists as the torque is removed is 
obtained from Eq. (3.15). Substituting the given data,

 T 5 4.60 3 103 N?m

 L 5 1.2 m

 G 5 77 3 109 Pa

and J 5 614 3 1029 m4, we have

 f¿ 5
TL
JG

5
14.60 3 103 N?m2 11.2 m2

1614 3 1029 m42 177 3 109 Pa2
 5 116.8 3 1023 rad

or

f¿ 5 1116.8 3 1023 rad2  3608

2p rad
5 6.698

The permanent twist is

fp 5 f 2 f¿ 5 8.508 2 6.698 5 1.818

 b. Residual Stresses. Recall from Concept Application 3.8 that 
the yield strength is tY 5 150 MPa and the radius of the elastic core 
corresponding to the torque is rY 5 15.8 mm. The distribution of the 
stresses in the loaded shaft is as shown in Fig. 3.40a.
 The distribution of stresses due to the opposite 4.60-kN?m torque 
required to unload the shaft is linear, as shown in Fig. 3.40b. The maxi-
mum stress in the distribution of the reverse stresses is obtained from 
Eq. (3.9):

 t¿max 5
Tc
J

5
14.60 3 103 N?m2 125 3 1023 m2

614 3 1029 m4

 5 187.3 MPa

 Superposing the two distributions of stresses gives the residual 
stresses shown in Fig. 3.40c. Even though the reverse stresses exceed 
the yield strength tY, the assumption of a linear distribution of these 
stresses is valid, since they do not exceed 2tY.

(continued)

Fig. 3.36 (repeated) Loaded 
circular shaft.

1.2 m

50 mm

4.60 kN · m

4.60 kN · m
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202 Torsion

Sample Problem 3.7
Shaft AB is made of a mild steel that is assumed to be elastoplastic 
with G 5 11.2 3 106 psi and tY 5 21 ksi. A torque T is applied and 
gradually increased in magnitude. Determine the magnitude of T and 
the corresponding angle of twist when (a) yield first occurs and (b) the 
deformation has become fully plastic.

STRATEGY: We use the geometric properties and the resulting stress 
distribution on the cross section to determine the torque. The angle of 
twist is then determined using Eq. (3.2), applied to the portion of the 
cross section that is still elastic.

MODELING and ANALYSIS: 

The geometric properties of the cross section are

c1 5
1
2 
11.5 in.2 5 0.75 in.    c2 5

1
2 12.25 in.2 5 1.125 in.

J 5
1
2 
p

 
1c 

4
2 2 c 

4
12 5

1
2 
p 3 11.125 in.24 2 10.75 in.24 4 5 2.02 in4

 a. Onset of Yield. For tmax 5 tY 5 21 ksi (Figs. 1 and 2), we find

TY 5
tY J

c2
5
121 ksi2 12.02 in42

1.125 in.

 TY 5 37.7 kip?in. ◀

T´

2.25 in.

1.5 in.

60 in.

B

A

T

(continued)

Fig. 3.40 Superposition of stress distributions to obtain residual stresses.

0 0 0

150

15.8 mm 15.8 mm

25 mm

–187.3

31.6

–37.3

–118.4

(b) (c)

(MPa)� (MPa)� (MPa)�

� � �

(a)

21

(ksi)





Fig. 1 Elastoplastic stress-strain diagram.

Fig. 2 Shearing stress distribution at 
impending yield.

TY  37.7 kip · in.
Y  21 ksi

Y 5.73

c2  1.125 in.

c1  0.75 in.

f

t

bee98233_ch03_146-208.indd   202bee98233_ch03_146-208.indd   202 11/15/13   11:41 AM11/15/13   11:41 AM
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Making r 5 c2 and g 5 gY in Eq. (3.2) and solving for f, we obtain the 
value of fY:

fY 5
gYL

c2
5
tYL

c2G
5

121 3 103 psi2 160 in.2
11.125 in.2 111.2 3 106 psi2 5 0.100 rad

 fY 5 5.738 ◀

 b. Fully Plastic Deformation. When the plastic zone reaches the 
inner surface (Fig. 3), the stresses are uniformly distributed. Using Eq. 
(3.23), we write

 Tp 5 2ptY#
c2

c1

 r
2 dr 5

2
3ptY1c3

2 2 c3
12

 5 2
3p121 ksi2 3 11.125 in.23 2 10.75 in.23 4

 Tp 5 44.1 kip?in. ◀

When yield first occurs on the inner surface, the deformation is fully 
plastic; we have from Eq. (3.2),

ff 5
gYL

c1
5
tYL

c1G
5
121 3 103 psi2 160 in.2
10.75 in.2 111.2 3 106 psi2 5 0.150 rad

 ff 5 8.598 ◀

REFLECT and THINK: For larger angles of twist, the torque remains 
constant; the T-f diagram of the shaft is shown (Fig. 4).

Sample Problem 3.8

For the shaft of Sample Problem 3.7 determine the residual stresses 
and the permanent angle of twist after the torque Tp 5 44.1 kip?in. has 
been removed.

STRATEGY: We begin with the tube loaded by the fully plastic torque 
in Sample Problem 3.7. We apply an equal and opposite torque, know-
ing that the stresses induced from this unloading are elastic. Combin-
ing the stresses gives the residual stresses, and the change in the angle 
of twist is fully elastic.

Fig. 4 Torque-angle of twist 
diagram for hollow shaft.

TY

Tp

T

Y f� � �

Fig. 3 Shearing stress 
distribution at fully plastic state. 

Tp  44.1 kip · in. Y  21 ksi

f 8.59f

(continued)
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204 Torsion

MODELING and ANALYSIS: 

Recall that when the plastic zone first reached the inner surface, the 
applied torque was Tp 5 44.1 kip?in. and the corresponding angle of 
twist was ff 5 8.598. These values are shown in Figure 1a.

Elastic Unloading. We unload the shaft by applying a 44.1 kip?in. 
torque in the sense shown in Fig. 1b. During this unloading, the 
behavior of the material is linear. Recalling the values found in Sam-
ple Prob. 3.7 for c1, c2, and J, we obtain the following stresses and 
angle of twist:

 tmax 5
Tc2

J
5
144.1 kip?in.2 11.125 in.2

2.02 in4 5 24.56 ksi

 tmin 5 tmax
c1

c2
5 124.56 ksi2  0.75 in.

1.125 in.
5 16.37 ksi

 f¿ 5
TL

JG
5
144.1 3 103 psi2 160 in.2
12.02 in42 111.2 3 106 psi2 5 0.1170 rad 5 6.708

Residual Stresses and Permanent Twist. The results of the load-
ing (Fig. 1a ) and the unloading (Fig. 1b) are superposed (Fig. 1c ) to 
obtain the residual stresses and the permanent angle of twist fp .

Fig. 1 Superposition of stress distributions to obtain residual stresses.

Tp 5 44.1 kip · in.

44.1 kip · in.

44.1 kip · in.

44.1 kip · in.

16.37 ksi

6.70�' 1.89�p24.56 ksi

2  3.56 ksi

1  4.63 ksi

Y  21 ksi

f 8.59�
Tp 5 44.1 kip · in.

44.1 kip · in.

f f f5 5 5

(a) (b) (c)
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Problems
 3.92 The solid circular shaft shown is made of a steel that is assumed 

to be elastoplastic with tY 5 145 MPa. Determine the magnitude 
T of the applied torques when the plastic zone is (a) 16 mm deep, 
(b) 24 mm deep.

 3.93 A 1.25-in. diameter solid rod is made of an elastoplastic material 
with tY 5 5 ksi. Knowing that the elastic core of the rod is 1 in. 
in diameter, determine the magnitude of the applied torque T.

 3.94 The solid shaft shown is made of a mild steel that is assumed to 
be elastoplastic with G 5 11.2 3 106 psi and tY 5 21 ksi. Deter-
mine the maximum shearing stress and the radius of the elastic 
core caused by the application of a torque of magnitude (a) T 5
100 kip?in., (b) T 5 140 kip?in.

 3.95 The solid shaft shown is made of a mild steel that is assumed to 
be elastoplastic with G 5 77.2 GPa and tY 5 145 MPa. Determine 
the maximum shearing stress and the radius of the elastic core 
caused by the application of a torque of magnitude (a) T 5 600 N?m, 
(b) T 5 1000 N?m.

Fig. P3.92

c � 32 mm 

T

T'

Fig. P3.94

3 in. T

4 ft

3.96 The solid shaft shown is made of a mild steel that is assumed to 
be elastoplastic with tY 5 145 MPa. Determine the radius of the 
elastic core caused by the application of a torque equal to 1.1 TY, 
where TY is the magnitude of the torque at the onset of yield.

3.97 It is observed that a straightened paper clip can be twisted 
through several revolutions by the application of a torque of 
approximately 60 N?m. Knowing that the diameter of the wire in 
the paper clip is 0.9 mm, determine the approximate value of the 
yield stress of the steel.

 3.98 The solid shaft shown is made of a mild steel that is assumed to 
be elastoplastic with G 5 77.2 GPa and tY 5 145 MPa. Determine 
the angle of twist caused by the application of a torque of mag-
nitude (a) T 5 600 N?m, (b) T 5 1000 N?m.

Fig. P3.95 and P3.96

T

30 mm

1.2 m

Fig. P3.98

1.2 m

15 mm

B
T

A

bee98233_ch03_146-208.indd   205bee98233_ch03_146-208.indd   205 11/15/13   11:41 AM11/15/13   11:41 AM



206

 3.99 For the solid circular shaft of Prob. 3.94, determine the angle 
of twist caused by the application of a torque of magnitude 
(a) T 5 80 kip?in., (b) T 5 130 kip?in.

 3.100 For the solid shaft of Prob. 3.98, determine (a) the magnitude of 
the torque T required to twist the shaft through an angle of 158, 
(b) the radius of the corresponding elastic core.

 3.101 A 3-ft-long solid shaft has a diameter of 2.5 in. and is made of a 
mild steel that is assumed to be elastoplastic with tY 5 21 ksi and 
G 5 11.2 3 106 psi. Determine the torque required to twist the 
shaft through an angle of (a) 2.58, (b) 58.

 3.102 An 18-mm-diameter solid circular shaft is made of a material that 
is assumed to be elastoplastic with tY 5 145 MPa and G 5 77.2 GPa. 
For a 1.2-m length of the shaft, determine the maximum shearing 
stress and the angle of twist caused by a 200-N?m torque.

 3.103 A 0.75-in.-diameter solid circular shaft is made of a material that 
is assumed to be elastoplastic with tY 5 20 ksi and G 5 11.2 3
106 psi. For a 4-ft length of the shaft, determine the maximum 
shearing stress and the angle of twist caused by a 1800-lb?in.
torque.

 3.104 The shaft AB is made of a material that is elastoplastic with 
tY 5 90 MPa and G 5 30 GPa. For the loading shown, determine 
(a) the radius of the elastic core of the shaft, (b) the angle of twist 
at end B.

 3.105 A solid circular rod is made of a material that is assumed to be 
elastoplastic. Denoting by TY and fY, respectively, the torque and 
the angle of twist at the onset of yield, determine the angle of 
twist if the torque is increased to (a) T 5 1.1 TY, (b) T 5 1.25 TY , 
(c) T 5 1.3 TY.

 3.106 A hollow shaft is 0.9 m long and has the cross section shown. The 
steel is assumed to be elastoplastic with tY 5 180 MPa and G 5 
77.2 GPa. Determine (a) the angle of twist at which the section 
first becomes fully plastic, (b) the corresponding magnitude of 
the applied torque.

Fig. P3.104

2 m
B

T

A

� 300 N · m

12 mm

 3.107 A hollow shaft is 0.9 m long and has the cross section shown. 
The steel is assumed to be elastoplastic with tY 5 180 MPa and 
G 5 77.2 GPa. Determine the applied torque and the correspond-
ing angle of twist (a) at the onset of yield, (b) when the plastic 
zone is 10 mm deep.

Fig. P3.106 and P3.107

70 mm30 mm
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3.108 A steel rod is machined to the shape shown to form a tapered 
solid shaft to which a torque is of magnitude T 5 75 kip?in. is 
applied. Assuming the steel to be elastoplastic with tY 5 21 ksi 
and G 5 11.2 3 106 psi, determine (a) the radius of the elastic 
core in portion AB of the shaft, (b) the length of portion CD that 
remains fully elastic.

 3.109 If the torque applied to the tapered shaft of Prob. 3.108 is slowly 
increased, determine (a) the magnitude T of the largest torque 
that can be applied to the shaft, (b) the length of the portion CD 
that remains fully elastic.

 3.110 A solid brass rod of 1.2-in. diameter is subjected to a torque that 
causes a maximum shearing stress of 13.5 ksi in the rod. Using 
the t-g diagram shown for the brass rod used, determine (a) the 
magnitude of the torque, (b) the angle of twist in a 24-in. length 
of the rod.

 3.111 A solid brass rod of 0.8-in. diameter and 30-in. length is twisted 
through an angle of 108. Using the t-g diagram shown for the 
brass rod used, determine (a) the magnitude of the torque 
applied to the rod, (b) the maximum shearing stress in the rod.

 3.112 A 50-mm diameter cylinder is made of a brass for which the 
stress-strain diagram is as shown. Knowing that the angle of twist 
is 58 in a 725-mm length, determine by approximate means the 
magnitude T of torque applied to the shaft.

Fig. P3.108 and P3.109

2.5 in.

3 in.

A

B

C

D

E

x
5 in.

T

T′

 3.113 Three points on the nonlinear stress-strain diagram used in Prob. 
3.112 are (0, 0), (0.0015, 55 MPa), and (0.003, 80 MPa). By fitting 
the polynomial T 5 A 1 Bg 1 Cg2 through these points, the fol-
lowing approximate relation has been obtained.

T 5 46.7 3 109g 2 6.67 3 1012g2

Solve Prob. 3.112 using this relation, Eq. (3.2), and Eq. (3.23).

 3.114 The solid circular drill rod AB is made of a steel that is assumed to 
be elastoplastic with tY 5 22 ksi and G 5 11.2 3 106 psi. Knowing 
that a torque T 5 75 kip?in. is applied to the rod and then removed, 
determine the maximum residual shearing stress in the rod.

 3.115 In Prob. 3.114, determine the permanent angle of twist of the rod.

Fig. P3.110 and P3.111

13.5

12

9

6

3

0 0.001 0.002 0.003

� 
(k

si
)

�

Fig. P3.112

0

20

40

60

80

100

0.001 0.002 0.003

� (MPa)

�

725 mm

d 5 50 mm T'

T

Fig. P3.114

1.2 in.

35 ft

B

A
T
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3.116 The solid shaft shown is made of a steel that is assumed to be 
elastoplastic with tY 5 145 MPa and G 5 77.2 GPa. The torque is 
increased in magnitude until the shaft has been twisted through 
68; the torque is then removed. Determine (a) the magnitude and 
location of the maximum residual shearing stress, (b) the perma-
nent angle of twist.

3.117 After the solid shaft of Prob. 3.116 has been loaded and unloaded 
as described in that problem, a torque T1 of sense opposite to the 
original torque T is applied to the shaft. Assuming no change in 
the value of fY, determine the angle of twist f1 for which yield is 
initiated in this second loading and compare it with the angle fY

for which the shaft started to yield in the original loading.

 3.118 The hollow shaft shown is made of a steel that is assumed to be 
elastoplastic with tY 5 145 MPa and G 5 77.2 GPa. The magni-
tude T of the torques is slowly increased until the plastic zone 
first reaches the inner surface of the shaft; the torques are then 
removed. Determine the magnitude and location of the maxi-
mum residual shearing stress in the rod.

Fig. P3.116
16 mm

0.6 m

B

T

A

 3.119 In Prob. 3.118, determine the permanent angle of twist of the rod.

 3.120 A torque T applied to a solid rod made of an elastoplastic mate-
rial is increased until the rod is fully plastic and then removed. 
(a) Show that the distribution of residual shearing stresses is as 
represented in the figure. (b) Determine the magnitude of the 
torque due to the stresses acting on the portion of the rod located 
within a circle of radius c0.

Fig. P3.118

5 m

25 mm

60 mm

T

T'

Fig. P3.120

Y

Y

c

c0

�

�1
3
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*3.9  TORSION OF 
NONCIRCULAR MEMBERS

The formulas obtained for the distributions of strain and stress under a 
torsional loading in Sec. 3.1 apply only to members with a circular cross 
section. They were derived based on the assumption that the cross section 
of the member remained plane and undistorted. This assumption depends 
upon the axisymmetry of the member (i.e., the fact that its appearance 
remains the same when viewed from a fixed position and rotated about 
its axis through an arbitrary angle).
 A square bar, on the other hand, retains the same appearance only 
when it is rotated through 908 or 1808. Following a line of reasoning similar to 
that used in Sec. 3.1B, one could show that the diagonals of the square cross 
section of the bar and the lines joining the midpoints of the sides of that sec-
tion remain straight (Fig. 3.41). However, because of the lack of axisymmetry 
of the bar, any other line drawn in its cross section will deform when it is 
twisted, and the cross section will be warped out of its original plane.
 Equations (3.4) and (3.6) define the distributions of strain and stress 
in an elastic circular shaft but cannot be used for noncircular members. 
For example, it would be wrong to assume that the shearing stress in the 
cross section of a square bar varies linearly with the distance from the axis 
of the bar and is therefore largest at the corners of the cross section. The 
shearing stress is actually zero at these points.
 Consider a small cubic element located at a corner of the cross sec-
tion of a square bar in torsion and select coordinate axes parallel to the 
edges (Fig. 3.42a). Since the face perpendicular to the y axis is part of the 
free surface of the bar, all stresses on this face must be zero. Referring to 
Fig. 3.42b, we write

 tyx 5 0  tyz 5 0 (3.37)

For the same reason, all stresses on the face perpendicular to the z axis 
must be zero, and

tzx 5 0  tzy 5 0 (3.38)

It follows from the first of Eqs. (3.37) and the first of Eqs. (3.38) that

txy 5 0  txz 5 0 (3.39)

Thus, both components of the shearing stress on the face perpendicular 
to the axis of the bar are zero. Thus, there is no shearing stress at the 
corners of the cross section of the bar.
 By twisting a rubber model of a square bar, one finds no deforma-
tions—and no stresses—occur along the edges of the bar, while the largest 
deformations—and the largest stresses—occur along the center line of 
each of the faces of the bar (Fig. 3.43).

Fig. 3.41 Twisting a shaft of square 
cross section.

T

T'

Fig. 3.42 Element at corner of square bar 
in torsion: (a) location of element in shaft 
and (b) potential shearing stress components 
on element.

y

x

zy� xy�

xz�

yz�
yx�

zx�

(a)

(b)

z

x
z

y

Fig. 3.43 Stress elements in a torsionally loaded, deformed square bar.

max�

max� T
T'
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210 Torsion

 The determination of the stresses in noncircular members subjected 
to a torsional loading is beyond the scope of this text. However, results 
obtained from the mathematical theory of elasticity for straight bars with 
a uniform rectangular cross section are given here for our use.† Denoting 
by L the length of the bar, by a and b, respectively, the wider and narrower 
side of its cross section, and by T the magnitude of the torque applied to 
the bar (Fig. 3.44), the maximum shearing stress occurs along the center 
line of the wider face and is equal to

 tmax 5
T

c1ab2 (3.40)

The angle of twist can be expressed as

 f 5
TL

c2ab3G
 (3.41)

Coefficients c1 and c2 depend only upon the ratio ayb and are given in 
Table 3.1 for a number of values of that ratio. Note that Eqs. (3.40) and 
(3.41) are valid only within the elastic range.
 Table 3.1 shows that for ayb $ 5, the coefficients c1 and c2 are equal. 
It may be shown that for such values of ayb, we have

 c1 5 c2 5
1
3 11 2 0.630bya2  ( for a/b $ 5 only) (3.42)

 The distribution of shearing stresses in a noncircular member may be 
visualized by using the membrane analogy. A homogeneous elastic mem-
brane attached to a fixed frame and subjected to a uniform pressure on one 
of its sides constitutes an analog of the bar in torsion, (i.e., the determina-
tion of the deformation of the membrane depends upon the solution of the 
same partial differential equation as the determination of the shearing 
stresses in the bar.)‡ More specifically, if Q is a point of the cross section of 
the bar and Q9 the corresponding point of the membrane (Fig. 3.45), the 

Fig. 3.44 Shaft with rectangular cross section, 
showing the location of maximum shearing stress.

L

a

b

max�
T

T'

Table 3.1. Coefficients for 
Rectangular Bars in Torsion

 a/b c1 c2

 1.0 0.208 0.1406
 1.2 0.219 0.1661
 1.5 0.231 0.1958
 2.0 0.246 0.229
 2.5 0.258 0.249
 3.0 0.267 0.263
 4.0 0.282 0.281
 5.0 0.291 0.291
10.0 0.312 0.312
 ` 0.333 0.333

Fig. 3.45 Application of membrane analogy to 
shaft with rectangular cross section.

N'

Rectangular frame
Tangent of
max. slope

Membrane Horizontal
tangent

N
Q

b

a

a

Q'

�b

T

†See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3d ed., McGraw-Hill, New 
York, 1969, sec. 109.
‡Ibid. Sec. 107.
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*3.10 Thin-Walled Hollow Shafts 211

Fig. 3.46 Membrane analogy for various 
thin-walled members.

a

ab
b

a
b

shearing stress t at Q has the same direction as the horizontal tangent to 
the membrane at Q9, and its magnitude is proportional to the maximum 
slope of the membrane at Q9.† Furthermore, the applied torque is propor-
tional to the volume between the membrane and the plane of the fixed 
frame. For the membrane of Fig. 3.45, which is attached to a rectangular 
frame, the steepest slope occurs at the midpoint N9 of the larger side of the 
frame. Thus, the maximum shearing stress in a bar of rectangular cross sec-
tion occurs at the midpoint N of the larger side of that section.
 The membrane analogy can be used just as effectively to visualize 
the shearing stresses in any straight bar of uniform, noncircular cross sec-
tion. In particular, consider several thin-walled members with the cross 
sections shown in Fig. 3.46 that are subjected to the same torque. Using 
the membrane analogy to help us visualize the shearing stresses, we note 
that since the same torque is applied to each member, the same volume 
is located under each membrane, and the maximum slope is about the 
same in each case. Thus, for a thin-walled member of uniform thickness 
and arbitrary shape, the maximum shearing stress is the same as for a 
rectangular bar with a very large value of ayb and can be determined from 
Eq. (3.40) with c1 5 0.333.‡

*3.10  THIN-WALLED HOLLOW 
SHAFTS

In the preceding section we saw that the determination of stresses in non-
circular members generally requires the use of advanced mathematical 
methods. In thin-walled hollow noncircular shafts, a good approximation 
of the distribution of stresses in the shaft can be obtained by a simple 
computation. Consider a hollow cylindrical member of noncircular section 

†This is the slope measured in a direction perpendicular to the horizontal tangent at Q9.
‡It also could be shown that the angle of twist can be determined from Eq. (3.41) with 
c2 5 0.333.
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212 Torsion

subjected to a torsional loading (Fig. 3.47).† While the thickness t of the 
wall may vary within a transverse section, it is assumed that it remains 
small compared to the other dimensions of the member. Now detach the 
colored portion of wall AB bounded by two transverse planes at a distance 
Dx from each other and by two longitudinal planes perpendicular to the 
wall. Since the portion AB is in equilibrium, the sum of the forces exerted 
on it in the longitudinal x direction must be zero (Fig. 3.48). The only 
forces involved in this direction are the shearing forces FA and FB exerted 
on the ends of portion AB. Therefore,

oFx 5 0: FA 2 FB 5 0 (3.43)

 Now express FA as the product of the longitudinal shearing stress tA 
on the small face at A and of the area tA Dx of that face:

FA 5 tA(tA Dx)

While the shearing stress is independent of the x coordinate of the point 
considered, it may vary across the wall. Thus, tA represents the average 
value of the stress computed across the wall. Expressing FB in a similar 
way and substituting for FA and FB into (3.43), write

tA(tA Dx) 2 tB(tB Dx) 5 0

or tAtA 5 tBtB (3.44)

Since A and B were chosen arbitrarily, Eq. (3.44) shows that the product 
tt of the longitudinal shearing stress t and the wall thickness t is constant 
throughout the member. Denoting this product by q, we have

 q 5 tt 5 constant (3.45)

 Now detach a small element from the wall portion AB (Fig. 3.49). 
Since the outer and inner faces are part of the free surface of the hollow 
member, the stresses are equal to zero. Recalling Eqs. (1.21) and (1.22) of 
Sec. 1.4, the stress components indicated on the other faces by dashed 
arrows are also zero, while those represented by solid arrows are equal. 
Thus, the shearing stress at any point of a transverse section of the hollow 
member is parallel to the wall surface (Fig. 3.50), and its average value 
computed across the wall satisfies Eq. (3.45).

Fig. 3.47 Thin-walled hollow shaft subject 
to torsional loading.

x

�x

A

t
B

T'

T

Fig. 3.48 Segment of thin-walled hollow shaft.

xtA

tB

FA

FB

�x

A

B

Fig. 3.49 Small stress element from segment.

x

t

�x

�s
�

�

Fig. 3.50 Direction of shearing stress on cross 
section.

t

�

†The wall of the member must enclose a single cavity and must not be slit open. In other 
words, the member should be topologically equivalent to a hollow circular shaft.
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*3.10 Thin-Walled Hollow Shafts 213

 At this point, an analogy can be made between the distribution of 
the shearing stresses t in the transverse section of a thin-walled hollow 
shaft and the distributions of the velocities v in water flowing through a 
closed channel of unit depth and variable width. While the velocity v of 
the water varies from point to point on account of the variation in the 
width t of the channel, the rate of flow, q 5 vt, remains constant through-
out the channel, just as tt in Eq. (3.45). Because of this, the product 
q 5 tt is called the shear flow in the wall of the hollow shaft.
 We will now derive a relation between the torque T applied to a hol-
low member and the shear flow q in its wall. Consider a small element of 
the wall section, of length ds (Fig. 3.51). The area of the element is dA 5 t ds, 
and the magnitude of the shearing force dF exerted on the element is

 dF 5 t dA 5 t(t ds) 5 (tt) ds 5 q ds (3.46)

The moment dMO of this force about an arbitrary point O within the cavity 
of the member can be obtained by multiplying dF by the perpendicular 
distance p from O to the line of action of d F.

 dMO 5 p dF 5 p(q ds) 5 q(p ds) (3.47)

But the product p ds is equal to twice the area dA of the colored triangle 
in Fig. 3.52. Thus,

 dMO 5 q(2dA) (3.48)

Since the integral around the wall section of the left-hand member of 
Eq. (3.48) represents the sum of the moments of all the elementary shear-
ing forces exerted on the wall section and this sum is equal to the torque 
T applied to the hollow member,

T 5 AdMO 5 Aq12dA2
The shear flow q being a constant, write

 T 5 2qA (3.49)

where A is the area bounded by the center line of the wall cross section 
(Fig. 3.53).
 The shearing stress t at any given point of the wall can be expressed 
in terms of the torque T if q is substituted from Eq. (3.45) into Eq. (3.49). 
Solving for t:

 t 5
T

2tA
 (3.50)

Fig. 3.52 Infinitesimal area used in finding 
the resultant torque.

d

ds

O

p

dF

Fig. 3.53 Area for shear flow.

�

t

Fig. 3.51 Shear force in the wall.

O

pds

t

dF
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214 Torsion

Concept Application 3.10

Structural aluminum tubing of 2.5 3 4-in. rectangular cross section 
was fabricated by extrusion. Determine the shearing stress in each of 
the four walls of a portion of such tubing when it is subjected to a 
torque of 24 kip?in., assuming (a) a uniform 0.160-in. wall thickness 
(Fig. 3.54a) and (b) that as a result of defective fabrication, walls AB 
and AC are 0.120-in. thick and walls BD and CD are 0.200-in. thick 
(Fig. 3.54b).

 a. Tubing of Uniform Wall Thickness. The area bounded by the 
center line (Fig. 3.54c) is

A 5 (3.84 in.)(2.34 in.) 5 8.986 in2

Since the thickness of each of the four walls is t 5 0.160 in., from 
Eq. (3.50), the shearing stress in each wall is

t 5
T

2tA
5

24 kip?in.

210.160 in.2 18.986 in22 5 8.35 ksi

 b. Tubing with Variable Wall Thickness. Observing that the 
area A bounded by the center line is the same as in part a, and substi-
tuting successively t 5 0.120 in. and t 5 0.200 in. into Eq. (3.50), we 
have

tAB 5 tAC 5
24 kip?in.

210.120 in.2 18.986 in22 5 11.13 ksi

and

tBD 5 tCD 5
24 kip?in.

210.200 in.2 18.986 in22 5 6.68 ksi

Note that the stress in a given wall depends only upon its thickness.

0.160 in.

4 in.

4 in.

0.160 in.

0.120 in.

0.200 in.

2.5 in.

2.5 in.

D

D

C

C

B

B

A

A

(a)

(b)

Fig. 3.54 Thin-walled aluminum tube: 
(a) with uniform thickness, (b) with 
non-uniform thickness, (c) area bounded 
by center line of wall thickness.

3.84 in.

2.34 in. t � 0.160 in.

t � 0.160 in.

D

B

C

A

(c)

where t is the wall thickness at the point considered and A the area 
bounded by the center line. Recall that t represents the average value of 
the shearing stress across the wall. However, for elastic deformations, the 
distribution of stresses across the wall can be assumed to be uniform, and 
thus Eq. (3.50) yields the actual shearing stress at a given point of the wall.
 The angle of twist of a thin-walled hollow shaft can be obtained also 
by using the method of energy (Chap. 11). Assuming an elastic deforma-
tion, it is shown† that the angle of twist of a thin-walled shaft of length L
and modulus of rigidity G is

 f 5
TL

4A 
2G

 
C

 
ds
t

 (3.51)

where the integral is computed along the center line of the wall section.

†See Prob. 11.70.
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*3.10 Thin-Walled Hollow Shafts 215

Sample Problem 3.9

Using tall 5 40 MPa, determine the largest torque that may be applied 
to each of the brass bars and to the brass tube shown in the figure 
below. Note that the two solid bars have the same cross-sectional 
area, and that the square bar and square tube have the same outside 
dimensions.

(continued)

40 mm40 mm

64 mm25 mm

40 mm
40 mm t  6 mm

T3

T2

T1

(1)

(2)

(3)

a

L

b

T

Fig. 1 General dimensions of 
solid rectangular bar in torsion.

STRATEGY: We obtain the torque using Eq. (3.40) for the solid cross 
sections and Eq. (3.50) for the hollow cross section.

MODELING and ANALYSIS: 

 1. Bar with Square Cross Section. For a solid bar of rectangular 
cross section (Fig. 1), the maximum shearing stress is given by 
Eq. (3.40)

tmax 5
T

c1ab2

where the coefficient c1 is obtained from Table 3.1.

a 5 b 5 0.040 m  
a

b
5 1.00  c1 5 0.208

For tmax 5 tall 5 40 MPa, we have

 tmax 5
T1

c1ab2  40 MPa 5
T1

0.20810.040 m23  T1 5 532 N?m ◀

 2. Bar with Rectangular Cross Section. We now have

a 5 0.064 m  b 5 0.025 m  
a
b

5 2.56
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216 Torsion

Interpolating in Table 3.1: c1 5 0.259

tmax 5
T2

c1ab2  40 MPa 5
T2

0.25910.064 m2 10.025 m22 T2 5 414 N?m ◀

 3. Square Tube. For a tube of thickness t (Fig. 2), the shearing 
stress is given by Eq. (3.50)

t 5
T

2tA

Fig. 2 Hollow, square brass bar 
section dimensions.

34 mm

34 mm

40 mm

40 mm

t � 6 mm

where A is the area bounded by the center line of the cross section. We 
have

A 5 10.034 m2 10.034 m2 5 1.156 3 1023 m2

We substitute t 5 tall 5 40 MPa and t 5 0.006 m and solve for the 
allowable torque:

t 5
T

2tA
   40 MPa 5

T3

210.006 m2 11.156 3 1023 m22  T3 5 555 N?m ◀

REFLECT and THINK: Comparing the capacity of the bar of solid 
square cross section with that of the tube with the same outer dimen-
sions demonstrates the ability of the tube to carry a larger torque.
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Problems
 3.121 Determine the smallest allowable square cross section of a steel 

shaft of length 20 ft if the maximum shearing stress is not to 
exceed 10 ksi when the shaft is twisted through one complete 
revolution. Use G 5 11.2 3 106 psi.

 3.122 Determine the smallest allowable length of a stainless steel shaft of 
3
8 3

3
4-in. cross section if the shearing stress is not to exceed 15 ksi 

when the shaft is twisted through 158. Use G 5 11.2 3 106 psi.

 3.123 Using tall 5 70 MPa and G 5 27 GPa, determine for each of the 
aluminum bars shown the largest torque T that can be applied 
and the corresponding angle of twist at end B.

 3.124 Knowing that the magnitude of the torque T is 200 N?m and that 
G 5 27 GPa, determine for each of the aluminum bars shown the 
maximum shearing stress and the angle of twist at end B.

 3.125 Determine the largest torque T that can be applied to each of the 
two brass bars shown and the corresponding angle of twist at B, 
knowing that tall 5 12 ksi and G 5 5.6 3 106 psi.

Fig. P3.123 and P3.124

900 mm

25 mm

25 mm
15 mm

45 mmA

A

B

B

(a)

(b)

T

T

 3.126 Each of the two brass bars shown is subjected to a torque of mag-
nitude T 5 12.5 kip?in. Knowing that G 5 5.6 3 106 psi, deter-
mine for each bar the maximum shearing stress and the angle of 
twist at B.

Fig. P3.125 and P3.126

25 in.

2.4 in.

1.6 in.

1 in.

4 in.

B

B

A

A

T

T

(b)

(a)
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 3.127 The torque T causes a rotation of 0.68 at end B of the aluminum 
bar shown. Knowing that b 5 15 mm and G 5 26  GPa, determine 
the maximum shearing stress in the bar.

 3.128 The torque T causes a rotation of 28 at end B of the stainless steel 
bar shown. Knowing that b 5 20 mm and G 5 75 GPa, determine 
the maximum shearing stress in the bar.

 3.129 Two shafts are made of the same material. The cross section of 
shaft A is a square of side b and that of shaft B is a circle of diam-
eter b. Knowing that the shafts are subjected to the same torque, 
determine the ratio tA/tB of maximum shearing stresses occur-
ring in the shafts.

 3.130 Shafts A and B are made of the same material and have the same 
cross-sectional area, but A has a circular cross section and B has a 
square cross section. Determine the ratio of the maximum torques 
TA and TB when the two shafts are subjected to the same maximum 
shearing stress (tA 5 tB). Assume both deformations to be elastic.

Fig. P3.127 and P3.128

30 mm
750 mm

B

b
A

T

Fig. P3.129

bb

b

A B

 3.131 Shafts A and B are made of the same material and have the same 
length and cross-sectional area, but A has a circular cross section 
and B has a square cross section. Determine the ratio of the maxi-
mum values of the angles fA and fB when the two shafts are 
subjected to the same maximum shearing stress (tA 5 tB). 
Assume both deformations to be elastic.

 3.132 Shafts A and B are made of the same material and have the same 
cross-sectional area, but A has a circular cross section and B has 
a square cross section. Determine the ratio of the angles fA and 
fB through which shafts A and B are respectively twisted when 
the two shafts are subjected to the same torque (TA 5 TB). Assume 
both deformations to be elastic.

Fig. P3.130, P3.131 and P3.132

TA

TB

A

B
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 3.133 A torque of magnitude T 5 2 kip?in. is applied to each of the steel 
bars shown. Knowing that tall 5 6 ksi, determine the required 
dimension b for each bar.

3.134 A torque of magnitude T 5 300 N?m is applied to each of the 
aluminum bars shown. Knowing that tall 5 60 MPa, determine 
the required dimension b for each bar.

 3.135 A 1.25-m-long steel angle has an L127 3 76 3 6.4 cross section. 
From Appendix C we find that the thickness of the section is 6.4 
mm and that its area is 1250 mm2. Knowing that tall 5 60 MPa 
and that G 5 77.2 GPa, and ignoring the effect of stress concen-
trations, determine (a) the largest torque T that can be applied, 
(b) the corresponding angle of twist.

 3.136 A 36-kip?in. torque is applied to a 10-ft-long steel angle with an 
L8 3 8 3 1 cross section. From Appendix C we find that the thick-
ness of the section is 1 in. and that its area is 15 in2. Knowing that 
G 5 11.2 3 106 psi, determine (a) the maximum shearing stress 
along line a-a, (b) the angle of twist.

Fig. P3.133 and P3.134

b

b b

b

2b

T

T

T

(a)

(b)
(c)

Fig. P3.135

1.25 m

T

 3.137 A 4-m-long steel member has a W310 3 60 cross section. Know-
ing that G 5 77.2 GPa and that the allowable shearing stress is 
40 MPa, determine (a) the largest torque T that can be applied, 
(b) the corresponding angle of twist. Refer to Appendix C for the 
dimensions of the cross section and neglect the effect of stress 
concentrations. (Hint: consider the web and flanges separately 
and obtain a relation between the torques exerted on the web 
and a flange, respectively, by expressing that the resulting angles 
of twist are equal.)

Fig. P3.136

1 in.

a

a

L8 � 8 � 1

8 in.

8 in.

Fig. P3.137

T

W310 � 60
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 3.138 An 8-ft-long steel member with a W8 3 31 cross section is sub-
jected to a 5-kip?in. torque. The properties of the rolled-steel sec-
tion are given in Appendix C. Knowing that G 5 11.2 3 106 psi, 
determine (a) the maximum shearing stress along line a-a, 
(b) the maximum shearing stress along line b-b, (c) the angle of 
twist. (See hint of Prob. 3.137.)

 3.139 A 5-kip?ft torque is applied to a hollow aluminum shaft having 
the cross section shown. Neglecting the effect of stress concentra-
tions, determine the shearing stress at points a and b.Fig. P3.138

b b

a

a

W8 � 31

3.140 A torque T 5 750 kN?m is applied to the hollow shaft shown that 
has a uniform 8-mm wall thickness. Neglecting the effect of stress 
concentrations, determine the shearing stress at points a and b.

Fig. P3.139

a

6 in.

4 in.

in.

b

1
4

in.1
4

in.1
2

in.1
2

Fig. P3.140

90 mm

60�

a

b

Fig. P3.141

30 mm

60 mm

30 mm

a

b
3.141 A 750-N?m torque is applied to a hollow shaft having the cross 

section shown and a uniform 6-mm wall thickness. Neglecting 
the effect of stress concentrations, determine the shearing stress 
at points a and b.

3.142 and 3.143 A hollow member having the cross section shown is 
formed from sheet metal of 2-mm thickness. Knowing that the 
shearing stress must not exceed 3 MPa, determine the largest 
torque that can be applied to the member.

20 mm

20 mm

50 mm

50 mm

Fig. P3.142

10 mm

10 mm

50 mm

50 mm

Fig. P3.143
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 3.144 A 90-N?m torque is applied to a hollow shaft having the cross 
section shown. Neglecting the effect of stress concentrations, 
determine the shearing stress at points a and b.

Fig. P3.144

b
40 mm

2 mm

4 mm

a4 mm

55 mm

55 mm

 3.147 A cooling tube having the cross section shown is formed from a 
sheet of stainless steel of 3-mm thickness. The radii c1 5 150 mm 
and c2 5 100 mm are measured to the center line of the sheet 
metal. Knowing that a torque of magnitude T 5 3 kN?m is applied 
to the tube, determine (a) the maximum shearing stress in the 
tube, (b) the magnitude of the torque carried by the outer circular 
shell. Neglect the dimension of the small opening where the 
outer and inner shells are connected.

2 in.

2 in.

2 in.

d

3 in.

Fig. P3.145

2 in. d

2 in.

2 in.

3 in.

Fig. P3.146

Fig. P3.147

c1

O

c2

3.145 and 3.146 A hollow member having the cross section shown is to 
be formed from sheet metal of 0.06-in. thickness. Knowing that a 
1250-lb?in. torque will be applied to the member, determine the 
smallest dimension d that can be used if the shearing stress is not 
to exceed 750 psi.
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3.148 A hollow cylindrical shaft was designed to have a uniform wall 
thickness of 0.1 in. Defective fabrication, however, resulted in the 
shaft having the cross section shown. Knowing that a 15-kip?in.
torque is applied to the shaft, determine the shearing stresses at 
points a and b.

Fig. P3.148

1.1 in.

0.12 in.

0.08 in.

2.4 in.

a

b

3.149 Equal torques are applied to thin-walled tubes of the same length 
L, same thickness t, and same radius c. One of the tubes has been 
slit lengthwise as shown. Determine (a) the ratio tb /ta of the 
maximum shearing stresses in the tubes, (b) the ratio fb /fa of 
the angles of twist of the tubes.

 3.150 A hollow cylindrical shaft of length L, mean radius cm, and uni-
form thickness t is subjected to a torque of magnitude T. Con-
sider, on the one hand, the values of the average shearing stress 
tave and the angle of twist f obtained from the elastic torsion 
formulas developed in Secs. 3.1C and 3.2 and, on the other hand, 
the corresponding values obtained from the formulas developed 
in Sec. 3.10 for thin-walled shafts. (a) Show that the relative error 
introduced by using the thin-walled-shaft formulas rather than 
the elastic torsion formulas is the same for tave and f and that 
the relative error is positive and proportional to the ratio t /cm. 
(b) Compare the percent error corresponding to values of the 
ratio t /cm of 0.1, 0.2, and 0.4.

Fig. P3.149

T T

T'T'

(a) (b)

Fig. P3.150

L

t

cm

T

T'
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This chapter was devoted to the analysis and design of shafts subjected 
to twisting couples, or torques. Except for the last two sections of the 
chapter, our discussion was limited to circular shafts.

Deformations in Circular Shafts
The distribution of stresses in the cross section of a circular shaft is stati-
cally indeterminate. The determination of these stresses requires a prior 
analysis of the deformations occurring in the shaft [Sec. 3.1B]. In a cir-
cular shaft subjected to torsion, every cross section remains plane and 
undistorted. The shearing strain in a small element with sides parallel 
and perpendicular to the axis of the shaft and at a distance r from that 
axis is

 g 5
rf

L
 (3.2)

where f is the angle of twist for a length L of the shaft (Fig. 3.55). Equa-
tion (3.2) shows that the shearing strain in a circular shaft varies linearly 
with the distance from the axis of the shaft. It follows that the strain is 
maximum at the surface of the shaft, where r is equal to the radius c of 
the shaft:

 gmax 5
cf

L
   g 5

r

c
Ê gmax (3.3, 4)

Shearing Stresses in Elastic Range
The relationship between shearing stresses in a circular shaft within the 
elastic range [Sec. 3.1C] and Hooke’s law for shearing stress and strain, 
t 5 Gg, is

 t 5
r

c
Ê tmax (3.6)

which shows that within the elastic range, the shearing stress t in a circular 
shaft also varies linearly with the distance from the axis of the shaft. Equat-
ing the sum of the moments of the elementary forces exerted on any sec-
tion of the shaft to the magnitude T of the torque applied to the shaft, the 
elastic torsion formulas are

 tmax 5
Tc
J

  t 5
Tr

J
 (3.9, 10)

where c is the radius of the cross section and J its centroidal polar moment 
of inertia. J 5

1
2 pc4 for a solid shaft, and J 5

1
2 p1c4

2 2 c4
12 for a hollow shaft 

of inner radius c1 and outer radius c2.

We noted that while the element a in Fig. 3.56 is in pure shear, the element 
c in the same figure is subjected to normal stresses of the same magnitude, 

Review and Summary

Fig. 3.55 Torsional deformations. 
(a) The angle of twist f. (b) Undeformed 
portion of shaft of radius r. (c) Deformed 
portion of shaft; angle of twist f and 
shearing strain g share same arc 
length AA’.

L

L

(a)

(b)

(c)

L

B

O
�

c

�

B

B

A
�

O

O
A'

A
�

�

Fig. 3.56 Shaft elements with only 
shearing stresses or normal stresses.

5
Tc
J

maxt 56
Tc
J

458s

a

T

T′
c
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TcyJ, with two of the normal stresses being tensile and two compressive. 
This explains why in a torsion test ductile materials, which generally fail 
in shear, will break along a plane perpendicular to the axis of the speci-
men, while brittle materials, which are weaker in tension than in shear, 
will break along surfaces forming a 458 angle with that axis.

Angle of Twist
Within the elastic range, the angle of twist f of a circular shaft is propor-
tional to the torque T applied to it (Fig. 3.57).

 f 5
TL
JG

 (units of radians) (3.15)

where  L 5 length of shaft
 J 5 polar moment of inertia of cross section
 G 5 modulus of rigidity of material
  f is in radians

If the shaft is subjected to torques at locations other than its ends or con-
sists of several parts of various cross sections and possibly of different 
materials, the angle of twist of the shaft must be expressed as the algebraic 
sum of the angles of twist of its component parts:

 f 5 a
i

TiLi

JiGi
 (3.16)

 When both ends of a shaft BE rotate (Fig. 3.58), the angle of twist is 
equal to the difference between the angles of rotation fB and fE of its ends. 
When two shafts AD and BE are connected by gears A and B, the torques 
applied by gear A on shaft AD and gear B on shaft BE are directly propor-
tional to the radii rA and rB of the two gears—since the forces applied on 
each other by the gear teeth at C are equal and opposite. On the other 
hand, the angles fA and fB are inversely proportional to rA and rB—since 
the arcs CC9 and CC0 described by the gear teeth are equal.

Fig. 3.57 Torque applied to fixed end shaft 
resulting in angle of twist f.

L

T
c

�

�max

Fig. 3.58 Angles of twist at E, gear B, and gear A 
for a meshed-gear system.

C''

T

E�

B�

C

Fixed end

B

L

A

D

A�

C'

E
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Statically Indeterminate Shafts
If the reactions at the supports of a shaft or the internal torques cannot be 
determined from statics alone, the shaft is said to be statically indetermi-
nate. The equilibrium equations obtained from free-body diagrams must 
be complemented by relationships involving deformations of the shaft 
and obtained from the geometry of the problem.

Transmission Shafts
For the design of transmission shafts, the power P transmitted is

 P 5 2p f T (3.19)

where T is the torque exerted at each end of the shaft and f the frequency
or speed of rotation of the shaft. The unit of frequency is the revolution 
per second (s21) or hertz (Hz). If SI units are used, T is expressed in 
newton-meters (N?m) and P in watts (W). If U.S. customary units are used, 
T is expressed in lb?ft or lb?in., and P in ft?lb/s or in?lb/s; the power can 
be converted into horsepower (hp) through

1 hp 5 550 ft?lb/s 5 6600 in?lb/s

To design a shaft to transmit a given power P at a frequency f, solve 
Eq. (3.19) for T. This value and the maximum allowable value of t for the 
material can be used with Eq. (3.9) to determine the required shaft 
diameter.

Stress Concentrations
Stress concentrations in circular shafts result from an abrupt change in the 
diameter of a shaft and can be reduced through the use of a fillet (Fig. 3.59). 
The maximum value of the shearing stress at the fillet is

tmax 5 K
Tc
J

 (3.22)

where the stress TcyJ is computed for the smaller-diameter shaft and K is 
a stress concentration factor.

Plastic Deformations
Even when Hooke’s law does not apply, the distribution of strains in a circu-
lar shaft is always linear. If the shearing-stress-strain diagram for the material 
is known, it is possible to plot the shearing stress t against the distance r 
from the axis of the shaft for any given value of tmax (Fig. 3.60). Summing the 
torque of annular elements of radius r and thickness dr, the torque T is

T 5 #
c

0

rt12pr dr2 5 2p#
c

0

r2t dr (3.23)

where t is the function of r plotted in Fig. 3.60.

Modulus of Rupture
An important value of the torque is the ultimate torque TU, which causes 
failure of the shaft. This can be determined either experimentally, or by 
Eq. (3.22) with tmax chosen equal to the ultimate shearing stress tU of the 

Fig. 3.59 Shafts having two different diameters 
with a fillet at the junction.

D

d

A

Fig. 3.60 Shearing stress distribution for shaft 
with nonlinear stress-strain response.

�

O �c

max�
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material. From TU, and assuming a linear stress distribution (Fig 3.61), we 
determined the corresponding fictitious stress RT 5 TU cyJ, known as the 
modulus of rupture in torsion.

Solid Shaft of Elastoplastic Material
In a solid circular shaft made of an elastoplastic material, as long as tmax

does not exceed the yield strength tY of the material, the stress distribu-
tion across a section of the shaft is linear (Fig. 3.62a). The torque TY cor-
responding to tmax 5 tY (Fig. 3.62b) is the maximum elastic torque. For a 
solid circular shaft of radius c,

 TY 5
1
2 
pc3tY (3.26)

As the torque increases, a plastic region develops in the shaft around an 
elastic core of radius rY. The torque T corresponding to a given value of 
rY is

 T 5
4

3
 TY   a1 2

1

4
 
r3

Y

c3 b (3.29)

Fig. 3.61 Stress distribution in circular 
shaft at failure.

O �

�

U�

c

RT

As rY approaches zero, the torque approaches a limiting value Tp, called 
the plastic torque:

Tp 5
4

3
 TY (3.30)

Plotting the torque T against the angle of twist f of a solid circular shaft 
(Fig. 3.63), the segment of straight line 0Y defined by Eq. (3.15) and fol-
lowed by a curve approaching the straight line T 5 Tp is

 T 5
4

3
TY   a1 2

1

4
 
f3

Y

f3b (3.34)

Permanent Deformation and Residual Stresses
Loading a circular shaft beyond the onset of yield and unloading it results 
in a permanent deformation characterized by the angle of twist fp 5 f 2 f9, 
where f corresponds to the loading phase described in the previous para-
graph, and f9 to the unloading phase represented by a straight line in 

Fig. 3.62 Stress distributions for elastoplastic shaft at different stages of 
loading: (a) elastic, (b) impending yield, (c) partially yielded, and (d) fully yielded.

O

(d)

�
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(b)

�

�

�max �  Y�

cO

(a)

�

�

�max � Y�

c

Fig. 3.63 Load-displacement relation for 
elastoplastic material.

0

Y

3  Y
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Fig. 3.64. Residual stresses in the shaft can be determined by adding the 
maximum stresses reached during the loading phase and the reverse 
stresses corresponding to the unloading phase.

Torsion of Noncircular Members
The equations for the distribution of strain and stress in circular shafts are 
based on the fact that due to the axisymmetry of these members, cross 
sections remain plane and undistorted. This property does not hold for 
noncircular members, such as the square bar of Fig. 3.65.

Fig. 3.64 Torque-angle of twist response for 
loading past yield and, followed by unloading.

0

T

T

TY

�

�
p� � �

Fig. 3.65 Twisting a shaft of square 
cross section.

T

T'

Bars of Rectangular Cross Section
For straight bars with a uniform rectangular cross section (Fig. 3.66), the 
maximum shearing stress occurs along the center line of the wider face of 
the bar. The membrane analogy can be used to visualize the distribution 
of stresses in a noncircular member.

Thin-Walled Hollow Shafts
The shearing stress in noncircular thin-walled hollow shafts is parallel to 
the wall surface and varies both across and along the wall cross section. 
Denoting the average value of the shearing stress t, computed across the 
wall at a given point of the cross section, and by t the thickness of the wall 
at that point (Fig. 3.67), we demonstrated that the product q 5 tt, called 
the shear flow, is constant along the cross section.

The average shearing stress t at any given point of the cross section is

t 5
T

2tA
 (3.50)

Fig. 3.66 Shaft with rectangular cross section, 
showing the location of maximum shearing stress.

L

a

b

max�
T

T'

Fig. 3.67 Area for shear flow.

�

t
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Review Problems
 3.151 A steel pipe of 12-in. outer diameter is fabricated from 1

4-in.-thick 
plate by welding along a helix that forms an angle of 458 with a 
plane parallel to the axis of the pipe. Knowing that the maximum 
allowable tensile stress in the weld is 12 ksi, determine the largest 
torque that can be applied to the pipe.

3.152 A torque of magnitude T 5 120 N?m is applied to shaft AB of the 
gear train shown. Knowing that the allowable shearing stress is 
75 MPa in each of the three solid shafts, determine the required 
diameter of (a) shaft AB, (b) shaft CD, (c) shaft EF.

Fig. P3.151

12 in.

 in.1
4

45�

T

T'

Fig. P3.152

C

B

F

D

A

30 mm

25 mm

60 mm

75 mm

E

T

3.153 Two solid shafts are connected by gears as shown. Knowing 
that G 5 77.2 GPa for each shaft, determine the angle through 
which end A rotates when TA 5 1200 N?m.

Fig. P3.153

1.2 m

80 mm

1.6 m

42 mm

D
C

B

A

TA

240 mm 60 mm
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3.154 In the bevel-gear system shown, a 5 18.438. Knowing that the 
allowable shearing stress is 8 ksi in each shaft and that the system 
is in equilibrium, determine the largest torque TA that can be 
applied at A.

Fig. P3.154

B

C
A

TB

TA

�
�

0.625 in.

0.5 in.

3.155 The design specifications for the gear-and-shaft system shown 
require that the same diameter be used for both shafts and 
that the angle through which pulley A will rotate when sub-
jected to a 2-kip?in. torque TA while pulley D is held fixed will 
not exceed 7.58. Determine the required diameter of the shafts 
if both shafts are made of a steel with G 5 11.2 3 106 psi and 
tall 5 12 ksi.

Fig. P3.155

A

8 in.

6 in.

5 in.

16 in.

2 in.

C

B

D

TA

TD

 3.156 A torque of magnitude T 5 4 kN?m is applied at end A of the 
composite shaft shown. Knowing that the modulus of rigidity is 
77.2 GPa for the steel and 27 GPa for the aluminum, determine 
(a) the maximum shearing stress in the steel core, (b) the maxi-
mum shearing stress in the aluminum jacket, (c) the angle of 
twist at A. Fig. P3.156

Steel core

Aluminum jacket

72 mm

54 mm

A

B

2.5 m
T
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 3.157 Ends A and D of the two solid steel shafts AB and CD are fixed, 
while ends B and C are connected to gears as shown. Knowing 
that the allowable shearing stress is 50 MPa in each shaft, deter-
mine the largest torque T that can be applied to gear B.

Fig. P3.157

100 mm

60 mm

500 mm

300 mm

A

B
45 mm

40 mmC

D

T

3.158 As the hollow steel shaft shown rotates at 180 rpm, a strobo-
scopic measurement indicates that the angle of twist of the shaft 
is 38. Knowing that G 5 77.2 GPa, determine (a) the power being 
transmitted, (b) the maximum shearing stress in the shaft.

Fig. P3.158

5 m

25 mm

60 mm

T

T'

Fig. P3.159

2 in.

1.5 in.
r

T

T'

3.159 Knowing that the allowable shearing stress is 8 ksi for the 
stepped shaft shown, determine the magnitude T of the largest 
torque that can be transmitted by the shaft when the radius of 
the fillet is (a) r 5 3

16 in., (b) r 5 1
4 in.
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 3.160 A hollow brass shaft has the cross section shown. Knowing that 
the shearing stress must not exceed 12 ksi and neglecting the 
effect of stress concentrations, determine the largest torque that 
can be applied to the shaft.

3.161 Two solid brass rods AB and CD are brazed to a brass sleeve EF. 
Determine the ratio d2/d1 for which the same maximum shearing 
stress occurs in the rods and in the sleeve.

 3.162 The shaft AB is made of a material that is elastoplastic with 
tY 5 12.5 ksi and G 5 4 3 106 psi. For the loading shown, deter-
mine (a) the radius of the elastic core of the shaft, (b) the angle 
of twist of the shaft.

Fig. P3.160

0.5 in.

5 in.

0.2 in.

0.2 in.

0.2 in.

0.2 in.
0.5 in.

6 in.
1.5 in.

1.5 in.

Fig. P3.161

C

B

F

E

D

A

d2

d1

T

T'

Fig. P3.162

6 ft 
B

T

A

5 3 kip · in.

0.5 in.
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Computer Problems
The following problems are designed to be solved with a computer. Write 
each program so that it can be used with either SI or U.S. Customary units.

 3.C1 Shaft AB consists of n homogeneous cylindrical elements, which 
can be solid or hollow. Its end A is fixed, while its end B is free, and it is 
subjected to the loading shown. The length of element i is denoted by Li, 
its outer diameter by ODi, its inner diameter by IDi, its modulus of rigidity 
by Gi, and the torque applied to its right end by Ti, the magnitude Ti of 
this torque being assumed to be positive if Ti is counterclockwise from end 
B and negative otherwise. (Note that IDi 5 0 if the element is solid.) (a) 
Write a computer program that can be used to determine the maximum 
shearing stress in each element, the angle of twist of each element, and 
the angle of twist of the entire shaft. (b) Use this program to solve Probs. 
3.35, 3.36, and 3.38.

Fig. P3.C1

Element 1

Element n

B

A

Tn

T1

Fig. P3.C2

A1
b1

A2

a2

B2

B1

An

an

Bn

bn –1

T0

 3.C2 The assembly shown consists of n cylindrical shafts, which can be 
solid or hollow, connected by gears and supported by brackets (not 
shown). End A1 of the first shaft is free and is subjected to a torque T0, 
while end Bn of the last shaft is fixed. The length of shaft AiBi is Li, its outer 
diameter ODi, its inner diameter IDi, and its modulus of rigidity Gi. (Note 
that IDi 5 0 if the element is solid.) The radius of gear Ai is ai, and the 
radius of gear Bi is bi. (a) Write a computer program that can be used to 
determine the maximum shearing stress in each shaft, the angle of twist 
of each shaft, and the angle through which end Ai rotates. (b) Use this 
program to solve Probs. 3.41 and 3.44.
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 3.C3 Shaft AB consists of n homogeneous cylindrical elements, which 
can be solid or hollow. Both of its ends are fixed, and it is subjected to the 
loading shown. The length of element i is denoted by Li, its outer diameter 
by ODi, its inner diameter by IDi, its modulus of rigidity by Gi, and the 
torque applied to its right end by Ti, the magnitude Ti of this torque being 
assumed to be positive if Ti is observed as counterclockwise from end B 
and negative otherwise. Note that IDi 5 0 if the element is solid and also 
that T1 5 0. Write a computer program that can be used to determine the 
reactions at A and B, the maximum shearing stress in each element, and 
the angle of twist of each element. Use this program (a) to solve Prob. 3.55 
and (b) to determine the maximum shearing stress in the shaft of Sample 
Problem 3.7.

Fig. P3.C4

B

L

A

T

 3.C4 The homogeneous, solid cylindrical shaft AB has a length L, a 
diameter d, a modulus of rigidity G, and a yield strength tY. It is subjected 
to a torque T that is gradually increased from zero until the angle of twist 
of the shaft has reached a maximum value fm and then decreased back 
to zero. (a) Write a computer program that, for each of 16 values of fm

equally spaced over a range extending from 0 to a value 3 times as large 
as the angle of twist at the onset of yield, can be used to determine the 
maximum value Tm of the torque, the radius of the elastic core, the maxi-
mum shearing stress, the permanent twist, and the residual shearing 
stress both at the surface of the shaft and at the interface of the elastic core 
and the plastic region. (b) Use this program to obtain approximate answers 
to Probs. 3.114, 3.115, 3.116.

Fig. P3.C3

Element 1

Element n

A

B
T2

Tn

bee98233_ch03_209-235.indd   233bee98233_ch03_209-235.indd   233 11/15/13   11:42 AM11/15/13   11:42 AM



234

 3.C5 The exact expression is given in Prob. 3.64 for the angle of twist of 
the solid tapered shaft AB when a torque T is applied as shown. Derive an 
approximate expression for the angle of twist by replacing the tapered 
shaft by n cylindrical shafts of equal length and of radius ri 5 1n 1 i 2

1
2 2

(cyn), where i 5 1, 2, . . ., n. Using for T, L, G, and c values of your choice, 
determine the percentage error in the approximate expression when 
(a) n 5 4, (b) n 5 8, (c) n 5 20, and (d) n 5 100.

Fig. P3.C6

t

L

A

c

2c
B

T

Fig. P3.C5

L

A

2c
B

c

B

L

A

2c

r1L/n

ri

rn

T

A

T

c

 3.C6 A torque T is applied as shown to the long, hollow, tapered shaft 
AB of uniform thickness t. Derive an approximate expression for the angle 
of twist by replacing the tapered shaft by n cylindrical rings of equal length 
and of radius ri 5 1n 1 i 2

1
2 2(cyn), where i 5 1, 2, . . ., n. Using for T, L, 

G, c, and t values of your choice, determine the percentage error in the 
approximate expression when (a) n 5 4, (b) n 5 8, (c) n 5 20, and 
(d) n 5 100.
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4
Pure Bending

The normal stresses and the curvature resulting from pure 
bending, such as those developed in the center portion of 
the barbell shown, will be studied in this chapter.

Objectives
In this chapter, you will:

• Introduce students to bending behavior

• Define the deformations, strains, and normal stresses in beams 
subject to pure bending

• Describe the behavior of composite beams made of more than 
one material

• Review stress concentrations and how they are included in the 
design of beams

• Study plastic deformations to determine how to evaluate beams 
made of elastoplastic materials

• Analyze members subject to eccentric axial loading, involving both 
axial stresses and bending stresses

• Review beams subject to unsymmetric bending, i.e., where bend-
ing does not occur in a plane of symmetry

• Study bending of curved members
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238 Pure Bending

Introduction
This chapter and the following two analyze the stresses and strains in pris-
matic members subjected to bending. Bending is a major concept used in 
the design of many machine and structural components, such as beams 
and girders.
 This chapter is devoted to the analysis of prismatic members sub-
jected to equal and opposite couples M and M9 acting in the same longi-
tudinal plane. Such members are said to be in pure bending. The members 
are assumed to possess a plane of symmetry with the couples M and M9

acting in that plane (Fig. 4.1).

 Introduction

 4.1 SYMMETRIC MEMBERS 
IN PURE BENDING

4.1A Internal moment and stress 
relations

4.1B Deformations
 4.2  STRESSES AND 

DEFORMATIONS IN THE 
ELASTIC RANGE

 4.3  DEFORMATIONS IN A 
TRANSVERSE CROSS 
SECTION

 4.4 MEMBERS MADE OF 
COMPOSITE MATERIALS

 4.5 STRESS 
CONCENTRATIONS

 *4.6 PLASTIC DEFORMATIONS
*4.6A Members Made of Elastoplastic 

Material
*4.6B Members with a Single Plane of 

Symmetry
*4.6C Residual Stresses

 4.7 ECCENTRIC AXIAL 
LOADING IN A PLANE OF 
SYMMETRY

 4.8 UNSYMMETRIC BENDING 
ANALYSIS

 4.9 GENERAL CASE OF 
ECCENTRIC AXIAL 
LOADING ANALYSIS

 *4.10 CURVED MEMBERS

Fig. 4.1 Member in pure bending

A

B

M

M'

 An example of pure bending is provided by the bar of a typical bar-
bell as it is held overhead by a weight lifter as shown in the opening photo 
for this chapter. The bar carries equal weights at equal distances from the 
hands of the weight lifter. Because of the symmetry of the free-body dia-
gram of the bar (Fig. 4.2a), the reactions at the hands must be equal and 
opposite to the weights. Therefore, as far as the middle portion CD of the 
bar is concerned, the weights and the reactions can be replaced by two 
equal and opposite 960-lb?in. couples (Fig. 4.2b), showing that the middle 
portion of the bar is in pure bending. A similar analysis of a small sport 
buggy (Photo 4.1) shows that the axle is in pure bending between the two 
points where it is attached to the frame.
 The results obtained from the direct applications of pure bending 
will be used in the analysis of other types of loadings, such as eccentric 
axial loadings and transverse loadings.

Photo 4.1 The center portion of the 
rear axle of the sport buggy is in pure 
bending.

Fig. 4.2 (a) Free-body diagram of the barbell 
pictured in the chapter opening photo and 
(b) free-body diagram of the center portion of 
the bar, which is in pure bending.

12 in. 26 in. 12 in.

A B

M' = 960 lb · in.M = 960 lb · in.

C D

C D

RC = 80 lb

80 lb80 lb

RD = 80 lb
(a)

(b)
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Introduction 239

 Photo 4.2 shows a 12-in. steel bar clamp used to exert 150-lb forces 
on two pieces of lumber as they are being glued together. Figure 4.3a 
shows the equal and opposite forces exerted by the lumber on the clamp. 
These forces result in an eccentric loading of the straight portion of the 
clamp. In Fig. 4.3b, a section CC9 has been passed through the clamp and 
a free-body diagram has been drawn of the upper half of the clamp. The 
internal forces in the section are equivalent to a 150-lb axial tensile force 
P and a 750-lb?in. couple M. By combining our knowledge of the stresses 
under a centric load and the results of an analysis of stresses in pure bend-
ing, the distribution of stresses under an eccentric load is obtained. This 
is discussed in Sec. 4.8.

Photo 4.2 Clamp used to glue lumber pieces 
together.

Fig. 4.3 (a) Free-body diagram of a clamp, (b) free-body diagram of the 
upper portion of the clamp.

5 in.

C C' C C'
P' � 150 lb

P � 150 lb

P' � 150 lb

M � 750 lb · in.
P � 150 lb

5 in.

(a) (b)

 The study of pure bending plays an essential role in the study of 
beams (i.e., prismatic members) subjected to various types of transverse 
loads. Consider a cantilever beam AB supporting a concentrated load P at 
its free end (Fig. 4.4a). If a section is passed through C at a distance x from 
A, the free-body diagram of AC (Fig. 4.4b) shows that the internal forces 
in the section consist of a force P9 equal and opposite to P and a couple 
M of magnitude M 5 Px. The distribution of normal stresses in the section 
can be obtained from the couple M as if the beam were in pure bending. 
The shearing stresses in the section depend on the force P9, and their 
distribution over a given section is discussed in Chap. 6.
 The first part of this chapter covers the analysis of stresses and 
deformations caused by pure bending in a homogeneous member pos-
sessing a plane of symmetry and made of a material following Hooke’s 
law. The methods of statics are used in Sec. 4.1A to derive three funda-
mental equations which must be satisfied by the normal stresses in any 
given cross section of the member. In Sec. 4.1B, it will be proved that trans-
verse sections remain plane in a member subjected to pure bending, while 
in Sec. 4.2, formulas are developed to determine the normal stresses and 
radius of curvature for that member within the elastic range.
 Sec. 4.4 covers the stresses and deformations in composite members 
made of more than one material, such as reinforced-concrete beams, which 
utilize the best features of steel and concrete and are extensively used in the 

Fig. 4.4 (a) Cantilevered beam with end loading. 
(b) As portion AC shows, beam is not in pure 
bending.

L 

x 

P

P

B 

C 

C 

A 

A 

P'

M

(a)

(b)
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240 Pure Bending

construction of buildings and bridges. You will learn to draw a transformed 
section representing a member made of a homogeneous material that 
undergoes the same deformations as the composite member under the 
same loading. The transformed section is used to find the stresses and 
deformations in the original composite member. Section 4.5 is devoted to 
the determination of stress concentrations occurring where the cross section 
of a member undergoes a sudden change.
 Section 4.6 covers plastic deformations, where the members are 
made of a material that does not follow Hooke’s law and are subjected to 
bending. The stresses and deformations in members made of an elasto-
plastic material are discussed in Sec. 4.6A. Starting with the maximum 
elastic moment MY , which corresponds to the onset of yield, you will con-
sider the effects of increasingly larger moments until the plastic moment
Mp is reached. You will also determine the permanent deformations and 
residual stresses that result from such loadings (Sec. 4.6C).
 In Sec. 4.7, you will analyze an eccentric axial loading in a plane of 
symmetry (Fig. 4.3) by superposing the stresses due to pure bending and 
a centric axial loading.
 The study of the bending of prismatic members concludes with the 
analysis of unsymmetric bending (Sec. 4.8), and the study of the general case 
of eccentric axial loading (Sec. 4.9). The final section of this chapter is 
devoted to the determination of the stresses in curved members (Sec. 4.10).

4.1  SYMMETRIC MEMBERS IN 
PURE BENDING

4.1A  Internal Moment and Stress 
Relations

Consider a prismatic member AB possessing a plane of symmetry and 
subjected to equal and opposite couples M and M9 acting in that plane 
(Fig. 4.5a). If a section is passed through the member AB at some arbitrary 
point C, the conditions of equilibrium of the portion AC of the member 
require the internal forces in the section to be equivalent to the couple M 
(Fig. 4.5b). The moment M of that couple is the bending moment in the 
section. Following the usual convention, a positive sign is assigned to M 
when the member is bent as shown in Fig. 4.5a (i.e., when the concavity 
of the beam faces upward) and a negative sign otherwise.
 Denoting by sx the normal stress at a given point of the cross section 
and by txy and txz the components of the shearing stress, we express that 

Fig. 4.5 (a) A member in a state of pure bending. (b) Any intermediate 
portion of AB will also be in pure bending.

A

B
C

M

M'

A

C

M

M'

(a) (b)
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4.1 Symmetric Members in pure bending 241

the system of the elementary internal forces exerted on the section is 
equivalent to the couple M (Fig. 4.6).
 Recall from statics that a couple M actually consists of two equal and 
opposite forces. The sum of the components of these forces in any direc-
tion is therefore equal to zero. Moreover, the moment of the couple is the 
same about any axis perpendicular to its plane and is zero about any axis 
contained in that plane. Selecting arbitrarily the z axis shown in Fig. 4.6, 
the equivalence of the elementary internal forces and the couple M is 
expressed by writing that the sums of the components and moments of 
the forces are equal to the corresponding components and moments of 
the couple M:

 x components: esx dA 5 0 (4.1)

 Moments about y axis: ezsx dA 5 0 (4.2)

 Moments about z axis: e(2ysx dA) 5 M (4.3)

Three additional equations could be obtained by setting equal to zero the 
sums of the y components, z components, and moments about the x axis, 
but these equations would involve only the components of the shearing 
stress and, as you will see in the next section, the components of the 
shearing stress are both equal to zero.
 Two remarks should be made at this point:

 1. The minus sign in Eq. (4.3) is due to the fact that a tensile stress 
(sx . 0) leads to a negative moment (clockwise) of the normal force 
sx dA about the z axis.

 2. Equation (4.2) could have been anticipated, since the application of 
couples in the plane of symmetry of member AB result in a distribu-
tion of normal stresses symmetric about the y axis.

 Once more, note that the actual distribution of stresses in a given 
cross section cannot be determined from statics alone. It is statically inde-
terminate and may be obtained only by analyzing the deformations 
produced in the member.

4.1B Deformations
We will now analyze the deformations of a prismatic member possessing 
a plane of symmetry. Its ends are subjected to equal and opposite couples 
M and M9 acting in the plane of symmetry. The member will bend under 
the action of the couples, but will remain symmetric with respect to that 
plane (Fig. 4.7). Moreover, since the bending moment M is the same in 

Fig. 4.6 Stresses resulting from pure bending moment M.
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Fig. 4.7 Initially straight members in pure 
bending deform into a circular arc.
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242 Pure Bending

any cross section, the member will bend uniformly. Thus, the line AB 
along the upper face of the member intersecting the plane of the couples 
will have a constant curvature. In other words, the line AB will be trans-
formed into a circle of center C, as will the line A9B9 along the lower face 
of the member. Note that the line AB will decrease in length when the 
member is bent (i.e., when M . 0), while A9B9 will become longer.
 Next we will prove that any cross section perpendicular to the axis 
of the member remains plane, and that the plane of the section passes 
through C. If this were not the case, we could find a point E of the original 
section through D (Fig. 4.8a) which, after the member has been bent, 
would not lie in the plane perpendicular to the plane of symmetry that 
contains line CD (Fig. 4.8b). But, because of the symmetry of the member, 
there would be another point E9 that would be transformed exactly in the 
same way. Let us assume that, after the beam has been bent, both points 
would be located to the left of the plane defined by CD, as shown in 
Fig. 4.8b. Since the bending moment M is the same throughout the mem-
ber, a similar situation would prevail in any other cross section, and the 
points corresponding to E and E9 would also move to the left. Thus, an 
observer at A would conclude that the loading causes the points E and E9 
in the various cross sections to move forward (toward the observer). But 
an observer at B, to whom the loading looks the same, and who observes 
the points E and E9 in the same positions (except that they are now 
inverted) would reach the opposite conclusion. This inconsistency leads 
us to conclude that E and E9 will lie in the plane defined by CD and, there-
fore, that the section remains plane and passes through C. We should 
note, however, that this discussion does not rule out the possibility of 
deformations within the plane of the section (see Sec. 4.3).
 Suppose that the member is divided into a large number of small 
cubic elements with faces respectively parallel to the three coordinate 
planes. The property we have established requires that these elements be 
transformed as shown in Fig. 4.9 when the member is subjected to the 
couples M and M9. Since all the faces represented in the two projections 
of Fig. 4.9 are at 908 to each other, we conclude that gxy 5 gzx 5 0 and, 
thus, that txy 5 txz 5 0. Regarding the three stress components that we 
have not yet discussed, namely, sy , sz , and tyz , we note that they must be 
zero on the surface of the member. Since, on the other hand, the deforma-
tions involved do not require any interaction between the elements of a 
given transverse cross section, we can assume that these three stress com-
ponents are equal to zero throughout the member. This assumption is 
verified, both from experimental evidence and from the theory of elastic-
ity, for slender members undergoing small deformations.† We conclude 
that the only nonzero stress component exerted on any of the small cubic 
elements considered here is the normal component sx. Thus, at any point 
of a slender member in pure bending, we have a state of uniaxial stress. 
Recalling that, for M . 0, lines AB and A9B9 are observed, respectively, to 
decrease and increase in length, we note that the strain ex and the stress 
sx are negative in the upper portion of the member (compression) and 
positive in the lower portion (tension).
 It follows from above that a surface parallel to the upper and lower 
faces of the member must exist where Px and sx are zero. This surface is 

†Also see Prob. 4.32.

Fig. 4.8 (a) Two points in a cross section at 
D that is perpendicular to the member‘s axis. 
(b) Considering the possibility that these points 
do not remain in the cross section after 
bending.

D

D

E
A B

A B

M' M

E�
E E�

C

EE�

(a)

(b)

Fig. 4.9 Member subject to pure bending shown 
in two views. (a) Longitudinal, vertical section 
(plane of symmetry). (b) Longitudinal, horizontal 
section.
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4.1 Symmetric Members in pure bending 243

called the neutral surface. The neutral surface intersects the plane of sym-
metry along an arc of circle DE (Fig. 4.10a), and it intersects a transverse 
section along a straight line called the neutral axis of the section 
(Fig. 4.10b). The origin of coordinates is now selected on the neutral sur-
face—rather than on the lower face of the member—so that the distance 
from any point to the neutral surface is measured by its coordinate y.
 Denoting by r the radius of arc DE (Fig. 4.10a), by u the central
angle corresponding to DE, and observing that the length of DE is equal 
to the length L of the undeformed member, we write

 L 5 ru (4.4)

Considering the arc JK located at a distance y above the neutral surface, 
its length L9 is

 L9 5 (r 2 y)u (4.5)

Since the original length of arc JK was equal to L, the deformation of JK is

 d 5 L9 2 L (4.6)

or, substituting from Eqs. (4.4) and (4.5) into Eq. (4.6),

 d 5 (r 2 y)u 2 ru 5 2 yu (4.7)

The longitudinal strain Px in the elements of JK is obtained by dividing d 
by the original length L of JK. Write

Px 5
d

L
5

2yu
ru

or

 Px 5 2 

y

r
 (4.8)

The minus sign is due to the fact that it is assumed the bending moment 
is positive, and thus the beam is concave upward.

Fig. 4.10 Establishment of neutral axis. (a) Longitudinal-vertical view. 
(b) Transverse section at origin.
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244 Pure Bending

 Because of the requirement that transverse sections remain plane, 
identical deformations occur in all planes parallel to the plane of sym-
metry. Thus, the value of the strain given by Eq. (4.8) is valid anywhere, 
and the longitudinal normal strain Px varies linearly with the distance y 
from the neutral surface.
 The strain Px reaches its maximum absolute value when y is largest. 
Denoting the largest distance from the neutral surface as c (corresponding 
to either the upper or the lower surface of the member) and the maximum 
absolute value of the strain as Pm , we have

 Pm 5
c
r

 (4.9)

Solving Eq. (4.9) for r and substituting into Eq. (4.8),

 Px 5 2 
y

c
 Pm (4.10)

 To compute the strain or stress at a given point of the member, we 
must first locate the neutral surface in the member. To do this, we must  
specify the stress-strain relation of the material used, as will be considered 
in the next section.†

4.2  STRESSES AND 
DEFORMATIONS IN THE 
ELASTIC RANGE

We now consider the case when the bending moment M is such that the 
normal stresses in the member remain below the yield strength sY. This 
means that the stresses in the member remain below the proportional 
limit and the elastic limit as well. There will be no permanent deforma-
tion, and Hooke’s law for uniaxial stress applies. Assuming the material to 
be homogeneous and denoting its modulus of elasticity by E, the normal 
stress in the longitudinal x direction is

 sx 5 EPx (4.11)

 Recalling Eq. (4.10) and multiplying both members by E, we write

EPx 5 2 
y

c
1EPm2

or using Eq. (4.11),

 sx 5 2 
y

c
 sm (4.12)

where sm denotes the maximum absolute value of the stress. This result 
shows that, in the elastic range, the normal stress varies linearly with the 
distance from the neutral surface (Fig. 4.11).

†Let us note that, if the member possesses both a vertical and a horizontal plane of 
symmetry (e.g., a member with a rectangular cross section) and the stress-strain curve 
is the same in tension and compression, the neutral surface will coincide with the plane 
of symmetry (see Sec. 4.6).

Fig. 4.11 Bending stresses vary linearly with 
distance from the neutral axis.

y

c

m�

x
Neutral surface
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4.2 Stresses and Deformations in the Elastic Range 245

 Note that neither the location of the neutral surface nor the maximum 
value sm of the stress have yet to be determined. Both can be found using 
Eqs. (4.1) and (4.3). Substituting for sx from Eq. (4.12) into Eq. (4.1), write

#sx  dA 5 #a2 

y

c
Ê smb dA 5 2 

sm

c
 #y dA 5 0

from which

 #y dA 5 0 (4.13)

This equation shows that the first moment of the cross section about its 
neutral axis must be zero.† Thus, for a member subjected to pure bending 
and as long as the stresses remain in the elastic range, the neutral axis 
passes through the centroid of the section.
 Recall Eq. (4.3), which was developed with respect to an arbitrary 
horizontal z axis:

 # 12ysx dA2 5 M (4.3)

Specifying that the z axis coincides with the neutral axis of the cross sec-
tion, substitute sx from Eq. (4.12) into Eq. (4.3):

# 12y2 a2y

c
 smb

 
 dA 5 M

or

 
sm

c
 #y2

 dA 5 M (4.14)

Recall that for pure bending the neutral axis passes through the centroid 
of the cross section and I is the moment of inertia or second moment of  
area of the cross section with respect to a centroidal axis perpendicular to 
the plane of the couple M. Solving Eq. (4.14) for sm ,

‡

 sm 5
Mc

I
 (4.15)

 Substituting for sm from Eq. (4.15) into Eq. (4.12), we obtain the 
normal stress sx at any distance y from the neutral axis:

 sx 5 2  
My

I
 (4.16)

Equations (4.15) and (4.16) are called the elastic f lexure formulas, and the 
normal stress sx caused by the bending or “flexing” of the member is 
often referred to as the f lexural stress. The stress is compressive (sx , 0) 
above the neutral axis (y . 0) when the bending moment M is positive 
and tensile (sx . 0) when M is negative.

†See Appendix A for a discussion of the moments of areas.
‡Recall that the bending moment is assumed to be positive. If the bending moment is 
negative, M should be replaced in Eq. (4.15) by its absolute value |M |.
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246 Pure Bending

 Returning to Eq. (4.15), the ratio Iyc depends only on the geometry 
of the cross section. This ratio is defined as the elastic section modulus S, 
where

 Elastic section modulus 5 S 5
I
c

 (4.17)

Substituting S for Iyc into Eq. (4.15), this equation in alternative form is

 sm 5
M
S

 (4.18)

Since the maximum stress sm is inversely proportional to the elastic sec-
tion modulus S, beams should be designed with as large a value of S as is 
practical. For example, a wooden beam with a rectangular cross section 
of width b and depth h has

 S 5
I
c

5

1
12 bh3

hy2
5

1
6 bh2 5

1
6 Ah (4.19)

where A is the cross-sectional area of the beam. For two beams with the 
same cross-sectional area A (Fig. 4.12), the beam with the larger depth h 
will have the larger section modulus and will be the more effective in 
resisting bending.†

 In the case of structural steel (Photo 4.3), American standard beams 
(S-beams) and wide-flange beams (W-beams) are preferred to other 

†However, large values of the ratio hyb could result in lateral instability of the beam.

Fig. 4.12 Wood beam cross sections.

h � 6 in. h � 8 in.

b � 4 in.
b � 3 in.

A � 24 in2

Photo 4.3 Wide-flange steel beams are used in the 
frame of this building.
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4.2 Stresses and Deformations in the Elastic Range 247

shapes because a large portion of their cross section is located far from 
the neutral axis (Fig. 4.13). Thus, for a given cross-sectional area and a 
given depth, their design provides large values of I and S. Values of the 
elastic section modulus of commonly manufactured beams can be 
obtained from tables listing the various geometric properties of such 
beams. To determine the maximum stress sm in a given section of a stan-
dard beam, the engineer needs only to read the value of the elastic section 
modulus S in such a table and divide the bending moment M in the 
section by S.
 The deformation of the member caused by the bending moment M
is measured by the curvature of the neutral surface. The curvature is 
defined as the reciprocal of the radius of curvature r and can be obtained 
by solving Eq. (4.9) for 1yr:

1
r

5
Pm

c
 (4.20)

In the elastic range, Pm 5 smyE. Substituting for Pm into Eq. (4.20) and 
recalling Eq. (4.15), write

1
r

5
sm

Ec
5

1

Ec
 
Mc

I

or

 
1
r

5
M

EI
 (4.21)

Fig. 4.13 Two types of steel beam cross sections: 
(a) American Standard beam (S) (b) wide-flange 
beam (W).

c

c

(a) (b)

N. A.

Concept Application 4.1
A steel bar of 0.8 3 2.5-in. rectangular cross section is subjected to two 
equal and opposite couples acting in the vertical plane of symmetry 
of the bar (Fig. 4.14a). Determine the value of the bending moment M 
that causes the bar to yield. Assume sY 5 36 ksi.
 Since the neutral axis must pass through the centroid C of the 
cross section, c 5 1.25 in. (Fig. 4.14b). On the other hand, the centroi-
dal moment of inertia of the rectangular cross section is

I 5
1

12 bh3 5
1

12Ê 10.8 in.2 12.5 in.23 5 1.042 in4

Solving Eq. (4.15) for M, and substituting the above data,

 M 5
I
c
sm 5

1.042 in4

1.25 in.
136 ksi2

 M 5 30 kip?in.
Fig. 4.14 (a) Bar of rectangular 
cross-section in pure bending. (b) 
Centroid and dimensions of cross section.

M9 M

0.8 in.

2.5 in.

(a)

1.25 in.

0.8 in.

N. A.

C
2.5 in.

(b)
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248 Pure Bending

4.3  DEFORMATIONS IN A 
TRANSVERSE CROSS 
SECTION

While Sec. 4.1b showed that the transverse cross section of a member in 
pure bending remains plane, there is the possibility of deformations 
within the plane of the section. Recall from Sec. 2.4 that elements in a state 
of uniaxial stress, sx ? 0, sy 5 sz 5 0, are deformed in the transverse y

Concept Application 4.2
An aluminum rod with a semicircular cross section of radius r 5 12 mm 
(Fig. 4.15a) is bent into the shape of a circular arc of mean radius r 5 
2.5 m. Knowing that the flat face of the rod is turned toward the center 
of curvature of the arc, determine the maximum tensile and compres-
sive stress in the rod. Use E 5 70 GPa.
 We can use Equation (4.21) to determine the bending moment M 
corresponding to the given radius of curvature r and then Eq. (4.15) 
to determine sm. However, it is simpler to use Eq. (4.9) to determine 
Pm and Hooke’s law to obtain sm.
The ordinate y of the centroid C of the semicircular cross section is

y 5
4r
3p

5
4112 mm2

3p
5 5.093 mm

The neutral axis passes through C (Fig. 4.15b), and the distance c to 
the point of the cross section farthest away from the neutral axis is

c 5 r 2 y 5 12 mm 2 5.093 mm 5 6.907 mm

Using Eq. (4.9), 

Pm 5
c
r

5
6.907 3 1023 m

2.5 m
5 2.763 3 1023

and applying Hooke’s law,

sm 5 EPm 5 170 3 109 Pa2 12.763 3 10232 5 193.4 MPa

Since this side of the rod faces away from the center of curvature, the 
stress obtained is a tensile stress. The maximum compressive stress 
occurs on the flat side of the rod. Using the fact that the stress is pro-
portional to the distance from the neutral axis, write

 scomp 5 2 
y

c
 sm 5 2 

5.093 mm

6.907 mm
1193.4 MPa2

 5 2142.6 MPa

Fig. 4.15 (a) Semi-circular 
section of rod in pure bending. 
(b) Centroid and neutral axis of 
cross section.

r � 12 mm

(a)

N. A.
c

y
C

(b)
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4.3 Deformations in a Transverse Cross Section 249

and z directions, as well as in the axial x direction. The normal strains Py 
and Pz depend upon Poisson’s ratio n for the material used and are 
expressed as

Py 5 2nPx  Pz 5 2nPx

or recalling Eq. (4.8),

 Py 5
ny

r
  Pz 5

ny

r
 (4.22)

 These relationships show that the elements located above the neu-
tral surface (y . 0) expand in both the y and z directions, while the ele-
ments located below the neutral surface (y , 0) contract. In a member of 
rectangular cross section, the expansion and contraction of the various 
elements in the vertical direction will compensate, and no change in the 
vertical dimension of the cross section will be observed. As far as the 
deformations in the horizontal transverse z direction are concerned, how-
ever, the expansion of the elements located above the neutral surface and 
the corresponding contraction of the elements located below that surface 
will result in the various horizontal lines in the section being bent into 
arcs of circle (Fig. 4.16). This situation is similar to that in a longitudinal 
cross section. Comparing the second of Eqs. (4.22) with Eq. (4.8), the neu-
tral axis of the transverse section is bent into a circle of radius r9 5 ryn. 
The center C9 of this circle is located below the neutral surface (assuming 
M . 0) (i.e., on the side opposite to the center of curvature C). The recip-
rocal of the radius of curvature r9 represents the curvature of the trans-
verse cross section and is called the anticlastic curvature.

 Anticlastic curvature 5
1

r¿
5
n

r
 (4.23)

 In this section we will now discuss the manner in which the couples 
M and M9 are applied to the member. If all transverse sections of the 
member, from one end to the other, are to remain plane and free of shear-
ing stresses, the couples must be applied so that the ends remain plane 
and free of shearing stresses. This can be accomplished by applying the 
couples M and M9 to the member through the use of rigid and smooth 
plates (Fig. 4.17). The forces exerted by the plates will be normal to the 
end sections, and these sections, while remaining plane, will be free to 
deform, as described earlier in this section.
 Note that these loading conditions cannot be actually realized, since 
they require each plate to exert tensile forces on the corresponding end 
section below its neutral axis, while allowing the section to freely deform 
in its own plane. The fact that the rigid-end-plates model of Fig. 4.17 can-
not be physically realized, however, does not detract from its importance, 
which is to allow us to visualize the loading conditions corresponding to 
the relationships in the preceding sections. Actual loading conditions may 
differ appreciably from this idealized model. Using Saint-Venant’s princi-
ple, however, these relationships can be used to compute stresses in engi-
neering situations, as long as the section considered is not too close to the 
points where the couples are applied.

Fig. 4.16 Deformation of a transverse cross 
section.

Neutral
surface

x
z

Neutral axis of
transverse section

C�

C

y

�
�

� �   /�� �

Fig. 4.17 Pure bending with end plates to insure 
plane sections remain plane.

MM'
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250 Pure Bending

Sample Problem 4.1
The rectangular tube shown is extruded from an aluminum alloy for 
which sY 5 40 ksi, sU 5 60 ksi, and E 5 10.6 3 106 psi. Neglecting the 
effect of fillets, determine (a) the bending moment M for which the 
factor of safety will be 3.00 and (b) the corresponding radius of curva-
ture of the tube.

M

x

5 in. C

t

t

t

t 5 0.25 in.
3.25 in.

t

x

Fig. 1 Superposition for calculating 
moment of inertia.

C

3.25 in.

5 in. 4.5 in.x

2.75 in.

= −

Fig. 2 Deformed shape 
of beam.

O

M

c

c

�

(continued)

STRATEGY: Use the factor of safety to determine the allowable 
stress. Then calculate the bending moment and radius of curvature 
using Eqs. (4.15) and (4.21).

MODELING and ANALYSIS:

 Moment of Inertia.  Considering the cross-sectional area of the 
tube as the difference between the two rectangles shown in Fig. 1 and 
recalling the formula for the centroidal moment of inertia of a rect-
angle, write

I 5
1

12 13.252 1523 2
1

12 12.752 14.523    I 5 12.97 in4

 Allowable Stress. For a factor of safety of 3.00 and an ultimate 
stress of 60 ksi, we have

sall 5
sU

F.S.
5

60 ksi

3.00
5 20 ksi

Since sall , sY, the tube remains in the elastic range and we can apply 
the results of Sec. 4.2.

 a. Bending Moment. With c 5
1
2 15 in.2 5 2.5 in., we write

 sall 5
Mc

I
      M 5

I
c
sall 5

12.97 in4

2.5 in.
 120 ksi2 M 5 103.8 kip?in. ◀

 b. Radius of Curvature.  Using Fig. 2 and recalling that 
E 5 10.6 3 106 psi, we substitute this value and the values obtained 
for I and M into Eq. (4.21) and find

1
r

5
M
EI

5
103.8 3 103 lb?in.

110.6 3 106 psi2 112.97 in42 5 0.755 3 1023 in21

 r 5 1325 in. r 5 110.4 ft ◀
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4.3 Deformations in a Transverse Cross Section 251

REFLECT and THINK: Alternatively, we can calculate the radius of 
curvature using Eq. (4.9). Since we know that the maximum stress is 
sall 5 20 ksi, the maximum strain Pm can be determined, and Eq. (4.9) 
gives

Pm 5
sall

E
5

20 ksi

10.6 3 106 psi
5 1.887 3 1023 in./in.

Pm 5
c
r    r 5

c
Pm

5
2.5 in.

1.887 3 1023 in./in.

 r 5 1325 in. r 5 110.4 ft ◀

Sample Problem 4.2
A cast-iron machine part is acted upon by the 3 kN?m couple shown. 
Knowing that E 5 165 GPa and neglecting the effect of fillets, deter-
mine (a) the maximum tensile and compressive stresses in the casting 
and (b) the radius of curvature of the casting.

STRATEGY: The moment of inertia is determined, recognizing that 
it is first necessary to determine the location of the neutral axis. Then 
Eqs. (4.15) and (4.21) are used to determine the stresses and radius of 
curvature.

MODELING and ANALYSIS:

 Centroid. Divide the T-shaped cross section into two rectangles 
as shown in Fig. 1 and write

 Area, mm2 y, mm yA, mm3

1 1202 1902 5 1800 50         90 3 103 Y©A 5 ©yA
2 1402 1302 5 1200 20         24 3 103 Y 130002 5 114 3 106

     ©A 5 3000  ©yA 5 114 3 103 Y 5 38 mm

(continued)

M � 3 kN · m

90 mm

30 mm

20 mm

40 mm

Fig. 1 Composite areas for calculating centroid.

90 mm

y1 � 50 mm

y2 � 20 mm

40 mm
2

1

30 mm

20 mm

�

x'

x

C
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252 Pure Bending

 Centroidal Moment of Inertia.  The parallel-axis theorem is 
used to determine the moment of inertia of each rectangle (Fig. 2) 
with respect to the axis x9 that passes through the centroid of the 
composite section. Adding the moments of inertia of the rectangles, 
write

 Ix¿ 5 © 1I 1 Ad 
22 5 © 1 1

12 bh3 1 Ad 
22

 5 1
12 1902 12023 1 190 3 202 11222 1

1
12 1302 14023 1 130 3 402 11822

 5 868 3 103 mm4

 I 5 868 3 1029 m4

 a. Maximum Tensile Stress.  Since the applied couple bends the 
casting downward, the center of curvature is located below the cross 
section. The maximum tensile stress occurs at point A (Fig. 3), which 
is farthest from the center of curvature.

 sA 5
McA

I
5
13 kN?m2 10.022 m2

868 3 1029 m4   sA 5 176.0 MPa  b

 Maximum Compressive Stress.  This occurs at point B (Fig. 3):

 sB 5 2 
McB

I
5 2 

13 kN?m2 10.038 m2
868 3 1029 m4   sB 5 2131.3 MPa  b

 b. Radius of Curvature.  From Eq. (4.21), using Fig. 3, we have

 
1
r

5
M
EI

5
3 kN?m

1165 GPa2 1868 3 1029 m42
  5 20.95 3 1023 m21   r 5 47.7 m  b

REFLECT and THINK: Note the T-section has a vertical plane of 
symmetry, with the applied moment in that plane. Thus the couple 
of this applied moment lies in the plane of symmetry, resulting in 
symmetrical bending. Had the couple been in another plane, we 
would have unsymmetric bending and thus would need to apply the 
principles of Sec. 4.8.

Fig. 2 Composite areas for calculating 
moment of inertia.

12 mm

18 mm

22 mm

� 38 mm�

x'

2

1
C

Fig. 3 Radius of curvature is measured 
to the centroid of the cross section.

cA � 0.022 m
A

B�

C

Center of curvature

cB � 0.038 m
x'
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Problems
 4.1 and 4.2 Knowing that the couple shown acts in a vertical plane, 

determine the stress at (a) point A, (b) point B.

 4.3 Using an allowable stress of 155 MPa, determine the largest 
bending moment M that can be applied to the wide-flange beam 
shown. Neglect the effect of fillets.

Fig. P4.1

M 5 15 kN · m

Dimensions in mm

B

20 40 20

20

20

80

A

Fig. P4.2

2 in.

2 in.

1.5 in.

2 in.

2 in.2 in.

A

B

M � 25 kip · in.

 4.4 Solve Prob. 4.3, assuming that the wide-flange beam is bent 
about the y axis by a couple of moment My.

 4.5 Using an allowable stress of 16 ksi, determine the largest couple 
that can be applied to each pipe.

 4.6 Knowing that the couple shown acts in a vertical plane, deter-
mine the stress at (a) point A, (b) point B.

200 mm

220 mm

12 mm

12 mm

8 mm

C x

y

M

Fig. P4.3

Fig. P4.5

M2

M1

0.1 in.

0.2 in.

0.5 in.

0.5 in.

(a)

(b)

120 mm

30 mm

30 mm
M = 2.8 kN · m

r 5 20 mmA

B

Fig. P4.6
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 4.7 and 4.8 Two W4 3 13 rolled sections are welded together as shown. 
Knowing that for the steel alloy used sU 5 58 ksi and using a 
factor of safety of 3.0, determine the largest couple that can be 
applied when the assembly is bent about the z axis.

y

z C

Fig. P4.7

y

z
C

Fig. P4.8

 4.9 through 4.11 Two vertical forces are applied to a beam of the cross 
section shown. Determine the maximum tensile and compres-
sive stresses in portion BC of the beam.

DCBA

6 in.

2 in.

3 in.3 in.

15 kips 15 kips

3 in.

40 in. 40 in.
60 in.

Fig. P4.9

DCBA

25 kips 25 kips

20 in. 20 in.
60 in.

4 in.

1 in.

1 in.

1 in.

6 in.

8 in.

Fig. P4.10

10 mm 10 mm

50 mm

10 mm

150 mm 150 mm

A D

B C

10 kN 10 kN

250 mm
50 mm

Fig. P4.11

 4.12 Knowing that a beam of the cross section shown is bent about a 
horizontal axis and that the bending moment is 6 kN?m, deter-
mine the total force acting on the shaded portion of the web.

72 mm

216 mm

36 mm54 mm

108 mm

y

z  C

Fig. P4.12
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 4.13 Knowing that a beam of the cross section shown is bent about a 
horizontal axis and that the bending moment is 4 kN?m, deter-
mine the total force acting on the shaded portion of the beam.

24 mm

12 mm 12 mm

20 mm 20 mm

20 mm

20 mm

24 mm

z  

y

C

Fig. P4.13

 4.14 Solve Prob. 4.13, assuming that the beam is bent about a vertical 
axis by a couple of moment 4 kN?m.

 4.15 Knowing that for the extruded beam shown the allowable stress 
is 12 ksi in tension and 16 ksi in compression, determine the larg-
est couple M that can be applied.

M

1.5 in.

0.5 in.

1.5 in. 1.5 in.

0.5 in. 0.5 in.

0.5 in.

Fig. P4.15

 4.16 The beam shown is made of a nylon for which the allowable 
stress is 24 MPa in tension and 30 MPa in compression. Deter-
mine the largest couple M that can be applied to the beam. 

M

15 mm

d � 30 mm

20 mm

40 mm

Fig. P4.16

 4.17 Solve Prob. 4.16, assuming that d 5 40 mm.
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 4.18 Knowing that for the beam shown the allowable stress is 12 ksi 
in tension and 16 ksi in compression, determine the largest cou-
ple M that can be applied.

1.2 in.
0.75 in.

2.4 in.

M

Fig. P4.18

 4.19 and 4.20 Knowing that for the extruded beam shown the allowable 
stress is 120 MPa in tension and 150 MPa in compression, deter-
mine the largest couple M that can be applied.

54 mm

40 mm

80 mm

M

Fig. P4.19

M

48 mm

48 mm

48 mm

36 mm

36 mm

Fig. P4.20

 4.21 Straight rods of 6-mm diameter and 30-m length are stored by 
coiling the rods inside a drum of 1.25-m inside diameter. Assum-
ing that the yield strength is not exceeded, determine (a) the 
maximum stress in a coiled rod, (b) the corresponding bending 
moment in the rod. Use E 5 200 GPa.

900 mm

8 mm

t
r

MM'

Fig. P4.22

 4.22 A 900-mm strip of steel is bent into a full circle by two couples 
applied as shown. Determine (a) the maximum thickness t of the 
strip if the allowable stress of the steel is 42 0 MPa, (b) the cor-
responding moment M of the couples. Use E 5 200 GPa.

Fig. P4.21
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 4.23 Straight rods of 0.30-in. diameter and 200-ft length are some-
times used to clear underground conduits of obstructions or to 
thread wires through a new conduit. The rods are made of high-
strength steel and, for storage and transportation, are wrapped 
on spools of 5-ft diameter. Assuming that the yield strength is not 
exceeded, determine (a) the maximum stress in a rod, when the 
rod, which is initially straight, is wrapped on a spool, (b) the cor-
responding bending moment in the rod. Use E 5 29 3 106 psi.

 4.24 A 60-N?m couple is applied to the steel bar shown. (a) Assuming 
that the couple is applied about the z axis as shown, determine 
the maximum stress and the radius of curvature of the bar. (b) 
Solve part a, assuming that the couple is applied about the y axis. 
Use E 5 200 GPa.

5 ft

Fig. P4.23

20 mm

12 mm

60 N · m

z

y

Fig. P4.24

 4.25 (a) Using an allowable stress of 120 MPa, determine the largest 
couple M that can be applied to a beam of the cross section 
shown. (b) Solve part a, assuming that the cross section of the 
beam is an 80-mm square.

 4.26 A thick-walled pipe is bent about a horizontal axis by a couple M. 
The pipe may be designed with or without four fins. (a) Using an 
allowable stress of 20 ksi, determine the largest couple that may 
be applied if the pipe is designed with four fins as shown. (b) 
Solve part a, assuming that the pipe is designed with no fins.

C

80 mm
5 mm 5 mm

10 mm

10 mm

80 mm
M

Fig. P4.25

0.75 in.

0.2 in.

1.5 in.

0.1 in.

M

Fig. P4.26

 4.27 A couple M will be applied to a beam of rectangular cross section 
that is to be sawed from a log of circular cross section. Determine 
the ratio d/b for which (a) the maximum stress sm will be as small 
as possible, (b) the radius of curvature of the beam will be 
maximum.

b

d

M'
M

Fig. P4.27
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 4.28 A portion of a square bar is removed by milling, so that its cross 
section is as shown. The bar is then bent about its horizontal axis 
by a couple M. Considering the case where h 5 0.9h0, express the 
maximum stress in the bar in the form sm 5 ks0 where s0 is the 
maximum stress that would have occurred if the original square 
bar had been bent by the same couple M, and determine the 
value of k.

 4.29 In Prob. 4.28, determine (a) the value of h for which the maxi-
mum stress sm is as small as possible, (b) the corresponding 
value of k.

 4.30 For the bar and loading of Concept Application 4.1, determine (a) 
the radius of curvature r, (b) the radius of curvature r9 of a trans-
verse cross section, (c) the angle between the sides of the bar that 
were originally vertical. Use E 5 29 3 106 psi and n 5 0.29.

 4.31 A W200 3 31.3 rolled-steel beam is subjected to a couple M of 
moment 45 kN?m. Knowing that E 5 200 GPa and n 5 0.29, deter-
mine (a) the radius of curvature r, (b) the radius of curvature r9
of a transverse cross section.

h

h

C

h0

h0

M

Fig. P4.28

 4.32 It was assumed in Sec. 4.1B that the normal stresses sy in a mem-
ber in pure bending are negligible. For an initially straight elastic 
member of rectangular cross section, (a) derive an approximate 
expression for sy as a function of y, (b) show that (sy)max 5

2(c/2r)(sx)max and, thus, that sy can be neglected in all practical 
situations. (Hint: Consider the free-body diagram of the portion 
of beam located below the surface of ordinate y and assume that 
the distribution of the stress sx is still linear.)

z

x

y

C

A

M

Fig. P4.31

2
�

2
�

2
�

2
�

�

y

y � �c

y � �c
y

�x�x

�y

Fig. P4.32
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4.4 Members Made of Composite Materials 259

4.4  MEMBERS MADE OF 
COMPOSITE MATERIALS

The derivations given in Sec. 4.2 are based on the assumption of a homo-
geneous material with a given modulus of elasticity E. If the member is 
made of two or more materials with different moduli of elasticity, the 
member is a composite member.
 Consider a bar consisting of two portions of different materials 
bonded together as shown in Fig. 4.18. This composite bar will deform as 
described in Sec. 4.1B, since its cross section remains the same throughout 
its entire length, and since no assumption was made in Sec. 4.1B regarding 
the stress-strain relationship of the material or materials involved. Thus, 
the normal strain ex still varies linearly with the distance y from the neutral 
axis of the section (Fig. 4.21a and b), and formula (4.8) holds:

 Px 5 2 

y
r (4.8)

Fig. 4.18 Cross section made with 
different materials

M

1

2

Fig. 4.19 Stress and strain distributions in bar Made of two materials. (a) Neutral axis 
shifted from centroid. (b) Strain distribution. (c) Corresponding stress distribution.

1

2

N. A.

x � – — 

x

�

� x�

�
y

2 � – —– � �
E2y

1 � – —– � �
E1y

y y

(a) (b) (c)

However, it cannot be assumed that the neutral axis passes through the 
centroid of the composite section, and one of the goals of this analysis is 
to determine the location of this axis.
 Since the moduli of elasticity E1 and E2 of the two materials are dif-
ferent, the equations for the normal stress in each material are

 s1 5 E1Px 5 2 

E1 y
r

 s2 5 E2Px 5 2 

E2 y
r  (4.24)

A stress-distribution curve is obtained that consists of two segments with 
straight lines as shown in Fig. 4.19c. It follows from Eqs. (4.24) that the 
force dF1 exerted on an element of area dA of the upper portion of the 
cross section is

dF1 5 s1 dA 5 2 

E1 y
r  dA (4.25)
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260 Pure Bending

while the force dF2 exerted on an element of the same area dA of the lower 
portion is

 dF2 5 s2 dA 5 2 

E2 y
r  dA (4.26)

Denoting the ratio E2yE1 of the two moduli of elasticity by n, we can write

 dF2 5 2 

1nE12y
r  dA 5 2 

E1 y
r  1n dA2 (4.27)

Comparing Eqs. (4.25) and (4.27), we note that the same force dF2 would 
be exerted on an element of area n dA of the first material. Thus, the resis-
tance to bending of the bar would remain the same if both portions were 
made of the first material, provided that the width of each element of the 
lower portion were multiplied by the factor n. Note that this widening (if 
n . 1) or narrowing (if n , 1) must be in a direction parallel to the neutral 
axis of the section, since it is essential that the distance y of each element 
from the neutral axis remain the same. This new cross section is called the 
transformed section of the member (Fig. 4.20).
 Since the transformed section represents the cross section of a 
member made of a homogeneous material with a modulus of elasticity E1, 
the method described in Sec. 4.2 can be used to determine the neutral 
axis of the section and the normal stress at various points. The neutral axis 
is drawn through the centroid of the transformed section (Fig. 4.21), and 
the stress sx at any point of the corresponding homogeneous member 
obtained from Eq. (4.16) is

 sx 5 2 

My

I
 (4.16)

where y is the distance from the neutral surface and I is the moment of 
inertia of the transformed section with respect to its centroidal axis.
 To obtain the stress s1 at a point located in the upper portion of 
the cross section of the original composite bar, compute the stress sx at the 
corresponding point of the transformed section.  However, to obtain the stress 
s2 at a point in the lower portion of the cross  section, we must multiply by n 
the stress sx computed at the corresponding point of the transformed section. 
Indeed, the same elementary force dF2 is applied to an element of area n dA 
of the transformed section and to an element of area dA of the original sec-
tion. Thus, the stress s2 at a point of the original section must be n times larger 
than the stress at the corresponding point of the transformed section.
 The deformations of a composite member can also be determined 
by using the transformed section. We recall that the transformed section 
represents the cross section of a member, made of a homogeneous mate-
rial of modulus E1, which deforms in the same manner as the composite 
member. Therefore, using Eq. (4.21), we write that the curvature of the 
composite member is

1
r

5
M
E1I

where I is the moment of inertia of the transformed section with respect 
to its neutral axis.

Fig. 4.20 Transformed section based 
on replacing lower material with that 
used on top.

b

dA ndA

nbb

b

=

Fig. 4.21 Distribution of stresses in 
transformed section.

C
N. A.

x � – —– �
My
I

yy

�x

bee98233_ch04_236-312.indd   260bee98233_ch04_236-312.indd   260 11/15/13   5:07 PM11/15/13   5:07 PM



4.4 Members Made of Composite Materials 261

Concept Application 4.3
A bar obtained by bonding together pieces of steel (Es 5 29 3 106 psi) 
and brass (Eb 5 15 3 106 psi) has the cross section shown (Fig. 4.22a). 
Determine the maximum stress in the steel and in the brass when the 
bar is in pure bending with a bending moment M 5 40 kip?in.

Fig. 4.22 (a) Composite bar. (b) Transformed section.

0.75 in.
0.4 in. 0.4 in.

3 in.

Steel

Brass Brass
(a)

1.45 in.

2.25 in.

0.4 in. 0.4 in.

3 in.

c 5 1.5 in.

All brass

N. A.

(b)

 The transformed section corresponding to an equivalent bar made 
entirely of brass is shown in Fig. 4.22b. Since

n 5
Es

Eb
5

29 3 106 psi

15 3 106 psi
5 1.933

the width of the central portion of brass, which replaces the original 
steel portion, is obtained by multiplying the original width by 1.933:

(0.75 in.)(1.933) 5 1.45 in.

Note that this change in dimension occurs in a direction parallel to the 
neutral axis. The moment of inertia of the transformed section about 
its centroidal axis is

I 5
1

12 bh3 5
1

12 12.25 in.2 13 in.23 5 5.063 in4

and the maximum distance from the neutral axis is c 5 1.5 in. Using 
Eq. (4.15), the maximum stress in the transformed section is

sm 5
Mc

I
5
140 kip?in.2 11.5 in.2

5.063 in4 5 11.85 ksi

This value also represents the maximum stress in the brass portion of 
the original composite bar. The maximum stress in the steel portion, 
however, will be larger than for the transformed section, since the area 
of the central portion must be reduced by the factor n 5 1.933. Thus,

 1sbrass2max 5 11.85 ksi

 1ssteel2max 5 11.9332 111.85 ksi2 5 22.9 ksi
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262 Pure Bending

 An important example of structural members made of two different 
materials is furnished by reinforced concrete beams (Photo 4.4). These 
beams, when subjected to positive bending moments, are reinforced by 
steel rods placed a short distance above their lower face (Fig. 4.23a). Since 
concrete is very weak in tension, it cracks below the neutral surface, and 
the steel rods carry the entire tensile load, while the upper part of the 
concrete beam carries the compressive load.

Photo 4.4 Reinforced concrete building frame.
Fig. 4.23 Reinforced concrete beam: (a) Cross section showing location of 
reinforcing steel. (b) Transformed section of all concrete. (c) Concrete stresses and 
resulting steel force.

bb

d

1
2 x

x

N. A.

d – x

C

nAs Fs

�

(a) (b) (c)

 To obtain the transformed section of a reinforced concrete beam, we 
replace the total cross-sectional area As of the steel bars by an equivalent 
area nAs , where n is the ratio EsyEc of the moduli of elasticity of steel and 
concrete (Fig. 4.23b). Since the concrete in the beam acts effectively only 
in compression, only the portion located above the neutral axis should be 
used in the transformed section.
 The position of the neutral axis is obtained by determining the dis-
tance x from the upper face of the beam to the centroid C of the trans-
formed section. Using the width of the beam b and the distance d from 
the upper face to the center line of the steel rods, the first moment of the 
transformed section with respect to the neutral axis must be zero. Since 
the first moment of each portion of the transformed section is obtained 
by multiplying its area by the distance of its own centroid from the neutral 
axis,

1bx2  x
2

2 nAs 1d 2 x2 5 0

or

 
1

2
 bx2 1 nAs x 2 nAsd 5 0 (4.28)

Solving this quadratic equation for x, both the position of the neutral axis 
in the beam and the portion of the cross section of the concrete beam that 
is effectively used are obtained.
 The stresses in the transformed section are determined as explained 
earlier in this section (see Sample Prob. 4.4). The distribution of the com-
pressive stresses in the concrete and the resultant Fs of the tensile forces 
in the steel rods are shown in Fig. 4.23c.
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4.5 Stress Concentrations 263

4.5 STRESS CONCENTRATIONS
The formula sm 5 McyI for a member with a plane of symmetry and a 
uniform cross section is accurate throughout the entire length of the 
member only if the couples M and M9 are applied through the use of 
rigid and smooth plates. Under other conditions of application of the 
loads, stress concentrations exist near the points where the loads are 
applied.
 Higher stresses also occur if the cross section of the member 
undergoes a sudden change. Two particular cases are a flat bar with a 
sudden change in width and a flat bar with grooves. Since the distribu-
tion of stresses in the critical cross sections depends only upon the 
geometry of the members, stress-concentration factors can be deter-
mined for various ratios of the parameters involved and recorded, as 
shown in Figs. 4.24 and 4.25. The value of the maximum stress in the 
critical cross section is expressed as

sm 5 K 
Mc

I
 (4.29)

where K is the stress-concentration factor and c and I refer to the critical 
section (i.e., the section of width d). Figures 4.24 and 4.25 clearly show the 
importance of using fillets and grooves of radius r as large as practical.
 Finally, as for axial loading and torsion, the values of the factors K 
are computed under the assumption of a linear relation between stress 
and strain. In many applications, plastic deformations occur and result in 
values of the maximum stress lower than those indicated by Eq. (4.29).

Fig. 4.24 Stress-concentration factors for flat bars with fillets 
under pure bending. (Source: W. D. Pilkey and D. F. Pilkey, 
Peterson’s Stress Concentration Factors, 3rd ed., John Wiley & Sons, 
New York, 2008.)
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Fig. 4.25 Stress-concentration factors for flat bars with grooves 
(notches) under pure bending. (Source: W. D. Pilkey and D. F. 
Pilkey, Peterson’s Stress Concentration Factors, 3rd ed., John Wiley 
& Sons, New York, 2008.)

3.0

2.8

2.6

2.4

2.2

2.0K

1.8

1.6

1.4

1.2

1.0
0 0.05 0.10 0.15 0.20 0.25 0.30

r/d

D
d � 2

D d

2r

r

1.5

1.2

1.1
1.05

MM'

bee98233_ch04_236-312.indd   263bee98233_ch04_236-312.indd   263 11/15/13   5:07 PM11/15/13   5:07 PM



264 Pure Bending

Concept Application 4.4
Grooves 10 mm deep are to be cut in a steel bar which is 60 mm wide 
and 9 mm thick (Fig. 4.26). Determine the smallest allowable width of 
the grooves if the stress in the bar is not to exceed 150 MPa when the 
bending moment is equal to 180 N?m.

Fig. 4.26 (a) Notched bar dimensions. (b) Cross section.

d

10 mm

10 mm

D � 60 mm

b � 9 mm
2r

r 

(a) (b)

c

 Note from Fig. 4.26a that

 d 5 60 mm 2 2110 mm2 5 40 mm

 c 5
1
2d 5 20 mm   b 5 9 mm

The moment of inertia of the critical cross section about its neutral axis is

 I 5
1

12 bd3 5
1

12 19 3 1023 m2 140 3 1023 m23
 5 48 3 1029 m4

The value of the stress McyI is

Mc

I
5
1180 N?m2 120 3 1023 m2

48 3 1029 m4 5 75 MPa

Substituting this value for McyI into Eq. (4.29) and making sm 5 150 MPa, 
write

150 MPa 5 K(75 MPa)
K 5 2

On the other hand,

D

d
5

60 mm

40 mm
5 1.5

Using the curve of Fig. 4.25 corresponding to Dyd 5 1.5, we find that 
the value K 5 2 corresponds to a value of ryd equal to 0.13. Therefore,

r

d
5 0.13

r 5 0.13 d 5 0.13(40 mm) 5 5.2 mm

The smallest allowable width of the grooves is

2r 5 2(5.2 mm) 5 10.4 mm
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4.4 Members Made of Composite Materials 265

Sample Problem 4.3
Two steel plates have been welded together to form a beam in the 
shape of a T that has been strengthened by securely bolting to it the 
two oak timbers shown in the figure. The modulus of elasticity is 
12.5 GPa for the wood and 200 GPa for the steel. Knowing that a bend-
ing moment M 5 50 kN?m is applied to the composite beam, determine 
(a) the maximum stress in the wood and (b) the stress in the steel 
along the top edge.

STRATEGY: The beam is first transformed to a beam made of a sin-
gle material (either steel or wood). The moment of inertia is then 
determined for the transformed section, and this is used to determine 
the required stresses, remembering that the actual stresses must be 
based on the original material.

MODELING:

 Transformed Section.  First compute the ratio

n 5
Es

Ew
5

200 GPa

12.5 GPa
5 16

Multiplying the horizontal dimensions of the steel portion of the sec-
tion by n 5 16, a transformed section made entirely of wood is 
obtained.

 Neutral Axis.  Fig. 1 shows the transformed section. The neutral 
axis passes through the centroid of the transformed section. Since the 
section consists of two rectangles,

Y 5
©yA

©A
5

10.160 m2 13.2 m 3 0.020 m2 1 0

3.2 m 3 0.020 m 1 0.470 m 3 0.300 m
5 0.050 m

200 mm

20 mm

300 mm

20 mm
75 mm75 mm

Fig. 1 Transformed cross section.

16(0.200 m) � 3.2 m

0.150 m

0.150 m

0.020 m y

Y
C

O

0.160 m

16(0.020 m) � 0.32 m
0.075 m0.075 m

z

(continued)
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266 Pure Bending

 Centroidal Moment of Inertia.  Using Fig. 2 and the parallel-
axis theorem,

 I 5
1

12 10.4702 10.30023 1 10.470 3 0.3002 10.05022
 1

1
12 13.22 10.02023 1 13.2 3 0.0202 10.160 2 0.05022

 I 5 2.19 3 1023 m4

ANALYSIS:

 a. Maximum Stress in Wood.  The wood farthest from the neu-
tral axis is located along the bottom edge, where c2 5 0.200 m.

sw 5
Mc2

I
5
150 3 103 N?m2 10.200 m2

2.19 3 1023 m4

 sw 5 4.57 MPa  b
 b. Stress in Steel.  Along the top edge, c1 5 0.120 m. From the 
transformed section we obtain an equivalent stress in wood, which 
must be multiplied by n to obtain the stress in steel.

ss 5 n 

Mc1

I
5 1162  150 3 103 N?m2 10.120 m2

2.19 3 1023 m4

 ss 5 43.8 MPa  b
REFLECT and THINK: Since the transformed section was based on 
a beam made entirely of wood, it was necessary to use n to get the 
actual stress in the steel. Furthermore, at any common distance from 
the neutral axis, the stress in the steel will be substantially greater than 
that in the wood, reflective of the much larger modulus of elasticity for 
the steel.

Sample Problem 4.4
A concrete floor slab is reinforced by 5

8-in.-diameter steel rods placed 
1.5 in. above the lower face of the slab and spaced 6 in. on centers, as 
shown in the figure. The modulus of elasticity is 3.6 3 106 psi for the 
concrete used and 29 3 106 psi for the steel. Knowing that a bending 
moment of 40 kip?in. is applied to each 1-ft width of the slab, determine 
(a) the maximum stress in the concrete and (b) the stress in the steel.

STRATEGY: Transform the section to a single material, concrete, and 
then calculate the moment of inertia for the transformed section. Con-
tinue by calculating the required stresses, remembering that the actual 
stresses must be based on the original material.

Fig. 2 Transformed section showing 
neutral axis and distances to extreme 
fibers.

N. A.

0.050 m

y

C

O

c1 � 0.120 m

c2 � 0.200 m
z

(continued)

6 in.

6 in.
6 in.

6 in.

5.5 in.

4 in.
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4.4 Members Made of Composite Materials 267

MODELING:

 Transformed Section.  Consider a portion of the slab 12 in. 
wide, in which there are two 5

8-in.-diameter rods having a total cross-
sectional area

As 5 2 cp
4

 a5

8
 in.b2 d 5 0.614 in2

Since concrete acts only in compression, all the tensile forces are car-
ried by the steel rods, and the transformed section (Fig. 1) consists of 
the two areas shown. One is the portion of concrete in compression 
(located above the neutral axis), and the other is the transformed steel 
area nAs. We have

 n 5
Es

Ec
5

29 3 106 psi

3.6 3 106 psi
5 8.06

 nAs 5 8.0610.614 in22 5 4.95 in2

 Neutral Axis.  The neutral axis of the slab passes through the 
centroid of the transformed section. Summing moments of the trans-
formed area about the neutral axis, write

12xax
2
b 2 4.9514 2 x2 5 0    x 5 1.450 in.

 Moment of Inertia.  Using Fig. 2, the centroidal moment of 
inertia of the transformed area is

I 5
1
3 1122 11.45023 1 4.9514 2 1.45022 5 44.4 in4

ANALYSIS:

 a. Maximum Stress in Concrete.  Fig. 3 shows the stresses on 
the cross section. At the top of the slab, we have c1 5 1.450 in. and

 sc 5
Mc1

I
5
140 kip?in.2 11.450 in.2

44.4 in4   sc 5 1.306 ksi  b

 b. Stress in Steel.  For the steel, we have c2 5 2.55 in., n 5 8.06 and

 ss 5 n 

Mc2

I
5 8.06 

140 kip?in.2 12.55 in.2
44.4 in4   ss 5 18.52 ksi  b

REFLECT and THINK: Since the transformed section was based on 
a beam made entirely of concrete, it was necessary to use n to get the 
actual stress in the steel. The difference in the resulting stresses reflects 
the large differences in the moduli of elasticity.

4.95 in2

4 in.

12 in.

c2 � 4 � x � 2.55 in.

c1 � x � 1.450 in.

Fig. 2 Dimensions of transformed 
section used to calculate moment of 
inertia.

sc 5 1.306 ksi

ss 5 18.52 ksi

Fig. 3 Stress diagram.

nAs � 4.95 in2

4 in.

12 in.

N. A.

4 � x

x
C

Fig. 1 Transformed section.
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 4.33 and 4.34 A bar having the cross section shown has been formed by 
securely bonding brass and aluminum stock. Using the data 
given below, determine the largest permissible bending moment 
when the composite bar is bent about a horizontal axis.

 Aluminum Brass

Modulus of elasticity  70 GPa 105 GPa
Allowable stress 100 MPa 160 MPa

Problems

 4.35 and 4.36 For the composite bar indicated, determine the largest 
permissible bending moment when the bar is bent about a verti-
cal axis.

   4.35 Bar of Prob. 4.33.
   4.36 Bar of Prob. 4.34.

 4.37 and 4.38 Wooden beams and steel plates are securely bolted 
together to form the composite member shown. Using the data 
given below, determine the largest permissible bending moment 
when the member is bent about a horizontal axis.

 Wood Steel

Modulus of elasticity 2 3 106 psi 29 3 106 psi
Allowable stress 2000 psi 22 ksi

30 mm

6 mm

6 mm

30 mm

Aluminum

Brass

Fig. P4.33

32 mm

32 mm
8 mm 8 mm

8 mm

8 mm

AluminumBrass

Fig. P4.34

10 in.

6 in.

 in.1
25 �

 in.1
25 �

Fig. P4.37

10 in.

3 in.

 in.

3 in.
1
2

Fig. P4.38
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 4.39 and 4.40 A copper strip (Ec 5 105 GPa) and an aluminum strip (Ea

5 75 GPa) are bonded together to form the composite beam 
shown. Knowing that the beam is bent about a horizontal axis by 
a couple of moment M 5 35 N?m, determine the maximum stress 
in (a) the aluminum strip, (b) the copper strip.

24 mm

6 mm

6 mm

Aluminum

Copper

Fig. P4.39

24 mm

9 mm

3 mm

Aluminum

Copper

Fig. P4.40

 4.41 and 4.42 The 6 3 12-in. timber beam has been strengthened by 
bolting to it the steel reinforcement shown. The modulus of elas-
ticity for wood is 1.8 3 106 psi and for steel is 29 3 106 psi. Know-
ing that the beam is bent about a horizontal axis by a couple of 
moment M 5 450 kip?in., determine the maximum stress in (a) 
the wood, (b) the steel.

Fig. P4.47

5.5 in.6 in.

5.5 in.

4 in.

5.5 in.

5.5 in.

-in. diameter5
8

in.5 � 1
2

6 in.

12 in.M

Fig. P4.41

6 in.

12 in.

C8 � 11.5

M

Fig. P4.42

 4.43 and 4.44 For the composite beam indicated, determine the radius 
of curvature caused by the couple of moment 35 N?m.

4.43 Beam of Prob. 4.39.
4.44 Beam of Prob. 4.40.

 4.45 and 4.46 For the composite beam indicated, determine the radius 
of curvature caused by the couple of moment 450 kip?in.

4.45 Beam of Prob. 4.41.
   4.46 Beam of Prob. 4.42.

 4.47 A concrete slab is reinforced by 5
8 –in.-diameter steel rods placed on 

5.5-in. centers as shown. The modulus of elasticity is 3 3 106 psi 
for the concrete and 29 3 106 psi for the steel. Using an allowable 
stress of 1400 psi for the concrete and 20 ksi for the steel, determine 
the largest bending moment in a portion of slab 1 ft wide.

 4.48 Solve Prob. 4.47, assuming that the spacing of the 5
8 –in.-diameter 

steel rods is increased to 7.5 in.
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 4.49 The reinforced concrete beam shown is subjected to a positive 
bending moment of 175 kN?m. Knowing that the modulus of 
elasticity is 25 GPa for the concrete and 200 GPa for the steel, 
determine (a) the stress in the steel, (b) the maximum stress in 
the concrete.

 4.50 Solve Prob. 4.49, assuming that the 300-mm width is increased to 
350 mm.

 4.51 Knowing that the bending moment in the reinforced concrete beam 
is 1100 kip?ft and that the modulus of elasticity is 3.625 3 106 psi 
for the concrete and 29 3 106 psi for the steel, determine (a) the 
stress in the steel, (b) the maximum stress in the concrete.

Fig. P4.49

300 mm

540 mm

60 mm

25-mm 
diameter

 4.52 A concrete beam is reinforced by three steel rods placed as 
shown. The modulus of elasticity is 3 3 106 psi for the concrete 
and 29 3 106 psi for the steel. Using an allowable stress of 1350 
psi for the concrete and 20 ksi for the steel, determine the largest 
allowable positive bending moment in the beam.

 4.53 The design of a reinforced concrete beam is said to be balanced 
if the maximum stresses in the steel and concrete are equal, 
respectively, to the allowable stresses ss and sc. Show that to 
achieve a balanced design the distance x from the top of the 
beam to the neutral axis must be

x 5
d

1 1
ss Ec

sc Es

  where Ec and Es are the moduli of elasticity of concrete and steel, 
respectively, and d is the distance from the top of the beam to 
the reinforcing steel.

 4.54 For the concrete beam shown, the modulus of elasticity is 25 GPa 
for the concrete and 200 GPa for the steel. Knowing that 
b 5 200 mm and d 5 450 mm, and using an allowable stress of 
12.5 MPa for the concrete and 140 MPa for the steel, determine 
(a) the required area As of the steel reinforcement if the beam is 
to be balanced, (b) the largest allowable bending moment. (See 
Prob. 4.53 for definition of a balanced beam.)

12 in.

2.5 in.

20 in.

4 in.24 in.

1-in. 
diameter

Fig. P4.51

8 in.

2 in.

16 in. -in. diameter7
8

Fig. P4.52

b

d

Fig. P4.53 and P4.54
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 4.55 and 4.56 Five metal strips, each 0.5 3 1.5-in. cross section, are 
bonded together to form the composite beam shown. The modu-
lus of elasticity is 30 3 106 psi for the steel, 15 3 106 psi for the 
brass, and 10 3 106 psi for the aluminum. Knowing that the beam 
is bent about a horizontal axis by a couple of moment 12 kip?in., 
determine (a) the maximum stress in each of the three metals, 
(b) the radius of curvature of the composite beam.

Aluminum

Brass

Steel

Brass

Aluminum

1.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

Fig. P4.55

Steel

Aluminum

Brass

Aluminum

Steel

1.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

Fig. P4.56

 4.57 The composite beam shown is formed by bonding together a brass 
rod and an aluminum rod of semicircular cross sections. The mod-
ulus of elasticity is 15 3 106 psi for the brass and 10 3 106 psi for 
the aluminum. Knowing that the composite beam is bent about a 
horizontal axis by couples of moment 8 kip?in., determine the 
maximum stress (a) in the brass, (b) in the aluminum.

Brass

Aluminum

0.8 in.

Fig. P4.57
Steel

38 mm

10 mmz

y

3 mm

6 mm

Aluminum

Fig. P4.58

50 mm

100 mm

��

��

Et � Ec
1
2

Ec

M

Fig. P4.59

 4.58 A steel pipe and an aluminum pipe are securely bonded together 
to form the composite beam shown. The modulus of elasticity is 
200 GPa for the steel and 70 GPa for the aluminum. Knowing that 
the composite beam is bent by a couple of moment 500 N?m, 
determine the maximum stress (a) in the aluminum, (b) in the 
steel.

 4.59 The rectangular beam shown is made of a plastic for which the 
value of the modulus of elasticity in tension is one-half of its 
value in compression. For a bending moment M 5 600 N?m, 
determine the maximum (a) tensile stress, (b) compressive stress.

 *4.60 A rectangular beam is made of material for which the modulus 
of elasticity is Et in tension and Ec in compression. Show that the 
curvature of the beam in pure bending is

1
r

5
M
Er 

I

  where

Er 5
4Et  Ec

11Et 1 1Ec 22
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 4.61 Knowing that M 5 250 N?m, determine the maximum stress in the 
beam shown when the radius r of the fillets is (a) 4 mm, (b) 8 mm.

r

80 mm

40 mm

8 mm

M

Fig. P4.61 and P4.62

r

M
4.5 in.

 in.3
4

Fig. P4.63 and P4.64

(a) (b)

100 mm

150 mm
18 mm

100 mm

150 mm
18 mm

M M

Fig. P4.65 and P4.66

 4.66 The allowable stress used in the design of a steel bar is 80 MPa. 
Determine the largest couple M that can be applied to the bar 
(a) if the bar is designed with grooves having semicircular por-
tions of radius r 5 15 mm, as shown in Fig. a, (b) if the bar is 
redesigned by removing the material to the left and right of the 
dashed lines as shown in Fig. b.

 4.62 Knowing that the allowable stress for the beam shown is 90 MPa, 
determine the allowable bending moment M when the radius r
of the fillets is (a) 8 mm, (b) 12 mm.

 4.63 Semicircular grooves of radius r must be milled as shown in the 
sides of a steel member. Using an allowable stress of 8 ksi, deter-
mine the largest bending moment that can be applied to the 
member when (a) r 5 3

8 in, (b) r 5 3
4 in.

 4.64 Semicircular grooves of radius r must be milled as shown in the 
sides of a steel member. Knowing that M 5 4 kip?in., determine 
the maximum stress in the member when the radius r of the 
semicircular grooves is (a) r 5 

3
8 in, (b) r 5 3

4 in.

 4.65 A couple of moment M 5 2 kN?m is to be applied to the end of 
a steel bar. Determine the maximum stress in the bar (a) if the 
bar is designed with grooves having semicircular portions of 
radius r 5 10 mm, as shown in Fig. a, (b) if the bar is redesigned 
by removing the material to the left and right of the dashed lines 
as shown in Fig. b.
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*4.6 PLASTIC DEFORMATIONS
In the fundamental relation sx 5 2MyyI in Sec. 4.2, Hooke’s law was 
applied throughout the member. If the yield strength is exceeded in some 
portion of the member or the material involved is a brittle material with 
a nonlinear stress-strain diagram, this relationship ceases to be valid. This 
section develops a more general method for the determination of the dis-
tribution of stresses in a member in pure bending that can be used when 
Hooke’s law does not apply.
 Recall that no specific stress-strain relationship was assumed in 
Sec. 4.1B, when it was proved that the normal strain Px varies linearly with 
the distance y from the neutral surface. This property can be used now to 
write

  Px 5 2 
y

c
 Pm (4.10)

where y represents the distance of the point considered from the neutral 
surface, and c is the maximum value of y.
 However, we cannot assume that the neutral axis passes through 
the centroid of a given section, since this property was derived in Sec. 4.2 
under the assumption of elastic deformations. The neutral axis must be 
located by trial and error until a distribution of stresses has been found 
that satisfies Eqs. (4.1) and (4.3) of Sec. 4.1. However, in a member pos-
sessing both a vertical and a horizontal plane of symmetry and made of 
a material characterized by the same stress-strain relationship in tension 
and compression, the neutral axis coincides with the horizontal axis of 
symmetry of that section. The properties of the material require that the 
stresses be symmetric with respect to the neutral axis (i.e., with respect 
to some horizontal axis) and this condition is met (and Eq. (4.1) satisfied) 
only if that axis is the horizontal axis of symmetry.
 The distance y in Eq. (4.10) is measured from the horizontal axis of 
symmetry z of the cross section, and the distribution of strain Px is linear 
and symmetric with respect to that axis (Fig. 4.27). On the other hand, the 
stress-strain curve is symmetric with respect to the origin of coordinates 
(Fig. 4.28).
 The distribution of stresses in the cross section of the member (i.e., 
the plot of sx versus y) is obtained as follows. Assuming that smax has 
been specified, we first determine the value of Pm from the stress-strain 
diagram and carry it into Eq. (4.10). Then for each value of y, determine 
the corresponding value of Px from Eq. (4.10) or Fig. 4.27, and obtain 
from the stress-strain diagram of Fig. 4.28 the stress sx corresponding to 
Px. Plotting sx against y yields the desired distribution of stresses 
(Fig. 4.29).
 Recall that Eq. (4.3) assumed no particular relation between stress 
and strain. Therefore, Eq. (4.3) can be used to determine the bending 
moment M corresponding to the stress distribution obtained in Fig. 4.29. 
Considering a member with a rectangular cross section of width b, the 
element of area in Eq. (4.3) is expressed as dA 5 b dy, so

 M 5 2b#
c

2c

ysx dy (4.30)

Fig. 4.27 Linear strain distribution in 
member under pure bending.

z

– c

– �m

�m

�x

MM'

y

c

Fig. 4.28 Material with 
nonlinear stress-strain diagram.

0

�x

�m � x

�max

Fig. 4.29 Nonlinear stress distribution 
in member under pure bending.

y

c

– c �max

�x
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274 Pure Bending

where sx is the function of y plotted in Fig. 4.29. Since sx is an odd func-
tion of y, Eq. (4.30) in the alternative form is

 M 5 22b#
c

0

ysx dy (4.31)

 If sx is a known analytical function of Px , Eq. (4.10) can be used to 
express sx as a function of y, and the integral in Eq. (4.31) can be deter-
mined analytically. Otherwise, the bending moment M can be obtained 
through a numerical integration. This computation becomes more mean-
ingful if it is noted that the integral in Eq. (4.31) represents the first 
moment with respect to the horizontal axis of the area in Fig. 4.29 that is 
located above the horizontal axis and is bounded by the stress-distribu-
tion curve and the vertical axis.
 An important value is the ultimate bending moment MU , which 
causes failure of the member. This can be determined from the ultimate 
strength sU of the material by choosing smax 5 sU. However, it is found 
more convenient in practice to determine MU experimentally for a speci-
men of a given material. Assuming a fictitious linear distribution of stresses, 
Eq. (4.15) is used to determine the corresponding maximum stress RB:

 RB 5
MU c

I
 (4.32)

The fictitious stress RB is called the modulus of rupture in bending of the 
material. It can be used to determine the ultimate bending moment MU of 
a member made of the same material and having a cross section of the same 
shape, but of different dimensions, by solving Eq. (4.32) for MU. Since, in 
the case of a member with a rectangular cross section, the actual and the 
fictitious linear stress distributions shown in Fig. 4.30 must yield the same 
value MU for the ultimate bending moment, the areas they define must have 
the same first moment with respect to the horizontal axis. Thus, the modu-
lus of rupture RB will always be larger than the actual ultimate strength sU.

*4.6A  Members Made of Elastoplastic 
Material

To gain a better insight into the plastic behavior of a member in bending, 
consider a member made of an elastoplastic material and assume the 
member to have a rectangular cross section of width b and depth 2c 
(Fig. 4.31). Recall from Sec. 2.12 the stress-strain diagram for an idealized 
elastoplastic material is as shown in Fig. 4.32.

Fig. 4.30 Member stress 
distribution at ultimate moment MU.

R

�x

�U

B

y

Fig. 4.32 Idealized elastoplastic 
stress-strain diagram.

�

�Y

�Y �

Y

Fig. 4.31 Member with 
rectangular cross section.

c

b

c
N. A.
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*4.6 Plastic Deformations 275

 As long as the normal stress sx does not exceed the yield strength 
sY, Hooke’s law applies, and the stress distribution across the section is 
linear (Fig. 4.33a). The maximum value of the stress is

 sm 5
Mc

I
 (4.15)

As the bending moment increases, sm eventually reaches sY (Fig. 4.33b). 
Substituting this value into Eq. (4.15) and solving for M, the value MY of 
the bending moment at the onset of yield is

 MY 5
I
c

 sY  (4.33)

The moment MY is called the maximum elastic moment, since it is the 
largest moment for which the deformation remains fully elastic. Recalling 
that, for the rectangular cross section,

 
I
c

5
b12c23

12c
5

2

3
 bc2 (4.34)

so

 MY 5
2

3
 bc2sY  (4.35)

 As the bending moment increases further, plastic zones develop in 
the member. The stress is uniformly equal to 2sY in the upper zone and 
to 1sY in the lower zone (Fig. 4.33c). Between the plastic zones, an elastic 
core subsists in which the stress sx varies linearly with y:

 sx 5 2 
sY

yY
 y (4.36)

Here yY represents half the thickness of the elastic core. As M increases, 
the plastic zones expand, and at the limit, the deformation is fully plastic 
(Fig. 4.33d).
 Equation (4.31) is used to determine the value of the bending 
moment M corresponding to a given thickness 2yY of the elastic core. 
Recalling that sx is given by Eq. (4.36) for 0 # y # yY and is equal to 2sY 
for yY # y # c, 

 M 5 22b#
yY

0

y a2 

sY

yY
 yb dy 2 2b#

c

yY

y12sY2  dy

 5
2

3
 by 

2
Y  
sY 1 bc 

2sY 2 by 
2
Y sY

  M 5 bc 
2sY  a1 2

1

3
 
y 

2
Y

c 
2b  (4.37)

or in view of Eq. (4.35),

 M 5
3

2
MY a1 2

1

3
 
y  

2
Y

c 
2 b (4.38)

Fig. 4.33 Bending stress distribution in a 
member for : (a) elastic, M , MY (b) yield 
impending, M 5 MY , (c) partially yielded, 
M . MY , and (d) fully plastic, M 5 Mp.
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276 Pure Bending

where MY is the maximum elastic moment. Note that as yY approaches 
zero, the bending moment approaches the limiting value

 Mp 5
3

2
 MY  (4.39)

This value of the bending moment corresponds to fully plastic deforma-
tion (Fig. 4.33d) and is called the plastic moment of the member. Note that 
Eq. (4.39) is valid only for a rectangular member made of an elastoplastic 
material.
 The distribution of strain across the section remains linear after the 
onset of yield. Therefore, Eq. (4.8) remains valid and can be used to deter-
mine the half-thickness yY of the elastic core:

 yY 5 PYr (4.40)

where PY is the yield strain and r is the radius of curvature corresponding 
to a bending moment M $ MY. When the bending moment is equal to MY, 
yY 5 c and Eq. (4.40) yields

 c 5 PYrY (4.41)

where rY is the radius of curvature corresponding to MY. Dividing Eq. 
(4.40) by Eq. (4.41) member by member, the relationship is†

 
yY

c
5
r

rY
 (4.42)

Substituting for yYyc from Eq. (4.42) into Eq. (4.38), the bending moment 
M is a function of the radius of curvature r of the neutral surface:

 M 5
3

2
MY a1 2

1

3
 
r2

r2
Y

b (4.43)

Note that Eq. (4.43) is valid only after the onset of yield for values of M 
larger than MY. For M , MY, Eq. (4.21) should be used.
 Observe from Eq. (4.43) that the bending moment reaches Mp 5

3
2 MY  

only when r 5 0. Since we clearly cannot have a zero radius of curvature at 
every point of the neutral surface, a fully plastic deformation cannot develop 
in pure bending. However, in Chap. 6 it will be shown that such a situation 
may occur at one point in a beam under a transverse loading.
 The stress distributions in a rectangular member corresponding to 
the maximum elastic moment MY and to the limiting case of the plastic 
moment Mp are represented in Fig. 4.34. Since, the resultants of the tensile 
and compressive forces must pass through the centroids of and be equal 
in magnitude to the volumes representing the stress distributions, then

RY 5
1
2 bcsY

and

Rp 5 bcsY

†Equation (4.42) applies to any member made of any ductile material with a well-
defined yield point, since its derivation is independent of both the shape of the cross 
section and the shape of stress-strain diagram beyond the yield point.

Fig. 4.34 Stress distributions in 
member at (a) maximum elastic 
moment and at (b) plastic moment.
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*4.6 Plastic Deformations 277

The moments of the corresponding couples are, respectively,

 MY 5 143 c2RY 5
2
3bc2sY  (4.44)

and

 Mp 5 cRp 5 bc2sY  (4.45)

Thus for a rectangular member Mp 5
3
2 MY  as required by Eq. (4.39).

 For beams of nonrectangular cross section, the computation of the 
maximum elastic moment MY and of the plastic moment Mp is usually 
simplified if a graphical method of analysis is used, as shown in Sample 
Prob. 4.5. In this case, the ratio k 5 MpyMY is generally not equal to 3

2. For 
structural shapes such as wide-flange beams, this ratio varies approxi-
mately from 1.08 to 1.14. Because it depends only upon the shape of the 
cross section, the ratio k 5 MpyMY is called the shape factor of the cross 
section. Note that if the shape factor k and the maximum elastic moment 
MY of a beam are known, the plastic moment Mp of the beam can be 
obtained by

 Mp 5 kMY (4.46)

 The ratio MpysY is called the plastic section modulus of the member 
and is denoted by Z. When the plastic section modulus Z and the yield 
strength sY of a beam are known, the plastic moment Mp of the beam can 
be obtained by

 Mp 5 ZsY (4.47)

Recalling from Eq. (4.18) that MY 5 SsY and comparing this relationship 
with Eq. (4.47), the shape factor k 5 MpyMY of a given cross section is the 
ratio of the plastic and elastic section moduli:

 k 5
Mp

MY
5

ZsY

SsY
5

Z
S

 (4.48)

 Considering a rectangular beam of width b and depth h, note from 
Eqs. (4.45) and (4.47) that the plastic section modulus of a rectangular 
beam is

Z 5
Mp

sY
5

bc2sY

sY
5 bc2 5

1
4 bh2

However, recall from Eq. (4.19) that the elastic section modulus of the same 
beam is

S 5
1
6 bh2

Substituting the values obtained for Z and S into Eq. (4.48), the shape fac-
tor of a rectangular beam is

k 5
Z

S
5

1
4 bh2

1
6 bh2 5

3

2
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278 Pure Bending

*4.6B  Members with a Single Plane 
of Symmetry

So far the member in bending has had two planes of symmetry: one 
containing the couples M and M9 and one perpendicular to that plane. 
Now consider when the member possesses only one plane of symmetry 
containing the couples M and M9. Our analysis will be limited to the 

Concept Application 4.5
A member of uniform rectangular cross section 50 3 120 mm (Fig. 4.35) 
is subjected to a bending moment M 5 36.8 kN?m. Assuming that the 
member is made of an elastoplastic material with a yield strength of 
240 MPa and a modulus of elasticity of 200 GPa, determine (a) the 
thickness of the elastic core and (b) the radius of curvature of the neu-
tral surface.

 a. Thickness of Elastic Core. Determine the maximum elastic 
moment MY. Substituting the given data into Eq. (4.34), 

 
I
c

5
2

3
 bc2 5

2

3
 150 3 1023 m2 160 3 1023 m22

 5 120 3 1026 m3

Then carrying this value and sY 5 240 MPa into Eq. (4.33),

MY 5
I
c

 sY 5 1120 3 1026 m32 1240 MPa2 5 28.8 kN?m

Substituting the values of M and MY into Eq. (4.38),

36.8 kN?m 5
3

2
 128.8 kN?m2a1 2

1

3
 
y2

Y

c2b

ayY

c
b2

5 0.444  
yY

c
5 0.666

Since c 5 60 mm,

yY 5 0.666(60 mm) 5 40 mm

Thus, the thickness 2yY of the elastic core is 80 mm.

 b. Radius of Curvature. The yield strain is

PY 5
sY

E
5

240 3 106 Pa

200 3 109 Pa
5 1.2 3 1023

Solving Eq. (4.40) for r and substituting the values obtained for yY and PY, 

r 5
yY

PY
5

40 3 1023 m

1.2 3 1023 5 33.3 m

Fig. 4.35 Rectangular cross 
section with load MY , M , Mp.

c � 60 mm

c � 60 mm

b � 50 mm

yY
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*4.6 Plastic Deformations 279

situation where the deformation is fully plastic, with the normal stress  
uniformly equal to 2sY above the neutral surface and 1sY below that 
surface (Fig. 4.36a).
 As indicated in Sec. 4.6, the neutral axis cannot be assumed to coin-
cide with the centroidal axis of the cross section when the cross section is 
not symmetric to that axis. To locate the neutral axis, we consider that the 
resultant R1 of the elementary compressive forces is exerted on the portion 
A1 of the cross section located above the neutral axis, and the resultant R2 
of the tensile forces is exerted on the portion A2 located below the neutral 
axis (Fig. 4.36b). Since the forces R1 and R2 form a couple equivalent to the 
one applied to the member, they must have the same magnitude. Therefore 
R1 5 R2, or A1sY 5 A2sY , from which we conclude that A1 5 A2. Therefore, 
the neutral axis divides the cross section into portions of equal areas. Note 
that the axis obtained in this way is not a centroidal axis of the section.
 The lines of action of the resultants R1 and R2 pass through the cen-
troids C1 and C2 of the two portions just defined. Denoting by d the dis-
tance between C1 and C2 and by A the total area of the cross section, the 
plastic moment of the member is

Mp 5 a1

2
AsYb d

The actual computation of the plastic moment of a member with only one 
plane of symmetry is given in Sample Prob. 4.6.

*4.6C Residual Stresses
We have just seen that plastic zones develop in a member made of an 
elastoplastic material if the bending moment is large enough. When the 
bending moment is decreased back to zero, the corresponding reduction 
in stress and strain at any given point is represented by a straight line on 
the stress-strain diagram, as shown in Fig. 4.37. The final value of the 
stress at a point will not (in general) be zero. There is a residual stress at 
most points, and that stress may or may not have the same sign as the 
maximum stress reached at the end of the loading phase.
 Since the linear relation between sx and Px applies at all points of 
the member during the unloading phase, Eq. (4.16) can be is used to obtain 
the change in stress at any given point. The  unloading phase can be han-
dled by assuming the member to be fully elastic.
 The residual stresses are obtained by applying the principle of 
superposition in a manner similar to that described in Sec. 2.13 for an 
axial centric loading and used again in Sec. 3.8 for torsion. We con-
sider, on one hand, the stresses due to the application of the given 
bending moment M, and on the other, the reverse stresses due to the 
equal and opposite bending moment 2M that is applied to unload the 
member. The first group of stresses reflect the elastoplastic behavior 
of the material during the loading phase, and the second group the 
linear behavior of the same material during the unloading phase. Add-
ing the two groups of stresses provides the distribution of residual 
stresses in the member.

Fig. 4.36 Nonsymmetrical beam 
subject to plastic moment. (a) Stress 
distributions and (b) resultant forces 
acting at tension/compression centroids.

�Y�

Neutral
surface

(a)

(b)

R2

C1

C2

A2

A1

d R1

N.A.

�Y�

Fig. 4.37 Elastoplastic material 
stress-strain diagram with load reversal.

�Y

�Y �x

�x

�Y�
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280 Pure Bending

Concept Application 4.6
For the member of Fig. 4.35, determine (a) the distribution of the resid-
ual stresses, (b) the radius of curvature, after the bending moment has 
been decreased from its maximum value of 36.8 kN?m back to zero.

 a. Distribution of Residual Stresses. Recall from Concept 
Application 4.5 that the yield strength is sY 5 240 MPa and the thick-
ness of the elastic core is 2yY 5 80 mm. The distribution of the stresses 
in the loaded member is as shown in Fig. 4.38a.
 The distribution of the reverse stresses due to the opposite 
36.8 kN?m bending moment required to unload the member is linear 
and is shown in Fig. 4.38b. The maximum stress s9m in that distribu-
tion is obtained from Eq. (4.15). Recalling that Iyc 5 120 3 1026 m3,

s¿m 5
Mc

I
5

36.8 kN?m

120 3 1026 m3 5 306.7 MPa

 Superposing the two distributions of stresses, obtain the residual 
stresses shown in Fig. 4.38c. We note that even though the reverse 
stresses are larger than the yield strength sY, the assumption of a linear 
distribution of the reverse stresses is valid, since they do not exceed 2sY.

 b. Radius of Curvature after Unloading. We apply Hooke’s law 
at any point of the core |y | , 40 mm, since no plastic deformation has 
occurred in that portion of the member. Thus, the residual strain at 
the distance y 5 40 mm is

Px 5
sx

E
5

235.5 3 106 Pa

200 3 109 Pa
5 2177.5 3 1026

Solving Eq. (4.8) for r and substituting the appropriate values of y and 
Px gives

r 5 2 
y

Px
5

40 3 1023 m

177.5 3 1026 5 225 m

The value obtained for r after the load has been removed represents 
a permanent deformation of the member.

Fig. 4.38 Determination of residual stress: (a) Stresses at maximum moment. (b) Unloading. (c) Residual stresses.
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*4.6 Plastic Deformations 281

Sample Problem 4.5
Beam AB has been fabricated from a high-strength low-alloy steel that 
is assumed to be elastoplastic with E 5 29 3 106 psi and sY 5 50 ksi. 
Neglecting the effect of fillets, determine the bending moment M and 
the corresponding radius of curvature (a) when yield first occurs, 
(b) when the flanges have just become fully plastic.

STRATEGY: Up to the point that yielding first occurs at the top and 
bottom of this symmetrical section, the stresses and radius of curva-
ture are calculated assuming elastic behavior. A further increase in 
load causes plastic behavior over parts of the cross section, and it is 
then necessary to work with the resulting stress distribution on the 
cross section to obtain the corresponding moment and radius of 
curvature.

MODELING and ANALYSIS:

 a. Onset of Yield. The centroidal moment of inertia of the section is

I 5
1

12 112 in.2 116 in.23 2
1

12 112 in. 2 0.75 in.2 114 in.23 5 1524 in4

 Bending Moment.  For smax 5 sY 5 50 ksi and c 5 8 in., we have

 MY 5
sY I

c
5
150 ksi2 11524 in42

8 in.
 MY 5 9525 kip?in. ◀

 Radius of Curvature.  As shown in Fig. 1, the strain at the top and 
bottom is the strain at initial yielding, PY 5 sYyE 5 (50 ksi)/(29 3 106 
psi) 5 0.001724. Noting that c 5 8 in., we have from Eq. (4.41)

 c 5 PYrY  8 in. 5 0.001724rY rY 5 4640 in. ◀

B

A

16 in.

1 in.

in.

1 in.
12 in.

3
4

M

y

z C

E

O

� 50 ksi

1

�

�

Y

� 0.001724

8 in.

8 in.

Strain
distribution

Stress
distribution

� �
Y

� 0.001724�Y �Y

Fig. 1 Elastoplastic material response and 
elastic strain and stress distributions.

(continued)
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282 Pure Bending

 b. Flanges Fully Plastic. When the flanges have just become 
fully plastic, the strains and stresses in the section are as shown in 
Fig. 2.

C

in.

1 in.
Strain 

distribution
Stress

distribution
Resultant

force

7 in.

7 in.

7 in.

7 in.
3
4

� 0.001724�Y

�Y

� 50 ksi

R4

R1

R2

R3

�Y
1 in.

7.5 in.

7.5 in.
4.67 in.

4.67 in.
z

Fig. 2  Strain and stress distributions with flanges fully plastic.

 The compressive forces exerted on the top flange and on the top 
half of the web are replaced by their resultants R1 and R2. Similarly, 
replace the tensile stresses by R3 and R4.

R1 5 R4 5 (50 ksi)(12 in.)(1 in.) 5 600 kips

R2 5 R3 5
1
2 150 ksi2 17 in.2 10.75 in.2 5 131.3 kips

 Bending Moment.  Summing the moments of R1, R2, R3, and R4 
about the z axis, write

 M 5 2[R1(7.5 in.) 1 R2(4.67 in.)]

 5 2[(600)(7.5) 1 (131.3)(4.67)] M 5 10,230 kip?in. ◀

 Radius of Curvature.  Since yY 5 7 in. for this loading, we have 
from Eq. (4.40)

      yY 5 PY r  7 in. 5 (0.001724)r r 5 4060 in. 5 338 ft ◀

REFLECT and THINK: Once the load is increased beyond that 
which causes initial yielding, it is necessary to work with the actual 
stress distribution to determine the applied moment. The radius of 
curvature is based on the elastic portion of the beam.
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*4.6 Plastic Deformations 283

Sample Problem 4.6
Determine the plastic moment Mp of a beam with the cross section 
shown when the beam is bent about a horizontal axis. Assume that the 
material is elastoplastic with a yield strength of 240 MPa.

STRATEGY: All portions of the cross section are yielding, and the 
resulting stress distribution must be used to determine the moment. 
Since the beam is not symmetrical, it is first necessary to determine 
the location of the neutral axis.

MODELING:

 Neutral Axis.  When the deformation is fully plastic, the neutral 
axis divides the cross section into two portions of equal areas (Fig. 1). 
Since the total area is

A 5 (100)(20) 1 (80)(20) 1 (60)(20) 5 4800 mm2

the area located above the neutral axis must be 2400 mm2. Write

(20)(100) 1 20y 5 2400  y 5 20 mm

Note that the neutral axis does not pass through the centroid of the 
cross section.

ANALYSIS:

 Plastic Moment.  Using Fig. 2, the resultant Ri of the elementary 
forces exerted on the partial area Ai is equal to

Ri 5 AisY

and passes through the centroid of that area. We have

 R1 5 A1sY 5 3 10.100 m2 10.020 m2 4240 MPa 5 480 kN

 R2 5 A2sY 5 3 10.020 m2 10.020 m2 4240 MPa 5 96 kN

 R3 5 A3sY 5 3 10.020 m2 10.060 m2 4240 MPa 5 288 kN

 R4 5 A4sY 5 3 10.060 m2 10.020 m2 4240 MPa 5 288 kN

60 mm

100 mm

20 mm
80 mm

20 mm

20 mm

Fig. 1 For fully plastic deformation, 
neutral axis divides the cross section into 
two equal areas.

100 mm

20 mm
Neutral axis

20 mm
y

(continued)

Fig. 2 Fully plastic stress distributions and resultant forces for finding the plastic moment.
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284 Pure Bending

The plastic moment Mp is obtained by summing the moments of the 
forces about the z axis.

 Mp 5 10.030 m2R1 1 10.010 m2R2 1 10.030 m2R3 1 10.070 m2R4

  5 10.030 m2 1480 kN2 1 10.010 m2 196 kN2
 1 10.030 m2 1288 kN2 1 10.070 m2 1288 kN2
 5 44.16 kN?m Mp 5 44.2 kN?m ◀

REFLECT and THINK: Since the cross section is not symmetric 
about the z axis, the sum of the moments of R1 and R2 is not equal to 
the sum of the moments of R3 and R4.

Sample Problem 4.7
For the beam of Sample Prob. 4.5, determine the residual stresses and 
the permanent radius of curvature after the 10,230-kip?in. couple M 
has been removed.

STRATEGY: Start with the moment and stress distribution when the 
flanges have just become plastic. The beam is then unloaded by a 
couple that is equal and opposite to the couple originally applied. 
During the unloading, the action of the beam is fully elastic. The 
stresses due to the original loading and those due to the unloading are 
superposed to obtain the residual stress distribution.

MODELING and ANALYSIS:

 Loading.  In Sample Prob. 4.5, a couple of moment 
M 5 10,230 kip?in. was applied and the stresses shown in Fig. 1a 
were obtained.

 Elastic Unloading.  The beam is unloaded by the application of 
a couple of moment M 5 210,230 kip?in. (which is equal and opposite 
to the couple originally applied). During this unloading, the action of 
the beam is fully elastic; recalling from Sample Prob. 4.5 that 
I 5 1524 in4

s¿m 5
Mc

I
5
110,230 kip?in.2 18 in.2

1524 in4 5 53.70 ksi

The stresses caused by the unloading are shown in Fig. 1b.

(continued)
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*4.6 Plastic Deformations 285

 Residual Stresses.  We superpose the stresses due to the load-
ing (Fig. 1a) and to the unloading (Fig. 1b) and obtain the residual 
stresses in the beam (Fig. 1c).

 Permanent Radius of Curvature.  At y 5 7 in. the residual 
stress is s 5 23.01 ksi. Since no plastic deformation occurred at this 
point, Hooke’s law can be used, and Px 5 syE. Recalling Eq. (4.8), we 
write

r5 2 
y

Px
5 2 

yE

s
5 2 

17 in.2 129 3 106 psi2
23.01 ksi

5 167,400 in. r 5 5620 ft ◀

REFLECT and THINK: From Fig. 2, note that the residual stress is 
tensile on the upper face of the beam and compressive on the lower 
face, even though the beam is concave upward.

10,230 kip · in. M 5 10,230 kip · in.

5 250 ksisY
5 53.70 ksi 23.01 ksi

23.70 ksi

13.70 ksi

13.01 ksi

s 'm

5 46.99 ksis
8 in. 7 in. 8 in. 7 in.

(b)(a) (c)

Fig. 1 Superposition of plastic loading and elastic unloading to obtain residual stresses.

� �3.70 ksi (tension)�

� �3.70 ksi (compression)�

�

Fig. 2 Representation of the permanent 
radius of curvature.
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 4.67 The prismatic bar shown is made of a steel that is assumed to be 
elastoplastic with sY 5 300 MPa and is subjected to a couple M paral-
lel to the x axis. Determine the moment M of the couple for which 
(a) yield first occurs, (b) the elastic core of the bar is 4 mm thick.

Problems

Fig. P4.67

z
x

8 mm12 mm

M

18 mm

24 mm

x

y

M�

M

Fig. P4.71

 4.68 Solve Prob. 4.67, assuming that the couple M is parallel to the z axis.

 4.69 A solid square rod of side 0.6 in. is made of a steel that is assumed 
to be elastoplastic with E 5 29 3 106 psi and sY 5 48 ksi. Know-
ing that a couple M is applied and maintained about an axis par-
allel to a side of the cross section, determine the moment M of 
the couple for which the radius of curvature is 6 ft.

 4.70 For the solid square rod of Prob. 4.69, determine the moment M 
for which the radius of curvature is 3 ft.

 4.71 The prismatic rod shown is made of a steel that is assumed to be 
elastoplastic with E 5 200 GPa and sY 5 280 MPa. Knowing that 
couples M and M9 of moment 525 N?m are applied and main-
tained about axes parallel to the y axis, determine (a) the thick-
ness of the elastic core, (b) the radius of curvature of the bar.

 4.72 Solve Prob. 4.71, assuming that the couples M and M9 are applied 
and maintained about axes parallel to the x axis.
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 4.73 and 4.74 A beam of the cross section shown is made of a steel that 
is assumed to be elastoplastic with E 5 200 GPa and sY 5 240 MPa. 
For bending about the z axis, determine the bending moment at 
which (a) yield first occurs, (b) the plastic zones at the top and 
bottom of the bar are 30 mm thick.

 4.75 and 4.76 A beam of the cross section shown is made of a steel that 
is assumed to be elastoplastic with E 5 29 3 106 psi and 
sY 5 42 ksi. For bending about the z axis, determine the bending 
moment at which (a) yield first occurs, (b) the plastic zones at 
the top and bottom of the bar are 3 in. thick.

z

y

90 mm

60 mm

C

Fig. P4.73

30 mm

30 mm

30 mm

30 mm
15 mm15 mm

z

y

C

Fig. P4.74

3 in.

3 in.

3 in.

3 in.

1.5 in. 1.5 in.

z

y

C

Fig. P4.75

3 in.

3 in.

3 in.

3 in.1.5 in. 1.5 in.

z

y

C

Fig. P4.76

 4.77 through 4.80 For the beam indicated, determine (a) the plastic 
moment Mp , (b) the shape factor of the cross section.

4.77 Beam of Prob. 4.73.
4.78 Beam of Prob. 4.74.
4.79 Beam of Prob. 4.75.

   4.80 Beam of Prob. 4.76.
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 4.81 through 4.83 Determine the plastic moment Mp of a steel beam of 
the cross section shown, assuming the steel to be elastoplastic 
with a yield strength of 240 MPa.

 4.84 Determine the plastic moment Mp of a steel beam of the cross 
section shown, assuming the steel to be elastoplastic with a yield 
strength of 42 ksi.

r � 18 mm

Fig. P4.81

50 mm

30 mm

10 mm

30 mm
10 mm10 mm

Fig. P4.82

36 mm

30 mm

Fig. P4.83

 4.85 Determine the plastic moment Mp of the cross section shown 
when the beam is bent about a horizontal axis. Assume the mate-
rial to be elastoplastic with a yield strength of 175 MPa.

 4.86 Determine the plastic moment Mp of a steel beam of the cross 
section shown, assuming the steel to be elastoplastic with a yield 
strength of 36 ksi.

Fig. P4.84
0.4 in. 0.4 in.

0.4 in.

1.0 in.

1.0 in.

5 mm

80 mm

5 mm

120 mm

t = 5 mm

Fig. P4.85

2 in.

4 in.

3 in.

 in.1
2

 in.1
2

 in.1
2

Fig. P4.86

 4.87 and 4.88 For the beam indicated, a couple of moment equal to the 
full plastic moment Mp is applied and then removed. Using a 
yield strength of 240 MPa, determine the residual stress at
y 5 45 mm.

4.87 Beam of Prob. 4.73.
  4.88 Beam of Prob. 4.74.
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 4.89 and 4.90 A bending couple is applied to the bar indicated, causing 
plastic zones 3 in. thick to develop at the top and bottom of the 
bar. After the couple has been removed, determine (a) the resid-
ual stress at y 5 4.5 in., (b) the points where the residual stress is 
zero, (c) the radius of curvature corresponding to the permanent 
deformation of the bar.

   4.89 Beam of Prob. 4.75.
   4.90 Beam of Prob. 4.76.

 4.91 A bending couple is applied to the beam of Prob. 4.73, causing 
plastic zones 30 mm thick to develop at the top and bottom of 
the beam. After the couple has been removed, determine (a) the 
residual stress at y 5 45 mm, (b) the points where the residual 
stress is zero, (c) the radius of curvature corresponding to the 
permanent deformation of the beam.

 4.92 A beam of the cross section shown is made of a steel that is 
assumed to be elastoplastic with E 5 29 3 106 psi and sY 5 42 ksi. 
A bending couple is applied to the beam about the z axis, causing 
plastic zones 2 in. thick to develop at the top and bottom of the 
beam. After the couple has been removed, determine (a) the 
residual stress at y 5 2 in., (b) the points where the residual stress 
is zero, (c) the radius of curvature corresponding to the perma-
nent deformation of the beam.

Cz

y

1 in.
1 in.

1 in.

1 in.

1 in.

2 in.

Fig. P4.92

 4.93 A rectangular bar that is straight and unstressed is bent into an 
arc of circle of radius r by two couples of moment M. After the 
couples are removed, it is observed that the radius of curvature 
of the bar is rR. Denoting by rY the radius of curvature of the bar 
at the onset of yield, show that the radii of curvature satisfy the 
following relation:

1
rR

5
1
r
e1 2

3

2
 
r

rY
c 1 2

1

3
 a r
rY
b2 d f

 4.94 A solid bar of rectangular cross section is made of a material that 
is assumed to be elastoplastic. Denoting by MY and rY , respec-
tively, the bending moment and radius of curvature at the onset 
of yield, determine (a) the radius of curvature when a couple of 
moment M 5 1.25 MY is applied to the bar, (b) the radius of cur-
vature after the couple is removed. Check the results obtained by 
using the relation derived in Prob. 4.93.
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 4.95 The prismatic bar AB is made of a steel that is assumed to be 
elastoplastic and for which E 5 200 GPa. Knowing that the radius 
of curvature of the bar is 2.4 m when a couple of moment 
M 5 350 N?m is applied as shown, determine (a) the yield 
strength of the steel, (b) the thickness of the elastic core of the 
bar.

 4.96 The prismatic bar AB is made of an aluminum alloy for which the 
tensile stress-strain diagram is as shown. Assuming that the s-e

diagram is the same in compression as in tension, determine (a) 
the radius of curvature of the bar when the maximum stress is 
250 MPa, (b) the corresponding value of the bending moment. 
(Hint: For part b, plot s versus y and use an approximate method 
of integration.)

B

A

16 mm 20 mm

M

Fig. P4.95

 4.97 The prismatic bar AB is made of a bronze alloy for which the 
tensile stress-strain diagram is as shown. Assuming that the s-e

diagram is the same in compression as in tension, determine (a) 
the maximum stress in the bar when the radius of curvature of 
the bar is 100 in., (b) the corresponding value of the bending 
moment. (See hint given in Prob. 4.96.)

 4.98 A prismatic bar of rectangular cross section is made of an alloy 
for which the stress-strain diagram can be represented by the 
relation e 5 ksn for s . 0 and e 5 –|ksn| for s , 0. If a couple 
M is applied to the bar, show that the maximum stress is

sm 5
1 1 2n

3n
 
Mc

I

M

60 mm

40 mm

A

M'

B

�

�

(MPa)

300

200

100

0 0.005 0.010

Fig. P4.96

1.2 in.

0.8 in.

A

B

�

�

(ksi)

50

30

40

20

10

0
0.004 0.008

M

Fig. P4.97

�

�

M

Fig. P4.98
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4.7 Eccentric Axial Loading in a Plane of Symmetry 291

4.7  ECCENTRIC AXIAL 
LOADING IN A PLANE OF 
SYMMETRY

We saw in Sec. 1.2A that the distribution of stresses in the cross section of 
a member under axial loading can be assumed uniform only if the line of 
action of the loads P and P9 passes through the centroid of the cross section. 
Such a loading is said to be centric. Let us now analyze the distribution of 
stresses when the line of action of the loads does not pass through the cen-
troid of the cross section, i.e., when the loading is eccentric.
 Two examples of an eccentric loading are shown in Photos 4.5 and 
4.6. In Photo 4.5, the weight of the lamp causes an eccentric loading on 
the post. Likewise, the vertical forces exerted on the press in Photo. 4.6 
cause an eccentric loading on the back column of the press.

Photo 4.5 Walkway light. Photo 4.6 Bench press.

 In this section, our analysis will be limited to members that possess 
a plane of symmetry, and it will be assumed that the loads are applied in 
the plane of symmetry of the member (Fig. 4.39a). The internal forces 
acting on a given cross section may then be represented by a force F
applied at the centroid C of the section and a couple M acting in the plane 
of symmetry of the member (Fig. 4.39b). The conditions of equilibrium of 
the free body AC require that the force F be equal and opposite to P9 and 
that the moment of the couple M be equal and opposite to the moment 
of P9 about C. Denoting by d the distance from the centroid C to the line 
of action AB of the forces P and P9, we have

 F 5 P  and  M 5 Pd  (4.49)

 We now observe that the internal forces in the section would have 
been represented by the same force and couple if the straight portion DE 
of member AB had been detached from AB and subjected simultaneously 
to the centric loads P and P9 and to the bending couples M and M9 
(Fig. 4.40). Thus, the stress distribution due to the original eccentric 

Fig. 4.39 (a) Member with eccentric 
loading. (b) Free-body diagram of the 
member with internal loads at section C.

d

d

D E
C

PP'

A B(a)

D
C

F
M

P'

A
(b)

Fig. 4.40 (a) Free-body diagram of straight 
portion DE. (b) Free-body diagram of portion CD.

D E
C

P

(a)

P'

M' M

D
C

F � P

(b)

P'

M' M
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292 Pure Bending

Fig. 4.41 Stress distribution for eccentric loading is obtained by superposing the axial 
and pure bending distributions.

y y y

C C C
x� x� x�+ =

loading can be obtained by superposing the uniform stress distribution 
corresponding to the centric loads P and P9 and the linear distribution 
corresponding to the bending couples M and M9 (Fig. 4.41). Write

sx 5 1sx2centric 1 1sx2bending

or recalling Eqs. (1.5) and (4.16),

 sx 5
P

A
2

My

I
 (4.50)

where A is the area of the cross section and I its centroidal moment of 
inertia and y is measured from the centroidal axis of the cross section. This 
relationship shows that the distribution of stresses across the section is 
linear but not uniform. Depending upon the geometry of the cross section 
and the eccentricity of the load, the combined stresses may all have the 
same sign, as shown in Fig. 4.41, or some may be positive and others 
negative, as shown in Fig. 4.42. In the latter case, there will be a line in the 
section, along which sx 5 0. This line represents the neutral axis of the 
section. We note that the neutral axis does not coincide with the centroidal 
axis of the section, since sx Þ 0 for y 5 0.

Fig. 4.42 Alternative stress distribution for eccentric loading that results in zones 
of tension and compression.

y

C C

y

x� x� C

N.A.

y

x�+ =

 The results obtained are valid only to the extent that the conditions 
of applicability of the superposition principle (Sec. 2.5) and of Saint-
Venant’s principle (Sec. 2.10) are met. This means that the stresses 
involved must not exceed the proportional limit of the material. The 
deformations due to bending must not appreciably affect the distance d 
in Fig. 4.39a, and the cross section where the stresses are computed 
must not be too close to points D or E. The first of these requirements 
clearly shows that the superposition method cannot be applied to plastic 
deformations.
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Concept Application 4.7
An open-link chain is obtained by bending low-carbon steel rods of 
0.5-in. diameter into the shape shown (Fig. 4.43a). Knowing that the 
chain carries a load of 160 lb, determine (a) the largest tensile and 
compressive stresses in the straight portion of a link, (b) the distance 
between the centroidal and the neutral axis of a cross section.

 a. Largest Tensile and Compressive Stresses. The internal 
forces in the cross section are equivalent to a centric force P and a 
bending couple M (Fig. 4.43b) of magnitudes

P 5 160 lb

M 5 Pd 5 1160 lb2 10.65 in.2 5 104 lb?in.

The corresponding stress distributions are shown in Fig. 4.43c and d. 
The distribution due to the centric force P is uniform and equal to 
s0 5 PyA. We have

 A 5 pc2 5 p10.25 in.22 5 0.1963 in2

 s0 5
P
A

5
160 lb

0.1963 in2 5 815 psi

The distribution due to the bending couple M is linear with a maxi-
mum stress sm 5 McyI. We write

 I 5
1
4pc4 5

1
4p10.25 in.24 5 3.068 3 1023 in4

 sm 5
Mc

I
5
1104 lb?in.2 10.25 in.2

3.068 3 1023 in4 5 8475 psi

Superposing the two distributions, we obtain the stress distribution 
corresponding to the given eccentric loading (Fig. 4.43e). The largest 

Fig. 4.43 (a) Open chain link under loading. (b) Free-body diagram for section at C. (c) Axial 
stress at section C. (d) Bending stress at C. (e) Superposition of stresses.

160 lb

160 lb

0.5 in.

0.65 in.

(a)

160 lb

M

Pd 5 0.65 in.

C

(b)

8475 psi

– 8475 psi
– 7660 psi

N.A.

815 psi

x

C y C y C y

9290 psis xs xs

(c) (d) (e)

+ =

(continued)
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294 Pure Bending

tensile and compressive stresses in the section are found to be, 
respectively,

 st 5 s0 1 sm 5 815 1 8475 5 9290 psi

 sc 5 s0 2 sm 5 815 2 8475 5 27660 psi

 b. Distance Between Centroidal and Neutral Axes. The dis-
tance y0 from the centroidal to the neutral axis of the section is obtained 
by setting sx 5 0 in Eq. (4.50) and solving for y0:

 0 5
P
A

2
My0

I

 y0 5 aP
A
ba I

M
b 5 1815 psi2 Ê

3.068 3 1023 in4

104 lb?in.

 y0 5 0.0240 in.

Sample Problem 4.8
Knowing that for the cast iron link shown the allowable stresses are 
30 MPa in tension and 120 MPa in compression, determine the largest 
force P which can be applied to the link. (Note: The T-shaped cross sec-
tion of the link has previously been considered in Sample Prob. 4.2.)

STRATEGY: The stresses due to the axial load and the couple result-
ing from the eccentricity of the axial load with respect to the neutral 
axis are superposed to obtain the maximum stresses. The cross section 
is singly symmetric, so it is necessary to determine both the maximum 
compression stress and the maximum tension stress and compare 
each to the corresponding allowable stress to find P.

MODELING and ANALYSIS:

 Properties of Cross Section.  The cross section is shown in 
Fig. 1. From Sample Prob. 4.2, we have

A 5 3000 mm2 5 3 3 1023 m2    Y 5 38 mm 5 0.038 m
I 5 868 3 1029 m4

We now write (Fig. 2):  d 5 (0.038 m) 2 (0.010 m) 5 0.028 m

A

B

D

10 mm

a

a

P'P

Fig. 1 Section geometry to find 
centroid location.

90 mm

20 mm

40 mm
10 mm

30 mm
Section a–a

A

B

C

D�

Fig. 2 Dimensions for finding d.

cA � 0.022 m

cB � 0.038 m

0.010 m

A

d

B

C

D

(continued)
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4.7 Eccentric Axial Loading in a Plane of Symmetry 295

 Force and Couple at C.  Using Fig. 3, we replace P by an equiva-
lent force-couple system at the centroid C.

P 5 P  M 5 P(d) 5 P(0.028 m) 5 0.028P

The force P acting at the centroid causes a uniform stress distribution 
(Fig. 4a). The bending couple M causes a linear stress distribution 
(Fig. 4b).

 s0 5
P

A
5

P

3 3 1023 5 333P    1Compression2

 s1 5
McA

I
5
10.028P2 10.0222

868 3 1029 5 710P    1Tension2

 s2 5
McB

I
5
10.028P2 10.0382

868 3 1029 5 1226P    1Compression2

 Superposition.  The total stress distribution (Fig. 4c) is found by 
superposing the stress distributions caused by the centric force P and 
by the couple M. Since tension is positive, and compression negative, 
we have

 sA 5 2 

P
A

1
McA

I
5 2333P 1 710P 5 1377P    1Tension2

 sB 5 2 

P
A

2
McB

I
5 2333P 2 1226P 5 21559P    1Compression2

 Largest Allowable Force.  The magnitude of P for which the 
tensile stress at point A is equal to the allowable tensile stress of 30 
MPa is found by writing

 sA 5 377P 5 30 MPa P 5 79.6 kN ◀

We also determine the magnitude of P for which the stress at B is equal 
to the allowable compressive stress of 120 MPa.

 sB 5 21559P 5 2120 MPa P 5 77.0 kN ◀

The magnitude of the largest force P that can be applied without 
exceeding either of the allowable stresses is the smaller of the two val-
ues we have found.

 P 5 77.0 kN ◀

Fig. 3 Equivalent force-couple system 
at centroid C.

A

C

D

B
P

d

A

C

B

P

M

Fig. 4 Stress distribution at section C is 
superposition of axial and bending 
distributions.

C

B

A 0 A
5

McA

I

C

B

A

C

B

s
As

Bs

1s

5
McB

I2s

(a) (b) (c)
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Problems
 4.99 Knowing that the magnitude of the horizontal force P is 8 kN, 

determine the stress at (a) point A, (b) point B.

45 mm

30 mm

24 mm

15 mm

A
D

B

P

Fig. P4.99

 4.100 A short wooden post supports a 6-kip axial load as shown. Deter-
mine the stress at point A when (a) b 5 0, (b) b 5 1.5 in., 
(c) b 5 3 in.

y

z x

6 kips
3 in.

A

C

b

Fig. P4.100

 4.101 Two forces P can be applied separately or at the same time to a 
plate that is welded to a solid circular bar of radius r. Determine 
the largest compressive stress in the circular bar, (a) when both 
forces are applied, (b) when only one of the forces is applied.

PP
r r

Fig. P4.101
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 4.102 A short 120 3 180-mm column supports the three axial loads 
shown. Knowing that section ABD is sufficiently far from the loads 
to remain plane, determine the stress at (a) corner A, (b) corner B.

x
z

y

30 kN
20 kN

100 kN

30 mm

60 mm

120 mm
90 mm

90 mm

A

B

D

C

Fig. P4.102
 4.103 As many as three axial loads, each of magnitude P 5 50 kN, can 

be applied to the end of a W200 3 31.1 rolled-steel shape. Deter-
mine the stress at point A, (a) for the loading shown, (b) if loads 
are applied at points 1 and 2 only.

80 mm
80 mm

2
3

1

C

A

P
P

P

Fig. P4.103

z

x

y

A

C
b

25 mm

10 mm

30 mm

30 mm

10 mm

10 kN

10 kN

Fig. P4.104

 4.104 Two 10-kN forces are applied to a 20 3 60-mm rectangular bar 
as shown. Determine the stress at point A when (a) b 5 0, 
(b) b 5 15 mm, (c) b 5 25 mm.

 4.105 Portions of a 1
2 3 

1
2-in. square bar have been bent to form the two 

machine components shown. Knowing that the allowable stress 
is 15 ksi, determine the maximum load that can be applied to 
each component.

1 in.

(a) (b)

P'P P'P

Fig. P4.105
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 4.106 Knowing that the allowable stress in section ABD is 80 MPa, 
determine the largest force P that can be applied to the bracket 
shown.

A D

18 mm
40 mm

12 mm
12 mm

P

B

Fig. P4.106

 4.107 A milling operation was used to remove a portion of a solid bar 
of square cross section. Knowing that a 5 30 mm, d 5 20 mm, 
and sall 5 60 MPa, determine the magnitude P of the largest 
forces that can be safely applied at the centers of the ends of the 
bar.

 4.108 A milling operation was used to remove a portion of a solid bar 
of square cross section. Forces of magnitude P 5 18 kN are 
applied at the centers of the ends of the bar. Knowing that 
a 5 30 mm and sall 5 135 MPa, determine the smallest allowable 
depth d of the milled portion of the bar.

 4.109 The two forces shown are applied to a rigid plate supported by a 
steel pipe of 8-in. outer diameter and 7-in. inner diameter. Deter-
mine the value of P for which the maximum compressive stress 
in the pipe is 15 ksi.

a

a
d

P'

P

Fig. P4.107 and P4.108

P5 in.12 kips

Fig. P4.109

 4.110 An offset h must be introduced into a solid circular rod of diam-
eter d. Knowing that the maximum stress after the offset is intro-
duced must not exceed 5 times the stress in the rod when it is 
straight, determine the largest offset that can be used.

 4.111 An offset h must be introduced into a metal tube of 0.75-in. outer 
diameter and 0.08-in. wall thickness. Knowing that the maximum 
stress after the offset is introduced must not exceed 4 times the 
stress in the tube when it is straight, determine the largest offset 
that can be used.

P'

P'

P

P

d

d

h

Fig. P4.110 and P4.111
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 4.112 A short column is made by nailing four 1 3 4-in. planks to a 
4 3 4-in. timber. Using an allowable stress of 600 psi, determine the 
largest compressive load P that can be applied at the center of the 
top section of the timber column as shown if (a) the column is as 
described, (b) plank 1 is removed, (c) planks 1 and 2 are removed, 
(d) planks 1, 2, and 3 are removed, (e) all planks are removed.

11

24

3

16 kips

Fig. P4.112

0.75 in.

3 in.

3 in.

1 in.

1.5 in. 1.5 in.

aa

BA
0.75 in.

Section a–a

Fig. P4.113
 4.114 Solve Prob. 4.113, assuming that the vertical rod is attached at 

point B instead of point A.

 4.115 Knowing that the clamp shown has been tightened until 
P 5 400 N, determine (a) the stress at point A, (b) the stress at 
point B, (c) the location of the neutral axis of section a-a.

32 mm

P'P

a

a
B

A

4 mm

2 mm radius

20 mm

Section a–a

Fig. P4.115
 4.116 The shape shown was formed by bending a thin steel plate. Assum-

ing that the thickness t is small compared to the length a of each 
side of the shape, determine the stress (a) at A, (b) at B, (c) at C.

P'

P

A

B

C

a a

t

90�

Fig. P4.116

 4.113 A vertical rod is attached at point A to the cast iron hanger shown. 
Knowing that the allowable stresses in the hanger are sall 5 15 
ksi and sall 5 212 ksi, determine the largest downward force and 
the largest upward force that can be exerted by the rod.
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 4.117 Three steel plates, each of 25 3 150-mm cross section, are welded 
together to form a short H-shaped column. Later, for architec-
tural reasons, a 25-mm strip is removed from each side of one 
of the flanges. Knowing that the load remains centric with respect 
to the original cross section, and that the allowable stress is 
100 MPa, determine the largest force P (a) that could be applied 
to the original column, (b) that can be applied to the modified 
column.

 4.118 A vertical force P of magnitude 20 kips is applied at point C
located on the axis of symmetry of the cross section of a short 
column. Knowing that y 5 5 in., determine (a) the stress at 
point A, (b) the stress at point B, (c) the location of the neutral 
axis.

50 mm
50 mm

P

Fig. P4.117

 4.119 A vertical force P is applied at point C located on the axis of sym-
metry of the cross section of a short column. Determine the 
range of values of y for which tensile stresses do not occur in the 
column.

 4.120 The four bars shown have the same cross-sectional area. For the 
given loadings, show that (a) the maximum compressive stresses 
are in the ratio 4:5:7:9, (b) the maximum tensile stresses are in 
the ratio 2:3:5:3. (Note: the cross section of the triangular bar is 
an equilateral triangle.)

 4.121 An eccentric force P is applied as shown to a steel bar of 
25 3 90-mm cross section. The strains at A and B have been mea-
sured and found to be

eA 5 1350 m    eB 5 270 m

  Knowing that E 5 200 GPa, determine (a) the distance d, (b) the 
magnitude of the force P.

 4.122 Solve Prob. 4.121, assuming that the measured strains are

eA 5 1600 m    eB 5 1420 m

(a) (b)

y

y

y x

x

A

A

B
B

C

3 in.3 in.

4 in.

2 in.

2 in. 2 in.

1 in.

P

Fig. P4.118 and P4.119

P

P

P

P

Fig. P4.120

30 mm

45 mm

15 mm

90 mm

25 mm

d

A

B P

Fig. P4.121
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 4.123 The C-shaped steel bar is used as a dynamometer to determine 
the magnitude P of the forces shown. Knowing that the cross 
section of the bar is a square of side 40 mm and that the strain 
on the inner edge was measured and found to be 450 m, deter-
mine the magnitude P of the forces. Use E 5 200 GPa.

 4.124 A short length of a rolled-steel column supports a rigid pl ate on 
which two loads P and Q are applied as shown. The strains at two 
points A and B on the centerline of the outer faces of the flanges 
have been measured and found to be

eA 5 2400 3 10–6 in./in.  eB 5 2300 3 10–6 in./in.

  Knowing that E 5 29 3 106 psi, determine the magnitude of each 
load.

40 mm
80 mm

P'

P
Fig. P4.123

 4.125 A single vertical force P is applied to a short steel post as shown. 
Gages located at A, B, and C indicate the following strains:

eA 5 2500 m   eB 5 21000 m   eC 5 2200 m

Knowing that E 5 29 3 106 psi, determine (a) the magnitude of 
P, (b) the line of action of P, (c) the corresponding strain at the 
hidden edge of the post, where x 5 22.5 in. and z 5 21.5 in. 

z

x
B A

A = 10.0 in2

Iz = 273 in4

y

A

z x

6 in.
6 in.

P

Q
10 in.

Fig. P4.124

P

C

B

A

y

z x

3 in.
5 in.

Fig. P4.125

b � 40 mm

a � 25 mm

20 mm

A

D

CB
d P

Fig. P4.126

 4.126 The eccentric axial force P acts at point D, which must be located 
25 mm below the top surface of the steel bar shown. For P 5 60 kN, 
(a) determine the depth d of the bar for which the tensile stress 
at point A is maximum, (b) the corresponding stress at A.
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302 Pure Bending

4.8  UNSYMMETRIC BENDING 
ANALYSIS

Our analysis of pure bending has been limited so far to members possessing 
at least one plane of symmetry and subjected to couples acting in that 
plane. Because of the symmetry of such members and of their loadings, the 
members remain symmetric with respect to the plane of the couples and 
thus bend in that plane (Sec. 4.1B). This is illustrated in Fig. 4.44; part a
shows the cross section of a member possessing two planes of symmetry, 
one vertical and one horizontal, and part b the cross section of a member 
with a single, vertical plane of symmetry. In both cases the couple exerted 
on the section acts in the vertical plane of symmetry of the member and is 
represented by the horizontal couple vector M, and in both cases the neutral 
axis of the cross section is found to coincide with the axis of the couple.
 Let us now consider situations where the bending couples do not
act in a plane of symmetry of the member, either because they act in a 
different plane, or because the member does not possess any plane of 
symmetry. In such situations, we cannot assume that the member will 
bend in the plane of the couples. This is illustrated in Fig. 4.45. In each 
part of the figure, the couple exerted on the section has again been 
assumed to act in a vertical plane and has been represented by a horizon-
tal couple vector M. However, since the vertical plane is not a plane of 
symmetry, we cannot expect the member to bend in that plane or the 
neutral axis of the section to coincide with the axis of the couple.

Fig. 4.44 Moment in plane 
of symmetry.

Mz

y

N.A. C

(a)

(b)

Mz

y

N.A.
C

Fig. 4.45 Moment not in plane of symmetry.

(a)

Mz

y

N.A.
C

(b)

M
z

y

N.A.
C

(c)

Mz

y

N.A.
C

 The precise conditions under which the neutral axis of a cross sec-
tion of arbitrary shape coincides with the axis of the couple M represent-
ing the forces acting on that section is shown in Fig. 4.46. Both the couple 

Fig. 4.46 Section of arbitrary shape where the neutral axis coincides with the 
axis of couple M.

z
N.A.

C

dA

x
�y

y

z

x� z

C

x

y

M
=
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4.8 Unsymmetric Bending Analysis 303

vector M and the neutral axis are assumed to be directed along the z axis. 
Recall from Sec. 4.1A that the elementary internal forces sx dA form a sys-
tem equivalent to the couple M. Thus,

 x components: esxdA 5 0  (4.1)

 moments about y axis: ezsxdA 5 0 (4.2)

 moments about z axis: e(2ysxdA) 5 M (4.3)

When all of the stresses are within the proportional limit, the first of these 
equations leads to the requirement that the neutral axis be a centroidal 
axis, and the last to the fundamental relation sx 5 2MyyI. Since we had 
assumed in Sec. 4.1A that the cross section was symmetric with respect to 
the y axis, Eq. (4.2) was dismissed as trivial at that time. Now that we are 
considering a cross section of arbitrary shape, Eq. (4.2) becomes highly 
significant. Assuming the stresses to remain within the proportional limit 
of the material, sx 5 2sm yyc is substituted into Eq. (4.2) for

 #z  a2 

sm y

c
b  dA 5 0    or    eyz dA 5 0 (4.51)

The integral eyzdA represents the product of inertia Iyz of the cross section 
with respect to the y and z axes, and will be zero if these axes are the 
principal centroidal axes of the cross section.† Thus the neutral axis of the 
cross section coincides with the axis of the couple M representing the 
forces acting on that section if, and only if, the couple vector M is directed 
along one of the principal centroidal axes of the cross section.
 Note that the cross sections shown in Fig. 4.44 are symmetric with 
respect to at least one of the coordinate axes. In each case, the y and z 
axes are the principal centroidal axes of the section. Since the couple vec-
tor M is directed along one of the principal centroidal axes, the neutral 
axis coincides with the axis of the couple. Also, if the cross sections are 
rotated through 908 (Fig. 4.47), the couple vector M is still directed along 
a principal centroidal axis, and the neutral axis again coincides with the 
axis of the couple, even though in case b the couple does not act in a plane 
of symmetry of the member.
 In Fig. 4.45, neither of the coordinate axes is an axis of symmetry for 
the sections shown, and the coordinate axes are not principal axes. Thus, 
the couple vector M is not directed along a principal centroidal axis, and the 
neutral axis does not coincide with the axis of the couple. However, any 
given section possesses principal centroidal axes, even if it is unsymmetric, 
as the section shown in Fig. 4.45c, and these axes may be determined ana-
lytically or by using Mohr’s circle.† If the couple vector M is directed along 
one of the principal centroidal axes of the section, the neutral axis will coin-
cide with the axis of the couple (Fig. 4.48), and the equations derived for 
symmetric members can be used to determine the stresses.
 As you will see presently, the principle of superposition can be used 
to determine stresses in the most general case of unsymmetric bending. 
Consider first a member with a vertical plane of symmetry subjected to 

†See Ferdinand P. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 5th ed., 
McGraw-Hill, New York, 2008, or Vector Mechanics for Engineers, 10th ed., McGraw-Hill, 
New York, 2013, Secs. 9.8–9.10.

Fig. 4.47 Moment aligned with principal 
centroidal axis.

(a)

(b)

M

N.A.

N.A.

z

y

C

Mz

y

C

Fig. 4.48 Moment not aligned with principal 
centroidal axis.

N.A.

(a)

Mz

y

C

N.A.

(b)

Mz

y

C
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304 Pure Bending

bending couples M and M9 acting in a plane forming an angle u with the 
vertical plane (Fig. 4.49). The couple vector M representing the forces act-
ing on a given cross section forms the same angle u with the horizontal z 
axis (Fig. 4.50). Resolving the vector M into component vectors Mz and My 
along the z and y axes, respectively, gives

 Mz 5 M cos u      My 5 M sin u (4.52)

Fig. 4.50 Applied moment is 
resolved into y and z components.

�

M My

Mz

y

z C

Fig. 4.51 MZ acts in a plane that 
includes a principal centroidal axis, 
bending the member in the vertical plane.

M'z

z

y

Mz

x

y

Fig. 4.52 My acts in a plane that includes a 
principal centroidal axis, bending the member in 
the horizontal plane.

M'y
z

z

My

x

y

Since the y and z axes are the principal centroidal axes of the cross section, 
Eq. (4.16) determines the stresses resulting from the application of either 
of the couples represented by Mz and My. The couple Mz acts in a vertical 
plane and bends the member in that plane (Fig. 4.51). The resulting 
stresses are

 sx 5 2 

Mz y

Iz
 (4.53)

where Iz is the moment of inertia of the section about the principal centroi-
dal z axis. The negative sign is due to the compression above the xz plane 
(y . 0) and tension below (y , 0). The couple My acts in a horizontal plane 
and bends the member in that plane (Fig. 4.52). The resulting stresses are

 sx 5 1
My z

Iy
 (4.54)

where Iy is the moment of inertia of the section about the principal cen-
troidal y axis, and where the positive sign is due to the fact that we have 

Fig. 4.49 Unsymmetric bending, with bending 
moment not in a plane of symmetry.

M

x

z

�
y

M'
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4.8 Unsymmetric Bending Analysis 305

tension to the left of the vertical xy plane (z . 0) and compression to its 
right (z , 0). The distribution of the stresses caused by the original couple 
M is obtained by superposing the stress distributions defined by Eqs. (4.53) 
and (4.54), respectively. We have

 sx 5 2 

Mz y

Iz
1

My z

Iy
 (4.55)

 Note that the expression obtained can also be used to compute the 
stresses in an unsymmetric section, as shown in Fig. 4.53, once the prin-
cipal centroidal y and z axes have been determined. However, Eq. (4.55) 
is valid only if the conditions of applicability of the principle of superposi-
tion are met. It should not be used if the combined stresses exceed the 
proportional limit of the material or if the deformations caused by one of 
the couples appreciably affect the distribution of the stresses due to the 
other.
 Equation (4.55) shows that the distribution of stresses caused by 
unsymmetric bending is linear. However, the neutral axis of the cross sec-
tion will not, in general, coincide with the axis of the bending couple. 
Since the normal stress is zero at any point of the neutral axis, the equa-
tion defining that axis is obtained by setting sx 5 0 in Eq. (4.55).

2 

MzÊy

Iz
1

Myz

Iy
5 0

Solving for y and substituting for Mz and My from Eqs. (4.52) gives

 y 5 a Iz

Iy
 tan ub z (4.56)

This equation is for a straight line of slope m 5 (IzyIy) tan u. Thus, the 
angle f that the neutral axis forms with the z axis (Fig. 4.54) is defined by 
the relation

 tan f 5
Iz

Iy
 tan u (4.57)

where u is the angle that the couple vector M forms with the same axis. 
Since Iz and Iy are both positive, f and u have the same sign. Furthermore, 
f . u when Iz . Iy , and f , u when Iz , Iy. Thus, the neutral axis is always 
located between the couple vector M and the principal axis corresponding 
to the minimum moment of inertia.

Fig. 4.53 Unsymmetric cross section with 
principal axes.

C

y

z

Fig. 4.54 Neutral axis for 
unsymmetric bending.

M N
. A.

C

y

z

� �
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306 Pure Bending

Concept Application 4.8
A 1600-lb?in. couple is applied to a wooden beam, of rectangular cross 
section 1.5 by 3.5 in., in a plane forming an angle of 308 with the verti-
cal (Fig. 4.55a). Determine (a) the maximum stress in the beam and 
(b) the angle that the neutral surface forms with the horizontal plane.

C

308

3.5 in.

1.5 in.

1600 lb · in.

(a)

Mz

ED

C

A B

y

z

u 5 308 1.75 in.

0.75 in.

1600 lb · in.

(b)

Fig. 4.55 (a) Rectangular wood 
beam subject to unsymmetric 
bending. (b) Bending moment 
resolved into components. (c) Cross 
section with neutral axis. (d) Stress 
distribution.

N
. A

.

E

C

D

A B

y

z

f

(c)

D

E

B

21062 psi

1062 psi

N
eutral axis

A

C

(d)

 a. Maximum Stress. The components Mz and My of the couple 
vector are first determined (Fig. 4.55b):

 Mz 5 11600 lb?in.2 cos 308 5 1386 lb?in.

 My 5 11600 lb?in.2 sin 308 5 800 lb?in.

Compute the moments of inertia of the cross section with respect to 
the z and y axes:

 Iz 5
1

12 11.5 in.2  13.5 in.23 5 5.359 in4

 Iy 5
1

12 13.5 in.2  11.5 in.23 5 0.9844 in4

The largest tensile stress due to Mz occurs along AB and is

s1 5
Mzy

Iz
5
11386 lb?in.2  11.75 in.2

5.359 in4 5 452.6 psi

The largest tensile stress due to My occurs along AD and is

s2 5
Myz

Iy
5
1800 lb?in.2  10.75 in.2

0.9844 in4 5 609.5 psi

The largest tensile stress due to the combined loading, therefore, 
occurs at A and is

smax 5 s1 1 s2 5 452.6 1 609.5 5 1062 psi

The largest compressive stress has the same magnitude and occurs at E.

(continued)
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4.9 General Case of Eccentric Axial Loading Analysis 307

 b. Angle of Neutral Surface with Horizontal Plane. The angle 
f that the neutral surface forms with the horizontal plane (Fig. 4.55c) 
is obtained from Eq. (4.57):

 tan f 5
Iz

Iy
 tan u 5

5.359 in4

0.9844 in4 tan 308 5 3.143

 f 5 72.48

The distribution of the stresses across the section is shown in Fig. 4.55d.

4.9  GENERAL CASE OF 
ECCENTRIC AXIAL 
LOADING ANALYSIS

In Sec. 4.7 we analyzed the stresses produced in a member by an eccentric 
axial load applied in a plane of symmetry of the member. We will now 
study the more general case when the axial load is not applied in a plane 
of symmetry.
 Consider a straight member AB subjected to equal and opposite 
eccentric axial forces P and P9 (Fig. 4.56a), and let a and b be the distances 
from the line of action of the forces to the principal centroidal axes of the 
cross section of the member. The eccentric force P is statically equivalent 
to the system consisting of a centric force P and of the two couples My and 
Mz of moments My 5 Pa and Mz 5 Pb in Fig. 4.56b. Similarly, the eccentric 
force P9 is equivalent to the centric force P9 and the couples M9y and M9z.
 By virtue of Saint-Venant’s principle (Sec. 2.10), replace the original 
loading of Fig. 4.56a by the statically equivalent loading of Fig. 4.56b to 
determine the distribution of stresses in section S of the member (as long 
as that section is not too close to either end). The stresses due to the load-
ing of Fig. 4.56b can be obtained by superposing the stresses correspond-
ing to the centric axial load P and to the bending couples My and Mz, as 
long as the conditions of the principle of superposition are satisfied (Sec. 
2.5). The stresses due to the centric load P are given by Eq. (1.5), and the 
stresses due to the bending couples by Eq. (4.55). Therefore,

 sx 5
P
A

2
Mz y

Iz
1

My z

Iy
 (4.58)

where y and z are measured from the principal centroidal axes of the sec-
tion. This relationship shows that the distribution of stresses across the 
section is linear.
 In computing the combined stress sx from Eq. (4.58), be sure to 
correctly determine the sign of each of the three terms in the right-hand 
member, since each can be positive or negative, depending upon the 

Fig. 4.56 Eccentric axial loading. (a) Axial force 
applied away from section centroid. (b) Equivalent 
force-couple system acting at centroid.

B

A

S

x

C

abz

y

P'

P

P'

(a)

B

A

S

x

y

C

z

M'z
Mz

M'y

My

P

(b)
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308 Pure Bending

sense of the loads P and P9 and the location of their line of action with 
respect to the principal centroidal axes of the cross section. The combined 
stresses sx obtained from Eq. (4.58) at various points of the section may 
all have the same sign, or some may be positive and others negative. In 
the latter case, there will be a line in the section along which the stresses 
are zero. Setting sx 5 0 in Eq. (4.58), the equation of a straight line repre-
senting the neutral axis of the section is

Mz

Iz
 y 2

My

Iy
 z 5

P
A

Concept Application 4.9
A vertical 4.80-kN load is applied as shown on a wooden post of rectan-
gular cross section, 80 by 120 mm (Fig. 4.57a). (a) Determine the stress 
at points A, B, C, and D. (b) Locate the neutral axis of the cross section.

Fig. 4.57 (a) Eccentric load on a rectangular wood column. (b) Equivalent 
force-couple system for eccentric load. 

4.80 kN

35 mm

120 mm 80 mm

D

C

B

A

y

z x

(a)

P 5 4.80 kN

Mz 5 120 N · m
Mx 5 192 N · m

D

C

B

A

y

z
x

(b)

 a. Stresses. The given eccentric load is replaced by an equivalent 
system consisting of a centric load P and two couples Mx and Mz rep-
resented by vectors directed along the principal centroidal axes of the 
section (Fig. 4.57b). Thus

 Mx 5 14.80 kN2 140 mm2 5 192 N?m

 Mz 5 14.80 kN2 160 mm 2 35 mm2 5 120 N?m

Compute the area and the centroidal moments of inertia of the cross 
section:

 A 5 10.080 m2 10.120 m2 5 9.60 3 1023 m2

 Ix 5
1

12 10.120 m2 10.080 m23 5 5.12 3 1026 m4

 Iz 5
1

12 10.080 m2 10.120 m23 5 11.52 3 1026 m4

(continued)

bee98233_ch04_236-312.indd   308bee98233_ch04_236-312.indd   308 11/15/13   5:07 PM11/15/13   5:07 PM



4.9 General Case of Eccentric Axial Loading Analysis 309

The stress s0 due to the centric load P is negative and uniform across 
the section:

s0 5
P

A
5

24.80 kN

9.60 3 1023 m2 5 20.5 MPa

The stresses due to the bending couples Mx and Mz are linearly dis-
tributed across the section with maximum values equal to

 s1 5
Mxzmax

Ix
5
1192 N?m2 140 mm2

5.12 3 1026 m4 5 1.5 MPa

 s2 5
Mzxmax

Iz
5
1120 N?m2 160 mm2

11.52 3 1026 m4 5 0.625 MPa

The stresses at the corners of the section are

sy 5 s0 6 s1 6 s2

where the signs must be determined from Fig. 4.57b. Noting that the 
stresses due to Mx are positive at C and D and negative at A and B, and 
the stresses due to Mz are positive at B and C and negative at A and D, 
we obtain

 sA 5 20.5 2 1.5 2 0.625 5 22.625 MPa

 sB 5 20.5 2 1.5 1 0.625 5 21.375 MPa

 sC 5 20.5 1 1.5 1 0.625 5 11.625 MPa

 sD 5 20.5 1 1.5 2 0.625 5 10.375 MPa

 b. Neutral Axis. The stress will be zero at a point G between B 
and C, and at a point H between D and A (Fig. 4.57c). Since the stress 
distribution is linear,

 
BG

80 mm
5

1.375

1.625 1 1.375
      BG 5 36.7 mm

 
HA

80 mm
5

2.625

2.625 1 0.375
      HA 5 70 mm

The neutral axis can be drawn through points G and H (Fig. 4.57d).
The distribution of the stresses across the section is shown in Fig. 4.57e.

Fig. 4.57 (cont.) (c) Stress distributions along edges BC and AD. (d) Neutral axis is line through points G and H. (e) Stress 
distribution for eccentric load.

80 mm

80 mm

0.375 MPa

1.625 MPa

21.375 MPa

22.625 MPa

C A
D

HGB

(c)

C

A

D

H

G
x

z

O

B

Neutral axis

(d)

C

H

B
A

10.375 MPa

22.625 MPa

Neutralaxis

11.625 MPa

21.375 MPa

G

(e)
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310 Pure Bending

Sample Problem 4.9
A horizontal load P is applied as shown to a short section of an 
S10 3 25.4 rolled-steel member. Knowing that the compressive stress 
in the member is not to exceed 12 ksi, determine the largest permis-
sible load P.

STRATEGY: The load is applied eccentrically with respect to both 
centroidal axes of the cross section. The load is replaced with an 
equivalent force-couple system at the centroid of the cross section. 
The stresses due to the axial load and the two couples are then super-
posed to determine the maximum stresses on the cross section.

MODELING and ANALYSIS:

 Properties of Cross Section. The cross section is shown in 
Fig. 1, and the following data are taken from Appendix C.

Area: A 5 7.46 in2

Section moduli: Sx 5 24.7 in3   Sy 5 2.91 in3

Fig. 1 Rolled-steel member

C

y

x

4.66 in.

10 in.

Fig. 2 Equivalent force-couple system 
at section centroid.

y

xA

B

C

P

Mx

My

D

E

4.75 in.

1.5 in.

C

S10 � 25.4 P

(continued)

 Force and Couple at C. Using Fig. 2, we replace P by an equiva-
lent force-couple system at the centroid C of the cross section.

Mx 5 14.75 in.2P    My 5 11.5 in.2P
Note that the couple vectors Mx and My are directed along the princi-
pal axes of the cross section.

 Normal Stresses. The absolute values of the stresses at points 
A, B, D, and E due, respectively, to the centric load P and to the cou-
ples Mx and My are

 s1 5
P

A
5

P

7.46 in2 5 0.1340P

 s2 5
Mx

Sx
5

4.75P

24.7 in3 5 0.1923P

 s3 5
My

Sy
5

1.5P

2.91 in3 5 0.5155P
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4.9 General Case of Eccentric Axial Loading Analysis 311

 Superposition. The total stress at each point is found by super-
posing the stresses due to P, Mx, and My. We determine the sign of each 
stress by carefully examining the sketch of the force-couple system.

 sA 5 2s1 1 s2 1 s3 5 20.1340P 1 0.1923P 1 0.5155P 5 10.574P

 sB 5 2s1 1 s2 2 s3 5 20.1340P 1 0.1923P 2 0.5155P 5 20.457P

 sD 5 2s1 2 s2 1 s3 5 20.1340P 2 0.1923P 1 0.5155P 5 10.189P

 sE 5 2s1 2 s2 2 s3 5 20.1340P 2 0.1923P 2 0.5155P 5 20.842P

 Largest Permissible Load. The maximum compressive stress 
occurs at point E. Recalling that sall 5 212 ksi, we write

 sall 5 sE    212 ksi 5 20.842P P 5 14.3 kips  b

*Sample Problem 4.10
A couple of magnitude M0 5 1.5 kN?m acting in a vertical plane is 
applied to a beam having the Z-shaped cross section shown. 
Determine (a) the stress at point A and (b) the angle that the neutral 
axis forms with the horizontal plane. The moments and product of 
inertia of the section with respect to the y and z axes have been com-
puted and are

 Iy 5 3.25 3 1026 m4

 Iz 5 4.18 3 1026 m4

 Iyz 5 2.87 3 1026 m4

STRATEGY: The Z-shaped cross section does not have an axis of 
symmetry, so it is first necessary to determine the orientation of the 
principal axes and the corresponding moments of inertia. The applied 
load is then resolved into components along the principal axes. The 
stresses due to the axial load and the two couples are then superposed 
to determine the stress at point A. The angle between the neutral axis 
and horizontal plane is then found using Eq. (4.57).

M0

y

z

x

(continued)

M0 � 1.5 kN · m

y

A

Cz
12 mm 12 mm

100 mm
12 mm

80 mm
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312 Pure Bending

MODELING and ANALYSIS: 
 Principal Axes.  We draw Mohr’s circle and determine the ori-
entation of the principal axes and the corresponding principal 
moments of inertia. (Fig. 1)†

 tan 2um 5
FZ

EF
5

2.87

0.465
          2um 5 80.88       um 5 40.48

 R 
2 5 1EF22 1 1FZ22 5 10.46522 1 12.8722  R 5 2.91 3 1026 m4

 Iu 5 Imin 5 OU 5 Iave 2 R 5 3.72 2 2.91 5 0.810 3 1026 m4

 Iv 5 Imax 5 OV 5 Iave 1 R 5 3.72 1 2.91 5 6.63 3 1026 m4

†See Ferdinand F. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 5th ed., 
McGraw-Hill, New York, 2008, or Vector Mechanics for Engineers–10th ed., McGraw-Hill, 
New York, 2013, Secs. 9.8–9.10.

Fig. 1 Mohr's circle analysis.

Iyz(10–6 m4)

Iy, Iz (10–6 m4)

Iave � 3.72 Z(4.18, –2.87)

Y(3.25, 2.87)

O U D E F

R

R

V

2�m

Fig. 2 Bending moment resolved along 
principal axes.

M0 � 1.5 kN · m Mu

Mv

� m � 40.4°

�m

y
u

A

Cz

v

Fig. 3 Location of A relative to principal 
axis.

zA � 74 mm

z

v

zA sin   m�

yA cos   m�

   m�
yA � 50 mm

y

u

C

A

vA

uA

Fig. 4  Cross section with 
neutral axis.

u

v

�
�

�

M0

m

C

N.A.

 Loading.  As shown in Fig. 2, the applied couple M0 is resolved 
into components parallel to the principal axes.

 Mu 5 M0 sin um 5 1500 sin 40.48 5 972 N?m

 Mv 5 M0 cos um 5 1500 cos 40.48 5 1142 N?m

 a. Stress at A. The perpendicular distances from each principal 
axis to point A shown in Fig. 3 and are

 uA 5 yA cos um 1 zA sin um 5 50 cos 40.48 1 74 sin 40.48 5 86.0 mm

 vA 5 2yA sin um 1 zA cos um 5 250 sin 40.48 1 74 cos 40.48 5 23.9 mm

Considering separately the bending about each principal axis, note 
that Mu produces a tensile stress at point A while Mv produces a com-
pressive stress at the same point.

 sA 5 1
MuvA

Iu
2

MvuA

Iv
5 1

1972 N?m2 10.0239 m2
0.810 3 1026 m4 2

11142 N?m2 10.0860 m2
6.63 3 1026 m4

 5 1(28.68 MPa) 2 (14.81 MPa) sA 5 113.87 MPa ◀

 b. Neutral Axis. As shown in Fig. 4, we find the angle f that the 
 neutral axis forms with the v axis.

tan f 5
Iv

Iu
 tan um 5

6.63

0.810
 tan 40.48   f 5 81.88

The angle b formed by the neutral axis and the horizontal is

 b 5 f 2 um 5 81.88 2 40.48 5 41.48 b 5 41.48 ◀
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 4.127 through 4.134 The couple M is applied to a beam of the cross sec-
tion shown in a plane forming an angle b with the vertical. Deter-
mine the stress at (a) point A, (b) point B, (c) point D.

Problems

A

� � 60�

B

z

y

16 mm

16 mm

40 mm 40 mm

M � 300 N · m

D
C

Fig. P4.127

� � 30�

z

y

0.6 in.

0.4 in.

0.6 in.
M � 400 lb · m

A B

D

C

Fig. P4.128

M � 25 kN · m

� � 15�

C
80 mm

80 mm

30 mm

20 mm

z

y

A B

D

Fig. P4.129

A

y

z

B
3 in.

2 in.

2 in. 4 in.

3 in.

C

M � 10 kip · in.

� � 20�

D

Fig. P4.130

A

2.5 in.
5 in.

2.5 in.

3 in.

y

z

b 5 508

3 in.

1 in.1 in.

B

C

D

5 in.

M 5 60 kip · in. 

Fig. P4.131

A B

4 in.

1.6 in.2.4 in.

4.8 in.

C

M 5 75 kip · in.

b 5 758

D

y

z

Fig. P4.132

� � 30�

y

z

M � 100 N · m

A

B

r � 20 mm

C

D

Fig. P4.133
165 mm

310 mm

15�

M � 16 kN · m

W310 � 38.7

A

B

C

D
E

Fig. P4.134
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 4.135 through 4.140 The couple M acts in a vertical plane and is applied 
to a beam oriented as shown. Determine (a) the angle that the 
neutral axis forms with the horizontal, (b) the maximum tensile 
stress in the beam.

6 in.

3.33 in.

208

C B

D

A

E

M 5 15 kip · in.

S6 3 12.5

Fig. P4.135

152 mm

13 mm

48.8 mm

C150 � 12.2

M � 6 kN · m

E

A
B

D

C

5�

Fig. P4.136

A

B

C
M � 400 N · m

30�

D

E

5 mm

5 mm

18.57 mm

50 mm

50 mm

5 mm

z'

y'

Iy' � 281 � 103 mm4

Iz' � 176.9 � 103 mm4

Fig. P4.137

A

B

 in.

4 in.
4 in.

4 in.

0.859 in.

45�

C

M � 15 kip · in.

D
1
2

y'

z'

Iy' � 6.74 in4

Iz' � 21.4 in4

Fig. P4.138

A

M � 120 N · m

20�

D

B

E
10 mm

10 mm

10 mm

10 mm

6 mm

y'

z' 6 mm

C

Iy' � 14.77 � 103 mm4

Iz' � 53.6 � 103 mm4

Fig. P4.139

M 5 750 N · m

208

90 mm

25 mm
25 mm

30 mm

C

B

A

Fig. P4.140
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 *4.141 through *4.143 The couple M acts in a vertical plane and is 
applied to a beam oriented as shown. Determine the stress at 
point A.

A

40 mm

10 mm

40 mm

10 mm 10 mm70 mm

CM � 1.2 kN · m

y

z

Iy � 1.894 � 106 mm4

Iz � 0.614 � 106 mm4

Iyz � �0.800 � 106 mm4

Fig. P4.141

C

A

z

y

2.4 in.

2.4 in. 2.4 in.

2.4 in.

2.4 in.

2.4 in.

M � 125 kip · in.

Fig. P4.142

A

6 in.

2.08 in.

1.08 in.0.75 in.

0.75 in.

4 in.

C
M 5 60 kip · in.

y

z

Iy 5 8.7 in4

Iyz 5 18.3 in4
Iz 5 24.5 in4

Fig. P4.143

 4.144 The tube shown has a uniform wall thickness of 12 mm. For the 
loading given, determine (a) the stress at points A and B, (b) the 
point where the neutral axis intersects line ABD.

75 mm

125 mm
28 kN

28 kN

14 kN

A

D

B G

H

E

F

Fig. P4.144

 4.145 A horizontal load P of magnitude 100 kN is applied to the beam 
shown. Determine the largest distance a for which the maximum 
tensile stress in the beam does not exceed 75 MPa.

20 mm

20 mm

20 mm

20 mm

60 mm

Pz x

O

a

y

Fig. P4.145
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 4.146 Knowing that P 5 90 kips, determine the largest distance a for 
which the maximum compressive stress does not exceed 18 ksi.

 4.147 Knowing that a 5 1.25 in., determine the largest value of P that 
can be applied without exceeding either of the following allow-
able stresses:

sten 5 10 ksi   scomp 5 18 ksi

 4.148 A rigid circular plate of 125-mm radius is attached to a solid 
150 3 200-mm rectangular post, with the center of the plate 
directly above the center of the post. If a 4-kN force P is applied at 
E with u 5 308, determine (a) the stress at point A, (b) the stress at 
point B, (c) the point where the neutral axis intersects line ABD.

 4.149 In Prob. 4.148, determine (a) the value of u for which the stress 
at D reaches its largest value, (b) the corresponding values of the 
stress at A, B, C, and D.

 4.150 A beam having the cross section shown is subjected to a couple 
M0 that acts in a vertical plane. Determine the largest permissible 
value of the moment M0 of the couple if the maximum stress in 
the beam is not to exceed 12 ksi. Given: Iy 5 Iz 5 11.3 in4, A 5 
4.75 in2, kmin 5 0.983 in. (Hint: By reason of symmetry, the prin-
cipal axes form an angle of 458 with the coordinate axes. Use the 
relations Imin 5 Ak2

min and Imin + Imax 5 Iy + Iz .)

1 in.

1 in.
1 in.

4 in. 5 in.

2.5 in.

P

a

Fig. P4.146 and P4.147

�

y

A

B

E

D

C

z
x

R � 125 mm

150 mm200 mm

P � 4 kN

Fig. P4.148

C

0.5 in.

5 in.

1.43 in.

1.43 in.

5 in.

0.5 in.

y

z M0

Fig. P4.150

 4.151 Solve Prob. 4.150, assuming that the couple M0 acts in a horizon-
tal plane.
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 4.152 The Z section shown is subjected to a couple M0 acting in a verti-
cal plane. Determine the largest permissible value of the moment 
M0 of the couple if the maximum stress is not to exceed 80 MPa. 
Given: Imax 5 2.28 3 1026 m4, Imin 5 0.23 3 1026 m4, principal 
axes 25.78 c and 64.38a.

C

40 mm

10 mm 10 mm

10 mm

70 mm

y

z
40 mm

M0

Fig. P4.152

1.5 in.

0.3 in.

1.5 in.0.6 in.0.3 in. 0.6 in.

M0

y

z C

Fig. P4.154

 4.155 A beam having the cross section shown is subjected to a couple 
M0 acting in a vertical plane. Determine the largest permissible 
value of the moment M0 of the couple if the maximum stress is 
not to exceed 100 MPa. Given: Iy 5 Iz 5b4/36 and Iyz 5 b4/72.

20 mm

20 mm

b = 60 mm

b = 60 mm

M0
z

y

C

Fig. P4.155

 4.156 Show that, if a solid rectangular beam is bent by a couple applied 
in a plane containing one diagonal of a rectangular cross section, 
the neutral axis will lie along the other diagonal.

 4.153 Solve Prob. 4.152 assuming that the couple M0 acts in a horizontal 
plane.

 4.154 An extruded aluminum member having the cross section shown 
is subjected to a couple acting in a vertical plane. Determine the 
largest permissible value of the moment M0 of the couple if the 
maximum stress is not to exceed 12 ksi. Given: Imax 5 0.957 in4, 
Imin 5 0.427 in4, principal axes 29.48a and 60.68c.

M

A

B

E

C

D

h

b

Fig. P4.156
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 4.157 (a) Show that the stress at corner A of the prismatic member 
shown in Fig. a will be zero if the vertical force P is applied at a 
point located on the line

x

by6
1

z

hy6
5 1

(b) Further show that, if no tensile stress is to occur in the mem-
ber, the force P must be applied at a point located within the area 
bounded by the line found in part a and three similar lines cor-
responding to the condition of zero stress at B, C, and D, respec-
tively. This area, shown in Fig. b, is known as the kern of the cross 
section.

A

A

B

B

C

C

D

D

z

z x

x

b

h

y

h
6

b
6(a) (b)

P

Fig. P4.157

 4.158 A beam of unsymmetric cross section is subjected to a couple M0

acting in the horizontal plane xz. Show that the stress at point A
of coordinates y and z is

sA 5
zIz 2 yIyz

IyIz 2 I 
2
yz

 My

  where Iy , Iz , and Iyz denote the moments and product of inertia 
of the cross section with respect to the coordinate axes, and My

the moment of the couple. 

 4.159 A beam of unsymmetric cross section is subjected to a couple M0

acting in the vertical plane xy. Show that the stress at point A of 
coordinates y and z is

sA 5 2
yIy 2 zIyz

IyIz 2 I 
2
yz

 Mz

where Iy , Iz , and Iyz denote the moments and product of inertia 
of the cross section with respect to the coordinate axes, and Mz

the moment of the couple.

 4.160 (a) Show that, if a vertical force P is applied at point A of the sec-
tion shown, the equation of the neutral axis BD is

axA

r 
2
z

b x 1 azA

r 
2
x

b z 5 21

  where rz and rx denote the radius of gyration of the cross section 
with respect to the z axis and the x axis, respectively. (b) Further 
show that, if a vertical force Q is applied at any point located on 
line BD, the stress at point A will be zero.

A

C
y

y
z

z
x

Fig. P4.158 and P4.159

A

B

C
P

D

y

x
z

xA
zA

Fig. P4.160
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*4.10 Curved Members 319

*4.10 CURVED MEMBERS
Our analysis of stresses due to bending has been restricted so far to straight 
members. In this section, the stresses are caused by the application of 
equal and opposite couples to members that are initially curved. Our dis-
cussion is limited to curved members with uniform cross sections pos-
sessing a plane of symmetry in which the bending couples are applied. It 
is assumed that all stresses remain below the proportional limit.
 If the initial curvature of the member is small (i.e., the radius of cur-
vature is large compared to the depth of its cross section) an approximation 
can be obtained for the distribution of stresses by assuming the member to 
be straight and using the formulas derived in Secs. 4.1B and 4.2.†

 However, when the radius of curvature and the dimensions of the 
cross section of the member are of the same order of magnitude, it is 
necessary to use a different method of analysis, which was first introduced 
by the German engineer E. Winkler (1835–1888).
 Consider the curved member of uniform cross section shown in 
Fig. 4.58. Its transverse section is symmetric with respect to the y axis 
(Fig. 4.58b) and, in its unstressed state, its upper and lower surfaces 
intersect the vertical xy plane along arcs of circle AB and FG centered 

†See Prob. 4.166.

Fig. 4.58 Curved member in pure bending: (a) undeformed, (b) cross section, and (c) deformed.

R

R

A
J

D

F G

E

B

K
y

r

r

C C

y

y

y

x xz

�

� � �

(a) (b) (c)

N. A.
F'

D'

J'
A'

R'
MM'

C'

r'

B'
K'

E'

y
y

G'

' � ��

at C (Fig. 4.58a). Now apply two equal and opposite couples M and M9

in the plane of symmetry of the member (Fig. 4.58c). A reasoning simi-
lar to that of Sec. 4.1B would show that any transverse plane section 
containing C remains plane, and the various arcs of circle indicated in 
Fig. 4.58a are transformed into circular and concentric arcs with a cen-
ter C9 different from C. If the couples M and M9 are directed as shown, 
the curvature of the various arcs of circle increases; that is A9C9 , AC. 
Also, the couples M and M9 cause the length of the upper surface of 
the member to decrease (A9B9 , AB) and the length of the lower 
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320 Pure Bending

surface to increase (F9G9 . FG). Therefore, we conclude that a neutral 
surface must exist in the member, the length of which remains con-
stant. The intersection of the neutral surface with the xy plane is shown 
in Fig. 4.58a by the arc DE of radius R, and in Fig. 4.58c by the arc D9E9 
of radius R9. The central angles u and u9 corresponding respectively to 
DE and D9E9 express the fact that the length of the neutral surface 
remains constant by

 Ru 5 R9u9 (4.59)

 Considering the arc of circle JK located at a distance y above the 
neutral surface and denoting respectively by r and r9 the radius of this arc 
before and after the bending couples have been applied, the deformation 
of JK is

 d 5 r9u9 2 ru (4.60)

Observing from Fig. 4.58 that

 r 5 R 2 y  r9 5 R9 2 y (4.61)

and substituting these expressions into Eq. (4.60),

d 5 (R9 2 y)u9 2 (R 2 y)u

or recalling Eq. (4.59) and setting u9 2 u 5 Du,

 d 5 2y Du (4.62)

The normal strain Px in the elements of JK is obtained by dividing the 
deformation d by the original length ru of arc JK:

Px 5
d

ru
5 2 

y ¢u
ru

Recalling the first of the relationships in Eq. (4.61),

 Px 5 2 
¢u
u

 
y

R 2 y
 (4.63)

This relationship shows that, while each transverse section remains plane, 
the normal strain Px does not vary linearly with the distance y from the 
neutral surface.
 The normal stress sx can be obtained from Hooke’s law, sx 5 EPx , 
by substituting for Px from Eq. (4.63):

 sx 5 2 
E ¢u
u

 
y

R 2 y
 (4.64)

or alternatively, recalling the first of Eqs. (4.61),

 sx 5 2 
E ¢u
u

 
R 2 r

r
 (4.65)

Equation (4.64) shows that, like Px  , the normal stress sx does not vary 
linearly with the distance y from the neutral surface. Plotting sx versus y, 
an arc of hyperbola is obtained (Fig. 4.59).
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*4.10 Curved Members 321

 In order to determine the location of the neutral surface in the 
member and the value of the coefficient E Duyu used in Eqs. (4.64) and 
(4.65), we recall that the elementary forces acting on any transverse sec-
tion must be statically equivalent to the bending couple M. Expressing that 
the sum of the elementary forces acting on the section must be zero and 
that the sum of their moments about the transverse z axis must be equal 
to the bending moment M, write the equations

 #sx dA 5 0 (4.1)

and

 # 12ysx dA2 5 M (4.3)

Substituting for sx from Eq. (4.65) into Eq. (4.1), write

 2#E ¢u
u

 
R 2 r

r
 dA 5 0

 #R 2 r
r

 dA 5 0

 R#dA
r

2 #dA 5 0

from which it follows that the distance R from the center of curvature C 
to the neutral surface is defined by

 R 5
A

#dA
r

 (4.66)

 Note that the value obtained for R is not equal to the distance r from 
C to the centroid of the cross section, since r is defined by a different 
relationship, namely,

 r 5
1

A
 #r dA (4.67)

Fig. 4.59 Stress distribution in curved beam.

N. A.

y

z �x

y
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322 Pure Bending

Thus, in a curved member the neutral axis of a transverse section does not 
pass through the centroid of that section (Fig. 4.60).† Expressions for the 
radius R of the neutral surface will be derived for some specific cross-
sectional shapes in Concept Application 4.10 and in Probs. 4.187 through 
4.189. These expressions are shown in Fig. 4.61.
 Substituting now for sx from (4.65) into Eq. (4.3), write

#E ¢u
u

 
R 2 r

r
 y dA 5 M

or since y 5 R 2 r,

E ¢u
u # 1R 2 r22

r
 dA 5 M

Expanding the square in the integrand, we obtain after reductions

E ¢u
u

 cR2 #dA
r

2 2RA 1 #r dA d 5 M

Recalling Eqs. (4.66) and (4.67), we note that the first term in the brackets 
is equal to RA, while the last term is equal to rA. Therefore,

E ¢u
u

 1RA 2 2RA 1 rA2 5 M

and solving for E Duyu,

 
E ¢u
u

5
M

A1r 2 R2  (4.68)

Referring to Fig. 4.58, Du . 0 for M . 0. It follows that r 2 R . 0, or 
R , r, regardless of the shape of the section. Thus, the neutral axis of a 
transverse section is always located between the centroid of the section 
and the center of curvature of the member (Fig. 4.60). Setting r 2 R 5 e, 
Eq. (4.68) is written in the form

 
E ¢u
u

5
M
Ae

 (4.69)

†However, an interesting property of the neutral surface is noted if Eq. (4.66) is written 
in the alternative form

 
1

R
5

1

A
 # 1

r
 dA (4.66a)

Equation (4.66a) shows that, if the member is divided into a large number of fibers of 
cross-sectional area dA, the curvature 1yR of the neutral surface is equal to the average 
value of the curvature 1yr of the various fibers.

Fig. 4.60 Parameter e locates neutral 
axis relative to the centroid of a curved 
member section.

N. A.

Centroid

z

y

C

R

e

r
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*4.10 Curved Members 323

Substituting for E Duyu from Eq. (4.69) into Eqs. (4.64) and (4.65), the 
alternative expressions for the normal stress sx in a curved beam are

 sx 5 2 
My

Ae1R 2 y2  (4.70)

and

 sx 5
M1r 2 R2

Aer
 (4.71)

 Note that the parameter e in the previous equations is a small quan-
tity obtained by subtracting two lengths of comparable size, R and r. In 
order to determine sx with a reasonable degree of accuracy, it is necessary 
to compute R and r very accurately, particularly when both of these 
quantities are large (i.e., when the curvature of the member is small). 
However, it is possible in such a case to obtain a good approximation for 
sx by using the formula sx 5 2MyyI developed for straight members.
 We will now determine the change in curvature of the neutral sur-
face caused by the bending moment M. Solving Eq. (4.59) for the curva-
ture 1yR9 of the neutral surface in the deformed member, 

1

R¿
5

1

R
 
u¿
u

or setting u9 5 u 1 Du and recalling Eq. (4.69),

1

R¿
5

1

R
 a1 1

¢u
u
b 5

1

R
 a1 1

M

EAe
b

the change in curvature of the neutral surface is

 
1

R¿
2

1

R
5

M
EAeR

 (4.72)

Fig. 4.61 Radius of neutral surface for various cross-sectional shapes.
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324 Pure Bending

Concept Application 4.10
A curved rectangular bar has a mean radius r 5 6 in. and a cross section of 
width b 5 2.5 in. and depth h 5 1.5 in. (Fig. 4.62a). Determine the 
distance e between the centroid and the neutral axis of the cross 
section.
 We first derive the expression for the radius R of the neutral sur-
face. Denoting by r1 and r2, respectively, the inner and outer radius of 
the bar (Fig. 4.62b), use Eq. (4.66) to write

R 5
A

#
r2

r1

dA
r

5
bh

#
r2

r1

b dr
r

5
h

#
r2

r1

dr
r

 R 5
h

ln 

r2

r1

 (4.73)

For the given data,

 r1 5 r 2
1
2 h 5 6 2 0.75 5 5.25 in.

 r2 5 r 1
1
2 h 5 6 1 0.75 5 6.75 in.

Substituting for h, r1, and r2 into Eq. (4.73),

R 5
h

ln 

r2

r1

5
1.5 in.

ln 

6.75

5.25

5 5.9686 in.

The distance between the centroid and the neutral axis of the cross 
section (Fig. 4.62c) is thus

e 5 r 2 R 5 6 2 5.9686 5 0.0314 in.

Note that it was necessary to calculate R with five significant figures in 
order to obtain e with the usual degree of accuracy.

h

b

h/2

C C

rr

(a)

Fig. 4.62 (a) Curved rectangular bar. (b) Dimensions for curved bar. (c) Location of the 
neutral axis.

r2
r2

b

drdr

r1
r1

r

C C

r

(b)

r 5 6 in.

C

R 5 5.9686 in.

e 5 0.0314 in.

Neutral axis

Centroid
(c)
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*4.10 Curved Members 325

Concept Application 4.11
For the bar of Concept Application 4.10, determine the largest tensile 
and compressive stresses, knowing that the bending moment in the 
bar is M 5 8 kip?in.
 Use Eq. (4.71) with the given data

M 5 8 kip?in.  A 5 bh 5 (2.5 in.)(1.5 in.) 5 3.75 in2

and the values obtained in Concept Application 4.10 for R and e:

R 5 5.969  e 5 0.0314 in.

First using r 5 r2 5 6.75 in. in Eq. (4.71), write

 smax 5
M1r2 2 R2

Aer2

 5
18 kip?in.2 16.75 in. 2 5.969 in.2
13.75 in22 10.0314 in.2 16.75 in.2

 smax 5 7.86 ksi

Now using r 5 r1 5 5.25 in. in Eq. (4.71),

 smin 5
M1r1 2 R2

Aer1

 5
18 kip?in.2 15.25 in. 2 5.969 in.2
13.75 in22 10.0314 in.2 15.25 in.2

 smin 5 29.30 ksi

 Remark.  Compare the values obtained for smax and smin with 
the result for a straight bar. Using Eq. (4.15) of Sec. 4.2,

 smax, min 5 ; 
Mc

I

 5 ; 
18 kip?in.2 10.75 in.2

1
12 12.5 in.2 11.5 in.23 5 ; 8.53 ksi
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326 Pure Bending

Sample Problem 4.11
A machine component has a T-shaped cross section and is loaded as 
shown. Knowing that the allowable compressive stress is 50 MPa, 
determine the largest force P that can be applied to the component.

 Force and Couple at D.  The internal forces in section a–a are 
equivalent to a force P acting at D and a couple M of moment (Fig. 2)

M 5 P(50 mm 1 60 mm) 5 (0.110 m)P

M
P

B

A
C

50 mm

60 mm

D

P'

Fig. 2 Free-body diagram 
of left side.

40 mm

20 mm

2

1

r1 � 40 mm

20 mm

30 mm 80 mm

r2 � 70 mm

Fig. 1 Composite areas to calculate centroid 
location.

(continued)

60 mm

20 mm

Section a-a

40 mm

20 mm

30 mm80 mma

a

P' P

STRATEGY: The properties are first determined for the singly-
symmetric cross section. The force and couple at the critical section 
are used to calculate the maximum compressive stress, which is 
obtained by superposing the axial stress and the bending stress deter-
mined from Eqs. (4.66) and (4.71). This stress is then equated to the 
allowable compressive stress to determine the force P.

MODELING and ANALYSIS:

 Centroid of the Cross Section.  Locate the centroid D of the 
cross section (Fig. 1)

 Ai , mm2 ri , mm riAi , mm3 r©Ai 5 ©ri Ai

1 1202 1802 5 1600 40           64 3 103 r 124002 5 120 3 103

2 1402 1202 5  800 70           56 3 103 r 5 50 mm 5 0.050 m
    © Ai 5 2400  © ri Ai 5 120 3 103
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*4.10 Curved Members 327

B

A

D

C

dr

r

20 mm

80 mm

r3 � 90 mm

r2 � 50 mm

r1 � 30 mm

Fig. 4 Geometry of cross section.

B

P
As

D

A

(a) (b)

C

5 –

B

M (r – R)
Aer

s

D

A R
r

C

5

Figs. 3 Stress distribution is the 
superposition of (a) axial stress and 
(b) bending stress.

 Superposition.  The centric force P causes a uniform compres-
sive stress on section a–a, shown in Fig. 3a. The bending couple M 
causes a varying stress distribution [Eq. (4.71)], shown in Fig. 3b. We 
note that the couple M tends to increase the curvature of the member 
and is therefore positive (see Fig. 4.58). The total stress at a point of 
section a–a located at distance r from the center of curvature C is

 s 5 2 
P

A
1

M1r 2 R2
Aer

 (1)

 Radius of Neutral Surface.  Using Fig. 4, we now determine the 
radius R of the neutral surface by using Eq. (4.66).

 R 5
A

#dA
r

5
2400 mm2

#
r2

r1

 
180 mm2 dr

r
1 #

r3

r2

 
120 mm2 dr

r

 5
2400

80 ln 
50

30
1 20 ln 

90

50

5
2400

40.866 1 11.756
5 45.61 mm

 5 0.04561 m

We also compute: e 5 r 2 R 5 0.05000 m 2 0.04561 m 5 0.00439 m

 Allowable Load.  We observe that the largest compressive stress 
will occur at point A where r 5 0.030 m. Recalling that sall 5 50 MPa 
and using Eq. (1), write

250 3 106 Pa 5 2 
P

2.4 3 1023 m2 1
10.110 P2 10.030 m 2 0.04561 m2

12.4 3 1023 m22 10.00439 m2 10.030 m2
250 3 106 5 2417P 2 5432P P 5 8.55 kN ◀
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 4.161 For the curved bar shown, determine the stress at point A when 
(a) h 5 50 mm, (b) h 5 60 mm.

Problems

 4.162 For the curved bar shown, determine the stress at points A and 
B when h 5 55 mm.

 4.163 For the machine component and loading shown, determine the 
stress at point A when (a) h 5 2 in., (b) h 5 2.6 in.

 4.164 For the machine component and loading shown, determine the 
stress at points A and B when h 5 2.5 in.

 4.165 The curved bar shown has a cross section of 40 3 60 mm and an 
inner radius r1 5 15 mm. For the loading shown, determine the 
largest tensile and compressive stresses.

24 mm

50 mm

B

A
h

B

A

C600 N · m 600 N · m

Fig. P4.161 and P4.162

C

B

A0.75 in.

4 kip · in.

3 in.
h

4 kip · in.

Fig. P4.163 and P4.164

 4.166 For the curved bar and loading shown, determine the percent 
error introduced in the computation of the maximum stress by 
assuming that the bar is straight. Consider the case when (a) r1

5 20 mm, (b) r1 5 200 mm, (c) r1 5 2 m.

40 mm

60 mm

120 N · m

r1

Fig. P4.165 and P4.166

bee98233_ch04_313-343.indd   328bee98233_ch04_313-343.indd   328 11/15/13   5:09 PM11/15/13   5:09 PM



329

 4.167 Steel links having the cross section shown are available with dif-
ferent central angles b. Knowing that the allowable stress is 12 ksi, 
determine the largest force P that can be applied to a link for 
which b 5 908.

 4.168 Solve Prob. 4.167, assuming that b 5 608.

 4.169 The curved bar shown has a cross section of 30 3 30 mm. Know-
ing that the allowable compressive stress is 175 MPa, determine 
the largest allowable distance a.

0.4 in.

0.4 in.

0.3 in.

0.8 in.

0.8 in.
1.2 in.

A A

C C

B

P9 P

b

B

Fig. P4.167

20 mm

20 mm

30 mm

30 mm

B A
C

a
5 kN

5 kN

Fig. P4.169

 4.170 For the split ring shown, determine the stress at (a) point A, (b) 
point B.

90 mm
40 mm

14 mm

2500 N

B
A

Fig. P4.170
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 4.171 Three plates are welded together to form the curved beam shown. 
For M 5 8 kip?in., determine the stress at (a) point A, (b) point B, 
(c) the centroid of the cross section.

A

C

B

M' M

2 in.

3 in.

0.5 in. 2 in.

3 in.

0.5 in.

0.5 in.

Fig. P4.171 and P4.172

 4.172 Three plates are welded together to form the curved beam shown. 
For the given loading, determine the distance e between the neu-
tral axis and the centroid of the cross section.

 4.173 and 4.174 Knowing that the maximum allowable stress is 45 MPa, 
determine the magnitude of the large st moment M that can be 
applied to the components shown.

B

C

A
MʹM 150 mm

135 mm

36 mm

45 mm

B

A

Fig. P4.173

B

C

A
MʹM 150 mm

135 mm

36 mm

45 mm
B

A

Fig. P4.174

 4.175 The split ring shown has an inner radius r1 5 0.8 in. and a circular
cross section of diameter d 5 0.6 in. Knowing that each of the 
120-lb forces is applied at the centroid of the cross section, deter-
mine the stress (a) at point A, (b) at point B.

120 lb120 lb

dA

B

r1

Fig. P4.175

 4.176 Solve Prob. 4.175, assuming that the ring has an inner radius 
r1 5 0.6 in. and a cross-sectional diameter d 5 0.8 in.
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 4.177 The bar shown has a circular cross section of 14-mm diameter. 
Knowing that a 5 32 mm, determine the stress at (a) point A, (b) 
point B.

 4.178 The bar shown has a circular cross section of 14-mm diameter. 
Knowing that the allowable stress is 38 MPa, determine the larg-
est permissible distance a from the line of action of the 220-N 
forces to the plane containing the center of curvature of the bar.

 4.179 The curved bar shown has a circular cross section of 32-mm 
diameter. Determine the largest couple M that can be applied to 
the bar about a horizontal axis if the maximum stress is not to 
exceed 60 MPa.

 4.180 Knowing that P 5 10 kN, determine the stress at (a) point A, (b) 
point B.

220 N

220 N

12 mm16 mm
a

B A C

Fig. P4.177 and P4.178

16 mm

12 mm

M

C

Fig. P4.179

90 mm

80 mm

A
B

100 mm

P

Fig. P4.180

 4.181 and 4.182 Knowing that M 5 5 kip?in., determine the stress at (a) 
point A, (b) point B. 

2.5 in.

3 in.
2 in.

2 in.
3 in.

B

C

M

A M

Fig. P4.181

3 in.

M

M
B

A

C3 in.

2 in.
2 in.

2.5 in.

Fig. P4.182
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 4.183 Knowing that the machine component shown has a trapezoidal 
cross section with a 5 3.5 in. and b 5 2.5 in., determine the stress 
at (a) point A, (b) point B.

 4.184 Knowing that the machine component shown has a trapezoidal 
cross section with a 5 2.5 in. and b 5 3.5 in., determine the stress 
at (a) point A, (b) point B. 

 4.185 For the curved beam and loading shown, determine the stress at 
(a) point A, (b) point B. 

6 in. 4 in.

CB

B

A

Ab a

80 kip · in.

Fig. P4.183 and P4.184

20 mm

30 mm

35 mm
40 mm

a

a

B

A

B

A

250 N · m250 N · m

Section a–a

Fig. P4.185

35 mm

60 mm

25 mm
40 mm

60 mm

15 kN

a
a

Section a–a

Fig. P4.186

 4.186 For the crane hook shown, determine the largest tensile stress in 
section a-a.
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 *4.187 through 4.189 Using Eq. (4.66), derive the expression for R
given in Fig. 4.61 for

*4.187  A circular cross section.
   4.188  A trapezoidal cross section.

4.189  A triangular cross section.

 4.190 Show that if the cross section of a curved beam consists of two 
or more rectangles, the radius R of the neutral surface can be 
expressed as

R 5
A

ln c ar2

r1
bb1 ar3

r2
bb2 ar4

r3
bb3 d

where A is the total area of the cross section.

r1

r2

b1

b2

b3

r3

r4

Fig. P4.190

r�

r�

x�x�

C

R

b

r1

�
2

�
2

Fig. P4.191

 *4.191 For a curved bar of rectangular cross section subjected to a bend-
ing couple M, show that the radial stress at the neutral surface is 

sr 5
M
Ae

 a1 2
r1

R
2 ln 

R
r1
b

and compute the value of sr for the curved bar of Concept Appli-
cations 4.10 and 4.11. (Hint : consider the free-body diagram of 
the portion of the beam located above the neutral surface.)
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Review and Summary
This chapter was devoted to the analysis of members in pure bending. The 
stresses and deformation in members subjected to equal and opposite 
couples M and M9 acting in the same longitudinal plane (Fig. 4.63) were 
studied.

Normal Strain in Bending
In members possessing a plane of symmetry and subjected to couples 
acting in that plane, it was proven that transverse sections remain plane as 
a member is deformed. A member in pure bending also has a neutral 
surface along which normal strains and stresses are zero. The longitudinal 
normal strain Px varies linearly with the distance y from the neutral 
surface:

 Px 5 2 

y

r
 (4.8)

where r is the radius of curvature of the neutral surface (Fig. 4.64). The 
intersection of the neutral surface with a transverse section is known as 
the neutral axis of the section.

Normal Stress in Elastic Range
For members made of a material that follows Hooke’s law, the normal 
stress sx varies linearly with the distance from the neutral axis (Fig. 4.65). 
Using the maximum stress sm , the normal stress is

sx 5 2
y

c
 sm (4.12)

where c is the largest distance from the neutral axis to a point in the section.

Elastic Flexure Formula
By setting the sum of the elementary forces sx dA equal to zero, we proved 
that the neutral axis passes through the centroid of the cross section of a 
member in pure bending. Then by setting the sum of the moments of the 
elementary forces equal to the bending moment, the elastic flexure 
formula is

 sm 5
Mc

I
 (4.15)

where I is the moment of inertia of the cross section with respect to 
the neutral axis. The normal stress at any distance y from the neutral 
axis is

sx 5 2 

My

I
 (4.16)

Fig. 4.63 Member in pure-bending.

A

B

M

M'

Fig. 4.64 Deformation with respect 
to neutral axis

y

y

 – y

A
J

D

O

C

B
K

E
xA� B�

�

� �

Fig. 4.65 Stress distribution for the 
elastic flexure formula.

y

c

m�

x�
Neutral surface
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Elastic Section Modulus
Noting that I and c depend only on the geometry of the cross section we 
introduced the elastic section modulus

S 5
I
c

 (4.17)

Use the section modulus to write an alternative expression for the maxi-
mum normal stress:

sm 5
M

S
 (4.18)

Curvature of Member
The curvature of a member is the reciprocal of its radius of curvature, and 
may be found by

 
1
r

5
M
EI

 (4.21)

Anticlastic Curvature
In the bending of homogeneous members possessing a plane of symme-
try, deformations occur in the plane of a transverse cross section and 
result in anticlastic curvature of the members.

Members Made of Several Materials
We considered the bending of members made of several materials with 
different moduli of elasticity. While transverse sections remain plane, the 
neutral axis does not pass through the centroid of the composite cross sec-
tion (Fig. 4.66). Using the ratio of the moduli of elasticity of the materials, 
we obtained a transformed section corresponding to an equivalent member 
made entirely of one material. The methods previously developed are 
used to determine the stresses in this equivalent homogeneous member 
(Fig. 4.67), and the ratio of the moduli of elasticity is used to determine 
the stresses in the composite beam.

Fig. 4.66 (a) Composite section. (b) Strain distribution. (c) Stress distribution.

1

2

N. A.

x � – — 

x

�

� x�

�
y

2 � – —– � �
E2y

1 � – —– � �
E1y

y y

(a) (b) (c)

Fig. 4.67 Transformed section.

C
N. A.

x � – —– �
My
I

yy

�x
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Stress Concentrations
Stress concentrations occur in members in pure bending and were dis-
cussed; charts giving stress-concentration factors for flat bars with fillets 
and grooves also were presented in Figs. 4.24 and 4.25.

Plastic Deformations
A rectangular beam made of an elastoplastic material (Fig. 4.68) was ana-
lyzed as the magnitude of the bending moment was increased (Fig. 4.69). 
The maximum elastic moment MY occurs when yielding is initiated in the 
beam (Fig. 4.69b). As the bending moment is increased, plastic zones 
develop (Fig. 4.69c), and the size of the elastic core of the member is 
decreased. When the beam becomes fully plastic (Fig. 4.69d), the maxi-
mum or plastic moment Mp is obtained. Permanent deformations and 
residual stresses remain in a member after the loads that caused yielding 
have been removed.

Fig. 4.68 Elastoplastic 
stress-strain diagram.

�

�Y

�Y �

Y

Fig. 4.69 Bending stress distribution in a member for : (a) elastic, M , MY (b) yield 
impending, M 5 MY, (c) partially yielded, M . MY, and (d) fully plastic, M 5 Mp.

ELASTIC

PLASTIC

PLASTIC

y

c

�c

x�

�

max� �

�

�

��


(c) M M

�

�

PLASTIC

y

c

�c

x�

�

�

�

�(d) M Mp

�

ELASTIC

y

��c

x�

�

max� m� �

�

�

��

�(b) M M

�
c

ELASTIC

y

c

��c

x�

max� m� �

�

�	 

	(a) M M
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Eccentric Axial Loading
When a member is loaded eccentrically in a plane of symmetry, the eccen-
tric load is replaced with a force-couple system located at the centroid of 
the cross section (Fig. 4.70). The stresses from the centric load and the 
bending couple are superposed (Fig. 4.71):

 sx 5
P

A
2

My

I
 (4.50)

Fig. 4.70 Section of an 
eccentrically loaded member.

d

D
C

F
M

P'

A

Fig. 4.71 Stress distribution for eccentric loading is obtained by superposing the 
axial and pure bending distributions.

y

C C

y

x� x� C

N.A.

y

x�+ =

Unsymmetric Bending
For bending of members of unsymmetric cross section, the flexure formula 
may be used, provided that the couple vector M is directed along one of 
the principal centroidal axes of the cross section. When necessary, M can 
be resolved into components along the principal axes, and the stresses 
superposed due to the component couples (Figs. 4.72 and 4.73).

sx 5 2 

Mzy

Iz
1

Myz

Iy
 (4.55)

Fig. 4.72 Unsymmetric 
bending with bending moment 
not in a plane of symmetry.

M

x

z

�
y

M'

Fig. 4.73 Applied moment 
resolved into y and z 
components.

�

M My

Mz

y

z C

 For the couple M shown in Fig. 4.74, the orientation of the neutral 
axis is defined by

 tan f 5
Iz

Iy
 tan u (4.57) Fig. 4.74 Neutral axis for 

unsymmetric bending.

M N
. A.

C

y

z

� �
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General Eccentric Axial Loading
For the general case of eccentric axial loading, the load is replaced by a 
force-couple system located at the centroid. The stresses are superposed 
due to the centric load and the two component couples directed along the 
principal axes:

 sx 5
P

A
2

Mz y

Iz
1

My z

Iy
 (4.58)

Curved Members
In the analysis of stresses in curved members (Fig. 4.75), transverse sec-
tions remain plane when the member is subjected to bending. The stresses 
do not vary linearly, and the neutral surface does not pass through the 
centroid of the section. The distance R from the center of curvature of the 
member to the neutral surface is

 R 5
A

#dA
r

 (4.66)

where A is the area of the cross section. The normal stress at a distance y 
from the neutral surface is

 sx 5 2 
My

Ae1R 2 y2  (4.70)

where M is the bending moment and e is the distance from the centroid 
of the section to the neutral surface.

R

A
J

D

F G

E

B

K
y

r

C

y

x

�

Fig. 4.75 Curved member geometry.
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Review Problems
 4.192 Two vertical forces are applied to a beam of the cross section 

shown. Determine the maximum tensile and compressive stresses 
in portion BC of the beam.

 4.193 A steel band saw blade that was originally straight passes over 
8-in.-diameter pulleys when mounted on a band saw. Determine 
the maximum stress in the blade, knowing that it is 0.018 in. thick 
and 0.625 in. wide. Use E 5 29 3 106 psi. 

 4.194 A couple of magnitude M is applied to a square bar of side a. For 
each of the orientations shown, determine the maximum stress 
and the curvature of the bar.

CBA

300 mm 300 mm

25 mm

25 mm

4 kN4 kN

Fig. P4.192

0.018 in.

Fig. P4.193

(a) (b)

a
M M

Fig. P4.194

 4.195 Determine the plastic moment Mp of a steel beam of the cross 
section shown, assuming the steel to be elastoplastic with a yield 
strength of 240 MPa.

40 mm

60 mm

Fig. P4.195
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 4.196 In order to increase corrosion resistance, a 2-mm-thick cladding 
of aluminum has been added to a steel bar as shown. The modu-
lus of elasticity is 200 GPa for steel and 70 GPa for aluminum. For 
a bending moment of 300 N?m, determine (a) the maximum 
stress in the steel, (b) the maximum stress in the aluminum, (c) 
the radius of curvature of the bar.

 4.197 The vertical portion of the press shown consists of a rectangular 
tube of wall thickness t 5 10 mm. Knowing that the press has 
been tightened on wooden planks being glued together until P 5
20 kN, determine the stress at (a) point A, (b) point B.

46 mm
50 mm

M � 300 N · m

30 mm
26 mm

Fig. P4.196

P'

P
a a

t

t

80 mm

60 mm

Section a–a

A B

200 mm
80 mm

Fig. P4.197

 4.198 The four forces shown are applied to a rigid plate supported by 
a solid steel post of radius a. Knowing that P 5 24 kips and 
a 5 1.6 in., determine the maximum stress in the post when 
(a) the force at D is removed, (b) the forces at C and D are 
removed.

x

y

z

PP

P P

A
C

B

D
a

Fig. P4.198

 4.199 The curved portion of the bar shown has an inner radius of 
20 mm. Knowing that the allowable stress in the bar is 150 MPa, 
determine the largest permissible distance a from the line of 
action of the 3-kN force to the vertical plane containing the cen-
ter of curvature of the bar.

25 mm

25 mm

r � 20 mm P � 3 kNa

Fig. P4.199
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 4.200 Determine the maximum stress in each of the two machine ele-
ments shown.

 4.201 Three 120 3 10-mm steel plates have been welded together to 
form the beam shown. Assuming that the steel is elastoplastic 
with E 5 200 GPa and sY 5 300 MPa, determine (a) the bending 
moment for which the plastic zones at the top and bottom of the 
beam are 40 mm thick, (b) the corresponding radius of curvature 
of the beam.

 4.202 A short length of a W8 3 31 rolled-steel shape supports a rigid 
pla te on which two loads P and Q are applied as shown. The 
strains at two points A and B on the centerline of the outer faces 
of the flanges have been measured and found to be

eA 5 2550 3 1026 in./in.  eB 5 2680 3 1026 in./in.

Knowing that E 5 29 3 106 psi, determine the magnitude of each 
load.

 4.203 Two thin strips of the same material and same cross section are 
bent by couples of the same magnitude and glued together. After 
the two surfaces of contact have been securely bonded, the cou-
ples are removed. Denoting by s1 the maximum stress and by r1

the radius of curvature of each strip while the couples were 
applied, determine (a) the final stresses at points A, B, C, and D, 
(b) the final radius of curvature.

400 lb
400 lb

400 lb
400 lb

3

2.5

1.5
0.5

3

2.5

Dimensions in inches

1.5 0.5

0.5

0.5

r 5 0.3 r 5 0.3

Fig. P4.200

10 mm

120 mm

10 mm

120 mm

10 mm

M

Fig. P4.201

M1

M1

M'1

M'1

A

C
B

D

1�

1�

1�

1�

Fig. P4.203

BA

4.5 in.P Q4.5 in.

Fig. P4.202
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Computer Problems
The following problems are designed to be solved with a computer.

 4.C1 Two aluminum strips and a steel strip are to be bonded together to 
form a composite member of width b 5 60 mm and depth h 5 40 mm. 
The modulus of elasticity is 200 GPa for the steel and 75 GPa for the alu-
minum. Knowing that M 5 1500 N?m, write a computer program to cal-
culate the maximum stress in the aluminum and in the steel for values of 
a from 0 to 20 mm using 2-mm increments. Using appropriate smaller 
increments, determine (a) the largest stress that can occur in the steel and 
(b) the corresponding value of a.

 4.C2 A beam of the cross section shown, made of a steel that is assumed 
to be elastoplastic with a yield strength sY and a modulus of elasticity E
is bent about the x axis. (a) Denoting by yY the half thickness of the elastic 
core, write a computer program to calculate the bending moment M and 
the radius of curvature r for values of yY from 1

2 d to 1
6 d using decrements 

equal to 1
2 tf. Neglect the effect of fillets. (b) Use this program to solve Prob. 

4.201.

 4.C3 An 8-kip?in. couple M is applied to a beam of the cross section 
shown in a plane forming an angle b with the vertical. Noting that the 
centroid of the cross section is located at C and that the y and z axes are 
principal axes, write a computer program to calculate the stress at A, B, C, 
and D for values of b from 0 to 1808 using 108 increments. (Given: Iy 5 6.23 
in4 and Iz 5 1.481 in4.)

Fig. P4.C1

b � 60 mm

h � 40 mm

a

a
Steel

Aluminum

Fig. P4.C2

d x

ytf

tw

bf

Fig. P4.C3

z

0.40.4

1.6

1.2

0.4

1.2

0.4 0.8

Dimensions in inches

0.40.8

B

E
D

A

y

M

�

�

C

 4.C4 Couples of moment M 5 2 kN?m are applied as shown to a curved 
bar having a rectangular cross section with h 5 100 mm and b 5 25 mm. 
Write a computer program and use it to calculate the stresses at points A
and B for values of the ratio r1/h from 10 to 1 using decrements of 1, and 
from 1 to 0.1 using decrements of 0.1. Using appropriate smaller incre-
ments, determine the ratio r1/h for which the maximum stress in the 
curved bar is 50% larger than the maximum stress in a straight bar of the 
same cross section.Fig. P4.C4

B

b

r1
M'M

AA

B

C

h
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 4.C5 The couple M is applied to a beam of the cross section shown. 
(a) Write a computer program that, for loads expressed in either SI or 
U.S. customary units, can be used to calculate the maximum tensile and 
compressive stresses in the beam. (b) Use this program to solve Probs. 4.9, 
4.10, and 4.11.

Fig. P4.C5

M

h1

h2

b1

hn

bn

b2

 4.C6 A solid rod of radius c 5 1.2 in. is made of a steel that is assumed 
to be elastoplastic with E 5 29,000 ksi and sY 5 42 ksi. The rod is sub-
jected to a couple of moment M that increases from zero to the maximum 
elastic moment MY and then to the plastic moment Mp. Denoting by yY

the half thickness of the elastic core, write a computer program and use 
it to calculate the bending moment M and the radius of curvature r for 
values of yY from 1.2 in. to 0 using 0.2-in. decrements. (Hint: Divide the 
cross section into 80 horizontal elements of 0.03-in. height.)

Fig. P4.C6

c

z

y

y

M

Dy

 4.C7 The machine element of Prob. 4.182 is to be redesigned by remov-
ing part of the triangular cross section. It is believed that the removal of a 
small triangular area of width a will lower the maximum stress in the ele-
ment. In order to verify this design concept, write a computer program to 
calculate the maximum stress in the element for values of a from 0 to 1 in. 
using 0.1-in. increments. Using appropriate smaller increments, deter-
mine the distance a for which the maximum stress is as small as possible 
and the corresponding value of the maximum stress.

Fig. P4.C7

3 in.2 in.

2.5 in.C

B

a

A
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5
Analysis and 

Design of Beams 
for Bending

The beams supporting the overhead crane system are 
subject to transverse loads, causing the beams to bend. The 
normal stresses resulting from such loadings will be 
determined in this chapter.

Objectives
In this chapter, you will:

• Draw shear and bending-moment diagrams using static 
equilibrium applied to sections.

• Describe the relationships between applied loads, shear, and 
bending moments throughout a beam.

• Use section modulus to design beams.

• Use singularity functions to determine shear and bending-moment 
diagrams.

• Design nonprismatic beams to provide constant strength 
throughout these members.
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346 Analysis and Design of Beams for Bending

Introduction
This chapter and most of the next one are devoted to the analysis and the 
design of beams, which are structural members supporting loads applied 
at various points along the member. Beams are usually long, straight pris-
matic members. Steel and aluminum beams play an important part in 
both structural and mechanical engineering. Timber beams are widely 
used in home construction (Photo 5.1). In most cases, the loads are per-
pendicular to the axis of the beam. This transverse loading causes only 
bending and shear in the beam. When the loads are not at a right angle 
to the beam, they also produce axial forces in the beam.

 The transverse loading of a beam may consist of concentrated loads
P1, P2, . . . expressed in newtons, pounds, or their multiples of kilonewtons 
and kips (Fig. 5.1a); of a distributed load w expressed in N/m, kN/m, lb/ft, 
or kips/ft (Fig. 5.1b); or of a combination of both. When the load w per 
unit length has a constant value over part of the beam (as between A and B
in Fig. 5.1b), the load is uniformly distributed.
 Beams are classified according to the way they are supported, as 
shown in Fig. 5.2. The distance L is called the span. Note that the reactions 
at the supports of the beams in Fig. 5.2 a, b, and c involve a total of only 
three unknowns and can be determined by the methods of statics. Such 
beams are said to be statically determinate. On the other hand, the 

CB

P1

(a) Concentrated loads

w

P2

A D

(b) Distributed loads

A
B

C

Fig. 5.1 Transversely loaded beams.

L

(a) Simply supported beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L2L1

(d) Continuous beam

L

(b) Overhanging beam

L

Beam fixed at one end
and simply supported

at the other end

(e) 

L

(c) Cantilever beam

L

( f ) Fixed beam

Fig. 5.2 Common beam support configurations.

Photo 5.1 Timber beams used in a residential dwelling.

 Introduction

 5.1 SHEAR AND BENDING-
MOMENT DIAGRAMS

 5.2 RELATIONSHIPS 
BETWEEN LOAD, SHEAR, 
AND BENDING MOMENT

 5.3 DESIGN OF PRISMATIC 
BEAMS FOR BENDING

 *5.4  SINGULARITY 
FUNCTIONS USED TO 
DETERMINE SHEAR AND 
BENDING MOMENT

 *5.5 NONPRISMATIC BEAMS
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Introduction 347

reactions at the supports of the beams in Fig. 5.2 d, e, and f involve more 
than three unknowns and cannot be determined by the methods of statics 
alone. The properties of the beams with regard to their resistance to defor-
mations must be taken into consideration. Such beams are said to be stati-
cally indeterminate, and their analysis will be discussed in Chap. 9.
 Sometimes two or more beams are connected by hinges to form a 
single continuous structure. Two examples of beams hinged at a point H 
are shown in Fig. 5.3. Note that the reactions at the supports involve four 
unknowns and cannot be determined from the free-body diagram of the 
two-beam system. They can be determined by recognizing that the inter-
nal moment at the hinge is zero. Then, after considering the free-body 
diagram of each beam separately, six unknowns are involved (including 
two force components at the hinge), and six equations are available.
 When a beam is subjected to transverse loads, the internal forces in 
any section of the beam consist of a shear force V and a bending couple M. 
For example, a simply supported beam AB is carrying two concentrated 
loads and a uniformly distributed load (Fig. 5.4a). To determine the internal 
forces in a section through point C, draw the free-body diagram of the entire 
beam to obtain the reactions at the supports (Fig. 5.4b). Passing a section 
through C, then draw the free-body diagram of AC (Fig. 5.4c), from which 
the shear force V and the bending couple M are found.
 The bending couple M creates normal stresses in the cross section, 
while the shear force V creates shearing stresses. In most cases, the domi-
nant criterion in the design of a beam for strength is the maximum value 
of the normal stress in the beam. The normal stresses in a beam are the 
subject of this chapter, while shearing stresses are discussed in Chap. 6.
 Since the distribution of the normal stresses in a given section 
depends only upon the bending moment M and the geometry of the sec-
tion,† the elastic flexure formulas derived in Sec. 4.2 are used to determine 
the maximum stress, as well as the stress at any given point;‡

 sm 5
ZM Zc

I
 (5.1)

and

 sx 5 2 
My

I
 (5.2)

where I is the moment of inertia of the cross section with respect to a 
centroidal axis perpendicular to the plane of the couple, y is the distance 
from the neutral surface, and c is the maximum value of that distance 
(Fig. 4.11). Also recall from Sec. 4.2 that the maximum value sm of the 
normal stress can be expressed in terms of the section modulus S. Thus

 sm 5
ZM Z
S

 (5.3)

†It is assumed that the distribution of the normal stresses in a given cross section is not 
affected by the deformations caused by the shearing stresses. This assumption will be 
verified in Sec. 6.2.
‡Recall from Sec. 4.1 that M can be positive or negative, depending upon whether the 
concavity of the beam at the point considered faces upward or downward. Thus, in a 
transverse loading the sign of M can vary along the beam. On the other hand, since sm 
is a positive quantity, the absolute value of M is used in Eq. (5.1).

B
H

(a)

A

C
B

H

(b)

A

Fig. 5.3 Beams connected by hinges.

B

C

A

w

a

P1 P2

(a) Transversely-loaded beam

B
C

C

A

w
P1

RA RB

P2

(b) Free-body diagram to find
support reactions

A

wa
P1

V

M

RA

(c) Free-body diagram to find
internal forces at C

Fig. 5.4 Analysis of a simply 
supported beam.
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348 Analysis and Design of Beams for Bending

The fact that sm is inversely proportional to S underlines the importance 
of selecting beams with a large section modulus. Section moduli of vari-
ous rolled-steel shapes are given in Appendix C, while the section modu-
lus of a rectangular shape is

 S 5
1
6 bh2 (5.4)

where b and h are, respectively, the width and the depth of the cross 
section.
 Equation (5.3) also shows that for a beam of uniform cross section, 
sm is proportional to |M  |. Thus, the maximum value of the normal stress 
in the beam occurs in the section where |M  | is largest. One of the most 
important parts of the design of a beam for a given loading condition is 
the determination of the location and magnitude of the largest bending 
moment.
 This task is made easier if a bending-moment diagram is drawn, 
where the bending moment M is determined at various points of the beam 
and plotted against the distance x measured from one end. It is also easier 
if a shear diagram is drawn by plotting the shear V against x. The sign 
convention used to record the values of the shear and bending moment 
is discussed in Sec. 5.1. 
 In Sec. 5.2 relationships between load, shear, and bending moments 
are derived and used to obtain the shear and bending-moment diagrams. 
This approach facilitates the determination of the largest absolute value 
of the bending moment and the maximum normal stress in the beam.
 In Sec. 5.3 beams are designed for bending such that the maximum 
normal stress in these beams will not exceed their allowable values.
 Another method to determine the maximum values of the shear and 
bending moment is based on expressing V and M in terms of singularity 
functions. This is discussed in Sec. 5.4. This approach lends itself well to 
the use of computers and will be expanded in Chap. 9 for the determina-
tion of the slope and deflection of beams.
 Finally, the design of nonprismatic beams (i.e., beams with a vari-
able cross section) is discussed in Sec. 5.5. By selecting the shape and size 
of the variable cross section so that its elastic section modulus S 5 Iyc
varies along the length of the beam in the same way as |M  |, it is possible 
to design beams where the maximum normal stress in each section is 
equal to the allowable stress of the material. Such beams are said to be of 
constant strength.

5.1  SHEAR AND BENDING-
MOMENT DIAGRAMS

The maximum absolute values of the shear and bending moment in a 
beam are easily found if V and M are plotted against the distance x mea-
sured from one end of the beam. Besides, as you will see in Chap. 9, the 
knowledge of M as a function of x is essential to determine the deflection 
of a beam.
 In this section, the shear and bending-moment diagrams are 
obtained by determining the values of V and M at selected points of the 
beam. These values are found by passing a section through the point to 
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5.1 Shear and Bending-Moment Diagrams 349

be determined (Fig. 5.5a) and considering the equilibrium of the portion 
of beam located on either side of the section (Fig. 5.5b). Since the shear 
forces V and V9 have opposite senses, recording the shear at point C with 
an up or down arrow is meaningless, unless it is indicated at the same time 
which of the free bodies AC and CB is being considered. For this reason, 
the shear V is recorded with a plus sign if the shear forces are directed as 
in Fig. 5.5b and a minus sign otherwise. A similar convention is applied for 
the bending moment M.† Summarizing the sign conventions:
 The shear V and the bending moment M at a given point of a beam 
are positive when the internal forces and couples acting on each portion of 
the beam are directed as shown in Fig. 5.6a.

 1. The shear at any given point of a beam is positive when the external 
forces (loads and reactions) acting on the beam tend to shear off the 
beam at that point as indicated in Fig. 5.6b.

 2. The bending moment at any given point of a beam is positive when 
the external forces acting on the beam tend to bend the beam at that 
point as indicated in Fig. 5.6c.

 It is helpful to note that the values of the shear and of the bending 
moment are positive in the left half of a simply supported beam carrying 
a single concentrated load at its midpoint, as is discussed in the following 
Concept Application.

†This convention is the same that we used earlier in Sec. 4.1.

V

M

M9

V9

(a) Internal forces
(positive shear and positive bending moment)

(b) Effect of external forces
(positive shear)

(c) Effect of external forces
(positive bending moment)

Fig. 5.6 Sign convention for shear and bending moment.

Fig. 5.5 Determination of shear force, V, and bending moment, M, at a 
given section. (a) Loaded beam with section indicated at arbitrary position 
x. (b) Free-body diagrams drawn to the left and right of the section at C.

(a)

(b)

B
C

A

w

x

P1 P2

CA

wP1

RA

V

M
B

C

P2

RB

M'

V'
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350 Analysis and Design of Beams for Bending

Concept Application 5.1
Draw the shear and bending-moment diagrams for a simply supported 
beam AB of span L subjected to a single concentrated load P at its 
midpoint C (Fig. 5.7a).

 Determine the reactions at the supports from the free-body dia-
gram of the entire beam (Fig. 5.7b). The magnitude of each reaction is 
equal to Py2.
 Next cut the beam at a point D between A and C and draw the 
free-body diagrams of AD and DB (Fig. 5.7c). Assuming that the shear 
and bending moment are positive, we direct the internal forces V and 
V9 and the internal couples M and M9 as in Fig. 5.6a. Consider the free 
body AD. The sum of the vertical components and the sum of the 
moments about D of the forces acting on the free body are zero, so 
V 5 1Py2 and M 5 1Pxy2. Both the shear and the bending moment 
are positive. This is checked by observing that the reaction at A tends 
to shear off and bend the beam at D as indicated in Figs. 5.6b and c. 
We plot V and M between A and C (Figs. 5.8d and e). The shear has a 
constant value V 5 Py2, while the bending moment increases linearly 
from M 5 0 at x 5 0 to M 5 PLy4 at x 5 Ly2.
 Cutting the beam at a point E between C and B and considering 
the free body EB (Fig. 5.7d), the sum of the vertical components and 
the sum of the moments about E of the forces acting on the free body 
are zero. Obtain V 5 2Py2 and M 5 P(L 2 x)y2. Therefore, the shear 
is negative, and the bending moment positive. This is checked by 
observing that the reaction at B bends the beam at E as in Fig. 5.6c but 
tends to shear it off in a manner opposite to that shown in Fig. 5.6b. 
The shear and bending-moment diagrams of Figs. 5.7e and f are com-
pleted by showing the shear with a constant value V 5 2Py2 between 
C and B, while the bending moment decreases linearly from M 5 PLy4 
at x 5 Ly2 to M 5 0 at x 5 L.

B
C

A

P

L1
2 L1

2

(a)

Fig. 5.7 (a) Simply supported beam with 
midpoint load, P. (b) Free-body diagram of 
entire beam. (c) Free-body diagrams with 
section taken to left of load P. (d) Free-body 
diagrams with section taken to right of load 
P. (e) Shear diagram. (f ) Bending-moment 
diagram.

RA5 P1
2

RA5 P1
2 RB5 P1

2

PL

x

1
4

RB5 P1
2

B
C ED

A

P
L1

2 L1
2

B
C

D

D

A

x

x

x

P

(b)

(c)

V
M

M'

V'

RA5 P1
2

L1
2

L L1
2

P2 1
2

P1
2

RB5 P1
2

B
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E
L 2 x

L

M

V

A

P

(d)

(e)

(f)

V

M
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5.1 Shear and Bending-Moment Diagrams 351

 Note from the previous Concept Application that when a beam is 
subjected only to concentrated loads, the shear is constant between loads 
and the bending moment varies linearly between loads. In such situations, 
the shear and bending-moment diagrams can be drawn easily once the 
values of V and M have been obtained at sections selected just to the left 
and just to the right of the points where the loads and reactions are applied 
(see Sample Prob. 5.1).

Concept Application 5.2
Draw the shear and bending-moment diagrams for a cantilever beam 
AB of span L supporting a uniformly distributed load w (Fig. 5.8a).

(b)

(c)

(d)

x1
2

V

M

x

A
C

w

wx

VB5 2 wL

x

V

A

L
B

MB5 2 wL21
2

x

M

A

L
B

Fig. 5.8 (a) Cantilevered beam supporting a 
uniformly distributed load. (b) Free-body 
diagram of section AC. (c) Shear diagram. 
(d) Bending-moment diagram.

L

A B

w

(a)

 Cut the beam at a point C, located between A and B, and draw the 
free-body diagram of AC (Fig. 5.8b), directing V and M as in Fig. 5.6a. 
Using the distance x from A to C and replacing the distributed load 
over AC by its resultant wx applied at the midpoint of AC, write

1x©Fy 5 0:      2wx 2 V 5 0  V 5 2wx

1 l©MC 5 0:    wx ax
2
b 1 M 5 0    M 5 2 

1

2
 wx2

Note that the shear diagram is represented by an oblique straight line 
(Fig. 5.8c) and the bending-moment diagram by a parabola (Fig. 5.8d). 
The maximum values of V and M both occur at B, where

VB 5 2wL   MB 5 2
1
2wL2
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352 Analysis and Design of Beams for Bending

Sample Problem 5.1
For the timber beam and loading shown, draw the shear and bending-
moment diagrams and determine the maximum normal stress due to 
bending.

B

2.5 m 3 m 2 m

250 mm

80 mm

C
DA

20 kN 40 kN

STRATEGY:  After using statics to find the reaction forces, identify 
sections to be analyzed. You should section the beam at points to the 
immediate left and right of each concentrated force to determine val-
ues of V and M at these points.

MODELING and ANALYSIS: 

Reactions.  Considering the entire beam to be a free body (Fig. 1), 

RB 5 40 kNx  RD 5 14 kNx

Shear and Bending-Moment Diagrams.  Determine the internal 
forces just to the right of the 20-kN load at A. Considering the stub of 
beam to the left of section 1 as a free body and assuming V and M to 
be positive (according to the standard convention), write

 1x©Fy 5 0 :   220 kN 2 V1 5 0 V1 5 220 kN

 1l©M1 5 0 :   120 kN2 10 m2 1 M1 5 0 M1 5 0

 Next consider the portion to the left of section 2 to be a free body 
and write

 1x©Fy 5 0 :   220 kN 2 V2 5 0 V2 5 220 kN

 1l©M2 5 0 :   120 kN2 12.5 m2 1 M2 5 0 M2 5 250 kN?m

 The shear and bending moment at sections 3, 4, 5, and 6 are deter-
mined in a similar way from the free-body diagrams shown in Fig. 1: 

  V3 5 126 kN     M3 5 250 kN?m

  V4 5 126 kN     M4 5 128 kN?m

  V5 5 214 kN     M5 5 128 kN?m

  V6 5 214 kN     M6 5 0

B

1 3 52 64

2.5 m 3 m 2 m

C

D
A

20 kN

20 kN

2.5 m 3 m 2 m

40 kN

14 kN
46 kN

M1

V1

20 kN
M2

V2

20 kN

46 kN

M3

V3

20 kN

46 kN

M4

V4

20 kN 40 kN

46 kN

M5

V5

V

M

x

x

20 kN 40 kN

46 kN

14 kN

�14 kN�20 kN

�26 kN

�28 kN ? m

�50 kN ? m

40 kN

M6

M'4

V'4

V6

Fig. 1 Free-body diagram of beam, 
free-body diagrams of sections to left of cut, 
shear diagram, bending-moment diagram.

(continued)
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5.1 Shear and Bending-Moment Diagrams 353

For several of the latter sections, the results may be obtained more 
easily by considering the portion to the right of the section to be a free 
body. For example, for the portion of beam to the right of section 4,

 1x©Fy 5 0 :  V4 2 40 kN 1 14 kN 5 0 V4 5 126 kN

1l©M4 5 0 :  2M4 1 114 kN2 12 m2 5 0 M4 5 128 kN?m

 Now plot the six points shown on the shear and bending-moment 
diagrams. As indicated earlier, the shear is of constant value between 
concentrated loads, and the bending moment varies linearly. 

Maximum Normal Stress.  This occurs at B, where |M  | is largest. 
Use Eq. (5.4) to determine the section modulus of the beam:

S 5
1
6 
bh2 5

1
6 
10.080 m2 10.250 m22 5 833.33 3 1026 m3

Substituting this value and |M  | 5 |MB| 5 50 3 103 N?m into Eq. (5.3) 
gives

sm 5
ZMBZ

S
5
150 3 103 N?m2
833.33 3 1026 5 60.00 3 106 Pa

Maximum normal stress in the beam 5 60.0 MPa ◀

Sample Problem 5.2
The structure shown consists of a W10 3 112 rolled-steel beam AB and 
two short members welded together and to the beam. (a) Draw the 
shear and bending-moment diagrams for the beam and the given 
loading. (b) Determine the maximum normal stress in sections just to 
the left and just to the right of point D.

STRATEGY:  You should first replace the 10-kip load with an equiva-
lent force-couple system at D. You can section the beam within each 
region of continuous load (including regions of no load) and find 
equations for the shear and bending moment.

MODELING and ANALYSIS:  

Equivalent Loading of Beam.  The 10-kip load is replaced by an 
equivalent force-couple system at D. The reaction at B is determined 
by considering the beam to be free body (Fig. 1).

(continued)

8 ft
3 ft

10 kips

3 kips/ft

A C D

E
B

3 ft2 ft
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354 Analysis and Design of Beams for Bending

 a. Shear and Bending-Moment Diagrams

From A to C.  Determine the internal forces at a distance x from point 
A by considering the portion of beam to the left of section 1. That part 
of the distributed load acting on the free body is replaced by its resul-
tant, and

 1x©Fy 5 0 :   23 x 2 V 5 0   V 5 23 x kips

 1l©M1 5 0 :   3 x112 x2 1 M 5 0 M 5 21.5 x 
2 kip?ft

Since the free-body diagram shown in Fig. 1 can be used for all values 
of x smaller than 8 ft, the expressions obtained for V and M are valid 
in the region 0 , x , 8 ft.

From C to D.  Considering the portion of beam to the left of section 2 
and again replacing the distributed load by its resultant,

   1x©Fy 5 0 :     224 2 V 5 0   V 5 224 kips

 1l©M2 5 0 :       241x 2 42 1 M 5 0 M 5 96 2 24 x    kip?ft

These expressions are valid in the region 8 ft , x , 11 ft.

From D to B.  Using the position of beam to the left of section 3, the 
region 11 ft , x , 16 ft is

V 5 234 kips    M 5 226 2 34 x    kip?ft

The shear and bending-moment diagrams for the entire beam now 
can be plotted. Note that the couple of moment 20 kip?ft applied at 
point D introduces a discontinuity into the bending-moment 
diagram.

 b. Maximum Normal Stress to the Left and Right of Point D. 
From Appendix C for the W10 3 112 rolled-steel shape, S 5 126 in3 
about the X-X axis.

To the left of D:  |M  | 5 168 kip?ft 5 2016 kip?in. Substituting for |M  | 
and S into Eq. (5.3), write

sm 5
0M 0
S

5
2016 kip?in.

126 in3 5 16.00 ksi sm 5 16.00 ksi ◀

To the right of D:  |M  | 5 148 kip?ft 5 1776 kip?in. Substituting for 
|M  | and S into Eq. (5.3), write

sm 5
0M 0
S

5
1776 kip?in.

126 in3 5 14.10 ksi sm 5 14.10 ksi ◀

REFLECT and THINK: It was not necessary to determine the reac-
tions at the right end to draw the shear and bending-moment dia-
grams. However, having determined these at the start of the solution, 
they can be used as checks of the values at the right end of the shear 
and bending-moment diagrams.

20 kip ? ft
3 kips/ft

24 kips

318 kip ? ft

10 kips 34 kips

A 1 2 3C D B

x

x

x

V

M

x

3x

x

x

M

V

M

V

2

x � 4

24 kips

� 24 kips

�148 kip ? ft

� 96 kip ? ft

� 168 kip ? ft

� 318 kip ? ft

20 kip ? ft

10
kips

8 ft 11 ft 16 ft

M

V

x � 4

x � 11

� 34 kips

Fig. 1 Free-body diagram of beam, 
free-body diagrams of sections to left of cut, 
shear diagram, bending-moment diagram.
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 5.1 through 5.6 For the beam and loading shown, (a) draw the shear 
and bending-moment diagrams, (b) determine the equations of 
the shear and bending-moment curves.

Problems

DA
B

a a

C

L

w w

Fig. P5.6

B

PP

C
A

a a

Fig. P5.5

B

w

L

A

Fig. P5.4

B

w

A

L

Fig. P5.1

B

P

CA

L

ba

Fig. P5.2

B

w0

A
L

Fig. P5.3

100 lb 100 lb250 lb

10 in.25 in.20 in.15 in.

A B
C D E

Fig. P5.8

BA C D E

3 kN 2 kN 2 kN5 kN

0.3 m 0.3 m0.3 m 0.4 m

Fig. P5.7

BA
C D

25 kN/m

40 kN 40 kN

0.6 m 0.6 m1.8 m

Fig. P5.9

BA
C D

2.5 kips/ft 15 kips

6 ft 6 ft3 ft

Fig. P5.10 

 5.7 and 5.8 Draw the shear and bending-moment diagrams for the beam 
and loading shown, and determine the maximum absolute value 
(a) of the shear, (b) of the bending moment.

 5.9 and 5.10 Draw the shear and bending-moment diagrams for the 
beam and loading shown, and determine the maximum absolute 
value (a) of the shear, (b) of the bending moment.
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 5.11 and 5.12 Draw the shear and bending-moment diagrams for the 
beam and loading shown, and determine the maximum absolute 
value (a) of the shear, (b) of the bending moment.

400 lb 1600 lb 400 lb

12 in. 12 in. 12 in. 12 in.

8 in.

8 in.
C

A
D E F

G

B

Fig. P5.12

BA
C D E

3 kN 3 kN

300 mm 300 mm

200 mm

450 N ? m

Fig. P5.11

BA
C D

1.5 kN1.5 kN

0.9 m
0.3 m0.3 m

Fig. P5.13

B
C D E

2 kips/ft24 kips

A

3 ft 3 ft 3 ft 3 ft

2 kips/ft

Fig. P5.14

B
A

C

3 kN/m

1.5 m 1.5 m 2.2 m

100 mm

200 mm

10 kN

Fig. P5.15

750 lb

BA
C D

150 lb/ft

750 lb

3 in.

12 in.

4 ft4 ft4 ft

Fig. P5.16

BA
C D E

150 kN 150 kN

2.4 m
0.8 m

0.8 m

0.8 m

W460 � 113

90 kN/m

Fig. P5.17

 5.13 and 5.14 Assuming that the reaction of the ground is uniformly dis-
tributed, draw the shear and bending-moment diagrams for the 
beam AB and determine the maximum absolute value (a) of the 
shear, (b) of the bending moment.

 5.15 and 5.16 For the beam and loading shown, determine the maxi-
mum normal stress due to bending on a transverse section at C.

5.17 For the beam and loading shown, determine the maximum nor-
mal stress due to bending on a transverse section at C.
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 5.18 For the beam and loading shown, determine the maximum nor-
mal stress due to bending on section a-a.

BA
a

a

30 kN 50 kN 50 kN 30 kN

2 m

5 @ 0.8 m 5 4 m

W310 3 52

Fig. P5.18

BA
C D E F G

5
kips

5
kips

2
kips

2
kips

2
kips

6 @ 15 in. 5 90 in.

S8 3 18.4

Fig. P5.20

BA
C

8 kN

1.5 m 2.1 m

W310 � 60

3 kN/m

Fig. P5.19

BA
C D E

25 kips 25 kips 25 kips

2 ft1 ft 2 ft
6 ft

S12 � 35

Fig. P5.21

Hinge

2.4 m

0.6 m

1.5 m 1.5 m

CB
A E

D

80 kN/m 160 kN

W310 � 60

Fig. P5.22

HA

7 @ 200 mm � 1400 mm

Hinge

30 mm

20 mm

CB D E F G

300 N 300 N 300 N40 N

Fig. P5.23

5.19 and 5.20 For the beam and loading shown, determine the maxi-
mum normal stress due to bending on a transverse section at C.

 5.21 Draw the shear and bending-moment diagrams for the beam and 
loading shown and determine the maximum normal stress due 
to bending.

 5.22 and 5.23 Draw the shear and bending-moment diagrams for the 
beam and loading shown and determine the maximum normal 
stress due to bending.
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 5.24 and 5.25 Draw the shear and bending-moment diagrams for the 
beam and loading shown and determine the maximum normal 
stress due to bending.

B
C D E  

A

8 kN 8 kN

W310 � 23.8

1 m 1 m 1 m 1 m

W

Figs. P5.26 and P5.27

BA
C D

a 5 ft8 ft

W14 � 22

10 kips5 kips

Fig. P5.28

24 kN/m
64 kN ? m

BA
C D

2 m 2 m 2 m

S250 � 52

Fig. P5.24

BA
C D

5 ft 5 ft8 ft

W14 � 22

10 kips5 kips

Fig. P5.25

 5.26 Knowing that W 5 12 kN, draw the shear and bending-moment 
diagrams for beam AB and determine the maximum normal 
stress due to bending.

 5.27 Determine (a) the magnitude of the counterweight W for which 
the maximum absolute value of the bending moment in the 
beam is as small as possible, (b) the corresponding maximum 
normal stress due to bending. (Hint: Draw the bending-moment 
diagram and equate the absolute values of the largest positive 
and negative bending moments obtained.)

5.28 Determine (a) the distance a for which the absolute value of the 
bending moment in the beam is as small as possible, (b) the cor-
responding maximum normal stress due to bending. (See hint of 
Prob. 5.27.)
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 5.29 Knowing that P 5 Q 5 480 N, determine (a) the distance a for 
which the absolute value of the bending moment in the beam is 
as small as possible, (b) the corresponding maximum normal 
stress due to bending. (See hint of Prob. 5.27.)

BA

a

C D

P Q 12 mm

18 mm

500 mm500 mm

Fig. P5.29

Hinge

18 ft

B

a

C

4 kips/ft

W14 � 68

A

Fig. P5.31

B

d

A

L � 10 ft

Fig. P5.32

B

b

b
A DC

1.2 m 1.2 m 1.2 m

Fig. P5.33

 5.30 Solve Prob. 5.29, assuming that P 5 480 N and Q 5 320 N.

 5.31 Determine (a) the distance a for which the absolute value of the 
bending moment in the beam is as small as possible, (b) the cor-
responding maximum normal stress due to bending. (See hint of 
Prob. 5.27.)

 5.32 A solid steel rod of diameter d is supported as shown. Knowing 
that for steel g 5 490 lb/ft3, determine the smallest diameter d 
that can be used if the normal stress due to bending is not to 
exceed 4 ksi. 

 5.33 A solid steel bar has a square cross section of side b and is sup-
ported as shown. Knowing that for steel r 5 7860 kg/m3, deter-
mine the dimension b for which the maximum normal stress due 
to bending is (a) 10 MPa, (b) 50 MPa. 
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360 Analysis and Design of Beams for Bending

5.2  RELATIONSHIPS BETWEEN 
LOAD, SHEAR, AND 
BENDING MOMENT

When a beam carries more than two or three concentrated loads, or when 
it carries distributed loads, the method outlined in Sec. 5.1 for plotting 
shear and bending moment can prove quite cumbersome. The construc-
tion of the shear diagram and, especially, of the bending-moment diagram 
will be greatly facilitated if certain relations existing between load, shear, 
and bending moment are taken into consideration. 
 For example, a simply supported beam AB is carrying a distributed 
load w per unit length (Fig. 5.9a), where C and C9 are two points of the 
beam at a distance Dx from each other. The shear and bending moment 
at C is denoted by V and M, respectively, and is assumed to be positive. 
The shear and bending moment at C9 is denoted by V 1 DV and M 1 DM.
 Detach the portion of beam CC9 and draw its free-body diagram 
(Fig. 5.9b). The forces exerted on the free body include a load of magni-
tude w Dx and internal forces and couples at C and C9. Since shear and 
bending moment are assumed to be positive, the forces and couples are 
directed as shown.

Relationships between Load and Shear. The sum of the vertical 
components of the forces acting on the free body CC9 is zero, so

1x©Fy 5 0: V 2 1V 1 ¢V2 2 w ¢x 5 0

 ¢V 5 2w ¢x

Dividing both members of the equation by Dx and then letting Dx app-
roach zero, 

 
dV

dx
5 2w (5.5)

Equation (5.5) indicates that, for a beam loaded as shown in Fig. 5.9a, the 
slope dVydx of the shear curve is negative. The magnitude of the slope at 
any point is equal to the load per unit length at that point.

Fig. 5.9 (a) Simply supported beam subjected to a distributed load, with a small element between C
and C‘, (b) free-body diagram of the element.

BA
C

w

D

�x

C'

x

(a)

�x

�x

w �x

w

C C'

(b)

1
2

V

M M � �M

V � �V
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5.2 Relationships Between Load, Shear, and Bending Moment 361

 Integrating Eq. (5.5) between points C and D, 

 VD 2 VC 5 2#
xD

xC

w dx (5.6a)

 VD 2 VC 5 21area under load curve between C and D2 (5.6b)

This result is illustrated in Fig. 5.10b. Note that this result could be obtained 
by considering the equilibrium of the portion of beam CD, since the area 
under the load curve represents the total load applied between C and D.
 Also, Eq. (5.5) is not valid at a point where a concentrated load is 
applied; the shear curve is discontinuous at such a point, as seen in Sec. 
5.1. Similarly, Eqs. (5.6a) and (5.6b) are not valid when concentrated loads 
are applied between C and D, since they do not take into account the sud-
den change in shear caused by a concentrated load. Equations (5.6a) and 
(5.6b), should be applied only between successive concentrated loads.

Relationships between Shear and Bending Moment. Returning 
to the free-body diagram of Fig. 5.9b and writing that the sum of the 
moments about C9 is zero, we have

1loMC¿ 5 0 :  1M 1 ¢M2 2 M 2 V ¢x 1 w ¢x 
¢x
2

5 0

 
¢M 5 V ¢x 2

1

2
 w 1¢x22

Dividing both members by Dx and then letting Dx approach zero, 

 
dM

dx
5 V  (5.7)

Equation (5.7) indicates that the slope dMydx of the bending-moment 
curve is equal to the value of the shear. This is true at any point where the 
shear has a well-defined value (i.e., no concentrated load is applied). 
Equation (5.7) also shows that V 5 0 at points where M is maximum. This 
property facilitates the determination of the points where the beam is 
likely to fail under bending.
 Integrating Eq. (5.7) between points C and D, 

 MD 2 MC 5 #
xD

xC

V dx (5.8a)

 MD 2 MC 5 area under shear curve between C and D (5.8b)

This result is illustrated in Fig. 5.10c. Note that the area under the shear 
curve is positive where the shear is positive and negative where the shear 
is negative. Equations (5.8a) and (5.8b) are valid even when concentrated 
loads are applied between C and D, as long as the shear curve has been 
drawn correctly. The equations are not valid if a couple is applied at a 
point between C and D, since they do not take into account the sudden 
change in bending moment caused by a couple (see Sample Prob. 5.6).
 In most engineering applications, one needs to know the value of 
the bending moment at only a few specific points. Once the shear diagram 
has been drawn and after M has been determined at one of the ends of 
the beam, the value of the bending moment can be obtained at any given 
point by computing the area under the shear curve and using Eq. (5.8b). 

(a)

wC
wD

VC

MC

MD

VD

xDxC

LCD

C D

(b) 

VC

VD 2 VC 5 2(area under w
                    between C and D)

Slope 5 2(load per unit
                 length at that point)

xD

VD

xC

(c) 

MC

MD

xC xD

slope 5 V at that point

MD 2 MC 5 (area under
                      V between
                      C and D)

Fig. 5.10 Relationships between load, shear, 
and bending moment. (a) Section of loaded beam. 
(b) Shear curve for section. (c) Bending-moment 
curve for section.
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362 Analysis and Design of Beams for Bending

Concept Application 5.3
Draw the shear and bending-moment diagrams for the simply 
supported beam shown in Fig. 5.11a and determine the maxi-
mum value of the bending moment.
 From the free-body diagram of the entire beam (Fig. 5.11b), 
we determine the magnitude of the reactions at the supports:

RA 5 RB 5
1
2wL

Next, draw the shear diagram. Close to the end A of the beam, 
the shear is equal to RA, (that is, to 1

2wL ) which can be checked 
by considering as a free body a very small portion of the beam. 
Using Eq. (5.6a), the shear V at any distance x from A is

 V 2 VA 5 2#
x

0

w dx 5 2wx

 V 5 VA 2 wx 5
1
2 wL 2 wx 5 w112L 2 x2

Thus the shear curve is an oblique straight line that crosses the 
x axis at x 5 Ly2 (Fig. 5.11c). Considering the bending moment, 
observe that MA 5 0. The value M of the bending moment at any 
distance x from A is obtained from Eq. (5.8a):

M 2 MA 5 #
x

0

V dx

M 5 #
x

0

w112L 2 x2dx 5
1
2w1Lx 2 x22

The bending-moment curve is a parabola. The maximum value 
of the bending moment occurs when x 5 Ly2, since V (and thus 
dMydx) is zero for this value of x. Substituting x 5 Ly2 in the last 
equation, Mmax 5 wL2y8 (Fig. 5.11d ).

For instance, since MA 5 0 for the beam of Concept Application 5.3, the 
maximum value of the bending moment for that beam is obtained simply 
by measuring the area of the shaded triangle of the positive portion of the 
shear diagram of Fig. 5.11c. So,

Mmax 5
1

2
 
L

2
 
wL

2
5

wL2

8
 Note that the load curve is a horizontal straight line, the shear curve 
an oblique straight line, and the bending-moment curve a parabola. If the 
load curve had been an oblique straight line (first degree), the shear curve 
would have been a parabola (second degree), and the bending-moment 
curve a cubic (third degree). The shear and bending-moment curves are 
always one and two degrees higher than the load curve, respectively. With 
this in mind, the shear and bending-moment diagrams can be drawn 
without actually determining the functions V(x) and M(x). The sketches 
will be more accurate if we make use of the fact that at any point where 
the curves are continuous, the slope of the shear curve is equal to 2w and 
the slope of the bending-moment curve is equal to V.

B

w

A

L

(a)

B

w

A

RB5 wL1
2RA5 wL1

2

(b)

(c)

2 wL1
2

wL1
2

L1
2

x

V

L

Fig. 5.11 (a) Simply supported beam with 
uniformly distributed load. (b) Free-body 
diagram. (c) Shear diagram. (d) Bending-
moment diagram.

(d)

wL21
8

L L1
2

M

x
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5.2 Relationships Between Load, Shear, and Bending Moment 363

Sample Problem 5.3
Draw the shear and bending-moment diagrams for the beam and 
loading shown.

STRATEGY: The beam supports two concentrated loads and one dis-
tributed load. You can use the equations in this section between these 
loads and under the distributed load, but you should expect changes 
in the diagrams at the concentrated load points.

MODELING and ANALYSIS: 

Reactions. Consider the entire beam as a free body as shown in 
Fig. 1.

1l oMA 5 0:

D124 ft2 2 120 kips2 16 ft2 2 112 kips2 114 ft2 2 112 kips2 128 ft2 5 0

D 5 126 kips D 5 26 kips x

1x oFy 5 0: Ay 2 20 kips 2 12 kips 1 26 kips 2 12 kips 5 0

Ay 5 118 kips A y 5 18 kips x

y1 oFx 5 0: Ax 5 0 A x 5 0

Note that at both A and E the bending moment is zero. Thus, two 
points (indicated by dots) are obtained on the bending-moment 
diagram.

Shear Diagram. Since dVydx 5 2w, between  concentrated loads 
and reactions the slope of the shear diagram is zero (i.e., the shear is 
constant). The shear at any point is determined by dividing the beam 
into two parts and considering either part to be a free body. For exam-
ple, using the portion of beam to the left of section 1, the shear between 
B and C is

1xoFy 5 0:    118 kips 2 20 kips 2 V 5 0 V 5 22 kips

Also, the shear is 112 kips just to the right of D and zero at end E. 
Since the slope dVydx 5 2w is constant between D and E, the shear 
diagram between these two points is a straight line.

Bending-Moment Diagram. Recall that the area under the shear 
curve between two points is equal to the change in bending moment 
between the same two points. For convenience, the area of each por-
tion of the shear diagram is computed and indicated in parentheses 
on the diagram in Fig. 1. Since the bending moment MA at the left end 
is known to be zero, 

MB 2 MA 5 1108 MB 5 1108 kip ? ft

MC 2 MB 5 216 MC 5 192 kip ? ft

MD 2 MC 5 2140 MD 5 248 kip ? ft

ME 2 MD 5 148 ME 5 0

Since ME is known to be zero, a check of the computations is obtained.

(continued)

EA
B C

6 ft

20 kips 12 kips 1.5 kips/ft

8 ft 8 ft10 ft

D

E

E

A

A

Ax

Ay

B C

6 ft

4 ft

20 kips 12 kips

20 kips

20 kips

12 kips

26 kips18 kips

18 kips

V (kips)

M (kip ? ft)

x

x

�18
(�108)

�108

�92

�48

(�48)

(�140)

�12

(�16)

�2

�14

15 kips/ft

12 kips

8 ft 8 ft10 ft

D

B 1 C D

D

M

V

Fig. 1 Free-body diagrams of beam, 
free-body diagram of section to left of cut, 
shear diagram, bending-moment diagram.
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364 Analysis and Design of Beams for Bending

 Between the concentrated loads and reactions, the shear is con-
stant. Thus, the slope dMydx is constant, and the bending-moment 
diagram is drawn by connecting the known points with straight lines. 
Between D and E where the shear diagram is an oblique straight line, 
the bending-moment diagram is a parabola.
 From the V and M diagrams, note that Vmax 5 18 kips and Mmax 5
108 kip ? ft.

REFLECT and THINK: As expected, the shear and bending-moment 
diagrams show abrupt changes at the points where the concentrated 
loads act.

Sample Problem 5.4
The W360 3 79 rolled-steel beam AC is simply supported and carries 
the uniformly distributed load shown. Draw the shear and bending-
moment diagrams for the beam, and determine the location and mag-
nitude of the maximum normal stress due to bending.

STRATEGY: A load is distributed over part of the beam. You can use 
the equations in this section in two parts: for the load and for the no-
load regions. From the discussion in this section, you can expect the 
shear diagram will show an oblique line under the load, followed by 
a horizontal line. The bending-moment diagram should show a parab-
ola under the load and an oblique line under the rest of the beam.

MODELING and ANALYSIS:

Reactions. Considering the entire beam as a free body (Fig. 1),

RA 5 80 kN  x    RC 5 40 kN  x

Shear Diagram. The shear just to the right of A is VA 5 180 kN. 
Since the change in shear between two points is equal to minus the 
area under the load curve between the same two points, VB is

 VB 2 VA 5 2120 kN/m2 16 m2 5 2120 kN

 VB 5 2120 1 VA 5 2120 1 80 5 240 kN

(continued)

C
B

A

20 kN/m

6 m 3 m
C

C

B

w

A

V

D B

b

a

A

20 kN/m

80 kN

80 kN

(�160)

(�120)

40 kN

�40 kN(�40)

6 m

x � 4m
160 kN ? m

120 kN ? m

x

M

A

x

x

Fig. 1 Free-body diagram, shear diagram, 
bending-moment diagram.
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5.2 Relationships Between Load, Shear, and Bending Moment 365

The slope dVydx 5 2w is constant between A and B, and the shear 
diagram between these two points is represented by a straight line. 
Between B and C, the area under the load curve is zero; therefore,

VC 2 VB 5 0    VC 5 VB 5 240 kN

and the shear is constant between B and C.

Bending-Moment Diagram. Note that the bending moment at 
each end is zero. In order to determine the maximum bending moment, 
locate the section D of the beam where V 5 0.

VD 2 VA 5 2wx

0 2 80 kN 5 2120 kN/m2  x

Solving for x, x 5 4 m ◀ 

The maximum bending moment occurs at point D, where 
dMydx 5 V 5 0. The areas of various portions of the shear diagram are 
computed and given (in parentheses). The area of the shear diagram 
between two points is equal to the change in bending moment between 
the same two points, giving

MD 2 MA 5 1 160 kN?m      MD 5 1160 kN?m

 MB 2 MD 5 2    40 kN?m     MB 5 1120 kN?m

MC 2 MB 5 2 120 kN?m      MC 5 0

The bending-moment diagram consists of an arc of parabola followed 
by a segment of straight line. The slope of the parabola at A is equal 
to the value of V at that point.

Maximum Normal Stress. This occurs at D, where |M  | is largest. 
From Appendix C, for a W360 3 79 rolled-steel shape, S 5 1270 mm3

about a horizontal axis. Substituting this and |M  | 5 |MD| 5 160 3 103 N?m 
into Eq. (5.3), 

sm 5
0MD 0

S
5

160 3 103 N?m

1270 3 1026 m3 5 126.0 3 106 Pa

 Maximum normal stress in the beam 5 126.0 MPa ◀
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366 Analysis and Design of Beams for Bending

Sample Problem 5.5
Sketch the shear and bending-moment diagrams for the cantilever 
beam shown in Fig. 1.

STRATEGY: Because there are no support reactions until the right 
end of the beam, you can rely solely on the equations from this section 
without needing to use free-body diagrams and equilibrium equa-
tions. Due to the non-uniform distributed load, you should expect the 
results to involve equations of higher degree, with a parabolic curve in 
the shear diagram and a cubic curve in the bending-moment 
diagram.

MODELING and ANALYSIS:

Shear Diagram. At the free end of the beam, VA 5 0. Between A and 
B, the area under the load curve is 1

2 w0 
a. Thus,

VB 2 VA 5 2
1
2 w0 

a    VB 5 2
1
2 w0 

a

Between B and C, the beam is not loaded, so VC 5 VB. At A, w 5 w0. 
According to Eq. (5.5), the slope of the shear curve is dVydx 5 2w0, 
while at B the slope is dVydx 5 0. Between A and B, the loading 
decreases linearly, and the shear diagram is parabolic. Between B and 
C, w 5 0, and the shear diagram is a horizontal line.

Bending-Moment Diagram. The bending moment MA at the free 
end of the beam is zero. Compute the area under the shear curve to 
obtain.

 MB 2 MA 5 2
1
3 w0 

a2    MB 5 2
1
3 w0 

a2

 MC 2 MB 5 2
1
2 w0 

a1L 2 a2
 MC 5 2

1
6 w0 

a13L 2 a2

The sketch of the bending-moment diagram is completed by recalling 
that dMydx 5 V. Between A and B, the diagram is represented by a 
cubic curve with zero slope at A and between B and C by a straight 
line.

REFLECT and THINK: Although not strictly required for the solution 
of this problem, determination of the support reactions would serve 
as an excellent check of the final values of the shear and bending-
moment diagrams. 

CB

w0

A

V

M

a

L

 � w0a21
3  � w0a(L � a)1

2

 � w0a1
2

 � w0a21
3

 � w0a(3L � a)1
6

 � w0a

x

x

1
2

Fig. 1 Beam with load, shear diagram, 
bending-moment diagram.
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5.2 Relationships Between Load, Shear, and Bending Moment 367

Sample Problem 5.6
The simple beam AC in Fig. 1 is loaded by a couple of moment T 
applied at point B. Draw the shear and bending-moment diagrams of 
the beam.

STRATEGY: The load supported by the beam is a concentrated cou-
ple. Since the only vertical forces are those associated with the support 
reactions, you should expect the shear diagram to be of constant value. 
However, the bending-moment diagram will have a discontinuity at B 
due to the couple.

MODELING and ANALYSIS: 

The entire beam is taken as a free body.

RA 5
T
L
x    RC 5

T
L
w

The shear at any section is constant and equal to TyL. Since a couple 
is applied at B, the bending-moment diagram is discontinuous at B. It 
is represented by two oblique straight lines and decreases suddenly at 
B by an amount equal to T. This discontinuity can be verified by equi-
librium analysis. For example, considering the free body of the portion 
of the beam from A to just beyond the right of B as shown in Fig. 1, 
M is

1l©MB 5 0:  2 
T
L

 a 1 T 1 M 5 0   M 5 2T a1 2
a
L
b

REFLECT and THINK: Notice that the applied couple results in a 
sudden change to the moment diagram at the point of application in 
the same way that a concentrated force results in a sudden change to 
the shear diagram.

Fig. 1 Beam with load, shear diagram, 
bending-moment diagram, free-body 
diagram of section to left of B.

C
B

A

V

M

B

L

x

x

T
a

T
L

�T(1 � )a
L

T a
L

T V M

RA� T�L
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 5.34 Using the method of Sec. 5.2, solve Prob. 5.1a.

 5.35 Using the method of Sec. 5.2, solve Prob. 5.2a.

 5.36 Using the method of Sec. 5.2, solve Prob. 5.3a.

 5.37 Using the method of Sec. 5.2, solve Prob. 5.4a.

 5.38 Using the method of Sec. 5.2, solve Prob. 5.5a.

 5.39 Using the method of Sec. 5.2, solve Prob. 5.6a.

 5.40 Using the method of Sec. 5.2, solve Prob. 5.7.

 5.41 Using the method of Sec. 5.2, solve Prob. 5.8.

 5.42 Using the method of Sec. 5.2, solve Prob. 5.9.

 5.43 Using the method of Sec. 5.2, solve Prob. 5.10.

5.44 and 5.45 Draw the shear and bending-moment diagrams for the 
beam and loading shown, and determine the maximum absolute 
value (a) of the shear, (b) of the bending moment.

Problems

0.5 m

4 kN

1 m 1 m
0.5 m

4 kN

A

E

DC
B

F

Fig. P5.44 Fig. P5.45

300 N 300 N

200 mm

75 mm

200 mm 200 mm

A C D
B

F
E

w

L

A

B x

w 5 w0 [x/L]1/2

Fig. P5.50

w

A

L

B
x

w � w0 cos� x
2L

Fig. P5.51

 5.46 Using the method of Sec. 5.2, solve Prob. 5.15.

 5.47 Using the method of Sec. 5.2, solve Prob. 5.16.

 5.48 Using the method of Sec. 5.2, solve Prob. 5.18.

 5.49 Using the method of Sec. 5.2, solve Prob. 5.20.

 5.50 and 5.51 Determine (a) the equations of the shear and bending-
moment curves for the beam and loading shown, (b) the maxi-
mum absolute value of the bending moment in the beam.
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B
x

w w � w0 sin

A

L

� x
L

Fig. P5.52

B
x

w
w � w0

A

L

x
L

Fig. P5.53

 5.52 and 5.53 Determine (a) the equations of the shear and bending-
moment curves for the beam and loading shown, (b) the maxi-
mum absolute value of the bending moment in the beam.

A
C D

B

2 ft 10 ft 3 ft

3 kips/ft

S10 3 25.4

Fig. P5.54

A B
C

16 kN/m

1 m1.5 m

S150 � 18.6

Fig. P5.55

A B
C

0.9 m 3 m

12 kN/m
9 kN

W200 3 19.3

Fig. P5.56

A B

80 lb/ft

1600 lb

1.5 ft

9 ft

11.5 in.

1.5 in.

Fig. P5.57

A B
DC

80 kN/m

W250 � 80

1.2 m 1.2 m1.6 m

60 kN · m 12 kN · m

Fig. P5.59

A
B

C

16 in. 24 in.

25 lb/in.

500 lb

S4 � 7.7

Fig. P5.58

 5.54 and 5.55 Draw the shear and bending-moment diagrams for the 
beam and loading shown and determine the maximum normal 
stress due to bending.

 5.56 and 5.57 Draw the shear and bending-moment diagrams for the 
beam and loading shown and determine the maximum normal 
stress due to bending.

 5.58 and 5.59 Draw the shear and bending-moment diagrams for the 
beam and loading shown and determine the maximum normal 
stress due to bending.
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 5.60 Knowing that beam AB is in equilibrium under the loading 
shown, draw the shear and bending-moment diagrams and 
determine the maximum normal stress due to bending.

BA

1.2 ft 1.2 ft

C

w0 � 50 lb/ft

T

w0

3
4 in.

Fig. P5.61

0.4 m

P Q 24 mm

0.2 m
0.5 m 0.5 m

60 mmA
C D E F

B

0.3 m

Fig. P5.62

A

480 lb/ft

1 ft 1 ft

1.5 ft 1.5 ft

W8 � 31

8 ft

P

B
C D E F

Q

Fig. P5.63

C D BA

2 kN/m

P

0.1 m 0.1 m 0.125 m

36 mm

18 mm
Q

Fig. P5.64

A C BD

400 kN/m

W200 3 22.5w0

0.3 m 0.3 m0.4 m

Fig. P5.60

 5.61 Knowing that beam AB is in equilibrium under the loading 
shown, draw the shear and bending-moment diagrams and 
determine the maximum normal stress due to bending.

 *5.62 The beam AB supports two concentrated loads P and Q. The nor-
mal stress due to bending on the bottom edge of the beam is 
155 MPa at D and 137.5 MPa at F. (a) Draw the shear and 
bending-moment diagrams for the beam. (b) Determine the 
maximum normal stress due to bending that occurs in the beam.

 *5.63 The beam AB supports a uniformly distributed load of 480 lb/ft 
and two concentrated loads P and Q. The normal stress due to 
bending on the bottom edge of the lower flange is 114.85 ksi at 
D and 110.65 ksi at E. (a) Draw the shear and bending-moment 
diagrams for the beam. (b) Determine the maximum normal 
stress due to bending that occurs in the beam. 

 *5.64 Beam AB supports a uniformly distributed load of 2 kN/m and 
two concentrated loads P and Q. It has been experimentally 
determined that the normal stress due to bending in the bottom 
edge of the beam is 256.9 MPa at A and 229.9 MPa at C. Draw 
the shear and bending-moment diagrams for the beam and 
determine the magnitudes of the loads P and Q.
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5.3 Design Of Prismatic Beams for Bending 371

5.3  DESIGN OF PRISMATIC 
BEAMS FOR BENDING

The design of a beam is usually controlled by the maximum absolute value 
|M  |max of the bending moment that occurs in the beam. The largest normal 
stress sm in the beam is found at the surface of the beam in the critical 
section where |M  |max occurs and is obtained by substituting |M  |max for |M  | 
in Eq. (5.1) or Eq. (5.3).†

sm 5
ZM Zmaxc

I
 (5.1a)

sm 5
ZM Zmax

S
 (5.3a)

A safe design requires that sm # sall, where sall is the allowable stress for 
the material used. Substituting sall for sm in (5.3a) and solving for S yields 
the minimum allowable value of the section modulus for the beam being 
designed:

Smin 5
ZM Zmax

sall
 (5.9)

 The design of common types of beams, such as timber beams of rect-
angular cross section and rolled-steel members of various cross-sectional 
shapes, is discussed in this section. A proper procedure should lead to the 
most economical design. This means that among beams of the same type 
and same material, and other things being equal, the beam with the small-
est weight per unit length—and, thus, the smallest cross-sectional area—
should be selected, since this beam will be the least expensive.
 The design procedure generally includes the following steps:‡

Step 1. First determine the value of sall for the material selected from a 
table of properties of materials or from design specifications. You 
also can compute this value by dividing the ultimate strength sU of 
the material by an appropriate factor of safety (Sec. 1.5C). Assuming 
that the value of sall is the same in tension and in compression, 
proceed as follows.

Step 2. Draw the shear and bending-moment diagrams corresponding to 
the specified loading conditions, and determine the maximum 
absolute value |M  |max of the bending moment in the beam.

Step 3. Determine from Eq. (5.9) the minimum allowable value Smin of 
the section modulus of the beam.

Step 4. For a timber beam, the depth h of the beam, its width b, or the 
ratio h/b characterizing the shape of its cross section probably will 
have been specified. The unknown dimensions can be selected by 
using Eq. (4.19), so b and h satisfy the relation 1

6 bh2 5 S $  Smin.

†For beams that are not symmetrical with respect to their neutral surface, the largest of 
the distances from the neutral surface to the surfaces of the beam should be used for c
in Eq. (5.1) and in the computation of the section modulus S 5 I/c.

‡ It is assumed that all beams considered in this chapter are adequately braced to prevent 
lateral buckling and bearing plates are provided under concentrated loads applied to 
rolled-steel beams to prevent local buckling (crippling) of the web.
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372 Analysis and Design of Beams for Bending

Step 5. For a rolled-steel beam, consult the appropriate table in Appen-
dix C. Of the available beam sections, consider only those with a 
section modulus S $ Smin and select the section with the smallest 
weight per unit length. This is the most economical of the sections 
for which S $ Smin. Note that this is not necessarily the section with 
the smallest value of S (see Concept Application 5.4). In some cases, 
the selection of a section may be limited by considerations such 
as the allowable depth of the cross section or the allowable deflec-
tion of the beam (see Chap. 9).

 The previous discussion was limited to materials for which sall is the 
same in tension and compression. If sall is different, make sure to select 
the beam section where sm # sall for both tensile and compressive 
stresses. If the cross section is not symmetric about its neutral axis, the 
largest tensile and the largest compressive stresses will not necessarily 
occur in the section where |M  | is maximum (one may occur where M is 
maximum and the other where M is minimum). Thus, step 2 should 
include the determination of both Mmax and Mmin, and step 3 should take 
into account both tensile and compressive stresses.
 Finally, the design procedure described in this section takes into 
account only the normal stresses occurring on the surface of the beam. 
Short beams, especially those made of timber, may fail in shear under a 
transverse loading. The determination of shearing stresses in beams will 
be discussed in Chap. 6. Also, in rolled-steel beams normal stresses larger 
than those considered here may occur at the junction of the web with the 
flanges. This will be discussed in Chap. 8.

Concept Application 5.4
Select a wide-flange beam to support the 15-kip load as shown in 
Fig. 5.12. The allowable normal stress for the steel used is 24 ksi.

1. The allowable normal stress is given: sall 5 24 ksi.
 2.  The shear is constant and equal to 15 kips. The bending moment 

is maximum at B.

ZM Zmax 5 115 kips2 18 ft2 5 120 kip?ft 5 1440 kip?in.

3. The minimum allowable section modulus is

Smin 5
ZM Zmax

sall
5

1440 kip?in.

24 ksi
5 60.0 in3

4.  Referring to the table of Properties of Rolled-Steel Shapes in 
Appendix C, note that the shapes are arranged in groups of the 
same depth and are listed in order of decreasing weight. Choose 
the lightest beam in each group having a section modulus 

15 kips
8 ft

A B

Fig. 5.12 Cantilevered wide-flange beam 
with end load.

(continued)
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5.3 Design Of Prismatic Beams for Bending 373

Sample Problem 5.7
A 12-ft-long overhanging timber beam AC with an 8-ft span AB is to 
be designed to support the distributed and concentrated loads shown. 
Knowing that timber of 4-in. nominal width (3.5-in. actual width) with 
a 1.75-ksi allowable stress is to be used, determine the minimum 
required depth h of the beam.

B
A C h

8 ft 4 ft

3.5 in.400 lb/ft 4.5 kips

(continued)

*Load and Resistance Factor Design. This alternative method of 
design was applied to members under axial loading in Sec. 1.5D. It also 
can be applied to the design of beams in bending. Replace the loads PD , 
PL , and PU in Eq. (1.27) by the bending moments MD , ML , and MU :

gDMD 1 gLML # fMU (5.10)

The coefficients gD and gL are the load factors, and the coefficient f is the 
resistance factor. The moments MD and ML are the bending moments due 
to the dead and the live loads respectively. MU is equal to the product of 
the ultimate strength sU of the material and the section modulus S of the 
beam: MU 5 SsU.

S 5 Iyc at least as large as Smin and record the results in the 
following table.

 Shape S, in3

W21 3 44 81.6
W18 3 50 88.9
W16 3 40 64.7
W14 3 43 62.6
W12 3 50 64.2
W10 3 54 60.0

The most economical is the W16 3 40 shape since it weighs only 
40 lb/ft, even though it has a larger section modulus than two of the other 
shapes. The total weight of the beam will be (8 ft) 3 (40 lb) 5 320 lb. 
This weight is small compared to the 15,000-1b load and thus can be 
neglected in our analysis.
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374 Analysis and Design of Beams for Bending

STRATEGY: Draw the bending-moment diagram to find the absolute 
maximum bending-moment. Then, using this bending-moment, you 
can determine the required section properties that satisfy the given 
allowable stress.

MODELING and ANALYSIS:

Reactions.  Consider the entire beam to be a free body (Fig. 1).

1l oMA 5 0: B18 ft2 2 13.2 kips2 14 ft2 2 14.5 kips2 112 ft2 5 0

B 5 8.35 kips  B 5 8.35 kipsx

1yoFx 5 0: Ax 5 0

1xoFy 5 0: Ay 1 8.35 kips 2 3.2 kips 2 4.5 kips 5 0

 Ay 5 20.65 kips    A 5 0.65 kips w

B
A

V

A

Ax
Ay

B

C

8 ft 4 ft

3.2 kips
4.5 kips

(�18)

(�18)

4.50
kips

�3.85 kips

�0.65
kips

CB x

Fig. 1 Free-body diagram of beam and 
its shear diagram.

(continued)

Shear Diagram.  The shear just to the right of A is VA 5 Ay 5 20.65 
kips. Since the change in shear between A and B is equal to minus the 
area under the load curve between these two points, VB is obtained by

 VB 2 VA 5 21400 lb/ft2 18 ft2 5 23200 lb 5 23.20 kips

 VB 5 VA 2 3.20 kips 5 20.65 kips 2 3.20 kips 5 23.85 kips.

The reaction at B produces a sudden increase of 8.35 kips in V, result-
ing in a shear equal to 4.50 kips to the right of B. Since no load is 
applied between B and C, the shear remains constant between these 
two points.
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5.3 Design Of Prismatic Beams for Bending 375

Determination of |M|max.  Observe that the bending moment is 
equal to zero at both ends of the beam: MA 5 MC 5 0. Between A and 
B, the bending moment decreases by an amount equal to the area 
under the shear curve, and between B and C it increases by a corre-
sponding amount. Thus, the maximum absolute value of the bending 
moment is |M  |max 5 18.00 kip?ft.

Minimum Allowable Section Modulus.  Substituting the values of 
sall and |M  |max into Eq. (5.9) gives

Smin 5
0M 0max

sall
5
118 kip?ft2 112 in./ft2

1.75 ksi
5 123.43 in3

Minimum Required Depth of Beam.  Recalling the formula deve-
loped in step 4 of the design procedure and substituting the values of 
b and Smin , we have

1
6 bh2 $ Smin    1

6 13.5 in.2h2 $ 123.43 in3    h $ 14.546 in.

The minimum required depth of the beam is h 5 14.55 in. ◀

REFLECT and THINK: In practice, standard wood shapes are speci-
fied by nominal dimensions that are slightly larger than actual. In this 
case, specify a 4-in. 3 16-in. member with the actual dimensions of 
3.5 in. 3 15.25 in.

Sample Problem 5.8
A 5-m-long, simply supported steel beam AD is to carry the distributed 
and concentrated loads shown. Knowing that the allowable normal 
stress for the grade of steel is 160 MPa, select the wide-flange shape to 
be used.

STRATEGY: Draw the bending-moment diagram to find the absolute 
maximum bending moment. Then, using this moment, you can deter-
mine the required section modulus that satisfies the given allowable 
stress.

(continued)

B

A

C D

3 m
1 m 1 m

20 kN
50 kN
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376 Analysis and Design of Beams for Bending

MODELING and ANALYSIS:

Reactions.  Consider the entire beam to be a free body (Fig. 1).

1loMA 5 0: D15 m2 2 160 kN2 11.5 m2 2 150 kN2 14 m2 5 0

 D 5 58.0 kN    D 5 58.0 kNx

1
yoFx 5 0: Ax 5 0

1xoFy 5 0: Ay 1 58.0 kN 2 60 kN 2 50 kN 5 0

Ay 5 52.0 kN    A 5 52.0 kNx

Shear Diagram.  The shear just to the right of A is VA 5 Ay 5 
152.0 kN. Since the change in shear between A and B is equal to 
minus the area under the load curve between these two points,

VB 5 52.0 kN 2 60 kN 5 28 kN

The shear remains constant between B and C, where it drops to 
258 kN, and keeps this value between C and D. Locate the section E 
of the beam where V 5 0 by

VE 2 VA 5 2wx

0 2 52.0 kN 5 2120 kN/m2  x
So, x 5 2.60 m.

Determination of |M|max.  The bending moment is maximum at E, 
where V 5 0. Since M is zero at the support A, its maximum value at 
E is equal to the area under the shear curve between A and E. There-
fore, |M  |max 5 ME 5 67.6 kN?m.

Minimum Allowable Section Modulus.  Substituting the values of 
sall and |M  |max into Eq. (5.9) gives

Smin 5
0M 0max

sall
5

67.6 kN?m

160 MPa
5 422.5 3 1026 m3 5 422.5 3 103 mm3

Selection of Wide-Flange Shape.  From Appendix C, compile a list 
of shapes that have a section modulus larger than Smin and are also the 
lightest shape in a given depth group (Fig. 2).

The lightest shape available is W360 3 32.9 ◀

REFLECT and THINK: When a specific allowable normal stress is the 
sole design criterion for beams, the lightest acceptable shapes tend to be 
deeper sections. In practice, there will be other criteria to consider that 
may alter the final shape selection.

Fig. 1 Free-body diagram of beam and 
its shear diagram.

CB D

1.5 m

52 kN

x � 2.6 m

�58 kN

�8 kN

(67.6)

1.5 m
1 m 1 m

50 kN

D

A

V

A
E B C D

x

Ax
Ay

60 kN

 Shape S, mm3

W410 3 38.8 629
W360 3 32.9 475
W310 3 38.7 547
W250 3 44.8 531
W200 3 46.1 451

Fig. 2 Lightest shapes in each 
depth group that provide the 
required section modulus.
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Problems
 5.65 and 5.66 For the beam and loading shown, design the cross section 

of the beam, knowing that the grade of timber used has an allow-
able normal stress of 12 MPa.

1.8 kN 3.6 kN

CB
A D h

0.8 m 0.8 m 0.8 m

40 mm

Fig. P5.65

A B

120 mm

h

10 kN/m

5 m

Fig. P5.66

4.8 kips 4.8 kips
2 kips 2 kips

F

b

A

2 ft 2 ft 3 ft 2 ft 2 ft

9.5 in.

B C D E

Fig. P5.68
1.2 kips/ft

6 ft
a

a
B

A

Fig. P5.67

A
B

150 mm

b3 kN/m

C

2.4 m 1.2 m

Fig. P5.70

C
A

B
D h

0.6 m 0.6 m
3 m

100 mm6 kN/m
2.5 kN2.5 kN

Fig. P5.69

 5.67 and 5.68 For the beam and loading shown, design the cross section 
of the beam, knowing that the grade of timber used has an allow-
able normal stress of 1750 psi.

 5.69 and 5.70 For the beam and loading shown, design the cross section 
of the beam, knowing that the grade of timber used has an allow-
able normal stress of 12 MPa.
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 5.71 and 5.72 Knowing that the allowable normal stress for the steel 
used is 24 ksi, select the most economical wide-flange beam to 
support the loading shown.

2.75 kips/ft

24 kips

B
A C

9 ft 15 ft

Fig. P5.72

DC

A
B E

F

6 ft2 ft 2 ft 2 ft 2 ft

11 kips/ft 20 kips20 kips

Fig. P5.71

 5.73 and 5.74 Knowing that the allowable normal stress for the steel 
used is 160 MPa, select the most economical wide-flange beam 
to support the loading shown.

 5.75 and 5.76 Knowing that the allowable normal stress for the steel 
used is 24 ksi, select the most economical S-shape beam to sup-
port the loading shown.

5 kN/m

70 kN 70 kN

A D
CB

3 m 3 m5 m

Fig. P5.73

C
DA

B

0.8 m 0.8 m
2.4 m

50 kN/m

Fig. P5.74

3 kips/ft

18 kips

A
DCB

6 ft 6 ft
3 ft

Fig. P5.75

48 kips 48 kips 48 kips

A
D

E
CB

6 ft
2 ft2 ft2 ft

Fig. P5.76

 5.77 and 5.78 Knowing that the allowable normal stress for the steel 
used is 160 MPa, select the most economical S-shape beam to 
support the loading shown.

100 kN/m
80 kN

A C
B

0.8 m 1.6 m

Fig. P5.77

C
DA

B

2.5 m 2.5 m 5 m

60 kN 40 kN

Fig. P5.78
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 5.79 A steel pipe of 100-mm diameter is to support the loading shown. 
Knowing that the stock of pipes available has thicknesses varying 
from 6 mm to 24 mm in 3-mm increments, and that the allowable 
normal stress for the steel used is 150 MPa, determine the mini-
mum wall thickness t that can be used.

 5.80 Two metric rolled-steel channels are to be welded along their 
edges and used to support the loading shown. Knowing that the 
allowable normal stress for the steel used is 150 MPa, determine 
the most economical channels that can be used.

A B C D

100 mm

t

1.5 kN 1.5 kN

1 m 0.5 m 0.5 m

1.5 kN

Fig. P5.79

 5.81 Two rolled-steel channels are to be welded back to back and used 
to support the loading shown. Knowing that the allowable nor-
mal stress for the steel used is 30 ksi, determine the most eco-
nomical channels that can be used.

 5.82 Two L4 3 3 rolled-steel angles are bolted together and used to 
support the loading shown. Knowing that the allowable normal 
stress for the steel used is 24 ksi, determine the minimum angle 
thickness that can be used.

A E
B C D

4 @ 0.675 m = 2.7 m

20 kN 20 kN 20 kN

Fig. P5.80 B

2.25 kips/ft

20 kips

A
C

D

12 ft
3 ft

6 ft

Fig. P5.81

B

300 lb/ft

2000 lb

A C

3 ft3 ft

6 in.

4 in.

Fig. P5.82

 5.83 Assuming the upward reaction of the ground to be uniformly dis-
tributed and knowing that the allowable normal stress for the 
steel used is 170 MPa, select the most economical wide-flange 
beam to support the loading shown.

 5.84 Assuming the upward reaction of the ground to be uniformly dis-
tributed and knowing that the allowable normal stress for the 
steel used is 24 ksi, select the most economical wide-flange beam 
to support the loading shown.

B C

200 kips 200 kips

A DD

4 ft4 ft 4 ft

Fig. P5.84

B C

Total load � 2 MN

A D

0.75 m 0.75 m
1 m

D

Fig. P5.83
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 5.85 Determine the largest permissible distributed load w for the 
beam shown, knowing that the allowable normal stress is 
180 MPa in tension and 2130 MPa in compression.

 5.86 Solve Prob. 5.85, assuming that the cross section of the beam is 
inverted, with the flange of the beam resting on the supports at 
B and C. 

 5.87 Determine the largest permissible value of P for the beam and 
loading shown, knowing that the allowable normal stress is 
18 ksi in tension and 218 ksi in compression.

 5.88 Solve Prob. 5.87, assuming that the T-shaped beam is inverted. 

 5.89 Beams AB, BC, and CD have the cross section shown and are 
pin-connected at B and C. Knowing that the allowable normal 
stress is 1110 MPa in tension and 2150 MPa in compression, 
determine (a) the largest permissible value of w if beam BC is not 
to be overstressed, (b) the corresponding maximum distance a 
for which the cantilever beams AB and CD are not overstressed.

B C

w

A D

0.2 m 0.2 m
0.5 m

20 mm

20 mm

60 mm

60 mm

Fig. P5.85P
10 in. 10 in.

60 in. 60 in.

1 in.

5 in.

1 in.7 in.

E
DCB

A

PP

Fig. P5.87

 5.90 Beams AB, BC, and CD have the cross section shown and are 
pin-connected at B and C. Knowing that the allowable normal 
stress is 1110 MPa in tension and 2150 MPa in compression, 
determine (a) the largest permissible value of P if beam BC is not 
to be overstressed, (b) the corresponding maximum distance a 
for which the cantilever beams AB and CD are not overstressed.

B C

w

D

a 7.2 m

12.5 mm

12.5 mm

150 mm

200 mm

A

a

Fig. P5.89

PP

B C D

a
2.4 m 2.4 m 2.4 m

12.5 mm

12.5 mm

150 mm

200 mm

A

a

Fig. P5.90
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 5.91 Each of the three rolled-steel beams shown (numbered 1, 2, and 3) 
is to carry a 64-kip load uniformly distributed over the beam. 
Each of these beams has a 12-ft span and is to be supported by 
the two 24-ft rolled-steel girders AC and BD. Knowing that the 
allowable normal stress for the steel used is 24 ksi, select (a) the 
most economical S shape for the three beams, (b) the most eco-
nomical W shape for the two girders.

4 ft

4 ft

12 ft

8 ft

1

2

3

8 ft

B

A

C

D

Fig. P5.91

 5.92 A 54-kip load is to be supported at the center of the 16-ft span 
shown. Knowing that the allowable normal stress for the steel 
used is 24 ksi, determine (a) the smallest allowable length l of 
beam CD if the W12 3 50 beam AB is not to be overstressed, 
(b) the most economical W shape that can be used for beam CD. 
Neglect the weight of both beams.

 5.93 A uniformly distributed load of 66 kN/m is to be supported over 
the 6-m span shown. Knowing that the allowable normal stress 
for the steel used is 140 MPa, determine (a) the smallest allow-
able length l of beam CD if the W460 3 74 beam AB is not to be 
overstressed, (b) the most economical W shape that can be used 
for beam CD. Neglect the weight of both beams.

BA

C D

l/2 l/2

L 516 ft

W12 3 50

54 kips

Fig. P5.92

BA
C D

W460 3 74

66 kN/m 66 kN/m

l 

L 5 6 m

Fig. P5.93
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 *5.94 A roof structure consists of plywood and roofing material sup-
ported by several timber beams of length L 5 16 m. The dead 
load carried by each beam, including the estimated weight of the 
beam, can be represented by a uniformly distributed load 
wD 5 350 N/m. The live load consists of a snow load, represented 
by a uniformly distributed load wL 5 600 N/m, and a 6-kN con-
centrated load P applied at the midpoint C of each beam. Know-
ing that the ultimate strength for the timber used is sU 5 50 MPa 
and that the width of the beam is b 5 75 mm, determine the 
minimum allowable depth h of the beams, using LRFD with the 
load factors gD 5 1.2, gL 5 1.6 and the resistance factor f 5 0.9. 

 *5.95 Solve Prob. 5.94, assuming that the 6-kN concentrated load P
applied to each beam is replaced by 3-kN concentrated loads P1

and P2 applied at a distance of 4 m from each end of the beams.

 *5.96 A bridge of length L 5 48 ft is to be built on a secondary road 
whose access to trucks is limited to two-axle vehicles of medium 
weight. It will consist of a concrete slab and of simply supported 
steel beams with an ultimate strength sU 5 60 ksi. The combined 
weight of the slab and beams can be approximated by a uni-
formly distributed load w 5 0.75 kips/ft on each beam. For the 
purpose of the design, it is assumed that a truck with axles located 
at a distance a 5 14 ft from each other will be driven across the 
bridge and that the resulting concentrated loads P1 and P2 exerted 
on each beam could be as large as 24 kips and 6 kips, respec-
tively. Determine the most economical wide-flange shape for the 
beams, using LRFD with the load factors gD 5 1.25, gL 5 1.75 and 
the resistance factor f 5 0.9. [Hint: It can be shown that the 
maximum value of |ML| occurs under the larger load when that 
load is located to the left of the center of the beam at a distance 
equal to aP2/2(P1 + P2).] 

P

wD � wL

C

b

hA B

L1
2 L1

2

Fig. P5.94

 *5.97 Assuming that the front and rear axle loads remain in the same 
ratio as for the truck of Prob. 5.96, determine how much heavier 
a truck could safely cross the bridge designed in that problem.

a

A B

x

L

P2P1

Fig. P5.96
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*5.4 Singularity Functions used to Determine Shear and Bending Moment 383

*5.4  SINGULARITY FUNCTIONS 
USED TO DETERMINE 
SHEAR AND BENDING 
MOMENT

Note that the shear and bending moment rarely can be described by single 
analytical functions. In the cantilever beam of Concept Application 5.2 
(Fig. 5.8) that supported a uniformly distributed load w, the shear and 
bending moment could be represented by single analytical functions of 
V 5 2wx and M 5 2

1
2 
wx 

2. This was due to the fact that no discontinuity 
existed in the loading of the beam. On the other hand, in the simply sup-
ported beam of Concept Application 5.1, which was loaded only at its 
midpoint C, the load P applied at C represented a singularity in the beam 
loading. This singularity resulted in discontinuities in the shear and bend-
ing moment and required the use of different analytical functions for V 
and M in the portions of beam to the left and right of point C. In Sample 
Prob. 5.2, the beam had to be divided into three portions, where different 
functions were used to represent the shear and the bending moment. This 
led to the graphical representation of the functions V and M provided by 
the shear and bending-moment diagrams and, later in Sec. 5.2, to a 
graphical method of integration to determine V and M from the distrib-
uted load w.
 This section shows how the use of singularity functions makes it pos-
sible to represent the shear V and bending moment M with single math-
ematical expressions.
 Consider the simply supported beam AB, with length of 2a, that car-
ries a uniformly distributed load w0 extending from its midpoint C to its 
right-hand support B (Fig. 5.13). First, draw the free-body diagram of the 
entire beam (Fig. 5.14a). Replacing the distributed load with an equivalent 
concentrated load and summing moments about B,

1l oMB 5 0: 1w0a2 112 
a2 2 RA12a2 5 0  RA 5

1
4 
w0a

Next, cut the beam at a point D between A and C. From the free-body 
diagram of AD (Fig. 5.14b) and over the interval 0 , x , a, the shear and 
bending moment are

V11x2 5
1
4 
w0a  and  M11x2 5

1
4 
w0ax

Cutting the beam at a point E between C and B, draw the free-body 
diagram of portion AE (Fig. 5.14c). Replacing the distributed load by an 
equivalent concentrated load, 

1x oFy 5 0:  14w0a 2 w01x 2 a2 2 V2 5 0

1l oME 5 0:  21
4 
w0ax 1 w01x 2 a2 3 12 

1x 2 a2 4 1 M2 5 0

Over the interval a , x , 2a, the shear and bending moment are

V21x2 5
1
4 
w0a 2 w01x 2 a2  and  M21x2 5

1
4 
w0ax 2

1
2 
w01x 2 a22

B
C

w0

A

a a

Fig. 5.13 Simply supported beam.

Fig. 5.14 Free-body diagrams at two sections 
required to draw shear and bending-moment 
diagrams.

(a)

B

RBRA

C

w0

w0 a

A

2a

a1
2

(b)

M1

V1

D

x

A

RA5 w0 a
1
4

(c)

M2

V2

C

E

w0 (x 2 a)

A

x

a

(x 2 a)

x 2 a

1
2

RA5 w0 a
1
4
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384 Analysis and Design of Beams for Bending

 The fact that the shear and bending moment are represented by dif-
ferent functions of x is due to the discontinuity in the loading of the beam. 
However, V1(x) and V2(x) can be represented by the single function

 V1x2 5
1
4 
w0a 2 w0Hx 2 aI (5.11)

if the second term is included in the computations when x $ a and 
ignored when x , a. Therefore, the brackets H I should be replaced by 
ordinary parentheses ( ) when x $ a and by zero when x , a. Using this 
convention, the bending moment can be represented at any point of the 
beam by

 M1x2 5
1
4 w0ax 2

1
2 w0Hx 2 aI2 (5.12)

 The function within the brackets H I can be differentiated or inte-
grated as if the brackets were replaced with ordinary parentheses. Instead 
of calculating the bending moment from free-body diagrams, the method 
indicated in Sec. 5.2 could be used, where the expression obtained for V(x) 
is integrated to give

M1x2 2 M102 5 #
x

0

V1x2 dx 5 #
x

0

1
4 
w0a dx 2 #

x

0

w0Hx 2 aI dx

After integration and observing that M(0) 5 0,

M1x2 5
1
4 w0ax 2

1
2 w0Hx 2 aI2

 Furthermore, using the same convention, the distributed load at any 
point of the beam can be expressed as

 w1x2 5 w0Hx 2 aI0 (5.13)

Indeed, the brackets should be replaced by zero for x , a and by paren-
theses for x $ a. Thus, w(x) 5 0 for x , a, and by defining the zero power 
of any number as unity, Hx 2 aI0 5 1x 2 a20 5 1 and w(x) 5 w0 for x $ a. 
Recall that the shear could have been obtained by integrating the function 
2w(x). Observing that V 5

1
4w0a for x 5 0,

 V1x2 2 V102 5 2#
x

0

w1x2 dx 5 2#
x

0

w0Hx 2 aI0 dx

 V1x2 2
1
4 
w0a 5 2w0Hx 2 aI1

Solving for V(x) and dropping the exponent 1,

V1x2 5
1
4 
w0a 2 w0Hx 2 aI

 The expressions Hx 2 aI0, Hx 2 aI, Hx 2 aI2 are called singularity 
functions. For n $ 0,

 Hx 2 aIn 5 e 1x 2 a2n
0

  
when x $ a
when x , a

 (5.14)
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*5.4 Singularity Functions used to Determine Shear and Bending Moment 385

Also note that whenever the quantity between brackets is positive or zero, 
the brackets should be replaced by ordinary parentheses. Whenever that 
quantity is negative, the bracket itself is equal to zero.
 The three singularity functions corresponding to n 5 0, n 5 1, and 
n 5 2 have been plotted in Fig. 5.15. Note that the function Hx 2 aI0 is 
discontinuous at x 5 a and is in the shape of a “step.” For that reason, it 
is called the step function. According to Eq. (5.14) and using the zero 
power of any number as unity,†

 Hx 2 aI0 5 e1

0
  

when x $ a

when x , a
 (5.15)

†Since (x 2 a)0 is discontinuous at x 2 a, it can be argued that this function should be 
left undefined for x 5 a or should be assigned both of the values 0 and 1 for x 5 a. 
However, defining (x 2 a)0 as equal to 1 when x 5 a, as stated in (Eq. 5.15), has the 
advantage of being unambiguous. Thus it is easily applied to computer programming 
(see page 388).

0
(a) n � 0

� x � a �0

a x 0
(b) n � 1

� x � a �1

a x 0
(c) n � 2

� x � a �2

a x

Fig. 5.15 Singularity functions.

 It follows from the definition of singularity functions that

 # Hx 2 aIn dx 5
1

n 1 1
  Hx 2 aIn11  for n $ 0 (5.16)

and

 
d

dx
 Hx 2 aIn 5 n Hx 2 aIn21    for n $ 1 (5.17)

 Most of the beam loadings encountered in engineering practice can 
be broken down into the basic loadings shown in Fig. 5.16. When appli-
cable, the corresponding functions w(x), V(x), and M(x) are expressed in 
terms of singularity functions and plotted against a color background. 
A heavier color background is used to indicate the expression for each 
loading that is most easily obtained or remembered and from which the 
other functions can be obtained by integration.
 After a given beam loading has been broken down into the basic 
loadings of Fig. 5.16, the functions V(x) and M(x) representing the shear 
and bending moment at any point of the beam can be obtained by adding 
the corresponding functions associated with each of the basic loadings 
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386 Analysis and Design of Beams for Bending

and reactions. Since all of the distributed loadings shown in Fig. 5.16 are 
open-ended to the right, a distributed load that does not extend to the 
right end of the beam or is discontinuous should be replaced as shown in 
Fig. 5.17 by an equivalent combination of open-ended loadings. (See also 
Concept Application 5.5 and Sample Prob. 5.9.)
 As you will see in Chap. 9, the use of singularity functions also sim-
plifies the determination of beam deflections. It was in connection with 

a
a

x xO O

V

M0

P

Loading Shear Bending Moment

(a)

a

xO

(b)

a

xO

w

(c) w (x) � w0 � x � a �0 

V (x) � �P � x � a �0 

(d) w (x) � k � x � a �1

(e) w (x) � k � x � a �n

Slope � k

w0

a

xO

w

a

xO

w

a xO

V

�P

M (x) � �M0 � x � a �0 

a xO

M

�M0

V (x) � �w0 � x � a �1

a xO

V

M (x) � �P � x � a �1

a xO

M

V (x) � �    � x � a �2

a xO

V

k
2

a xO

M

M (x) � � w0 � x � a �2

a xO

M

1
2

M (x) � � � x � a �3k
2 ? 3

M (x) � � � x � a �n � 2k
(n � 1) (n � 2)

V (x) � �           � x � a �n � 1k
n � 1

a xO

V

a xO

M

Fig. 5.16 Basic loadings and corresponding shears and bending moments expressed in terms of singularity functions.
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*5.4 Singularity Functions used to Determine Shear and Bending Moment 387

that problem that the approach used in this section was first suggested in 
1862 by the German mathematician A. Clebsch (1833–1872). However, the 
British mathematician and engineer W. H. Macaulay (1853–1936) is usu-
ally given credit for introducing the singularity functions in the form used 
here, and the brackets H I are called Macaulay’s brackets.†

†W. H. Macaulay, “Note on the Deflection of Beams,” Messenger of Mathematics, vol. 48, 
pp. 129–130, 1919.

xO

w w0

b

L

a

xO

w w0

� w0b

L

a

w(x) � w0 � x � a �0 � w0 � x � b �0 

Fig. 5.17 Use of open-ended loadings to create a closed-ended loading.

Concept Application 5.5
For the beam and loading shown (Fig. 5.18a) and using singularity 
functions, express the shear and bending moment as functions of the 
distance x from the support at A.
 Determine the reaction at A by drawing the free-body diagram of 
the beam (Fig. 5.18b) and writing

y1 oFx 5 0: Ax 5 0

1l oMB 5 0: 2Ay13.6 m2 1 11.2 kN2 13 m2
 1 11.8 kN2 12.4 m2 1 1.44 kN?m 5 0

  Ay 5 2.60 kN

 Next, replace the given distributed load by two equivalent open-
ended loads (Fig. 5.18c) and express the distributed load w(x) as the 
sum of the corresponding step functions:

w1x2 5 1w0Hx 2 0.6I0 2 w0Hx 2 1.8I0
 The function V(x) is obtained by integrating w(x), reversing the 1 
and 2 signs, and adding to the result the constants Ay and 2PHx 2 0.6I0, 
which represents the respective contributions to the shear of the reac-
tion at A and of the concentrated load. (No other constant of integra-
tion is required.) Since the concentrated couple does not directly affect 
the shear, it should be ignored in this computation.

V1x2 5 2w0Hx 2 0.6I1 1 w0Hx 2 1.8I1 1 Ay 2 PHx 2 0.6I0
(continued)

(a)

B

B

DC

P 5 1.2 kN

A

Ax

Ay

1.8 kN

M0 5 1.44 kN ? m

3.6 m

3 m

2.4 m

(b)

E

BE
DC

P 5 1.2 kN

A

w0 5 1.5 kN/m
M0 5 1.44 kN ? m

0.6 m 0.8 m 1.0 m
1.2 m

Fig. 5.18 (a) Simply supported beam 
with multiple loads. (b) Free-body diagram.
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388 Analysis and Design of Beams for Bending

Application to Computer Programming. Singularity functions are 
particularly well suited to computers. First note that the step function 
Hx 2 aI0, which will be represented by the symbol STP, can be defined by 
an IF/THEN/ELSE statement as being equal to 1 for X $ A and to 0 
otherwise. Any other singularity function Hx 2 aIn, with n $ 1, can be 
expressed as the product of the ordinary algebraic function 1x 2 a2n and 
the step function Hx 2 aI0.
 When k different singularity functions are involved (such as Hx 2 aiIn
where i 5 1, 2, . . ., k) the corresponding step functions (STP(I), where 
I 5 1, 2, . . ., K) can be defined by a loop containing a single IF/THEN/
ELSE statement.

Concept Application 5.6
For the beam and loading of Concept Application 5.5, determine the 
numerical values of the shear and bending moment at the midpoint D.
 Making x 5 1.8 m in the equations found for V(x) and M(x) in 
Concept Application 5.5,

V11.82 5 21.5H1.2I1 1 1.5H0I1 1 2.6 2 1.2H1.2I0
M11.82 5 20.75H1.2I2 1 0.75H0I2 1 2.611.82 2 1.2H1.2I1 2 1.44H20.8I0

Recall that whenever a quantity between brackets is positive or zero, 
the brackets should be replaced by ordinary parentheses, and when-
ever the quantity is negative, the bracket itself is equal to zero, so

 V11.82 5 21.511.221 1 1.51021 1 2.6 2 1.211.220
 5 21.511.22 1 1.5102 1 2.6 2 1.2112
 5 21.8 1 0 1 2.6 2 1.2

 V11.82 5 20.4 kN
and

M11.82 5 20.7511.222 1 0.751022 1 2.611.82 2 1.211.221 2 1.44102
5 21.08 1 0 1 4.68 2 1.44 2 0

M11.82 5 12.16 kN?m

 In a similar way, the function M(x) is obtained by integrating V(x) and 
adding to the result the constant 2M0Hx 2 2.6I0, which represents the 
contribution of the concentrated couple to the bending moment. We have

M1x2 5 2
1
2w0Hx 2 0.6I2 1

1
2 w0Hx 2 1.8I2

1 Ayx 2 PHx 2 0.6I1 2 M0Hx 2 2.6I0
 Substituting the numerical values of the reaction and loads into the 
expressions for V(x) and M(x) and being careful not to compute any 
product or expand any square involving a bracket, the expressions for 
the shear and bending moment at any point of the beam are

  V1x2 5 21.5Hx 2 0.6I1 1 1.5Hx 2 1.8I1 1 2.6 2 1.2Hx 2 0.6I0
M1x2 5 20.75Hx 2 0.6I2 1 0.75Hx 2 1.8I2
 1 2.6x 2 1.2Hx 2 0.6I1 2 1.44Hx 2 2.6I0

(c)

w0 5 1.5 kN/m

2 w0 5 21.5 kN/m

w

Ay 5 2.6 kN

0.6 m

B
x

B

C

D

P 5 1.2 kN

A

M0 5 1.44 kN ? m

2.6 m

1.8 m

E

Fig. 5.18 (cont.) (c) Superposition of 
distributed loads.
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*5.4 Singularity Functions used to Determine Shear and Bending Moment 389

Sample Problem 5.9
 For the beam and loading shown, determine (a) the equations 
defining the shear and bending moment at any point and (b) the 
shear and bending moment at points C, D, and E.

STRATEGY: After determining the support reactions, you can 
write equations for w, V, and M, beginning from the left end of the 
beam. Any abrupt changes in these parameters beyond the left end 
can be accommodated by adding appropriate singularity 
functions. 

MODELING and ANALYSIS: 

Reactions. The total load is 1
2 w0 L. Due to symmetry, each reac-

tion is equal to half that value as 1
4 w0 L.

Distributed Load. The given distributed loading is replaced by 
two equivalent open-ended loadings as shown in Figs. 1 and 2. 
Using a singularity function to express the second loading,

 w1x2 5 k1x 1 k2Hx 2
1
2LI 5

2w0

L
 x 2

4w0

L
 Hx 2

1
2LI (1)

 a. Equations for Shear and Bending Moment. V1x2  is 
obtained by integrating Eq. (1), changing the signs, and adding a 
constant equal to RA:

 V1x2 5 2 
w0

L
x2 1

2w0

L
 Hx 2

1
2LI2 1

1
4w0L (2) ◀

M(x) is obtained by integrating Eq. (2). Since there is no concen-
trated couple, no constant of integration is needed, so

 M1x2 5 2 
w0

3L
 x3 1

2w0

3L
 Hx 2

1
2LI3 1

1
4 w0Lx (3) ◀

 b. Shear and Bending Moment at C, D, and E (Fig. 3)

At Point C: Making x 5
1
2L in Eqs. (2) and (3) and recalling that 

whenever a quantity between brackets is positive or zero, the 
brackets can be replaced by parentheses:

 VC 5 2 
w0

L
 112L22 1

2w0

L
 H0I2 1

1
4w0L VC 5 0 ◀

 MC 5 2 
w0

3L
112L23 1

2w0

3L
 H0I3 1

1
4w0L112L2    MC 5

1

12
w0L2 ◀

B

w0

A
D

L/4 L/4 L/4 L/4

C E

x

x

C E

D

B

w0L

V

A

M

C ED BA

3
16

w0L2

2

3
16

11
192

w0L21
12

w0L2

w0L1
4

w0L1
4

Fig. 3 Shear and bending-moment diagrams.

L/2

x

L/2

C

RBRA 5 w0L

2w0

L

A

w

B

k1 5 1

4w0

L
k2 5 21

4

Fig. 2 Free body of beam with equivalent 
distributed load.

w0
2w0

L/2 L/2

C C
A

B

2w0

2w0

2w0

L

A
B

Slope � �

4w0

L
Slope � �

Fig. 1 Modeling the distributed load as the 
superposition of two distributed loads.

(continued)
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390 Analysis and Design of Beams for Bending

At Point D: Making x 5
1
4L in Eqs. (2) and (3) and recalling that 

a bracket containing a negative quantity is equal to zero gives

 VD 5 2 
w0

L
 114L22 1

2w0

L
 H21

4LI2 1
1
4w0L VD 5

3

16
w0L ◀

 MD 5 2 
w0

3L
114L23 1

2w0

3L
H21

4LI3 1
1
4w0L114L2 MD 5

11

192
w0L2 ◀

At Point E: Making x 5
3
4L in Eqs. (2) and (3) gives

 VE 5 2 
w0

L
134L22 1

2w0

L
 H14LI2 1

1
4w0L VE 5 2 

3

16
w0L ◀

 ME 5 2 
w0

3L
 134L23 1

2w0

3L
 H14LI3 1

1
4 w0L134L2 ME 5

11

192
w0L2 ◀

Sample Problem 5.10
The rigid bar DEF is welded at point D to the steel beam AB. For 
the loading shown, determine (a) the equations defining the shear 
and bending moment at any point of the beam, (b) the location 
and magnitude of the largest bending moment.

STRATEGY: You can begin by first finding the support reactions 
and replacing the load on appendage DEF with an equivalent 
force-couple system. You can then write equations for w, V, and 
M, beginning from the left end of the beam. Any abrupt changes 
in these parameters beyond the left end can be accommodated by 
adding appropriate singularity functions.

MODELING and ANALYSIS: 

Reactions. Consider the beam and bar as a free body and 
observe that the total load is 960 lb. Because of symmetry, each 
reaction is equal to 480 lb.

Modified Loading Diagram. Replace the 160-lb load applied 
at F by an equivalent force-couple system at D (Figs. 1 and 2.). We 
thus obtain a loading diagram consisting of a concentrated couple, 
three concentrated loads (including the two reactions), and a uni-
formly distributed load

 w1x2 5 50 lb/ft (1)

B

50 lb/ft

160 lb

A

F

C D

E

8 ft 5 ft
3 ft

(continued)

160 lb

MD � 480 lb ? ft 

P � 160 lb

E

D

F E

D

F

Fig. 1 Modeling the force at F as an equivalent 
force-couple at D.

B

w0 � 50 lb/ft

MD � 480 lb ? ft

RA � 480 lb RBP � 160 lb

w

D

11 ft 5 ft

xA

Fig. 2 Free-body diagram of beam, with 
equivalent force-couple at D.
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*5.4 Singularity Functions used to Determine Shear and Bending Moment 391

 a. Equations for Shear and Bending Moment. V(x) is 
obtained by integrating Eq. (1), changing the sign, and adding con-
stants representing the respective contributions of RA and P to the 
shear. Since P affects V(x) when x is larger than 11 ft, use a step 
function to express its contribution.

 V1x2 5 250x 1 480 2 160Hx 2 11I0 (2) ◀

Obtain M(x) by integrating Eq. (2) and using a step function to 
represent the contribution of the concentrated couple MD:

 M1x2 5 225x2 1 480x 2 160Hx 2 11I1 2 480Hx 2 11I0 (3) ◀

 b. Largest Bending Moment. Since M is maximum or mini-
mum when V 5 0, set V 5 0 in Eq. (2) and solve that equation for 
x to find the location of the largest bending moment. Considering 
first values of x less than 11 ft, and noting that for such values the 
bracket is equal to zero:

250x 1 480 5 0  x 5 9.60 ft

Considering values of x larger than 11 ft, for which the bracket is 
equal to 1:

250x 1 480 2 160 5 0  x 5 6.40 ft

Since this value is not larger than 11 ft, it must be rejected. Thus, 
the value of x corresponding to the largest bending moment is

 xm 5 9.60 ft ◀

Substituting this value for x into Eq. (3), 

Mmax 5 22519.6022 1 48019.602 2 160H21.40I1 2 480H21.40I0

and recalling that brackets containing a negative quantity are 
equal to zero,

 Mmax 5 22519.6022 1 48019.602 Mmax 5 2304 lb?ft ◀

The bending-moment diagram has been plotted (Fig. 3). Note the 
discontinuity at point D is due to the concentrated couple applied 
at that point. The values of M just to the left and just to the right 
of D are obtained by making x 5 11 in Eq. (3) and replacing the 
step function Hx 2 11I0 by 0 and 1, respectively.

xm � 9.60 ft

x

�2304 lb ? ft
�2255 lb ? ft

�1775 lb ? ft

M

D B
A

Fig. 3 Bending-moment diagram.
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Problems
 5.98 through 5.100 (a) Using singularity functions, write the equations 

defining the shear and bending moment for the beam and load-
ing shown. (b) Use the equation obtained for M to determine the 
bending moment at point C, and check your answer by drawing 
the free-body diagram of the entire beam.

A B

w0

a a

C

Fig. P5.99

A B C

w0

a a

Fig. P5.100

CA B

w0

a a

Fig. P5.98

 5.101 through 5.103 (a) Using singularity functions, write the equations 
defining the shear and bending moment for the beam and loading 
shown. (b) Use the equation obtained for M to determine the 
bending moment at point E, and check your answer by drawing 
the free-body diagram of the portion of the beam to the right of E.

A
B C E D

aa aa

P P

Fig. P5.103

A B
D

EC

w0

a aaa

Fig. P5.102

A D
B C E

w w

a aaa

Fig. P5.101

 5.104 and 5.105 (a) Using singularity functions, write the equations for 
the shear and bending moment for beam ABC under the loading 
shown. (b) Use the equation obtained for M to determine the 
bending moment just to the right of point B.

P

B

CA

a a
P

Fig. P5.104

P

A
B C

a a

Fig. P5.105
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 5.106 through 5.109 (a) Using singularity functions, write the equations 
for the shear and bending moment for the beam and loading 
shown. (b) Determine the maximum value of the bending 
moment in the beam.

 5.110 and 5.111 (a) Using singularity functions, write the equations for 
the shear and bending moment for the beam and loading shown. 
(b) Determine the maximum normal stress due to bending.

3 kips/ft

3 ft 3 ft
4 ft 4 ft

8 kips

A B
C D E

3 kips/ft

Fig. P5.109

25 kN/m

40 kN 40 kN

0.6 m 1.8 m 0.6 m

A D
B C

Fig. P5.108

48 kN 60 kN 60 kN

0.6 m 0.9 m

A
B C D

E

1.5 m 1.5 m

Fig. P5.106

B
C D

3 kips 6 kips 6 kips

4 ft
3 ft

A
E

4 ft 4 ft

Fig. P5.107

F
B C D

24 kN 24 kN
24 kN

0.75 m

W250 � 28.4

4 @ 0.75 m � 3 m

24 kN

E
A

Fig. P5.110

E
B C

50 kN 50 kN125 kN

0.3 m 0.4 m 0.2 m

S150 � 18.6

0.5 m

D
A

Fig. P5.111

 5.112 and 5.113 (a) Using singularity functions, find the magnitude and 
location of the maximum bending moment for the beam and 
loading shown. (b) Determine the maximum normal stress due 
to bending.

C
B18 kN ? m

40 kN/m

27 kN ? m

2.4 m1.2 m

S310 � 52A

Fig. P5.112

40 kN/m

1.8 m

A
C D

B

1.8 m
0.9 m

W530 � 66

60 kN 60 kN

Fig. P5.113
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 5.114 and 5.115 A beam is being designed to be supported and loaded as 
shown. (a) Using singularity functions, find the magnitude and 
location of the maximum bending moment in the beam. (b) Know-
ing that the allowable normal stress for the steel to be used is 24 ksi, 
find the most economical wide-flange shape that can be used.

C
B

3 kips/ft

12 ft
3 ft

22.5 kips

A

Fig. P5.115

2.4 kips/ft

12 kips 12 kips

6 ft 6 ft 3 ft

A D
CB

Fig. P5.114

 5.116 and 5.117 A timber beam is being designed to be supported and 
loaded as shown. (a) Using singularity functions, find the magni-
tude and location of the maximum bending moment in the beam. 
(b) Knowing that the available stock consists of beams with an 
allowable normal stress of 12 MPa and a rectangular cross section 
of 30-mm width and depth h varying from 80 mm to 160 mm in 
10-mm increments, determine the most economical cross sec-
tion that can be used.

480 N/m

A
B

CC

1.5 m 2.5 m

h

30 mm

Fig. P5.116

A CC

500 N/m

B

1.6 m 2.4 m

h

30 mm

Fig. P5.117

 5.118 through 5.121 Using a computer and step functions, calculate the 
shear and bending moment for the beam and loading shown. 
Use the specified increment DL, starting at point A and ending at 
the right-hand support.

C

16 kN/m

12 kN

A
B

1.2 m
4 m

 L � 0.4 m�

Fig. P5.118

1.8 kips/ft

3.6 kips/ft

A
B

C

6 ft 6 ft

�L � 0.5 ft

Fig. P5.120

D
B C

120 kN
36 kN/m

A

2 m 1 m
3 m

L � 0.25 m�

Fig. P5.119

B DC

3 kips/ft 4 kips

A

1.5 ft
4.5 ft

DL 5 0.5 ft

3 ft

Fig. P5.121
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 5.122 and 5.123 For the beam and loading shown and using a computer 
and step functions, (a) tabulate the shear, bending moment, and 
maximum normal stress in sections of the beam from x 5 0 to 
x 5 L, using the increments DL indicated, (b) using smaller incre-
ments if necessary, determine with a 2% accuracy the maximum 
normal stress in the beam. Place the origin of the x axis at end 
A of the beam.

B

5 kN/m

3 kN/m

3 kN

A
C

D

2 m
1.5 m 1.5 m

W200 � 22.5

L � 0.25 m�

L � 5 m

Fig. P5.122

C
A

B
D 300 mm

2 m 3 m
1 m

50 mm20 kN/m

5 kN

L � 0.5 m�

L � 6 m

Fig. P5.123

 5.124 and 5.125 For the beam and loading shown and using a computer 
and step functions, (a) tabulate the shear, bending moment, and 
maximum normal stress in sections of the beam from x 5 0 to 
x 5 L, using the increments DL indicated, (b) using smaller incre-
ments if necessary, determine with a 2% accuracy the maximum 
normal stress in the beam. Place the origin of the x axis at end A 
of the beam.

C
A

B
D 12 in.

1.5 ft 2 ft
1.5 ft

2 in.1.2 kips/ft

2 kips/ft

300 lb

L � 5 ft
L � 0.25 ft�

Fig. P5.124

C
A

B
D

2.5 ft 2.5 ft
10 ft

3.2 kips/ft
4.8 kips/ft

W12 � 30
L � 15 ft

L � 1.25 ft�

Fig. P5.125
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396 Analysis and Design of Beams for Bending

*5.5 NONPRISMATIC BEAMS
Prismatic beams, i.e., beams of uniform cross section, are designed so that 
the normal stresses in their critical sections are at most equal to the allow-
able value of the normal stress for the material being used. In all other 
sections, the normal stresses will be smaller (possibly much smaller) than 
their allowable value. Therefore, a prismatic beam is almost always 
overdesigned, and considerable savings can be made by using nonpris-
matic beams. The continuous spans shown in Photo 5.2 are examples of 
nonprismatic beams.
 Since the maximum normal stresses sm usually control the design 
of a beam, the design of a nonprismatic beam is optimum if the section 
modulus S 5 Iyc of every cross section satisfies Eq. (5.3). Solving that 
equation for S,

 S 5
ZM Z
sall

 (5.18)

A beam designed in this manner is a beam of constant strength.
 For a forged or cast structural or machine component, it is possible 
to vary the cross section of the component along its length and eliminate 
most of the unnecessary material (see Concept Application 5.7). For a tim-
ber or rolled-steel beam, it is not possible to vary the cross section of the 
beam. But considerable savings of material can be achieved by gluing 
wooden planks of appropriate lengths to a timber beam (see Sample 
Prob. 5.11) and using cover plates in portions of a rolled-steel beam where 
the bending moment is large (see Sample Prob. 5.12).

Photo 5.2 Bridge supported by nonprismatic beams.
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*5.5 Nonprismatic Beams 397

Concept Application 5.7
A cast-aluminum plate of uniform thickness b is to support a uni-
formly distributed load w as shown in Fig. 5.19. (a) Determine the 
shape of the plate that will yield the most economical design. 
(b) Knowing that the allowable normal stress for the aluminum used 
is 72 MPa and that b 5 40 mm, L 5 800 mm, and w 5 135 kN/m, 
determine the maximum depth h0 of the plate.

 Bending Moment. Measuring the distance x from A and 
observing that VA 5 MA 5 0, use Eqs. (5.6) and (5.8) for

V1x2 5 2#
x

0

wdx 5 2wx

M1x2 5 #
x

0

V1x2dx 5 2#
x

0

wxdx 5 2
1
2 wx2

 a. Shape of Plate. Recall that the modulus S of a rectangular 
cross section of width b and depth h is S 5

1
6 bh2. Carrying this value 

into Eq. (5.18) and solving for h2,

 h2 5
6ZM Z
bsall

 (5.19)

and after substituting ZM Z 5
1
2 wx2,

 h2 5
3wx2

bsall
   or   h 5 a 3w

bsall
b1y2

x (5.20)

Since the relationship between h and x is linear, the lower edge of the 
plate is a straight line. Thus, the plate providing the most economical 
design is of triangular shape.

 b. Maximum Depth h0. Making x 5 L in Eq. (5.20) and substitut-
ing the given data,

h0 5 c 31135 kN/m2
10.040 m2 172 MPa2 d

1y21800 mm2 5 300 mm

w

A

B

h h0

L

x

Fig. 5.19 Nonprismatic, cantilevered beam 
supporting a uniformly distributed load.
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398 Analysis and Design of Beams for Bending

Sample Problem 5.11
A 12-ft-long beam made of a timber with an allowable normal stress 
of 2.40 ksi and an allowable shearing stress of 0.40 ksi is to carry two 
4.8-kip loads located at its third points. As will be shown in Ch. 6, this 
beam of uniform rectangular cross section, 4 in. wide and 4.5 in. deep, 
would satisfy the allowable shearing stress requirement. Since such a 
beam would not satisfy the allowable normal stress requirement, it will 
be reinforced by gluing planks of the same timber, 4 in. wide and 1.25 
in. thick, to the top and bottom of the beam in a symmetric manner. 
Determine (a) the required number of pairs of planks and (b) the 
length of the planks in each pair that will yield the most economical 
design.

C

A D

B
4 ft

4.8 kips 4.8 kips

4 ft 4 ft

Fig. 1 Free-body diagrams of entire 
beam and sections.

A

A

A

V
M

DCB

B
48 in.

x

4.8 kips

4.8 kips 4.8 kips

4.8 kips

4.8 kips

4.8 kips
4.8 kips

x

M

STRATEGY: Since the moment is maximum and constant between 
the two concentrated loads (due to symmetry), you can analyze this 
region to determine the total number of reinforcing planks required. 
You can determine the cut-off points for each pair of planks by con-
sidering the range for which each reinforcing pair, combined with the 
rest of the section, meets the specified allowable normal stress.

MODELING and ANALYSIS: 

Bending Moment. Draw the free-body diagram of the beam (Fig. 1) 
and find the expressions for the bending moment:

From A to B 10 # x # 48 in.2:  M 5 14.80 kips2  x
From B to C 148 in. # x # 96 in.2:

M 5 14.80 kips2 x 2 14.80 kips2 1x 2 48 in.2 5 230.4 kip?in.

 a. Number of Pairs of Planks. Determine the required total 
depth of the reinforced beam between B and C. Recall from Sec. 5.3 
that S 5

1
6 bh2 for a beam with a rectangular cross section of width b 

and depth h. Substituting this value into Eq. (5.19),

 h2 5
6ZM Z
bsall

 (1)

(continued)
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*5.5 Nonprismatic Beams 399

Substituting the value obtained for M from B to C and the given values 
of b and sall, 

h2 5
61230.4 kip?in.2
14 in.2 12.40 ksi2 5 144 in.2     h 5 12.00 in.

Since the original beam has a depth of 4.50 in., the planks must pro-
vide an additional depth of 7.50 in. Recalling that each pair of planks 
is 2.50 in. thick,

 Required number of pairs of planks 5 3 ◀

 b. Length of Planks. The bending moment was found to be 
M 5 (4.80 kips) x in the portion AB of the beam. Substituting this 
expression and the given values of b and sall into Eq. (1) then solving 
for x, gives

 x 5
14 in.2 12.40 ksi2

6 14.80 kips2  h2     x 5
h2

3 in.
 (2)

Equation (2) defines the maximum distance x from end A at which a 
given depth h of the cross section is acceptable (Fig. 2). Making h 5 
4.50 in. you can find the distance x1 from A at which the original pris-
matic beam is safe: x1 5 6.75 in. From that point on, the original beam 
should be reinforced by the first pair of planks. Making h 5 4.50 in. 1 
2.50 in. 5 7.00 in. yields the distance x2 5 16.33 in. from which the 
second pair of planks should be used, and making h 5 9.50 in. yields 
the distance x3 5 30.08 in. from which the third pair of planks should 
be used. The length li of the planks of the pair i, where i 5 1, 2, 3, is 
obtained by subtracting 2xi from the 144-in. length of the beam. 

 l1 5 130.5 in., l2 5 111.3 in., l3 5 83.8 in. ◀

Fig. 2 Positions where planks must be 
added.

O

x1 x2
x3

x

y

The corners of the various planks lie on the parabola defined by Eq. (2).
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400 Analysis and Design of Beams for Bending

Sample Problem 5.12
Two steel plates, each 16 mm thick, are welded as shown to a 
W690 3 125 beam to reinforce it. Knowing that sall 5 160 MPa for both 
the beam and the plates, determine the required value of (a) the length 
of the plates, (b) the width of the plates.

l

E
b

BA

CD

W690 × 125

16
mm

4 m4 m

1
2l1

2

500 kN

Fig. 1 Free-body diagrams of beam and 
section needed to find internal shear force 
and bending moment.

B
C

V

M

x

A

A

500 kN

250 kN250 kN

250 kN

STRATEGY: To find the required length of the reinforcing plates, you 
can determine the extent of the beam that is not overstressed if left 
unreinforced. By considering the point of maximum moment, you can 
then size the reinforcing plates.

MODELING and ANALYSIS: 

Bending Moment.  Find the reactions. From the free-body diagram 
in Fig. 1, using a portion of the beam of length x # 4 m, M is found 
between A and C as

 M 5 1250 kN2  x (1)

 a. Required Length of Plates. Determine the maximum allow-
able length xm of the portion AD of the unreinforced beam. From 
Appendix C, the section modulus of a W690 3 125 beam is S 5 3490 
3 106 mm3 or S 5 3.49 3 1023 m3. Substitute for S and sall into Eq. 
(5.17) and solve for M:

M 5 Ssall 5 13.49 3 1023 m32 1160 3 103 kN/m22 5 558.4 kN?m

Substituting for M in Eq. (1), 

558.4 kN?m 5 1250 kN2  xm  xm 5 2.234 m

The required length l of the plates is obtained by subtracting 2xm from 
the length of the beam:

 l 5 8 m 2 212.234 m2 5 3.532 m l 5 3.53 m ◀

(continued)
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*5.5 Nonprismatic Beams 401

 b. Required Width of Plates. The maximum bending 
moment occurs in the midsection C of the beam. Making x 5 4 m in 
Eq. (1), the bending moment in that section is

M 5 1250 kN2 14 m2 5 1000 kN?m

 In order to use Eq. (5.1), find the moment of inertia of the cross 
section of the reinforced beam with respect to a centroidal axis and 
the distance c from that axis to the outer surfaces of the plates (Fig. 2). 
From Appendix C, the moment of inertia of a W690 3 125 beam is 
Ib 5 1190 3 106 mm4, and its depth is d 5 678 mm. Using t as the 
thickness of one plate, b as its width, and y as the distance of its cen-
troid from the neutral axis, the moment of inertia Ip of the two plates 
with respect to the neutral axis is

Ip 5 21 1
12 bt 

3 1 A y  
22 5 116 t 

32  b 1 2 bt 112 d 1
1
2 t22

Substituting t 5 16 mm and d 5 678 mm, we obtain Ip 5 (3.854 3 106 
mm3) b. The moment of inertia I of the beam and plates is

 I 5 Ib 1 Ip 5 1190 3 106 mm4 1 13.854 3 106 mm32  b (2)

and the distance from the neutral axis to the surface is 
c 5

1
2 d 1 t 5 355 mm. Solving Eq. (5.1) for I and substituting the val-

ues of M, sall, and c, 

I 5
ZM Z c

sall
5
11000 kN?m2 1355 mm2

160 MPa
5 2.219 3 1023 m4 5 2219 3 106 mm4

Replacing I by this value in Eq. (2) and solving for b, 

 2219 3 106 mm4 5 1190 3 106 mm4 1 13.854 3 106 mm32b
 b 5 267 mm ◀

Fig. 2 Cross section of beam with plate reinforcement.

y

b

c

t

d1
2

d1
2

N.A.
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 5.126 and 5.127 The beam AB, consisting of a cast-iron plate of uniform 
thickness b and length L, is to support the load shown. (a) Know-
ing that the beam is to be of constant strength, express h in terms 
of x, L, and h0. (b) Determine the maximum allowable load if 
L 5 36 in., h0 5 12 in., b 5 1.25 in., and sall 5 24 ksi.

Problems

B
h h0

L/2 L/2

x

w

A

Fig. P5.126

A

B

h

L

x

P

h0

Fig. P5.127

 5.128 and 5.129 The beam AB, consisting of a cast-iron plate of uniform 
thickness b and length L, is to support the distributed load w(x) 
shown. (a) Knowing that the beam is to be of constant strength, 
express h in terms of x, L, and h0. (b) Determine the smallest 
value of h0 if L 5 750 mm, b 5 30 mm, w0 5 300 kN/m, and 
sall 5 200 MPa.

w 5 w0 L
x

A

B

h h0

L

x

Fig. P5.128

w 5 w0 sin 2 L
x

A

B

h h0

L

x

p

Fig. P5.129

 5.130 and 5.131 The beam AB, consisting of an aluminum plate of uni-
form thickness b and length L, is to support the load shown. 
(a) Knowing that the beam is to be of constant strength, express h
in terms of x, L, and h0 for portion AC of the beam. (b) Determine 
the maximum allowable load if L 5 800 mm, h0 5 200 mm, b 5
25 mm, and sall 5 72 MPa.

B
h h0

L/2 L/2

x

A
C

P

Fig. P5.130
L/2 L/2

x

h

C
A B

h0

w 5 w0 sin L
xp

Fig. P5.131
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 5.132 and 5.133 A preliminary design on the use of a cantilever prismatic 
timber beam indicated that a beam with a rectangular cross sec-
tion 2 in. wide and 10 in. deep would be required to safely sup-
port the load shown in part a of the figure. It was then decided 
to replace that beam with a built-up beam obtained by gluing 
together, as shown in part b of the figure, five pieces of the same 
timber as the original beam and of 2 3 2-in. cross section. Deter-
mine the respective lengths l1 and l2 of the two inner and outer 
pieces of timber that will yield the same factor of safety as the 
original design.

l2
l1

A
C

D B

A

6.25 ft

(a)

(b)

w

B

B

Fig. P5.133

l2
l1

A
C

D B

A B

P

6.25 ft

(a)

(b)
Fig. P5.132

 5.134 and 5.135 A preliminary design on the use of a simply supported 
prismatic timber beam indicated that a beam with a rectangular 
cross section 50 mm wide and 200 mm deep would be required 
to safely support the load shown in part a of the figure. It was 
then decided to replace that beam with a built-up beam obtained 
by gluing together, as shown in part b of the figure, four pieces of 
the same timber as the original beam and of 50 3 50-mm cross 
section. Determine the length l of the two outer pieces of timber 
that will yield the same factor of safety as the original design.

A B

C D

w

0.8 m 0.8 m 0.8 m

(a)

A B

l

(b)

Fig. P5.135

A B

A B

C

1.2 m 1.2 m

P

l

(a)

(b)

Fig. P5.134
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 5.136 and 5.137 A machine element of cast aluminum and in the shape 
of a solid of revolution of variable diameter d is being designed 
to support the load shown. Knowing that the machine element is 
to be of constant strength, express d in terms of x, L, and d0.

P

A B

C
x

L/2 L/2

d d0

Fig. P5.136

w

A B

C
x

L/2 L/2

d d0

Fig. P5.137

 5.138 A transverse force P is applied as shown at end A of the conical 
taper AB. Denoting by d0 the diameter of the taper at A, show that 
the maximum normal stress occurs at point H, which is con-
tained in a transverse section of diameter d 5 1.5 d0.

 5.139 A cantilever beam AB consisting of a steel plate of uniform depth 
h and variable width b is to support the distributed load w along 
its centerline AB. (a) Knowing that the beam is to be of constant 
strength, express b in terms of x, L, and b0. (b) Determine the 
maximum allowable value of w if L 5 15 in., b0 5 8 in., h 5 0.75 in., 
and sall 5 24 ksi.

 5.140 Assuming that the length and width of the cover plates used with 
the beam of Sample Prob. 5.12 are, respectively, l 5 4 m and b 5
285 mm, and recalling that the thickness of each plate is 16 mm, 
determine the maximum normal stress on a transverse section 
(a) through the center of the beam, (b) just to the left of D.

 5.141 Two cover plates, each 12 in. thick, are welded to a W27 3 84 beam 
as shown. Knowing that l 5 10 ft and b 5 10.5 in., determine the 
maximum normal stress on a transverse section (a) through the 
center of the beam, (b) just to the left of D.

P

d0

H
B

A

Fig. P5.138

 5.142 Two cover plates, each 12 in. thick, are welded to a W27 3 84 beam 
as shown. Knowing that sall 5 24 ksi for both the beam and the 
plates, determine the required value of (a) the length of the 
plates, (b) the width of the plates.

x

L h

A

B

b0

w

b

Fig. P5.139

in.1
2

B

b
ED C

A

l
W27 × 84

9 ft

160 kips

1
2 l1

2

9 ft

Fig. P5.141 and P5.142

bee98233_ch05_344-415.indd   404bee98233_ch05_344-415.indd   404 11/15/13   12:01 PM11/15/13   12:01 PM



405

 5.143 Knowing that sall 5 150 MPa, determine the largest concentrated 
load P that can be applied at end E of the beam shown.

E

C  

A
B D

P

W410 � 85

18 � 220 mm

2.25 m 1.25 m

2.2 m
4.8 m

Fig. P5.143

 5.144 Two cover plates, each 7.5 mm thick, are welded to a W460 3 74 
beam as shown. Knowing that l 5 5 m and b 5 200 mm, deter-
mine the maximum normal stress on a transverse section 
(a) through the center of the beam, (b) just to the left of D.

B

b 7.5 mm

ED
A

l W460 × 74

8 m

40 kN/m

Fig. P5.144 and P5.145

 5.145 Two cover plates, each 7.5 mm thick, are welded to a W460 3 74 
beam as shown. Knowing that sall 5 150 MPa for both the beam 
and the plates, determine the required value of (a) the length of 
the plates, (b) the width of the plates.

 5.146 Two cover plates, each 58 in. thick, are welded to a W30 3 99 beam 
as shown. Knowing that l 5 9 ft and b 5 12 in., determine the 
maximum normal stress on a transverse section (a) through the 
center of the beam, (b) just to the left of D.

B

b

ED

A

W30 × 99

16 ft

30 kips/ft

in.5
8

l

Fig. P5.146 and P5.147

 5.147 Two cover plates, each 58 in. thick, are welded to a W30 3 99 beam 
as shown. Knowing that sall 5 22 ksi for both the beam and the 
plates, determine the required value of (a) the length of the 
plates, (b) the width of the plates.
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 5.148 For the tapered beam shown, determine (a) the transverse 
section in which the maximum normal stress occurs, (b) the 
largest distributed load w that can be applied, knowing that 
sall 5 140 MPa.

 5.149 For the tapered beam shown, knowing that w 5 160 kN/m, deter-
mine (a) the transverse section in which the maximum normal 
stress occurs, (b) the corresponding value of the normal stress.

 5.150 For the tapered beam shown, determine (a) the transverse sec-
tion in which the maximum normal stress occurs, (b) the largest 
distributed load w that can be applied, knowing that sall 5 24 ksi.

C

x

0.6 m

120 mm
A B

hh

0.6 m

300 mm

w 20 mm

Fig. P5.148 and P5.149

 5.151 For the tapered beam shown, determine (a) the transverse sec-
tion in which the maximum normal stress occurs, (b) the largest 
concentrated load P that can be applied, knowing that sall 5 24 ksi.

A B

x

30 in.

4 in. hh

30 in.

in.3
4

8 in.

C

w

Fig. P5.150

x

30 in.

4 in.
A BC

hh

30 in.

P

8 in.

in.3
4

Fig. P5.151
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Review and Summary
Design of Prismatic Beams
This chapter was devoted to the analysis and design of beams under trans-
verse loadings consisting of concentrated or distributed loads. The beams 
are classified according to the way they are supported (Fig. 5.20). Only 
statically determinate beams were considered, where all support reactions 
can be determined by statics.

L

(a) Simply supported beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L2L1

(d) Continuous beam

L

(b) Overhanging beam

L

Beam fixed at one end
and simply supported

at the other end

(e) 

L

(c) Cantilever beam

L

( f ) Fixed beam

Fig. 5.20 Common beam support configurations.

Normal Stresses Due to Bending
While transverse loadings cause both bending and shear in a beam, the 
normal stresses caused by bending are the dominant criterion in the 
design of a beam for strength [Sec. 5.1]. Therefore, this chapter dealt only 
with the determination of the normal stresses in a beam, the effect of 
shearing stresses being examined in the next one.
 The flexure formula for the determination of the maximum value sm

of the normal stress in a given section of the beam is

sm 5
0M 0 c

I
 (5.1)

where I is the moment of inertia of the cross section with respect to a 
centroidal axis perpendicular to the plane of the bending couple M and c
is the maximum distance from the neutral surface (Fig. 5.21). Introducing 
the elastic section modulus S 5 Iyc of the beam, the maximum value sm

of the normal stress in the section can be expressed also as

sm 5
0M 0
S

 (5.3)

Shear and Bending-Moment Diagrams
From Eq. (5.1) it is seen that the maximum normal stress occurs in the 
section where |M  | is largest and at the point farthest from the neutral 

y

c

m�

x�
Neutral surface

Fig. 5.21 Linear normal stress distribution for 
bending.
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axis. The determination of the maximum value of |M  | and of the critical 
section of the beam in which it occurs is simplified if shear diagrams and 
bending-moment diagrams are drawn. These diagrams represent the 
variation of the shear and of the bending moment along the beam and 
are obtained by determining the values of V and M at selected points of 
the beam. These values are found by passing a section through the point 
and drawing the free-body diagram of either of the portions of beam. To 
avoid any confusion regarding the sense of the shearing force V and of 
the bending couple M (which act in opposite sense on the two portions 
of the beam), we follow the sign convention adopted earlier, as illus-
trated in Fig. 5.22.

Relationships Between Load, Shear, and Bending Moment
The construction of the shear and bending-moment diagrams is facilitated 
if the following relations are taken into account. Denoting by w the distrib-
uted load per unit length (assumed positive if directed downward)

dV
dx

5 2w (5.5)

dM
dx

5 V  (5.7)

or in integrated form,

 VD 2 VC 5 21area under load curve between C and D 2 (5.6b)

 MD 2 MC 5 area under shear curve between C  and D  (5.8b)

Equation (5.6b) makes it possible to draw the shear diagram of a beam 
from the curve representing the distributed load on that beam and V at 
one end of the beam. Similarly, Eq. (5.8b) makes it possible to draw the 
bending-moment diagram from the shear diagram and M at one end of 
the beam. However, concentrated loads introduce discontinuities in the 
shear diagram and concentrated couples in the bending-moment dia-
gram, none of which is accounted for in these equations. The points of the 
beam where the bending moment is maximum or minimum are also the 
points where the shear is zero (Eq. 5.7).

Design of Prismatic Beams
Having determined sall for the material used and assuming that the design 
of the beam is controlled by the maximum normal stress in the beam, the 
minimum allowable value of the section modulus is

 Smin 5
ZM Zmax

sall
 (5.9)

 For a timber beam of rectangular cross section, S 5
1
6 bh2, where b

is the width of the beam and h its depth. The dimensions of the section, 
therefore, must be selected so that 1

6 bh2 $ Smin.
 For a rolled-steel beam, consult the appropriate table in Appendix 
C. Of the available beam sections, consider only those with a section mod-
ulus S $ Smin. From this group we normally select the section with the 
smallest weight per unit length.

V

M

M'

V'

(a)  Internal forces
(positive shear and positive bending moment)

Fig. 5.22 Positive sign convention for internal 
shear and bending moment.
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Singularity Functions
An alternative method to determine the maximum values of the shear and 
bending moment is based on the singularity functions Hx 2 aIn. For n $ 0, 

Hx 2 aIn 5 e 1x 2 a2n when x $ a

0 when x , a
 (5.14)

Step Function
Whenever the quantity between brackets is positive or zero, the brackets 
should be replaced by ordinary parentheses, and whenever that quantity 
is negative, the bracket itself is equal to zero. Also, singularity functions 
can be integrated and differentiated as ordinary binomials. The singularity 
function corresponding to n 5 0 is discontinuous at x 5 a (Fig. 5.23). This 
function is called the step function.

 Hx 2 aI0 5 e 1 when x $ a

0 when x , a
 (5.15)

0
(a) n � 0

� x � a �0

a x

Fig. 5.23 Singular step 
function.

B
C

A

P

L1
2 L1

2

Fig. 5.24 Simply supported beam with 
a concentrated load at midpoint C.

Using Singularity Functions to Express Shear and Bending 
Moment
The use of singularity functions makes it possible to represent the shear 
or the bending moment in a beam by a single expression. This is valid at 
any point of the beam. For example, the contribution to the shear of the 
concentrated load P applied at the midpoint C of a simply supported 
beam (Fig. 5.24) can be represented by 2P Hx 2

1
2 LI0, since this expression 

is equal to zero to the left of C and to 2P to the right of C. Adding the 
reaction RA 5

1
2 P at A, the shear at any point is

V1x2 5
1
2 P 2 P Hx 2

1
2 LI0

The bending moment, obtained by integrating, is

M1x2 5
1
2 Px 2 P Hx 2

1
2 LI1
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Equivalent Open-Ended Loadings
The singularity functions representing the load, shear, and bending 
moment corresponding to various basic loadings were given in Fig. 5.16. 
A distributed load that does not extend to the right end of the beam or is 
discontinuous should be replaced by an equivalent combination of open-
ended loadings. For instance, a uniformly distributed load extending from 
x 5 a to x 5 b (Fig. 5.25) is

w1x2 5 w0Hx 2 aI0 2 w0Hx 2 bI0

The contribution of this load to the shear and bending moment is obtained 
through two successive integrations. Care should be used to include for 
V(x) the contribution of concentrated loads and reactions, and for M(x) 
the contribution of concentrated couples.

xO

w w0

2 w0b

L

a

xO

w w0

b

L

a

Fig. 5.25 Use of open-ended loadings to create a closed-ended loading.

Nonprismatic Beams
Nonprismatic beams are beams of variable cross section. By selecting the 
shape and size of the cross section so that its elastic section modulus 
S 5 Iyc varies along the beam in the same way as the bending moment 
M, beams can be designed where sm at each section is equal to sall. These 
are called beams of constant strength, and they provide a more effective 
use of the material than prismatic beams. Their section modulus at any 
section along the beam is

 S 5
M
sall

 (5.18)
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Review Problems
 5.152 Draw the shear and bending-moment diagrams for the beam and 

loading shown, and determine the maximum absolute value 
(a) of the shear, (b) of the bending moment.

 5.153 Draw the shear and bending-moment diagrams for the beam and 
loading shown and determine the maximum normal stress due 
to bending.

 5.154 Determine (a) the distance a for which the absolute value of the 
bending moment in the beam is as small as possible, (b) the cor-
responding maximum normal stress due to bending. (See hint of 
Prob. 5.27.)

250 mm 250 mm 250 mm

50 mm 50 mm

75 N

A
C D

B

75 N
Fig. P5.152

25 kN/m
40 kN ? m

BA
C

1.6 m 3.2 m

W200 � 31.3

Fig. P5.153

BA

a 1.5 ft 1.2 ft 0.9 ft

C D E

1.2 kips
1.2 kips0.8 kips

S3 � 5.7

Fig. P5.154

x

w

w0

– kw0
L

Fig. P5.155

 5.155 For the beam and loading shown, determine the equations of the 
shear and bending-moment curves and the maximum absolute 
value of the bending moment in the beam, knowing that 
(a) k 5 1, (b) k 5 0.5.

 5.156 Draw the shear and bending-moment diagrams for the beam and 
loading shown and determine the maximum normal stress due 
to bending.

BDC

250 kN 150 kN

A

2 m 2 m 2 m

W410 � 114

Fig. P5.156

bee98233_ch05_344-415.indd   411bee98233_ch05_344-415.indd   411 11/15/13   12:01 PM11/15/13   12:01 PM



412

 5.157 Beam AB, of length L and square cross section of side a, is sup-
ported by a pivot at C and loaded as shown. (a) Check that the 
beam is in equilibrium. (b) Show that the maximum normal 
stress due to bending occurs at C and is equal to w0L2/(1.5a)3.

CB
A D h

3 ft 6 ft

5 in.
1.5 kips/ft

3 ft

Fig. P5.158

 5.158 For the beam and loading shown, design the cross section of the 
beam, knowing that the grade of timber used has an allowable 
normal stress of 1750 psi.

5 ft
12 ft

5 ft

62 kips

62 kips

B C 
A D

Fig. P5.159

8 kips 32 kips 32 kips

B D
A

C
E

b

4.5 ft
14 ft 14 ft

9.5 ft

in.

1 in.

1 in.

19 in.3
4

Fig. P5.160

 5.159 Knowing that the allowable normal stress for the steel used is 
24 ksi, select the most economical wide-flange beam to support 
the loading shown.

 5.160 Three steel plates are welded together to form the beam shown. 
Knowing that the allowable normal stress for the steel used is 
22 ksi, determine the minimum flange width b that can be used.

B

a

aA

2L
3

C

w0

L
3

Fig. P5.157
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 5.161 (a) Using singularity functions, find the magnitude and location of 
the maximum bending moment for the beam and loading shown. 
(b) Determine the maximum normal stress due to bending.

B

C
A D

1 m 1 m
4 m

80 kN/m
10 kN

W530 � 150

Fig. P5.161

B
h h0

L/2 L/2

x

A C

M0

Fig. P5.162

x

L h

A

B

b0

b

P

Fig. P5.163

 5.162 The beam AB, consisting of an aluminum plate of uniform thick-
ness b and length L, is to support the load shown. (a) Knowing 
that the beam is to be of constant strength, express h in terms of 
x, L, and h0 for portion AC of the beam. (b) Determine the maxi-
mum allowable load if L 5 800 mm, h0 5 200 mm, b 5 25 mm, 
and sall 5 72 MPa.

 5.163 A cantilever beam AB consisting of a steel plate of uniform 
depth h and variable width b is to support the concentrated load 
P at point A. (a) Knowing that the beam is to be of constant 
strength, express b in terms of x, L, and b0. (b) Determine the 
smallest allowable value of h if L 5 300 mm, b0 5 375 mm, 
P 5 14.4 kN, and sall 5 160 MPa.
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The following problems are designed to be solved with a computer.

 5.C1 Several concentrated loads Pi , (i 5 1, 2, . . . , n) can be applied to 
a beam as shown. Write a computer program that can be used to calculate 
the shear, bending moment, and normal stress at any point of the beam 
for a given loading of the beam and a given value of its section modulus. 
Use this program to solve Probs. 5.18, 5.21, and 5.25. (Hint: Maximum 
values will occur at a support or under a load.)

 5.C2 A timber beam is to be designed to support a distributed load and up 
to two concentrated loads as shown. One of the dimensions of its uniform 
rectangular cross section has been specified and the other is to be deter-
mined so that the maximum normal stress in the beam will not exceed a 
given allowable value sall. Write a computer program that can be used to 
calculate at given intervals DL the shear, the bending moment, and the 
smallest acceptable value of the unknown dimension. Apply this program to 
solve the following problems, using the intervals DL indicated: (a) Prob. 5.65 
(DL 5 0.1 m), (b) Prob. 5.69 (DL 5 0.3 m), and (c) Prob. 5.70 (DL 5 0.2 m).

Computer Problems

BA

x1

x2

xn
xi

a bL

P1 P2 Pi Pn

Fig. P5.C1

B

t

h
A

x1

x3

x2

x4

a bL

P1

P2
w

Fig. P5.C2

 5.C3 Two cover plates, each of thickness t, are to be welded to a wide-
flange beam of length L that is to support a uniformly distributed load w. 
Denoting by sall the allowable normal stress in the beam and in the plates, 
by d the depth of the beam, and by Ib and Sb, respectively, the moment of 
inertia and the section modulus of the cross section of the unreinforced 
beam about a horizontal centroidal axis, write a computer program that 
can be used to calculate the required value of (a) the length a of the plates, 
(b) the width b of the plates. Use this program to solve Prob. 5.145.

bt

ED
a

L

w

BA

Fig. P5.C3
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 5.C4 Two 25-kip loads are maintained 6 ft apart as they are moved slowly 
across the 18-ft beam AB. Write a computer program and use it to calcu-
late the bending moment under each load and at the midpoint C of the 
beam for values of x from 0 to 24 ft at intervals Dx 5 1.5 ft.

BC

x

A

18 ft

6 ft

9 ft

25 kips25 kips

Fig. P5.C4

B

w

A

a

b

L

P

Fig. P5.C5

B

w

A

b

a

L

MA MB

Fig. P5.C6

 5.C5 Write a computer program that can be used to plot the shear 
and bending-moment diagrams for the beam and loading shown. Apply 
this  program with a plotting interval DL 5 0.2 ft to the beam and loading 
of (a) Prob. 5.72, (b) Prob. 5.115.

 5.C6 Write a computer program that can be used to plot the shear and 
bending-moment diagrams for the beam and loading shown. Apply this 
program with a plotting interval DL 5 0.025 m to the beam and loading 
of Prob. 5.112.
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6
Shearing Stresses 

in Beams and 
Thin-Walled 

Members
A reinforced concrete deck will be attached to each of the 
thin-walled steel sections to form a composite box girder 
bridge. In this chapter, shearing stresses will be determined 
in various types of beams and girders.

Objectives
In this chapter, you will:

• Demonstrate how transverse loads on a beam generate shearing 
stresses.

• Determine the stresses and shear fl ow on a horizontal section 
in a beam.

• Determine the shearing stresses in a thin-walled beam.

• Describe the plastic deformations due to shear.

• Recognize cases of symmetric and unsymmetric loading.

• Use shear fl ow to determine the location of the shear center in 
unsymmetric beams.
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418 Shearing Stresses in Beams and Thin-Walled Members

Introduction
Shearing stresses are important, particularly in the design of short, stubby 
beams. Their analysis is the subject of the first part of this chapter.
 Figure 6.1 graphically expresses the elementary normal and shear-
ing forces exerted on a transverse section of a prismatic beam with a 
vertical plane of symmetry that are equivalent to the bending couple M
and the shearing force V. Six equations can be written to express this. 
Three of these equations involve only the normal forces sx dA and have 
been discussed in Sec. 4.2. These are Eqs. (4.1), (4.2), and (4.3), which 
express that the sum of the normal forces is zero and that the sums of 
their moments about the y and z axes are equal to zero and M, respec-
tively. Three more equations involving the shearing forces txy dA and 
txz dA now can be written. One equation expresses that the sum of the 
moments of the shearing forces about the x axis is zero and can be 
dismissed as trivial in view of the symmetry of the beam with respect 
to the xy plane. The other two involve the y and z components of the 
elementary forces and are

 y components:     etxy  dA 5 2V  (6.1)

 z components:     etxz  dA 5 0  (6.2)

Equation (6.1) shows that vertical shearing stresses must exist in a trans-
verse section of a beam under transverse loading. Equation (6.2) indicates 
that the average lateral shearing stress in any section is zero. However, this 
does not mean that the shearing stress txz is zero everywhere.
 Now consider a small cubic element located in the vertical plane of 
symmetry of the beam (where txz must be zero) and examine the stresses 
exerted on its faces (Fig. 6.2). A normal stress sx and a shearing stress txy 

�xydA

�xzdA �xdA

x

z

y

x

z

y

M

V=

Fig. 6.1 All the stresses on elemental areas (left) sum to give the resultant 
shear V and bending moment M.

�yx

�xy

�x

Fig. 6.2 Stress element 
from section of a transversely 
loaded beam.
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 6.1 HORIZONTAL SHEARING 
STRESS IN BEAMS

6.1A Shear on the Horizontal Face of 
a Beam Element

6.1B Shearing Stresses in a Beam
6.1C Shearing Stresses txy in Common 

Beam Types
 *6.2 DISTRIBUTION OF 

STRESSES IN A NARROW 
RECTANGULAR BEAM

 6.3 LONGITUDINAL SHEAR 
ON A BEAM ELEMENT 
OF ARBITRARY SHAPE

 6.4 SHEARING STRESSES IN 
THIN-WALLED MEMBERS

 *6.5 PLASTIC DEFORMATIONS

 *6.6 UNSYMMETRIC LOADING 
OF THIN-WALLED 
MEMBERS AND SHEAR 
CENTER
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Introduction 419

are exerted on each of the two faces perpendicular to the x axis. But we 
know from Chapter 1 that when shearing stresses txy are exerted on the 
vertical faces of an element, equal stresses must be exerted on the hori-
zontal faces of the same element. Thus, the longitudinal shearing stresses 
must exist in any member subjected to a transverse loading. This is veri-
fied by considering a cantilever beam made of separate planks clamped 
together at the fixed end (Fig. 6.3a). When a transverse load P is applied 
to the free end of this composite beam, the planks slide with respect to 
each other (Fig. 6.3b). In contrast, if a couple M is applied to the free end 
of the same composite beam (Fig. 6.3c), the various planks bend into cir-
cular concentric arcs and do not slide with respect to each other. This 
verifies the fact that shear does not occur in a beam subjected to pure 
bending (see Sec. 4.3).
 While sliding does not actually take place when a transverse load P is 
applied to a beam made of a homogeneous and cohesive material such as 
steel, the tendency to slide exists, showing that stresses occur on horizontal 
longitudinal planes as well as on vertical transverse planes. In timber beams, 
whose resistance to shear is weaker between fibers, failure due to shear 
occurs along a longitudinal plane rather than a transverse plane (Photo 6.1).
 In Sec. 6.1A, a beam element of length Dx is considered that is 
bounded by one horizontal and two transverse planes. The shearing force 
DH exerted on its horizontal face will be determined, as well as the shear 
per unit length q, which is known as shear flow. An equation for the shear-
ing stress in a beam with a vertical plane of symmetry is obtained in Sec. 
6.1B and used in Sec. 6.1C to determine the shearing stresses in common 
types of beams. The distribution of stresses in a narrow rectangular beam 
is discussed further in Sec. 6.2.
 The method in Sec. 6.1 is extended in Sec. 6.3 to cover the case of a 
beam element bounded by two transverse planes and a curved surface. 
This allows us to determine the shearing stresses at any point of a sym-
metric thin-walled member, such as the flanges of wide-flange beams and 
box beams in Sec. 6.4. The effect of plastic deformations on the magnitude 
and distribution of shearing stresses is discussed in Sec. 6.5.
 In the Sec. 6.6, the unsymmetric loading of thin-walled members is 
considered and the concept of a shear center is introduced to determine 
the distribution of shearing stresses in such members.

(a)

(b)

P

M

(c)

Fig. 6.3 (a) Beam made of planks to 
illustrate the role of shearing stresses. 
(b) Beam planks slide relative to each 
other when transversely loaded. 
(c) Bending moment causes deflection 
without sliding.

Photo 6.1 Longitudinal shear failure in timber beam 
loaded in the laboratory.
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420 Shearing Stresses in Beams and Thin-Walled Members

6.1  HORIZONTAL SHEARING 
STRESS IN BEAMS

6.1A  Shear on the Horizontal Face 
of a Beam Element

Consider a prismatic beam AB with a vertical plane of symmetry that sup-
ports various concentrated and distributed loads (Fig. 6.4). At a distance x
from end A, we detach from the beam an element CDD9C9 with length of 
Dx extending across the width of the beam from the upper surface to a 

B

P1 P2 w

A

x

C

y

z

Fig. 6.4 Transversely loaded beam with vertical 
plane of symmetry.

y1 y1

Dx
C

c

x

D

C′
N.A.

D′

y

z

Fig. 6.5 Short segment of beam with stress element CDD9C9 defined.

horizontal plane located at a distance y1 from the neutral axis (Fig. 6.5). The 
forces exerted on this element consist of vertical shearing forces V9C and V9D , 
a horizontal shearing force DH exerted on the lower face of the element, 
elementary horizontal normal forces sC dA and sD dA, and possibly a load 
w Dx (Fig. 6.6). The equilibrium equation for horizontal forces is

y
1 oFx 5 0: ¢H 1 #

A

1sC 2 sD2  dA 5 0

V�C V�D

DH

x

C D
s  dADs  dAC

w

Fig. 6.6 Forces exerted on 
element CCD‘C’.

where the integral extends over the shaded area A of the section located 
above the line y 5 y1. Solving this equation for DH and using Eq. (5.2), 
s 5 My/I, to express the normal stresses in terms of the bending moments 
at C and D, provides

 ¢H 5
MD 2 MC

I #
A

y dA (6.3)
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6.1 Horizontal Shearing Stress in Beams 421

The integral in Eq. (6.3) represents the first moment with respect to the 
neutral axis of the portion A of the cross section of the beam that is 
located above the line y 5 y1 and will be denoted by Q. On the other 
hand, recalling Eq. (5.7), the increment MD 2 MC of the bending 
moment is

MD 2 MC 5 ¢M 5 1dMydx2 ¢x 5 V ¢x

Substituting into Eq. (6.3), the horizontal shear exerted on the beam 
element is

 ¢H 5
VQ

I
 ¢x (6.4)

 The same result is obtained if a free body the lower element 
C9D9D0C 0 is used instead of the upper element CDD9C9 (Fig. 6.7), since 
the shearing forces DH and DH9 exerted by the two elements on each 
other are equal and opposite. This leads us to observe that the first 
moment Q of the portion A9 of the cross section located below the line 
y 5 y1 (Fig. 6.7) is equal in magnitude and opposite in sign to the first 
moment of the portion A located above that line (Fig. 6.5). Indeed, the 
sum of these two moments is equal to the moment of the area of the 
entire cross section with respect to its centroidal axis and, thus must be 
zero. This property is sometimes used to simplify the computation of Q. 
Also note that Q is maximum for y1 5 0, since the elements of the cross 
section located above the neutral axis contribute positively to the inte-
gral in Eq. (6.3) that defines Q, while the elements located below that 
axis contribute negatively.

y1

Dx

c

x

C′ D′

C″ D″

y

z N.A.

′

y1

Fig. 6.7 Short segment of beam with stress element C9D9D0C0 
defined.

 The horizontal shear per unit length, which will be denoted by q, is 
obtained by dividing both members of Eq. (6.4) by Dx :

 q 5
¢H

¢x
5

VQ

I
 (6.5)

Recall that Q is the first moment with respect to the neutral axis of the 
portion of the cross section located either above or below the point at 
which q is being computed and that I is the centroidal moment of inertia 
of the entire cross-sectional area. The horizontal shear per unit length q is 
also called the shear flow and will be discussed in Sec. 6.4.
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422 Shearing Stresses in Beams and Thin-Walled Members

6.1B  Shearing Stresses in a Beam
Consider again a beam with a vertical plane of symmetry that is subjected 
to various concentrated or distributed loads applied in that plane. If, 
through two vertical cuts and one horizontal cut, an element of length Dx
is detached from the beam (Fig. 6.9), the magnitude DH of the shearing 
force exerted on the horizontal face of the element can be obtained from 
Eq. (6.4). The average shearing stress tave on that face of the element is 
obtained by dividing DH by the area DA of the face. Observing that 
DA 5 t Dx, where t is the width of the element at the cut, we write

tave 5
¢H
¢A

5
VQ

I
 
¢x

t ¢x

Concept Application 6.1
A beam is made of three planks, 20 by 100 mm in cross section, and 
nailed together (Fig. 6.8a). Knowing that the spacing between nails is 
25 mm and the vertical shear in the beam is V 5 500 N, determine the 
shearing force in each nail.
 Determine the horizontal force per unit length q exerted on the 
lower face of the upper plank. Use Eq. (6.5), where Q represents the 
first moment with respect to the neutral axis of the shaded area A 
shown in Fig. 6.8b, and I is the moment of inertia about the same axis 
of the entire cross-sectional area (Fig. 6.8c). Recalling that the first 
moment of an area with respect to a given axis is equal to the product 
of the area and of the distance from its centroid to the axis,†

 Q 5 A y 5 10.020 m 3 0.100 m2 10.060 m2
 5 120 3 1026 m3

 I 5
1

12 10.020 m2 10.100 m23
 12 3 1

12 10.100 m2 10.020 m23
 1 10.020 m 3 0.100 m2 10.060 m22 4
 5 1.667 3 1026 1 210.0667 1 7.221026

 5 16.20 3 1026 m4

Substituting into Eq. (6.5), 

q 5
VQ

I
5
1500 N2 1120 3 1026 m32

16.20 3 1026 m4 5 3704 N/m

Since the spacing between the nails is 25 mm, the shearing force in 
each nail is

F 5 10.025 m2q 5 10.025 m2 13704 N/m2 5 92.6 N

†See Appendix A.

100 mm

20 mm

100 mm
20 mm

20 mm

(a)

0.100 m

0.020 m

N.A.

y 5 0.060 m

C'

0.100 m

N.A.
0.100 m

0.020 m

(b) (c)

A

Fig. 6.8 (a) Composite beam made of three 
boards nailed together. (b) Cross section for 
computing Q. (c) Cross section for computing 
moment of inertia.

t

C�

�H'
�A

�x

D''2
C''1

C''2

D''1

D'1
D'

D'2

Fig. 6.9 Stress element C9D9D0C0 showing the 
shear force on a horizontal plane.

bee98233_ch06_416-475.indd   422bee98233_ch06_416-475.indd   422 11/15/13   5:18 PM11/15/13   5:18 PM



6.1 Horizontal Shearing Stress in Beams 423

or

 tave 5
VQ

It
 (6.6)

Note that since the shearing stresses txy and tyx exerted on a transverse 
and a horizontal plane through D9 are equal, the expression also repre-
sents the average value of txy along the line D91 D92 (Fig. 6.10).
 Observe that tyx 5 0 on the upper and lower faces of the beam, since 
no forces are exerted on these faces. It follows that txy 5 0 along the upper 
and lower edges of the transverse section (Fig. 6.11). Also note that while 
Q is maximum for y 5 0 (see Sec. 6.1A), tave may not be maximum along 
the neutral axis, since tave depends upon the width t of the section as well 
as upon Q.

�yx

�ave

�ave

�xy

D'

D'

D''2
C''1

D''1

1

2D'

Fig. 6.10 Stress element C9D9D0C0 showing the 
shearing stress distribution along D91 D92.

�yx� 0

�yx� 0

�xy� 0

�xy� 0

Fig. 6.11 Beam cross section 
showing that the shearing stress is zero 
at the top and bottom of the beam.

 As long as the width of the beam cross section remains small com-
pared to its depth, the shearing stress varies only slightly along the line 
D91 D92 (Fig. 6.10), and Eq. (6.6) can be used to compute txy at any point 
along D91 D92. Actually, txy is larger at points D91 and D92 than at D9, but the 
theory of elasticity shows† that, for a beam of rectangular section of width 
b and depth h, and as long as b # hy4, the value of the shearing stress at 
points C1 and C2 (Fig. 6.12) does not exceed by more than 0.8% the average 
value of the stress computed along the neutral axis.
 On the other hand, for large values of byh, tmax of the stress at C1 
and C2 may be many times larger then the average value tave computed 
along the neutral axis, as shown in the following table.

 b/h 0.25 0.5 1 2 4 6 10 20 50

tmaxytave 1.008 1.033 1.126 1.396 1.988 2.582 3.770 6.740 15.65
tminytave 0.996 0.983 0.940 0.856 0.805 0.800 0.800 0.800 0.800

†See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 
3d ed., 1970, sec. 124.

h

C1

C2

b

1
2

h1
2 �max

N.A.

Fig. 6.12 Shearing stress distribution along 
neutral axis of rectangular beam cross section.
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424 Shearing Stresses in Beams and Thin-Walled Members

6.1C  Shearing Stresses txy 
In Common Beam Types

In the preceding section for a narrow rectangular beam (i.e., a beam of rect-
angular section of width b and depth h with b #

1
4h), the variation of the 

shearing stress txy across the width of the beam is less than 0.8% of tave. 
Therefore, Eq. (6.6) is used in practical applications to determine the shear-
ing stress at any point of the cross section of a narrow rectangular beam, and

 txy 5
VQ

It
 (6.7)

where t is equal to the width b of the beam and Q is the first moment with 
respect to the neutral axis of the shaded area A (Fig. 6.13).
 Observing that the distance from the neutral axis to the centroid C9 
of A is y 5

1
2 1c 1 y2 and recalling that Q 5 A y, 

 Q 5 A y 5 b1c 2 y2  12 1c 1 y2 5
1
2 b1c2 2 y22 (6.8)

Recalling that I 5 bh3y12 5
2
3 bc3, 

txy 5
VQ

Ib
5

3

4
 
c2 2 y2

bc3  V

or noting that the cross-sectional area of the beam is A 5 2bc,

 txy 5
3

2
 
V
A

 a1 2
y2

c2b (6.9)

 Equation (6.9) shows that the distribution of shearing stresses in a 
transverse section of a rectangular beam is parabolic (Fig. 6.14). As observed 
in the preceding section, the shearing stresses are zero at the top and bottom 
of the cross section (y 5 6c). Making y 5 0 in Eq. (6.9), the value of the 
maximum shearing stress in a given section of a narrow rectangular beam is

 tmax 5
3

2
 

V
A

 (6.10)

This relationship shows that the maximum value of the shearing stress in 
a beam of rectangular cross section is 50% larger than the value V/A 
obtained by wrongly assuming a uniform stress distribution across the 
entire cross section.
 In an American standard beam (S-beam) or a wide-flange beam 
(W-beam), Eq. (6.6) can be used to determine the average value of the 
shearing stress txy over a section aa9 or bb9 of the transverse cross section 
of the beam (Figs. 6.15a and b). So

 tave 5
VQ

It
 (6.6)

where V is the vertical shear, t is the width of the section at the elevation 
considered, Q is the first moment of the shaded area with respect to the 
neutral axis cc9, and I is the moment of inertia of the entire cross-sectional 
area about cc9. Plotting tave against the vertical distance y provides the 
curve shown in Fig. 6.15c. Note the  discontinuities existing in this curve, 
which reflect the difference between the values of t corresponding respec-
tively to the flanges ABGD and A9B9G9D9 and to the web EFF9E9.

hc �
C'

1
2

h

yy

y

b

z

c � 1
2

A'

Fig. 6.13 Geometric terms for rectangular section 
used to calculate shearing stress.

�
�

max

y

O

�c

�c

Fig. 6.14 Shearing stress distribution on 
transverse section of rectangular beam.

bee98233_ch06_416-475.indd   424bee98233_ch06_416-475.indd   424 11/15/13   5:18 PM11/15/13   5:18 PM



6.1 Horizontal Shearing Stress in Beams 425

 In the web, the shearing stress txy varies only very slightly across the 
section bb9 and is assumed to be equal to its average value tave. This is not 
true, however, for the flanges. For example, considering the horizontal line 
DEFG, note that txy is zero between D and E and between F and G, since 
these two segments are part of the free surface of the beam. However, the 
value of txy between E and F is non-zero and can be obtained by making 
t 5 EF in Eq. (6.6). In practice, one usually assumes that the entire shear 
load is carried by the web and that a good approximation of the maximum 
value of the shearing stress in the cross section can be obtained by divid-
ing V by the cross-sectional area of the web.

 tmax 5
V

Aweb
 (6.11)

 However, while the vertical component txy of the shearing stress in 
the flanges can be neglected, its horizontal component txz has a significant 
value that will be determined in Sec. 6.4.

D

C

E F G

A
a

t

a'

c c' c'

b'

B

D' E' F' G'

A' B'

(a)

b

c
y

y

t

E F

E' F'

(b) (c)

ave�

Fig. 6.15 Wide-flange beam. (a) Area for finding first moment of area in 
flange. (b) Area for finding first moment of area in web. (c) Shearing stress 
distribution.

Concept Application 6.2
Knowing that the allowable shearing stress for the timber beam of 
Sample Prob. 5.7 is tall 5 0.250 ksi, check that the design is acceptable 
from the point of view of the shearing stresses.
 Recall from the shear diagram of Sample Prob. 5.7 that 
Vmax 5 4.50 kips. The actual width of the beam was given as b 5 3.5 in., 
and the value obtained for its depth was h 5 14.55 in. Using Eq. (6.10) 
for the maximum shearing stress in a narrow rectangular beam,

tmax 5
3

2
 
V
A

5
3

2
 

V
bh

5
314.50 kips2

213.5 in.2 114.55 in.2 5 0.1325 ksi

Since tmax , tall, the design obtained in Sample Prob. 5.7 is 
acceptable.

B
A

V

A

Ax
Ay

B

C

8 ft 4 ft

3.2 kips
4.5 kips

(�18)

(�18)

4.50
kips

�3.85 kips

�0.65
kips

CB x

Fig. 5.19 (repeated)
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426 Shearing Stresses in Beams and Thin-Walled Members

*6.2  DISTRIBUTION OF 
STRESSES IN A NARROW 
RECTANGULAR BEAM

Consider a narrow cantilever beam of rectangular cross section with a 
width of b and depth of h subjected to a load P at its free end (Fig. 6.16). 
Since the shear V in the beam is constant and equal in magnitude to the 
load P, Eq. (6.9) yields

 txy 5
3

2
 
P

A
 a1 2

y2

c2b (6.12)

Note from Eq. (6.12) that the shearing stresses depend upon the distance 
y from the neutral surface. They are independent of the distance from the 
point of application of the load. All elements located at the same distance 
from the neutral surface undergo the same shear deformation (Fig. 6.17). 
While plane sections do not remain plane, the distance between two cor-
responding points D and D9 located in different sections remains the 
same. This indicates that the normal strains Px , and the normal stresses 
sx , are unaffected by the shearing stresses. Thus the assumption made in 
Chap. 5 is justified for the loading condition of Fig. 6.16.
 We therefore conclude that this analysis of the stresses in a cantile-
ver beam of rectangular cross section subjected to a concentrated load P

Concept Applications 6.3
Knowing that the allowable shearing stress for the steel beam of 
Sample Prob. 5.8 is tall 5 90 MPa, check that the W360 3 32.9 shape 
obtained is acceptable from the point of view of the shearing stresses.
 Recall from the shear diagram of Sample Prob. 5.8 that the maxi-
mum absolute value of the shear in the beam is |V |max 5 58 kN. It may 
be assumed that the entire shear load is carried by the web and that 
the maximum value of the shearing stress in the beam can be obtained 
from Eq. (6.11). From Appendix C, for a W360 3 32.9 shape, the depth 
of the beam and the thickness of its web are d 5 348 mm and 
tw 5 5.84 mm. Thus,

Aweb 5 d tw 5 1348 mm2 15.84 mm2 5 2032 mm2

Substituting 0V 0max and Aweb into Eq. (6.11),

tmax 5
0V 0max

Aweb
5

58 kN

2032 mm2 5 28.5 MPa

Since tmax , tall, the design obtained in Sample Prob. 5.8 is 
acceptable.

Fig. 6.16 Cantilever beam with rectangular 
cross section.

L

b

h � 2c

P

D'D
P

Fig. 6.17 Deformation of segment 
of cantilever beam.

CB D

1.5 m

52 kN

x � 2.6 m

�58 kN

�8 kN

(67.6)

1.5 m
1 m 1 m

50 kN

D

A

V

A
E B C D

x

Ax
Ay

60 kN

Fig. 5.20 (repeated)
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*6.2 Distribution of Stresses in a Narrow Rectangular Beam 427

at its free end is valid. The correct values of the shearing stresses in the 
beam are given by Eq. (6.12), and the normal stresses at a distance x from 
the free end are obtained by making M 5 2Px in Eq. (5.2). So

 sx 5 1
Pxy

I
 (6.13)

 The validity of the this statement depends upon the end conditions. If 
Eq. (6.12) is to apply everywhere, the load P must be distributed parabolically 
over the free-end section. Also, the fixed-end support must allow the type of 
shear deformation indicated in Fig. 6.17. The resulting model (Fig. 6.18) is 
highly unlikely to be encountered in practice. However, it follows from 

Saint-Venant’s principle that for other modes of application of the load and 
for other types of fixed-end supports, Eqs. (6.12) and (6.13) provide the 
correct distribution of stresses, except close to either end of the beam.
 When a beam of rectangular cross section is subjected to several 
concentrated loads (Fig. 6.19), the principle of superposition can be used 
to determine the normal and shearing stresses in sections located between 
the points of application. However, since the loads P2 , P3 , etc. are applied 
on the surface of the beam and are not assumed to be distributed para-
bolically throughout the cross section, the results cease to be valid in the 
immediate vicinity of the points of application of the loads.
 When the beam is subjected to a distributed load (Fig. 6.20), both 
the shear and shearing stress at a given elevation y vary with the distance 
from the end of the beam. The shear deformation results show that the 
distance between two corresponding points of different cross sections, 
such as D1 and D91 , or D2 and D92 , depends upon their elevation. As a 
result, the assumption that plane sections remain plane, as in Eqs. (6.12) 
and (6.13), must be rejected for the loading condition of Fig. 6.20. However, 
the error involved is small for the values of the span-depth ratio encoun-
tered in practice.
 In portions of the beam located under a concentrated or distributed 
load, normal stresses sy are exerted on the horizontal faces of a cubic 
element of material in addition to the stresses txy shown in Fig. 6.2.

P

P

y

�xy

Fig. 6.18 Deformation of cantilever 
beam with concentrated load, with a 
parabolic shearing stress distribution.

P3P2P1

Fig. 6.19 Cantilever beam with multiple loads.

D'2

D'

D1

w

D2

1

Fig. 6.20 Deformation of cantilever beam 
with distributed load.
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428 Shearing Stresses in Beams and Thin-Walled Members

Sample Problem 6.1
Beam AB is made of three plates glued together and is subjected, in 
its plane of symmetry, to the loading shown. Knowing that the width 
of each glued joint is 20 mm, determine the average shearing stress in 
each joint at section n–n of the beam. The location of the centroid of 
the section is given in Fig. 1 and the centroidal moment of inertia is 
known to be I 5 8.63 3 1026 m4.

B

0.4 m 0.4 m
0.2 m

1.5 kN1.5 kN

A n

n

100 mm

68.3 mm

Joint a

Joint b

C

60 mm

20 mm

20 mm

20 mm

80 mm

Fig. 1 Cross section dimensions with 
location of centroid.

B

1.5 kN

M

V

A � 1.5 kN B � 1.5 kN A � 1.5 kN

1.5 kN

A n

n

Fig. 2 Free-body diagram of beam and segment of beam to left of 
section n–n.

STRATEGY: A free-body diagram is first used to determine the shear 
at the required section. Eq. (6.7) is then used to determine the average 
shearing stress in each joint.

MODELING:

Vertical Shear at Section n–n. As shown in the free-body diagram 
in Fig. 2, the beam and loading are both symmetric with respect to the 
center of the beam. Thus, we have A 5 B 5 1.5 kN c.

Drawing the free-body diagram of the portion of the beam to the left 
of section n–n (Fig. 2), we write

1xg  Fy 5 0:   1.5 kN 2 V 5 0    V 5 1.5 kN

(continued)
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*6.2 Distribution of Stresses in a Narrow Rectangular Beam 429

ANALYSIS:

Shearing Stress in Joint a. Using Fig. 3, pass the section a–a 
through the glued joint and separate the cross-sectional area into two 
parts. We choose to determine Q by computing the first moment with 
respect to the neutral axis of the area above section a–a.

Q 5 A y1 5 3 10.100 m2 10.020 m2 4 10.0417 m2 5 83.4 3 1026 m3

Recalling that the width of the glued joint is t 5 0.020 m, we use 
Eq. (6.7) to determine the average shearing stress in the joint.

tave 5
VQ

It
5
11500 N2 183.4 3 1026 m32
18.63 3 1026 m42 10.020 m2   tave 5 725 kPa  b

Shearing Stress in Joint b. Using Fig. 4, now pass section b–b and 
compute Q by using the area below the section.

Q 5 A y2 5 3 10.060 m2 10.020 m2 4 10.0583 m2 5 70.0 3 1026 m3

tave 5
VQ

It
5
11500 N2 170.0 3 1026 m32
18.63 3 1026 m42 10.020 m2  tave 5 608 kPa  b

Sample Problem 6.2
A timber beam AB of span 10 ft and nominal width 4 in. (actual 
width 5 3.5 in.) is to support the three concentrated loads shown. 
Knowing that for the grade of timber used sall 5 1800 psi and 
tall 5 120 psi, determine the minimum required depth d of the 
beam.

STRATEGY: A free-body diagram with the shear and bending-
moment diagrams is used to determine the maximum shear and 
bending moment. The resulting design must satisfy both allowable 
stresses. Start by assuming that one allowable stress criterion governs, 
and solve for the required depth d. Then use this depth with the other 
criterion to determine if it is also satisfied. If this stress is greater than 
the allowable, revise the design using the second criterion.

0.100 m

0.020 m

Neutral axis
y1 � 0.0417 m

x'
a a

Fig. 3 Using area above section a–a to 
find Q.

Neutral axis

0.020 m

0.060 m

y2 � 0.0583 m

x'
C

b b

Fig. 4 Using area below section b–b to 
find Q.

(continued)

2.5 kips 1 kip 2.5 kips

2 ft 2 ft

3.5 in.

3 ft

A B
d

10 ft

3 ft
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430 Shearing Stresses in Beams and Thin-Walled Members

MODELING: 

 Maximum Shear and Bending Moment. The free-body dia-
gram is used to determine the reactions and draw the shear and 
bending-moment diagrams in Fig. 1. We note that

 Mmax 5 7.5 kip?ft 5 90 kip?in.

 Vmax 5 3 kips

ANALYSIS: 

 Design Based on Allowable Normal Stress. We first express 
the elastic section modulus S in terms of the depth d (Fig. 2). We have

I 5
1

12
 bd 3    S 5

1
c

5
1

6
 bd 2 5

1

6
 13.52d 2 5 0.5833d 2

For Mmax 5 90 kip?in. and sall 5 1800 psi, we write

 S 5
Mmax

sall
     0.5833d 

2 5
90 3 103 lb?in.

1800 psi

 d2 5 85.7   d 5 9.26 in.

We have satisfied the requirement that sm # 1800 psi.

 Check Shearing Stress. For Vmax 5 3 kips and d 5 9.26 in., we find

tm 5
3

2
 
Vmax

A
5

3

2
 

3000 lb

13.5 in.2 19.26 in.2    tm 5 138.8 psi

Since tall 5 120 psi, the depth d 5 9.26 in. is not acceptable and we must 
redesign the beam on the basis of the requirement that tm # 120 psi.

 Design Based on Allowable Shearing Stress. Since we now 
know that the allowable shearing stress controls the design, we write

tm 5 tall 5
3

2
 
Vmax

A
    120 psi 5

3

2
 

3000 lb

13.5 in.2d
d 5 10.71 in.  b

The normal stress is, of course, less than sall 5 1800 psi, and the depth 
of 10.71 in. is fully acceptable.

REFLECT and THINK: Since timber is normally available in nominal 
depth increments of 2 in., a 4 3 12-in. standard size timber should be 
used. The actual cross section would then be 3.5 3 11.25 in. (Fig. 3).

A BC D E

2.5 kips 1 kip 2.5 kips

3 kips

3 kips

6 kip ? ft
6 kip ? ft

7.5 kip ? ft

3 kips

�3 kips

0.5 kip

�0.5 kip

2 ft

V

M

x

x

2 ft3 ft

(1.5)

(�1.5)

(6)

(�6)

3 ft

Fig. 1 Free-body diagram of beam with 
shear and bending-moment diagrams.

Fig. 2 Section of 
beam having depth d.

b � 3.5 in.

c � 
d

d
2

Fig. 3 Design cross 
section.

3.5 in.

11.25 in.

4 in. 3 12 in.
nominal size
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431

Problems
 6.1 Three full-size 50 3 100-mm boards are nailed together to form a 

beam that is subjected to a vertical shear of 1500 N. Knowing that the 
allowable shearing force in each nail is 400 N, determine the largest 
longitudinal spacing s that can be used between each pair of nails.

 6.2 For the built-up beam of Prob. 6.1, determine the allowable shear 
if the spacing between each pair of nails is s 5 45 mm.

 6.3 Three boards, each 2 in. thick, are nailed together to form a beam 
that is subjected to a vertical shear. Knowing that the allowable 
shearing force in each nail is 150 lb, determine the allowable 
shear if the spacing s between the nails is 3 in.

50 mm

s
s

50 mm

50 mm

100 mm

Fig. P6.1

 6.4 A square box beam is made of two 20 3 80-mm planks and two 
20 3 120-mm planks nailed together as shown. Knowing that the 
spacing between the nails is s 5 30 mm and that the vertical 
shear in the beam is V 5 1200 N, determine (a) the shearing force 
in each nail, (b) the maximum shearing stress in the beam.

 6.5 The American Standard rolled-steel beam shown has been rein-
forced by attaching to it two 16 3 200-mm plates, using 18-mm-
diameter bolts spaced longitudinally every 120 mm. Knowing 
that the average allowable shearing stress in the bolts is 90 MPa, 
determine the largest permissible vertical shearing force.

2 in.

2 in.

6 in.

s
s

s

2 in.

4 in.

Fig. P6.3

s
s

s

120 mm

80 mm

20 mm

20 mm

Fig. P6.4

16 � 200 mm

S310 � 52

Fig. P6.5
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432

6.6 The beam shown is fabricated by connecting two channel shapes 
and two plates, using bolts of  3

4-in. diameter spaced longitudi-
nally every 7.5 in. Determine the average shearing stress in the 
bolts caused by a shearing force of 25 kips parallel to the y axis.

C12 � 20.7

16 in. � in.

C
z

y
1
2

Fig. P6.6

 6.7 A column is fabricated by connecting the rolled-steel members 
shown by bolts of  3

4-in. diameter spaced longitudinally every 5 in. 
Determine the average shearing stress in the bolts caused by a 
shearing force of 30 kips parallel to the y axis.

S10 � 25.4

C8 � 13.7

Cz

y

Fig. P6.7

 6.8 The composite beam shown is fabricated by connecting two 
W6 3 20 rolled-steel members, using bolts of 5

8-in. diameter 
spaced longitudinally every 6 in. Knowing that the average allow-
able shearing stress in the bolts is 10.5 ksi, determine the largest 
allowable vertical shear in the beam.

Fig. P6.8

bee98233_ch06_416-475.indd   432bee98233_ch06_416-475.indd   432 11/15/13   5:18 PM11/15/13   5:18 PM



433

 6.9 through 6.12 For beam and loading shown, consider section n–n 
and determine (a) the largest shearing stress in that section, 
(b) the shearing stress at point a.

90

120

1515 151530

20

20

20

40

20

72 kN

n

n

Dimensions in mm

1.5 m

0.5 m

0.8 m

a

Fig. P6.9

1.5 m

100 mm

200 mm

40 mm

12 mm

12 mm
150 mm

0.3 m

10 kN
n

a

n

Fig. P6.10

3 in.

3 in.

3 in.

8 in.

25 in.

18 in.
a

n

n
t

t

t = 0.25 in.

t

25 kips

Fig. P6.11

8 in.

16 in. 12 in. 16 in.

4 in.

4 in.

n

10 kips 10 kips

n

a

in.1
2

in.1
2

Fig. P6.12
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 6.13 and 6.14 For a beam having the cross section shown, determine the 
largest allowable vertical shear if the shearing stress is not to 
exceed 60 MPa.

Dimensions in mm 40

40

40

10 10
30

Fig. P6.13

 6.15 For a timber beam having the cross section shown, determine the 
largest allowable vertical shear if the shearing stress is not to 
exceed 150 psi.

1.5 in.

2 in.

2 in.

1.5 in.

4 in.
w = 2.5 in.

Fig. P6.15

220 mm

12 mm

12 mm

252 mmW250 3 58

Fig. P6.16

6.16 Two steel plates of 12 3 220-mm rectangular cross section are 
welded to the W250 3 58 beam as shown. Determine t he largest 
allowable vertical shear if the shearing stress in the beam is not 
to exceed 90 MPa.

10

10 10
30

10

Dimensions in mm

30

30

40

Fig. P6.14
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 6.18 For the beam and loading shown, determine the minimum 
required width b, knowing that for the grade of timber used, 
sall 5 12 MPa and tall 5 825 kPa.

 6.17 Two W8 3 31 rolled sections may be welded at A and B in either 
of the two ways shown in order to form a composite beam. Know-
ing that for each weld the allowable shearing force is 3000 lb per 
inch of weld, determine for each arrangement the maximum 
allowable vertical shear in the composite beam.

A

(a) (b)

B A B

Fig. P6.17

2.4 kN 4.8 kN 7.2 kN

1 m 1 m 1 m 0.5 m

150 mmA E

b

B C D

Fig. P6.18

 6.19 A timber beam AB of length L and rectangular cross section car-
ries a single concentrated load P at its midpoint C. (a) Show that 
the ratio tm/sm of the maximum values of the shearing and nor-
mal stresses in the beam is equal to h/2L, where h and L are, 
respectively, the depth and the length of the beam. (b) Determine 
the depth h and the width b of the beam, knowing that L 5 2 m, 
P 5 40 kN, tm 5 960 kPa, and sm 5 12 MPa.

6.20 A timber beam AB of length L and rectangular cross section car-
ries a uniformly distributed load w and is supported as shown. 
(a) Show that the ratio tm/sm of the maximum values of the 
shearing and normal stresses in the beam is equal to 2h/L, where 
h and L are, respectively, the depth and the length of the beam. 
(b) Determine the depth h and the width b of the beam, knowing 
that L 5 5 m, w 5 8 kN/m, tm 5 1.08 MPa, and sm 5 12 MPa.

B

b

h
C

L/2 L/2
A

P

Fig. P6.19

B

b

hA

C D

w

L/2
L/4L/4

Fig. P6.20

bee98233_ch06_416-475.indd   435bee98233_ch06_416-475.indd   435 11/15/13   5:18 PM11/15/13   5:18 PM



436

 6.23 and 6.24 For the beam and loading shown, determine the largest 
shearing stress in section n–n.

 6.25 through 6.28 A beam having the cross section shown is subjected 
to a vertical shear V. Determine (a) the horizontal line along 
which the shearing stress is maximum, (b) the constant k in the 
following expression for the maximum shearing stress

tmax 5 k  

V

A

  where A is the cross-sectional area of the beam.

180 kN

500 mm 500 mm

100 mm

160 mm

30 mm 30 mm

30 mm

20 mm

20 mm

A B
b

a

n

n

Fig. P6.22 and P6.24

c

Fig. P6.25

rm

tm

Fig. P6.26

h

h

b

Fig. P6.27

b

h

Fig. P6.28

B b
a

A

10 in.
20 in. 20 in.

25 kips 25 kips

n
7.25 in.

in.

1.5 in.
1.5 in.

3
4

8 in.

in.3
4

in.3
4

n

Fig. P6.21 and P6.23

 6.21 and 6.22 For the beam and loading shown, consider section n–n
and determine the shearing stress at (a) point a, (b) point b.
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6.3 Longitudinal Shear on a Beam Element of Arbitrary Shape 437

6.3  LONGITUDINAL SHEAR ON 
A BEAM ELEMENT OF 
ARBITRARY SHAPE

Consider a box beam obtained by nailing together four planks, as shown 
in Fig. 6.21a. Sec. 6.1A showed how to determine the shear per unit 
length q on the horizontal surfaces along which the planks are joined. But 
could q be determined if the planks are joined along vertical surfaces, as 
shown in Fig. 6.21b? Section 6.2 showed the distribution of the vertical 
components txy of the stresses on a transverse section of a W- or S-beam. 
These stresses had a fairly constant value in the web of the beam and were 
negligible in its flanges. But what about the horizontal components txz of 
the stresses in the flanges? The procedure developed in Sec. 6.1A to deter-
mine the shear per unit length q applies to the cases just described.
 Consider the prismatic beam AB of Fig. 6.4, which has a vertical 
plane of symmetry and supports the loads shown. At a distance x from 
end A, detach an element CDD9C9 with a length of Dx. However, this ele-
ment now extends from two sides of the beam to an arbitrary curved sur-
face (Fig. 6.22). The forces exerted on the element include vertical shearing 

(a) (b)

Fig. 6.21 Box beam formed by nailing 
planks together.

�x
C

c

x

D

C' D'

y

N.A.
z

Fig. 6.22 Short segment of beam with element CDD9C9 of length Dx.

forces V9C and V9D , elementary horizontal normal forces sC dA and sD dA, 
possibly a load w Dx, and a longitudinal shearing force DH, which repre-
sent the resultant of the elementary longitudinal shearing forces exerted 
on the curved surface (Fig. 6.23). The equilibrium equation is

1ygFx 5 0: ¢H 1 #
A

 1sC 2 sD2 dA 5 0

where the integral is to be computed over the shaded area A of the section 
in Fig. 6.22. This equation is the same as the one in Sec. 6.1A, but the 
shaded area A now extends to the curved surface.
 The longitudinal shear exerted on the beam element is

¢H 5
VQ

I
 ¢x (6.4)

where I is the centroidal moment of inertia of the entire section, Q is the 
first moment of the shaded area A with respect to the neutral axis, and V
is the vertical shear in the section. Dividing both members of Eq. (6.4) by 
Dx, the horizontal shear per unit length or shear flow is

q 5
¢H
¢x

5
VQ

I
 (6.5)

B

P1 P2 w

A

x

C

y

z

Fig. 6.4 (repeated) Beam example.

V�C V�D

�H

x

C D
�  dAD�  dAC

w

Fig. 6.23 Forces exerted on 
element CDD9C9.
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438 Shearing Stresses in Beams and Thin-Walled Members

Concept Application 6.4
A square box beam is made of two 0.75 3 3-in. planks and two 
0.75 3 4.5-in. planks nailed together, as shown (Fig. 6.24a). Knowing 
that the spacing between nails is 1.75 in. and that the beam is sub-
jected to a vertical shear with a magnitude of V 5 600 lb, determine 
the shearing force in each nail.
 Isolate the upper plank and consider the total force per unit 
length q exerted on its two edges. Use Eq. (6.5), where Q represents 
the first moment with respect to the neutral axis of the shaded area A9 
shown in Fig. 6.24b and I is the moment of inertia about the same axis 
of the entire cross-sectional area of the box beam (Fig. 6.24c).

Q 5 A¿y 5 10.75 in.2 13 in.2 11.875 in.2 5 4.22 in3

Recalling that the moment of inertia of a square of side a about a cen-
troidal axis is I 5

1
12 a4,

I 5
1

12 14.5 in.24 2
1

12 13 in.24 5 27.42 in4

Substituting into Eq. (6.5),

q 5
VQ

I
5
1600 lb2 14.22 in32

27.42 in4 5 92.3 lb/in.

Because both the beam and the upper plank are symmetric with 
respect to the vertical plane of loading, equal forces are exerted on 
both edges of the plank. The force per unit length on each of these 
edges is thus 1

2q 5
1
2 192.32 5 46.15 lb/in. Since the spacing between 

nails is 1.75 in., the shearing force in each nail is

F 5 11.75 in.2 146.15 lb/in.2 5 80.8 lb

0.75 in. 0.75 in.

0.75 in.

4.5 in.

3 in.

(a)

0.75 in.

y 5 1.875 in.

N.A. 4.5 in.

4.5 in.

3 in.

3 in.

3 in.

(b) (c)

A'

Fig. 6.24 (a) Box beam made from planks nailed together. 
(b) Geometry for finding first moment of area of top plank. 
(c) Geometry for finding the moment of inertia of entire 
cross section.
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6.4 Shearing Stresses in Thin-Walled Members 439

6.4  SHEARING STRESSES IN 
THIN-WALLED MEMBERS

We saw in the preceding section that Eq. (6.4) may be used to determine 
the longitudinal shear DH exerted on the walls of a beam element of arbi-
trary shape and Eq. (6.5) to determine the corresponding shear flow q. 
Equations (6.4) and (6.5) are used in this section to calculate both the 
shear flow and the average shearing stress in thin-walled members such 
as the flanges of wide-flange beams (Photo 6.2), box beams, or the walls 
of structural tubes (Photo 6.3).

Photo 6.2 Wide-flange beams. Photo 6.3 Structural tubes.

 Consider a segment of length Dx of a wide-flange beam (Fig. 6.25a) 
where V is the vertical shear in the transverse section shown. Detach an 
element ABB9A9 of the upper flange (Fig. 6.25b). The longitudinal shear 
DH exerted on that element can be obtained from Eq. (6.4):

¢H 5
VQ

I
  ¢x (6.4)

Dividing DH by the area DA 5 t Dx of the cut, the average shearing stress 
exerted on the element is the same expression obtained in Sec. 6.1B for a 
horizontal cut:

tave 5
VQ

It
 (6.6)

Note that tave now represents the average value of the shearing stress tzx

over a vertical cut, but since the thickness t of the flange is small, there 
is very little variation of tzx across the cut. Recalling that txz 5 tzx 

y

B' B'
B B

�H

V

�x

�x

A
A

A' A't

xz

(a)

(b)

Fig. 6.25 (a) Wide-flange beam section with 
vertical shear V. (b) Segment of flange with 
longitudinal shear DH.
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440 Shearing Stresses in Beams and Thin-Walled Members

(Fig. 6.26), the horizontal component txz of the shearing stress at any 
point of a transverse section of the flange can be obtained from Eq. (6.6), 
where Q is the first moment of the shaded area about the neutral axis 
(Fig. 6.27a). A similar result was obtained for the vertical component txy 
of the shearing stress in the web (Fig. 6.27b). Equation (6.6) can be used 
to determine shearing stresses in box beams (Fig. 6.28), half pipes 
(Fig. 6.29), and other thin-walled members, as long as the loads are 
applied in a plane of symmetry. In each case, the cut must be perpen-
dicular to the surface of the member, and Eq. (6.6) will yield the com-
ponent of the shearing stress in the direction tangent to that surface. 
(The other component is assumed to be equal to zero, because of the 
proximity of the two free surfaces.)

y

zx� xz�

x

z

Fig. 6.26 Stress element within flange segment.

N.A.

xz�

y
t

z

(a)

N.A.

xy�

y

t

z

(b)

Fig. 6.27 Wide-flange beam sections showing 
shearing stress (a) in flange and (b) in web. The 
shaded area is that used for calculating the first 
moment of area.

N.A. N.A.

xy�

xz� xz�

xy�

t

t

z z

yy

(a) (b)

Fig. 6.28 Box beam showing shearing stress (a) in 
flange, (b) in web. Shaded area is that used for 
calculating the first moment of area.

N.A.
z

y

t

C

�

Fig. 6.29 Half pipe section showing shearing 
stress, and shaded area for calculating first 
moment of area.

B

N.A.

A

q q

C C'

B'

D E D'

V

Fig. 6.30 Shear flow, q, in a box 
beam section.

 Comparing Eqs. (6.5) and (6.6), the product of the shearing stress t at 
a given point of the section and the thickness t at that point is equal to q. 
Since V and I are constant, q depends only upon the first moment Q and 
easily can be sketched on the section. For a box beam (Fig. 6.30), q grows 
smoothly from zero at A to a maximum value at C and C9 on the neutral axis 
and decreases back to zero as E is reached. There is no sudden variation in 
the magnitude of q as it passes a corner at B, D, B9, or D9, and the sense of 
q in the horizontal portions of the section is easily obtained from its sense 
in the vertical portions (the sense of the shear V). In a wide-flange section 
(Fig. 6.31), the values of q in portions AB and A9B of the upper flange are 
distributed symmetrically. At B in the web, q corresponds to the two halves 
of the flange, which must be combined to obtain the value of q at the top of 
the web. After reaching a maximum value at C on the neutral axis, q decreases 
and splits into two equal parts at D, which corresponds at D to the two halves 
of the lower flange. The shear per unit length q is commonly called the shear 
flow and reflects the similarity between the properties of q just described and 
some of the characteristics of a fluid flow through an open channel or pipe.†

 So far, all of the loads were applied in a plane of symmetry of the 
member. In the case of members possessing two planes of symmetry 
(Fig. 6.27 or 6.30), any load applied through the centroid of a given cross 

†Recall that the concept of shear flow was used to analyze the distribution of shearing 
stresses in thin-walled hollow shafts (Sec. 3.10). However, while the shear flow in a hol-
low shaft is constant, the shear flow in a member under a transverse loading is not.
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*6.5 Plastic Deformations 441

section can be resolved into components along the two axes of symmetry. 
Each component will cause the member to bend in a plane of symmetry, 
and the corresponding shearing stresses can be obtained from Eq. (6.6). The 
principle of superposition can then be used to determine the resulting 
stresses.
 However, if the member possesses no plane of symmetry or a single 
plane of symmetry and is subjected to a load that is not contained in that 
plane, that member is observed to bend and twist at the same time—except 
when the load is applied at a specific point called the shear center. The shear 
center normally does not coincide with the centroid of the cross section. 
The shear center of various thin-walled shapes is discussed in Sec. 6.6.

*6.5 PLASTIC DEFORMATIONS
Consider a cantilever beam AB with a length of L and a rectangular cross 
section subjected to a concentrated load P at its free end A (Fig. 6.32). The 
largest bending moment occurs at the fixed end B and is equal to M 5 PL. 
As long as this value does not exceed the maximum elastic moment 
MY (i.e., PL # MY), the normal stress sx will not exceed the yield strength 
sY anywhere in the beam. However, as P is increased beyond MYyL, yield 
is initiated at points B and B9 and spreads toward the free end of the beam. 
Assuming the material is elastoplastic and considering a cross  section CC9

located a distance x from the free end A of the beam (Fig. 6.33), the 
half-thickness yY of the elastic core in that section is obtained by making 
M 5 Px in Eq. (4.38). Thus,

 Px 5
3

2
MY a1 2

1

3
 
y2

Y

c2b (6.14)

where c is the half-depth of the beam. Plotting yY against x gives the 
boundary between the elastic and plastic zones.
 As long as PL ,

3
2MY, the parabola from Eq. (6.14) intersects the 

line BB9, as shown in Fig. 6.33. However, when PL reaches the value 3
2MY

(PL 5 Mp) where Mp is the plastic moment, Eq. (6.14) yields yY 5 0 for 
x 5 L, which shows that the vertex of the parabola is now located in sec-
tion BB9 and that this section has become fully plastic (Fig. 6.34). Recalling 
Eq. (4.40), the radius of curvature r of the neutral surface at that point is 
equal to zero, indicating the presence of a sharp bend in the beam at its 
fixed end. Thus, a plastic hinge has developed at that point. The load 
P 5 MpyL is the largest load that can be supported by the beam.
 This discussion is based only on the analysis of the normal stresses in 
the beam. Now examine the distribution of the shearing stresses in a section 

N.A.

q1

q

q � q1 � q2

q2

q1 q2

A

D

B

C

A'

E'E

V

Fig. 6.31  Shear flow, q, in a wide-flange 
beam section.

P

A

L

B

B'

Fig. 6.32 Cantilever beam having 
maximum moment PL at section B-B9. 
As long as PL # MY, the beam remains 
elastic.

A

L

x

C

2yY

C' B'

B
P

Fig. 6.33 Cantilever beam exhibiting partial 
yielding, showing the elastic core at section C–C9.

A

L

x � L

B
yY � 0

B'
P

Fig. 6.34 Fully plastic cantilever beam 
having PL 5 MP 5 1.5 MY.
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442 Shearing Stresses in Beams and Thin-Walled Members

that has become partly plastic. Consider the portion of beam CC0D0D located 
between the transverse sections CC9 and DD9 and above the horizontal 
plane D0C0 (Fig. 6.35a). If this portion is located entirely in the plastic zone, 
the normal stresses exerted on the faces CC0 and DD0 will be uniformly dis-
tributed and equal to the yield strength sY (Fig. 6.35b). The equilibrium of 
the free body CC0D0D requires that the horizontal shearing force DH exerted 
on its lower face is equal to zero. The average value of the horizontal shearing 
stress tyx across the beam at C0 is also zero, as well as the average value of 
the vertical shearing stress txy. Thus, the vertical shear V 5 P in section CC9 
must be distributed entirely over the portion EE9 of the section located within 
the elastic zone (Fig. 6.36). The distribution of the shearing stresses over EE9 
is the same as that in an elastic rectangular beam with the same width b as 
beam AB and depth equal to the thickness 2yY of the elastic zone.† The area 
2byY of the elastic portion of the cross section A9 gives

 txy 5
3

2
 

P
A¿

 a1 2
y2

y2
Y

b (6.15)

The maximum value of the shearing stress occurs for y 5 0 and is

 tmax 5
3

2
 

P

A¿
 (6.16)

 As the area A9 of the elastic portion of the section decreases, tmax 
increases and eventually reaches the yield strength in shear tY. Thus, 
shear contributes to the ultimate failure of the beam. A more exact analy-
sis of this mode of failure should take into account the combined effect of 
the normal and shearing stresses.

†See Prob. 6.60.

D

D''
D''

C''
C''

C D

�H

�Y �YC

D' C'

(b)

(a)

Fig. 6.35 (a) Beam segment in partially 
plastic area. (b) Element DCC"D" is fully plastic.

C'

E'

E

C

y

xy�

max�
2yY

PLASTIC

PLASTIC

ELASTIC

Fig. 6.36 Parabolic shear 
distribution in elastic core.
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*6.5 Plastic Deformations 443

Sample Problem 6.3

Knowing that the vertical shear is 50 kips in a W10 3 68 rolled-steel 
beam, determine the horizontal shearing stress in the top flange at a 
point a located 4.31 in. from the edge of the beam. The dimensions 
and other geometric data of the rolled-steel section are given in 
Appendix C.

STRATEGY: Determine the horizontal shearing stress at the required 
section.

MODELING and ANALYSIS:

As shown in Fig. 1, we isolate the shaded portion of the flange by cut-
ting along the dashed line that passes through point a.

Q 5 14.31 in.2 10.770 in.2 14.815 in.2 5 15.98 in3

  t 5
VQ

It
5
150 kips2 115.98 in32
1394 in42 10.770 in.2  t 5 2.63 ksi  b

� 4.815 in.5.2 �5.2 in.

tf � 0.770 in.

Ix � 394 in4

a

C

0.770

4.31 in.

10.4 in.

2

Fig. 1 Cross section dimensions for 
W10 3 68 steel beam.

Sample Problem 6.4

Solve Sample Prob. 6.3, assuming that 0.75 3 12-in. plates have been 
attached to the flanges of the W10 3 68 beam by continuous fillet 
welds as shown.

a

Welds

0.75 in. � 12 in.

4.31 in.

(continued)

STRATEGY: Calculate the properties for the composite beam and 
then determine the shearing stress at the required section.
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444 Shearing Stresses in Beams and Thin-Walled Members

MODELING and ANALYSIS:

For the composite beam shown in Fig. 1, the centroidal moment of 
inertia is

 I 5 394 in4 1 2 3 1
12 112 in.2 10.75 in.23 1 112 in.2 10.75 in.2 15.575 in.22 4

 I 5 954 in4

C

12 in.

5.2 in.
5.575 in.

0.375 in.

10.4 in.

0.75 in.

0.75 in.

Fig. 1 Cross section dimensions for 
calculating moment of inertia.

12 in.

5.2 in.

0.75 in.

0.770 in.
4.31 in. 4.31 in.4.815 in.

5.575 in.

a' a

C

Fig. 2 Dimensions used to find first moment of 
area and shearing stress at flange-web junction.

Since the top plate and the flange are connected only at the welds, the 
shearing stress is found at a by passing a section through the flange 
at a, between the plate and the flange, and again through the flange at 
the symmetric point a9 (Fig. 2).

For the shaded area,

 t 5 2tf 5 210.770 in.2 5 1.540 in.

 Q 5 2 3 14.31 in.2 10.770 in.2 14.815 in.2 4 1 112 in.2 10.75 in.2 15.575 in.2
 Q 5 82.1 in3

  t 5
VQ

It
5
150 kips2 182.1 in32
1954 in42 11.540 in.2  t 5 2.79 ksi  b
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*6.5 Plastic Deformations 445

Sample Problem 6.5

The thin-walled extruded beam shown is made of aluminum and has a 
uniform 3-mm wall thickness. Knowing that the shear in the beam is 
5 kN, determine (a) the shearing stress at point A, (b) the maximum 
shearing stress in the beam. Note: The dimensions given are to lines 
midway between the outer and inner surfaces of the beam.

5 kN

D B

A

60 mm

25 mm 25 mm

STRATEGY: Determine the location of the centroid and then calculate 
the moment of inertia. Calculate the two required stresses.

MODELING and ANALYSIS:

 Centroid. Using Fig. 1, we note that AB 5 AD 5 65 mm.

 Y 5
o  y A

o  A
5

2 3 165 mm2 13 mm2 130 mm2 4
2 3 165 mm2 13 mm2 4 1 150 mm2 13 mm2

 Y 5 21.67 mm

D B

A

60 mm
65 mm

cos 12
13�

13
12

5
y

	 	

	

30 mm

25 mm 25 mm

Fig. 1 Section dimensions for finding 
centroid.

(continued)
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446 Shearing Stresses in Beams and Thin-Walled Members

 Centroidal Moment of Inertia. Each side of the thin-walled 
beam can be considered as a parallelogram (Fig. 2), and we recall that 
for the case shown Inn 5 bh3y12, where b is measured parallel to the 
axis nn. Using Fig. 3 we write

 b 5 13 mm2ycos b 5 13 mm2y112y132 5 3.25 mm

I 5 o 1I 1 Ad22 5 2 3 1
12 13.25 mm2 160 mm23

 1 13.25 mm2 160 mm2 18.33 mm22 4 1 3 1
12 150 mm2 13 mm23

 1 150 mm2 13 mm2 121.67 mm22 4
 I 5 214.6 3 103 mm4    I 5 0.2146 3 1026 m4

D

C

B

A

30 mm

21.67 mm3 mm

8.33 mm	 	

30 mm

30 mm

25 mm 25 mm

Fig. 2 Dimensions locating 
centroid.

h h

b b

n n n n

3 mm

	

	

3.25 mm

Fig. 3 Determination of horizontal width 
for side elements.

 a. Shearing Stress at A. If a shearing stress tA occurs at A, the 
shear flow will be qA 5 tAt and must be directed in one of the two ways 
shown in Fig 4. But the cross section and the loading are symmetric 
about a vertical line through A, and thus the shear flow must also be 
symmetric. Since neither of the possible shear flows is symmetric, we 
conclude that

tA 5 0. b

 b. Maximum Shearing Stress. Since the wall thickness is con-
stant, the maximum shearing stress occurs at the neutral axis, where 
Q is maximum. Since we know that the shearing stress at A is zero, we 
cut the section along the dashed line shown and isolate the shaded 
portion of the beam (Fig. 5). In order to obtain the largest shearing 
stress, the cut at the neutral axis is made perpendicular to the sides 
and is of length t 5 3 mm.

Q 5 3 13.25 mm2 138.33 mm2 4  a38.33 mm

2
b 5 2387 mm3

Q 5 2.387 3 1026 m3

tE 5
VQ

It
5

15 kN2 12.387 3 1026 m32
10.2146 3 1026 m42 10.003 m2  tmax 5 tE 5 18.54 MPa  b

b � 3.25 mm

t � 3 mmC

A

ENeutral axis

38.33 mm

Fig. 5 Section for finding the maximum 
shearing stress.

qA qA qA qA

OR
Fig. 4 Possible directions 
for shear flow at A.
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Problems
 6.29 The built-up timber beam shown is subjected to a vertical shear 

of 1200 lb. Knowing that the allowable shearing force in the nails 
is 75 lb, determine the largest permissible spacing s of the nails.

 6.30 The built-up beam shown is made by gluing together two 
20 3 250-mm plywood strips and two 50 3 100-mm planks. 
Knowing that the allowable average shearing stress in the glued 
joints is 350 kPa, determine the largest permissible vertical shear 
in the beam.

 6.31 The built-up beam was made by gluing together several wooden 
planks. Knowing that the beam is subjected to a 1200-lb vertical 
shear, determine the average shearing stress in the glued joint (a) 
at A, (b) at B.

20 mm
100 mm

20 mm

50 mm

50 mm

150 mm

Fig. P6.30

 6.32 Several wooden planks are glued together to form the box beam 
shown. Knowing that the beam is subjected to a vertical shear of 
3 kN, determine the average shearing stress in the glued joint (a) 
at A, (b) at B.

0.8

0.8 0.8

0.8

BA

1.5 1.5
4

3.2

Dimensions in inches

Fig. P6.31

A

B

60 mm 20 mm20 mm

20 mm

20 mm

20 mm

30 mm

30 mm

Fig. P6.32

2 in.

2 in.

2 in.

10 in.

s
s

s

Fig. P6.29
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6.33 The built-up wooden beam shown is subjected to a vertical shear 
of 8 kN. Knowing that the nails are spaced longitudinally every 
60 mm at A and every 25 mm at B, determine the shearing force 
in the nails (a) at A, (b) at B. (Given: Ix 5 1.504 3 109 mm4.)

6.34 Knowing that a W360 3 122 rolled-steel beam is subjected to a 
250-kN vertical shear, determine the shearing stress (a) at point A, 
(b) at the centroid C of the section.

300

100

200

400

50

50

50

50

B

B

A

x

AA

A

C

Dimensions in mm

Fig. P6.33

 6.35 and 6.36 An extruded aluminum beam has the cross section shown. 
Knowing that the vertical shear in the beam is 150 kN, determine 
the shearing stress at (a) point a, (b) point b.

A

C

105 mm

Fig. P6.34

b

12 12

40

80

150
Dimensions in mm

6

6
a

Fig. P6.35

b

1212

40

80

80
Dimensions in mm

6

6

a

Fig. P6.36

 6.37 Knowing that a given vertical shear V causes a maximum shear-
ing stress of 75 MPa in an extruded beam having the cross section 
shown, determine the shearing stress at the three points 
indicated.

40

30

30

40

10

10

160

120

50 50

20 20

c

b

a

Dimensions in mm

Fig. P6.37
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 6.38 The vertical shear is 1200 lb in a beam having the cross section 
shown. Knowing that d 5 4 in., determine the shearing stress at 
(a) point a, (b) point b.

b

d d

8 in.

0.5 in.

0.5 in.

5 in.

4 in.

a

Fig. P6.38 and P6.39

6.39 The vertical shear is 1200 lb in a beam having the cross section 
shown. Determine (a) the distance d for which ta 5 tb , (b) the 
corresponding shearing stress at points a and b.

 6.40 and 6.41 The extruded aluminum beam has a uniform wall thick-
ness of 1

8 in. Knowing that the vertical shear in the beam is 2 kips, 
determine the corresponding shearing stress at each of the five 
points indicated.

1.25 in.

1.25 in.

1.25 in. 1.25 in.

bc

ae

d

Fig. P6.40

1.25 in.

1.25 in.

1.25 in. 1.25 in.

bc

ae

d

Fig. P6.41

 6.42 Knowing that a given vertical shear V causes a maximum shear-
ing stress of 50 MPa in a thin-walled member having the cross 
section shown, determine the corresponding shearing stress at 
(a) point a, (b) point b, (c) point c.

40 mm

30 mm

50 mm

30 mm

10 mm

10 mm

12 mm40 mm

b
c

a

Fig. P6.42
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 6.43 Three planks are connected as shown by bolts of 3
8-in. diameter 

spaced every 6 in. along the longitudinal axis of the beam. For a 
vertical shear of 2.5 kips, determine the average shearing stress 
in the bolts.

2 in.2 in.

10 in.

10 in.

4 in.

Fig. P6.43

 6.44 A beam consists of three planks connected as shown by steel 
bolts with a longitudinal spacing of 225 mm. Knowing that the 
shear in the beam is vertical and equal to 6 kN and that the allow-
able average shearing stress in each bolt is 60 MPa, determine the 
smallest permissible bolt diameter that can be used.

 6.45 A beam consists of five planks of 1.5 3 6-in. cross section con-
nected by steel bolts with a longitudinal spacing of 9 in. Knowing 
that the shear in the beam is vertical and equal to 2000 lb and that 
the allowable average shearing stress in each bolt is 7500 psi, deter-
mine the smallest permissible bolt diameter that can be used.

 6.46 Four L102 3 102 3 9.5 steel angle shapes and a 12 3 400-mm plate 
are bolted together to form a beam with the cross section shown. 
The bolts are of 22-mm diameter and are spaced longitudinally 
every 120 mm. Knowing that the beam is subjected to a vertical 
shear of 240 kN, determine the average shearing stress in each bolt.

100 mm

100 mm

50 mm100 mm50 mm

25 mm
25 mm

Fig. P6.44

 6.47 A plate of 1
4-in. thickness is corrugated as shown and then used 

as a beam. For a vertical shear of 1.2 kips, determine (a) the 
maximum shearing stress in the section, (b) the shearing stress 
at point B. Also sketch the shear flow in the cross section.

6 in.

1 in.
1 in.

Fig. P6.45

12 mm400 mm

Fig. P6.46

1.6 in.

2 in. 2 in.
1.2 in. 1.2 in.

A B

D

E F

Fig. P6.47
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 6.48 A plate of 2-mm thickness is bent as shown and then used as a 
beam. For a vertical shear of 5 kN, determine the shearing stress 
at the five points indicated and sketch the shear flow in the cross 
section.

 6.49 An extruded beam has the cross section shown and a uniform wall 
thickness of 3 mm. For a vertical shear of 10 kN, determine (a) the 
shearing stress at point A, (b) the maximum shearing stress in the 
beam. Also sketch the shear flow in the cross section.

da

e

b c

50 mm

10 mm 10 mm

22 mm

Fig. P6.48

60 mm

16 mm 16 mm

A

28 mm

30 mm

Fig. P6.49

6.50 A plate of thickness t is bent as shown and then used as a beam. 
For a vertical shear of 600 lb, determine (a) the thickness t for 
which the maximum shearing stress is 300 psi, (b) the corre-
sponding shearing stress at point E. Also sketch the shear flow in 
the cross section.

4.8 in.

6 in.

3 in. 3 in.
2 in.

B G

ED

FA

Fig. P6.50

2 in.

2 in.

2 in.

a

a

in.3
8

in.1
2

in.1
2

in.3
8

Fig. P6.51

 6.51 The design of a beam calls for connecting two vertical rectangular
3
8 3 4-in. plates by welding them to two horizontal 1

2 3 2-in. plates 
as shown. For a vertical shear V, determine the dimension a for 
which the shear flow through the welded surfaces is maximum.

 6.52 The cross section of an extruded beam is a hollow square of side 
a 5 3 in. and thickness t 5 0.25 in. For a vertical shear of 15 kips, 
determine the maximum shearing stress in the beam and sketch 
the shear flow in the cross section.

aa

Fig. P6.52
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6.53 An extruded beam has a uniform wall thickness t. Denoting by V
the vertical shear and by A the cross-sectional area of the beam, 
express the maximum shearing stress as tmax 5 k(V/A) and deter-
mine the constant k for each of the two orientations shown.

(a)

a

a

(b)

Fig. P6.53

C

rm t

P

u

Fig. P6.54

140 mm 6 mm6 mm

90 mm

90 mm

84 mm

Fig. P6.56

150 mm

12 mm

250 mm

12 mm

Fig. P6.57

6.54 (a) Determine the shearing stress at point P of a thin-walled pipe 
of the cross section shown caused by a vertical shear V. (b) Show 
that the maximum shearing stress occurs for u 5 90° and is equal 
to 2V/A, where A is the cross-sectional area of the pipe.

 6.55 For a beam made of two or more materials with different moduli 
of elasticity, show that Eq. (6.6)

tave 5
VQ

It

remains valid provided that both Q and I are computed by using 
the transformed section of the beam (see Sec. 4.4) and provided 
further that t is the actual width of the beam where tave is 
computed.

 6.56 and 6.57 A composite beam is made by attaching the timber and 
steel portions shown with bolts of 12-mm diameter spaced lon-
gitudinally every 200 mm. The modulus of elasticity is 10 GPa for 
the wood and 200 GPa for the steel. For a vertical shear of 4 kN, 
determine (a) the average shearing stress in the bolts, (b) the 
shearing stress at the center of the cross section. (Hint: Use the 
method indicated in Prob. 6.55.)
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453

 6.58 and 6.59 A steel bar and an aluminum bar are bonded together as 
shown to form a composite beam. Knowing that the vertical 
shear in the beam is 4 kips and that the modulus of elasticity is 
29 3 106 psi for the steel and 10.6 3 106 psi for the aluminum, 
determine (a) the average shearing stress at the bonded surface, 
(b) the maximum shearing stress in the beam. (Hint: Use the 
method indicated in Prob. 6.55.)

2 in.

1 in.

1.5 in.

Aluminum

Steel

Fig. P6.58

2 in.

1 in.

1.5 in.

Steel

Aluminum

Fig. P6.59

 6.60 Consider the cantilever beam AB discussed in Sec. 6.5 and the 
portion ACKJ of the beam that is located to the left of the trans-
verse section CC9 and above the horizontal plane JK, where K is 
a point at a distance y , yY above the neutral axis (Fig. P6.60). 
(a) Recalling that sx 5 sY between C and E and sx 5 (sY/yY)y 
between E and K, show that the magnitude of the horizontal 
shearing force H exerted on the lower face of the portion of beam 
ACKJ is

H 5
1

2
 bsY a2c 2 yY 2

y2

yY
b

  (b) Observing that the shearing stress at K is

txy 5 lim
¢Ay0

¢H
¢A

5 lim
¢xy0

 
1

b
 
¢H
¢x

5
1

b
 
0H
0x

   and recalling that yY is a function of x defined by Eq. (6.14), derive 
Eq. (6.15).

A
J

x

C E

K
B

Plastic

Neutral axis

P

E'
C'

y

yY

Fig. P6.60
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454 Shearing Stresses in Beams and Thin-Walled Members

*6.6  UNSYMMETRIC LOADING 
OF THIN-WALLED MEMBERS 
AND SHEAR CENTER

Our analysis of the effects of transverse loadings has been limited to mem-
bers possessing a vertical plane of symmetry and to loads applied in that 
plane. The members were observed to bend in the plane of loading 
(Fig. 6.37), and in any given cross section, the bending couple M and the 
shear V (Fig. 6.38) were found to result in normal and shearing stresses:

 sx 5 2
My

I
 (4.16)

and

tave 5
VQ

It
 (6.6)

C

x

P

Fig. 6.37 Cantilevered channel 
beam with vertical plane of symmetry.

M

V

N.A.

C'

(V � P, M � Px)

Fig. 6.38 Load applied in 
vertical plane of symmetry.

 In this section, the effects of transverse loads on thin-walled mem-
bers that do not possess a vertical plane of symmetry are examined. Assume 
that the channel member of Fig. 6.37 has been rotated through 908

and that the line of action of P still passes through the centroid of the end 
section. The couple vector M representing the bending moment in a given 
cross section is still directed along a principal axis of the section 
(Fig. 6.39), and the neutral axis will coincide with that axis (see Sec. 4.8). 
Equation (4.16) can be used to compute the normal stresses in the section. 
However, Eq. (6.6) cannot be used to determine the shearing stresses, 
since this equation was derived for a member possessing a vertical plane 
of symmetry (see Sec. 6.4). Actually, the member will be observed to bend 
and twist under the applied load (Fig. 6.40), and the resulting distribution 
of shearing stresses will be quite different from that given by Eq. (6.6).
 Is it possible to apply the vertical load P so that the channel member 
of Fig. 6.40 will bend without twisting? If so, where should the load P be 
applied? If the member bends without twisting, the shearing stress at any 
point of a given cross section can be obtained from Eq. (6.6), where Q is 
the first moment of the shaded area with respect to the neutral axis 
(Fig. 6.41a) and the distribution of stresses is as shown in Fig. 6.41b with 
t 5 0 at both A and E. The shearing force exerted on a small element of 
cross-sectional area dA 5 t ds is dF 5 t dA 5 tt ds or dF 5 q ds (Fig. 6.42a), 
where q is the shear flow q 5 tt 5 VQyI. The resultant of the shearing 

MN.A.

C'

(V � P, M � Px)

V

Fig. 6.39 Load perpendicular to plane of 
symmetry.

C

P

Fig. 6.40 Deformation of channel when not 
loaded in plane of symmetry.
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*6.6 Unsymmetric Loading of Thin-Walled Members and Shear Center 455

forces exerted on the elements of the upper flange AB of the channel is a 
horizontal force F (Fig. 6.42b) of magnitude

 F 5 #
B

A

q ds (6.17)

Because of the symmetry of the channel section about its neutral axis, the 
resultant of the shearing forces exerted on the lower flange DE is a 
force F9 of the same magnitude as F but of opposite sense. The resultant 
of the shearing forces exerted on the web BD must be equal to the vertical 
shear V in the section:

 V 5 #
D

B

q ds (6.18)

 The forces F and F9 form a couple of moment Fh, where h is the 
distance between the center lines of the flanges AB and DE (Fig. 6.43a). 
This couple can be eliminated if the vertical shear V is moved to the left 
through a distance e so the moment of V about B is equal to Fh (Fig. 6.43b). 
Thus, Ve 5 Fh or

 e 5
Fh

V
 (6.19)

When the force P is applied at a distance e to the left of the center line of the 
web BD, the member bends in a vertical plane without twisting (Fig. 6.44).
 The point O where the line of action of P intersects the axis of symmetry 
of the end section is the shear center of that section. In the case of an oblique 
load P (Fig. 6.45a), the member will also be free of twist if the load P is applied 
at the shear center of the section. The load P then can be resolved into two 
components Pz and Py (Fig. 6.45b) corresponding to the load conditions of 
Figs. 6.37 and 6.44, neither of which causes the member to twist.

N.A.

D E

AB
t

N.A.

D E

AB

(a) (b)

Fig. 6.41 Shearing stress and shear flow as a result of 
unsymmetric loading. (a) Shearing stress. (b) Shear flow q. 

D E

AB

dF 5 q ds
F

V

F'
D E

AB

(a) (b)

Fig. 6.42 Shear flow in each element 
results in a vertical shear and couple. 
(a) Shear flow q. (b) Resultant forces on 
elements.

F

V
V

F'D E

A
e

h

B

D E

AB

(a) Resultant forces
on elements

(b) Placement of V to
    eliminate twisting

Fig. 6.43 Resultant force-couple for bending 
without twisting, and relocation of V to create 
same effect.

e

O

P

Fig. 6.44 Placement of load to eliminate 
twisting through the use of an attached 
bracket.

P

Py

Pz

(a) (b)

e

O O

Fig. 6.45 (a) Oblique load applied at shear center will 
not cause twist, since (b) it can be resolved into 
components that do not cause twist. 
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456 Shearing Stresses in Beams and Thin-Walled Members

Concept Application 6.5
Determine the shear center O of a channel section of uniform thick-
ness (Fig. 6.46a), knowing that b 5 4 in., h 5 6 in., and t 5 0.15 in.
 Assuming that the member does not twist, determine the shear 
flow q in flange AB at a distance s from A (Fig. 6.46b). Recalling Eq. (6.5) 
and observing that the first moment Q of the shaded area with respect 
to the neutral axis is Q 5 (st)(hy2),

 q 5
VQ

I
5

Vsth

2I
 (6.20)

where V is the vertical shear and I is the moment of inertia of the 
section with respect to the neutral axis.

Recalling Eq. (6.17), the magnitude of the shearing force F exerted 
on flange AB is found by integrating the shear flow q from A to B

F 5 #
b

0

q ds 5 #
b

0

Vsth
2I

 ds 5
Vth
2I #

b

0

s ds

 F 5
Vthb2

4I
 (6.21)

The distance e from the center line of the web BD to the shear center 
O can be obtained from Eq. (6.19):

 e 5
Fh
V

5
Vthb2

4I
 
h
V

5
th2b2

4I
 (6.22)

The moment of inertia I of the channel section can be expressed as

 I 5 Iweb 1 2Iflange

 5
1

12
 th3 1 2 c 1

12
 bt 

3 1 bt ah
2
b2 d

Neglecting the term containing t 3, which is very small, gives

 I 5
1

12 th3 1
1
2 tbh2 5

1
12 th216b 1 h2 (6.23)

Substituting this expression into Eq. (6.22) gives

 e 5
3b 

2

6b 1 h
5

b

2 1
h

3b

 (6.24)

Note that the distance e does not depend upon t and can vary from 
0 to by2, depending upon the value of the ratio hy3b. For the given 
channel section,

h

3b
5

6 in.

314 in.2 5 0.5

and

e 5
4 in.

2 1 0.5
5 1.6 in.

B
e

O

D E

A

t

h

b

(a)

B

N.A.

h/2

t

A

D E

s

(b)

Fig. 6.46 (a) Channel section. 
(b) Flange segment used for 
calculation of shear flow.
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*6.6 Unsymmetric Loading of Thin-Walled Members and Shear Center 457

Concept Application 6.6
For the channel section of Concept Application 6.5, determine the dis-
tribution of the shearing stresses caused by a 2.5-kip vertical shear V 
applied at the shear center O (Fig. 6.47a).

 Shearing Stresses in Flanges. Since V is applied at the shear 
center, there is no torsion, and the stresses in flange AB are obtained 
from Eq. (6.20), so

 t 5
q

t
5

VQ

It
5

Vh

2I
 s (6.25)

which shows that the stress distribution in flange AB is linear. Letting 
s 5 b and substituting for I from Eq. (6.23), we obtain the value of the 
shearing stress at B:

 tB 5
Vhb

21 1
12th22 16b 1 h2 5

6Vb
th16b 1 h2  (6.26)

Letting V 5 2.5 kips and using the given dimensions,

 tB 5
612.5 kips2 14 in.2

10.15 in.2 16 in.2 16 3 4 in. 1 6 in.2
 5 2.22 ksi

 Shearing Stresses in Web. The distribution of the shearing 
stresses in the web BD is parabolic, as in the case of a W-beam, and 
the maximum stress occurs at the neutral axis. Computing the first 
moment of the upper half of the cross section with respect to the neu-
tral axis (Fig. 6.47b), 

 Q 5 bt 112 h2 1
1
2 ht 114 h2 5

1
8 ht 14b 1 h2 (6.27)

Substituting for I and Q from Eqs. (6.23) and (6.27), respectively, into 
the expression for the shearing stress,

tmax 5
VQ

It
5

V 118 ht2 14b 1 h2
1

12 th216b 1 h2t 5
3V 14b 1 h2
2th16b 1 h2

or with the given data,

 tmax 5
312.5 kips2 14 3 4 in. 1 6 in.2

210.15 in.2 16 in.2 16 3 4 in. 1 6 in.2
 5 3.06 ksi

 Distribution of Stresses Over the Section. The distribution 
of the shearing stresses over the entire channel section has been plotted 
in Fig. 6.47c.

B

e 5 1.6 in.
b 5 4 in.

h 5 6 in.

t 5 0.15 in.

V 5 2.5 kips

O

D E

A

(a)

h/2

t

t

A

E

N.A.

D

B

h/4

b

(b)

B

max 5 3.06 ksi

D
E

N.A.

A

t

B 5 2.22 ksit

D 5 2.22 ksit

(c)

Fig. 6.47 (a) Channel section loaded at 
shear center. (b) Section used to find the 
maximum shearing stress. (c) Shearing 
stress distribution.
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458 Shearing Stresses in Beams and Thin-Walled Members

Concept Application 6.7
For the channel section of Concept Application 6.5, and neglecting stress 
concentrations, determine the maximum shearing stress caused by a 
2.5-kip vertical shear V applied at the centroid C of the section, which is 
located 1.143 in. to the right of the center line of the web BD (Fig. 6.48a).

 Equivalent Force-Couple System at Shear Center.  The shear 
center O of the cross section was determined in Concept Application 
6.5 and found to be at a distance e 5 1.6 in. to the left of the center 
line of the web BD. We replace the shear V (Fig. 6.48b) by an equiva-
lent force-couple system at the shear center O (Fig. 6.48c). This system 
consists of a 2.5-kip force V and of a torque T of magnitude

 T 5 V1OC2 5 12.5 kips2 11.6 in. 1 1.143 in.2
 5 6.86 kip?in.

 Stresses Due to Bending.  The 2.5-kip force V causes the mem-
ber to bend, and the corresponding distribution of shearing stresses 
in the section (Fig. 6.48d) was determined in Concept Application 6.6. 
Recall that the maximum value of the stress due to this force was 
found to be

1tmax2bending 5 3.06 ksi

 Stresses Due to Twisting.  The torque T causes the member to 
twist, and the corresponding distribution of stresses is shown in 
Fig. 6.48e. Recall from Chap. 3 that the membrane analogy shows that 
in a thin-walled member of uniform thickness, the stress caused by a 
torque T is maximum along the edge of the section. Using Eqs. (3.42) 
and (3.40) with

a 5 4 in. 1 6 in. 1 4 in. 5 14 in.
b 5 t 5 0.15 in.  by a 5 0.0107

So,

c1 5
1
3 11 2 0.630bya2 5

1
3 11 2 0.630 3 0.01072 5 0.331

1tmax2twisting 5
T

c1ab2 5
6.86 kip?in.

10.3312 114 in.2 10.15 in.22 5 65.8 ksi

 Combined Stresses.  The maximum shearing stress due to the 
combined bending and twisting occurs at the neutral axis on the inside 
surface of the web and is

tmax 5 3.06 ksi 1 65.8 ksi 5 68.9 ksi

As a practical observation, this exceeds the shearing stress at yield for 
commonly available steels. This analysis demonstrates the potentially 
large effect that torsion can have on the shearing stresses in channels 
and similar structural shapes.

B

6 in.

0.15 in.

1.143 in.

4 in.

V 5 2.5 kips

C

D
E

A

(a)

Fig. 6.48 (a) Channel section 
loaded at centroid (not shear 
center).

(continued)
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*6.6 Unsymmetric Loading of Thin-Walled Members and Shear Center 459

B

1.143 in.
e 5 1.6 in.

V

C
O

D E

A B

V

T

C

O

D E

A B

V 5 2.5 kips

Bending Torsion

O

D E

A

a

b 5 t

T 5 6.86 kip ? in.

(b) (c) (d) (e)

Fig. 6.48 (cont.) (b) Load at the centroid (c) is equivalent to a force-torque at the shear center, which is the superposition of shearing 
stress due to (d) bending and (e) torsion.

 We now consider thin-walled members possessing no plane of 
symmetry. Consider an angle shape subjected to a vertical load P. If the 
member is oriented in such a way that the load P is perpendicular to one 
of the principal centroidal axes Cz of the cross section, the couple vector 
M representing the bending moment in a given section will be directed 
along Cz (Fig. 6.49), and the neutral axis will coincide with that axis (see 
Sec. 4.8). Equation (4.16) is applicable and can be used to compute the 
normal stresses in the section. We will now determine where the load P 
should be applied so that Eq. (6.6) can be used to determine the shearing 
stresses in the section, i.e., so that the member is to bend without 
twisting.
 Assume that the shearing stresses in the section are defined by 
Eq. (6.6). As in the channel member, the elementary shearing forces 
exerted on the section can be expressed as dF 5 q ds, with q 5 VQyI, 
where Q represents a first moment with respect to the neutral axis 
(Fig. 6.50a). The resultant of the shearing forces exerted on portion OA 
of the cross section is force F1 directed along OA, and the resultant of 
the shearing forces exerted on portion OB is a force F2 along OB 
(Fig. 6.50b). Since both F1 and F2 pass through point O at the corner of 

y

z
MN.A.

C

A

B

Fig. 6.49 Beam without plane of 
symmetry subject to bending moment.

y

z

dF 5 q ds

N.A.
C

A

B

O

(a) Elementary shearing forces (b) Resultant forces on elements (c) Placement of V to eliminate twisting

V
A

O

B

F1

F2

A

O

B

Fig. 6.50 Determination of shear center, O, in an angle shape.
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460 Shearing Stresses in Beams and Thin-Walled Members

the angle, their own resultant, which is the shear V in the section, must 
also pass through O (Fig. 6.50c). The member will not be twisted if the 
line of action of the load P passes through the corner O of the section in 
which it is applied.
 The same reasoning can be applied when load P is perpendicular 
to the other principal centroidal axis Cy of the angle section. Since any 
load P applied at the corner O of a cross section also can be resolved into 
components perpendicular to the principal axes, the member will not be 
twisted if each load is applied at the corner O of a cross section. Thus, O 
is the shear center of the section.
 Angle shapes with one vertical and one horizontal leg are encoun-
tered in many structures. Such members will not be twisted if vertical 
loads are applied along the center line of their vertical leg. Note from 
Fig. 6.51 that the resultant of the elementary shearing forces exerted on 
the vertical portion OA of a given section will be equal to the shear V, 
while the resultant of the shearing forces on the horizontal portion OB will 
be zero:

#
A

O

q ds 5 V     #
B

O

q ds 5 0

This does not mean that there will be no shearing stress in the horizontal 
leg of the member. By resolving the shear V into components perpendicu-
lar to the principal centroidal axes of the section and computing the 
shearing stress at every point, t is zero at only one point between O and B 
(see Sample Prob. 6.6).
 Another type of thin-walled member frequently encountered in 
practice is the Z shape. While the cross section of a Z shape does not 
possess any axis of symmetry, it does possess a center of symmetry O 
(Fig. 6.52). This means that any point H of the cross section corre-
sponds another point H9, so that the segment of straight line HH9 is 
bisected by O. Clearly, the center of  symmetry O coincides with the 
centroid of the cross section. As we will now demonstrate, point O is 
also the shear center of the cross section.
 As for an angle shape, we assume that the loads are applied in a 
plane perpendicular to one of the principal axes of the section, so that 
this axis is also the neutral axis of the section (Fig. 6.53). We further 
assume that the shearing stresses in the section are defined by Eq. (6.6), 
where the member is bent without being twisted. Denoting by Q the 
first moment about the neutral axis of portion AH of the cross section 
and by Q9 the first moment of portion EH9, we note that Q9 5 2Q. 
Thus, the shearing stresses at H and H9 have the same magnitude and 
the same direction, and the shearing forces exerted on small elements 
of area dA located respectively at H and H9 are equal forces that have 
equal and opposite moments about O (Fig. 6.54). Since this is true for 
any pair of symmetric elements, the resultant of the shearing forces 
exerted on the section has a zero moment about O. This means that 
the shear V in the section is directed along a line that passes through O. 
Since this analysis can be repeated when the loads are applied in a 
plane perpendicular to the other principal axis, point O is the shear 
center of the section.

dF � q ds

V

A

O B

A

O
B

Fig. 6.51 Vertically loaded angle section and 
resulting shear flow.

A
H

O

B

D
E

H'

Fig. 6.52 Z section has centroid and shear center 
coinciding.

A H

O

B

y

z
N.A.

D

E

�

�

H'

Fig. 6.53 Neutral axis location for load applied in 
a plane perpendicular to principal axis z.

A

dA

dF

dF

dA

H

O

B

D

EH'

Fig. 6.54 For member bending without twisting, 
equal and opposite moments about O occur for any 
pair of symmetric elements.
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*6.6 Unsymmetric Loading of Thin-Walled Members and Shear Center 461

Sample Problem 6.6

Determine the distribution of shearing stresses in the thin-walled 
angle shape DE of uniform thickness t for the loading shown.

a

a

D

E

P

B

y

y'

z

z'

C

A
O

a

45�

1
2

a1
2

a
4

a
4

Fig. 1 Angle section with 
principal axes y’ and z’.

1
2 h

h

b b

n n n

m m m

n

Fig. 2 Parallelogram and equivalent 
rectangle for determining moments of inertia.

(continued)

STRATEGY: Locate the centroid of the cross section and determine 
the two principal moments of inertia. Resolve the load P into compo-
nents parallel to the principal axes, equal to the shear forces. The two 
sets of shearing stresses are then calculated at locations along the two 
angle legs. These are then superposed to obtain the shearing stress 
distribution.

MODELING and ANALYSIS:

 Shear Center. We recall from Sec. 6.6 that the shear center of 
the cross section of a thin-walled angle shape is located at its corner. 
Since the load P is applied at D, it causes bending but no twisting of 
the shape.

 Principal Axes. We locate the centroid C of a given cross section 
AOB (Fig. 1). Since the y9 axis is an axis of symmetry, the y9 and z9

axes are the principal centroidal axes of the section. We recall that for 
the parallelogram shown (Fig. 2), Inn 5

1
12 bh3 and Imm 5

1
3 bh3. Consid-

ering each leg of the section as a parallelogram, we now determine the 
centroidal moments of inertia Iy¿ and Iz¿:

Iy¿ 5 2 c 1
3

  a t
cos 458

b 1a cos 45823 d 5
1

3
 ta3

Iz¿ 5 2 c 1

12
  a t

cos 458
b 1a cos 45823 d 5

1

12
 ta3
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462 Shearing Stresses in Beams and Thin-Walled Members

 Superposition. The shear V in the section is equal to the load P. 
As shown in Fig. 3, we resolve it into components parallel to the prin-
cipal axes.

z' z'

y' y'

A

B

O

V � P

y

z
C

O O

Vz' � P cos 45� Vy' � P cos 45� 

C

Fig. 3 Resolution of the load into 
components parallel to principal axes.

z'

y'

y'

2
1

z

�1 �1

B
e

a
a yO

A f

Vy' � P cos 45� 

y

C

45�

Fig. 4 Load component in plane of 
symmetry.

z'

z'

y'

a

z

�2

�2

B

e

O

A

f Vz' � P cos 45� 

y

y

C

45�

Fig. 5 Load component 
perpendicular to plane of symmetry.

B

A
z

O

y

a
3

3
4

P
at

Fig. 6 Shearing stress distribution.

 Shearing Stresses Due to Vy9. Using Fig. 4, we determine the 
shearing stress at point e of coordinate y:

y¿ 5
1
2 1a 1 y2 cos 458 2

1
2a cos 458 5

1
2 y cos 458

Q 5 t1a 2 y2y¿ 5
1
2 t1a 2 y2y cos 458

t1 5
Vy¿Q

Iz¿t
5
1P cos 4582 3 12 t1a 2 y2y cos 458 4

1 1
12 ta32t 5

3P1a 2 y2y
ta3

The shearing stress at point f is represented by a similar function of z.

 Shearing Stresses Due to Vz9.  Using Fig. 5, reconsider point e:

z¿ 5
1
2 1a 1 y2 cos 458

Q 5 1a 2 y2 Êtz¿ 5
1
2 1a2 2 y22t cos 458

t2 5
Vz¿Q

Iy¿t
5
1P cos 4582 3 12 1a2 2 y22t cos 458 4

113 ta32t 5
3P1a2 2 y22

4ta3

The shearing stress at point f is represented by a similar function of z.

 Combined Stresses. Along the Vertical Leg. The shearing 
stress at point e is

te 5 t2 1 t1 5
3P1a2 2 y22

4ta3 1
3P1a 2 y2y

ta3 5
3P1a 2 y2

4ta3  3 1a 1 y2 1 4y 4

te 5
3P1a 2 y2 1a 1 5y2

4ta3  ◀

 Along the Horizontal Leg. The shearing stress at point f is

tf 5 t2 2 t1 5
3P1a2 2 z22

4ta3 2
3P1a 2 z2z

ta3 5
3P1a 2 z2

4ta3 3 1a 1 z2 2 4z 4

tf 5
3P1a 2 z2 1a 2 3z2

4ta3  ◀

REFLECT and THINK: The combined stresses are plotted in Fig. 6.
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Problems
 6.61 through 6.64 Determine the location of the shear center O of a thin-

walled beam of uniform thickness having the cross section shown.

e

E

F

O

A
a

D

H J

B

a

a

a
G

Fig. P6.61

2a

E
F

e

O

A

D B
a

a

a

a

G

Fig. P6.62

E F

A

D B

GO

2a

a

a
e

Fig. P6.63

A

E G F

BD
a b

hO
e

Fig. P6.64
 6.65 through 6.68 An extruded beam has the cross section shown. 

Determine (a) the location of the shear center O, (b) the distribu-
tion of the shearing stresses caused by the vertical shearing force 
V shown applied at O.

72 mm

B

O

D

C

E

192 mm

A

e

6 mm

6 mm

12 mm

V � 110 kN 

Fig. P6.65

4.0 in.

6.0 in.
A

D B

G

E F

 in.t � 1
8

V � 2.75 kips

O

e

Fig. P6.66

V 5 2.75 kips

 in.t 5 1
8

4 in.

2 in.

6 in.

A

B
D

O

E

G

e
F

2 in.

Fig. P6.67

z O

30 mm
Iz = 1.149 × 106 mm4

A

H J

B

E

GF

D
30 mm

30 mm

30 mm
6 mm

4 mm

4 mm

6 mm

6 mm

e

N = 35 kN

Fig. P6.68
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 6.69 through 6.74 Determine the location of the shear center O of a 
thin-walled beam of uniform thickness having the cross section 
shown.

F

E

B

A

r

O
D

4 in.

2 in.

3 in.

3 in.

2 in.in.1
4

Fig. P6.69

E

60�

60�
F

e

O A
D

B

35 mm

35 mm

6 mm

Fig. P6.70

A

E
e

O

D

B

5 in.

4 in.

3 in.

3 in.

Fig. P6.71

60 mm
A

e

B

E F

D
O

60 mm

80 mm
40 mm

Fig. P6.72

e

O A
a t

B

Fig. P6.73

t

e

O

A

a

B

Fig. P6.74

 6.75 and 6.76 A thin-walled beam has the cross section shown. Determine 
the location of the shear center O of the cross section.

8 in.

in.3
4

in.3
4

in.1
2

6 in.8 in.

e

O

Fig. P6.75

e

40 mm80 mm

B
E

G

F

D
A

O 60 mm

6 mm

50 mm 50 mm

Fig. P6.76
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 6.77 and 6.78 A thin-walled beam of uniform thickness has the cross 
section shown. Determine the dimension b for which the shear 
center O of the cross section is located at the point indicated.

b

60 mm

60 mm

60 mm

F

G

E

O

D
B

A

Fig. P6.77

b

8 in. 10 in.

3 in.

1 in.

1 in.

A

D E

F G

O

H J

B

Fig. P6.78

6.79 For the angle shape and loading of Sample Prob. 6.6, check that 
eq dz 5 0 along the horizontal leg of the angle and eq dy 5 P
along its vertical leg.

6.80 For the angle shape and loading of Sample Prob. 6.6, (a) determine 
the points where the shearing stress is maximum and the corre-
sponding values of the stress, (b) verify that the points obtained are 
located on the neutral axis corresponding to the given loading.

 *6.81 Determine the distribution of the shearing stresses along line 
D9B9 in the horizontal leg of the angle shape for the loading 
shown. The x9 and y9 axes are the principal centroidal axes of the 
cross section.

 *6.82 For the angle shape and loading of Prob. 6.81, determine the distri-
bution of the shearing stresses along line D9A9 in the vertical leg.

 *6.83 A steel plate, 160 mm wide and 8 mm thick, is bent to form the 
channel shown. Knowing that the vertical load P acts at a point 
in the midplane of the web of the channel, determine (a) the 
torque T that would cause the channel to twist in the same way 
that it does under the load P, (b) the maximum shearing stress 
in the channel caused by the load P.

2a

15.8�

 Ix' � 1.428ta3

 Iy' � 0.1557ta3

0.342a

0.596a

a

A B
B'

D'
D

A'

A'

D'

x'

y'

x

y

C'
B'

P

a2
3

a
6

Fig. P6.81

P � 15 kN

100 mm

B

D
E

30 mm

A

Fig. P6.83

 *6.84 Solve Prob. 6.83, assuming that a 6-mm-thick plate is bent to 
form the channel shown.
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*6.85 The cantilever beam AB, consisting of half of a thin-walled pipe 
of 1.25-in. mean radius and 3

8-in. wall thickness, is subjected to a 
500-lb vertical load. Knowing that the line of action of the load 
passes through the centroid C of the cross section of the beam, 
determine (a) the equivalent force-couple system at the shear 
center of the cross section, (b) the maximum shearing stress in 
the beam. (Hint: The shear center O of this cross section was 
shown in Prob. 6.74 to be located twice as far from its vertical 
diameter as its centroid C.)

1.25 in.

500 lb

A

B

C

Fig. P6.85

*6.86 Solve Prob. 6.85, assuming that the thickness of the beam is 
reduced to 1

4 in.

 *6.87 The cantilever beam shown consists of a Z shape of 1
4-in. thick-

ness. For the given loading, determine the distribution of the 
shearing stresses along line A9B9 in the upper horizontal leg of 
the Z shape. The x9 and y9 axes are the principal centroidal axes 
of the cross section, and the corresponding moments of inertia 
are Ix ¿ 5 166.3 in4 and Iy ¿ 5 13.61 in4.

12 in.

6 in.6 in.

22.5�

A'

A'

B'

B'

C'

y

x

x'

y'

A
B

D'
D'

E'
E'

ED

3 kips

(a) (b)

Fig. P6.87

 *6.88 For the cantilever beam and loading of Prob. 6.87, determine the 
distribution of the shearing stresses along line B9D9 in the vertical 
web of the Z shape .
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Review and Summary
Stresses on a Beam Element
A small element located in the vertical plane of symmetry of a beam under 
a transverse loading was considered (Fig. 6.55), and it was found that nor-
mal stresses sx and shearing stresses txy are exerted on the transverse 
faces of that element, while shearing stresses tyx , equal in magnitude to 
txy , are exerted on its horizontal faces.

Horizontal Shear
For a prismatic beam AB with a vertical plane of symmetry supporting 
various concentrated and distributed loads (Fig. 6.56), at a distance x
from end A we can detach an element CDD9C9 of length Dx that extends 

�yx

�xy

�x

Fig. 6.55 Stress element from section of 
transversely loaded beam.

B

P1 P2 w

A

x

C

y

z

Fig. 6.56 Transversely loaded beam with vertical 
plane of symmetry.

across the width of the beam from the upper surface of the beam to a 
horizontal plane located at a distance y1 from the neutral axis (Fig. 6.57). 
The magnitude of the shearing force DH exerted on the lower face of the 
beam element is

¢H 5
VQ

I
 ¢x (6.4)

where V 5 vertical shear in the given transverse section
 Q 5  first moment with respect to the neutral axis of the shaded 

portion A of the section
 I 5  centroidal moment of inertia of the entire cross-sectional area

y1 y1

�x
C

c

x

D

C'
N.A.

D'

y

z

Fig. 6.57 Short segment of beam with stress element CDD9C9.
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Shear Flow
The horizontal shear per unit length or shear flow, denoted by the letter q, 
is obtained by dividing both members of Eq. (6.4) by Dx:

 q 5
¢H
¢x

5
VQ

I
 (6.5)

Shearing Stresses in a Beam
Dividing both members of Eq. (6.4) by the area DA of the horizontal face 
of the element and observing that DA 5 t Dx, where t is the width of the 
element at the cut, the average shearing stress on the horizontal face of the 
element is

 tave 5
VQ

It
 (6.6)

Since the shearing stresses txy and tyx are exerted on a transverse and a 
horizontal plane through D9 and are equal, Eq. (6.6) also represents the 
average value of txy along the line D91 D92 (Fig. 6.58).

�yx

�ave

�ave

�xy

D'

D'

D''2
C''1

D''1

1

2D'

Fig. 6.58 Shearing stress distribution across 
horizontal and transverse planes.

�x
C

c

x

D

C' D'

y

N.A.
z

Fig. 6.59 Segment of beam showing element CDD’C’ of length Dx.

Shearing Stresses in a Beam of Rectangular Cross Section
The distribution of shearing stresses in a beam of rectangular cross section 
was found to be parabolic, and the maximum stress, which occurs at the 
center of the section, is

tmax 5
3

2
 
V

A
 (6.10)

where A is the area of the rectangular section. For wide-flange beams, a 
good approximation of the maximum shearing stress is obtained by divid-
ing the shear V by the cross- sectional area of the web.

Longitudinal Shear on Curved Surface
Equations (6.4) and (6.5) can be used to determine the longitudinal shear-
ing force DH and the shear flow q exerted on a beam element if the ele-
ment is bounded by an arbitrary curved surface instead of a horizontal 
plane (Fig. 6.59). 
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Shearing Stresses in Thin-Walled Members
We found that we could extend the use of Eq. (6.6) to determine the aver-
age shearing stress in both the webs and flanges of thin-walled members, 
such as wide-flange beams and box beams (Fig. 6.60).

Plastic Deformations
Once plastic deformation has been initiated, additional loading causes 
plastic zones to penetrate into the elastic core of a beam. Because shearing 
stresses can occur only in the elastic core of a beam, both an increase in 
loading and the resulting decrease in the size of the elastic core contribute 
to an increase in shearing stresses.

Unsymmetric Loading and Shear Center
Prismatic members that are not loaded in their plane of symmetry will 
have both bending and twisting. Twisting is prevented if the load is applied 
at the point O of the cross section. This point is known as the shear center, 
where the loads may be applied so the member only bends (Fig. 6.61). If 
the loads are applied at that point,

sx 5 2
My

I
  tave 5

VQ

It
 (4.16, 6.6)

The principle of superposition can be used to find the stresses in unsym-
metric thin-walled members such as channels, angles, and extruded 
beams.

N.A.

xz�

y
t

z

(a)

N.A.

xy�

y

t

z

(b)

Fig. 6.60 Wide-flange beam sections 
showing shearing stress (a) in flange, (b) in 
web. The shaded area is that used for 
calculating the first moment of area.

e

O

P

Fig. 6.61 Placement of load to eliminate 
twisting through the use of an attached bracket.
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 6.89 Three boards are nailed together to form the beam shown, which 
is subjected to a vertical shear. Knowing that the spacing between 
the nails is s 5 75 mm and that the allowable shearing force in 
each nail is 400 N, determine the allowable shear when 
w 5 120 mm.

 6.90 For the beam and loading shown, consider section n–n and 
determine (a) the largest shearing stress in that section, (b) the 
shearing stress at point a.

Review Problems

60 mm

200 mm

w

s
s

s

60 mm

60 mm

Fig. P6.89

 6.91 For the wide-flange beam with the loading shown, determine the 
largest P that can be applied, knowing that the maximum normal 
stress is 24 ksi and the largest shearing stress, using the approxi-
mation tm 5 V/Aweb , is 14.5 ksi.

6.92 For the beam and loading shown, consider section n–n and 
determine the shearing stress at (a) point a, (b) point b.

0.6 m
80

80

100

160 kN

a n

180

n

0.9 m
Dimensions in mm

16

12 16

0.9 m

Fig. P6.90

 6.93 The built-up timber beam is subjected to a 1500-lb vertical shear. 
Knowing that the longitudinal spacing of the nails is s 5 2.5 in. 
and that each nail is 3.5 in. long, determine the shearing force in 
each nail.

P

6 ft

B
A C

9 ft

W24 × 104

Fig. P6.91

16 in.

12 kips 12 kips

A

n

n

B

a

b

10 in.
16 in.

4 in.

1 in.
1 in.

1 in.

4 in.

2 in.

Fig. P6.92

4 in.

4 in.

2 in. 2 in.
2 in.

2 in.

6 in. 4 in.

2 in.

Fig. P6.93
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 6.94 Knowing that a given vertical shear V causes a maximum shearing 
stress of 75 MPa in the hat-shaped extrusion shown, determine the 
corresponding shearing stress at (a) point a, (b) point b.

60 mm

20 mm 28 mm 20 mm

4 mm

4 mm

14 mm

6 mm 6 mm

b

a

40 mm

Fig. P6.94

6.95 Three planks are connected as shown by bolts of 14-mm diam-
eter spaced every 150 mm along the longitudinal axis of the 
beam. For a vertical shear of 10 kN, determine the average shear-
ing stress in the bolts.

 6.96 Three 1 3 18-in. steel plates are bolted to four L6 3 6 3 1 angles 
to form a beam with the cross section shown. The bolts have a 
7
8-in. diameter and are spaced longitudinally every 5 in. Knowing 
that the allowable average shearing stress in the bolts is 12 ksi, 
determine the largest permissible vertical shear in the beam. 
(Given: Ix 5 6123 in4.) 

125 mm 125 mm
100 mm

100 mm

250 mm

Fig. P6.95

C
1 in.

1 in.

1 in.

18 in.

18 in.x

Fig. P6.96

 6.97 The composite beam shown is made by welding C200 3 17.1 
rolled-steel channels to the flanges of a W250 3 80 wide-flange 
rolled-steel shape. Knowing that the beam is subjected to a verti-
cal shear of 200 kN, determine (a) the horizontal shearing force 
per meter at each weld, (b) the shearing stress at point a of the 
flange of the wide-flange shape.

112 mm

a

Fig. P6.97
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6.98 The design of a beam requires welding four horizontal plates to 
a vertical 0.5 3 5-in. plate as shown. For a vertical shear V, deter-
mine the dimension h for which the shear flow through the 
welded surfaces is maximum.

 6.99 A thin-walled beam of uniform thickness has the cross section 
shown. Determine the dimension b for which the shear center O
of the cross section is located at the point indicated.

2.5 in.

2.5 in.
h

h

0.5 in.

0.5 in.

4.5 in.4.5 in.
0.5 in.

Fig. P6.98

30 mm
b

A

F

J

B

D

G

O

H

E

K

60 mm

60 mm
45 mm

45 mm

Fig. P6.99

E

60�

60�
F

e

O A
D

B

in.1
4

1.5 in.

1.5 in.

Fig. P6.100

 6.100 Determine the location of the shear center O of a thin-walled 
beam of uniform thickness having the cross section shown .
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Computer Problems
The following problems are designed to be solved with a computer.

 6.C1 A timber beam is to be designed to support a distributed load and 
up to two concentrated loads as shown. One of the dimensions of its uni-
form rectangular cross section has been specified, and the other is to be 
determined so that the maximum normal stress and the maximum shear-
ing stress in the beam will not exceed given allowable values sall and tall. 
Measuring x from end A and using either SI or U.S. customary units, write 
a computer program to calculate for successive cross sections, from x 5 0 
to x 5 L and using given increments Dx, the shear, the bending moment, 
and the smallest value of the unknown dimension that satisfies in that 
section (1) the allowable normal stress requirement and (2) the allowable 
shearing stress requirement. Use this program to solve Prob. 5.65, assum-
ing sall 5 12 MPa and tall 5 825 kPa and using Dx 5 0.1 m.

B

t

h
A

x1

x3

x2

x4

a bL

P1 w
P2

Fig. P6.C1

 6.C2 A cantilever timber beam AB of length L and of uniform rectangular 
section shown supports a concentrated load P at its free end and a uni-
formly distributed load w along its entire length. Write a computer pro-
gram to determine the length L and the width b of the beam for which 
both the maximum normal stress and the maximum shearing stress in the 
beam reach their largest allowable values. Assuming sall 5 1.8 ksi and 
tall 5 120 psi, use this program to determine the dimensions L and b when 
(a) P 5 1000 lb and w 5 0, (b) P 5 0 and w 5 12.5 lb/in., and (c) P 5 500 lb 
and w 5 12.5 lb/in.

w

P

B

b

8 b

L

A

Fig. P6.C2
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 6.C3 A beam having the cross section shown is subjected to a vertical 
shear V. Write a computer program that, for loads and dimensions 
expressed in either SI or U.S. customary units, can be used to calculate the 
shearing stress along the line between any two adjacent rectangular areas 
forming the cross section. Use this program to solve (a) Prob. 6.10, 
(b) Prob. 6.12, (c) Prob. 6.22.

bn

b2

V

b1

hn

h2

h1

Fig. P6.C3

 6.C4 A plate of uniform thickness t is bent as shown into a shape with a 
vertical plane of symmetry and is then used as a beam. Write a computer 
program that, for loads and dimensions expressed in either SI or U.S. cus-
tomary units, can be used to determine the distribution of shearing 
stresses caused by a vertical shear V. Use this program (a) to solve 
Prob. 6.47, (b) to find the shearing stress at a point E for the shape and 
load of Prob. 6.50, assuming a thickness t 5

1
4 in.

y1

y

x

y2

x2

x1

xn

Fig. P6.C4
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 6.C6 A thin-walled beam has the cross section shown. Write a computer 
program that, for loads and dimensions expressed in either SI or U.S. cus-
tomary units, can be used to determine the location of the shear center O
of the cross section. Use the program to solve Prob. 6.75.

 6.C5 The cross section of an extruded beam is symmetric with respect 
to the x axis and consists of several straight segments as shown. Write a 
computer program that, for loads and dimensions expressed in either SI 
or U.S. customary units, can be used to determine (a) the location of the 
shear center O, (b) the distribution of shearing stresses caused by a verti-
cal force applied at O. Use this program to solve Prob. 6.70.

x2

x1

y1

t2 t1

yn tn

e

y2

O

V

y

x

Fig. P6.C5

O

b2

t0

t1

t2

ti

tn

an

ai

ai

an

a1

a1

a2

a2

e
bi

bn

Fig. P6.C6
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7
Transformations of 
Stress and Strain

The aircraft wing shown is being tested to determine how 
forces due to lift are distributed through the wing. This 
chapter will examine methods for determining maximum 
stresses and strains at any point in a structure such as this, 
as well as study the stress conditions necessary to cause 
failure.

Objectives
In this chapter, you will:

• Apply stress transformation equations to plane stress situations to 
determine any stress component at a point.

• Apply the alternative Mohr's circle approach to perform plane 
stress transformations.

• Use transformation techniques to identify key components of 
stress, such as principal stresses.

• Extend Mohr's circle analysis to examine three-dimensional states 
of stress.

• Examine theories of failure for ductile and brittle materials.

• Analyze plane stress states in thin-walled pressure vessels.

• Extend Mohr's circle analysis to examine the transformation 
of strain.
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478 Transformations of Stress and Strain

Introduction
The most general state of stress at a given point Q is represented by six 
components (Sec. 1.4). Three of these components, sx , sy , and sz , are the 
normal stresses exerted on the faces of a small cubic element centered at 
Q with the same orientation as the coordinate axes (Fig. 7.1a). The other 
three, txy , tyz , and tzx ,

† are the components of the shearing stresses on the 
same element. The same state of stress will be represented by a different 
set of components if the coordinate axes are rotated (Fig. 7.1b). The first 
part of this chapter determines how the components of stress are trans-
formed under a rotation of the coordinate axes. The second part of the 
chapter is devoted to a similar analysis of the transformation of strain 
components.

†Recall that tyx 5 txy , tzy 5 tyz , and txz 5 tzx (Sec. 1.4).

 Introduction

7.1 TRANSFORMATION OF 
PLANE STRESS

7.1A Transformation Equations
7.1B Principal Stresses and Maximum 

Shearing Stress
7.2 MOHR’S CIRCLE FOR 

PLANE STRESS

7.3 GENERAL STATE OF 
STRESS

7.4 THREE-DIMENSIONAL 
ANALYSIS OF STRESS

7.5 THEORIES OF FAILURE
*7.5A Yield Criteria for Ductile 

Materials
*7.5B Fracture Criteria for Brittle 

Materials
7.6 STRESSES IN THIN-

WALLED PRESSURE 
VESSELS

7.7 TRANSFORMATION OF 
PLANE STRAIN

*7.7A Transformation Equations
*7.7B Mohr’s Circle for Plane Strain

 *7.8 THREE-DIMENSIONAL 
ANALYSIS OF STRAIN

 *7.9 MEASUREMENTS OF 
STRAIN; STRAIN 
ROSETTE

�yz
�yx

�xy

�xz
�zx

�zy

�y

�y'z'

�y'x'

�x'z'

�z'x'

�z'y'

�x'y'

�y'

�x'

�z

�x
Q

O

z

y

x

(a)

O

z
z'

y'
y

x

x'

(b)

�z'

Q

Fig. 7.1 General state of stress at a point: (a) referred to {xyz}, (b) referred to {x9y9z9}.

 Our discussion of the transformation of stress will deal mainly with 
plane stress, i.e., with a situation in which two of the faces of the cubic 
element are free of any stress. If the z axis is chosen perpendicular to these 
faces, sz 5 tzx 5 tzy 5 0, and the only remaining stress components are 
sx , sy , and txy (Fig. 7.2). This situation occurs in a thin plate subjected to 
forces acting in the midplane of the plate (Fig. 7.3). It also occurs on the 

Fig. 7.2 Non-zero stress components 
for state of plane stress.

�yx

�xy

�y

�x
F1

F2

F3

F4

F5

F6

Fig. 7.3 Example of plane stress: thin 
plate subjected to only in-plane loads.
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Introduction 479

free surface of a structural element or machine component where any 
point of the surface of that element or component is not subjected to an 
external force (Fig. 7.4).
 In Sec. 7.1A, a state of plane stress at a given point Q is character-
ized by the stress components sx , sy , and txy  associated with the element 
shown in Fig. 7.5a. Components sx¿, sy¿, and tx¿y¿ associated with that 
element after it has been rotated through an angle u about the z axis 
(Fig. 7.5b) will then be determined. In Sec. 7.1B, the value up of u will be 
found, where the stresses sx¿ and sy¿ are the maximum and minimum 
stresses. These values of the normal stress are the principal stresses at 
point Q, and the faces of the corresponding element define the principal 
planes of stress at that point. The angle of rotation us for which the shear-
ing stress is maximum also is discussed.

F1

F2

Fig. 7.4 Example of plane stress: free surface 
of a structural component.

�xy

�x'y'

�y �y'

�x

�x'Q Q

z

x x

x'

y y'

z' � z

y
�

�

(a) (b)

Fig. 7.5 State of plane stress: (a) referred to {xyz}, (b) referred to {x9y9z9}.

 In Sec. 7.2, an alternative method to solve problems involving the 
transformation of plane stress, based on the use of Mohr’s circle, is 
presented.
 In Sec. 7.3, the three-dimensional state of stress at a given point is 
discussed, and the normal stress on a plane of arbitrary orientation at that 
point is determined. In Sec. 7.4, the rotations of a cubic element about 
each of the principal axes of stress and the corresponding transformations 
of stress are described by three different Mohr’s circles. For a state of plane 
stress at a given point, the maximum value of the shearing stress obtained 
using rotations in the plane of stress does not necessarily represent the 
maximum shearing stress at that point. This make it necessary to distin-
guish in-plane and out-of-plane maximum shearing stresses.
 Yield criteria for ductile materials under plane stress are discussed 
in Sec. 7.5A. To predict whether a material yields at some critical point 
under given load conditions, the principal stresses sa and sb will be deter-
mined at that point, and then used with the yield strength sY of the mate-
rial to evaluate a certain criterion. Two criteria in common use are the 
maximum-shearing-strength criterion and the maximum-distortion-energy 
criterion. In Sec. 7.5B, fracture criteria for brittle materials under plane 
stress are developed using the principal stresses sa and sb at some critical 
point and the ultimate strength sU of the material. Two criteria discussed 
here are the maximum-normal-stress criterion and Mohr’s criterion.
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480 Transformations of Stress and Strain

 Section 7.7 is devoted to the transformation of plane strain and Mohr’s 
circle for plane strain. In Sec. 7.8, the three-dimensional analysis of strain 
shows how Mohr’s circles can be used to determine the maximum shearing 
strain at a given point. These two particular cases are of special interest and 
should not be confused: the case of plane strain and the case of plane stress.
 The application of strain gages to measure the normal strain on the 
surface of a structural element or machine component is considered in 
Sec. 7.9. The components Px , Py , and gxy characterizing the state of strain 
at a given point are computed from the measurements made with three 
strain gages forming a strain rosette.

7.1  TRANSFORMATION OF 
PLANE STRESS

7.1A Transformation Equations
Assume that a state of plane stress exists at point Q (with sz 5 tzx 5 tzy 5 0) 
and is defined by the stress components sx , sy , and txy associated with 
the element shown in Fig. 7.5a. The stress components sx¿, sy¿, and tx¿y¿ 
associated with the element are determined after it has been rotated 
through an angle u about the z axis (Fig. 7.5b). These components are 
given in terms of sx , sy , txy , and u.
 In order to determine the normal stress sx¿ and shearing stress tx¿y¿ 
exerted on the face perpendicular to the x9 axis, consider a prismatic ele-
ment with faces perpendicular to the x, y, and x9 axes (Fig. 7.6a). If the 
area of the oblique face is DA, the areas of the vertical and horizontal faces 
are equal to DA cos u and DA sin u, respectively. The forces exerted on the 
three faces are as shown in Fig. 7.6b. (No forces are exerted on the 

Photo 7.1 Cylindrical pressure vessels. Photo 7.2 Spherical pressure vessel.

Thin-walled pressure vessels are an important application of the 
analysis of plane stress. Stresses in both cylindrical and spherical pressure 
vessels (Photos 7.1 and 7.2) are discussed in Sec. 7.6.
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7.1 Transformation of Plane Stress 481

triangular faces of the element, since the corresponding normal and 
shearing stresses are assumed equal to zero.) Using components along the 
x9 and y9 axes, the equilibrium equations are

gFx¿ 5 0:  sx¿ ¢A 2 sx 
1¢A cos u2 cos u 2 txy 

1¢A cos u2 sin u

  2sy 
1¢A sin u2 sin u 2 txy 

1¢A sin u2 cos u 5 0

gFy¿ 5 0:  tx¿y¿ ¢A 1 sx 
1¢A cos u2 sin u 2 txy 

1¢A cos u2 cos u

  2sy 
1¢A sin u2 cos u 1 txy1¢A sin u2 sin u 5 0

Solving the first equation for sx¿ and the second for tx¿y¿,

  sx¿ 5 sx cos2 u 1 sy sin2 u 1 2txy sin u cos u (7.1)

  tx¿y¿ 5 21sx 2 sy2 sin u cos u 1 txy1cos2 u 2 sin2 u2 (7.2)

Recalling the trigonometric relations

 sin 2u 5 2 sin u cos u    cos 2u 5 cos2 u 2 sin2 u (7.3)

and

 cos2 u 5
1 1 cos 2u

2
    sin2 u 5

1 2 cos 2u

2
 (7.4)

Fig. 7.5 (repeated) State of plane stress: (a) referred to {xyz}, (b) referred 
to {x9y9z9}.

�xy

�x'y'

�y �y'

�x

�x'Q Q

z

x x

x'

y y'

z' � z

y
�

�

(a) (b)

Fig. 7.6 Stress transformation equations are determined by 
considering an arbitrary prismatic wedge element. (a) Geometry 
of the element. (b) Free-body diagram.

z

x

x'

y' y

(a)

�A cos � �
�

�A sin �

�A

x

x'

y' y

(b)

(�A cos )�

(�A cos )�

�

�x'y' �A

�xy

(�A sin )��xy

�x' �A
�x

(�A sin )��y
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482 Transformations of Stress and Strain

Eq. (7.1) is rewritten as

 sx¿ 5 sx 
1 1 cos 2u

2
1 sy 

1 2 cos 2u

2
1 txy sin 2u

or

 sx¿ 5
sx 1 sy

2  1
sx 2 sy

2
 cos 2u 1 txy sin 2u (7.5)

Using the relationships of Eq. (7.3), Eq. (7.2) is now

 tx¿y¿ 5 2 
sx 2 sy

2
 sin 2u 1 txy cos 2u (7.6)

The normal stress sy¿ is obtained by replacing u in Eq. (7.5) by the angle 
u 1 908 that the y9 axis forms with the x axis. Since cos (2u 1 1808) 5 2cos 2u 
and sin (2u 1 1808) 5 2sin 2u,

 sy¿ 5
sx 1 sy

2
2
sx 2 sy

2
 cos 2u 2 txy sin 2u (7.7)

 Adding Eqs. (7.5) and (7.7) member to member,

 sx¿ 1 sy¿ 5 sx 1 sy (7.8)

Since sz 5 sz9 5 0, we thus verify for plane stress that the sum of the 
normal stresses exerted on a cubic element of material is independent of 
the orientation of that element.†

7.1B  Principal Stresses and Maximum 
Shearing Stress

Equations (7.5) and (7.6) are the parametric equations of a circle. This 
means that, if a set of rectangular axes is used to plot a point M of abscissa 
sx¿ and ordinate tx¿y¿ for any given parameter u, all of the points obtained 
will lie on a circle. To establish this property, we eliminate u from Eqs. (7.5) 
and (7.6) by first transposing (sx 1 sy)/2 in Eq. (7.5) and squaring both 
members of the equation, then squaring both members of Eq. (7.6), and 
finally adding member to member the two equations obtained:

 asx¿ 2
sx 1 sy

2
b2

1 tx¿y¿
2 5 asx 2 sy

2
b2

1 txy
2  (7.9)

Setting

save 5
sx 1 sy

2
 and R 5 Ba

sx 2 sy

2
b2

1 txy
2  (7.10)

the identity of Eq. (7.9) is given as

 1sx¿ 2 save22 1 tx¿y¿
2 5 R2 (7.11)

†This verifies the property of dilatation as discussed in the first footnote of Sec. 2.6.
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7.1 Transformation of Plane Stress 483

which is the equation of a circle of radius R centered at the point C of 
abscissa save and ordinate 0 (Fig. 7.7). Due to the symmetry of the circle 
about the horizontal axis, the same result is obtained if a point N of 
abscissa sx¿ and ordinate 2tx¿y¿ is plotted instead of M. (Fig. 7.8). This 
property will be used in Sec. 7.2.

�x'y'

�x'y'

�x'

�x'

�min

�max

�ave

D

E

C
B AO

M
R

Fig. 7.7 Circular relationship of 
transformed stresses.

�x'y'

�x'y'�

�x'

�x'

�ave

C
O

R
N

Fig. 7.8 Equivalent formation of stress 
transformation circle.

 The points A and B where the circle of Fig. 7.7 intersects the hori-
zontal axis are of special interest: point A corresponds to the maximum 
value of the normal stress sx¿ , while point B corresponds to its minimum 
value. Both points also correspond to a zero value of the shearing stress 
tx¿y¿. Thus, the values up of the parameter u which correspond to points A 
and B can be obtained by setting tx¿y¿ 5 0 in Eq. (7.6).†

 tan 2up 5
2txy

sx 2 sy
 (7.12)

This equation defines two values 2up that are 1808 apart and thus two val-
ues up that are 908 apart. Either value can be used to determine the orien-
tation of the corresponding element (Fig. 7.9). The planes containing the 
faces of the element obtained in this way are the principal planes of stress 
at point Q, and the corresponding values smax and smin exerted on these 
planes are the principal stresses at Q. Since both values up defined by 
Eq. (7.12) are obtained by setting tx¿y¿ 5 0 in Eq. (7.6), it is clear that no 
shearing stress is exerted on the principal planes.
 From Fig. 7.7,

 smax 5 save 1 R   and   smin 5 save 2 R (7.13)

Substituting for save and R from Eq. (7.10),

 smax, min 5
sx 1 sy

2
6 Ba

sx 2 sy

2
b2

1 txy
2  (7.14)

†This relationship also can be obtained by differentiating sx9 in Eq. (7.5) and setting the 
derivative equal to zero: dsx9ydu 5 0.

�min

�min

�max

�max

�p

�p

y

Q x

y'

x'

Fig. 7.9 Principal stresses.

bee98233_ch07_476-555.indd   483bee98233_ch07_476-555.indd   483 11/9/13   3:37 PM11/9/13   3:37 PM



484 Transformations of Stress and Strain

Unless it is possible to tell by inspection which of these principal planes 
is subjected to smax and which is subjected to smin , it is necessary to sub-
stitute one of the values up into Eq. (7.5) in order to determine which cor-
responds to the maximum value of the normal stress.
 Referring again to Fig. 7.7, points D and E located on the vertical 
diameter of the circle correspond to the largest value of the shearing stress 
tx¿y¿. Since the abscissa of points D and E is save 5 (sx 1 sy)y2, the values 
us of the parameter u corresponding to these points are obtained by setting 
sx¿5 (sx 1 sy)y2 in Eq. (7.5). The sum of the last two terms in that equa-
tion must be zero. Thus, for u 5 us ,

†

sx 2 sy

2
 cos 2us 1 txy sin 2us 5 0

or

 tan 2us 5 2 

sx 2 sy

2txy
 (7.15)

This equation defines two values 2us that are 1808 apart, and thus two 
values us that are 908 apart. Either of these values can be used to determine 
the orientation of the element corresponding to the maximum shearing 
stress (Fig. 7.10). Fig. 7.7 shows that the maximum value of the shearing 
stress is equal to the radius R of the circle. Recalling the second of Eqs. 
(7.10), 

 tmax 5 Ba
sx 2 sy

2
b2

1 txy
2  (7.16)

As observed earlier, the normal stress corresponding to the condition of 
maximum shearing stress is

 s¿ 5 save 5
sx 1 sy

2
 (7.17)

 Comparing Eqs. (7.12) and (7.15), tan 2us is the negative reciprocal 
of tan 2up . Thus, angles 2us and 2up are 908 apart, and therefore angles us 
and up are 458 apart. Thus, the planes of maximum shearing stress are at 
458 to the principal planes. This confirms the results found in Sec. 1.4 for 
a centric axial load (Fig. 1.38) and in Sec. 3.1C for a torsional load 
(Fig. 3.17).
 Be aware that the analysis of the transformation of plane stress has 
been limited to rotations in the plane of stress. If the cubic element of 
Fig. 7.5 is rotated about an axis other than the z axis, its faces may be 
subjected to shearing stresses larger than defined by Eq. (7.16). In Sec. 7.3, 
this occurs when the principal stresses in Eq. (7.14) have the same sign 
(i.e., either both tensile or both compressive). In these cases, the value 
given by Eq. (7.16) is referred to as the maximum in-plane shearing stress.

†This relationship also can be obtained by differentiating tx9y9 in Eq. (7.6) and setting the 
derivative equal to zero: dtx9y9ydu 5 0.

Fig. 7.10 Maximum shearing stress.
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�
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7.1 Transformation of Plane Stress 485

Concept Application 7.1
For the state of plane stress shown in Fig. 7.11a, determine (a) the 
principal planes, (b) the principal stresses, (c) the maximum shearing 
stress and the corresponding normal stress.

 a. Principal Planes. Following the usual sign convention, the 
stress components are

sx 5 150 MPa    sy 5 210 MPa    txy 5 140 MPa

Substituting into Eq. (7.12),

 tan 2up 5
2txy

sx 2 sy
5

211402
50 2 12102 5

80

60

 2up 5 53.18    and    1808 1 53.18 5 233.18

 up 5 26.68    and    116.68

b. Principal Stresses. Equation (7.14) yields

 s
max, min

5
s

x
1 s

y

2
6 Ba

s
x

2 s
y

2
b2

1 t
xy
2

 5 20 6 213022 1 14022
 smax 5 20 1 50 5 70 MPa

 smin 5 20 2 50 5 230 MPa

The principal planes and principal stresses are shown in Fig. 7.11b. 
Making 2u 5 53.18 in Eq. (7.5), it is confirmed that the normal stress 
exerted on face BC of the element is the maximum stress:

 sx¿ 5
50 2 10

2
1

50 1 10

2
 cos 53.18 1 40 sin 53.18

     5 20 1 30 cos 53.18 1 40 sin 53.18 5 70 MPa 5 smax

c. Maximum Shearing Stress. Equation (7.16) yields

tmax 5 Ba
sx 2 sy

2
b2

1 txy
2 5 213022 1 14022 5 50 MPa

Since smax and smin have opposite signs, tmax actually represents the 
maximum value of the shearing stress at the point. The orientation of the 
planes of maximum shearing stress and the sense of the shearing stresses 
are determined by passing a section along the diagonal plane AC of the 
element of Fig. 7.11b. Since the faces AB and BC of the element are in 
the principal planes, the diagonal plane AC must be one of the planes of 
maximum shearing stress (Fig. 7.11c). Furthermore, the equilibrium con-
ditions for the prismatic element ABC require that the shearing stress 
exerted on AC be directed as shown. The cubic element corresponding 
to the maximum shearing stress is shown in Fig. 7.11d. The normal stress 
on each of the four faces of the element is given by Eq. (7.17):

s¿ 5 save 5
sx 1 sy

2
5

50 2 10

2
5 20 MPa

10 MPa

40 MPa

50 MPa

(a)

smin 5 30 MPa

smax 5 70 MPa

 up
x

5 26.68A

B

C

(b)

s

s

min

smax

9

tmax

 up 5 26.68

us up5 52 458

458

218.48

A

C

B

(c)

��

�max

x
�s � �18.4�

� 20 MPa

�� � 20 MPa

� 50 MPa

(d)

Fig. 7.11 (a) Plane stress element. 
(b) Plane stress element oriented in 
principal directions. (c) Plane stress 
element showing principal and maximum 
shear planes. (d) Plane stress element 
showing maximum shear orientation.

bee98233_ch07_476-555.indd   485bee98233_ch07_476-555.indd   485 11/9/13   3:37 PM11/9/13   3:37 PM



486 Transformations of Stress and Strain

Sample Problem 7.1
A single horizontal force P with a magnitude of 150 lb is applied to 
end D of lever ABD. Knowing that portion AB of the lever has a diam-
eter of 1.2 in., determine (a) the normal and shearing stresses located 
at point H and having sides parallel to the x and y axes, (b) the prin-
cipal planes and principal stresses at point H.

STRATEGY: You can begin by determining the forces and couples 
acting on the section containing the point of interest, and then use 
them to calculate the normal and shearing stresses acting at that point. 
These stresses can then be transformed to obtain the principal stresses 
and their orientation.

MODELING and ANALYSIS:

Force-Couple System.  We replace the force P by an equivalent 
force-couple system at the center C of the transverse section contain-
ing point H (Fig.1):

 P 5 150 lb    T 5 1150 lb2 118 in.2 5 2.7 kip?in.

 Mx 5 1150 lb2 110 in.2 5 1.5 kip?in.

18 in.

1.2 in.
H

A

D

B

y

z

x

10 in.

4 in. P

Mx � 1.5 kip · in.

T � 2.7 kip · in.

H

xz

y

C

P � 150 lb

Fig. 1 Equivalent force-couple system 
acting on transverse section containing 
point H.

(continued)
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7.1 Transformation of Plane Stress 487

 a. Stresses Sx, Sy, Txy at Point H.  Using the sign convention 
shown in Fig. 7.2, the sense and the sign of each stress component are 
found by carefully examining the force-couple system at point C 
(Fig. 1):

sx 5 0   sy 5 1
Mc

I
5 1

11.5 kip?in.2 10.6 in.2
1
4p 10.6 in.24   sy 5 1

 
8.84 ksi  b

 txy 5 1
Tc

J
5 1

12.7 kip?in.2 10.6 in.2
1
2p 10.6 in.24     txy 5 1

 
7.96 ksi  b

We note that the shearing force P does not cause any shearing stress 
at point H. The general plane stress element (Fig. 2) is completed to 
reflect these stress results (Fig. 3).

 b. Principal Planes and Principal Stresses. Substituting the 
values of the stress components into Eq. (7.12), the orientation of the 
principal planes is

 tan 2up 5
2txy

sx 2 sy
5

217.962
0 2 8.84

5 21.80

 2up 5 261.08    and    1808 2 61.08 5 11198

up 5 2
 
30.58    and    1  59.58 b

Substituting into Eq. (7.14), the magnitudes of the principal stresses 
are

 smax, min 5
sx 1 sy

2
6 Ba

sx 2 sy

2
b2

1 txy
2

 5
0 1 8.84

2
6 Ba0 2 8.84

2
b2

1 17.9622 5 14.42 6 9.10

smax 5 1
 
13.52 ksi b

smin 5 2
 
4.68 ksi b

Considering face ab of the element shown, up 5 230.58 in Eq. (7.5) 
and sx9 5 24.68 ksi. The principal stresses are as shown in Fig. 4.

�y

�x

�xy

Fig. 2 General plane 
stress element (showing 
positive directions).

�xy � 7.96 ksi

�y � 8.84 ksi

�x � 0

Fig. 3 Stress element at 
point H.

�p � �30.5�

�max � 13.52 ksi

�min � 4.68 ksi

H
a

b

Fig. 4 Stress element at point 
H oriented in principal directions.
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488

 7.1 through 7.4 For the given state of stress, determine the normal and 
shearing stresses exerted on the oblique face of the shaded trian-
gular element shown. Use a method of analysis based on the 
equilibrium of that element, as was done in the derivations of 
Sec. 7.1A.

Problems

4 ksi

3 ksi

8 ksi

708

Fig. P7.1

60 MPa

90 MPa

608

Fig. P7.2

10 ksi

6 ksi

4 ksi

758

Fig. P7.3

7.5 through 7.8 For the given state of stress, determine (a) the principal 
planes, (b) the principal stresses.

40 MPa

35 MPa

60 MPa

Fig. P7.5 and P7.9

10 ksi

2 ksi

3 ksi

Fig. P7.6 and P7.10

30 MPa

80 MPa

150 MPa

Fig. P7.7 and P7.11

12 ksi

8 ksi

18 ksi

Fig. P7.8 and P7.12

 7.9 through 7.12 For the given state of stress, determine (a) the orienta-
tion of the planes of maximum in-plane shearing stress, (b) the 
maximum in-plane shearing stress, (c) the corresponding normal 
stress.

 7.13 through 7.16 For the given state of stress, determine the normal and 
shearing stresses after the element shown has been rotated 
through (a) 258 clockwise, (b) 108 counterclockwise.

8 ksi

5 ksi

Fig. P7.13

90 MPa

30 MPa

60 MPa

Fig. P7.14

12 ksi

6 ksi

8 ksi

Fig. P7.15

80 MPa

50 MPa

Fig. P7.16

Fig. P7.4

80 MPa

40 MPa

558
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489

 7.17 and 7.18 The grain of a wooden member forms an angle of 158 with 
the vertical. For the state of stress shown, determine (a) the in-
plane shearing stress parallel to the grain, (b) the normal stress 
perpendicular to the grain.

 7.19 Two wooden members of 80 3 120-mm uniform rectangular 
cross section are joined by the simple glued scarf splice shown. 
Knowing that b 5 228 and that the maximum allowable stresses 
in the joint are, respectively, 400 kPa in tension (perpendicular 
to the splice) and 600 kPa in shear (parallel to the splice), deter-
mine the largest centric load P that can be applied.

 7.20 Two wooden members of 80 3 120-mm uniform rectangular 
cross section are joined by the simple glued scarf splice shown. 
Knowing that b 5 258 and that centric loads of magnitude 
P 5 10 kN are applied to the members as shown, determine 
(a) the in-plane shearing stress parallel to the splice, (b) the nor-
mal stress perpendicular to the splice.

 7.21 The centric force P is applied to a short post as shown. Knowing 
that the stresses on plane a-a are s 5 215 ksi and t 5 5 ksi, 
determine (a) the angle b that plane a-a forms with the horizontal, 
(b) the maximum compressive stress in the post.

250 psi

158

Fig. P7.17

1.8 MPa

3 MPa

158

Fig. P7.18

P'

P

80 mm �

120 mm

Fig. P7.19 and P7.20

P

a

�
a

Fig. P7.21

7.22 Two members of uniform cross section 50 3 80 mm are glued 
together along plane a-a that forms an angle of 258 with the hori-
zontal. Knowing that the allowable stresses for the glued joint are 
s 5 800 kPa and t 5 600 kPa, determine the largest centric load 
P that can be applied.

P

a 25�

50 mm

a

Fig. P7.22
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490

 7.23 The axle of an automobile is acted upon by the forces and couple 
shown. Knowing that the diameter of the solid axle is 32 mm, 
determine (a) the principal planes and principal stresses at point 
H located on top of the axle, (b) the maximum shearing stress at 
the same point.

3 kN

3 kN

350 N · m

0.15 m
H

0.2 m

Fig. P7.23

7.24 A 400-lb vertical force is applied at D to a gear attached to the 
solid 1-in. diameter shaft AB. Determine the principal stresses 
and the maximum shearing stress at point H located as shown 
on top of the shaft.

6 in.

2 in.
D

A

B
H

C

400 lb

Fig. P7.24

7.25 A mechanic uses a crowfoot wrench to loosen a bolt at E. Know-
ing that the mechanic applies a vertical 24-lb force at A, deter-
mine the principal stresses and the maximum shearing stress at 
point H located as shown on top of the 3

4 -in. diameter shaft.

24 lb

10 in.

6 in.E

B

A

H

Fig. P7.25
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491

7.26 The steel pipe AB has a 102-mm outer diameter and a 6-mm wall 
thickness. Knowing that arm CD is rigidly attached to the pipe, 
determine the principal stresses and the maximum shearing 
stress at point K.

7.27 For the state of plane stress shown, determine the largest value 
of sy for which the maximum in-plane shearing stress is equal to 
or less than 75 MPa.

7.28 For the state of plane stress shown, determine (a) the largest value 
of txy for which the maximum in-plane shearing stress is equal to 
or less than 12 ksi, (b) the corresponding principal stresses.

 7.29 For the state of plane stress shown, determine (a) the value of txy

for which the in-plane shearing stress parallel to the weld is zero, 
(b) the corresponding principal stresses.

7.30 Determine the range of values of sx for which the maximum 
in-plane shearing stress is equal to or less than 10 ksi.

200 mm

6 mm

150 mm

51 mm

z x

T

A

y

D

KH

10 kN

A

B

C

Fig. P7.26

60 MPa

20 MPa

�y

Fig. P7.27

8 ksi

10 ksi

�xy

Fig. P7.28

�xy

12 MPa

2 MPa

75�

Fig. P7.29

15 ksi

8 ksi

�x

Fig. P7.30
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492 Transformations of Stress and Strain

7.2  MOHR’S CIRCLE FOR 
PLANE STRESS

The circle used in the preceding section to derive the equations relating to 
the transformation of plane stress was introduced by the German engineer 
Otto Mohr (1835–1918) and is known as Mohr’s circle for plane stress. This 
circle can be used to obtain an alternative method for the solution of the 
problems considered in Sec. 7.1. This method is based on simple geometric 
considerations and does not require the use of specialized equations. While 
originally designed for graphical solutions, a calculator may also be used.
 Consider a square element of a material subjected to plane stress 
(Fig. 7.12a), and let sx , sy , and txy be the components of the stress exerted 
on the element. A point X of coordinates sx and 2txy and a point Y of coor-
dinates sy and 1txy are plotted (Fig. 7.12b). If txy is positive, as assumed in 
Fig. 7.12a, point X is located below the s axis and point Y above, as shown 
in Fig. 7.12b. If txy is negative, X is located above the s axis and Y below. 
Joining X and Y by a straight line, the point C is at the intersection of line XY 
with the s axis, and the circle is drawn with its center at C and having a 
diameter XY. The abscissa of C and the radius of the circle are respectively 
equal to save and R in Eqs. (7.10). The circle obtained is Mohr’s circle for plane 
stress. Thus, the abscissas of points A and B where the circle intersects the s 
axis represent the principal stresses smax and smin at the point considered.
 Since tan (XCA) 5 2txyy(sx 2 sy), the angle XCA is equal in magni-
tude to one of the angles 2up that satisfy Eq. (7.12). Thus, the angle up in 
Fig. 7.12a defines the orientation of the principal plane corresponding to 
point A in Fig. 7.12b and can be obtained by dividing the angle XCA mea-
sured on Mohr’s circle in half. If sx . sy and txy . 0, as in the case con-
sidered here, the rotation that brings CX into CA is counterclockwise. But, 
in that case, the angle up obtained from Eq. (7.12) and defining the direc-
tion of the normal Oa to the principal plane is positive; thus, the rotation 
bringing Ox into Oa is also counterclockwise. Therefore, the senses of rota-
tion in both parts of Fig. 7.12 are the same. So, if a counterclockwise rota-
tion through 2up is required to bring CX into CA on Mohr’s circle, a 
counterclockwise rotation through up will bring Ox into Oa in Fig. 7.12a.†

 Since Mohr’s circle is uniquely defined, the same circle can be 
obtained from the stress components sx¿, sy¿, and tx¿y¿, which correspond 
to the x9 and y9 axes shown in Fig. 7.13a. Point X9 of coordinates sx¿ and 
2tx¿y¿ and point Y9 of coordinates sy¿ and 1tx¿y¿ are located on Mohr’s 
circle, and the angle X9CA in Fig. 7.13b must be equal to twice the angle 
x9Oa in Fig. 7.13a. Since the angle XCA is twice the angle xOa, the angle 
XCX9 in Fig. 7.13b is twice the angle xOx9 in Fig. 7.13a. Thus the diameter 
X9Y9 defining the normal and shearing stresses sx¿, sy¿, and tx¿y¿ is obtained 
by rotating the diameter XY through an angle equal to twice the angle u 
formed by the x9and x axes in Fig. 7.13a. The rotation that brings the diam-
eter XY into the diameter X9Y9 in Fig. 7.13b has the same sense as the 
rotation that brings the xy axes into the x9y9 axes in Fig. 7.13a.
 This property can be used to verify that planes of maximum shear-
ing stress are at 458 to the principal planes. Indeed, points D and E on 

†This is due to the fact that we are using the circle of Fig 7.8 rather than the circle of 
Fig. 7.7 as Mohr’s circle.

�max

�min

�

�

x �y

(b)

O
B A

Y ,

C

�( )

�y �xy�( 

2�p

)

X ,�x �xy

�

�

xy

�( )

1
2

�p

�y �max �max

�min

�min�x

�xy

O x

a

b

y

(a)

Fig. 7.12 (a) Plane stress element and the 
orientation of principal planes. (b) Corresponding 
Mohr‘s circle.
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7.2 Mohr’s Circle for Plane Stress 493

Mohr’s circle correspond to the planes of maximum shearing stress, while 
A and B correspond to the principal planes (Fig. 7.14b). Since the diam-
eters AB and DE of Mohr’s circle are at 908 to each other, the faces of the 
corresponding elements are at 458 to each other (Fig. 7.14a).

�y

�x

�xy

O

�
��y'

�x'

y'

x'

�max

�min

�

�

x'y'

x

2

a

b

y

(a) (b)

Y'

X

ABO C

Y

,�

�

y' �x'y�( ')

X' ,�x' �x'y�( ')

Fig. 7.13 (a) Stress element referenced to xy axes, transformed to obtain components referenced to x9y9 
axes. (b) Corresponding Mohr's circle.

Fig. 7.14 (a) Stress elements showing orientation of planes of maximum 
shearing stress relative to principal planes. (b) Corresponding Mohr's circle. 

�ave� '
� '

�

�

'

(a) (b)

O

O

B C A

D

E

�max

�min

�

�

max

�max

45�
90�

	

b

d

a

e

�

�

�

�

�

�

(a) Clockwise Above

(b) Counterclockwise Below

��

Fig. 7.15 Convention for plotting 
shearing stress on Mohr’s circle.

 The construction of Mohr’s circle for plane stress is simplified if 
each face of the element used to define the stress components is consid-
ered separately. From Figs. 7.12 and 7.13, when the shearing stress exerted 
on a given face tends to rotate the element clockwise, the point on Mohr’s 
circle corresponding to that face is located above the s axis. When the 
shearing stress on a given face tends to rotate the element counterclock-
wise, the point corresponding to that face is located below the s axis 
(Fig. 7.15).† As far as the normal stresses are concerned, the usual conven-
tion holds, so that a tensile stress is positive and is plotted to the right, 
while a compressive stress is considered negative and is plotted to the left.

†To remember this convention, think “In the kitchen, the clock is above, and the counter 
is below.”
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494 Transformations of Stress and Strain

Concept Application 7.2
For the state of plane stress considered in Concept Application 7.1, 
(a) construct Mohr’s circle, (b) determine the principal stresses, 
(c) determine the maximum shearing stress and the corresponding 
normal stress.

 a. Construction of Mohr’s Circle. Note from Fig. 7.16a that the 
normal stress exerted on the face oriented toward the x axis is tensile 
(positive) and the shearing stress tends to rotate the element counter-
clockwise. Therefore, point X of Mohr’s circle is plotted to the right of 
the vertical axis and below the horizontal axis (Fig. 7.16b). A similar 
inspection of the normal and shearing stresses exerted on the upper 
face of the element shows that point Y should be plotted to the left of 
the vertical axis and above the horizontal axis. Drawing the line XY, 
the center C of Mohr’s circle is found. Its abscissa is

save 5
sx 1 sy

2
5

50 1 12102
2

5 20 MPa

Since the sides of the shaded triangle are

CF 5 50 2 20 5 30 MPa    and    FX 5 40 MPa

the radius of the circle is

R 5 CX 5 213022 1 14022 5 50 MPa

 b. Principal Planes and Principal Stresses. The principal 
stresses are

 smax 5 OA 5 OC 1 CA 5 20 1 50 5 70 MPa

 smin 5 OB 5 OC 2 BC 5 20 2 50 5 230 MPa

O x

y

B
G

Y

C F A (MPa)

(MPa)

O

R

X

(b)

10 MPa
40 MPa

50 MPa

40

20

10

50

40

�

�

�

(a)

Fig. 7.16 (a) Plane stress element. (b) Corresponding Mohr's circle.

(continued)
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7.2 Mohr’s Circle for Plane Stress 495

Recalling that the angle ACX represents 2up (Fig. 7.16b),

tan 2 up 5
FX

CF
5

40

30

2 up 5 53.18    up 5 26.68

Since the rotation that brings CX into CA in Fig. 7.16d is counterclock-
wise, the rotation that brings Ox into the axis Oa corresponding to smax 
in Fig. 7.16c is also counterclockwise.

 c. Maximum Shearing Stress. Since a further rotation of 908 
counterclockwise brings CA into CD in Fig. 7.16d, a further rotation of 
458 counterclockwise will bring the axis Oa into the axis Od corre-
sponding to the maximum shearing stress in Fig. 7.16d. Note from 
Fig. 7.16d that tmax 5 R 5 50 MPa and the corresponding normal stress 
is s9 5 save 5 20 MPa. Since point D is located above the s axis in 
Fig. 7.16c, the shearing stresses exerted on the faces perpendicular to 
Od in Fig. 7.16d must be directed so that they will tend to rotate the 
element clockwise.

O

B

Y

C

D

A
(MPa)

(MPa)

O

X

(d)

max

t

s

t

t

5 50

pu 5 53.1°2

908

R 5 50E

5  70maxs
5  2 30min s

  5   ave 5 209s s 

pu

458

5 70 MPamaxs

5  50 MPamaxt

5  30 MPamins

  5  20 MPa9s   5  20 MPa9s 

x

y

b

a

(c)

e

d

Fig. 7.16 (cont.) (c) Stress element orientations for principal and maximum shearing stresses. 
(d) Mohr’s circle used to determine principal and maximum shearing stresses.
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496 Transformations of Stress and Strain

 In the case of torsion (Fig. 7.18a), sx 5 sy 5 0 and txy 5 tmax 5 TcyJ. 
Therefore, points X and Y are located on the t axis, and Mohr’s circle has 
a radius of R 5 TcyJ centered at the origin (Fig. 7.18b). Points A and B 
define the principal planes (Fig. 7.18c) and the principal stresses:

 smax, min 5 6 R 5 6  

Tc
J

 (7.19)

P'

x � P/A

D

E

C
Y

x

y e d

X
R

�

�x�

(b)(a) (c)

�

PP' '� 

max�

P

Fig. 7.17 (a) Member under centric axial load. (b) Mohr’s circle. (c) Element showing planes of maximum 
shearing stress.

T'

T

y

x

T'

T

b a
Y

X

CB A

R
�max

max

�
max�

�

�

min�

Tc
J

(a) (b) (c)

�

Fig. 7.18 (a) Member under torsional load. (b) Mohr’s circle. (c) Element showing 
orientation of principal stresses.

 Mohr’s circle provides a convenient way of checking the results 
obtained earlier for stresses under a centric axial load (Sec. 1.4) and 
under a torsional load (Sec. 3.1C). In the first case (Fig. 7.17a), sx 5 
PyA, sy 5 0, and txy 5 0. The corresponding points X and Y define a 
circle of radius R 5 Py2A that passes through the origin of coordinates 
(Fig. 7.17b). Points D and E yield the orientation of the planes of maxi-
mum shearing stress (Fig. 7.17c), as well as tmax and the corresponding 
normal stresses s9:

 tmax 5 s¿ 5 R 5
P

2 A
 (7.18)
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7.2 Mohr’s Circle for Plane Stress 497

Sample Problem 7.2
For the state of plane stress shown determine (a) the principal planes 
and the principal stresses, (b) the stress components exerted on the 
element obtained by rotating the given element counterclockwise 
through 308.

STRATEGY: Since the given state of stress represents two points on 
Mohr’s circle, you can use these points to generate the circle. The state 
of stress on any other plane, including the principal planes, can then 
be readily determined through the geometry of the circle.

MODELING and ANALYSIS:

Construction of Mohr’s Circle (Fig 1). On a face perpendicular to 
the x axis, the normal stress is tensile, and the shearing stress tends to 
rotate the element clockwise. Thus, X is plotted at a point 100 units 
to the right of the vertical axis and 48 units above the horizontal axis. 
By examining the stress components on the upper face, point Y(60, 248) 
is plotted. Join points X and Y by a straight line to define the center C 
of Mohr’s circle. The abscissa of C, which represents save , and the 
radius R of the circle, can be measured directly or calculated as

save 5 OC 5
1
2 1sx 1 sy2 5

1
2 1100 1 602 5 80 MPa

R 5 21CF22 1 1FX22 5 212022 1 14822 5 52 MPa

60 MPa

100 MPa

48 MPa

y

x

2

�

O B

X(100, 48)

R

F
C

Y(60, �48)

A �  (MPa)

min �
28 MPa
� m �

52 MPa
�

ave � 80 MPa�

p�

max � 132 MPa�

(MPa)

Fig. 1 Mohr’s circle for given stress state.

 a. Principal Planes and Principal Stresses. We rotate the diam-
eter XY clockwise through 2up until it coincides with the diameter AB. 
Thus,

tan 2up 5
XF

CF
5

48

20
5 2.4  2up 5 67.48 i  up 5 33.78 i ◀

(continued)
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498 Transformations of Stress and Strain

The principal stresses are represented by the abscissas of points A and 
B:

 smax 5 OA 5 OC 1 CA 5 80 1 52  smax 5
 
1132 MPa ◀

 smin 5 OB 5 OC 2 BC 5 80 2 52      smin 5 1 28 MPa ◀

Since the rotation that brings XY into AB is clockwise, the rotation that 
brings Ox into the axis Oa corresponding to smax is also clockwise; we 
obtain the orientation shown in Fig. 2 for the principal planes.

 b. Stress Components on Element Rotated 308l. Points X9 
and Y9 on Mohr’s circle that correspond to the stress components on 
the rotated element are obtained by rotating X Y counterclockwise 
through 2u 5 608 (Fig. 3). We find

f 5 1808 2 608 2 67.48   f 5 52.68      ◀

sx¿ 5 OK 5 OC 2 KC 5 80 2 52 cos 52.68  sx¿ 5 1 48.4 MPa ◀

 sy¿ 5 OL 5 OC 1 CL 5 80 1 52 cos 52.68  sy¿ 5 1111.6 MPa  ◀

  tx¿y¿ 5 KÊX¿ 5 52 sin 52.68            tx¿y¿ 5 41.3 MPa ◀

Since X9 is located above the horizontal axis, the shearing stress on the 
face perpendicular to O x9 tends to rotate the element clockwise. The 
stresses, along with their orientation, are shown in Fig. 4.

xO
p � 33.7��

min � 28 MPa�

max � 132 MPa

a

�

Fig. 2 Orientation of principal stress element.

2 � 60�

�

O B
K

X

LC A

Y
Y'

�  (MPa)

 � 180� � 60� � 67.4� �

�

�

 � 52.6��

�
2 p � 67.4��

(MPa)

X'�x'

�y'

�x'y'

Fig. 3 Mohr’s circle analysis for element 
rotation of 308 counterclockwise.

xO
 � 30��

�y' � 111.6 MPa

�x' � 48.4 MPa

�x'y' � 41.3 MPa

x'

Fig. 4 Stress components obtained by rotating 
original element 308 counterclockwise.
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7.2 Mohr’s Circle for Plane Stress 499

Sample Problem 7.3
A state of plane stress consists of a tensile stress s0 5 8 ksi exerted on 
vertical surfaces and of unknown shearing stresses. Determine (a) the 
magnitude of the shearing stress t0 for which the largest normal stress 
is 10 ksi, (b) the corresponding maximum shearing stress.

STRATEGY: You can use the normal stresses on the given element 
to determine the average normal stress, thereby establishing the cen-
ter of Mohr’s circle. Knowing that the given maximum normal stress 
is also a principal stress, you can use this to complete the construction 
of the circle.

MODELING and ANALYSIS:

Construction of Mohr’s Circle (Fig.1). Assume that the shearing 
stresses act in the senses shown. Thus, the shearing stress t0 on a face 
perpendicular to the x axis tends to rotate the element clockwise, and 
point X of coordinates 8 ksi and t0 is plotted above the horizontal axis. 
Considering a horizontal face of the element, sy 5 0 and t0 tends to rotate 
the element counterclockwise. Thus, Y is plotted at a distance t0 below O.
 The abscissa of the center C of Mohr’s circle is

save 5
1
2 1sx 1 sy2 5

1
2 18 1 02 5 4 ksi

The radius R of the circle is found by observing that smax 5 10 ksi and 
is represented by the abscissa of point A:

 smax 5 save 1 R

 10 ksi 5 4 ksi 1 R    R 5 6 ksi

 a. Shearing Stress t0. Considering the right triangle CFX, 

cos 2Êup 5
CF
CX

5
CF
R

5
4 ksi

6 ksi
  2Êup 5 48.28 i  up 5 24.18 i

 t0 5 FX 5 R sin 2Êup 5 16 ksi2 sin 48.28   t0 5 4.47 ksi ◀

 b. Maximum Shearing Stress. The coordinates of point D of 
Mohr’s circle represent the maximum shearing stress and the corre-
sponding normal stress.

 tmax 5 R 5 6 ksi  tmax 5 6 ksi ◀

2 us 5 908 2 2 up 5 908 2 48.28 5 41.88 l   ux 5 2 0.98 l

The maximum shearing stress is exerted on an element that is oriented 
as shown in Fig. 2. (The element upon which the principal stresses are 
exerted is also shown.)

REFLECT and THINK. If our original assumption regarding the sense 
of t0 was reversed, we would obtain the same circle and the same answers, 
but the orientation of the elements would be as shown in Fig. 3.

�0 �0 � 8 ksi
�0

�0

y

xO

xO
24.18

20.98

0s
0t

smin 5 2 ksi

smax 5 10 ksi

tmax 5 6 ksi

save 5 4 ksi

Fig. 3 Orientation of principal and maximum 
shearing stress planes for opposite sense of t0.

x

d

a

O

s5 20.98u

p5 24.18u

0s
0t

save 5 4 ksi

tmax 5 6 ksi

smin 5 2 ksi

smax 5 10 ksi

Fig. 2 Orientation of principal and maximum 
shearing stress planes for assumed sense of t0.

�

2 p�

2

2 ksi

s�

(ksi)�

min ��

4 ksi 4 ksi

8 ksi
ave ��

max � 10 ksi�

D

R

CO

E

Y

F A

X

B

0�

0�
max�

(ksi)

Fig. 1 Mohr’s circle for given state of stress.
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Problems
 7.31 Solve Probs. 7.5 and 7.9, using Mohr’s circle.

 7.32 Solve Probs. 7.7 and 7.11, using Mohr’s circle.

 7.33 Solve Prob. 7.10, using Mohr’s circle.

 7.34 Solve Prob. 7.12, using Mohr’s circle.

 7.35 Solve Prob. 7.13, using Mohr’s circle.

7.36 Solve Prob. 7.14, using Mohr’s circle.

 7.37 Solve Prob. 7.15, using Mohr’s circle.

7.38 Solve Prob. 7.16, using Mohr’s circle.

 7.39 Solve Prob. 7.17, using Mohr’s circle.

 7.40 Solve Prob. 7.18, using Mohr’s circle.

 7.41 Solve Prob. 7.19, using Mohr’s circle.

7.42 Solve Prob. 7.20, using Mohr’s circle.

 7.43 Solve Prob. 7.21, using Mohr’s circle.

7.44 Solve Prob. 7.22, using Mohr’s circle.

 7.45 Solve Prob. 7.23, using Mohr’s circle.

 7.46 Solve Prob. 7.24, using Mohr’s circle.

 7.47 Solve Prob. 7.25, using Mohr’s circle.

 7.48 Solve Prob. 7.26, using Mohr’s circle.

 7.49 Solve Prob. 7.27, using Mohr’s circle.

7.50 Solve Prob. 7.28, using Mohr’s circle.

 7.51 Solve Prob. 7.29, using Mohr’s circle.

7.52 Solve Prob. 7.30, using Mohr’s circle.

 7.53 Solve Prob. 7.29, using Mohr’s circle and assuming that the weld 
forms an angle of 608 with the horizontal.
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501

7.54 and 7.55 Determine the principal planes and the principal stresses 
for the state of plane stress resulting from the superposition of 
the two states of stress shown.

3 ksi

5 ksi

6 ksi

2 ksi
4 ksi

+
458

Fig. P7.54

100 MPa

50 MPa

50 MPa

75 MPa
+

308

Fig. P7.55

7.56 and 7.57 Determine the principal planes and the principal stresses 
for the state of plane stress resulting from the superposition of 
the two states of stress shown.

�0
�0�0

�0

30�

30�

Fig. P7.56

�0

�0

30�

+

Fig. P7.57

 7.58 For the element shown, determine the range of values of txy for 
which the maximum tensile stress is equal to or less than 60 MPa.

�xy

120 MPa

20 MPa

Fig. P7.58 and P7.59

 7.59 For the element shown, determine the range of values of txy for 
which the maximum in-plane shearing stress is equal to or less 
than 150 MPa.
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502

7.60 For the state of stress shown, determine the range of values of u
for which the magnitude of the shearing stress tx ¿y ¿ is equal to or 
less than 8 ksi.

�y'

�x'

�x'y'

16 ksi

6 ksi

�

Fig. P7.60

 7.61 For the state of stress shown, determine the range of values of u
for which the normal stress sx¿ is equal to or less than 50 MPa.

90 MPa

60 MPa

�y'

�x'

�x'y'

�

Fig. P7.61 and P7.62

 7.62 For the state of stress shown, determine the range of values of u
for which the normal stress sx¿ is equal to or less than 100 MPa.

7.63 For the state of stress shown, it is known that the normal and 
shearing stresses are directed as shown and that sx 5 14 ksi, 
sy 5 9 ksi, and smin 5 5 ksi. Determine (a) the orientation of the 
principal planes, (b) the principal stress smax , (c) the maximum 
in-plane shearing stress.

7.64 The Mohr’s circle shown corresponds to the state of stress given 
in Fig. 7.5a and b. Noting that sx¿ 5 OC 1 (CX9) cos (2up 2 2u) 
and that tx¿y¿ 5 (CX9) sin (2up 2 2u), derive the expressions for sx¿
and tx¿y¿ given in Eqs. (7.5) and (7.6), respectively. [Hint: Use 
sin  (A 1 B) 5 sin A cos B 1 cos A sin B and cos (A 1 B) 5

cos A cos B 2 sin A sin B.]

 7.65 (a) Prove that the expression sx ¿ sy ¿ 2 t
2
x ¿y ¿, where sx ¿, sy ¿, and tx ¿y ¿

are components of the stress along the rectangular axes x9 and 
y9, is independent of the orientation of these axes. Also, show that 
the given expression represents the square of the tangent drawn 
from the origin of the coordinates to Mohr’s circle. (b) Using the 
invariance property established in part a, express the shearing 
stress txy in terms of sx , sy , and the principal stresses smax and 
smin.

�xy

�y

�x

Fig. P7.63

�x'y'
�xy

�y
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7.3 General State of Stress 503

7.3 GENERAL STATE OF STRESS
In the preceding sections, we have assumed a state of plane stress with 
sz 5 tzx 5 tzy 5 0, and have considered only transformations of stress 
associated with a rotation about the z axis. We will now consider the gen-
eral state of stress represented in Fig. 7.1a and the transformation of stress 
associated with the rotation of axes shown in Fig. 7.1b. However, our anal-
ysis will be limited to the determination of the normal stress sn on a plane 
of arbitrary orientation.
 Three of the faces in the tetrahedron shown in Fig. 7.19 are parallel 
to the coordinate planes, while the fourth face, ABC, is perpendicular to 
the line QN. Denoting the area of face ABC as DA and the direction cosines 
of line QN as lx , ly , lz , the areas of the faces perpendicular to the x, y, 
and z axes are (DA)lx , (DA)ly , and (DA)lz. If the state of stress at point Q
is defined by the stress components sx , sy , sz , txy , tyz , and tzx , the forces
exerted on the faces parallel to the coordinate planes are obtained by mul-
tiplying the appropriate stress components by the area of each face 
(Fig. 7.20). On the other hand, the forces exerted on face ABC consist of a 
normal force of magnitude sn DA directed along QN and a shearing force 
with a magnitude t DA perpendicular to QN but of unknown direction. 
Since QBC, QCA, and QAB face the negative x, y, and z axes respectively, 
the forces exerted must be shown with negative senses.
 The sum of the components along QN of all the forces acting on the 
tetrahedron is zero. The component along QN of a force parallel to the x 
axis is obtained by multiplying the magnitude of that force by the direction 
cosine lx. The components of forces parallel to the y and z axes are 
obtained in a similar way. Thus,

gFn 5 0:  sn¢A 2 1sx ¢A lx2lx 2 1txy ¢A lx2ly 2 1txz ¢A lx2lz

21tyx ¢A ly2lx 2 1sy ¢A ly2ly 2 1tyz ¢A ly2lz

21tzx ¢A lz2lx 2 1tzy ¢A lz2ly 2 1sz ¢A lz2lz 5 0

Dividing through by DA and solving for sn gives

 sn 5 sxl
2
x 1 syl

2
y 1 szl

2
z 1 2txylxly 1 2tyzlylz 1 2tzxlzlx (7.20)

 Note that the equation for the normal stress sn is a quadratic form 
in lx , ly , and lz. The coordinate axes are found when the right-hand mem-
ber of Eq. (7.20) reduces to the three terms containing the squares of the 
direction cosines.† Calling these axes a, b, and c, the corresponding nor-
mal stresses sa , sb , and sc , and the direction cosines of QN with respect 
to these axes la , lb , and lc. gives

 sn 5 sal
2
a 1 sbl

2
b 1 scl

2
c (7.21)

�

x

z

y

O

C

B

Q

N

A

(   A)�z

�(   A)  y

�(   A)�x

�A

�

Fig. 7.19 Stress tetrahedron at point Q with three 
faces parallel to the coordinate planes.
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Fig. 7.20 Free-body diagram of stress 
tetrahedron at point Q.

†In Sec. 9.16 of F. P. Beer and E. R. Johnston, Vector Mechanics for Engineers, 10th ed., 
McGraw-Hill Book Company, 2013, a similar quadratic form is found to represent the 
moment of inertia of a rigid body with respect to an arbitrary axis. It is shown in Sec. 9.17 
that this form is associated with a quadric surface and reducing the quadratic form to 
terms containing only the squares of the direction cosines is equivalent to determining 
the principal axes of that surface.
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504 Transformations of Stress and Strain

 The coordinate axes a, b, c are the principal axes of stress. Since their 
orientation depends upon the state of stress at Q and thus upon the posi-
tion of Q, these axes are represented in Fig. 7.21 as attached to Q. The 
corresponding coordinate planes are known as the principal planes of 
stress, and the corresponding normal stresses sa , sb , and sc are the prin-
cipal stresses at Q.†

7.4  THREE-DIMENSIONAL 
ANALYSIS OF STRESS

If the element in Fig. 7.21 is rotated about one of the principal axes at Q, 
say the c axis (Fig. 7.22), the corresponding transformation of stress can 
be analyzed using Mohr’s circle as a transformation of plane stress. The 
shearing stresses exerted on the faces perpendicular to the c axis remain 
equal to zero. The normal stress sc is perpendicular to the plane ab where 
the transformation takes place and does not affect this transformation. 
Therefore, the circle of diameter AB is used to determine the normal and 
shearing stresses exerted on the faces of the element as it is rotated about 
the c axis (Fig. 7.23). Similarly, circles of diameter BC and CA can be used 
to determine the stresses on the element as it is rotated about the a and 
b axes, respectively. While this analysis is limited to rotations about the 
principal axes, it could be shown that any other transformation of axes 
would lead to stresses represented in Fig. 7.23 by a point located within 

�xy

�y
�x

�c

by

Q

c

x

a

Fig. 7.22 Stress element rotated 
about c axis.

O
C B

�

A
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�

�

�
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max�

Fig. 7.23 Mohr’s circles for general state 
of stress.

†For a discussion of the determination of the principal planes of stress and of the prin-
cipal stresses, see S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3d ed., 
McGraw-Hill Book Company, 1970, Sec. 77.
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�c

Q
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c

b

Fig. 7.21 General stress element 
oriented to principal axes.

the shaded area. Thus, the radius of the largest circle yields the maximum 
value of the shearing stress at point Q. Noting that the diameter of that 
circle is equal to the difference between smax and smin ,

 tmax 5
1
2 0smax 2 smin 0  (7.22)

where smax and smin represent the algebraic values of the maximum and 
minimum stresses at point Q.
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7.4 Three-Dimensional Analysis of Stress 505

 Recall that in plane stress, if the x and y axes are selected, we have 
sz 5 tzx 5 tzy 5 0. This means that the z axis (i.e., the axis perpendicular 
to the plane of stress) is one of the three principal axes of stress. In a Mohr-
circle diagram, this axis corresponds to the origin O, where s 5 t 5 0. 
The other two principal axes correspond to points A and B where Mohr’s 
circle for the xy plane intersects the s axis. If A and B are located on oppo-
site sides of the origin O (Fig. 7.24), the corresponding principal stresses 
represent the maximum and minimum normal stresses at point Q, and 
the maximum shearing stress is equal to the maximum “in-plane” shear-
ing stress. Recall that in Sec. 7.1B the planes of maximum shearing stress 
correspond to points D and E of Mohr’s circle and are at 458 to the prin-
cipal planes corresponding to points A and B. These are shown in the 
shaded diagonal planes of Figs. 7.25a and b.
 However, if A and B are on the same side of O, where sa and sb have 
the same sign, the circle defining smax , smin , and tmax is not the circle corre-
sponding to a transformation of stress within the xy plane. If sa . sb . 0, as 
assumed in Fig. 7.26, smax 5 sa  , smin 5 0, and tmax is equal to the radius of 
the circle defined by points O and A. Thus, tmax 5

1
2 smax. The normals Qd9 

and Qe9 to the planes of maximum shearing stress are obtained by rotating 
the axis Qa through 458 within the za plane. These planes of maximum shear-
ing stress are shown in the shaded diagonal planes of Figs. 7.27a and b.
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Fig. 7.24 Three-dimensional Mohr’s circles for 
state of plane stress where sa . 0 . sb. 
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Fig. 7.26 Three-dimensional Mohr's circles for 
state of plane stress where sa . sb . 0.
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Fig. 7.27 Out-of-plane of maximum shearing stress for plane 
stress element. (a) 458 counterclockwise from principal axis a. 
(b) 458 clockwise from principal axis a.
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Fig. 7.25 In-plane maximum shearing stress for 
an element having a principal axis aligned with the 
z-axis. (a) 458 clockwise from principal axis a. (b) 458 
counterclockwise from principal axis a.
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506 Transformations of Stress and Strain

Concept Application 7.3
For the state of plane stress shown in Fig. 7.28a, determine (a) the 
three principal planes and principal stresses and (b) the maximum 
shearing stress.

 a. Principal Planes and Principal Stresses. Construct Mohr’s 
circle for the transformation of stress in the xy plane (Fig. 7.28b). Point X
is plotted 6 units to the right of the t axis and 3 units above the 
s axis (since the corresponding shearing stress tends to rotate the ele-
ment clockwise). Point Y is plotted 3.5 units to the right of the t axis 
and 3 units below the s axis. Drawing the line XY, the center C of 
Mohr’s circle is found for the xy plane. Its abscissa is

save 5
sx 1 sy

2
5

6 1 3.5

2
5 4.75 ksi

Since the sides of the right triangle CFX are CF 5 6 2 4.75 5 1.25 ksi 
and FX 5 3 ksi, the radius of the circle is

R 5 CX 5 211.2522 1 1322 5 3.25 ksi

The principal stresses in the plane of stress are

sa 5 OA 5 OC 1 CA 5 4.75 1 3.25 5 8.00 ksi
sb 5 OB 5 OC 2 BC 5 4.75 2 3.25 5 1.50 ksi

 Since the faces of the element perpendicular to the z axis are free 
of stress, they define one of the principal planes, and the correspond-
ing principal stress is sz 5 0. The other two principal planes are 
defined by points A and B on Mohr’s circle. The angle up through 
which the element should be rotated about the z axis to bring its faces 
to coincide with these planes (Fig. 7.28c) is half the angle ACX.

tan 2up 5
FX
CF

5
3

1.25

2up 5 67.48 i  up 5 33.78 i

b. Maximum Shearing Stress. Now draw the circles of diameter 
OB and OA that correspond to rotations of the element about the 
a and b axes (Fig. 7.28d). Note that the maximum shearing stress is 
equal to the radius of the circle of diameter OA. Thus,

tmax 5
1
2 sa 5

1
2 18.00 ksi2 5 4.00 ksi

Since points D9 and E9, which define the planes of maximum shearing 
stress, are located at the ends of the vertical diameter of the circle cor-
responding to a rotation about the b axis, the faces of the element of 
Fig. 7.28c can be brought to coincide with the planes of maximum 
shearing stress through a rotation of 458 about the b axis.
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Fig. 7.28 (a) Plane stress element. 
(b) Mohr’s circle for stress transformation in 
xy plane. (c) Orientation of principal stresses. 
(d) Three-dimensional Mohr’s circles.
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*7.5  THEORIES OF FAILURE
7.5A  Yield Criteria for Ductile 

Materials
Structural elements and machine components made of a ductile material 
are usually designed so that the material will not yield under the expected 
loading conditions. When the element or component is under uniaxial 
stress (Fig. 7.29), the value of the normal stress sx that causes the material 
to yield is obtained from a tensile test of the same material, since the test 
specimen and the structural element or machine component are in the 
same state of stress. Thus, regardless of the actual mechanism that causes 
the material to yield, the element or component will be safe as long as sx

, sY , where sY is the yield strength of the test specimen.
 On the other hand, when a structural element or machine compo-
nent is in a state of plane stress (Fig. 7.30a), it is convenient to use one of 
the methods developed earlier to determine the principal stresses sa and 
sb at any given point (Fig. 7.30b). The material can then be considered to 
be in a state of biaxial stress at that point. Since this state is different from 
the state of uniaxial stress, it is not possible to predict from such a test 
whether or not the structural element or machine component under inves-
tigation will fail. Some criterion regarding the actual mechanism of failure 
of the material must be established that will make it possible to compare 
the effects of both states of stress. The purpose of this section is to present 
the two yield criteria most frequently used for ductile materials.

Maximum-Shearing-Stress Criterion. This criterion is based on 
the observation that yield in ductile materials is caused by slippage of the 
material along oblique surfaces and is due primarily to shearing stresses (see. 
Sec. 2.1B). According to this criterion, a structural component is safe as long 
as the maximum value tmax of the shearing stress in that component remains 
smaller than the corresponding shearing stress in a tensile-test specimen of 
the same material as the specimen starts to yield.
 Recalling from Sec. 1.3 that the maximum value of the shearing 
stress under a centric axial load is equal to half the value of the corre-
sponding normal stress, we conclude that the maximum shearing stress 
in a tensile-test specimen is 1

2 sY  as the specimen starts to yield. On the 
other hand, Sec. 7.4 showed, for plane stress, that tmax of the shearing 
stress is equal to 1

2 0smax 0  if the principal stresses are either both positive or 
both negative and to 1

2 0smax 2 smin 0  if the maximum stress is positive and 
the minimum stress is negative. Thus, if the principal stresses sa and sb 
have the same sign, the maximum-shearing-stress criterion gives

 0sa 0 , sY   0sb 0 , sY  (7.23)

If the principal stresses sa and sb have opposite signs, the maximum-
shearing-stress criterion yields

 0sa 2 sb 0 , sY  (7.24)

These relationships have been represented graphically in Fig. 7.31. Any 
given state of stress is represented by a point of coordinates sa and sb , 
where sa and sb are the two principal stresses. If this point falls within the 
area shown, the structural component is safe. If it falls outside this area, 
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Fig. 7.29 Structural element under uniaxial stress.
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a�

b�

(a)

P

Fig. 7.30 Structural element in a 
state of plane stress. (a) Stress 
element referred to coordinate axes. 
(b) Stress element referred to principal 
axes.

Fig. 7.31 Tresca’s hexagon for 
maximum-shearing-stress criterion.
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508 Transformations of Stress and Strain

the component fails as a result of yield in the material. The hexagon 
associated with the initiation of yield is known as Tresca’s hexagon after 
the French engineer Henri Edouard Tresca (1814–1885).

Maximum-Distortion-Energy Criterion. This criterion is based on 
the determination of the distortion energy in a given material. This is the 
energy associated with changes in shape in that material (as opposed to 
the energy associated with changes in volume in the same material). This 
criterion is also known as the von Mises criterion after the German-Amer-
ican applied mathematician Richard von Mises (1883–1953). Here, a given 
structural component is safe as long as the maximum value of the distor-
tion energy per unit volume in that material remains smaller than the 
distortion energy per unit volume required to cause yield in a tensile-test 
specimen of the same material. The distortion energy per unit volume in 
an isotropic material under plane stress is

 ud 5
1

6G
 1s2

a 2 sasb 1 s2
b2 (7.25)

where sa and sb are the principal stresses and G is the modulus of rigidity. 
In a tensile-test specimen that is starting to yield, sa 5 sY , sb 5 0, and 
1ud2Y 5 sY

2y6G. Thus, the maximum-distortion-energy criterion indicates 
that the structural component is safe as long as ud , (ud)Y , or

 s2
a 2 sasb 1 s2

b , s2
Y  (7.26)

where the point of coordinates sa and sb falls within the area shown in 
Fig. 7.32. This area is bounded by the ellipse

 s2
a 2 sasb 1 s2

b 5 s2
Y  (7.27)

which intersects the coordinate axes at sa 5 ;sY  and sb 5 ;sY. The 
major axis of the ellipse bisects the first and third quadrants and extends 
from A (sa 5 sb 5 sY) to B (sa 5 sb 5 2sY), while its minor axis extends 
from C (sa 5 2sb 5 20.577sY) to D (sa 5 2sb 5 0.577sY).
 The maximum-shearing-stress criterion and the maximum- 
distortion-energy criterion are compared in Fig. 7.33. The ellipse passes 
through the vertices of the hexagon. Thus, for the states of stress repre-
sented by these six points, the two criteria give the same results. For any 
other state of stress, the maximum-shearing-stress  criterion is more con-
servative than the maximum-distortion-energy criterion, since the hexa-
gon is located within the ellipse.
 A state of stress of particular interest is associated with yield in a tor-
sion test. Recall from Fig. 7.18 that, for torsion, smin 5 2smax. Thus, the 
corresponding points in Fig. 7.33 are located on the bisector of the second 
and fourth quadrants. It follows that yield occurs in a torsion test when 
sa 5 2sb 5 ;0.5sY according to the maximum-shearing-stress criterion 
and sa 5 2sb 5 ;0.577sY according to the maximum-distortion-energy 
criterion. But again recalling Fig. 7.18, sa and sb must be equal in magni-
tude to tmax , which is obtained from a torsion test for the yield strength tY 
of the material. Since the yield strength sY in tension and tY in shear are 
given for various ductile materials in Appendix B, the ratio tYysY can be 
determined for these materials where the range is from 0.55 to 0.60. Thus, 
the maximum-distortion-energy criterion appears somewhat more accurate 
than the maximum-shearing-stress criterion for predicting yield in torsion.

Fig. 7.32 Von Mises surface based on 
maximum-distortion-energy criterion. 
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*7.5 Theories of Failure 509

7.5B  Fracture Criteria for Brittle 
Materials Under Plane Stress

When brittle materials are subjected to a tensile test, they fail suddenly 
through rupture—or fracture—without any prior yielding. When a structural 
element or machine component made of a brittle material is under uniaxial 
tensile stress, the normal stress that causes it to fail is equal to the ultimate 
strength sU as determined from a tensile test, since both the specimen and 
the  element or component are in the same state of stress. However, when a 
structural element or machine component is in a state of plane stress, it is 
found convenient to determine the principal stresses sa and sb at any given 
point and to use one of the criteria presented in this section to predict 
whether or not the structural element or machine component will fail.

Maximum-Normal-Stress Criterion. According to this criterion, a 
given structural component fails when the maximum normal stress 
reaches the ultimate strength sU obtained from the tensile test of a speci-
men of the same material. Thus, the structural component will be safe as 
long as the absolute values of the principal stresses sa and sb are both 
less than sU:

 0sa 0 , sU  0sb 0 , sU (7.28)

The maximum-normal-stress criterion is shown graphically in Fig. 7.34. 
If the point obtained by plotting the values sa and sb of the principal 
stresses falls within the square area shown, the structural component is 
safe. If it falls outside that area, the component will fail.
 The maximum-normal-stress criterion is known as Coulomb’s crite-
rion after the French physicist Charles Augustin de Coulomb (1736–1806). 
This criterion suffers from an important shortcoming: it is based on the 
assumption that the ultimate strength of the material is the same in ten-
sion and in compression. As noted in Sec. 2.1B, this is seldom the case 
because the presence of flaws in the material, such as microscopic cracks 
or cavities, tends to weaken the material in tension, while not appreciably 
affecting its resistance to compressive failure. This criterion also makes no 
allowance for effects other than those of the normal stresses on the failure 
mechanism of the material.†

†Another failure criterion known as the maximum-normal-strain criterion, or Saint-
Venant’s criterion, was widely used during the nineteenth century. According to this 
criterion, a given structural component is safe as long as the maximum value of the 
normal strain in that component remains smaller than the value PU of the strain at which 
a tensile-test specimen of the same material will fail. But, as will be shown in Sec. 7.8, 
the strain is maximum along one of the principal axes of stress, if the deformation is 
elastic and the material homogeneous and isotropic. Thus, denoting by Pa and Pb the 
values of the normal strain along the principal axes in the plane of stress, we write

 0Pa 0 , PU  0Pb 0 , PU (7.29)

Making use of the generalized Hooke’s law (Sec. 2.5), we could express these relations 
in terms of the principal stresses sa and sb and the ultimate strength sU of the material. 
We would find that, according to the maximum-normal-strain criterion, the structural 
component is safe as long as the point obtained by plotting sa and sb falls within the 
area shown in Fig. 7.35, where n is Poisson’s ratio for the given material.

Fig. 7.34 Coulomb’s surface for 
maximum-normal-stress criterion.
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Fig. 7.35 Saint-Venant’s surface for 
maximum-normal-strain criterion.
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510 Transformations of Stress and Strain

Mohr’s Criterion. Suggested by the German engineer Otto Mohr, this 
criterion is used to predict the effect of a given state of plane stress on a 
brittle material when the results of various types of tests are available.
 Assume that tensile compressive tests have been conducted on a given 
material and that sUT and sUC of the ultimate strength in tension and compres-
sion have been determined. The state of stress corresponding to the rupture 
of the tensile-test specimen is represented on a Mohr-circle diagram where the 
circle intersects the horizontal axis at O and sUT (Fig. 7.36a). Similarly, the state 
of stress corresponding to the failure of the compressive-test specimen is rep-
resented by the circle intersecting the horizontal axis at O and sUC . Clearly, a 
state of stress represented by a circle entirely contained in either of these circles 
will be safe. Thus, if both principal stresses are positive, the state of stress is 
safe as long as sa , sUT and sb , sUT. If both principal stresses are negative, 
the state of stress is safe as long as |sa| , |sUC| and |sb| , |sUC|. Plotting the 
point of coordinates sa and sb (Fig. 7.36b), the state of stress is safe as long as 
that point falls within one of the square areas shown in that figure.
 In order to analyze sa and sb when they have opposite signs, assume 
that a torsion test has been conducted on the material and that its ultimate 
strength in shear, tU , has been determined. Drawing the circle centered 
at O representing the state of stress corresponding to the failure of the 
torsion-test specimen (Fig. 7.37a), observe that any state of stress repre-
sented by a circle entirely contained in that circle is also safe. According 
to Mohr’s criterion, a state of stress is safe if it is represented by a circle 
located entirely within the area bounded by the envelope of the circles 
corresponding to the available data. The remaining portions of the prin-
cipal-stress diagram are obtained by drawing various circles tangent to 
this envelope, determining the corresponding values of sa and sb , and 
plotting the points of coordinates sa and sb (Fig. 7.37b).
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Fig. 7.36 Mohr’s criterion for brittle 
materials having different ultimate 
strengths in tension and compression. 
(a) Mohr’s circles for uniaxial compression 
(left) and tension (right) tests at rupture. 
(b) Safe stress states when sa and sb have 
the same sign.

Fig. 7.37 Mohr’s criterion for brittle materials. (a) Mohr's circles 
for uniaxial compression (left), torsion (middle), and uniaxial 
tension (right) tests at rupture. (b) Envelope of safe stress states.
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*7.5 Theories of Failure 511

 More accurate diagrams can be drawn when test results correspond-
ing to various states of stress are available. If the only available data con-
sists of the ultimate strengths sUT and sUC , the envelope in Fig. 7.37a is 
replaced by the tangents AB and A9B9 to the circles corresponding to fail-
ure in tension and compression (Fig. 7.38a). From the similar triangles in 
Fig. 7.38, the abscissa of the center C of a circle tangent to AB and A9B9 is 
linearly related to its radius R. Since sa 5 OC 1 R and sb 5 OC 2 R, sa 
and sb are also related linearly. Thus, the shaded area corresponding to 
this simplified Mohr’s criterion is bounded by straight lines in the second 
and fourth quadrants (Fig. 7.38b).
 In order to determine whether a structural component is safe under 
a given load, the state of stress should be calculated at all critical points of 
the component (i.e., where stress concentrations are likely to occur). This 
can be done by using the stress-concentration factors given in Figs. 2.52, 
3.28, 4.24, and 4.25. However, there are many instances when the theory of 
elasticity must be used to determine the state of stress at a critical point.
 Special care should be taken when macroscopic cracks are detected 
in a structural component. While it can be assumed that the test specimen 
used to determine the ultimate tensile strength of the material contained 
the same type of flaws (i.e., microscopic cracks or cavities) as the structural 
component, the specimen was certainly free of any noticeable macro-
scopic cracks. When a crack is detected in a structural component, it is 
necessary to determine whether that crack will propagate under the 
expected load and cause the component to fail or will remain stable. This 
requires an analysis involving the energy associated with the growth of the 
crack. Such an analysis is beyond the scope of this text and should be 
carried out using by the methods of fracture mechanics.

Fig. 7.38 Simplified Mohr’s criterion for brittle 
materials. (a) Mohr's circles for uniaxial compression 
(left), torsion (middle), and uniaxial tension (right) tests 
at rupture. (b) Envelope of safe stress states.

�

�

�

UT

�a

�b

�UT

�UT�UC

�UC

�b

�a

C

A

B
R

O

B'

A'

�UC

(a)

(b)
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512 Transformations of Stress and Strain

Sample Problem 7.4
The state of plane stress shown occurs at a critical point of a steel 
machine component. As a result of several tensile tests, the tensile yield 
strength is sY 5 250 MPa for the grade of steel used. Determine the 
factor of safety with respect to yield using (a) the maximum-shearing-
stress criterion, (b) the maximum-distortion-energy criterion.

STRATEGY: Draw Mohr’s circle from the given state of plane stress. 
Analyzing this circle to obtain the principal stresses and the maximum 
shearing stress, you can then apply the maximum-shearing-stress and 
maximum-distortion-energy criteria.

MODELING and ANALYSIS:

Mohr’s Circle.  We construct Mohr’s circle (Fig. 1) for the given state 
of stress and find

 save 5 OC 5
1
2 1sx 1 sy2 5

1
2 180 2 402 5 20 MPa

 tm 5 R 5 21CF22 1 1FX22 5 216022 1 12522 5 65 MPa

Principal Stresses

 sa 5 OC 1 CA 5 20 1 65 5 1  85 MPa

 sb 5 OC 2 BC 5 20 2 65 5 2 45 MPa

 a. Maximum-Shearing-Stress Criterion.  Since the tensile 
strength is sY 5 250 MPa, the corresponding shearing stress at yield is

tY 5
1
2 sY 5

1
2 1250 MPa2 5 125 MPa

For tm 5 65 MPa, F.S. 5
tY

tm
5

125 MPa

65 MPa
 F.S. 5 1.92 ◀

y

x

40 MPa

80 MPa

25 MPa

40 MPa

25 MPa

25 MPa

80 MPa

20 MPa

D

Y

B O
C

R

F

X

A

m�

b� a�

�

�

Fig. 1 Mohr’s circle for given stress element.

(continued)
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*7.5 Theories of Failure 513

 b. Maximum-Distortion-Energy Criterion.  Introducing a fac-
tor of safety into Eq. (7.26) gives

s2
a 2 sasb 1 s2

b 5 a sY

F.S.
b2

For sa 5 185 MPa, sb 5 245 MPa, and sY 5 250 MPa, we have

18522 2 1852 12452 1 14522 5 a250

F.S.
b2

 114.3 5
250

F.S.
   F.S. 5 2.19 ◀

REFLECT and THINK. For a ductile material with sY 5 250 MPa, we 
have drawn the hexagon associated with the maximum-shearing-
stress criterion and the ellipse associated with the maximum-
distortion-energy criterion (Fig. 2). The given state of plane stress is 
represented by point H with coordinates sa 5 85 MPa and 
sb 5 245 MPa. The straight line drawn through points O and H inter-
sects the hexagon at point T and the ellipse at point M. For each cri-
terion, F.S. is verified by measuring the line segments indicated and 
computing their ratios:

1a2 F.S. 5
OT
OH

5 1.92   1b2 F.S. 5
OM
OH

5 2.19

85

45
O

T

H

M

Y � 250 MPa�

Y � 250 MPa�

a�

b�

Fig. 2 Tresca and von Mises envelopes and 
given stress state (point H).

bee98233_ch07_476-555.indd   513bee98233_ch07_476-555.indd   513 11/9/13   3:37 PM11/9/13   3:37 PM



514

 7.66 For the state of plane stress shown, determine the maximum 
shearing stress when (a) sx 5 14 ksi and sy 5 4 ksi, (b) sx 5 21 ksi 
and sy 5 14 ksi. (Hint: Consider both in-plane and out-of-plane 
shearing stresses.)

Problems

12 ksi

y

z
x

σy

σx

Fig. P7.66 and P7.67

7.67 For the state of plane stress shown, determine the maximum 
shearing stress when (a) sx 5 20 ksi and sy 5 10 ksi, (b) sx 5 12 ksi 
and sy 5 5 ksi. (Hint: Consider both in-plane and out-of-plane 
shearing stresses.)

 7.68 For the state of stress shown, determine the maximum shearing 
stress when (a) sy 5 40 MPa, (b) sy 5 120 MPa. (Hint: Consider 
both in-plane and out-of-plane shearing stresses.)

80 MPa

y

z
x

140 MPa

σy

Fig. P7.68 and P7.69

 7.69 For the state of stress shown, determine the maximum shearing 
stress when (a) sy 5 20 MPa, (b) sy 5 140 MPa. (Hint: Consider 
both in-plane and out-of-plane shearing stresses.)
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 7.70 and 7.71 For the state of stress shown, determine the maximum shear-
ing stress when (a) sz 5 0, (b) sz 5 160 MPa, (c) sz 5 260 MPa.

z
x

84 MPa

y

30 MPa

100 MPa

σz

Fig. P7.70

z
x

84 MPa

y

170 MPa

100 MPa

z

Fig. P7.71

z
x

τyz

3 ksi12 ksi

y

Fig. P7.72
z

x

τyz

10 ksi12 ksi

y

Fig. P7.73

7.72 and 7.73 For the state of stress shown, determine the maximum 
shearing stress when (a) tyz 5 17.5 ksi, (b) tyz 5 8 ksi, (c) tyz 5 0.

 7.74 For the state of stress shown, determine the value of txy for which 
the maximum shearing stress is (a) 9 ksi, (b) 12 ksi.

6 ksi

15 ksi

y

z
x

τxy

Fig. P7.74

70 MPa

120 MPa

y

z
x

τxy

Fig. P7.75
 7.75 For the state of stress shown, determine the value of txy for which 

the maximum shearing stress is 80 MPa.
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7.76 For the state of stress shown, determine two values of sy for 
which the maximum shearing stress is 73 MPa.

48 MPa

50 MPa

y

z
x

σy

Fig. P7.76

8 ksi

14 ksi

y

z
x

σy

Fig. P7.77

z

y

x

σy � 100 MPa

60 MPa

τ xz

Fig. P7.78

z

y

x

σy

90 MPa

60 MPa

Fig. P7.79

7.77 For the state of stress shown, determine two values of sy for 
which the maximum shearing stress is 10 ksi.

7.78 For the state of stress shown, determine the range of values of txz

for which the maximum shearing stress is equal to or less than 
60 MPa.

7.79 For the state of stress shown, determine two values of sy for 
which the maximum shearing stress is 80 MPa.
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 *7.80 For the state of stress of Prob. 7.69, determine (a) the value of sy

for which the maximum shearing stress is as small as possible, 
(b) the corresponding value of the shearing stress.

 7.81 The state of plane stress shown occurs in a machine component 
made of a steel with sY 5 325 MPa. Using the maximum-
distortion-energy criterion, determine whether yield will occur 
when (a) s0 5 200 MPa, (b) s0 5 240 MPa, (c) s0 5 280 MPa. If 
yield does not occur, determine the corresponding factor of safety.

 7.82 Solve Prob. 7.81, using the maximum-shearing-stress criterion.

 7.83 The state of plane stress shown occurs in a machine component 
made of a steel with sY 5 45 ksi. Using the maximum-distortion-
energy criterion, determine whether yield will occur when 
(a) txy 5 9 ksi, (b) txy 5 18 ksi, (c) txy 5 20 ksi. If yield does not 
occur, determine the corresponding factor of safety.

 7.84 Solve Prob. 7.83, using the maximum-shearing-stress criterion.

 7.85 The 38-mm-diameter shaft AB is made of a grade of steel for 
which the yield strength is sY 5 250 MPa. Using the maximum-
shearing-stress criterion, determine the magnitude of the torque 
T for which yield occurs when P5 240 kN.

100 MPa

σ0

σ0

Fig. P7.81

21 ksi

36 ksi

τ xy

Fig. P7.83

d = 38 mm
P

T

B

A

Fig. P7.85

1.5 in.

T A

B

P

Fig. P7.87

7.86 Solve Prob. 7.85, using the maximum-distortion-energy criterion.

 7.87 The 1.5-in.-diameter shaft AB is made of a grade of steel with a 
42-ksi tensile yield stress. Using the maximum-shearing-stress 
criterion, determine the magnitude of the torque T for which 
yield occurs when P 5 60 kips.

7.88 Solve Prob. 7.87, using the maximum-distortion-energy criterion.
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 7.89 and 7.90 The state of plane stress shown is expected to occur in an 
aluminum casting. Knowing that for the aluminum alloy used 
sUT 5 80 MPa and sUC 5 200 MPa and using Mohr’s criterion, 
determine whether rupture of the casting will occur.

100 MPa

60 MPa

10 MPa

Fig. P7.89

75 MPa

32 MPa

Fig. P7.90

7 ksi

8 ksi

Fig. P7.91

9 ksi

15 ksi

2 ksi

Fig. P7.92

8 ksi

t0

Fig. P7.93

 7.91 and 7.92 The state of plane stress shown is expected to occur in an 
aluminum casting. Knowing that for the aluminum alloy used 
sUT 5 10 ksi and sUC 5 30 ksi and using Mohr’s criterion, deter-
mine whether rupture of the casting will occur.

7.93 The state of plane stress shown will occur at a critical point in an 
aluminum casting that is made of an alloy for which sUT 5 10 ksi 
and sUC 5 25 ksi. Using Mohr’s criterion, determine the shearing 
stress t0 for which failure should be expected.
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80 MPa

�0

Fig. P7.94

 7.94 The state of plane stress shown will occur at a critical point in a 
pipe made of an aluminum alloy for which sUT 5 75 MPa and 
sUC 5 150 MPa. Using Mohr’s criterion, determine the shearing 
stress t0 for which failure should be expected.

 7.95 The cast-aluminum rod shown is made of an alloy for which 
sUT 5 70 MPa and sUC 5 175 MPa. Knowing that the magnitude 
T of the applied torques is slowly increased and using Mohr’s 
criterion, determine the shearing stress t0 that should be expected 
at rupture.

T'

T

t0

Fig. P7.95

26 kN

32 mm

T

A

B

Fig. P7.96

1
2 �0

�0

1
2 �0

�0

1
2 �0

�0

(a) (b) (c)

Fig. P7.97

7.96 The cast-aluminum rod shown is made of an alloy for which 
sUT 5 60 MPa and sUC 5 120 MPa. Using Mohr’s criterion, deter-
mine the magnitude of the torque T for which failure should be 
expected.

7.97 A machine component is made of a grade of cast iron for which 
sUT 5 8 ksi and sUC 5 20 ksi. For each of the states of stress 
shown and using Mohr’s criterion, determine the normal stress 
s0 at which rupture of the component should be expected.
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520 Transformations of Stress and Strain

7.6  STRESSES IN THIN-WALLED 
PRESSURE VESSELS

Thin-walled pressure vessels provide an important application of the analysis 
of plane stress. Since their walls offer little resistance to bending, it can be 
assumed that the internal forces exerted on a given portion of wall are tangent 
to the surface of the vessel (Fig. 7.39). The resulting stresses on an element of 
wall will be contained in a plane tangent to the surface of the vessel.
 This analysis of stresses in thin-walled pressure vessels is limited to 
two types of vessels: cylindrical and spherical (Photos 7.3 and 7.4).

Fig. 7.39 Assumed stress distribution 
in thin-walled pressure vessels.

z

1�

1�

2�
2�

y

x

t

r

Fig. 7.40 Pressurized cylindrical vessel.

r

r

1�

x

dA

p dA

1� dA

t

t

z

y

x

�

Fig. 7.41 Free-body diagram to 
determine hoop stress in a cylindrical 
pressure vessel.

Photo 7.3 Cylindrical pressure vessels for liquid propane. Photo 7.4 Spherical pressure vessels at a chemical plant.

Cylindrical Pressure Vessels. Consider a cylindrical vessel with an inner 
radius r and a wall thickness t containing a fluid under pressure (Fig. 7.40). 
The stresses exerted on a small element of wall with sides respectively paral-
lel and perpendicular to the axis of the cylinder will be determined. Because 
of the axisymmetry of the vessel and its contents, no shearing stress is exerted 
on the element. The normal stresses s1 and s2 shown in Fig. 7.40 are there-
fore principal stresses. The stress s1 is called the hoop stress, because it is the 
type of stress found in hoops used to hold together the various slats of a 
wooden barrel. Stress s2 is called the longitudinal stress.
 To determine the hoop stress s1, detach a portion of the vessel and 
its contents bounded by the xy plane and by two planes parallel to the yz
plane at a distance Dx from each other (Fig. 7.41). The forces parallel to 
the z axis acting on the free body consist of the elementary internal forces 
s1 dA on the wall sections and the elementary pressure forces p dA exerted 
on the portion of fluid included in the free body. Note that the gage pres-
sure of the fluid p is the excess of the inside pressure over the outside 
atmospheric pressure. The resultant of the internal forces s1 dA is equal to 
the product of s1 and the cross-sectional area 2t Dx of the wall, while the 
resultant of the pressure forces p dA is equal to the product of p and the 
area 2r Dx. The equilibrium equation oFz 5 0 gives

©Fz 5 0: s112t ¢x2 2 p12r ¢x2 5 0

and solving for the hoop stress s1 ,

 s1 5
pr

t
 (7.30)
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7.6 Stresses in Thin-Walled Pressure Vessels 521

 To determine the longitudinal stress s2 , pass a section perpendicu-
lar to the x axis and consider the free body consisting of the portion of the 
vessel and its contents located to the left of the section (Fig. 7.42). The 
forces acting on this free body are the elementary internal forces s2 dA on 
the wall section and the elementary pressure forces p dA exerted on the 
portion of fluid included in the free body. Noting that the area of the fluid 
section is pr 2 and that the area of the wall section can be obtained by 
multiplying the circumference 2pr of the cylinder by its wall thickness t, 
the equilibrium equation is:†

oFx 5 0: s212prt2 2 p1pr 22 5 0

and solving for the longitudinal stress s2 ,

 s2 5
pr

2 t
 (7.31)

 Note from Eqs. (7.30) and (7.31) that the hoop stress s1 is twice as 
large as the longitudinal stress s2:

 s1 5 2s2 (7.32)

 Drawing Mohr’s circle through the points A and B that correspond 
to the principal stresses s1 and s2 (Fig. 7.43), and recalling that the maxi-
mum in-plane shearing stress is equal to the radius of this circle, we obtain

 tmax 1in plane2 5 1
2 s2 5

pr

4t
 (7.33)

This stress corresponds to points D and E and is exerted on an element 
obtained by rotating the original element of Fig. 7.40 through 458 within 

†Using the mean radius of the wall section, rm 5 r 1
1
2 t, to compute the resultant of the 

forces, a more accurate value of the longitudinal stress is

s2 5
pr

2t
 

1

1 1
t

2r

However, for a thin-walled pressure vessel, the term ty2r is sufficiently small to allow 
the use of Eq. (7.31) for engineering design and analysis. If a pressure vessel is not thin-
walled (i.e., if ty2r is not small), the stresses s1 and s2 vary across the wall and must be 
determined by the methods of the theory of elasticity.

Fig. 7.42 Free-body diagram to determine 
longitudinal stress.

2�

y

z x

dA

r

t

p dA

B

E

A

2

O

�

�

�1 22�

�

�

2� 2�

D'

D

E'

1
2

max �   2� �

Fig. 7.43 Mohr’s circle for element of 
cylindrical pressure vessel.

bee98233_ch07_476-555.indd   521bee98233_ch07_476-555.indd   521 11/9/13   3:37 PM11/9/13   3:37 PM



522 Transformations of Stress and Strain

the plane tangent to the surface of the vessel. However, the maximum 
shearing stress in the wall of the vessel is larger. It is equal to the radius 
of the circle of diameter OA and corresponds to a rotation of 458 about a 
longitudinal axis and out of the plane of stress.†

 tmax 5 s2 5
pr

2t
 (7.34)

Spherical Pressure Vessels. Now consider a spherical vessel of inner 
radius r and wall thickness t, containing a fluid under a gage pressure p. 
For reasons of symmetry, the stresses exerted on the four faces of a small 
element of wall must be equal (Fig. 7.44).

 s1 5 s2 (7.35)

†While the third principal stress is zero on the outer surface of the vessel, it is equal to 
2p on the inner surface and is represented by a point C (2p, 0) on a Mohr-circle dia-
gram. Thus, close to the inside surface of the vessel, the maximum shearing stress is 
equal to the radius of a circle of diameter CA, or

tmax 5
1

2
 1s1 1 p2 5

pr

2t
 a1 1

t
r
b

However, for a thin-walled vessel, t/r is small, and the variation of tmax across the wall 
section can be neglected. This also applies to spherical pressure vessels.

2�

r

x

p dA

dA

t

C

Fig. 7.45 Free-body diagram to 
determine spherical pressure vessel 
stress. 

Fig. 7.44 Pressurized 
spherical vessel.

1�

2�

1�
2� 1��

B A

max �       1

O

�

� �

1 �   2�

�

�

D'

1
2

Fig. 7.46 Mohr’s circle for element of 
spherical pressure vessel.

To determine the stress, pass a section through the center C of the vessel 
and consider the free body consisting of the portion of the vessel and its 
contents located to the left of the section (Fig. 7.45). The equation of 
equilibrium for this free body is the same as for the free body of Fig. 7.42. 
So for a spherical vessel,

 s1 5 s2 5
pr

2t
 (7.36)

 Since the principal stresses s1 and s2 are equal, Mohr’s circle for 
transformations of stress within the plane tangent to the surface of the 
vessel reduces to a point (Fig. 7.46). The in-plane normal stress is con-
stant, and the in-plane maximum shearing stress is zero. However, the 
maximum shearing stress in the wall of the vessel is not zero; it is equal 
to the radius of the circle with the diameter OA and corresponds to a rota-
tion of 458 out of the plane of stress. Thus,

 tmax 5
1
2 s1 5

pr

4t
 (7.37)
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7.6 Stresses in Thin-Walled Pressure Vessels 523

Sample Problem 7.5
A compressed-air tank is supported by two cradles as shown. One of 
the cradles is designed so that it does not exert any longitudinal force 
on the tank. The cylindrical body of the tank has a 30-in. outer diam-
eter and is made of a 3

8-in. steel plate by butt welding along a helix that 
forms an angle of 258 with a transverse plane. The end caps are spheri-
cal and have a uniform wall thickness of 5

16 in. For an internal gage 
pressure of 180 psi, determine (a) the normal stress and the maximum 
shearing stress in the spherical caps, (b) the stresses in directions per-
pendicular and parallel to the helical weld.

STRATEGY: Using the equations for thin-walled pressure vessels, 
you can determine the state of plane stress at any point within the 
spherical end cap and within the cylindrical body. You can then plot 
the corresponding Mohr's circles and use them to determine the stress 
components of interest.

MODELING and ANALYSIS:

 a. Spherical Cap.  The state of stress within any point in the 
spherical cap is shown in Fig. 1. Using Eq. (7.36), we write

p 5 180 psi, t 5
5

16 in. 5 0.3125 in., r 5 15 2 0.3125 5 14.688 in.

 s1 5 s2 5
pr

2 t
5
1180 psi2 114.688 in.2

210.3125 in.2    s 5 4230 psi ◀

We note that for stresses in a plane tangent to the cap, Mohr’s circle 
reduces to a point (A, B) on the horizontal axis, and that all in-plane 
shearing stresses are zero (Fig. 2). On the surface of the cap, the third 
principal stress is zero and corresponds to point O. On a Mohr’s circle 
with a diameter of AO, point D9 represents the maximum shearing 
stress that occurs on planes at 458 to the plane tangent to the cap.

 tmax 5
1
2 14230 psi2    tmax 5 2115 psi ◀

Fig. 1 State of stress at any 
point in spherical cap.

1�

2�
� � 0

a

b

Fig. 2 Mohr’s circle for stress 
element in spherical cap.

1�

max�

�

�

2�� � 4230 psi

C A, B  
O

D'

8 ft

30 in.

25°

(continued)
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524 Transformations of Stress and Strain

 b. Cylindrical Body of the Tank.  The state of stress within any 
point in the cylindrical body is as shown in Fig. 3. We determine the 
hoop stress s1 and the longitudinal stress s2 using Eqs. (7.30) and 
(7.32). We write

p 5 180 psi, t 5
3
8 in. 5 0.375 in., r 5 15 2 0.375 5 14.625 in.

s1 5
pr

t
5
1180 psi2 114.625 in.2

0.375 in.
5 7020 psi    s2 5

1
2s1 5 3510 psi

save 5
1
2 1s1 1 s22 5 5265 psi    R 5

1
2 1s1 2 s22 5 1755 psi

Stresses at the Weld.  Noting that both the hoop stress and the lon-
gitudinal stress are principal stresses, we draw Mohr’s circle as shown 
in Fig 4.

 An element having a face parallel to the weld is obtained by 
rotating the face perpendicular to the axis Ob (Fig. 3) counterclockwise 
through 258. Therefore, on Mohr’s circle (Fig. 4), point X9 corresponds 
to the stress components on the weld by rotating radius CB counter-
clockwise through 2u 5 508.

sw 5 save 2 R cos 508 5 5265 2 1755 cos 508 sw 5 14140 psi ◀

tw 5 R sin 508 5 1755 sin 508 tw5  1344 psi ◀

Since X9 is below the horizontal axis, tw tends to rotate the element 
 counterclockwise. The stress components on the weld are shown in 
Fig. 5. 

Fig. 3 State of stress at any point 
in cylindrical body.

b

1�

1�

2�

2� � 3510 psi

� 7020 psi

a

O

Fig. 4 Mohr’s circle for stress element in 
cylindrical body.

1� � 7020 psi

ave�  � 5265 psi

2�

w�

� 3510 psi

� 1755 psi

�

X'

�
2 � 50°

ACBO

R

R w��

x'

w� � 4140 psi

w� � 1344 psi

Weld

Fig. 5 Stress components 
on the weld.
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 7.98 A spherical pressure vessel has an outer diameter of 3 m and a 
wall thickness of 12 mm. Knowing that for the steel used 
sall 5 80 MPa, E 5 200 GPa, and n 5 0.29, determine (a) the 
allowable gage pressure, (b) the corresponding increase in the 
diameter of the vessel.

7.99 A spherical gas container having an inner diameter of 5 m and a 
wall thickness of 24 mm is made of steel for which E 5 200 GPa 
and n 5 0.29. Knowing that the gage pressure in the container is 
increased from zero to 1.8 MPa, determine (a) the maximum nor-
mal stress in the container, (b) the corresponding increase in the 
diameter of the container.

 7.100 The maximum gage pressure is known to be 1150 psi in a spheri-
cal steel pressure vessel having a 10-in. outer diameter and a 
0.25-in. wall thickness. Knowing that the ultimate stress in the 
steel used is sU 5 60 ksi, determine the factor of safety with 
respect to tensile failure.

 7.101 A spherical pressure vessel of 750-mm outer diameter is to be 
fabricated from a steel having an ultimate stress sU 5 400 MPa. 
Knowing that a factor of safety of 4.0 is desired and that the gage 
pressure can reach 4.2 MPa, determine the smallest wall thick-
ness that should be used.

 7.102 A spherical gas container made of steel has a 20-ft outer diameter 
and a wall thickness of 7

16 in. Knowing that the internal pressure 
is 75 psi, determine the maximum normal stress and the maxi-
mum shearing stress in the container.

 7.103 A basketball has a 300-mm outer diameter and a 3-mm wall 
thickness. Determine the normal stress in the wall when the bas-
ketball is inflated to a 120-kPa gage pressure.

 7.104 The unpressurized cylindrical storage tank shown has a 5-mm 
wall thickness and is made of steel having a 400-MPa ultimate 
strength in tension. Determine the maximum height h to which 
it can be filled with water if a factor of safety of 4.0 is desired. 
(Density of water 5 1000 kg/m3.)

 7.105 For the storage tank of Prob. 7.104, determine the maximum nor-
mal stress and the maximum shearing stress in the cylindrical 
wall when the tank is filled to capacity (h 5 14.5 m).

 7.106 The bulk storage tank shown in Photo 7.3 has an outer diameter 
of 3.3 m and a wall thickness of 18 mm. At a time when the inter-
nal pressure of the tank is 1.5 MPa, determine the maximum nor-
mal stress and the maximum shearing stress in the tank.

Problems

8 m

14.5 m
h

Fig. P7.104
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7.107 A standard-weight steel pipe of 12-in. nominal diameter carries 
water under a pressure of 400 psi. (a) Knowing that the outside 
diameter is 12.75 in. and the wall thickness is 0.375 in., determine 
the maximum tensile stress in the pipe. (b) Solve part a, assum-
ing an extra-strong pipe is used, of 12.75-in. outside diameter and 
0.5-in. wall thickness.

 7.108 A cylindrical storage tank contains liquefied propane under a 
pressure of 1.5 MPa at a temperature of 388C. Knowing that the 
tank has an outer diameter of 320 mm and a wall thickness of 
3 mm, determine the maximum normal stress and the maximum 
shearing stress in the tank.

 7.109 Determine the largest internal pressure that can be applied to a 
cylindrical tank of 5.5-ft outer diameter and 5

8-in. wall thickness 
if the ultimate normal stress of the steel used is 65 ksi and a factor 
of safety of 5.0 is desired.

 7.110 A steel penstock has a 36-in. outer diameter, a 0.5-in. wall thick-
ness, and connects a reservoir at A with a generating station at B. 
Knowing that the specific weight of water is 62.4 lb/ft3, determine 
the maximum normal stress and the maximum shearing stress in 
the penstock under static conditions.

A

B

36 in.

500 ft

Fig. P7.110 and P7.111

 7.111 A steel penstock has a 36-in. outer diameter and connects a res-
ervoir at A with a generating station at B. Knowing that the spe-
cific weight of water is 62.4 lb/ft3 and that the allowable normal 
stress in the steel is 12.5 ksi, determine the smallest thickness that 
can be used for the penstock.

 7.112 The cylindrical portion of the compressed-air tank shown is fab-
ricated of 8-mm-thick plate welded along a helix forming an 
angle b 5 308 with the horizontal. Knowing that the allowable 
stress normal to the weld is 75 MPa, determine the largest gage 
pressure that can be used in the tank.

 7.113 For the compressed-air tank of Prob. 7.112, determine the gage 
pressure that will cause a shearing stress parallel to the weld of 
30 MPa.

600 mm

b

1.8 m

Fig. P7.112
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 7.114 The steel pressure tank shown has a 750-mm inner diameter and 
a 9-mm wall thickness. Knowing that the butt-welded seams 
form an angle b 5 508 with the longitudinal axis of the tank and 
that the gage pressure in the tank is 1.5 MPa, determine, (a) the 
normal stress perpendicular to the weld, (b) the shearing stress 
parallel to the weld.

�

Fig. P7.114 and P7.115

 7.115 The pressurized tank shown was fabricated by welding strips of 
plate along a helix forming an angle b with a transverse plane. 
Determine the largest value of b that can be used if the normal 
stress perpendicular to the weld is not to be larger than 85 per-
cent of the maximum stress in the tank.

7.116 Square plates, each of 0.5-in. thickness, can be bent and welded 
together in either of the two ways shown to form the cylindrical 
portion of a compressed-air tank. Knowing that the allowable 
normal stress perpendicular to the weld is 12 ksi, determine the 
largest allowable gage pressure in each case.

 7.117 The pressure tank shown has a 0.375-in. wall thickness and butt-
welded seams forming an angle b 5 208 with a transverse plane. 
For a gage pressure of 85 psi, determine, (a) the normal stress per-
pendicular to the weld, (b) the shearing stress parallel to the weld.

 7.118 For the tank of Prob. 7.117, determine the largest allowable gage 
pressure, knowing that the allowable normal stress perpendicular 
to the weld is 18 ksi and the allowable shearing stress parallel to 
the weld is 10 ksi.

 7.119 For the tank of Prob. 7.117, determine the range of values of b
that can be used if the shearing stress parallel to the weld is not 
to exceed 1350 psi when the gage pressure is 85 psi.

 7.120 A pressure vessel of 10-in. inner diameter and 0.25-in. wall thick-
ness is fabricated from a 4-ft section of spirally-welded pipe AB
and is equipped with two rigid end plates. The gage pressure inside 
the vessel is 300 psi and 10-kip centric axial forces P and P9 are 
applied to the end plates. Determine (a) the normal stress perpen-
dicular to the weld, (b) the shearing stress parallel to the weld.

3 m

1.6 m

�

Fig. P7.117

4 ft

P

P'

35�
B

A

Fig. P7.120

Fig. P7.116

20 ft

12 ft 12 ft

45�

(a) (b)

 7.121 Solve Prob. 7.120, assuming that the magnitude P of the two 
forces is increased to 30 kips.
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 7.122 A torque of magnitude T 5 12 kN∙m is applied to the end of a 
tank containing compressed air under a pressure of 8 MPa. 
Knowing that the tank has a 180-mm inner diameter and a 
12-mm wall thickness, determine the maximum normal stress 
and the maximum shearing stress in the tank.

T

Fig. P7.122 and P7.123

7.123 The tank shown has a 180-mm inner diameter and a 12-mm wall 
thickness. Knowing that the tank contains compressed air under 
a pressure of 8 MPa, determine the magnitude T of the applied 
torque for which the maximum normal stress is 75 MPa.

7.124 The compressed-air tank AB has a 250-mm outside diameter and 
an 8-mm wall thickness. It is fitted with a collar by which a 40-kN 
force P is applied at B in the horizontal direction. Knowing that 
the gage pressure inside the tank is 5 MPa, determine the maxi-
mum normal stress and the maximum shearing stress at point K.

7.125 In Prob. 7.124, determine the maximum normal stress and the 
maximum shearing stress at point L.

 7.126 A brass ring of 5-in. outer diameter and 0.25-in. thickness fits 
exactly inside a steel ring of 5-in. inner diameter and 0.125-in. 
thickness when the temperature of both rings is 508F. Knowing 
that the temperature of both rings is then raised to 1258F, deter-
mine (a) the tensile stress in the steel ring, (b) the corresponding 
pressure exerted by the brass ring on the steel ring.

600 mm

150 mm
A

B

150 mm

P

x

y

z

K L

Fig. P7.124

STEEL
ts �
Es � 29 � 106 psi
�s � 6.5 � 10–6/�F

 in.1
8

�s

BRASS
tb �
Eb � 15 � 106 psi
�s � 11.6 � 10–6/�F

 in.1
4

�b

1.5 in.

5 in.

Fig. P7.126

 7.127 Solve Prob. 7.126, assuming that the brass ring is 0.125 in. thick 
and the steel ring is 0.25 in. thick.
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*7.7 Transformation of Plane Strain 529

*7.7  TRANSFORMATION OF 
PLANE STRAIN

7.7A Transformation Equations
Transformations of strain under a rotation of the coordinate axes will now 
be considered. Our analysis will first be limited to states of plane strain.
These are situations where the deformations of the material take place 
within parallel planes and are the same in each of these planes. If the 
z axis is chosen perpendicular to the planes in which the deformations 
take place, Pz 5 gzx 5 gzy 5 0, and the only remaining strain components 
are Px , Py , and gxy . This occurs in a plate subjected to uniformly distributed 
loads along its edges and restrained from expanding or contracting later-
ally by smooth, rigid, and fixed supports (Fig. 7.47). It is also found in a 
bar of infinite length subjected to uniformly distributed loads on its sides, 
because by reason of symmetry, the elements located in a transverse 
plane cannot move out of that plane. This idealized model shows that a 
long bar subjected to uniformly distributed transverse loads (Fig. 7.48) is 
in a state of plane strain in any given transverse section that is not located 
too close to either end of the bar.†

Fig. 7.47 Plane strain example: laterally 
restrained by fixed supports.

Fixed support

Fixed support

y

z x

y

z
x

Fig. 7.48 Plane strain example: bar of 
infinite length in z direction. 

Q
Q

�s

�s

�s (1 � )y	

)x	




y

xO

y

xO

�s (1 �

��
2


 xy��
2 xy

Fig. 7.49 Plane strain element: undeformed 
and deformed.

Q

Q

�s







�s

�s (1 � )y'	

�s (1 � )x'	


y

xO xO

 x'y'��
2


 x'y'��
2

y' y'

x'
x'




Fig. 7.50 Transformation of plane strain element 
in undeformed and deformed orientations.

†A state of plane strain and a state of plane stress do not occur simultaneously, except 
for ideal materials with a Poisson ratio equal to zero. The constraints placed on the ele-
ments of the plate of Fig. 7.47 and of the bar of Fig. 7.48 result in a stress sz different 
from zero. On the other hand, in the case of the plate of Fig. 7.3, the absence of any 
lateral restraint results in sz 5 0 and ez Þ 0.

 Assume that a state of plane strain exists at point Q (with 
Pz 5 gzx 5 gzy 5 0) and that it is defined by the strain components Pz , Py , 
and gxy associated with the x and y axes. Recalling Secs. 2.5 and 2.7, a 
square element of center Q with sides of a length Ds and parallel to the x
and y axes is deformed into a parallelogram where the sides are now equal 
to Ds (1 1 Px) and Ds (1 1 Py), forming angles of p2 2 gxy and p2 1 gxy with 
each other (Fig. 7.49). As a result of the deformations of the other elements 
located in the xy plane, the element can also undergo a rigid-body motion, 
but such a motion is irrelevant to the strains at point Q and will be ignored 
in this analysis. Our purpose is to determine in terms of Px , Py , gxy , and u 
the strain components Px¿, Py¿, and gx¿y¿ associated with the frame of refer-
ence x9y9 obtained by rotating the x and y axes through angle u. As shown 
in Fig. 7.50, these new strain components define the parallelogram into 
which a square with sides parallel to the x9 and y9 axes is deformed.
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530 Transformations of Stress and Strain

 The normal strain P(u) along a line AB forms an arbitrary angle u 
with the x axis. This strain is determined by using the right triangle ABC, 
which has AB for hypothenuse (Fig. 7.51a), and the oblique triangle A9B9C9 
into which triangle ABC is deformed (Fig. 7.51b). With the length of AB 
denoted as Ds, the length of A9B9 is Ds [1 1 P(u)]. Similarly, using Dx and 
Dy as the lengths of sides AC and CB, the lengths of A9C9 and C9B9 are 
Dx (1 1 Px) and Dy (1 1 Py), respectively. Recall from Fig. 7.49 that the 
right angle at C in Fig. 7.51a deforms into an angle equal to p2 1 gxy in 
Fig. 7.51b, and apply the law of cosines to triangle A9B9C9 to obtain

1A¿B¿ 22 5 1A¿C¿ 22 1 1C¿B¿ 22 2 21A¿C¿ 2 1C¿B¿ 2 cos ap
2

1 gxyb
1¢s22 31 1 P1u2 4 2 5 1¢x2211 1 Px22 1 1¢y2211 1 Py22

 221¢x2 11 1 Px2 1¢y2 11 1 Py2 cos ap
2

1 gxyb (7.38)

But from Fig. 7.51a,

 ¢x 5 1¢s2 cos u  ¢y 5 1¢s2 sin u (7.39)

and since gxy is very small,

 cos ap
2

1 gxyb 5 2sin gxy < 2gxy (7.40)

Substituting from Eqs. (7.39) and (7.40) into Eq. (7.38), recalling that cos2 u 1 
sin2 u 5 1, and neglecting second-order terms in P(u), Px , Py , and gxy gives

 P1u2 5 Px cos2 u 1 Py sin2 u 1 gxy sin u cos u (7.41)

 Equation (7.41) enables us to determine the normal strain P(u) in 
any direction AB in terms of the strain components Px , Py , gxy , and the 
angle u that AB forms with the x axis. We check that for u 5 0, Eq. (7.41) 
yields P(0) 5 Px  and for u 5 908, it yields P(908) 5 Py . On the other hand, 
making u 5 458 in Eq. (7.41), we obtain the normal strain in the direction 
of the bisector OB of the angle formed by the x and y axes (Fig. 7.52). 
Denoting this strain by eOB, we write

 POB 5 P14582 5
1
2 1Px 1 Py 1 gxy2 (7.42)

Solving Eq. (7.42) for gxy ,

 gxy 5 2POB 2 1Px 1 Py2 (7.43)

This relationship makes it possible to express the shearing strain associated 
with a given pair of rectangular axes in terms of the normal strains mea-
sured along these axes and their bisector. It plays a fundamental role in the 
present derivation and will also be used in Sec. 7.9 for the experimental 
determination of shearing strains.
 The main purpose of this section is to express the strain components 
associated with the frame of reference x9y9 of Fig. 7.50 in terms of the angle 
u and the strain components Px , Py , and gxy associated with the x and y 
axes. Thus, we note that the normal strain Px¿ along the x9 axis is given by 


 �s

�x

�y

�y (1 � )y	

�x (1 � )x	

�s [1 �
( )]	 


y

A

B

C

xO


 xy��
2

(a)

y

A'

B'

C'

xO
(b)

Fig. 7.51 Evaluating strain along line 
AB. (a) Undeformed; (b) deformed.

O

y

x

B

45�

45�

Fig. 7.52 Bisector OB.
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*7.7 Transformation of Plane Strain 531

Eq. (7.41). Using the trigonometric relationships in Eqs. (7.3) and (7.4), the 
alternative form of Eq. (7.41) is

 Px¿ 5
Px 1 Py

2
1
Px 2 Py

2
 cos 2u 1

gxy

2
 sin 2u (7.44)

The normal strain along the y9 axis is obtained by replacing u with u 1 908. 
Since cos (2u 1 1808) 5 2cos 2u and sin (2u 1 1808) 5 2sin 2u, 

 Py¿ 5
Px 1 Py

2
2
Px 2 Py

2
 cos 2u 2

gxy

2
 sin 2u (7.45)

Adding Eqs. (7.44) and (7.45) member to member gives

 Px¿ 1 Py¿ 5 Px 1 Py (7.46)

Since Pz 5 Pz9 5 0, the sum of the normal strains associated with a cubic 
element of material is independent of the orientation of that element in 
plane strain.†

 Replacing u by u 1 458 in Eq. (7.44), an expression is obtained for 
the normal strain along the bisector OB9 of the angle formed by the x9 and 
y9 axes. Since cos (2u 1 908) 5 2sin 2u and sin (2u 1 908) 5 cos 2u,

 POB¿ 5
Px 1 Py

2
2
Px 2 Py

2
 sin 2u 1

gxy

2
 cos 2u (7.47)

Writing Eq. (7.43) with respect to the x9 and y9 axes, the shearing strain 
gx¿y¿ is expressed in terms of the normal strains measured along the x9 and 
y9 axes and the bisector OB9:

 gx¿y¿ 5 2POB¿ 2 1Px¿ 1 Py¿2 (7.48)

Substituting from Eqs. (7.46) and (7.47) into Eq. (7.48) gives

 gx¿y¿ 5 21Px 2 Py2 sin 2u 1 gxy cos 2u (7.49a)

 Equations (7.44), (7.45), and (7.49a) are the desired equations defin-
ing the transformation of plane strain under a rotation of axes in the plane 
of strain. Dividing all terms in Eq. (7.49a) by 2, the alternative form is

 
gx¿y¿

2
5 2 

Px 2 Py

2
 sin 2u 1

gxy

2
 cos 2u (7.49b)

Observe that Eqs. (7.44), (7.45), and (7.49b) for the transformation of 
plane strain closely resemble those for the transformation of plane stress 
(Sec 7.1). While the former can be obtained from the latter by replacing 
the normal stresses by the corresponding normal strains, it should be 
noted that the shearing stresses txy and tx¿y¿ should be replaced by half of 
the corresponding shearing strains (i.e., by 1

2 gxy and 1
2 gx¿y¿).

†Cf. first footnote on page 98.
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532 Transformations of Stress and Strain

7.7B  Mohr’s Circle for Plane Strain
Since the equations for the transformation of plane strain are of the same 
form as those for plane stress, Mohr’s circle can be used for analysis of 
plane strain. Given the strain components Px , Py , and gxy defining the 
deformation in Fig. 7.49, point X1Px,21

2gxy2 of abscissa equal to the normal 
strain Px and of ordinate equal to minus half the shearing strain gxy , and 
point Y1Py, 1

1
2gxy2 are plotted (Fig. 7.53). Drawing the diameter XY, the 

center C of Mohr’s circle for plane strain is defined. The abscissa of C and 
the radius R of the circle are

Pave 5
Px 1 Py

2
  and  R 5 Ba

Px 2 Py

2
b2

1 agxy

2
b2

 (7.50)

 If gxy is positive, as assumed in Fig. 7.49, points X and Y are plotted 
below and above the horizontal axis in Fig. 7.53. But in the absence of any 
overall rigid-body rotation, the side of the element in Fig. 7.49 that is asso-
ciated with Px rotates counterclockwise, while the side associated with Py 
rotates clockwise. Thus, if the shear deformation causes a given side to 
rotate clockwise, the corresponding point on Mohr’s circle for plane strain 
is plotted above the horizontal axis, and if the deformation causes the side 
to rotate counterclockwise, the corresponding point is plotted below the 
horizontal axis. This convention matches the convention used to draw 
Mohr’s circle for plane stress.
 Points A and B where Mohr’s circle intersects the horizontal axis 
correspond to the principal strains Pmax and Pmin (Fig. 7.54a). Thus,

 Pmax 5 Pave 1 R  and  Pmin 5 Pave 2 R (7.51)

where Pave and R are defined by Eqs. (7.50). The corresponding value up 
of angle u is obtained by observing that the shearing strain is zero for A 
and B. Setting gx¿y¿ 5 0 in Eq. (7.49a), 

 tan 2up 5
gxy

Px 2 Py
 (7.52)

The corresponding axes a and b in Fig. 7.54b are the principal axes of 
strain. Angle up, which defines the direction of the principal axis Oa in 
Fig. 7.54b corresponding to point A in Fig. 7.54a, is equal to half of the 

CO e

g max (in plane)

u p

e min

e ave

e max

2
1

X

2 AB

Y

D

E

g1
2

(a)

Ds (1 1

Ds

min)e

Ds (1 1 max)e

u p

u p

b

a

y

x

(b)
O

Fig. 7.54 (a) Mohr’s circle for plane strain, showing principal strains and maximum 
in-plane shearing strain. (b) Strain element oriented to principal directions.

( )y ,Y

CO

�

�

� xy� 2
1

( )x ,X � � xy� 2
1

�1
2

�1
2

Fig. 7.53 Mohr’s circle for plane strain.
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*7.7 Transformation of Plane Strain 533

angle XCA measured on Mohr’s circle, and the rotation that brings Ox into 
Oa has the same sense as the rotation that brings the diameter XY of 
Mohr’s circle into the diameter AB.
 Recall from Sec. 2.7 that in the elastic deformation of a homoge-
neous, isotropic material, Hooke’s law for shearing stress and strain 
applies and yields txy 5 Ggxy for any pair of rectangular x and y axes. Thus, 
gxy 5 0 when txy 5 0, which indicates that the principal axes of strain 
coincide with the principal axes of stress.
 The maximum in-plane shearing strain is defined by points D and 
E in Fig. 7.54a. This is equal to the diameter of Mohr’s circle. From the 
second of Eqs. (7.50),

 gmax 1in plane2 5 2R 5 21Px 2 Py22 1 gÊ2
xy (7.53)

 Finally, points X9 and Y9, which define the components of strain cor-
responding to a rotation of the coordinate axes through an angle u
(Fig. 7.50), are obtained by rotating the diameter XY of Mohr’s circle in the 
same sense through an angle 2u (Fig. 7.55).

Fig. 7.55 Strains on arbitrary planes X9 and Y9 
referenced to original planes X and Y on Mohr's circle.

CO �

�
X

2

Y

Y'

X'

�1
2

Fig. 7.50 (repeated) Transformation of plane 
strain element in undeformed and deformed 
orientations.

Q
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 x'y'��
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� x'y'��
2

y' y'

x'
x'
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Concept Application 7.4
For a material in a state of plane strain, it is found that the horizontal 
side of a 10 3 10-mm square elongates by 4 mm, its vertical side 
remains unchanged, and the angle at the lower-left corner increases 
by 0.4 3 1023 rad (Fig. 7.56a). Determine (a) the principal axes and 
principal strains and (b) the maximum shearing strain and the cor-
responding normal strain.

 a. Principal Axes and Principal Strains. Determine the coordi-
nates of points X and Y on Mohr’s circle for strain.

Px 5
14 3 1026 m

10 3 103 m
5 1400 m  Py 5 0  ` gxy

2
` 5 200 m

Since the side of the square associated with Px rotates clockwise, point X 
of coordinates Px and |gxyy2| is plotted above the horizontal axis. Since 
Py 5 0 and the corresponding side rotates counterclockwise, point Y is 

1 0.4 3 10–3 radp
2

10 mm

10 mm
10 mm 1 4 m

xx

yy

m

(a)
Fig. 7.56 Analysis of plane strain state. 
(a) Strain element: undeformed and 
deformed.

(continued)
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534 Transformations of Stress and Strain

plotted directly below the origin (Fig. 7.56b). Drawing the diameter XY, 
determine the center C of Mohr’s circle and its radius R.

OC 5
Px 1 Py

2
5 200 m  OY 5 200 m

R 5 21OC22 1 1OY22 5 21200 m22 1 1200 m22 5 283 m

The principal strains are defined by the abscissas of points A and B.

Pa 5 OA 5 OC 1 R 5 200 m 1 283 m 5 483 m 
Pb 5 OB 5 OC 2 R 5 200 m 2 283 m 5 283 m

The principal axes Oa and Ob are shown in Fig. 7.56c. Since OC 5 OY, 
the angle at C in triangle OCY is 458. Thus, the angle 2up that brings 
XY into AB is 458i and angle up bringing Ox into Oa is 22.58i.

 b. Maximum Shearing Strain. Points D and E define the maxi-
mum in-plane shearing strain which, since the principal strains have 
opposite signs, is also the actual maximum shearing strain (see 
Sec. 7.8).

gmax

2
5 R 5 283 m  gmax 5 566 m

The corresponding normal strains are both equal to

P¿ 5 OC 5 200 m

The axes of maximum shearing strain are shown in Fig. 7.56d.

O
u p 5 22.58

y

x

b

a
(c)

O

22.58

y

d

e

x
(d)

Fig. 7.56 (cont.) (b) Mohr’s circle for given plane strain element. (c) Undeformed and 
deformed principal strain elements. (d) Undeformed and deformed maximum shearing 
strain elements.

X(400, 200)

Y(0, 2 200)

CO

u p2

AB

D

E

g1
2 (m)

e (m)

(b)

*7.8  THREE-DIMENSIONAL 
ANALYSIS OF STRAIN

We saw in Sec. 7.3 that, in the most general case of stress, we can deter-
mine three coordinate axes a, b, and c, called the principal axes of stress. 
A small cubic element with faces perpendicular to these axes is free of 
shearing stresses (Fig. 7.21), as tab 5 tbc 5 tca 5 0. Hooke’s law for shear-
ing stress and strain applies when the deformation is elastic and the mate-
rial homogeneous and isotropic. Thus, gab 5 gbc 5 gca 5 0, so the axes a, 
b, and c are also principal axes of strain. A small cube with sides equal to 
unity, centered at Q, and with faces perpendicular to the principal axes is 

Fig. 7.21 (repeated) General stress 
element oriented to principal axes.

�a

�a

�b

�b
�c

�c

Q

a

c

b
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*7.8 Three-Dimensional Analysis of Strain 535

deformed into a rectangular parallelepiped with sides 1 1 Pa , 1 1 Pb , and 
1 1 Pc (Fig. 7.57).

Q

c

a

b

1 1 b

1 1 c

1 1 a

e

e

e

Fig. 7.57 Strain element oriented to directions of 
principal axes.

z � c

Q

a

b

y x

�1 � x

�1 � c

�1 � y

xy��
2 �

Fig. 7.58 Strain element having one axis 
coincident with a principal strain axis.

O C B

g

A

min

max

max

1
2

g1
2

e

e

e

Fig. 7.59 Mohr’s circle for three-
dimensional analysis of strain.

 If the element of Fig. 7.57 is rotated about one of the principal axes 
at Q, say the c axis (Fig. 7.58), the method of analysis for the transforma-
tion of plane strain also can be used to determine the strain components 
Px , Py , and gxy associated with the faces perpendicular to the c axis, since 
this method did not involve any of the other strain components.† There-
fore, Mohr’s circle is drawn through the points A and B corresponding to 
the principal axes a and b (Fig. 7.59). Similarly, circles of diameters BC 
and CA are used to analyze the transformation of strain as the element is 
rotated about the a and b axes, respectively.

 The three-dimensional analysis of strain using Mohr’s circle is lim-
ited here to rotations about principal axes (as for the analysis of stress) 
and is used to determine the maximum shearing strain gmax at point Q. 
Since gmax is equal to the diameter of the largest of the three circles shown 
in Fig. 7.59, 

 gmax 5 0Pmax 2 Pmin 0  (7.54)

†The other four faces of the element remain rectangular, and the edges parallel to the c 
axis remain unchanged.
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536 Transformations of Stress and Strain

where Pmax and Pmin represent the algebraic values of the maximum and 
minimum strains at point Q.
 Returning to the particular case of plane strain, and selecting the x 
and y axes in the plane of strain, we have Pz 5 gzx 5 gzy 5 0. Thus, the 
z axis is one of the three principal axes at Q, and the corresponding point 
in the Mohr’s circle diagram is the origin O, where P 5 g 5 0. If points A 
and B defining the principal axes within the plane of strain fall on opposite 
sides of O (Fig. 7.60a), the corresponding principal strains represent the 
maximum and minimum normal strains at point Q, and the maximum 
shearing strain is equal to the maximum in-plane shearing strain corre-
sponding to points D and E. However, if A and B are on the same side of 
O (Fig. 7.60b), so that Pa and Pb have the same sign, the maximum shearing 
strain is defined by points D9 and E9 on the circle of diameter OA, and gmax 
5 Pmax.
 Now consider the particular case of plane stress encountered in a thin 
plate or on the free surface of a structural element or machine component. 
Selecting the x and y axes in the plane of stress, sz 5 tzx 5 tzy 5 0, and the 
z axis is a principal axis of stress. If the deformation is elastic and the mate-
rial is homogeneous and isotropic, Hooke’s law shows that gzx 5 gzy 5 0. 
Thus, the z axis is also a principal axis of strain, and Mohr’s circle can be 
used to analyze the transformation of strain in the xy plane. However, as we 
shall see presently, Hooke’s law does not show that Pz 5 0; indeed, a state 
of plane stress does not, in general, result in a state of plane strain.
 Using a and b as the principal axes within the plane of stress and c 
as the principal axis perpendicular to that plane, we let sx 5 sa , sy 5 sb , 
and sz 5 0 in Eqs. (2.20) for the generalized Hooke’s law (Sec. 2.5), and 
obtain

  Pa 5
sa

E
2
nsb

E
 (7.55)

  Pb 5 2 
nsa

E
1
sb

E
 (7.56)

  Pc 5 2 
n

E
 1sa 1 sb2 (7.57)

Adding Eqs. (7.55) and (7.56) member to member gives

 Pa 1 Pb 5
1 2 n

E
 1sa 1 sb2 (7.58)

Solving Eq. (7.58) for sa 1 sb and substituting into Eq. (7.57), we write

 Pc 5 2
n

1 2 n
 1Pa 1 Pb2 (7.59)

The relationship obtained defines the third principal strain in terms of the 
in-plane principal strains. If B is located between A and C on the Mohr’s 
circle diagram (Fig. 7.61), the maximum shearing strain is equal to the 
diameter CA of the circle corresponding to a rotation about the b axis, out 
of the plane of stress.

Z � OB

D

E

�

A

min� max

max

�

�

1
2

�1
2

(a)

Z � O B

E

D

D'

E'

�

A

min � 0�

max �

max

� a�

�

1
2

�1
2

(b)

Fig. 7.60 Possible configurations of 
Mohr’s circle for plane strain. (a) Principal 
strains having mixed signs. (b) Principal 
strains having positive signs.

OC B

E

D

D'

E'

�

A

max

�

1
2

�1
2

Fig. 7.61 Mohr’s circle strain analysis 
for plane stress.
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*7.8 Three-Dimensional Analysis of Strain 537

Concept Application 7.5
As a result of measurements made on the surface of a machine 
component with strain gages oriented in various ways, it has been 
established that the principal strains on the free surface are Pa 5 1400 
3 1026 in./in. and Pb 5 250 3 1026 in./in. Knowing that Poisson’s ratio 
for the given material is n 5 0.30, determine (a) the maximum in-plane 
shearing strain, (b) the true value of the maximum shearing strain near 
the surface of the component.

 a. Maximum In-Plane Shearing Strain. Draw Mohr’s circle 
through points A and B corresponding to the given principal strains 
(Fig. 7.62a). The maximum in-plane shearing strain is defined by 
points D and E and is equal to the diameter of Mohr’s circle:

gmax  1in plane2 5 400 3 1026 1 50 3 1026 5 450 3 1026 rad

 b. Maximum Shearing Strain. Determine the third principal 
strain Pc. Since a state of plane stress is on the surface of the machine 
component, Eq. (7.59) gives

 Pc 5 2 
n

1 2 n
 1Pa 1 Pb2

5 2 
0.30

0.70
 1400 3 1026 2 50 3 10262 5 2150 3 1026 in./in.

Draw Mohr’s circles through A and C and through B and C (Fig. 7.62b), 
and find that the maximum shearing strain is equal to the diameter of 
the circle CA:

gmax 5 400 3 1026 1 150 3 1026 5 550 3 1026 rad

Note that even though Pa and Pb have opposite signs, the maximum 
in-plane shearing strain does not represent the true maximum shear-
ing strain.

O
B

450

1400250

(1026 rad)

(1026 in./in.)

E

D

g

A

max (in plane)

e

1
2

g1
2

(a)

B

D9

E9

AOC

maxg1
2

14002150

550

(1026 in./in.)e

(1026 rad)g1
2

(b)

Fig. 7.62 Using Mohr’s circle to determine maximum shearing strain. (a) Mohr’s circle for the plane of the 
given strains. (b) Three-dimensional Mohr’s circle for strain.
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538 Transformations of Stress and Strain

*7.9  MEASUREMENTS OF 
STRAIN; STRAIN ROSETTE

The normal strain can be determined in any given direction on the surface 
of a structural element or machine component by scribing two gage marks 
A and B across a line drawn in the desired direction and measuring the 
length of the segment AB before and after the load has been applied. If L
is the undeformed length of AB and d its deformation, the normal strain 
along AB is PAB 5 dyL.
 A more convenient and accurate method for measuring normal 
strains is provided by electrical strain gages. A typical electrical strain gage 
consists of a length of thin wire arranged as shown in Fig. 7.63 and 
cemented to two pieces of paper. In order to measure the strain PAB of a 
given material in the direction AB, the gage is cemented to the surface of 
the material with the wire folds running parallel to AB. As the material 
elongates, the wire increases in length and decreases in diameter, causing 
the electrical resistance of the gage to increase. By measuring the current 
passing through a properly calibrated gage, the strain PAB can be deter-
mined accurately and continuously as the load is increased.
 The strain components Px and Py can be determined at a given point 
of the free surface of a material by simply measuring the normal strain 
along the x and y axes drawn through that point. Recalling Eq. (7.43), we 
note that a third measurement of normal strain, made along the bisector 
OB of the angle formed by the x and y axes, enables us to determine the 
shearing strain gxy as well (Fig. 7.64):

 gxy 5 2POB 2 1Px 1 Py2 (7.43)

 The strain components Px , Py , and gxy at a given point also can be 
obtained from normal strain measurements made along any three lines 
drawn through that point (Fig. 7.65). Denoting respectively by u1, u2, and 
u3 the angle each of the three lines forms with the x axis, by e1, e2, and e3 
the corresponding strain measurements, and substituting into Eq. (7.41), 
we write the three equations

  P1 5 Px cos2 u1 1 Py sin2 u1 1 gxy sin u1 cos u1 

  P2 5 Px cos2 u2 1 Py sin2 u2 1 gxy sin u2 cos u2 (7.60)

  P3 5 Px cos2 u3 1 Py sin2 u3 1 gxy sin u3 cos u3 

These can be solved simultaneously for Px , Py , and gxy.†

 The arrangement of strain gages used to measure the three normal 
strains P1 , P2 , and P3 is called a strain rosette. The rosette used to measure 
normal strains along the x and y axes and their bisector is referred to as a 
458 rosette (Fig. 7.64). Another rosette frequently used is the 608 rosette 
(see Sample Prob. 7.7).

A

B

Fig. 7.63 Electrical strain gage.

45�

B

O

y

x

45�

�OB

�x

�y

Fig. 7.64 Strain rosette that 
measures normal strains in 
direction of x , y, and bisector OB.

†It should be noted that the free surface on which the strain measurements are made 
is in a state of plane stress, while Eqs. (7.41) and (7.43) were derived for a state of plane 
strain. However, as observed earlier the normal to the free surface is a principal axis of 
strain, and the derivations given in Sec. 7.7A remain valid.

L1

L2

L3

O x

�2

�1

�3

�2
�3

�1

Fig. 7.65 Generalized strain gage 
rosette arrangement.

bee98233_ch07_476-555.indd   538bee98233_ch07_476-555.indd   538 11/9/13   3:38 PM11/9/13   3:38 PM



*7.9 Measurements of Strain; Strain Rosette 539

Sample Problem 7.6
A cylindrical storage tank used to transport gas under pressure has an 
inner diameter of 24 in. and a wall thickness of 

3
4 in. Strain gages 

attached to the surface of the tank in transverse and longitudinal 
directions indicate strains of 255 3 1026 and 60 3 1026 in./in., respec-
tively. Knowing that a torsion test has shown that the modulus of rigid-
ity of the material used in the tank is G 5 11.2 3 106 psi, determine 
(a) the gage pressure inside the tank, (b) the principal stresses and the 
maximum shearing stress in the wall of the tank.

STRATEGY: You can use the given measured strains to plot Mohr's 
circle for strain, and use this circle to determine the maximum in-
plane shearing strain. Applying Hooke’s law to obtain the correspond-
ing maximum in-plane shearing stress, you can then determine the 
gage pressure in the tank through the appropriate thin-walled pressure 
vessel equation, as well as develop Mohr’s circle for stress to deter-
mine the principal stresses and the maximum shearing stress.

MODELING and ANALYSIS:

 a. Gage Pressure Inside Tank. The given strains are the princi-
pal strains at the surface of the tank. Plotting the corresponding points 
A and B, draw Mohr’s circle for strain (Fig. 1). The maximum in-plane 
shearing strain is equal to the diameter of the circle.

gmax 1in plane2 5 P1 2 P2 5 255 3 1026 2 60 3 1026 5 195 3 1026 rad

From Hooke’s law for shearing stress and strain,

 tmax 1in plane2 5 Ggmax 1in plane2
 5 111.2 3 106 psi2 1195 3 1026 rad2
 5 2184 psi 5 2.184 ksi

24 in.

1
2

�

�

A
CB

1 � 255

(10–6 in./in.)

(10–6 rad)
2

D

E

O
max (in plane) 

�

�

2 � 
60

�

1
2

Fig. 1 Mohr’s circle for measured strains.

(continued)
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540 Transformations of Stress and Strain

Substituting this and the given data in Eq. (7.33), 

tmax 1in plane2 5
pr

4t
  2184 psi 5

p112 in.2
410.75 in.2

Solving for the gage pressure p,

p 5 546 psi ◀

 b. Principal Stresses and Maximum Shearing Stress. Recall-
ing that for a thin-walled cylindrical pressure vessel s1 5 2s2 , we draw 
Mohr’s circle for stress (Fig. 2) and obtain

 s2 5 2tmax 1in plane2 5 212.184 ksi2 5 4.368 ksi s2 5 4.37 ksi ◀

 s1 5 2s2 5 214.368 ksi2          s1 5 8.74 ksi ◀

The maximum shearing stress is equal to the radius of the circle of 
diameter OA and corresponds to a rotation of 458 about a longitudinal 
axis.

 tmax 5
1
2 s1 5 s2 5 4.368 ksi tmax 5 4.37 ksi ◀

Sample Problem 7.7
Using a 608 rosette, the following strains have been measured at point 
Q on the surface of a steel machine base:

P1 5 40 m  P2 5 980 m  P3 5 330 m

Using the coordinate axes shown, determine at point Q (a) the strain 
components Px , Py , and gxy , (b) the principal strains, (c) the maximum 
shearing strain. (Use n 5 0.29.)

STRATEGY: From the given strain rosette measurements, you can 
find the strain components Px , Py , and gxy using Eq. (7.60). Using these 
strains, you can plot Mohr’s circle for strain to determine the principal 
strains and the maximum shearing strain.

MODELING and ANALYSIS:

 a. Strain Components ex , ey , Gxy . For the coordinate axes shown

u1 5 0  u2 5 608  u3 5 1208

2 2

�

�

A

E 

B

1 � 2

D

� 2.184 ksiD'

O

max

�

1 	 � 2� 2�

�2

�

�

2

�max (in plane)

�

Fig. 2 Three-dimensional Mohr’s circles 
for vessel stress components.

60�

60�

1
Q

O

x
z

y

2
3

(continued)
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*7.9 Measurements of Strain; Strain Rosette 541

Substituting these into Eqs. (7.60), gives

 P1 5 Px112  1 Py102  1 gxy102 112
 P2 5 Px10.50022  1 Py10.86622 1 gxy10.8662 10.5002
 P3 5 Px120.50022 1 Py10.86622 1 gxy10.8662 120.5002

Solving these equations for Px , Py , and gxy , 

Px 5 P1  Py 5
1
3 12P2 1 2P3 2 P12  gxy 5

P2 2 P3

0.866

Substituting for P1 , P2, and P3, 

Px 5 40 m Py 5
1
3 3219802 1 213302 2 40 4   Py 5 1860 m ◀

gxy 5 1980 2 3302y0.866        gxy 5 750 m ◀

These strains are indicated on the element shown in Fig. 1.

 b. Principal Strains. The side of the element associated with Px

rotates counterclockwise; thus, point X is plotted below the horizontal 
axis, as X(40, 2375). Then Y(860, 1375) is plotted and Mohr’s circle is 
drawn (Fig. 2).

Pave 5
1
2 1860 m 1 40 m2 5 450 m

R 5 21375 m22 1 1410 m22 5 556 m

tan 2up 5
375 m

410 m
  2up 5 42.48i  up 5 21.28i

Points A and B correspond to the principal strains,

 Pa 5 Pave 2 R 5 450 m 2 556 m Pa 5 2106 m ◀

Pb 5 Pave 1 R 5 450 m 1 556 m Pb 5 11006 m ◀

These strains are indicated on the element shown in Fig. 3. Since sz 5 0 
on the surface, Eq. (7.59) is used to find the principal strain Pc:

Pc 5 2
n

1 2 n
 1Pa 1 Pb2 5 2

0.29

1 2 0.29
 12106 m 1 1006 m2 Pc 5 2368 m ◀

 c. Maximum Shearing Strain. Plotting point C and drawing 
Mohr’s circle through points B and C (Fig. 4), we obtain point D9 and 
write

1
2 gmax 5

1
2 11006 m 1 368 m2 gmax 5 1374 m ◀

a�

�B

D'

AC


1006

368

1
2

�

1
2 max�

Fig. 4 Three-dimensional Mohr’s circles 
used to determine maximum shearing strain.

a�

b

a

1

1
21.2�

b�

Fig. 3. Undeformed and deformed 
principal strain element at Q.
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2
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O
FA

X
R

B
C

m
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m410

m450

m40

860

m

m

375p

1
2

g

Fig. 2. Mohr’s circle used to determine 
principal strains.

ye

xe

xyg

y

x

1

1

90°2

Fig. 1 Undeformed and 
deformed strain elements at Q.
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 7.128 through 7.131 For the given state of plane strain, use the method 
of Sec. 7.7A to determine the state of plane strain associated with 
axes x9 and y9 rotated through the given angle u.

  Px Py gxy u

7.128 and 7.132 2800m 1450m 1200m 25°i
7.129 and 7.133 1240m 1160m 1150m 60°i
7.130 and 7.134 2500m 1250m 0 15°i

7.131 and 7.135 0 1320m 2100m 30°i

Problems

y
y'

x'

x
�

Fig. P7.128 through P7.135

 7.132 through 7.135 For the given state of plane strain, use Mohr’s circle 
to determine the state of plane strain associated with axes x9

and y9 rotated through the given angle u.

 7.136 through 7.139 The following state of strain has been measured on 
the surface of a thin plate. Knowing that the surface of the plate 
is unstressed, determine (a) the direction and magnitude of 
the principal strains, (b) the maximum in-plane shearing strain, 
(c) the maximum shearing strain. (Use n 5 1

3)

Px Py gxy

7.136 2260m 260m 1480m
7.137 2600m 2400m 1350m
7.138 1160m 2480m 2600m
7.139 130m 1570m 1720m

Px Py gxy

7.140 160m 1240m 250m
7.141 1400m 1200m 1375m
7.142 1300m 160m 1100m
7.143 2180m 2260m 1315m

 7.140 through 7.143 For the given state of plane strain, use Mohr’s circle 
to determine (a) the orientation and magnitude of the principal 
strains, (b) the maximum in-plane strain, (c) the maximum 
shearing strain.
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7.144 Determine the strain Px , knowing that the following strains have 
been determined by use of the rosette shown:

P1 5 1480m  P2 5 2120m  P3 5 180m

 7.145 The strains determined by the use of the rosette shown during 
the test of a machine element are 

  P1 5 1600m  P2 5 1450m  P3 5 275m

  Determine (a) the in-plane principal strains, (b) the in-plane 
maximum shearing strain.

x

30�

45�

15�

2

3

1

Fig. P7.144

y

x
30�

30�

13
2

Fig. P7.145

x

45� 45�

45�

2

3

4

1

Fig. P7.146

 7.146 The rosette shown has been used to determine the following 
strains at a point on the surface of a crane hook:

P1 5 1420 3 1026 in./in.   P2 5 245 3 1026 in./in.
P4 5 1165 3 1026 in./in.

(a) What should be the reading of gage 3? (b) Determine the prin-
cipal strains and the maximum in-plane shearing strain.

 7.147 Using a 45° rosette, the strains P1, P2, and P3 have been deter-
mined at a given point. Using Mohr’s circle, show that the prin-
cipal strains are:

  Pmax, min 5
1

2
 1P1 1 P32 6

1

22
3 1P1 2 P222 1 1P2 2 P322 4 12

(Hint: The shaded triangles are congruent.)

O
A

C
B

min�

1�

3�

2�

max�

�
2

45�

45�

2

3

1

�

Fig. P7.147

bee98233_ch07_476-555.indd   543bee98233_ch07_476-555.indd   543 11/9/13   3:38 PM11/9/13   3:38 PM



544

 7.148 Show that the sum of the three strain measurements made with 
a 60° rosette is independent of the orientation of the rosette and 
equal to 

P1 1 P2 1 P3 5 3Pavg

  where Pavg is the abscissa of the center of the corresponding 
Mohr’s circle.

x

60�

60�

�

2

3

1

Fig. P7.148

75�

75�

3

x

1

2

Fig. P7.149

 7.149 The strains determined by the use of the rosette attached as 
shown during the test of a machine element are

P1 5 293.1 3 1026 in./in.  P2 5 1385 3 1026 in./in.
P3 5 1210 3 1026 in./in.

  Determine (a) the orientation and magnitude of the principal 
strains in the plane of the rosette, (b) the maximum in-plane 
shearing strain.

1 in. 

y

C

A

P

Qx

12 in.

3 in.
3 in.

3 2
45�

1

x

Fig. P7.150

 7.150 A centric axial force P and a horizontal force Qx are both applied 
at point C of the rectangular bar shown. A 45° strain rosette on 
the surface of the bar at point A indicates the following strains:

  P1 5 260 3 1026 in./in.  P2 5 1240 3 1026 in./in.
P3 5 1200 3 1026 in./in.

  Knowing that E 5 29 3 106 psi and n 5 0.30, determine the mag-
nitudes of P and Qx.

 7.151 Solve Prob. 7.150, assuming that the rosette at point A indicates 
the following strains:

  P1 5 230 3 1026 in./in.   P2 5 1250 3 1026 in./in.
         P3 5 1100 3 1026 in./in.
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 7.152 A single strain gage is cemented to a solid 4-in.-diameter steel 
shaft at an angle b 5 25° with a line parallel to the axis of the 
shaft. Knowing that G 5 11.5 3 106 psi, determine the torque T
indicated by a gage reading of 300 3 1026 in./in.

2 in.

T

T'
�

Fig. P7.152

�

Fig. P7.154

150 MPa

75 MPa

Fig. P7.156

7.153 Solve Prob. 7.152, assuming that the gage forms an angle b 5 35° 
with a line parallel to the axis of the shaft.

 7.154 A single strain gage forming an angle b 5 18° with a horizontal 
plane is used to determine the gage pressure in the cylindrical 
steel tank shown. The cylindrical wall of the tank is 6 mm thick, 
has a 600-mm inside diameter, and is made of a steel with 
E 5 200 GPa and n 5 0.30. Determine the pressure in the tank 
indicated by a strain gage reading of 280m.

 7.155 Solve Prob. 7.154, assuming that the gage forms an angle b 5 35° 
with a horizontal plane.

 7.156 The given state of plane stress is known to exist on the surface 
of a machine component. Knowing that E 5 200 GPa and 
G 5 77.2 GPa, determine the direction and magnitude of the 
three principal strains (a) by determining the corresponding 
state of strain [use Eq. (2.43) and Eq. (2.38)] and then using 
Mohr’s circle for strain, (b) by using Mohr’s circle for stress to 
determine the principal planes and principal stresses and then 
determining the corresponding strains.

 7.157 The following state of strain has been determined on the surface 
of a cast-iron machine part:

  Px 5 2720m  Py 5 2400m  gxy 5 1660m

  Knowing that E 5 69 GPa and G 5 28 GPa, determine the prin-
cipal planes and principal stresses (a) by determining the cor-
responding state of plane stress [use Eq. (2.36), Eq. (2.43), and 
the first two equations of Prob. 2.73] and then using Mohr’s circle 
for stress, (b) by using Mohr’s circle for strain to determine the 
orientation and magnitude of the principal strains and then 
determining the corresponding stresses.
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Transformation of Plane Stress
A state of plane stress at a given point Q has nonzero values for sx , sy , and 
txy. The stress components associated with the element are shown in 
Fig. 7.66a. The equations for the components sx¿ , sy¿ , and tx¿y¿ associated 
with that element after being rotated through an angle u about the z axis 
(Fig. 7.66b) are

 sx¿ 5
sx 1 sy

2
1
sx 2 sy

2
 cos 2u 1 txy sin 2u (7.5)

 sy¿ 5
sx 1 sy

2
2
sx 2 sy

2
 cos 2u 2 txy sin 2u (7.7)

 tx¿y¿ 5 2 
sx 2 sy

2
 sin 2u 1 txy cos 2u (7.6)

Review and Summary

Fig. 7.66 State of plane stress. (a) Referred to {x y z}. (b) Referred to {x’y’z’}.
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�y �y'

�x
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�

(a) (b)

Fig. 7.67 Principal stresses.
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�p

�p

y

Q x

y'
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 The values up of the angle of rotation that correspond to the maxi-
mum and minimum values of the normal stress at point Q are

 tan 2up 5
2txy

sx 2 sy
 (7.12)

Principal Planes and Principal Stresses
The two values obtained for up are 908 apart (Fig. 7.67) and define the 
principal planes of stress at point Q. The corresponding values of the nor-
mal stress are called the principal stresses at Q:

smax, min 5
sx 1 sy

2
6 Ba

sx 2 sy

2
b2

1 t2
xy (7.14)

The corresponding shearing stress is zero. 
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Maximum In-Plane Shearing Stress
The angle u for the largest value of the shearing stress us is found using

 tan 2us 5 2 
sx 2 sy

2txy
 (7.15)

The two values obtained for us are 908 apart (Fig. 7.68). However, the 
planes of maximum shearing stress are at 458 to the principal planes. The 
maximum value of the shearing stress in the plane of stress is

 tmax 5 Ba
sx 2 sy

2
b2

1 t2
xy (7.16)

and the corresponding value of the normal stresses is

 s¿ 5 save 5
sx 1 sy

2
 (7.17)

Mohr’s Circle for Stress
Mohr’s circle provides an alternative method for the analysis of the trans-
formation of plane stress based on simple geometric considerations. 
Given the state of stress shown in the left element in Fig. 7.69a, point X of 

�max

�max

�

�s

�s

y

Q x

x'

y'

'
� '

� '

� '

Fig. 7.68 Maximum shearing 
stress.
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�

�

x �y

(b)

O
B A

Y ,

C


( )

�y �xy�( 

2�p

)

X ,�x �xy

�

�

xy


( )

1
2

�p

�y �max �max

�min

�min�x

�xy

O x

a

b

y

(a)

Fig. 7.69 (a) Plane stress element, and the orientation of principal planes. 
(b) Corresponding Mohr's circle.

coordinates sx , 2txy and point Y of coordinates sy , 1txy are plotted in 
Fig. 7.69b. Drawing the circle of diameter XY provides Mohr’s circle. The 
abscissas of the points of intersection A and B of the circle with the hori-
zontal axis represent the principal stresses, and the angle of rotation 
bringing the diameter XY into AB is twice the angle up defining the prin-
cipal planes, as shown in the right element of Fig. 7.69a. The diameter DE 
defines the maximum shearing stress and the  orientation of the corre-
sponding plane (Fig. 7.70). 

�ave� '

�O B C A

D

E

�

�max
90�

	

Fig. 7.70 Maximum shearing stress is oriented 
6458 from principal directions.
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General State of Stress
A general state of stress is characterized by six stress components, where 
the normal stress on a plane of arbitrary orientation can be expressed as 
a quadratic form of the direction cosines of the normal to that plane. This 
proves the existence of three principal axes of stress and three principal 
stresses at any given point. Rotating a small cubic element about each of 
the three principal axes was used to draw the corresponding Mohr’s cir-
cles that yield the values of smax , smin , and tmax (Fig. 7.71). In the case of 

O
C B

t

A

min

s

s

s

max

maxt

Fig. 7.71 Three-dimensional Mohr’s circles 
for general state of stress.

Z � O B

�

A

0

�

�

�

�

�min

�� �max

max�

D'

E'

D
1
2 a 

a

Fig. 7.72 Three-dimensional Mohr’s circles for 
plane stress having two positive principal stresses.

plane stress when the x and y axes are selected in the plane of stress, point 
C coincides with the origin O. If A and B are located on opposite sides of 
O, the maximum shearing stress is equal to the maximum in-plane shear-
ing stress. If A and B are located on the same side of O, this is not the case. 
For instance if sa . sb . 0, the maximum shearing stress is equal to 1

2 sa 
and corresponds to a rotation out of the plane of stress (Fig. 7.72).

Yield Criteria for Ductile Materials
To predict whether a structural or machine component will fail at some criti-
cal point due to yield in the material, the principal stresses sa and sb at that 
point for the given loading condition are determined. The point of coordi-
nates sa and sb is plotted, and if this point falls within a certain area, the 
component is safe. If it falls outside, the component will fail. The area used 
with the maximum-shearing-stress criterion is shown in Fig. 7.73, and the 
area used with the maximum-distortion-energy criterion in Fig. 7.74. Both 
areas depend upon the value of the yield strength sY of the material.

Y��

� Y� a�
Y�

Y�

b�

�

�

O

Fig. 7.73 Tresca's hexagon for 
maximum shearing-stress criterion.

Y��

Y��

�

Y� a�
Y�

b�

�
O

A

B

D

C

Fig. 7.74 Von Mises surface based on 
maximum-distortion-energy criterion.

bee98233_ch07_476-555.indd   548bee98233_ch07_476-555.indd   548 11/9/13   3:38 PM11/9/13   3:38 PM



549

z
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1�

2�
2�

y

x

t

r

Fig. 7.76 Pressurized cylindrical vessel.

Fracture Criteria for Brittle Materials
The most commonly used method to predict failure of brittle materials is 
the fracture-based Mohr’s criterion, which uses the results of various tests 
for a given material. The shaded area shown in Fig. 7.75 is used when the 
ultimate strengths sUT and sUC have been determined, respectively, from 
a tension and a compression test. The principal stresses sa and sb are 
determined at a given point, and if the corresponding point falls within 
the shaded area, the component is safe, and if it falls outside, the compo-
nent will rupture.

Cylindrical Pressure Vessels
The stresses in thin-walled pressure vessels and equations relating to the 
stresses in the walls and the gage pressure p in the fluid were discussed. 
For a cylindrical vessel of inside radius r and thickness t (Fig. 7.76), the 
hoop stress s1 and the longitudinal stress s2 are

 s1 5
pr

t
  s2 5

pr

2 t
 (7.30, 7.31)

The maximum shearing stress occurs out of the plane of stress and is

tmax 5 s2 5
pr

2 t
 (7.34)

Spherical Pressure Vessels
For a spherical vessel of inside radius r and thickness t (Fig. 7.77), the two 
principal stresses are equal:

 s1 5 s2 5
pr

2 t
 (7.36)

Again, the maximum shearing stress occurs out of the plane of stress and is

 tmax 5
1
2s1 5

pr

4t
 (7.37)

Transformation of Plane Strain
The last part of the chapter was devoted to the transformation of strain. 
We discussed the transformation of plane strain and introduced Mohr’s 
circle for plane strain. The discussion was similar to the corresponding 
discussion of the transformation of stress, except that, where the shearing 
stress t was used, we now used 1

2 g, that is, half the shearing strain. The 
formulas obtained for the transformation of strain under a rotation of axes 
through an angle u were

  Px¿ 5
Px 1 Py

2
1
Px 2 Py

2
 cos 2u 1

gxy

2
 sin 2u (7.44)

  Py¿ 5
Px 1 Py

2
2
Px 2 Py

2
 cos 2u 2

gxy

2
 sin 2u (7.45)

  gx¿y¿ 5 21Px 2 Py2 sin  2u 1 gxy cos 2u  (7.49)

1�

2�

1�
2� 1��

Fig. 7.77 Pressurized spherical vessel.

�UT

�UT�UC

�UC

�b

�a

Fig. 7.75 Simplified Mohr's criterion for brittle 
materials.
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Mohr’s Circle for Strain
Using Mohr’s circle for strain (Fig. 7.78), the relationships defining the 
angle of rotation up corresponding to the principal axes of strain and the 
values of the principal strains Pmax and Pmin are

 tan 2up 5
gxy

Px 2 Py
 (7.52)

Pmax 5 Pave 1 R  and  Pmin 5 Pave 2 R (7.51)

where

Pave 5
Px 1 Py

2
  and  R 5 Ba

Px 2 Py

2
b2

1 agxy

2
b2

 (7.50)

The maximum shearing strain for a rotation in the plane of strain is

gmax 1in plane2 5 2R 5 21Px 2 Py22 1 g2
xy (7.53)

 In plane stress, the principal strain Pc in a direction perpendicular to 
the plane of stress is expressed in terms of the in-plane principal strains 
Pa and Pb :

 Pc 5 2
n

1 2 n
 1Pa 1 Pb2 (7.59)

Strain Gages and Strain Rosette
Strain gages are used to measure the normal strain on the surface of a 
structural element or machine component. A strain rosette consists of 
three gages aligned along lines forming angles u1 , u2 , and u3 with the x axis 
(Fig. 7.79). The relationships among the measurements P1 , P2 , P3 of the 
gages and the components Px , Py , gxy characterizing the state of strain at 
that point are

  P1 5 Px cos2 u1 1 Py sin2 u1 1 gxy sin u1 cos u1 

  P2 5 Px cos2 u2 1 Py sin2 u2 1 gxy sin u2 cos u2 (7.60)

 P3 5 Px cos2 u3 1 Py sin2 u3 1 gxy sin u3 cos u3 

 These equations can be solved for Px , Py , and gxy once P1 , P2 , and P3

have been determined.

L1

L2

L3

O x

�2

�1

�3

�2
�3

�1

Fig. 7.79 Generalized strain gage 
rosette arrangement.
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Fig. 7.78 (a) Mohr’s circle for plane strain, 
showing principal strains and maximum in-plane 
shearing strain. (b) Strain element oriented to 
principal directions.
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Review Problems
 7.158 A steel pipe of 12-in. outer diameter is fabricated from 

1
4-in.-thick plate by welding along a helix that forms an angle 
of 22.5° with a plane perpendicular to the axis of the pipe. 
Knowing that a 40-kip axial force P and an 80-kip ? in. torque 
T, each directed as shown, are applied to the pipe, determine 
the normal and in-plane shearing stresses in directions, 
respectively, normal and tangential to the weld.

 7.159 Two steel plates of uniform cross section 10 3 80 mm are 
welded together as shown. Knowing that centric 100-kN forces 
are applied to the welded plates and that b 5 25°, determine (a) 
the in-plane shearing stress parallel to the weld, (b) the normal 
stress perpendicular to the weld.

22.5°

in.1
4

P

T

Weld

Fig. P7.158

100 kN �

100 kN

80 mm

Fig. P7.159 and P7.160

 7.160 Two steel plates of uniform cross section 10 3 80 mm are 
welded together as shown. Knowing that centric 100-kN forces 
are applied to the welded plates and that the in-plane shearing 
stress parallel to the weld is 30 MPa, determine (a) the angle b, 
(b) the corresponding normal stress perpendicular to the weld.

 7.161 Determine the principal planes and the principal stresses for 
the state of plane stress resulting from the superposition of the 
two states of stress shown.

�

�0

�0 +
Fig. P7.161

Fig. P7.162

z

σz

6 ksi

y

x

7 ksi

2 ksi

7.162 For the state of stress shown, determine the maximum 
shearing stress when (a) sz 5 14 ksi, (b) sz 5 24 ksi, 
(c) sz 5 0.
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 7.163 For the state of stress shown, determine the value of txy for 
which the maximum shearing stress is (a) 60 MPa, (b) 78 MPa.

�xy

14 ksi

24 ksi

Fig. P7.164

D

A

Ba

b750 mm

500 mm

750 mm

5 kN

Fig. P7.165

Fig. P7.163

40 MPa

100 MPa

y

z
x

τxy

 7.164 The state of plane stress shown occurs in a machine component 
made of a steel with sY 5 30 ksi. Using the maximum-
distortion-energy criterion, determine whether yield will 
occur when (a) txy 5 6 ksi, (b) txy 5 12 ksi, (c) txy 5 14 ksi. If 
yield does not occur, determine the corresponding factor 
of safety.

 7.165 The compressed-air tank AB has an inner diameter of 450 mm 
and a uniform wall thickness of 6 mm. Knowing that the gage 
pressure inside the tank is 1.2 MPa, determine the maximum 
normal stress and the maximum in-plane shearing stress at 
point a on the top of the tank.

7.166 For the compressed-air tank and loading of Prob. 7.165, 
determine the maximum normal stress and the maximum 
in-plane shearing stress at point b on the top of the tank.
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 7.167 The brass pipe AD is fitted with a jacket used to apply a hydro-
static pressure of 500 psi to portion BC of the pipe. Knowing that 
the pressure inside the pipe is 100 psi, determine the maximum 
normal stress in the pipe.

D

2 in.

4 in.

A

B

C

0.12 in.

0.15 in.

Fig. P7.167

x
45� 45�

2

3

1

Fig. P7.169

 7.168 For the assembly of Prob. 7.167, determine the normal stress in 
the jacket (a) in a direction perpendicular to the longitudinal 
axis of the jacket, (b) in a direction parallel to that axis.

 7.169 Determine the largest in-plane normal strain, knowing that the 
following strains have been obtained by the use of the rosette 
shown:

P1 5 250 3 1026 in./in.  P2 5 1360 3 1026 in./in.
P3 5 1315 3 1026 in./in.
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Computer Problems
The following problems are to be solved with a computer.

 7.C1 A state of plane stress is defined by the stress components sx , sy ,
and txy associated with the element shown in Fig. P7.C1a. (a) Write a com-
puter program that can be used to calculate the stress components sx¿ ,
sy¿ , and tx¿y¿ associated with the element after it has rotated through 
an angle u about the z axis (Fig. P.7C1b). (b) Use this program to solve 
Probs. 7.13 through 7.16.

�xy

�x'y'

�y �y'

�x

�x'Q Q

z

x x

x'

y y'

z

y
�

�

(a) (b)

Fig. P7.C1

 7.C2 A state of plane stress is defined by the stress components sx , sy ,
and txy associated with the element shown in Fig. P7.C1a. (a) Write a 
computer program that can be used to calculate the principal axes, the 
principal stresses, the maximum in-plane shearing stress, and the maxi-
mum shearing stress. (b) Use this program to solve Probs. 7.5, 7.9, 7.68, 
and 7.69.

 7.C3 (a) Write a computer program that, for a given state of plane stress 
and a given yield strength of a ductile material, can be used to determine 
whether the material will yield. The program should use both the 
maximum-shearing-stress criterion and the maximum-distortion-energy 
criterion. It should also print the values of the principal stresses and, if the 
material does not yield, calculate the factor of safety. (b) Use this program 
to solve Probs. 7.81, 7.82, and 7.164.

 7.C4 (a) Write a computer program based on Mohr’s fracture criterion 
for brittle materials that, for a given state of plane stress and given values 
of the ultimate stress of the material in tension and compression, can be 
used to determine whether rupture will occur. The program should also 
print the values of the principal stresses. (b) Use this program to solve 
Probs. 7.91 and 7.92 and to check the answers to Probs. 7.93 and 7.94.
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y
y'

x'

x
�

Fig. P7.C5

 7.C5 A state of plane strain is defined by the strain components Px , Py ,
and gxy associated with the x and y axes. (a) Write a computer program 
that can be used to calculate the strain components Px¿, Py¿, and gx¿y¿ 
associated with the frame of reference x9y9 obtained by rotating the x 
and y axes through an angle u. (b) Use this program to solve Probs. 7.129 
and 7.131.

 7.C6 A state of strain is defined by the strain components Px , Py , and gxy

associated with the x and y axes. (a) Write a computer program that can 
be used to determine the orientation and magnitude of the principal 
strains, the maximum in-plane shearing strain, and the maximum shear-
ing strain. (b) Use this program to solve Probs. 7.136 through 7.139.

 7.C7 A state of plane strain is defined by the strain components Px , Py ,
and gxy measured at a point. (a) Write a computer program that can be 
used to determine the orientation and magnitude of the principal strains, 
the maximum in-plane shearing strain, and the magnitude of the shearing 
strain. (b) Use this program to solve Probs. 7.140 through 7.143.

 7.C8 A rosette consisting of three gages forming angles of u1, u2 , and u3 
with the x axis is attached to the free surface of a machine component 
made of a material with a given Poisson’s ratio n. (a) Write a computer 
program that, for given readings P1, P2 , and P3 of the gages, can be used 
to calculate the strain components associated with the x and y axes and 
to determine the orientation and magnitude of the three principal strains, 
the maximum in-plane shearing strain, and the maximum shearing strain. 
(b) Use this program to solve Probs. 7.144, 7.145, 7.146, and 7.169.
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8
Principal Stresses 

under a Given 
Loading

Due to gravity and wind load, the signpost support column 
is subjected simultaneously to compression, bending, and 
torsion. This chapter will examine the stresses resulting from 
such combined loadings.

Objectives
In this chapter, you will:

• Describe how stress components vary throughout a beam.

• Identify key stress analysis locations in an I-shaped beam.

• Design transmission shafts subject to transverse loads and torques.

• Describe the stresses throughout a member arising from 
combined loads.
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558 Principal Stresses under a Given Loading

Introduction
In the first part of this chapter, you will apply to the design of beams and 
shafts the knowledge that you acquired in Chap. 7 on the transformation 
of stresses. In the second part of the chapter, you will learn how to deter-
mine the principal stresses in structural members and machine elements 
under given loading conditions.
 The maximum normal stress sm that occurs in a beam under a 
transverse load (Fig. 8.1a) and whether this value exceeds the allowable 
stress sall for the given material has been studied in Chap. 5. If the allow-
able stress is exceeded, the design of the beam is not acceptable. While 
the danger for a brittle material is actually to fail in tension, the danger 
for a ductile material is to fail in shear (Fig. 8.1b). Thus, a situation where 
sm . sall indicates that |M |max is too large for the cross section selected, 

�m

�max

�m
� '

(a) (b)

Fig. 8.1 Stress elements where normal 
stress is maximum in a transversely-loaded 
beam. (a) Element showing maximum 
normal stress. (b) Element showing 
corresponding maximum shearing stress.

�m

� '

� '

(a) (b)

Fig. 8.2 Stress elements where shearing 
stress is maximum in a transversely-loaded 
beam. (a) Element showing maximum 
shearing stress. (b) Element showing 
corresponding maximum normal stress.

�max

Fig. 8.3 Principal stress element at 
the junction of a flange and web in 
an I-shaped beam.

 Introduction

 8.1 PRINCIPAL STRESSES IN 
A BEAM

 8.2 DESIGN OF 
TRANSMISSION SHAFTS

 8.3 STRESSES UNDER 
COMBINED LOADS

but it does not provide any information on the actual mechanism of fail-
ure. Similarly, tm . tall indicates that |V |max is too large for the cross sec-
tion selected. While the danger for a ductile material is actually to fail in 
shear (Fig. 8.2a), the danger for a brittle material is to fail in tension under 
the principal stresses (Fig. 8.2b). The distribution of the principal stresses 
in a beam is discussed in Sec. 8.1.
 Depending on the shape of the beam’s cross section and the value 
of the shear V in the critical section where |M | 5 |M |max , the largest value 
of the normal stress may not necessarily occur at the top or bottom, but 
at some other point within the section. In Sec. 8.1, a combination of large 
values of sx and txy near the junction of the web and the flanges of a W- or 
S-beam can result in a value of the principal stress smax (Fig. 8.3) that is 
larger than the value of sm on the surface of the beam.
 Section 8.2 covers the design of transmission shafts subjected to 
transverse loads and torques. The effects of both normal stresses due to 
bending and shearing stresses due to torsion are discussed.
 In Sec. 8.3, the stresses are determined at a given point K of a body 
of arbitrary shape subjected to combined loading. First, the given load is 
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8.1 Principal Stresses  in a Beam 559

reduced to forces and couples in the section containing K. Next, the nor-
mal and shearing stresses at K are calculated. Finally, the principal planes, 
principal stresses, and maximum shearing stress are found, using one of 
the methods for transformation of stresses (Chap. 7).

8.1  PRINCIPAL STRESSES 
IN A BEAM

Consider a prismatic beam AB subjected to some arbitrary transverse 
loads (Fig. 8.4). The shear and bending moment in a section through a 

B

w

A
C

D

P

Fig. 8.4 Transversely loaded prismatic 
beam.

Fig. 8.5 Stress elements at selected 
points of a beam.

�m �m

�m �m

�m

�xy

�x�x

c

y

y

xO

 c

Fig. 8.6 Principal stress elements 
at selected points of a beam.

�m �m

�m �m

�min

�min

�max

�max

c

y

y

xO

 c

c

c

b
x

y�x �xy

P

Fig. 8.7 Narrow rectangular cantilever 
beam supporting a single concentrated load.

given point C are denoted by V and M, respectively. Recall from Chaps. 5 
and 6 that, within the elastic limit, the stresses on a small element with 
faces perpendicular to the x and y axes reduce to the normal stresses sm 5 
McyI if the element is at the free surface of the beam and to the shearing 
stresses tm 5 VQyIt if the element is at the neutral surface (Fig. 8.5).
 At any other point of the cross section, an element is subjected 
simultaneously to the normal stresses

 sx 5 2
My

I
 (8.1)

where y is the distance from the neutral surface and I is the cen-
troidal moment of inertia of the section, and to the shearing stresses

 txy 5 2
VQ

It
 (8.2)

where Q is the first moment about the neutral axis of the portion of the 
cross-sectional area located above the point where the stresses are com-
puted, and t is the width of the cross section at that point. Either of the 
methods of analysis presented in Chap. 7 can be used to obtain the prin-
cipal stresses at any point of the cross section (Fig. 8.6).
 The following question now arises: can the maximum normal stress 
smax at some point within the cross section be larger than sm 5 McyI at 
the surface of the beam? If it can, then determining the largest normal 
stress in the beam involves more than the computation of |M |max and the 
use of Eq. (8.1). An answer to this question is obtained by investigating 
the distribution of the principal stresses in a  narrow rectangular cantilever 
beam subjected to a concentrated load P at its free end (Fig. 8.7). Recall 
from Sec. 6.2 that the normal and shearing stresses at a distance x from 
the load P and at a distance y above the neutral surface are given, respec-
tively, by Eqs. (6.13) and (6.12). Since the moment of inertia of the cross 
section is

I 5
bh3

12
5
1bh2 12c22

12
5

Ac 
2

3

bee98233_ch08_556-597.indd   559bee98233_ch08_556-597.indd   559 11/8/13   4:36 PM11/8/13   4:36 PM



560 Principal Stresses under a Given Loading

where A is the cross-sectional area and c the half-depth of the beam, 

 sx 5
Pxy

I
5

Pxy
1
3 Ac2 5 3 

P
A

 
xy

c2  (8.3)

and

 txy 5
3

2
 
P

A
 a1 2

y2

c2b (8.4)

 Using the methods of Sec. 7.1B or Sec. 7.2, smax can be determined 
at any point of the beam. Figure 8.8 shows the results of the computation 
of the ratios smaxysm and sminysm in two sections of the beam, corre-
sponding respectively to x 5 2c and x 5 8c. In each section, these ratios 
have been determined at 11 different points, and the orientation of the 
principal axes has been indicated at each point.†

 It is clear that smax is smaller than sm in both of the two sections in 
Fig. 8.8. If it does exceed sm elsewhere, it is in sections close to load P, 
where sm is small compared to tm.‡ But for sections close to load P, Saint-
Venant’s principle does not apply, and Eqs. (8.3) and (8.4) cease to be 

† See Prob. 8.C2, which refers to a program that can be written to obtain the results in 
Fig. 8.8.

‡As will be verified in Prob. 8.C2, smax exceeds sm if x # 0.544c.

Fig. 8.8 Distribution of principal stresses in two transverse sections of a rectangular cantilever beam supporting a single 
con centrated load.

1.0

y/c �min/�m �min/�m�max/�m �max/�m

x � 2c x � 8c

0.8

0.6

0.4

0.2

� 0.2

� 0.4

� 0.6

� 0.8

� 1.0

0

0

�0.010

�0.040

�0.090

�0.160

�0.360

�0.490

�0.640

�0.810

�1.000

�0.250

1.000

0.810

0.640

0.490

0.360

0.160

0.090

0.040

0.010

0

0.250

0

�0.001

�0.003

�0.007

�0.017

�0.217

�0.407

�0.603

�0.801

�1.000

�0.063

1.000

0.801

0.603

0.407

0.217

0.017

0.007

0.003

0.001

0

0.063

y � � c

x � 2c x � 8c

y � � c

y � 0

P
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8.1 Principal Stresses in a Beam  561

valid—except in the very unlikely case of a load distributed parabolically 
over the end section (see. Sec. 6.2), where advanced methods of analysis 
are used to account for the effect of stress concentrations. It can thus be 
concluded that, for beams of rectangular cross section, and within the 
scope of the theory presented in this text, the maximum normal stress can 
be obtained from Eq. (8.1).
 In Fig. 8.8, the directions of the principal axes are found at 11 points 
in both of the sections considered. If this analysis is extended to a larger 
number of sections and points in each section, it possible to draw two 
orthogonal systems of curves on the side of the beam (Fig. 8.9). One 

Tensile

Compressive

P

Fig. 8.9 Stress trajectories in a 
rectangular cantilevered beam 
supporting a single concentrated load.

Fig. 8.10 Key stress 
analysis locations 
in I-shaped beams.

a

b

c

d

e

system consists of curves tangent to the principal axes corresponding to 
smax and the other to smin. These curves are known as the stress trajecto-
ries. A trajectory of the first group (solid lines) defines the direction of the 
largest tensile stress at each of its points, while the second group (dashed 
lines) defines the direction of the largest compressive stress.†

 The conclusion we have reached for beams of rectangular cross sec-
tion, that the maximum normal stress in the beam can be obtained from 
Eq. (8.1), remains valid for many beams of nonrectangular cross section. 
However, when the width of the cross section varies so that large shearing 
stresses txy occur at points close to the surface of the beam (where sx is 
also large), the principal stress smax may be larger than sm at such points. 
This is a distinct possibility when selecting W-beams or S-beams, where 
we should calculate the principal stress smax at the junctions b and d of 
the web with the flanges of the beam (Fig. 8.10). This is done by determin-
ing sx and txy at that point from Eqs. (8.1) and (8.2), and by using either 
of the methods of analysis in Chap. 7 to obtain smax (see Sample Prob. 8.1). 
An alternative procedure for selecting an acceptable section uses the 
approximation tmax 5 VyAweb [Eq. (6.11)]. This leads to a slightly larger 
and conservative value of the principal stress smax at the junction of the 
web with the flanges of the beam (see Sample Prob. 8.2).

†A brittle material, such as concrete, fails in tension along planes that are perpendicular 
to the tensile-stress trajectories. Thus, to be effective, steel reinforcing bars should be 
placed so that they intersect these planes. On the other hand, stiffeners attached to the 
web of a plate girder are effective in preventing buckling only if they intersect planes 
perpendicular to the compressive-stress trajectories.
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562 Principal Stresses under a Given Loading

8.2  DESIGN OF TRANSMISSION 
SHAFTS

The design of transmission shafts in Sec. 3.4 considered only the stresses 
due to torques exerted on the shafts. However, if the power is transferred 
to and from the shaft by means of gears or sprocket wheels (Fig. 8.11a), 
the forces on the gear teeth or sprockets are equivalent to force-couple 
systems applied at the centers of the corresponding cross sections 
(Fig. 8.11b). This means that the shaft is subjected to both a transverse 
and a torsional load.

C

A

B
P1

P2

P3

C

(a)

CAy

Az

P2

P3

T3

T2

T1

P1

C
(b)

y

z

Bz

By

x

Fig. 8.11 Loadings on gear-shaft systems. (a) Forces applied to gear teeth. 
(b) Free-body diagram of shaft, with gear forces replaced by equivalent 
force-couple systems applied to shaft.

 The shearing stresses produced in the shaft by the transverse loads 
are usually much smaller than those produced by the torques and will be 
neglected in this analysis.† However, the normal stresses due to transverse 
loads may be quite large, and their contribution to the maximum shearing 
stress tmax should be taken into account.
 Consider the cross section of the shaft at some point C. The torque 
T and the bending couples My and Mz acting in a horizontal and a vertical 
plane are represented by the couple vectors shown (Fig. 8.12a). Since any 
diameter of the section is a principal axis of inertia for the section, we can 
replace My and Mz by their resultant M (Fig. 8.12b) in order to compute the 
normal stresses sx . Thus sx is maximum at the end of the diameter 

†For an application where the shearing stresses produced by the transverse loads must 
be considered, see Probs. 8.21 and 8.22.

C

Mz

My

C

M

(a) (b)

TT

Fig. 8.12 (a) Torque and bending couples 
acting on shaft cross section. (b) Bending 
couples replaced by their resultant M.
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8.2 Design of Transmission Shafts 563

perpendicular to the vector representing M (Fig. 8.13). Recalling that the 
values of the normal stresses at that point are sm 5 McyI and zero and 
the shearing stress is tm 5 TcyJ, plot the corresponding values as points X 
and Y on a Mohr’s circle diagram (Fig. 8.14). The maximum shearing 
stress is found to be

tmax 5 R 5 Ba
sm

2
b2

1 1tm22 5 Ba
Mc

2I
b2

1 aTc

J
b2

m�

m�
m�

M

T

Fig. 8.13 Maximum 
stress element.

max�

�

�

m�

m�

AC

X

Y

OB

D

Fig. 8.14 Mohr’s circle for shaft loading.

Recalling that 2I 5 J for a circular or annular cross section,

 tmax 5
c

J
2M 

2 1 T  
2 (8.5)

 It follows that the minimum allowable value of the ratio Jyc for the 
cross section of the shaft is

 
J
c

5
A2M 

2 1 T  
2

 Bmax

tall
 (8.6)

where the numerator in the right-hand member represents the maximum 
value of 2M 

2 1 T  
2 in the shaft and tall is the allowable shearing stress. 

Expressing the bending moment M in terms of its components in the two 
coordinate planes, we obtain:

 
J
c

5
A2My  

2 1 Mz  

2 1 T  
2

 Bmax

tall
 (8.7)

Equations (8.6) and (8.7) can be used to design both solid and hollow 
circular shafts and should be compared to Eq. (3.21), which was obtained 
under the assumption of torsional loading only.
 The maximum value of 2My

2 1 Mz
2 1 T 

2 is easier to find if both 
bending-moment diagrams corresponding to My and Mz and a third dia-
gram representing the values of T along the shaft are drawn (see Sample 
Prob. 8.3).
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564 Principal Stresses under a Given Loading

Sample Problem 8.1
A 160-kN force is applied as shown at the end of a W200 3 52 rolled-steel 
beam. Neglecting the effect of fillets and of stress concentrations, deter-
mine whether the normal stresses in the beam satisfy a design specifica-
tion that they be equal to or less than 150 MPa at section A–A9.

STRATEGY: To determine the maximum normal stress, you should 
perform a beam stress analysis at the surface of the flange as well as 
at the junction of the web and flange. A Mohr’s circle analysis will also 
be necessary at the web-flange junction to determine this maximum 
normal stress.

MODELING and ANALYSIS: 

Shear and Bending Moment. Referring to Fig. 1, at section A–A9, 
we have

 MA 5 1160 kN2 10.375 m2 5 60 kN?m

 VA 5 160 kN

 At point a,

sa 5
MA

S
5

60 kN?m

511 3 1026 m3 5 117.4 MPa

 At point b,

sb 5 sa 
yb

c
5 1117.4 MPa2 90.4 mm

103 mm
5 103.0 MPa

(continued)

A

A'
160 kN

L � 375 mm

VA

MA

0.375 m

160 kN

Fig. 1 Free-body diagram of beam, 
with section at A–A’

a�

b�

12.6 mm
206 mm

c � 103 mm

206 mm

yb � 90.4 mm

7.87 mm

I � 52.9 � 10–6m4

S � 511 � 10–6m3

a

b
c

Fig. 2 Cross-section dimensions and normal 
stress distribution.

Normal Stresses on Transverse Plane. Referring to the table of 
Properties of Rolled-Steel Shapes in Appendix C to obtain the data 
shown, determine the stresses sa and sb (Fig. 2).
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8.2 Design of Transmission Shafts 565

Note that all normal stresses on the transverse plane are less than 
150 MPa.

Shearing Stresses on Transverse Plane. Referring to Fig. 3, we 
obtain the data necessary to evaluate Q and then determine the 
stresses ta and tb.
 At point a,

Q 5 0  ta 5 0

 At point b,

Q 5 1206 3 12.62 196.72 5 251.0 3 103 mm3 5 251.0 3 1026 m3

tb 5
VAQ

It
5
1160 kN2 1251.0 3 1026 m32
152.9 3 1026 m42 10.00787 m2 5 96.5 MPa

Principal Stress at Point b. The state of stress at point b consists of 
the normal stress sb 5 103.0 MPa and the shearing stress tb 5 96.5 MPa. 
Draw Mohr’s circle (Fig. 4) and find

 smax 5
1

2
 sb 1 R 5

1

2
 sb 1 Ba

1

2
 sbb

2

1 tb
2

 5
103.0

2
1 Ba

103.0

2
b2

1 196.522
 smax 5 160.9 MPa

The specification, smax # 150 MPa, is not satisfied ◀

12.6 mm
206 mm

96.7 mm103 mm

a

b

c

Fig. 3 Dimensions to evaluate Q 
at point b.

b� max�

max�

min�

b�

b�

b�

b�

�

�

Y

X

A O C

R

2

B

Fig. 4 Stress element for coordinate and principal 
orientations at point b; Mohr’s circle for point b.a

b c

L � 881 mm

W200 � 52

P

Fig. 5 Condition where maximum 
principal stress at point a begins to 
exceed that at point b.

REFLECT and THINK: For this beam and loading, the principal 
stress at point b is 36% larger than the normal stress at point a. For 
L $ 881 mm (Fig. 5), the maximum normal stress would occur at 
point a.

(continued)
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566 Principal Stresses under a Given Loading

Sample Problem 8.2
The overhanging beam AB supports a uniformly distributed load of 
3.2 kips/ft and a concentrated load of 20 kips at C. Knowing that the 
grade of steel to be used has sall 5 24 ksi and tall 5 14.5 ksi, select the 
wide-flange shape that should be used.

STRATEGY: Draw the shear and bending-moment diagrams to 
determine their maximum values. From the maximum bending 
moment, you can find the required section modulus and use this to 
select the lightest available wide-flange shape. You can then check to 
ensure that the maximum shearing stress in the web and the maxi-
mum principal stress at the web-flange junction do not exceed the 
given allowable stresses.

MODELING and ANALYSIS:

Reactions at A and D. Draw the free-body diagram (Fig. 1) of the 
beam. From the equilibrium equations SMD 5 0 and SMA 5 0, the 
values of RA and RD are as shown.

Shear and Bending-Moment Diagrams. Using the methods dis-
cussed in Secs. 5.1 and 5.2, draw the diagrams (Fig. 1) and observe that

ƒM ƒ max 5 239.4 kip?ft 5 2873 kip?in.  ƒ V ƒ max 5 43 kips

Section Modulus. For |M |max 5 2873 kip?in. and sall 5 24 ksi, the 
minimum acceptable section modulus of the rolled-steel shape is

Smin 5
ƒM ƒ max

sall
5

2873 kip?in.

24 ksi
5 119.7 in3

Selection of Wide-Flange Shape. Choose from the table of Proper-
ties of Rolled-Steel Shapes in Appendix C the lightest shapes of a given 
depth that have a section modulus larger than Smin.

    Shape S (in3)

W24 3 68 154
W21 3 62 127
W18 3 76 146
W16 3 77 134
W14 3 82 123
W12 3 96 131

 The lightest shape available is W21 3 62 ◀

(continued)

B
DC

20 kips

3.2 kips/ft
9 ft

20 ft
5 ft

A

DC
59 kips41 kips

41 kips

12.2 kips
16 kips

– 7.8 kips

239.4 kip · ft

– 43 kips

– 40 kip · ft

(– 279.4)
( 239.4)

(40)

9 ft 11 ft
5 ft

V

x

x

M

B

20 kips

3.2 kips/ft

A

Fig. 1 Free-body diagram of beam; shear 
and bending moment diagrams.
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8.2 Design of Transmission Shafts 567

Shearing Stress. For the beam design, assume that the maximum 
shear is uniformly distributed over the web area of a W21 3 62 (Fig. 2). 
Write

tm 5
Vmax

Aweb
5

43 kips

8.40 in2 5 5.12 ksi , 14.5 ksi  (OK)

Principal Stress at Point b. The maximum principal stress at point 
b in the critical section where M is maximum should not exceed 
sall 5 24 ksi. Referring to Fig. 3, we write

 sa 5
Mmax

S
5

2873 kip?in.

127 in3 5 22.6 ksi

 sb 5 sa 
yb

c
5 122.6 ksi2 9.88 in.

10.50 in.
5 21.3 ksi

Conservatively, tb 5
V

Aweb
5

12.2 kips

8.40 in2 5 1.45 ksi

tw � 0.400 in.

Aweb � twd � 8.40 in2

W21 � 62

S � 127 in3d � 21 in.

Fig. 2 I-shape cross section properties.

� 22.6 ksia�

� 21.3 ksib�10.5 in.

9.88 in.

a

b

tf � 0.615 in.

Fig. 3 Key stress analysis locations and normal 
stress distribution.

A
C O B

Y

X

b � 1.45 ksi

b � 1.45 ksi

� b � 21.3 ksi

�

�

b � 21.3 ksi

�max � 21.4 ksi

�

�

�

Fig. 4 Stress element at point b and 
Mohr’s circle for point b.

Draw Mohr’s circle (Fig. 4) and find

smax 5
1
2sb 1 R 5

21.3 ksi

2
1 Ba

21.3 ksi

2
b2

1 11.45 ksi22

smax 5 21.4 ksi # 24 ksi (OK) ◀
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568 Principal Stresses under a Given Loading

Sample Problem 8.3
The solid shaft AB rotates at 480 rpm and transmits 30 kW from the 
motor M to machine tools connected to gears G and H; 20 kW is taken 
off at gear G and 10 kW at gear H. Knowing that tall 5 50 MPa, deter-
mine the smallest permissible diameter for shaft AB.

STRATEGY: After determining the forces and couples exerted on the 
shaft, you can obtain its bending-moment and torque diagrams. Using 
these diagrams to aid in identifying the critical transverse section, you 
can then determine the required shaft diameter. 

MODELING:
Draw the free-body diagram of the shaft and gears (Fig. 1). Observing 
that f 5 480 rpm 5 8 Hz, the torque exerted on gear E is

TE 5
P

2pf
5

30 kW

2p18 Hz2 5 597 N?m

The corresponding tangential force acting on the gear is

FE 5
TE

rE
5

597 N?m

0.16 m
5 3.73 kN

A similar analysis of gears C and D yields

TC 5
20 kW

2p18 Hz2 5 398 N?m   FC 5 6.63 kN

TD 5
10 kW

2p18 Hz2 5 199 N?m   FD 5 2.49 kN

Now replace the forces on the gears by equivalent force-couple sys-
tems as shown in Fig. 2.

(continued)

200

G

A

H

C

B

M

D E

rE � 160

rC � 60 rD � 80

200

Dimensions in mm

200 200

A C D E

rC � 0.060 m

rE � 0.160 m

FE � 3.73 kN

FC � 6.63 kN
FD � 2.49 kN

rD � 0.080 m

B

Fig. 1 Free-body diagram of shaft AB and 
its gears.

A
C D E

y TD 5 199 N · m
FE 5 3.73 kN

FD 5 2.49 kN
TE 5 597 N · m

FC 5 6.63 kN

TC 5 398 N · m

B
x

z

Fig. 2 Free-body diagram of shaft AB, with 
gear forces replaced by equivalent force-
couple systems.

bee98233_ch08_556-597.indd   568bee98233_ch08_556-597.indd   568 11/8/13   4:36 PM11/8/13   4:36 PM



8.2 Design of Transmission Shafts 569

ANALYSIS: 

Bending-Moment and Torque Diagrams (Fig. 3)

Critical Transverse Section. By computing 2M 
2
y 1 M 

2
z 1 T 

2 at all 
potentially critical sections (Fig. 4), the maximum value occurs just to 
the right of D:

2M  
2
y 1 M  

2
z 1 T  

2
max 5 21116022 1 137322 1 159722 5 1357 N?m

Diameter of Shaft. For tall 5 50 MPa, Eq. (7.32) yields

J
c

5
2M 

2
y 1 M 

2
z 1 T  

2
max

tall
5

1357 N?m

50 MPa
5 27.14 3 1026 m3

For a solid circular shaft of radius c, 

J
c

5
p

2
 c 3 5 27.14 3 1026      c 5 0.02585 m 5 25.85 mm

Diameter 5 2c 5 51.7 mm ◀

FE 5 3.73 kN

FC 5 6.63 kN

1244 N · m
1160 N · m

580 N · m

FD 5 2.49 kN TE 5 597 N · m

597 N · m398 N · m

TD 5 199 N · m

TC 5 398 N · m

2.80 kN0.932 kN

0.6 m

373 N · m 560 N · m186 N · m

0.2 m

A E

y

B
x

z

Mz

A C D E B

6.22 kN 2.90 kN0.2 m
0.4 m

A

A

y

BC

C

D

D

x

z

My
C D

E B

A

A

y

T

B

B

C

C

D

D

E

E

x

z

Fig. 3 Analysis of free-body diagram of shaft AB alone with equivalent force-couple loads is equivalent to superposition of 
bending moments from vertical loads, horizontal loads, and applied torques.

My

Mz

y

x

T

Fig. 4 Bending moment components 
and torque at critical section.
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570

 8.1 A W10 3 39 rolled-steel beam supports a load P as shown. Know-
ing that P 5 45 kips, a 5 10 in., and sall 5 18 ksi, determine 
(a) the maximum value of the normal stress sm in the beam, 
(b) the maximum value of the principal stress smax at the junction 
of the flange and web, (c) whether the specified shape is accept-
able as far as these two stresses are concerned.

 8.2 Solve Prob. 8.1, assuming that P 5 22.5 kips and a 5 20 in.

 8.3 An overhanging W920 3 449 rolled-steel beam supports a load P
as shown. Knowing that P 5 700 kN, a 5 2.5 m, and sall 5 100 MPa, 
determine (a) the maximum value of the normal stress sm in the 
beam, (b) the maximum value of the principal stress smax at the 
junction of the flange and web, (c) whether the specified shape is 
acceptable as far as these two stresses are concerned.

 8.4 Solve Prob. 8.3, assuming that P 5 850 kN and a 5 2.0 m.

 8.5 and 8.6 (a) Knowing that sall 5 160 MPa and tall 5 100 MPa, select 
the most economical metric wide-flange shape that should be 
used to support the loading shown. (b) Determine the values to 
be expected for sm , tm , and the principal stress smax at the junc-
tion of a flange and the web of the selected beam.

Problems

A D
CB

a a10 ft

P P

Fig. P8.1

P

B

CA

a a

Fig. P8.3

A
B

C

4.5 m 2.7 m

2.2 kN/m
40 kN

Fig. P8.5

D
B C

A

1.5 m
3.6 m

1.5 m

275 kN

275 kN

Fig. P8.6

A B C
D

10 ft
30 ft

10 ft

20 kips 20 kips
2 kips/ft

Fig. P8.7

A
B

C

12 ft 6 ft

1.5 kips/ft

Fig. P8.8

 8.7 and 8.8 (a) Knowing that sall 5 24 ksi and tall 5 14.5 ksi, select the 
most economical wide-flange shape that should be used to sup-
port the loading shown. (b) Determine the values to be expected 
for sm , tm , and the principal stress smax at the junction of a flange 
and the web of the selected beam.
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 8.9 through 8.14 Each of the following problems refers to a rolled-steel 
shape selected in a problem of Chap. 5 to support a given loading 
at a minimal cost while satisfying the requirement sm # sall. For 
the selected design, determine (a) the actual value of sm in the 
beam, (b) the maximum value of the principal stress smax at the 
junction of a flange and the web.

 8.9 Loading of Prob. 5.73 and selected W530 3 92 shape.

 8.10 Loading of Prob. 5.74 and selected W250 3 28.4 shape.

 8.11 Loading of Prob. 5.75 and selected S12 3 31.8 shape.

 8.12 Loading of Prob. 5.76 and selected S15 3 42.9 shape.

 8.13 Loading of Prob. 5.77 and selected S510 3 98.2 shape.

8.14 Loading of Prob. 5.78 and selected S460 3 81.4 shape.

 8.15 Determine the smallest allowable diameter of the solid shaft 
ABCD, knowing that tall 5 60 MPa and that the radius of disk B
is r 5 80 mm.

150 mm

T � 600 N · m

P
B

C

A

D

150 mm

r

Fig. P8.15 and P8.16

D

100 mm

60 mm

90 mm

4 kN

QB

C

A

y

z

x

80 mm

140 mm

Fig. P8.18

8.16 Determine the smallest allowable diameter of the solid shaft 
ABCD, knowing that tall 5 60 MPa and that the radius of disk B
is r 5 120 mm.

 8.17 Using the notation of Sec. 8.2 and neglecting the effect of shear-
ing stresses caused by transverse loads, show that the maximum 
normal stress in a circular shaft can be expressed as follows:

smax 5
c
J
c 1M 

2
y 1 M 

2
z 2 12 1 1M 

2
y 1 M 

2
z 1 T 

22 1
2 d

max

8.18 The 4-kN force is parallel to the x axis, and the force Q is parallel 
to the z axis. The shaft AD is hollow. Knowing that the inner 
diameter is half the outer diameter and that tall 5 60 MPa, deter-
mine the smallest permissible outer diameter of the shaft.
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 8.19 The vertical force P1 and the horizontal force P2 are applied as 
shown to disks welded to the solid shaft AD. Knowing that the 
diameter of the shaft is 1.75 in. and that tall 5 8 ksi, determine 
the largest permissible magnitude of the force P2.

A

3 in.
10 in.

10 in.

8 in.
B

C
D

6 in.

P1

P2

Fig. P8.19

B

7 in.
7 in.

7 in.
7 in.

4 in.

4 in.

y

A

E

x

z B

C

500 lb

P

6 in.
D

500 lb

Fig. P8.20

H

90�

O

V

M

T

90�

(a)

(b)

O

M

T
K

�

Fig. P8.21

 8.21 It was stated in Sec. 8.2 that the shearing stresses produced in a 
shaft by the transverse loads are usually much smaller than those 
produced by the torques. In the preceding problems their effect 
was ignored, and it was assumed that the maximum shearing 
stress in a given section occurred at point H (Fig. P8.21a) and was 
equal to the expression obtained in Eq. (8.5), namely,

tH 5
c

J
 2M 

2 1 T  
2

Show that the maximum shearing stress at point K (Fig. P8.21b), 
where the effect of the shear V is greatest, can be expressed as

tK 5
c

J
 B 1M cos  b22 1 a2

3
 cV 1 Tb2

  where b is the angle between the vectors V and M. It is clear that 
the effect of the shear V cannot be ignored when tK $ tH. (Hint: 
Only the component of M along V contributes to the shearing 
stress at K.)

 8.20 The two 500-lb forces are vertical and the force P is parallel to 
the z axis. Knowing that tall 5 8 ksi, determine the smallest per-
missible diameter of the solid shaft AE.
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 8.22 Assuming that the magnitudes of the forces applied to disks A
and C of Prob. 8.19 are, respectively, P1 5 1080 lb and P2 5 810 lb, 
and using the expressions given in Prob. 8.21, determine the 
values of tH and tK in a section (a) just to the left of B, (b) just to 
the left of C.

 8.23 The solid shaft AB rotates at 600 rpm and transmits 80 kW from 
the motor M to a machine tool connected to gear F. Knowing that 
tall 5 60 MPa, determine the smallest permissible diameter of 
shaft AB.

80 mm

120 mm

120 mm

160 mm

60 mm

M
A

C

D

F

E

B

Fig. P8.23

 8.24 Solve Prob. 8.23, assuming that shaft AB rotates at 720 rpm.

8.25 The solid shafts ABC and DEF and the gears shown are used to 
transmit 20 hp from the motor M to a machine tool connected to 
shaft DEF. Knowing that the motor rotates at 240 rpm and that 
tall 5 7.5 ksi, determine the smallest permissible diameter of 
(a) shaft ABC, (b) shaft DEF.

M

A
B

3.5 in. D

6 in.

8 in.
4 in.

E

F

C

Fig. P8.25

8.26 Solve Prob. 8.25, assuming that the motor rotates at 360 rpm.
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 8.27 The solid shaft ABC and the gears shown are used to transmit 
10 kW from the motor M to a machine tool connected to gear D. 
Knowing that the motor rotates at 240 rpm and that tall 5 60 MPa, 
determine the smallest permissible diameter of shaft ABC.

90 mm

100 mm
M

C

B

D

E

C

A

Fig. P8.27

M

A

3 in.

C

F

B

4 in.

6 in.

6 in.

8 in.

C

D

H

G

4 in.

4 in.

E

Fig. P8.29

 8.28 Assuming that shaft ABC of Prob. 8.27 is hollow and has an outer 
diameter of 50 mm, determine the largest permissible inner 
diameter of the shaft.

 8.29 The solid shaft AE rotates at 600 rpm and transmits 60 hp from 
the motor M to machine tools connected to gears G and H. 
Knowing that tall 5 8 ksi and that 40 hp is taken off at gear G and 
20 hp is taken off at gear H, determine the smallest permissible 
diameter of shaft AE.

 8.30 Solve Prob. 8.29, assuming that 30 hp is taken off at gear G and 
30 hp is taken off at gear H.
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8.3 Stresses Under Combined Loads 575

8.3  STRESSES UNDER 
COMBINED LOADS

In Chaps. 1 and 2 you learned to determine the stresses caused by a cen-
tric axial load. In Chap. 3, you analyzed the distribution of stresses in a 
cylindrical member subjected to a twisting couple. In Chap. 4, you deter-
mined the stresses caused by bending couples and, in Chaps. 5 and 6, the 
stresses produced by transverse loads. As you will see presently, you can 
combine the knowledge you have acquired to determine the stresses in 
slender structural members or machine components under fairly general 
loading conditions. For example, the bent member ABDE of circular cross 
section is subjected to several forces (Fig. 8.15). In order to determine the 
stresses at points H or K, we first pass a section through these points and 
determine the force-couple system at the centroid C of the section that is 
required to maintain the equilibrium of portion ABC.† This system repre-
sents the internal forces in the section and consists of three force compo-
nents and three couple vectors that are assumed to be directed as shown 
in Fig. 8.16.

†The force-couple system at C can also be defined as equivalent to the forces acting on the 
portion of the member located to the right of the section (see Concept Application 8.1).

F3

F4

F6

F5

F2

F1
B

D

E

K

H

A

Fig. 8.15 Member ABDE subjected to several 
forces.

My

T
P

Mz

VzF3

F2

F1
Vy

B

y

x

z

C

A

Fig. 8.16 Free-body diagram of segment 
ABC to determine the internal forces and 
couples at cross section C.

My Vy

Vz

P

Mz

C
T

(a) (b)

C

Fig. 8.17 Internal forces and couple vectors 
separated into (a) those causing normal stresses 
and (b) those causing shearing stresses.

 Force P is a centric axial force that produces normal stresses in the 
section. The couple vectors My and Mz cause the member to bend and also 
produce normal stresses in the section. These have been grouped in 
Fig. 8.17a, and the sums sx of the normal stresses produced at points H
and K are shown in Fig. 8.18a. These stresses can be determined as shown 
in Sec. 4.9.
 On the other hand, the twisting couple T and the shearing forces Vy

and Vz as shown in Fig. 8.17b produce shearing stresses in the section. The 
sums txy and txz of the components of the shearing stresses produced at 
points H and K are shown in Fig. 8.18b and can be determined as indicated 

C

H

K

(a) (b)

CK

x�

xy�x�

C

H

CK

xz�

Fig. 8.18 Normal and shearing stresses 
at points H and K.
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576 Principal Stresses under a Given Loading

in Secs. 3.1C and 6.1B.† The normal and shearing stresses shown in parts a 
and b are now combined and displayed at points H and K on the surface 
of the member (Fig. 8.19).
 The principal stresses and the orientation of the principal planes at 
points H and K are determined from sx , txy , and txz at each of these points 
by one of the methods presented in Chap. 7 (Fig. 8.20). The maximum 
shearing stress at each of these points and the corresponding planes can 
be found in a similar way.
 The results in this section are valid only if the conditions of appli-
cability of the superposition principle (Sec. 2.5) and of Saint-Venant’s 
principle (Sec. 2.10) are met:

 1.  The stresses involved must not exceed the proportional limit of the 
material. 

 2.  The deformations due to one of the loadings must not affect the 
determination of the stresses due to the others.

 3.  The section used in your analysis must not be too close to the points 
of application of the given forces. 

The first of these requirements shows that the method presented here 
cannot be applied to plastic deformations.

†Note that your present knowledge allows you to determine the effect of the twisting 
couple T only in circular shafts, members with a rectangular cross section (Sec. 3.9), or 
thin-walled hollow members (Sec. 3.10).

K

H
xz�

xy�

x�

x�

Fig. 8.19 Elements at points H 
and K showing combined 
stresses.

K

H

p�

p�

Fig. 8.20 Elements at points H 
and K showing principal stresses.

Concept Application 8.1

Two forces P1 and P2 , with a magnitude of P1 5 15 kN and P2 5 18 kN, 
are applied as shown in Fig. 8.21a to the end A of bar AB, which is 
welded to a cylindrical member BD of radius c 5 20 mm. Knowing that 
the distance from A to the axis of member BD is a 5 50 mm and 
assuming that all stresses remain below the proportional limit of the 
material, determine (a) the normal and shearing stresses at point K of 
the transverse section of member BD located at a distance b 5 60 mm 
from end B, (b) the principal axes and principal stresses at K, and 
(c) the maximum shearing stress at K.

HD

K

B

A P1 5 15 kN

P2 5 18 kN

b 5 60 mm a 5 50 mm

(a)

Fig. 8.21 Cylindrical member under combined 
loading. (a) Dimensions and loading.

(continued)
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8.3 Stresses Under Combined Loads 577

Internal Forces in Given Section. Replace the forces P1 and P2 by an 
equivalent system of forces and couples applied at the center C of the sec-
tion containing point K (Fig. 8.21b). This system represents the internal 
forces in the section and consists of the following forces and couples:

 1. A centric axial force F equal to the force P1 with the magnitude

F 5 P1 5 15 kN

 2. A shearing force V equal to the force P2 with the magnitude

V 5 P2 5 18 kN

 3.  A twisting couple T of torque T equal to the moment of P2 about 
the axis of member BD:

T 5 P2 
a 5 118 kN2 150 mm2 5 900 N?m

 4.  A bending couple My of moment My equal to the moment of P1

about a vertical axis through C:

My 5 P1a 5 115 kN2 150 mm2 5 750 N?m

 5.  A bending couple Mz of moment Mz equal to the moment of P2

about a transverse, horizontal axis through C:

Mz 5 P2 
b 5 118 kN2 160 mm2 5 1080 N?m

The results are shown in Fig. 8.21c.

 a. Normal and Shearing Stresses at Point K. Each of the forces 
and couples shown in Fig. 8.21c produce a normal or shear stress at 
point K. Compute each of these stresses seperately and then add the 
normal stresses and add the shearing stresses. 

Geometric Properties of the Section For the given data, we have

 A 5 pc 
2 5 p10.020 m22 5 1.257 3 1023 m2

 Iy 5 Iz 5
1
4 
pc4 5

1
4 
p10.020 m24 5 125.7 3 1029 m4

 JC 5
1
2 
pc4 5

1
2 
p10.020 m24 5 251.3 3 1029 m4

Also determine the first moment Q and the width t of the area of the 
cross section located above the z axis. Recall that y 5 4cy3p for a 
semicircle of radius c, giving

 Q 5 A¿y 5 a1

2
 pc 

2b a 4c
3p
b 5

2

3
 c 

3 5
2

3
 10.020 m23

 5 5.33 3 1026 m3

and

t 5 2c 5 210.020 m2 5 0.040 m

K

D
H

C

Mz 

My

V
F

T

(b)

T 5 900 N · m

y

3p
4c

x

C
K

z

V 5 18 kN

F 5 15 kN

y 5

Mz

sx
txy

My 5 750 N · m

(c)

Fig. 8.21 (Cont.) (b) Internal forces and 
couples at section containing points H 
and K. (c) Values of forces and couples 
that produce stresses at point K, as well 
as the dimension needed to compute the 
first moment of area.

(continued)
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578 Principal Stresses under a Given Loading

Normal Stresses. Normal stresses are produced at K by the centric 
force F and the bending couple My. However, the couple Mz does not 
produce any stress at K, since K is located on the neutral axis corre-
sponding to that couple. Determining each sign from Fig. 8.21c gives

 sx 5 2 
F
A

1
My c

Iy
5 211.9 MPa 1

1750 N?m2 10.020 m2
125.7 3 1029 m4

 5 211.9 MPa 1 119.3 MPa

 sx 5 1107.4 MPa

Shearing Stresses. The shearing stress (txy)V is due to the vertical 
shear V, and the shearing stress (txy)twist is caused by the torque T. 
Using the values for Q , t , Iz , and JC ,

 1txy2V 5 1
VQ

Iz t
5 1

118 3 103 N2 1 5.33 3 1026 m32
1125.7 3 1029 m42 10.040 m2

 5 119.1 MPa

 1txy2twist 5 2
Tc
JC

5 2
1900 N?m2 10.020 m2

251.3 3 1029 m4 5 271.6 MPa

Adding these provides txy at point K.

 txy 5 1txy2V 1 1txy2twist 5 119.1 MPa 2 71.6 MPa

 txy 5 252.5 MPa

In Fig. 8.21d, the normal stress sx and the shearing stresses txy are 
acting on a square element located at K on the surface of the cylindri-
cal member. Note that shearing stresses acting on the longitudinal 
sides of the element also are included.

Fig. 8.21 (Cont.) (d) Element showing 
combined stresses at point K.

D

A

sx 5 1107.4 MPa

txy5 252.5 MPa

15 kN

18 kN

(d)

(continued)
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8.3 Stresses Under Combined Loads 579

smax 5 128.8 MPa

smin 5 221.4 MPa

D

A

15 kN

18 kN

up 5 22.28

B

(f )

D

A

15 kN

18 kN

us 5 22.88

s 5 53.7 MPa

B

tmax 5 75.1 MPa

(g)

Fig. 8.21 (Cont.) (f ) Principal stress element at point K. (g) Maximum shearing stress element at point K.

 b. Principal Planes and Principal Stresses at Point K. Either of 
the two methods from Chap. 7 can be used to determine the principal 
planes and principal stresses at K. Selecting Mohr’s circle, plot point 
X with coordinates sx 5 1107.4 MPa and 2txy 5 152.5 MPa and point 
Y with coordinates sy 5 0 and 1txy 5 252.5 MPa and draw the circle 
with the diameter XY (Fig. 8.21e). Observing that

OC 5 CD 5
1
2 1107.42 5 53.7 MPa  DX 5 52.5 MPa

we determine the orientation of the principal planes:

tan 2up 5
DX

CD
5

52.5

53.7
5 0.97765  2up 5 44.48 i

     up 5 22.28 i

The radius of the circle is

R 5 2153.722 1 152.522 5 75.1 MPa

and the principal stresses are

 smax 5 OC 1 R 5 53.7 1 75.1 5 128.8 MPa

 smin 5 OC 2 R 5 53.7 2 75.1 5 221.4 MPa

The results are shown in Fig. 8.21f.

 c. Maximum Shearing Stress at Point K. This stress corre-
sponds to points E and F in Fig. 8.21e. 

tmax 5 CE 5 R 5 75.1 MPa

Observing that 2us 5 908 2 2up 5 908 2 44.48 5 45.68, the planes of 
maximum shearing stress form an angle us 5 22.88 l with the horizon-
tal. The corresponding element is shown in Fig. 8.21g. Note that the 
normal stresses acting on this element are represented by OC in 
Fig. 8.21e and are equal to 153.7 MPa.

Fig. 8.21 (Cont.) (e) Mohr’s 
circle for stresses at point K.

t

A

F

X

Y

OB
D

E

 (MPa)

s

2
52.5

53.7 53.7
107.4

su

2 pu
 (MPa)C

(e)
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580 Principal Stresses under a Given Loading

Sample Problem 8.4
A horizontal 500-lb force acts at point D of crankshaft AB held in static 
equilibrium by a twisting couple T and reactions at A and B. Knowing 
that the bearings are self-aligning and exert no couples on the shaft, 
determine the normal and shearing stresses at points H, J, K, and L
located at the ends of the vertical and horizontal diameters of a trans-
verse section located 2.5 in. to the left of bearing B.

STRATEGY: Begin by determining the internal forces and couples 
acting on the transverse section containing the points of interest, and 
then evaluate the stresses at these points due to each internal action. 
Combining these results will provide the total state of stress at each 
point.

MODELING:
Draw the free-body diagram of the crankshaft (Fig. 1). Find A 5 B 5 250 lb

1l©Mx 5 0:    21500 lb2 11.8 in.2 1 T 5 0  T 5 900 lb?in.

ANALYSIS:  

Internal Forces in Transverse Section. Replace reaction B and the 
twisting couple T by an equivalent force-couple system at the center C
of the transverse section containing H, J, K, and L. (Fig. 2.)

 V 5 B 5 250 lb   T 5 900 lb?in.

 My 5 1250 lb2 12.5 in.2 5 625 lb?in.

(continued)

4.5 in.

0.90 in.A

E

D
K

G

H
J

B T

4.5 in.

2.5 in.

1.8 in.

500 lb

A

D

B

z

y

x

4.5 in.
4.5 in.

2.5 in.

1.8 in.
500 lb

A � 250 lb

B � 250 lb

T

Fig. 1 Free-body diagram of crankshaft.

E

J C

G
K

H

L

My � 625 lb · in.

T � 900 lb · in.

0.9-in. diameter

V � 250 lb

Fig. 2 Resultant force-couple system 
at section containing points H, J, K, 
and L.
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8.3 Stresses Under Combined Loads 581

The geometric properties of the 0.9-in.-diameter section are

A 5 p10.45 in.22 5 0.636 in2   I 5
1
4p10.45 in.24 5 32.2 3 1023 in4

J 5
1
2p10.45 in.24 5 64.4 3 1023 in4

Stresses Produced by Twisting Couple T. Using Eq. (3.10), deter-
mine the shearing stresses at points H, J, K, and L and show them in 
Fig. 3.

t 5
Tc
J

5
1900 lb?in.2 10.45 in.2

64.4 3 1023 in4 5 6290 psi

Stresses Produced by Shearing Force V. The shearing force V
produces no shearing stresses at points J and L. At points H and K, 
compute Q for a semicircle about a vertical diameter and then deter-
mine the shearing stress produced by the shear force V 5 250 lb. These 
stresses are shown in Fig. 4.

 Q 5 a1

2
 pc2b a 4c

3p
b 5

2

3
c3 5

2

3
 10.45 in.23 5 60.7 3 1023 in3

 t 5
VQ

It
5
1250 lb2 160.7 3 1023 in32
132.2 3 1023 in42 10.9 in.2 5 524 psi

Stresses Produced by the Bending Couple My. Since the bending 
couple My acts in a horizontal plane, it produces no stresses at H and 
K. Use Eq. (4.15) to determine the normal stresses at points J and L
and show them in Fig. 5.

s 5
0My 0 c

I
5
1625 lb?in.2 10.45 in.2

32.2 3 1023 in4 5 8730 psi

Summary. Add the stresses shown to obtain the total normal and 
shearing stresses at points H, J, K, and L (Fig. 6).

J

K

H

L

� � 6290 psi

� � 6290 psi

� � 6290 psi

� � 6290 psi

(a)

Fig. 3 Shearing stresses resulting 
from torque T.

J

K

H

L

� � 5770 psi

� � 6290 psi

� � 6290 psi

� � 6810 psi

� � 8730 psi

� � 8730 psi

Fig. 6 Stress components at points H, 
J, K, and L from combining all loads.

J

K

H

L

� � 524 psi

� � 524 psi

� � 0

(b)

Fig. 4 Shearing stresses resulting 
from shearing force V.

� � 0

� � 0

J

K

H

L
� � 8730 psi

� � 8730 psi(c)

Fig. 5 Normal stresses resulting 
from bending couple My.
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582 Principal Stresses under a Given Loading

Sample Problem 8.5
Three forces are applied as shown at points A, B, and D of a short steel 
post. Knowing that the horizontal cross section of the post is a 40 3
140-mm rectangle, determine the principal stresses, principal planes, 
and maximum shearing stress at point H.

STRATEGY: Begin by determining the forces and couples acting 
on the section containing the point of interest, and then use these 
to calculate the normal and shearing stresses acting at the point. 
Using Mohr's circle, these stresses can then be transformed to obtain 
the principal stresses, principal planes, and maximim shearing 
stress.

MODELING and ANALYSIS: 

Internal Forces in Section EFG. Replace the three applied forces 
by an equivalent force-couple system at the center C of the rectangular 
section EFG (Fig. 1).

 Vx 5 230 kN           P 5 50 kN          Vz 5 275 kN

Mx 5 150 kN2 10.130 m2 2 175 kN2 10.200 m2 5 28.5 kN?m

My 5 0  Mz 5 130 kN2 10.100 m2 5 3 kN?m

 Note that there is no twisting couple about the y axis. The geomet-
ric properties of the rectangular section are

 A 5 10.040 m2 10.140 m2 5 5.6 3 1023 m2

Ix 5
1

12 10.040 m2 10.140 m23 5 9.15 3 1026 m4

 Iz 5
1

12 10.140 m2 10.040 m23 5 0.747 3 1026 m4

(continued)

70 mm

100 mm

25 mm
200 mm

130 mm

75 kN

50 kN

30 kN

20 mm40 mm

z x

E

A

B

y

G

D

F
H

140 mm

E C

F

H
G

z

y

Mx � 8.5 kN · m

Vx � 30 kN
P � 50 kN

Vz � 75 kN

Mz � 3 kN · m x

Fig. 1 Equivalent force-couple 
system at section containing points E, 
F, G, and H.
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8.3 Stresses Under Combined Loads 583

Normal Stress at H. The normal stresses sy are produced by the 
centric force P and by the bending couples Mx and Mz. The sign of 
each stress is determined by carefully examining the force-couple sys-
tem at C (Fig. 2). 

 sy 5 1
P
A

1
0Mz 0a

Iz
 2
0Mx 0b

Ix

 5
50 kN

5.6 3 1023 m2 1
13 kN?m2 10.020 m2

0.747 3 1026 m4 2
18.5 kN?m2 10.025 m2 

9.15 3 1026 m4

 sy 5 8.93 MPa 1 80.3 MPa 2 23.2 MPa sy 5 66.0 MPa ◀

Shearing Stress at H. Considering the shearing force Vx , we note 
that Q 5 0 with respect to the z axis, since H is on the edge of the cross 
section. Thus, Vx produces no shearing stress at H. The shearing force 
Vz does produce a shearing stress at H (Fig. 3).

 Q 5 A1y1 5 3 10.040 m2 10.045 m2 4 10.0475 m2 5 85.5 3 1026 m3

  tyz 5
VzQ

Ixt
 5

175 kN2 185.5 3 1026 m32
19.15 3 1026 m42 10.040 m2  tyz 5 17.52 MPa ◀

Principal Stresses, Principal Planes, and Maximum Shearing 
Stress at H. Draw Mohr’s circle for the stresses at point H (Fig. 4).

 tan 2up 5
17.52

33.0
  2up 5 27.968 up 5 13.988 ◀

 R 5 2133.022 1 117.5222 5 37.4 MPa tmax 5 37.4 MPa ◀

 smax 5 OA 5 OC 1 R 5 33.0 1 37.4 smax 5 70.4 MPa ◀

  smin 5 OB 5 OC 2 R 5 33.0 2 37.4 smin 5 27.4 MPa ◀

E

C

G
H b � 0.025 m

0.040 m

a � 0.020 m

0.140 m

Fz

Mz � 8.5 kN · m

Mz � 3 kN · m

Fig. 2 Dimensions and bending couples 
used to determine normal stresses.

H
C

A1

Vz

�yz

t � 0.040 m

0.045 m
0.025 m

y1 � 0.0475 m

z

Fig. 3 Dimensions and shearing force 
used to determine the transverse 
shearing stress.

CO
B

33.0 33.0

13.98�

AD

R
Y

Z

2�p

max�

y � 66.0 MPa�

y�

yz � 17.52 MPa�

 (MPa)�

 (MPa)�

max�

max�

min�

min�

yz�

Fig. 4 Mohr’s circle at point H used for finding 
principal stresses and maximum shearing stress 
and their orientation.
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 8.31 Two 1.2-kip forces are applied to an L-shaped machine element 
AB as shown. Determine the normal and shearing stresses at 
(a) point a, (b) point b, (c) point c.

Problems

B

d

e

f

a c
b

A

12 in.

6 in.

1.2 kips

1.2 kips

3.5 in.0.5 in.
1.0 in.

0.5 in.

1.8 in.

1.0 in.

Fig. P8.31 and P8.32

 8.32 Two 1.2-kip forces are applied to an L-shaped machine element 
AB as shown. Determine the normal and shearing stresses at 
(a) point d, (b) point e, (c) point f.

 8.33 The cantilever beam AB has a rectangular cross section of 150 3
200 mm. Knowing that the tension in the cable BD is 10.4 kN and 
neglecting the weight of the beam, determine the normal and 
shearing stresses at the three points indicated.

8.34 through 8.36 Member AB has a uniform rectangular cross section 
of 10 3 24 mm. For the loading shown, determine the normal 
and shearing stresses at (a) point H, (b) point K.

0.75 m

200 mm

14 kN

150 mm

0.3 m 0.6 m
0.9 m

100 mm

100 mm

A

D

E B
b

b

c

a

c

a

Fig. P8.33

30�

60 mm

60 mm
KH

G

B

A

12 mm

12 mm

40 mm

9 kN

Fig. P8.34

30�

60 mm

60 mm
KH

G

B

A

12 mm

12 mm

40 mm

9 kN

Fig. P8.35

30�

60 mm

60 mm
KH

G

B

A

12 mm

12 mm

40 mm

9 kN

Fig. P8.36
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 8.37 A 1.5-kip force and a 9-kip ? in. couple are applied at the top of 
the 2.5-in.-diameter cast-iron post shown. Determine the normal 
and shearing stresses at (a) point H, (b) point K.

 8.38 Two forces are applied to the pipe AB as shown. Knowing that 
the pipe has inner and outer diameters equal to 35 and 42 mm, 
respectively, determine the normal and shearing stresses at 
(a) point a, (b) point b.

C

9 in.

9 kip · in.

1.5 kips

H K

Fig. P8.37

75 mm

45 mm

1500 N

1200 N

45 mm

A

B

z

x

y

20 mm

a b

Fig. P8.38

4 in.

6 in.

4 in.

H

y

z
K

150 lb

50 lb
x

10 in.

150 lb

200 lb

D

Fig. P8.39

50 mm

225 mm

20 mm

A

H
E

D

B

z

x

y

t � 8 mm

60�

Fig. P8.40

 8.39 Several forces are applied to the pipe assembly shown. Knowing 
that the pipe has inner and outer diameters equal to 1.61 in. and 
1.90 in., respectively, determine the normal and shearing stresses 
at (a) point H, (b) point K.

 8.40 The steel pile AB has a 100-mm outer diameter and an 8-mm wall 
thickness. Knowing that the tension in the cable is 40 kN, deter-
mine the normal and shearing stresses at point H.
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 8.41 Three forces are applied to a 4-in.-diameter plate that is attached 
to the solid 1.8-in.-diameter shaft AB. At point H, determine 
(a) the principal stresses and principal planes, (b) the maximum 
shearing stress.

 8.42 The steel pipe AB has a 72-mm outer diameter and a 5-mm wall 
thickness. Knowing that the arm CDE is rigidly attached to the 
pipe, determine the principal stresses, principal planes, and the 
maximum shearing stress at point H.

8 in.

2 in.

2 in. 6 kips

2.5 kips

6 kips

H

y

z x

B

A

Fig. P8.41

120 mm

120 mm

150 mm

9 kN

3 kN

x

z

y

E

D
C

A

B

H

Fig. P8.42

 8.43 A 13-kN force is applied as shown to the 60-mm-diameter cast-
iron post ABD. At point H, determine (a) the principal stresses 
and principal planes, (b) the maximum shearing stress.

H

A

B

D

x

z

E

13 kN 300 mm

125 mm
150 mm

100 mm

y

Fig. P8.43
60°

8 in.

2 in.

5 in.

1 in.

z

E
D

H

A

x
B

y
P

Fig. P8.44

8.44 A vertical force P of magnitude 60 lb is applied to the crank at 
point A. Knowing that the shaft BDE has a diameter of 0.75 in., 
determine the principal stresses and the maximum shearing 
stress at point H located at the top of the shaft, 2 in. to the right 
of support D.
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8.45 Three forces are applied to the bar shown. Determine the normal 
and shearing stresses at (a) point a, (b) point b, (c) point c.

6000 lb

500 lb

4 in.

6 in.

3.25 in.

1.75 in.

2.4 in.1.5 in.

y

H

B

D

z

x

1 in.

Fig. P8.49

h � 10.5 in.

0.9 in.

4.8 in.
1.8 in.

0.9 in. 2.4 in.

50 kips

2 kips

6 kips

2 in.

1.2 in.

1.2 in.

a
b c

C

Fig. P8.45

24 mm

15 mm

32 mm

60 mm

180 mm
a

b c

C

40 mm

30 mm

500 N

750 N

10 kN

16 mm

Fig. P8.47

 8.46 Solve Prob. 8.45, assuming that h 5 12 in.

 8.47 Three forces are applied to the bar shown. Determine the normal 
and shearing stresses at (a) point a, (b) point b, (c) point c.

 8.48 Solve Prob. 8.47, assuming that the 750-N force is directed verti-
cally upward.

 8.49 Two forces are applied to the small post BD as shown. Knowing 
that the vertical portion of the post has a cross section of 1.5 3
2.4 in., determine the principal stresses, principal planes, and 
maximum shearing stress at point H.

8.50 Solve Prob. 8.49, assuming that the magnitude of the 6000-lb 
force is reduced to 1500 lb.
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 8.51 Three forces are applied to the machine component ABD as 
shown. Knowing that the cross section containing point H is a 
20 3 40-mm rectangle, determine the principal stresses and the 
maximum shearing stress at point H.

50 mm

150 mm

160 mm

40 mm

3 kN

0.5 kN

2.5 kN

20 mm

z

x

y

A

B

D

H

Fig. P8.51

C

C

x

y

a
b d

e

400 mm60 mm
30 mm

60 mm 75 mm

9 kN

13 kN

150 mm

t � 13 mm

Fig. P8.53 and P8.54

y

a

0.6 m

1.2 m

75 mm

W310 � 60

P1

P2

a

b b

x

Fig. P8.55 and P8.56

 8.52 Solve Prob. 8.51, assuming that the magnitude of the 2.5-kN force 
is increased to 10 kN.

 8.53 Three steel plates, each 13 mm thick, are welded together to form 
a cantilever beam. For the loading shown, determine the normal 
and shearing stresses at points a and b.

 8.54 Three steel plates, each 13 mm thick, are welded together to form 
a cantilever beam. For the loading shown, determine the normal 
and shearing stresses at points d and e.

 8.55 Two forces P1 and P2 are applied as shown in directions perpen-
dicular to the longitudinal axis of a W310 3 60 beam. Knowing 
that P1 5 25 kN and P2 5 24 kN, determine the principal stresses 
and the maximum shearing stress at point a.

 8.56 Two forces P1 and P2 are applied as shown in directions perpen-
dicular to the longitudinal axis of a W310 3 60 beam. Knowing 
that P1 5 25 kN and P2 5 24 kN, determine the principal stresses 
and the maximum shearing stress at point b.
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 8.57 Four forces are applied to a W8 3 28 rolled-steel beam as shown. 
Determine the principal stresses and maximum shearing stress 
at point a.

y

a

b

a

b

20 in.

4 in.

3 in.

W8 3 28

5 kips

1.6 kips
1.6 kips

20 kips

x

Fig. P8.57 and P8.58

A

a

B

�

C

b

h

P

l

Fig. P8.59

W250 � 44.8

l � 1.25 m a

A

B

�

P

Fig. P8.60

 8.58 Four forces are applied to a W8 3 28 rolled-steel beam as shown. 
Determine the principal stresses and maximum shearing stress 
at point b.

8.59 A force P is applied to a cantilever beam by means of a cable 
attached to a bolt located at the center of the free end of the 
beam. Knowing that P acts in a direction perpendicular to the 
longitudinal axis of the beam, determine (a) the normal stress at 
point a in terms of P, b, h, l, and b, (b) the values of b for which 
the normal stress at a is zero.

 8.60 A vertical force P is applied at the center of the free end of can-
tilever beam AB. (a) If the beam is installed with the web vertical 
(b 5 0) and with its longitudinal axis AB horizontal, determine 
the magnitude of the force P for which the normal stress at point 
a is 1120 MPa. (b) Solve part a, assuming that the beam is 
installed with b 5 38.
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 *8.61 A 5-kN force P is applied to a wire that is wrapped around bar 
AB as shown. Knowing that the cross section of the bar is a square 
of side d 5 40 mm, determine the principal stresses and the 
maximum shearing stress at point a.

d

P

d
2

A

a

B

Fig. P8.61

H

K

3 in.

2 in.
10 in.

0.15 in.

9 kips

4 in.

6 in.

Fig. P8.62

3 in.

10 in.
15 kips

4 in.
2 in.

1.5 in.

a

A

b

Fig. P8.63

 *8.62 Knowing that the structural tube shown has a uniform wall thick-
ness of 0.3 in., determine the principal stresses, principal planes, 
and maximum shearing stress at (a) point H, (b) point K.

*8.63 The structural tube shown has a uniform wall thickness of 0.3 in. 
Knowing that the 15-kip load is applied 0.15 in. above the base of 
the tube, determine the shearing stress at (a) point a, (b) point b.

 *8.64 For the tube and loading of Prob. 8.63, determine the principal 
stresses and the maximum shearing stress at point b.
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Review and Summary
Normal and Shearing Stresses in a Beam
The two fundamental relationships for the normal stress sx and the shear-
ing stress txy at any given point of a cross section of a prismatic beam are

sx 5 2
My

I
 (8.1 )

and

txy 5 2
VQ

It
 (8.2)

 where V 5 shear in the section
M 5 bending moment in the section

y 5 distance of the point from the neutral surface
I 5 centroidal moment of inertia of the cross section

Q 5  first moment about the neutral axis of the portion of the 
cross section located above the given point

t 5 width of the cross section at the given point

Principal Planes and Principal Stresses in a Beam
Using one of the methods of Ch. 7 for the transformation of stresses, the 
principal planes and principal stresses were obtained at various points 
(Fig. 8.22).
 We investigated the distribution of principal stresses in a narrow 
rectangular cantilever beam subjected to a concentrated load P at its free 
end, and found that in any given transverse section—except close to the 
point of application of the load—the maximum principal stress smax did 
not exceed the determination of the maximum normal stress sm occurring 
at the surface of the beam.
 While this is true for many beams of nonrectangular cross section, 
it may not hold for W-beams or S-beams, where smax at the junctions b
and d of the web with the flanges of the beam (Fig. 8.23) may exceed the 
value of sm occurring at points a and e. Therefore, the design of a rolled-
steel beam should include the determination of the maximum principal 
stress at these points.

�m �m

�m �m

�min

�min

�max

�max

c

y

y

xO

 c

Fig. 8.22 Principal stress elements 
at selected points of beam.

a

b

c

d

e

Fig. 8.23 Key locations for 
determination of principal 
stresses in I-shaped beams.
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Design of Transmission Shafts Under Transverse Loads
The design of transmission shafts subjected to transverse loads and torques 
should include consideration of both the normal stresses due to the bend-
ing moment M and the shearing stresses due to the torque T. At any given 
transverse section of a cylindrical shaft (either solid or hollow), the mini-
mum allowable value of the ratio Jyc for the cross section is:

  
J
c

5
A2M 

2 1 T  
2

 B max

tall
 (8.6)

Stresses Under General Loading Conditions
In preceding chapters, you learned to determine the stresses in pris-
matic members caused by axial loadings (Chaps. 1 and 2), torsion 
(Chap. 3), bending (Chap. 4), and transverse loadings (Chaps. 5 and 6). In 
the second part of this chapter (Sec. 8.3), we combined this knowledge 
to determine stresses under more general loading conditions.

F3

F4

F6

F5

F2

F1
B

D

E

K

H

A

Fig. 8.24 Member ABCD subjected to several loads.

My

T
P

Mz

VzF3

F2

F1
Vy

B

y

x

z

C

A

Fig. 8.25 Free-body diagram of segment ABC to 
determine the internal forces and couples at cross section C.

 For instance, to determine the stresses at point H or K of the bent 
member shown in Fig. 8.24, a section is passed through these points and the 
applied loads are replaced by an equivalent force-couple system at the cen-
troid C of the section (Fig. 8.25). The normal and shearing stresses produced 
at H or K by each of the forces and couples applied at C are determined and 
then combined to obtain the resulting normal stress sx and the resulting 
shearing stresses txy and txz at H or K. The principal stresses, the orientation 
of the principal planes, and the maximum shearing stress at point H or K are 
then determined using one of the methods presented in Chap. 7.
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Review Problems
 8.65 (a) Knowing that sall 5 24 ksi and tall 5 14.5 ksi, select the most 

economical wide-flange shape that should be used to support the 
loading shown. (b) Determine the values to be expected for sm , 
tm , and the principal stress smax at the junction of a flange and 
the web of the selected beam.

D
B C

12.5 kips2 kips/ft

9 ft
3 ft 3 ft

A

Fig. P8.65

D

1250 N500 N

B
C

A

160 mm

200 mm

180 mm

Fig. P8.66 and P8.67

 8.66 Neglecting the effect of fillets and of stress concentrations, deter-
mine the smallest permissible diameters of the solid rods BC and 
CD. Use tall 5 60 MPa.

 8.67 Knowing that rods BC and CD are of diameter 24 mm and 36 mm, 
respectively, determine the maximum shearing stress in each 
rod. Neglect the effect of fillets and of stress concentrations.

 8.68 The solid shaft AB rotates at 450 rpm and transmits 20 kW from 
the motor M to machine tools connected to gears F and G. Know-
ing that tall 5 55 MPa and assuming that 8 kW is taken off at gear 
F and 12 kW is taken off at gear G, determine the smallest permis-
sible diameter of shaft AB.

M

A

F

150 mm

225 mm

60 mm

225 mm

D 100 mm 60 mm

150 mm

G

E

B

Fig. P8.68
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 8.69 A 6-kip force is applied to the machine element AB as shown. 
Knowing that the uniform thickness of the element is 0.8 in., 
determine the normal and shearing stresses at (a) point a, 
(b) point b, (c) point c.

6 kips8 in. 8 in.

35�

8 in.

1.5 in.
1.5 in.

B a

b

c

d

A

e

f

Fig. P8.69

F

c

K

H

l

Fig. P8.70

P P

T

V

R

r

P'

R

Fig. P8.71

8.70 A thin strap is wrapped around a solid rod of radius c 5 20 mm 
as shown. Knowing that l 5 100 mm and F 5 5 kN, determine 
the normal and shearing stresses at (a) point H, (b) point K.

 8.71 A close-coiled spring is made of a circular wire of radius r that is 
formed into a helix of radius R. Determine the maximum shear-
ing stress produced by the two equal and opposite forces P and 
P9. (Hint: First determine the shear V and the torque T in a trans-
verse cross section.)

8.72 Forces are applied at points A and B of the solid cast-iron bracket 
shown. Knowing that the bracket has a diameter of 0.8 in., deter-
mine the principal stresses and the maximum shearing stress at 
(a) point H, (b) point K.

H

B

A
z

y

x
K

600 lb

3.5 in.
2.5 in.

1 in.

2500 lb

Fig. P8.72

bee98233_ch08_556-597.indd   594bee98233_ch08_556-597.indd   594 11/8/13   4:37 PM11/8/13   4:37 PM



595

8.73 Knowing that the bracket AB has a uniform thickness of 5
8 in., 

determine (a) the principal planes and principal stresses at point 
K, (b) the maximum shearing stress at point K.

 8.74 For the post and loading shown, determine the principal stresses, 
principal planes, and maximum shearing stress at point H.

30�

2 in.
5 in.

K

A

3 kips

2.5 in.

B

Fig. P8.73

50 mm
50 mm

75 mm
75 mm

50 kN

120 kN

y

z x

30�

C

375 mm

H K

Fig. P8.74

2.75 in.

b c

1500 lb

1500 lb
5 in.

6 in.3 in.

600 lb
600 lb

20 in.

0.25 in.

3 in.

a

Fig. P8.75

300 mm

600 N

A

B

b
a

C

40 mm

60 mm

�

Fig. P8.76

 8.75 Knowing that the structural tube shown has a uniform wall thick-
ness of 0.25 in., determine the normal and shearing stresses at 
the three points indicated.

 8.76 The cantilever beam AB will be installed so that the 60-mm side 
forms an angle b between 0 and 908 with the vertical. Knowing 
that the 600-N vertical force is applied at the center of the free 
end of the beam, determine the normal stress at point a when 
(a) b 5 0, (b) b 5 908. (c) Also, determine the value of b for which 
the normal stress at point a is a maximum and the corresponding 
value of that stress.
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Computer Problems
The following problems are designed to be solved with a computer.

 8.C1 Let us assume that the shear V and the bending moment M have 
been determined in a given section of a rolled-steel beam. Write a com-
puter program to calculate in that section, from the data available in 
Appendix C, (a) the maximum normal stress sm , (b) the principal stress 
smax at the junction of a flange and the web. Use this program to solve 
parts a and b of the following problems:
(1) Prob. 8.1 (Use V 5 45 kips and M 5 450 kip?in.)
(2) Prob. 8.2 (Use V 5 22.5 kips and M 5 450 kip?in.)
(3) Prob. 8.3 (Use V 5 700 kN and M 5 1750 kN?m)
(4) Prob. 8.4 (Use V 5 850 kN and M 5 1700 kN?m)

 8.C2 A cantilever beam AB with a rectangular cross section of width b
and depth 2c supports a single concentrated load P at its end A. Write a 
computer program to calculate, for any values of xyc and yyc, (a) the ratios 
smaxysm and sminysm , where smax and smin are the principal stresses at 
point K (x, y) and sm the maximum normal stress in the same transverse 
section, (b) the angle up that the principal planes at K form with a trans-
verse and a horizontal plane through K. Use this program to check the 
values shown in Fig. 8.8 and to verify that smax exceeds sm if x # 0.544c, 
as indicated in the second footnote on page 560.

 8.C3 Disks D1 , D2 , . . . , Dn are attached as shown in Fig. 8.C3 to the solid 
shaft AB of length L, uniform diameter d, and allowable shearing stress 
tall. Forces P1 , P2 , . . . , Pn of known magnitude (except for one of them) 
are applied to the disks, either at the top or bottom of its vertical diameter, 
or at the left or right end of its horizontal diameter. Denoting by ri the 
radius of disk Di and by ci its distance from the support at A, write a com-
puter program to calculate (a) the magnitude of the unknown force Pi , 
(b) the smallest permissible value of the diameter d of shaft AB. Use this 
program to solve Prob. 8.18.

c

c

b
x

y

K
A

B

�max
�p

�min

P

Fig. P8.C2

A

D1

ci

y

z

D2 Di

P1

Pi

Pn

L

Dn

x

B

P2

ri

Fig. P8.C3
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 8.C4 The solid shaft AB of length L, uniform diameter d, and allowable 
shearing stress tall rotates at a given speed expressed in rpm (Fig. 8.C4). 
Gears G1 , G2 , . . . , Gn are attached to the shaft and each of these gears 
meshes with another gear (not shown), either at the top or bottom of its 
vertical diameter, or at the left or right end of its horizontal diameter. One 
of these gears is connected to a motor and the rest of them to various 
machine tools. Denoting by ri the radius of disk Gi , by ci its distance from 
the support at A, and by Pi the power transmitted to that gear (1 sign) or 
taken off that gear (2sign), write a computer program to calculate the 
smallest permissible value of the diameter d of shaft AB. Use this program 
to solve Probs. 8.27 and 8.68.

A

z

x

y

B

ci

G1

G2 Gi

Gn

L

ri

Fig. P8.C4

 8.C5 Write a computer program that can be used to calculate the normal 
and shearing stresses at points with given coordinates y and z located on 
the surface of a machine part having a rectangular cross section. The 
internal forces are known to be equivalent to the force-couple system 
shown. Write the program so that the loads and dimensions can be 
expressed in either SI or U.S. customary units. Use this program to solve 
(a) Prob. 8.45b, (b) Prob. 8.47a.

 8.C6 Member AB has a rectangular cross section of 10 3 24 mm. For the 
loading shown, write a computer program that can be used to determine 
the normal and shearing stresses at points H and K for values of d from 0 
to 120 mm, using 15-mm increments. Use this program to solve Prob. 8.35.

 *8.C7 The structural tube shown has a uniform wall thickness of 0.3 in. A 
9-kip force is applied at a bar (not shown) that is welded to the end of the 
tube. Write a computer program that can be used to determine, for any 
given value of c, the principal stresses, principal planes, and maximum 
shearing stress at point H for values of d from 23 in. to 3 in., using one-
inch increments. Use this program to solve Prob. 8.62a.

z

h

b

y

x

C

My 

Vy 

Vz 

Mz 

P

Fig. P8.C5

30�

120 mm

KH

d

B

A

12 mm

12 mm

40 mm

9 kN

Fig. P8.C6

H

x

z

c

y

d 3 in.
3 in.

9 kips

4 in.

10 in.

Fig. P8.C7
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Deflection of 

Beams
In addition to strength considerations, the design of this 
bridge is also based on deflection evaluations.

Objectives
In this chapter, you will:

• Develop the governing diff erential equation for the elastic curve, 
the basis for the several techniques considered in this chapter for 
determining beam defl ections.

• Use direct integration to obtain slope and defl ection equations for 
beams of simple constraints and loadings.

• Use singularity functions to determine slope and defl ection 
equations for beams of more complex constraints and loadings.

• Use the method of superposition to determine slope and defl ection 
in beams by combining tabulated formulae.

• Use the moment-area theorems as an alternate technique to 
determine slope and deflection at specific points in a beam.

• Apply direct integration, singularity functions, superposition, 
and the moment-area theorems to analyze statically 
indeterminate beams.

bee98233_ch09_598-689.indd   599bee98233_ch09_598-689.indd   599 11/9/13   3:40 PM11/9/13   3:40 PM



600 Defl ection of Beams

Introduction
In the preceding chapter we learned to design beams for strength. This 
chapter discusses another aspect in the design of beams: the determina-
tion of the deflection. The maximum deflection of a beam under a given 
load is of particular interest, since the design specifications of a beam will 
generally include a maximum allowable value for its deflection. A knowl-
edge of deflections is also required to analyze indeterminate beams, in 
which the number of reactions at the supports exceeds the number of 
equilibrium equations available to determine unknowns.
 Recall from Sec. 4.2 that a prismatic beam subjected to pure bending 
is bent into a circular arc and, within the elastic range, the curvature of 
the neutral surface is

1
r

5
M

EI
 (4.21)

where M is the bending moment, E is the modulus of elasticity, and I is 
the moment of inertia of the cross section about its neutral axis.
 When a beam is subjected to a transverse loading, Eq. (4.21) remains 
valid for any transverse section, provided that Saint-Venant’s principle 
applies. However, both the bending moment and the curvature of the 
neutral surface vary from section to section. Denoting by x the distance 
from the left end of the beam, we write

 
1
r

5
M1x2

EI
 (9.1)

Knowing the curvature at various points of the beam will help us to draw 
some general conclusions about the deformation of the beam under load-
ing (Sec. 9.1).
 To determine the slope and deflection of the beam at any given 
point, the second-order linear differential equation, which governs the 
elastic curve characterizing the shape of the deformed beam (Sec. 9.1A), 
is given as

d 2y

dx2 5
M1x2

EI

 If the bending moment can be represented for all values of x by a 
single function M (x), as shown in Fig. 9.1, the slope u 5 dyydx and the 

Introduction

 9.1  DEFORMATION UNDER 
TRANSVERSE LOADING

9.1A Equation of the Elastic Curve
*9.1B Determination of the Elastic 

Curve from the Load Distribution
 9.2 STATICALLY 

INDETERMINATE BEAMS

 *9.3 SINGULARITY 
FUNCTIONS TO 
DETERMINE SLOPE AND 
DEFLECTION

 9.4 METHOD OF 
SUPERPOSITION

9.4A Statically Determinate Beams
9.4B Statically Indeterminate Beams

 *9.5 MOMENT-AREA 
THEOREMS

*9.5A General Principles
*9.5B  Cantilever Beams and Beams 

with Symmetric Loadings
*9.5C Bending-Moment Diagrams by 

Parts
 *9.6  MOMENT-AREA 

THEOREMS APPLIED TO 
BEAMS WITH 
UNSYMMETRIC 
LOADINGS

*9.6A General Principles
*9.6B  Maximum Deflection
*9.6C Statically Indeterminate Beams

Fig. 9.1 Situations where bending moment can be expressed by a single function 
M(x). (a) Uniformly-loaded cantilever beam. (b) Uniformly-loaded simply supported 
beam.

B

xA

y

(a)

[yA 5 0]
[  A 5 0]u

BA

y

(b)

[ yA50] [ yB50]

x

bee98233_ch09_598-689.indd   600bee98233_ch09_598-689.indd   600 11/9/13   3:40 PM11/9/13   3:40 PM



Introduction 601

deflection y at any point of the beam can be obtained through two 
successive integrations. The two constants of integration introduced in the 
process are determined from the boundary conditions.
 However, if different analytical functions are required to  represent 
the bending moment in various portions of the beam, different 
differential equations are also required, leading to different functions 
defining the elastic curve in various portions of the beam. For the beam 
and loading of Fig. 9.2, for example, two differential equations are 

BA

D

y

[x � 0, y1 � 0]

� �

x

x �     L,  1 � 2
1
4[ [  

x �     L, y1 � y2
1
4[ [

x �  L, y2 �  0[ [
P

Fig. 9.2 Situation where two sets of equations 
are required.

required: one for the portion AD and the other for the portion DB. The 
first equation yields functions u1 and y1, and the second functions u2 
and y2. Altogether, four constants of integration must be determined; 
two will be obtained with the deflection being zero at A and B, and the 
other two by expressing that the portions AD and DB have the same 
slope and the same deflection at D.
 Sec. 9.1B shows that, in a beam supporting a distributed load w(x), 
the elastic curve can be obtained directly from w(x) through four successive 
integrations. The constants introduced in this process are determined 
from the boundary values of V, M, u, and y.
 Section 9.2 discusses statically indeterminate beams where the 
reactions at the supports involve four or more unknowns. The three 
equilibrium equations must be supplemented with equations obtained 
from the boundary conditions that are imposed by the supports.
 Determining the  elastic curve when several functions are required 
for the bending moment M can be quite complex, since it requires 
matching slopes and deflections at every transition point. Section 9.3 
uses singularity functions to simplify the determination of u and y at any 
point of the beam.
 The method of superposition consists of separately determining and 
then adding the slope and deflection caused by the various loads applied 
to a beam (Sec. 9.4). This procedure can be facilitated by the use of the 
table in Appendix D, which gives the slopes and deflections of beams for 
various loadings and types of support.
 In Sec. 9.5, certain geometric properties of the elastic curve are used 
to determine the deflection and slope of a beam at a given point. Instead 
of expressing the bending moment as a function M(x) and integrating it 
analytically, a diagram representing a variation of MyEI over the length of 
the beam is drawn, and two moment-area theorems are derived. The first 
moment-area theorem enables the calculation of the angle between the 
tangents to the beam at two different points. The second moment-area 
theorem is used to calculate the vertical distance from a point on the beam 
to a tangent through a second point.
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602 Defl ection of Beams

 The moment-area theorems are used in Sec. 9.5B to determine the 
slope and deflection at selected points of cantilever beams and beams 
with symmetric loads. Section 9.5C shows that the areas and moments of 
areas defined by the MyEI diagram can be determined more easily if we 
draw the bending-moment diagram by parts. This method is particularly 
effective for beams of variable cross section.
 Beams with unsymmetric loads and overhanging beams are 
considered in Sec. 9.6A. Since in beams with unsymmetric loads the maxi-
mum deflection does not occur at the center of a beam, Sec. 9.6B shows 
how to locate the point where the tangent is horizontal in order to deter-
mine the maximum deflection. Section 9.6C is devoted to the solution of 
problems involving statically indeterminate beams.

9.1  DEFORMATION UNDER 
TRANSVERSE LOADING

Recall that Eq. (4.21) relates the curvature of the neutral surface to the bend-
ing moment in a beam in pure bending. This equation is valid for any given 
transverse section of a beam subjected to a transverse loading, provided 
that Saint-Venant’s principle applies. However, both the bending moment 
and the curvature of the neutral surface vary from section to section. Denot-
ing by x the distance of the section from the left end of the beam,

 
1
r

5
M1x2

EI
 (9.1)

 Consider, for example, a cantilever beam AB of length L subjected to 
a concentrated load P at its free end A (Fig. 9.3a). We have M(x) 5 2Px , 
and substituting into Eq. (9.1) gives

1
r

5 2 

Px

EI

which shows that the curvature of the neutral surface varies linearly with 
x from zero at A, where rA itself is infinite, to 2PLyEI at B, where |rB| 5
EIyPL (Fig. 9.3b).
 Now consider the overhanging beam AD of Fig. 9.4a that supports two 
concentrated loads. From the free-body diagram of the beam (Fig. 9.4b), the 
reactions at the supports are RA 5 1 kN and RC 5 5 kN. The corresponding 

B
A x

A5 `

(a)

P

L

A

(b)

P

r

Br

B

Fig. 9.3 (a) Cantilever beam with concentrated 
load. (b) Deformed beam showing curvature at 
ends.

D
B C

A

(a)

(b)

4 kN 2 kN

3 m 3 m 3 m

DA
B C    

4 kN 2 kN

 RC � 5 kN RA � 1 kN

3 m 3 m 3 m

Fig. 9.4 (a) Overhanging beam with two concentrated loads. (b) Free-body 
diagram showing reaction forces.
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9.1 Deformation Under Transverse Loading 603

bending-moment diagram is shown in Fig. 9.5a. Note from the diagram 
that M and the curvature of the beam are both zero at each end and at a 
point E located at x 5 4 m. Between A and E, the bending moment is posi-
tive, and the beam is concave upward. Between E and D, the bending 
moment is negative and the beam is concave downward (Fig. 9.5b). The 
largest value of the curvature (i.e., the smallest value of the radius of cur-
vature) occurs at support C, where |M| is maximum.
 The shape of the deformed beam is obtained from the information 
about its curvature. However, the analysis and design of a beam usually 
requires more precise information on the deflection and the slope at vari-
ous points. Of particular importance is the maximum deflection of the 
beam. Equation (9.1) will be used in the next section to find the relation-
ship between the deflection y measured at a given point Q on the axis of 
the beam and the distance x of that point from some fixed origin (Fig. 9.6). 
This relationship is the equation of the elastic curve, into which the axis 
of the beam is transformed under the given load (Fig. 9.6b).†

9.1A Equation of The Elastic Curve
Recall from elementary calculus that the curvature of a plane curve at a 
point Q(x,y) is

 
1
r

5

d 
2y

dx 2

c 1 1 ady

dx
b2 d 3y2 (9.2)

where dyydx and d 2yydx 2 are the first and second derivatives of the func-
tion y (x) represented by that curve. For the elastic curve of a beam, how-
ever, the slope dyydx is very small, and its square is negligible compared 
to unity. Therefore,

 
1
r

5
d 

2 y

dx 
2  (9.3)

Substituting for 1yr from Eq. (9.3) into Eq. (9.1),

 
d 

2 y

dx 
2 5

M1x2
EI

 (9.4)

This equation is a second-order linear differential equation; it is the 
governing differential equation for the elastic curve.

†In this chapter, y represents a vertical displacement. It was used in previous chapters 
to represent the distance of a given point in a transverse section from the neutral axis 
of that section.

C

D

4 kN 2 kN

B E

A

(b)

M

A
B

E C D

4 m

3 kN · m

�6 kN · m

x

(a)

Fig. 9.5 Beam of Fig. 9.4. (a) Bending-moment diagram. (b) Deformed shape.

D
CQ

A

(a)

(b)

C
y

x

y

A
D

Q

x

Elastic 
curve

P2P1

Fig. 9.6 Beam of Fig. 9.4. (a) Undeformed. 
(b) Deformed. 
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604 Defl ection of Beams

 The product EI is called the flexural rigidity, and if it varies along the 
beam, as in the case of a beam of varying depth, it must be expressed as 
a function of x before integrating Eq. (9.4). However, for a prismatic beam, 
the flexural rigidity is constant. Multiply both members of Eq. (9.4) by EI 
and integrate in x to obtain

 EI  

dy

dx
5 #

x

0

 M1x2 dx 1 C1 (9.5a)

where C1 is a constant of integration. Denoting by u(x) the angle, mea-
sured in radians, that the tangent to the elastic curve at Q forms with the 
horizontal (Fig. 9.7), and recalling that this angle is very small,

dy

dx
5 tan u . u1x2

Thus, Eq. (9.5a) in the alternative form is

 EI u1x2 5 #
x

0

 M1x2 dx 1 C1 (9.5b)

Integrating Eq. (9.5) in x,

 EI y 5 #
x

0

 c #
x

0

 M1x2 dx 1 C1 d
 

dx 1 C2

  EI y 5 #
x

0

 dx #
x

0

 M1x2 dx 1 C1x 1 C2 (9.6)

where C2 is a second constant and where the first term in the right-hand 
member represents the function of x obtained by integrating the bending 
moment M(x) twice in x. Although the constants C1 and C2 are as yet 
undetermined, Eq. (9.6) defines the deflection of the beam at any given 
point Q, and Eqs. (9.5a) or (9.5b) similarly define the slope of the beam 
at Q.
 The constants C1 and C2 are determined from the boundary condi-
tions or, more precisely, from the conditions imposed on the beam by its 
supports. Limiting this analysis to statically determinate beams, which are 
supported so that the reactions at the supports can be obtained by the 
methods of statics, only three types of beams need to be considered here 
(Fig. 9.8): (a) the simply supported beam , (b) the overhanging beam, and 
(c) the cantilever beam.
 In Figs. 9.8a and b, the supports consist of a pin and bracket at A and 
a roller at B and require that the deflection be zero at each of these points. 
Letting x 5 xA , y 5 yA 5 0 in Eq. (9.6) and then setting x 5 xB , y 5 
yB 5 0 in the same equation, two equations are obtained that can be solved 
for C1 and C2 . For the cantilever beam (Fig. 9.8c), both the deflection and 
the slope at A must be zero. Letting x 5 xA , y 5 yA 5 0 in Eq. (9.6) and 
x 5 xA , u 5 uA 5 0 in Eq. (9.5b), two equations are again obtained that can 
be solved for C1 and C2.

y

y(x) (x)

x

O

Q
�

x

Fig. 9.7 Slope u(x) of tangent to the elastic curve.

P

y

B

xA

(c) Cantilever beam

yA� 0

A� 0�

P
y

yA� 0

B
A x

(b) Overhanging beam

yB� 0

BA

y

(a) Simply supported beam

yA� 0 yB� 0

x

Fig. 9.8 Known boundary conditions for 
statically determinate beams.
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9.1 Deformation Under Transverse Loading 605

Concept Application 9.1
The cantilever beam AB is of uniform cross section and carries a load 
P at its free end A (Fig. 9.9a). Determine the equation of the elastic 
curve and the deflection and slope at A.
 Using the free-body diagram of the portion AC of the beam 
(Fig. 9.9b), where C is located at a distance x from end A,

 M 5 2Px (1)

Substituting for M into Eq. (9.4) and multiplying both members by the 
constant EI gives

EI   

d 
2y

dx 
2 5 2Px

Integrating in x,

 EI   

dy

dx
5 2

1
2 Px 

2 1 C1 (2)

Now observe the fixed end B where x 5 L and u 5 dyydx 5 0 (Fig. 9.9c). 
Substituting these values into Eq. (2) and solving for C1 gives

C1 5
1
2 PL2

which we carry back into Eq. (2):

 EI   

dy

dx
5 2

1
2 Px 

2 1
1
2 PL2 (3)

Integrating both members of Eq. (3),

 EI y 5 2
1
6 
Px 

3 1
1
2 
PL2x 1 C2 (4)

But at B, x 5 L, y 5 0. Substituting into Eq. (4),

0 5 2
1
6 PL3 1

1
2 PL3 1 C2

C2 5 2
1
3 PL3

Carrying the value of C2 back into Eq. (4), the equation of the elastic 
curve is

EI y 5 2
1
6 Px 

3 1
1
2 PL2x 2

1
3 PL3

or

 y 5
P

6EI
  12x 

3 1 3L2x 2 2L32 (5)

The deflection and slope at A are obtained by letting x 5 0 in Eqs. (3) 
and (5).

yA 5 2
PL3

3EI
    and    uA 5 ady

dx
b

A
5

PL2

2EI

L

P

BA

(a)

P

V

MA

x

C

(b)

BO

y

yA

A
L

x

[x 5 L,    5 0]u

[x 5 L, y 5 0]

(c)

Fig. 9.9 (a) Cantilever beam with end 
load. (b) Free-body diagram of section AC. 
(c) Deformed shape and boundary 
conditions.
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606 Defl ection of Beams

Concept Application 9.2
The simply supported prismatic beam AB carries a uniformly distrib-
uted load w per unit length (Fig. 9.10a). Determine the equation of the 
elastic curve and the maximum deflection of the beam.
 Draw the free-body diagram of the portion AD of the beam 
(Fig. 9.10b) and take moments about D for

 M 5
1
2 wL x 2

1
2 wx 

2 (1)

 Substituting for M into Eq. (9.4) and multiplying both members of 
this equation by the constant EI gives

 EI  

d 2 y

dx 
2 5 2 

1

2
  wx 

2 1
1

2
  wL x (2)

Integrating twice in x,

 EI  

dy

dx
5 2 

1

6
  wx 

3 1
1

4
  wL x 

2 1 C1 (3)

 EI y 5 2 
1

24
  wx 

4 1
1

12
  wL x 

3 1 C1x 1 C2 (4)

 Observing that y 5 0 at both ends of the beam (Fig. 9.10c), let 
x 5 0 and y 5 0 in Eq. (4) and obtain C 2 5 0. Then make x 5 L and 
y 5 0 in the same equation, so

0 5 2 1
24  wL4 1

1
12  wL4 1 C1L

C1 5 2 1
24 wL3

Carrying the values of C1 and C2 back into Eq. (9.4), the elastic curve 
is

EI y 5 2 1
24 wx 

4 1
1

12 wL x 
3 2

1
24 wL3x

or

 y 5
w

24EI
  12x  

4 1 2Lx 
3 2 L3x2 (5)

 Substituting the value for C1 into Eq. (3), we check that the slope 
of the beam is zero for x 5 Ly2 and thus that the elastic curve has a 
minimum at the midpoint C (Fig. 9.10d). Letting x 5 Ly2 in Eq. (5),

yC 5
w

24EI
  a2 

L4

16
1 2L 

L3

8
2 L3

Ê

L

2
b 5 2 

5wL4

384EI

The maximum deflection (the maximum absolute value) is

0y 0max 5
5wL4

384EI

B

w

A

L
(a)

A

2
x

D
M

V

wx

RA � wL

x

2
1

(b)

BA

L

y

x

 x 50, y 5 0 x 5  L, y 5  0[[ [[

(c)

B

C

L/2

A

y

x

(d)

Fig. 9.10 (a) Simply supported beam 
with a uniformly distributed load. 
(b) Free-body diagram of segment AD. 
(c) Boundary conditions. (d) Point of 
maximum deflection.
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9.1 Deformation Under Transverse Loading 607

 In both concept applications considered so far, only one free-body 
diagram was required to determine the bending moment in the beam. As 
a result, a single function of x was used to represent M throughout the 
beam. However, concentrated loads, reactions at supports, or discontinui-
ties in a distributed load make it necessary to divide the beam into several 
portions and to represent the bending moment by a different function 
M (x) in each. As an example, Photo 9.1 shows an elevated roadway sup-
ported by beams, which in turn are subjected to concentrated loads from 
vehicles crossing the bridge. Each of the functions M (x) leads to a differ-
ent expression for the slope u (x) and the deflection y (x). Since each 
expression must contain two constants of integration, a large number of 
constants will have to be determined. As shown in the following concept 
application, the required additional boundary conditions can be obtained 
by observing that, while the shear and bending moment can be discon-
tinuous at several points in a beam, the deflection and the slope of the 
beam cannot be discontinuous at any point.

Photo 9.1 A different function M(x) is required in 
each portion of the beams when a vehicle crosses 
the bridge.

Concept Application 9.3
For the prismatic beam and load shown (Fig. 9.11a), determine the 
slope and deflection at point D.
 Divide the beam into two portions, AD and DB, and determine the 
function y (x) that defines the elastic curve for each of these portions.

 1. From A to D (x , Ly4). Draw the free-body diagram of a por-
tion of beam AE of length x , Ly4 (Fig. 9.11b). Take moments about E 
to obtain

 M1 5
3P
4

 x (1)

and recalling Eq. (9.4), we write

 EI  

d 2   y1

dx 
2 5

3

4
 Px (2)

where y1(x) is the function that defines the elastic curve for portion AD 
of the beam. Integrating in x,

 EI  u1 5 EI  

dy1

dx
5

3

8
 Px 

2 1 C1 (3)

 EI y1 5
1

8
 Px 

3 1 C1x 1 C 2 (4)

 2. From D to B (x . Ly4). Now draw the free-body diagram of a 
portion of beam AE of the length x . Ly4 (Fig. 9.11c) and write

 M2 5
3P

4
 x 2 P  ax 2

L

4
b (5)

P

B
D

A

3L/4
L/4

(a)

A
E

M1

V1

x

3
4 P

(b)

x 2     L1
4

V2

M2A
D

x

E

P

3
4 P

(c)

Fig. 9.11 (a) Simply supported beam 
with transverse load P. (b) Free-body 
diagram of portion AE to find moment 
left of load P. (c) Free-body diagram of 
portion AE to find moment right of 
load P.

(continued)
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608 Defl ection of Beams

and recalling Eq. (9.4) and rearranging terms, we have

 EI  

d 2 y2

dx 
2 5 2 

1

4
 Px 1

1

4
 PL (6)

where y2 (x) is the function that defines the elastic curve for portion DB 
of the beam. Integrating in x,

 EI u2 5 EI  

dy2

dx
5 2 

1

8
 Px 

2 1
1

4
 PL x 1 C 3 (7)

 EI y2 5 2 
1

24
 Px 

3 1
1

8
 PL x 

2 1 C 3x 1 C4 (8)

 Determination of the Constants of Integration. The condi-
tions satisfied by the constants of integration are summarized in 
Fig. 9.11d. At the support A, where the deflection is defined by Eq. (4), 
x 5 0 and y1 5 0. At the support B, where the deflection is defined by 
Eq. (8), x 5 L and y2 5 0. Also, the fact that there can be no sudden 
change in deflection or in slope at point D requires that y1 5 y2 and 
u1 5 u2 when x 5 Ly4. Therefore,

3x 5 0, y1 5 0 4 , Eq. 142:      0 5 C 2 (9)

3x 5 L, y2 5 0 4 , Eq. 182:      0 5
1

12
 PL3 1 C 3 L 1 C 4 (10)

3x 5 Ly4, u1 5 u2 4 , Eqs. 132 and 172:
 

3

128
 PL2 1 C1 5

7

128
 PL2 1 C 3 (11)

3x 5 Ly4, y1 5 y2 4 , Eqs. 142 and 182:
 

PL3

512
1 C1 

L

4
5

11PL3

1536
1 C 3 

L

4
1 C4 (12)

Solving these equations simultaneously,

C 1 5 2 
7PL2

128
,    C 2 5 0,    C 3 5 2 

11PL2

128
,    C 4 5

PL3

384

Substituting for C1 and C 2 into Eqs. (3) and (4), x # Ly4 is

 EI u1 5
3

8
 Px 

2 2
7PL2

128
 (13)

 EI y1 5
1

8
 Px 

3 2
7PL2

128
 x (14)

Letting x 5 Ly4 in each of these equations, the slope and deflection at 
point D are

uD 5 2 
PL2

32EI
    and    yD 5 2 

3PL3

256EI

Note that since uD Þ 0, the deflection at D is not the maximum deflec-
tion of the beam.

D

BA

y

x x 50, y1 5 0 

x 5  L, y25  0[
[

[
[

u ux 5     L,  1 51
4[ [  

x 5     L, y1 5 y2

2
1
4[ [

P

(d)

Fig. 9.11 (cont.) (d ) Boundary conditions.
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9.1 Deformation Under Transverse Loading 609

*9.1B  Determination of the Elastic Curve 
from the Load Distribution

Section. 9.1A showed that the equation of the elastic curve can be obtained 
by integrating twice the differential equation

 
d2y

dx2 5
M1x2

EI
 (9.4)

where M(x) is the bending moment in the beam. Now recall from Sec. 5.2 
that, when a beam supports a distributed load w(x), we have dMydx 5 V 
and dVydx 5 2w at any point of the beam. Differentiating both members 
of Eq. (9.4) with respect to x and assuming EI to be constant,

 
d 

3y

dx 
3 5

1

EI
  
dM

 dx
5

V 1x2
EI

 (9.7)

and differentiating again,

d 4y

dx 
4 5

1

EI
  
dV
 dx

5 2 

 w 1x2
EI

Thus, when a prismatic beam supports a distributed load w(x), its elastic 
curve is governed by the fourth-order linear differential equation

 
d 4y

dx 
4 5 2 

 w 1x2
EI

 (9.8)

 Multiply both members of Eq. (9.8) by the constant EI and integrate 
four times to obtain

 EI  

d 
4y

dx 
4 5 2w1x2

 EI  

d  
3y

dx  
3 5 V1x2 5 2#w1x2 dx 1 C 1

 EI  

d 
2y

dx 
2 5 M1x2 5 2#  dx #  w1x2 dx 1 C 1x 1 C 2 (9.9)

 EI  

dy

dx
5 EI u 1x2 5 2#dx#dx#w1x2 dx 1

1

2
Ê C 

1
x 

2
1 C 

2
x 1 C 

3

 EI y1x2 5 2#dx #dx #dx # w1x2 dx 1
1

6
 C 1x 

3 1
1

2
 C 2 

x 
2 1 C 3 

x 1 C 4

The four constants of integration are determined from the boundary 
conditions. These conditions include (a) the conditions imposed on the 
deflection or slope of the beam by its supports (see. Sec. 9.1A) and (b) the 
condition that V and M be zero at the free end of a cantilever beam or that 
M be zero at both ends of a simply supported beam (see. Sec. 5.2). This 
has been illustrated in Fig. 9.12.

B

B

xA

A

y

y

[ yA5 0]

x

[ yA5 0]
[  A5  0]u

[VB 5 0]
[MB 5 0]

[ yB5 0]

[MB5 0][MA5 0]

5

Fig. 9.12 Boundary conditions for (a) cantilever 
beam (b) simply supported beam.
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610 Defl ection of Beams

 This method can be used effectively with cantilever or simply sup-
ported beams carrying a distributed load. In the case of overhanging 
beams, the reactions at the supports cause discontinuities in the shear 
(i.e., in the third derivative of y,), and different functions are required to 
define the elastic curve over the entire beam.

Concept Application 9.4
The simply supported prismatic beam AB carries a uniformly distrib-
uted load w per unit length (Fig. 9.13a). Determine the equation of the 
elastic curve and the maximum deflection of the beam. (This is the 
same beam and load as in Concept Application 9.2.)
 Since w 5 constant, the first three of Eqs. (9.9) yield

 EI  

d 4y

dx4 5 2w

 EI  

d 3y

dx 
3 5 V1x2 5 2wx 1 C1

 EI  

d 2y

dx 
2 5 M1x2 5 2

1

2
  wx 

2 1 C 1x 1 C 2 (1)

Noting that the boundary conditions require that M 5 0 at both ends 
of the beam (Fig. 9.13b), let x 5 0 and M 5 0 in Eq. (1) and obtain 
C 2 5 0. Then make x 5 L and M 5 0 in the same equation and obtain 
C1 5

1
2 wL.

 Carry the values of C1 and C 2 back into Eq. (1) and integrate twice to 
obtain

EI  

d 2 y

dx 
2 5 2 

1

2
  wx 

2 1
1

2
  wL x

EI  

dy

dx
5 2 

1

6
 wx 

3 1
1

4
 wL x 

2 1 C 3

 EI y 5 2 
1

24
 wx 

4 1
1

12
 wL x 

3 1 C 3  
x 1 C4 (2)

But the boundary conditions also require that y 5 0 at both ends of 
the beam. Letting x 5 0 and y 5 0 in Eq. (2), C4 5 0. Letting x 5 L and 
y 5 0 in the same equation gives

0 5 2 1
24 wL4 1

1
12 wL4 1 C 3L

C3 5 2 1
24  wL3

Carrying the values of C 3 and C4 back into Eq. (2) and dividing both 
members by EI, the equation of the elastic curve is

 y 5
w

24EI
 12x4 1 2L x3 2 L3x2 (3)

 The maximum deflection is obtained by making x 5 Ly2 in Eq. (3).

0  y 0max 5
5wL4

384EI

BA

L

w

(a)

w
L

BA

y

x 5 0, M 5 0

x

[ ] x 5 L, M 5 0[ ]
x 5 L, y 5 0[ ]x 5 0, y 5 0[ ]

(b)

Fig. 9.13 (a) Simply supported beam with 
a uniformly distributed load. (b) Boundary 
conditions.
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9.2 Statically Indeterminate Beams 611

9.2  STATICALLY INDETERMINATE 
BEAMS

In the preceding sections, our analysis was limited to statically determi-
nate beams. Now consider the prismatic beam AB (Fig. 9.14a), which has 
a fixed end at A and is supported by a roller at B. Drawing the free-body 
diagram of the beam (Fig. 9.14b), the reactions involve four unknowns, 
with only three equilibrium equations:

 oFx 5 0   oFy 5 0   oMA 5 0 (9.10)

Since only Ax can be determined from these equations, the beam is 
statically indeterminate.

BA
A

L

(a)

B

wL

Ax

Ay
L

L/2

(b)

MA

B

w

Fig. 9.14 (a) Statically indeterminate beam with a uniformly distributed load. 
(b) Free-body diagram with four unknown reactions.

 Recall from Chaps. 2 and 3 that, in a statically indeterminate prob-
lem, the reactions can be obtained by considering the deformations of 
the structure. Therefore, we proceed with the computation of the slope 
and deformation along the beam. Following the method used in Sec. 
9.1A, the bending moment M(x) at any given point AB is expressed in 
terms of the distance x from A, the given load, and the unknown reac-
tions. Integrating in x, expressions for u and y are found. These contain 
two additional unknowns: the constants of integration C1 and C2. Alto-
gether, six equations are available to determine the reactions and con-
stants C1 and C2; they are the three equilibrium equations of Eq. (9.10) 
and the three equations expressing that the boundary conditions are 
satisfied (i.e., that the slope and deflection at A are zero and that the 
deflection at B is zero (Fig. 9.15)). Thus, the reactions at the supports can 
be determined, and the equation of the elastic curve can be obtained.

w

B
x

x � 0,    � 0[ ]
x � L, y � 0[ ]

x � 0, y � 0[ ]

A

�

y

Fig. 9.15 Boundary conditions for beam 
of Fig. 9.14.

Concept Application 9.5
Determine the reactions at the supports for the prismatic beam of 
Fig. 9.14a.

Equilibrium Equations. From the free-body diagram of Fig. 9.14b,

 1ygFx 5 0:    Ax 5 0

  1xgFy 5 0:    Ay 1 B 2 wL 5 0  (1)

 1lgMA 5 0:    MA 1 BL 2
1
2  wL2 5 0

(continued)
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612 Defl ection of Beams

 In the previous Concept Application, there was one redundant reac-
tion (i.e., one more than could be determined from the equilibrium equa-
tions alone). The corresponding beam is statically indeterminate to the 
first degree. Another example of a beam indeterminate to the first degree 
is provided in Sample Prob. 9.3. If the beam supports are such that two 
reactions are redundant (Fig. 9.17a), the beam is indeterminate to the sec-
ond degree. While there are now five unknown reactions (Fig. 9.17b), four 
equations can be obtained from the boundary conditions (Fig. 9.17c). 
Thus, seven equations are available to determine the five reactions and 
the two constants of integration.

Equation of Elastic Curve. Draw the free-body diagram of a 
portion of beam AC (Fig. 9.16) to obtain

1lgMC 5 0:    M 1
1
2  wx 

2 1 MA 2 Ay  
x 5 0 (2)

Solving Eq. (2) for M and carrying into Eq. (9.4),

EI 
d 

2 y

dx 
2 5 2 

1

2
 wx 

2 1 Ay 
x 2 MA

Integrating in x gives

EI u 5 EI 
dy

dx
5 2 

1

6
  wx 

3 1
1

2
 Ay 

x 
2 2 MAx 1 C1 (3)

EI y 5 2 
1

24
  wx 

4 1
1

6
 Ay  

x 
3 2

1

2
 MA 

x 
2 1 C1x 1 C 2 (4)

Referring to the boundary conditions indicated in Fig. 9.15, x 5 0, 
u 5 0 in Eq. (3), x 5 0, y 5 0 in Eq. (4), and conclude that C1 5 C2 5 0. 
Thus, Eq. (4) is rewritten as

 EI  y 5 2 1
24  wx4 1

1
6 Ay  x3 2

1
2MA x2 (5)

But the third boundary condition requires that y 5 0 for x 5 L. Carry-
ing these values into Eq. (5), 

0 5 2 1
24  wL4 1

1
6 Ay 

L3 2
1
2 MAL2

or

 3MA 2 Ay 
L 1

1
4 wL2 5 0 (6)

Solving this equation simultaneously with the three equilibrium equa-
tions of Eq. (1), the reactions at the supports are

Ax 5 0    Ay 5
5
8 wL    MA 5

1
8 wL2  B 5

3
8 wL

A
MA

x/2

C
M

V

wx

Ay

Ax

x

Fig. 9.16 Free-body diagram of 
beam portion AC.

L

w

y

xA
B

(c)

x 5 0,    5 0[ ] x 5 L,    5 0[ ]
x 5 L, y 5 0[ ]x 5 0, y 5 0[ ]

u u

w

MB

MA
A

B
Ax

Ay B
(b)

L

w

A B

(a)

Fixed end
Frictionless

surface

Fig. 9.17 (a) Beam statically indeterminate to the second degree. (b) Free-body diagram. (c) Boundary conditions.
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9.2 Statically Indeterminate Beams 613

Sample Problem 9.1
The overhanging steel beam ABC carries a concentrated load P at end 
C. For portion AB of the beam, (a) derive the equation of the elastic 
curve, (b) determine the maximum deflection, (c) evaluate ymax for the 
following data:

W14 3 68        I 5 722 in4       E 5 29 3 106 psi

P 5 50 kips     L 5 15 ft 5 180 in.     a 5 4 ft 5 48 in.

STRATEGY: You should begin by determining the bending-moment 
equation for the portion of interest. Substituting this into the differen-
tial equation of the elastic curve, integrating twice, and applying the 
boundary conditions, you can then obtain the equation of the elastic 
curve. Use this equation to find the desired deflections.

MODELING: Using the free-body diagram of the entire beam (Fig. 1) 
gives the reactions: RA 5 PayLw RB 5 P11 1 ayL2x. The free-body 
diagram of the portion of beam AD of length x (Fig. 1) gives

M 5 2P 

a
L

  x    10 , x , L2

ANALYSIS:

 Differential Equation of the Elastic Curve.  Using Eq. (9.4) 
gives

EI   

d 2y

dx 
2 5 2P 

a
L

  x

Noting that the flexural rigidity EI is constant, integrate twice and find

  EI   

dy

dx
5 2 

1

2
 P 

a

L
  x 

2 1 C1 (1)

 EI y 5 2 
1

6
 P 

a
L

  x 
3 1 C1x 1 C 2 (2)

B

P

C
A

L a

RA � P
V

B

D

y

P

M

RA RB

C

x

L a

A

A

L
a

Fig. 1 Free-body diagrams of beam 
and portion AD.

(continued)
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614 Defl ection of Beams

 Determination of Constants. For the boundary conditions 
shown (Fig. 2),

[x 5 0, y 5 0]:    From Eq. (2),     C2 5 0

[x 5 L, y 5 0]:    Again using Eq. (2),

EI102 5 2 
1

6
  P  

a
L

 L3 1 C1L    C1 5 1
1

6
 PaL

 a. Equation of the Elastic Curve. Substituting for C1 and C2 into 
Eqs. (1) and (2), 

 EI  

dy

dx
5 2 

1

2
 P 

a
L

  x 
2 1

1

6
 PaL   

dy

dx
5

PaL

6EI
 c 1 2 3 ax

L
b2 d  (3)

 EI y 5 2 
1

6
 P  

a
L

 x 
3 1

1

6
 PaL x    y 5

PaL2

6EI
 c x

L
2 ax

L
b3 d  (4) b

 b. Maximum Deflection in Portion AB.  The maximum deflec-
tion ymax occurs at point E where the slope of the elastic curve is zero 
(Fig. 3). Setting dyydx 5 0 in Eq. (3), the abscissa xm of point E is

0 5
PaL

6EI
c 1 2 3 axm

L
b2 d     xm 5

L

23
5 0.577L

Substitute xmyL 5 0.577 into Eq. (4):

ymax 5
PaL2

6EI
 3 10.5772 2 10.57723 4  ymax 5 0.0642 

PaL2

EI
  b

 c. Evaluation of ymax. For the data given, the value of ymax is

ymax 5 0.0642 

150 kips2 148 in.2 1180 in.22
129 3 106 psi2 1722 in42  ymax 5 0.238 in.  b

REFLECT and THINK: Because the maximum deflection is positive, 
it is upward. As a check, we see that this is consistent with the deflected 
shape anticipated for this loading (Fig. 3).

C

x

xm

ymax

A
B

E

y

Fig. 3 Deformed elastic curve with 
location of maximum deflection.

B
C

x

L a

A

y

[x � 0, y � 0] [x � L, y � 0]

Fig. 2 Boundary conditions.
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9.2 Statically Indeterminate Beams 615

Sample Problem 9.2
For the beam and loading shown determine (a) the equation of the elas-
tic curve, (b) the slope at end A, (c) the maximum deflection.

STRATEGY: Determine the elastic curve directly from the load dis-
tribution using Eq. (9.8), applying the appropriate boundary condi-
tions. Use this equation to find the desired slope and deflection.

MODELING and ANALYSIS:

 Differential Equation of the Elastic Curve.   From Eq. (9.8),

 EI  

d 
4y

dx 
4 5 2w1x2 5 2w0 sin 

px
L

 (1)

Integrate Eq. (1) twice:

EI  

d 3y

dx 
3 5 V 5 1w0 

L
p

 cos 
px
L

1 C1 (2)

EI  

d 
2y

dx 
2 5 M 5 1w0 

L2

p2 sin 
px
L

1 C1x 1 C 2 (3)

Boundary Conditions:  Refer to Fig. 1.

[x 5 0, M 5 0]:    From Eq. (3),     C 2 5 0

[x 5 L, M 5 0]:    Again using Eq. (3),

0 5 w0
L2

p2 sin p 1 C1L  C1 5 0

Thus,

 EI  
d 2y

dx 
2 5 1w0

L2

p2 sin 
px
L

 (4)

Integrate Eq. (4) twice:

 EI   

dy

dx
5 EI u 5 2w0 

L3

p3 cos 
px
L

1 C 3 (5)

 EI y 5 2w0 
L4

p4  sin 
px
L

1 C 3 x 1 C4 (6)

 Boundary Conditions:  Refer to Fig. 1.

[x 5 0, y 5 0]:    Using Eq. (6), C4 5 0

[x 5 L, y 5 0]:    Again using Eq. (6), C3 5 0

B

w � w0 sin

A

x
L

x

y
�

L

B
x

L

A

y

[x � 0, M � 0]
[x � 0, y � 0]

[x � L, M � 0]
[x � L, y � 0]

Fig. 1 Boundary conditions.

(continued)
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616 Defl ection of Beams

 a. Equation of Elastic Curve. EIy 5 2w0 

L4

p4 sin 
px
L

  b
 b. Slope at End A.  Refer to Fig. 2. For x 5 0,

EI uA 5 2w0
L3

p3 cos 0 uA 5
w0 L3

p3EI
 c b

 c. Maximum Deflection.  Referring to Fig. 2, for x 5
1
2 L,

 ELymax 5 2w0 

L4

p4 sin 
p

2
 ymax 5

w0 
L4

p4EI
 w b

REFLECT and THINK: As a check, we observe that the directions of 
the slope at end A and the maximum deflection are consistent with 
the deflected shape anticipated for this loading (Fig. 1).

Sample Problem 9.3
For the uniform beam AB (a) determine the reaction at A, (b) derive 
the equation of the elastic curve, (c) determine the slope at A. (Note 
that the beam is statically indeterminate to the first degree.)

STRATEGY: The beam is statically indeterminate to the first degree. 
Treating the reaction at A as the redundant, write the bending-moment 
equation as a function of this redundant reaction and the existing load. 
After substituting the bending-moment equation into the differential 
equation of the elastic curve, integrating twice, and applying the bound-
ary conditions, the reaction can be determined. Use the equation for 
the elastic curve to find the desired slope.

MODELING: Using the free body shown in Fig. 1, obtain the bend-
ing moment diagram:

1igMD 5 0:    RAx 2
1

2
  aw0 

x 
2

L
b  

x
3

2 M 5 0    M 5 RAx 2
w0 

x 
3

6L

L/2 L/2

A B

y

x

ymaxA�

Fig. 2 Deformed elastic curve 
showing slope at A and maximum 
deflection.

A B

L

w0

A

w � w0

x
L(w0    ) x1

2
x1

3 x
L

D
x

M

V
RA

Fig. 1 Free-body diagram of portion 
AD of beam.

(continued)
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9.2 Statically Indeterminate Beams 617

ANALYSIS: 

 Differential Equation of the Elastic Curve.  Use Eq. (9.4) for

EI  
d 

2y

dx 
2 5 RAx 2

w0 
x 

3

6L

Noting that the flexural rigidity EI is constant, integrate twice and find

  EI  
dy

dx
5 EI u 5

1

2
 RA 

x 
2 2

w0 
x 

4

24L
1 C1 (1)

 EI y 5
1

6
 RAx 

3 2
w0x 

5

120L
1 C1x 1 C 2 (2)

 Boundary Conditions.  The three boundary conditions that 
must be satisfied are shown in Fig. 2.

3x 5 0, y 5 0 4 : C 2 5 0 (3)

3x 5 L, u 5 0 4 : 1

2
  RAL2 2

w0 L3

24
1 C1 5 0 (4)

3x 5 L, y 5 0 4 : 1

6
  RAL3 2

w0 L4

120
1 C1L 1 C 2 5 0 (5)

 a. Reaction at A.  Multiplying Eq. (4) by L, subtracting Eq. (5) 
member by member from the equation obtained, and noting that 
C2 5 0, give

 1
3 RAL3 2

1
30  w0L4 5 0 RA 5

1
10  w0Lx  b

The reaction is independent of E and I. Substituting RA 5
1

10 w0L into 
Eq. (4),

1
2 1 1

10 
 
w0L2  L2 2

1
24  w0L3 1 C1 5 0    C1 5 2

1
120 w0 L3

 b. Equation of the Elastic Curve.  Substituting for RA, C1, and C 2
into Eq. (2), 

EI y 5
1

6
  a 1

10
  w0Lb x 

3 2
w0x 

5

120L
2 a 1

120
  w0L3b x

y 5
w0

120EIL
 12x 

5 1 2L2x 
3 2 L4x2  b

 c. Slope at A (Fig. 3).  Differentiate the equation of the elastic 
curve with respect to x :

u 5
dy

dx
5

w0

120EIL
 125x 

4 1 6L2x 
2 2 L42

Making x 5 0,     uA 5 2 
w0 

L3

120EI
     uA 5

w0L3

120EI
 c b

x

y

[x 5 0, y 5 0]
[x 5 L, y 5 0]

[x 5 L,    5 0]u

A B

Fig. 2 Boundary conditions. 

A

L

B
x

�A

Fig. 3 Deformed elastic curve 
showing slope at A.
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618

Problems
In the following problems assume that the flexural rigidity EI of 
each beam is constant.

 9.1 through 9.4 For the loading shown, determine (a) the equation of the 
elastic curve for the cantilever beam AB, (b) the deflection at the 
free end, (c) the slope at the free end.

B

A

y

L

P

x

Fig. P9.1

BA

y

L

x

M0

Fig. P9.2

B
A

y

w

L

x

Fig. P9.3

w0

x
B

A

y

L

Fig. P9.4

 9.5 and 9.6 For the cantilever beam and loading shown, determine 
(a) the equation of the elastic curve for portion AB of the beam, 
(b) the deflection at B, (c) the slope at B.

y

A

w

B

C
x

P 5 2
3

wa

a2a

Fig. P9.5

y

A

w

B

L a

C x

MC 5
wL2

6

Fig. P9.6

 9.7 For the beam and loading shown, determine (a) the equation of 
the elastic curve for portion AB of the beam, (b) the deflection at 
midspan, (c) the slope at B.

B C
A

L L/2

x

y w0

Fig. P9.7
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619

9.8 For the beam and loading shown, determine (a) the equation of 
the elastic curve for portion AB of the beam, (b) the slope at A, 
(c) the slope at B.

y

A
C

B

L L/2

w

x

2w

Fig. P9.8

y

A

L/2L/2

x
BC

P

S

Fig. P9.10

A
C

xB

y
w0

W

L/2 L/2

Fig. P9.9

x

y

A

L

B

w0

Fig. P9.11

y

x

M0
M0

BA

L

Fig. P9.12

 9.9 Knowing that beam AB is a W10 3 33 rolled shape and that 
w0 5 3 kips/ft, L 5 12 ft, and E 5 29 3 106 psi, determine (a) the 
slope at A, (b) the deflection at C.

 9.10 Knowing that beam AB is an S200 3 34 rolled shape and that 
P 5 60 kN, L 5 2 m, and E 5 200 GPa, determine (a) the slope 
at A, (b) the deflection at C.

 9.11 For the beam and loading shown, (a) express the magnitude and 
location of the maximum deflection in terms of w0, L, E, and I. 
(b) Calculate the value of the maximum deflection, assuming that 
beam AB is a W18 3 50 rolled shape and that w0 5 4.5 kips/ft, 
L 5 18 ft, and E 5 29 3 106 psi.

 9.12 (a) Determine the location and magnitude of the maximum 
absolute deflection in AB between A and the center of the beam. 
(b) Assuming that beam AB is a W460 3 113, M0 5 224 kN?m, 
and E 5 200 GPa, determine the maximum allowable length L of 
the beam if the maximum deflection is not to exceed 1.2 mm.

 9.13 For the beam and loading shown, determine the deflection at 
point C. Use E 5 29 3 106 psi.

x

y

A

L � 15 ft

W14 � 30

a � 5 ft

BC

P � 35 kips

Fig. P9.13
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620

9.14 Knowing that beam AE is a W360 3 101 rolled shape and that 
M0 5 310 kN?m, L 5 2.4 m, a 5 0.5 m, and E 5 200 GPa, deter-
mine (a) the equation of the elastic curve for portion BD, (b) the 
deflection at point C.

M0 M0

A
E x

y

aa

B

L/2 L/2

C D

Fig. P9.14

9.15 For the beam and loading shown, knowing that a 5 2 m, 
w 5 50 kN/m, and E 5 200 GPa, determine (a) the slope at sup-
port A, (b) the deflection at point C.

y

w

C B xA

a

L � 6 m

W310 � 38.7

Fig. P9.15

 9.16 Knowing that beam AE is an S200 3 27.4 rolled shape and that 
P 5 17.5 kN, L 5 2.5 m, a 5 0.8 m, and E 5 200 GPa, determine 
(a) the equation of the elastic curve for portion BD, (b) the deflec-
tion at the center C of the beam.

 9.17 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the deflection at the free end.

y

E xA

a a

B C D

L/2L/2

PP

Fig. P9.16

 9.18 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the slope at end A, (c) the deflection at the 
midpoint of the span.

Fig. P9.17

w � w0 [1 � 4(   ) � 3(   )2]x
L

x
L

y

A
x

L

B

Fig. P9.18

x

y

A

L

B

w � w0 [ ]�1 x2

L2
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621

 9.19 through 9.22 For the beam and loading shown, determine the reac-
tion at the roller support.

 9.23 For the beam shown, determine the reaction at the roller support 
when w0 5 6 kips/ft.

 9.24 For the beam shown, determine the reaction at the roller support 
when w0 5 15 kN/m.

 9.25 through 9.28 Determine the reaction at the roller support and draw 
the bending moment diagram for the beam and loading shown.

L � 3 m

w0

A
B

 w � w0(x/L)2

Fig. P9.24

P

A C
B

L/2 L/2

Fig. P9.25

B
A

L/2

C

L

M0

Fig. P9.26

B

C

w0

1
2

A

L

L

Fig. P9.27

B

C

w

A

L/2 L/2

Fig. P9.28

Fig. P9.19

B
A

w

L

Fig. P9.20
L

A
B

M0

Fig. P9.21

B
A

w0

L

Fig. P9.22

B
A

w0

L

Fig. P9.23

B

L � 12 ft

w � w0 (x/L)2

A

w0
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622

9.29 and 9.30 Determine the reaction at the roller support and the 
deflection at point C.

A

L/2 L/2

C B

w

Fig. P9.29

B
C

w

w

A

L/2 L/2

Fig. P9.30

9.31 and 9.32 Determine the reaction at the roller support and the 
deflection at point D if a is equal to L/3.

B
A

D

a

L

P

Fig. P9.31 Fig. P9.32

B
A

a

L

D

M0

 9.33 and 9.34 Determine the reaction at A and draw the bending moment 
diagram for the beam and loading shown.

A B

w

L

Fig. P9.33

BA C

L/2 L/2

w0

Fig. P9.34
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*9.3 Singularity Functions to Determine Slope and Defl ection 623

*9.3  SINGULARITY FUNCTIONS 
TO DETERMINE SLOPE 
AND DEFLECTION

The integration method provides a convenient and effective way of deter-
mining the slope and deflection at any point of a prismatic beam, as long 
as the bending moment can be represented by a single analytical function 
M(x). However, when the loading of the beam needs two different func-
tions to represent the bending moment over the entire length, as in Con-
cept Application 9.3 (Fig. 9.11a), four constants of integration are required. 
An equal number of equations, expressing continuity conditions at point 
D as well as boundary conditions at supports A and B, must be used to 
determine these constants. If three or more functions are needed for the 
bending moment, additional constants and a corresponding number of 
additional equations are required, resulting in rather lengthy computa-
tions. Such is the case for the beam shown in Photo 9.2. This section sim-
plifies computations in situations like this through the use of the singularity 
functions discussed in Sec. 5.4.

 Consider again the beam and loading of Concept Application 9.3 
(Fig. 9.11) and draw the free-body diagram of that beam (Fig. 9.18). Use 
the appropriate singularity function (Sec. 5.4) to represent the contribu-
tion to the shear of the concentrated load P, and write

V1x2 5
3P

4
2 P Hx 2

1
4 LI0

Integrate in x and recall from Sec. 5.4 that, in the absence of any concen-
trated couple, the expression for the bending moment does not contain a 
constant term, so

 M1x2 5
3P

4
 x 2 P Hx 2

1
4 LI (9.11)

Photo 9.2 In this roof structure, each of the open-web joists applies a concentrated 
load to the beam that supports it.

P

B
D

A

3L/4
L/4

(a)

Fig. 9.11 (repeated) Simply supported beam with 
transverse load P.

A
D

B x

y P

L/4
3L/4

3
4 P 1

4 P

Fig. 9.18 Free-body diagram for beam 
of Fig. 9.11.
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624 Defl ection of Beams

Substituting for M(x) from Eq. (9.11) into Eq. (9.4),

EI 
d 

2 y

dx 
2 5

3P
4

 x 2 P Hx 2
1
4 LI (9.12)

and, integrating in x,

  EI u 5 EI 
dy

dx
5

3

8
 Px 

2 2
1

2
 P Hx 2

1
4 LI2 1 C1 (9.13)

 EI y 5
1

8
 Px 

3 2
1

6
 P Hx 2

1
4 LI3 1 C1x 1 C 2 (9.14)†

 The constants C1 and C2 can be determined from the boundary con-
ditions shown in Fig. 9.19. Letting x 5 0, y 5 0 in Eq. (9.14),

0 5 0 2
1

6
 P H0 2

1
4 LI3 1 0 1 C2

which reduces to C 2 5 0, since any bracket containing a negative quantity 
is equal to zero. Letting now x 5 L, y 5 0, and C2 5 0 in Eq. (9.14),

0 5
1

8
 PL3 2

1

6
 P H34 LI3 1 C1L

Since the quantity between brackets is positive, the brackets can be 
replaced by ordinary parentheses. Solving for C1 gives

C1 5 2
7PL2

128

 The expressions obtained for the constants C1 and C2 are the same 
found in Concept Application 9.3. But the need for additional constants 
C3 and C4 has been eliminated, and the equations expressing that the 
slope and the deflection are continuous at point D are not needed.

†The continuity conditions for the slope and deflection at D are “built-in” in Eqs. (9.13) 
and (9.14). Indeed, the difference between the expressions for the slope u1 in AD and 
the slope u2 in DB is represented by the term 21

2 P Hx 2
1
4 LI2 in Eq. (9.13), and this term 

is equal to zero at D. Similarly, the difference between the expressions for the deflection 
y1 in AD and the deflection y2 in DB is represented by 21

6 P Hx 2
1
4 LI3 in Eq. (9.14), and 

this term is also equal to zero at D.

B
A

y

x

x � 0, y � 0[ ] x � L, y � 0[ ]

Fig. 9.19 Boundary conditions for 
beam of Fig. 9.11.

Concept Application 9.6
For the beam and loading shown (Fig. 9.20a) and using singularity 
functions, (a) express the slope and deflection as functions of the dis-
tance x from the support at A, (b) determine the deflection at the mid-
point D. Use E 5 200 GPa and I 5 6.87 3 1026 m4.
 (a) The beam is loaded and supported in the same manner as the 
beam of Concept Application 5.5. Recall that the distributed load was 

(continued)
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*9.3 Singularity Functions to Determine Slope and Defl ection 625

replaced by the two equivalent open-ended loads shown in Fig. 9.20b. 
The expressions for the shear and bending moment are

 V1x2 5 21.5Hx 2 0.6I1 1 1.5Hx 2 1.8I1 1 2.6 2 1.2Hx 2 0.6I0
 M1x2 5 20.75Hx 2 0.6I2 1 0.75Hx 2 1.8I2
 1 2.6x 2 1.2Hx 2 0.6I1 2 1.44Hx 2 2.6I0
Integrating the last expression twice,

EIu 5 20.25Hx 2 0.6I3 1 0.25Hx 2 1.8I3
 1 1.3x 

2 2 0.6Hx 2 0.6I2 2 1.44 Hx 2 2.6I1 1 C1  (1)

EIy 5 20.0625Hx 2 0.6I4 1 0.0625Hx 2 1.8I4 1 0.4333x 
3

 2 0.2Hx 2 0.6I3 2 0.72Hx 2 2.6I2 1 C1x 1 C2  (2)

 The constants C1 and C2 can be determined from the boundary 
conditions shown in Fig. 9.20c. Letting x 5 0, y 5 0 in Eq. (2) and not-
ing that all the brackets contain negative quantities and, therefore, are 
equal to zero, we conclude that C2 5 0. Letting x 5 3.6, y 5 0, and 
C2 5 0 in Eq. (2) gives

0 5 20.0625H3.0I4 1 0.0625H1.8I4
 1 0.433313.623 2 0.2H3.0I3 2 0.72H1.0I2 1 C113.62 1 0

Since all the quantities between brackets are positive, the brackets can 
be replaced by ordinary parentheses. Solving for C1, we find 
C1 5 22.692.
 (b) Substituting for C1 and C2 into Eq. (2) and making x 5 xD 5 
1.8 m, we find that the deflection at point D is defined by the 
relation

EIyD 5 20.0625H1.2I4 1 0.0625H0I4
 1 0.433311.823 2 0.2H1.2I3 2 0.72H20.8I2 2 2.69211.82
The last bracket contains a negative quantity and, therefore, is equal 
to zero. All the other brackets contain positive quantities and can be 
replaced by ordinary parentheses.

EIyD 5 20.062511.224 1 0.06251024
 1 0.433311.823 2 0.211.223 2 0 2 2.69211.82 5 22.794

Recalling the given numerical values of E and I,

 1200 GPa2 16.87 3 1026 m42yD 5 22.794 kN?m3

 yD 5 213.64 3 1023 m 5 22.03 mm

B

B

w0 � 1.5 kN/m

w

w0 � 1.5 kN/m

P � 1.2 kN

P � 1.2 kN

B

Ay � 2.6 kN � w0 � � 1.5 kN/m

M0 � 1.44 kN · m

M0 � 1.44 kN · m

A
C D

E

xA E
C

D

(a)

(b)

0.6 m
1.2 m

3.6 m

0.8 m 1.0 m

0.6 m

2.6 m

1.8 m

E

E

B
A

y

x
[x 5 0,  y 5 0] [x 5 3.6,  y 5 0]

(c)

Fig. 9.20 (a) Simply supported beam 
with multiple loads. (b) Free-body 
diagram of beam showing equivalent 
loading system. (c) Boundary conditions.
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626 Defl ection of Beams

Sample Problem 9.4

For the prismatic beam and loading shown, determine (a) the equa-
tion of the elastic curve, (b) the slope at A, (c) the maximum 
deflection.

STRATEGY: You can begin by determining the bending-moment 
equation of the beam, using a singularity function for any transition 
in loading. Substituting this into the differential equation of the elastic 
curve, integrating twice, and applying the boundary conditions, you 
can then obtain the equation of the elastic curve. Use this equation to 
find the desired slope and deflection.

MODELING: The equation defining the bending moment of the 
beam was obtained in Sample Prob. 5.9. Using the modified loading 
diagram shown in Fig. 1, we had [Eq. (3)]:

M1x2 5 2 
w0

3L
 x 

3 1
2w0

3L
 Hx 2

1
2 LI3 1

1
4 w0 Lx

w0

A B

L/2 L/2

C

w 2w0

L
k1 5 1

A
C

RA 5 RB

x
B

L/2 L/2

4w0

L
k2 5 2

1 w0L4

Fig. 1 Free-body diagram showing 
modified loading.

ANALYSIS: 

 a. Equation of the Elastic Curve. Using Eq. (9.4), 

 EI 
d 

2 y

dx 
2 5 2 

w0

3L
 x 

3 1
2w0

3L
 Hx 2

1
2 LI3 1

1
4 w0 Lx (1)

and, integrating twice in x,

 EI u 5 2 
w0

12L
 x 

4 1
w0

6L
 Hx 2

1
2 LI4 1

w0 L

8
 x 

2 1 C1 (2)

 EI y 5 2 
w0

60L
 x 

5 1
w0

30L
 Hx 2

1
2 LI5 1

w0 
L

24
 x 

3 1 C1x 1 C2 (3)

(continued)
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*9.3 Singularity Functions to Determine Slope and Defl ection 627

Boundary Conditions. Referring to Fig. 2, 
 [x 5 0, y 5 0]: Using Eq. (3) and noting that each bracket H I
contains a negative quantity and is equal to zero, C2 5 0.
 [x 5 L, y 5 0]: Again using Eq. (3),

0 5 2 
w0 L4

60
1

w0

30L
 aL

2
b5

1
w0 

L4

24
1 C1L  C1 5 2 

5

192
 w0 

L3

Substituting C1 and C2 into Eqs. (2) and (3),

 EI  u 5 2 
w0

12L
 x 

4 1
w0

6L
 Hx 2

1
2 LI4 1

w0 
L

8
 x 

2 2
5

192
 w0 

L3 (4)

 EI y 5 2 
w0

60L
 x 

5 1
w0

30L
 Hx 2

1
2 LI5 1

w0 
L

24
 x 

3 2
5

192
 w0 

L3x   (5) b

 b. Slope at A (Fig. 3). Substituting x 5 0 into Eq. (4),

 EI uA 5 2 
5

192
 w0 

L3 uA 5
5w0 

L3

192EI
 c b

 c. Maximum Deflection (Fig. 3). Because of the symmetry of 
the supports and loading, the maximum deflection occurs at point C
where x 5

1
2 L. Substituting into Eq. (5),

EI ymax 5 w0 
L4 c2 

1

601322 1 0 1
1

24182 2
5

192122 d 5 2 
w0 

L4

120

ymax 5
w0 

L4

120EI
w b

L

A
BC

y

x
[ x � 0, y � 0 ] [ x � L, y � 0 ]

Fig. 2 Boundary conditions.

L/2

A
B

C

y

xymax

uA

Fig. 3 Deformed elastic curve showing 
slope at A and maximum deflection at C.

Sample Problem 9.5

The rigid bar DEF is welded at point D to the uniform steel beam AB. 
For the loading shown, determine (a) the equation of the elastic curve 
of the beam, (b) the deflection at the midpoint C of the beam. Use 
E 5 29 3 106 psi.

B
C

F E

D
A

50 lb/ft

160 lb

8 ft
3 ft

3 in.

1 in.

5 ft

(continued)
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628 Defl ection of Beams

STRATEGY: Begin by determining the bending-moment equation of 
the beam ADB, using a singularity function for any transition in loading. 
Substituting this into the differential equation of the elastic curve, inte-
grating twice, and applying the boundary conditions, you can then 
obtain the equation of the elastic curve. Use this equation to find the 
desired deflection.

MODELING: The equation defining the bending moment of the 
beam was obtained in Sample Prob. 5.10. Using the modified loading 
diagram shown in Fig. 1 and expressing x in feet, [Eq. (3)] is

M(x) 5 225x 2 1 480x 2 160 Hx 2 11I1 2 480 Hx 2 11I0 lb?ft

ANALYSIS: 

 a. Equation of the Elastic Curve. Using Eq. (9.4),

EI(d 2 yydx 2) 5 225x 2 1 480x 2 160 Hx 2 11I1 2 480 Hx 2 11I0 lb?ft (1)

and, integrating twice in x,

EI u 5 28.333x 3 1 240x 2 2 80 Hx 2 11I2 2 480 Hx 2 11I1 1 C1 lb?ft2 (2)

EI y 5 22.083x 4 1 80x 3 2 26.67Hx 2 11I3 2 240 Hx 2 11I2
 1 C1x 1 C 2 lb?ft3  (3a)

 Boundary Conditions. Referring to Fig. 2,
 [x 5 0, y 5 0]: Using Eq. (3) and noting that each bracket H I 
contains a negative quantity and, thus, is equal to zero, we find C2 5 0.
 [x 5 16 ft, y 5 0]: Again using Eq. (3), each bracket contains a posi-
tive quantity and can be replaced by a parenthesis:

 0 5 22.08311624 1 8011623 2 26.671523 2 2401522 1 C11162
 C1 5 211.36 3 103

Substituting the values found for C1 and C2 into Eq. (3) gives

EI y 5 22.083x 
4 1 80x 

3 2 26.67Hx 2 11I3 2 240Hx 2 11I2
2 11.36 3 103x  lb?ft 

3 (3b) b

To determine EI, recall that E 5 29 3 106 psi and compute

 I 5
1

12 bh3 5
1

12 11 in.2 13 in.23 5 2.25 in4

 EI 5 129 3 106 psi2 12.25 in42 5 65.25 3 106 lb?in2

However, since all previous computations have been carried out with 
feet as the unit of length,

EI 5 165.25 3 106 lb?in22 11 ft/12 in.22 5 453.1 3 103 lb?ft 
2

B
x

D
A

w0 � 50 lb/ftw

MD  � 480 lb · ft

RA  � 480 lb RBP  � 160 lb

5 ft11 ft

Fig. 1 Free-body diagram of showing 
equivalent force-couple system.

16 ft

y

A x
B

[ x � 0, y � 0 ] [ x � 16 ft, y � 0 ]

Fig. 2 Boundary conditions.

(continued)
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*9.3 Singularity Functions to Determine Slope and Defl ection 629

 b. Deflection at Midpoint C. (Fig. 3). Making x 5 8 ft in Eq. (3b),

EI yC 5 22.0831824 1 801823 2 26.67H23I3 2 240H23I2 2 11.36 3 103182

Noting that each bracket is equal to zero and substituting for EI its 
numerical value gives

(453.1 3 103 lb?ft2 ) yC 5 258.45 3 103 lb?ft3

and solving for yC: yC 5 20.1290 ft yC 5 21.548 in. b

REFLECT and THINK: Note that the deflection obtained at mid-
point C is not the maximum deflection.

8 ft 8 ft

y

A

C

x
ByC

Fig. 3 Deformed elastic curve 
showing displacement at midpoint C.

Sample Problem 9.6

For the uniform beam ABC, (a) express the reaction at A in terms of 
P, L, a, E, and I, (b) determine the reaction at A and the deflection 
under the load when a 5 Ly2.

STRATEGY: The beam is statically indeterminate to the first degree. 
Using singularity functions, you can write the bending-moment equa-
tion for the beam, including the unknown reaction at A as part of the 
expression. After substituting this equation into the differential equa-
tion of the elastic curve, integrating twice, and applying the boundary 
conditions, the reaction at A can be determined, followed by the deter-
mination of the desired deflection.

MODELING: 

 Reactions.  For the given vertical load P the reactions are as 
shown in Fig. 1. We note that they are statically indeterminate.

 Shear and Bending Moment.  Using a step function to repre-
sent the contribution of P to the shear,

V1x2 5 RA 2 P Hx 2 aI0
Integrating in x , the bending moment is

M1x2 5 RAx 2 P  Hx 2 aI1

B C

L
a

A

P

P

L

A

y

B C
x

a

MC

RCRA

Fig. 1 Free-body diagram.

(continued)
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630 Defl ection of Beams

ANALYSIS: 

 Equation of the Elastic Curve.  Using Eq. (9.4),

EI 
d 

2y

dx 
2 5 RAx 2 P Hx 2 aI1

Integrating twice in x,

 EI 
dy

dx
5 EI u 5

1

2
 RAx 

2 2
1

2
P Hx 2 aI2 1 C1

 EI y 5
1

6
RAx 

3 2
1

6
P Hx 2 aI3 1 C1x 1 C2

 Boundary Conditions  Referring to Fig. 2 and noting that the 
bracket Hx 2 aI is equal to zero for x 5 0 and to (L 2 a) for x 5 L, 

3x 5 0, y 5 0 4 :  C2 5 0 (1)

3x 5 L, u 5 0 4 :  1
2RAL2 2

1
2P1L 2 a22 1 C1 5 0 (2)

3x 5 L, y 5 0 4 :  1
6RAL3 2

1
6P1L 2 a23 1 C1L 1 C 2 5 0 (3)

 a. Reaction at A. Multiplying Eq. (2) by L, subtracting Eq. (3) 
member by member from the equation, and noting that C 2 5 0, we 
obtain

1

3
RAL3 2

1

6
P1L 2 a22 33L 2 1L 2 a2 4 5 0

RA 5 P  a1 2
a
L
b2a1 1

a
2L
bx b

The reaction is independent of E and I.

 b. Reaction at A and Deflection at B when a 5 1
2 L (Fig. 3). 

Making a 5
1
2 L in the expression obtained for RA,

 RA 5 P 11 2
1
2 2211 1

1
4 2 5 5Py16 RA 5

5

16
 Px b

Substituting a 5 Ly2 and RA 5 5Py16 into Eq. (2) and solving for C1, 
C1 5 2PL2y32. Making x 5 Ly2, C1 5 2PL2y32, and C 2 5 0 in the 
expression obtained for y,

 yB 5 2
7PL3

768EI
 yB 5

7PL3

768EI
w b

REFLECT and THINK: Note that the deflection obtained at B is not 
the maximum deflection.

L

C
A

y [ x 5 0, y 5 0 ]

[ x 5 0, y 5 0 ]
[ x 5 L,    5 0 ]u

x

Fig. 2 Boundary conditions.

A

B

C

RA

yB

L/2L/2

P

Fig. 3 Deformed elastic curve 
showing deflection at B.
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631

Problems
Use singularity functions to solve the following problems and 
assume that the flexural rigidity EI of each beam is constant.

 9.35 and 9.36 For the beam and loading shown, determine (a) the equa-
tion of the elastic curve, (b) the slope at end A, (c) the deflection 
at point C.

 9.37 and 9.38 For the beam and loading shown, determine the deflec-
tion at (a) point B, (b) point C, (c) point D.

x

y

B

C

w

A

L/2 L/2

L

Fig. P9.35

M0

x

y

B

C
A

a b

L

Fig. P9.36

C D E

y

xA
B

P P

a

P

aaa

Fig. P9.37

A B

P P

C D

y

a

x

P

aa

Fig. P9.38

 9.39 and 9.40 For the beam and loading shown, determine (a) the 
deflection at end A, (b) the deflection at point C, (c) the slope at 
end D.

x

y

DCB
A

a a a

P P

Fig. P9.39

x

y

D

C

B

A

a

M0
M0

a a

Fig. P9.40

 9.41 and 9.42 For the beam and loading shown, determine (a) the equa-
tion of the elastic curve, (b) the deflection at the midpoint C.

xBC
A

w0

L/2 L/2

y

Fig. P9.42

x

y

A B

w

C

a a a a

Fig. P9.41

bee98233_ch09_598-689.indd   631bee98233_ch09_598-689.indd   631 11/9/13   3:41 PM11/9/13   3:41 PM



632

 9.43 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the deflection at point B, (c) the deflection 
at point C.

 9.44 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the deflection at point B, (c) the deflection 
at point D.

B
x

y

C

w0

L/2 L/2

A

Fig. P9.43

L/2 L/2

B
A

y

C D x

L/2

w w

Fig. P9.44

 9.45 For the timber beam and loading shown, determine (a) the slope 
at end A, (b) the deflection at the midpoint C. Use E 5 12 GPa.

 9.46 For the beam and loading shown, determine (a) the slope at 
end A, (b) the deflection at point B. Use E 5 29 3 106 psi.

0.5 m 0.5 m

P 5 4 kN
w 5 5 kN/m

1 m

150 mm

50 mm

DA
B C

Fig. P9.45

A D

1.25 in.

24 in.
16 in.

48 in.

8 in.

200 lb

10 lb/in.

B C

Fig. P9.46

9.47 For the beam and loading shown, determine (a) the slope at end 
A, (b) the deflection at point C. Use E 5 29 3 106 psi.

W16 � 57

5 ft 5 ft 6 ft

3 kips/ft

20 kips

A D
C

B

Fig. P9.47A

S130 � 15

1 m 1 m

BC

8 kN48 kN/m

Fig. P9.48
 9.48 For the beam and loading shown, determine (a) the slope at 

end A, (b) the deflection at the midpoint C. Use E 5 200 GPa.
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 9.49 and 9.50 For the beam and loading shown, determine (a) the reac-
tion at the roller support, (b) the deflection at point C.

 9.51 and 9.52 For the beam and loading shown, determine (a) the reac-
tion at the roller support, (b) the deflection at point B.

 9.53 For the beam and loading shown, determine (a) the reaction at 
point C, (b) the deflection at point B. Use E 5 200 GPa.

P

A C
B

L/2 L/2

Fig. P9.49

L/2 L/2

C
A

B

M0

Fig. P9.50

L/3

A B C
D

L/3 L/3

P P

Fig. P9.51

A

B

M0M0

L/4 L/2 L/4

D
C

Fig. P9.52

C
B

A

14 kN/m

W410 � 60

5 m 3 m

Fig. P9.53

 9.54 For the beam shown and knowing that P 5 40 kN, determine 
(a) the reaction at point E, (b) the deflection at point C. Use 
E 5 200 GPa.

E

0.5 m 0.5 m 0.5 m 0.5 m

B C D

P

W200 � 46.1

P P

A

Fig. P9.54
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9.55 and 9.56 For the beam and loading shown, determine (a) the reac-
tion at point A, (b) the deflection at point C. Use E 5 29 3 106 psi.

BC

9 kips/ft

6 ft 6 ft

A

W12 3 22

Fig. P9.55

B

C

w 5 4.5 kips/ft

2.5 ft2.5 ft2.5 ft2.5 ft

A D E

W14 3 22

Fig. P9.56

w

BDA

a 2a 2a

C

Fig. P9.57

L/2 L/2

A B C D

L/3

P

Fig. P9.58

Fig. P9.63

D
0.4 m

H

G

E

CB

F

A

W100 � 19.3

0.15 m

0.5 m 0.3 m 0.3 m 0.5 m

100 kN

Fig. P9.64

1.2 m

50 kN

30 kN/m

1.2 m
2.4 m

A B
C

F
D
E W460 � 52

 9.57 For the beam and loading shown, determine (a) the reaction at 
point A, (b) the deflection at point D.

 9.58 For the beam and loading shown, determine (a) the reaction at 
point A, (b) the deflection at midpoint C.

 9.59 through 9.62 For the beam and loading indicated, determine the 
magnitude and location of the largest downward deflection.

  9.59 Beam and loading of Prob. 9.45.
  9.60 Beam and loading of Prob. 9.46.
  9.61 Beam and loading of Prob. 9.47.
  9.62 Beam and loading of Prob. 9.48.

9.63 The rigid bars BF and DH are welded to the rolled-steel beam AE
as shown. Determine for the loading shown (a) the deflection at 
point B, (b) the deflection at midpoint C of the beam. Use 
E 5 200 GPa.

9.64 The rigid bar DEF is welded at point D to the rolled-steel beam 
AB. For the loading shown, determine (a) the slope at point A, 
(b) the deflection at midpoint C of the beam. Use E 5 200 GPa.
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9.4 Method of Superposition 635

9.4 METHOD OF SUPERPOSITION
9.4A Statically Determinate Beams
When a beam is subjected to several concentrated or distributed loads, it is 
convenient to compute separately the slope and deflection caused by each 
of the given loads. The slope and deflection due to the combined loads are 
obtained by applying the principle of superposition (Sec. 2.5) and adding 
the values of the slope or deflection corresponding to the various loads.

Concept Application 9.7
Determine the slope and deflection at D for the beam and loading 
shown (Fig. 9.21a), knowing that the flexural rigidity of the beam is 
EI 5 100 MN?m2.
 The slope and deflection at any point of the beam can be obtained 
by superposing the slopes and deflections caused by the concentrated 
load and by the distributed load (Fig. 9.21b).
 Since the concentrated load in Fig. 9.21c is applied at quarter 
span, the results for the beam and loading of Concept Application 9.3 
can be used to write

 1uD2P 5 2 
PL2

32EI
5 2 

1150 3 1032 1822
321100 3 1062 5 23 3 1023 rad

 1yD2P 5 2 
3PL3

256EI
5 2 

31150 3 1032 1823
2561100 3 1062 5 29 3 1023 m

 5 29 mm

On the other hand, recalling the equation of the elastic curve obtained 
for a uniformly distributed load in Concept Application 9.2, the deflec-
tion in Fig. 9.21d is

 y 5
w

24EI
12x 

4 1 2L x 
3 2 L3x2 (1)

A
D

B

150 kN

20 kN/m
2 m

8 m
(a)

Fig. 9.21 (a) Simply supported 
beam having distributed and 
concentrated loads. 

2 m

D

BA

L 5 8 m

P 5 150 kN

D

20 kN/m
150 kN

BA
D

x 5 2 m
L 5 8 m

BA

w 5 20 kN/m

(c)(b) (d)

Fig. 9.21 (b) The beam’s loading can be obtained by superposing deflections due to (c) the concentrated load and 
(d) the distributed load.

Differentiating with respect to x gives

 u 5
dy

dx
5

w
24EI

 124x 
3 1 6L x 

2 2 L32 (2)

(continued)
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636 Defl ection of Beams

Making w 5 20 kN/m, x 5 2 m, and L 5 8 m in Eqs. (1) and (2), we 
obtain

 1uD2w 5
20 3 103

241100 3 1062  123522 5 22.93 3 1023 rad

 1yD2w 5
20 3 103

241100 3 1062  129122 5 27.60 3 1023 m

    5 27.60 mm

Combining the slopes and deflections produced by the concentrated 
and the distributed loads,

 uD 5 1uD2P 1 1uD2w 5 23 3 1023 2 2.93 3 1023

 5 25.93 3 1023 rad

 yD 5 1yD2P 1 1yD2w 5 29 mm 2 7.60 mm 5 216.60 mm

 To facilitate the work of practicing engineers, most structural and 
mechanical engineering handbooks include tables giving the deflections 
and slopes of beams for various loadings and types of support. Such a 
table is found in Appendix D. The slope and deflection of the beam of 
Fig. 9.21a could have been determined from that table. Indeed, using 
the information given under cases 5 and 6, we could have expressed the 
deflection of the beam for any value x # Ly4. Taking the derivative of the 
expression obtained in this way would have yielded the slope of the beam 
over the same interval. We also note that the slope at both ends of the 
beam can be obtained by simply adding the corresponding values given 
in the table. However, the maximum deflection of the beam of Fig. 9.21a
cannot be obtained by adding the maximum deflections of cases 5 and 6, 
since these deflections occur at different points of the beam.†

9.4B Statically Indeterminate Beams
We often find it convenient to use the method of superposition to deter-
mine the reactions at the supports of a statically indeterminate beam. Con-
sidering a beam indeterminate to the first degree, such as the beam shown 
in Photo 9.3, we can use the approach described in Sec. 9.2. We designate 
one of the reactions as redundant and eliminate or modify accordingly the 
corresponding support. The redundant reaction is then treated as an 
unknown load that, together with the other loads, must produce deforma-
tions compatible with the original supports. The slope or deflection at the 
point where the support has been modified or eliminated is obtained by 
computing the deformations caused by both the given loads and the 
redundant reaction and by superposing the results. Once the reactions at 
the supports are found, the slope and deflection can be determined.

†An approximate value of the maximum deflection of the beam can be obtained by plot-
ting the values of y corresponding to various values of x . The determination of the exact 
location and magnitude of the maximum deflection would require setting equal to zero 
the expression obtained for the slope of the beam and solving this equation for x .

Photo 9.3 The continuous beams supporting this 
highway overpass have three supports and are thus 
statically indeterminate.
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9.4 Method of Superposition 637

B

(yB)R

RB

w w

B

A A
B

yB 5 0

(yB)wRB

A

(c)(b) (d)

Fig. 9.22 (b) Analyze the indeterminate beam by superposing two determinate cantilever beams, subjected to 
(c) a uniformly distributed load, (d) the redundant reaction.

Concept Application 9.8
Determine the reactions at the supports for the prismatic beam and 
loading shown in Fig. 9.22a. (This is the same beam and loading as in 
Concept Application 9.5.)
 We consider the reaction at B as redundant and release the beam 
from the support. The reaction RB is now considered as an unknown 
load (Fig. 9.22b) and will be determined from the condition that the 
deflection of the beam at B must be zero. The solution is carried out 
by considering separately the deflection ( yB)w caused at B by the 
uniformly distributed load w (Fig. 9.22c) and the deflection ( yB)R pro-
duced at the same point by the redundant reaction RB (Fig. 9.22d).
 From the table of Appendix D (cases 2 and 1),

1yB2w 5 2 
wL4

8EI
    1yB2R 5 1

RB 
L3

3EI

Writing that the deflection at B is the sum of these two quantities and 
that it must be zero, 

 yB 5 1yB2w 1 1yB2R 5 0

 yB 5 2 
wL4

8EI
 1

RBL3

3EI
5 0

and, solving for RB,  RB 5
3
8 wL   RB 5

3
8 wLx

 Drawing the free-body diagram of the beam (Fig. 9.22e) and 
writing the corresponding equilibrium equations,

1xg   Fy 5 0:  RA 1 RB 2 wL 5 0 (1)

 RA 5 wL 2 RB 5 wL 2
3
8 wL 5

5
8 wL

  RA 5
5
8 wLx

1lgMA 5 0:  MA 1 RBL 2 1wL2 112L2 5 0 (2)

 MA 5
1
2 wL2 2 RBL 5

1
2 wL2 2

3
8 wL2 5

1
8 wL2

 MA 5
1
8 wL2 l

(continued)

BA

L

w

(a)

Fig. 9.22 (a) Statically 
indeterminate beam with a 
uniformly distributed load.

B

wL

MA

RA RB

A

L

L/2

(c)

Fig. 9.22 (e) Free-body diagram of 
indeterminate beam.
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638 Defl ection of Beams

BA

wMA

MA

w

BA

(f ) (g) (h)

A 5 0u ( A)wu

( A)Mu

BA

Fig. 9.22 (f ) Analyze the indeterminate beam by superposing two determinate simply supported beams, subjected 
to (g) a uniformly distributed load, (h) the redundant reaction.

Alternative Solution. We may consider the couple exerted at 
the fixed end A as redundant and replace the fixed end by a pin-and-
bracket support. The couple MA is now considered as an unknown 
load (Fig. 9.22f ) and will be determined from the condition that the 
slope of the beam at A must be zero. The solution is carried out by 
considering separately the slope (uA)w caused at A by the uniformly 
distributed load w (Fig. 9.22g) and the slope (uA)M produced at the 
same point by the unknown couple MA (Fig 9.22h).

 Using the table of Appendix D (cases 6 and 7) and noting that 
A and B must be interchanged in case 7,

1uA2w 5 2 
wL3

24 EI
    1uA2M 5

MAL

3EI

Writing that the slope at A is the sum of these two quantities and that 
it must be zero gives

uA 5 1uA2w 1 1uA2M 5 0

uA 5 2 
wL3

25EI
1

MAL

3EI
5 0

where MA is

MA 5
1
8 wL2    MA 5

1
8 wL2 l

The values of RA and RB are found by using the equilibrium equations 
(1) and (2).

 The beam considered in the preceding Concept Application was inde-
terminate to the first degree. In the case of a beam indeterminate to the 
second degree (see Sec. 9.2), two reactions must be designated as redun-
dant, and the corresponding supports must be eliminated or modified 
accordingly. The redundant reactions are then treated as unknown loads 
that, simultaneously and together with the other loads, must produce 
deformations that are compatible with the original supports. (See Sample 
Prob. 9.9.)
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9.4 Method of Superposition 639

Sample Problem 9.7

For the beam and loading shown, determine the slope and deflection 
at point B.

STRATEGY: Using the method of superposition, you can model the 
given problem using a summation of beam load cases for which 
deflection formulae are readily available.

MODELING: Through the principle of superposition, the given load-
ing can be obtained by superposing the loadings shown in the follow-
ing picture equation of Fig. 1. The beam AB is the same in each part 
of the figure.

B
C

w

A

L/2 L/2

B
C

w

A

y

L/2 L/2

B

x

yBA

B

w

Loading I Loading II

A

L

B
C

w

A

L/2 L/2

�B

y

B

A

B

x
x(yB)I

(  B)I

A

y

�

(  B)II�

(yB)II

w

Fig. 1 Actual loading is equivalent to the superposition of two distributed loads.

ANALYSIS: For each of the loadings I and II (detailed further in 
Fig. 2), determine the slope and deflection at B by using the table of 
Beam Deflections and Slopes in Appendix D.

Loading I

 1uB2I 5 2 
wL3

6EI
 1yB2I 5 2 

wL4

8EI

Loading II

1uC2II 5 1
w1Ly223

6EI
5 1

wL3

48EI
  1yC2II 5 1

w1Ly224
8EI

5 1
wL4

128EI

B

w

Loading I

Loading II

A

L
y

B

x

(yB)I

(  B)I

A

�

�

BC

w

A

L/2 L/2

A C

B

x

y (  B)II�(  C)II

(yB)II

(yC)II

Fig. 2 Deformation details of the 
superposed loadings I and II.

(continued)
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640 Defl ection of Beams

In portion CB, the bending moment for loading II is zero. Thus, the 
elastic curve is a straight line.

 1uB2II 5 1uC2II 5 1
wL3

48EI
 1yB2II 5 1yC2II 1 1uC2II aL

2
b

 5
wL4

128EI
1

wL3

48EI
 aL

2
b 5 1

7wL4

384EI

 Slope at Point B

uB 5 1uB2I 1 1uB2II 5 2 
wL3

6EI
1

wL3

48EI
5 2 

7wL3

48EI
 uB 5

7wL3

48EI
  c b

 Deflection at B

yB 5 1yB2I 1 1yB2II 5 2  
wL4

8EI
1

7wL4

384EI
5 2 

41wL4

384EI
 yB 5

41wL4

384EI
 w >

REFLECT and THINK: Note that the formulae for one beam case 
can sometimes be extended to obtain the desired deflection of another 
case, as you saw here for loading II. 

Sample Problem 9.8

For the uniform beam and loading shown, determine (a) the reaction 
at each support, (b) the slope at end A.

STRATEGY: The beam is statically indeterminate to the first degree. 
Strategically selecting the reaction at B as the redundant, you can use 
the method of superposition to model the given problem by using a 
summation of load cases for which deflection formulae are readily 
available.

MODELING: The reaction RB is selected as redundant and consid-
ered as an unknown load. Applying the principle of superposition, the 
deflections due to the distributed load and to the reaction RB are con-
sidered separately as shown in Fig. 1.

B

w

A C

2L/3

L

L/3

(continued)
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9.4 Method of Superposition 641

B

B

w

A

A

y

C

xC

2L/3 L/3
RB RB

B

w

A C

2L/3 L/3

BA C

2L/3 L/3

[yB � 0]
B

A

y

xC

(yB)w(  A)w�

B

A

y

xC

(yB)R(  A)R�

= +

+=

Fig. 1 Indeterminate beam modeled as superposition of two determinate simply supported beams with reaction at B 
chosen as redundant.

ANALYSIS: For each loading case, the deflection at point B is found 
by using the table of Beam Deflections and Slopes in Appendix D. 

Distributed Loading.  Use case 6, Appendix D:

y 5 2 

w

24EI
 1x 

4 2 2L x 
3 1 L3x2

At point B, x 5
2
3 L:

1yB2w 5 2 
w

24EI
 c a2

3
 Lb4

2 2L a2

3
 Lb3

1 L3
 a2

3
 Lb d 5 20.01132 

wL4

EI

 Redundant Reaction Loading.  From case 5, Appendix D, with 
a 5

2
3 L and b 5

1
3 L,

1yB2R 5 2 
Pa2b2

3EIL
5 1

RB

3EIL
 a2

3
 Lb2aL

3
b2

5 0.01646 

RB 
L3

EI

 a. Reactions at Supports.  Recalling that yB 5 0,

 yB 5 1
 
yB2w 1 1

 
yB2R

 0 5 20.01132 

wL4

EI
1 0.01646 

RBL3

EI
  RB 5 0.688wLx b

Since the reaction RB is now known, use the methods of statics to deter-
mine the other reactions (Fig. 2):

RA 5 0.271wLx  RC 5 0.0413wLx >

B

w

A C

RA � 0.271 wL RB � 0.688 wL

RC � 0.0413 wL

Fig. 2 Free-body diagram of beam with 
calculated reactions.

(continued)
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642 Defl ection of Beams

Sample Problem 9.9

For the beam and loading shown, determine the reaction at the fixed 
support C.

STRATEGY: The beam is statically indeterminate to the second 
degree. Strategically selecting the reactions at C as redundants, you 
can use the method of superposition and model the given problem by 
using a summation of load cases for which deflection formulae are 
readily available.

MODELING: Assuming the axial force in the beam to be zero, the 
beam ABC is indeterminate to the second degree, and we choose two 
reaction components as redundants: the vertical force RC and the 
couple MC. The deformations caused by the given load P, the force RC , 
and the couple MC are considered separately, as shown in Fig. 1.

ANALYSIS: For each load, the slope and deflection at point C is found 
by using the table of Beam Deflections and Slopes in Appendix D.

 Load P.  For this load, portion BC of the beam is straight.

 1uC2P 5 1uB2P 5 2 
Pa2

2EI
    1yC2P 5 1yB2P 1 1uB2p b

 5 2 
Pa 

3

3EI
2

Pa 
2

2EI
  b 5 2 

Pa 
2

6EI
  12a 1 3b2

 b. Slope at End A.  Referring again to Appendix D,

 Distributed Loading.  1uA2w 5 2 

wL3

24EI
5 20.04167 

wL3

EI

 Redundant Reaction Loading.  For P 5 2RB 5 20.688wL and b 5
1
3 L,

1uA2R 5 2 
Pb1L2 2 b 

22
6EIL

5 1
0.688wL

6EIL
 aL

3
b cL2 2 aL

3
b2 d  1uA2R 5 0.03398 

wL3

EI

Finally, uA 5 1uA2w 1 1uA2R

uA 5 20.04167 

wL3

EI
1 0.03398 

wL3

EI
5 20.00769 

wL3

EI

uA 5 0.00769 
wL3

EI
 c b

B

P

C

L

a b

A

(continued)
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9.4 Method of Superposition 643

Force RC 1uC2R 5 1
RC L2

2EI
   1yC2R 5 1

RC L3

3EI

Couple MC 1uC2M 5 1
MC 

L

EI
   1yC2M 5 1

MC L2

2EI

Boundary Conditions.  At end C, the slope and deflection must 
be zero:

3x 5 L, uC 5 0 4 :  uC 5 1uC2P 1 1uC2R 1 1uC2M
 0 5 2 

Pa2

2EI
1

RC L2

2EI
1

MC L

EI
 (1)

3x 5 L, yC 5 0 4 :  yC 5 1yC2P 1 1yC2R 1 1yC2M
 0 5 2 

Pa2

6EI
 12a 1 3b2 1

RC L3

3EI
1

MC L2

2EI
 (2)

 Reaction Components at C.  Solve Eqs. (1) and (2) 
simultaneously:

 RC 5 1
Pa2

L3  1a 1 3b2 RC 5
Pa2

L3  1a 1 3b2 x >

MC 5 2 
Pa2b

L2  MC 5
Pa2b

L2  i b
The methods of statics are used to determine the reaction at A, shown 
in Fig. 2.

REFLECT and THINK: Note that an alternate strategy that could 
have been used in this particular problem is to treat the couple reac-
tions at the ends as redundant. The application of superposition would 
then have involved a simply-supported beam, for which deflection 
formulae are also readily available.

B

P

C

C

a b

ABA

PMC MC

RC RC
a b

C

C

L

A

C

C

A

A

L

BB
C

C

A

A A
(  C)M�

(yC)M

�
�

(  C)P

�(  C)R

�(  B)P

(yC)P

(yC)R

(yB)P

[  B� 0]

[yB� 0]

Fig. 1 Indeterminate beam modeled as the superposition of three determinate cases, including one for each of the 
two redundant reactions.

L

a bRA RC     

Pa2b
L2MC �

PPab2

L2MA �

Pb2

L3RA � (3a � b)
Pa2

L3RC � (a � 3b)

Fig. 2 Free-body diagram showing 
the reaction results.
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644

Use the method of superposition to solve the following problems 
and assume that the flexural rigidity EI of each beam is constant.

 9.65 through 9.68 For the cantilever beam and loading shown, deter-
mine the slope and deflection at the free end.

Problems

CBA

w wL2

24M 5

L/2 L/2

Fig. P9. 65

B
C

w 5

L/2 L/2

A

P

P
L

Fig. P9. 66

CA B

P 2P

L/2 L/2

Fig. P9.67

C
A

B

P

a

L

MA 5 Pa

Fig. P9.68

 9.69 through 9.72 For the beam and loading shown, determine (a) the 
deflection at point C, (b) the slope at end A.

DCB

P P P

A E

a a aa

Fig. P9.69

B
C

P

A

L/3 2L/3

MB 5 P L
3

Fig. P9.70

B

w

A

wL2

12MA 5

C

L

Fig. P9.71

D

C

B

P

P

A

L/3 L/3 L/3

Fig. P9.72
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 9.73 For the cantilever beam and loading shown, determine the slope 
and deflection at end C. Use E 5 200 GPa.

3 kN

C

B

A

0.75 m 0.5 m
S100 � 11.5

3 kN

Fig. P9.73 and P9.74

9.74 For the cantilever beam and loading shown, determine the slope 
and deflection at point B. Use E 5 200 GPa.

 9.75 For the cantilever beam and loading shown, determine the slope 
and deflection at end A. Use E 5 29 3 106 psi.

C

B

1 kip/ft

2 ft 3 ft

A

1 kip
2.0 in.

4.0 in.

Fig. P9.75 and P9.76

 9.76 For the cantilever beam and loading shown, determine the slope 
and deflection at point B. Use E 5 29 3 106 psi.

 9.77 and 9.78 For the beam and loading shown, determine (a) the slope 
at end A, (b) the deflection at point C. Use E 5 200 GPa.

BC

140 kN
80 kN · m80 kN · m

2.5 m 2.5 m

A

W410 � 46.1

Fig. P9.77

1.3 m 2.6 m

B
C

8 kN/m

35 kN

A

W360 � 39

Fig. P9.78

 9.79 and 9.80 For the uniform beam shown, determine (a) the reaction 
at A, (b) the reaction at B.

A

B

C D

P P

L/3 L/3 L/3

Fig. P9.79

B
A

C

w

L/2 L/2

Fig. P9.80
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9.81 and 9.82 For the uniform beam shown, determine the reaction at 
each of the three supports.

A EDCB

L/2 L/2 L/2 L/2

P 2P

Fig. P9.81

A B
C

2L
3

L
3

M0

Fig. P9.82

 9.83 and 9.84 For the beam shown, determine the reaction at B.

w

B

A C

L/2 L/2

Fig. P9.83

BA

L

w

Fig. P9.84

 9.85 Beam DE rests on the cantilever beam AC as shown. Knowing that 
a square rod of side 10 mm is used for each beam, determine the 
deflection at end C if the 25-N ∙ m couple is applied (a) to end E
of the beam DE , (b) to end C of the beam AC. Use E 5 200 GPa.

E

120 mm 180 mm

25 N · m
B

A

C

D

10 mm

10 mm

Fig. P9.85

 9.86 Beam AD rests on beam EF as shown. Knowing that a W12 3 26 
rolled-steel shape is used for each beam, determine for the load-
ing shown the deflection at points B and C. Use E 5 29 3 106 psi.

F

3 ft 3 ft 3 ft

20 kips 20 kips

3 ft

B

E

A
C D

Fig. P9.86
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 9.87 The two beams shown have the same cross section and are joined 
by a hinge at C. For the loading shown, determine (a) the slope 
at point A, (b) the deflection at point B. Use E 5 29 3 106 psi.

A BCB

12 in.12 in.
6 in.

Hinge

D

800 lb

1.25 in.

1.25 in.

Fig. P9.87

A CB

0.4 m 0.4 m 0.4 m 0.4 m

HingeHinge
D E

24 mm

12 mm

w

Fig. P9.88

P � 6 kips
a � 4 ft

a � 4 ft

b � 5 ft
D

A C

E

B

b � 5 ft

Fig. P9.89

C

P

A B

�0

60 mm

60 mm

0.5 m 0.2 m

Fig. P9.90

 9.88 A central beam BD is joined at hinges to two cantilever beams 
AB and DE. All beams have the cross section shown. For the load-
ing shown, determine the largest w so that the deflection at C
does not exceed 3 mm. Use E 5 200 GPa.

9.89 For the loading shown, and knowing that beams AB and DE have 
the same flexural rigidity, determine the reaction (a) at B, (b) at E.

 9.90 Before the load P was applied, a gap, d0 5 0.5 mm, existed 
between the cantilever beam AC and the support at B. Knowing 
that E 5 200 GPa, determine the magnitude of P for which the 
deflection at C is 1 mm.
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 9.91 Knowing that the rod ABC and the wire BD are both made of 
steel, determine (a) the deflection at B, (b) the reaction at A. Use 
E 5 200 GPa.

C

D

0.18 m 0.18 m

A
B

0.2 m

40-mm
diameter

4-mm diameter
1.6 kN/m

Fig. P9.91

9.92 Before the 2-kip/ft load is applied, a gap, d0 5 0.8 in., exists 
between the W16 3 40 beam and the support at C. Knowing that 
E 5 29 3 106 psi, determine the reaction at each support after 
the uniformly distributed load is applied.

2 kips/ft

BA

W16 � 40

12 ft 12 ft

C �0

Fig. P9.92

 9.93 A 7
8-in.-diameter rod BC is attached to the lever AB and to the 

fixed support at C. Lever AB has a uniform cross section 38 in. thick 
and 1 in. deep. For the loading shown, determine the deflection 
of point A. Use E 5 29 3 106 psi and G 5 11.2 3 106 psi.

20 in.

C

B

80 lb

10 in.

A

Fig. P9.93

 9.94 A 16-mm-diameter rod has been bent into the shape shown. 
Determine the deflection of end C after the 200-N force is applied. 
Use E 5 200 GPa and G 5 80 GPa.

L � 250 mm L � 250 mm

200 N

B

C

A

Fig. P9.94
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*9.5 Moment-Area Theorems 649

*9.5 MOMENT-AREA THEOREMS
*9.5A General Principles
In Sec. 9.1 through Sec. 9.3 we used a mathematical method based on the 
integration of a differential equation to determine the deflection and slope 
of a beam at any given point. The bending moment was expressed as a 
function M(x) of the distance x measured along the beam, and two suc-
cessive integrations led to the functions u(x) and y (x) representing, respec-
tively, the slope and deflection at any point of the beam. In this section 
you will see how geometric properties of the elastic curve can be used to 
determine the deflection and slope of a beam at a specific point (Photo 9.4). 

Photo 9.4 The maximum deflection of each beam supporting the floors of a 
building should be taken into account in the design process.

First Moment-Area Theorem. Consider a beam AB subjected to 
some arbitrary loading (Fig. 9.23a). Draw the diagram representing the 
variation along the beam of MyEI obtained by dividing the bending 
moment M by the flexural rigidity EI (Fig. 9.23b). Except for a difference 
in the scales of ordinates, this diagram is the same as the bending-moment 
diagram if the flexural rigidity of the beam is constant.
 Recalling Eq. (9.4) and that dyydx 5 u,

du

dx
5

d 
2y

dx 
2 5

M
EI

or

 du 5
M

EI
  dx (9.15)†

B

B

B

C

C

C

D

D

D

A

A

A

M
EI

x

(a)

(b)

(c)

(d)

�D

�C

B

C
D

A
�D/C

Fig. 9.23 First moment-area theorem. (a) Beam 
subjected to arbitrary load. (b) Plot of M/EI curve. 
(c) Elastic curve showing slope at C and D. (d) Elastic 
curve showing slope at D with respect to C.

†This relationship also can be determined by noting that the angle du formed by the 
tangents to the elastic curve at P and P9 (Fig. 9.24) is also the angle formed by the cor-
responding normals to that curve. Thus du 5 dsyr, where ds is the length of the arc PP9

and r is the radius of curvature at P. Substituting for 1yr from Eq. (4.21) and noting that 
since the slope at P is very small, ds is equal in first approximation to the horizontal 
distance dx between P and P9, we will again obtain Eq. (9.15).

�d

�

�d

C

ds
P'

P

Fig. 9.24 Geometry of the elastic curve used to 
define the slope at point P’ with respect to P.
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650 Defl ection of Beams

 Next consider two arbitrary points C and D on the beam and integrate 
both members of Eq. (9.15) from C to D :

#
uD

uC

 du 5 #
xD

xC

 
M
EI

  dx

or

 uD 2 uC 5 #
xD

xC

 
M
EI

  dx (9.16)

where uC and uD indicate the slope at C and D (Fig. 9.24c). But the right-
hand member of Eq. (9.16) represents the area under the MyEI diagram 
between C and D, while the left-hand member is the angle between the 
tangents to the elastic curve at C and D (Fig. 9.23d). This angle is given as

uDyC 5 area under MyEI diagram
 between C and D (9.17)

This is the first moment-area theorem.
 Note that uDyC and the area under the M/EI diagram have the same 
sign. This positive area (i.e., located above the x axis) corresponds to a 
counterclockwise rotation of the tangent to the elastic curve moving from 
C to D, and a negative area corresponds to a clockwise rotation.

Second Moment-Area Theorem. Now consider two points P and P9 
located between C and D at a distance dx from each other (Fig. 9.25). The 
tangents to the elastic curve drawn at P and P9 intercept a segment with 
a length dt on the vertical through point C. Since the slope u at P and the 
angle du formed by the tangents at P and P9 are both small quantities, dt 
is assumed to be equal to the arc of the circle of radius x1 subtending the 
angle du. Therefore,

dt 5 x1 du

or substituting for du from Eq. (9.15),

 dt 5 x1 
M
EI

  dx (9.18)

 Now integrate Eq. (9.18) from C to D. As point P describes the elastic 
curve from C to D, the tangent at P sweeps the vertical through C from C 
to E. Thus, the integral of the left-hand  member is equal to the vertical 
distance from C to the tangent at D. This distance is denoted by tCyD and 
is called the tangential deviation of C with respect to D. Therefore,

 tCyD 5 #
xD

xC

 x1 
M
EI

 dx (9.19)

B
C D

dxx1

dt

d

A

�

P'
P

E

Fig. 9.25 Geometry used to determine the 
tangential deviation of C with respect to D.
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*9.5 Moment-Area Theorems 651

 Observe that (MyEI) dx represents an element of area under the 
(MyEI) diagram, and x1 (MyEI) dx is the first moment of that element with 
respect to a vertical axis through C (Fig. 9.26). The right-hand member in 
Eq. (9.19) represents the first moment with respect to that axis of the area 
located under the MyEI diagram between C and D.
 We can, therefore, state the second moment-area theorem as follows: 
The tangential deviation tCyD of C with respect to D is equal to the first 
moment with respect to a vertical axis through C of the area under the 
(MyEI ) diagram between C and D.
 Recalling that the first moment of an area with respect to an axis is 
equal to the product of the area and the distance from its centroid to that 
axis, the second moment-area theorem is expressed as:

 tCyD 5 1area between C and D2 x1 (9.20)

where the area refers to the area under the MyEI diagram and where x1 is 
the distance from the centroid of the area to the vertical axis through C 
(Fig. 9.27a).
 Remember to distinguish between the tangential deviation of C with 
respect to D (tCyD) and the tangential deviation of D with respect to C 
(tDyC). The tangential deviation tDyC represents the vertical distance from 
D to the tangent to the elastic curve at C and is obtained by multiplying 
the area under the (MyEI) diagram by the distance x2 from its centroid to 
the vertical axis through D (Fig. 9.27b):

 tDyC 5 1area between C and D2 x2 (9.21)

 Note that if an area under the MyEI diagram is located above the x 
axis, its first moment with respect to a vertical axis is positive. If it is 
located below the x axis, its first moment is negative. As shown in 
Figure 9.27, a point with a positive tangential deviation is located above 
the corresponding tangent. A point with a negative tangential deviation is 
located below that tangent.

*9.5B  Cantilever Beams and Beams 
with Symmetric Loadings

Recall that the first moment-area theorem defines the angle uDyC between 
the tangents at two points C and D of the elastic curve. The angle uD that 
the tangent at D forms with the horizontal (i.e., the slope at D) can be 
obtained only if the slope at C is known. Similarly, the second moment-
area theorem defines the vertical distance of one point of the elastic 
curve from the tangent at another point. Therefore, the tangential devia-
tion tDyC helps to locate point D only if the tangent at C is known. Thus, 
the two moment-area theorems can be applied effectively to determine 
slopes and deflections only if a certain reference tangent to the elastic 
curve has been determined.

BC DA

M
EI

x
P'P

dxx1

Fig. 9.26 The expression x1(M/EI)dx is the first 
moment of the shaded area with respect to C.

BA

B

C
tC/D

tD/C

D

D

A

C'

D'

C

BC DA

M
EI

x

BC DA

M
EI

x

x2

(a)

(b)

x1

Fig. 9.27 Second moment-area 
theorem illustrated. (a) Evaluating tCyD. 
(b) Evaluating tDyC.

bee98233_ch09_598-689.indd   651bee98233_ch09_598-689.indd   651 11/9/13   3:41 PM11/9/13   3:41 PM



652 Defl ection of Beams

 In cantilever beams (Fig. 9.28), the tangent to the elastic curve at the 
fixed end A is known and can be used as the reference tangent. Since 
uA 5 0, the slope of the beam at any point D is uD 5 uDyA and can be obtained 
using the first moment-area theorem. On the other hand, the deflection 
yD of point D is equal to the tangential deviation tDyA measured from the 
horizontal reference tangent at A and can be obtained using the second 
moment-area theorem.
 In a simply supported beam AB with a symmetric load (Fig. 9.29a) or 
an overhanging symmetric beam with a symmetric load (see Sample Prob. 
9.11), the tangent at the center C of the beam must be horizontal (by rea-
son of symmetry) and can be used as the reference tangent (Fig. 9.29b). 
Since uC 5 0, the slope at the support B is uB 5 uByC and can be obtained 
using the first moment-area theorem. Also, | y |max is equal to the tangential 
deviation tByC and can be obtained with the second moment-area theo-
rem. The slope at any other point D of the beam (Fig. 9.29c) is found in a 
similar way, and the deflection at D is yD 5 tDyC 2 tByC .

� �D =   D/A

yD =  tD/A

Reference tangent

Tangent at DD

A

P

Fig. 9.28 Application of moment-area 
method to cantilever beams.

C

C

B

y  max � tB/C

A

BA

P

Horizontal

Reference tangent

(a)

(b)

B/CB �� �

C

B
D

tD/C

tB/C

yD

A

Reference tangent

(c)

D/CD �� �

P

Fig. 9.29 Application of moment-area 
method to simply supported beams with 
symmetric loads. (a) Beam and loads. 
(b) Maximum deflection and slope at point B. 
(c) Deflection and slope at arbitrary point D.

Concept Application 9.9
Determine the slope and deflection at end B of the prismatic cantilever 
beam AB when it is loaded as shown (Fig. 9.30a), knowing that the 
flexural rigidity of the beam is EI 5 10 MN ? m2.
 Draw the free-body diagram of the beam (Fig. 9.30b).  Summing 
vertical components and moments about A, the reaction at the fixed 
end A consists of a 50 kN upward vertical force RA and a 60 kN ? m 
counterclockwise couple MA. Next, draw the bending-moment dia-
gram (Fig. 9.30c) and determine from similar triangles the distance xD 
from end A to point D of the beam where M 5 0:

xD

60
5

3 2 xD

90
5

3

150
  xD 5 1.2 m

 Dividing the values obtained for M by the flexural rigidity EI, draw 
the MyEI diagram (Fig. 9.30d ) and compute the areas corresponding 
respectively to the segments AD and DB, assigning a positive sign to 

Fig. 9.30 (a) Cantilevered beam 
with end loads. 

3 m

A B

50 kN

90 kN · m

(a)

(continued)
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*9.5 Moment-Area Theorems 653

the area located above the x axis and a negative sign to the area located 
below that axis. Use the first moment-area theorem to obtain

 uBy A 5 uB 2 uA 5 area from A to B 5 A1 1 A2

 5 2
1
2 
11.2 m2  16 3 1023 m212 1

1
2 
11.8 m2  19 3 1023 m212

 5 23.6 3 1023 1 8.1 3 1023

 5 14.5 3 1023 rad

and, since uA 5 0,

uB 5 14.5 3 1023 rad

 Using the second moment-area theorem, the tangential deviation 
tByA is equal to the first moment about a vertical axis through B of the 
total area between A and B. The moment of each partial area is the prod-
uct of that area and the distance from its centroid to the axis through B:

 tByA 5 A112.6 m2 1 A210.6 m2
 5 123.6 3 10232  12.6 m2 1 18.1 3 10232  10.6 m2
 5 29.36 mm 1 4.86 mm 5 24.50 mm

FIg. 9.30 (d) Plot of M/EI showing locations of 
area centroids.

0.8 m
1.8 m

2.6 m

0.6 m

19 3 1023 m21

26 3 1023 m21

A
A1

A2

B
D x

M
EI

1.2 m

(d)

Fig. 9.30 (e) Deflected beam showing slope 
and deflection results at end B.

B

A

Reference tangent

u uB 5   B/A 5 14.5 3 10–3 rad 

yB 5 tB/A 5 24.5 mm 

(e)

Fig. 9.30 (b) Free-body diagram with 
reactions. (c) Moment diagram.

260 kN · m

A
B

(b)

(c)

3 m 2 xD

xD

MA 5 60 kN · m

RA 5 50 kN

190 kN · m

90 kN · m

M

A
BD

x

50 kN

Since the reference tangent at A is horizontal, the deflection at B is equal 
to tByA , so

yB 5 tByA 5 24.50 mm

The deflected beam is shown in Fig. 9.30e.
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654 Defl ection of Beams

*9.5C  Bending-Moment Diagrams by 
Parts

In many applications, the angle uDyC and the tangential deviation tDyC are 
easier to determine if the effect of each load is evaluated independently. 
A separate MyEI diagram is drawn for each load, and angle uDyC is obtained 
by adding the areas under the various diagrams. Similarly, the tangential 
deviation tDyC is obtained by adding the first moments of these areas about 
a vertical axis through D. A bending-moment or MyEI diagram plotted this 
way is said to be drawn by parts.
 When an MyEI diagram is drawn by parts, the areas defined consist 
of simple geometric shapes, such as rectangles, triangles, and parabolic 
spandrels. The areas and centroids of some of these shapes are shown in 
Fig. 9.31.

Shape Area c

b

b
3

Rectangle

Triangle

Parabolic 
spandrel

Cubic
spandrel

General
 spandrel

b
2

bh

bh

2

c

h

b

C

C

c

h

b
4

bh
3

b

C

c

h

b
5

bh
4

bh
  n� 1

b
  n� 2

y � kx2

b

C

c

h
y � kx3

b

C

c

h
y � kxn

Fig. 9.31 Areas and centroids of common 
shapes.
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*9.5 Moment-Area Theorems 655

Concept Application 9.10
Determine the slope and deflection at end B of the prismatic beam of 
Concept Application 9.9, drawing the bending-moment diagram by 
parts.
 The given load is replaced by the two equivalent loads shown in 
Fig. 9.32a, and the corresponding bending-moment and MyEI dia-
grams are drawn from right to left, starting at the free end B.

3 m

A B

50 kN

90 kN · m

90 kN · m

3 m

3 m

3 m

1.5 m

2 m

2150 kN · m

215 3 1023 m21

9 3 1023 m21

M

A

M

A

BA

BB
xx

A1

A2

A
B

A
B

x x

A

B

90 kN · m

M
EI

M
EI

50 kN

(a)
Fig. 9.32 (a) Superposition of loads and their resulting bending-moment and M/EI diagrams.

3 m

1.5 m

2 m
215 3 1023 m21

9 3 1023 m21

A

A1

A2

B
x

M
EI

(b)

FIg. 9.32 MyEI diagrams combined 
into a single drawing.

 Applying the first moment-area theorem and recalling that uA 5 0

 uB 5 uByA 5 A1 1 A2

 5 19 3 1023 m212  13 m2 2
1
2 
115 3 1023 m212  13 m2

 5 27 3 1023 2 22.5 3 1023 5 4.5 3 1023 rad

Applying the second moment-area theorem, compute the first moment 
of each area about a vertical axis through B and write

 yB 5 tByA 5 A111.5 m2 1 A212 m2
 5 127 3 10232 11.5 m2 2 122.5 3 10232 12 m2
 5 40.5 mm 2 45 mm 5 24.5 mm

It practice, it is convenient to combine the two portions of the MyEI 
diagram into a single drawing (Fig. 9.32b).
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656 Defl ection of Beams

Concept Application 9.11
For the prismatic beam AB and the loading shown in Fig. 9.33a, deter-
mine the slope at a support and the maximum deflection.

 Sketch the deflected beam (Fig. 9.33b). Since the tangent at the 
center C of the beam is horizontal, it is used as the reference tangent, 
and | y |max 5 tAyC. But since uC 5 0,

uCyA 5 uC 2 uA 5 2uA  or  uA 5 2uCyA

The free-body diagram of the beam (Fig. 9.33c) shows

RA 5 RB 5 wa

Next, the shear and bending-moment diagrams are drawn for portion 
AC of the beam. These diagrams are drawn by parts, considering the 
effects of the reaction RA and of the distributed load separately. How-
ever, for convenience the two parts of each diagram have been plotted 
together in Fig. 9.33d. Recall that when the distributed load is uniform, 
the corresponding parts of the shear and bending-moment diagrams 
are, respectively, linear and parabolic. The area and centroid of the 
triangle and of the parabolic spandrel are obtained by referring to 
Fig. 9.31. The areas of the triangle and spandrel are

A1 5
1

2
 12a2 a2wa2

EI
b 5

2wa3

EI

and

A2 5 2 
1

3
 1a2 awa2

2EI
b 5 2 

wa3

6EI

Applying the first moment-area theorem,

uCyA 5 A1 1 A2 5
2wa3

EI
2

wa3

6EI
5

11wa3

6EI

Recall from Figs. 9.33a and b that a 5
1
4ÊL and uA 5 2uCyA , making

uA 5 2 
11wa3

6EI
5 2 

11wL3

384EI

Applying the second moment-area theorem

tAyC 5 A1
4a
3

1 A2
7a
4

5 a2wa3

EI
b 4a

3
1 a2 

wa3

6EI
b 7a

4
5

19wa4

8EI

and

0  y 0max 5 tAyC 5
19wa4

8EI
5

19wL4

2048EI

a a a a

w

A
D E

B
C

L 5 4a

B

(a)

Fig. 9.33 (a) Simply supported beam 
with symmetric distributed loading.

A 5 2 

A
C

B

Reference tangent

u C/Au

y max 5 tA/C

(b)

a

2wa

A

RA RB

D E
B

C
B

a

2a

(c)

a

(2wa2)

w

A

V

RA 5 wa

RA 5 wa

2wa
(2   wa2)

D C

x
D

A
C

a

a

a a

a

2a

1
2

2

A
A1

A2wa2
D

C x

M
EI

2 wa2

2 EI

EI
4a
3

7a
4

1
4

(d)

Fig. 9.33 (b) Elastic curve with 
maximum deflection and slope at point 
A shown. (c) Free-body diagram of the 
beam. (d) Shear and M/EI diagrams for 
the left half of the beam.
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*9.5 Moment-Area Theorems 657

Sample Problem 9.10
Prismatic rods AD and DB are welded together to form the cantilever 
beam ADB. Knowing that the flexural rigidity is EI in portion AD of the 
beam and 2EI in portion DB, determine the slope and deflection at 
end A for the loading shown.

A

a

D

EI 2EI
a

P P

B

STRATEGY: To apply the moment-area theorems, you should first 
obtain the M/EI diagram for the beam. For a cantilever beam, it is 
convenient to place the reference tangent at the fixed end, since it is 
known to be horizontal.

MODELING and ANALYSIS:

 (MyEI ) Diagram.  Referring to Fig. 1, draw the bending-moment 
diagram for the beam and then obtain the MyEI diagram by dividing 
the value of M at each point of the beam by the corresponding value 
of the flexural rigidity.

Reference Tangent.  Referring to Fig. 2, choose the horizontal 
tangent at the fixed end B as the reference tangent. Since uB 5 0 and 
yB 5 0,

uA 5 2uByA  yA 5 tAyB

A

V

� P

� Pa

� 2P

� 3Pa

Pa

B

M

x

x

x

x

D

EI

EI
2EI

2EI

RB

MB

M
EI �

Pa
EI�

3Pa
2EI�

P P

Fig. 1 Free-body diagram and 
construction of the M/EI diagram.

Reference tangent
�   B/A�

A

A

B

�

yA� tA/B

Fig. 2 Slope and deflection at end A related to 
reference tangent at fixed end B.

(continued)
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658 Defl ection of Beams

Slope at A.  Divide the MyEI diagram into the three triangular 
portions shown in Fig. 3.

 A1 5 2 
1

2
 
Pa

EI
 a 5 2 

Pa2

2EI

 A2 5 2 
1

2
 
Pa

2EI
 a 5 2 

Pa2

4EI

 A3 5 2 
1

2
 
3Pa

2EI
 a 5 2 

3Pa2

4EI

Using the first moment-area theorem,

  uByA 5 A1 1 A2 1 A3 5 2 
Pa2

2EI
2

Pa2

4EI
2

3Pa2

4EI
5 2

3Pa2

2EI

 uA 5 2uByA 5 1 
3Pa2

2EI
 uA 5

3Pa2

2EI
 a b

 Deflection at A.  Using the second moment-area theorem,

 yA 5 tAyB 5 A1 a2

3
 ab 1 A2 a4

3
 ab 1 A3 a5

3
 ab

 5 a2 
Pa2

2EI
b  2a

3
1 a2 

Pa2

4EI
b  4a

3
1 a2 

3Pa2

4EI
b  5a

3

 yA 5 2 
23Pa3

12EI
 yA 5

23Pa3

12EI
w b

REFLECT and THINK: This example demonstrates that the moment-
area theorems can be just as easily used for nonprismatic beams as for 
prismatic beams.

Sample Problem 9.11
For the prismatic beam and loading shown, determine the slope and 
deflection at end E.

aa

B
A

a

D A2

A3
A1

Pa

x

2EI

M
EI

�
Pa
EI� 3Pa

2EI�

5
3

a4
3

a2
3

Fig. 3 Areas and centroids of moment-area 
diagram used to find slope and deflection.

B
A

L

C D
E

2
a

L

a

ww

STRATEGY: To apply the moment-area theorems, you should first 
obtain the M/EI diagram for the beam. Due to the symmetry of both 
the beam and its loading, it is convenient to place the reference tan-
gent at the mid-point since it is known to be horizontal.

(continued)
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*9.5 Moment-Area Theorems 659

MODELING and ANALYSIS: 

 MyEI  Diagram.  From a free-body diagram of the beam (Fig. 1), 
determine the reactions and then draw the shear and bending-moment 
diagrams. Since the flexural rigidity of the beam is constant, divide 
each value of M by EI and obtain the MyEI diagram shown.

 Reference Tangent.  In Fig. 2, since the beam and its loads are 
symmetric with respect to the midpoint C, the tangent at C is horizon-
tal and can be used as the reference tangent. Referring to Fig. 2 and 
since uC 5 0,

  uE 5 uC 1 uEy C 5 uEyC (1)

 yE 5 tEyC 2 tDyC  (2)

Slope at E.  Referring to the MyEI diagram shown in Fig. 1 and 
using the first moment-area theorem,

 A1 5 2 
wa 

2

2EI
 aL

2
b 5 2 

wa 
2L

4EI

 A2 5 2 
1

3
 awa 

2

2EI
b 1a2 5 2 

wa3

6EI

Using Eq. (1),

uE 5 uEyC 5 A1 1 A2 5 2 
wa2L
4EI

2
wa3

6EI

 uE 5 2 
wa2

12EI
 13L 1 2a2    uE 5

wa2

12EI
 13L 1 2a2 c b

Deflection at E.  Use the second moment-area theorem to write

 tDyC 5 A1 
L
4

5 a2 
wa 

2L
4EI
b  L

4
5 2 

wa 
2L2

16EI

 tEyC 5 A1 aa 1
L

4
b 1 A2 a3a

4
b

 5 a2 
wa 

2L

4EI
b aa 1

L

4
b 1 a2 

wa3

6EI
b a3a

4
b

 5 2 
wa3L

4EI
2

wa2L2

16EI
2

wa4

8EI

Use Eq. (2) to obtain

yE 5 tEyC 2 tDyC 5 2 
wa3L

4EI
2

wa4

8EI

 yE 5 2 
wa3

8EI
 12L 1 a2    yE 5

wa3

8EI
 12L 1 a2w b

B
A

C D E

A1
A2

La

V

x

x

x

M

a

a

wa

� wa

�
 wa2

2

 L
2

�
 wa2

2EI
�

 wa2

2EI

 3a
4

 a
4

�
 wa2

2

 L
4

M
EI

RB � wa RD � wa

w w

Fig. 1 Free-body diagram and construction 
of the moment-area diagram.

BA

C

yE

  E�ED

Reference tangent
tD/C tE/C

Fig. 2 Due to symmetry, reference 
tangent at midpoint C is horizontal. 
Shown are the slope and deflection at 
end E related to this reference tangent.
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660

Problems
Use the moment-area method to solve the following problems.

 9.95 through 9.98 For the uniform cantilever beam and loading shown, 
determine (a) the slope at the free end, (b) the deflection at the 
free end.

M0

L

A
B

Fig. P9.95

L

A
B

P

Fig. P9.96

B

w

L

A

Fig. P9.97

B
A

w0

L

Fig. P9.98

9.99 and 9.100 For the uniform cantilever beam and loading shown, 
determine the slope and deflection at (a) point B, (b) point C.

2M0 M0

BA C

L/2 L/2

Fig. P9.99

B
A C

P P

a a

Fig. P9.100

 9.101 For the cantilever beam and loading shown, determine (a) the 
slope at point C, (b) the deflection at point C. Use E 5 29 3 106 psi.

 9.102 For the cantilever beam and loading shown, determine (a) the 
slope at point A, (b) the deflection at point A. Use E 5 200 GPa.A

3.0 in.

1   ft  ft

B C

1.5 kips
4 kips/ft

1
3

2
3

Fig. P9.101

A

26 kN/m

CB

0.5 m
2.2 m

W250 � 28.4
18 kN

Fig. P9.102
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 9.103 Two C6 3 8.2 channels are welded back to back and loaded as 
shown. Knowing that E 5 29 3 106 psi, determine (a) the slope 
at point D, (b) the deflection at point D. 

D
A

CB

2 ft 2 ft 2 ft

C6 � 8.2

1.1 kips 1.1 kips 1.1 kips

Fig. P9.103

 9.104 For the cantilever beam and loading shown, determine (a) the 
slope at point A, (b) the deflection at point A. Use E 5 200 GPa.

A

4 kN/m

CB

1 m 2.5 m

W250 � 22.3

5 kN

Fig. P9.104

 9.105 For the cantilever beam and loading shown, determine (a) the 
slope at point A, (b) the deflection at point A. 

A
B C

3EIEI

L/2L/2

w

Fig. P9.105

A

90 kN/m

CB

2.1 m
2.7 m

W410 � 60

12 � 200 mm

40 kN

Fig. P9.107

9.108 Two cover plates are welded to the rolled-steel beam as shown. 
Using E 5 29 3 106 psi, determine (a) the slope at end C, (b) the 
deflection at end C.

W10 � 454.5 ft

6 ft

15 kips

A

B C

 � 9 in.1
2

Fig. P9.108

EI 2EI 3EI

A B C D

M0

a a a

Fig. P9.106

9.106 For the cantilever beam and loading shown, determine the 
deflection and slope at end A caused by the moment M0 .

 9.107 Two cover plates are welded to the rolled-steel beam as shown. 
Using E 5 200 GPa, determine (a) the slope at end A, (b) the 
deflection at end A.
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 9.109 through 9.114 For the prismatic beam and loading shown, 
determine (a) the slope at end A , (b) the deflection at the center 
C of the beam.

A

L/2L/2

C
B

P

Fig. P9.109

P P

B
A E

C D

a a

L/2 L/2

Fig. P9.110

A
B

E
C D

L
4

L
4

L
4

L
4

P

P

P

Fig. P9.111

A

aa

E
C DB

L/2L/2

w w

Fig. P9.112

A

aa

E
C DB

M0 M0

L/2L/2

Fig. P9.113

A B
C

w0

L/2L/2

Fig. P9.114

 9.115 and 9.116 For the beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at the center C of the beam.

A
DCB

E

2EI

a

EIEI

P

a a a

Fig. P9.115

A
DCB

E

3EI

a

EIEI

a a a

P P2P

Fig. P9.116

S6 3 12.5

1.5 kips 1.5 kipsP

A E
B C D

2 ft 2 ft
4.5 ft 4.5 ft

Fig. P9.117

9.117 Knowing that the magnitude of the load P is 7 kips, determine 
(a) the slope at end A, (b) the deflection at end A, (c) the deflec-
tion at midpoint C of the beam. Use E 5 29 3 106 psi.
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 9.118 and 9.119 For the beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at the midpoint of the beam. 
Use E 5 200 GPa.

 9.120 For the beam and loading shown and knowing that w 5 8 kN/m, 
determine (a) the slope at end A, (b) the deflection at midpoint 
C. Use E 5 200 GPa.

0.6 m

A E
B D

10 kN · m 10 kN · m
40 kN/m

0.6 m

3.6 m

S250 � 37.8

Fig. P9.118

60 kN · m
150 kN

60 kN · m
150 kN

2 m 2 m

5 m

W460 � 74

A E
B D

Fig. P9.119

9.121 For the beam and loading of Prob. 9.117, determine (a) the load 
P for which the deflection is zero at the midpoint C of the beam, 
(b) the corresponding deflection at end A. Use E 5 29 3 106 psi.

 9.122 For the beam and loading of Prob. 9.120, determine the value of 
w for which the deflection is zero at the midpoint C of the beam. 
Use E 5 200 GPa.

 *9.123 A uniform rod AE is to be supported at two points B and D. Deter-
mine the distance a for which the slope at ends A and E is zero.

A

5 m 5 m

B
C

40 kN · m 40 kN · m

W310 � 60

w

Fig. P9.120

A

a a

L

E

L/2

CB D

Fig. P9.123 and P9.124

 *9.124 A uniform rod AE is to be supported at two points B and D. Deter-
mine the distance a from the ends of the rod to the points of 
support, if the downward deflections of points A, C, and E are to 
be equal.
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664 Defl ection of Beams

*9.6  MOMENT-AREA THEOREMS 
APPLIED TO BEAMS WITH 
UNSYMMETRIC LOADINGS

*9.6A General Principles 
When a simply supported or overhanging beam carries a symmetric load, 
the tangent at the center C of the beam is horizontal and can be used as 
the reference tangent (Sec. 9.6). When a simply supported or overhanging 
beam carries an unsymmetric load, it is not always possible to determine 
by inspection the point of the beam where the tangent is horizontal. Other 
means must be used to locate a reference tangent (i.e., a tangent of known 
slope for applying either of the two moment-area theorems).
 It is usually convenient to select the reference tangent at one of the 
beam supports. For example, considering the tangent at the support A of 
the simply supported beam AB (Fig. 9.34), its slope can be determined by 
computing the tangential deviation tByA of the support B with respect to A
and dividing tByA by the distance L between the supports. Recalling that 
the tangential deviation of a point located above the tangent is positive,

 uA 5 2 
tByA

L
 (9.22)

 Once the slope of the reference tangent has been found, the slope uD

of the beam at any point D (Fig. 9.35) can be determined by using the first 
moment-area theorem to obtain uDyA , and then writing:

 uD 5 uA 1 uDyA (9.23)

P

Reference
tangent

A

w

B

A B

L

(a)

(b)

A�

tB/A

Fig. 9.34 (a) Unsymmetric loading. (b) Application 
of moment-area method to find slope at point A.

DA�

D/A�

D �

Reference
tangent

BA

Fig. 9.35 Finding the tangential deviation between 
supports provides a convenient reference tangent for 
evaluating slopes.

tD/A

D

E

BA

Reference
tangent

(a)

D

F

yD

BA

(b)

tB/A

D

E

H

x

L

F
BA

(c)

Fig. 9.36 (a) Tangential deviation of point D with 
respect to point A. (b) Deflection of point D. 
(c) Knowing HB through tByA, EF can be found by 
similar triangles.

 The tangential deviation tDyA of D with respect to the support A can 
be obtained from the second moment-area theorem. Note that tDyA is 
equal to segment ED (Fig. 9.36a) and represents the vertical distance D 
from the reference tangent. On the other hand, the deflection yD of point 
D represents the vertical distance of D from the horizontal line AB
(Fig. 9.36b). Since yD is equal in magnitude to the segment FD, it can be 
expressed as the difference between EF and ED (Fig. 9.36c). Observing 
from the similar triangles AFE and ABH that

EF
x

5
HB

L
  or  EF 5

x
L

 tByA

and recalling the sign conventions used for deflections and tangential 
deviations,

 yD 5 ED 2 EF 5 tDyA 2
x
L

 tByA (9.24)
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*9.6 Moment-Area Theorems Applied to Beams with Unsymmetric Loadings 665

Concept Application 9.12
For the prismatic beam and loading shown (Fig. 9.37a), determine the 
slope and deflection at point D.

 Reference Tangent at Support A.  Compute the reactions at 
the supports and draw the MyEI diagram (Fig. 9.37b). The tangential 
deviation tByA of support B with respect to support A is found by apply-
ing the second moment-area theorem and computing the moments 
about a vertical axis through B of the areas A1 and A2.

A1 5
1

2
 
L

4
  

3PL

16EI
5

3PL2

128EI
  A2 5

1

2
 
3L

4
  

3PL

16EI
5

9PL2

128EI

 tByA 5 A1 a L
12

1
3L

4
b 1 A2 aL

2
b

 5
3PL2

128EI
 
10L
12

1
9PL2

128EI
 
L
2

5
7PL3

128EI

The slope of the reference tangent at A (Fig. 9.37c) is

uA 5 2 
tByA

L
5 2 

7PL2

128EI

 Slope at D. Applying the first moment-area theorem from A to D,

uDyA 5 A1 5
3PL2

128EI

Thus, the slope at D is

uD 5 uA 1 uDyA 5 2 
7PL2

128EI
1

3PL2

128EI
5 2 

PL2

32EI

 Deflection at D. The tangential deviation DE 5 tDyA is found by 
computing the moment of the area A1 about a vertical axis through D :

DE 5 tDyA 5 A1 a L
12
b 5

3PL2

128EI
 

L
12

5
PL3

512EI

The deflection at D is equal to the difference between the segments 
DE and EF (Fig. 9.37c). Thus,

 yD 5 DE 2 EF 5 tDyA 2
1
4 tByA

 5
PL3

512EI
2

1

4
 

7PL3

128EI

 yD 5 2 
3PL3

256EI
5 20.01172PL3/EI

B
D

L

L P

A

1
4

(a)

12

B
D

L

A1 A2

A D B
x

L

2
L

4
L

4
3L

EI
M

16EI
3PL

L P

A

1
4

RB 5 P
4RA 5 P3

4

(b)

L

Reference
tangent

F

E

tB/A

D
Au

A B

L1
4

(c)

Fig. 9.37 (a) Simply supported beam 
with unsymmetric load. (b) Free-body 
diagram and M/EI diagram. (c) Reference 
tangent and geometry to determine 
slope and deflection at point D.
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666 Defl ection of Beams

*9.6B Maximum Deflection
When a simply supported or overhanging beam carries an unsymmetric 
load, the maximum deflection generally does not occur at the center of 
the beam. As shown in Photo 9.5, the bridge is loaded by the truck at 
each axle location. To determine the maximum deflection of such a beam, 
it is first necessary to locate point K of the beam where the tangent is 
horizontal. The deflection at that point is the maximum deflection.

Photo 9.5 The deflections of the beams used for the bridge must be reviewed for different possible positions of the truck.

 This analysis must begin by determining a reference tangent at one 
of the supports. If support A is selected, the slope uA of the tangent at A is 
obtained by computing the tangential deviation tByA of support B with 
respect to A and dividing that quantity by the distance L between the two 
supports.
 Since the slope uK at point K is zero (Fig. 9.38a),

uKyA 5 uK 2 uA 5 0 2 uA 5 2uA

Recalling the first moment-area theorem, point K can be found from the 
MyEI diagram knowing that uKyA 5 2uA (Fig. 9.38b).
 Observing that the maximum deflection | y |max is equal to the tangen-
tial deviation tAyK of support A with respect to K (Fig. 9.38a), | y |max is found 
by computing the first moment with respect to the vertical axis through A 
of the area between A and K (Fig. 9.38b).

(b)

A K B
x

55 2 K/Au AuAreaM
EI

(a)

P

A

A

w

B

B

K

L

, 0

5 0

Au

Ku
K/A tB/A

u

Reference 
target

y  max 5 t A/K

Fig. 9.38 Determination of maximum deflection using moment-area method. (a) The maximum deflection occurs at a 
point K where uK 5 0, which is where uK y A 5 2uA. (b) With point K so located, the maximum deflection is equal to the first 
moment of the shaded area with respect to A.
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*9.6 Moment-Area Theorems Applied to Beams with Unsymmetric Loadings 667

Concept Application 9.13
Determine the maximum deflection of the beam of Concept Applica-
tion 9.12. The free-body diagram is shown in Fig. 9.39a.

 Determination of Point K Where Slope Is Zero.  Recall that 
the slope at point D, where the load is applied, is  negative. It follows 
that point K, where the slope is zero, is located between D and the 
support B (Fig. 9.39b). Our computations are simplified if the slope at 
K is related to the slope at B, rather than to the slope at A.
 Since the slope at A has already been determined in Concept 
Application 9.12, the slope at B is obtained by

 uB 5 uA 1 uByA 5 uA 1 A1 1 A2

 uB 5 2 
7PL2

128EI
1

3PL2

128EI
1

9PL2

128EI
5

5PL2

128EI

Observing that the bending moment at a distance u from end B is 
M 5

1
4 
Pu (Fig. 9.39c), the area A9 located between K and B under the 

MyEI diagram (Fig. 9.39d) is expressed as

A¿ 5
1

2
 
Pu
4EI

 u 5
Pu2

8EI

Use the first moment-area theorem to obtain

uByK 5 uB 2 uK 5 A¿

and since uK 5 0, uB 5 A9

Substituting the values obtained for uB and A9,

5PL2

128EI
5

Pu2

8EI

and solving for u,

u 5
15

4
 L 5 0.559L

Thus, the distance from the support A to point K is

AK 5 L 2 0.559L 5 0.441L

 Maximum Deflection. The maximum deflection | y |max is equal 
to the tangential deviation tByK and thus to the first moment of area 
A9 about a vertical axis through B (Fig. 9.39d).

0  y 0max 5 tByK 5 A¿ a2u

3
b 5

Pu2

8EI
 a2u

3
b 5

Pu3

12EI

Substituting the value obtained for u,

0  y 0max 5
P

12EI
 a15

4
 Lb3

5 0.01456PL3/EI

B
D

L

A1 A2
A D B

x

EI
M

P

A

RA 5 3P
4

1
4

3L
4

RB 5 P
4

E

D K
Au

K 5 0u Bu

A
B

y  max 5 t B/K

(a)

(b)

RB �

M

V P
4

A�

A D K B
x

EI
M

4EI
Pu

K
B

u

u

(c)

(d)

Fig. 9.39 (a) Free-body diagram. (b) MyEI 
diagram and geometry to determine the 
maximum deflection. (c) Free-body diagram 
of portion KB. (d) Maximum deflection is the 
first moment of the shaded area with 
respect to B.
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668 Defl ection of Beams

*9.6C Statically Indeterminate Beams
Reactions at the supports of a statically indeterminate beam can be deter-
mined using the moment-area method in much the same way that was 
described in Sec. 9.4. For a beam indeterminate to the first degree, one of 
the reactions is designated as redundant, and the corresponding support 
is eliminated or modified accordingly. The redundant reaction is then 
treated as an unknown load, which, together with the other loads, must 
produce deformations that are compatible with the original supports. This 
compatibility condition is usually expressed by writing that the tangential 
deviation of one support with respect to another either is zero or has a 
predetermined value.
 Two separate free-body diagrams of the beam are drawn. One shows 
the given loads and the corresponding reactions at the supports that have 
not been eliminated; the other shows the redundant reaction and the cor-
responding reactions at the same supports (see Concept Application 9.14). 
An MyEI diagram is drawn for each of the two loadings, and the desired 
tangential deviations are obtained using the second moment-area theo-
rem. Superposing the results, we obtain the required compatibility condi-
tion needed to determine the redundant reaction. The other reactions are 
obtained from the free-body diagram of beam.
 Once the reactions at the supports are found, the slope and deflection 
are obtained using the moment-area method at any other point of the beam.

Concept Application 9.14
Determine the reaction at the supports for the prismatic beam and 
loading shown (Fig. 9.40a).
 Consider the couple exerted at the fixed end A as redundant and 
replace the fixed end by a pin-and-bracket support. Couple MA is now 
considered to be an unknown load (Fig. 9.40b) and will be determined 
from the condition that the tangent to the beam at A must be horizontal. 
Thus, this tangent must pass through the support B, and the tangential 
deviation tByA of B with respect to A must be zero. The solution is 

B

w

A

L
(a)

Fig. 9.40 (a) Statically 
indeterminate beam with a 
uniformly distributed load.

(continued)

tB/A 5 0

(c) (d)(b)

A B

MA

B''

(tB/A)Mw

A B

B'

(tB/A)w

A

w

B

MA

Fig. 9.40 (b) Analyze the indeterminate beam by superposing two determinate simply 
supported beams, subjected to (c) a uniformly distributed load, (d) the redundant reaction.
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*9.6 Moment-Area Theorems Applied to Beams with Unsymmetric Loadings 669

 In Concept Application 9.14, there was a single redundant reaction 
(i.e., the beam was statically indeterminate to the first degree). The moment-
area theorems also can be used when there are additional redundant reac-
tions, but it is necessary to write additional equations. Thus, for a beam 
that is statically indeterminate to the second degree, it would be necessary 
to select two redundant reactions and write two equations considering the 
deformations of the structure involved.

carried out by computing separately the tangential deviation (tByA)w 
caused by the uniformly distributed load w (Fig. 9.40c) and the tan-
gential deviation (tByA)M produced by the unknown couple MA 
(Fig. 9.40d).
 Using the free-body diagram of the beam under the known dis-
tributed load w (Fig. 9.40e) , determine the corresponding reactions at 
the supports A and B.

 1RA21 5 1RB21 5
1
2  wLx (1)

Now draw the corresponding shear and MyEI diagrams (Fig. 9.40e). 
Observing that MyEI is represented by an arc of parabola and recalling 
the formula A 5

2
3 bh for the area under a parabola, the first moment 

of this area about a vertical axis through B is

 1tByA2w 5 A1 aL

2
b 5 a2

3
 L

wL2

8EI
b aL

2
b 5

wL4

24EI
 (2)

 Using the free-body diagram of the beam when it is subjected to 
the unknown couple MA (Fig. 9.40f ), the corresponding reactions at A 
and B are

 1RA22 5
MA

L
 x  1RB22 5

MA

L
 w (3)

Drawing the corresponding MyEI diagram (Fig. 9.40f ), the second 
moment-area theorem is applied to obtain

 1tByA2M 5 A2 a2L
3
b 5 a2 

1

2
 L

MA

EI
b a2L

3
b 5 2 

MAL2

3EI
 (4)

 Combining the results obtained in Eqs. (2) and (4) and expressing 
that the resulting tangential deviation tByA must be zero (Fig. 9.40b, c, d ), 

tByA 5 1tByA2w 1 1tByA2M 5 0

wL4

24EI
2

MAL2

3EI
5 0

and solving for MA,

MA 5 1
1
8 wL2  MA 5

1
8 wL2 l

Substituting for MA into Eq. (3), and recalling Eq. (1), the values of RA 
and RB are

 RA 5 1RA21 1 1RA22 5
1
2 wL 1

1
8 wL 5

5
8 wL

 RB 5 1RB21 1 1RB22 5
1
2 wL 2

1
8 wL 5

3
8 wL

(e)

B

B
x

x

w

A

A

B

L

A
A1

L

V

(RB)1(RA)1

wL1
2

wL1
2

L
2

L
2

wL2

M
EI

8EI

wL1
8

2

(         2)

Fig. 9.40 (e) Free-body diagram of 
beam with distributed load, shear 
diagram, and MyEI diagram.

(f )

MA

BA

L

x

(RB)2(RA)2

A2

MA
EI2

2L
3

BA

M
EI

Fig. 9.40 (f ) Free-body diagram of 
beam with redundant couple and MyEI 
diagram.
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670 Defl ection of Beams

Sample Problem 9.12
For the beam and loading shown, (a) determine the deflection at end 
A, (b) evaluate yA for the following data:

 W 10 3 33: I 5 171 in4 E 5 29 3 106 psi

 a 5 3 ft 5 36 in. L 5 5.5 ft 5 66 in.

 w 5 13.5 kips/ft 5 1125 lb/in.

STRATEGY: To apply the moment-area theorems, you should first 
obtain the M/EI diagram for the beam. Then, by placing the reference 
tangent at a support, you can evaluate the tangential deviations at 
other strategic points that, through simple geometry, will enable the 
determination of the desired deflection.

MODELING and ANALYSIS: 

 MyEI Diagram.  Referring to Fig. 1, draw the bending-moment 
diagram. Since the flexural rigidity EI is constant, the MyEI diagram is 
as shown, which consists of a parabolic spandrel of area A1 and a 
triangle of area A2.

 A1 5
1

3
 a2 

wa2

2EI
b a 5 2 

wa3

6EI

 A2 5
1

2
 a2 

wa2

2EI
b L 5 2 

wa2L
4EI

 Reference Tangent at B.  The reference tangent is drawn at 
point B in Fig. 2. Using the second moment-area theorem, the tangen-
tial deviation of C with respect to B is

tCyB 5 A2 
2L
3

5 a2 
wa2L
4EI
b 2L

3
5 2 

wa2L2

6EI

From the similar triangles A0A9B and CC9B, 

A–A¿ 5 tCyB aa
L
b 5 2 

wa2L2

6EI
 aa

L
b 5 2 

wa3L
6EI

Again using the second moment-area theorem,

tAyB 5 A1 
3a
4

5 a2 
wa3

6EI
b 3a

4
5 2 

wa4

8EI

B

w

A

L

C

a

B
C

2
 wa2

2EI

2
 wa2

2

 wa2

2L

 a3
4

A x

M
EI

B

w

C

A1

A2

x

M

 L2
3

RB RC 5

A

Fig. 1 Free-body, moment, and M/EI 
diagrams.

A��

A�

A

yA

C�

CB

La

Reference tangent
tC/B

tA/B

Fig. 2 Reference tangent and geometry to 
determine deflection at A.

(continued)
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*9.6 Moment-Area Theorems Applied to Beams with Unsymmetric Loadings 671

a. Deflection at End A

yA 5 A–A¿ 1 tA/B 5 2 
wa3L

6EI
2

wa4

8EI
5 2 

wa4

8EI
 a4

3
 
L
a

1 1b

yA 5
wa4

8EI
 a1 1

4

3
 
L
a
bw b

b. Evaluation of yA. Substituting the data,

yA 5
11125 lb/in.2 136 in.24

8129 3 106 lb/in22 1171 in42   a1 1
4

3
 
66 in.

36 in.
b

yA 5 0.1641 in.w b

REFLECT and THINK: Note that an equally effective alternate strat-
egy would be to draw a reference tangent at point C.

Sample Problem 9.13
For the beam and loading shown, determine the magnitude and loca-
tion of the largest deflection. Use E 5 200 GPa.

(continued)

BA

L � 3.6 m

b � 2.2 ma � 1.4 m
W250 � 22.3

w � 25 kN/m

STRATEGY: To apply the moment-area theorems, you should first 
obtain the M/EI diagram for the beam. Then, by placing the reference 
tangent at a support, you can evaluate the tangential deviation at the 
other support that, through simple geometry and the further applica-
tion of the moment-area theorems, will enable the determination of 
the maximum deflection.

MODELING: Use the free-body diagram of the entire beam in Fig. 1 
to obtain

RA 5 16.81 kNx  RB 5 38.2 kNx

w

b

L

a

RA 5 RB
 wb2

2L

BA

Fig. 1 Free-body diagram. 
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672 Defl ection of Beams

ANALYSIS: 

MyEI Diagram.  Draw the MyEI diagram by parts (Fig. 2), con-
sidering the effects of the reaction RA and of the distributed load sepa-
rately. The areas of the triangle and of the spandrel are

A1 5
1

2
 
RAL

EI
 L 5

RAL2

2EI
  A2 5

1

3
 a2 

wb2

2EI
b b 5 2 

wb3

6EI

 Reference Tangent.  As seen in Fig. 3, the tangent to the beam 
at support A is chosen as the reference tangent. Using the second 
moment-area theorem, the tangential deviation tByA of support B with 
respect to support A is

tByA 5 A1 
L
3

1 A2 
b
4

5 aRAL2

2EI
b L

3
1 a2 

wb3

6EI
b b

4
5

RAL3

6EI
2

wb4

24EI

 Slope at A

 uA 5 2 
tByA

L
5 2 aRAL2

6EI
2

wb4

24EIL
b (1)

 Largest Deflection.  As seen in Fig. 4, the largest deflection 
occurs at point K, where the slope of the beam is zero. Using Fig. 5, 
write

 uK 5 uA 1 uKyA 5 0 (2)

But uKyA 5 A3 1 A4 5
RAx 

2
m

2EI
2

w
6EI

 1xm 2 a23 (3)

Substitute for uA and uKyA from Eqs. (1) and (3) into Eq. (2):

2 aRAL2

6EI
2

wb4

24EIL
b 1 c RAx 

2
m

2EI
2

w
6EI

 1xm 2 a23 d 5 0

(continued)

L
3

2
 wb2

2EI

 RAL

EI

b
4

A x

M
EI

B
A1

A2

Fig. 2 Parts of M/EI diagram with centroid 
locations.

A
B

L

Reference tangent

tB/A

uA

Fig. 3 Determination of uA through 
tangential deviation tByA.

tA/K

A ym

K

B

Reference tangent

uA

uK/A
u[   K 5 0]

Fig. 4 Geometry to determine maximum 
deflection.

22

A3

RAxm
EI

K

A4

a

A x

xm

(xm 2 a)

M
EI

w
2EI (xm     a)2

2(xm     a)1
4

Fig. 5 MyEI diagram between Point A and the 
location of maximum deflection, point K.
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*9.6 Moment-Area Theorems Applied to Beams with Unsymmetric Loadings 673

Sample Problem 9.14
For the uniform beam and loading shown, determine the reaction at B.

STRATEGY: Applying the superposition concept, you can model this 
statically indeterminate problem as a summation of the displacements 
for the given load and the redundant load cases. The redundant reaction 
can then be found by noting that a displacement associated with the 
two cases must be consistent with the geometry of the original beam.

MODELING: The beam is indeterminate to the first degree. Refer-
ring to Fig. 1, the reaction RB is chosen as redundant, and the distrib-
uted load and redundant reaction load are considered separately. 

Substituting the numerical data gives

229.53 
103

EI
1 8.405x 

2
m 

103

EI
2 4.1671xm 2 1.423 

103

EI
5 0

Solving by trial and error for xm ,  xm 5 1.890 m b

Computing the moments of A3 and A4 about a vertical axis through A
gives

 0y 0m 5 tAyK 5 A3 
2xm

3
1 A4 ca 1

3

4
 1xm 2 a2 d

 5
RAx m

3

3EI
2

wa

6EI
 1xm 2 a23 2

w

8EI
 1xm 2 a24

Using the given data, RA 5 16.81 kN, and I 5 28.7 3 1026 m4,

ym 5 6.44 mmw b

(continued)

B

w

A C

L/32L/3

B
C

w

A
B

B

C

C

w

A

A

B

B
B CA

C

C

A

A

2L
3

L
3

RB RB

B'
C'

Reference tangent

tC/A

tB/A (tB/A)w

�A

(tC/A)w

(tC/A)R

(tB/A)R

Fig. 1 Indeterminate beam modeled as superposition of two determinate beams with reaction at B chosen as redundant.
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674 Defl ection of Beams

Next the tangent at A is selected as the reference tangent. From the 
similar triangles ABB9 and ACC9,

tC yA

L
5

tByA

2
3 L

  tC yA 5
3

2
 tByA (1)

For each loading, we draw the MyEI diagram and then determine the 
tangential deviations of B and C with respect to A.

ANALYSIS: 
 Distributed Loading (Fig. 2).  Considering the MyEI diagram 
from end A to an arbitrary point X,

1tXyA2w 5 A1 
x

3
1 A2 

x

4
5 a1

2
 
wLx

2EI
 xb x

3
1 a2 

1

3
 
wx2

2EI
 xb x

4
5

wx3

24EI
 12L 2 x2

Letting x 5 L and x 5
2
3 L,

1tCyA2w 5
wL4

24EI
  1tByA2w 5

4

243
 
wL4

EI

 Redundant Reaction Loading (Fig. 3).

 1tCyA2R 5 A3 
L
9

1 A4 
L
3

5 a1

2
  
RBL

3EI
  

L

3
b L

9
1 a2 

1

2
 
RBL

3EI
 Lb L

3
5 2 

4

81
 
RBL3

EI

 1tByA2R 5 A5 
2L
9

5 c2 
1

2
  

2RBL

9EI
  a2L

3
b d  2L

9
5 2 

4

243
 
RBL3

EI

 Combined Loading.  Adding the results gives

tCyA 5
wL4

24EI
2

4

81
 
RBL3

EI
  tByA 5

4

243
 
1wL4 2 RBL32

EI

 Reaction at B.  Substituting for tCyA and tByA into Eq. (1),

a wL4

24EI
2

4

81
  
RBL3

EI
b 5

3

2
c 4

243
  
1wL4 2 RBL32

EI
d

 RB 5 0.6875wL RB 5 0.688wLx b

REFLECT and THINK: Note that an alternate strategy would be to 
determine the deflections at B for the given load and the redundant 
reaction and to set the sum equal to zero.

(RA)1 (RC)1

C
X

X
x

x

x

L

w

A

A

5
 wL

2

 wLx
2EI

3

x
4

M
EI

A1

A2
2

 wx2

2EI

Fig. 2 Free-body and M/EI diagrams for 
beam with distributed load.

(RC)2(RA)2 RB RB

B C

x

x

A

A

A
A5

A4

A3

C

C

B

B

5
 1
3 

M
EI

M
EI

2L
3

L
3

L
3

RBL
EI2 2

9

RBL
EI2 1

3

RBL
EI

1
3

L
3

1
3

2L
3

1
3 (    )

( )

Fig. 3 Free-body and M/EI diagrams for 
beam with redundant reaction.
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675

Problems
Use the moment-area method to solve the following problems.

 9.125 through 9.128 For the prismatic beam and loading shown, deter-
mine (a) the deflection at point D, (b) the slope at end A.

P

B
DA

2L
3

2PL
3

L
3

M0 5

Fig. P9.125

D E
BA

P P

L/2 L/4 L/4

Fig. P9.126

B
D

A

M0

L
3

2L
3

Fig. P9.127

A B
D

w0

L/2

L

Fig. P9.128

 9.129 and 9.130 For the beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at point D. Use E 5 200 GPa.

A BDC

1.5 m 1.5 m
3.0 m

W250 � 44.8

40 kN 20 kN

Fig. P9.129

A
D

1.6 m
0.8 m

B

30 kN

20 kN/m

W150 � 24

Fig. P9.1309.131 For the timber beam and loading shown, determine (a) the slope 
at point A, (b) the deflection at point C. Use E 5 1.7 3 106 psi. 

2 ft 2 ft

800 lb 200 lb/ft

4 ft

6 in.

2 in.

DA
B C

Fig. P9.131
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 9.132 For the beam and loading shown, determine (a) the slope at 
point A, (b) the deflection at point E. Use E 5 29 3 106 psi.

A B
D

E
W12 � 26

2 ft 4 ft 4 ft

5 kips/ft
8 kips/ft

Fig. P9.132

 9.133 For the beam and loading shown, determine (a) the slope at 
point A, (b) the deflection at point A.

 9.134 For the beam and loading shown, determine (a) the slope at 
point A, (b) the deflection at point D.

M0

A C
B

a L

Fig. P9.133
w

B
DA

L L/2

Fig. P9.134

 9.135 Knowing that the beam AB is made of a solid steel rod of diam-
eter d 5 0.75 in., determine for the loading shown (a) the slope 
at point D, (b) the deflection at point A. Use E 5 29 3 106 psi.

 9.136 Knowing that the beam AD is made of a solid steel bar, determine 
(a) the slope at point B, (b) the deflection at point A. Use 
E 5 200 GPa.

150 lb 300 lb

D E
BA

d

24 in.
4 in. 6 in.

Fig. P9.135

D
B C

1.2 kN 3 kN/m

0.25 m
0.20 m

0.25 m

A

30 mm

30 mm

Fig. P9.136

 9.137 For the beam and loading shown, determine (a) the slope at 
point C, (b) the deflection at point D. Use E 5 29 3 106 psi.

 9.138 For the beam and loading shown, determine (a) the slope at 
point B, (b) the deflection at point D. Use E 5 200 GPa.

8 kips/ft

B
D

C
A

4 ft
6 ft6 ft

W12 � 30

16 kips

Fig. P9.137

W410 � 114

4.8 m

A D
B

40 kN/m 160 kN

1.8 m

Fig. P9.138
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 9.139 For the beam and loading shown, determine (a) the slope at end A, 
(b) the slope at end B, (c) the deflection at the midpoint C.

L/2 L/2

A
C

w

B
EI 2EI

Fig. P9.139

 9.140 For the beam and loading shown, determine the deflection (a) at 
point D, (b) at point E.

B
D E

A

L/3 L/3

2EI2EI EI

L/3

P P

Fig. P9.140

A
C

L

B

P

L/2

Fig. P9.147

L/2

A

M0

C

L

B

Fig. P9.148

B
A

w0

L

Fig. P9.149

L/2 L/2

C
A

B

w

Fig. P9.150

9.141 through 9.144 For the beam and loading shown, determine the 
magnitude and location of the largest downward deflection.
9.141 Beam and loading of Prob. 9.126

  9.142 Beam and loading of Prob. 9.128
9.143 Beam and loading of Prob. 9.129

  9.144 Beam and loading of Prob. 9.132

 9.145 For the beam and loading of Prob. 9.135, determine the largest 
upward deflection in span DE.

 9.146 For the beam and loading of Prob. 9.138, determine the largest 
upward deflection in span AB.

 9.147 through 9.150 For the beam and loading shown, determine the 
reaction at the roller support.
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9.151 and 9.152 For the beam and loading shown, determine the reac-
tion at each support.

M0

A C
B

L L/2

Fig. P9.151

A

P

C
B

L L/2 L/2

Fig. P9.152

 9.153 A hydraulic jack can be used to raise point B of the cantilever 
beam ABC. The beam was originally straight, horizontal, and 
unloaded. A 20-kN load was then applied at point C, causing this 
point to move down. Determine (a) how much point B should be 
raised to return point C to its original position, (b) the final value 
of the reaction at B. Use E 5 200 GPa.

B
C

A

W130 � 23.8

20 kN

1.8 m 1.2 m

Fig. P9.153

 9.154 Determine the reaction at the roller support and draw the 
bending-moment diagram for the beam and loading shown.

4.5 ft 4.5 ft
3 ft

12 ft

W14 � 38

A D E
B

30 kips 10 kips

Fig. P9.154

 9.155 For the beam and loading shown, determine the spring constant 
k for which the force in the spring is equal to one-third of the 
total load on the beam.

k
C

w

A
B

L L

Fig. P9.155 and P9.156

 9.156 For the beam and loading shown, determine the spring constant 
k for which the bending moment at B is MB 5 –wL2/10.
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Review and Summary
Two approaches were used in this chapter to determine the slopes and 
deflections of beams under transverse loadings. A mathematical 
method based on the method of integration of a differential equation 
was used to get the slopes and deflections at any point along the beam. 
Then the moment-area method was used to find the slopes and deflec-
tions at a given point along the beam. Particular emphasis was placed 
on the computation of the maximum deflection of a beam under a 
given loading. These methods also were used to determine support 
reactions and deflections of indeterminate beams, where the number 
of reactions at the supports exceeds the number of equilibrium equa-
tions available to determine these unknowns.

Deformation Under Transverse Loading
The relationship of the curvature 1yr of the neutral surface and the 
bending moment M in a prismatic beam in pure bending can be applied 
to a beam under a transverse loading, but in this case both M and 1yr
vary from section to section. Using the distance x from the left end of 
the beam,

 
1
r

5
M1x2

EI
 (9.1)

This equation enables us to determine the radius of curvature of the neu-
tral surface for any value of x and to draw some general conclusions 
regarding the shape of the deformed beam.
 A relationship was found between the deflection y of a beam, mea-
sured at a given point Q, and the distance x of that point from some fixed 
origin (Fig. 9.41). The resulting equation defines the elastic curve of a 
beam. Expressing the curvature 1yr in terms of the derivatives of the func-
tion y(x) and substituting into Eq. (9.1), we obtained the second-order 
linear differential equation

 
dÊ

2y

dx2 5
M1x2

EI
 (9.4)

Integrating this equation twice, the expressions defining the slope u(x) 5
dyydx and the deflection y(x) were obtained:

 EI 

dy

dx
5 #

x

0

M1x2 dx 1 C1  (9.5)

  EI y 5 #
x

0

dx#
x

0

M1x2 dx 1 C1x 1 C2 (9.6)

The product EI is known as the flexural rigidity of the beam. Two con-
stants of integration C1 and C2 can be determined from the boundary 

C
y

x

y

A
D

Q

x

Elastic 
curve

P2P1

Fig. 9.41 Elastic curve for beam with 
transverse loads.
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conditions imposed on the beam by its supports (Fig. 9.42). The maximum 
deflection can be obtained by first determining the value of x for which 
the slope is zero and then computing the corresponding value of y.

BA

y

(a)

yA� 0 yB� 0

x

P
y

yA� 0

B
A x

(b)

yB� 0

P

y

B

xA

(c)

yA� 0

A� 0�

Fig. 9.42 Known boundary conditions for statically determinate beams. (a) Simply supported beam. (b) 
Overhanging beam. (c) Cantilever beam.

Elastic Curve Defined by Different Functions
When the load requires different analytical functions to represent the 
bending moment in various portions of the beam, multiple differential 
equations are required to represent the slope u(x) and the deflection 
y(x). For the beam and load considered in Fig. 9.43, two differential 
equations are required: one for the portion of beam AD and the other 
for the portion DB. The first equation yields the functions u1 and y1, and 
the second the functions u2 and y2. Altogether, four constants of integra-
tion must be determined: two by writing that the deflections at A and B
are zero and two by expressing that the portions of beam AD and DB
have the same slope and the same deflection at D.
 For a beam supporting a distributed load w(x), the elastic curve can 
be determined directly from w(x) through four integrations yielding V, M,
u, and y (in that order). For the cantilever beam of Fig. 9.44a and the 
simply supported beam of Fig. 9.44b, four constants of integration can be 
determined from the four boundary conditions.

D

BA

y

x x �0, y1 � 0 

x �  L, y2�  0[
[

[
[

� �x �     L,  1 �1
4[ [  

x �     L, y1 � y2

2
1
4[ [

P

Fig. 9.43 Simply supported beam and 
boundary conditions, where two sets of 
functions are required due to the discontinuity 
in load at point D.

Statically Indeterminate Beams
Statically indeterminate beams are supported such that the reactions at 
the supports involve four or more unknowns. Since only three equilibrium 
equations are available to determine these unknowns, they are supple-
mented with equations obtained from the boundary conditions imposed 

BA

y

[ yA� 0]

x

[ yB� 0]

[MB� 0][MA� 0]

B

xA

y

[ yA� 0]
[  A�  0]�

[VB � 0]
[MB � 0]�

Fig. 9.44 Boundary conditions for beams carrying a distributed load. 
(a) Cantilever beam. (b) Simply supported beam.
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by the supports. For the beam of Fig 9.45, the reactions at the supports 
involve four unknowns: MA  , Ax  , A y  , and B. This beam is indeterminate to 
the first degree. (If five unknowns are involved, the beam is indeterminate 
to the second degree.) Expressing the bending moment M(x) in terms of 
the four unknowns and integrating twice, the slope u(x) and the deflection 
y(x) are determined in terms of the same unknowns and the constants of 
integration C1 and C2. The six unknowns are obtained by solving the three 
equilibrium equations for the free body of Fig. 9.45b and the three equa-
tions expressing that u 5 0, y 5 0 for x 5 0, and that y 5 0 for x 5 L
(Fig. 9.46) simultaneously.

Use of Singularity Functions
The integration method provides an effective way to determine the slope 
and deflection at any point of a prismatic beam, as long as the bending 
moment M can be represented by a single analytical function. However, 
when several functions are required to represent M over the entire length 
of the beam, the use of singularity functions considerably simplifies the 
determination of u and y at any point of the beam. Considering the beam 
of Fig. 9.47 and drawing its free-body diagram (Fig. 9.48), the shear at any 
point of the beam is

V1x2 5
3P

4
2 P Hx 2

1
4 LI0

where the step function Hx 2
1
4 LI0 is equal to zero when the quantity inside 

the brackets H I is negative and otherwise is equal to one. Integrating 
three times,

 M1x2 5
3P

4
 x 2 P Hx 2

1
4 LI (9.11)

BA
A

L

(a)

B

wL

Ax

Ay
L

L/2

(b)

MA

B

w

Fig. 9.45 (a) Statically indeterminate beam with a uniformly distributed load. 
(b) Free-body diagram with four unknown reactions.

w

B
x

x � 0,    � 0[ ]
x � L, y � 0[ ]

x � 0, y � 0[ ]

A

�

y

Fig. 9.46 Boundary conditions for beam of 
Fig. 9.45.

P

B
D

A

3L/4
L/4

Fig. 9.47 Simply supported 
beam with concentrated load.

A
D

B x

y P

L/4
3L/4

3
4 P 1

4 P

Fig. 9.48 Free-body diagram for beam 
of Fig. 9.47.

bee98233_ch09_598-689.indd   681bee98233_ch09_598-689.indd   681 11/9/13   3:42 PM11/9/13   3:42 PM



682

 EI u 5 EI 
dy

dx
5

3
8 Px2 2

1
2 P Hx 2

1
4 LI2 1 C1 (9.13)

 EI y 5
1
8 Px 

3 2
1
6 P Hx 2

1
4 LI3 1 C1x 1 C2 (9.14)

where the brackets H I should be replaced by zero when the quantity 
inside is negative and by parentheses otherwise. Constants C1 and C2 are 
determined from the boundary conditions shown in Fig. 9.49.

B
A

y

x

x � 0, y � 0[ ] x � L, y � 0[ ]

Fig. 9.49 Boundary conditions for 
simply supported beam.

BA

L

w

Fig. 9.50 Indeterminate beam 
with uniformly distributed load.

B

(yB)R

RB

w w

B

A A
B

yB � 0

(yB)wRB

A

(a) (b) (c)

Fig. 9.51 (a) Analyze indeterminate beam by superposing two determinate beams, with (b) a uniformly distributed load, 
(c) the redundant reaction.

Method of Superposition
The method of superposition separately determines and then adds the 
slope and deflection caused by the various loads applied to a beam. This 
procedure is made easier using the table of Appendix D, which gives the 
slopes and deflections of beams for various loadings and types of 
support.

Statically Indeterminate Beams by Superposition
The method of superposition can be effective for analyzing statically inde-
terminate beams. For example, the beam of Fig. 9.50 involves four unknown 
reactions and is indeterminate to the first degree; the reaction at B is chosen 
as redundant, and the beam is released from that support. Treating the 
reaction RB as an unknown load and considering the deflections caused at 
B by the given distributed load and by RB separately, the sum of these 
deflections is zero (Fig. 9.51). For a beam indeterminate to the second 
degree (i.e., with reactions at the supports involving five unknowns), two 
reactions are redundant, and the corresponding supports must be elimi-
nated or modified accordingly.

First Moment-Area Theorem
Deflections and slopes of beams can also be determined using the 
moment-area method. The moment-area theorems were developed by 
drawing a diagram representing the variation along the beam of the 
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quantity MyEI, which is obtained by dividing the bending moment M by 
the flexural rigidity EI (Fig. 9.52). The first moment-area theorem is stated 
as: The area under the (MyEI) diagram between two points is equal to the 
angle between the tangents to the elastic curve drawn at these points. Con-
sidering tangents at C and D,

uDyC 5 area under (MyEI) diagram
 between C and D (9.17)

Second Moment-Area Theorem
Again using the MyEI diagram and a sketch of the deflected beam 
(Fig. 9.53), a tangent at point D is drawn and the vertical distance tCyD, 
which is called the tangential deviation of C with respect to D, is consid-
ered. The second moment-area theorem is stated as: The tangential devi-
ation tCyD of C with respect to D is equal to the first moment with respect 
to a vertical axis through C of the area under the MyEI diagram between 
C and D. It is important to distinguish between the tangential deviation 
of C with respect to D (Fig. 9.53a), which is

tCyD 5 1area between C and D2 x1 (9.20)

and the tangential deviation of D with respect to C (Fig. 9.53b), which is

 tDyC 5 1area between C and D2 x2 (9.21)

B

B

B

C

C

C

D

D

D

A

A

A

M
EI

x

(a)

(b)

(c)

(d)

�D

�C

B

C
D

A
�D/C

Fig. 9.52 First moment-area theorem Illustrated. 
(a) Beam subjected to arbitrary load. (b) M/EI 
diagram. (c) Elastic curve showing slope at C and D. 
(d) Elastic curve showing slope at D with respect to C.

BA

B

C
tC/D

tD/C

D

D

A

C'

D'

C

BC DA

M
EI

x

BC DA

M
EI

x

x2

(a)

(b)

x1

Fig. 9.53 Second moment-area theorem illustrated. 
(a) Evaluating tCyD. (b) Evaluating tDyC.
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Cantilever Beams 
Beams with Symmetric Loadings
To determine the slope and deflection at points of cantilever beams, the 
tangent at the fixed support is horizontal (Fig. 9.54). For symmetrically 
loaded beams, the tangent is horizontal at the midpoint C of the beam 
(Fig. 9.55). Using the horizontal tangent as a reference tangent, slopes and 
deflections are determined by using, respectively, the first and second 
moment-area theorems. To find a deflection that is not a tangential devia-
tion (Fig. 9.55c), it is first necessary to determine which tangential devia-
tions can be combined to obtain the desired deflection.

� �D =   D/A

yD =  tD/A

Reference tangent

Tangent at DD

A

P

Fig. 9.54 Application of moment-area 
method to cantilever beams.

C

BA

P

Horizontal
(a)

P

C

B

y  max � tB/C

A

Reference tangent

(b)

B/CB �� �

C

B
D

tD/C

tB/C

yD

A

Reference tangent

(c)

D/CD �� �

Fig. 9.55 Application of moment-area method to simply supported beams with symmetric loadings. (a) Beam 
and loadings. (b) Maximum deflection and slope at point B. (c) Deflection and slope at arbitrary point D. 

Bending-Moment Diagram by Parts
In many cases, the application of the moment-area theorems is simplified if 
the effect of each load is considered separately. To do this, we draw the MyEI
diagram by parts with a separate MyEI diagram for each load. The areas and 
the moments of areas under the several diagrams are added to determine 
slopes and tangential deviations for the original beam and loading.

Unsymmetric Loadings
The moment-area method is also used to analyze beams with unsymmetric 
loadings. Observing that the location of a horizontal tangent is usually not 
obvious, a reference tangent is selected at one of the beam supports, since 
the slope of that tangent is easily determined. For the beam and loading 
shown in Fig. 9.56, the slope of the tangent at A is obtained by computing 
the  tangential deviation tByA and dividing it by the distance L between sup-
ports A and B. Then, using both moment-area theorems and simple geom-
etry, the slope and deflection are determined at any point of the beam.

P

Reference
tangent

A

w

B

A B

L

(a)

(b)

A�

tB/A

Fig. 9.56 Application of moment-area method to unsymmetrically 
loaded beam establishes a reference tangent at a support.
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Maximum Deflection
The maximum deflection of an unsymmetrically loaded beam generally 
does not occur at midspan. The approach indicated in the preceding para-
graph was used to determine point K where the maximum deflection 
occurs and the magnitude of that deflection. Observing that the slope at 
K is zero (Fig. 9.57), uKyA 5 2uA. Recalling the first moment-area theorem, 
the location of K is found by determining an area under the M/EI diagram 
equal to uKyA. The maximum deflection is then obtained by computing the 
tangential deviation tAyK.

P

A

A

w

B

B

K

L

� 0

� 0

(a)

A K B
x

(b)

A�

K�

�� � K/A� A�

K/A tB/A
�

Reference 
target

AreaM
EI

y  max � t A/K

Fig. 9.57 Determination of maximum 
deflection using moment-area method.

Statically Indeterminate Beams
The moment-area method can be used for the analysis of statically inde-
terminate beams. Since the reactions for the beam and loading shown in 
Fig. 9.58 cannot be determined by statics alone, one of the reactions of the 
beam is designated as redundant (MA in Fig. 9.59a), and the redundant 
reaction is considered to be an unknown load. The tangential deviation of 
B with respect to A is considered separately for the distributed load (Fig. 
9.59b) and for the redundant reaction (Fig. 9.59c). Expressing that under 
the combined action of the distributed load and of the couple MA the tan-
gential deviation of B with respect to A must be zero,

tByA 5 1tByA2w 1 1tByA2M 5 0

From this equation, the magnitude of the redundant reaction MA can be 
found.

A
A

w w

B BA B

MA MA

tB/A � 0 B''

B'

(tB/A)w

(tB/A)M

(a) (b) (c)

Fig. 9.59 Modeling the indeterminate beam as the superposition of two determinate cases.

B

w

A

L

Fig. 9.58 Statically indeterminate beam.
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 9.157 For the loading shown, determine (a) the equation of the elastic 
curve for the cantilever beam AB, (b) the deflection at the free 
end, (c) the slope at the free end.

Review Problems

 9.158 (a) Determine the location and magnitude of the maximum 
deflection of beam AB. (b) Assuming that beam AB is a W360 3
64, L = 3.5 m, and E = 200 GPa, calculate the maximum allowable 
value of the applied moment M0 if the maximum deflection is not 
to exceed 1 mm.

9.159 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the slope at end A, (c) the deflection at the 
midpoint of the span.

w0

xB

A

y

L
Fig. P9.157

x

y

A

L

B

M0

Fig. P9.158

x

y

A

L

B

w � 4w0[ ]�
x
L

x2

L2

Fig. P9.159

 9.160 Determine the reaction at A and draw the bending moment dia-
gram for the beam and loading shown.

 9.161 For the beam and loading shown, determine (a) the slope at end 
A, (b) the deflection at point C. Use E 5 200 GPa.

BA C

P

L/2 L/2

Fig. P9.160

A D

12 kN/m

CB

0.4 m 0.4 m
0.8 m

W150 � 13.5

20 kN

Fig. P9.161
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9.162 For the beam and loading shown, determine (a) the reaction at 
point C, (b) the deflection at point B. Use E = 29 3 106 psi.

W12 � 40

8 ft 4 ft

A
C

B

w0 � 9 kips/ft

Fig. P9.162

 9.163 Beam CE rests on beam AB as shown. Knowing that a W10 × 30 
rolled-steel shape is used for each beam, determine for the load-
ing shown the deflection at point D. Use E = 29 3 106 psi.

 9.164 The cantilever beam BC is attached to the steel cable AB as shown. 
Knowing that the cable is initially taut, determine the tension in 
the cable caused by the distributed load shown. Use E = 200 GPa.

W10 � 30

30 kips

D
C

A

E

B

2 ft 4 ft

12 ft

4 ft 2 ft

Fig. P9.163

W410 � 46.1
6 m

A � 255 mm2

3 m 20 kN/m

C
B

A

Fig. P9.164

 9.165 For the cantilever beam and loading shown, determine (a) the 
slope at point A, (b) the deflection at point A. Use E = 200 GPa.

 9.166 Knowing that P = 4 kips, determine (a) the slope at end A, (b) the 
deflection at the midpoint C of the beam. Use E = 29 3 106 psi.

3 m

2.1 m

A
B C

20 kN

120 kN/m

W360 � 64

Fig. P9.165

W8 � 13

5 kipsP P

3 ft3 ft
5 ft5 ft

A
B D

E
C

Fig. P9.166

9.167 For the beam and loading shown, determine (a) the slope at 
point A, (b) the deflection at point D.

 9.168 Determine the reaction at the roller support and draw the 
bending-moment diagram for the beam and loading shown.

D
CB

P

A

L/2 L/2 L/2

P

Fig. P9.167

75 kN 40 kN/m

A
D E B

2.4 m

0.3 m
0.9 m

3.6 m

W310 � 44.5

Fig. P9.168
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The following problems are designed to be solved with a computer.

 9.C1 Several concentrated loads can be applied to the cantilever beam 
AB. Write a computer program to calculate the slope and deflection of 
beam AB from x 5 0 to x 5 L, using given increments Dx. Apply this pro-
gram with increments Dx 5 50 mm to the beam and loading of Prob. 9.73 
and Prob. 9.74.

 9.C2 The 22-ft beam AB consists of a W21 3 62 rolled-steel shape and 
supports a 3.5-kip/ft distributed load as shown. Write a computer pro-
gram and use it to calculate for values of a from 0 to 22 ft, using 1-ft incre-
ments, (a) the slope and deflection at D, (b) the location and magnitude 
of the maximum deflection. Use E 5 29 3 106 psi.

Computer Problems

B

Pi

A

ci

L

Fig. P9.C1

BA
D

3.5 kips/ft

a
22 ft

Fig. P9.C2

 9.C3 The cantilever beam AB carries the distributed loads shown. Write 
a computer program to calculate the slope and deflection of beam AB
from x 5 0 to x 5 L using given increments D x. Apply this program with 
increments D x 5 100 mm, assuming that L 5 2.4 m, w 5 36 kN/m, and 
(a) a 5 0.6 m, (b) a 5 1.2 m, (c) a 5 1.8 m. Use E 5 200 GPa.

B
A

a

L

w

w
W250 � 32.7

Fig. P9.C3

 9.C4 The simple beam AB is of constant flexural rigidity EI and carries 
several concentrated loads as shown. Using the Method of Integration,
write a computer program that can be used to calculate the slope and 
deflection at points along the beam from x 5 0 to x 5 L using given incre-
ments D x. Apply this program to the beam and loading of (a) Prob. 9.13 
with D x 5 1 ft, (b) Prob. 9.16 with D x 5 0.05 m, (c) Prob. 9.129 with 
D x 5 0.25 m.

B

P1 P2 Pn

x

y

an

a2

a1

A

L

Fig. P9.C4
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 9.C5 The supports of beam AB consist of a fixed support at end A and a 
roller support located at point D. Write a computer program that can be 
used to calculate the slope and deflection at the free end of the beam for 
values of a from 0 to L using given increments Da. Apply this program to 
calculate the slope and deflection at point B for each of the following 
cases:

 L DL w E Shape

(a) 12 ft 0.5 ft 1.6 k/ft 29 3 106 psi W16 3 57
(b) 3 m 0.2 m 18 kN/m 200 GPa W460 3 113

 9.C6 For the beam and loading shown, use the Moment-Area Method to 
write a computer program to calculate the slope and deflection at points 
along the beam from x 5 0 to x 5 L using given increments D x. Apply this 
program to calculate the slope and deflection at each concentrated load 
for the beam of (a) Prob. 9.77 with D x 5 0.5 m, (b) Prob. 9.119 with 
D x 5 0.5 m.

B

A

a

x

y

D

L

w

Fig. P9.C5

B

P1 P2 Pn
MA MB

x

y
an

a2

a1

A

L

Fig. P9.C6

 9.C7 Two 52-kN loads are maintained 2.5 m apart as they are moved 
slowly across beam AB. Write a computer program to calculate the deflec-
tion at the midpoint C of the beam for values of x from 0 to 9 m, using 
0.5-m increments. Use E 5 200 GPa.

BA

x 4.5 m

2.5 m
52 kN 52 kN

9 m

C

W460 � 113

Fig. P9.C7

 9.C8 A uniformly distributed load w and several distributed loads Pi may 
be applied to beam AB. Write a computer program to determine the reac-
tion at the roller support and apply this program to the beam and loading 
of (a) Prob. 9.53a, (b) Prob. 9.154.

B

Pi

ci

a

L

w

A

Fig. P9.C8
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10
Columns

The curved pedestrian bridge is supported by a series of 
columns. The analysis and design of members supporting 
axial compressive loads will be discussed in this chapter.

Objectives
In this chapter, you will:

• Describe the behavior of columns in terms of stability

• Develop Euler‘s formula for columns, using eff ective lengths to 
account for diff erent end conditions

• Develop the secant formula for analysis of eccentrically loaded 
columns

• Use allowable-stress design for columns made of steel, aluminum, 
and wood

• Provide the basis for using load and resistance factor design for 
steel columns

• Present two design approaches to use for eccentrically loaded 
columns: the allowable-stress method and the interaction method
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692 Columns

Introduction
In the preceding chapters, we had two primary concerns: (1) the strength 
of the structure, i.e., its ability to support a specified load without experi-
encing excessive stress; (2) the ability of the structure to support a speci-
fied load without undergoing unacceptable deformations. This chapter is 
concerned with the stability of the structure (its ability to support a given 
load without experiencing a sudden change in configuration). This discus-
sion is focused on columns, that is, the analysis and design of vertical 
prismatic members supporting axial loads.
 In Sec. 10.1, the stability of a simplified model is discussed, where 
the column consists of two rigid rods connected by a pin and a spring and 
supports a load P. If its equilibrium is disturbed, this system will return to 
its original equilibrium position as long as P does not exceed a certain 
value Pcr , called the critical load. This is a stable system. However, if 
P . Pcr , the system moves away from its original position and settles in a 
new position of equilibrium. This system is said to be unstable.
 In Sec. 10.1A, the stability of elastic columns considers a pin-ended 
column subjected to a centric axial load. Euler’s formula for the critical 
load of the column is derived, and the corresponding critical normal stress 
in the column is determined. Applying a factor of safety to the critical load, 
we obtain the allowable load that can be safely applied to a pin-ended 
column.
 In Sec. 10.1B, the analysis of the stability of columns with different 
end conditions is considered by learning how to determine the effective 
length of a column.
 Columns supporting eccentric axial loads are discussed in Sec. 10.2. 
These columns have transverse deflections for all magnitudes of the load. 
An equation for the maximum deflection under a given load is developed 
and used to determine the maximum normal stress in the column. Finally, 
the secant formula relating the average and maximum stresses in a col-
umn is developed.
 In the first sections of the chapter, each column is assumed to be a 
straight, homogeneous prism. In the last part of the chapter, real columns 
are designed and analyzed using empirical formulas set forth by profes-
sional organizations. In Sec. 10.3A, design equations are presented for the 
allowable stress in columns made of steel, aluminum, or wood that are 
subjected to a centric load. Section 10.3B describes an alternative approach 
for steel columns, the load and resistance factor design method. The 
design of columns under an eccentric axial load is covered in Sec. 10.4.

10.1 STABILITY OF STRUCTURES
Consider the design of a column AB of length L to support a given load P
(Fig. 10.1). The column is pin-connected at both ends, and P is a centric 
axial load. If the cross-sectional area A is selected so that the value 
s 5 PyA of the stress on a transverse section is less than the allowable 
stress sall for the material used and the deformation d 5 PLyAE falls within 
the given specifications, we might conclude that the column has been 
properly designed. However, it may happen that as the load is applied, the 
column buckles (Fig. 10.2). Instead of remaining straight, it suddenly 

 Introduction

 10.1 STABILITY OF 
STRUCTURES

10.1A Euler’s Formula for Pin-Ended 
Columns

10.1B Euler’s Formula for Columns with 
Other End Conditions

 *10.2 ECCENTRIC LOADING 
AND THE SECANT 
FORMULA

 10.3 CENTRIC LOAD DESIGN
10.3A Allowable Stress Design
10.3B Load and Resistance Factor 

Design
 10.4 ECCENTRIC LOAD 

DESIGN

Fig. 10.1 Pinned-ended 
axially loaded column.

L

B

P

A

B

A

P

Fig. 10.2 Buckled 
pin-ended column.
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10.1 Stability of Structures 693

becomes sharply curved such as shown in Photo 10.1. Clearly, a column 
that buckles under the load it is to support is not properly designed.
 Before getting into the actual discussion of the stability of elastic 
columns, some insight will be gained on the problem by considering a 
simplified model consisting of two rigid rods AC and BC connected at C 
by a pin and a torsional spring of constant K (Fig. 10.3).
 If the two rods and forces P and P9 are perfectly aligned, the system 
will remain in the position of equilibrium shown in Fig.10.4a as long as it 
is not disturbed. But suppose we move C slightly to the right so that each 
rod forms a small angle Du with the vertical (Fig. 10.4b). Will the system 
return to its original equilibrium position, or will it move further away? In 
the first case, the system is stable; in the second, it is unstable.
 To determine whether the two-rod system is stable or unstable, con-
sider the forces acting on rod AC (Fig. 10.5). These forces consist of the 
couple formed by P and P9 of moment P(Ly2) sin Du, which tends to move 
the rod away from the vertical, and the couple M exerted by the spring, 
which tends to bring the rod back into its original vertical position. Since 
the angle of deflection of the spring is 2 Du, the moment of couple M is 
M 5 K(2 Du). If the moment of the second couple is larger than the 
moment of the first couple, the system tends to return to its original equi-
librium position; the system is stable. If the moment of the first couple is 
larger than the moment of the second couple, the system tends to move 

Photo 10.1 Laboratory test showing a buckled column.

L/2

L/2

C

B

A

constant K

P

Fig. 10.3 Model column made of two 
rigid rods joined by a torsional spring at C.

Fig. 10.4 Free-body diagram 
of model column (a) perfectly 
aligned (b) point C moved 
slightly out of alignment.

C C

BB

A A

2

(a) (b)

��

��

P'

��

P P

P'

Fig. 10.5 Free-body diagram 
of rod AC in unaligned position.

C

L/2

A

M

P'

��

P
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694 Columns

away from its original equilibrium position; the system is unstable. The 
load when the two couples balance each other is called the critical load, 
Pcr , which is given as

 Pcr 
1Ly22sin¢u 5 K 12¢u2 (10.1)

or since sin ¢u < ¢u, when the displacement of C is very small (at the 
immediate onset of buckling),

 Pcr 5 4KyL (10.2)

Clearly, the system is stable for P , Pcr  and unstable for P . Pcr .
 Assume that a load P . Pcr has been applied to the two rods of 
Fig. 10.3 and the system has been disturbed. Since P . Pcr  , the system will 
move further away from the vertical and, after some oscillations, will settle 
into a new equilibrium position (Fig. 10.6a). Considering the equilibrium 
of the free body AC (Fig. 10.6b), an equation similar to Eq. (10.1) but 
involving the finite angle u, is

P 1Ly22 sin u 5 K 12u2
or

 
PL
4K

5
u

sin u
 (10.3)

 The value of u corresponding to the equilibrium position in Fig. 10.6 
is obtained by solving Eq. (10.3) by trial and error. But for any positive 
value of u, sin u , u. Thus, Eq. (10.3) yields a value of u different from zero 
only when the left-hand member of the equation is larger than one. 
Recalling Eq. (10.2), this is true only if P . Pcr . But, if P , Pcr  , the second 
equilibrium position shown in Fig. 10.6 would not exist, and the only pos-
sible equilibrium position would be the one corresponding to u 5 0. Thus, 
for P , Pcr  , the position where u 5 0 must be stable.
 This observation applies to structures and mechanical systems in 
general and is used in the next section for the stability of elastic 
columns. 

10.1A  Euler’s Formula for Pin-Ended 
Columns

Returning to the column AB considered in the preceding section (Fig. 10.1), 
we propose to determine the critical value of the load P, i.e., the value Pcr 
of the load for which the position shown in Fig. 10.1 ceases to be stable. 
If P . Pcr , the slightest misalignment or disturbance will cause the column 
to buckle into a curved shape, as shown in Fig. 10.2.
 This approach determines the conditions under which the configu-
ration of Fig. 10.2 is possible. Since a column is like a beam placed in a 
vertical position and subjected to an axial load, we proceed as in Chap. 9 
and denote by x the distance from end A of the column to a point Q of its 
elastic curve and by y the deflection of that point (Fig. 10.7a). The x axis 
is vertical and directed downward, and the y axis is horizontal and directed 
to the right. Considering the equilibrium of the free body AQ (Fig. 10.7b), 

Fig. 10.6 (a) Model column in buckled 
position, (b) free-body diagram of rod AC.

C

L/2A

��

C

B

A

(b)(a)

P

P

M

P'

Fig. 10.1 (repeated).

L

B

P

A

Fig. 10.2 (repeated).

B

A

P

Fig. 10.7 Free-body diagrams of (a) buckled 
column and (b) portion AQ.

L

Q Q

B

A
A

x

y

y

x

x

y

P'

P'

M

y
[ x � 0, y � 0]  

[ x � L, y � 0]  

(a) (b)

P P
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10.1 Stability of Structures 695

the bending moment at Q is M 5 2Py. Substituting this value for M in 
Eq. (9.4) gives

 
d 2

 
 y

dx 
2 5

M
EI

5 2 
P

EI
  y (10.4)

or transposing the last term,

 
d 2

  y

dx 2 1
P
EI

  y 5 0 (10.5)

This equation is a linear, homogeneous differential equation of the second 
order with constant coefficients. Setting

 p 2 5
P
EI

 (10.6)

Eq. (10.5) is rewritten as

 
d 

2 y

dx 
2 1 p 

2y 5 0 (10.7)

which is the same as the differential equation for simple harmonic motion, 
except the independent variable is now the distance x instead of the time t. 
The general solution of Eq. (10.7) is

 y 5 A sin px 1 B cos px (10.8)

and is easily checked by calculating d 2 yydx 2 and substituting for y and 
d 2 yydx 2 into Eq. (10.7).
 Recalling the boundary conditions that must be satisfied at ends A 
and B of the column (Fig. 10.7a), make x 5 0, y 5 0 in Eq. (10.8), and find 
that B 5 0. Substituting x 5 L, y 5 0, obtain

 A sin pL 5 0 (10.9)

This equation is satisfied if either A 5 0 or sin pL 5 0. If the first of these 
conditions is satisfied, Eq. (10.8) reduces to y 5 0 and the column is 
straight (Fig. 10.1). For the second condition to be satisfied, pL 5 np, or 
substituting for p from (10.6) and solving for P,

 P 5
n2

 p2EI

L2  (10.10)

The smallest value of P defined by Eq. (10.10) is that corresponding to 
n 5 1. Thus,

 Pcr 5
p2EI

L2  (10.11a)

 This expression is known as Euler’s formula, after the Swiss math-
ematician Leonhard Euler (1707–1783). Substituting this expression for P 
into Eq. (10.6), the value for p into Eq. (10.8), and recalling that B 5 0, 

 y 5 A sin 
px
L

 (10.12)

which is the equation of the elastic curve after the column has buckled 
(Fig. 10.2). Note that the maximum deflection ym 5 A is indeterminate. 

bee98233_ch10_690-757.indd   695bee98233_ch10_690-757.indd   695 11/13/13   4:06 PM11/13/13   4:06 PM



696 Columns

This is because the differential Eq. (10.5) is a linearized approximation of 
the governing differential equation for the elastic curve.†

 If P , Pcr , the condition sin pL 5 0 cannot be satisfied, and the 
solution of Eq. (10.12) does not exist. Then we must have A 5 0, and the 
only possible configuration for the column is a straight one. Thus, for 
P , Pcr the straight configuration of Fig. 10.1 is stable.
 In a column with a circular or square cross section, the moment of 
inertia I is the same about any centroidal axis, and the column is as likely 
to buckle in one plane as another (except for the restraints that can be 
imposed by the end connections). For other cross-sectional shapes, the 
critical load should be found by making I 5 Imin in Eq. (10.11a). If it occurs, 
buckling will take place in a plane perpendicular to the corresponding 
principal axis of inertia.
 The stress corresponding to the critical load is the critical stress scr . 
Recalling Eq. (10.11a) and setting I 5 Ar 2, where A is the cross-sectional 
area and r its radius of gyration gives

scr 5
Pcr

A
5
p2E Ar 2

AL2

or

 scr 5
p2E

1Lyr22 (10.13a)

The quantity Lyr is the slenderness ratio of the column. The minimum 
value of the radius of gyration r should be used to obtain the slenderness 
ratio and the critical stress in a column.
 Equation (10.13a) shows that the critical stress is proportional to the 
modulus of elasticity of the material and inversely proportional to the square 
of the slenderness ratio of the column. The plot of scr versus Lyr is shown 
in Fig. 10.8 for structural steel, assuming E 5 200 GPa and sY 5 250 MPa. 
Keep in mind that no factor of safety has been used in plotting scr . Also, 
if scr obtained from Eq. (10.13a) or from the curve of Fig. 10.8 is larger 
than the yield strength sY, this value is of no interest, since the column 
will yield in compression and cease to be elastic before it has a chance to 
buckle.
 The analysis of the behavior of a column has been based on the 
assumption of a perfectly aligned centric load. In practice, this is seldom 
the case, and in Sec. 10.2, the effect of eccentric loading is taken into 
account. This approach leads to a smoother transition from the buckling 
failure of long, slender columns to the compression failure of short, 
stubby columns. It also provides a more realistic view of the relationship 
between the slenderness ratio of a column and the load that causes it 
to fail.

†Recall that d  2 yydx  2 5 M/EI was obtained in Sec. 9.1A by assuming that the slope dyydx 
of the beam could be neglected and that the exact expression in Eq. (9.3) for the curva-
ture of the beam could be replaced by 1yr 5 d  2 yydx  2.

Fig. 10.8 Plot of critical stress.
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10.1 Stability of Structures 697

Concept Application 10.1
A 2-m-long pin-ended column with a square cross section is to be 
made of wood (Fig 10.9). Assuming E 5 13 GPa, sall 5 12 MPa, and 
using a factor of safety of 2.5 to calculate Euler’s critical load for 
buckling, determine the size of the cross section if the column is to 
safely support (a) a 100-kN load, (b) a 200-kN load.

 a. For the 100-kN Load. Use the given factor of safety to obtain

Pcr 5 2.51100 kN2 5 250 kN    L 5 2 m    E 5 13 GPa

Use Euler’s formula, Eq. (10.11a), and solve for I: 

I 5
Pcr L2

p2E
5
1250 3 103 N2 12 m22
p2113 3 109 Pa2 5 7.794 3 1026 m4

Recalling that, for a square of side a, I 5 a4y12, write

a4

12
5 7.794 3 1026 m4    a 5 98.3 mm < 100 mm

Check the value of the normal stress in the column:

s 5
P
A

5
100 kN

10.100 m22 5 10 MPa

Since s is smaller than the allowable stress, a 100 3 100-mm cross 
section is acceptable.

 b. For the 200-kN Load. Solve Eq. (10.11a) again for I, but make 
Pcr 5 2.5(200) 5 500 kN to obtain

I 5 15.588 3 1026 m4

a4

12
5 15.588 3 1026    a 5 116.95 mm

The value of the normal stress is

s 5
P

A
5

200 kN

10.11695 m22 5 14.62 MPa

Since this is larger than the allowable stress, the dimension obtained 
is not acceptable, and the cross section must be selected on the basis 
of its resistance to compression. 

 A 5  
P
sall

5
200 kN

12 MPa
5 16.67 3 1023 m2

 a2 5 16.67 3 1023 m2    a 5 129.1 mm

A 130 3 130-mm cross section is acceptable.

C

D

2 m

P

Fig. 10.9 Pin-ended 
wood column of 
square cross section.
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698 Columns

10.1B  Euler’s Formula for Columns 
with Other End Conditions

Euler’s formula (10.11) was derived in the preceding section for a column 
that was pin-connected at both ends. Now the critical load Pcr will be 
determined for columns with different end conditions.
 A column with one free end A supporting a load P and one fixed 
end B (Fig. 10.10a) behaves as the upper half of a pin-connected column 
(Fig. 10.10b). The critical load for the column of Fig. 10.10a is thus the 
same as for the pin-ended column of Fig. 10.10b and can be obtained from 
Euler’s formula Eq. (10.11a) by using a column length equal to twice the 
actual length L. We say that the effective length Le of the column of Fig. 10.10 
is equal to 2L, and substitute Le 5 2L in Euler’s formula:

 Pcr 5
p2EI

L2
e

 (10.11b)

The critical stress is

 scr 5
p2E

1Leyr22 (10.13b)

The quantity Leyr is called the effective slenderness ratio of the column and 
for Fig. 10.10a is equal to 2Lyr.
 Now consider a column with two fixed ends A and B supporting a load 
P (Fig. 10.11). The symmetry of the supports and the load about a horizontal 
axis through the midpoint C requires that the shear at C and the horizontal 
components of the reactions at A and B be zero (Fig. 10.12a). Thus, the 
restraints imposed on the upper half AC of the column by the support at A 
and by the lower half CB are identical (Fig. 10.13). Portion AC must be sym-
metric about its midpoint D, and this point must be a point of inflection 
where the bending moment is zero. The bending moment at the midpoint 
E of the lower half of the column also must be zero (Fig. 10.14a). Since the 
bending moment at the ends of a pin-ended column is zero, portion DE of 
the column in Fig. 10.13a must behave like a pin-ended column (Fig. 10.14b). 
Thus, the effective length of a column with two fixed ends is Le 5 Ly2.

L

AA

BB
Le � 2L

P'

(b)(a)

A'

P P

Fig. 10.10 Effective length of a 
fixed-free column of length L is 
equivalent to a pin-ended column of 
length 2L.

Fig. 10.12 Free-body 
diagram of buckled 
fixed-ended column.

M'

P'

B

L

L/2

C

A

M

P

L C

B

A

P

Fig. 10.11 Column with 
fixed ends.

L C

D D

E E

B

A

L1
2 LLe � 1

2

(a) (b)

P

P

Fig. 10.14 Effective length of a fixed-ended 
column of length L is equivalent to a pin-ended 
column of length L/2.

L/4

C

A

D

L/4

M'

P'

M

P

Fig. 10.13 Free-body 
diagram of upper half 
of fixed-ended column.
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10.1 Stability of Structures 699

 In a column with one fixed end B and one pin-connected end A 
supporting a load P (Fig. 10.15), the differential equation of the elastic 
curve must be solved to determine the effective length. From the free-body 
diagram of the entire column (Fig. 10.16), a transverse force V is exerted 
at end A, in addition to the axial load P, and V is statically indeterminate. 
Considering the free-body diagram of a portion AQ of the column 
(Fig. 10.17), the bending moment at Q is

M 5 2Py 2 Vx

Substituting this value into Eq. (9.4) of Sec. 9.1A, 

d 2 y

dx 
2 5

M
EI

5 2 
P

EI
 y 2

V

EI
 x

Transposing the term containing y and setting

 p2 5
P
EI

 (10.6)

as in Sec. 10.1A gives

 
d2 y

dx 
2 1 p2y 5 2 

V

EI
 x (10.14)

This is a linear, nonhomogeneous differential equation of the second 
order with constant coefficients. Observing that the left-hand members of 
Eqs. (10.7) and (10.14) are identical, the general solution of Eq. (10.14) can 
be obtained by adding a particular solution of Eq. (10.14) to the solution 
of Eq. (10.8) obtained for Eq. (10.7). Such a particular solution is

y 5 2 
V

p2EI
 x

or recalling Eq. (10.6),

 y 5 2 
V
P

 x (10.15)

Adding the solutions of Eq. (10.8) and (10.15), the general solution of 
Eq. (10.14) is

 y 5 A sin px 1 B cos px 2
V

P
 x (10.16)

 The constants A and B and the magnitude V of the unknown trans-
verse force V are obtained from the boundary conditions in Fig. (10.16). 
Making x 5 0, y 5 0 in Eq. (10.16), B 5 0. Making x 5 L, y 5 0, gives

 A sin pL 5
V

P
 L (10.17)

Taking the derivative of Eq. (10.16), with B 5 0,

dy

dx
5 Ap cos px 2

V
P

and making x 5 L, dyydx 5 0,

 Ap cos pL 5
V
P

 (10.18)

B

A

L

P

Fig. 10.15 Column with 
fixed-pinned end conditions.

B

x

A
y

L

V'

V [ x � 0, y � 0]

[ x � L, y � 0]
[ x � L, dy/dx � 0]

P

MB

P'

Fig. 10.16 Free-body diagram of 
buckled fixed-pinned column.

V'

A

Q

y

y

x

x

V

M

P'

P

Fig. 10.17 Free-body diagram of portion 
AQ of buckled fixed-pinned column.
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700 Columns

Dividing Eq. (10.17) by Eq. (10.18) member by member, a solution like 
Eq. (10.16) can exist only if

 tan pL 5 pL (10.19)

Solving this equation by trial and error, the smallest value of pL that satis-
fies Eq. (10.19) is

 pL 5 4.4934 (10.20)

Carrying the value of p from Eq. (10.20) into Eq. (10.6) and solving for P, 
the critical load for the column of Fig. 10.15 is

 Pcr 5
20.19EI

L2  (10.21)

 The effective length of the column is obtained by equating the right-
hand members of Eqs. (10.11b) and (10.21):

p2EI

L2
e

5
20.19EI

L2

Solving for Le, the effective length of a column with one fixed end and one 
pin-connected end is Le 5 0.699L < 0.7L.
 The effective lengths corresponding to the various end conditions 
are shown in Fig. 10.18.

B

A

L

P

Fig. 10.15 (repeated).

Fig. 10.18 Effective length of column for various end conditions.

C

B

A A
A

Le 5 0.7L 

Le 5 0.5L Le 5 2L Le 5 L 

L 

B 

B B 

A 

(c) One fixed end,
      one pinned end

(d) Both ends
      fixed

(b) Both ends
      pinned

(a) One fixed end,
      one free end

P P P
P
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10.1 Stability of Structures 701

Sample Problem 10.1
An aluminum column with a length of L and a rectangular cross sec-
tion has a fixed end B and supports a centric load at A. Two smooth 
and rounded fixed plates restrain end A from moving in one of the 
vertical planes of symmetry of the column but allow it to move in the 
other plane. (a) Determine the ratio a/b of the two sides of the cross 
section corresponding to the most efficient design against buckling. 
(b) Design the most efficient cross section for the column, knowing 
that L 5 20 in., E 5 10.1 3 106 psi, P 5 5 kips, and a factor of safety 
of 2.5 is required.

STRATEGY: The most efficient design is that for which the critical 
stresses corresponding to the two possible buckling modes are equal. 
This occurs if the two critical stresses obtained from Eq. (10.13b) are 
the same. Thus for this problem, the two effective slenderness ratios 
in this equation must be equal to solve part a. Use Fig. 10.18 to deter-
mine the effective lengths. The design data can then be used with 
Eq. (10.13b) to size the cross section for part b.

MODELING:

Buckling in xy Plane. Referring to Fig. 10.18c, the effective length 
of the column with respect to buckling in this plane is Le 5 0.7L . The 
radius of gyration rz of the cross section is obtained by

Iz 5
1

12 ba3  A 5 ab

and since Iz 5 Ar 2
z ,  r 2

z 5
Iz

A
5

1
12 

ba3

ab
5

a 
2

12
    rz 5 ay112

The effective slenderness ratio of the column with respect to buckling 
in the xy plane is

Le

rz
5

0.7L

ay112
 (1)

Buckling in xz Plane. Referring to Fig. 10.18a, the effective length 
of the column with respect to buckling in this plane is Le 5 2L, and 
the corresponding radius of gyration is ry 5 by112. Thus,

 
Le

ry
5

2L

by112
 (2)

(continued)

B

x

L

y

a

A

b

z

P
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702 Columns

ANALYSIS:

 a. Most Efficient Design. The most efficient design is when the 
critical stresses corresponding to the two possible modes of buckling 
are equal. Referring to Eq. (10.13b), this is the case if the two values 
obtained above for the effective slenderness ratio are equal. 

0.7L

ay112
5

2L

by112

and solving for the ratio ayb,           
a
b

5
0.7

2
         

a
b

5 0.35  >

 b. Design for Given Data. Since F.S. 5 2.5 is required,

Pcr 5 1F.S.2P 5 12.52 15 kips2 5 12.5 kips

Using a 5 0.35b, 

A 5 ab 5 0.35b 2 and scr 5
Pcr

A
5

12,500 lb

0.35b 
2

Making L 5 20 in. in Eq. (2), Le yry 5 138.6/b. Substituting for E, Le yr, 
and scr into Eq. (10.13b) gives

scr 5
p2E

1Le yr22      
12,500 lb

0.35b2 5
p2110.1 3 106 psi2
1138.6yb22

b 5 1.620 in.    a 5 0.35b 5 0.567 in.  >

REFLECT and THINK: The calculated critical Euler buckling stress 
can never be taken to exceed the yield strength of the material. In this 
problem, you can readily determine that the critical stress scr 5 13.6 ksi; 
though the specific alloy was not given, this stress is less than the 
tensile yield strength sy values for all aluminum alloys listed in 
Appendix B.
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703

 10.1 Knowing that the spring at A is of constant k and that the bar AB 
is rigid, determine the critical load Pcr .

Problems

P

kA

B

L

Fig. P10.1

C

A

B

L1
2

L1
2

K

P

Fig. P10.2

C

A

B

L2
3

L1
3

k

P

Fig. P10.4

C

A

B

L1
2

k

P

L1
2

Fig. P10.3

15 in.

A

C

B

d

20 in.

P

Fig. P10.5

 10.2 Two rigid bars AC and BC are connected by a pin at C as shown. 
Knowing that the torsional spring at B is of constant K, determine 
the critical load Pcr for the system.

 10.3 and 10.4 Two rigid bars AC and BC are connected as shown to a 
spring of constant k. Knowing that the spring can act in either 
tension or compression, determine the critical load Pcr for the 
system.

10.5 The steel rod BC is attached to the rigid bar AB and to the fixed 
support at C. Knowing that G 5 11.2 3 106 psi, determine the 
diameter of rod BC for which the critical load Pcr of the system is 
80 lb.
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 10.6 The rigid rod AB is attached to a hinge at A and to two springs, 
each of constant k 5 2 kips/in., that can act in either tension or 
compression. Knowing that h 5 2 ft , determine the critical load.

k C

B

D

A
h

h

2h

k

P

Fig. P10.6B

l

AP C

a

D P'

k k

Fig. P10.7

C

G

H

K

K

K

K

DA

F

E

B

L1
2

L1
2

L1
2

L1
2

PP

Fig. P10.8

100 mm

16 mm

Fig. P10.9

 10.7 The rigid bar AD is attached to two springs of constant k and is 
in equilibrium in the position shown. Knowing that the equal and 
opposite loads P and P’ remain horizontal, determine the mag-
nitude Pcr of the critical load for the system.

10.8 A frame consists of four L-shaped members connected by four 
torsional springs, each of constant K . Knowing that equal loads 
P are applied at points A and D as shown, determine the critical 
value Pcr of the loads applied to the frame.

 10.9 Determine the critical load of a pin-ended steel tube that is 5 m 
long and has a 100-mm outer diameter and a 16-mm wall thick-
ness. Use E 5 200 GPa.

 10.10 Determine the critical load of a pin-ended wooden stick that is 
3 ft long and has a 3

16 3 11
4 -in. rectangular cross section. Use 

E 5 1.6 3 106 psi.

 10.11 A column of effective length L can be made by gluing together 
identical planks in either of the arrangements shown. Determine 
the ratio of the critical load using the arrangement a to the criti-
cal load using the arrangement b.

d

d/3

(a) (b)

Fig. P10.11
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10.12 A compression member of 1.5-m effective length consists of a 
solid 30-mm-diameter brass rod. In order to reduce the weight of 
the member by 25%, the solid rod is replaced by a hollow rod of 
the cross section shown. Determine (a) the percent reduction in 
the critical load, (b) the value of the critical load for the hollow 
rod. Use E 5 200 GPa.

 10.13 Determine the radius of the round strut so that the round and 
square struts have the same cross-sectional area and compute 
the critical load of each strut . Use E 5 200 GPa.

30 mm 30 mm

15 mm

Fig. P10.12

25 mm

C

A

B

D

1 m

1 m

P

P

Fig. P10.13 and P10.14

10 in.

6 in.

in.1
4

in.1
2

in.1
2

Fig. P10.15

10.14 Determine (a) the critical load for the square strut, (b) the radius 
of the round strut for which both struts have the same critical 
load. (c) Express the cross-sectional area of the square strut as a 
percentage of the cross-sectional area of the round strut. Use 
E 5 200 GPa.

 10.15 A column with the cross section shown has a 13.5-ft effective 
length. Using a factor of safety equal to 2.8, determine the 
allowable centric load that can be applied to the column. 
Use E 5 29 3 106 psi.

 10.16 A column is made from half of a W360 3 216 rolled-steel shape, 
with the geometric properties as shown. Using a factor of safety 
equal to 2.6, determine the allowable centric load if the effective 
length of the column is 6.5 m. Use E 5 200 GPa.

y

C x

A 5 13.8 3 103 mm2

Ix 5 26.0 3 106 mm4

Iy 5 142.0 3 106 mm4

Fig. P10.16
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 10.17 A column of 22-ft effective length is made by welding two 9 3 0.5-in. 
plates to a W8 3 35 as shown. Determine the allowable centric 
load if a factor of safety of 2.3 is required. Use E 5 29 3 106 psi.

4.5 in.

4.5 in.

y

x

Fig. P10.17

d

Fig. P10.18

10.18 A single compression member of 8.2-m effective length is 
obtained by connecting two C200 3 17.1 steel channels with lac-
ing bars as shown. Knowing that the factor of safety is 1.85, deter-
mine the allowable centric load for the member. Use E 5 200 GPa 
and d 5 100 mm.

 10.19 Knowing that P 5 5.2 kN, determine the factor of safety for the 
structure shown. Use E 5 200 GPa and consider only buckling in 
the plane of the structure.

1.2 m

1.2 m

P

70�

22-mm diameter

18-mm
diameter

B

A
C

Fig. P10.19

2.25 m

A D

C
B

3.5 m

Fig. P10.20

A

L

B

d

b

P
Fig. P10.21

10.20 Members AB and CD are 30-mm-diameter steel rods, and mem-
bers BC and AD are 22-mm-diameter steel rods. When the turn-
buckle is tightened, the diagonal member AC is put in tension. 
Knowing that a factor of safety with respect to buckling of 2.75 is 
required, determine the largest allowable tension in AC. Use 
E 5 200 GPa and consider only buckling in the plane of the 
structure.

 10.21 The uniform brass bar AB has a rectangular cross section and is 
supported by pins and brackets as shown. Each end of the bar 
can rotate freely about a horizontal axis through the pin, but rota-
tion about a vertical axis is prevented by the brackets. (a) Deter-
mine the ratio b/d for which the factor of safety is the same about 
the horizontal and vertical axes. (b) Determine the factor of safety 
if P 5 1.8 kips , L 5 7 ft, d 5 1.5 in., and E 5 29 3 106 psi .
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 10.22 A 1-in.-square aluminum strut is maintained in the position 
shown by a pin support at A and by sets of rollers at B and C that 
prevent rotation of the strut in the plane of the figure. Knowing 
that LAB 5 3 ft , determine (a) the largest values of LBC and LCD

that can be used if the allowable load P is to be as large as pos-
sible, (b) the magnitude of the corresponding allowable load. 
Consider only buckling in the plane of the figure and use 
E 5 10.4 3 106 psi .

 10.23 A 1-in.-square aluminum strut is maintained in the position 
shown by a pin support at A and by sets of rollers at B and C that 
prevent rotation of the strut in the plane of the figure. Knowing 
that LAB 5 3 ft, LBC 5 4 ft , and LCD 5 1 ft, determine the allowable 
load P using a factor of safety with respect to buckling of 3.2. 
Consider only buckling in the plane of the figure and use 
E 5 10.4 3 106 psi.

 10.24 Column ABC has a uniform rectangular cross section with 
b 5 12 mm and d 5 22 mm. The column is braced in the xz plane 
at its midpoint C and carries a centric load P of magnitude 
3.8 kN. Knowing that a factor of safety of 3.2 is required, deter-
mine the largest allowable length L. Use E 5 200 GPa .

D

C

B

A

LAB

LBC

LCD

P

Fig. P10.22 and P10.23

L

A

B

y

x

L

b
d

C

z

P

Fig. P10.24 and P10.25

 10.25 Column ABC has a uniform rectangular cross section and is 
braced in the xz plane at its midpoint C. (a) Determine the ratio 
b/d for which the factor of safety is the same with respect to buck-
ling in the xz and yz planes. (b) Using the ratio found in part a , 
design the cross section of the column so that the factor of safety 
will be 3.0 when P 5 4.4 kN , L 5 1 m, and E 5 200 GPa .

 10.26 Column AB carries a centric load P of magnitude 15 kips. Cables 
BC and BD are taut and prevent motion of point B in the xz plane. 
Using Euler’s formula and a factor of safety of 2.2 , and neglecting 
the tension in the cables, determine the maximum allowable 
length L . Use E 5 29 3 106 psi.

C

A D

L

B

P

y

z

x

W10 3 22

Fig. P10.26
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 10.27 Each of the five struts shown consists of a solid steel rod. 
(a) Knowing that the strut of Fig. (1) is of a 20-mm diameter, 
determine the factor of safety with respect to buckling for the 
loading shown. (b) Determine the diameter of each of the other 
struts for which the factor of safety is the same as the factor of 
safety obtained in part a . Use E 5 200 GPa.

900 mm

(1) (2) (3) (4) (5)

P0 � 7.5 kN

P0

P0 P0 P0

Fig. P10.27

4 m

(1) (2) (3) (4)

m
m m

m

Fig. P10.28

 10.28 A rigid block of mass m can be supported in each of the four ways 
shown. Each column consists of an aluminum tube that has a 
44-mm outer diameter and a 4-mm wall thickness. Using 
E 5 70 GPa and a factor of safety of 2.8, determine the allowable 
mass for each support condition. 
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*10.2 Eccentric Loading and the Secant Formula 709

*10.2  ECCENTRIC LOADING AND 
THE SECANT FORMULA

In this section, column buckling is approached by observing that the load 
P applied to a column is never perfectly centric. The eccentricity of the load 
is the distance between the line of action P and the axis of the column 
(Fig. 10.19a). The given eccentric load is replaced by a centric force P and 
a couple MA of moment MA 5 Pe (Fig. 10.19b). Regardless of how small the 

Fig. 10.19 (a) Column with an eccentric 
load (b) modeled as a column with an 
equivalent centric force-couple load.

P P

e

B

AA

B

P'P'

L

MB � Pe

MA � Pe

(a) (b)

load P and the eccentricity e are, the couple MA will cause some bending 
of the column (Fig. 10.20). As the eccentric load increases, both the couple 
MA and the axial force P increase, and both cause the column to bend 
further. Viewed in this way, buckling is not a question of determining how 
long the column can remain straight and stable under an increasing load, 
but how much the column can be permitted to bend if the allowable stress 
is not exceeded and the deflection y max is not excessive.
 We first write and solve the differential equation of the elastic curve, pro-
ceeding in the same manner as we did earlier in Secs. 10.1A and B. Drawing 
the free-body diagram of a portion AQ of the column and choosing the coor-
dinate axes as shown (Fig. 10.21), we find that the bending moment at Q is

 M 5 2Py 2 MA 5 2Py 2 Pe (10.22)

Substituting the value of M into Eq. (9.4) gives

d 
2 y

dx 
2 5

M
EI

5 2 
P
EI

 y 2
Pe
EI

Transposing the term containing y and setting

 p2 5
P

EI
 (10.6)

as done earlier gives

 
d 

2 y

dx 
2 1 p2 y 5 2p2e (10.23)

Fig. 10.20 Free-body diagram 
of an eccentrically loaded column.

A

B

MA � Pe

ymax

P'

MB � Pe

P

A

Q

x

x

y

y
MA � Pe

M

P'

P

Fig. 10.21 Free-body diagram of 
portion AQ of an eccentrically 
loaded column.
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710 Columns

Since the left-hand member of Eq. (10.23) is the same as Eq. (10.7), the 
general solution of Eq. (10.23) is rewritten as

 y 5 A sin px 1 B cos px 2 e (10.24)

where the last term is a particular solution.
 Constants A and B are obtained from the boundary  conditions 
shown in Fig. 10.22. Making x 5 0, y 5 0 in Eq. (10.24), we have

B 5 e

Making x 5 L, y 5 0 gives

 A sin pL 5 e 11 2 cos pL2 (10.25)

Recalling that

sin pL 5 2 sin 
pL

2
 cos 

pL

2

and

1 2 cos pL 5 2 sin2 
pL

2

and substituting into Eq. (10.25) after reductions gives

A 5 e tan 
pL

2

Substituting for A and B into Eq. (10.24), the equation of the elastic 
curve is

 y 5 e atan 
pL

2
 sin px 1 cos px 2 1b (10.26)

 The maximum deflection is obtained by setting x 5 Ly2 in 
Eq. (10.26). 

 ymax 5 e  atan 
pL

2
 sin 

pL

2
1 cos 

pL

2
2 1b

 5 e ±
sin2 

pL

2
1 cos2 

pL

2

cos 
pL

2

2 1 ≤

  ymax 5 e  asec 
pL

2
2 1b (10.27)

Recalling Eq. (10.6), we have

 ymax 5 e c sec aB
P
EI

 
L
2
b 2 1 d  (10.28)

The expression obtained indicates that ymax becomes infinite when

 B
P

EI
 
L
2

5
p

2
 (10.29)

Fig. 10.22 Boundary conditions for 
an eccentrically loaded column.

A

B

x

ymax

y

C

L/2

L/2

[ x � 0, y � 0]  

[ x � L, y � 0]  
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*10.2 Eccentric Loading and the Secant Formula 711

While the deflection does not actually become infinite, it nevertheless 
becomes unacceptably large, and P should not be allowed to reach the 
critical value which satisfies Eq. (10.29). Solving Eq. (10.29) for P, 

 Pcr 5
p2EI

L2  (10.30)

which also was obtained in Sec. 10.1A for a column under a centric load. 
Solving Eq. (10.30) for EI and substituting into Eq. (10.28), the maximum 
deflection in the alternative form is

 ymax 5 e  asec 
p

2
 B

P

Pcr
2 1b (10.31)

 The maximum stress smax occurs in the section of the column where 
the bending moment is maximum (i.e., the transverse section through the 
midpoint C) and can be obtained by adding the normal stresses due to 
the axial force and the bending couple exerted on that section (see 
Sec. 4.7). Thus,

 smax 5
P

A
1

Mmaxc

I
 (10.32)

From the free-body diagram of portion AC (Fig. 10.23), 

Mmax 5 P ymax 1 MA 5 P 1  ymax 1 e2
Substituting this into Eq. (10.32) and recalling that I 5 Ar 2, 

 smax 5
P

A
 c 1 1

1ymax 1 e2c
r 

2 d  (10.33)

Substituting the value obtained in Eq. (10.28) for ymax:

 smax 5
P

A
 c 1 1

ec

r 
2  sec aB

P

EI
 
L

2
b d  (10.34)

An alternative form of smax is obtained by substituting from (10.31) into 
Eq. (10.33) for ymax. Thus,

 smax 5
P
A

 a1 1
ec

r 
2  sec 

p

2
 B

P
Pcr
b (10.35)

This equation can be used with any end conditions, as long as the appro-
priate value is used for the critical load (see Sec. 10.1B).
 Since smax does not vary linearly with load P, the principle of super-
position does not apply to the determination of stress due to the simulta-
neous application of several loads. The resultant load must be computed 
first, and then Eqs. (10.34) or (10.35) can be used to find the correspond-
ing stress. For the same reason, any given factor of safety should be applied 
to the load—not to the stress—when using the second formula. 

P'

A

C

L/2

ymax

MA � Pe

Mmax

P

Fig. 10.23 Free-body diagram of 
upper half of eccentrically loaded 
column.
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 Making I 5 Ar 2 in Eq. (10.34) and solving for the ratio PyA in front 
of the bracket gives

 
P
A

5
smax

1 1
ec

r 
2  sec a1

2
 B

P
EA

 
Le

r
b

 (10.36)

where the effective length is applied for various end conditions. This 
equation is the secant  formula. It defines the force per unit area, PyA, that 
causes a specified maximum stress smax in a column with a given effective 
slenderness ratio Le yr for a ratio ecyr 2, where e is the eccentricity of the 
applied load. Since PyA appears in both members, it is necessary to solve 
a transcendental equation by trial and error to obtain the value of PyA 
corresponding to a given column and loading condition.
 Equation (10.36) is used to draw the curves shown in Fig. 10.24a and 
b for a steel column, assuming the values of E and sY shown. These curves 
make it possible to determine the load per unit area PyA, which causes 
the column to yield for given values of the ratios Le yr and ecyr 2.
 For small values of Le yr, the secant is almost equal to 1 in Eq. (10.36), 
and thus PyA can be assumed equal to

 
P

A
5
smax

1 1
ec

r 
2

 (10.37)

This value can be obtained by neglecting the effect of the lateral deflection 
of the column and using the method of Sec. 4.8. On the other hand, 
Fig. 10.24 shows that, for large values of Le yr, the curves corresponding to 
the ratio ecyr 2 get very close to Euler’s curve given in Eq. (10.13b). Thus, 
the effect of the eccentricity of the load on PyA becomes negligible. The 
secant formula is mainly used for intermediate values of Le yr. However, to 
use it effectively, the eccentricity e of the load should be known, but unfor-
tunately, this quantity is seldom known with any degree of precision.

0 50
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36
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0.2

0.4

0.6

0.8

0

0.1

0.2

0.4

0.6

0.8 

100 150

36 ksi

200

ec
r2

Y

� 0ec
r2 �

1ec
r2 �1ec

r2 �

P/
A

 (M
Pa

)

P/
A

 (k
si

)

Le/r
0 50 100 150 200

Le/r

E
� �

29 � 106 psi

250 MPaY
E

� �
� 200 GPa

Euler’s curve
Euler’s curve

�

(a) (b)
Fig. 10.24 Secant formula plots for buckling in eccentrically loaded columns. (a) U.S. customary units. (b) Metric units.
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*10.2 Eccentric Loading and the Secant Formula 713

Sample Problem 10.2
The uniform column AB consists of an 8-ft section of structural tubing 
with the cross section shown. (a) Using Euler’s formula and a factor of 
safety of 2, determine the allowable centric load for the column and 
the corresponding normal stress. (b) Assuming that the allowable 
load found in part a is applied at a point 0.75 in. from the geometric 
axis of the column, determine the horizontal deflection of the top 
of the column and the maximum normal stress in the column. Use 
E 5 29 3 106 psi.

STRATEGY: For part a, use the factor of safety with Euler’s formula 
to determine the allowable centric load. For part b, use Eqs. (10.31) 
and (10.35) to find the horizontal deflection and maximum normal 
stress in the column, respectively.

MODELING:

Effective Length.  Since the column has one end fixed and one end 
free, its effective length is

Le 5 218 ft2 5 16 ft 5 192 in.

Critical Load.  Using Euler’s formula, 

Pcr 5
p2EI

L2
e

5
p2129 3 106 psi2 18.00 in42

1192 in.22   Pcr 5 62.1 kips

ANALYSIS:

 a. Allowable Load and Stress. For a factor of safety of 2,

 Pall 5
Pcr

F.S.
5

62.1 kips

2
 Pall 5 31.1 kips ◀

and

 s 5
Pall

A
5

31.1 kips

3.54 in2  s 5 8.79 ksi ◀

(continued)

e 5 0.75 in.

8 ft

A

A

B

B

P

P

(a)

(b)

A 5 3.54 in2

I 5 8.00 in4

r 5 1.50 in.
c 5 2.00 in.

4 in.

4 in.
xC

y
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714 Columns

b. Eccentric Load (Fig. 1). Observe that column AB and its load 
are identical to the upper half of the column of Fig. 10.20, which was 
used for the secant formulas. Thus, the formulas of Sec. 10.2 apply 
directly here. Recalling that PallyPcr 5

1
2 and using Eq. (10.31), the hori-

zontal deflection of point A is

The maximum normal stress is obtained from Eq. (10.35) as

 sm 5
P
A

 c 1 1
ec

r 
2  sec ap

2
 B

P
Pcr
b d

 5
31.1 kips

3.54 in2  c 1 1
10.75 in.2 12 in.2
11.50 in.22  sec a p

222
b d

 5 18.79 ksi2 31 1 0.66712.2522 4  sm 5 22.0 ksi ◀

e � 0.75 in.

A

B

ym � 0.939 in.P

Fig. 2 Deflection of eccentrically 
loaded column.

e � 0.75 in.

A

Pall � 31.1 kips

Fig. 1 Allowable load applied at assumed 
eccentricity.

 ym 5 e c sec ap
2

 B
P

Pcr
b 2 1 d 5 10.75 in.2 c sec a p

222
b 2 1 d

 5 10.75 in.2 12.252 2 12  ym 5 0.939 in. ◀

This result is illustrated in Fig. 2.
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 10.29 An axial load P 5 15 kN is applied at point D that is 4 mm 
from the geometric axis of the square aluminum bar BC. Using 
E 5 70 GPa, determine (a) the horizontal deflection of end C, 
(b) the maximum stress in the column.

Problems

P

B

C D

30 mm 30 mm

0.6 m

4 mm

Fig. P10.29

P'

B

C

A

e

e

1.2 m

32-mm
diameter

P

Fig. P10.30

310 kN

C

A

e

z
x

y

B

6.5 m

W250 3 58

310 kN

Fig. P10.31

 10.30 An axial load P is applied to the 32-mm-diameter steel rod AB as 
shown. For P 5 37 kN and e 5 1.2 mm, determine (a) the deflec-
tion at the midpoint C of the rod, (b) the maximum stress in the 
rod. Use E 5 200 GPa.

10.31 The line of action of the 310-kN axial load is parallel to the geo-
metric axis of the column AB and intersects the x axis at x 5 e. 
Using E 5 200 GPa, determine (a) the eccentricity e when the 
deflection of the midpoint C of the column is 9 mm, (b) the maxi-
mum stress in the column.
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 10.32 An axial load P is applied to the 1.375-in. diameter steel rod AB
as shown. When P 5 21 kips, it is observed that the horizontal 
deflection at midpoint C is 0.03 in. Using E 5 29 3 106 psi, deter-
mine (a) the eccentricity e of the load, (b) the maximum stress in 
the rod.

P'

B

C

A

e

e

30 in.

1.375-in.
diameter

P

Fig. P10.32

P

B

C

D

32 mm 32 mm

0.65 m

e

Fig. P10.33

9.4 ft

W8 3 31

B

x

C

y

z

P

e

Fig. P10.34

10.33 An axial load P is applied to the 32-mm-square aluminum bar 
BC as shown. When P 5 24 kN, the horizontal deflection at end 
C is 4 mm. Using E 5 70 GPa, determine (a) the eccentricity e of 
the load, (b) the maximum stress in the bar.

 10.34 The axial load P is applied at a point located on the x axis at a 
distance e from the geometric axis of the rolled-steel column BC. 
When P 5 82 kips, the horizontal deflection of the top of the 
column is 0.20 in. Using E 5 29 3 106 psi, determine (a) the eccen-
tricity e of the load, (b) the maximum stress in the column.
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 10.35 An axial load P is applied at point D that is 0.25 in. from the 
geometric axis of the square aluminum bar BC. Using E 5 10.1 3 
106 psi, determine (a) the load P for which the horizontal deflec-
tion of end C is 0.50 in., (b) the corresponding maximum stress 
in the column. 

1.75 in.1.75 in.
2.5 ft

P

C

B

D

0.25 in.

Fig. P10.35

e

P'

120 mm

t 5 6 mm

2.8 m

A

B

C

e

P

Fig. P10.36

W8 3 40

11 ft

B

C

y

z
x

P

e

Fig. P10.38

 10.36 A brass pipe having the cross section shown has an axial load P
applied 5 mm from its geometric axis. Using E 5 120 GPa, deter-
mine (a) the load P for which the horizontal deflection at the 
midpoint C is 5 mm, (b) the corresponding maximum stress in 
the column. 

 10.37 Solve Prob. 10.36, assuming that the axial load P is applied 
10 mm from the geometric axis of the column.

10.38 The line of action of the axial load P is parallel to the geometric 
axis of the column AB and intersects the x axis at x 5 0.8 in. Using 
E 5 29 3 106 psi, determine (a) the load P for which the hori-
zontal deflection at the end C is 0.5 in., (b) the corresponding 
maximum stress in the column.
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 10.39 The line of action of the axial load P is parallel to the geometric 
axis of the column and applied at a point located on the x axis at 
a distance e 5 12 mm from the geometric axis of the W310 3 60 
rolled-steel column BC. Assuming that L 5 7.0 m and using 
E 5 200 GPa, determine (a) the load P for which the horizontal 
deflection of the midpoint C of the column is 15 mm, (b) the 
corresponding maximum stress in the column. 

C

B

A

y

z

L

e

P'

P

W310 3 60

x

Fig. P10.39

B

C

A

d

e � 0.03 in.

e � 0.03 in.

3 in.8

4 in.

4 in.

Fig. P10.41

e
127 mm

127 mm

A 5 3400 mm2

I  5 7.93 3 10–6 m4

r 5 48.3 mm

3.5 m

A

B

e

P

P�

Fig. P10.43

 10.40 Solve Prob. 10.39, assuming that L is 9.0 m.

 10.41 The steel bar AB has a 3
8 3

3
8-in. square cross section and is held 

by pins that are a fixed distance apart and are located at a dis-
tance e 5 0.03 in. from the geometric axis of the bar. Knowing 
that at temperature T0 the pins are in contact with the bar and 
that the force in the bar is zero, determine the increase in tem-
perature for which the bar will just make contact with point C if 
d 5 0.01 in. Use E 5 29 3 106 psi and a coefficient of thermal 
expansion a 5 6.5 3 1026/°F. 

 10.42 For the bar of Prob. 10.41, determine the required distance d for 
which the bar will just make contact with point C when the tem-
perature increases by 120 °F.

 10.43 A 3.5-m-long steel tube having the cross section and properties 
shown is used as a column. For the grade of steel used sY 5 
250 MPa and E 5 200 GPa. Knowing that a factor of safety of 2.6 
with respect to permanent deformation is required, determine 
the allowable load P when the eccentricity e is (a) 15 mm, (b) 
7.5 mm. (Hint: Since the factor of safety must be applied to the 
load P, not to the stress, use Fig. 10.24 to determine PY).

 10.44 Solve Prob. 10.43, assuming that the length of the tube is increased 
to 5 m.
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 10.45 An axial load P is applied to the W8 3 28 rolled-steel column BC
that is free at its top C and fixed at its base B. Knowing that the 
eccentricity of the load is e 5 0.6 in. and that for the grade of steel 
used sY 5 36 ksi and E 5 29 3 106 psi, determine (a) the mag-
nitude of P of the allowable load when a factor of safety of 2.5 
with respect to permanent deformation is required, (b) the ratio 
of the load found in part a to the magnitude of the allowable 
centric load for the column. (See hint of Prob. 10.43.)

W8 3 28

L 5 7.5 ft

B

C

y

z
x

P

e

Fig. 10.45 and 10.46

L

B

C

y

z
x

P

e

Fig. 10.47

10.46 An axial load P of magnitude 50 kips is applied at a point located 
on the x axis at a distance e 5 0.25 in. from the geometric axis of 
the W8 3 28 rolled-steel column BC. Knowing that the column 
is free at its top C and fixed at its base B and that sY 5 36 ksi and 
E 5 29 3 106 psi, determine the factor of safety with respect to 
yield. (See hint of Prob. 10.43.)

 10.47 A 100-kN axial load P is applied to the W150 3 18 rolled-steel 
column BC that is free at its top C and fixed at its base B. Knowing 
that the eccentricity of the load is e 5 6 mm, determine the larg-
est permissible length L if the allowable stress in the column is 
80 MPa. Use E 5 200 GPa.

bee98233_ch10_690-757.indd   719bee98233_ch10_690-757.indd   719 11/13/13   4:06 PM11/13/13   4:06 PM



720

10.48 A 26-kip axial load P is applied to a W6 3 12 rolled-steel column 
BC that is free at its top C and fixed at its base B. Knowing that 
the eccentricity of the load is e 5 0.25 in., determine the largest 
permissible length L if the allowable stress in the column is 
14 ksi. Use E 5 29 3 106 psi.

L

B

C

y

z
x

P

e

Fig. 10.48
C

B

A

y

z

L

e

P�

P

x

Fig. 10.49

 10.49 Axial loads of magnitude P 5 135 kips are applied parallel to the 
geometric axis of the W10 3 54 rolled-steel column AB and inter-
sect the x axis at a distance e from the geometric axis. Knowing 
that sall 5 12 ksi and E 5 29 3 106 psi, determine the largest 
permissible length L when (a) e 5 0.25 in., (b) e 5 0.5 in.

 10.50 Axial loads of magnitude P 5 84 kN are applied parallel to the 
geometric axis of the W200 3 22.5  rolled-steel column AB and 
intersect the x axis at a distance e from the geometric axis. Know-
ing that sall 5 75 MPa and E 5 200 GPa, determine the largest 
permissible length L when (a) e 5 5 mm, (b) e 5 12 mm.

C

B

A

y

z

L

e

P�

P

x

Fig. 10.50
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 10.51 An axial load of magnitude P 5 220 kN is applied at a point 
located on the x axis at a distance e 5 6 mm from the geometric 
axis of the wide-flange column BC. Knowing that E 5 200 GPa, 
choose the lightest W200 shape that can be used if sall 5 
120 MPa.

1.8 m

B

C

y

z

P

e

x

Fig. 10.51

10.52 Solve Prob. 10.51, assuming that the magnitude of the axial load 
is P 5 345 kN.

 10.53 A 12-kip axial load is applied with an eccentricity e 5 0.375 in. to 
the circular steel rod BC that is free at its top C and fixed at its base 
B. Knowing that the stock of rods available for use have diameters 
in increments of 1

8 in. from 1.5 in. to 3.0 in., determine the lightest 
rod that can be used if sall 5 15 ksi. Use E 5 29 3 106 psi.

 10.54 Solve Prob. 10.53, assuming that the 12-kip axial load will be 
applied to the rod with an eccentricity e 5 1

2 d.

 10.55 Axial loads of magnitude P 5 175 kN are applied parallel to the 
geometric axis of a W250 3 44.8 rolled-steel column AB and 
intersect the x axis at a distance e 5 12 mm from its geometric 
axis. Knowing that sY 5 250 MPa and E 5 200 GPa, determine 
the factor of safety with respect to yield. (Hint: Since the factor of 
safety must be applied to the load P, not to the stresses, use 
Fig. 10.24 to determine PY.)

 10.56 Solve Prob. 10.55, assuming that e 5 16 mm and P 5 155 kN.

B

D

y

x

d
4.0 ft

12 kips

z

e

C

Fig. 10.53

C

B

A

y

z

3.8 m

e

P�

P

x

Fig. 10.55
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722 Columns

10.3 CENTRIC LOAD DESIGN 
The preceding sections determined the critical load of a column by using 
Euler’s formula and investigated the deformations and stresses in eccen-
trically loaded columns by using the secant formula. In each case, all 
stresses remained below the proportional limit, and the column was 
initially a straight, homogeneous prism. Real columns fall short of such an 
idealization, and in practice the design of columns is based on empirical 
formulas that reflect the results of numerous laboratory tests.
 Over the last century, many steel columns have been tested by 
applying to them a centric axial load and increasing the load until failure 
occurred. The results of such tests are represented in Fig. 10.25 where a 
point has been plotted with its ordinate equal to the normal stress scr at 
failure and its abscissa is equal to the corresponding effective slenderness 
ratio Le yr. Although there is considerable scatter in the test results, regions 
corresponding to three types of failure can be observed. 

Short
columns

Intermediate columns Long columns

Euler’s critical stress

2E
(Le /r)2

Le/r

cr ��
Y�

�

cr�

Fig. 10.25 Plot of test data for steel columns.

•  For long columns, where Le yr is large, failure is closely predicted by 
Euler’s formula, and the value of scr depends on the modulus of 
elasticity E of the steel used—but not on its yield strength sY . 

•  For very short columns and compression blocks, failure essentially 
occurs as a result of yield, and scr < sY . 

•  For columns of intermediate length, failure is dependent on both sY 
and E. In this range, column failure is an extremely complex 
phenomenon, and test data is used extensively to guide the develop-
ment of specifications and design formulas.

 Empirical formulas for an allowable or critical stress given in terms 
of the effective slenderness ratio were first introduced over a century ago. 
Since then, they have undergone a process of refinement and improve-
ment. Typical empirical formulas used to approximate test data are shown 
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10.3 Centric Load Design  723

in Fig. 10.26. It is not always possible to use a single formula for all values 
of Le yr. Most design specifications use different formulas—each with a 
definite range of applicability. In each case we must check that the equa-
tion used is applicable for the value of Leyr for the column involved. 
Furthermore, it must determined whether the equation provides the criti-
cal stress for the column, to which the appropriate factor of safety must 
be applied, or if it provides an allowable stress.
 Photo 10.2 shows examples of columns that are designed using such 
design specification formulas. The design formulas for three different 
materials using Allowable Stress Design are presented next, followed by 
formulas for the design of steel columns based on Load and Resistance 
Factor Design.†

†In specific design formulas, the letter L always refers to the effective length of the 
column.
‡Manual of Steel Construction, 14th ed., American Institute of Steel Construction, 
Chicago, 2011.

Fig. 10.26 Plots of empirical formulas for critical stresses.

Gordon-Rankine formula:

11

Parabola:

Straight line:

k2

Le /r

crs

cr 5s 2 2         s

s

(  )2

k3

k1 r
Le

cr 5s

cr 5s

1 2s

3 

r
Le

(  )2
r
Le

(a) (b)
Photo 10.2 (a) The water tank is supported by steel columns. (b) The house under 
construction is framed with wood columns.

10.3A Allowable Stress Design
Structural Steel. The most commonly used formulas for allowable 
stress design of steel columns under a centric load are found in 
the Specification for Structural Steel Buildings of the American Institute 
of Steel Construction.‡ An exponential expression is used to predict 
sall for columns of short and intermediate lengths, and an Euler-based 
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724 Columns

relation is used for long columns. The design relationships are devel-
oped in two steps.

 1. A curve representing the variation of scr as a function of Lyr is 
obtained (Fig. 10.27). It is important to note that this curve does not 
incorporate any factor of safety.§ Portion AB of this curve is

 scr 5  30.6581sY yse2 4sY  (10.38)

where

 se 5
p2E

1Lyr22 (10.39)

Portion BC is

 scr 5 0.877se (10.40)

When Lyr 5 0, scr 5 sY in Eq. (10.38). At point B, Eq. (10.38) intersects 
Eq. (10.40). The slenderness Lyr at the junction between the two equations is

 
L
r

5 4.71 A
E
sY

 (10.41)

If Lyr is smaller than the value from Eq. (10.41), scr is determined from 
Eq. (10.38). If Lyr is greater, scr is determined from Eq. (10.40). At the 
slenderness Lyr specified in Eq. (10.41), the stress se 5 0.44 sY  . Using 
Eq. (10.40), scr 5 0.877 (0.44 sY) 5 0.39 sY  .
 2. A factor of safety must be used for the final design. The factor of 

safety given by the specification is 1.67. Thus ,

 sall 5
scr

1.67
 (10.42)

These equations can be used with SI or U.S. customary units.
 By using Eqs. (10.38), (10.40), (10.41), and (10.42), the allowable 
axial stress can be determined for a given grade of steel and any given 
value of Lyr. The procedure is to compute Lyr at the intersection between 
the two equations from Eq. (10.41). For smaller given values of Lyr, use 
Eqs. (10.38) and (10.42) to calculate sall , and if greater, use Eqs. (10.40) 
and (10.42). Figure 10.28 provides an example of how se varies as a func-
tion of Lyr for different grades of structural steel.

0

A

B

C

0.39

E4.71 L/r

cr

Y

�

�

�

Y

�Y

Fig. 10.27 Design curve for columns 
recommended by the American Institute of 
Steel Construction.

Fig. 10.28 Steel column design curves 
for different grades of steel.

0 50 100 150 200
L/r

all�

§In the Specification for Structural Steel Buildings, the symbol F is used for stresses.
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10.3 Centric Load Design  725

Concept Application 10.2

Determine the longest unsupported length L for which the S100 3 11.5 
rolled-steel compression member AB can safely carry the centric load 
shown (Fig. 10.29). Assume sY 5 250 MPa and E 5 200 GPa.

From Appendix C, for an S100 3 11.5 shape,

A 5 1460 mm2   rx 5 41.7 mm   ry 5 14.6 mm

If the 60-kN load is to be safely supported, 

sall 5
P

A
5

60 3 103 N

1460 3 1026 m2 5 41.1 3 106 Pa

To compute the critical stress scr  , we start by assuming that Lyr is 
larger than the slenderness specified by Eq. (10.41). We then use 
Eq. (10.40) with Eq. (10.39) and write

 scr 5 0.877 se 5 0.877 
p 

2E

1Lyr22

 5 0.877 
p 

21200 3 109 Pa2
1Lyr22 5

1.731 3 1012 Pa

1Lyr22

Using this expression in Eq. (10.42),

sall 5
scr

1.67
5

1.037 3 1012 Pa

1Lyr22

Equating this expression to the required value of sall gives

1.037 3 1012 Pa

1Lyr22 5 41.1 3 106 Pa       Lyr 5 158.8

The slenderness ratio from Eq. (10.41) is

L
r

5 4.71 B
200 3 109

250 3 106 5 133.2

Our assumption that Lyr is greater than this slenderness ratio is 
correct. Choosing the smaller of the two radii of gyration:

L
ry

5
L

14.6 3 1023 m
5 158.8   L 5 2.32 m

Fig. 10.29 Centrically 
loaded S100 3 11.5 
rolled steel member.

B

L

A

P � 60 kN
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726 Columns

Aluminum. Many aluminum alloys are used in structures and 
machines. For most columns, the specifications of the Aluminum Associa-
tion† provide two formulas for the allowable stress in columns under cen-
tric loading. The variation of sall with Lyr defined by these formulas is 
shown in Fig. 10.30. For short columns, a linear relationship between sall 
and Lyr is used. For long columns, an Euler-type equation is used. Specific 
formulas for the design of buildings and similar structures are given in 
both SI and U.S. customary units for two commonly used alloys.
 Alloy 6061-T6:

 Lyr , 66:    sall 5 320.3 2 0.1271Lyr2 4  ksi (10.43a)

  5 3140 2 0.8741Lyr2 4  MPa (10.43b)

 Lyr $ 66:    sall 5
51,400 ksi

1Lyr22 5
354 3 103 MPa

1Lyr22  (10.44a, b)

 Alloy 2014-T6:

 Lyr , 55:     sall 5 330.9 2 0.2291Lyr2 4  ksi (10.45a)

 5 3213 2 1.5771Lyr2 4  MPa (10.45b)

 Lyr $ 55:    sall 5
55,400 ksi

1Lyr22 5
382 3 103 MPa

1Lyr22  (10.46a, b)

Wood. For the design of wood columns, the specifications of the Amer-
ican Forest & Paper Association‡ provide a single equation to obtain the 
allowable stress for short, intermediate, and long columns under centric 
loading. For a column with a rectangular cross section of sides b and d, 
where d , b, the variation of sall with Lyd is shown in Fig. 10.31.
 For solid columns made from a single piece of wood or by gluing 
laminations together, the allowable stress sall is

 sall 5 sC CP (10.47)

where sC is the adjusted allowable stress for compression parallel to the 
grain.§ Adjustments for sC are included in the specifications to account 
for different variations (such as in the load duration). The column stability 
factor CP accounts for the column length and is defined by

   CP 5
1 1 1sCE ysC2

2c
2 B c

1 1 1sCE ysC2
2c

d 2

2
sCE ysC

c
 (10.48)

The parameter c accounts for the type of column, and it is equal to 0.8 for 
sawn lumber columns and 0.90 for glued laminated wood columns. The 
value of sCE is defined as

 sCE 5
0.822E

1Lyd22  (10.49)

where E is an adjusted modulus of elasticity for column buckling. Col-
umns in which Lyd exceeds 50 are not permitted by the National Design 
Specification for Wood Construction.

†Specifications for Aluminum Structures, Aluminum Association, Inc., Washington, 
D.C., 2010.
‡National Design Specification for Wood Construction, American Forest & Paper Associa-
tion, American Wood Council, Washington, D.C., 2012.
§In the National Design Specification for Wood Construction, the symbol F is used for stresses.

Fig. 10.30 Design curve for 
columns recommended by the 
Aluminum Association.

L
r

L/r

all � C1 � C2�

all�

C3

(L/r)2all ��

Fig. 10.31 Design curve for columns 
recommended by the American Forest & 
Paper Association.

L/d
500

all�

C�
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10.3 Centric Load Design  727

Concept Application 10.3
Knowing that column AB (Fig. 10.32) has an effective length of 14 ft 
and must safely carry a 32-kip load, design the column using a square 
glued laminated cross section. The adjusted modulus of elasticity for 
the wood is E 5 800 3 103 psi, and the adjusted allowable stress for 
compression parallel to the grain is sC 5 1060 psi.

 Note that c 5 0.90 for glued laminated wood columns. Computing 
the value of sCE , using Eq. (10.49), gives

sCE 5
0.822E

1Lyd22 5
0.8221800 3 103 psi2
1168 in./d22 5 23.299d 

2 psi

 Equation (10.48) is used to express the column stability factor in 
terms of d , with (sCE ysC) 5 (23.299d 2y1.060 3 103) 5 21.98 3 1023 d 2,

 CP 5
1 1 1sCE  

ysC2
2c

2 B c
1 1 1sCE  

ysC2
2c

d 2

2
sCE  

ysC

c

 5
1 1 21.98 3 1023 d 2

210.902 2 B c 1 1 21.98 3 1023 d 
2

210.902 d 2

2
21.98 3 1023 d 

2

0.90

Fig. 10.32 Centrically loaded 
wood column.

A

B

d
d

14 ft

P � 32 kips

(continued)
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728 Columns

10.3B  Load and Resistance Factor Design
*Structural Steel Section 1.5D gave an alternative method of design 
based on determining the load when the structure ceases to be useful. 
Design is based on the inequality given by

gD  
PD 1 gL 

PL # fPU (1.27)

The design of steel columns under a centric load using Load and Resis-
tance Factor Design with the American Institute of Steel Construction 
Specification is similar to that for the Allowable Stress Design. Using the 
critical stress scr  , the ultimate load PU is

 PU 5 scr A (10.50)

The critical stress scr is determined using Eq. (10.41) for the slenderness 
at the junction between Eqs. (10.38) and Eq. (10.40). If the specified slen-
derness Lyr is smaller than in Eq. (10.41), Eq. (10.38) governs. If it is larger, 
Eq. (10.40) governs. The equations can be used with SI or U.S. customary 
units.
 By using Eq. (10.50) with Eq. (1.27), it can be determined if the 
design is acceptable. First calculate the slenderness ratio from 
Eq. (10.41). For values of Lyr smaller than this slenderness, the ultimate 
load PU used with Eq. (1.27) is obtained from Eq. (10.50), where scr is 
determined from Eq. (10.38). For values of Lyr larger than this slender-
ness, the ultimate load PU is found by using Eq. (10.50) with Eq. (10.40). 
The Load and Resistance Factor Design Specification of the American 
Institute of Steel Construction specifies that the resistance factor f is 0.90.

  Note: The design formulas presented throughout Sec. 10.3 are 
examples of different design approaches. These equations do not 
provide all of the requirements needed for many designs, and the 
student should refer to the appropriate design specifications before 
attempting actual designs.

Since the column must carry 32 kips, Eq. (10.47) gives

sall 5
32 kips

d 
2 5 sC 

CP 5 1.060CP

Solving this equation for CP and substituting the value into the previ-
ous equation, we obtain

30.19

d 
2 5

1 1 21.98 3 1023 d 
2

210.902 2 B c 1 1 21.98 3 1023 d 
2

210.902 d 2

2
21.98 3 1023 d 

2

0.90

Solving for d by trial and error yields d 5 6.45 in.
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10.3 Centric Load Design  729

Sample Problem 10.3
Column AB consists of a W10 3 39 rolled-steel shape made of a grade 
of steel for which sY 5 36 ksi and E 5 29 3 106 psi. Determine the 
allowable centric load P (a) if the effective length of the column is 24 ft 
in all directions, (b) if bracing is provided to prevent the movement of 
the midpoint C in the xz plane. (Assume that the movement of point C 
in the yz plane is not affected by the bracing.)

STRATEGY: The allowable centric load for part a is determined from 
the governing allowable stress design equation for steel, Eq. (10.38) or 
Eq. (10.40), based on buckling associated with the axis with a smaller 
radius of gyration since the effective lengths are the same. In part b, it 
is necessary to determine the effective slenderness ratios for both axes, 
including the reduced effective length due to the bracing. The larger 
slenderness ratio governs the design.

MODELING: First compute the slenderness ratio from Eq. (10.41) 
corresponding to the given yield strength sY 5 36 ksi.

L
r

5 4.71 B29 3 106

36 3 103 5 133.7

ANALYSIS:

 a. Effective Length 5 24 ft. The column is shown in Fig. 1a. 
Knowing that ry , rx , buckling takes place in the xz plane (Fig. 2). For 
L 5 24 ft and r 5 ry 5 1.98 in., the slenderness ratio is

L
ry

5
124 3 122 in.

1.98 in.
5

288 in.

1.98 in.
5 145.5

Since Lyr . 133.7, Eq. (10.39) in Eq. (10.40) is used to determine

scr 5 0.877se 5 0.877 
p 

2E

1L yr22 5 0.877 
p 

2129 3 103 ksi2
1145.522 5 11.86 ksi

The allowable stress is determined using Eq. (10.42)

 sall 5  
scr

1.67
5

11.86 ksi

1.67
5 7.10 ksi

and

  Pall 5 sall A 5 17.10 ksi2 111.5 in22 5 81.7 kips >

(continued)

y

x

W10 � 39
A � 11.5 in2

rx � 4.27 in.
ry � 1.98 in.

y

A

B

24 ft

z

P

x

(a)

y

A

C

B

12 ft

12 ft

z

x

(b)

P

Fig. 1 Centrically loaded column 
(a) unbraced, (b) braced.

y

B

24 ft

z

x

A

Fig. 2 Buckled shape for 
unbraced column.
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730 Columns

 b. Bracing at Midpoint C. The column is shown in Fig. 1b. Since 
bracing prevents movement of point C in the xz plane but not in the 
yz plane, the slenderness ratio corresponding to buckling in each 
plane (Fig. 3) is computed to determine which is larger.

xz Plane:  Effective length 5 12 ft 5 144 in., r 5 ry 5 1.98 in.

Lyr 5 (144 in.)y(1.98 in.) 5 72.7

yz Plane:  Effective length 5 24 ft 5 288 in., r 5 rx 5 4.27 in.

Lyr 5 (288 in.)y(4.27 in.) 5 67.4

Since the larger slenderness ratio corresponds to a smaller allowable 
load, we choose Lyr 5 72.7. Since this is smaller than Lyr 5 133.7, 
Eqs. (10.39) and (10.38) are used to determine scr  :

 se 5
p2E

1L yr22 5
p2129 3 103 ksi2

172.722 5 54.1 ksi

 scr 5 30.6581sYyse2 4  FY 5 30.658136 ksiy54.1 ksi2 4  36 ksi 5 27.3 ksi

The allowable stress using Eq. (10.42) and the allowable load are

 sall 5
scr

1.67
5

27.3 ksi

1.67
5 16.32 ksi

Pall 5 sall A 5 116.32 ksi2 111.5 in22 Pall 5 187.7 kips >

REFLECT and THINK: This sample problem shows the benefit of 
using bracing to reduce the effective length for buckling about the 
weak axis when a column has significantly different radii of gyration, 
which is typical for steel wide-flange columns.

y

B

24 ft

z

x

A

y

B

12 ft

12 ft

z

x

A

C

Buckling in xz plane Buckling in yz plane

Fig. 3 Buckled shapes for braced column.
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10.3 Centric Load Design  731

Sample Problem 10.4
Using the aluminum alloy 2014-T6 for the circular rod shown, deter-
mine the smallest diameter that can be used to support the centric 
load P 5 60 kN if (a) L 5 750 mm, (b) L 5 300 mm.

STRATEGY: Use the aluminum allowable stress equations to design 
the column, i.e., to determine the smallest diameter that can be used. 
Since there are two design equations based on Lyr, it is first necessary 
to assume which governs. Then check the assumption.

MODELING: For the cross section of the solid circular rod shown in 
Fig. 1,

I 5
p

4
 c 

4    A 5 pc 
2    r 5 B I

A
5 B

pc 
4 y 4

pc 
2 5

c
2

ANALYSIS:

a. Length of 750 mm. Since the diameter of the rod is not 
known, Lyr must be assumed. Assume that Lyr . 55 and use Eq. (10.46). 
For the centric load P, s 5 P/A and write

 
P

A
5 sall 5

382 3 103 MPa

1L yr22
(continued)

A

d

B

L

P � 60 kN

d

c

Fig. 1 Cross section 
of aluminum column.
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732 Columns

 
60 3 103 N

pc 
2 5

382 3 109 Pa

a0.750 m

cy 2
b2

 c4 5 112.5 3 1029 m4  c 5 18.31 mm

For c 5 18.31 mm, the slenderness ratio is

L
r

5
L

cy2
5

750 mm

118.31 mm2y2
5 81.9 . 55

The assumption that L/r is greater than 55 is correct. For L 5 750 mm, 
the required diameter is

 d 5 2c 5 2118.31 mm2 d 5 36.6 mm  >

 b. Length of 300 mm. Assume that Lyr . 55. Using Eq. (10.46) 
and following the procedure used in part a, c 5 11.58 mm and Lyr 5 
51.8. Since Lyr is less than 55, this assumption is wrong. Now assume 
that Lyr , 55 and use Eq. (10.45b) for the design of this rod.

 
P
A

5 sall 5 c 213 2 1.577 aL
r
b d  MPa

 
60 3 103 N

pc2 5 c 213 2 1.577 a0.3 m

cy2
b d  106 Pa

 c 5 11.95 mm

For c 5 11.95 mm, the slenderness ratio is

L
r

5
L

cy2
5

300 mm

111.95 mm2y2
5 50.2

The second assumption that Lyr , 55 is correct. For L 5 300 mm, the 
required diameter is

 d 5 2c 5 2111.95 mm2 d 5 23.9 mm  >
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 10.57 Using allowable stress design, determine the allowable centric 
load for a column of 6-m effective length that is made from the 
following rolled-steel shape: (a) W200 3 35.9, (b) W200 3 86. Use 
sY 5 250 MPa and E 5 200 GPa.

 10.58 A W8 3 31 rolled-steel shape is used for a column of 21-ft effec-
tive length. Using allowable stress design, determine the allow-
able centric load if the yield strength of the grade of steel used is 
(a) sY 5 36 ksi, (b) sY 5 50 ksi. Use E 5 29 3 106 psi.

 10.59 A rectangular structural tube having the cross section shown is 
used as a column of 5-m effective length . Knowing that sY 5 250 MPa 
and E 5 200 GPa, use allowable stress design to determine the 
largest centric load that can be applied to the steel column.

 10.60 A column having a 3.5-m effective length is made of sawn lumber 
with a 114 3 140-mm cross section. Knowing that for the grade 
of wood used the adjusted allowable stress for compression par-
allel to the grain is sC 5 7.6 MPa and the adjusted modulus 
E 5 2.8 GPa, determine the maximum allowable centric load for 
the column.

 10.61 A sawn lumber column with a 7.5 3 5.5-in . cross section has an 
18-ft effective length. Knowing that for the grade of wood used 
the adjusted allowable stress for compression parallel to the grain 
is sC 5 1200 psi and that the adjusted modulus E 5 470 3 103

psi, determine the maximum allowable centric load for the 
column.

 10.62 Bar AB is free at its end A and fixed at its base B. Determine the 
allowable centric load P if the aluminum alloy is (a) 6061-T6, 
(b) 2014-T6.

10.63 A compression member has the cross section shown and an 
effective length of 5 ft. Knowing that the aluminum alloy used is 
2014-T6, determine the allowable centric load.

Problems

Fig. P10.59

178 mm

127 mm

t 5 8 mm

P

B

A

85 mm

30 mm
10 mm

Fig. P10.62

4.0 in.

4.0 in.

t 5 0.375 in.

Fig. P10.63
4 in.

4 in.

0.6 in.

0.4 in.

0.6 in.

Fig. P10.64

 10.64 A compression member has the cross section shown and an 
effective length of 5 ft. Knowing that the aluminum alloy used is 
6061-T6, determine the allowable centric load.
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 10.65 A compression member of 8.2-ft effective length is obtained by 
bolting together two L5 3 3 3 1

2-in. steel angles as shown. Using 
allowable stress design, determine the allowable centric load for 
the column. Use sY 5 36 ksi and E 5 29 3 106 psi.

 10.66 A compression member of 9-m effective length is obtained by 
welding two 10-mm-thick steel plates to a W250 3 80 rolled-steel 
shape as shown. Knowing that sY 5 345 MPa and E 5 200 GPa 
and using allowable stress design, determine the allowable cen-
tric load for the compression member.

10.67 A column of 6.4-m effective length is obtained by connecting four 
L89 3 89 3 9.5-mm steel angles with lacing bars as shown. Using 
allowable stress design, determine the allowable centric load for 
the column. Use sY 5 345 MPa and E 5 200 GPa.

 10.68 A column of 21-ft effective length is obtained by connecting 
C10 3 20 steel channels with lacing bars as shown. Using allow-
able stress design, determine the allowable centric load for the 
column. Use sY 5 36 ksi and E 5 29 3 106 psi.

89 mm

89 mm

Fig. P10.67

7.0 in.

Fig. P10.68

190 mm

38 mm

38 mm

38 mm

38 mm

Fig. P10.69

 10.69 The glued laminated column shown is made from four planks, 
each of 38 3 190-mm cross section. Knowing that for the grade 
of wood used the adjusted allowable stress for compression par-
allel to the grain is sC 5 10 MPa and E 5 12 GPa, determine the 
maximum allowable centric load if the effective length of the col-
umn is (a) 7 m, (b) 3 m.

54 mm

8 mm

6 mm 6 mm

34 mm
8 mm 8 mm

8 mm

Fig. P10.70

10.70 An aluminum structural tube is reinforced by bolting two plates 
to it as shown for use as a column of 1.7-m effective length. 
Knowing that all material is aluminum alloy 2014-T6, determine 
the maximum allowable centric load.

Fig. P10.65

Fig. P10.66
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 10.71 The glued laminated column shown is free at its top A and fixed 
at its base B. Using wood that has an adjusted allowable stress for 
compression parallel to the grain sC 5 9.2 MPa and an adjusted 
modulus of elasticity E 5 5.7 GPa, determine the smallest cross 
section that can support a centric load of 62 kN.

2 m

A

B

d
d

P

Fig. P10.71 b d

P

Fig. P10.72

150 mm

25 mm
25 mm
25 mm

A

B

P

Fig. P10.73

 10.72 An 18-kip centric load is applied to a rectangular sawn lumber 
column of 22-ft effective length. Using  lumber for which the 
adjusted allowable stress for compression parallel to the grain is 
sC 5 1050 psi and the adjusted modulus is E 5 440 3 103 psi, 
determine the smallest cross section that can be used. Use b 5 2d.

 10.73 A laminated column of 2.1-m effective length is to be made by 
gluing together wood pieces of 25 3 150-mm cross section. 
Knowing that for the grade of wood used the adjusted allowable 
stress for compression parallel to the grain is sC 5 7.7 MPa and 
the adjusted modulus is E 5 5.4 GPa, determine the number of 
wood pieces that must be used to support the concentric load 
shown when (a) P 5 52 kN, (b) P 5 108 kN.
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 10.74 For a rod made of aluminum alloy 2014-T6, select the smallest 
square cross section that can be used if the rod is to carry a 55-kip 
centric load.

A

B

20 in.
dd

P� 55 kips

Fig. P10.74

A

B

2b b

0.45 m

P

Fig. P10.75

A

B

2.25 m 90-mm outside
diameter

120 kN

Fig. P10.76

 10.75 A 72-kN centric load must be supported by an aluminum column 
as shown. Using the aluminum alloy 6061-T6, determine the 
minimum dimension b that can be used.

10.76 An aluminum tube of 90-mm outer diameter is to carry a centric 
load of 120 kN. Knowing that the stock of tubes available for use 
are made of alloy 2014-T6 and with wall thicknesses in incre-
ments of 3 mm from 6 mm to 15 mm, determine the lightest tube 
that can be used.

 10.77 A column of 4.6-m effective length must carry a centric load of 
525 kN. Knowing that sY 5 345 MPa and E 5 200 GPa, use allow-
able stress design to select the wide-flange shape of 200-mm 
nominal depth that should be used.
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 10.78 A column of 22.5-ft effective length must carry a centric load of 
288 kips. Using allowable stress design, select the wide-flange 
shape of 14-in. nominal depth that should be used. Use sY 5

50 ksi and E 5 29 3 106 psi.

 10.79 A column of 17-ft effective length must carry a centric load of 
235 kips. Using allowable stress design, select the wide-flange 
shape of 10-in. nominal depth that should be used. Use sY 5

36 ksi and E 5 29 3 106 psi. 

 10.80 A centric load P must be supported by the steel bar AB. Using 
allowable stress design, determine the smallest dimension d of 
the cross section that can be used when (a) P 5 108 kN, (b) P 5
166 kN. Use sY 5 250 MPa and E 5 200 GPa.

10.81 A square steel tube having the cross section shown is used as a 
column of 26-ft effective length to carry a centric load of 65 kips. 
Knowing that the tubes available for use are made with wall 
thicknesses ranging from 1

4 in . to 3
4 in. in increments of 1

16 in., use 
allowable stress design to determine the lightest tube that can be 
used. Use sY 5 36 ksi and E 5 29 3 106 psi.

A

B

3 d 1.4 md

P

Fig. P10.80

6 in.

6 in.

Fig. P10.81

10.82 Solve Prob. 10.81, assuming that the effective length of the col-
umn is decreased to 20 ft.

 10.83 Two 89 3 64-mm angles are bolted together as shown for use as 
a column of 2.4-m effective length to carry a centric load of 
180 kN. Knowing that the angles available have thicknesses of 
6.4 mm, 9.5 mm, and 12.7 mm, use allowable stress design to 
determine the lightest angles that can be used. Use sY 5 250 MPa 
and E 5 200 GPa.

89 mm 89 mm

64 mm

Fig. P10.83
64 mm 64 mm

89 mm

Fig. P10.84

 10.84 Two 89 3 64-mm angles are bolted together as shown for use as 
a column of 2.4-m effective length to carry a centric load of 
325 kN. Knowing that the angles available have thicknesses of 
6.4 mm, 9.5 mm, and 12.7 mm, use allowable stress design to 
determine the lightest angles that can be used. Use sY 5 250 MPa 
and E 5 200 GPa.
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 *10.85 A rectangular steel tube having the cross section shown is used 
as a column of 14.5-ft effective length. Knowing that sY 5 36 ksi 
and E 5 29 3 106 psi, use load and resistance factor design to 
determine the largest centric live load that can be applied if the 
centric dead load is 54 kips. Use a dead load factor gD 5 1.2, a 
live load factor gL 5 1.6 and the resistance factor f 5 0.90.

7 in.

5 in.

in.t 5 5
16

Fig. P10.85

6 in.

6 in.

Fig. P10.88

 *10.86 A column with a 5.8-m effective length supports a centric load, 
with ratio of dead to live load equal to 1.35. The dead load factor 
is gD 5 1.2, the live load factor gL 5 1.6, and the resistance factor 
f 5 0.90. Use load and resistance factor design to determine the 
allowable centric dead and live loads if the column is made of 
the following rolled-steel shape: (a) W250 3 67, (b) W360 3 101. 
Use sY 5 345 MPa and E 5 200 GPa.

 *10.87 A steel column of 5.5-m effective length must carry a centric dead 
load of 310 kN and a centric live load of 375 kN. Knowing that 
sY 5 250 MPa and E 5 200 GPa, use load and resistance factor 
design to select the wide-flange shape of 310-mm nominal depth 
that should be used. The dead load factor gD 5 1.2, the live load 
factor gL 5 1.6, and the resistance factor f 5 0.90.

 *10.88 The steel tube having the cross section shown is used as a col-
umn of 15-ft effective length to carry a centric dead load of 
51 kips and a centric live load of 58 kips. Knowing that the tubes 
available for use are made with wall thicknesses in increments of 
1

16 in. from 3
16 in. to 3

8 in., use load and resistance factor design to 
determine the lightest tube that can be used. Use sY 5 36 ksi and 
E 5 29 3 106 psi. The dead load factor gD 5 1.2, the live load 
factor gL 5 1.6, and the resistance factor f 5 0.90.
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10.4 Eccentric Load Design 739

10.4 ECCENTRIC LOAD DESIGN
In this section, the design of columns subjected to an eccentric load is 
considered. The empirical formulas developed in the preceding section 
for columns under a centric load can be modified and used when load P
is applied to the column with a known eccentricity e.
 Recall from Sec. 4.7 that an eccentric axial load P applied in a plane 
of symmetry can be replaced by an equivalent system consisting of a cen-
tric load P and a couple M of moment M 5 Pe, where e is the distance 
from the line of action of the load to the longitudinal axis of the column 
(Fig. 10.33). The normal stresses exerted on a transverse section of the 
column are obtained by superposing the stresses due to the centric load 
P and the couple M (Fig. 10.34), provided that the section is not too close 

Fig. 10.33 Eccentric axial load replaced 
with an equivalent centric load and couple.

P
e

C
M � Pe

C

P

Fig. 10.34 Normal stress of an eccentrically 
loaded column is the superposition of centric 
axial and bending stresses.

centric �
P
A�

bending�

Mc
I

to either end of the column and as long as the stresses do not exceed the 
proportional limit of the material. The normal stress due to the eccentric 
load P can be expressed as

s 5 scentric 1 sbending (10.51)

The maximum compressive stress in the column is

smax 5
P

A
1

Mc
I

 (10.52)

 In a properly designed column, the maximum stress given in 
Eq. (10.52) should not exceed the allowable stress for the column. Two 
alternative approaches can be used to satisfy this requirement: the 
allowable-stress method and the interaction method.

Allowable-Stress Method. This method is based on the assump-
tion that the allowable stress for an eccentrically loaded column is the 
same as if the column were centrically loaded. Therefore, smax # sall, 
where sall is the allowable stress under a centric load. Substituting for smax

from Eq. (10.52) gives

P

A
1

Mc
I

 # sall (10.53)

The allowable stress is determined using the same equations in Sec. 10.3. 
For a given material, these equations express sall as a function of the slen-
derness ratio of the column. Engineering codes require that the largest 
value of the slenderness ratio of the column be used to determine the 
allowable stress, whether it corresponds to the actual plane of bending or 
not. This requirement sometimes results in an overly conservative design.
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740 Columns

Concept Application 10.4
A column with a 2-in.-square cross section and 28-in. effective length 
is made of the aluminum alloy 2014-T6 (Fig. 10.35). Using the 
allowable-stress method, determine the maximum load P that can be 
safely supported with an eccentricity of 0.8 in.

 Compute the radius of gyration r using the given data:

A 5 12 in.22 5 4 in2  I 5
1

12 12 in.24 5 1.333 in4

r 5 B
I
A

5 B
1.333 in4

4 in2 5 0.5774 in.

 Next, compute Lyr 5 (28 in.)y(0.5774 in.) 5 48.50.
 Since Lyr , 55, use Eq. (10.45a) to determine the allowable stress 
for the aluminum column subjected to a centric load.

sall 5 330.9 2 0.229148.502 4 5 19.79 ksi

 Now use Eq. (10.53) with M 5 Pe and c 5
1
2 
12 in.2 5 1 in. to deter-

mine the allowable load:

P

4 in2 1
P10.8 in.2 11 in.2

1.333 in4 # 19.79 ksi

P # 23.3 kips

 The maximum load that can be safely applied is P 5 23.3 kips.

e

2 in.

2 in.
28 in.

A

B

P

Fig. 10.35 Column subjected to eccentric 
axial load.

Interaction Method. Recall that the allowable stress for a column 
subjected to a centric load (Fig. 10.36a) is generally smaller than the 
allowable stress for a column in pure bending (Fig. 10.36b), since it takes 
into account the possibility of buckling. Therefore, when the allowable-
stress method is used to design an eccentrically loaded column such that 
the sum of the stresses due to the centric load P and the bending couple 
M (Fig. 10.36c) does not exceed the allowable stress for a centrically loaded 
column, the resulting design is often overly conservative. An improved 
method of design can be developed by rewriting Eq. (10.53) in the form

 
PyA

sall
1

McyI

sall
# 1 (10.54)

and substituting for sall in the first and second terms the allowable stresses, 
that correspond, respectively, to the allowable stresses obtained for the 
centric load of Fig. 10.36a and the pure bending of Fig. 10.36b. Thus,

 
PyA

1sall2centric
1

Mc y I

1sall2bending
# 1 (10.55)

This is known as an interaction formula.

(a)

P'

P

(b)

M'

M

(c)

M'

P'

P

M

Fig. 10.36 Column subjected to 
(a) centric axial load, (b) pure bending, 
(c) eccentric load.
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10.4 Eccentric Load Design 741

 When the eccentric load P is not applied in a plane of symmetry, it 
causes bending about both of the principal axes of the cross section of 
the column. The eccentric load P then can be replaced by a centric load 
P and two couples Mx and Mz, as shown in Fig. 10.37. The interaction 
formula to be used is

PyA

1sall2centric
1
ƒMx ƒ z max 

yIx

1sall2bending
1
ƒMz ƒ x max 

yIz

1sall2bending
# 1 (10.56)

Concept Application 10.5
Use the interaction method to determine the maximum load P that 
can be safely supported by the column of Concept Application 10.4 
with an eccentricity of 0.8 in. The allowable stress in bending is 24 ksi.

 The value of (sall)centric has been determined and thus

1sall2centric 5 19.79 ksi  1sall2bending 5 24 ksi

 Substituting these values into Eq. (10.55),

PyA

19.79 ksi
1

McyI

24 ksi
# 1.0

 Use the numerical data from Concept Application 10.4 to write

Py4

19.79 ksi
1

P10.82 11.02y1.333

24 ksi
# 1.0

P # 26.6 kips

 The maximum load that can be safely applied is P 5 26.6 kips.

C

y

z

Mz

Mx

C
x

P

P

Fig. 10.37 Equivalent centric load and couples 
for an eccentric axial load causing biaxial bending.

 When M 5 0, the use of Eq. (10.55) results in the design of a centri-
cally loaded column by the method of Sec. 10.3. On the other hand, when 
P 5 0, this equation results in the design of a beam in pure bending by 
the method of Sec. 5.3. When P and M are both different from zero, the 
interaction formula results in a design that takes into account the capacity 
of the member to resist bending as well as axial loading. In all cases, 
(sall)centric is determined by using the largest slenderness ratio of the col-
umn, regardless of the plane in which bending takes place.†

† This procedure is required by all major codes for the design of steel, aluminum, and 
timber compression members. In addition, many specifications call for the use of an 
additional factor in the second term of Eq. (10.55). This factor takes into account the 
additional stresses resulting from the deflection of the column due to bending.
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Sample Problem 10.5
Using the allowable-stress method, determine the largest load P that 
can be safely carried by a W310 3 74 steel column of 4.5-m effective 
length. Use E 5 200 GPa and sY 5 250 MPa.

STRATEGY: Determine the allowable centric stress for the column, 
using the governing allowable stress design equation for steel, 
Eq. (10.38) or Eq. (10.40) with Eq. (10.42). Then use Eq. (10.53) to cal-
culate the load P.

MODELING and ANALYSIS:

The largest slenderness ratio of the column is Lyry 5 (4.5 m)y
(0.0498 m) 5 90.4. Using Eq. (10.41) with E 5 200 GPa and sY 5 250 MPa, 
the slenderness ratio at the junction between the two equations for scr 
is Lyr 5 133.2. Thus, Eqs. (10.38) and (10.39) are used, and 
scr 5 162.2 MPa. Using Eq. (10.42), the allowable stress is

1sall2centric 5 162.2y1.67 5 97.1 MPa

For the given column, replacing the eccentric loading with a centric 
force-couple system acting at the centroid (Fig. 1), we write

P
A

5
P

9.42 3 1023 m2  
Mc

I
5

M
S

5
P 10.200 m2

1.050 3 1023 m3

Substituting into Eq. (10.53), we obtain

P

A
1

Mc
I

# sall

P

9.42 3 1023 m2 1
P 10.200 m2

1.050 3 1023 m3 # 97.1 MPa  P # 327 kN

The largest allowable load P is P 5 327 kNw ◀

200 mm

C

P

200 mm

C C

M � P(0.200 m)

PP

Fig. 1 Eccentric loading replaced by 
centric force-couple system acting at 
column’s centroid.

y

x

C

W310 � 74
A � 9420 mm2

rx � 132 mm

Sx � 1050 � 103 mm3
ry � 49.8 mm
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10.4 Eccentric Load Design 743

Sample Problem 10.6
Using the interaction method, solve Sample Prob. 10.5. Assume 
(sall)bending 5 150 MPa.

STRATEGY: Use the allowable centric stress found in Sample Prob-
lem 10.5 to calculate the load P.

MODELING and ANALYSIS:

Using Eq. (10.55), 

P yA

1sall2centric
1

Mc yI

1sall2bending
# 1

Substituting the allowable bending stress and the allowable centric 
stress found in Sample Prob. 10.5, as well as the other given data, we 
obtain

Py19.42 3 1023 m22
97.1 3 106 Pa

1
P10.200 m2y11.050 3 1023 m32

150 3 106 Pa
# 1

P # 423 kN

The largest allowable load P is P 5 423 kNw ◀ 

Sample Problem 10.7
A steel column with an effective length of 16 ft is loaded eccentrically 
as shown. Using the interaction method, select the wide-flange shape 
of 8-in. nominal depth that should be used. Assume E 5 29 3 106 psi 
and sY 5 36 ksi, and use an allowable stress in bending of 22 ksi.

STRATEGY: It is necessary to select the lightest column that satisfies 
Eq. (l0.55). This involves a trial-and-error process, which can be short-
ened if the first 8-in. wide-flange shape selected is close to the final 
solution. This is done by using the allowable-stress method, Eq. (10.53), 
with an approximate allowable stress.

MODELING and ANALYSIS:

So that we can select a trial section, we use the allowable-stress method 
with sall 5 22 ksi and write

 sall 5
P

A
1

Mc
Ix

5
P

A
1

Mc

Ar 
2
x

 (1)

(continued)

C

5 in.

P � 85 kips
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744 Columns

From Appendix C, we observe that for shapes of 8-in. nominal depth 
c < 4 in. and rx < 3.5 in. Using Fig. 1 and substituting into Eq. (1), 

22 ksi 5
85 kips

A
1
1425 kip?in.2 14 in.2

A13.5 in.22   A < 10.2 in2

For a first trial shape, select W8 3 35.

 Trial 1: W8 3 35 (Fig. 2).  The allowable stresses are

Allowable Bending Stress:  (see data)  1sall2bending 5 22 ksi

Allowable Concentric Stress:  The largest slenderness ratio of the col-
umn is Lyry 5 (192 in.)y(2.03 in.) 5 94.6. Using Eq. (10.41) with 
E 5 29 3 106 psi and sY 5 36 ksi, the slenderness ratio at the junction 
between the two equations for scr is Lyr 5 133.7. Thus, use Eqs. (10.38) 
and (10.39) and find scr 5 22.5 ksi. Using Eq. (10.42), the allowable 
stress is

1sall2centric 5 22.5y1.67 5 13.46 ksi

 For the W8 3 35 trial shape,

P
A

5
85 kips

10.3 in2 5 8.25 ksi  
Mc

I
5

M
Sx

5
425 kip?in.

31.2 in3 5 13.62 ksi

With this data, the left-hand member of Eq. (10.55) is

PyA

1sall2centric
1

McyI

1sall2bending
5

8.25 ksi

13.46 ksi
1

13.62 ksi

22 ksi
5 1.232

Since 1.232 . 1.000, the requirement expressed by the interaction 
formula is not satisfied. Select a larger trial shape.

Trial 2: W8 3 48 (Fig.3).  Following the procedure used in trial 1 
gives

L
ry

5
192 in.

2.08 in.
5 92.3  1sall2centric 5 13.76 ksi

P

A
5

85 kips

14.1 in2 5 6.03 ksi  
Mc

I
5

M

Sx
5

425 kip?in.

43.2 in3 5 9.84 ksi

Substituting into Eq. (10.55) gives

PyA

1sall2centric
1

McyI

1sall2bending
5

6.03 ksi

13.76 ksi
1

9.82 ksi

22 ksi
5 0.885 , 1.000

The W8 3 48 shape is satisfactory but may be unnecessarily large.

Trial 3: W8 3 40 (Fig.4).  Following the same procedure, the 
interaction formula is not satisfied.

Selection of Shape.  The shape to be used is W8 3 48 ◀

y

xC

W8 � 35

A � 10.3 in2

rx � 3.51 in.
ry � 2.03 in.
Sx � 31.2 in3

L � 16 ft � 192 in.
Fig. 2 Section properties for 
W8 3 35.

y

xC

W8 � 48

A � 14.1 in2

rx � 3.61 in.
ry � 2.08 in.
Sx � 43.2 in3

L � 16 ft � 192 in.
Fig. 3 Section properties for 
W8 3 48.

y

xC

W8 � 40

A � 11.7 in2

rx � 3.53 in.
ry � 2.04 in.
Sx � 35.5 in3

L � 16 ft � 192 in.
Fig. 4 Section properties for 
W8 3 40.

5 in.

P � 85 kips

C

z

x

y

P � 85 kips

M � (85 kips)(5 in.)
� 425 kip · in.

C

z

x

y

Fig. 1 Eccentric loading replaced by 
equivalent force-couple at column’s centroid.
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 10.89 An eccentric load is applied at a point 22 mm from the geometric 
axis of a 60-mm-diameter rod made of a steel for which sY 5

250 MPa and E 5 200 GPa. Using the allowable-stress method, 
determine the allowable load P.

Problems

22 mm

60 mm diameter
1.2 m

A

B

P

Fig. P10.89

e
x

y

z

C
D

7.5 in.

5.0 in.

P

Fig. P10.91

Fig. P10.93

e

152 mm

152 mm

15 mm

5.5 m

A

B

P

10.90 Solve Prob, 10.89, assuming that the load is applied at a point 
40 mm from the geometric axis and that the effective length is 0.9 m.

 10.91 A sawn-lumber column of 5.0 3 7.5-in. cross section has an effec-
tive length of 8.5 ft. The grade of wood used has an adjusted 
allowable stress for compression parallel to the grain sC 5

1180 psi and an adjusted modulus E 5 440 3 103 psi. Using the 
allowable-stress method, determine the largest eccentric load P 
that can be applied when (a) e 5 0.5 in., (b) e 5 1.0 in.

 10.92 Solve Prob. 10.91 using the interaction method and an allowable 
stress in bending of 1300 psi.

 10.93 A column of 5.5-m effective length is made of the aluminum alloy 
2014-T6 for which the allowable stress in bending is 220 MPa. 
Using the interaction method, determine the allowable load P, 
knowing that the eccentricity is (a) e 5 0, (b) e 5 40 mm.

10.94 Solve Prob. 10.93, assuming that the effective length of the col-
umn is 3.0 m.
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 10.95 A steel compression member of 9-ft effective length supports an 
eccentric load as shown. Using the allowable-stress method, 
determine the maximum allowable eccentricity e if (a) P 5

30 kips, (b) P 5 18 kips. Use sY 5 36 ksi and E 5 29 3 106 psi.

W4 3 13

e

C

D

P

Fig. P10.95

P � 85 kN

C
D

z

y

240 mm

180 mm

x

25 mm

Fig. P10.99

L

A

B

D

P

4 in.

3 in. 3 in.

in.3
16

Fig. P10.97

10.96 Solve Prob. 10.95, assuming that the effective length of the col-
umn is increased to 12 ft and that (a) P 5 20 kips, (b) P 5

15 kips.

 10.97 Two L4 3 3 3 3
8-in. steel angles are welded together to form the 

column AB. An axial load P of magnitude 14 kips is applied at 
point D. Using the allowable-stress method, determine the larg-
est allowable length L. Assume sY 5 36 ksi and E 5 29 3 106 psi.

10.98 Solve Prob. 10.97 using the interaction method with P 5 18 kips 
and an allowable stress in bending of 22 ksi.

 10.99 A rectangular column is made of a grade of sawn wood that has 
an adjusted allowable stress for compression parallel to the grain 
sC 5 8.3 MPa and an adjusted modulus of elasticity E 5 11.1 GPa. 
Using the allowable-stress method, determine the largest allow-
able effective length L that can be used.

 10.100 Solve Prob. 10.99, assuming that P 5 105 kN.
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 10.101 An eccentric load P 5 48 kN is applied at a point 20 mm from 
the geometric axis of a 50-mm-diameter rod made of the alumi-
num alloy 6061-T6. Using the interaction method and an allow-
able stress in bending of 145 MPa, determine the largest allowable 
effective length L that can be used.

P 5 48 kN
20 mm

50 mm diameter
L

A

B

Fig. P10.101

P

C D

d 40 mm

18 mm

Fig. P10.103

2.2 m
80-mm outer

diameter

A

B

e

e � 20 mm
P

Fig. P10.105

 10.102 Solve Prob. 10.101, assuming that the aluminum alloy used is 
2014-T6 and that the allowable stress in bending is 180 MPa.

 10.103 A compression member made of steel has a 720-mm effective 
length and must support the 198-kN load P as shown. For the 
material used sY 5 250 MPa and E 5 200 GPa. Using the interac-
tion method with an allowable bending stress equal to 150 MPa, 
determine the smallest dimension d of the cross section that can 
be used.

 10.104 Solve Prob. 10.103, assuming that the effective length is 1.62 m 
and that the magnitude of P of the eccentric load is 128 kN.

 10.105 A steel tube of 80-mm outer diameter is to carry a 93-kN load P
with an eccentricity of 20 mm. The tubes available for use are 
made with wall thicknesses in increments of 3 mm from 6 mm to 
15 mm. Using the allowable-stress method, determine the light-
est tube that can be used. Assume E 5 200 GPa and sY 5 
250 MPa.

 10.106 Solve Prob. 10.105, using the interaction method with P 5 165 kN, 
e 5 15 mm, and an allowable stress in bending of 150 MPa.
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 10.107 A sawn lumber column of rectangular cross section has a 2.2-m 
effective length and supports a 41-kN load as shown. The sizes 
available for use have b equal to 90 mm, 140 mm, 190 mm, and 
240 mm. The grade of wood has an adjusted allowable stress for 
compression parallel to the grain sC 5 8.1 MPa and an adjusted 
modulus E 5 8.3 GPa. Using the allowable-stress method, deter-
mine the lightest section that can be used.

41 kN

D
C

190 mm

e � 80 mm

b

Fig. P10.107

d

CD

P 5 32 kips

e

2.25 in.

Fig. P10.109

e 5 0.6 in.

e

3-in. outside
diameter

B

A

6 ft

P 5 10 kips

Fig. P10.111

10.108 Solve Prob. 10.107, assuming that e 5 40 mm.

 10.109 A compression member of rectangular cross section has an effec-
tive length of 36 in. and is made of the aluminum alloy 2014-T6 
for which the allowable stress in bending is 24 ksi. Using the 
interaction method, determine the smallest dimension d of the 
cross section that can be used when e 5 0.4 in.

10.110 Solve Prob. 10.109, assuming that e 5 0.2 in.

 10.111 An aluminum tube of 3-in. outside diameter is to carry a load of 
10 kips having an eccentricity e 5 0.6 in. Knowing that the stock 
of tubes available for use are made of alloy 2014-T6 and have wall 
thicknesses in increments of 1

16 in. up to 1
2 in., determine the light-

est tube that can be used. Use the allowable-stress method.

 10.112 Solve Prob. 10.111, using the interaction method of design with 
an allowable stress in bending of 25 ksi.
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 10.113 A steel column having a 24-ft effective length is loaded eccentri-
cally as shown. Using the allowable-stress method, select the 
wide-flange shape of 14-in. nominal depth that should be used. 
Use sY 5 36 ksi and E 5 29 3 106 psi.

P 5 120 kips

8 in.

C
D

Fig. P10.113

C

D

125 mm
P

Fig. P10.115
C

y

x

z

ex � 70 mm
P

D

Fig. P10.116

  10.114 Solve Prob. 10.113 using the interaction method, assuming that 
sY 5 50 ksi and the allowable stress in bending is 30 ksi.

10.115 A steel compression member of 5.8-m effective length is to sup-
port a 296-kN eccentric load P. Using the interaction method, 
select the wide-flange shape of 200-mm nominal depth that 
should be used. Use E 5 200 GPa, sY 5 250 MPa, and sall 5

150 MPa in bending.

 10.116 A steel column of 7.2-m effective length is to support an 83-kN 
eccentric load P at a point D, located on the x axis as shown. 
Using the allowable-stress method, select the wide-flange shape 
of 250-mm nominal depth that should be used. Use E 5 200 GPa 
and sY 5 250 MPa.
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Critical Load
The design and analysis of columns (i.e., prismatic members supporting 
axial loads), is based on the determination of the critical load. Two equi-
librium positions of the column model are possible: the original position 
with zero transverse deflections and a second position involving deflec-
tions that could be quite large. The first equilibrium position is unstable 
for P . Pcr and stable for P , Pcr , since in the latter case it was the only 
possible equilibrium position.
 We considered a pin-ended column of length L and constant flexural 
rigidity EI subjected to an axial centric load P. Assuming that the column 
buckled (Fig. 10.38), the bending moment at point Q is equal to 2Py. Thus,

 
d 2y

dx 2 5
M

EI
5 2

P

EI
 y (10.4)

Euler’s Formula
Solving this differential equation, subject to the boundary conditions cor-
responding to a pin-ended column, we determined the smallest load P for 
which buckling can take place. This load, known as the critical load and 
denoted by Pcr, is given by Euler’s formula:

 Pcr 5
p2EI

L2  (10.11a)

where L is the length of the column. For this or any larger load, the equi-
librium of the column is unstable, and transverse deflections will occur.

Slenderness Ratio
Denoting the cross-sectional area of the column by A and its radius of 
gyration by r, the critical stress scr corresponding to the critical load Pcr is

scr 5
p2E

1Lyr22 (10.13a)

The quantity Lyr is the slenderness ratio. The critical stress scr is plotted 
as a function of Lyr in Fig. 10.39. Since the analysis was based on stresses 
remaining below the yield strength of the material, the column will fail by 
yielding when scr . sY.

Effective Length
The critical load of columns with various end conditions is written as

 Pcr 5
p2EI

L2
e

 (10.11b)

where Le is the effective length of the column, i.e., the length of an equiva-
lent pin-ended column. The effective lengths of several columns with vari-
ous end conditions were calculated and shown in Fig. 10.18 on page 700.

Review and Summary

L

Q Q

B

A
A

x

y

y

x

x

y

P'

P'

M

y
[ x � 0, y � 0]  

[ x � L, y � 0]  

(a) (b)

P P

Fig. 10.38 Free-body diagrams of (a) buckled 
column and (b) portion AQ.

100

0 10089 200

200

250

300

(MPa)

Y � 250 MPa

E � 200 GPa

2E
(L/r)2

L/r

�

�

cr �� �

Fig. 10.39 Plot of critical stress.
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Eccentric Axial Load
For a pin-ended column subjected to a load P applied with an eccentricity 
e, the load can be replaced with a centric axial load and a couple of 
moment MA 5 Pe (Fig. 10.40). The maximum transverse deflection is

ymax 5 e c sec aB
P

EI
 
L
2
b 2 1 d  (10.28)

Secant Formula
The maximum stress in a column supporting an eccentric axial load can 
be found using the secant formula:

 
P
A

5
smax

1 1
ec

r 
2  sec a1

2A
P

EA
 
Le

r
b

 
(10.36)

This equation can be solved for the force per unit area PyA, which causes 
a specified maximum stress smax in a pin-ended or other column of effec-
tive slenderness ratio Leyr.

Design of Real Columns
Since imperfections exist in all columns, the design of real columns is done 
with empirical formulas based on laboratory tests, set forth in specifica-
tions and codes issued by professional organizations. For centrically 
loaded columns made of steel, aluminum, or wood, design is based on 
equations for the allowable stress as a function of the slenderness ratio 
Lyr. For structural steel, the Load and Resistance Factor Design method 
also can be used.

Design of Eccentrically Loaded Columns
Two methods can be used for the design of columns under an eccentric 
load. The first method is the allowable-stress method. This conservative 
method assumes that the allowable stress is the same as if the column 
were centrically loaded. The allowable-stress method requires that the fol-
lowing inequality to be satisfied:

 
P

A
1

Mc

I
# sall (10.53)

The second method is the interaction method, which is the basis of most 
modern specifications. In this method, the allowable stress for a centri-
cally loaded column is used for the portion of the total stress due to the 
axial load, and the allowable stress in bending is used for the stress due 
to bending. Thus, the inequality to be satisfied is

 
PyA

1sall2centric
1

McyI

1sall2bending
# 1 (10.55)

(a)

P

e

B

A

P'

L

A

B

P'

MB � Pe

P

MA � Pe

ymax

(b)

Fig. 10.40 (a) Column with an eccentric load 
(b) modeled as a column with an equivalent centric 
force-couple load.
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 10.117 Determine (a) the critical load for the steel strut, (b) the dimen-
sion d for which the aluminum strut will have the same critical 
load. (c) Express the weight of the aluminum strut as a percent 
of the weight of the steel strut.

Review Problems

in.1
2

C

A

B

D

4 ft

4 ft

d d

Steel
   E 5 29  3 106 psi

g  5 490 lb/ft3 

Aluminum
   E 5 10.1  3 106 psi

g  5 170 lb/ft3 

P

P

Fig. P10.117

d

h
k

B

A

k

m

Fig. P10.118

 10.118 The rigid rod AB is attached to a hinge at A and to two springs, 
each of constant k. If h 5 450 mm, d 5 300 mm, and m 5 200 kg, 
determine the range of values of k for which the equilibrium of 
rod AB is stable in the position shown. Each spring can act in 
either tension or compression.

 10.119 A column of 3-m effective length is to be made by welding 
together two C130 3 13 rolled-steel channels. Using E 5 200 GPa, 
determine for each arrangement shown the allowable centric 
load if a factor of safety of 2.4 is required.

Fig. P10.119
(a) (b)
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 10.120 (a) Considering only buckling in the plane of the structure shown 
and using Euler’s formula, determine the value of u between 
0 and 90° for which the allowable magnitude of the load P is 
maximum. (b) Determine the corresponding maximum value of 
P knowing that a factor of safety of 3.2 is required. Use E 5 29 3
106 psi.

 10.121 Member AB consists of a single C130 3 10.4 steel channel of 
length 2.5 m. Knowing that the pins A and B pass through the 
centroid of the cross section of the channel, determine the factor 
of safety for the load shown with respect to buckling in the plane 
of the figure when u  5 30°. Use E 5 200 GPa.

Fig. P10.120

P

A

C

B

θ

-in. diameter3
4

-in. diameter5
8

3 ft

2 ft

C

B

A 6.8 kN
�

2.5 m

Fig. P10.121 C

B

A

y

z
x

20 ft

0.6 in.

75 kips

75 kips

W8 � 35

Fig. P10.122

10.122 The line of action of the 75-kip axial load is parallel to the geo-
metric axis of the column AB and intersects the x axis at x 5 0.6 in. 
Using E 5 29 3 106 psi, determine (a) the horizontal deflection 
of the midpoint C of the column, (b) the maximum stress in the 
column.

 10.123 Supports A and B of the pin-ended column shown are at a fixed 
distance L from each other. Knowing that at a temperature T0 the 
force in the column is zero and that buckling occurs when the 
temperature is T1 5 T0 1 ΔT, express ΔT in terms of b, L and 
the coefficient of thermal expansion a.

A

B

L
bb

Fig. P10.123

y

C x

A � 13.75 � 103 mm2

Ix � 26.0 � 106 mm4

Iy � 141.0 � 106 mm4

Fig. P10.124

 10.124 A column is made from half of a W360 3 216 rolled-steel shape, 
with the geometric properties as shown. Using allowable stress 
design, determine the allowable centric load if the effective 
length of the column is (a) 4.0 m, (b) 6.5 m. Use sY 5 345 MPa 
and E 5 200 GPa.
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 10.125 A rectangular column with a 4.4-m effective length is made of 
glued laminated wood. Knowing that for the grade of wood used 
the adjusted allowable-stress for compression parallel to the 
grain is sC 5 8.3 MPa and the adjusted modulus E 5 4.6 GPa, 
determine the maximum allowable centric load for the column.

216 mm

140 mm

Fig. P10.125

4.5 ft

d d

P � 11 kips

A
D

B

Fig. P10.127

e

4 in.

4 in.

3
8 in.

14 ft

A

B

P

Fig. P10.128

 10.126 A column of 4.5-m effective length must carry a centric load of 
900 kN. Knowing that sY 5 345 MPa and E 5 200 GPa, use 
allowable-stress design to select the wide-flange shape of 
250-mm nominal depth that should be used.

 10.127 An 11-kip vertical load P is applied at the midpoint of one edge 
of the square cross section of the steel compression member AB, 
which is free at its top A and fixed at its base B. Knowing that for 
the grade of steel used sY 5 36 ksi and E 5 29 3 106 psi and using 
the allowable-stress method, determine the smallest allowable 
dimension d.

 10.128 A column of 14-ft effective length consists of a section of steel 
tubing having the cross section shown. Using the allowable-
stress method, determine the maximum allowable eccentricity e
if (a) P 5 55 kips, (b) P 5 35 kips. Use sY 5 36 ksi and 
E 5 29 3 106 psi.
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The following problems are designed to be solved with a computer.

 10.C1 A solid steel rod having an effective length of 500 mm is to be used 
as a compression strut to carry a centric load P. For the grade of steel used, 
E 5 200 GPa and sY 5 245 MPa. Knowing that a factor of safety of 2.8 is 
required and using Euler’s formula, write a computer program and use it 
to calculate the allowable centric load Pall for values of the radius of the 
rod from 6 mm to 24 mm, using 2-mm increments.

 10.C2 An aluminum bar is fixed at end A and supported at end B so that 
it is free to rotate about a horizontal axis through the pin. Rotation about 
a vertical axis at end B is prevented by the brackets. Knowing that E 5 10.1 3
106 psi, use Euler’s formula with a factor of safety of 2.5 to determine 
the allowable centric load P for values of b from 0.75 in. to 1.5 in., using 
0.125-in. increments.

Computer Problems

A b

1.5 in.

6 ft

B

P

Fig. C10.C2

h

D

m

3 m

4 m

3 m
C

A

B

Fig. C10.C3

 10.C3 The pin-ended members AB and BC consist of sections of alumi-
num pipe of 120-mm outer diameter and 10-mm wall thickness. Knowing 
that a factor of safety of 3.5 is required, determine the mass m of the larg-
est block that can be supported by the cable arrangement shown for val-
ues of h from 4 m to 8 m, using 0.25-m increments. Use E 5 70 GPa and 
consider only buckling in the plane of the structure.
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 10.C4 An axial load P is applied at a point located on the x axis at a dis-
tance e 5 0.5 in. from the geometric axis of the W8 3 40 rolled-steel col-
umn AB. Using E 5 29 3 106 psi, write a computer program and use it to 
calculate for values of P from 25 to 75 kips, using 5-kip increments, (a) the 
horizontal deflection at the midpoint C, (b) the maximum stress in the 
column.

W8 � 40

C

B

A

y

z

18.4 ft

e

P'

P

x

Fig. C10.C4

C

z

D

y

x

ex

ey

P

Fig. C10.C6

 10.C5 A column of effective length L is made from a rolled-steel shape 
and carries a centric axial load P. The yield strength for the grade of steel 
used is denoted by sY , the modulus of elasticity by E, the cross-sectional 
area of the selected shape by A, and its smallest radius of gyration by r. 
Using the AISC design formulas for allowable stress design, write a com-
puter program that can be used with either SI or U.S. customary units to 
determine the allowable load P. Use this program to solve (a) Prob. 10.57, 
(b) Prob. 10.58, (c) Prob. 10.124.

 10.C6 A column of effective length L is made from a rolled-steel shape and 
is loaded eccentrically as shown. The yield strength of the grade of steel 
used is denoted by sY , the allowable stress in bending by sall, the modulus 
of elasticity by E, the cross-sectional area of the selected shape by A, and 
its smallest radius of gyration by r. Write a computer program that can be 
used with either SI or U.S. customary units to determine the allowable 
load P, using either the allowable-stress method or the interaction method. 
Use this program to check the given answer for (a) Prob. 10.113, 
(b) Prob. 10.114.
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11
Energy Methods

When the diver jumps on the board, the potential energy 
due to his elevation above the board is converted into strain 
energy as the board bends.

Learning Objectives
In this chapter, you will:

• Compute the strain energy due to axial, bending, and torsion loading

• Determine the eff ect of impact loading on members

• Define the work done by a force or couple

• Determine displacements from a single load using the 
work-energy method

• Apply Castigliano’s theorem to determine displacements due to 
multiple loads

• Solve statically indeterminate problems using Castigliano’s theorem
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760 Energy Methods

Introduction
In the previous chapter we were concerned with the relations existing 
between forces and deformations under various loading conditions. Our 
analysis was based on two fundamental concepts, the concept of stress 
(Chap. 1) and the concept of strain (Chap. 2). A third important concept, 
the concept of strain energy, will now be introduced.
 The strain energy of a member is the increase in energy associated 
with the deformation of the member. The strain energy is equal to the work 
done by a slowly increasing load applied to the member. The strain-energy 
density of a material is the strain energy per unit volume; this it is equal to 
the area under the stress-strain diagram of the material (Sec. 11.1B). From 
the stress-strain diagram of a material, two additional properties are the 
modulus of toughness and the modulus of resilience of the material.
 In Sec. 11.2 the elastic strain energy associated with normal stresses 
is discussed for members under axial loading and in bending. The elastic 
strain energy associated with shearing stresses (such as in torsional load-
ings of shafts and in transversely loaded beams) is discussed. Strain energy 
for a general state of stress is considered in Sec. 11.3, where the maximum-
distortion-energy criterion for yielding is derived.
 The effect of impact loading on members is considered in Sec. 11.4. 
The maximum stress and the maximum deflection caused by a moving mass 
impacting a member are calculated. Properties that increase the ability of a 
structure to withstand impact loads effectively are discussed in Sec. 11.4B.
 In Sec. 11.5A the elastic strain of a member subjected to a single 
concentrated load is calculated, and in Sec. 11.5B the deflection at the 
point of application of a single load is determined.
 The last portion of the chapter is devoted to the strain energy of 
structures subjected to multiple loads (Sec. 11.6). Castigliano’s theorem is 
derived (Sec. 11.7) and used (Sec. 11.8) to determine the deflection at a 
given point of a structure subjected to several loads. Indeterminate struc-
tures are analyzed using Castigliano’s theorem (Sec. 11.9).

11.1 STRAIN ENERGY
11.1A Strain Energy Concepts
Consider a rod BC with a length of L and uniform cross-sectional area A 
that is attached at B to a fixed support and subjected at C to a slowly 
increasing axial load P (Fig. 11.1). By plotting the magnitude P of the load 
against the deformation x of the rod (Sec. 2.1), a load-deformation dia-
gram is obtained (Fig. 11.2) that is characteristic of rod BC.

Introduction

 11.1 STRAIN ENERGY
 11.1A Strain Energy Concepts 
 11.1B  Strain-Energy Density
 11.2 ELASTIC STRAIN 

ENERGY
 11.2A Normal Stresses
 11.2B Shearing Stresses
 11.3 STRAIN ENERGY FOR 

A GENERAL STATE OF 
STRESS

 11.4 IMPACT LOADS
 11.4A Analysis
 11.4B Design
 11.5 SINGLE LOADS
 11.5A Energy Formulation
 11.5B Deflections
 *11.6 MULTIPLE LOADS

 *11.7 CASTIGLIANO’S 
THEOREM

 *11.8 DEFLECTIONS BY 
CASTIGLIANO’S 
THEOREM

 *11.9 STATICALLY 
INDETERMINATE 
STRUCTURES

C

C

A

L

B

B

P

x

Fig. 11.1 Axially loaded rod

P

O x

Fig. 11.2 Load-deformation 
diagram for axial loading.
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11.1 Strain Energy 761

 Now consider the work dU done by the load P as the rod elongates 
by a small amount dx. This elementary work is equal to the product of the 
magnitude P of the load and of the small elongation dx

 dU 5 P dx (11.1)

Note that this equation is equal to the element with an area of width dx 
located under the load-deformation diagram (Fig. 11.3). The total work U 
done by the load as the rod undergoes a deformation x1 is

U 5 #
x1

0

 P dx

and is equal to the area under the load-deformation diagram between 
x 5 0 and x 5 x1.
 The work done by load P as it is slowly applied to the rod results in 
the increase of energy associated with the deformation of the rod. This 
energy is the strain energy of the rod.

 Strain energy 5 U 5 #
x1

0

 P dx (11.2)

 Recall that work and energy should be obtained by multiplying units 
of length by units of force. So, when SI units are used, work and energy 
are expressed in N?m, which is called a joule (J). When U.S. customary 
units are used, work and energy are in ft?lb or in in?lb.
 For a linear elastic deformation, the portion of the load-deformation 
diagram involved can be represented by a straight line with equation 
P 5 kx (Fig. 11.4). Substituting for P in Eq. (11.2) gives

U 5 #
x1

0

 kx dx 5
1
2 kx 

2
1

or

 U 5
1
2 
P1x1 (11.3)

where P1 is the load corresponding to the deformation x1.
 Strain energy can be used to determine the effects of impact load-
ings on structures or machine components. For example, a body of mass 
m moving with a velocity v0 strikes the end B of a rod AB (Fig. 11.5a). 
Neglecting the inertia of the rod and assuming no dissipation of energy 
during the impact, the maximum strain energy Um acquired by the rod 
(Fig. 11.5b) is equal to the original kinetic energy T 5

1
2 mv 

2
0 of the moving 

body. If we then determine Pm of the static load (which would have pro-
duced the same strain energy in the rod), we can obtain sm of the largest 
stress occurring in the rod by dividing Pm by the cross-sectional area.

P

P U � Area

O
x

xx1

dx

Fig. 11.3 Work due to load P 
is equal to the area under the 
load-deformation diagram.

P
P � kx

U � P1x1

x1 x

P1

O

1
2

Fig. 11.4 Work due to linear 
elastic deformation.

U � 0

� 0�

T � 

v0

mv

m

1
2

2
0

BA

U � Um

� m� � T � 0 v � 0

BA

(a)

(b)

Fig. 11.5 Rod subject to impact loading.
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762 Energy Methods

11.1B  Strain-Energy Density
As noted in Sec. 2.1, the load-deformation diagram for a rod BC depends 
upon the length L and the cross-sectional area A. The strain energy U 
defined by Eq. (11.2), therefore, will also depend on the dimensions of the 
rod. To eliminate the effect of size and direct attention to the properties 
of the material, the strain energy per unit volume will be considered. 
Dividing the strain energy U by the volume V 5 AL of the rod (Fig. 11.1) 
and using Eq. (11.2) gives

U

V
5 #

x1

0

 
P

A
 
dx

L

 Recalling that PyA represents the normal stress sx and x/L the nor-
mal strain Px  ,

U
V

5 #
P1

0

 sx dPx

where P1 denotes the value of the strain corresponding to the elongation 
x1. The strain energy per unit volume UyV is called the strain-energy 
density, denoted by u. Therefore,

 Strain-energy density 5 u 5 #
P1

0

 sx dPx (11.4)

The strain-energy density u is expressed in units of energy divided by units 
of volume. Thus, when SI metric units are used, the strain-energy density 
is in J/m3 or its multiples kJ/m3 and MJ/m3. When U.S. customary units 
are used, they are in in?lb/in3.†

 Referring to Fig. 11.6, the strain-energy density u is equal to the area 
under the stress-strain curve, which is measured from Px 5 0 to Px 5 P1. If 
the material is unloaded, the stress returns to zero. However, there is a 
permanent deformation represented by the strain Pp , and only the part of 
the strain energy per unit volume corresponding to the triangular area is 
recovered. The remainder of the energy spent deforming the material is 
dissipated in the form of heat.
 The strain-energy density obtained by setting P1 5 PR in Eq. (11.4), 
where PR is the strain at rupture, is called the modulus of toughness of the 
material. It is equal to the area under the entire stress-strain diagram 
(Fig. 11.7) and represents the energy per unit volume required for the 
material to rupture. The toughness of a material is related to its ductility, 
as well as its ultimate strength (Sec. 2.1B), and the capacity of a structure 

†Note that 1 J/m3 and 1 Pa are both equal to 1 N/m2, while 1 in. ? lb/in3 and 1 psi are 
both equal to 1 lb/in2. Thus, strain-energy density and stress are dimensionally equal 
and can be expressed in the same units.

Fig. 11.6 Strain-energy density is the area 
under the stress-strain curve between Px 5 0 
and Px 5 P1 . If loaded into the plastic region, 
only the energy associated with elastic 
unloading is recovered.

�

�O
p � �1

Fig. 11.7 Modulus of toughness is the 
area under the stress-strain curve to 
rupture.

�

�O
R �

Modulus
of toughness Rupture
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11.2 Elastic Strain Energy 763

to withstand an impact load depends upon the toughness of the material 
used (Photo 11.1).
 If the stress sx remains within the proportional limit of the material, 
Hooke’s law applies:

sx 5 EPx (11.5)

Substituting for sx from Eq. (11.5) into Eq. (11.4) gives

u 5 #
P1

0

 EPx dPx 5
EP 1

2

2
 (11.6)

or using Eq. (11.5) to express P1 in terms of the corresponding stress s1

gives

u 5
s 1

2

2E
 (11.7)

 The strain-energy density obtained by setting s1 5 sY in Eq. (11.7), 
where sY is the yield strength, is called the modulus of resilience of the 
material, and is denoted by uY. So,

 uY 5
s Y

2

2E
 (11.8)

The modulus of resilience is equal to the area under the straight-line por-
tion OY of the stress-strain diagram (Fig. 11.8) and represents the energy 
per unit volume that the material can absorb without yielding. A struc-
ture’s ability to withstand an impact load without being permanently 
deformed depends on the resilience of the material used.
 Since the modulus of toughness and the modulus of resilience rep-
resent characteristic values of the strain-energy density of the material 
considered, they are both expressed in J/m3 or its multiples if SI units are 
used, and in in?lb/in3 if U.S. customary units are used.†

11.2  ELASTIC STRAIN ENERGY
11.2A Normal Stresses
Since the rod considered in the preceding section was subjected to uni-
formly distributed stresses sx, the strain-energy density was constant 
throughout the rod and could be defined as the ratio UyV of the strain 
energy U and the volume V of the rod. In a structural element or machine 
part with a nonuniform stress distribution, the strain-energy density u can 
be defined by considering the strain energy of a small element of material 
of volume DV. So,

u 5 lim
¢Vy0

 
¢U
¢V

or

 u 5
dU
dV

 (11.9)

†Note that the modulus of toughness and the modulus of resilience could be expressed 
in the same units as stress.

Photo 11.1 The railroad coupler is made 
of a ductile steel that has a large modulus 
of toughness.

Modulus
of resilience

�

� Y

� �Y

Y

O

Fig. 11.8 Modulus of resilience is the area 
under the stress-strain curve to yield.
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764 Energy Methods

The expression previously obtained for u (Sec. 11.1B) in terms of sx and 
Px is valid, so

 u 5 #
Px

0

 sx dPx (11.10)

which allows for variations in the stress sx  , the strain Px  , and the strain-
energy density u from point to point.
 For values of sx within the proportional limit, sx 5 EPx in Eq. (11.10) 
and

 u 5
1

2
  EP 

2
x 5

1

2
  sx Px 5

1

2
 
s 

2
x

E
 (11.11)

The strain energy U of a body subjected to uniaxial normal stresses can 
be obtained by substituting for u from Eq. (11.11) into Eq. (11.9) and inte-
grating both members.

 U 5 #  
s 

2
x

2E
 dV  (11.12)

This equation is valid only for elastic deformations and is called the elastic 
strain energy of the body.

Strain Energy under Axial Loading. Recall from Sec. 2.10 that 
when a rod is subjected to a centric axial load, it can be assumed that the 
normal stresses sx are uniformly distributed in any given cross section. 
Using the area of the section A located at a distance x from end B of the 
rod (Fig. 11.9) and the internal force P in that section, we write sx 5 PyA. 
Substituting for sx into Eq. (11.12) gives

U 5 # P 
2

2EA2 dV

or setting dV 5 A dx ,

 U 5 #
L

0

 
P 

2

2AE
 dx (11.13)

 For a rod of uniform cross section with equal and opposite forces of 
magnitude P at its ends (Fig. 11.10), Eq. (11.13) yields

 U 5
P 

2L

2AE
 (11.14)

C

B

L

x

P

A

Fig. 11.9 Rod with centric axial load.

P'

L

P

A

Fig. 11.10 Prismatic rod with centric axial load.
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11.2 Elastic Strain Energy 765

Concept Application 11.1
A rod consists of two portions BC and CD of the same material, same 
length, but of different cross sections (Fig. 11.11). Determine the strain 
energy of the rod when it is subjected to a centric axial load P, express-
ing the result in terms of P, L, E, the cross-sectional area A of portion 
CD, and the ratio n of the two diameters.

 Use Eq. (11.14) for the strain energy of each of the two portions, 
and add the expressions obtained:

Un 5
P 

2112 
L2

2AE
1

P 
2112 

L2
21n2A2E 5

P 
2L

4AE
 a1 1

1

n2b

or

 Un 5
1 1 n2

2n2  
P 

2L
2AE

 (1)

Check that, for n 5 1,

U1 5
P 

2L
2AE

which is the same as Eq. (11.14) for a rod of length L and uniform cross 
section of area A. Also note that for n . 1, Un , U1. As an example, 
when n 5 2, U2 5 158 2U1. Since the maximum stress occurs in portion 
CD of the rod and is equal to smax 5 PyA, then for a given allowable 
stress, increasing the diameter of portion BC of the rod results in a 
decrease of the overall energy-absorbing capacity. Unnecessary 
changes in cross-sectional area should be avoided in the design of 
members subjected to loads (such as impact loadings) where the 
energy-absorbing capacity of the member is critical.

Fig. 11.11 Axially loaded stepped rod.

C

B
D

P

A

Area � n2A

L1
2

L1
2
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766 Energy Methods

Strain Energy in Bending. Consider a beam AB subjected to a given 
loading (Fig. 11.13), and let M be the bending moment at a distance x from 
end A. Neglecting the effect of shear and taking into account only the 
normal stresses sx 5 MyyI , substitute this expression into Eq. (11.12) and 
write

U 5 #  
s 

2
x

2E
 dV 5 #  

M  
2y 

2

2EI  
2  dV

Setting dV 5 dA dx, where dA represents an element of the cross- sectional 
area, and recalling that M 2y2EI 2 is a function of x alone gives

U 5 #
L

0

 
M  

2

2EI  
2 a #y 

2 dAb dx

Recall that the integral within the parentheses represents the moment of 
inertia I of the cross section about its neutral axis. Thus,

 U 5 #
L

0

 
M  

2

2EI
 dx (11.15)

Concept Application 11.2
A load P is supported at B by two rods of the same material and of the 
same uniform cross section of area A (Fig. 11.12a). Determine the 
strain energy of the system.
 Using the forces FBC and FBD in members BC and BD and recalling 
Eq. (11.14), the strain energy of the system is

 U 5
F  

2
BC  
1BC2

2AE
1

F  
2
BD  
1BD2

2AE
 (1)

From Fig. 11.12a,

BC 5 0.6l  BD 5 0.8l

From the free-body diagram of pin B and the corresponding force 
triangle (Fig. 11.12b),

FBC 5 10.6P  FBD 5 20.8P

Substituting into Eq. (1) gives

U 5
P 

2l 3 10.623 1 10.823 4
2AE

5 0.364 
P 

2l
AE

C

D

B

l

P

3

3

4

4

(a)

B

FBC FBC

FBD FBD

P P

5
3

4

(b)
Fig. 11.12 (a) Frame CBD supporting a 
vertical force P. (b) Free-body diagram of 
joint B and corresponding force triangle.

BA

x

Fig. 11.13 Transversely loaded beam.
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11.2 Elastic Strain Energy 767

11.2B  Shearing Stresses
When a material is subjected to plane shearing stresses txy , the strain-
energy density at a given point is

u 5 #
gxy

0

txy dgxy (11.16)

where gxy is the shearing strain corresponding to txy (Fig. 11.15a). Note 
that the strain-energy density u is equal to the area under the shearing-
stress-strain diagram (Fig. 11.15b).
 For values of txy within the proportional limit, txy 5 Ggxy  , where G
is the modulus of rigidity of the material. Substituting for txy into 
Eq. (11.16) and integrating gives

u 5
1

2
 Gg 

2
xy 5

1

2
 txygxy 5

t 
2
xy

2G
 (11.17)

 The value of the strain energy U of a body subjected to plane shear-
ing stresses can be obtained by recalling from Sec. 11.2A that

u 5
dU

dV
 (11.9)

Substituting for u from Eq. (11.17) into Eq. (11.9) and integrating both 
members gives

U 5 #
 t 

2
xy

2G
 dV  (11.18)

This equation defines the elastic strain energy associated with the shear 
deformations of the body. Like the similar expression in Sec. 11.2A for 
uniaxial normal stresses, it is only valid for elastic deformations.

Strain Energy in Torsion. Consider a shaft BC of non-uniform circu-
lar cross section with a length of L subjected to one or several twisting 
couples. Using the polar moment of inertia J of the cross section located 

Concept Application 11.3
Determine the strain energy of the prismatic cantilever beam AB 
(Fig. 11.14), taking into account only the effect of the normal stresses.
 The bending moment at a distance x from end A is M 5 2Px. 
Substitute this expression into Eq. (11.15) to obtain

U 5 #
L

0

 
P 

2x 
2

2EI
 dx 5

P 
2L3

6EI

P

A
B

L

Fig. 11.14 Cantilever beam with load P.

(a)

O

(b)

�
2 xy��

xy�

xy�

xy�

Fig. 11.15 (a) Shearing strain 
corresponding to txy . (b) Strain-energy 
density u is the area under the stress-
strain diagram.
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768 Energy Methods

a distance x from B (Fig. 11.16) and the internal torque T, recall that the 
shearing stresses are txy 5 TryJ. Substituting for txy into Eq. (11.18),

U 5 #  
t 

2
xy

2G
 dV 5 #  

T 
2r2

2GJ  
2 dV

Set dV 5 dA dx, where dA is the element cross-sectional area, and observe 
that T 2y2GJ 2 is a function of x alone to obtain

U 5 #
L

0

 
T  

2

2GJ  
2  a #r2 dAb dx

Recall that the integral within the parentheses represents the polar 
moment of inertia J of the cross section, giving

 U 5 #
L

0

 
T  

2

2GJ
 dx (11.19)

 For a shaft of uniform cross section subjected at its ends to equal 
and opposite couples of magnitude T (Fig. 11.17), Eq. (11.19) yields

 U 5
T  

2L

2GJ
 (11.20)

L

T

T'

Fig. 11.17 Prismatic shaft subject to 
torque.

Concept Application 11.4
A circular shaft consists of two portions BC and CD of the same material 
and length, but of different cross sections (Fig. 11.18). Determine the 
strain energy of the shaft when it is subjected to a twisting couple T at end 
D. Express the results in terms of T, L, G, the polar moment of inertia J of 
the smaller cross section, and the ratio n of the two diameters.
 Use Eq. (11.20) to compute the strain energy of each of the two 
portions of shaft, and add the expressions obtained. Note that the 
polar moment of inertia of portion BC is equal to n4J giving

Un 5
T  

2112L2
2GJ

1
T  

2112 
L2

2G1n4J2 5
T  

2L
4GJ

 a1 1
1

n4b
or

 Un 5
1 1 n4 

2n4  
T  

2L
2GJ

 (1)

For n 5 1, 

U1 5
T  

2L
2GJ

which is the expression given in Eq. (11.20) for a shaft of length L and 
uniform cross section. Note that, for n . 1, Un , U1. For example, 
when n 5 2, U2 5 117

32 2U1. Since the maximum shearing stress occurs 
in segment CD of the shaft and is proportional to the torque T, increas-
ing the diameter of segment BC results in a decrease of the overall 
energy-absorbing capacity of the shaft.

1
2 L

1
2 L

C

D

T
B

diam. � nd
diam. � d

Fig. 11.18 Stepped shaft subject to 
torque T.

C

B

L

x

T

Fig. 11.16 Shaft subject to torque.
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11.2 Elastic Strain Energy 769

Strain Energy under Transverse Loading. In Sec. 11.2A an equa-
tion for the strain energy of a beam subjected to a transverse loading was 
obtained. However, in that expression, only the effect of the normal 
stresses due to bending is taken into account and the effect of the shearing 
stresses is neglected. In Concept Application 11.5, both types of stresses 
will be taken into account.

Concept Application 11.5
Determine the strain energy of the rectangular cantilever beam AB 
(Fig. 11.19), taking into account the effect of both normal and shearing 
stresses.
 Recall from Concept Application 11.3 that the strain energy due to 
the normal stresses sx is

Us 5
P 

2L3

6EI

To determine the strain energy Ut due to the shearing stresses txyw , 
recall Eq. (6.9) and find that, for a beam with a rectangular cross section 
of width b and depth h,

txy 5
3

2
 
V
A

 a1 2
y 

2

c 
2b 5

3

2
 

P
bh

 a1 2
y 

2

c 
2b

Substituting for txy into Eq. (11.18), 

Ut 5
1

2G
 a3

2
 

P
bh
b2

#a1 2
y 

2

c 
2b

2

 dV

or setting dV 5 b dy dx, and after reductions,

Ut 5
9P 

2

8Gbh2 #
c

2c
 a1 2 2 

y 
2

c 
2 1

y 
4

c 
4b dy#

L

0
 dx

Performing integrations and recalling that c 5 hy2,

Ut 5
9P 

2L

8Gbh2 c y 2
2

3
 
y 

3

c 
2 1

1

5
 
y 

5

c 
4 d

1c

2c
5

3P 
2L

5Gbh
5

3P 
2L

5GA

 The total strain energy of the beam is

U 5 Us 1 Ut 5
P 

2L3

6EI
1

3P 
2L

5GA

or with IyA 5 h 2y12 and factoring the expression for Us,

 U 5
P 

2L3

6EI
 a1 1

3Eh 
2

10GL2b 5 Us a1 1
3Eh 

2

10GL2b (1)

Recall from Sec. 2.7 that G $ Ey3. Considering the parenthesis, this 
equation is less than 1 1 0.9(hyL) 2 and the relative error is less than 
0.9(hyL) 2 when the effect of shear is neglected. For a beam with a ratio 
hyL less than 1

1 0 , the percentage error is less than 0.9%. It is therefore 
customary in engineering practice to neglect the effect of shear to 
compute the strain energy of shallow beams.

P
L

A

B

h

b

Fig. 11.19 Rectangular cantilever beam 
with load P.

bee98233_ch11_758-832.indd   769bee98233_ch11_758-832.indd   769 11/14/13   12:19 PM11/14/13   12:19 PM



770 Energy Methods

11.3  STRAIN ENERGY FOR A 
GENERAL STATE OF STRESS

In the preceding sections, we determined the strain energy of a body in a 
state of uniaxial stress (Sec. 11.2A) and in a state of plane shearing stress 
(Sec. 11.2B). In a body in a general state of stress characterized by the six 
stress components sx , sy , sz , txy , tyz , and tzx (Fig. 2.35), the strain-energy 
density is obtained by adding the expressions given in Eqs. (11.10) and 
(11.16), as well as the four other expressions obtained through a permuta-
tion of the subscripts.

zy�
yz� yx�

zx�z� x�

y�

z

y

x

xy�

xz�

Q

Fig. 2.35 (repeated) Positive stress 
component at point Q for a general state 
of stress.

 In the elastic deformation of an isotropic body, each of the six stress-
strain relationships involved is linear, and the strain-energy density is

u 5
1
2 
1sx 
Px 1 sy 

Py 1 sz 
Pz 1 txygxy 1 tyzgyz 1 tzxgzx2 (11.21)

Recalling Eq. (2.29) and substituting for the strain components into 
Eq. (11.21), the most general state of stress at a given point of an elastic 
isotropic body is

u 5
1

2E
 3s 

2
x 1 s 

2
y 1 s 

2
z 2 2n1sx 

sy 1 sy 
sz 1 sz 

sx2 4
 1

1

2G
 1t 

2
x y 1 t 

2
y z 1 t 

2
z x2 (11.22)

If the principal axes at the given point are used as coordinate axes, the 
shearing stresses become zero and Eq. (11.22) reduces to

u 5
1

2E
 3s 

2
a 1 s 

2
b 1 s 

2
c 2 2n1sa 

sb 1 sb sc 1 sc sa2 4  (11.23)

where sa , sb , and sc are the principal stresses at the given point.
 Now recall from Sec. 7.5A that one criterion used to predict whether 
a given state of stress causes a ductile material to yield is the maximum-
distortion-energy criterion, which is based on the energy per unit volume 
associated with the distortion (or change in shape) of that material. 
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11.3 Strain Energy for a General State of Stress 771

Separating the strain-energy density u at a given point into two parts, uv 
associated with a change in volume of the material at that point and ud 
associated with a distortion of the material at the same point,

 u 5 uv 1 ud (11.24)

 In order to determine uv and ud , we introduce the average value s 
of the principal stresses at the point considered as

 s 5
sa 1 sb 1 sc

3
 (11.25)

and set

 sa 5 s 1 sa¿  sb 5 s 1 sb¿  sc 5 s 1 sc¿ (11.26)

Thus, the given state of stress (Fig. 11.20a) can be obtained by superposing 
the states of stress shown in Fig. 11.20b and c. The state of stress described 
in Fig. 11.20b tends to change the volume of the element but not its shape, 
since all of the faces of the element are subjected to the same stress s. On 
the other hand, it follows from Eqs. (11.25) and (11.26) that

 sa¿ 1 sb¿ 1 sc¿ 5 0 (11.27)

This indicates that some of the stresses shown in Fig. 11.20c are tensile 
and others compressive. Thus, this state of stress tends to change the 
shape of the element. However, it does not tend to change its volume. 
Recall from Eq. (2.22) that the dilatation e (i.e., the change in volume per 
unit volume) caused by this state of stress is

e 5
1 2 2n

E
 1sa¿ 1 sb¿ 1 sc¿ 2

or e 5 0 in view of Eq. (11.27). Thus, the portion uv of the strain-energy 
density must be associated with the state of stress shown in Fig. 11.20b, 
while the portion ud must be associated with the state of stress shown 
in Fig. 11.20c.
 The portion uv of the strain-energy density corresponding to a 
change in volume of the element can be obtained by substituting s for 
each of the principal stresses in Eq. (11.23). Thus,

uv 5
1

2E
 33s 

2 2 2n13s 
22 4 5

311 2 2n2
2E

 s 
2

�a

�b

�c �

� 'b

� 'a

� 'c

�

�

(a) (b) (c)

Fig. 11.20 (a) Element subject to multiaxial state of stress expressed as the 
superposition of (b) stresses tending to cause volume change, (c) stresses 
tending to cause distortion.
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772 Energy Methods

or recalling Eq. (11.25),

 uv 5
1 2 2n

6E
 1sa 1 sb 1 sc22 (11.28)

 The portion of the strain-energy density corresponding to the distor-
tion of the element is found by solving Eq. (11.24) for ud and substituting 
for u and uv from Eqs. (11.23) and (11.28), respectively. 

ud 5 u 2 uv 5
1

6E
 331s 

2
a 1 s 

2
b 1 s 

2
c 2 2 6n 1sa 

sb 1 sb 
sc 1 sc 

sa2
 2 11 2 2n2 1sa 1 sb 1 sc22 4
Expanding the square and rearranging terms,

ud 5
1 1 n

6E
 3 1s 

2
a 2 2sa sb 1 s 

2
b2 1 1s 

2
b 2 2sb sc 1 s 

2
c 2

 1 1s 
2
c 2 2sc sa 1 s 

2
a2 4

Noting that each of the parentheses inside the bracket is a perfect square, 
and recalling from Eq. (2.34) that the coefficient in front of the bracket is 
equal to 1y12G, the portion ud of the strain-energy density (i.e., the distor-
tion energy per unit volume) is

 ud 5
1

12G
 3 1sa 2 sb22 1 1sb 2 sc22 1 1sc 2 sa22 4  (11.29)

In plane stress, assuming that the c axis is per pendicular to the plane of 
stress, sc 5 0 and Eq. (11.29) reduces to

 ud 5
1

6G
 1s a

2 2 sa sb 1 s 
2
b2 (11.30)

 Considering a tensile-test specimen, at yield sa 5 sY , sb 5 0, and 
1ud2Y 5 s 

2
Yy6G. The maximum-distortion-energy criterion for plane stress 

indicates that a given state of stress is safe when ud , (ud)Y , or by substi-
tuting for ud from Eq. (11.30), it is safe as long as

 s 
2
a 2 sa sb 1 s 

2
b , s 

2
Y  (7.26)

which is the condition in Sec. 7.5A and represented graphically by the 
ellipse of Fig. 7.32. For a general state of stress, Eq. (11.29) obtained for ud 
should be used. The maximum-distortion-energy criterion is then found 
by the condition:

 1sa 2 sb22 1 1sb 2 sc22 1 1sc 2 sa22 , 2s 
2
Y  (11.31)

which indicates that a given state of stress is safe if the point of coordinates 
sa , sb , sc is located within the surface defined by

 1sa 2 sb22 1 1sb 2 sc22 1 1sc 2 sa22 5 2s 
2
Y  (11.32)

This surface is a circular cylinder with a radius of 12y3 sY  and an axis of 
symmetry forming equal angles with the three principal axes of stress.
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11.3 Strain Energy for a General State of Stress 773

Sample Problem 11.1

During a routine manufacturing operation, rod AB must acquire an 
elastic strain energy of 120 in ? lb. Using E 5 29 3 106 psi, determine 
the required yield strength of the steel if the factor of safety is 5 with 
respect to permanent deformation.

STRATEGY: Use the specified factor of safety to determine the 
required strain-energy density, and then use Eq. (11.8) to determine 
the yield strength.

MODELING and ANALYSIS: 

Factor of Safety. Since a factor of safety of 5 is required, the rod 
should be designed for a strain energy of

U 5 51120 in?lb2 5 600 in?lb

Strain-Energy Density. The volume of the rod is

V 5 AL 5
p

4
 10.75 in.22160 in.2 5 26.5 in3

Since the rod has a uniform cross section, the required strain-energy 
density is

u 5
U
V

5
600 in?lb

26.5 in3 5 22.6 in?lb/in3

Yield Strength. Recall that the modulus of resilience is equal to the 
strain-energy density when the maximum stress is equal to sY (Fig. 1). 
Using Eq. (11.8),

 u 5
s 

2
Y

2E

  22.6 in?lb/in3 5
s 

2
Y

2129 3 106 psi2  sY = 36.2 ksi ◀

REFLECT and THINK: Since energy loads are not linearly related to 
the stresses they produce, factors of safety associated with energy 
loads should be applied to the energy loads and not to the stresses.

5 ft

B A

P

-in. diameter3
4

Modulus of
resilience

�

�

�Y

Fig. 1 The modulus of resilience equals 
the strain-energy density up to yield.
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774 Energy Methods

Sample Problem 11.2

(a) Taking into account only the effect of normal stresses due to bending, 
determine the strain energy of the prismatic beam AB for the loading 
shown. (b) Evaluate the strain energy, knowing that the beam is a 
W10 3 45, P 5 40 kips, L 5 12 ft, a 5 3 ft, b 5 9 ft, and E 5 29 3 106 psi.

STRATEGY: Use a free-body diagram to determine the reactions, and 
write equations for the moment as a function of the coordinate along the 
beam. The strain energy required for part a is then determined from 
Eq. (11.15). Use this with the data to numerically evaluate the strain 
energy for part b.

MODELING:

Bending Moment. Using the free-body diagram of the entire beam 
(Fig. 1), determine the reactions

RA 5
Pb
L
x  RB 5

Pa
L
x

Using the free-body diagram in Fig. 2, the bending moment for portion 
AD of the beam is

M1 5
Pb
L

 x

(continued)

A

L

a b

B
D

P

x v

a

Pb
L

b

D

M2

RA�

M1

M

x

A B

Pa
LRB�

P

Fig. 1 Free-body and bending-moment 
diagrams.

x

A
Pb
LM1�

V1

x

Pb
LRA�

From A to D:

Fig. 2 Free-body diagram, taking a section 
within portion AD.
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11.3 Strain Energy for a General State of Stress 775

Similarly using the free-body diagram in Fig. 3, the bending moment 
for portion DB at a distance v from end B is

M2 5
Pa
L

 v

ANALYSIS: 

a. Strain Energy. Since strain energy is a scalar quantity, add the 
strain energy of segment AD to that of DB to obtain the total strain 
energy of the beam. Using Eq. (11.15),

 U 5 UAD 1 UDB

 5 #
a

0

 
M  

2
1

2EI
 dx 1 #

b

0

 
M  

2
2

2EI
 dv

 5
1

2EI #
a

0
 aPb

L
 xb2

dx 1
1

2EI #
b

0
 aPa

L
 vb2

dv

 5
1

2EI
 
P  

2

L2  ab 
2a 

3

3
1

a 
2b 

3

3
b 5

P  
2a 

2b 
2

6EIL2  1a 1 b2

or since (a 1 b) 5 L, U 5
P 

2a 
2b 

2

6EIL
 ◀

b. Evaluation of the Strain Energy. The moment of inertia of a 
W10 3 45 rolled-steel shape is obtained from Appendix C, and the 
given data is restated using units of kips and inches.

P 5 40 kips L 5 12 ft 5 144 in.

a 5 3 ft 5 36 in. b 5 9 ft 5 108 in.

E 5 29 3 106 psi 5 29 3 103 ksi I 5 248 in4

Substituting into the expression for U,

U 5
140 kips22136 in.221108 in.22

6129 3 103 ksi2 1248 in42 1144 in.2  U 5 3.89 in ? kips ◀

v

B

V2

Pa
LM2 � v

Pb
LRB �

From B to D:

Fig. 3 Free-body diagram, taking a 
section within portion DB.

bee98233_ch11_758-832.indd   775bee98233_ch11_758-832.indd   775 11/14/13   12:19 PM11/14/13   12:19 PM



776

 11.1 Determine the modulus of resilience for each of the following 
grades of structural steel:

 (a) ASTM A709 Grade 50: sY 5 50 ksi
 (b) ASTM A913 Grade 65: sY 5 65 ksi
 (c) ASTM A709 Grade 100: sY 5 100 ksi

 11.2 Determine the modulus of resilience for each of the following 
aluminum alloys:

 (a) 1100-H14:  E 5 70 GPa: sY 5 55 MPa
 (b) 2014-T6:  E 5 72 GPa: sY 5 220 MPa
 (c) 6061-T6:  E 5 69 GPa: sY 5 150 MPa

 11.3 Determine the modulus of resilience for each of the following 
metals:

 (a) Stainless steel
     AISI 302 (annealed):  E 5 190 GPa sY 5 260 MPa
 (b) Stainless steel 
     AISI 302 (cold-rolled): E 5 190 GPa sY 5 520 MPa
 (c) Malleable cast iron: E 5 165 GPa sY 5 230 MPa

 11.4 Determine the modulus of resilience for each of the following 
alloys:

 (a) Titanium: E 5 16.5 3 106 psi sY 5 120 ksi
 (b) Magnesium: E 5 6.5 3 106 psi sY 5 29 ksi
 (c) Cupronickel (annealed): E 5 20 3 106 psi sY 5 16 ksi

11.5 The stress-strain diagram shown has been drawn from data 
obtained during a tensile test of a specimen of structural steel. 
Using E 5 29 3 106 psi, determine (a) the modulus of resilience 
of the steel, (b) the modulus of toughness of the steel.

Problems

0.002
0.021 0.2 0.25

100

(ksi)

80

60

40

20

0

�

�

Fig. P11.5

(MPa)

600

450

300

�

150

0.006
0.14 0.18

�

Fig. P11.6

 11.6 The stress-strain diagram shown has been drawn from data 
obtained during a tensile test of an aluminum alloy. Using 
E 5 72 GPa, determine (a) the modulus of resilience of the alloy, 
(b) the modulus of toughness of the alloy.
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 11.7 The load-deformation diagram shown has been drawn from data 
obtained during a tensile test of a specimen of an aluminum alloy. 
Knowing that the cross-sectional area of the specimen was 600 
mm2 and that the deformation was measured using a 400-mm 
gage length, determine by approximate means (a) the modulus of 
resilience of the alloy, (b) the modulus of toughness of the alloy.

400

300

200

100

2.8
50

P (kN)

(mm)d

P

P'

400 mm
d

Fig. P11.7

0.025

0.36 3.2 4

15

20

P (kips)

(in.)d

10

5
P'

d

18 in.

P

Fig. P11.8

P

B

C

2 ft

3 ft

A

in.3
4

in.5
8

Fig. P11.9

11.8 The load-deformation diagram shown has been drawn from data 
obtained during a tensile test of a 5

8 -in.-diameter rod of structural 
steel. Knowing that the deformation was measured using an 
18-in. gage length, determine by approximate means (a) the 
modulus of resilience of the steel, (b) the modulus of toughness 
of the steel.

 11.9 Using E 5 29 3 106 psi, determine (a) the strain energy of the 
steel rod ABC when P 5 8 kips, (b) the corresponding strain 
energy density in portions AB and BC of the rod.
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 11.10 Using E 5 200 GPa, determine (a) the strain energy of the steel 
rod ABC when P 5 25 kN, (b) the corresponding strain-energy 
density in portions AB and BC of the rod.

20-mm diameter

1.2 m

0.8 m
2 m

16-mm diameter

P

B
A

C

Fig. P11.10

 11.11 A 30-in. length of aluminum pipe of cross-sectional area 1.85 in2

is welded to a fixed support A and to a rigid cap B. The steel rod 
EF, of 0.75-in. diameter, is welded to cap B. Knowing that the 
modulus of elasticity is 29 3 106 psi for the steel and 10.6 3 106

psi for the aluminum, determine (a) the total strain energy of the 
system when P 5 8 kips, (b) the corresponding strain-energy 
density of the pipe CD and in the rod EF.

 11.12 A single 6-mm-diameter steel pin B is used to connect the steel 
strip DE to two aluminum strips, each of 20-mm width and 5-mm 
thickness. The modulus of elasticity is 200 GPa for the steel and 
70 GPa for the aluminum. Knowing that for the pin at B the allow-
able shearing stress is tall 5 85 MPa, determine, for the loading 
shown, the maximum strain energy that can be acquired by the 
assembled strips.

30 in.
D

B

A

E F
P

C

48 in.

Fig. P11.11

1.25 m

0.5 m

5 mm

20 mm

B
A

D
C

E
P

Fig. P11.12
10-mm diameter

a

6 m

6-mm diameter

P

BA

C

Fig. P11.13

11.13 Rods AB and BC are made of a steel for which the yield strength 
is sY 5 300 MPa and the modulus of elasticity is E 5 200 GPa. 
Determine the maximum strain energy that can be acquired by 
the assembly without causing any permanent deformation when 
the length a of rod AB is (a) 2 m, (b) 4 m.
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11.14 Rod BC is made of a steel for which the yield strength is sY 5
300 MPa and the modulus of elasticity is E 5 200 GPa. Knowing 
that a strain energy of 10 J must be acquired by the rod when the 
axial load P is applied, determine the diameter of the rod for which 
the factor of safety with respect to permanent deformation is six.

 11.15 The assembly ABC is made of a steel for which E 5 200 GPa and 
sY 5 320 MPa. Knowing that a strain energy of 5 J must be 
acquired by the assembly as the axial load P is applied, deter-
mine the factor of safety with respect to permanent deformation 
when (a) x 5 300 mm, (b) x 5 600 mm.

1.8 m

BC

P

Fig. P11.14

P

A
x 900 mm

18-mm diameter

12-mm diameter B

C

Fig. P11.15

L
B

2c

c

A

P

Fig. P11.16

 11.16 Show by integration that the strain energy of the tapered rod AB is

U 5
1

4
 

P 
2 L

 E Amin

where Amin is the cross-sectional area at end B.

 11.17 Using E 5 10.6 3 106 psi, determine by approximate means the 
maximum strain energy that can be acquired by the aluminum 
rod shown if the allowable normal stress is sall 5 22 ksi.

4 @ 1.5 in. � 6 in.

A

B

1.5 in.
2.10 in.

2.55 in.
2.85 in.

3 in.
P

Fig. P11.17
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 11.18 through 11.21 In the truss shown, all members are made of the 
same material and have the uniform cross-sectional area indi-
cated. Determine the strain energy of the truss when the load P
is applied.

l

l

D

B

C
1
2

l1
2

A

A
P

Fig. P11.18

C

308

B

l

A

A

D

P

Fig. P11.19

C

30°

B

l

A

A A

D

P

Fig. P11.20

DB

C

l3
4

l

2A

A

2A

P

Fig. P11.21

11.22 Each member of the truss shown is made of aluminum and has 
the cross-sectional area shown. Using E 5 72 GPa, determine the 
strain energy of the truss for the loading shown.

30 kN

80 kN

2500 mm2

2000 mm2

C

D
B

2.2 m
1 m

2.4 m

Fig. P11.22

D

2.5 ft

6 ft

3 in2

2 in2

5 in2

B

C

2.5 ft

40 kips

24 kips

Fig. P11.23

 11.23 Each member of the truss shown is made of aluminum and has 
the cross-sectional area shown. Using E 5 10.5 3 106 psi, deter-
mine the strain energy of the truss for the loading shown.
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 11.24 through 11.27 Taking into account only the effect of normal 
stresses, determine the strain energy of the prismatic beam AB
for the loading shown.

M0

A B
D

L

a b

Fig. P11.27

w

B
A

L

Fig. P11.24

D E
BA

a a

L

P P

Fig. P11.26

A

a L

B
D

P

Fig. P11.25

 11.28 and 11.29 Using E 5 29 3 106 psi , determine the strain energy due 
to bending for the steel beam and loading shown. (Neglect the 
effect of shearing stresses.)

S8 3 18.4

6 ft 3 ft

8 kips

D
BA

Fig. P11.28

B
A D

C
D

60 in.
15 in. 15 in.

1.5 in.

3 in.

2 kips 2 kips

Fig. P11.29

 11.30 and 11.31 Using E 5 200 GPa, determine the strain energy due to 
bending for the steel beam and loading shown. (Neglect the 
effect of shearing stresses.)

B
C

180 kN

A

2.4 m 2.4 m

4.8 m

W360 � 64

Fig. P11.30

B
D E

80 kN

A

80 kN

W310 � 74

1.6 m 1.6 m 1.6 m

4.8 m

Fig. P11.31

bee98233_ch11_758-832.indd   781bee98233_ch11_758-832.indd   781 11/14/13   12:19 PM11/14/13   12:19 PM



782

 11.32 Assuming that the prismatic beam AB has a rectangular cross 
section, show that for the given loading the maximum value of 
the strain-energy density in the beam is

umax 5
45

8
 
U
V

where U is the strain energy of the beam and V is its volume.

 11.33 In the assembly shown, torques TA and TB are exerted on disks A
and B, respectively. Knowing that both shafts are solid and made 
of aluminum (G 5 73 GPa), determine the total strain energy 
acquired by the assembly.

w

B
A

L

Fig. P11.32

30 mm

A

B

C

0.9 m

0.75 m

TA 5 300 N · m

TB 5 400 N · m

46 mm

Fig. P11.33

11.34 The design specifications for the steel shaft AB require that the 
shaft acquire a strain energy of 400 in ∙ lb as the 25-kip ∙ in. torque 
is applied. Using G 5 11.2 3 106 psi, determine (a) the largest 
inner diameter of the shaft that can be used, (b) the correspond-
ing maximum shearing stress in the shaft.

 11.35 Show by integration that the strain energy in the tapered rod AB is 

 U 5
7

48
 
T  

2 L

GJmin

  where Jmin is the polar moment of inertia of the rod at end B. 

2.5 in.

25 kip · in.

36 in.

B

A

Fig. P11.34

L
B

2c

c

A

T

Fig. P11.35
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11.36 The state of stress shown occurs in a machine component made 
of a brass for which sY 5 160 MPa. Using the maximum-distortion-
energy criterion, determine the range of values of sz for which 
yield does not occur.

z

σz

75 MPa

y

x

100 MPa

20 MPa

Fig. P11.36 and P11.37

z x

8 ksi

14 ksi

y

σy

Fig. P11.38 and P11.39

B

b

dA

L

M0

Fig. P11.40

Q

B

A

L

(b)

A

B

R2 R1

(a)

A
Q

Fig. P11.41

 11.37 The state of stress shown occurs in a machine component made 
of a brass for which sY 5 160 MPa. Using the maximum-distortion-
energy criterion, determine whether yield occurs when (a) sz 5
145 MPa, (b) sz 5 245 MPa.

11.38 The state of stress shown occurs in a machine component made 
of a grade of steel for which sY 5 65 ksi. Using the maximum-
distortion-energy criterion, determine the range of values of sy

for which the factor of safety associated with the yield strength is 
equal to or larger than 2.2.

 11.39 The state of stress shown occurs in a machine component 
made of a grade of steel for which sY 5 65 ksi. Using the 
maximum-distortion-energy criterion, determine the factor of 
safety associated with the yield strength when (a) sy 5 116 ksi, 
(b) sy 5 216 ksi.

 11.40 Determine the strain energy of the prismatic beam AB, taking 
into account the effect of both normal and shearing stresses.

 *11.41 A vibration isolation support is made by bonding a rod A, of 
radius R1 , and a tube B, of inner radius R2 , to a hollow rubber 
cylinder. Denoting by G the modulus of rigidity of the rubber, 
determine the strain energy of the hollow rubber cylinder for the 
loading shown.
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11.4 IMPACT LOADS
11.4A Analysis
Consider a rod BD with an uniform cross section that is hit at end B by a 
body of mass m moving with a velocity v0 (Fig. 11.21a). As the rod deforms 
under the impact (Fig. 11.21b), stresses develop within the rod and reach 
a maximum value sm . After vibrating for a while, the rod comes to rest, 
and all stresses disappear. Such a sequence of events is called impact load-
ing (Photo 11.2).
 Several assumptions are made to determine the maximum value sm

of the stress at a given point of a structure subjected to an impact load.
 First, the kinetic energy T 5

1
2 mv 

2
0 of the striking body is assumed to 

be transferred entirely to the structure. Thus, the strain energy Um corre-
sponding to the maximum deformation xm is

 Um 5
1
2 mv 

2
0 (11.33)

This assumption leads to the following requirements.

1. No energy should be dissipated during the impact.
2. The striking body should not bounce off the structure and retain 

part of its energy. This, in turn, necessitates that the inertia of 
the structure be negligible, compared to the inertia of the striking 
body.

 In practice, neither of these requirements is satisfied, and only part 
of the kinetic energy of the striking body is actually transferred to the 
structure. Thus, assuming that all of the kinetic energy of the striking body 
is transferred to the structure leads to a conservative design.
 The stress-strain diagram obtained from a static test of the material 
is also assumed to be valid under impact loads. So, for an elastic deforma-
tion of the structure, the maximum value of the strain energy is

Um 5 #  
s 

2
m

2E
 dV  (11.34)

 For the uniform rod in Fig. 11.21, the maximum stress sm has the 
same value throughout the rod, and Um 5 s2

m Vy2E. Solving for sm and 
substituting for Um from Eq. (11.33) gives

 sm 5 B
2Um 

 E

V
5 B

mv 
2
0 

 E

V
 (11.35)

Note from this equation that selecting a rod with a large volume V and a 
low modulus of elasticity E results in a smaller value of the maximum 
stress sm for a given impact load.
 In most problems, the distribution of stresses in the structure is not 
uniform, and Eq. (11.35) does not apply. It is then convenient to deter-
mine the static load Pm that produces the same strain energy as the impact 
load and compute from Pm the corresponding value sm of the largest 
stress in the structure.

(a)

Area � A

v0

v � 0

B

B

D

D

L

(b)

m

xm

Fig. 11.21 Rod subject to impact loading.

Photo 11.2 Steam alternately lifts a weight inside 
the pile driver and then propels it downward. This 
delivers a large impact load to the pile that is being 
driven into the ground.
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11.4 Impact Loads 785

Concept Application 11.6
A body of mass m moving with a velocity v0 hits the end B of the non-
uniform rod BCD (Fig. 11.22). Knowing that the diameter of segment 
BC is twice the diameter of portion CD, determine the maximum value 
sm of the stress in the rod.
 Making n 5 2 in Eq. (1) from Concept Application 11.1, when rod 
BCD is subjected to a static load Pm , its strain energy is

 Um 5
5P 

2
m L

16AE
 (1)

where A is the cross-sectional area of segment CD. Solving Eq. (1) for 
Pm , the static load that produces the same strain energy as the given 
impact load is

Pm 5 B
16

5
 
Um AE

L

where Um is given by Eq. (11.33). The largest stress occurs in segment CD. 
Dividing Pm by the area A of that portion,

 sm 5
Pm

A
5 B

16

5
 
Um E

AL
 (2)

or substituting for Um from Eq. (11.33) gives

sm 5 B
8

5
 
mv 

2
0 E

AL
5 1.265 B

mv 
2
0 E

AL

 Comparing this with the value obtained for sm in the uniform rod 
of Fig. 11.21 and making V 5 AL in Eq. (11.35), note that the maximum 
stress in the rod of variable cross section is 26.5% larger than in the 
lighter uniform rod. Thus, as in our discussion of Concept Application 11.1, 
increasing the diameter of segment BC results in a decrease of the 
energy-absorbing capacity of the rod.

Concept Application 11.7
A block of weight W is dropped from a height h onto the free end of 
the cantilever beam AB (Fig. 11.23). Determine the maximum value of 
the stress in the beam.
 As it falls through the distance h, the potential energy Wh of the 
block is transformed into kinetic energy. As a result of the impact, the 
kinetic energy is transformed into strain energy. Therefore,

 Um 5 Wh (1)

(continued)

Area � 4A

v0

B

C

L

A

D

1
2

L1
2

Fig. 11.22 Stepped rod impacted 
by a body of mass m.

h

A
B

W

L

Fig. 11.23 Weight W falling on 
cantilever beam.
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786 Energy Methods

The total distance the block drops is actually h 1 ym , where ym is the 
maximum deflection of the end of the beam. Thus, a more accurate 
expression for Um (see Sample Prob. 11.3) is

 Um 5 W (h 1 ym) (2)

However, when h .. ym , ym may be neglected, and thus Eq. (1) applies. 
 Recalling the equation for the strain energy of the cantilever beam 
AB in Concept Application 11.3, which was based on neglecting the 
effect of shear,

Um 5
P 

2
m L3

6EI

Solving this equation for Pm , the static force that produces the same 
strain energy in the beam is

 Pm 5 B
6Um EI

L3  (3)

The maximum stress sm occurs at the fixed end B and is

sm 5
0M 0 c

I
5

Pm Lc

I

Substituting for Pm from Eq. (3),

 sm 5 B
6Um  

E

L 1Iyc 
22  (4)

or recalling Eq. (1),

sm 5 B
6WhE

L 1Iyc 
22

11.4B Design
Now compare the values from the preceding section for the maximum 
stress sm: (a) in the rod of uniform cross section of shown in Fig. 11.21, 
(b) in the rod of variable cross section of Concept Application 11.6, and 
(c) in the cantilever beam of Concept Application 11.7, assuming that the 
last has a circular cross section with a radius of c .
 (a) Equation (11.35) shows that, if Um is the amount of energy trans-
ferred to the rod as a result of the impact loading, the maximum stress in 
the rod of uniform cross section is

 sm 5 B
2Um E

V
 (11.36a)

where V is the volume of the rod.
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11.4 Impact Loads 787

 (b) Considering the rod of Concept Application 11.6 and observing 
that the volume of the rod is

V 5 4A1Ly22 1 A1Ly22 5 5ALy2

substitute AL 5 2Vy5 into Eq. (2) of Concept Application 11.6 and write

 sm 5 B
8Um E

V
 (11.36b)

 (c) Finally, recalling that I 5
1
4 pc 

4 for a beam of circular cross 
section,

L1Iyc 
22 5 L114 pc 

4yc 
22 5

1
4 1pc 

2L2 5
1
4V

where V is the volume of the beam. Substituting into Eq. (4) of Concept 
Application 11.7, the maximum stress in the cantilever beam is

 sm 5 B
24Um 

E

V
 (11.36c)

 In each case, the maximum stress sm is proportional to the square 
root of the modulus of elasticity of the material and inversely proportional 
to the square root of the volume of the member. Assuming that all three 
members have the same volume and are of the same material, we note 
that for a given value of the absorbed energy, the uniform rod experiences 
the lowest maximum stress and the cantilever beam the highest.
 This is explained by the fact that the distribution of stresses is uni-
form in case a, and the strain energy is uniformly distributed throughout 
the rod. In case b, on the other hand, the stresses in segment BC of the 
rod are only 25% as large as the stresses in segment CD. This uneven dis-
tribution of the stresses and strain energy results in a maximum stress sm 
that is twice as large as the corresponding stress in the uniform rod. 
Finally, in case c, where the cantilever beam is subjected to a transverse 
impact load, the stresses vary linearly along the beam as well as through 
a transverse section. This uneven distribution of strain energy causes the 
maximum stress sm to be 3.46 times larger than in the same member 
loaded axially (as in case a).
 The properties discussed in this section are quite general and can 
be observed in all types of structures subject to impact loads. Thus, a 
structural member designed to most effectively withstand an impact load 
should

 1. Have a large volume.
 2. Be made of a material with a low modulus of elasticity and a high 

yield strength.
 3. Be shaped so that the stresses are distributed as evenly as possible 

throughout the member.
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788 Energy Methods

11.5 SINGLE LOADS
11.5A Energy Formulation
The concept of strain energy introduced at the beginning of this chapter con-
sidered the work done by an axial load P applied to the end of a rod of uni-
form cross section (Fig. 11.1). The strain energy of the rod for an elongation 
x1 was defined as the work of the load P as it is slowly increased from 0 to P1

corresponding to x1. Thus,

Strain energy 5 U 5 #
x1

0

P dx (11.2)

For an elastic deformation, the work of load P and the strain energy of the 
rod is

 U 5
1
2 P1x1 (11.3)

 The strain energy of structural members under various load condi-
tions was determined in Sec. 11.2 using the strain-energy density u at 
every point of the member and integrating u over the entire member.
 When a structure or member is subjected to a single concentrated 
load, Eq. (11.3) can be used to evaluate its elastic strain energy, provided 
that the relationship between the load and the resulting deformation is 
known. For instance, the cantilever beam of Concept Application 11.3 
(Fig. 11.24) has

U 5
1
2 P1 

y1

and substituting the value from the table of Beam Deflections and Slopes
of Appendix D for y1 gives

 U 5
1

2
 P1 aP1L3

3EI
b 5

P 
2
1L3

6EI
 (11.37)

 A similar approach can be used to determine the strain energy of a 
structure or member subjected to a single couple. Recall that the elemen-
tary work of a couple of moment M is M du, where du is a small angle. 
Since M and u are linearly related, the elastic strain energy of a cantilever 
beam AB subjected to a single couple M1 at its end A (Fig. 11.25) is

 U 5 #
u1

0

M du 5
1
2 M1u1 (11.38)

where u1 is the slope of the beam at A. Substituting the value obtained 
from Appendix D for u1 gives

 U 5
1

2
 M1 
aM1L

EI
b 5

M 
2
1L

2EI
 (11.39)

L

A

B

P1

y1

Fig. 11.24 Cantilever beam with 
load P1.

L

A

B

M1

�1

Fig. 11.25 Cantilever beam with 
couple M1.
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11.5 Single Loads 789

 Likewise, the elastic strain energy of a uniform circular shaft AB with 
a length of L subjected at its end B to a single torque T1 (Fig. 11.26) is

 U 5 #
f1

0
 T df 5

1
2 T1f1 (11.40)

Substituting for the angle of twist f1 from Eq. (3.15) gives

U 5
1

2
 T1 aT1 

L

JG
b 5

T  1
2L

2JG

 The method presented in this section may simplify the solution of 
many impact-loading problems. In Concept Application 11.8, the crash of 
an automobile into a barrier (Photo 11.3) is analyzed by using a simplified 
model consisting of a block and a simple beam.

�1

T1

L

A

B

Fig. 11.26 Cantilevered shaft with 
torque T1.

Photo 11.3 As the automobile crashed into the barrier, considerable energy is 
dissipated as heat during the permanent deformation of the automobile and the 
barrier. 

Concept Application 11.8
A block of mass m moving with a velocity v0 hits the prismatic member 
AB squarely at its midpoint C (Fig. 11.27a). Determine (a) the equiva-
lent static load Pm , (b) the maximum stress sm in the member, and (c) 
the maximum deflection xm at point C.

 a. Equivalent Static Load. The maximum strain energy of the 
member is equal to the kinetic energy of the block before impact. 

 Um 5
1
2 mv 

2
0 (1)

On the other hand, Um can be given as the work of the equivalent 
horizontal static load as it is slowly applied at the midpoint C

 Um 5
1
2 Pm xm (2)

L

v0

B

A

C
m

1
2

L1
2

(a)

Fig. 11.27 (a) Simply 
supported beam having 
block propelled into its 
midpoint.

(continued)
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790 Energy Methods

where xm is the deflection of C corresponding to the static load Pm . 
From the table of Beam Deflections and Slopes of Appendix D,

 xm 5
Pm L3

48EI
 (3)

Substituting for xm from Eq. (3) into Eq. (2),

Um 5
1

2
 
P 

2
m L

3

48EI

Solving for Pm and recalling Eq. (1), the static load equivalent to the 
given impact loading is

 Pm 5 B
96UmEI

L3 5 B
48mv 

2
0 EI

L3  (4)

 b. Maximum Stress. Drawing the free-body diagram of the 
member (Fig. 11.27b), the maximum value of the bending moment 
occurs at C and is Mmax 5 Pm Ly4. The maximum stress occurs in a 
transverse section through C and is equal to

sm 5
Mmax c

I
5

Pm Lc

4I

Substituting for Pm from Eq. (4),

sm 5 B
3mv 

2
0 EI

L1Iyc22
 c. Maximum Deflection. Substituting into Eq. (3) the expres-
sion obtained for Pm in Eq. (4):

xm 5
L3

48EI
 B

48mv 
2
0 EI

L3 5 B
mv 

2
0 L3

48EI

Pm

B

A

C

L1
2

PmRB 5
1
2

PmRA 5
1
2

(b)

Fig. 11.27 (continued) (b) Free-body 
diagram of beam.

11.5B  Deflections
The preceding section showed that, if the deflection x1 of a structure or 
member under a single concentrated load P1 is known, the corresponding 
strain energy U is

 U 5
1
2 P1x1 (11.3)

A similar equation for the strain energy of a structural member under a 
single couple M1 is

U 5
1
2 M1u1 (11.38)

 If the strain energy U of a structure or member subjected to a single 
concentrated load P1 or couple M1 is known, Eq. (11.3) or (11.38) can be 
used to determine the corresponding deflection x1 or angle u1. In order to 
find the deflection under a single load applied to a structure with several 
components, rather than use one of the methods of Chap. 9, it is often 
easier to first compute the strain energy of the structure by integrating the 
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11.5 Single Loads 791

strain-energy density over its various parts, as was done in Sec. 11.2, and 
then use either Eq. (11.3) or Eq. (11.38) for the desired deflection. Simi-
larly, the angle of twist f1 of a composite shaft can be obtained by integrat-
ing the strain-energy density over various parts of the shaft and solving 
Eq. (11.40) for f1.
 The method in this section can be used only if the given structure is 
subjected to a single concentrated load or couple. The strain energy of a struc-
ture subjected to several loads cannot be determined by computing the 
work of each load as if applied independently to the structure (see Sec. 11.6). 
Even if it is possible to determine the strain energy of the structure in this 
manner, only one equation is available for the deflections corresponding to 
various loads. In Secs. 11.7 and 11.8, another method based on the concept 
of strain energy is developed that can be used to find the deflection or slope 
at a given point—even when that structure is subjected to several concen-
trated loads, distributed loads, or couples simultaneously.

Concept Application 11.9
A load P is supported at B by two uniform rods of the same cross-
sectional area A (Fig. 11.28). Determine the vertical deflection of point B.
 The strain energy of the system under the given load was determined 
in Concept Application 11.2. Equating U to the work of the load, write

U 5 0.364 
P 

2l
AE

5
1

2
 P yB

and solving for the vertical deflection of B,

yB 5 0.728 
Pl
AE

 Remark. Once the forces in the two rods have been obtained 
(see Concept Application 11.2), the deformations dByC and dByD can be 
obtained using the method in Chap. 2. However, determining the ver-
tical deflection of point B from these deformations requires a careful 
geometric analysis of the various displacements. The strain-energy 
method used here makes such an analysis unnecessary.

Concept Application 11.10
Determine the deflection of end A of the cantilever beam AB 
(Fig. 11.29), taking into account the effect of (a) the normal stresses 
only, (b) the normal and shearing stresses.

 a. Effect of Normal Stresses. The work of the force P as it is 
slowly applied to A is

U 5
1
2 PyA

C

D

B

l

P

3

3

4

4

Fig. 11.28 Frame CBD with vertical 
load P.

P
L

A

B

h

b

Fig. 11.29 Cantilevered rectangular 
beam with load P.

(continued)
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792 Energy Methods

Concept Application 11.11
A torque T is applied at the end D of shaft BCD (Fig. 11.30). Knowing 
that both portions of the shaft are of the same material and length, but 
that the diameter of BC is twice the diameter of CD, determine the 
angle of twist for the entire shaft.
 In Concept Application 11.4, the strain energy of a similar shaft 
was determined by breaking the shaft into its component parts BC and 
CD. Making n 5 2 in Eq. (1) of that Concept Application gives

U 5
17

32
 
T  

2L

2GJ

where G is the modulus of rigidity of the material and J is the polar 
moment of inertia of segment CD. Making U equal to the work of the 
torque as it is slowly applied to end D and recalling Eq. (11.40), write

17

32
 
T  

2L
2GJ

5
1

2
 TfDyB

and solving for the angle of twist fDyB ,

fDyB 5
17T L
32GJ

Substituting for U the strain energy of the beam in Concept Application 
11.3, where only the effect of the normal stresses was considered, write

P 
2L3

6EI
5

1

2
  PyA

and solving for yA ,

yA 5
PL3

3EI

 b. Effect of Normal and Shearing Stresses. Now substitute 
for U the expression for the total strain energy of the beam obtained 
in Concept Application 11.5, where the effects of both the normal and 
shearing stresses were taken into account. Thus,

P 
2L3

6EI
 a1 1

3Eh2

10GL2b 5
1

2
 PyA

and solving for yA,

yA 5
PL3

3EI
 a1 1

3Eh2

10GL2b
Note that the relative error when the effect of shear is neglected is the 
same as that obtained in Concept Application 11.5, (i.e., less than 
0.9(hyL)2). This is less than 0.9% for a beam with a ratio hyL less than 1

10.

1
2 L

1
2 L

C

D

T
B

diam. � 2d
diam. � d

Fig. 11.30 Stepped shaft BCD with 
torque T.
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11.5 Single Loads 793

Sample Problem 11.3

The block D of mass m is released from rest and falls a distance h
before it strikes the midpoint C of the aluminum beam AB. Using 
E 5 73 GPa, determine (a) the maximum deflection of point C, (b) the 
maximum stress in the beam.

STRATEGY: Calculate the strain energy of the beam in terms of the 
deflection and equate this to the work done by the block. This then 
can be used with the data to solve part a. Using the relation between 
the applied load and deflection (Appendix D), obtain the equivalent 
static load and use this to get the normal stress due to bending.

MODELING: 

Principle of Work and Energy.  The block is released from rest 
(Fig. 1, position 1). Note that in this position both the kinetic and strain 
energy are zero. In position 2 (Fig. 1), where the maximum deflection 
ym occurs, the kinetic energy is also zero. Use to the table of Beam 
Deflections and Slopes in Appendix D to find the expression for ym 
shown in Fig. 2. The strain energy of the beam in position 2 is

U2 5
1

2
 Pm  

ym 5
1

2
 
48EI

L3  y 
2
m  U2 5

24EI

L3  y 
2
m

The work done by the weight W of the block is W (h 1 ym). Equating 
the strain energy of the beam to the work done by W gives

 
24EI

L3  y 
2
m 5 W 1h 1 ym2 (1)

ANALYSIS: 

 a. Maximum Deflection of Point C. From the given data,

EI 5 173 3 109 Pa2  1
12 
10.04 m24 5 15.573 3 103 N?m2

L 5 1 m  h 5 0.040 m  W 5 mg 5 180 kg2 19.81 m/s22 5 784.8 N

Substituting W into Eq. (1), we obtain a quadratic equation that can be 
solved for the deflection:

 1373.8 3 10 
32y 

2
m 2 784.8ym 2 31.39 5 0 ym 5 10.27 mm ◀

(continued)

A

L � 1 m

B

D

C

m � 80 kg

h � 40 mm

40 mm

40 mm

A

Position 1 Position 2

AB Bh

ym

D

D

Fig. 1 Block released from rest (position 1) 
and maximum deflection of beam (position 2).
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794 Energy Methods

b. Maximum Stress. The value of Pm (Fig. 2) is

   Pm 5
48EI

L3  ym 5
48115.573 3 103 N?m2

11 m23  10.01027 m2 Pm 5 7677 N

Recalling that sm 5 Mmaxc/I and Mmax 5
1
4 Pm 

L, write

 sm 5
114 PmL2c

I
5

1
4 17677 N2 11 m2 10.020 m2

1
12 10.040 m24  sm 5 179.9 MPa ◀

REFLECT and THINK: An approximation for the work done by the 
weight of the block is obtained by omitting ym from the expression for 
the work and from the right-hand member of Eq. (1), as was done in 
Concept Application 11.7. If this approximation is used here, ym 5 9.16 
mm, and the error is 10.8%. However, if an 8-kg block is dropped from 
a height of 400 mm (producing the same value for Wh), omitting ym 
from the right-hand member of Eq. (1) results in an error of only 1.2%.

Sample Problem 11.4

Members of the truss shown consist of sections of aluminum pipe with 
the cross-sectional areas indicated. Using E 5 73 GPa, determine the 
vertical deflection of point E caused by load P.

STRATEGY: Draw a free-body diagram of the truss to determine the 
reactions and then use free-body diagrams at each joint to find the mem-
ber forces. Eq. (11.14) can then be used to determine the strain energy 
in each member. Equate the total strain energy in the members to the 
work done by the load P to determine the vertical deflection at the load.

MODELING: 

Axial Forces in Truss Members.  The reactions are found by using 
the free-body diagram of the entire truss (Fig. 1a). Consider the equi-
librium of joints E, C, D, and B in sequence (Fig. 1b through 1e). At 
each joint, determine the forces indicated by dashed lines. At joint B, 
the equation oFx 5 0 provides a check of the computations.

(continued)

A B

C

PmL3

48EI
ym �

48EI
L3Pm � ym

From Appendix D

Fig. 2 Equivalent static force to cause 
deflection ym.

500 mm2

0.8 m

0.6 m
1.5 m

P � 40 kN

A C E

B D

500 mm2

1000 mm2
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11.5 Single Loads 795

ANALYSIS:

Strain Energy. Noting that E is the same for all members, the strain 
energy of the truss is

 U 5 a
F 

2
i  Li

2Ai E
5

1

2E
 a

F 
2
i  Li

Ai
 (1)

where Fi is the force in a given member indicated in the following table 
and where the summation is extended over all members of the truss.

a
F  i

2Li

Ai
5 29 700P 

2

Returning to Eq. (1),

U 5 11y2E2 129.7 3 103P 
22.

Principle of Work-Energy. The work done by the load P as it is 
gradually applied is 1

2 PyE. Equating the work done by P to the strain 
energy U and recalling that E 5 73 GPa and P 5 40 kN, 

1

2
 PyE 5 U   

1

2
 PyE 5

1

2E
 129.7 3 103P 

22

yE 5
1

E
 129.7 3 103P2 5

129.7 3 1032 140 3 1032
73 3 109

 yE 5 16.27 3 1023 m yE 5 16.27 mmw ◀

Member Fi Li , m Ai , m
2 

F i
2Li
Ai

 AB 0 0.8   500 3 1026 0
AC 115Py8 0.6   500 3 1026 4 219P 2

AD 15Py4 1.0   500 3 1026 3 125P 2

BD 221Py8 0.6 1000 3 1026 4 134P 2

CD   0 0.8 1000 3 1026 0
CE 115Py8 1.5   500 3 1026 10 547P 2

DE 217Py8 1.7 1000 3 1026 7 677P 2

A

B

E 17
178

8
4 5

3

15
8

15
15

E
C

D
B 5 21P/8

Ax 5 21P/8

P
Ay 5 P

FCE FAC
FCE 5

FCD 5 0
FAD

FBD

P

FCDFDE

17
8FDE 5 P

21
8FBD 5

FAB

P21
8B 5 P

B

P

(a) (b) (c) (d) (e)

Fig. 1 (a) Free-body diagram of truss. (b-e) Force diagrams at joints.

oFy 5 0:  FDE 5 2
17
8  P oFx 5 0:  FAC 5 1

15
8  P oFy 5 0:  FAD 5 1

5
4 P oFy 5 0: FAB 5 0

 oFx 5 0:  FCE 5 1
15
8  P oFy 5 0:  FCD 5 0 oFx 5 0:  FBD 5 2

21
8 P oFx 5 0: 1Checks2
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 11.42 A 5-kg collar D moves along the uniform rod AB and has a speed 
v0 5 6 m/s when it strikes a small plate attached to end A of the 
rod. Using E 5 200 GPa and knowing that the allowable stress in 
the rod is 250 MPa, determine the smallest diameter that can be 
used for the rod.

Problems

1.2 m

A
V0

B

D

Fig. P11.42

2 m

1.5 m

40-mm diameter

30-mm diameter

h

B

D

A

C

m

Fig. P11.45 and P11.46

Fig. P11.43 and P11.44
3.5 ft

A

E

B

DC

v0

 11.44 The cylindrical block E has a speed v0 5 16 ft/s when it strikes 
squarely the yoke BD that is attached to the 7

8-in.-diameter rods 
AB and CD. Knowing that the rods are made of a steel for which 
sY 5 50 ksi and E 5 29 3 106 psi, determine the weight of block 
E for which the factor of safety is five with respect to permanent 
deformation of the rods.

 11.45 The 35-kg collar D is released from rest in the position shown and 
is stopped by a plate attached at end C of the vertical rod ABC. 
Knowing that E 5 200 GPa for both portions of the rod, deter-
mine the distance h for which the maximum stress in the rod is 
250 MPa.

 11.46 The 15-kg collar D is released from rest in the position shown and 
is stopped by a plate attached at end C of the vertical rod ABC. 
Knowing that E 5 200 GPa for both portions of the rod, deter-
mine (a) the maximum deflection of end C, (b) the equivalent 
static load, (c) the maximum stress that occurs in the rod.

 11.43 The 18-lb cylindrical block E has a horizontal velocity v0 when it 
strikes squarely the yoke BD that is attached to the 7

8-in.-diameter 
rods AB and CD. Knowing that the rods are made of a steel for 
which sY 5 50 ksi and E 5 29 3 106 psi, determine the maximum 
allowable speed v0 if the rods are not to be permanently deformed.
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11.47 The 48-kg collar G is released from rest in the position shown and 
is stopped by plate BDF that is attached to the 20-mm-diameter 
steel rod CD and to the 15-mm-diameter steel rods AB and EF. 
Knowing that for the grade of steel used sall 5 180 MPa and 
E 5 200 GPa, determine the largest allowable distance h.

2.5 m

B F

h

D

G

A EC

Fig. P11.47

 11.48 A 25-lb block C moving horizontally with at velocity v0 hits the 
post AB squarely as shown. Using E 5 29 3 106 psi, determine 
the largest speed v0 for which the maximum normal stress in the 
post does not exceed 18 ksi.

 11.49 Solve Prob. 11.48, assuming that the post AB has been rotated 90° 
about its longitudinal axis.

 11.50 An aluminum tube having the cross section shown is struck 
squarely in its midsection by a 6-kg block moving horizontally 
with a speed of 2 m/s. Using E 5 70 GPa, determine (a) the equiv-
alent static load, (b) the maximum stress in the beam, (c) the 
maximum deflection at the midpoint C of the beam.

7.5 ft

A

B

v0

W5 � 16

C

Fig. P11.48

100 mm

B
0.9 m

0.9 m

v0

80 mm

100 mm

t = 10 mmC

A

Fig. P11.50

B

D

0.6 m

2 kg
40 mm

A

Fig. P11.52

 11.51 Solve Prob. 11.50, assuming that the tube has been replaced by a 
solid aluminum bar with the same outside dimensions as the 
tube.

 11.52 The 2-kg block D is dropped from the position shown onto the 
end of a 16-mm-diameter rod. Knowing that E 5 200 GPa, deter-
mine (a) the maximum deflection of end A, (b) the maximum 
bending moment in the rod, (c) the maximum normal stress in 
the rod.

bee98233_ch11_758-832.indd   797bee98233_ch11_758-832.indd   797 11/15/13   12:15 PM11/15/13   12:15 PM



798

 11.53 The 10-kg block D is dropped from a height h 5 450 mm onto 
the aluminum beam AB. Knowing that E 5 70 GPa, determine 
(a) the maximum deflection of point E, (b) the maximum stress 
in the beam.

 11.54 The 4-lb block D is dropped from the position shown onto the end 
of a 5

8-in.-diameter rod. Knowing that E 5 29 3 106 psi, determine 
(a) the maximum deflection at point A, (b) the maximum bending 
moment in the rod, (c) the maximum normal stress in the rod.

D

0.4 m

40 mmm
h

60 mm
E

BA

1.2 m

Fig. P11.53

D

B
CA

2 ft2 ft

4 lb
1.5 in.

Fig. P11.54

A
B

C

2.5 ft
9.5 ft 16 in.

2.65 in.
20 in.

Fig. P11.55

11.55 A 160-lb diver jumps from a height of 20 in. onto end C of a diving 
board having the uniform cross section shown. Assuming that the 
diver’s legs remain rigid and using E 5 1.8 3 106 psi, determine 
(a) the maximum deflection at point C, (b) the maximum normal 
stress in the board, (c) the equivalent static load.

 11.56 A block of weight W is dropped from a height h onto the horizon-
tal beam AB and hits it at point D. (a) Show that the maximum 
deflection ym at point D can be expressed as

 
ym 5 yst  

a1 1 B1 1
2h
yst
b

  where yst represents the deflection at D caused by a static load W
applied at that point and where the quantity in parenthesis is 
referred to as the impact factor. (b) Compute the impact factor 
for the beam of Prob. 11.52.

BA

D'

D
h

W

ym

Fig. P11.56 and P11.57

 11.57 A block of weight W is dropped from a height h onto the horizon-
tal beam AB and hits point D. (a) Denoting by ym the exact value 
of the maximum deflection at D and by y’m the value obtained by 
neglecting the effect of this deflection on the change in potential 
energy of the block, show that the absolute value of the relative 
error is ( y’m 2 ym )/ym , never exceeding y’m /2h. (b) Check the 
result obtained in part a by solving part a of Prob. 11.52 without 
taking ym into account when determining the change in potential 
energy of the load, and comparing the answer obtained in this 
way with the exact answer to that problem.
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 11.58 and 11.59 Using the method of work and energy, determine the 
deflection at point D caused by the load P.

A

L

a b

B
D

P

Fig. P11.58

D
B

aL

A

P

Fig. P11.59

11.60 and 11.61 Using the method of work and energy, determine the 
slope at point D caused by the couple M0.

M0

A B
D

L

a b

Fig. P11.60

M0

A D
B

aL

Fig. P11.61

11.62 and 11.63 Using the method of work and energy, determine the 
deflection at point C caused by the load P.

11.64 Using the method of work and energy, determine the slope at 
point B caused by the couple M0.

 11.65 Using the method of work and energy, determine the slope at 
point D caused by the couple M0.

2EI
EIA

B

D

L/2L/2

M0

Fig. P11.65

2EI
EIA

B

C

L/2L/2

M0

Fig. P11.64

 11.66 The 20-mm diameter steel rod BC is attached to the lever AB and 
to the fixed support C. The uniform steel lever is 10 mm thick and 
30 mm deep. Using the method of work and energy, determine 
the deflection of point A when L 5 600 mm. Use E 5 200 GPa 
and G 5 77.2 GPa.

C

A

450 N

B

L
500 mm

Fig. P11.66

2EI

EI EI

P

A B
C

a a a a

Fig. P11.63

B
A

L/2

2EI EI

L/2

C

P

Fig. P11.62
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 11.67 Torques of the same magnitude T are applied to the steel shafts 
AB and CD. Using the method of work and energy, determine the 
length L of the hollow portion of shaft CD for which the angle of 
twist at C is equal to 1.25 times the angle of twist at A.

60 in.

2 in.

1.5 in.

T

L
C

A

E
T

B

D

Fig. P11.67

 11.68 Two steel shafts, each of 0.75-in.-diameter, are connected by the 
gears shown. Knowing that G 5 11.2 3 106 psi and that shaft DF
is fixed at F, determine the angle through which end A rotates 
when a 750-lb · in. torque is applied at A. (Neglect the strain 
energy due to the bending of the shafts.)

T
E

F B

A

3 in.

4 in.

8 in.

6 in.

5 in.

D

C

Fig. P11.68

11.69 The 20-mm-diameter steel rod CD is welded to the 20-mm-
diameter steel shaft AB as shown. End C of rod CD is touching 
the rigid surface shown when a couple TB is applied to a disk 
attached to shaft AB. Knowing that the bearings are self aligning 
and exert no couples on the shaft, determine the angle of rotation 
of the disk when TB 5 400 N ? m. Use E 5 200 GPa and G 5 77.2 GPa. 
(Consider the strain energy due to both bending and twisting in 
shaft AB and to bending in arm CD.)

TB

A

B

D

C
300 mm

200 mm
70 mm

Fig. P11.69
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 11.70 The thin-walled hollow cylindrical member AB has a noncircular 
cross section of nonuniform thickness. Using the expression 
given in Eq. (3.50) of Sec. 3.10 and the expression for the strain-
energy density given in Eq. (11.17), show that the angle of twist 
of member AB is

f 5
TL

4 A 
2G

 
C

 
ds
t

  where ds is the length of a small element of the wall cross section 
and A is the area enclosed by center line of the wall cross 
section.

 11.71 and 11.72 Each member of the truss shown has a uniform cross-
sectional area A. Using the method of work and energy, determine 
the horizontal deflection of the point of application of the load P.

L

T

T'

A

B

t

x

ds

Fig. P11.70

l3
4

l

P A B

C D

Fig. P11.71

P

l3
4

l

A B

C D

Fig. P11.72

 11.73 Each member of the truss shown is made of steel and has a uni-
form cross-sectional area of 5 in2. Using E 5 29 3 106 psi, deter-
mine the vertical deflection of joint B caused by the application 
of the 20-kip load.

11.74 Each member of the truss shown is made of steel. The cross-
sectional area of member BC is 800 mm2, and for all other mem-
bers the cross-sectional area is 400 mm2. Using E 5 200 GPa, 
determine the deflection of point D caused by the 60-kN load.

  11.75 Each member of the truss shown is made of steel and has a cross-
sectional area of 5 in2. Using E 5 29 3 106 psi, determine the 
vertical deflection of point C caused by the 15-kip load.

6 ft 6 ft

20 kips

2.5 ft
D

A
C

B

Fig. P11.73

1.2 m

0.5 m

1.2 m

A

B D

C

60 kN

Fig. P11.74

6 ft 6 ft

2.5 ft

A B

DE

C

15 kips

Fig. P11.75

12 kN

D

C

A

B
360 mm

360 mm

480 mm 480 mm

Fig. P11.76

 11.76 The steel rod BC has a 24-mm diameter and the steel cable 
ABDCA has a 12-mm diameter. Using E 5 200 GPa, determine 
the deflection of joint D caused by the 12-kN load.
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802 Energy Methods

*11.6  WORK AND ENERGY 
UNDER MULTIPLE LOADS

In this section, the strain energy of a structure subjected to several loads is 
considered and expressed in terms of the loads and resulting deflections.
 Consider an elastic beam AB subjected to two concentrated loads 
P1 and P2. The strain energy of the beam is equal to the work of P1 and P2 
as they are slowly applied to the beam at C1 and C2 , respectively (Fig. 11.31). 
However, in order to evaluate this work, the deflections x1 and x2 must be 
expressed in terms of the loads P1 and P2 .

BA

P1

x11 x21

C'1 C'2

Fig. 11.32 Beam deflections at C1 
and C2 due to single load P1.

BA

P1

C1

x1 x2

C2

P2

Fig. 11.31 Beam with multiple loads.

BA

P2

C"1 C"2

x12 x22

Fig. 11.33 Beam deflections at C1 and 
C2 due to single load P2.

 Assume that only P1 is applied to the beam (Fig. 11.32). Both C1 and 
C2 are deflected, and their deflections are proportional to the load P1. 
Denoting these deflections by x11 and x21, respectively, write

 x11 5 a11P1  x21 5 a21P1 (11.41)

where a11 and a21 are constants called influence coefficients. These con-
stants represent the deflections of C1 and C2 when a unit load is applied 
at C1 and are characteristics of the beam.
 Now assume that only P2 is applied to the beam (Fig. 11.33). The 
resulting deflections of C1 and C2 are denoted by x12 and x22 , respectively, so

 x12 5 a12 
P2  x22 5 a22 

P2 (11.42)

where a12 and a22 are the influence coefficients representing the deflec-
tions of C1 and C2 when a unit load is applied at C2. Applying the principle 
of superposition, the deflections x1 and x2 of C1 and C2 when both loads 
are applied (Fig. 11.31) are

 x1 5 x11 1 x12 5 a11P1 1 a12 
P2 (11.43)

 x2 5 x21 1 x22 5 a21P1 1 a22 
P2 (11.44)
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*11.6 Work and Energy Under Multiple Loads 803

 To compute the work done by P1 and P2 and thus the strain energy 
of the beam, assume that P1 is first applied slowly at C1 (Fig. 11.34a). 
Recalling the first of Eqs. (11.41), the work of P1 is

 1
2 P1x11 5

1
2 P11a11P12 5

1
2 a11P 

2
1 (11.45)

Note that P2 does no work while C 2 moves through x 21, since it has not 
yet been applied to the beam.
 Now slowly apply P2 at C2 (Fig. 11.34b). Recalling the second of 
Eqs. (11.42), the work of P2 is

 1
2 P2 

x22 5
1
2 P21a22 

P22 5
1
2 a22 

P 
2
2 (11.46)

But, as P2 is slowly applied at C 2 , the point of application at P1 moves 
through x12 from C 91 to C1, and load P1 does work. Since P1 is fully applied 
during this displacement (Fig. 11.35), its work is equal to P1x12 , or recalling 
the first of Eqs. (11.42),

 P1x12 5 P11a12 
P22 5 a12 

P1P2 (11.47)

P2P1

C'1 C'2

BA
x11 x21

C1 C2

C'2C'1 BA

x22x12

(b)

(a) P1

Fig. 11.34 (a) Deflection due to P1 only. 
(b) Additional deflection due to 
subsequent application of P2.

C1C'

P1

P

O
1

x1

x11 x12

x
C2

P2

P

O
C'2

x2

x21 x22

x

(a) (b)

Fig. 11.35 Load-displacement diagrams for application of P1 followed by P2. 
(a) Load-displacement diagram for C1. (b) Load-displacement diagram for C2.

Adding the expressions in Eq. (11.45), (11.46), and (11.47), the strain 
energy of the beam under the loads P1 and P2 is

 U 5
1
2 1a11P 1

2 1 2a12 
P1P2 1 a22 

P 2
22 (11.48)

 If load P2 had been applied first to the beam (Fig. 11.36a), followed 
by load P1 (Fig. 11.36b), the work done by each load would have been as 

P1 P2

P2

C"1 C"2

BA
x12 x22

C1 C2

C"2C"1
BA

x21x11

(b)

(a)

Fig. 11.36 (a) Deflection due to P2 only. (b) Additional 
deflection due to subsequent application of P1.
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804 Energy Methods

shown in Fig. 11.37. Similar calculations would lead to an alternative 
expression for the strain energy of the beam:

U 5
1
2 1a22 

P 2
2 1 2a21P2 

P1 1 a11P 1
22 (11.49)

Equating the right-hand members of Eqs. (11.48) and (11.49), a12 5 a21, 
and we thus conclude that the deflection produced at C1 by a unit load 
applied at C2 is equal to the deflection produced at C2 by a unit load 
applied at C1. This is known as Maxwell’s reciprocal theorem, after the 
British physicist James Clerk Maxwell (1831–1879).
 While we are now able to express the strain energy U of a structure 
subjected to several loads as a function of these loads, the work energy 
method of Sec. 11.5B cannot be used determine the deflections of such a 
structure. Computing the strain energy U by integrating the strain-energy 
density u over the structure and substituting the expression obtained into 
Eq. (11.48) yields only one equation, which clearly can not be solved for 
the multiple coefficients a.

*11.7 CASTIGLIANO’S THEOREM
Recall from the previous section that the strain energy of an elastic struc-
ture subjected to two loads P1 and P2 is

 U 5
1
2 1a11P 1

2 1 2a12 
P1P2 1 a22 

P 2
22 (11.48)

where a11, a12, and a22 are the influence coefficients associated with the 
points of application C1 and C2 of the two loads. Differentiating Eq. (11.48) 
with respect to P1 and using Eq. (11.43) gives

0U
0P1

5 a11P1 1 a12 
P2 5 x1 (11.50)

Differentiating Eq. (11.48) with respect to P2, using Eq. (11.44), and keep-
ing in mind that a12 5 a21, we have

0U
0P2

5 a12 
P1 1 a22 

P2 5 x 2 (11.51)

C1C"

P1

P

O
1

x1

x12 x11

x
C2C"

P2

P

O
2

x2

x22 x21

x

(a) (b)

Fig. 11.37 Load-displacement diagrams for application of P2 followed by P1. 
(a) Load-displacement diagram for C1. (b) Load-displacement diagram for C2.
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*11.7 Castigliano’s Theorem 805

 More generally if an elastic structure is subjected to n loads P1, 
P2 , . . . , Pn , the deflection xj of the point of application of Pj , and measured 
along the line of action of Pj is expressed as the partial derivative of the 
strain energy of the structure with respect to the load Pj . Thus,

 xj 5
0U
0Pj

 (11.52)

This is Castigliano’s theorem, named after the Italian engineer Alberto 
Castigliano (1847–1884) who first stated it.†

 Recall that the work of a couple M is 1
2 Mu, where u is the angle of 

rotation at the point where the couple is slowly applied. Castigliano’s theo-
rem can be used to determine the slope of a beam at the point of applica-
tion of a couple Mj . Thus,

 uj 5
0U
0Mj

 (11.55)

Similarly, the angle of twist fj in a section of a shaft where a torque Tj is 
slowly applied is obtained by differentiating the strain energy of the shaft 
with respect to Tj :

 fj 5
0U
0Tj

 (11.56)

† For an elastic structure subjected to n loads P1 , P2 , . . ., Pn , the deflection of the point 
of application of Pj , measured along the line of action of Pj , is

 xj 5 a
k
ajk 

Pk (11.53)

and the strain energy of the structure is

 U 5
1
2 a

i
a

k
aik 

 Pi Pk (11.54)

Differentiating U with respect to Pj and observing that Pj is found in terms correspond-
ing to either i 5 j or k 5 j gives

 
0U
0Pj

5
1

2 ak
ajk Pk 1

1

2 ai
aij 

Pi

or since aij 5 aji ,

 
0U
0Pj

5
1

2 ak
ajk Pk 1

1

2 ai
aji 

Pi 5 a
k
ajk 

Pk

Recalling Eq. (11.53), we verify that

 xj 5
0U
0Pj

 (11.52)
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*11.8  DEFLECTIONS BY 
CASTIGLIANO’S THEOREM

We saw in the preceding section that the deflection xj of a structure at the 
point of application of a load Pj can be determined by computing the par-
tial derivative 0Uy0Pj of the strain energy U of the structure. As we recall 
from Secs. 11.2A and 11.2B, the strain energy U is obtained by integrating 
or summing over the structure the strain energy of each element of the 
structure. The calculation by Castigliano’s theorem of the deflection xj is 
simplified if the differentiation with respect to the load Pj is carried out 
before the integration or summation.
 For the beam from Sec. 11.2A, the strain energy was found to be

 U 5 #
L

0

 
M 

2

2EI
 dx (11.15)

and the deflection xj of the point of application of the load Pj is then

 xj 5
0U
0Pj

5 #
L

0

 
M
EI

 
0M
0Pj

 dx (11.57)

 For a truss of n uniform members with a length Li , cross-sectional 
area Ai , and internal force Fi , Eq. (11.14) can be used for the strain energy 
U to write

 U 5 a
n

i51
 
F  i

2Li

2Ai 
E

 (11.58)

The deflection xj of the point of application of the load Pj is obtained by 
differentiating each term of the sum with respect to Pj . Thus,

 xj 5
0U
0Pj

5 a
n

i51
 
Fi Li

Ai E
 
0Fi

0Pj
 (11.59)

Concept Application 11.12
The cantilever beam AB supports a uniformly distributed load w and 
a concentrated load P (Fig. 11.38). Knowing that L 5 2 m, w 5 4 kN/m, 
P 5 6 kN, and EI 5 5 MN ? m2, determine the deflection at A.

B
A

P

w

L

Fig. 11.38 Cantilever beam loaded 
as shown. (continued)
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*11.8 Defl ections by Castigliano’s Theorem 807

 The deflection yA of point A where load P is applied is obtained 
from Eq. (11.57). Since P is vertical and directed downward, yA repre-
sents a vertical deflection and is positive downward.

 yA 5
0U
0P

5 #
L

0

 
M

EI
 
0M
0P

 dx (1)

The bending moment M at a distance x from A is

 M 5 21Px 1
1
2 wx 

22 (2)

and its derivative with respect to P is

0M
0P

5 2x

Substituting for M and 0My0P into Eq. (1), 

yA 5
1

EI #
L

0

 aPx 
2 1

1

2
 wx 

3b dx

 yA 5
1

EI
 aPL3

3
1

wL4

8
b (3)

Substituting the given data, 

yA 5
1

5 3 106 N?m2 c 16 3 103 N2 12 m23
3

1
14 3 103 N/m2 12 m24

8
d

yA 5 4.8 3 1023 m      yA 5 4.8 mmw

Note that the computation of the partial derivative 0My0P could not 
have been carried out if the numerical value of P had been substituted 
for P in Eq. (2) for the bending moment.

 The deflection xj of a structure at a given point Cj can be obtained 
using the direct application of Castigliano’s theorem only if load Pj is 
applied at Cj in the direction for which xj is to be determined. When no 
load is applied at Cj or a load is applied in a direction other than the 
desired one, the deflection xj still can be found using Castigliano’s theorem 
if we use the following procedure. First, a fictitious or “dummy” load Q j at 
Cj is applied in the direction in which the deflection xj is to be determined. 
Then Castigliano’s theorem is used to obtain the deflection

 xj 5
0U
0Qj

 (11.60)

due to Qj and the actual loads. Making Qj 5 0 in Eq. (11.60) yields the 
deflection at Cj in the desired direction under the given load.
 The slope uj of a beam at a point Cj can be found by applying a ficti-
tious couple Mj at Cj , computing the partial derivative 0Uy0Mj 

, and making 
Mj 5 0 in the expression obtained.
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808 Energy Methods

Concept Application 11.13
The cantilever beam AB supports a uniformly distributed load w 
(Fig. 11.39a). Determine the deflection and slope at A.

 Deflection at A.  Apply a dummy downward load QA at A 
(Fig. 11.39b) and write

 yA 5
0U
0QA

5 #
L

0

 
M

EI
 
0M
0QA

 dx (1)

The bending moment M at a distance x from A is

 M 5 2QA x 2
1
2 wx 

2 (2)

and its derivative with respect to QA is

 
0M
0QA

5 2x (3)

Substituting for M and 0M/0QA from Eq. (2) and (3) into Eq. (1) and 
making QA 5 0, the deflection at A for the given load is:

yA 5
1

EI
 #

L

0

 121
2 wx 

22 12x2 dx 5 1
wL4

8EI

Since the dummy load was directed downward, the positive sign indi-
cates that

yA 5
wL4

8EI
 w

 Slope at A.  Apply a dummy counterclockwise couple MA at A 
(Fig. 11.39c) and write

uA 5
0U
0MA

Recalling Eq. (11.15),

 uA 5
0
0MA

 #
L

0

 
M 

2

2EI
 dx 5 #

L

0

 
M
EI

 
0M
0MA

 dx (4)

The bending moment M at a distance x from A is

 M 5 2MA 2
1
2wx 

2 (5)

and its derivative with respect to MA is

 
0M
0MA

5 21 (6)

Substituting for M and 0My0MA from Eq. (5) and (6) into Eq. (4) and 
making MA 5 0, the slope at A for the given load is:

uA 5
1

EI
 #

L

0

 121
2 wx 

22 1212 dx 5 1
wL3

6EI

Since the dummy couple was counterclockwise, the positive sign indi-
cates that the angle uA is also counterclockwise:

uA 5
wL3

6EI
 a

B
A

w

L

(a)

B
A

QA

w

L

(b)

B
A

w

MA L

(c)

Fig. 11.39 (a) Cantilever beam 
supporting a uniformly distributed load. 
(b) Dummy load QA applied to determine 
deflection at A. (c) Dummy load MA 
applied to determine the slope at A.
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*11.8 Defl ections by Castigliano’s Theorem 809

Concept Application 11.14
A load P is supported at B by two rods of the same material and the 
same cross-sectional area A (Fig. 11.40a). Determine the horizontal 
and vertical deflection of point B.
 We apply a dummy horizontal load Q at B (Fig. 11.40b). From 
 Castigliano’s theorem,

xB 5
0U
0Q

  yB 5
0U
0P

Using Eq. (11.14) to obtain the strain energy for the rods

U 5
F  

2
BC 1BC2
2AE

1
F  

2
BD 1BD2
2AE

where FBC and FBD represent the forces in BC and BD, respectively. 
Therefore,

 xB 5
0U
0Q

5
FBC 1BC2

AE
 
0FBC

0Q
1

FBD 1BD2
AE

 
0FBD

0Q
 (1)

and

 yB 5
0U
0P

5
FBC 1BC2

AE
 
0FBC

0P
1

FBD 1BD2
AE

 
0FBD

0P
 (2)

From the free-body diagram of pin B (Fig. 11.40c),

 FBC 5 0.6P 1 0.8Q  FBD 5 20.8P 1 0.6Q (3)

Differentiating these equations with respect to Q and P, write

0FBC

0Q
5 0.8  

0FBD

0Q
5 0.6

 
0FBC

0P
5 0.6  

0FBD

0P
5 20.8 (4)

Substituting from Eqs. (3) and (4) into both Eqs. (1) and (2), making 
Q 5 0, and noting that BC 5 0.6l and BD 5 0.8l, the horizontal and 
vertical deflections of point B under the given load P are

 xB 5
10.6P2 10.6l2

AE
 10.82 1

120.8P2 10.8l2
AE

 10.62
 5 20.096 

Pl
AE

 yB 5
10.6P2 10.6l 2

AE
 10.62 1

120.8P2 10.8l 2
AE

 120.82
 5  10.728 

Pl
AE

Referring to the directions of the loads Q and P, we conclude that

xB 5 0.096 
Pl
AE
z   yB 5 0.728 

Pl
 AE
w

We check that the expression found for the vertical deflection of B is 
the same as obtained in Concept Application 11.9.

C

D

B

l

P

3

3

4

4

(a)

Q

C

D

B

l

P

3

3

4

4

(b)

B
3

3
4

4

FBC

FBD

P

Q

(c)

Fig. 11.40 (a) Frame CBD supporting 
vertical load P. (b) Frame CBD with 
horizontal dummy load Q applied. 
(c) Free-body diagram of joint B for 
finding member forces in terms of 
loads P and Q. 
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810 Energy Methods

*11.9  STATICALLY 
INDETERMINATE 
STRUCTURES

The reactions at the supports of a statically indeterminate elastic structure 
can be determined using Castigliano’s theorem. For example, in a structure 
indeterminate to the first degree, designate one of the reactions as redundant 
and eliminate or modify accordingly the corresponding support. The redun-
dant reaction is treated like an unknown load that, together with the other 
loads, must produce deformations compatible with the original supports. 
First calculate the strain energy U of the structure due to the combined 
action of the loads and the redundant reaction. Observing that the partial 
derivative of U with respect to the redundant reaction represents the deflec-
tion (or slope) at the support that has been eliminated or modified, we then 
set this derivative equal to zero and solve for the redundant reaction.† The 
remaining reactions are found using the equations of statics.

†This is in the case of a rigid support allowing no deflection. For other types of support, 
the partial derivative of U should be set equal to the allowed deflection.

Concept Application 11.15
Determine the reactions at the supports for the prismatic beam and 
load shown (Fig. 11.41a).
 The beam is statically indeterminate to the first degree. The reac-
tion at A is redundant and the beam is released from that support. The 
reaction RA is considered to be an unknown load (Fig. 11.41b) and will 
be determined under the condition that the deflection yA at A must be 
zero. By Castigliano’s theorem, yA 5 0Uy0RA, where U is the strain 
energy of the beam under the distributed load and the redundant 
reaction. Recalling Eq. (11.57),

 yA 5
0U
0RA

5 #
L

0

 
M
EI

 
0M
0RA

 dx (1)

 The bending moment M for the load of Fig. 11.41b at a distance x 
from A is

 M 5 RAx 2
1
2 wx 

2 (2)

and its derivative with respect to RA is

 
0M
0RA

5 x (3)

 Substituting for M and 0M/0RA from Eqs. (2) and (3) into Eq. (1), 
write

yA 5
1

EI
  #

L

0

 aRAx 
2 2

1

2
 wx 

3b dx 5
1

EI
 aRAL3

3
2

wL4

8
b

B
A

w

L

(a)

RA

yA 5 0 B
A

w

L

(b)

Fig. 11.41 (a) Beam statically 
indeterminate to first degree. 
(b) Redundant reaction at A and zero 
displacement boundary condition.

(continued)
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*11.9 Statically Indeterminate Structures 811

Concept Application 11.16
A load P is supported at B by three rods of the same material and the 
same cross-sectional area A (Fig. 11.42a). Determine the force in each rod.
 The structure is statically indeterminate to the first degree. The 
reaction at H is choosen as the redundant. Thus rod BH is released 
from its support at H. The reaction RH is now considered to be an 
unknown load (Fig. 11.42b) and will be determined under the condi-
tion that the deflection yH of point H must be zero. By Castigliano’s 
theorem, yH 5 0Uy0RH , where U is the strain energy of the three-rod 
system under load P and the redundant reaction RH . Recalling 
Eq. (11.59),

 yH 5
FBC 1BC2

AE
 
0FBC

0RH
1

FBD 1BD2
AE

 
0FBD

0RH
1

FBH 1BH2
AE

 
0FBH

0RH
 (1)

 Note that the force in rod BH is equal to RH, or
 FBH 5 RH (2)

Then, from the free-body diagram of pin B (Fig. 11.42c),

 FBC 5 0.6P 2 0.6RH  FBD 5 0.8RH 2 0.8P (3)

Differentiating with respect to RH the force in each rod gives

 
0FBC

0RH
5 20.6     0FBD

0RH
5 0.8     0FBH

0RH
5 1  (4)

 Substituting from Eq. (2), (3), and (4) into Eq. (1) and noting that 
the lengths BC, BD, and BH are equal to 0.6l, 0.8l, and 0.5l, 
respectively,

yH 5
1

AE
 3 10.6P 2 0.6RH2 10.6l2 120.62

 1 10.8RH 2 0.8P2 10.8l2 10.82 1 RH 10.5l2 112 4
Setting yH 5 0 gives

1.228RH 2 0.728P 5 0

and solving for RH:

RH 5 0.593P

Carrying this value into Eqs. (2) and (3), the forces in the three rods are

FBC 5 10.244P  FBD 5 20.326P  FBH 5 10.593P

Set yA 5 0 and solve for RA:

RA 5
3
8 wL  RA 5

3
8 wLx

From the conditions of equilibrium for the beam, the reaction at B 
consists of the force and couple:

RB 5
5
8 wLx  MB 5

1
8 wL2 i

H

0.5l

0.6 l

0.8l

C

D

l

P

B

(a)

HC

D

P

B

RH

yH � 0

(b)

B

FBC

FBH 5 RH

FBD
P

(c)

Fig. 11.42 
(a) Statically 
indeterminate 
frame supporting 
a vertical load P. 
(b) Redundant 
reaction at H and 
zero displacement 
boundary condition. 
(c) Free-body 
diagram of joint B.
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812 Energy Methods

Sample Problem 11.5

For the truss and loading of Sample Prob. 11.4, determine the vertical 
deflection of joint C.

STRATEGY: Add a dummy load associated with the desired vertical 
deflection at joint C. The truss is then analyzed to determine the mem-
ber forces, first by drawing a free-body diagram of the truss to find the 
reactions and then by using equilibrium at each joint to find the mem-
ber forces. Use Eq. (11.59) to get the deflection in terms of the dummy 
load Q.

MODELING and ANALYSIS: 

 Castigliano’s Theorem. We introduce the dummy vertical load 
Q as shown in Fig. 1. Using Castigliano’s theorem where the force Fi in 
a given member i is caused by the combined load of P and Q and since 
E 5 constant,

 yC 5 a aFi Li

Ai E
b 0Fi

0Q
5

1

Ea
aFi Li

Ai
b 0Fi

0Q
 (1)

 Force in Members. Since the force in each member caused by 
the load P was previously found in Sample Prob. 11.4, we only need 
to determine the force in each member due to Q. Using the free-body 
diagram of the truss with load Q, we draw a free-body diagram (Fig. 2) 
to determine the reactions. Then, considering in sequence the equi-
librium of joints E, C, B and D and using Fig. 3, we determine the force 
in each member caused by load Q.

Joint E: FCE 5 FDE 5 0

Joint C: FAC 5 0; FCD 5 2Q

Joint B: FAB 5 0; FBD 5 23
4 Q

 The total force in each member under the combined action of Q 
and P is shown in the following table. Form 0Fiy0Q for each member, 
then compute (FiLiyAi)10Fiy0Q2, as indicated.

(continued)

500 mm2

0.8 m

0.6 m
1.5 m

P � 40 kN

A C E

B D

500 mm2

1000 mm2

C

Q

A

B D

E

P

Fig. 1 Dummy load Q applied 
to joint C used to determine 
vertical deflection at C.

A C

QQ

0.8 m

Q

Q

3
4

3
4

E

B

0.6 m

D

Fig. 2 Free-body diagram of truss with 
only dummy load Q.

Joint D Force triangle

D

FAD
FCD � Q

FCD � Q

3
4FBD � Q 3

4FBD � Q

5
4FAD � Q

Fig. 3 Force analysis diagrams for joint D.
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*11.9 Statically Indeterminate Structures 813

Sample Problem 11.6

For the beam and loading shown, determine the deflection at point D. 
Use E 5 29 3 106 psi.

STRATEGY: Add a dummy load associated with the desired vertical 
deflection at joint D. Use a free-body diagram to determine the reac-
tions due to both the dummy load and the distributed load. The 
moments in each segment are then written as a function of the coor-
dinate along the beam. Eq. (11.57) is used to determine the 
deflection.

MODELING and ANALYSIS:

Castigliano’s Theorem. We introduce a dummy load Q as shown 
in Fig. 1. Using Castigliano’s theorem and noting that EI is constant, 
write

 yD 5 #  
M
EI

 a 0M
0Q
b dx 5

1

EI
 #  M a 0M

0Q
b dx (1)

The integration will be performed separately for segments AD and DB.

a  aFi Li

Ai
b 0Fi

0Q
5 4306P 1 4263Q

Deflection of C. Substituting into Eq. (1), we have

yC 5
1

E
 a aFi Li

Ai
b 0Fi

0Q
5

1

E
 14306P 1 4263Q2

Since load Q is not part of the original load, set Q 5 0. Substituting 
P 5 40 kN and E 5 73 GPa gives

yC 5
4306 140 3 103 N2

73 3 109 Pa
5 2.36 3 1023 m  yC 5 2.36 mmw ◀

(continued)

Member Fi −Fiy−Q Li , m Ai , m
2 aFi Li

Ai
b 0Fi
0Q

 AB 0 0 0.8 500 3 1026 0
 AC 115Py8 0 0.6 500 3 1026 0
 AD 15Py4 1 5Qy4 5

4 1.0 500 3 1026 13125P 1 3125Q
 BD 221Py8 2 3Qy4 2

3
4 0.6 1000 3 1026 11181P 1  338Q

 CD 2Q 21 0.8 1000 3 1026     1 800Q
 CE 115Py8 0 1.5 500 3 1026 0
 DE 217Py8 0 1.7 1000 3 1026 0

BA
D

L � 12 ft

a � 4.5 ft

w � 1.8 kips/ft

b � 7.5 ft

W10 � 15

BA
D

L

a

w

b

Q

Fig. 1 Dummy load Q used to 
determine vertical deflection at point D.

bee98233_ch11_758-832.indd   813bee98233_ch11_758-832.indd   813 11/14/13   12:19 PM11/14/13   12:19 PM



814 Energy Methods

Reactions. Using the free-body diagram of the entire beam (Fig. 2) 
gives

RA 5
wb 

2

2L
1 Q 

b
L
x  RB 5

wb 1a 1
1
2 b2

L
1 Q 

a
L
x

Portion AD of Beam. Using the free-body diagram shown in Fig. 3,

M1 5 RA 
x 5 awb 

2

2L
1 Q 

b
L
b x  

0M1

0Q
5 1

bx

L

Substituting into Eq. (1) and integrating from A to D gives

1

EI
 #  M1 

0M1

0Q
 dx 5

1

EI
 #

a

0

 RA 
x abx

L
b dx 5

RAa 
3b

3EIL

Then substitute for RA and set the dummy load Q equal to zero.

 
1

EI
 #  M1 

0M1

0Q
 dx 5

wa 
3b 

3

6EIL2  (2)

Portion DB of Beam. Using the free-body diagram shown in Fig. 4, 
the bending moment at a distance v from end B is

M2 5 RBv 2
wv 

2

2
5 cwb 1a 1

1
2 b2

L
1 Q 

a

L
d v 2

wv 
2

2
  

0M2

0Q
5 1

av
L

Substitute into Eq. (1) and integrate from point B (where v 5 0) to 
point D (where v 5 b) for

1

EI
 #  M2 

0M2

0Q
 dv 5

1

EI
 #

b

0

 aRBv 2
wv 

2

2
b aav

L
b dv 5

RB ab3

3EIL
2

w ab4

8EIL

Substituting for RB and setting Q 5 0,

 
1

EI
 #  M2 

0M2

0Q
 dv 5 cwb1a 1

1
2 b2

L
d  ab3

3EIL
2

wab4

8EIL
5

5a2b4 1 ab5

24EIL2  w (3)

Deflection at Point D.  Recalling Eqs. (1), (2), and (3),

yD 5
wab 

3

24EIL2 14a 
2 1 5ab 1 b 

225 wab 
3

24EIL2 14a 1 b2 1a 1 b2 5 wab 
3

24EIL
 14a 1 b2

From Appendix C, I 5 68.9 in4 for a W10 3 15 beam. Substituting the 
numerical values for I, w, a, b, and L,  yD 5 0.262 in. T ◀

BA
D

L

a

a � b1
2

wb

b
RA RB

b1
2

Q

Fig. 2 Free-body diagram of beam.

x
(x � a)

A

From A to D

M1

RA

V1

Fig. 3 Free-body diagram 
of left portion (in AD).

w
From B to D

B

v
RB

M2

V2

(v � b)

Fig. 4 Free-body diagram of right portion 
(in BD).
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*11.9 Statically Indeterminate Structures 815

Sample Problem 11.7

For the uniform beam and loading shown, determine the reactions at 
the supports.

STRATEGY: The beam is indeterminate to the first degree, and we 
must choose one of the reactions as a redundant. We then use a free-
body diagram to solve for the reactions due to the distributed load and 
the redundant reaction. Using free-body diagrams of the segments, we 
obtain the moments as a function of the coordinate along the beam. 
Using Eq. (11.57), we write Castigliano’s theorem for deflection associ-
ated with the redundant reaction. We set this deflection equal to zero, 
and solve for the redundant reaction. Equilibrium can then be used to 
find the other reactions.

MODELING and ANALYSIS:

Castigliano’s Theorem. Choose the reaction RA as the redundant 
one (Fig. 1). Using Castigliano’s theorem, determine the deflection at 
A due to the combined action of RA and the distributed load. Since EI
is constant,

yA 5 #  
M
EI

 a 0M
0RA
b dx 5

1

EI
 #  M 

0M
0RA

 dx (1)

The integration will be performed separately for portions AB and BC
of the beam. RA is then obtained by setting yA equal to zero.

Free Body: Entire Beam. Using Fig. 2, the reactions at B and C in 
terms of RA and the distributed load are

RB 5
9
4 wL 2 3RA  RC 5 2RA 2

3
4 wL (2)

CA
B

L L
2

w

B
A C

LRA
L
2

w

Fig. 1 Released beam, replacing 
support at A with redundant reaction RA.

B
A C

L

wL3
2 L

4
3L
4

L
2

RA RB RC

Fig. 2 Free-body diagram of beam.
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816 Energy Methods

Portion AB of Beam. Using the free-body diagram shown in Fig. 3, 
find

M1 5 RAx 2
wx 

2

2
  

0M1

0RA
5 x

Substituting into Eq. (1) and integrating from A to B gives

 
1

EI
 #  M1 

0M
0RA

 dx 5
1

EI
 #

L

0

 aRAx 
2 2

wx 
3

2
b dx 5

1

EI
 aRAL3

3
2

wL4

8
b (3)

Portion BC of Beam.  Using the free-body diagram shown in Fig. 4, find

M2 5 a2RA 2
3

4
 wLb v 2

wv 
2

2
  

0M2

0RA
5 2v

Substituting into Eq. (1) and integrating from C (where v 5 0) to B 
(where v 5

1
2 
L) gives

1

EI
 #  M2 

0M2

0RA
 dv 5

1

EI
 #

Ly2

0

 a4RAv 
2 2

3

2
 wLv 

2 2 wv 
3b dv

 5
1

EI
 aRAL3

6
2

wL4

16
2

wL4

64
b 5

1

EI
 aRAL3

6
2

5wL4

64
b (4)

Reaction at A. Adding the expressions from Eqs. (3) and (4), we 
obtain yA and set it equal to zero:

yA 5
1

EI
 aRAL3

3
2

wL4

8
b 1

1

EI
 aRAL3

6
2

5wL4

64
b 5 0

Thus, RA 5
13

32
 wL RA 5

13

32
 wLx ◀

Reactions at B and C.  Substituting for RA into Eqs. (2), we obtain

 RB 5
33

32
 wLx RC 5

wL
16

 x ◀

wx

x

A

From A to B

M1

RA
V1

x
2

(x � L)

Fig. 3 Free-body diagram of left 
portion showing internal shear and 
moment.

(v �   )

From C to B

C

v

RC � 2RA �

M2

V2

L
2

v
2

wv

wL3
4

Fig. 4 Free-body diagram of right 
portion showing internal shear and 
moment.
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817

Problems
11.77 and 11.78 Using the information in Appendix D, compute the work 

of the loads as they are applied to the beam (a) if the load P is 
applied first, (b) if the couple M is applied first.

L

B
A

M0

P

Fig. P11.77

B

A
C

M0

L/2 L/2

P

Fig. P11.78

11.79 through 11.82 For the beam and loading shown, (a) compute the 
work of the loads as they are applied successively to the beam, 
using the information provided in Appendix D, (b) compute the 
strain energy of the beam by the method of Sec. 11.2A and show 
that it is equal to the work obtained in part a.

BA
C

L/2 L/2

PP

Fig. P11.79

C

B

L/2 L/2

A

M0M0

Fig. P11.80

D E
BA

L
4

L
2

L
4

P P

Fig. P11.81

L

BA

M0M0

Fig. P11.82

 11.83 through 11.85 For the prismatic beam shown, determine the deflec-
tion of point D.

 11.86 through 11.88 For the prismatic beam shown, determine the slope 
at point D.

L/2 L/2

B
A

D

w

Fig. P11.83 and P11.86

BD

L/2 L/2

A

P

Fig. P11.84 and P11.87

A B

w

E

D

L/2 L/2 L/2

Fig. P11.85 and P11.88
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818

 11.89 For the prismatic beam shown, determine the slope at point A.

A B
D

L

a b

P

Fig. P11.89

L/2 L/2

A B
C

M0

Fig. P11.90

S8 3 13

5 ft

1.5 kips1.5 kips

B C
A

5 ft

Fig. P11.91 and P11.92

8 kN

A
C

18 kN/m

B

1 m 1.5 m

2.5 m

W250 � 22.3

Fig. P11.93

A
CB

0.6 m 0.9 m

40 mm

80 mm

5 kN/m

4 kN

Fig. P11.94

 11.90 For the prismatic beam shown, determine the slope at point B.

 11.91 For the beam and loading shown, determine the deflection of 
point B. Use E 5 29 3 106 psi.

11.92 For the beam and loading shown, determine the deflection of 
point A. Use E 5 29 3 106 psi.

 11.93 and 11.94 For the beam and loading shown, determine the 
deflection at point B. Use E 5 200 GPa.

 11.95 For the beam and loading shown, determine the slope at end A. 
Use E 5 200 GPa.

B
C

160 kN

A

2.4 m 2.4 m

4.8 m

W310 � 74

Fig. P11.95
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 11.96 For the beam and loading shown, determine the deflection at 
point D. Use E 5 200 GPa.

BA
D E

0.6 m

90 kN 90 kN

0.6 m
2 m

S250 � 37.8

Fig. P11.96

B
DC

A

8 kips

S8 � 18.4

6 ft 3 ft

3 ft

Fig. P11.97 and P11.98

l

l

D

B

C
1
2

l1
2

A

A
P

Fig. P11.99

 11.97 For the beam and loading shown, determine the slope at end A. 
Use E 5 29 3 106 psi.

11.98 For the beam and loading shown, determine the deflection at 
point C. Use E 5 29 3 106 psi.

 11.99 and 11.100  For the truss and loading shown, determine the hori-
zontal and vertical deflection of joint C.

A A

2A DB

C

l l
P

l1
2

Fig. P11.100

2.5 ft 3 in2

4 in2

6 in2

6 ft

80 kips

48 kips

B

C

D

2.5 ft

Fig. P11.101 and P11.102

 11.101 and 11.102 Each member of the truss shown is made of steel 
and has the cross-sectional area shown. Using E 5 29 3 106 psi, 
determine the deflection indicated.

 11.101 Vertical deflection of joint C.

 11.102 Horizontal deflection of joint C.

bee98233_ch11_758-832.indd   819bee98233_ch11_758-832.indd   819 11/14/13   12:19 PM11/14/13   12:19 PM



820

 11.103 and 11.104 Each member of the truss shown is made of steel and 
has a cross-sectional area of 500 mm2. Using E 5 200 GPa, deter-
mine the deflection indicated.

 11.103 Vertical deflection of joint B.

11.104 Horizontal deflection of joint B.

2.5 m

1.6 m

1.2 m

1.2 m

4.8 kN

C
D

B

A

Fig. P11.103 and P11.104

L

L
C

B

A

60�

P

Fig. P11.105

A

R

B

P

Fig. P11.106

 1 1.105 A uniform rod of flexural rigidity EI is bent and loaded as shown. 
Determine (a) the vertical deflection of point A, (b) the horizon-
tal deflection of point A.

 11.106 For the uniform rod and loading shown and using Castigliano’s 
theorem, determine the deflection of point B.
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 11.107 For the beam and loading shown and using Castigliano’s theo-
rem, determine (a) the horizontal deflection of point B, (b) the 
vertical deflection of point B.

P

L

L

A D

B C

Fig. P11.109 and P11.110

11.108 Two rods AB and BC of the same flexural rigidity EI are welded 
together at B. For the loading shown, determine (a) the deflec-
tion of point C, (b) the slope of member BC at point C.

 11.109 Three rods, each of the same flexural rigidity EI, are welded to 
form the frame ABCD. For the loading shown, determine the 
deflection of point D.

 11.110 Three rods, each of the same flexural rigidity EI, are welded to 
form the frame ABCD. For the loading shown, determine the 
angle formed by the frame at point D.

 11.111 through 11.115 Determine the reaction at the roller support and 
draw the bending-moment diagram for the beam and loading 
shown.

B

R

A

P

Fig. P11.107

C

l

l

B

A

P

Fig. P11.108

A
B

C

P

L/2 L/2

Fig. P11.111

A
B

L

M0

Fig. P11.112

A

L

BD

a b

M0

Fig. P11.113

L/2 L/2

B
A

C

w

Fig. P11.114

BD
A

L
3

2L
3

P

Fig. P11.115
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11.116 For the uniform beam and loading shown, determine the reac-
tion at each support.

P

l

CD
� �

E

B

Fig. P11.117

f

C

D

R E

B

P

Fig. P11.118

B
D

A C

l

l

308

P

Fig. P11.119

D
C

3
4

E
B

l

l

P

Fig. P11.120

P

l3
4

C

A B

l
ED

Fig. P11.121

P
l

l3
4

C

ED

A B

Fig. P11.122

B
C

w

A

LL/2

Fig. P11.116

 11.117 through 11.120 Three members of the same material and same 
cross-sectional area are used to support the load P. Determine 
the force in member BC.

 11.121 and 11.122 Knowing that the eight members of the indeterminate 
truss shown have the same uniform cross-sectional area, deter-
mine the force in member AB.
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Strain Energy
We considered a uniform rod subjected to a slowly increasing axial load 
P (Fig. 11.43). The area under the load-deformation diagram (Fig. 11.44) 
represents the work done by P. This work is equal to the strain energy of 
the rod associated with the deformation caused by load P:

 Strain energy 5 U 5 #
x1

0

 P dx (11.2)

Review and Summary

C

C

A

L

B

B

P

x

Fig. 11.43 Axially loaded rod.

P

P U � Area

O
x

xx1

dx

Fig. 11.44 Work due to load P is equal 
to the area under the load-deformation 
diagram.

�

�O
p � �1

Fig. 11.45 Strain-energy density is the area 
under the stress-strain curve between ex = 0 
and ex = e1. If loaded into the plastic region, 
only the energy associated with elastic 
unloading is recovered.

Strain-Energy Density
Since the stress is uniform throughout the rod shown in Fig. 11.43,
the strain energy can be divided by the volume of the rod to obtain the 
strain energy per unit volume. This is the strain-energy density of the 
material.

Strain-energy density 5 u 5 #
P1

0

 sx dPx (11.4)

The strain-energy density is equal to the area under the stress-strain dia-
gram of the material (Fig. 11.45). Equation (11.4) remains valid when the 
stresses are not uniformly distributed, but the strain-energy density now 
varies from point to point. If the material is unloaded, there is a perma-
nent strain Pp, and only the strain-energy density corresponding to the 
triangular area is recovered. The remainder of the energy is dissipated in 
the form of heat during the deformation of the material.

Modulus of Toughness
The area under the entire stress-strain diagram (from zero to rupture) is 
called the modulus of toughness and is a measure of the total energy that 
can be acquired by the material.
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Modulus of Resilience
If the normal stress s remains within the proportional limit of the mate-
rial, the strain-energy density u is

u 5
s 

2

2E

 The area under the stress-strain curve from zero strain to the strain PY

at yield (Fig. 11.46) is the modulus of resilience of the material. It represents 
the energy per unit volume that the material can absorb without yielding:

 uY 5
s Y

2

2E
 (11.8)

Modulus
of resilience

�

� Y

� �Y

Y

O

Fig. 11.46 Modulus of resilience is the area 
under the stress-strain curve to yield.

BA

x

Fig. 11.47 Transversely loaded beam.

Strain Energy Under Axial Load
The strain energy under axial load is associated with normal stresses. If a 
rod of length L and variable cross-sectional area A is subjected to a centric 
axial load P at its end, the strain energy of the rod is

 U 5 #
L

0

 
P 

2

2AE
 dx (11.13)

If the rod has a uniform cross section with an area A, the strain energy is

U 5
P 

2L
2AE

 (11.14)

Strain Energy Due to Bending
For a beam subjected to transverse loads (Fig. 11.47), the strain energy 
associated with the normal stresses is

U 5 #
L

0

 
M 

2

2EI
 dx (11.15)

where M is the bending moment and EI is the flexural rigidity of the beam.

Strain Energy Due to Shearing Stresses
The strain energy also can be associated with shearing stresses. The strain-
energy density for a material in pure shear is

 u 5
t 

2
xy

2G
 (11.17)

where txy is the shearing stress and G is the modulus of rigidity of the 
material.
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Strain Energy Due to Torsion
For a shaft with a length of L and uniform cross section subjected to cou-
ples of magnitude T at its ends (Fig. 11.48), the strain energy is

U 5
T  

2L

2GJ
 (11.20)

where J is the polar moment of inertia of the cross-sectional area of the 
shaft.

L

T

T'

Fig. 11.48 Prismatic shaft subjected to torque.

General State of Stress
The strain energy of an elastic isotropic material under a general state of 
stress was considered where the strain-energy density at a given point is 
expressed in terms of the principal stresses sa , sb , and sc at that point:

 u 5
1

2E
 3s 

2
a 1 s 

2
b 1 s

 

2
c 2 2n1sa 

sb 1 sb 
sc 1 sc sa2 4  (11.23)

The strain-energy density at a given point is divided into two parts: uv , 
which is associated with a change in volume of the material at that point, 
and ud , which is associated with a distortion of the material at the same 
point. Thus, u 5 uv 1 ud , where

 uv 5
1 2 2n

6E
 1sa 1 sb 1 sc22 (11.28)

and

ud 5
1

12G
 3 1sa 2 sb22 1 1sb 2 sc22 1 1sc 2 sa22 4  (11.29)

This equation for ud is used to derive the maximum-distortion-energy 
criterion to predict whether or not a ductile material yields under a given 
state of plane stress.

Impact Loads
For the impact loading of an elastic structure being hit by a mass moving 
with a given velocity, it is assumed that the kinetic energy of the mass is 
transferred entirely to the structure. The equivalent static load is the load 
that causes the same deformations and stresses as the impact load.
 A structural member designed to withstand an impact load effec-
tively should be shaped so that the stresses are evenly distributed through-
out the member. Also, the material used should have a low modulus of 
elasticity and a high yield strength.
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Members Subjected to a Single Load
The strain energy of structural members subjected to a single load was 
considered for the beam and loading of Fig. 11.49. The strain energy of 
the beam is

U 5
P 

2
1L3

6EI
 (11.37)

Observing that the work done by load P is equal to 1
2P1  

y1, the work of the 
load and the strain energy of the beam are equal and can be equated to 
determine the deflection y1 at the point of application of the load.
 The method just described is of limited value, since it is restricted 
to structures subjected to a single concentrated load and to the determi-
nation of the deflection at the point of application of that load. In the 
remaining sections of the chapter, we presented a more general method, 
which can be used to determine deflections at various points of structures 
subjected to several loads.

Castigliano’s Theorem
Castigliano’s theorem states that the deflection xj  of the point of applica-
tion of a load Pj measured along the line of action of Pj is equal to the 
partial derivative of the strain energy of the structure with respect to the 
load Pj. Thus,

 xj 5
0U
0Pj

 (11.52)

Castigliano’s theorem also can be used to determine the slope of a beam 
at the point of application of a couple Mj by writing

 uj 5
0U
0Mj

 (11.55)

Similarly the angle of twist is determined in a section of a shaft where a 
torque Tj is applied by writing

 fj 5
0U
0Tj

 (11.56)

 Castigliano’s theorem can be applied to determine the deflections 
and slopes at various points of a given structure. Dummy loads are used 
to determine displacements at points where no actual load is applied. The 
calculation of a deflection xj is simpler if the differentiation with respect 
to load Pj is carried out before the integration. For a beam, 

 xj 5
0U
0Pj

5 #
L

0

 
M
EI

 
0M
0Pj

 dx (11.57)

For a truss consisting of n members, the deflection xj at the point of appli-
cation of the load Pj is

 xj 5
0U
0Pj

5 a
n

i51
 
Fi Li

Ai E
 
0Fi

0Pj
 (11.59)

Indeterminate Structures
Castigliano’s theorem can also be used in the analysis of statically inde-
terminate structures, as shown in Sec. 11.9.

L

A

B

P1

y1

Fig. 11.49 Cantilever beam with 
load P1.
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 11.123 Rod AB is made of a steel for which the yield strength is sY 5
450 MPa and E 5 200 GPa; rod BC is made of an aluminum alloy 
for which sY 5 280 MPa and E 5 73 GPa. Determine the maxi-
mum strain energy that can be acquired by the composite rod 
ABC without causing any permanent deformations.

Review Problems

14-mm diameter

1.6 m

1.2 m

10-mm diameter

P

B

C

A

Fig. P11.123

3 in2

4 in2
20 kips

24 kips

D

B

C

7.5 ft

4 ft

Fig. P11.124

 11.124 Each member of the truss shown is made of steel and has the 
cross-sectional area shown. Using E 5 29 3 106 psi, determine 
the strain energy of the truss for the loading shown.

5000 ft

A

B

Fig. P11.125

11.125 The ship at A has just started to drill for oil on the ocean floor at 
a depth of 5000 ft. The steel drill pipe has an outer diameter of 
8 in. and a uniform wall thickness of 0.5 in. Knowing that the top 
of the drill pipe rotates through two complete revolutions before 
the drill bit at B starts to operate and using G 5 11.2 3 106 psi, 
determine the maximum strain energy acquired by the drill pipe.
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 11.126 Collar D is released from rest in the position shown and is 
stopped by a small plate attached at end C of the vertical rod 
ABC. Determine the mass of the collar for which the maximum 
normal stress in portion BC is 125 MPa.

 11.127 Each member of the truss shown is made of steel and has a cross-
sectional area of 400 mm2. Using E 5 200 GPa, determine the 
deflection of point D caused by the 16-kN load.

C

D

16 kN

E

A B
1.5 m

0.8 m

Fig. P11.127

A

60 mm

100 mm

50 mm

0.60 m

0.40 m D

C

B

T

40 mm

Fig. P11.129

 11.128 A block of weight W is placed in contact with a beam at some 
given point D and released. Show that the resulting maximum 
deflection at point D is twice as large as the deflection due to a 
static load W applied at D.

 11.129 Two solid steel shafts are connected by the gears shown. Using 
the method of work and energy, determine the angle through 
which end D rotates when T 5 820 N · m. Use G 5 77.2 GPa.

l � 200 mm l � 200 mm

P � 150 N

B

C

A

Fig. P11.130

 11.130 The 12-mm-diameter steel rod ABC has been bent into the shape 
shown. Knowing that E 5 200 GPa and G 5 77.2 GPa, determine 
the deflection of end C caused by the 150-N force. 

B

A

C

D

Bronze
E � 105 GPa
12-mm diameter

Aluminum
E � 70 GPa
9-mm diameter

0.6 m

2.5 m

4 m

Fig. P11.126
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11.131 For the prismatic beam shown, determine the slope at point D.

C

P
D

l

l

A

B

Fig. P11.133

A B
D E

L/2 L/2 L/2

P P

Fig. P11.131

aa

BB

CC

L

P

AA

Fig. P11.132

 11.132 A disk of radius a has been welded to end B of the solid steel shaft 
AB. A cable is then wrapped around the disk and a vertical force 
P is applied to end C of the cable. Knowing that the radius of the 
shaft is L and neglecting the deformations of the disk and of the 
cable, show that the deflection of point C caused by the applica-
tion of P is

dc 5
PL3

3EI
 a1 1 1.5 

Ea 
2

GL2b

 11.133 A uniform rod of flexural rigidity EI is bent and loaded as shown. 
Determine (a) the horizontal deflection of point D, (b) the slope 
at point D.

 11.134 The steel bar ABC has a square cross section of side 0.75 in. and 
is subjected to a 50-lb load P. Using E 5 29 3 106 psi for rod BD
and the bar, determine the deflection of point C.

P

D

C
B

A

25 in.

10 in.

0.2-in. diameter

30 in.

Fig. P11.134
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The following problems are designed to be solved with a computer.

 11.C1 A rod consisting of n elements, each of which is homogeneous and 
of uniform cross section, is subjected to a load P applied at its free end. 
The length of element i is denoted by Li and its diameter by di. (a) Denot-
ing by E the modulus of elasticity of the material used in the rod, write a 
computer program that can be used to determine the strain energy 
acquired by the rod and the deformation measured at its free end. (b) Use 
this program to determine the strain energy and deformation for the rods 
of Probs. 11.9 and 11.10.

 11.C2 Two 0.75 3 6-in. cover plates are welded to a W8 3 18 rolled-steel 
beam as shown. The 1500-lb block is to be dropped from a height h 5 2 in. 
onto the beam. (a) Write a computer program to calculate the maximum 
normal stress on transverse sections just to the left of D and at the center 
of the beam for values of a from 0 to 60 in. using 5-in. increments. 
(b) From the values considered in part a, select the distance a for which 
the maximum normal stress is as small as possible. Use E 5 29 3 106 psi.

Computer Problems

P

Element i
Element 1

Element n

Fig. P11.C1

B

D C h

60 in. 60 in.

a a

E

F 1500 lb
� 6 in.

W8 � 18

A

3
4

Fig. P11.C2

B

24 mm

24 mm

h

D

A

L

Fig. P11.C3

 11.C3 The 16-kg block D is dropped from a height h onto the free end of 
the steel bar AB. For the steel used sall 5 120 MPa and E 5 200 GPa. (a) 
Write a computer program to calculate the maximum allowable height h
for values of the length L from 100 mm to 1.2 m, using 100-mm incre-
ments. (b) From the values considered in part a, select the length corre-
sponding to the largest allowable height.
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 11.C4 The block D of mass m 5 8 kg is dropped from a height h 5 750 mm 
onto the rolled-steel beam AB. Knowing that E 5 200 GPa, write a com-
puter program to calculate the maximum deflection of point E and the 
maximum normal stress in the beam for values of a from 100 to 900 mm 
900 mm, using 100-mm increments.

A

1.8 m

a

B
E

D m

h

W150 � 13.5

Fig. P11.C4

10-mm diameter

a

6 m

6-mm diameter

P

BA

C

Fig. P11.C5

A B
C

12 ft
16 in.

2.65 in.
20 in.

a

Fig. P11.C6

 11.C5 The steel rods AB and BC are made of a steel for which sY 5

300 MPa and E 5 200 GPa. (a) Write a computer program to calculate for 
values of a from 0 to 6 m, using 1-m increments, the maximum strain 
energy that can be acquired by the assembly without causing any perma-
nent deformation. (b) For each value of a considered, calculate the diam-
eter of a uniform rod of length 6 m and of the same mass as the original 
assembly, and the maximum strain energy that could be acquired by this 
uniform rod without causing permanent deformation.

 11.C6 A 160-lb diver jumps from a height of 20 in. onto end C of a diving 
board having the uniform cross section shown. Write a computer program 
to calculate for values of a from 10 to 50 in., using 10-in. increments, (a) 
the maximum deflection of point C, (b) the maximum bending moment 
in the board, (c) the equivalent static load. Assume that the diver’s legs 
remain rigid and use E 5 1.8 3 106 psi.
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A2

A.1  First Moment of an Area and 
Centroid of an Area

Consider an area A located in the xy plane (Fig. A.1). Using x and y as the 
coordinates of an element of area dA, the first moment of the area A with 
respect to the x axis is the integral

Qx 5 #
A

 y dA (A.1)

Similarly, the first moment of the area A with respect to the y axis is the 
integral

 Qy 5 #
A

 x dA (A.2)

Note that each of these integrals may be positive, negative, or zero, 
depending on the position of the coordinate axes. When SI units are used, 
the first moments Qx and Qy are given in m3 or mm3. When U.S. customary 
units are used, they are given in ft3 or in3.
 The centroid of the area A is the point C of coordinates x and y 
(Fig. A.2), which satisfy the relationship

 #
A

 x dA 5 Ax  #
A

 y dA 5 Ay (A.3)

Comparing Eqs. (A.1) and (A.2) with Eqs. (A.3), the first moments of the 
area A can be expressed as the products of the area and the coordinates 
of its centroid:

 Qx 5 Ay   Qy 5 Ax (A.4)

 When an area possesses an axis of symmetry, the first moment of 
the area with respect to that axis is zero. Considering area A of Fig. A.3, 
which is symmetric with respect to the y axis, every element of area dA of 

A  Moments of Areas
APPENDIX

A

x dA

x

y

y

O

Fig. A.1 General area A with 
infinitesimal area dA referred 
to xy coordinate system.

A

Cx

x

y

y

O

Fig. A.2 Centroid of 
area A.

Fig. A.3 Area having axis of symmetry.

x

x

dA'

A
C

O

dA

y

–x
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A3A.1 First Moment of an Area and Centroid of an Area

abscissa x corresponds to an element of area dA¿ of abscissa 2x. There-
fore, the integral in Eq. (A.2) is zero, and Qy 5 0. From the first of the 
relationships in Eq. (A.3), x 5 0. Thus, if an area A possesses an axis of 
symmetry, its centroid C is located on that axis.
 Since a rectangle possesses two axes of symmetry (Fig. A.4a), the centroid 
C of a rectangular area coincides with its geometric center. Similarly, the cen-
troid of a circular area coincides with the center of the circle (Fig. A.4b).
 When an area possesses a center of symmetry O, the first moment of the 
area about any axis through O is zero. Considering the area A of Fig. A.5, every 
element of area dA with coordinates x and y corresponds to an element of 
area dA¿ with coordinates 2x and 2y. It follows that the integrals in Eqs. (A.1) 
and (A.2) are both zero, and Qx 5 Qy 5 0. From Eqs. (A.3), x 5 y 5 0, so the 
centroid of the area coincides with its center of symmetry.
 When the centroid C of an area can be located by symmetry, the first 
moment of that area with respect to any given axis can be obtained easily 
from Eqs. (A.4). For example, for the rectangular area of Fig. A.6,

 Qx 5 Ay 5 1bh2 112 
h2 5

1
2 
bh2

and
 Qy 5 Ax 5 1bh2 112 

b2 5
1
2 
b2h

In most cases, it is necessary to perform the integrations indicated in 
Eqs. (A.1) through (A.3) to determine the first moments and the centroid 
of a given area. While each of the integrals is actually a double integral, it 
is possible to select elements of area dA in the shape of thin horizontal or 
vertical strips and to reduce the equations to integrations in a single 
variable. This is illustrated in Concept Application A.1. Centroids of com-
mon geometric shapes are given in a table inside the back cover.

A A

C C

(a) (b)

Fig. A.4 Areas having two axes of symmetry have the centroid 
at their intersection.

Fig. A.5 Area with center of 
symmetry has its centroid at the origin.

x

dA
A

O

dA'

y

–y

–x

y

x

Fig. A.6 Centroid of a rectangular area.

A

C

O

y � h

h

y

x

1
2

x � b

b

1
2
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A4 Appendix A

Concept Application A.1
For the triangular area of Fig. A.7a, determine (a) the first moment Qx

of the area with respect to the x axis, (b) the ordinate y of the centroid 
of the area.

 a. First Moment Qx.  We choose to select as an element of area a 
horizontal strip with a length of u and thickness dy. Note that all of the 
points within the element are at the same distance y from the x axis 
(Fig. A.7b). From similar triangles,

u

b
5

h 2 y

h
   u 5 b  

h 2 y

h

and

dA 5 u dy 5 b  

h 2 y

h
 dy

(a)

h

x

y

b

h
h – ydy

x
yu

y

b

(b)

Fig. A.7 (a) Triangular area. (b) Horizontal element used in integration to 
find centroid.

The first moment of the area with respect to the x axis is

 Qx 5 #
A

 y dA 5 #
h

0

 yb  

h 2 y

h
 dy 5

b
h

 #
h

0

 1hy 2 y 
22 dy

 5
b
h
ch 

y 
2

2
2

y 
3

3
d h

0
  Qx 5

1
6 bh2

 b. Ordinate of Centroid.  Recalling the first of Eqs. (A.4) and 
observing that A 5

1
2bh,

Qx 5 Ay   1
6bh2 5 112 bh2y

y 5
1
3 h
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A5

A.2  The First Moment and Centroid of 
a Composite Area

Consider area A of the quadrilateral area shown in Fig. A.8, which can be 
divided into simple geometric shapes. The first moment Qx of the area 
with respect to the x axis is represented by the integral ey dA, which 
extends over the entire area A. Dividing A into its component parts 
A1, A2, A3, write

Qx 5 #
A

 y dA 5 #
A1

 y dA 1 #
A2

 y dA 1 #
A3

 y dA

Fig. A.8 Quadrilateral area divided into simple geometric shapes.

X

A

C

O

y

x

Y

C3

C2C1

A2A1

A3

O

y

x

or recalling the second of Eqs. (A.3),

Qx 5 A1 y1 1 A2 y2 1 A3 y3

where y1, y2 
, and y3 represent the ordinates of the centroids of the 

 com ponent areas. Extending this to an arbitrary number of  compo nent 
areas and noting that a similar expression for Qy may be obtained, write

 Qx 5 a  Ai yi   Qy 5 a  Ai xi (A.5)

 To obtain the coordinates X  and Y  of the centroid C of the composite 
area A, substitute Qx 5 AY  and Qy 5 AX  into Eqs. (A.5):

AY 5 a
i

 Ai yi   AX 5 a
i

 Ai xi

Solving for X  and Y  and recalling that the area A is the sum of the com-
ponent areas Ai, 

 X 5

a
i

 Ai xi

a
i

Ai

   Y 5

a
i

 Ai yi

a
i

Ai

 (A.6)

A.2 The First Moment and Centroid of a Composite Area
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A6 Appendix A

Concept Application A.2
Locate the centroid C of the area A shown in Fig. A.9a.
 Selecting the coordinate axes shown in Fig. A.9b, note that the 
centroid C must be located on the y axis, since this is an axis of sym-
metry. Thus, X 5 0.

A

C

20

Dimensions in mm

60

20
40

20

(a)

Fig. A.9 (a) Area A. (b) Composite areas A1 and A2 used to determine overall 
centroid.

O

A2

A1

Dimensions in mm

60

20

80

40

y1 5 70

y2 5 30

y

x

(b)

Y 5

a
i

 Ai yi

a
i

 Ai

5
184 3 103 mm3

4 3 103 mm2 5 46 mm

 Area, mm2 yi 
, mm Ai yi 

, mm3

A1 (20)(80) 5 1600 70 112 3 103

A2 (40)(60) 5 2400 30  72 3 103

 
a

i
 Ai 5 4000

  a
i

Ai  yi 5 184 3 103

 Divide A into its component parts A1 and A2 and use the second 
of Eqs. (A.6) to determine the ordinate Y  of the centroid. The actual 
computation is best carried out in tabular form:
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A.2 The First Moment and Centroid of a Composite Area A7

Concept Application A.3
Referring to the area A of Concept Application A.2, consider the hori-
zontal x¿ axis through its centroid C (called a centroidal axis). The por-
tion of A located above that axis is A¿ (Fig. A.10a). Determine the first 
moment of A¿ with respect to the x¿ axis.

Solution.  Divide the area A¿ into its components A1 and A3

(Fig. A.10b). Recall from Concept Application A.2 that C is located 
46 mm above the lower edge of A. The ordinates y¿1 and y¿3 of A1 and 
A3 and the first moment Q¿x¿ of A¿ with respect to x¿ are

 Q¿x¿ 5 A1 y¿1 1 A3 y¿3

 5 120 3 802 1242 1 114 3 402 172 5 42.3 3 103 mm3

Alternative Solution.  Since the centroid C of A is located on 
the x¿ axis, the first moment Qx¿ of the entire area A with respect to that 
axis is zero:

Qx¿ 5 Ay¿ 5 A102 5 0

Using A– as the portion of A located below the x¿ axis and Q–x¿ as its 
first moment with respect to that axis,

Qx¿ 5 Q¿x¿ 1 Q–x¿ 5 0   or   Q¿x¿ 5 2Q–x¿

This shows that the first moments of A¿ and A– have the same magni-
tude and opposite signs. Referring to Fig. A.10c, write

Q–x¿ 5 A4 y¿4 5 140 3 462 12232 5 242.3 3 103 mm3

and

Q¿x¿ 5 2Q–x¿ 5 142.3 3 103 mm3

C

A'

x'

Y

y

x

(a)

C

A3

A1

Dimensions in mm

46

14

20

80

40

y′1 5 24

y′

y′3 5 7

x′

(b)

Fig. A.10 (a) Area A with centroidal 
x9y9 axes, highlighting portion A9. 
(b) Areas used to determine the first 
moment of area A9 with respect to 
the x9 axis. (c) Alternative solution 
using the other portion A0 of the 
total area A.

C

A'' 5 A4

A' 

Dimensions in mm

46

40

y'4 5 23

x'

y'

(c)
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A8 Appendix A

A.3  Second Moment, or Moment of 
Inertia of an Area, and Radius 
of Gyration

Consider an area A located in the xy plane (Fig. A.1) and the element of 
area dA of coordinates x and y. The second moment, or moment of inertia, 
of area A with respect to the x and y axes is

 Ix 5 #
A

 y 
2 dA  Iy 5 #

A

 x 
2 dA (A.7)

These integrals are called rectangular moments of inertia, since they are 
found from the rectangular coordinates of element dA. While each integral is 
actually a double integral, it is possible to select elements of area dA in the 
shape of thin horizontal or vertical strips and to reduce the equations to inte-
grations in a single variable. This is illustrated in Concept Application A.4.
 The polar moment of inertia of area A with respect to point O 
(Fig. A.11) is the integral

 JO 5 #
A

 r2 dA (A.8)

where r is the distance from O to the element dA. While this integral is 
also a double integral, for circular areas it is possible to select elements of 
area dA in the shape of thin circular rings and to reduce the equation of 
JO to a single integration (see Concept Application A.5).
 Note from Eqs. (A.7) and (A.8) that the moments of inertia of an area are 
positive quantities. When SI units are used, moments of inertia are given in 
m4 or mm4. When U.S. customary units are used, they are given in ft4 or in4.
 An important relationship can be established between the polar 
moment of inertia JO of a given area and the rectangular moments of iner-
tia Ix and Iy. Noting that r2 5 x 

2 1 y 
2,

JO 5 #
A

r2 dA 5 #
A

1x 
2 1 y 

22 dA 5 #
A

y 
2 dA 1 #

A

x 
2 dA

or

 JO 5 Ix 1 Iy (A.9)

 The radius of gyration of an area A with respect to the x axis is rx 
, 

which satisfies the relationship

 Ix 5 r 2
x  A (A.10)

where Ix is the moment of inertia of A with respect to the x axis. Solving 
Eq. (A.10) for rx,

 rx 5 B
Ix

A
 (A.11)

A

x dA

x

y

y

O

Fig. A.1 (repeated)

x dA

x

y

y

O

�

Fig. A.11 Area dA located 
by distance r from point O.
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A9A.3 Second Moment, or Moment of Inertia of an Area

The radii of gyration with respect to the y axis and the origin O are

 Iy 5 r 2
y  A   ry 5 B

Iy

A
  (A.12)

 JO 5 r 2
O A   rO 5 B

JO

A
 (A.13)

Substituting for JO 
, Ix 

, and Iy in terms of the corresponding radii of gyration 
in Eq. (A.9),

 r 2
O 5 r 2

x 1 r 2
y (A.14)

The results obtained in the following two Concept Applications are 
included in the table for moments of inertias of common geometric 
shapes, located inside the back cover of this book.

Concept Application A.4
For the rectangular area of Fig. A.12a, determine (a) the moment of 
inertia Ix of the area with respect to the centroidal x axis, (b) the cor-
responding radius of gyration rx.

 a. Moment of Inertia Ix.  We choose to select a horizontal strip of 
length b and thickness dy (Fig. A.12b). Since all of the points within the 
strip are at the same distance y from the x axis, the moment of inertia of 
the strip with respect to that axis is

dIx 5 y 
2 dA 5 y 

21b dy2
Integrating from y 5 2hy2 to y 5 1hy2, 

 Ix 5 #
A

 
y 

2 dA 5 #
1hy2

2hy2

 y 
21b dy2 5

1
3b 3y 

3 41hy2
2hy2

 5 1
3 b ah3

8
1

h3

8
b

or

Ix 5
1

12 bh3

b. Radius of Gyration rx.  From Eq. (A.10),

Ix 5 r 2
x A  1

12 bh3 5 r 2
x 
1bh2

and solving for rx 
 gives

rx 5 hy112

Fig. A.12 (a) Rectangular area. 
(b) Horizontal strip used to determine 
moment of inertia Ix.

h

b

x

y

O

(a)

b

x

2 h/2

1 h/2

dy

y

y

O

(b)
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A10 Appendix A

A.4 Parallel-Axis Theorem
Consider the moment of inertia Ix of an area A with respect to an arbitrary 
x axis (Fig. A.14). Using y as the distance from an element of area dA to 
that axis, recall from Sec. A.3 that

Ix 5 #
A

y 
2 dA

We now draw the centroidal x9 axis, which is the axis parallel to the x axis 
that passes through the centroid C. Using y9 as the distance from element dA

Concept Application A.5
For the circular area of Fig. A.13a, determine (a) the polar moment of 
inertia JO, (b) the rectangular moments of inertia Ix and Iy.

O

c
x

y

(a)

O

d
rc x

y

r

(b)

Fig. A.13 (a) Circular area. 
(b) Annular strip used to determine 
polar moment of inertia JO.

C

A

dA

x'
y'

y
d

x

Fig. A.14 General area with centroidal 
x9 axis, parallel to arbitrary x axis.

a. Polar Moment of Inertia.  We choose to select as an element of 
area a ring of radius r with a thickness dr (Fig. A.13b). Since all of the 
points within the ring are at the same distance r from the origin O, the 
polar moment of inertia of the ring is

dJO 5 r2 dA 5 r212pr dr2
Integrating in r from 0 to c,

  JO 5 #
A

r2 dA 5 #
c

0

r212pr dr2 5 2p #
c

0

r3 dr

  JO 5
1
2pc4

 b. Rectangular Moments of Inertia.  Because of the symmetry of 
the circular area, Ix 5 Iy . Recalling Eq. (A.9), write

JO 5 Ix 1 Iy 5 2Ix  1
2 pc4 5 2Ix

and,

Ix 5 Iy 5
1
4 pc4
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A11A.5 Moment of Inertia of a Composite Area

to that axis, y 5 y9 1 d, where d is the distance between the two axes. Sub-
stituting for y in the integral representing Ix gives

 Ix 5 #
A

y 
2 dA 5 #

A

1
 
y¿ 1 d22dA

  Ix 5 #
A

y¿2 dA 1 2d #
A

y¿ dA 1 d 
2 #

A
 dA (A.15)

The first integral in Eq. (A.15) represents the moment of inertia Ix¿ of the 
area with respect to the centroidal x9 axis. The second integral  rep resents 
the first moment Qx¿ of the area with respect to the x9 axis and is equal to 
zero, since the centroid C of the area is located on that axis. In other words, 
recalling from Sec. A.1 we write

Qx¿ 5 Ay¿ 5 A102 5 0

The last integral in Eq. (A.15) is equal to the total area A. Therefore,

 Ix 5 Ix¿ 1 Ad 
2 (A.16)

 This equation shows that the moment of inertia Ix of an area with 
respect to an arbitrary x axis is equal to the moment of inertia Ix¿ of the area 
with respect to the centroidal x9 axis parallel to the x axis plus the product 
Ad 2 of the area A and of the square of the distance d between the two axes. 
This result is known as the parallel-axis theorem. With this theorem, the 
moment of inertia of an area with respect to a given axis can be determined 
when its moment of inertia with respect to a centroidal axis of the same 
direction is known. Conversely, it makes it possible to determine the moment 
of inertia Ix¿ of an area A with respect to a centroidal axis x9 when the 
moment of inertia Ix of A with respect to a parallel axis is known. This is 
done by subtracting from Ix the product Ad 2. Note that the parallel-axis theo-
rem may be used only if one of the two axes involved is a centroidal axis.
 A similar formula relates the polar moment of inertia JO of an area 
with respect to an arbitrary point O and the  polar moment of inertia JC of 
the same area with respect to its centroid C. Using d as the distance 
between O and C,

 JO 5 JC 1 Ad 
2 (A.17)

A.5  Moment of Inertia of 
a Composite Area

Consider a composite area A made of several component parts A1, A2, and 
so forth. Since the integral for the moment of inertia of A can be subdi-
vided into integrals extending over A1, A2, etc. the moment of inertia of A 
with respect to a given axis is obtained by adding the moments of inertia 
of the areas A1, A2, etc. with respect to the same axis. The moment of 
inertia of an area made of several common shapes may be found by using 
the formulas shown in the inside back cover of this book. Before adding 
the moments of inertia of the component areas, the parallel-axis theorem 
should be used to transfer each moment of inertia to the desired axis. This 
is shown in Concept Application A.6.
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A12 Appendix A

Concept Application A.6
Determine the moment of inertia Ix of the area shown with respect to 
the centroidal x axis (Fig. A.15a).

 Location of Centroid.  The centroid C of the area has been 
located in Concept Application A.2 for the given area. From this, C is 
located 46 mm above the lower edge of area A.

Computation of Moment of Inertia.  Area A is divided into 
two rectangular areas A1 and A2 (Fig. A.15b), and the moment of iner-
tia of each area is found with respect to the x axis.

Rectangular Area A1.  To obtain the moment of inertia (Ix)1 of 
A1 with respect to the x axis, first compute the moment of inertia of A1 
with respect to its own centroidal axis x9. Recalling the equation in part 
a of Concept Application A.4 for the centroidal moment of inertia of a 
rectangular area,

1Ix¿21 5
1

12bh3 5
1

12 
180 mm2 120 mm23 5 53.3 3 103 mm4

Using the parallel-axis theorem, transfer the moment of inertia of A1 
from its centroidal axis x9 to the parallel axis x:

1Ix21 5 1Ix¿21 1 A1d 
2
1 5 53.3 3 103 1 180 3 202 12422
  5 975 3 103 mm4

 Rectangular Area A2.  Calculate the moment of inertia of A2 
with respect to its centroidal axis x0 and use the parallel-axis theorem 
to transfer it to the x axis to obtain

 1Ix–22 5
1

12 
bh3 5

1
12 
1402 16023 5 720 3 103 mm4

 1Ix22 5 1Ix–22 1 A2 d 2
2 5 720 3 103 1 140 3 602 11622

 5 1334 3 103 mm4

 Entire Area A.  Add the values for the moments of inertia of A1 
and A2 with respect to the x axis to obtain the moment of inertia Ix of 
the entire area:

 Ix 5 1Ix21 1 1Ix22 5 975 3 103 1 1334 3 103

 Ix 5 2.31 3 106 mm4

A

x

y

C

20

Dimensions in mm

60

20 40 20

(a)

C

A1

A2

C1

C2

Dimensions in mm

46

14

10

10

80

40

d1 5 24

y

x'

30

d2 5 16
x

x''

(b)

Fig. A.15 (a) Area A. (b) Composite 
areas and centroids.
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A13

Appendix B Typical Properties of Selected Materials Used in Engineering1,5

 (U.S. Customary Units) 
 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
 Specific  Compres-    of of of Thermal Percent
 Weight, Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material lb/in3 ksi ksi ksi ksi ksi 106 psi 106 psi 1026/8F in 2 in.

Steel

  Structural (ASTM-A36) 0.284 58   36 21 29 11.2 6.5 21
  High-strength-low-alloy
    ASTM-A709 Grade 50 0.284 65   50  29 11.2 6.5 21
    ASTM-A913 Grade 65 0.284 80   65  29 11.2 6.5 17
    ASTM-A992 Grade 50 0.284 65   50  29 11.2 6.5 21
  Quenched & tempered
    ASTM-A709 Grade 100 0.284 110   100  29 11.2 6.5 18
  Stainless, AISI 302
    Cold-rolled 0.286 125   75  28 10.8 9.6 12
    Annealed 0.286 95   38 22 28 10.8 9.6 50
  Reinforcing Steel
    Medium strength 0.283 70   40  29 11 6.5
    High strength 0.283 90   60  29 11 6.5

Cast Iron
  Gray Cast Iron
    4.5% C, ASTM A-48 0.260 25 95 35   10 4.1 6.7 0.5
  Malleable Cast Iron
    2% C, 1% Si, 
      ASTM A-47 0.264 50 90 48 33  24 9.3 6.7 10

Aluminum
  Alloy 1100-H14 
      (99% Al) 0.098 16  10 14 8 10.1 3.7 13.1 9
  Alloy 2014-T6 0.101 66  40 58 33 10.9 3.9 12.8 13
  Alloy 2024-T4 0.101 68  41 47  10.6  12.9 19
  Alloy 5456-H116 0.095 46  27 33 19 10.4  13.3 16
  Alloy 6061-T6 0.098 38  24 35 20 10.1 3.7 13.1 17
  Alloy 7075-T6 0.101 83  48 73  10.4 4 13.1 11

Copper
  Oxygen-free copper
      (99.9% Cu)
    Annealed 0.322 32  22 10  17 6.4 9.4 45
    Hard-drawn 0.322 57  29 53  17 6.4 9.4 4
  Yellow Brass
      (65% Cu, 35% Zn)
    Cold-rolled 0.306 74  43 60 36 15 5.6 11.6 8
    Annealed 0.306 46  32 15 9 15 5.6 11.6 65
  Red Brass
      (85% Cu, 15% Zn)
    Cold-rolled 0.316 85  46 63  17 6.4 10.4 3
    Annealed 0.316 39  31 10  17 6.4 10.4 48
  Tin bronze 0.318 45   21  14  10 30
    (88 Cu, 8Sn, 4Zn)
  Manganese bronze 0.302 95   48  15  12 20
    (63 Cu, 25 Zn, 6 Al, 3 Mn, 3 Fe)
  Aluminum bronze 0.301 90 130  40  16 6.1 9 6
    (81 Cu, 4 Ni, 4 Fe, 11 Al)

(Table continued on page A14)

Appendix B
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Appendix B Typical Properties of Selected Materials Used in Engineering1,5

 (SI Units) 
 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
   Compres-    of of of Thermal Percent
 Density Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material kg/m3 MPa MPa MPa MPa MPa GPa GPa 1026/8C in 50 mm

Steel
  Structural (ASTM-A36) 7860 400   250 145 200 77.2 11.7 21
  High-strength-low-alloy
    ASTM-A709 Grade 345 7860 450   345  200 77.2 11.7 21
    ASTM-A913 Grade 450 7860 550   450  200 77.2 11.7 17
    ASTM-A992 Grade 345 7860 450   345  200 77.2 11.7 21
  Quenched & tempered
    ASTM-A709 Grade 690 7860 760   690  200 77.2 11.7 18
  Stainless, AISI 302
    Cold-rolled 7920 860   520  190 75 17.3 12
    Annealed 7920 655   260 150 190 75 17.3 50
  Reinforcing Steel
    Medium strength 7860 480   275  200 77 11.7
    High strength 7860 620   415  200 77 11.7

Cast Iron
  Gray Cast Iron
    4.5% C, ASTM A-48 7200 170 655 240   69 28 12.1 0.5
  Malleable Cast Iron
    2% C, 1% Si, 
    ASTM A-47 7300 345 620 330 230  165 65 12.1 10

Aluminum
  Alloy 1100-H14
     (99% Al) 2710 110  70 95 55 70 26 23.6 9
  Alloy 2014-T6 2800 455  275 400 230 75 27 23.0 13
  Alloy-2024-T4 2800 470  280 325  73  23.2 19
  Alloy-5456-H116 2630 315  185 230 130 72  23.9 16
  Alloy 6061-T6 2710 260  165 240 140 70 26 23.6 17
  Alloy 7075-T6 2800 570  330 500  72 28 23.6 11

Copper
  Oxygen-free copper
      (99.9% Cu)
    Annealed 8910 220  150 70  120 44 16.9 45
    Hard-drawn 8910 390  200 265  120 44 16.9 4
  Yellow-Brass
      (65% Cu, 35% Zn)
    Cold-rolled 8470 510  300 410 250 105 39 20.9 8
    Annealed 8470 320  220 100 60 105 39 20.9 65
  Red Brass 
      (85% Cu, 15% Zn)
    Cold-rolled 8740 585  320 435  120 44 18.7 3
    Annealed 8740 270  210 70  120 44 18.7 48
  Tin bronze 8800 310   145  95  18.0 30
    (88 Cu, 8Sn, 4Zn)
  Manganese bronze 8360 655   330  105  21.6 20
    (63 Cu, 25 Zn, 6 Al, 3 Mn, 3 Fe)
  Aluminum bronze 8330 620 900  275  110 42 16.2 6
    (81 Cu, 4 Ni, 4 Fe, 11 Al)

(Table continued on page A15

A14 Appendix B
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A15

 
 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
 Specific  Compres-    of of of Thermal Percent
 Weight, Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material lb/in3 ksi ksi ksi ksi ksi 106 psi 106 psi 1026/8F in 2 in.

Magnesium Alloys
  Alloy AZ80 (Forging) 0.065 50  23 36  6.5 2.4 14 6
  Alloy AZ31 (Extrusion) 0.064 37  19 29  6.5 2.4 14 12

Titanium
  Alloy (6% Al, 4% V) 0.161 130   120  16.5  5.3 10

Monel Alloy 400(Ni-Cu)
  Cold-worked 0.319 98   85 50 26  7.7 22
  Annealed 0.319 80   32 18 26  7.7 46

Cupronickel
    (90% Cu, 10% Ni)
  Annealed 0.323 53   16  20 7.5 9.5 35
  Cold-worked 0.323 85   79  20 7.5 9.5 3

Timber, air dry
  Douglas fir 0.017 15 7.2 1.1   1.9 .1     Varies
  Spruce, Sitka 0.015 8.6 5.6 1.1   1.5 .07 1.7 to 2.5
  Shortleaf pine 0.018  7.3 1.4   1.7
  Western white pine 0.014  5.0 1.0   1.5
  Ponderosa pine 0.015 8.4 5.3 1.1   1.3
  White oak 0.025  7.4 2.0   1.8
  Red oak 0.024  6.8 1.8   1.8
  Western hemlock 0.016 13 7.2 1.3   1.6
  Shagbark hickory 0.026  9.2 2.4   2.2
  Redwood 0.015 9.4 6.1 0.9   1.3

Concrete
  Medium strength 0.084  4.0    3.6  5.5
  High strength 0.084  6.0    4.5  5.5

Plastics
  Nylon, type 6/6,  0.0412 11 14  6.5  0.4  80 50
    (molding compound)
  Polycarbonate 0.0433 9.5 12.5  9  0.35  68 110
  Polyester, PBT 0.0484 8 11  8  0.35  75 150
    (thermoplastic)
  Polyester elastomer 0.0433 6.5  5.5   0.03   500
  Polystyrene 0.0374 8 13  8  0.45  70 2
  Vinyl, rigid PVC 0.0520 6 10  6.5  0.45  75 40
Rubber 0.033 2       90 600
Granite (Avg. values) 0.100 3 35 5   10 4 4
Marble (Avg. values) 0.100 2 18 4   8 3 6
Sandstone (Avg. values) 0.083 1 12 2   6 2 5
Glass, 98% silica 0.079  7    9.6 4.1 44

1Properties of metals vary widely as a result of variations in composition, heat treatment, and mechanical working.
2For ductile metals the compression strength is generally assumed to be equal to the tension strength.
3Offset of 0.2 percent.
4Timber properties are for loading parallel to the grain.
5See also Marks’ Mechanical Engineering Handbook, 10th ed., McGraw-Hill, New York, 1996; Annual Book of ASTM, American Society for Testing Materials, 
Philadelphia, Pa.; Metals Handbook, American Society for Metals, Metals Park, Ohio; and Aluminum Design Manual, The Aluminum Association, Washington, DC.

Appendix B Typical Properties of Selected Materials Used in Engineering1,5

 (U.S. Customary Units)
Continued from page A14
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Appendix B Typical Properties of Selected Materials Used in Engineering1,5

 (SI Units)
Continued from page A15 

 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
   Compres-    of of of Thermal Percent
 Density Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material kg/m3 MPa MPa MPa MPa MPa GPa GPa 1026/8C in 50 mm

Magnesium Alloys
  Alloy AZ80 (Forging) 1800 345  160 250  45 16 25.2 6
  Alloy AZ31 (Extrusion) 1770 255  130 200  45 16 25.2 12

Titanium
  Alloy (6% Al, 4% V) 4730 900   830  115  9.5 10

Monel Alloy 400(Ni-Cu)
  Cold-worked 8830 675   585 345 180  13.9 22
  Annealed 8830 550   220 125 180  13.9 46

Cupronickel
    (90% Cu, 10% Ni)
  Annealed 8940 365   110  140 52 17.1 35
  Cold-worked 8940 585   545  140 52 17.1 3

Timber, air dry
  Douglas fir 470 100 50 7.6   13 0.7      Varies
  Spruce, Sitka 415 60 39 7.6   10 0.5 3.0 to 4.5
  Shortleaf pine 500  50 9.7   12
  Western white pine 390  34 7.0   10
  Ponderosa pine 415 55 36 7.6   9
  White oak 690  51 13.8   12
  Red oak 660  47 12.4   12
  Western hemlock 440 90 50 10.0   11
  Shagbark hickory 720  63 16.5   15
  Redwood 415 65 42 6.2   9

Concrete
  Medium strength 2320  28    25  9.9
  High strength 2320  40    30  9.9

Plastics
  Nylon, type 6/6,  1140 75 95  45  2.8  144 50
    (molding compound)
  Polycarbonate 1200 65 85  35  2.4  122 110
  Polyester, PBT 1340 55 75  55  2.4  135 150
    (thermoplastic)
  Polyester elastomer 1200 45  40   0.2   500
  Polystyrene 1030 55 90  55  3.1  125 2
  Vinyl, rigid PVC 1440 40 70  45  3.1  135 40
Rubber 910 15       162 600
Granite (Avg. values) 2770 20 240 35   70 4 7.2
Marble (Avg. values) 2770 15 125 28   55 3 10.8
Sandstone (Avg. values) 2300 7 85 14   40 2 9.0
Glass, 98% silica 2190  50    65 4.1 80
1Properties of metals very widely as a result of variations in composition, heat treatment, and mechanical working.
2For ductile metals the compression strength is generally assumed to be equal to the tension strength.
3Offset of 0.2 percent.
4Timber properties are for loading parallel to the grain.
5See also Marks’ Mechanical Engineering Handbook, 10th ed., McGraw-Hill, New York, 1996; Annual Book of ASTM, American Society for Testing Materials, 
Philadelphia, Pa.; Metals Handbook, American Society of Metals, Metals Park, Ohio; and Aluminum Design Manual, The Aluminum Association, Washington, DC.
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A17

Appendix C Properties of Rolled-Steel Shapes
            (U.S. Customary Units)
W Shapes
(Wide-Flange Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web
 Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in

4 Sx, in
3 rx, in. Iy, in

4 Sy, in
3 ry, in.

 W36 3 302 88.8 37.3 16.7 1.68 0.945 21100 1130 15.4 1300 156 3.82
 135 39.7 35.6 12.0 0.790 0.600 7800 439 14.0 225 37.7 2.38

 W33 3 201 59.2 33.7 15.7 1.15 0.715 11600 686 14.0 749 95.2 3.56
 118 34.7 32.9 11.5 0.740 0.550 5900 359 13.0 187 32.6 2.32

 W30 3 173 51.0 30.4 15.0 1.07 0.655 8230 541 12.7 598 79.8 3.42
 99 29.1 29.7 10.50 0.670 0.520 3990 269 11.7 128 24.5 2.10

 W27 3 146 43.1 27.4 14.0 0.975 0.605 5660 414 11.5 443 63.5 3.20
 84 24.8 26.70 10.0 0.640 0.460 2850 213 10.7 106 21.2 2.07

 W24 3 104 30.6 24.1 12.8 0.750 0.500 3100 258 10.1 259 40.7 2.91
 68 20.1 23.7 8.97 0.585 0.415 1830 154 9.55 70.4 15.7 1.87

 W21 3 101 29.8 21.4 12.3 0.800 0.500 2420 227 9.02 248 40.3 2.89
 62 18.3 21.0 8.24 0.615 0.400 1330 127 8.54 57.5 14.0 1.77
 44 13.0 20.7 6.50 0.450 0.350 843 81.6 8.06 20.7 6.37 1.26

 W18 3 106 31.1 18.7 11.2 0.940 0.590 1910 204 7.84 220 39.4 2.66
 76 22.3 18.2 11.0 0.680 0.425 1330 146 7.73 152 27.6 2.61
 50 14.7 18.0 7.50 0.570 0.355 800 88.9 7.38 40.1 10.7 1.65
 35 10.3 17.7 6.00 0.425 0.300 510 57.6 7.04 15.3 5.12 1.22

 W16   3   77 22.6 16.5 10.3 0.760 0.455 1110 134 7.00 138 26.9 2.47
 57 16.8 16.4 7.12 0.715 0.430 758 92.2 6.72 43.1 12.1 1.60
 40 11.8 16.0 7.00 0.505 0.305 518 64.7 6.63 28.9 8.25 1.57
 31 9.13 15.9 5.53 0.440 0.275 375 47.2 6.41 12.4 4.49 1.17
 26 7.68 15.7 5.50 0.345 0.250 301 38.4 6.26 9.59 3.49 1.12

 W14 3 370 109 17.9 16.5 2.66 1.66 5440 607 7.07 1990 241 4.27
 145 42.7 14.8 15.5 1.09 0.680 1710 232 6.33 677 87.3 3.98
 82 24.0 14.3 10.1 0.855 0.510 881 123 6.05 148 29.3 2.48
 68 20.0 14.0 10.0 0.720 0.415 722 103 6.01 121 24.2 2.46
 53 15.6 13.9 8.06 0.660 0.370 541 77.8 5.89 57.7 14.3 1.92
 43 12.6 13.7 8.00 0.530 0.305 428 62.6 5.82 45.2 11.3 1.89
 38 11.2 14.1 6.77 0.515 0.310 385 54.6 5.87 26.7 7.88 1.55
 30 8.85 13.8 6.73 0.385 0.270 291 42.0 5.73 19.6 5.82 1.49
 26 7.69 13.9 5.03 0.420 0.255 245 35.3 5.65 8.91 3.55 1.08
 22 6.49 13.7 5.00 0.335 0.230 199 29.0 5.54 7.00 2.80 1.04

(Table continued on page A18)

†A wide-flange shape is designated by the letter W followed by the nominal depth in inches and the weight in pounds per foot.
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Appendix C Properties of Rolled-Steel Shapes
            (SI Units)
W Shapes
(Wide-Flange Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web Axis X-X Axis Y-Y
 Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry

Designation† A, mm2 d, mm. bf, mm tf, mm tw mm  106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 W920 3 449 57300 947 424 42.7 24.0 8780 18500 391 541 2560 97.0
 201 25600 904 305 20.1 15.2 3250 7190 356 93.7 618 60.5

 W840 3 299 38200 856 399 29.2 18.2 4830 11200 356 312 1560 90.4
 176 22400 836 292 18.8 14.0 2460 5880 330 77.8 534 58.9

 W760 3 257 32900 772 381 27.2 16.6 3430 8870 323 249 1310 86.9
 147 18800 754 267 17.0 13.2 1660 4410 297 53.3 401 53.3

 W690 3 217 27800 696 356 24.8 15.4 2360 6780 292 184 1040 81.3
 125 16000 678 254 16.3 11.7 1190 3490 272 44.1 347 52.6

 W610 3 155 19700 612 325 19.1 12.7 1290 4230 257 108 667 73.9
 101 13000 602 228 14.9 10.5 762 2520 243 29.3 257 47.5

 W530 3 150 19200 544 312 20.3 12.7 1010 3720 229 103 660 73.4
 92 11800 533 209 15.6 10.2 554 2080 217 23.9 229 45.0
 66 8390 526 165 11.4 8.89 351 1340 205 8.62 104 32.0

 W460 3 158 20100 475 284 23.9 15.0 795 3340 199 91.6 646 67.6
 113 14400 462 279 17.3 10.8 554 2390 196 63.3 452 66.3
 74 9480 457 191 14.5 9.02 333 1460 187 16.7 175 41.9
 52 6650 450 152 10.8 7.62 212 944 179 6.37 83.9 31.0

 W410 3 114 14600 419 262 19.3 11.6 462 2200 178 57.4 441 62.7
 85 10800 417 181 18.2 10.9 316 1510 171 17.9 198 40.6
 60 7610 406 178 12.8 7.75 216 1060 168 12.0 135 39.9
 46.1 5890 404 140 11.2 6.99 156 773 163 5.16 73.6 29.7
 38.8 4950 399 140 8.76 6.35 125 629 159 3.99 57.2 28.4

 W360 3 551 70300 455 419 67.6 42.2 2260 9950 180 828 3950 108
 216 27500 376 394 27.7 17.3 712 3800 161 282 1430 101
 122 15500 363 257 21.7 13.0 367 2020 154 61.6 480 63.0

 101 12900 356 254 18.3 10.5 301 1690 153 50.4 397 62.5
 79 10100 353 205 16.8 9.40 225 1270 150 24.0 234 48.8
 64 8130 348 203 13.5 7.75 178 1030 148 18.8 185 48.0
 57.8 7230 358 172 13.1 7.87 160 895 149 11.1 129 39.4

 44 5710 351 171 9.78 6.86 121 688 146 8.16 95.4 37.8
 39 4960 353 128 10.7 6.48 102 578 144 3.71 58.2 27.4
 32.9 4190 348 127 8.51 5.84 82.8 475 141 2.91 45.9 26.4

(Table continued on page A19)

†A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms permeter.
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A19

Appendix C Properties of Rolled-Steel Shapes
            (U.S. Customary Units)
           Continued from page A18
W Shapes
(Wide-Flange Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web
 Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in

4 Sx, in
3 rx, in. Iy, in

4 Sy, in
3 ry, in.

 W12 3 96 28.2 12.7 12.2 0.900 0.550 833 131 5.44 270 44.4 3.09
 72 21.1 12.3 12.0 0.670 0.430 597 97.4 5.31 195 32.4 3.04
 50 14.6 12.2 8.08 0.640 0.370 391 64.2 5.18 56.3 13.9 1.96
 40 11.7 11.9 8.01 0.515 0.295 307 51.5 5.13 44.1 11.0 1.94
 35 10.3 12.5 6.56 0.520 0.300 285 45.6 5.25 24.5 7.47 1.54
 30 8.79 12.3 6.52 0.440 0.260 238 38.6 5.21 20.3 6.24 1.52
 26 7.65 12.2 6.49 0.380 0.230 204 33.4 5.17 17.3 5.34 1.51
 22 6.48 12.3 4.03 0.425 0.260 156 25.4 4.91 4.66 2.31 0.848
 16 4.71 12.0 3.99 0.265 0.220 103 17.1 4.67 2.82 1.41 0.773

 W10 3 112 32.9 11.4 10.4 1.25 0.755 716 126 4.66 236 45.3 2.68
 68 20.0 10.4 10.1 0.770 0.470 394 75.7 4.44 134 26.4 2.59
 54 15.8 10.1 10.0 0.615 0.370 303 60.0 4.37 103 20.6 2.56
 45 13.3 10.1 8.02 0.620 0.350 248 49.1 4.32 53.4 13.3 2.01
 39 11.5 9.92 7.99 0.530 0.315 209 42.1 4.27 45.0 11.3 1.98
 33 9.71 9.73 7.96 0.435 0.290 171 35.0 4.19 36.6 9.20 1.94
 30 8.84 10.5 5.81 0.510 0.300 170 32.4 4.38 16.7 5.75 1.37
 22 6.49 10.2 5.75 0.360 0.240 118 23.2 4.27 11.4 3.97 1.33
 19 5.62 10.2 4.02 0.395 0.250 96.3 18.8 4.14 4.29 2.14 0.874
 15 4.41 10.0 4.00 0.270 0.230 68.9 13.8 3.95 2.89 1.45 0.810

 W8 3 58 17.1 8.75 8.22 0.810 0.510 228 52.0 3.65 75.1 18.3 2.10
 48 14.1 8.50 8.11 0.685 0.400 184 43.2 3.61 60.9 15.0 2.08
 40 11.7 8.25 8.07 0.560 0.360 146 35.5 3.53 49.1 12.2 2.04
 35 10.3 8.12 8.02 0.495 0.310 127 31.2 3.51 42.6 10.6 2.03
 31 9.12 8.00 8.00 0.435 0.285 110 27.5 3.47 37.1 9.27 2.02
 28 8.24 8.06 6.54 0.465 0.285 98.0 24.3 3.45 21.7 6.63 1.62
 24 7.08 7.93 6.50 0.400 0.245 82.7 20.9 3.42 18.3 5.63 1.61
 21 6.16 8.28 5.27 0.400 0.250 75.3 18.2 3.49 9.77 3.71 1.26
 18 5.26 8.14 5.25 0.330 0.230 61.9 15.2 3.43 7.97 3.04 1.23
 15 4.44 8.11 4.01 0.315 0.245 48.0 11.8 3.29 3.41 1.70 0.876
 13 3.84 7.99 4.00 0.255 0.230 39.6 9.91 3.21 2.73 1.37 0.843

 W6 3 25 7.34 6.38 6.08 0.455 0.320 53.4 16.7 2.70 17.1 5.61 1.52
 20 5.87 6.20 6.02 0.365 0.260 41.4 13.4 2.66 13.3 4.41 1.50
 16 4.74 6.28 4.03 0.405 0.260 32.1 10.2 2.60 4.43 2.20 0.967
 12 3.55 6.03 4.00 0.280 0.230 22.1 7.31 2.49 2.99 1.50 0.918
 9 2.68 5.90 3.94 0.215 0.170 16.4 5.56 2.47 2.20 1.11 0.905

 W5 3 19 5.56 5.15 5.03 0.430 0.270 26.3 10.2 2.17 9.13 3.63 1.28
 16 4.71 5.01 5.00 0.360 0.240 21.4 8.55 2.13 7.51 3.00 1.26

 W4 3 13 3.83 4.16 4.06 0.345 0.280 11.3 5.46 1.72 3.86 1.90 1.00

†A wide-flange shape is designated by the letter W followed by the nominal depth in inches and the weight in pounds per foot.
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Appendix C Properties of Rolled-Steel Shapes
            (SI Units)
                Continued from page A19
W Shapes
(Wide-Flange Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web Axis X-X Axis Y-Y
 Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry

Designation† A, mm2 d, mm bf, mm tf, mm tw, mm  106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 W310 3 143 18200 323 310 22.9 14.0 347 2150 138 112 728 78.5
 107 13600 312 305 17.0 10.9 248 1600 135 81.2 531 77.2
 74 9420 310 205 16.3 9.40 163 1050 132 23.4 228 49.8
 60 7550 302 203 13.1 7.49 128 844 130 18.4 180 49.3
 52 6650 318 167 13.2 7.62 119 747 133 10.2 122 39.1
 44.5 5670 312 166 11.2 6.60 99.1 633 132 8.45 102 38.6
 38.7 4940 310 165 9.65 5.84 84.9 547 131 7.20 87.5 38.4
 32.7 4180 312 102 10.8 6.60 64.9 416 125 1.94 37.9 21.5
 23.8 3040 305 101 6.73 5.59 42.9 280 119 1.17 23.1 19.6
 W250 3 167 21200 290 264 31.8 19.2 298 2060 118 98.2 742 68.1
 101 12900 264 257 19.6 11.9 164 1240 113 55.8 433 65.8
 80 10200 257 254 15.6 9.4 126 983 111 42.9 338 65.0
 67 8580 257 204 15.7 8.89 103 805 110 22.2 218 51.1
 58 7420 252 203 13.5 8.00 87.0 690 108 18.7 185 50.3
 49.1 6260 247 202 11.0 7.37 71.2 574 106 15.2 151 49.3
 44.8 5700 267 148 13.0 7.62 70.8 531 111 6.95 94.2 34.8
 32.7 4190 259 146 9.14 6.10 49.1 380 108 4.75 65.1 33.8
 28.4 3630 259 102 10.0 6.35 40.1 308 105 1.79 35.1 22.2
 22.3 2850 254 102 6.86 5.84 28.7 226 100 1.20 23.8 20.6
   W200 3 86 11000 222 209 20.6 13.0 94.9 852 92.7 31.3 300 53.3
 71 9100 216 206 17.4 10.2 76.6 708 91.7 25.3 246 52.8
 59 7550 210 205 14.2 9.14 60.8 582 89.7 20.4 200 51.8
 52 6650 206 204 12.6 7.87 52.9 511 89.2 17.7 174 51.6
 46.1 5880 203 203 11.0 7.24 45.8 451 88.1 15.4 152 51.3
 41.7 5320 205 166 11.8 7.24 40.8 398 87.6 9.03 109 41.1
 35.9 4570 201 165 10.2 6.22 34.4 342 86.9 7.62 92.3 40.9
 31.3 3970 210 134 10.2 6.35 31.3 298 88.6 4.07 60.8 32.0
 26.6 3390 207 133 8.38 5.84 25.8 249 87.1 3.32 49.8 31.2
 22.5 2860 206 102 8.00 6.22 20.0 193 83.6 1.42 27.9 22.3
 19.3 2480 203 102 6.48 5.84 16.5 162 81.5 1.14 22.5 21.4
   W150 3 37.1 4740 162 154 11.6 8.13 22.2 274 68.6 7.12 91.9 38.6
 29.8 3790 157 153 9.27 6.60 17.2 220 67.6 5.54 72.3 38.1
 24 3060 160 102 10.3 6.60 13.4 167 66.0 1.84 36.1 24.6
 18 2290 153 102 7.11 5.84 9.20 120 63.2 1.24 24.6 23.3
 13.5 1730 150 100 5.46 4.32 6.83 91.1 62.7 0.916 18.2 23.0
    W130 3 28.1 3590 131 128 10.9 6.86 10.9 167 55.1 3.80 59.5 32.5
 23.8 3040 127 127 9.14 6.10 8.91 140 54.1 3.13 49.2 32.0
   W100 3 19.3 2470 106 103 8.76 7.11 4.70 89.5 43.7 1.61 31.1 25.4

†A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms per meter.
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A21

Appendix C Properties of Rolled-Steel Shapes
            (U.S. Customary Units)
S Shapes
(American Standard Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web
 Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in

4 Sx, in
3 rx, in. Iy, in

4 Sy, in
3 ry, in.

 S24 3 121 35.5 24.5 8.05 1.09 0.800 3160 258 9.43 83.0 20.6 1.53
 106 31.1 24.5 7.87 1.09 0.620 2940 240 9.71 76.8 19.5 1.57
 100 29.3 24.0 7.25 0.870 0.745 2380 199 9.01 47.4 13.1 1.27
 90 26.5 24.0 7.13 0.870 0.625 2250 187 9.21 44.7 12.5 1.30
 80 23.5 24.0 7.00 0.870 0.500 2100 175 9.47 42.0 12.0 1.34

 S20 3 96 28.2 20.3 7.20 0.920 0.800 1670 165 7.71 49.9 13.9 1.33
 86 25.3 20.3 7.06 0.920 0.660 1570 155 7.89 46.6 13.2 1.36
 75 22.0 20.0 6.39 0.795 0.635 1280 128 7.62 29.5 9.25 1.16
 66 19.4 20.0 6.26 0.795 0.505 1190 119 7.83 27.5 8.78 1.19

 S18 3 70 20.5 18.0 6.25 0.691 0.711 923 103 6.70 24.0 7.69 1.08
 54.7 16.0 18.0 6.00 0.691 0.461 801 89.0 7.07 20.7 6.91 1.14

 S15 3 50 14.7 15.0 5.64 0.622 0.550 485 64.7 5.75 15.6 5.53 1.03
 42.9 12.6 15.0 5.50 0.622 0.411 446 59.4 5.95 14.3 5.19 1.06

 S12 3 50 14.6 12.0 5.48 0.659 0.687 303 50.6 4.55 15.6 5.69 1.03
 40.8 11.9 12.0 5.25 0.659 0.462 270 45.1 4.76 13.5 5.13 1.06
 35 10.2 12.0 5.08 0.544 0.428 228 38.1 4.72 9.84 3.88 0.980
 31.8 9.31 12.0 5.00 0.544 0.350 217 36.2 4.83 9.33 3.73 1.00

 S10 3 35 10.3 10.0 4.94 0.491 0.594 147 29.4 3.78 8.30 3.36 0.899
 25.4 7.45 10.0 4.66 0.491 0.311 123 24.6 4.07 6.73 2.89 0.950

 S8 3 23 6.76 8.00 4.17 0.425 0.441 64.7 16.2 3.09 4.27 2.05 0.795
 18.4 5.40 8.00 4.00 0.425 0.271 57.5 14.4 3.26 3.69 1.84 0.827

 S6 3 17.2 5.06 6.00 3.57 0.359 0.465 26.2 8.74 2.28 2.29 1.28 0.673
 12.5 3.66 6.00 3.33 0.359 0.232 22.0 7.34 2.45 1.80 1.08 0.702

 S5 3 10 2.93 5.00 3.00 0.326 0.214 12.3 4.90 2.05 1.19 0.795 0.638

 S4 3 9.5 2.79 4.00 2.80 0.293 0.326 6.76 3.38 1.56 0.887 0.635 0.564
 7.7 2.26 4.00 2.66 0.293 0.193 6.05 3.03 1.64 0.748 0.562 0.576

 S3 3 7.5 2.20 3.00 2.51 0.260 0.349 2.91 1.94 1.15 0.578 0.461 0.513
 5.7 1.66 3.00 2.33 0.260 0.170 2.50 1.67 1.23 0.447 0.383 0.518

†An American Standard Beam is designated by the letter S followed by the nominal depth in inches and the weight in pounds per foot.
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Appendix C Properties of Rolled-Steel Shapes
            (SI Units)
S Shapes
(American Standard Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web Axis X-X Axis Y-Y
 Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry

Designation† A, mm2 d, mm bf, mm tf, mm tw, mm  106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 S610 3 180 22900 622 204 27.7 20.3 1320 4230 240 34.5 338 38.9
 158 20100 622 200 27.7 15.7 1220 3930 247 32.0 320 39.9
 149 18900 610 184 22.1 18.9 991 3260 229 19.7 215 32.3
 134 17100 610 181 22.1 15.9 937 3060 234 18.6 205 33.0
 119 15200 610 178 22.1 12.7 874 2870 241 17.5 197 34.0

 S510 3 143 18200 516 183 23.4 20.3 695 2700 196 20.8 228 33.8
 128 16300 516 179 23.4 16.8 653 2540 200 19.4 216 34.5
 112 14200 508 162 20.2 16.1 533 2100 194 12.3 152 29.5
 98.2 12500 508 159 20.2 12.8 495 1950 199 11.4 144 30.2

 S460 3 104 13200 457 159 17.6 18.1 384 1690 170 10.0 126 27.4
 81.4 10300 457 152 17.6 11.7 333 1460 180 8.62 113 29.0

 S380 3 74 9480 381 143 15.8 14.0 202 1060 146 6.49 90.6 26.2
 64 8130 381 140 15.8 10.4 186 973 151 5.95 85.0 26.9

 S310 3 74 9420 305 139 16.7 17.4 126 829 116 6.49 93.2 26.2
 60.7 7680 305 133 16.7 11.7 112 739 121 5.62 84.1 26.9
 52 6580 305 129 13.8 10.9 94.9 624 120 4.10 63.6 24.9
 47.3 6010 305 127 13.8 8.89 90.3 593 123 3.88 61.1 25.4

 S250 3 52 6650 254 125 12.5 15.1 61.2 482 96.0 3.45 55.1 22.8
 37.8 4810 254 118 12.5 7.90 51.2 403 103 2.80 47.4 24.1

 S200 3 34 4360 203 106 10.8 11.2 26.9 265 78.5 1.78 33.6 20.2
 27.4 3480 203 102 10.8 6.88 23.9 236 82.8 1.54 30.2 21.0

     S150 3 25.7 3260 152 90.7 9.12 11.8 10.9 143 57.9 0.953 21.0 17.1
 18.6 2360 152 84.6 9.12 5.89 9.16 120 62.2 0.749 17.7 17.8

 S130 3 15 1890 127 76.2 8.28 5.44 5.12 80.3 52.1 0.495 13.0 16.2

    S100 3 14.1 1800 102 71.1 7.44 8.28 2.81 55.4 39.6 0.369 10.4 14.3
 11.5 1460 102 67.6 7.44 4.90 2.52 49.7 41.7 0.311 9.21 14.6

    S75 3 11.2 1420 76.2 63.8 6.60 8.86 1.21 31.8 29.2 0.241 7.55 13.0
 8.5 1070 76.2 59.2 6.60 4.32 1.04 27.4 31.2 0.186 6.28 13.2

†An American Standard Beam is designated by the letter S followed by the nominal depth in millimeters and the mass in kilograms per meter.
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A23

Appendix C Properties of Rolled-Steel Shapes
            (U.S. Customary Units)
C Shapes
(American Standard Channels)

X X
tw

tf

Y

Y

bf

d

x

 
   Flange
     Web
    Thick- Thick- Axis X-X Axis Y-Y

 Area Depth Width ness ness
Designation† A, in2 d, in bf, in tf, in tw, in Ix, in

4 Sx, in
3 rx, in Iy, in

4 Sy, in
3 ry, in x, in

 C15 3 50 14.7 15.0 3.72 0.650 0.716 404 53.8 5.24 11.0 3.77 0.865 0.799
 40 11.8 15.0 3.52 0.650 0.520 348 46.5 5.45 9.17 3.34 0.883 0.778
 33.9 10.0 15.0 3.40 0.650 0.400 315 42.0 5.62 8.07 3.09 0.901 0.788

 C12 3 30 8.81 12.0 3.17 0.501 0.510 162 27.0 4.29 5.12 2.05 0.762 0.674
 25 7.34 12.0 3.05 0.501 0.387 144 24.0 4.43 4.45 1.87 0.779 0.674
 20.7 6.08 12.0 2.94 0.501 0.282 129 21.5 4.61 3.86 1.72 0.797 0.698

 C10 3 30 8.81 10.0 3.03 0.436 0.673 103 20.7 3.42 3.93 1.65 0.668 0.649
 25 7.34 10.0 2.89 0.436 0.526 91.1 18.2 3.52 3.34 1.47 0.675 0.617
 20 5.87 10.0 2.74 0.436 0.379 78.9 15.8 3.66 2.80 1.31 0.690 0.606
 15.3 4.48 10.0 2.60 0.436 0.240 67.3 13.5 3.87 2.27 1.15 0.711 0.634

 C9 3 20 5.87 9.00 2.65 0.413 0.448 60.9 13.5 3.22 2.41 1.17 0.640 0.583
 15 4.41 9.00 2.49 0.413 0.285 51.0 11.3 3.40 1.91 1.01 0.659 0.586
 13.4 3.94 9.00 2.43 0.413 0.233 47.8 10.6 3.49 1.75 0.954 0.666 0.601

 C8 3 18.7 5.51 8.00 2.53 0.390 0.487 43.9 11.0 2.82 1.97 1.01 0.598 0.565
 13.7 4.04 8.00 2.34 0.390 0.303 36.1 9.02 2.99 1.52 0.848 0.613 0.554
 11.5 3.37 8.00 2.26 0.390 0.220 32.5 8.14 3.11 1.31 0.775 0.623 0.572

 C7 3 12.2 3.60 7.00 2.19 0.366 0.314 24.2 6.92 2.60 1.16 0.696 0.568 0.525
 9.8 2.87 7.00 2.09 0.366 0.210 21.2 6.07 2.72 0.957 0.617 0.578 0.541

 C6 3 13 3.81 6.00 2.16 0.343 0.437 17.3 5.78 2.13 1.05 0.638 0.524 0.514
 10.5 3.08 6.00 2.03 0.343 0.314 15.1 5.04 2.22 0.860 0.561 0.529 0.500
 8.2 2.39 6.00 1.92 0.343 0.200 13.1 4.35 2.34 0.687 0.488 0.536 0.512

 C5 3 9 2.64 5.00 1.89 0.320 0.325 8.89 3.56 1.83 0.624 0.444 0.486 0.478
 6.7 1.97 5.00 1.75 0.320 0.190 7.48 2.99 1.95 0.470 0.372 0.489 0.484

 C4 3 7.2 2.13 4.00 1.72 0.296 0.321 4.58 2.29 1.47 0.425 0.337 0.447 0.459
 5.4 1.58 4.00 1.58 0.296 0.184 3.85 1.92 1.56 0.312 0.277 0.444 0.457

 C3 3 6 1.76 3.00 1.60 0.273 0.356 2.07 1.38 1.08 0.300 0.263 0.413 0.455
 5 1.47 3.00 1.50 0.273 0.258 1.85 1.23 1.12 0.241 0.228 0.405 0.439
 4.1 1.20 3.00 1.41 0.273 0.170 1.65 1.10 1.17 0.191 0.196 0.398 0.437

†An American Standard Channel is designated by the letter C followed by the nominal depth in inches and the weight in pounds per foot.
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Appendix C Properties of Rolled-Steel Shapes
            (SI Units)
C Shapes
(American Standard Channels)

X X
tw

tf

Y

Y

bf

d

x

 
 Flange
 Web
                Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness Ix Sx rx Iy Sy ry x
Designation† A, mm2 d, mm bf, mm tf, mm tw, mm  106 mm4 103 mm3 mm 106 mm4 103 mm3 mm mm

 C380 3 74 9480 381 94.5 16.5 18.2 168 882 133 4.58 61.8 22.0 20.3
 60 7610 381 89.4 16.5 13.2 145 762 138 3.82 54.7 22.4 19.8
 50.4 6450 381 86.4 16.5 10.2 131 688 143 3.36 50.6 22.9 20.0

 C310 3 45 5680 305 80.5 12.7 13.0 67.4 442 109 2.13 33.6 19.4 17.1
 37 4740 305 77.5 12.7 9.83 59.9 393 113 1.85 30.6 19.8 17.1
 30.8 3920 305 74.7 12.7 7.16 53.7 352 117 1.61 28.2 20.2 17.7

 C250 3 45 5680 254 77.0 11.1 17.1 42.9 339 86.9 1.64 27.0 17.0 16.5
 37 4740 254 73.4 11.1 13.4 37.9 298 89.4 1.39 24.1 17.1 15.7
 30 3790 254 69.6 11.1 9.63 32.8 259 93.0 1.17 21.5 17.5 15.4
 22.8 2890 254 66.0 11.1 6.10 28.0 221 98.3 0.945 18.8 18.1 16.1

 C230 3 30 3790 229 67.3 10.5 11.4 25.3 221 81.8 1.00 19.2 16.3 14.8
 22 2850 229 63.2 10.5 7.24 21.2 185 86.4 0.795 16.6 16.7 14.9
 19.9 2540 229 61.7 10.5 5.92 19.9 174 88.6 0.728 15.6 16.9 15.3

 C200 3 27.9 3550 203 64.3 9.91 12.4 18.3 180 71.6 0.820 16.6 15.2 14.4
 20.5 2610 203 59.4 9.91 7.70 15.0 148 75.9 0.633 13.9 15.6 14.1
 17.1 2170 203 57.4 9.91 5.59 13.5 133 79.0 0.545 12.7 15.8 14.5

 C180 3 18.2 2320 178 55.6 9.30 7.98 10.1 113 66.0 0.483 11.4 14.4 13.3
 14.6 1850 178 53.1 9.30 5.33 8.82 100 69.1 0.398 10.1 14.7 13.7

 C150 3 19.3 2460 152 54.9 8.71 11.1 7.20 94.7 54.1 0.437 10.5 13.3 13.1
 15.6 1990 152 51.6 8.71 7.98 6.29 82.6 56.4 0.358 9.19 13.4 12.7
 12.2 1540 152 48.8 8.71 5.08 5.45 71.3 59.4 0.286 8.00 13.6 13.0

 C130 3 13 1700 127 48.0 8.13 8.26 3.70 58.3 46.5 0.260 7.28 12.3 12.1
 10.4 1270 127 44.5 8.13 4.83 3.11 49.0 49.5 0.196 6.10 12.4 12.3

 C100 3 10.8 1370 102 43.7 7.52 8.15 1.91 37.5 37.3 0.177 5.52 11.4 11.7

 8 1020 102 40.1 7.52 4.67 1.60 31.5 39.6 0.130 4.54 11.3 11.6

     C75 3 8.9 1140 76.2 40.6 6.93 9.04 0.862 22.6 27.4 0.125 4.31 10.5 11.6
 7.4 948 76.2 38.1 6.93 6.55 0.770 20.2 28.4 0.100 3.74 10.3 11.2
 6.1 774 76.2 35.8 6.93 4.32 0.687 18.0 29.7 0.0795 3.21 10.1 11.1

†An American Standard Channel is designated by the letter C followed by the nominal depth in millimeters and the mass in kilograms per meter.
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A25

Appendix C Properties of Rolled-Steel Shapes
            (U.S. Customary Units)
Angles
Equal Legs

XX

x

y

Y

Y

Z

Z 
 Axis X-X and Axis Y-Y Axis

 Weight per      Z-Z
Size and Thickness, in. Foot, lb/ft Area, in2 I, in4 S, in3 r, in. x or y, in. rz, in.

 L8 3 8 3 1 51.0 15.0 89.1 15.8 2.43 2.36 1.56
 3⁄4 38.9 11.4 69.9 12.2 2.46 2.26 1.57
 1⁄2 26.4 7.75 48.8 8.36 2.49 2.17 1.59

 L6 3 6 3 1 37.4 11.0 35.4 8.55 1.79 1.86 1.17
 3⁄4 28.7 8.46 28.1 6.64 1.82 1.77 1.17
 5⁄8 24.2 7.13 24.1 5.64 1.84 1.72 1.17
 1⁄2 19.6 5.77 19.9 4.59 1.86 1.67 1.18
 3⁄8 14.9 4.38 15.4 3.51 1.87 1.62 1.19

 L5 3 5 3 3⁄4 23.6 6.94 15.7 4.52 1.50 1.52 0.972
 5⁄8 20.0 5.86 13.6 3.85 1.52 1.47 0.975
 1⁄2 16.2 4.75 11.3 3.15 1.53 1.42 0.980
 3⁄8 12.3 3.61 8.76 2.41 1.55 1.37 0.986

 L4 3 4 3 3⁄4 18.5 5.44 7.62 2.79 1.18 1.27 0.774
 5⁄8 15.7 4.61 6.62 2.38 1.20 1.22 0.774
 1⁄2 12.8 3.75 5.52 1.96 1.21 1.18 0.776
 3⁄8 9.80 2.86 4.32 1.50 1.23 1.13 0.779
 1⁄4 6.60 1.94 3.00 1.03 1.25 1.08 0.783

 L31
2 3 31

2 3 1⁄2 11.1 3.25 3.63 1.48 1.05 1.05 0.679
 3⁄8 8.50 2.48 2.86 1.15 1.07 1.00 0.683
 1⁄4 5.80 1.69 2.00 0.787 1.09 0.954 0.688

 L3 3 3 3 1⁄2 9.40 2.75 2.20 1.06 0.895 0.929 0.580
 3⁄8 7.20 2.11 1.75 0.825 0.910 0.884 0.581
 1⁄4 4.90 1.44 1.23 0.569 0.926 0.836 0.585

 L21
2 3 21

2 3 ½ 7.70 2.25 1.22 0.716 0.735 0.803 0.481
 3⁄8 5.90 1.73 0.972 0.558 0.749 0.758 0.481
 1⁄4 4.10 1.19 0.692 0.387 0.764 0.711 0.482
 3⁄16 3.07 0.900 0.535 0.295 0.771 0.687 0.482

 L2 3 2 3 3⁄8 4.70 1.36 0.476 0.348 0.591 0.632 0.386
 1⁄4 3.19 0.938 0.346 0.244 0.605 0.586 0.387
 1⁄8 1.65 0.484 0.189 0.129 0.620 0.534 0.391
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Appendix C Properties of Rolled-Steel Shapes
            (SI Units)
Angles
Equal Legs

XX

x

y

Y

Y

Z

Z 
 Axis X-X Axis
  Z-Z
 Mass per  I S r x or y rz

Size and Thickness, mm Meter, kg/m Area, mm2 106 mm4 103 mm3 mm mm mm

 L203 3 203 3 25.4 75.9 9680 37.1 259 61.7 59.9 39.6
 19 57.9 7350 29.1 200 62.5 57.4 39.9
 12.7 39.3 5000 20.3 137 63.2 55.1 40.4

 L152 3 152 3 25.4 55.7 7100 14.7 140 45.5 47.2 29.7
 19 42.7 5460 11.7 109 46.2 45.0 29.7
 15.9 36.0 4600 10.0 92.4 46.7 43.7 29.7
 12.7 29.2 3720 8.28 75.2 47.2 42.4 30.0
 9.5 22.2 2830 6.41 57.5 47.5 41.1 30.2

 L127 3 127 3 19 35.1 4480 6.53 74.1 38.1 38.6 24.7
 15.9 29.8 3780 5.66 63.1 38.6 37.3 24.8
 12.7 24.1 3060 4.70 51.6 38.9 36.1 24.9
 9.5 18.3 2330 3.65 39.5 39.4 34.8 25.0

 L102 3 102 3 19 27.5 3510 3.17 45.7 30.0 32.3 19.7
 15.9 23.4 2970 2.76 39.0 30.5 31.0 19.7
 12.7 19.0 2420 2.30 32.1 30.7 30.0 19.7
 9.5 14.6 1850 1.80 24.6 31.2 28.7 19.8
 6.4 9.80 1250 1.25 16.9 31.8 27.4 19.9

 L89 3 89 3 12.7 16.5 2100 1.51 24.3 26.7 26.7 17.2
 9.5 12.6 1600 1.19 18.8 27.2 25.4 17.3
 6.4 8.60 1090 0.832 12.9 27.7 24.2 17.5

 L76 3 76 3 12.7 14.0 1770 0.916 17.4 22.7 23.6 14.7
 9.5 10.7 1360 0.728 13.5 23.1 22.5 14.8
 6.4 7.30 929 0.512 9.32 23.5 21.2 14.9

 L64 3 64 3 12.7 11.4 1450 0.508 11.7 18.7 20.4 12.2
 9.5 8.70 1120 0.405 9.14 19.0 19.3 12.2
 6.4 6.10 768 0.288 6.34 19.4 18.1 12.2
 4.8 4.60 581 0.223 4.83 19.6 17.4 12.2

 L51 3 51 3 9.5 7.00 877 0.198 5.70 15.0 16.1 9.80
 6.4 4.70 605 0.144 4.00 15.4 14.9 9.83
 3.2 2.40 312 0.0787 2.11 15.7 13.6 9.93
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A27

Appendix C Properties of Rolled-Steel Shapes
            (U.S. Customary Units)
Angles
Unequal Legs

XX

x

y

Y

Y

�

Z

Z
 
 Axis X-X Axis Y-Y Axis Z-Z

Size and Weight per
Thickness, in. Foot, lb/ft Area, in2 Ix, in

4 Sx, in
3 rx, in. y, in. Iy, in

4 Sy, in
3 ry, in. x, in. rz, in. tan a

 L8 3 6 3 1 44.2 13.0 80.9 15.1 2.49 2.65 38.8 8.92 1.72 1.65 1.28 0.542
 3⁄4 33.8 9.94 63.5 11.7 2.52 2.55 30.8 6.92 1.75 1.56 1.29 0.550
 1⁄2 23.0 6.75 44.4 8.01 2.55 2.46 21.7 4.79 1.79 1.46 1.30 0.557

 L6 3 4 3 3⁄4 23.6 6.94 24.5 6.23 1.88 2.07 8.63 2.95 1.12 1.07 0.856 0.428
 1⁄2 16.2 4.75 17.3 4.31 1.91 1.98 6.22 2.06 1.14 0.981 0.864 0.440
 3⁄8 12.3 3.61 13.4 3.30 1.93 1.93 4.86 1.58 1.16 0.933 0.870 0.446

 L5 3 3 3 1⁄2 12.8 3.75 9.43 2.89 1.58 1.74 2.55 1.13 0.824 0.746 0.642 0.357
 3⁄8 9.80 2.86 7.35 2.22 1.60 1.69 2.01 0.874 0.838 0.698 0.646 0.364
 1⁄4 6.60 1.94 5.09 1.51 1.62 1.64 1.41 0.600 0.853 0.648 0.652 0.371

 L4 3 3 3 1⁄2 11.1 3.25 5.02 1.87 1.24 1.32 2.40 1.10 0.858 0.822 0.633 0.542
 3⁄8 8.50 2.48 3.94 1.44 1.26 1.27 1.89 0.851 0.873 0.775 0.636 0.551
 1⁄4 5.80 1.69 2.75 0.988 1.27 1.22 1.33 0.585 0.887 0.725 0.639 0.558

 L31
2 3 21

2 3 1⁄2 9.40 2.75 3.24 1.41 1.08 1.20 1.36 0.756 0.701 0.701 0.532 0.485
 3⁄8 7.20 2.11 2.56 1.09 1.10 1.15 1.09 0.589 0.716 0.655 0.535 0.495
 1⁄4 4.90 1.44 1.81 0.753 1.12 1.10 0.775 0.410 0.731 0.607 0.541 0.504

 L3 3 2 3 1⁄2 7.70 2.25 1.92 1.00 0.922 1.08 0.667 0.470 0.543 0.580 0.425 0.413
 3⁄8 5.90 1.73 1.54 0.779 0.937 1.03 0.539 0.368 0.555 0.535 0.426 0.426
 1⁄4 4.10 1.19 1.09 0.541 0.953 0.980 0.390 0.258 0.569 0.487 0.431 0.437

 L21
2 3 2 3 3⁄8 5.30 1.55 0.914 0.546 0.766 0.826 0.513 0.361 0.574 0.578 0.419 0.612

 1⁄4 3.62 1.06 0.656 0.381 0.782 0.779 0.372 0.253 0.589 0.532 0.423 0.624
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Appendix C Properties of Rolled-Steel Shapes
            (SI Units)
Angles
Unequal Legs

XX

x

y

Y

Y

�

Z

Z
 
 Axis X-X Axis Y-Y Axis Z-Z

 Size and Mass per
 Thickness, Meter Area Ix Sx rx y Iy Sy ry x rz

 mm kg/m mm2 106 mm4 103 mm3 mm mm 106 mm4 103 mm3 mm mm mm tan a

 L203 3 152 3 25.4 65.5 8390 33.7 247 63.2 67.3 16.1 146 43.7 41.9 32.5 0.542
 19 50.1 6410 26.4 192 64.0 64.8 12.8 113 44.5 39.6 32.8 0.550
 12.7 34.1 4350 18.5 131 64.8 62.5 9.03 78.5 45.5 37.1 33.0 0.557

 L152 3 102 3 19 35.0 4480 10.2 102 47.8 52.6 3.59 48.3 28.4 27.2 21.7 0.428
 12.7 24.0 3060 7.20 70.6 48.5 50.3 2.59 33.8 29.0 24.9 21.9 0.440
 9.5 18.2 2330 5.58 54.1 49.0 49.0 2.02 25.9 29.5 23.7 22.1 0.446

 L127 3 76 3 12.7 19.0 2420 3.93 47.4 40.1 44.2 1.06 18.5 20.9 18.9 16.3 0.357
 9.5 14.5 1850 3.06 36.4 40.6 42.9 0.837 14.3 21.3 17.7 16.4 0.364
 6.4 9.80 1250 2.12 24.7 41.1 41.7 0.587 9.83 21.7 16.5 16.6 0.371

 L102 3 76 3 12.7 16.4 2100 2.09 30.6 31.5 33.5 0.999 18.0 21.8 20.9 16.1 0.542
 9.5 12.6 1600 1.64 23.6 32.0 32.3 0.787 13.9 22.2 19.7 16.2 0.551
 6.4 8.60 1090 1.14 16.2 32.3 31.0 0.554 9.59 22.5 18.4 16.2 0.558

 L89 3 64 3 12.7 13.9 1770 1.35 23.1 27.4 30.5 0.566 12.4 17.8 17.8 13.5 0.485
 9.5 10.7 1360 1.07 17.9 27.9 29.2 0.454 9.65 18.2 16.6 13.6 0.495
 6.4 7.30 929 0.753 12.3 28.4 27.9 0.323 6.72 18.6 15.4 13.7 0.504

 L76 3 51 3 12.7 11.5 1450 0.799 16.4 23.4 27.4 0.278 7.70 13.8 14.7 10.8 0.413
 9.5 8.80 1120 0.641 12.8 23.8 26.2 0.224 6.03 14.1 13.6 10.8 0.426
 6.4 6.10 768 0.454 8.87 24.2 24.9 0.162 4.23 14.5 12.4 10.9 0.437

 L64 3 51 3 9.5 7.90 1000 0.380 8.95 19.5 21.0 0.214 5.92 14.6 14.7 10.6 0.612
 6.4 5.40 684 0.273 6.24 19.9 19.8 0.155 4.15 15.0 13.5 10.7 0.624
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A29

  Maximum 
Beam and Loading Elastic Curve Deflection  Slope at End Equation of Elastic Curve

  
2

PL3

3EI  
2

PL2

2EI
 y 5

P

6EI
 1x 

3 2 3Lx 
22

  
2

wL4

8EI
 2

wL3

6EI
 y 5 2

w

24EI
 1x4 2 4Lx 

3 1 6L2x 
22

  
2

ML2

2EI
 2

ML

EI
 y 5 2

M

2EI
 x 

2

  
 

 For x #
1
2L:

  2
PL3

48EI
 6

PL2

16EI
   y 5

P

48EI
 14x 

3 2 3L2x2

  For a . b:  For x , a:

  2
Pb 1L2 2 b223y2

913EIL
 uA 5 2
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Appendix D Beam Deflections and Slopes
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A30

E  Fundamentals of Engineering
 Examination

Engineers are required to be licensed when their work directly affects the 
public health, safety, and welfare. The intent is to ensure that engineers 
have met minimum qualifications, involving competence, ability, experi-
ence, and character. The licensing process involves an initial exam, called 
the Fundamentals of Engineering Examination, professional experience, 
and a second exam, called the Principles and Practice of Engineering. 
Those who successfully complete these requirements are licensed as a 
Professional Engineer. The exams are developed under the auspices of the 
National Council of Examiners for Engineering and Surveying.
 The first exam, the Fundamentals of Engineering Examination, can be 
taken just before or after graduation from a four-year accredited engineer-
ing program. The exam stresses subject material in a typical undergraduate 
engineering program, including Mechanics of Materials. The topics included 
in the exam cover much ⁄of the material in this book. The following is a list 
of the main topic areas with references to appropriate sections in this book. 
Also included are problems that can be solved to review this material.

Stresses (1.2–1.4)
Problems: 1.4, 1.10, 1.30, 1.37

Strains (2.1–2.4; 2.7–2.8)
Problems: 2.4, 2.19, 2.41, 2.47, 2.61, 2.68

Torsion (3.1–3.3; 3.9–3.10)
Problems: 3.6, 3.27, 3.35, 3.53, 3.129, 3.137

Bending (4.1–4.4; 4.7)
Problems: 4.9, 4.22, 4.33, 4.49, 4.103, 4.107

Shear and Bending–Moment Diagrams (5.1–5.2)
Problems: 5.5, 5.11, 5.39, 5.43

Normal Stresses in Beams (5.3)
Problems: 5.18, 5.21, 5.56, 5.60

Shear (6.1; 6.3–6.4)
Problems: 6.1, 6.11, 6.32, 6.38

Transformation of Stresses and Strains (7.1–7.2; 7.5–7.6)
Problems: 7.5, 7.15, 7.32, 7.43, 7.81, 7.87, 7.100, 7.104

Deflection of Beams (9.1; 9.4)
Problems: 9.5, 9.13, 9.71, 9.77

Columns (10.1)
Problems: 10.11, 10.19, 10.22

Strain Energy (11.1–11.2)
Problems: 11.9, 11.15, 11.21

APPENDIX
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AN-1

Answers to Problems

CHAPTER 1
 1.1 (a) 84.9 MPa. (b) 296.8 MPa.
 1.2 d1 5 22.6 mm, d2 5 40.2 mm.
 1.3 (a) 17.93 ksi. (b) 22.6 ksi.
 1.4 6.75 kips.
 1.7 (a) 101.6 MPa. (b) 221.7 MPa.
 1.8 1084 ksi.
 1.9 285 mm2.
 1.10 (a) 11.09 ksi. (b) 212.00 ksi.
 1.13 24.97 MPa.
 1.14 (a) 12.73 MPa. (b) 24.77 MPa.
 1.15 43.4 mm.
 1.16 2.25 kips.
 1.17 889 psi.
 1.18 67.9 kN.
 1.20 29.4 mm.
 1.21 (a) 3.33 MPa. (b) 525 mm.
 1.23 (a) 1.030 in. (b) 38.8 ksi.
 1.24 8.31 kN.
 1.25 (a) 11.45 mm. (b) 134.9 MPa. (c) 90.0 MPa.
 1.28 (a) 9.94 ksi. (b) 6.25 ksi.
 1.29 (a) s 5 489 kPa; t 5 489 kPa.
 1.30 (a) 13.95 kN. (b) 620 kPa.
 1.31 s 5 70.0 psi; t 5 40.4 psi.
 1.32 (a) 1.500 kips. (b) 43.3 psi.
 1.35 s 5 221.6 MPa; t 5 7.87 MPa.
 1.36 833 kN.
 1.37 3.09 kips.
 1.40 (a) 181.3 mm2. (b) 213 mm2.
 1.41 (a) 3.97. (b) 265 mm2.
 1.42 0.268 in2.
 1.45 2.87.
 1.46 0.798 in.
 1.47 10.25 kN.
 1.48 (a) 2.92. (b) b 5 40.3 mm, c 5 97.2 mm.
 1.50 3.24.
 1.52 283 lb.
 1.53 2.42.
 1.54 2.05.
 1.55 3.72 kN.
 1.56 3.97 kN.
 1.57 (a) 362 kg. (b) 1.718.
 1.58 (a) 629 lb. (b) 1.689.
 1.59 195.3 MPa.
 1.60 (a) 14.64 ksi. (b) 29.96 ksi.
 1.62 25.2 mm.
 1.64 (a) 2640 psi. (b) 2320 psi.
 1.65 (a) 444 psi. (b) 7.50 in. (c) 2400 psi.
 1.67 3.45.
 1.68 sall dy4 tall.

 1.70 21.38 , u , 32.38.
 1.C2 (c) 16 mm ≤ d ≤ 22 mm. (d) 18 mm ≤ d ≤ 22 mm.
 1.C3 (c) 0.70 in. ≤ d ≤ 1.10 in. (d) 0.85 in. ≤ d ≤ 1.25 in.
 1.C4 (b) For b 5 38.668, tan b 5 0.8; BD is perpendicular to BC.
  (c) F.S. 5 3.58 for a 5 26.68; P is perpendicular to line AC.
 1.C5 (b) Member of Fig. P 1.29, for a 5 608:
   (1) 70.0 psi; (2) 40.4 psi; (3) 2.14; (4) 5.30; (5) 2.14.
   Member of Fig. P 1.31, for a 5 458:
   (1) 489 kPa; (2) 489 kPa; (3) 2.58; (4) 3.07; (5) 2.58.
 1.C6 (d) Pall 5 5.79 kN; stress in links is critical.

CHAPTER 2
 2.1 (a) 0.546 mm. (b) 36.3 MPa.
 2.2 (a) 0.0303 in. (b) 15.28 ksi.
 2.3 (a) 9.82 kN. (b) 500 MPa.
 2.4 (a) 81.8 MPa. (b) 1.712.
 2.6 (a) 5.32 mm. (b) 1.750 m.
 2.7 (a) 0.381 in. (b) 17.58 ksi.
 2.9 9.21 mm.
 2.11 48.4 kips.
 2.13 0.429 in.
 2.14 1.988 kN.
 2.15 0.868 in.
 2.17 (a) 25.5 3 1023 in. (b) 15.56 3 1023 in.
 2.19 (a) 32.8 kN. (b) 0.0728 mm T.
 2.20 (a) 0.0189 mm c. (b) 0.0919 mm T.
 2.21 (a) dAB 5 22.11 mm; dAC 5 2.03 mm.
 2.23 (a) 0.1767 in. (b) 0.1304 in.
 2.24 50.4 kN.
 2.25 14.74 kN.
 2.26 (a) 20.0302 mm. (b) 0.01783 mm.
 2.27 4.71 3 1023 in. T.
 2.29 (a) rgl2y2E . (b) Wy2.
 2.30 PhypEab T.
 2.33 (a) 140.6 MPa. (b) 93.8 MPa.
 2.34 (a) 15.00 mm. (b) 288 kN.
 2.35 ss 5 28.34 ksi; sc 5 21.208 ksi.
 2.36 695 kips.
 2.39 (a) RA 5 2.28 kips c; RC 5 9.72 kips c. (b) sAB 5 11.857 ksi; 

sBC 5 23.09 ksi.
 2.41 (a) 62.8 kN d at A; 37.2 kN d at E. (b) 46.3 mm S.
 2.42 (a) 45.5 kN d at A; 54.5 kN d at E. (b) 48.8 mm S.
 2.43 0.536 mm T.
 2.44 (a) PBE 5 205 lb; PCF 5 228 lb. (b) 0.0691 in. T.
 2.45 PA 5 0.525 P; PB 5 0.200 P; PC 5 0.275 P.
 2.47 28.15 MPa.
 2.48 256.2 MPa.
 2.50 ss 5 21.448 ksi; sC 54.2 psi.
 2.51 142.6 kN.
 2.52 (a) sAB 5 25.25 ksi; sBC 5 211.82 ksi. (b) 6.57 3 1023 in. S.

Answers to problems with a number set in straight type are given on this and the following pages. Answers to problems 
with a number set in italic and red are not listed.
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AN-2 Answers to Problems

 2.C1 Prob. 2.126: (a) 11.90 3 1023 in. T . (b) 5.66 3 1023 in. c.
 2.C3 Prob. 2.60: (a) 2116.2 MPa. (b) 0.363 mm.
 2.C5 r 5 0.25 in.: 3.89 kips;
  r 5 0.75 in.: 2.78 kips.
 2.C6 (a) 20.40083. (b) 20.10100. (c) 20.00405.

CHAPTER 3
 3.1 641 N?m.
 3.2 87.3 MPa.
 3.3 (a) 5.17 kN?m. (b) 87.2 MPa.
 3.4 (a) 7.55 ksi. (b) 7.64 ksi.
 3.6 (a) 70.7 MPa. (b) 35.4 MPa. (c) 6.25%.
 3.7 (a) 19.21 kip?in. (b) 2.01 in.
 3.9 (a) 8.35 ksi. (b) 5.94 ksi.
 3.10 (a) 1.292 in. (b) 1.597 in.
 3.11 (a) shaft CD. (b) 85.8 MPa.
 3.13 (a) 77.6 MPa. (b) 62.8 MPa. (c) 20.9 MPa.
 3.15 9.16 kip?in.
 3.16 (a) 1.503 in. (b) 1.853 in.
 3.18 (a) dAB 5 52.9 mm. (b) dBC 5 33.3 mm.
 3.20 3.18 kN?m.
 3.21 (a) 59.6 mm. (b) 43.9 mm.
 3.22 (a) 72.5 MPa. (b) 68.7 MPa.
 3.23 1.189 kip?in.
 3.25 4.30 kip?in.
 3.27 73.6 N?m.
 3.28 (a) dAB 5 38.6 mm. (b) dCD 5 52.3 mm. (c) 75.5 mm.
 3.29 1.0; 1.025; 1.120; 1.200; 1.0.
 3.31 11.87 mm.
 3.32 9.38 ksi.
 3.33 (a) 1.3908. (b) 1.4828.
 3.35 (a) 1.3848. (b) 3.228.
 3.37 (a) 14.438. (b) 46.98.
 3.38 6.028.
 3.40 1.1408.
 3.41 3.778.
 3.42 3.788.
 3.44 53.88.
 3.45 36.1 mm.
 3.46 0.837 in.
 3.47 1.089 in.
 3.48 62.9 mm.
 3.49 42.0 mm.
 3.50 22.5 mm.
 3.53 (a) 4.72 ksi. (b) 7.08 ksi. (c) 4.358.
 3.54 7.378.
 3.56 (a) TA 5 1090 N?m; TC 5 310 N?m. 

(b) 47.4 MPa. (c) 28.8 MPa.
 3.57 tAB

 5 68.9 MPa; tCD 5 14.70 MPa.
 3.59 12.24 MPa.
 3.61 0.241 in.
 3.63 Ty2ptr1

2 at r1.

 3.64 (a) 9.51 ksi. (b) 4.76 ksi.
 3.65 (a) 46.9 MPa. (b) 23.5 MPa.
 3.66 (a) 0.893 in. (b) 0.709 in.
 3.67 (a) 20.1 mm. (b) 15.94 mm.
 3.68 25.6 kW.
 3.69 2.64 mm.
 3.71 (a) 51.7 kW. (b) 6.178.
 3.73 (a) 47.5 MPa. (b) 30.4 mm.
 3.76 (a) 4.08 ksi. (b) 6.79 ksi.

 2.54 (a) 298.3 MPa. (b) 238.3 MPa.
 2.55 (a) 21.48C. (b) 3.67 MPa.
 2.56 5.70 kN.
 2.58 (a) 201.68F. (b) 18.0107 in.
 2.59 (a) 52.3 kips. (b) 9.91 3 1023in.
 2.61 29 3 103 psi; 10.03 3 103 psi; 0.444.
 2.63 0.399.
 2.64 (a) 0.0358 mm. (b) 20.00258 mm. (c) 20.000344 mm.

(d) 20.00825 mm2.
 2.66 94.9 kips.
 2.67 (a) 20.0724 mm. (b) 20.01531 mm.
 2.68 (a) 0.00312 in. (b) 0.00426 in. (c) 0.00505 in.
 2.69 (a) 352 3 1026 in. (b) 82.8 3 1026 in. (c) 307 3 1026 in.
 2.70 (a) 263.0 MPa. (b) 213.50 mm2. (c) 2540 mm3.
 2.77 a 5 42.9 mm; b 5 160.7 mm.
 2.78 75.0 kN; 40.0 mm.
 2.79 (a) 10.42 in. (b) 0.813 in.
 2.80 t 5 62.5 psi; G 5 156.3 psi. 
 2.81 16.67 MPa.
 2.82 19.00 3 103 kNym
 2.83 (a) 588 3 1026 in. (b) 33.2 3 1023 in3. (c) 0.0294%.
 2.84 (a) 20.0746 mm; 2143.9 mm3. 

(b) 20.0306 mm; 2521 mm3.
 2.85 (a) 193.2 3 1026; 1.214 3 1023 in3. 

(b) 396 3 1026; 2.49 3 1023 in3.
 2.88 3.00.
 2.91 (a) 0.0303 mm. (b) sx 5 40.6 MPa, sy

 5 sz 5 5.48 MPa.
 2.92 (a) sx 5 44.6 MPa; sy 5 0; sz 5 3.45 MPa. (b) 20.0129 mm.
 2.93 (a) 58.3 kN. (b) 64.3 kN.
 2.94 (a) 87.0 MPa. (b) 75.2 MPa. (c) 73.9 MPa.
 2.97 (a) 11.4 mm. (b) 28.8 kN.
 2.98 36.7 mm.
 2.99 (a) 12.02 kips. (b) 108.0%.
 2.100 23.9 kips.
 2.101 (a) 15.90 kips; 0.1745 in. (b) 15.90 kips; 0.274 in.
 2.102 (a) 44.2 kips; 0.0356 in. (b) 44.2 kips; 0.1606 in.
 2.105 176.7 kN; 3.84 mm.
 2.106 176.7 kN; 3.16 mm.
 2.107 (a) 0.292 mm. (b) sAC 5 250 MPa; sBC 5 2307 MPa. 

(c) 0.0272 mm.
 2.108 (a) 990kN. (b) sAC 5 250 MPa; sBC 5 2316 MPa. 

(c) 0.0313 mm.
 2.111 (a) 112.1 kips. (b) 50 ksi in low-strength steel;

82.9 ksi in high-strength steel. (c) 0.00906 in.
 2.112 (a) 0.0309 in. (b) 64.0 ksi. (c) 0.00387 in.
 2.113 (a) sAD 5 250 MPa. (b) sBE 5 124.3 MPa. (c) 0.622 mm T.
 2.114 (a) sAD 5 233 MPa; sBE 5 250 MPa. (b) 1.322 mm T.
 2.115 (a) sAD 5 24.70 MPa; sBE 5 19.34 MPa. (b) 0.0967 mm T.
 2.116 (a) 236.0 ksi. (b) 15.84 ksi.
 2.117 (a) sAC 5 2150.0 MPa; sCB 5 2250 MPa. 

(b) 20.1069 mm S.
 2.118 (a) sAC 5 56.5 MPa; sCB 5 9.41 MPa. (b) 0.0424 mm S.
 2.121 (a) 9158F. (b) 17598F.
 2.122 (a) 0.1042 mm. (b) sAC 5 sCB 5 265.2 MPa.
 2.123 (a) 0.00788 mm. (b) sAC 5 sCB 5 26.06 MPa.
 2.125 1.219 in.
 2.127 4.678C.
 2.128 (a) 9.53 kips. (b) 1.254 3 1023 in.
 2.130 (steel) 2 15.80 ksi; (concrete) 2 1.962 ksi.
 2.131 (a) 9.73 kN. (b) 2.02 mm d.
 2.133 0.01870 in.
 2.135 (a) A sYyμg. (b) E AyL.
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Answers to Problems AN-3
 3.162 (a) 0.347 in. (b) 37.28.
 3.C2 Prob. 3.44: 2.218.
 3.C5 (a) 23.282%. (b) 20.853%. 

(c) 20.138%. (d) 20.00554%.
 3.C6 (a) 21.883%. (b) 20.484%. 

(c) 20.078%. (d) 20.00313%.

CHAPTER 4
 4.1 (a) 261.6 MPa. (b) 91.7 MPa.
 4.2 (a) 22.38 ksi. (b) 20.650 ksi.
 4.3 80.2 kN?m.
 4.4 24.8 kN?m.
 4.5 (a) 1.405 kip?in. (b) 3.19 kip?in.
 4.6 (a) 239.3 MPa. (b) 26.2 MPa.
 4.9 214.71 ksi; 8.82 ksi.
 4.10 210.38 ksi; 15.40 ksi.
 4.11 2102.4 MPa; 73.2 MPa.
 4.12 61.3 kN.
 4.15 20.4 kip?in.
 4.16 106.1 N?m.
 4.18 4.63 kip?in.
 4.19 3.79 kN?m.
 4.21 (a) 96.5 MPa. (b) 20.5 N?m.
 4.22 (a) 0.602 mm. (b) 0.203 N?m.
 4.23 (a) 145.0 ksi. (b) 384 lb?in.
 4.24 (a) s 5 75.0 MPa, r 5 26.7 m. 

(b) s 5 125.0 MPa, r 5 9.60 m.
 4.25 (a) 9.17 kN?m (b) 10.24 kN?m.
 4.26 (a) 45.1 kip?in. (b) 49.7 kip?in.
 4.29 (a) (8y9) h0. (b) 0.949.
 4.30 (a) 1007 in. (b) 3470 in. (c) 0.013208.
 4.31 (a) 139.1 m. (b) 480m.
 4.32 (a) [(sx)max y2 rc](y2 2 c2). (b) 2 (sx)max cy2r.
 4.33 1.240 kN?m.
 4.34 887 N?m.
 4.37 689 kip?in.
 4.38 335 kip?in.
 4.39 (a) 256.0 MPa. (b) 66.4 MPa.
 4.40 (a) 256.0 MPa. (b) 68.4 MPa.
 4.41 (a) 21.979 ksi. (b) 16.48 ksi.
 4.43 8.70 m.
 4.44 8.59 m.
 4.45 625 ft.
 4.47 3.87 kip?ft.
 4.48 2.88 kip?ft.
 4.49 (a) 212 MPa. (b) 215.59 MPa.
 4.50 (a) 210 MPa. (b) 214.08 MPa.
 4.54 (a) 1674 mm2. (b) 90.8 kN?m.
 4.55 (a) sA 5 6.86 ksi; sB 5 6.17 ksi; sS 5 4.11 ksi. (b) 151.9 ft.
 4.57 (a) 222.5 ksi. (b) 17.78 ksi.
 4.59 (a) 6.15 MPa. (b) 28.69 MPa.
 4.61 (a) 219 MPa. (b) 176.0 MPa.
 4.63 (a) 6.79 kip?in. (b) 5.59 kip?in.
 4.64 (a) 4.71 ksi. (b) 5.72 ksi.
 4.65 (a) 147.0 MPa. (b) 119.0 MPa.
 4.67 (a) 38.4 N?m. (b) 52.8 N?m.
 4.68 (a) 57.6 N?m. (b) 83.2 N?m.
 4.69 2460 lb?in.
 4.71 (a) 5.87 mm. (b) 2.09 m.
 4.72 (a) 21.9 mm. (b) 7.81 m.
 4.75 (a) 1759 kip?in. (b) 2650 kip?in.

 3.77 (a) 0.799 in. (b) 0.947 in.
 3.78 (a) 16.02 Hz. (b) 27.2 Hz.
 3.79 1917 rpm.
 3.80 50.0 kW.
 3.81 36.1 mm.
 3.84 10.8 mm.
 3.86 (a) 5.36 ksi. (b) 5.02 ksi.
 3.87 63.5 kW.
 3.88 42.6 Hz.
 3.89 (a) 2.61 ksi. (b) 2.01 ksi.
 3.90 (a) 203 N?m. (b) 165.8 N?m.
 3.92 (a) 9.64 kN?m. (b) 9.91 kN?m.
 3.93 2230 lb?in.
 3.94 (a) 18.86 ksi; 1.500 in. (b) 21.0 ksi; 0.916 in.
 3.95 (a) 113.3 MPa; 15.00 mm. 

(b) 145.0 MPa; 6.90 mm.
 3.98 (a) 6.728. (b) 18.718.
 3.99 (a) 2.478. (b) 4.348.
 3.100 (a) 977 N?m. (b) 8.61 mm.
 3.101 (a) 52.1 kip?in. (b) 80.8 kip?in.
 3.102 tmax 5 145.0 MPa; f 5 19.708.
 3.104 (a) 8.17 mm. (b) 42.18.
 3.106 (a) 8.028. (b) 14.89 kN?m.
 3.107 (a) 11.71 kN?m; 3.448. (b) 14.12 kN?m; 4.818.
 3.110 (a) 5.24 kip?in. (b) 6.888.
 3.111 (a) 1.322 kip?in. (b) 12.60 ksi.
 3.112 2.32 kN?m.
 3.113 2.26 kN?m.
 3.114 5.63 ksi.
 3.115 14.628.
 3.118 68.0 MPa at inner surface.
 3.119 20.28.
 3.120 (a) c0 5 0.1500c. (b) T0 5 0.221tyc3.
 3.121 0.0505 in.
 3.122 68.2 in.
 3.123 (a) 189.2 N?m; 9.058. (b) 228 N?m; 7.918.
 3.124 (a) 74.0 MPa; 9.568. (b) 61.5 MPa; 6.958.
 3.127 5.07 MPa.
 3.128 59.2 MPa.
 3.129 0.944.
 3.131 0.198.
 3.132 0.883.
 3.133 (a) 1.193 in. (b) 1.170 in. (c) 0.878 in.
 3.135 (a) 157.0 kN?m. (b) 8.708.
 3.136 (a) 7.52 ksi. (b) 4.618.
 3.137 (a) 1007 N?m. (b) 9.278.
 3.138 (a) 4.55 ksi. (b) 2.98 ksi. (c) 2.568.
 3.139 (a) 5.82 ksi. (b) 2.91 ksi.
 3.142 (a) 16.85 N?m.
 3.143 8.45 N?m.
 3.144 ta 5 4.73 MPa, tb 5 9.46 MPa.
 3.146 0.894 in.
 3.147 (a) 12.76 MPa. (b) 5.40 kN?m.
 3.149 (a) 3cyt. (b) 3c2yt2.
 3.150 (b) 0.25% , 1.000%, 4.00%.
 3.151 637 kip?in.
 3.153 12.228.
 3.155 1.285 in.
 3.156 (a) 73.7 MPa. (b) 34.4 MPa. (c) 5.068.
 3.157 4.12 kN?m.
 3.158 (a) 18.80 kW. (b) 24.3 MPa.
 3.160 7.34 kip?ft.
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AN-4 Answers to Problems

 4.170 (a) 282.4 MPa. (b) 36.6 MPa.
 4.171 (a) 3.06 ksi. (b) 22.81 ksi. (c) 0.529 ksi.
 4.173 13.80 kN?m.
 4.174 8.49 kN?m.
 4.175 (a) 16.05 ksi. (b) 29.84 ksi.
 4.177 (a) 41.8 MPa. (b) 220.4 MPa.
 4.178 27.2 mm.
 4.179 107.8 N?m.
 4.180 (a) 232.5 MPa. (b) 34.2 MPa.
 4.181 (a) 23.65 ksi. (b) 3.72 ksi.
 4.183 (a) 25.96 ksi. (b) 3.61 ksi.
 4.184 (a) 26.71 ksi. (b) 3.24 ksi.
 4.185 (a) 63.9 MPa. (b) 252.6 MPa.
 4.191 20.536 ksi.
 4.192 67.8 MPa; 281.8 MPa
 4.194 (a) smax 5 6 M ya3, 1yr 5 12MyEa4. 

(b) smax 5 8.49 Mya3, 1yr 5 12MyEa4.
 4.195 48.6 kN?m.
 4.196 (a) 46.9 MPa. (b) 18.94 MPa. (c) 55.4 m.
 4.198 (a) 220.9 ksi. (b) 222.8 ksi.
 4.199 60.9 mm.
 4.201 (a) 56.7 kN?m. (b) 20.0 mm.
 4.202 P 5 75.6 kips T; Q 5 87.1 kips T. 
 4.203 (a) sA 5 2½ s; sB 5 s1; sC 5 2s1; sD 5 ½ s1. (b) 4y3 r1.
 4.C1 a 5 4 mm: sa 5 50.6 MPa, ss 5 107.9 MPa.
  a 5 14 mm: sa 5 89.7 MPa, ss 5 71.8 MPa.
  (a) 1 11.6 MPa. (b) 6.61 mm.
 4.C2 yY 5 65 mm, M 5 52.6 kN.m, r 5 43.3; yY 5 45 mm,
  M 5 55.6 kN?m, r 5 30.0 m.
 4.C3 b 5 308: sA 5 27.83 ksi, sB 5 25.27 ksi,
  sC 5 7.19 ksi, sD 5 5.91 ksi;
  b 5 1208: sA 5 1.557 ksi, sB 5 6.01 ksi,
  sC 5 22.67 ksi, sD 5 24.89 ksi.
 4.C4 r1yh 5 0.529 for 50% increase in smax.
 4.C5 Prob. 4.10: 2102.4 MPa; 73.2 MPa.
 4.C6 yY 5 0.8 in.: 76.9 kip?in., 552 in.;
  yY 5 0.2 in.: 95.5 kip?in., 138.1 in.
 4.C7 a 5 0.2 in.: 2 7.27 ksi, a 5 0.8 in.: 2 6.61 ksi.
  For a 5 0.625 in., s 5 2 6.51 ksi.

CHAPTER 5
 5.1 (b) V 5 w(Ly2 2 x); M 5 wx(L 2 x)y2.

 5.2 (b) A to B: V 5 
Pb

L
; M 5 PbxyL.

      B to C: V 5 PayL; M 5 Pa (L 2 x)yL.
 5.3 (b) V 5 w0Ly2 2 w0 x2y2L; M 5 

    2 w0L2y3 1 w0Lxy2 2 w0x3y6L 
 5.4 (b) V 5 w(L 2 x); M 5 wy2 (L 2 x)2.
 5.5 (b) (0 , x , a): V 5 2P; M 5 Px. (a , x , 2a): V 5 2P;
      M 5 22Px 1 Pa.
 5.6 (b) A to B: V 5 w(a 2 x); M 5 w(ax 2 x2y2).
      B to C: V 5 0; M 5 wa2y2.
      C to D: V 5 w(L 2 x 2 a); M 5 w[a(L 2 x) 2 (L 2 x)2y2].
 5.7 (a) 3.00 kN. (b) 0.800 kN?m.
 5.8 (a) 150.0 lb. (b) 1500 lb?in.
 5.9 (a) 62.5 kN. (b) 47.6 kN?m.
 5.11 (a) 3.45 kN. (b) 1125 N?m.
 5.12 (a) 2000 lb. (b) 19200 lb?in.
 5.13 (a) 900 N. (b) 112.5 N?m.
 5.15 10.89 MPa.
 5.16 950 psi.

 4.77 (a) 29.2 kN?m. (b) 1.500.
 4.78 (a) 27.5 kN?m. (b) 1.443.
 4.79 (a) 2840 kip?in. (b) 1.611.
 4.80 (a) 4820 kip?in. (b) 1.443.
 4.81 1.866 kN?m.
 4.82 19.01 kN?m.
 4.84 22.8 kip?in.
 4.86 212 kip?in.
 4.87 120 MPa.
 4.88 106.4 MPa.
 4.91 (a) 106.7 MPa. (b) y0 5 231.2 mm, 0, 31.2 mm. (c) 24.1 m.
 4.92 (a) 13.36 ksi. (b) y0 5 21.517 in., 0, 1.517 in. (c) 168.8 ft.
 4.94 (a) 0.707rY. (b) 6.09rY.
 4.96 (a) 4.69 m. (b) 7.29 kN?m.
 4.99 (a) 2102.8 MPa. (b) 80.6 MPa.
 4.100 (a) 2212 psi. (b) 2637 psi. (c) 21061 psi.
 4.101 (a) 22Pypr2. (b) 25Pypr2.
 4.103 (a) 237.8 MPa. (b) 238.6 MPa.
 4.105 (a) 288 lb. (b) 209 lb.
 4.106 1.994 kN.
 4.107 14.40 kN.
 4.108 16.04 mm.
 4.109 43.0 kips.
 4.110 0.500d.
 4.113 7.86 kips T; 9.15 kips c.
 4.114 5.32 kips T; 10.79 kips c.
 4.115 (a) 47.6 MPa. (b) 249.4 MPa. (c) 9.80 mm below top of 

section.
 4.116 (a) 2Py2at. (b) 22Pyat. (c) 2Py2at.
 4.117 (a) 1125 kN. (b) 817 kN.
 4.121 (a) 30.0 mm. (b) 94.5 kN.
 4.122 (a) 5.00 mm. (b) 243 kN.
 4.124 P 5 44.2 kips; Q 5 57.3 kips. 
 4.125 (a) 152.3 kips. (b) x 5 0.59 in. (c) 300 m.
 4.127 (a) 23.37 MPa. (b) 218.60 MPa. (c) 3.37 MPa.
 4.128 (a) 9.86 ksi. (b) 22.64 ksi. (c) 29.86 ksi.
 4.129 (a) 229.3 MPa. (b) 2144.8 MPa. (c) 2125.9 MPa.
 4.130 (a) 0.321 ksi. (b) 20.107 ksi. (c) 0.427 ksi.
 4.133 (a) 57.8 MPa. (b) 256.8 MPa. (c) 25.9 MPa.
 4.134 (a) 57.48. (b) 75.7 MPa.
 4.135 (a) 18.298. (b) 13.74 ksi.
 4.137 (a) 10.038. (b) 54.2 MPa.
 4.138 (a) 27.58. (b) 5.07 ksi.
 4.139 (a) 32.98. (b) 61.4 MPa.
 4.141 113.0 MPa. 
 4.143 10.46 ksi.
 4.144 (a) sA 5 31.5 MPa; sB 5 210.39 MPa. 

(b) 94.0 mm above point A.
 4.145 (a) 17.11 mm.
 4.146 0.1638 in.
 4.147 53.9 kips.
 4.150 29.1 kip?in.
 4.151 29.1 kip?in.
 4.152 733 N?m.
 4.153 1.323 kN?m.
 4.155 900 N?m.
 4.161 (a) 277.3 MPa. (b) 255.7 MPa.
 4.162 sA 5 265.1 MPa; sB 5 39.7 MPa.
 4.163 (a) 12.19 ksi. (b) 11.15 ksi.
 4.164 sA 5 10.77 ksi; sB 5 23.22 ksi.
 4.167 655 lb. 
 4.169 73.2 mm.
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Answers to Problems AN-5
 5.96 W27 3 84.
 5.97 123.2%.
 5.98 (a)  V 5 2w0x 1 w0Kx 2 al1; M 5 w0x2y2 1 (w0y2) kx 2 al2.
  (b) 23 w0a2y2.
 5.100 (a)  V 5 2w0x 1 w0x2y2a 2 (w0y2a)kx 2 al2; 

M 5 2w0x2y2 1 w0x3y6a 2 (w0y6a)kx 2 al3.
  (b) 25 w0a2y6.
 5.102 (a) V 5 2w0kx 2 al1 23w0ay4 1 (15 w0ay4)kx 2 2al0;
    M 5 2(w0y2)kx 2 al2 2 3w0axy4 1 

(15 w0ay4)kx22al1.
  (b) 2w0a2y2.
 5.103 (a) V 5 1.25 P 2 Pkx2al0 2 Pkx 2 2al0;
   M 5 1.25 Px 2 Pkx 2 al1 2 Pkx 2 2al1.
  (b) 0.750 Pa.
 5.104 (a)  V 5 2Py2 2 Pkx 2 al0; M 5 Pxy2 2 Pkx 2 al1 1 

Pa 1 Pakx 2 al0.
  (b) 3 Pay2.
 5.105 (a) V 5 2Pkx 2 al0; M 5 2Pkx 2 al1 2 Pakx2al0. (b) 2Pa.
 5.106 (a) V 5 40 2 48kx 2 1.5l0 2 60kx 2 3.0l0 1 60kx 2 3.6l0 kN;
    M 5 40x 2 48kx 2 1.5l1 2 60kx 2 3.0l1 1 

60kx 2 3.6l1 kN?m.
  (b) 60.0 kN?m.
 5.107 (a) V 5 23 1 9.75kx 2 3l0 2 6kx 2 7l0 2 6kx 2 11l0 kips;
   M 5 23x 1 9.75kx 2 3l1 2 6kx 2 7l1 2 6kx 2 11l1 kip?ft.
  (b) 21.0 kip?ft.
 5.108 (a)  V 5 62.5 2 25kx 2 0.6l1 1 25kx 2 2.4l1 2 

40kx 2 0.6l0 2 40kx 2 2.4l0 kN; 
    M 5 62.5x 2 12.5kx 2 0.6l2 1 12.5kx 2 2.4l2 2 

40kx 2 0.6l1 2 40kx 2 2.4l1 kN?m 
  (b) 47.6 kN?m.
 5.109 (a) V 5 13 2 3x 1 3kx 2 3l1 2 8kx 2 7l0 2 3kx 2 11l1 kips;
    M 5 13x 2 1.5x2 1 1.5kx 2 3l2 2 8kx 2 7l1 2 

1.5kx 2 11l2 kip?ft.
  (b) 41.5 kip?ft.
 5.110 (a)  V 5 30 224kx 2 0.75l0 2 24kx 2 1.5l0 2 

24kx 2 2.25l0 1 66kx 2 3l0 kN;
    M 5 30x 2 24kx 2 0.75l1 2 24kx 2 1.5l1 2 

24kx 2 2.25l1 1 66kx 2 3l1 kN?m.
  (b) 87.7 MPa.
 5.114 (a) 122.7 kip?ft at x 5 6.50 ft. (b) W16 3 40.
 5.115 (a) 121.5 kip?ft at x 5 6.00 ft. (b) W16 3 40.
 5.118 0V 0max 5 35.6 kN; 0M 0max 5 25.0 kN?m.
 5.119 0V 0max 5 89.0 kN; 0M 0max 5 178.0 kN?m.
 5.120 0V 0max 5 15.30 kips; 0M 0max 5 38.0 kip?ft.
 5.122 (a) 0V 0max 5 13.80 kN; 0M 0max 5 16.16 kN?m. (b) 83.8 MPa.
 5.123 (a) 0V 0max 5 40.0 kN; 0M 0max 5 30.0 kN?m. (b) 40.0 MPa.
 5.124 (a) 0V 0max 5 3.84 kips; 0M 0max 5 3.80 kip?ft. (b) 0.951 ksi.
 5.126 (a) h 5 h0 [(xyL) (1 2 xyL)]1/2. (b) 4.44 kip?in.
 5.127 (a) h 5 h0 (xyL)1/2. (b) 20.0 kips.
 5.128 (a) h 5 h0 (xyL)3/2. (b) 167.7 mm.

 5.130 (a) h 5 h0 22x/L. (b) 60.0 kN.
 5.132 l2 5 6.00 ft; l2 5 4.00 ft.
 5.134 1.800 m.
 5.135 1.900 m.
 5.136 d 5 d0 (2xyL)1/3 for 0 ≤ x ≤ Ly2;
  d 5 d0 [2 (L 2 x)yL]1/3 for Ly2 ≤ x ≤ L.
 5.139 (a) b 5 b0 (1 2 xyL)2. (b) 160.0 lbyin.
 5.140 (a) 155.2 MPa. (b) 143.3 MPa.
 5.141 (a) 25.0 ksi. (b) 18.03 ksi.
 5.143 193.8 kN.
 5.144 (a) 152.6 MPa. (b) 133.6 MPa.
 5.145 (a) 4.49 m. (b) 211. mm.

 5.18 139.2 MPa.
 5.20 9.90 ksi.
 5.21 14.17 ksi.
 5.23 0V 0max 5 342 N; 0M 0max 5 51.6 N?m; s 5 17.19 MPa.
 5.25 10.34 ksi.
 5.26 0V 0max 5 6.00 kN; 0M 0max 5 4.00 kN?m; smax 5 14.29 MPa.
 5.27 (a) 10.67 kN. (b) 9.52 MPa.
 5.29 (a) 866 mm. (b) 99.2 MPa.
 5.30 (a) 819 mm. (b) 89.5 MPa.
 5.31 (a) 3.09 ft. (b) 12.95 ksi.
 5.32 1.021 in.
 5.33 (a) 33.3 mm. (b) 6.66 mm.
 5.34 See 5.1.
 5.35 See 5.2.
 5.36 See 5.3.
 5.37 See 5.4.
 5.38 See 5.5.
 5.39 See 5.6.
 5.40 See 5.7.
 5.41 See 5.8.
 5.42 See 5.9.
 5.43 See 5.10.
 5.46 See 5.15.
 5.47 See 5.16.
 5.48 See 5.18.
 5.49 See 5.20.
 5.52 (a) V 5 (w0Lyp) cos(pxyL); M 5 (w0L2yp2) sin (pxyL).
  (b) w0L2yp2.
 5.53 (a) V 5 w0 (L2 2 3x2)y6L; M 5 w0(Lx 2 x3yL)y6.
  (b) 0.0642 w0L2.
 5.54 0V 0max 5 15.75 kips; 0M 0max 5 27.8 kip?ft; s 5 13.58 ksi.
 5.55 0V 0max 5 16.80  kN; 0M 0max 5 8.82  kN?m; s 5 73.5 MPa.
 5.56 0V 0max 5 20.7 kN; 0M 0max 5 9.75  kN?m; s 5 60.2 MPa.
 5.58 0V 0max 5 1400  lb; 0M 0max 5 19.20 kip?in; s 5 6.34 ksi.
 5.59 0V 0max 5 76.0  kN; 0M 0max 5 67.3 kN?m; s 5 68.5 MPa.
 5.60 0V 0max 5 48.0  kN; 0M 0max 5 12.00  kN?m; s 5 62.2 MPa.
 5.61 0V 0max 5 30.0  lb; 0M 0max 5 24.0 lb?ft; s 5 6.95 ksi.
 5.63 (a) 0V 0max 5 24.5  kips; 0M 0max 5 36.3 kip?ft; (b) 15.82 ksi.
 5.64 0V 0max 5 1150  N; 0M 0max 5 221 N?m; P 5 500 N; Q 5 250 N.
 5.65 h . 173.2 mm.
 5.68 b . 6.20 in.
 5.69 h . 203 mm.
 5.70 b . 48.0 mm.
 5.71 W21 3 62.
 5.72 W27 3 84.
 5.73 W530 3 92.
 5.74 W250 3 28.4.
 5.76 S15 3 42.9.
 5.77 S510 3 98.2.
 5.79 9 mm.
 5.80 C180 3 14.6.
 5.81 C9 3 15.
 5.82 3y8 in.
 5.83 W610 3 101.
 5.84 W24 3 68.
 5.85 176.8 kNym.
 5.86 108.8 kNym.
 5.89 (a) 1.485 kNym. (b) 1.935 m.
 5.91 (a) S15 3 42.9. (b) W27 3 84.
 5.92 (a) 6.49 ft. (b) W16 3 31.
 5.94 383 mm.
 5.95 336 mm.
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AN-6 Answers to Problems

 6.59 (a) 0.888 ksi. (b) 1.453 ksi.
 6.61 0.345a.
 6.62 0.714a.
 6.63 1.250a.
 6.64 3(b2 2 a2)y[6(a 1 b) 1 h].
 6.65 (a) 19.06 mm. (b) tA 5 0; (tB)AB 5 50.5 MPa; 

(tB)BD 5 25.3 MPa; tc 5 59.0 MPa.
 6.68 (a) 10.22 mm. (b) 0 at B and E; 41.1 MPa at A;
  68.5 MPa just above D; 13.71 MPa just to the right of D;
  77.7 MPa just below D; 81.8 MPa at center of DF.
 6.69 0.727 in.
 6.70 20.2 mm.
 6.71 1.265 in.
 6.72 6.14 mm.
 6.75 2.37 in.
 6.76 21.7 mm.
 6.77 40.0 mm.
 6.78 3.75 in.
 6.81 (maximum) Pyat.
 6.82 (maximum) 1.333 Pyat.
 6.83 (a) 144.6 N?m. (b) 65.9 MPa.
 6.84 (a) 144.6 N?m. (b) 106.6 MPa.
 6.87 (maximum) 0.428 ksi at B9.
 6.88 (maximum) 1.287 ksi at C9.
 6.89 738 N.
 6.90 (a) 17.63 MPa. (b) 13.01 MPa.
 6.91 143.3 kips.
 6.93 189.6 lb.
 6.94 (a) 41.4 MPa. (b) 41.4 MPa.
 6.96 53.9 kips.
 6.97 (a) 146.1 kNym. (b) 19.99 MPa.
 6.99 40.0 mm.
 6.100 0.433 in.
 6.C1 (a) h 5 173.2 mm. (b) h 5 379 mm.
 6.C2 (a) L 5 37.5 in.; b 5 1.250 in.
  (b) L 5 70.3 in.; b 5 1.172 in.
  (c) L 5 59.8 in.; b 5 1.396 in.
 6.C4 (a) tmax 5 2.03 ksi; tB 5 1.800 ksi. (b) 194 psi.
 6.C5 Prob. 6.66: (a) 2.67 in. (b) tB 5 0.917 ksi;
  tD 5 3.36 ksi; tmax 5 4.28 ksi.

CHAPTER 7
 7.1 s 5 9.46 ksi; t 5 1.013 ksi.
 7.2 s 5 32.9 MPa; t 5 71.0 MPa.
 7.3 s 5 10.93 ksi; t 5 0.536 ksi.
 7.4 s 5 20.521 MPa; t 5 56.4 MPa.
 7.5 (a) 237.08, 53.08. (b) 213.60 MPa. (c) 286.4 MPa.
 7.7 (a) 2 26.68; 63.48. (b) 190.0 MPa, 210.00 MPa.
 7.9 (a) 8.08, 98.08. (b) 36.4 MPa. (c) 250.0 MPa.
 7.10 (a) 226.68, 63.48. (b) 5.00 ksi. (c) 6.00 ksi.
 7.11 (a) 18.48, 108.48. (b) 100.0 MPa. (c) 90.0 MPa.
 7.12 (a) 231.08, 59.08 (b) 17.00 ksi. (c) 3.00 ksi.
 7.13 (a) sx9 5 22.40 ksi; tx9y9 5 0.1498 ksi; sy9 5 10.40 ksi.
  (b) sx9 5 1.951 ksi; tx9y9 5 6.07 ksi; sy9 5 6.05 ksi.
 7.15 (a) sx9 5 9.02 ksi; tx9y9 5 3.80 ksi; sy9 5 213.02 ksi.
  (b) sx9 5 5.34 ksi; tx9y9 5 29.06 ksi; sy9 5 29.34 ksi.
 7.17 (a) 217 psi. (b) 2125.0 psi. 
 7.18 (a) 20.300 MPa. (b) 22.92 MPa.
 7.19 16.58 kN.
 7.21 (a) 18.48. (b) 16.67 ksi.
 7.23 (a) 18.98, 108.98, 18.67 MPa, 2158.5 MPa. (b) 88.6 MPa.

 5.147 (a) 11.16 ft. (b) 14.31 in.
 5.149 (a) 240 mm. (b) 150.0 MPa.
 5.150 (a) 15.00 in. (b) 320 lbyin.
 5.151 (a) 30.0 in. (b) 12.80 kips.
 5.152 (a) 85.0 N. (b) 21.3 N?m.
 5.154 (a) 1.260 ft. (b) 7.24 ksi.
 5.156 0V 0max 5 200 kN; 0M 0max 5 300 kN?m; 136.4 MPa.
 5.158 h . 14.27 in.
 5.159 W27 3 84.
 5.161 (a) 225.6 kN?m at x 5 3.63 m. 

(b) 60.6 MPa.
 5.163 (a) b0 (1 2 xyL). (b) 20.8 mm.
 5.C4 For x 5 13.5 ft: M1 5 131.25 kip?ft;
  M2 5 156.25 kip?ft; MC 5 150.0 kip?ft.
 5.C6 Prob. 5.112: VA 5 29.5 kN, Mmax 5 28.3 kN?m,
  at 1.938 m from A.

CHAPTER 6
 6.1 60.0 mm.
 6.2 2.00 kN.
 6.3 326 lb.
 6.4 (a) 155.8 N. (b) 329 kPa.
 6.5 193.5 kN.
 6.7 10.56 ksi.
 6.9 (a) 8.97 MPa. (b) 8.15 MPa.
 6.11 (a) 13.15 ksi. (b) 11.16 ksi.
 6.12 (a) 3.17 ksi. (b) 2.40 ksi.
 6.13 114.0 kN.
 6.15 1733 lb.
 6.17 (a) 84.2 kips. (b) 60.2 kips.
 6.18 87.3 mm.
 6.19 (b) h 5 320 mm; b 5 97.7 mm.
 6.21 (a) 1.745 ksi. (b) 2.82 ksi.
 6.22 (a) 31.0 MPa. (b) 23.2 MPa.
 6.23 3.21 ksi.
 6.24 32.7 MPa.
 6.26 (a) Line at mid-height. (b) 2.00.
 6.28 (a) Line at mid-height. (b) 1.500.
 6.29 1.672 in.
 6.30 10.79 kN.
 6.31 (a) 59.9 psi. (b) 79.8 psi.
 6.32 (a) 379 kPa. (b) 0.
 6.35 (a) 95.2 MPa. (b) 112.8 MPa.
 6.36 (a) 101.6 MPa. (b) 79.9 MPa.
 6.37 ta 5 33.7 MPa; tb 5 75.0 MPa; tc 5 43.5 MPa.
 6.38 (a) 40.5 psi. (b) 55.2 psi.
 6.40 ta 5 0; tb 5 1.262 ksi; tc 5 3.30 ksi; 

td 5 6.84 ksi; te 5 7.86 ksi.
 6.42 (a) 18.23 MPa. (b) 14.59 MPa. (c) 46.2 MPa.
 6.43 7.19 ksi.
 6.44 9.05 mm.
 6.45 0.371 in.
 6.46 83.3 MPa.
 6.48 ta 5 10.76 MPa; tb 5 0; tc 5 11.21 MPa; 

td 5 22.0 MPa; te 5 9.35 MPa.
 6.49 (a) 50.9 MPa. (b) 62.4 MPa.
 6.51 1.4222 in.
 6.52 10.53 ksi.
 6.56 (a) 6.73 MPa. (b) 1.515 MPa.
 6.57 (a) 23.3 MPa. (b) 109.7 MPa.
 6.58 (a) 1.323 ksi. (b) 1.329 ksi.
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Answers to Problems AN-7
 7.129 Px9 5 115.0 m; Py9 5 285 m; gx9y9 5 25.72 m.
 7.131 Px9 5 36.7 m; Py9 5 283 m; gx9y9 5 227 m.
 7.132 Px9 5 2653 m; Py9 5 303 m; gx9y9 5 2829 m.
 7.133 Px9 5 115.0 m; Py9 5 285 m; gx9y9 5 25.72 m.
 7.135 Px9 5 36.7 m; Py9 5 283 m; gx9y9 5 227 m.
 7.136 (a) 233.78, 56.38; 2420 m, 100 m, 160 m. 

(b) 520 m. (c) 580 m.
 7.137 (a) 230.18, 59.98; 2702 m, 2298 m, 500 m. (b) 403 m. 

(c) 1202 m.
 7.139 (a) 226.68, 64.48; 2150.0 m, 750 m, 2300 m. (b) 900 m. 

(c) 1050 m.
 7.140 (a) 7.88, 97.88; 56.6 m, 243 m, 0. (b) 186.8 m.(c) 243 m.
 7.141 (a) 121.08, 31.08; 513 m, 87.5 m, 0. (b) 425 m.(c) 513 m.
 7.143 (a) 127.98, 37.98; 2383 m, 257.5 m, 0. (b) 325 m.(c) 383 m.
 7.146 (a) 2300 3 1026 in.yin. (b) 435 3 1026 in.yin., 2315 3 

1026 in.yin.; 750 3 1026 in.yin.
 7.149 (a) 30.08, 120.08; 560 3 1026 in.yin, 2140.0 3 1026 in.yin. 

(b) 700 3 1026 in.yin.
 7.150 P 5 69.6 kips; Q 5 30.3 kips.
 7.151 P 5 34.8 kips; Q 5 38.4 kips.
 7.154 1.421 MPa.
 7.155 1.761 MPa.
 7.156 222.58, 67.58; 426 m, 2952 m, 2224 m.
 7.157 232.18, 57.98; 270.9 MPa, 229.8 MPa.
 7.158 24.76 ksi; 20.467 ksi.
 7.159 (a) 47.9 MPa. (b) 102.7 MPa.
 7.161 uy2, (u 1 p)y2; s0 1 s0 cos u, s0 2s0 cos u.
 7.163 (a) 40.0 MPa. (b) 72.0 MPa.
 7.164 (a) 1.286. (b) 1.018. (c) Yielding occurs.
 7.165 smax 5 45.1 MPa; tmax (in-plane) 5 9.40 MPa.
 7.167 3.43 ksi (compression).
 7.169 415 3 1026 in.yin.
 7.C1 Prob. 7.14: (a) 256.2 MPa, 86.2 MPa, 238.2 MPa.
   (b) 245.2 MPa, 75.2 MPa, 53.8 MPa.
  Prob. 7.16: (a) 24.0 MPa, 2104.0 MPa, 21.50 MPa.
   (b) 219.51 MPa, 260.5 MPa, 260.7 MPa.
 7.C4 Prob. 7.93: Rupture occurs at t0 5 3.67 ksi.
 7.C6 Prob. 7.138: (a) 221.68, 68.48; 279m, 2599m, 160.0m.
  (b) 877m. (c) 877m.
 7.C7 Prob. 7.142: (a) 11.38, 101.38; 310m, 50.0m, 0.
  (b) 260m. (b) 310m.
 7.C8 Prob. 7.144: Px 5 253m; Py 5 307; gxy 5 2893.
   Pa 5 727m; Pb 5 2167.2; gmax 5 2894.
  Prob. 7.145: Px 5 725m; Py 5 275.0; gxy 5 173.2.
   Pa 5 734m; Pb 5 284.3; gmax 5 819.

CHAPTER 8
 8.1 (a) 10.69 ksi. (b) 19.18 ksi. (c) Not acceptable.
 8.2 (a) 10.69 ksi. (b) 13.08 ksi. (c) Acceptable.
 8.3 (a) 94.6 MPa. (b) 93.9 MPa. (c) Acceptable.
 8.4 (a) 91.9 MPa. (b) 95.1 MPa. (c) Acceptable.
 8.5 (a) W 310 3 38.7. (b) 147.8 MPa; 18.18 MPa; 140.2 MPa.
 8.6 (a) W 690 3 125. (b) 118.2 MPa; 34.7 MPa; 122.3 MPa.
 8.9 (a) 137.5 MPa. (b) 129.5 MPa.
 8.11 (a) 17.90 ksi. (b) 17.08 ksi.
 8.12 (a) 19.39 ksi. (b) 20.7 ksi.
 8.13 (a) 131.3 MPa. (b) 135.5 MPa.
 8.15 41.2 mm.
 8.19 873 lb.
 8.20 1.578 in.
 8.22 (a) H : 6880 psi; K : 6760 psi. (b) H : 7420 psi; K : 7010 psi.

 7.24 (a) 25.1 ksi, 20.661 ksi, 12.88 ksi.
 7.25 5.12 ksi, 21.640 ksi, 3.38 ksi.
 7.26 12.18 MPa, 248.7 MPa; 30.5 MPa.
 7.27 205 MPa.
 7.29 (a) 22.89 MPa. (b) 12.77 MPa, 1.226 MPa.
 7.53 (a) 28.66 MPa. (b) 17.00 MPa, 23.00 MPa.
 7.55 33.88, 123.88; 168.6 MPa, 6.42 MPa.
 7.56 08, 908; s0, 2s0.
 7.57 2308, 608; 223 t0, 23 t0.
 7.58 2120.0 MPa ≤ txy ≤ 120.0 MPa.
 7.59 2141.4 MPa ≤ txy ≤ 141.1 MPa.
 7.61 16.58 ≤ u ≤ 110.18.
 7.62 25.18 ≤ u ≤ 132.08.
 7.63 (a) 33.78, 123.78. (b) 18.00 ksi. (c) 6.50 ksi.

 7.65 (b) 0txy 0 5 2sx 
sy 2 smax 

smin.
 7.66 (a) 13.00 ksi. (b) 15.00 ksi.
 7.68 (a) 94.3 MPa. (b) 105.3 MPa.
 7.69 (a) 100.0 MPa. (b) 110.0 MPa.
 7.70 (a) 91.0 MPa. (b) 91.0 MPa. (c) 108.0 MPa.
 7.71 (a) 113.0 MPa. (b) 91.0 MPa. (c) 143.0 MPa.
 7.73 (a) 18.5 ksi. (b) 13.00 ksi. (c) 11.00 ksi.
 7.74 (a) 66.00 ksi. (b) 611.24 ksi.
 7.75 660.0 MPa.
 7.77 2.00 ksi; 9.33 ksi.
 7.79 240.0 MPa; 130.0 MPa.
 7.80 (a) 45.7 MPa. (b) 92.9 MPa.
 7.81 (a) 1.228. (b) 1.098. (c) Yielding occurs.
 7.82 (a) 1.083. (b) Yielding occurs. (c) Yielding occurs.
 7.83 (a) 1.287. (b) 1.018. (c) Yielding occurs.
 7.84 (a) 1.119. (b) Yielding occurs. (c) Yielding occurs.
 7.87 8.19 kip?in.
 7.88 9.46 kip?in.
 7.89 Rupture will occur.
 7.90 Rupture will occur.
 7.91 No Rupture.
 7.92 Rupture will occur.
 7.94 68.49 MPa.
 7.95 50.0 MPa.
 7.96 196.9 N?m.
 7.98 (a) 1.290 MPa. (b) 0.852 mm.
 7.100 5.49.
 7.102 10.25 ksi; 5.12 ksi.
 7.103 2.94 MPa.
 7.104 12.76 m.
 7.105 smax 5 113.7 MPa; tmax 5 56.8 MPa. 
 7.106 smax 5 136.0 MPa; tmax 5 68.0 MPa.
 7.108 smax 5 78.5 MPa; tmax 5 39.3 MPa.
 7.109 251 psi.
 7.111 0.307 in.
 7.112 3.29 MPa.
 7.113 3.80 MPa.
 7.114 (a) 44.2 MPa. (b) 15.39 MPa.
 7.115 56.88.
 7.117 (a) 3750 psi. (b) 1079 psi.
 7.118 387 psi.
 7.120 (a) 3.15 ksi. (b) 1.9993 ksi.
 7.121 (a) 1.486 ksi. (b) 3.16 ksi.
 7.122 smax 5 68.6 MPa; tmax 5 34.3 MPa.
 7.124 smax 5 77.4 MPa; tmax 5 38.7 MPa.
 7.126 (a) 5.64 ksi. (b) 282 psi.
 7.127 (a) 2.28 ksi. (b) 228 psi.
 7.128 Px9 5 2653 m; Py9 5 303 m; gx9y9 5 2829 m.
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AN-8 Answers to Problems

 9.12 (a) 0.211L; 0.01604M0L2yEI. (b) 6.08 m.
 9.13 0.398 in. T.
 9.16 (a) (PyEI) (ax2y2 2 aLxy2 1 a3y6). (b) 1.976 mm T.
 9.17 (a)  y 5 2(w0yEIL2) (L2x4y24 2 LX5y30 1 X6y120 2 L4x2y24).
  (b) w0 L4y40 EI T.
 9.18 (a) y 5 w0 (x6 2 15 L2x4 1 25L3x3 2 11 L5x)y360 EIL2.
  (b) 11w0L3y360 EI c. (c) 0.00916 w0L4yEI T.
 9.19 3wLy8 c.
 9.20 3M0y2L c.
 9.23 4.00 kips c.
 9.24 9.75 kN c.
 9.25 RB 5 5Py16 c; MA 5 23PLy16, MC 5 5PLy32, MB 5 0. 

 9.26 RB 5 9M0y8L c; MA 5 M0y8, MC2 5 27M0y16, 
MC1 5 9M0y16.

 9.27 RA 5 9w0Ly640 c; MM 5 0.00814 w0L2, MB 5 20.0276 w0L2.
 9.28 RA 5 7wLy128 c; MC 5 0.0273 wL2, MB 5 20.0703 wL2,
  M 5 0.0288 wL2 at x 5 0.555L.
 9.30 RB 5 17wLy64 c; yC 5 wL4y1024 EI T.
 9.32 RB 5 5M0/6L T; yD 5 7M0L2y486 EI c.
 9.33 wL/2c, wL2y12 l; M 5 w [6x (L 2 x) 2 L2]y12.
 9.34 RA 5 w0Ly4 c, MA 5 0.0521 w0L2l; MC 5 0.0313 w0L2.
 9.35 (a) y 5 w{Lx3y48 2 kx 2 Ly2l4y24 2 7L3xy384}yEI.
  (b) 7wL3y384 EI c. (c) 5wL4y768 EI T.
 9.36 (a) y 5 (M0y6EIL) {x3 2 3Lkx 2 al2 1 (3b2 2 L2) x}
  (b) M0 (3b2 2 L2)y6EIL c. (c) M0 ab (b 2 a)y3 EIL c.
 9.37 (a) 9Pa3y4EI T. (b) 19Pa3y6EI T. (c) 9Pa3y4EIT.
 9.38 (a) 5Pa3y2EI T. (b) 49Pa3y6EI. (c) 15Pa3yEI.
 9.41 (a)  y 5 w {ax3y6 2 kx 2 al4y24 1 

kx 2 3al4y24 2 11 a3xy6}yEI.
  (b) 19 wa4y8EI T.
 9.43 (a) y 5 w0 {25L3x2y48 1 L2 x3y24 2 kx 2 Ly2l5y60}yEIL.
  (b) w0L4y48 EI T. (c) 121 w0L4y1920 EI T.
 9.44 (a) y 5 (wy24 EI) {2x4 1 kx 2 Ly2l4 2 kx 2 Ll4 1 

Lx3 1 3L kx 2 Ll3 2 L3xy16}.
  (b) wL4y768 EI c. (c) 5wL4y256 EI.
 9.45 (a) 9.51 3 1023 rad c. (b) 5.80 mm T.
 9.46 (a) 8.66 3 1023 rad c. (b) 0.1503 in. T.
 9.48 (a) 5.40 3 1023 rad c. (b) 3. 06 mm T.
 9.49 (a) 5Py16 c. (b) 7 PL3y168EI T.
 9.50 (a) 9M0y8L c. (b) M0L2y128EI T.
 9.51 (a) 2Py3 c. (b) 5PL3y486EI T.
 9.53 (a) 11.54 kN c. (b) 4.18 mm T.
 9.54 (a) 41.3 kN c. (b) 0.705 mm T.
 9.56 (a) 7.38 kips c. (b) 0.0526 in. T.
 9.57 (a) 1.280wa c; 1.333wa2l. (b) 0.907 wa4yEI T.
 9.58 (a) 20Py27 c; 4PLy27l. (b) 5PL3y1296 EI T.
 9.59 5.80 mm T at x 5 0.991 m.
 9.60 0.1520 in. T at x 5 26.4 in.
 9.61 0.281 in. T at x 5 8.40 ft.
 9.62 3.07 mm T at x 5 0.942 m.
 9.65 wL3y48EI a; wL4y384EI c.
 9.66 PL2y24 EI c; PL3y48 EI.
 9.67 3PL2y4 EI a; 13 PL3y24 EI T.
 9.68 Pa (2L 2 a)y2 EI c; Pa (3L2 2 3aL 1 a2)y6 EI c.
 9.71 (a) wL4y128 EI. (b) wL3y72 EI.
 9.72 (a) PL3y486 EI. (b) PL2y81 EI c.
 9.73 6.32 3 1023 rad c; 5.55 mm T.
 9.75 7.91 3 1023 rad a; 0.340 in. T.
 9.76 6.98 3 1023 rad a; 0.1571 in. T.
 9.77 (a) 0.601 3 1023 rad c. (b) 3.67 mm T.
 9.79 (a) 4Py3 c; PLy3 l. (b) 2Py3 c.
 9.80 (a) 41 wLy128 c. (b) 23 wLy128 c; 7wL2y128 i.

 8.23 57.7 mm.
 8.24 54.3 mm.
 8.27 37.0 mm.
 8.28 43.9 mm.
 8.29 1.822 in.
 8.30 1.792 in.
 8.31 (a) 11.06 ksi; 0. (b) 20.537 ksi; 1.610 ksi. (c) 212.13 ksi; 0.
 8.32 (a) 212.34 ksi; 0. (b) 21.073 ksi; 0.805 ksi. (c) 10.20 ksi; 0.
 8.35 (a) 237.9 MPa; 14.06 MPa. (b) 2131.6 MPa; 0.
 8.36 (a) 232.5 MPa; 14.06 MPa. (b) 2126.2 MPa; 0.
 8.37 (a) 0; 3.34 ksi. (b) 28.80 ksi; 2.93 ksi.
 8.38 (a) 20.4 MPa; 14.34 MPa. (b) 221.5 MPa; 19.98 MPa.
 8.39 (a) 4.79 ksi; 3.07 ksi. (b) 22.57 ksi; 3.07 ksi.
 8.40 214.98 MPa; 17.29 MPa.
 8.42 55.0 MPa, 255.0 MPa; 245.08, 45.08; 55.0 MPa.
 8.43 (a) 4.30 MPa, 293.4 MPa; 12.18, 102.18. (b) 48.9 MPa.
 8.46 (a) 3.47 ksi; 1.042 ksi. (b) 7.81 ksi; 0.781 ksi. (c) 12.15 ksi; 0.
 8.47 (a) 18.39 MPa; 0.391 MPa. (b) 21.3 MPa; 0.293 MPa. 

(c) 24.1 MPa; 0.
 8.48 (a) 27.98 MPa; 0.391 MPa. (b) 25.11 MPa; 0.293 MPa. 

(c) 22.25 MPa; 0.
 8.49 1506 psi, 24150 psi; 31.18, 121.18; 2830 psi.
 8.51 25.2 MPa, 20.870 MPa; 13.06 MPa.
 8.52 34.6 MPa, 210.18 MPa; 22.4 MPa.
 8.53 (a) 86.5 MPa; 0. (b) 57.0 MPa; 9.47 MPa.
 8.55 12.94 MPa, 21.328 MPa; 7.13 MPa.
 8.57 4.05 ksi, 20.010 ksi; 2.03 ksi.
 8.58 1.468 ksi, 23.90 ksi; 2.68 ksi.
 8.60 (a) 51.0 kN. (b) 39.4 kN.
 8.61 12.2 MPa, 212.2 MPa; 12.2 MPa.
 8.62 (a) 12.90 ksi, 20.32 ksi; 28.98, 81.18.; 6.61 ksi.
  (b) 6.43 ksi, 26.43 ksi; ± 45.08; 6.43 ksi.
 8.64 0.48 ksi, 244.7 ksi; 22.6 ksi.
 8.65 (a) W14 3 22. (b) 23.6 ksi, 4.89 ksi; 22.4 ksi.
 8.66 BC: 21.7 mm; CD: 33.4 mm.
 8.68 46.5 mm.
 8.69 (a) 211.07 ksi; 0. (b) 2.05 ksi; 2.15 ksi. (c) 15.17 ksi; 0.
 8.71 P (2R 1 4ry3)ypr3.
 8.74 30.1 MPa, 20.62 MPa; 28.28, 81.88; 15.37 MPa.
 8.75 (a) 216.41 ksi; 0. (b) 215.63 ksi; 0.0469 ksi.
  (c) 27.10 ksi; 1.256 ksi.
 8.76 (a) 7.50 MPa. (b) 11.25 MPa. (c) 56.38; 13.52 MPa.
 8.C3 Prob. 8.18: 37.3 mm.
 8.C5 Prob. 8.45: s 5 6.00 ksi; t 5 0.781 ksi.

CHAPTER 9
 9.1 (a) y 5 2(Px2y6EI) (3L 2 x ). (b) PL3y3EI T.
  (c) PL2y2EI c.
 9.2 (a) y 5 (M0y2EI) (L 2 x)2. (b) M0L2y2EI c.
  (c) M0 LyEI c.
 9.3 (a) y 5 2(wy24EI) (x4 2 4 L3x 1 3L4). (b) wL4y8EI T.
  (c) wL3y6EI a .
 9.4 (a) y 5 2(w0y120EIL) (x5 2 5L4x). (b) w0L4y30 EI T.
  (c) w0L3y24 EI a .
 9.5 (a) y 5 (wy72 EI) (3x4 2 16ax3). (b) 10 wa4y9 EI T.
  (c) 4 wa3y3EI c.
 9.7 (a) y 5 (w0yEIL) (L2x3y48 2 x5y120 2 L4xy80). 
  (b) w0 L

4y256 EI T. (c) w0 L3y120 EI a .
 9.9 (a) 3.92 3 1023 rad c. (b) 0.1806 in. T.
 9.10 (a) 2.79 3 1023 rad c. (b) 1.859 mm T.
 9.11 (a) 0.00652w0L4yEI T; 0.481L. (b) 0.229 in. T.
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Answers to Problems AN-9
 9.163 0.210 in. T.
 9.165 (a) 2.55 3 1023 rad c. (b) 6.25 mm T.
 9.166 (a) 5.86 3 1023 rad a. (b) 0.0690 in. c.
 9.168 (a) 65.2 kN c; MA 5 08; MD 5 58.7 kN?m; 

MB 5 282.8 kN?m.
 9.C1 Prob. 9.74: 5.56 3 1023 rad c; 2.50 mm T.
 9.C2 a 5 6 ft: (a) 3.14 3 1023 rad c, 0.292 in. T;
  (b) 0.397 in. T at 11.27 ft to the right of A.
 9.C3 x 5 1.6 m: (a) 7.90 3 1023 rad c, 8.16 mm T;
  (b) 6.05 3 1023 rad c, 5.79 mm T;
  (c) 1.021 3 1023 rad c, 0.314 mm T.
 9.C5 (a) a 5 3 ft: 1.586 3 1023 rad c; 0.1369 in. T;
  (b) a 5 1.0 m: 0.293 3 1023 rad c, 0.479 mm T.
 9.C7 x 5 2.5 m: 5.31 mm T; x 5 5.0 m: 11.2.28 mm T.

CHAPTER 10
 10.1 kL.
 10.2 kyL.
 10.3 kLy4.
 10.4 2 kLy9.
 10.6 120.0 kips.
 10.7 ka2y2l.
 10.9 305 kN.
 10.10 8.37 lb.
 10.11 1.421.
 10.13 14.10 mm; round strut; 61.4 kN; square strut: 64.3 kN.
 10.15 70.2 kips.
 10.16 467 kN.
 10.17 335 kips.
 10.19 2.27.
 10.21 (a) 0.500. (b) 2.46.
 10.22 (a) LBC 5 4.20 ft; LCD 5 1.050 ft. (b) 4.21 kips.
 10.24 657 mm.
 10.25 (a) 0.500. (b) b 5 14.15 mm; d 5 28.3 mm.
 10.27 (a) 2.55. (b) d2 5 28.3 mm; d3 5 14.14 mm; 

d4 5 16.72 mm; d5 5 20.0 mm.
 10.28 (1) 319 kg; (2) 79.8 kg; (3) 319 kg; (4) 653 kg.
 10.29 (a) 4.32 mm. (b) 44.4 MPa.
 10.30 (a) 1.658 mm. (b) 78.9 MPa.
 10.32 (a) 0.0399 in. (b) 19.89 ksi.
 10.34 (a) 0.247 in. (b) 12.95 ksi.
 10.35 (a) 13.29 kips. (b) 15.50 ksi.
 10.36 (a) 235 kN. (b) 149.6 MPa.
 10.37 (a) 151.6 kN. (b) 109.5 MPa.
 10.39 (a) 370 kN. (b) 104.6 MPa.
 10.40 (a) 224 kN. (b) 63.3 MPa.
 10.41 58.98F.
 10.43 (a) 189.0 kN. (b) 229 kN.
 10.44 (a) 147.0 kN. (b) 174.0 kN.
 10.45 (a) 49.6 kips. (b) 0.412.
 10.47 1.302 m.
 10.49 (a) 26.8 ft. (b) 8.40 ft.
 10.50 (a) 4.54 m. (b) 2.41 m.
 10.51 W 200 3 26.6.
 10.53 2.125 in.
 10.54 2.625 in.
 10.56 3.09.
 10.57 (a) 220 kN. (b) 841 kN.
 10.58 (a) 86.6 kips. (b) 88.1 kips.
 10.59 414 kN.
 10.60 35.9 kN.

 9.82 RA 5 2M0yL c; RB 5 3M0yL T; RC 5 MCyL c.
 9.84 wLy2 c, wL2y2 i.
 9.85 (a) 5.94 mm T. (b) 6.75 mm T.
 9.86 yB 5 0.210 in. T; yc 5 0.1709 in. T.
 9.87 (a) 5.06 3 1023 rad c. (b) 0.0477 in. T.
 9.88 121.5 Nym.
 9.90 5.63 kN.
 9.91 (a) 0.00937 mm T. (b) 229 N c.
 9.93 0.278 in. T.
 9.94 9.31 mm T.
 9.95 (a) M0LyEI c. (b) M0L2y2EI c.
 9.96 (a) PL2y2EI a. (b) PL3y3 EI T.
 9.97 (a) wL3y6EI a. (b) wL4y8EI T.
 9.98 (a) w0L3y24EI a. (b) w0L4y30 EI T.
 9.101 (a) 4.24 3 1023 rad c. (b) 0.0698 in. T.
 9.102 (a) 5.20 3 1023 rad a. (b) 10.85 mm T.
 9.103 (a) 5.84 3 1023 rad c. (b) 0.300 in. T.
 9.104 (a) 7.15 3 1023 rad a. (b) 17.67 mm T.
 9.105 (a) wL3y16EI a. (b) 47wL4y1152 EI T.
 9.107 (a) 3.43 3 1023 rad a. (b) 6.66 mm T.
 9.109 (a) PL2y16EI c. (b) PL3y48EI T.
 9.110 (a) Pa(L 2 a)y2EI c. (b) Pa (3L2 2 4a2)y24EI T.
 9.111 (a) PL2y32 EI c. (b) PL3y128EI T.
 9.112 (a) wa2 (3L 2 2a)y12EI c. (b) wa2 (3L2 2 2a2y48EI) T.
 9.113 (a) M0 (L 2 2a)y2EI c. (b) M0 (L2 2 4a2)y8EI T.
 9.115 (a) 5Pa2y8EI c. (b) 3Pa3y4EI T.
 9.118 (a) 4.71 3 1023 rad c. (b) 5.84 mm T.
 9.119 (a) 4.50 3 1023 rad c. (b) 8.26 mm T.
 9.120 (a) 5.21 3 1023 rad c. (b) 21.2 mm T.
 9.122 3.84 kNym.
 9.123 0.211L.
 9.124 0.223L.
 9.125 (a) 4PL3y243EI c. (b) 14 PL2y81 EI a.
 9.126 (a) 5PL3y768EI T. (b) 3PL2y128 EI c.
 9.128 (a) 5w0L4y768 EI T. (b) 7w0 L3y360 EI c.
 9.129 (a) 8.74 3 1023 rad c. (b) 15.10 mm T.
 9.130 (a) 7.48 3 1023 rad c. (b) 5.35 mm T.
 9.132 (a) 5.31 3 1023 rad c. (b) 0.204 in. T.
 9.133 (a) M0 (L 1 3a)y3EI a. (b) M0a (2L 1 3a)y6 EI T.
 9.135 (a) 5.33 3 1023 rad a. (b) 0.01421 in. T.
 9.136 (a) 3.61 3 1023 rad c. (b) 0.960 mm c.
 9.137 (a) 2.34 3 1023 rad c. (b) 0.1763 in. T.
 9.139 (a) 9wL3y256 EI c. (b) 7wL3y256 EI a.
  (c) 5wL4y512EI T.
 9.140 (a) 17PL3y972 EI T. (b) 19PL3y972 EI T.
 9.142 0.00652 w0L4yEI at x 5 0.519L.
 9.144 0.212 in. at x 5 5.15 ft.
 9.145 0.1049 in.
 9.146 1.841 mm.
 9.147 5Py16 c.
 9.148 9M0y8L.
 9.150 7wLy128 c.
 9.152 RA 5 3Py32 T; RB 5 13Py32 c; RC 5 11Py16 c.
 9.153 (a) 6.87 mm c. (b) 46.3 kN c.
 9.154 10.18 kips c; MA 5 287.9 kip?ft; MD 5 46.3 kip?ft; MB 5 0.
 9.155 48 EIy7L3.
 9.156 144 EIyL3.
 9.157 (a) y 5 (w0yEIL) (L3x2y6 2 Lx4y12 1 x5y120).
  (b) 11w0L4y120 EI T. (c) w0L3y8EI c.
 9.158 (a) 0.0642 M0L2yEI a1 x 5 0.423 L. (b) 45.3 kN?m.
 9.160 RA 5 RB 5 Py2 c, MA 5 PLy8 l; MB 5 PLy8 i; MC 5 PLy8.
 9.161 (a) 2.49 3 1023 rad c. (b) 1.078 mm T.
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AN-10 Answers to Problems

 11.3 (a) 177.9 kJym3. (b) 712 kJym3. (c) 160.3 kJym3.
 11.5 (a) 58.0 in ? lbyin3. (b) 20.0 in ? kipyin3.
 11.6 (a) 1296 kJym3. (b) 90.0 MJym3.
 11.7 (a) 1.750 MJym3. (b) 71.2 MJym3.
 11.9 (a) 176.2 in ? lb. 

(b) uAB 5 11.72 in ? lbyin3; uBC 5 5.65 in ? lbyin3.
 11.10 (a) 12.18 J. (b) uAB 5 15.83kJym3; uBC 5 38.6 kJym3.
 11.11 (a) 168.8 in ? lb. 

(b) uCD 5 0.882 in ? lbyin3; uEF 5 5.65 in ? lbyin3.
 11.12 0.846 J.
 11.15 (a) 3.28. (b) 4.25.
 11.17 102.7 in ? lb.
 11.18 1.398 P2lyEA.
 11.20 2.37 P2lyEA.
 11.21 0.233 P2lyEA.
 11.23 6.68 kip ? in.
 11.24 W2L5y40 EI.
 11.25 (P2a2y6 EI) (a 1 L).
 11.27 (M0

2y6 EIL2) (a3 1 b3).
 11.28 89.5 in ? lb.
 11.30 1048 J.
 11.31 670 J.
 11.33 12.70 J.
 11.37 (a) No yield. (b) Yield occurs.
 11.39 (a) 2.33. (b) 2.02.
 11.40 (2M 2

0 L y Ebd3) (1 1 3Ed2y10GL2).
 11.41 (Q2y4pGL) ln (R2 y R1).
 11.42 24.7 mm.
 11.43 25.5 ftysec.
 11.44 9.12 lb.
 11.45 841 mm.
 11.48 11.09 ftys.
 11.50 (a) 7.54 kN. (b) 41.3 MPa. (c) 3.18 mm.
 11.51 (a) 9.60 kN. (b) 32.4 MPa. (c) 2.50 mm.
 11.52 (a) 15.63 mm. (b) 83.8 N?m. (c) 208 MPa.
 11.53 (a) 7.11 mm. (b) 140.1 MPa.
 11.54 (a) 0.903 in. (b) 511 lb?in. (c) 21.3 ksi.
 11.56 (b) 7.12.
 11.57 (b) 0.152.
 11.58 Pa2b2y3EI T.
 11.59 Pa2 (a 1 L)y3EI .
 11.61 M0 (L 1 3a)y3EI c.
 11.62 3PL3y16 EI T.
 11.63 3Pa3y4 EI T.
 11.65 M0Ly16 EI c.
 11.66 59.8 mm T.
 11.67 32.4 in.
 11.68 3.128.
 11.72 2.38PlyEA S.
 11.73 0.650 in. T.
 11.75 0.366 in. T.
 11.76 1.111 mm T.
 11.77 (a) and (b) P2L3y6 EI 1 PM0L2y2EI 1 M0

2Ly2 EI.
 11.78 (a) and (b) P2L3y48 EI 1 M0PL2y8EI 1 M0

2Ly2 EI.
 11.80 (a) and (b) 5 M0

2Ly4 EI.
 11.82 (a) and (b) M0

2Ly2 EI.
 11.83 0.0443wL4yEI T.
 11.85 wL4y768 EI c.
 11.86 7wL3y48 EI a.
 11.88 wL3y384 EI a.
 11.89 (Paby6EIL2) (3La 1 2a2 1 2b2) c.
 11.90 M0Ly6 EI c.

 10.62 (a) 26.6 kN. (b) 33.0 kN.
 10.64 76.8 kips.
 10.65 76.3 kips.
 10.66 1596 kN.
 10.68 173.5 kips.
 10.69 (a) 66.3 kN. (b) 243 kN.
 10.71 123.1 mm.
 10.72 6.53 in.
 10.74 1.615 in.
 10.75 22.3 mm.
 10.77 W200 3 46.1.
 10.78 W14 3 82.
 10.79 W10 3 54.
 10.80 (a) 30.1 mm. (b) 33.5 mm.
 10.83 L89 3 64 3 12.7.
 10.84 56.1 kips.
 10.86 (a) PD 5 433 kN; PL 5 321 kN. 

(b) PD 5 896 kN; PL 5 664 kN.
 10.87 W310 3 74.
 10.88 5y16 in.
 10.89 76.7 kN.
 10.91 (a) 18.26 kips. (b) 14.20 kips.
 10.92 (a) 21.1 kips. (b) 18.01 kips.
 10.93 (a) 329 kN. (b) 280 kN.
 10.95 (a) 0.698 in. (b) 2.11 in.
 10.97 16.44 ft.
 10.99 5.48 m.
 10.100 4.81 m.
 10.101 1.021 m.
 10.102 1.175 m.
 10.103 83.4 mm.
 10.104 87.2 mm.
 10.105 12.00 mm.
 10.106 15.00 mm.
 10.107 140.0 mm.
 10.109 1.882 in.
 10.110 1.735 in.
 10.111 t 5 ¼ in.
 10.113 W14 3 145.
 10.114 W14 3 68.
 10.116 W250 3 58.
 10.117 (a) 647 lb. (b) 0.651 in. (c) 58.8%.
 10.118 k . 4.91 kNym.
 10.120 (a) 47.28. (b) 1.582 kips.
 10.121 2.44.
 10.123 DT 5 p2b2y12L2 a.
 10.125 107.7 kN.
 10.126 W250 3 67.
 10.128 (a) 0.0987 in. (b) 0.787 in.
 10.C1 r 5 8 mm: 9.07 kN. r 5 16 mm: 70.4 kN.
 10.C2 b 5 1.0 in.: 3.85 kips. b 5 1.375 in.: 6.07 kips.
 10.C3 h 5 5.0 m: 9819 kg. h 5 7.0 m: 13,255 kg.
 10.C4 P 5 35 kips: (a) 0.086 in.; (b) 4.69 ksi.
  P 5 55 kips: (a) 0.146 in.; (b) 7.65 ksi.
 10.C6 Prob. 10.113: Pall 5 282.6 kips.
  Prob. 10.114: Pall 5 139.9 kips.

CHAPTER 11
 11.1 (a) 43.1 in ? lbyin3. (b) 72.8 in ? lbyin3.
  (c) 172.4 in ? lbyin3.
 11.2 (a) 21.6 kJym3. (b) 336 kJym3, (c) 163.0 kJym3.
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Answers to Problems AN-11

 11.119 0.652P.
 11.121 2Py3.
 11.123 136.6 J.
 11.124 1.767 in ? kip.
 11.126 4.76 kg.
 11.129 2.558.
 11.130 11.57 mm T.
 11.134 0.807 in . T.
 11.C2 (a) a 5 15 in.: sD 5 17.19 ksi, sC 5 21.0 ksi;
   a 545 in.: sD 5 36.2 ksi, sC 5 14.74 ksi.
  (b) a 5 18.34 in., s 5 20.67 ksi.
 11.C3 (a) L 5 200 mm: h 5 2.27 mm;
   L 5 800 mm: h 5 1.076 mm.
  (b) L 5 440 mm: h 5 3.23 mm.
 11.C4 a 5 300 mm: 1.795 mm, 179.46 MPa;
  a 5 600 mm: 2.87 mm, 179.59 MPa.
 11.C5 a 5 2 m: (a) 30.0 J; (b) 7.57 mm, 60.8 J.
  a 5 4 m: (a) 21.9 J; (b) 8.87 mm, 83.4 J.
 11.C6 a 5 20 in: (a) 13.26 in.; (b) 99.5 kip ? in.; (c) 803 lb.
  a 5 50 in: (a) 9.46 in.; (b) 93.7 kip ? in.; (c) 996 lb.

 11.91 0.329 in. T.
 11.93 5.12 mm T.
 11.94 7.25 mm T.
 11.95 7.07 3 1023 rad c.
 11.96 3.80 mm T.
 11.97 2.07 3 1023 rad a.
 11.99 xC

 5 0, yC 5 2.80 PLyEA T.
 11.101 0.1613 in. T.
 11.102 0.01034 in. d .
 11.103 0.1459 mm T.
 11.105 (a) PL3y6EI T. (b) 0.1443 PL3yEI.
 11.106 pPR3y2 EI T.
 11.107 (a) PR3y2 EI S. (b) pPR3y4 EI T.
 11.109 5PL3y6EI.
 11.111 5Py16 c.
 11.112 3M0y2L c.
 11.113 3M0

 b(L 1 a) y2L3 c.
 11.114 7wLy128 c.
 11.117 Py(1 1 2 cos3 f).
 11.118 7Py8.
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I-1

A
Allowable (working) load, 32–33
Allowable stress, 32–33
Allowable stress design, 723–728, 739, 751
Aluminum column design, 726
American Association of Safety and Highway 

Officials, 34
American Concrete Institute, 34
American Forest and Paper Association, 34, 

726
American Institute of Steel Construction 

(AISC), 34, 723–724, 728
American standard beam (S-beam), 424
Angle of twist

elastic range and, 151, 167–170
circular shafts, 167–170, 224
non-circular shafts, 210
torque (T) and, 151, 167–170
tubes (thin-walled hollow shafts), 214

Anisotropic materials, 64, 134
Anticlastic curvature, 249, 335
Area (A)

centroid of, A2–A7
composite, A4–A7, A11–A12
moments of, A2–A12
radius of gyration, A8–A10

Average shearing stress, 11, 45, 422, 468
Average value of stress, 7, 44
Axial loading

eccentric, 238–239, 291–295, 307–312, 
337–338

member stresses from, 7–10
multiaxial, 95–97, 137
oblique plane stresses from, 27–28
plane of symmetry with, 291–295, 337
pure bending and, 238–239, 291–295, 

307–312, 337–338
strain energy under, 764, 824
stress and strain under, 55–145
stress components under, 31

Axial stresses, 7–10
Axisymmetry of circular shafts, 151–152

B
Bauschinger effect, 66
Beam analysis and design, 344–415

bending and, 344–415
elastic section modulus (S) for, 347–348, 

371–372, 396, 408, 410
load and resistant factor design (LRFD), 

373
nonprismatic beams, 348, 396–401, 410
prismatic beams, 371–376, 408
relationships between load, shear, and 

bending moment, 260–368, 408
shear and bending moment diagrams for, 

348–354, 407–408

shear and stress distributions, 347–348, 407
sign convention for, 349
singularity functions for shear and 

bending moment, 348, 383–391, 409
step functions, 385, 409
transverse loadings, 346–348, 407

Beam of constant strength, 396, 410
Beams. See also Beam analysis and design; 

Cantilever beams
boundary conditions, 604, 679
cantilever, 604–605
deflection of, 598–689
longitudinal shear on arbitrary elements, 

437–439, 468
normal stress in, 558–561, 591
overhang, 604
plastic deformations, 441–442, 469
principal stresses in, 559–561, 591
shearing stress in, 558–561, 591
shearing stress distribution in, 347–348, 

407, 422–431, 468
simply supported, 604, 606
singularity functions for, 348, 383–391, 409, 

623–630, 681–682
slopes and deflections of, A29
span, 346
statically determinate, 346–347, 407
statically indeterminate, 347, 600, 611–617, 

679–681
thin-walled members, 439–466, 469
unsymmetric loading of, 454–462, 469

Bearing stresses, connections with, 12, 45
Bearing surface, 12, 45
Bending

beam analysis and design for, 344–415
couple moment (M), 240–241
modulus of rupture (R), 274
prismatic members, 237–343
pure, 237–343
strain energy due to, 766, 824

Bending moment diagrams
beam analysis using, 348–354, 407–408
by parts for moment-area theorems, 

654–659, 684
sign convention for, 349

Bending moments
couples, 240–241
pure bending in symmetric members, 

240–241, 334
relationships with load and shear 260–368, 

408
singularity functions for, 348, 383–391, 409

Boundary conditions of beams, 604, 679
Breaking strength, 60–61
Bridges, design specifications for, 34
Brittle materials

compression test for, 62
concrete, 62, 134
cracks, 511
maximum-normal-stress criterion, 506

Mohr’s criterion for, 510–511, 549
rupture of, 60–62
stress and strain transformations, 509–511, 

549
stress-strain diagram determination of, 

60–62, 133
tensile test for, 60–61
under plane stress, 509–511, 549

Buckling, 692–694
Bulk modulus (k), dilatation and, 97–99, 137

C
Cantilever beams

deflection of, 604–605, 651–653, 684
moment-area theorem for, 651–653, 684
shearing stresses in, 426–427

Castigliano’s theorem, 804–809, 826
Center of symmetry, 460
Centric load design, 722–732, 751
Centric loading, 9, 45
Centroid of the area, A2–A7
Circular shafts

angle of twist, 151, 167–170, 224
axisymmetry of, 151–152
deformations in, 151–153
modulus of rupture (R), 196, 225–226
plastic deformation in, 195–204, 225–227
residual stresses in, 199–204, 226–227
shearing strain in, 153, 223
stress concentrations in, 187–190, 225
stresses in, 150–151, 153–161, 223–224
torsion in, 148–204, 223–227

Coefficient of thermal expansion, 82, 136
Columns, 690–756

allowable stress design, 723–728, 739, 751
aluminum, 726
buckling, 692–694
centric load design, 722–732, 751
critical load, 692–694, 750
eccentric load design, 739–745, 751
eccentric loading, 709–714, 751
effective length, 698–700, 750
Euler’s formula for, 694–702, 750
fixed ends, 698–700
interaction method, 740–741, 751
load and resistance factor design (LRFD), 

728
pin-ended, 694–697
secant formula for, 711–712, 751
slenderness ratio, 696, 750
stability of structures and, 692–702
structural steel, 723–724
wood, 726

Combined loads, principal stresses under, 
575–583, 592

Composite area (A)
centroid of, A4–A7
moment of inertia and, A11–A12

Index
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I-2 Index

Composite materials, 259–262, 335
moduli of elasticity and, 259–260, 335
pure bending of members of, 259–262, 335
transformed section of, 260–335

Compression test, 62
Computation error detection, 16
Concentrated loads, 8, 346
Concrete

design specifications for, 34
stress-strain diagram for, 62, 134

Connections, bearing stress in, 12
Constant strength, 348
Coulomb’s criterion, 509
Couple (bending) moments, 240–241
Cracks, 511
Critical load, 692–694, 750
Critical stress, 696
Curvature

analysis of curved members, 319–327, 338
anticlastic, 249, 335
pure bending and, 241–244, 319–327, 

334–335, 338
radius of ( r), 247, 334, 335
stresses and, 320–323, 338
transverse cross section, 248–252
transverse loading, 238–239, 334

Cylindrical pressure vessels, stresses in, 
520–522, 549

D
Deflection of beams, 598–689, 790–795, 

806–809
bending moment and, 600–601
boundary conditions and, 604, 679
Castigliano’s theorem for, 806–809
deformation under transverse loading, 

602–610, 679–680
elastic curve, equation of for, 603–606, 679
energy methods for, 790–795, 806–809
flexural rigidity (EI), 603–604, 679
method of superposition for, 601,

635–643
moment-area theorems for, 601–602, 

649–659, 664–674, 682–684
singularity functions for, 623–630, 681–682
slope and, 607–608, 623–630, 681–682, A29
statically determinate, 635–636
statically indeterminate, 600, 611–617, 

636–637, 679–681
work-energy method for, 790–795

Deformation (d). See also Elastic deformation; 
Plastic deformation

axial loading and, 56–58, 68–69, 102–104, 
119–122, 135, 139

bending in symmetric members, 241–244
circular shafts, 151–153, 195–204, 223, 225
deflection of beams under transverse 

loading, 602–610, 679–680
elastic behavior and, 68–69, 135
elastic range stresses and, 244–248, 334
multiaxial loadings, 95–96
per unit length, 57–58, 133
plastic behavior and, 65–67, 135
pure bending, 241–252
rectangular parallelepiped, 96
relationships of E, G, and n, 102–104, 139
relative displacement for, 69

shafts, 148–149, 151–153, 209–218, 223, 
225–227

strain energy and, 760–762, 823
transmission shafts, 148–149
torsion and, 148–149, 151–153, 209–218, 223, 

225–227
Design considerations

allowable stress and, 32–33
allowable stress design, 723–728, 739, 751
centric load design, 722–732, 751
columns, 722–745, 751
eccentric load design, 739–745, 751
factor of safety, 32–34
impact loads, 786–787, 725–726
interaction method, 740–741, 751
load and resistance factor design (LRFD), 

34, 728
power (P), 185–186, 225
specifications for, 34
stress (s) and, 31–37
transmission shafts, 185–187, 225
ultimate strength, 31–32
working (allowable) load, 32–33

Dilatation (e), 98–99, 137
Dimensionless quantities, 58
Distributed loads, 346
Double shear, 12, 45
Ductile materials

breaking strength, 60–61
maximum-distortion-energy criterion, 508
maximum-shearing-stress criterion, 

507–508
necking, 60
percent elongation, 61
percent reduction in area, 62
strain-hardening, 61
stress and strain transformations, 507–508, 

548
stress-strain diagram determination of, 

59–62, 133–134
ultimate strength, 60–61
yield, 59, 134
yield criteria, 507–508, 548
yield strength, 60–61, 134

E
Eccentric axial loading

analysis of, 307–312, 338
columns, 709–714, 751
forces of, 238–239
neutral axis, 292
plane of symmetry with, 291–295, 337
pure bending and, 238–239, 291–295, 

307–312, 337–338
secant formula for, 711–712, 751

Eccentric load design, 739–745, 751
Eccentric loading, 8–9, 44. See also Eccentric 

axial loading
Effective length, 698–700, 750
Elastic behavior, 65–67, 134

plastic behavior compared to, 65–67
stress-strain diagrams for, 65–66, 134

Elastic curve
equation of, 603–606, 679
flexural rigidity (EI), 603–604, 679
load distribution and determination of, 

609–610

Elastic deformation, 68–69, 135
Elastic flexural formulas, 245, 334
Elastic limit, 65, 134
Elastic range

angle of twist in, 167–170
internal torque and, 156
shearing stresses in, 153–160, 223–224
stresses and deformation, 244–248, 334
torsion and, 153–160, 167–170, 223–224

Elastic section modulus (S)
beam analysis and design for bending, 

347–348, 371–372, 396, 408, 410
elastic range and cross section of members, 

246, 335
nonprismatic beam design, 396, 410
prismatic beam design, 371–372, 408

Elastic strain energy, 763–769, 824
Elastic torsion formulas, 155–156, 223
Elasticity (E), modulus of, 63–65, 102–104, 

134, 139
composite material members, 259–260, 335
Hooke’s law and, 63–65, 134
pure bending and, 259–260, 335
relationships with G and n, 102–104, 139
stress and strain directional relationships, 

65, 134
Elastoplastic material

plastic deformation of, 119–122, 139
pure bending in members, 274–278, 336
torsion in circular shafts, 196–199, 226

Elementary work, 761
Endurance limit, 67–68, 135
Energy methods, 758–822

Castigliano’s theorem, 804–809, 826
deflection by, 790–795, 806–809
elastic strain energy, 763–769, 824
impact loads, 784–787, 725–726
multiple loads and, 802–804
single-loaded members, 788–790, 826
statically indeterminate structures, 

810–816
strain energy, 760–775, 823–725
strain-energy density, 762–763, 823
work and, 788–795, 802–804, 826
work-energy method, 790–795

Engineering materials, properties of,
A13–A16

Engineering stress and engineering strain, 63
Equilibrium equations for problem solutions, 

16, 46
Euler’s formula, 694–702, 750

fixed-end columns, 698–700
pin-ended columns, 694–697

F
Factor of safety, 32–34, 46
Failure

brittle materials under plane stress, 
509–511, 549

cracks, 511
design consideration of, 33
ductile materials, 507–508, 548
fracture criteria, 509–511, 549
stress and strain transformations, 507–513, 

548–549
theories of, 507–513, 548–549
yield criteria, 507–508, 548
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I-3Index

Fatigue, 67–68, 135
endurance limit, 67–68, 135
limit of, 67
repeated loadings and, 67–68

Fiber-reinforced composite materials, 64–65, 
104–108, 134, 139

Hooke’s law for, 64–65, 134
lamina, 64
laminate, 64–65, 105
matrix, 64
multiaxial loading, 105
stress-strain relationships for, 104–108, 139

Fillets, stress concentrations in, 117–118, 122
Fixed-end columns, 698–700
Flexural rigidity (EI), 603–604, 679
Force

internal, 10–12
shearing stresses and, 10–12
transverse, 44–45

Fracture criteria for brittle materials, 509–511
Free-body diagrams, 4–6, 16, 45

problem solutions from, 16, 45
two-force member stress analysis, 4–6

Fundamentals of Engineering Examination, A30

G
Gauge length, 58–59
General loading conditions, 28–31

H
Hertz (Hz), 185
Hollow shafts (tubes)

circular, 154–155, 158–160, 223–224
thin-walled non-circular, 211–216, 227

Homogeneous materials, 94
Hooke’s law

axial loadings, 63–65, 134
fiber-reinforced composite materials and, 

64–65
modulus of elasticity (E), 63–65, 134
modulus of rigidity (G), 100–101, 138
multiaxial loadings, 95–97, 137
proportional limit for stress, 64, 134
shearing stress and strain, 100–101, 138–139

Horsepower (hp), 185, 225

I
Impact loads, 725–726, 784–787

design for, 725–726, 786–787
energy from, 725, 784–785

In-plane shearing stress, 484, 547
Inertia, moments of, A8–A12
Interaction method, 740–741, 751
Internal forces, 10–12
Internal torque, 156
Isotropic materials, 64, 94, 134

L
Lamina, 64
Laminate, 64–65, 105
Lateral strain, 94–95, 137

Line of action, 8
Load and resistance factor design (LRFD), 

34, 46, 373, 728
Load-deformation curve, 57
Loadings. See also Torsion

axial, 7–10, 27–28, 31, 55–145
beam deflection and, 651–653, 664–667, 

684–685
bending and, 238–239, 346–348
centric, 9, 44
columns, 692–694, 709–714, 728,

750–751
combined, 575–583, 592
concentrated, 8, 346
critical, 692–694, 750
design considerations of, 32–34
distributed, 346
eccentric, 8–9, 44, 709–714, 751
factor of safety, 32–34, 46
general conditions, 28–31, 46
impact, 784–787, 725–726
line of action for, 8
moment-area theorems and, 651–653, 

664–667, 684–685
multiaxial, 95–97, 137
plane stress and, 556–597
relationships with shear and bending 

moment, 260–368, 408
repeated, 67–68
reverse, 66–67
singularity functions for equivalent 

open-ended, 385–386, 410
singularity in, 383
stress and strain under, 55–145
stress components under, 29–31
stresses from, 7–10, 27–28, 44
symmetric, 651–653, 684
transverse, 238–239, 346–348
ultimate, 728
uniformly distributed, 346
unsymmetric, 454–462, 469, 664–674, 

684–685
working (allowable), 32–33

Longitudinal shear on arbitrary beam 
elements, 437–439, 468

M
Macaulay brackets, 384–385, 387
Macroscopic cracks, 511
Matrix, 64
Maximum absolute strain, 244, 334
Maximum absolute stress, 244, 334
Maximum deflection, 666–667, 685
Maximum-distortion-energy

criterion, 508
Maximum elastic moment, 275–276, 336
Maximum-normal-stress criterion, 506
Maximum-shearing-stress criterion,

507–508
Members

axial stress in, 7–10
bearing stress in, 12
shearing stress in, 10–12
two-force diagrams for, 4–6
stability of, 9

Membrane analogy, 210–211
Microscopic cracks, 511

Modulus
bulk (k), 97–99, 137
elastic section (S), 246, 335, 347–348, 

371–372, 396, 408, 410
elasticity (E), 63–65, 102–104, 134, 259–260, 

335
relationships of E, G, and n, 102–104, 139
resilience (sY), 763, 824
rigidity (G), 100–101, 102–104, 138–139
rupture (R), 196, 225–226, 274
toughness (eR), 762–763, 823
Young’s (E), 63

Mohr’s circle
plane strain, 532–534, 550
plane stress, 492–502, 547

Mohr’s criterion for brittle materials, 510–511, 
549

Moment-area theorems
bending-moment diagrams by parts, 

654–659, 684
cantilever beams, 651–653, 684
deflection and, 601–602, 649–659, 664–674, 

682–685
first, 601, 649–650, 682
general principles of, 649–651, 664
maximum deflection and, 666–667, 685
second, 601, 650–651, 683
statically indeterminate beams, 668–674, 

685
symmetric loadings and, 651–653, 684
unsymmetric loadings, 664–674, 684–685

Moment of inertia, A8–A12
Moments of areas, A2–A12

centroid of the area, A2–A7 
composite area, A4–A7, A11–A12
first, A2–A10
moment of inertia of, A11–A12
moment of inertia, A8–A12
parallel-axis theorem, A10–A11
radius of gyration, A8–A10
second, A11–A12

Multiaxial loadings, 95–97, 105, 137
fiber-reinforced composite materials, 105
Hooke’s law for, 95–97, 137
principle of superposition for, 96
rectangular parallelepiped deformation 

from, 96
Multiple loads, work and energy under, 

802–804

N
Neutral axis, 243, 334
Neutral surface, 242–243, 334
Non-circular shafts, 209–216, 227

angle of twist, 210
membrane analogy for, 210–211
thin-walled (tubes), 211–216, 227
torsion in, 209–216, 227
uniform rectangular cross sections, 210, 

227
Non-rectangular cross sections, plastic 

deformation in, 277
Nonprismatic beams 

analysis and design for bending, 348, 
396–401, 410

elastic section modulus (S) for, 396, 410
Normal strain, axial loading and, 57–58, 133
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Normal stress
beams, 558–561, 591
determination of, 7, 44
maximum criterion for brittle

materials, 506
strain energy and, 763–767, 824

Numerical accuracy, 16

O
Oblique parallelepiped deformation,

99–100
Oblique planes, stresses on from axial 

loading, 27–28, 46
Orthotropic materials, 105
Overhanging beam, 604

P
Parabolic beam, 424–425
Parallel-axis theorem, A10–A11
Parallelepipeds

oblique, 99–100
rectangular, 96

Percent elongation, 61
Percent reduction in area, 62
Permanent set, 65, 134. See also Plastic 

deformation
Pin-ended columns, 694–697
Plane strain, 529–537, 549–550

Mohr’s circle for, 532–534, 550
three-dimensional analysis of, 534–537
transformation equations, 529–531, 549
transformation of, 529–534, 546–550

Plane stress, 478–479, 480–506, 546
Mohr’s circle for, 492–502, 547
principal stresses, 482–487, 546
state of, 478–479
three-dimensional analysis, 504–506
transformation equations for,

480–482, 546
transformation of, 480–487, 546

Plastic behavior, 65–67, 134
elastic behavior compared to, 65–67
permanent set, 65, 134
stress-strain diagrams for, 65–66, 134
reverse loadings and, 66–67

Plastic deformation
Bauschinger effect, 66
beams, 441–440, 469
circular shafts, 195–204, 225–227
creep, 65
elastic behavior and, 65–67, 134
elastic limit, 65–66, 134
elastoplastic material, 119–122, 139
elastoplastic members, 274–278, 336
members with single plane of symmetry, 

278–279
modulus of rupture (R), 196, 225–226, 274
non-rectangular cross sections, 277
permanent deformation and, 200–201, 

226–227
permanent set, 65–67, 134
pure bending and, 273–285, 336
rectangular cross sections, 274–277
residual stresses, 122–126, 139, 199–204, 

226–227, 279, 336

reverse loadings and, 66–67
single-plane symmetric members,

278–279
slip, 65
stress and strain under axial loads, 65–67, 

119–122, 134, 139
stress concentrations and, 122
thin-walled members, 440–441, 469
torsion and, 195–204, 225–227

Plastic hinge, 441
Plastic moment, 275–276, 336
Polar moment of inertia, A8
Poisson’s ratio (n), 94–95, 102–104, 137

lateral strain and, 94–95, 137
relationships with E and G, 102–104, 139

Power (P) transmitted by shafts, 185–186, 225
Pressure vessels, 520–524, 549

cylindrical, 520–522, 549
spherical, 522, 549
stresses in, 520–524, 549
thin-walled, 520–524, 549

Principal planes of stress, 482–487, 546
Principal strains, 523
Principal stresses, 483, 546, 556–597

beams, 559–561, 591
combined loads and, 575–583, 592
loading and, 556–597
plane stress transformation and, 483, 546
transmission shaft design for,

562–569, 592
Prismatic beams, design for bending, 

371–376, 408
Prismatic members, pure bending of,

237–343
Problems

computation error detection, 16
equilibrium equations for, 16, 46
free-body diagrams for, 16, 45
numerical accuracy of, 16
Saint-Venant’s principle for, 115–117, 139
SMART methodology for, 15–16
solution, method of, 15–19, 45–46
statically equivalent, 115–117
statically indeterminate, 78–81, 135–136
superposition method for, 79–81
temperature changes and, 82–88, 

136–137
Properties of materials, A13–A28
Proportional limit for stress, 64, 134
Pure bending, 237–343

composite members, 259–262, 335
curved members, 319–327, 338
deformations from, 241–252
eccentric axial loading, 238–239, 291–295, 

307–312, 337–338
elastic range stresses and deformation, 

244–248, 334
elastoplastic members, 274–278, 336
members with single plane of symmetry, 

278–279
plastic deformations, 273–285, 336
prismatic members, 237–343
residual stresses from, 279–280
stress concentrations from, 263–267, 336
symmetric members in, 240–244, 334
transverse cross sections, 248–252
transverse loading, 238–239, 334
unsymmetric bending analysis, 

302–307, 337

R
Radius of curvature ( r), 247, 334
Radius of gyration, A8–A10
Rectangular cross sections, plastic 

deformation in, 274–277
Rectangular parallelepiped deformation, 96
Redundant reactions, 810
Relative displacement, 69,
Repeated loadings, fatigue from, 67–68
Residual stresses

circular shafts, 199–204, 226–227
permanent deformation and, 200–201, 

226–227
plastic deformation and, 122–126, 136, 

199–204, 226–227, 279
pure bending and, 279, 336
temperature change and, 124
torsion and, 199–204, 226–227

Resilience (uY), modulus of, 763, 824
Resistance factor (f), 728
Reverse loadings, plastic behavior and, 66–67
Rigidity (G), modulus of, 100–101, 102–104, 

138–139
Hooke’s law and, 100–101, 138
relationships with E and n, 102–104, 139
shearing strain and, 100–101, 138

Rolled steel shapes, properties of, A17–A28
Rotation, speed of, 185
Rupture (R), modulus of, 196, 225–226, 274
Rupture of brittle materials, 60–62

S
Saint Venant’s criterion, 509
Saint Venant’s principle, 115–117, 139
Secant formula, 711–712, 751
Section modulus (S), see Elastic section 

modulus
Shafts, 147–234

circular, 148–204, 223–227
deformation of, 148–149, 151–153, 209–218, 

223, 225–227
hollow (tubes), 154–155, 158–160, 223–224
non-circular, 209–216, 227
plastic deformation of, 195–204, 225–227
residual stresses in, 199–204, 226–227
statically indeterminate, 170–176, 225
stresses in, 150–151, 153–161, 209–218, 

223–224
thin-walled hollow (tubes), 211–216, 227
torsion in, 147–234
transmission, 148–149, 185–187, 225

Shear
double, 12, 45
relationships with loads and bending 

moments, 260–368, 408
single, 11, 45
ultimate strength in, 32

Shear center, 419, 455, 469
Shear diagrams, 348–354, 407–408

beam analysis for bending, 348–354, 407–408
sign convention for, 349

Shear flow, 419, 421, 440–441, 468
Shear moments, singularity functions for, 

348, 383–391, 409
Shearing strain

axial loading and, 99–102, 138
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circular shafts, 153, 223
Hooke’s law for, 100–101, 138
modulus of rigidity (G), 100–101, 138
oblique parallelepiped deformation, 99–100

Shearing stresses
average, 11, 45, 422, 468
beam design for, 417–475
beams, distribution of in, 347–348, 407, 

422–431, 468
bending and, 347–348, 407
circular shafts, 153–160, 223
components of, 30–31
elastic range with, 153–160
forces exerted on transverse prismatic 

beams, 418–419, 467
horizontal, 419–426, 467
in-plane, 484, 547
internal force and, 10–12
longitudinal, 437–439, 468
maximum criterion for ductile materials, 

507–508
plastic deformation and, 441–446
points of application, 44
strain energy due to, 767–769, 824
thin-walled member design for, 439–466, 

469
unsymmetric loading and, 454–462, 469
vertical, 418, 467

Simple structures, analysis and design of, 12–15
Simply supported beam, 604, 606
Single-loaded members, work of, 788–790, 826
Single shear, 11, 45
Singularity functions

application to computer programming, 388
beams, 348, 383–391, 409, 623–630, 681–682
bending analysis and design using, 348, 

383–391, 409
equivalent open-ended loadings for, 

385–386, 410
Macaulay brackets, 384–385, 387
shear and bending moments using, 348, 

383–391, 409
slope and deflection using, 623–630, 

681–682
Singularity in beam loading, 383
Slenderness ratio, 696, 698, 750
Slope and deflection

beams, 607–608, 623–630, 681–682, A29
relationship of, 607–608
singularity functions for, 623–630, 681–682

SMART methodology, 15–16
Span, 346
Speed of rotation, 185
Spherical pressure vessels, stresses in, 522, 549
Stability

critical load, 692–694, 750
members, 9
structures, 692–702

Stable system, 692–693
Statically determinate members

beams, 346–347, 407, 635–636, 682
deflection and, 635–636, 682
method of superposition and, 635–636, 682

Statically equivalent problems, 115–117
Saint-Venant’s principle, 115–117
uniform distribution of, 116–117

Statically indeterminate members
beams, 347, 600–601, 611–617, 636–637, 

668–674, 679–682

deflection and, 611–617, 636–637, 668–674, 
697, 680–682

first degree, 381, 612
forces, 56
method of superposition and, 636–637, 682
moment-area theorems for, 668–674, 685
problems, 78–81, 135–136
second degree, 381, 612
shafts, 170–176, 225
stress distribution, 8, 56

Statically indeterminate structures, 810–816
Statics

free-body diagrams, 4–6
review of methods, 4–6

Steel, design specifications for, 34
Step functions, 385, 409
Strain (e). See also Stress and strain 

transformations; Stress and strain 
under axial loading

bending, 244, 334
circular shafts, 153, 223
engineering, 63
lateral, 94–95, 137
maximum absolute, 244, 334
measurement of, 538–541
normal, 57–58, 133
plane, 529–537, 549–550
Poisson’s ratio (n), 94–95, 102–104, 137
shearing, 99–102, 138, 153, 223
thermal, 82, 136
true, 63

Strain energy, 760–775, 823–725
axial loading and, 764, 824
bending and, 766, 824
deformation and, 760–762, 823
elastic, 763–769, 824
general state of stress and, 770–775, 825
modulus of resilience and, 763, 824
modulus of toughness and, 762–763, 823
normal stresses and, 763–767, 824
shearing stresses and, 767–769, 824
torsion and, 767–768, 825
transverse loading and, 769

Strain-energy density, 762–763, 823
Strain-hardening, 61
Strain gages, 480, 538, 547
Strain rosette, 480, 538, 547
Stress. See also Stress and strain 

transformations; Stress and strain 
under axial loading

allowable, 32–33
applications to analysis and design of 

simple structures, 12–15
average value of, 7, 44
axial, 7–10, 31
beams, distribution of in, 347–348, 407
bearing, 12, 45
bending, 244–248, 334, 347–348, 407
circular shafts, 150–151, 153–160, 223–224
components of, 28–31
concept of, 2–53
critical, 696
curved members, 320–323, 338
defined, 7
direction of the component, 29
design considerations, 31–37
elastic range deformation and, 244–248, 334
engineering, 63
exerted on a surface, 29

factor of safety, 32–34, 46
general loading conditions, 28–31, 46
internal forces and, 10–12
load and resistance factor design (LRFD), 

34, 46
loadings and, 7–10, 27–31
maximum absolute, 244, 334
method of problem solution, 15–19, 45–46
normal, 7, 44
oblique planes under axial loading, 27–28, 

46
plane, 478–479, 480–506, 546
proportional limit, 64, 134
residual, 122–126, 139
shearing, 10–12, 30–31, 44–45, 153–160
statically indeterminate distribution of, 8
true, 63
ultimate strength, 31–32
uniaxial, 242
uniform, 44

Stress and strain transformations, 476–555
brittle materials, 509–511, 549
ductile materials, 507–508, 548
failure, theories of, 507–513, 548–549
general state of stress, 503–504, 548
in-plane shearing stress, 484, 547
measurement of strain, 538–541
Mohr’s circle for, 492–502, 547
plane strain, 529–537, 549–550
plane stress, 478–479, 480–506, 546
states of stress, 478–479
thin-walled pressure vessels, 520–524, 549
three-dimensional stress analysis, 504–506
yield criteria, 479

Stress and strain under axial loading, 55–145
bulk modulus (k), 97–99, 137
deformations from, 56–57, 68–69, 102–104, 

119–122, 135, 139
dilatation, 97–99, 137
elastic limit, 65, 134
elastic versus plastic behavior, 65–67
endurance limit, 67–68, 135
fatigue from, 67–68, 135
fiber-reinforced composite materials, 

64–65, 104–108
Hooke’s law, 63–65, 95–97, 100–101, 134
lateral strain, 94–95, 137
modulus of elasticity (E), 63–65, 102–104, 

134
modulus of rigidity (G), 100–101, 102–104, 

138–139
multiaxial loadings, 95–97, 137
normal strain, 57–58, 133
plastic deformation, 65–67, 119–126, 134, 139
Poisson’s ratio (n), 94–95, 102–104, 137
repeated loadings, 67–68
residual stresses, 122–126, 139
Saint-Venant’s principle, 115–117, 139
shearing strain, 99–102, 138
statically equivalent problems, 115–117
statically indeterminate problems, 78–81, 

135–136
stress concentrations, 117–118, 122, 139
stress-strain diagram, 58–62, 65–67, 

133–134
temperature change effects on, 82–88, 

136–137
true stress and true strain, 63
uniform distribution of, 116–117
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Stress concentrations
circular shafts, 187–190, 225
circular stress distribution, 117–118
discontinuity factor (K), 117–118, 139
fillets, 117–118, 122
flat stress distribution, 117–118
plastic deformations and, 122
pure bending, 263–267, 336
torsion and, 187–190, 225

Stress-strain diagrams, 57–62, 65–67,
133–134

axial loading and, 57–62, 65–67, 133–134
breaking strength, 60–61
brittle material determination, 60–61, 133
compression test for, 62
ductile material determination, 59–62, 

133–134
gage length of specimen, 58–59
load-deformation curve, 57
rupture and, 60–61
tensile test for, 58–62
ultimate strength, 60–61
yield strength, 60–61, 134

Structural steel column design, 723–724
Superposition 

method of for deflection, 601, 635–643, 682
multiaxial problems, 96–97
principle of, 96
statically determinate beams,

635–636, 682
statically indeterminate beams, 636–637, 

682
statically indeterminate problems,

79–81
Symmetric loadings, moment-area theorems 

for, 651–653, 684
Symmetric members, 240–244, 334

bending (couple) moments in, 240–241, 334
deformation from pure bending, 241–244, 

334
plastic deformation in, 278–279

T
Temperature change

coefficient of thermal expansion, 82, 136
plastic deformation and, 124
problems involving, 82–88, 136–137
residual stresses and, 124
stress and strain under axial loads and, 

82–88, 124, 136–137
thermal strain, 82, 136

Tensile test, 58–62
Thermal expansion, coefficient of, 82, 136
Thermal strain, 82, 136

Thin-walled members
beam design for shearing stresses, 

439–466, 469
non-circular (tubes), 211–216, 227
plastic deformations in, 440–441, 469
shear flow, 440–441
shearing stresses in, 439–466, 469
unsymmetric loading of, 454–462, 469

Three-dimensional analysis
strain, 534–537
stress, 504–506

Timber, design specifications for, 34
Torque (T ), 148, 151, 156, 167–170
Torsion, 147–234

angle of twist, 151, 167–170, 210, 214, 224
circular shafts, 148–204, 223–227
elastic range, 153–160, 167–170, 223–224
elastoplastic materials, 196–199, 226
hollow shafts (tubes), 154–155, 158–160, 

223–224
modulus of rupture (R), 196, 225–226
non-circular shafts, 209–216, 227
plastic deformation and, 195–204, 225–227
residual stresses from, 199–204, 226–227
shearing stresses from, 153–160, 167–170, 

209–218, 224–227
strain energy due to, 767–768, 825
stress concentrations and, 187–190, 225
stresses in, 150–151, 153–161, 223–224
thin-walled hollow shafts (tubes), 211–216, 

227
transmission shafts, 148–149, 185–187, 225

Torsion formulas
elastic range, 155–156, 223
variable circular cross sections, 188, 225

Toughness (eR), modulus of, 762–763, 823
Transformed section, 240
Transmission shafts

deformation of, 148–149
design of, 185–187, 225, 562–569, 592
power transmitted by, 185–186, 225
principle stresses and, 562–569, 592
speed of rotation of, 185

Transverse cross sections, 248–252
Transverse forces, 44–45
Transverse loading

beam analysis and design for, 346–348, 407
concentrated, 346
deflection of beams under, 602–610, 

679–680
distributed, 346
pure bending and, 238–239, 334
shear and stress distributions, 347–348, 407
strain energy under, 769
support reactions, 347–348
uniformly distributed, 346

True stress and true strain, 63
Tubes, 211–216. See also Shafts
Two-force member analysis, 4–6

U
Ultimate load, 728
Ultimate strength, 31–32, 60–61
Uniaxial stress, 242
Uniform distribution of stress and strain, 

116–117
Uniform stress, 44
Uniformly distributed loads, 346
Unstable system, 692–693
Unsymmetric bending analysis,

302–307, 337
Unsymmetric loading

beam deflection and, 664–674, 684–685
maximum deflection and, 666–667, 685
moment-area theorems for, 664–674, 

684–685
thin-walled members, 454–462, 469

V
Volume change, 97–99, 137

axial loadings and, 97–99, 137
bulk modulus (k) for, 97–99, 137
dilatation, 98–99, 137

von Mises criterion, 508

W
Watts (W), 185, 225
Wide-flange beam (W-beam), 424
Wood column design, 726
Work, 788–795, 802–804, 826

deflection by, 790–795, 806–809
energy and, 788–795, 802–804, 826
multiple loads and, 802–804
single-loaded members, 788–790, 826

Work-energy method, 790–795

Y
Yield, 59, 134
Yield criteria for ductile materials, 507–508, 

548
Yield points, 61
Yield strength, 60–61, 134
Yielding, design consideration of, 33
Young’s modulus (E), 63. See also Elasticity
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Color: 4
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U.S. Customary Units and Their SI Equivalents

Quantity U.S. Customary Units SI Equivalent

Acceleration  ft/s2 0.3048 m/s2

 in./s2 0.0254 m/s2

Area ft2 0.0929 m2

 in2 645.2 mm2

Energy  ft ? lb 1.356 J
Force kip 4.448 kN
 lb 4.448 N
 oz 0.2780 N
Impulse  lb ? s 4.448 N ? s
Length ft 0.3048 m
 in. 25.40 mm
 mi 1.609 km
Mass oz mass 28.35 g
 lb mass 0.4536 kg
 slug 14.59 kg
 ton 907.2 kg
Moment of a force  lb ? ft 1.356 N ? m
 lb ? in. 0.1130 N ? m
Moment of inertia
 Of an area  in4 0.4162 3 106 mm4

 Of a mass  lb ? ft ? s2 1.356 kg ? m2

Power  ft ? lb/s 1.356 W
 hp 745.7 W
Pressure or stress lb/ft2 47.88 Pa
 lb/in2 (psi) 6.895 kPa
Velocity ft/s 0.3048 m/s
 in./s 0.0254 m/s
 mi/h (mph) 0.4470 m/s
 mi/h (mph) 1.609 km/h
Volume, solids ft3 0.02832 m3

 in3 16.39 cm3

 Liquids gal 3.785 L
 qt 0.9464 L
Work  ft ? lb 1.356 J

SI Prefixes

Multiplication Factor  Prefix † Symbol

  1 000 000 000 000 5 1012 tera T
  1 000 000 000 5 109 giga G
  1 000 000 5 106 mega M
  1 000 5 103 kilo k
  100 5 102 hecto‡ h
  10 5 101 deka ‡ da
  0.1 5 1021 deci ‡ d
  0.01 5 1022 centi ‡ c
  0.001 5 1023 milli m
  0.000 001 5 1026 micro  m
  0.000 000 001 5 1029 nano n
  0.000 000 000 001 5 10212 pico p
  0.000 000 000 000 001 5 10215 femto f
  0.000 000 000 000 000 001 5 10218 atto a

† The first syllable of every prefix is accented so that the prefix will retain its identity. 
Thus, the preferred pronunciation of kilometer places the accent on the first syllable, not 
the  second.

‡ The use of these prefixes should be avoided, except for the measurement of areas and vol-
umes and for the nontechnical use of centimeter, as for body and clothing measurements.

Principal SI Units Used in Mechanics

Quantity Unit Symbol Formula

Acceleration  Meter per second squared p  m/s2

Angle Radian rad  †
Angular acceleration Radian per second squared p  rad/s2

Angular velocity Radian per second p rad/s
Area Square meter p  m2

Density Kilogram per cubic meter p  kg/m3

Energy Joule J   N ? m
Force Newton N  kg ? m/s2

Frequency Hertz Hz  s21

Impulse Newton-second p kg ? m/s
Length Meter m ‡ 
Mass Kilogram kg ‡ 
Moment of a force Newton-meter p  N ? m 
Power Watt W J/s
Pressure Pascal Pa  N/m2

Stress Pascal Pa N/m2

Time Second s ‡ 
Velocity Meter per second p m/s
Volume, solids Cubic meter p m3

 Liquids Liter L 1023 m3

Work Joule J N ? m 

† Supplementary unit (1 revolution  5 2p rad 5 3608).
 ‡ Base unit.
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  1 000 000 000 5 109 giga G
  1 000 000 5 106 mega M
  1 000 5 103 kilo k
  100 5 102 hecto‡ h
  10 5 101 deka ‡ da
  0.1 5 1021 deci ‡ d
  0.01 5 1022 centi ‡ c
  0.001 5 1023 milli m
  0.000 001 5 1026 micro  m
  0.000 000 001 5 1029 nano n
  0.000 000 000 001 5 10212 pico p
  0.000 000 000 000 001 5 10215 femto f
  0.000 000 000 000 000 001 5 10218 atto a

† The first syllable of every prefix is accented so that the prefix will retain its identity. 
Thus, the preferred pronunciation of kilometer places the accent on the first syllable, not 
the  second.

‡ The use of these prefixes should be avoided, except for the measurement of areas and vol-
umes and for the nontechnical use of centimeter, as for body and clothing measurements.

Principal SI Units Used in Mechanics

Quantity Unit Symbol Formula

Acceleration  Meter per second squared p  m/s2

Angle Radian rad  †
Angular acceleration Radian per second squared p  rad/s2

Angular velocity Radian per second p rad/s
Area Square meter p  m2

Density Kilogram per cubic meter p  kg/m3

Energy Joule J   N ? m
Force Newton N  kg ? m/s2

Frequency Hertz Hz  s21

Impulse Newton-second p kg ? m/s
Length Meter m ‡ 
Mass Kilogram kg ‡ 
Moment of a force Newton-meter p  N ? m 
Power Watt W J/s
Pressure Pascal Pa  N/m2

Stress Pascal Pa N/m2

Time Second s ‡ 
Velocity Meter per second p m/s
Volume, solids Cubic meter p m3

 Liquids Liter L 1023 m3

Work Joule J N ? m 

† Supplementary unit (1 revolution  5 2p rad 5 3608).
 ‡ Base unit.
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The first step in the solution of any problem concerning the 
equilibrium of a rigid body is to construct an appropriate free-body 
diagram of the body. As part of that process, it is necessary to show 
on the diagram the reactions through which the ground and other 
bodies oppose a possible motion of the body. The figures on this 
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