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Preface

Objectives

The main objective of a basic mechanics course should be to develop in the engineering stu-
dent the ability to analyze a given problem in a simple and logical manner and to apply to its
solution a few fundamental and well-understood principles. This text is designed for the first
course in mechanics of materials—or strength of materials—offered to engineering students in
the sophomore or junior year. The authors hope that it will help instructors achieve this goal
in that particular course in the same way that their other texts may have helped them in statics
and dynamics. To assist in this goal, the seventh edition has undergone a complete edit of the
language to make the book easier to read.

General Approach

In this text the study of the mechanics of materials is based on the understanding of a few basic
concepts and on the use of simplified models. This approach makes it possible to develop all
the necessary formulas in a rational and logical manner, and to indicate clearly the conditions
under which they can be safely applied to the analysis and design of actual engineering struc-
tures and machine components.

Free-body Diagrams Are Used Extensively. Throughout the text free-body diagrams
are used to determine external or internal forces. The use of “picture equations” will also help
the students understand the superposition of loadings and the resulting stresses and
deformations.

The SMART Problem-Solving Methodology is Employed. New to this edition of the
text, students are introduced to the SMART approach for solving engineering problems, whose
acronym reflects the solution steps of Strategy, Modeling, Analysis, and Reflect & Think. This
methodology is used in all Sample Problems, and it is intended that students will apply this
approach in the solution of all assigned problems.

Design Concepts Are Discussed Throughout the Text Whenever Appropriate. A dis-
cussion of the application of the factor of safety to design can be found in Chap. 1, where the
concepts of both allowable stress design and load and resistance factor design are presented.

A Careful Balance Between S| and U.S. Customary Units Is Consistently Main-
tained. Because it is essential that students be able to handle effectively both SI metric units
and U.S. customary units, half the concept applications, sample problems, and problems to be
assigned have been stated in SI units and half in U.S. customary units. Since a large number
of problems are available, instructors can assign problems using each system of units in what-
ever proportion they find desirable for their class.

Optional Sections Offer Advanced or Specialty Topics. Topics such as residual stresses,
torsion of noncircular and thin-walled members, bending of curved beams, shearing stresses in
non-symmetrical members, and failure criteria have been included in optional sections for
use in courses of varying emphases. To preserve the integrity of the subject, these topics are
presented in the proper sequence, wherever they logically belong. Thus, even when not

ix
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covered in the course, these sections are highly visible and can be easily referred to by the
students if needed in a later course or in engineering practice. For convenience all optional
sections have been indicated by asterisks.

Chapter Organization

It is expected that students using this text will have completed a course in statics. However,
Chap. 1 is designed to provide them with an opportunity to review the concepts learned in that
course, while shear and bending-moment diagrams are covered in detail in Secs. 5.1 and 5.2.
The properties of moments and centroids of areas are described in Appendix A; this material
can be used to reinforce the discussion of the determination of normal and shearing stresses
in beams (Chaps. 4, 5, and 6).

The first four chapters of the text are devoted to the analysis of the stresses and of the
corresponding deformations in various structural members, considering successively axial load-
ing, torsion, and pure bending. Each analysis is based on a few basic concepts: namely, the
conditions of equilibrium of the forces exerted on the member, the relations existing between
stress and strain in the material, and the conditions imposed by the supports and loading of the
member. The study of each type of loading is complemented by a large number of concept
applications, sample problems, and problems to be assigned, all designed to strengthen the
students’ understanding of the subject.

The concept of stress at a point is introduced in Chap. 1, where it is shown that an axial
load can produce shearing stresses as well as normal stresses, depending upon the section
considered. The fact that stresses depend upon the orientation of the surface on which they
are computed is emphasized again in Chaps. 3 and 4 in the cases of torsion and pure bending.
However, the discussion of computational techniques—such as Mohr’s circle—used for the
transformation of stress at a point is delayed until Chap. 7, after students have had the oppor-
tunity to solve problems involving a combination of the basic loadings and have discovered for
themselves the need for such techniques.

The discussion in Chap. 2 of the relation between stress and strain in various materials
includes fiber-reinforced composite materials. Also, the study of beams under transverse loads
is covered in two separate chapters. Chapter 5 is devoted to the determination of the normal
stresses in a beam and to the design of beams based on the allowable normal stress in the
material used (Sec. 5.3). The chapter begins with a discussion of the shear and bending-
moment diagrams (Secs. 5.1 and 5.2) and includes an optional section on the use of singularity
functions for the determination of the shear and bending moment in a beam (Sec. 5.4). The
chapter ends with an optional section on nonprismatic beams (Sec. 5.5).

Chapter 6 is devoted to the determination of shearing stresses in beams and thin-walled
members under transverse loadings. The formula for the shear flow, g = VQ/I, is derived in
the traditional way. More advanced aspects of the design of beams, such as the determination
of the principal stresses at the junction of the flange and web of a W-beam, are considered in
Chap. 8, an optional chapter that may be covered after the transformations of stresses have
been discussed in Chap. 7. The design of transmission shafts is in that chapter for the same
reason, as well as the determination of stresses under combined loadings that can now include
the determination of the principal stresses, principal planes, and maximum shearing stress at
a given point.

Statically indeterminate problems are first discussed in Chap. 2 and considered through-
out the text for the various loading conditions encountered. Thus, students are presented at an
early stage with a method of solution that combines the analysis of deformations with the
conventional analysis of forces used in statics. In this way, they will have become thoroughly
familiar with this fundamental method by the end of the course. In addition, this approach
helps the students realize that stresses themselves are statically indeterminate and can be com-
puted only by considering the corresponding distribution of strains.



The concept of plastic deformation is introduced in Chap. 2, where it is applied to the
analysis of members under axial loading. Problems involving the plastic deformation of circu-
lar shafts and of prismatic beams are also considered in optional sections of Chaps. 3, 4, and
6. While some of this material can be omitted at the choice of the instructor, its inclusion in
the body of the text will help students realize the limitations of the assumption of a linear
stress-strain relation and serve to caution them against the inappropriate use of the elastic
torsion and flexure formulas.

The determination of the deflection of beams is discussed in Chap. 9. The first part of
the chapter is devoted to the integration method and to the method of superposition, with an
optional section (Sec. 9.3) based on the use of singularity functions. (This section should be
used only if Sec. 5.4 was covered earlier.) The second part of Chap. 9 is optional. It presents
the moment-area method in two lessons.

Chapter 10, which is devoted to columns, contains material on the design of steel, alumi-
num, and wood columns. Chapter 11 covers energy methods, including Castigliano’s theorem.

Supplemental Resources for Instructors

Find the Companion Website for Mechanics of Materials at www.mhhe.com/beerjohnston.
Included on the website are lecture PowerPoints, an image library, and animations. On the site
you'll also find the Instructor’s Solutions Manual (password-protected and available to instruc-
tors only) that accompanies the seventh edition. The manual continues the tradition of excep-
tional accuracy and normally keeps solutions contained to a single page for easier reference.
The manual includes an in-depth review of the material in each chapter and houses tables
designed to assist instructors in creating a schedule of assignments for their courses. The various
topics covered in the text are listed in Table I, and a suggested number of periods to be spent
on each topic is indicated. Table II provides a brief description of all groups of problems and a
classification of the problems in each group according to the units used. A Course Organization
Guide providing sample assignment schedules is also found on the website.

Via the website, instructors can also request access to C.0.S.M.0.S., the Complete Online
Solutions Manual Organization System that allows instructors to create custom homework,
quizzes, and tests using end-of-chapter problems from the text.

Cc)mect@ McGraw-Hill Connect Engineering provides online presentation,
assignment, and assessment solutions. It connects your students

with the tools and resources they’ll need to achieve success. With
Connect Engineering you can deliver assignments, quizzes, and tests online. A robust set of
questions and activities are presented and aligned with the textbook’s learning outcomes. As
an instructor, you can edit existing questions and author entirely new problems. Integrate
grade reports easily with Learning Management Systems (LMS), such as WebCT and Black-
board—and much more. ConnectPlus® Engineering provides students with all the advantages
of Connect Engineering, plus 24/7 online access to a media-rich eBook, allowing seamless
integration of text, media, and assessments. To learn more, visit www.mcgrawhillconnect.com.

@ ‘ I_ E /-\ R N S M /-\ R -I_® McGraw-Hill LearnSmart is available as a

standalone product or an integrated feature of McGraw-Hill Connect Engineering. It is an adap-
tive learning system designed to help students learn faster, study more efficiently, and retain
more knowledge for greater success. LearnSmart assesses a student’s knowledge of course con-
tent through a series of adaptive questions. It pinpoints concepts the student does not under-
stand and maps out a personalized study plan for success. This innovative study tool also has
features that allow instructors to see exactly what students have accomplished and a built-in
assessment tool for graded assignments. Visit the following site for a demonstration. www.
LearnSmartAdvantage.com

ENGINEERING
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@ ‘ S M /-\ R T B D O K Powered by the intelligent and adaptive LearnSmart

engine, SmartBook is the first and only continuously adaptive reading experience available
today. Distinguishing what students know from what they don’t, and honing in on concepts they
are most likely to forget, SmartBook personalizes content for each student. Reading is no longer
a passive and linear experience but an engaging and dynamic one, where students are more
likely to master and retain important concepts, coming to class better prepared. SmartBook
includes powerful reports that identify specific topics and learning objectives students need
to study.

@ Crea te Craft your teaching resources to match the way you teach! With McGraw-
Hill Create, www.mcgrawhillcreate.com, you can easily rearrange chapters, combine material
from other content sources, and quickly upload your original content, such as a course syllabus
or teaching notes. Arrange your book to fit your teaching style. Create even allows you to per-
sonalize your book’s appearance by selecting the cover and adding your name, school, and
course information. Order a Create book and you'll receive a complimentary print review copy
in 3-5 business days or a complimentary electronic review copy (eComp) via email in minutes.
Go to www.mcgrawhillcreate.com today and register to experience how McGraw-Hill Create
empowers you to teach your students your way.
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Guided Tour

Chapter Introduction. Each chapter begins
with an introductory section that sets up the purpose
and goals of the chapter, describing in simple terms
the material that will be covered and its application
to the solution of engineering problems. Chapter
Objectives provide students with a preview of chap-
ter topics.

Chapter Lessons. The body of the text is divided
into units, each consisting of one or several theory
sections, Concept Applications, one or several
Sample Problems, and a large number of homework
problems. The Companion Website contains a
Course Organization Guide with suggestions on each
chapter lesson.

1

Introduction—
Concept of Stress

Stresses occur inal structures subject to loads. This chapter
il examine simple states of sress in elements, such as in
the two-force members, bolts and pins used in the structure.

Concept Application 1.1

Concept Applications. Concept Appli-
cations are used extensively within individ-
ual theory sections to focus on specific
topics, and they are designed to illustrate
specific material being presented and facili-
tate its understanding.

Considering the structure of Fig. 1.1 on page 5, assume that rod BC is
made of a steel with a maximum allowable stress oy, = 165 MPa. Can
rod BC safely support the load to which it will be subjected? The mag-
nitude of the force Fy in the rod was 50 kN. Recalling that the diam-
eter of the rod is 20 mm, use Eq. (1.5) to determine the stress created

in the rod by the given loading.

P = Fye = +50kN = +50 X 10°N

20mm\*

A=aP= n<T> = (10 X 10 *m)® = 314 X 10 °m?®

_P_ _+50x10°N

A 314X 10 °m?

Since o is smaller than o of the allowable stress in the steel used, rod

BC can safely support the load.

= ———— 5= +159 X 10°Pa = +159 MPa

Sample Problems. The Sample Prob-
lems are intended to show more compre-

hensive applications of the theory to the solution of engineering .

problems, and they employ the SMART problem-solving methodology
that students are encouraged to use in the solution of their assigned
problems. Since the sample problems have been set up in much the
same form that students will use in solving the assigned problems,
they serve the double purpose of amplifying the text and demonstrat- | . )
ing the type of neat and orderly work that students should cultivate in d
their own solutions. In addition, in-problem references and captions
have been added to the sample problem figures for contextual linkage

to the step-by-step solution.

Homework Problem Sets.

Over 25% of the nearly 1500 home-

Fi=1p

i

I
«

work problems are new or updated. Most of the problems are of a prac- P

tical nature and should appeal to engineering students. They are i
primarily designed, however, to illustrate the material presented in the .
text and to help students understand the principles used in mechanics
of materials. The problems are grouped according to the portions of W
material they illustrate and are arranged in order of increasing diffi- /{

g e’

(X

1
|

{

culty. Answers to a majority of the problems are given at the end of the [

book. Problems for which the answers are given are set in blue type in
the text, while problems for which no answer is given are set in red. -

Fig. 1 Sectioned bolt.

Fig.2 Tie bar geometry.
'
\,,,
T \\\p = 120kN
N

Fig.3 End section of tie bar.

Fig.4 Mid-body section of tie bar.

Sample Problem 1.2

‘The steel tie bar shown is to be designed to carry a tension force of
magnitude P = 120 KN when bolted between double brackets at A
and B. The bar will be fabricated from 20-mm-thick plate stock. For the
grade of steel to be used, the maximum allowable stresses are
o =175 MPa, 7 = 100 MPa, and o, = 350 MPa. Design the tie bar by
determining the required values of () the diameter d of the bolt, (b) the
dimension b at each end of the bar, and (c) the dimension : of the bar.
STRATEGY: Use free-body diagrams to determine the forces needed
to obtain the stresses in terms of the design tension force. Setting these
stresses equal to the allowable stresses provides for the determination
of the required dimensions.
MODELING and ANALYSIS:
a. Diameter of the Bolt. Since the boltis in double shear (Fig. 1),
F, =3P = 60KkN.
Fi _ 60kN 60kN
e AT T,g MR- T
Use d=28mm

d = 27.6mm

At this point, check the bearing stress between the 20-mm.-thick plate
(Fig. 2) and the 28-mm-diameter bolt.

P 120 kN

[ L \— <
@~ Oommyoozm) ~ 214MPa <30MPa  OK

T

b. Dimension b at Each End of the Bar. We consider one of the
end portions of the bar in Fig. 3. Recalling that the thickness of the
steel plate is f = 20 mm and that the average tensile stress must not
exceed 175 MPa, write

P 60N
T == 175MPa = ————
ta (0.02m)a

b=d+2a=28mm +2(17.14mm) b= 623 mm

a=17.14mm

<. Dimension h of the Bar. We consider a section in the central
portion of the bar (Fig. 4). Recalling that the thickness of the steel plate
is t = 20 mm, we have

o= 175Mpa = 120KV

0 ©ozomp = 343mm

Use  h=35mm

REFLECT and THINK: W sized d based on bolt shear, and then
checked bearing on the tie bar. Had the maximum allowable bearing
stress been exceeded, we would have had to recalculate d based on
the bearing criterion.

-

Xi



XiV Guided Tour

Chapter Review and Summary. Each chapter ends
with a review and summary of the material covered in that
chapter. Subtitles are used to help students organize their
review work, and cross-references have been included to help
them find the portions of material requiring their special
attention.

Review and Summary

This chapter was devoted to the concept of stress and to an introduction
to the methods used for the analysis and design of machines and load-
bearing structures. Emphasis was placed on the use of a free-body diagram
to obtain equilibrium equations that were solved for unknown reactions.
Free-body diagrams were also used to find the internal forces in the vari-
ous members of a structure.

Axial Loading: Normal Stress

The concept of stress was first introduced by considering a two-force
member under an axial loading. The normal siress in that member
(Fig. 1.41) was obtained by

Review Problems. A set of review problems is included
at the end of each chapter. These problems provide students
further opportunity to apply the most important concepts
introduced in the chapter.

o= g .5)

The value of o obtained from Eq. (1.5) represents the average stress
over the section rather than the stress at a specific point Q of the section.
Considering a small area AA surrounding Q and the magnitude AF of the
force exerted on AA, the stress at point Q is

In general, the stress o at point Q in Eq. (1.6) is different from the
value of the average stress given by Eq. (1.5) and is found to vary across
the section. However, this variation is small in any section away from the
points of application of the loads. Therefore, the distribution of the normal

2 stresses in an axially loaded member is assumed to be uniform, except in
Fig. 1.41 Axially loaded  the immediate vicinity of the points of application of the loads.
member with cross section For the distribution of stresses to be uniform in a given section, the
::;m:'“‘:’::"';:’;;“d  Jine of action of the loads P and P’ must pass through the centroid C. Such
aloading is called a centric axial loading. In the case of an eccentric axial
loading, the distribution of stresses is not uniform.

Review Problems

159 In the marine crane shown, link CD is known to have a uniform
cross section of 50 X 150 mm. For the loading shown, determine
the normal stress in the central portion of that link.

"

B

Transverse Forces and Shearing Stress

When equal and opposite transverse forces P and P’ of magnitude P are
applied to a member AB (Fig. 1.42), shearing stresses 7 are created over
any section located between the points of application of the two forces.

P
Fig. 142 Model of transverse resultant forces on
either side of C resulting in shearing stress at section C.

Fig. P1.59

1.60 Two horizontal 5-kip forces are applied to pin B of the assembly
shown. Knowing that a pin of 0.8-in. diameter is used at each
connection, determine the maximum value of the average nor-
mal stress (a) in link AB, (b) in link BC.

Computer Problems

‘The following problems are designed to be solved with a computer.

Fig. P1.60

For the assembly and loading of Prob. 1.60, determine (a) the
average shearing stress in the pin at C, (b) the average bearing
stress at C in member BC, (c) the average bearing stress at B in
member BC.

Computer Problems. Computers make it possible for
engineering students to solve a great number of challenging
problems. A group of six or more problems designed to be
solved with a computer can be found at the end of each chap-
ter. These problems can be solved using any computer
language that provides a basis for analytical calculations.
Developing the algorithm required to solve a given problem
will benefit the students in two different ways: (1) it will help
them gain a better understanding of the mechanics principles
involved; (2) it will provide them with an opportunity to apply
the skills acquired in their computer programming course to
the solution of a meaningful engineering problem.

1.€1 Asolid steel rod consisting of 7 cylindrical elements welded together
is subjected to the loading shown. The diameter of element i is denoted
by d; and the load applied to its lower end by P,, with the magnitude P, of
this load being assumed positive if P, is directed downward as shown and
negative otherwise. (@) Write a computer program that can be used with
either SI or US. customary units to determine the average stress in each
element of the rod. (b) Use this program to solve Probs. 1.1 and 1.3.

1.C2 A 20-kN load is applied as shown to the horizontal member ABC.
Member ABC has a 10 X 50-mm uniform rectangular cross section and
is supported by four vertical links, each of 8 X 36-mm uniform rectan-
gular cross section. Each of the four pins at A, B, C, and D has the same
diameter d and is in double shear. (a) Write a computer program to cal-
culate for values of d from 10 to 30 mm, using 1-mm increments, (i) the
‘maximum value of the average normal stress in the links connecting pins
B and D, (ii) the average normal stress in the links connecting pins C
and E, (iii) the average shearing stress in pin B, (iv) the average shearing
stress in pin C, (v) the average bearing stress at B in member ABC, and
(vi) the average bearing stress at C in member ABC. (b) Check your pro-
gram by comparing the values obtained for d = 16 mm with the answers
given for Probs. 1.7 and 1.27. (c) Use this program to find the permissible
values of the diameter d of the pins, knowing that the allowable values
of the normal, shearing, and bearing stresses for the steel used are,
respectively, 150 MPa, 90 MPa, and 230 MPa. (d) Solve part ¢, assuming
that the thickness of member ABC has been reduced from 10 to 8 mm.

Fig. P1.C2

Element n

Element 1
P,
Fig. P1.C1
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Introduction—

Concept of Stress

Stresses occur in all structures subject to loads. This chapter
will examine simple states of stress in elements, such as in
the two-force members, bolts and pins used in the structure

shown.

Objectives

* Review of statics needed to determine forces in members of
simple structures.

Introduce concept of stress.

Define different stress types: axial normal stress, shearing stress
and bearing stress.

Discuss engineer’s two principal tasks, namely, the analysis and
design of structures and machines.

Develop problem solving approach.

Discuss the components of stress on different planes and under
different loading conditions.

Discuss the many design considerations that an engineer should
review before preparing a design.
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Photo 1.1
ships.

Crane booms used to load and unload

Introduction

The study of mechanics of materials provides future engineers with the
means of analyzing and designing various machines and load-bearing
structures involving the determination of stresses and deformations. This
first chapter is devoted to the concept of stress.

Section 1.1 is a short review of the basic methods of statics and their
application to determine the forces in the members of a simple structure
consisting of pin-connected members. The concept of stress in a member
of a structure and how that stress can be determined from the force in the
member will be discussed in Sec. 1.2. You will consider the normal stresses
in a member under axial loading, the shearing stresses caused by the appli-
cation of equal and opposite transverse forces, and the bearing stresses
created by bolts and pins in the members they connect.

Section 1.2 ends with a description of the method you should use
in the solution of an assigned problem and a discussion of the numerical
accuracy. These concepts will be applied in the analysis of the members of
the simple structure considered earlier.

Again, a two-force member under axial loading is observed in
Sec. 1.3 where the stresses on an oblique plane include both normal and
shearing stresses, while Sec. 1.4 discusses that six components are required
to describe the state of stress at a point in a body under the most general
loading conditions.

Finally, Sec. 1.5 is devoted to the determination of the ultimate
strength from test specimens and the use of a factor of safety to compute
the allowable load for a structural component made of that material.

1.1 REVIEW OF THE METHODS
OF STATICS

Consider the structure shown in Fig. 1.1, which was designed to support
a 30-kN load. It consists of a boom AB with a 30 X 50-mm rectangular
cross section and a rod BC with a 20-mm-diameter circular cross section.
These are connected by a pin at B and are supported by pins and brackets
at A and C, respectively. First draw a free-body diagram of the structure by
detaching it from its supports at A and C and showing the reactions that
these supports exert on the structure (Fig. 1.2). Note that the sketch of the
structure has been simplified by omitting all unnecessary details. Many of
you may have recognized at this point that AB and BC are two-force mem-
bers. For those of you who have not, we will pursue our analysis, ignoring
that fact and assuming that the directions of the reactions at A and C are
unknown. Each of these reactions are represented by two components: A,
and A, at A, and C, and C, at C. The equilibrium equations are.

+YS Mc=0:  A(0.6m) — (30kN)(0.8m) = 0
A, = +40kN ((8))
L ISFE=0 A+ C=0
C.=—A, C,=—40kN (1.2)
+13SF =0 A, + C,— 30kN = 0
A, + C, = +30kN (1.3)



d =20 mm

|
|
|
|
|
|
600 mm |
|
|
|
|
|

800 mm
30 kN *

Fig. 1.1 Boom used to support a 30-kN load.

We have found two of the four unknowns, but cannot determine the other
two from these equations, and no additional independent equation can
be obtained from the free-body diagram of the structure. We must now
dismember the structure. Considering the free-body diagram of the boom
AB (Fig. 1.3), we write the following equilibrium equation:

+VE My = 0 ~A,(08m)=0 A, =0 (1.4)

Substituting for A, from Eq. (1.4) into Eq. (1.3), we obtain C, = +30 kN.
Expressing the results obtained for the reactions at A and C in vector form,
we have

A=40kN—  C,=40kN<  C,=30kN7

G, A
K9
C, .
0.6 m “A.’/
= B
A, A
0.8 m
 /
30 kN

Fig. 1.2 Free-body diagram of boom showing
applied load and reaction forces.

1.1 Review of The Methods of Statics 5

AAy ABy

0.8 m ——

 /
30 kN

Fig. 1.3 Free-body diagram of member AB freed
from structure.
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30 kN

(@) )
Fig. 1.4 Free-body diagram of boom'’s joint B and
associated force triangle.

=
'

Fagp A By

Fig. 1.5 Free-body diagrams of two-force
members AB and BC.

Note that the reaction at A is directed along the axis of the boom AB and
causes compression in that member. Observe that the components C,
and C, of the reaction at C are, respectively, proportional to the horizontal
and vertical components of the distance from B to C and that the
reaction at C is equal to 50 kN, is directed along the axis of the rod BC,
and causes tension in that member.

These results could have been anticipated by recognizing that AB
and BC are two-force members, i.e., members that are subjected to forces
at only two points, these points being A and B for member AB, and B and
C for member BC. Indeed, for a two-force member the lines of action of
the resultants of the forces acting at each of the two points are equal and
opposite and pass through both points. Using this property, we could have
obtained a simpler solution by considering the free-body diagram of pin B.
The forces on pin B, F,z and Fp, are exerted, respectively, by members
AB and BC and the 30-kN load (Fig. 1.4a). Pin B is shown to be in equi-
librium by drawing the corresponding force triangle (Fig. 1.4b).

Since force Fpc is directed along member BC, its slope is the same
as that of BC, namely, 3/4. We can, therefore, write the proportion

FAB FBC _ 30kN

4 5 3
from which

FAB = 40 kN FBC = 50 kN

Forces F)3 and Fj¢ exerted by pin B on boom AB and rod BC are equal
and opposite to F,z and Fp (Fig. 1.5).

Fig. 1.6 Free-body diagrams of sections of rod BC.

Knowing the forces at the ends of each member, we can now deter-
mine the internal forces in these members. Passing a section at some arbi-
trary point D of rod BC, we obtain two portions BD and CD (Fig. 1.6). Since
50-kN forces must be applied at D to both portions of the rod to keep them
in equilibrium, an internal force of 50 kN is produced in rod BC when a
30-kN load is applied at B. From the directions of the forces Fz- and Fj¢
in Fig. 1.6 we see that the rod is in tension. A similar procedure enables
us to determine that the internal force in boom AB is 40 kN and is in
compression.



1.2 STRESSES IN THE MEMBERS
OF A STRUCTURE

1.2A Axial Stress

In the preceding section, we found forces in individual members. This is
the first and necessary step in the analysis of a structure. However it does
not tell us whether the given load can be safely supported. Rod BC of the
example considered in the preceding section is a two-force member and,
therefore, the forces Fp: and Fjp acting on its ends B and C (Fig. 1.5) are
directed along the axis of the rod. Whether rod BC will break or not under
this loading depends upon the value found for the internal force Fjc, the
cross-sectional area of the rod, and the material of which the rod is made.
Actually, the internal force Fycrepresents the resultant of elementary forces
distributed over the entire area A of the cross section (Fig. 1.7). The average

_Fpe

Frc o=
N Q

Fig. 1.7 Axial force represents the resultant
of distributed elementary forces.

intensity of these distributed forces is equal to the force per unit area,
Fyc/A, on the section. Whether or not the rod will break under the given
loading depends upon the ability of the material to withstand the corre-
sponding value Fp/A of the intensity of the distributed internal forces.

Let us look at the uniformly distributed force using Fig. 1.8. The
force per unit area, or intensity of the forces distributed over a given sec-
tion, is called the stress and is denoted by the Greek letter o (sigma). The
stress in a member of cross-sectional area A subjected to an axial load P
is obtained by dividing the magnitude P of the load by the area A:

o=— (1.5)

A positive sign indicates a tensile stress (member in tension), and a nega-
tive sign indicates a compressive stress (member in compression).

As shown in Fig. 1.8, the section through the rod to determine the
internal force in the rod and the corresponding stress is perpendicular to the
axis of the rod. The corresponding stress is described as a normal stress.
Thus, Eq. (1.5) gives the normal stress in a member under axial loading:

Note that in Eq. (1.5), o represents the average value of the stress over
the cross section, rather than the stress at a specific point of the cross section.
To define the stress at a given point Q of the cross section, consider a small
area AA (Fig. 1.9). Dividing the magnitude of AF by AA, you obtain the average
value of the stress over AA. Letting AA approach zero, the stress at point Q is

. AF
o = AI/IAIEOH (1.6)

1.2 Stresses in the Members of a Structure 7

Photo 1.2 This bridge truss consists of two-force
members that may be in tension or in compression.

| (T

b

(a) (b)
Fig. 1.8 (a) Member with an axial load.
(b) Idealized uniform stress distribution at an
arbitrary section.

AF

AA
A

ll”

Fig. 1.9 Small area AA, at an arbitrary cross
section point carries/axial AF in this axial member.
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P
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g

o
P’ P’ P’ P’
(@) (b) () (d)

Fig. 1.10 Stress distributions at different sections
along axially loaded member.

Fig. 1.11 Idealized uniform stress distribution
implies the resultant force passes through the cross
section’s center.

Fig. 1.12 Centric loading having resultant forces
passing through the centroid of the section.

In general, the value for the stress o at a given point Q of the section
is different from that for the average stress given by Eq. (1.5), and o is
found to vary across the section. In a slender rod subjected to equal and
opposite concentrated loads P and P’ (Fig. 1.10a), this variation is small
in a section away from the points of application of the concentrated loads
(Fig. 1.10c¢), but it is quite noticeable in the neighborhood of these points
(Fig. 1.10b and d).

It follows from Eq. (1.6) that the magnitude of the resultant of the
distributed internal forces is

JdF = J agdA
A

But the conditions of equilibrium of each of the portions of rod shown in
Fig. 1.10 require that this magnitude be equal to the magnitude P of the
concentrated loads. Therefore,

p = Jszja'dA
A

which means that the volume under each of the stress surfaces in Fig. 1.10
must be equal to the magnitude P of the loads. However, this is the only
information derived from statics regarding the distribution of normal
stresses in the various sections of the rod. The actual distribution of
stresses in any given section is statically indeterminate. To learn more
about this distribution, it is necessary to consider the deformations result-
ing from the particular mode of application of the loads at the ends of the
rod. This will be discussed further in Chap. 2.

In practice, it is assumed that the distribution of normal stresses in
an axially loaded member is uniform, except in the immediate vicinity of
the points of application of the loads. The value o of the stress is then equal
to 0 4. and can be obtained from Eq. (1.5). However, realize that when we
assume a uniform distribution of stresses in the section, it follows from
elementary statics” that the resultant P of the internal forces must be
applied at the centroid C of the section (Fig. 1.11). This means that a uni-
Jorm distribution of stress is possible only if the line of action of the concen-
trated loads P and P' passes through the centroid of the section considered
(Fig. 1.12). This type of loading is called centric loading and will take place
in all straight two-force members found in trusses and pin-connected
structures, such as the one considered in Fig. 1.1. However, if a two-force
member is loaded axially, but eccentrically, as shown in Fig. 1.13a, the con-
ditions of equilibrium of the portion of member in Fig. 1.13b show that the
internal forces in a given section must be equivalent to a force P applied
at the centroid of the section and a couple M of moment M = Pd. This
distribution of forces—the corresponding distribution of stresses—cannot
be uniform. Nor can the distribution of stresses be symmetric. This point
will be discussed in detail in Chap. 4.

1.7)

See Ferdinand P. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 5th ed.,
McGraw-Hill, New York, 2008, or Vector Mechanics for Engineers, 10th ed., McGraw-Hill,
New York, 2013, Secs. 5.2 and 5.3.



When SI metric units are used, P is expressed in newtons (N) and A
in square meters (m?), so the stress o will be expressed in N/m?. This unit
is called a pascal (Pa). However, the pascal is an exceedingly small quantity
and often multiples of this unit must be used: the kilopascal (kPa), the
megapascal (MPa), and the gigapascal (GPa):

1kPa = 10°Pa = 10° N/m?
1 MPa = 10°Pa = 10°N/m?
1 GPa = 10°Pa = 10° N/m?

When U.S. customary units are used, force P is usually expressed in
pounds (Ib) or kilopounds (kip), and the cross-sectional area A is given in
square inches (in%). The stress o then is expressed in pounds per square
inch (psi) or kilopounds per square inch (ksi).

1.2 Stresses in the Members of a Structure

(a) (b)

9

Fig. 1.13 An example of simple eccentric loading.

Concept Application 1.1

in the rod by the given loading.

P = Fyc = +50kN = +50 X 10°N

P +50 X 10°N
A 314 X 10 ®m?

BC can safely support the load.

N\

20 mm \?
A=mar = w( ) > = 7(10 X 10 °m)* = 314 X 10 °*m®

o=—=——"————= 4159 X 10°Pa = +159 MPa

Considering the structure of Fig. 1.1 on page 5, assume that rod BC is
made of a steel with a maximum allowable stress o,; = 165 MPa. Can
rod BC safely support the load to which it will be subjected? The mag-
nitude of the force Fp¢ in the rod was 50 kN. Recalling that the diam-
eter of the rod is 20 mm, use Eq. (1.5) to determine the stress created

Since o is smaller than o, of the allowable stress in the steel used, rod

~

To be complete, our analysis of the given structure should also include
the compressive stress in boom AB, as well as the stresses produced in the
pins and their bearings. This will be discussed later in this chapter. You
should also determine whether the deformations produced by the given
loading are acceptable. The study of deformations under axial loads will be
the subject of Chap. 2. For members in compression, the stability of the
member (i.e., its ability to support a given load without experiencing a sud-
den change in configuration) will be discussed in Chap. 10.

"The principal SI and U.S. Customary units used in mechanics are listed in tables inside
the front cover of this book. From the table on the right-hand side, 1 psi is approximately
equal to 7 kPa and 1 ksi approximately equal to 7 MPa.
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The engineer’s role is not limited to the analysis of existing struc-
tures and machines subjected to given loading conditions. Of even greater
importance is the design of new structures and machines, that is the selec-

tion of appropriate components to perform a given task.

Concept Application 1.2

As an example of design, let us return to the structure of Fig. 1.1 on
page 5 and assume that aluminum with an allowable stress o, =
100 MPa is to be used. Since the force in rod BC s still P = Fp; = 50 kN
under the given loading, from Eq. (1.5), we have

P P 50 X 10°N 6 o
oq=, A= _—=_——"+-"—=500X10"m
A oar 100 X 10° Pa

and since A = 777,

A 500 X 10~ °m* s
r= ;= f: 12.62 X 10 "m = 12.62 mm

d = 2r = 25.2 mm

Therefore, an aluminum rod 26 mm or more in diameter will be
adequate.

~

P’

Fig. 1.14 Opposing
transverse loads creating
shear on member AB.

1.2B Shearing Stress

The internal forces and the corresponding stresses discussed in Sec. 1.2A
were normal to the section considered. A very different type of stress is
obtained when transverse forces P and P’ are applied to a member AB
(Fig. 1.14). Passing a section at C between the points of application of the
two forces (Fig. 1.15a), you obtain the diagram of portion AC shown in

(b)
Fig. 1.15 This shows the resulting internal shear
force on a section between transverse forces.



Fig. 1.15b. Internal forces must exist in the plane of the section, and their
resultant is equal to P. These elementary internal forces are called shearing
forces, and the magnitude P of their resultant is the shear in the section.
Dividing the shear P by the area A of the cross section, you obtain the
average shearing stress in the section. Denoting the shearing stress by the
Greek letter 7 (tau), write

P
Tave — Z (1.8)

The value obtained is an average value of the shearing stress over
the entire section. Contrary to what was said earlier for normal stresses,
the distribution of shearing stresses across the section cannot be assumed
to be uniform. As you will see in Chap. 6, the actual value 7 of the shearing
stress varies from zero at the surface of the member to a maximum value
Tmax that may be much larger than the average value 7.

Photo 1.3 Cutaway view of a connection with a bolt in shear.

Shearing stresses are commonly found in bolts, pins, and rivets used
to connect various structural members and machine components
(Photo 1.3). Consider the two plates A and B, which are connected by a
bolt CD (Fig. 1.16). If the plates are subjected to tension forces of magni-
tude F, stresses will develop in the section of bolt corresponding to the
plane EE'. Drawing the diagrams of the bolt and of the portion located
above the plane EE’ (Fig. 1.17), the shear P in the section is equal to F.
The average shearing stress in the section is obtained using Eq. (1.8) by
dividing the shear P = F by the area A of the cross section:

P F
Tave — Z = Z (1'9)

C C

F F i

E E' P
F

D
(a) (b)

Fig. 1.17 (a) Diagram of bolt in single shear;
(b) section E-E’ of the bolt.

1.2 Stresses in the Members of a Structure

Fig. 1.16 Bolt subject to single shear.

11
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E i
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Fig. 1.18 Bolts subject to double shear.

Fig. 1.20 Equal and opposite forces between
plate and bolt, exerted over bearing surfaces.

Fig. 1.21 Dimensions for calculating
bearing stress area.

The previous bolt is said to be in single shear. Different loading situ-
ations may arise, however. For example, if splice plates C and D are used
to connect plates A and B (Fig. 1.18), shear will take place in bolt HJ in
each of the two planes KK’ and LL’ (and similarly in bolt EG). The bolts
are said to be in double shear. To determine the average shearing stress in
each plane, draw free-body diagrams of bolt HJ and of the portion of the
bolt located between the two planes (Fig. 1.19). Observing that the shear
P in each of the sections is P = F/2, the average shearing stress is

P F2 F
o= = = 1.10
Tae = 0= 4 T o4 (1.10)
H
k% 7
— , r—>{1
L L P
"
p=
I
(@) (b)

Fig. 1.19 (a) Diagram of bolt in double shear;
(b) section K-K' and L-L' of the bolt.

1.2C Bearing Stress in Connections

Bolts, pins, and rivets create stresses in the members they connect
along the bearing surface or surface of contact. For example, consider
again the two plates A and B connected by a bolt CD that were dis-
cussed in the preceding section (Fig. 1.16). The bolt exerts on plate A a
force P equal and opposite to the force F exerted by the plate on the
bolt (Fig. 1.20). The force P represents the resultant of elementary forces
distributed on the inside surface of a half-cylinder of diameter d and of
length t equal to the thickness of the plate. Since the distribution of
these forces—and of the corresponding stresses—is quite complicated,
in practice one uses an average nominal value o of the stress, called
the bearing stress, which is obtained by dividing the load P by the area
of the rectangle representing the projection of the bolt on the plate sec-
tion (Fig. 1.21). Since this area is equal to td, where t is the plate thick-
ness and d the diameter of the bolt, we have

P
— 1.11
d (1.11)

oy =

= |

1.2D Application to the Analysis and
Design of Simple Structures

We are now in a position to determine the stresses in the members and
connections of various simple two-dimensional structures and to design
such structures. This is illustrated through the following Concept
Application.
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Concept Application 1.3

Returning to the structure of Fig. 1.1, we will determine the normal
stresses, shearing stresses and bearing stresses. As shown in Fig. 1.22,
the 20-mm-diameter rod BC has flat ends of 20 X 40-mm rectangular
cross section, while boom AB has a 30 X 50-mm rectangular cross
section and is fitted with a clevis at end B. Both members are con-
nected at B by a pin from which the 30-kN load is suspended by means
of a U-shaped bracket. Boom AB is supported at A by a pin fitted into
a double bracket, while rod BC is connected at C to a single bracket.
All pins are 25 mm in diameter.

C>/ d =25 mm

600 mm

800 mm ———N\——=
Q=30kNY Q =30kN
-|L s IEQ 2 END VIEW
(i <o mm | —T20mm
r | 30 mm (
P 25 mm &Ij — A
A IS g_FB
TOP VIEW OF BOOM AB
d =25 mm

Fig. 1.22 Components of boom used to support 30 kN load.

Normal Stress in Boom AB and Rod BC. As found in Sec. 1.1A, the
force in rod BCis F: = 50 kN (tension) and the area of its circular cross
section is A = 314 X 10~° m® The corresponding average normal stress
is opc = +159 MPa. However, the flat parts of the rod are also under
tension and at the narrowest section. Where the hole is located, we have

A = (20 mm)(40 mm — 25mm) = 300 X 10 °m®

(continued)
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()
Fig. 1.23 Diagrams of the single
shear pin at C.

40 kN
(a)
d = 25 mm
l‘/’ q
D D'
< 40 kN
E E'
R
(b)
P
40 kN
[l—
P oy

()
Fig. 1.24 Free-body diagrams of
the double shear pin at A.

The corresponding average value of the stress is

(o8¢) P 20k I 167.0 MP
lo2 = - = . a
BCJend ™ A 300 X 10 ® m?

Note that this is an average value. Close to the hole the stress will actu-
ally reach a much larger value, as you will see in Sec. 2.11. Under an
increasing load, the rod will fail near one of the holes rather than in
its cylindrical portion; its design could be improved by increasing the
width or the thickness of the flat ends of the rod.

Recall from Sec. 1.1A that the force in boom AB is F,z = 40 kN
(compression). Since the area of the boom’s rectangular cross section is
A =30mm X 50 mm = 1.5 X 10~ m? the average value of the normal
stress in the main part of the rod between pins A and B is

40 X 10°N

—W = —26.7 X 106 Pa = —26.7 MPa
0 m

OAB =

Note that the sections of minimum area at A and B are not under
stress, since the boom is in compression, and therefore pushes on the
pins (instead of pulling on the pins as rod BC does).

Shearing Stress in Various Connections. To determine the
shearing stress in a connection such as a bolt, pin, or rivet, you first
show the forces exerted by the various members it connects. In the
case of pin C (Fig. 1.23a), draw Fig. 1.23b to show the 50-kN force
exerted by member BC on the pin, and the equal and opposite force
exerted by the bracket. Drawing the diagram of the portion of the pin
located below the plane DD’ where shearing stresses occur (Fig. 1.23c),
notice that the shear in that plane is P = 50 kN. Since the cross-
sectional area of the pin is

25 mm \?
A=ar = 7T< 5 ) = 7(12.5 X 10°m)* = 491 X 10"°m?

the average value of the shearing stress in the pin at C is

P 50X 10°N
Tawe = — = ———————— = 102.0 MPa
A 491 X 10°m
Note that pin A (Fig. 1.24) is in double shear. Drawing the free-
body diagrams of the pin and the portion of pin located between the
planes DD’ and EE' where shearing stresses occur, we see that
P =20 kN and

P 20 kN
A 491 X 10 °m?

Tave = = 40.7 MPa

Pin B (Fig. 1.25a) can be divided into five portions that are acted
upon by forces exerted by the boom, rod, and bracket. Portions DE
(Fig. 1.25b) and DG (Fig. 1.25¢) show that the shear in section E is
Pr = 15 kN and the shear in section G is Pz = 25 kN. Since the loading

(continued)
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1F,3=20kN

1F,5=20kN

Pin B

of the pin is symmetric, the maximum value of the shear in pin B is
P; = 25 kN, and the largest the shearing stresses occur in sections G
and H, where

Tave —

e 25 kN
— = ————— =509MPa
A 491 X 10 °m

Bearing Stresses. Use Eq. (1.11) to determine the nominal bearing
stress at A in member AB. From Fig. 1.22, £ = 30 mm and d = 25 mm.

=—=——_———-=533MPa
td (30 mm)(25 mm)

To obtain the bearing stress in the bracket at A, use t = 2(25 mm) =

=—=—"—"———=320MPa
td (50 mm)(25 mm)

The bearing stresses at B in member AB, at B and C in member
BC, and in the bracket at C are found in a similar way.

()
Fig. 1.25 Free-body diagrams for
@rious sections at pin B.

Py
B Recalling that P = F,z = 40 kN, we have
P 40 kN
E b
D
1o =15kN 50 mm and d = 25 mm:
(b) P 40 kN
1 . Op
?Ff\l" =20 ]\1\
G
D
1o =15kN

1.2E Method of Problem Solution

You should approach a problem in mechanics as you would approach an
actual engineering situation. By drawing on your own experience and intu-
ition about physical behavior, you will find it easier to understand and for-
mulate the problem. Your solution must be based on the fundamental
principles of statics and on the principles you will learn in this text. Every
step you take in the solution must be justified on this basis, leaving no room
for your intuition or “feeling” After you have obtained an answer, you
should check it. Here again, you may call upon your common sense and
personal experience. If you are not completely satisfied with the result, you
should carefully check your formulation of the problem, the validity of the
methods used for its solution, and the accuracy of your computations.

In general, you can usually solve problems in several different ways;
there is no one approach that works best for everybody. However, we have
found that students often find it helpful to have a general set of guidelines
to use for framing problems and planning solutions. In the Sample
Problems throughout this text, we use a four-step approach for solving
problems, which we refer to as the SMART methodology: Strategy,
Modeling, Analysis, and Reflect & Think:

1. Strategy. The statement of a problem should be clear and precise, and
should contain the given data and indicate what information is
required. The first step in solving the problem is to decide what
concepts you have learned that apply to the given situation and
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connect the data to the required information. It is often useful to work
backward from the information you are trying to find: ask yourself what
quantities you need to know to obtain the answer, and if some of these
quantities are unknown, how can you find them from the given data.

2. Modeling. The solution of most problems encountered will require that
you first determine the reactions at the supports and internal forces and
couples. It is important to include one or several free-body diagrams to
support these determinations. Draw additional sketches as necessary
to guide the remainder of your solution, such as for stress analyses.

3. Analysis. After you have drawn the appropriate diagrams, use the
fundamental principles of mechanics to write equilibrium equa-
tions. These equations can be solved for unknown forces and used
to compute the required stresses and deformations.

4. Reflect & Think. After you have obtained the answer, check it carefully.
Does it make sense in the context of the original problem? You can
often detect mistakes in reasoning by carrying the units through your
computations and checking the units obtained for the answer. For
example, in the design of the rod discussed in Concept Application 1.2,
the required diameter of the rod was expressed in millimeters, which
is the correct unit for a dimension; if you had obtained another unit,
you would know that some mistake had been made.

You can often detect errors in computation by substituting the
numerical answer into an equation that was not used in the solution and
verifying that the equation is satisfied. The importance of correct compu-
tations in engineering cannot be overemphasized.

Numerical Accuracy. The accuracy of the solution of a problem
depends upon two items: (1) the accuracy of the given data and (2) the
accuracy of the computations performed.

The solution cannot be more accurate than the less accurate of these
two items. For example, if the loading of a beam is known to be 75,000 1b
with a possible error of 100 lb either way, the relative error that measures
the degree of accuracy of the data is

100 1b

——— = 0.0013 = 0.13%
75,000 1b

To compute the reaction at one of the beam supports, it would be mean-
ingless to record it as 14,322 lb. The accuracy of the solution cannot be
greater than 0.13%, no matter how accurate the computations are, and the
possible error in the answer may be as large as (0.13/100)(14,322 1b) = 20
Ib. The answer should be properly recorded as 14,320 = 20 lb.

In engineering problems, the data are seldom known with an accu-
racy greater than 0.2%. A practical rule is to use four figures to record
numbers beginning with a “1” and three figures in all other cases. Unless
otherwise indicated, the data given are assumed to be known with a com-
parable degree of accuracy. A force of 40 Ib, for example, should be read
40.0 1Ib, and a force of 15 Ib should be read 15.00 lb.

The speed and accuracy of calculators and computers makes the
numerical computations in the solution of many problems much easier.
However, students should not record more significant figures than can be
justified merely because they are easily obtained. An accuracy greater
than 0.2% is seldom necessary or meaningful in the solution of practical
engineering problems.



1.2 Stresses in the Members of a Structure

5 in.

| 10 in:

E|(® O
Cc

500 1b

Fig. 1 Free-body diagram of
hanger.

750 Ib

Fy=7501b

% -in. diameter

Fig.2 PinA.

Sample Problem 1.1

In the hanger shown, the upper portion of link ABC is } in. thick and
the lower portions are each } in. thick. Epoxy resin is used to bond
the upper and lower portions together at B. The pin at A has a 3-in.
diameter, while a }-in.-diameter pin is used at C. Determine (a) the
shearing stress in pin A, (b) the shearing stress in pin C, (¢) the larg-
est normal stress in link ABC, (d) the average shearing stress on the
bonded surfaces at B, and (e) the bearing stress in the link at C.

STRATEGY: Consider the free body of the hanger to determine the
internal force for member AB and then proceed to determine the
shearing and bearing forces applicable to the pins. These forces can
then be used to determine the stresses.

MODELING: Draw the free-body diagram of the hanger to deter-
mine the support reactions (Fig. 1). Then draw the diagrams of the
various components of interest showing the forces needed to deter-
mine the desired stresses (Figs. 2-6).

ANALYSIS:

Free Body: Entire Hanger. Since the link ABC is a two-force mem-
ber (Fig. 1), the reaction at A is vertical; the reaction at D is represented
by its components D, and D,. Thus,

+Y M, = 0: (500 Ib)(15 in.) — F,4(101in.) = 0
Fu,c= +7501b  F,r=7501b tension

a. Shearing Stress in Pin A. Since this }-in.-diameter pin is in
single shear (Fig. 2), write

ry= 00D 7, = 6790 psi
YA 17(0.375i0n.) 4 2

b. Shearing Stress in Pin C. Since this }-in.-diameter pin is in
double shear (Fig. 3), write

1
5F, 3751b
24°AC 9
Tc = = T¢c = 7640 psi
¢ A lz(025in) ¢ g
Fuc = 750 Ib
1F\c=3751h
%—in, diameter % F,;=3751b
Fig.3 PinC.
(continued)

J
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c. Largest Normal Stress in Link ABC. The largest stress is
found where the area is smallest; this occurs at the cross section at A
(Fig. 4) where the 3-in. hole is located. We have

_ Fic 750 b _ 7501b

gy — = =
47 A (in)(125in. — 0.375in.)  0.328 in?

o, = 2290 psi

d. Average Shearing Stress at B. We note that bonding exists
on both sides of the upper portion of the link (Fig. 5) and that the shear
force on each side is F; = (750 1b)/2 = 375 lb. The average shearing
stress on each surface is

F 3751b
A (1.25in.)(1.75in.)

Tp = T = 171.4 psi

e. Bearing Stress in Link at C. For each portion of the link
(Fig. 6), F, = 375 b, and the nominal bearing area is (0.25 in.)(0.25 in.)
= 0.0625 in”.

F, 3751b

o, =~ =—""" o, = 6000 psi
"7 A 0.0625in? b a

F,c =750 1b

/%in‘
1.25 in.

o

1 %—in. diameter
Fac

Fig. 4 Link ABC section at A. Fig. 5 Element AB.

:31511)1 F,

Il
(oV]
P |
gt
—_
o

%—in, diameter

Fig. 6 Link ABC section at C.

REFLECT and THINK: This sample problem demonstrates the need
to draw free-body diagrams of the separate components, carefully con-
sidering the behavior in each one. As an example, based on visual
inspection of the hanger it is apparent that member AC should be in
tension for the given load, and the analysis confirms this. Had a com-
pression result been obtained instead, a thorough reexamination of
the analysis would have been required.
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r

Fi = 1P

Fig. 1 Sectioned bolt.

Fig. 2 Tie bar geometry.

"= 120 kN

Ae)

Q
/i/ :
o= R o|—
e

Fig. 3 End section of tie bar.
t =20 mm

P = 120 kN

"

Fig. 4 Mid-body section of tie bar.

Sample Problem 1.2

The steel tie bar shown is to be designed to carry a tension force of
magnitude P = 120 kN when bolted between double brackets at A
and B. The bar will be fabricated from 20-mm-thick plate stock. For the
grade of steel to be used, the maximum allowable stresses are
o = 175 MPa, 7 = 100 MPa, and o, = 350 MPa. Design the tie bar by
determining the required values of (a) the diameter d of the bolt, (b) the
dimension b at each end of the bar, and (¢) the dimension # of the bar.

STRATEGY: Use free-body diagrams to determine the forces needed
to obtain the stresses in terms of the design tension force. Setting these
stresses equal to the allowable stresses provides for the determination
of the required dimensions.

MODELING and ANALYSIS:

a. Diameter of the Bolt.
F, = 1P = 60KkN.
60 kN

F 60 kN
==l=2"" 100MPa=,—,
A g wd amd

Use d = 28 mm

Since the bolt is in double shear (Fig. 1),

d = 27.6 mm

T

At this point, check the bearing stress between the 20-mm-thick plate
(Fig. 2) and the 28-mm-diameter bolt.

P 120 kN
td  (0.020 m)(0.028 m)

op = 214MPa <350 MPa OK

b. Dimension b at Each End of the Bar. We consider one of the
end portions of the bar in Fig. 3. Recalling that the thickness of the
steel plate is £ = 20 mm and that the average tensile stress must not
exceed 175 MPa, write

o 60 kN
g =— 175 MPa = ————
ta (0.02m)a
b=d+ 2a = 28 mm + 2(17.14 mm)

a = 17.14 mm
b = 62.3 mm

c. Dimension h of the Bar. We consider a section in the central
portion of the bar (Fig. 4). Recalling that the thickness of the steel plate
is t = 20 mm, we have

P 120 kN

o=— 175MPa =

T ———C h =343
th (0.020 m)h i

Use h = 35 mm

REFLECT and THINK: We sized d based on bolt shear, and then
checked bearing on the tie bar. Had the maximum allowable bearing
stress been exceeded, we would have had to recalculate d based on
the bearing criterion.




Problems

1.1 Two solid cylindrical rods AB and BC are welded together at B and
loaded as shown. Knowing that d, = 30 mm and d, = 50 mm,
find the average normal stress at the midsection of (a) rod AB,
(b) rod BC.

A

60 kN

0.9 m
Fig. P1.1 and P1.2

1.2 Two solid cylindrical rods AB and BC are welded together at B and
loaded as shown. Knowing that the average normal stress must not
exceed 150 MPa in either rod, determine the smallest allowable
values of the diameters d; and d,.

Two solid cylindrical rods AB and BC are welded together at B and
loaded as shown. Knowing that P = 10 kips, find the average nor-
mal stress at the midsection of (a) rod AB, (b) rod BC.

12 kips

~— 0.75in.

3

Fig. P1.3 and P1.4

1.4 Two solid cylindrical rods AB and BC are welded together at B
and loaded as shown. Determine the magnitude of the force P
for which the tensile stresses in rods AB and BC are equal.




1.5 A strain gage located at C on the surface of bone AB indicates that
the average normal stress in the bone is 3.80 MPa when the bone
is subjected to two 1200-N forces as shown. Assuming the cross
section of the bone at C to be annular and knowing that its outer
diameter is 25 mm, determine the inner diameter of the bone’s
cross section at C.

Two brass rods AB and BC, each of uniform diameter, will be
brazed together at B to form a nonuniform rod of total length
100 m that will be suspended from a support at A as shown.
Knowing that the density of brass is 8470 kg/m®, determine
(a) the length of rod AB for which the maximum normal stress in
ABC is minimum, (b) the corresponding value of the maximum
normal stress.

1.7 Each of the four vertical links has an 8 X 36-mm uniform rectan-

gular cross section, and each of the four pins has a 16-mm diameter.
Determine the maximum value of the average normal stress in the
links connecting (a) points B and D, (b) points C and E.




1.8 Link AC has a uniform rectangular cross section  in. thick and
1 in. wide. Determine the normal stress in the central portion of
the link.

Three forces, each of magnitude P = 4 kN, are applied to the
structure shown. Determine the cross-sectional area of the uni-
form portion of rod BE for which the normal stress in that portion
is +100 MPa.

0.100 m

ey
et

(o; @ @

@\ D
[]

A B C =

0150m 0300m  0250m
Fig. P1.9

1.10 Link BD consists of a single bar 1 in. wide and % in. thick. Knowing
that each pin has a %—in. diameter, determine the maximum value
of the average normal stress in link BD if (a) 6 = 0, (b) 6 = 90°.

s

N
e

Fig. P1.10

1.11 For the Pratt bridge truss and loading shown, determine the aver-
age normal stress in member BE, knowing that the cross-sectional
area of that member is 5.87 in’.

B D

A6

C 18, G

A
l«9ft»«9ft»«9ft»e9 ft»l
 /  / \ 4

80 kips 80 kips 80 kips
Fig. P1.11




1.12 The frame shown consists of four wooden members, ABC, DEF,
BE, and CF. Knowing that each member has a 2 X 4-in. rectan-
gular cross section and that each pin has a %-in. diameter, deter-
mine the maximum value of the average normal stress
(a) in member BE, (b) in member CF.

Al 45 in. |
N = lc
Q@ €]
-

480 1b

e N
@ @

-
E
Dme!

Fig. P1.12

1.13 An aircraft tow bar is positioned by means of a single hydraulic
cylinder connected by a 25-mm-diameter steel rod to two identi-
cal arm-and-wheel units DEF. The mass of the entire tow bar is
200 kg, and its center of gravity is located at G. For the position
shown, determine the normal stress in the rod.

Dimensions in mm

1150 — |
R~

i,
/F' \\DE
|

850 500 675 825

Fig. P1.13

Two hydraulic cylinders are used to control the position of the
robotic arm ABC. Knowing that the control rods attached at A
and D each have a 20-mm diameter and happen to be parallel in
the position shown, determine the average normal stress in
(a) member AE, (b) member DG.

150 mm

<300 mm 800 N

C

150 mm 200 mm
Fig. P1.14




1.15 Determine the diameter of the largest circular hole that can be
punched into a sheet of polystyrene 6 mm thick, knowing that the
force exerted by the punch is 45 kN and that a 55-MPa average
shearing stress is required to cause the material to fail.

Two wooden planks, each % in. thick and 9 in. wide, are joined by
the dry mortise joint shown. Knowing that the wood used shears
off along its grain when the average shearing stress reaches 1.20
ksi, determine the magnitude P of the axial load that will cause
the joint to fail.

Fig. P1.16

When the force P reached 1600 lb, the wooden specimen shown
failed in shear along the surface indicated by the dashed line.
Determine the average shearing stress along that surface at the
time of failure.

Steel

Fig. P1.17

1.18 A load P is applied to a steel rod supported as shown by an alu-
minum plate into which a 12-mm-diameter hole has been drilled.
Knowing that the shearing stress must not exceed 180 MPa in the
steel rod and 70 MPa in the aluminum plate, determine the larg-
est load P that can be applied to the rod.

!

10 mm

T

]| Jl-

‘<— 40 mm*»‘

Fig. P1.18

The axial force in the column supporting the timber beam shown
is P = 20 kips. Determine the smallest allowable length L of the
bearing plate if the bearing stress in the timber is not to exceed

Fig. P1.19 400 psi.




1.20 Three wooden planks are fastened together by a series of bolts to
form a column. The diameter of each bolt is 12 mm and the inner
diameter of each washer is 16 mm, which is slightly larger than W 1o mm
the diameter of the holes in the planks. Determine the smallest T
allowable outer diameter d of the washers, knowing that the aver-
age normal stress in the bolts is 36 MPa and that the bearing
stress between the washers and the planks must not exceed
8.5 MPa.

A 40-kN axial load is applied to a short wooden post that is sup-
ported by a concrete footing resting on undisturbed soil. Deter-
mine (a) the maximum bearing stress on the concrete footing,
(b) the size of the footing for which the average bearing stress in
the soil is 145 kPa.

P =40 kN

120 mm

~ 2
SN

Fig. P1.21

An axial load P is supported by a short W8 X 40 column of cross-
sectional area A = 11.7 in” and is distributed to a concrete foun-
dation by a square plate as shown. Knowing that the average
normal stress in the column must not exceed 30 ksi and that the
bearing stress on the concrete foundation must not exceed 3.0 ksi,
determine the side a of the plate that will provide the most eco-
nomical and safe design.

Link AB, of width b = 2 in. and thickness t = i in., is used to
support the end of a horizontal beam. Knowing that the average
normal stress in the link is —20 ksi and that the average
shearing stress in each of the two pins is 12 ksi determine (a) the
diameter d of the pins, (b) the average bearing stress in the link.




1.24 Determine the largest load P that can be applied at A when
6 = 60°, knowing that the average shearing stress in the 10-mm-
diameter pin at B must not exceed 120 MPa and that the average
bearing stress in member AB and in the bracket at B must not
exceed 90 MPa.

Knowing that § = 40° and P = 9 kN, determine (a) the smallest
allowable diameter of the pin at B if the average shearing stress
in the pin is not to exceed 120 MPa, (b) the corresponding aver-
age bearing stress in member AB at B, (c) the corresponding aver-
age bearing stress in each of the support brackets at B.

The hydraulic cylinder CF, which partially controls the position

Fig. P1.24 and P1.25 of rod DE, has been locked in the position shown. Member BD is
15 mm thick and is connected at C to the vertical rod by a
9-mm-diameter bolt. Knowing that P = 2 kN and 0 = 75°, deter-
mine (a) the average shearing stress in the bolt, (b) the bearing
stress at C in member BD.

I

45 mm
Fig. P1.26

1.27 For the assembly and loading of Prob. 1.7, determine (a) the aver-
age shearing stress in the pin at B, (b) the average bearing stress
at B in member BD, (c) the average bearing stress at B in member
ABC, knowing that this member has a 10 X 50-mm uniform rect-
angular cross section.

'
1500 1b 4

15 in.
;m .28 Two identical linkage-and-hydraulic-cylinder systems control the

position of the forks of a fork-lift truck. The load supported by the
one system shown is 1500 lb. Knowing that the thickness of
member BD is % in., determine (a) the average shearing stress
16in.  16in.  20in. in the }-in.-diameter pin at B, (b) the bearing stress at B in
Fig. P1.28 member BD.




1.3 STRESS ON AN OBLIQUE PLANE
UNDER AXIAL LOADING

Previously, axial forces exerted on a two-force member (Fig. 1.26a) caused
normal stresses in that member (Fig. 1.26b), while transverse forces
exerted on bolts and pins (Fig. 1.27a) caused shearing stresses in those
connections (Fig. 1.27b). Such a relation was observed between axial
forces and normal stresses and transverse forces and shearing stresses,
because stresses were being determined only on planes perpendicular to
the axis of the member or connection. In this section, axial forces cause
both normal and shearing stresses on planes that are not perpendicular
to the axis of the member. Similarly, transverse forces exerted on a bolt or
a pin cause both normal and shearing stresses on planes that are not
perpendicular to the axis of the bolt or pin.

7\
7

N
o

=
(a) ®)
Fig. 1.27 (a) Diagram of a bolt from a single-shear joint with a section plane normal

to the bolt. (b) Equivalent force diagram models of the resultant force acting at the
section centroid and the uniform average shear stress.

Consider the two-force member of Fig. 1.26 that is subjected to axial
forces P and P’. If we pass a section forming an angle # with a normal
plane (Fig. 1.28a) and draw the free-body diagram of the portion of mem-
ber located to the left of that section (Fig. 1.28b), the equilibrium condi-
tions of the free body show that the distributed forces acting on the section
must be equivalent to the force P.

Resolving P into components F and V, respectively normal and tan-
gential to the section (Fig. 1.28¢),

F=Pcosh V=DPsin6 (1.12)

Force F represents the resultant of normal forces distributed over the sec-
tion, and force V is the resultant of shearing forces (Fig. 1.28d). The aver-
age values of the corresponding normal and shearing stresses are obtained
by dividing F and V by the area Ay of the section:

F |4

== =2 113
A, A, (1.13)

g
Substituting for Fand V from Eq. (1.12) into Eq. (1.13), and observing from
Fig. 1.28¢ that A, = Ay cos 6 or Ay = Ay/cos 6, where A, is the area of a
section perpendicular to the axis of the member, we obtain

Pcosf Psin 6

7= Ay/cos 6 T Ay/cos 6

or

P, P .
o=-—cos"0 T =-—sinfcosh (1.149)

A Ay

1.3 Stress on an Oblique Plane Under Axial Loading
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(b)
Fig. 1.26 Axial forces on a two-force member.
(a) Section plane perpendicular to member away
from load application. (b) Equivalent force diagram
models of resultant force acting at centroid and
uniform normal stress.

P’ ‘ ‘ P

2 P
(b)
Ay 1
Ay F
— 1 N
—_ P<— ! = P
v

a4

(d)
Fig. 1.28 Oblique section through a two-force
member. (a) Section plane made at an angle 6 to the
member normal plane, (b) Free-body diagram of left
section with internal resultant force P. (c) Free-body
diagram of resultant force resolved into components
F and V along the section plane’s normal and
tangential directions, respectively. (d) Free-body
diagram with section forces F and V represented as
normal stress, o, and shearing stress, 7.
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(a) Axial loading

0, = PIA,
——

(b) Stresses for 8 = 0

o' = PRA,

X

Tim = ])/2A1)
(c) Stresses for 0 = 45°
T, = PI2A,
o'= P/2A,
(d) Stresses for § = —45°

Fig. 1.29 Selected stress results for
axial loading.

P

=

Fig. 1.30 Multiple loads on
a general body.

Note from the first of Egs. (1.14) that the normal stress o is maxi-
mum when 6 = 0 (i.e., the plane of the section is perpendicular to the axis
of the member). It approaches zero as 6 approaches 90°. We check that
the value of o when 6 = 0 is

p

= Xo (1.15)

o'm
The second of Egs. (1.14) shows that the shearing stress 7 is zero for = 0
and 6 = 90°. For O = 45°, it reaches its maximum value

P s o o
T, = ——sin 45° cos 45° = (1.16)

A, 24,
The first of Egs. (1.14) indicates that, when 6 = 45°, the normal stress o’
is also equal to P/2A,:

’ p 2 o p
o' =-—cos"45° = — (1.17)
A, 24,

The results obtained in Egs. (1.15), (1.16), and (1.17) are shown
graphically in Fig. 1.29. The same loading may produce either a normal
stress 0, = P/A, and no shearing stress (Fig. 1.29b) or a normal and a
shearing stress of the same magnitude o’ = 7,, = P/2A, (Fig. 1.29c and d),
depending upon the orientation of the section.

1.4 STRESS UNDER GENERAL
LOADING CONDITIONS;
COMPONENTS OF STRESS

The examples of the previous sections were limited to members under
axial loading and connections under transverse loading. Most structural
members and machine components are under more involved loading
conditions.

Consider a body subjected to several loads P, P,, etc. (Fig. 1.30). To
understand the stress condition created by these loads at some point Q
within the body, we shall first pass a section through Q, using a plane
parallel to the yz plane. The portion of the body to the left of the section
is subjected to some of the original loads, and to normal and shearing
forces distributed over the section. We shall denote by AF* and AV7,
respectively, the normal and the shearing forces acting on a small area AA
surrounding point Q (Fig. 1.31a). Note that the superscript x is used to
indicate that the forces AF* and AV™ act on a surface perpendicular to the
x axis. While the normal force AF* has a well-defined direction, the shear-
ing force AV* may have any direction in the plane of the section. We there-
fore resolve AV* into two component forces, AVy and AV, in directions
parallel to the y and z axes, respectively (Fig. 1.31b). Dividing the magni-
tude of each force by the area AA and letting AA approach zero, we define
the three stress components shown in Fig. 1.32:

i AF
B AAILIO AA

(T)C
(1.18)
Ay AV
o AIAIEO AA Tz = A% AA

T
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;

\ ( 7 AF*
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Py \/ P, b
X X
(a) (b)

Fig. 1.31 (a) Resultant shear and normal forces, AV* and AF*, acting

on small area AA at point Q. (b) Forces on AA resolved into forces in
coordinate directions.

Note that the first subscript in o, 74, and 7, is used to indicate that the
stresses are exerted on a surface perpendicular to the x axis. The second
subscript in 7, and 7, identifies the direction of the component. The
normal stress o, is positive if the corresponding arrow points in the posi-
tive x direction (i.e., if the body is in tension) and negative otherwise.
Similarly, the shearing stress components 7,, and 7., are positive if the
corresponding arrows point, respectively, in the positive y and z
directions.

This analysis also may be carried out by considering the portion of
body located to the right of the vertical plane through Q (Fig. 1.33). The
same magnitudes, but opposite directions, are obtained for the normal
and shearing forces AF*, AVj, and AV Therefore, the same values are
obtained for the corresponding stress components. However as the section
in Fig. 1.33 now faces the negative x axis, a positive sign for o, indicates
that the corresponding arrow points in the negative x direction. Similarly,
positive signs for 7., and 7., indicate that the corresponding arrows point
in the negative y and z directions, as shown in Fig. 1.33.

Passing a section through Q parallel to the zx plane, we define the
stress components, 0, T,,, and 7,,. Then, a section through Q parallel to
the xy plane yields the components o, 7., and 7,

To visualize the stress condition at point Q, consider a small cube
of side a centered at Q and the stresses exerted on each of the six faces of
the cube (Fig. 1.34). The stress components shown are o, ¢, and o,
which represent the normal stress on faces respectively perpendicular to
the x, y, and z axes, and the six shearing stress components 7, T, etc.
Recall that 7, represents the y component of the shearing stress exerted
on the face perpendicular to the x axis, while 7, represents the x compo-
nent of the shearing stress exerted on the face perpendicular to the y axis.
Note that only three faces of the cube are actually visible in Fig. 1.34 and
that equal and opposite stress components act on the hidden faces. While
the stresses acting on the faces of the cube differ slightly from the stresses
at Q, the error involved is small and vanishes as side a of the cube
approaches zero.

29
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Fig. 1.32 Stress components at point Q on the
body to the left of the plane.
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Fig. 1.33 Stress components at point Q on the
body to the right of the plane.
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Fig. 1.34 Positive stress components at point Q.
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Shearing stress components. Consider the free-body diagram of
the small cube centered at point Q (Fig. 1.35). The normal and shearing
forces acting on the various faces of the cube are obtained by multiplying
the corresponding stress components by the area AA of each face. First
write the following three equilibrium equations

SF,=0 3F,=0 3F =0 (1.19)

Yy

()—?/AA 7, AA

I

-

Fig. 1.35 Positive resultant forces on a small element
at point Q resulting from a state of general stress.

Since forces equal and opposite to the forces actually shown in Fig. 1.35
are acting on the hidden faces of the cube, Egs. (1.19) are satisfied. Con-
sidering the moments of the forces about axes x’, y’, and z’ drawn from
Q in directions respectively parallel to the x, y, and z axes, the three addi-
tional equations are

SMy=0 3M,=0 3M,=0 (1.20)

Using a projection on the x'y’ plane (Fig. 1.36), note that the only forces
with moments about the z axis different from zero are the shearing forces.
These forces form two couples: a counterclockwise (positive) moment
(7,y AA)a and a clockwise (negative) moment —(7,, AA)a. The last of the
three Egs. (1.20) yields

+\2EM, = 0: (14 AA)a — (1) AA)a = 0

from which

Ty = Ty (1.21)

rrl/L\:\

== Tg/\ AA

o AA l i A
X

T\-g/AA -~ a—>] 0, AA

AA ==
\ (T,/ AA

Ty

Fig. 1.36 Free-body diagram of small element
at Q viewed on projected plane perpendicular to
Z'-axis. Resultant forces on positive and negative z'
faces (not shown) act through the z'-axis, thus do
not contribute to the moment about that axis.



This relationship shows that the y component of the shearing stress
exerted on a face perpendicular to the x axis is equal to the x component
of the shearing stress exerted on a face perpendicular to the y axis. From
the remaining parts of Egs. (1.20), we derive.

T

e = Tz (1.22)

Tox = Txz

We conclude from Egs. (1.21) and (1.22), only six stress compo-
nents are required to define the condition of stress at a given point Q,
instead of nine as originally assumed. These components are o, 0, 0,
Ty, Tyz, and 7. Also note that, at a given point, shear cannot take place
in one plane only; an equal shearing stress must be exerted on another
plane perpendicular to the first one. For example, considering the bolt
of Fig. 1.29 and a small cube at the center Q (Fig. 1.37a), we see that
shearing stresses of equal magnitude must be exerted on the two hori-
zontal faces of the cube and on the two faces perpendicular to the forces
P and P’ (Fig. 1.37b).

Axial loading. Let us consider again a member under axial loading. If
we consider a small cube with faces respectively parallel to the faces of the
member and recall the results obtained in Sec. 1.3, the conditions of stress
in the member may be described as shown in Fig. 1.38a; the only stresses
are normal stresses o, exerted on the faces of the cube that are perpen-
dicular to the x axis. However, if the small cube is rotated by 45° about the
z axis so that its new orientation matches the orientation of the sections
considered in Fig. 1.29¢ and d, normal and shearing stresses of equal mag-
nitude are exerted on four faces of the cube (Fig. 1.38b). Thus, the same
loading condition may lead to different interpretations of the stress situa-
tion at a given point, depending upon the orientation of the element con-
sidered. More will be said about this in Chap. 7: Transformation of Stress
and Strain.

1.5 DESIGN CONSIDERATIONS

In engineering applications, the determination of stresses is seldom an
end in itself. Rather, the knowledge of stresses is used by engineers to
assist in their most important task: the design of structures and machines
that will safely and economically perform a specified function.

1.5A Determination of the Ultimate
Strength of a Material

An important element to be considered by a designer is how the material
will behave under a load. This is determined by performing specific tests
on prepared samples of the material. For example, a test specimen of steel
may be prepared and placed in a laboratory testing machine to be sub-
jected to a known centric axial tensile force, as described in Sec. 2.1B. As
the magnitude of the force is increased, various dimensional changes such
as length and diameter are measured. Eventually, the largest force that
may be applied to the specimen is reached, and it either breaks or begins
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(b)

Fig. 1.37 Single-shear bolt with point Q chosen
at the center. (b) Pure shear stress element at
point Q.

(b)
Fig. 1.38 Changing the orientation of the stress
element produces different stress components for
the same state of stress. This is studied in detail in
Chapter 7.
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Fig. 1.39 Single shear test.
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Fig. 1.40 Double shear test.

to carry less load. This largest force is called the ultimate load and is
denoted by Py. Since the applied load is centric, the ultimate load is
divided by the original cross-sectional area of the rod to obtain the ulti-
mate normal stress of the material. This stress, also known as the ultimate
strength in tension, is

P
oy = IU (1.23)

Several test procedures are available to determine the ultimate
shearing stress or ultimate strength in shear. The one most commonly used
involves the twisting of a circular tube (Sec. 3.2). A more direct, if less
accurate, procedure clamps a rectangular or round bar in a shear tool
(Fig. 1.39) and applies an increasing load P until the ultimate load Py, for
single shear is obtained. If the free end of the specimen rests on both of
the hardened dies (Fig. 1.40), the ultimate load for double shear is
obtained. In either case, the ultimate shearing stress 7 is

Ty=— (1.24)

In single shear, this area is the cross-sectional area A of the speci-
men, while in double shear it is equal to twice the cross-sectional area.

1.5B Allowable Load and Allowable
Stress: Factor of Safety

The maximum load that a structural member or a machine component
will be allowed to carry under normal conditions is considerably smaller
than the ultimate load. This smaller load is the allowable load (sometimes
called the working or design load). Thus, only a fraction of the ultimate-
load capacity of the member is used when the allowable load is applied.
The remaining portion of the load-carrying capacity of the member is kept
in reserve to assure its safe performance. The ratio of the ultimate load to
the allowable load is used to define the factor of safety:*

ultimate load

Factor of safety = F.S. = (1.25)

allowable load

An alternative definition of the factor of safety is based on the use of
stresses:

ultimate stress

Factor of safety = F.S. = (1.26)

allowable stress

These two expressions are identical when a linear relationship exists
between the load and the stress. In most engineering applications,

In some fields of engineering, notably aeronautical engineering, the margin of safety is
used in place of the factor of safety. The margin of safety is defined as the factor of safety
minus one; that is, margin of safety = ES. — 1.00.



however, this relationship ceases to be linear as the load approaches its
ultimate value, and the factor of safety obtained from Eq. (1.26) does not
provide a true assessment of the safety of a given design. Nevertheless, the
allowable-stress method of design, based on the use of Eq. (1.26), is widely
used.

1.5C Factor of Safety Selection

The selection of the factor of safety to be used is one of the most impor-
tant engineering tasks. If a factor of safety is too small, the possibility
of failure becomes unacceptably large. On the other hand, if a factor of
safety is unnecessarily large, the result is an uneconomical or nonfunc-
tional design. The choice of the factor of safety for a given design appli-
cation requires engineering judgment based on many considerations.

1. Variations that may occur in the properties of the member. The com-
position, strength, and dimensions of the member are all subject to
small variations during manufacture. In addition, material proper-
ties may be altered and residual stresses introduced through heating
or deformation that may occur during manufacture, storage, trans-
portation, or construction.

2. The number of loadings expected during the life of the structure or
machine. For most materials, the ultimate stress decreases as the
number of load cycles is increased. This phenomenon is known as
Jatigue and can result in sudden failure if ignored (see Sec. 2.1F).

3. The type of loadings planned for in the design or that may occur in
the future. Very few loadings are known with complete accuracy—
most design loadings are engineering estimates. In addition, future
alterations or changes in usage may introduce changes in the actual
loading. Larger factors of safety are also required for dynamic, cyclic,
or impulsive loadings.

4. Type of failure. Brittle materials fail suddenly, usually with no prior
indication that collapse is imminent. However, ductile materials,
such as structural steel, normally undergo a substantial deformation
called yielding before failing, providing a warning that overloading
exists. Most buckling or stability failures are sudden, whether the
material is brittle or not. When the possibility of sudden failure
exists, a larger factor of safety should be used than when failure is
preceded by obvious warning signs.

Uncertainty due to methods of analysis. All design methods are

based on certain simplifying assumptions that result in calculated

stresses being approximations of actual stresses.

Deterioration that may occur in the future because of poor

maintenance or unpreventable natural causes. A larger factor of

safety is necessary in locations where conditions such as corrosion
and decay are difficult to control or even to discover.

The importance of a given member to the integrity of the whole

structure. Bracing and secondary members in many cases can be

designed with a factor of safety lower than that used for primary
members.

@

o

7

In addition to these considerations, there is concern of the risk to
life and property that a failure would produce. Where a failure would
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produce no risk to life and only minimal risk to property, the use of a
smaller factor of safety can be acceptable. Finally, unless a careful design
with a nonexcessive factor of safety is used, a structure or machine might
not perform its design function. For example, high factors of safety may
have an unacceptable effect on the weight of an aircraft.

For the majority of structural and machine applications, factors of
safety are specified by design specifications or building codes written by
committees of experienced engineers working with professional societies,
industries, or federal, state, or city agencies. Examples of such design
specifications and building codes are

1. Steel: American Institute of Steel Construction, Specification for
Structural Steel Buildings

2. Concrete: American Concrete Institute, Building Code Requirement
for Structural Concrete

3. Timber: American Forest and Paper Association, National Design
Specification for Wood Construction

4. Highway bridges: American Association of State Highway Officials,
Standard Specifications for Highway Bridges

1.5D Load and Resistance Factor
Design

The allowable-stress method requires that all the uncertainties associated
with the design of a structure or machine element be grouped into a
single factor of safety. An alternative method of design makes it possible
to distinguish between the uncertainties associated with the structure
itself and those associated with the load it is designed to support. Called
Load and Resistance Factor Design (LRFD), this method allows the
designer to distinguish between uncertainties associated with the live
load, Py (i.e., the active or time-varying load to be supported by the struc-
ture) and the dead load, Py, (i.e., the self weight of the structure contribut-
ing to the total load).

Using the LRFD method the ultimate load, Py, of the structure (i.e.,
the load at which the structure ceases to be useful) should be deter-
mined. The proposed design is acceptable if the following inequality is
satisfied:

YoPp + y.Pp = ¢$Py 1.27)

The coefficient ¢ is the resistance factor, which accounts for the uncertain-
ties associated with the structure itself and will normally be less than 1.
The coefficients ©y, and 7y, are the load factors; they account for the
uncertainties associated with the dead and live load and normally will be
greater than 1, with y; generally larger than y,. While a few examples and
assigned problems using LRFD are included in this chapter and in
Chaps. 5 and 10, the allowable-stress method of design is primarily used
in this text.
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Fig. 1 Free-body diagram of bracket.
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Fig. 2 Free-body diagram
of pin at point C.

15 kN

D

Sample Problem 1.3

Two loads are applied to the bracket BCD as shown. (@) Knowing that
the control rod AB is to be made of a steel having an ultimate normal
stress of 600 MPa, determine the diameter of the rod for which the
factor of safety with respect to failure will be 3.3. (b) The pin at C is to
be made of a steel having an ultimate shearing stress of 350 MPa.
Determine the diameter of the pin C for which the factor of safety with
respect to shear will also be 3.3. (¢) Determine the required thickness
of the bracket supports at C, knowing that the allowable bearing stress
of the steel used is 300 MPa.

STRATEGY: Consider the free body of the bracket to determine the
force P and the reaction at C. The resulting forces are then used with
the allowable stresses, determined from the factor of safety, to obtain
the required dimensions.

MODELING: Draw the free-body diagram of the hanger (Fig. 1), and
the pin at C (Fig. 2).

ANALYSIS:

Free Body: Entire Bracket. Using Fig. 1, the reaction at C is represented
by its components C, and C,,.

+Y2EMc=0: P(0.6m) — (50 kN)(0.3m) — (15kN)(0.6m) =0 P =40kN
SF, =0 C, = 40 kN
SF,=0: C,=65kN C=VCi+C)=763kN

a. Control Rod AB. Since the factor of safety is 3.3, the allowable
stress is

oy 600 MPa

=== = 181.8 MPa
ES. &3

Tall

For P = 40 kN, the cross-sectional area required is

P 40 kN

=———— =220 X 10 °m?
oa 181.8 MPa

Areq =

71- —
Awg = dis =220 X 10°m*  d, = 16.74 mm

b. Shear in Pin C. For a factor of safety of 3.3, we have

Ty _ 350 MPa

=== = 106.1 MPa
ES. S

Tall =

(continued)

~
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-

Fig. 3 Bearing loads at bracket support
at point C.

As shown in Fig. 2 the pin is in double shear. We write

_C/2 (76.3kN)/2
4 . 106.1 MPa

= 360 mm®
Apq = %dé = 360 mm?® dc = 21.4mm Use: d. = 22 mm

c. Bearing at C. Using d = 22 mm, the nominal bearing area of
each bracket is 22¢. From Fig. 3 the force carried by each bracket is C/2
and the allowable bearing stress is 300 MPa. We write

_C/2 (76.3kN)/2
“4 g 300MPa
Thus, 22t = 127.2 t = 5.78 mm Use: t = 6 mm

= 127.2 mm?

REFLECT and THINK: It was appropriate to design the pin C first
and then its bracket, as the pin design was geometrically dependent
upon diameter only, while the bracket design involved both the pin
diameter and bracket thickness.

B
)

(o)

(C ) D
A

I«Gin. 81n.—>|

Fig. 1

Free-body diagram of beam BCD.

Sample Problem 1.4

The rigid beam BCD is attached by bolts to a control rod at B, to a
hydraulic cylinder at C, and to a fixed support at D. The diameters of
the bolts used are: dy = dp = 2 in., dc = % in. Each bolt acts in double
shear and is made from a steel for which the ultimate shearing stress
is 7, = 40 ksi. The control rod AB has a diameter d, = ;% in. and is
made of a steel for which the ultimate tensile stress is o;; = 60 ksi. If
the minimum factor of safety is to be 3.0 for the entire unit, determine
the largest upward force that may be applied by the hydraulic cylinder
at C.

STRATEGY: The factor of safety with respect to failure must be 3.0
or more in each of the three bolts and in the control rod. These four
independent criteria need to be considered separately.

MODELING: Draw the free-body diagram of the bar (Fig. 1) and
the bolts at B and C (Figs. 2 and 3). Determine the allowable value
of the force C based on the required design criteria for each part.

ANALYSIS:

Free Body: Beam BCD. Using Fig. 1, first determine the force at C
in terms of the force at B and in terms of the force at D.

+IM,, = 0: B(14in.) — C(8in.) = 0 C=1750B (1)
+4 SM; = 0 ~D(14in.) + C(6in.) = 0 C=233D (2)
(continued)
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Fig. 2 Free-body diagram
of pin at point B.

~

Control Rod. For a factor of safety of 3.0

oy _ 60ksi
ES. 3.0

Oa1 = = 20 ksi

The allowable force in the control rod is
B = o(A) = (20 ksi)}7 (55 in.)* = 3.01 kips
Using Eq. (1), the largest permitted value of C is

C = 1.750B = 1.750(3.01kips)  C = 5.27 kips

Bolt at B. 1, = 7y/ES. = (40 ksi)/3 = 13.33 ksi. Since the bolt is in
double shear (Fig. 2), the allowable magnitude of the force B exerted
on the bolt is

B = 2F, = 2(14A) = 2(13.33 ksi)(37) (2 in.)* = 2.94 kips
From Eq. (1), C = 1.750B = 1.750(2.94 kips) C = 5.15 kips

Bolt at D. Since this bolt is the same as bolt B, the allowable force
is D = B = 2.94 kips. From Eq. (2)

C = 2.33D = 2.33(2.94kips) C = 6.85 kips
Bolt at C. We again have 7,; = 13.33 ksi. Using Fig. 3, we write

C = 2F, = 2(tyA) = 2(13.33ksi); 7)Gin.)?  C = 5.23 kips

Fig. 3 Free-body
diagram of pin at point C.

Summary. We have found separately four maximum allowable val-
ues of the force C. In order to satisfy all these criteria, choose the
smallest value. C = 5.15 kips

REFLECT and THINK: This example illustrates that all parts must
satisfy the appropriate design criteria, and as a result, some parts have
more capacity than needed.




Problems

1.29 Two wooden members of uniform rectangular cross section
are joined by the simple glued scarf splice shown. Knowing that
Q‘nm P = 11 kN, determine the normal and shearing stresses in the

glued splice.
45° . .
P .30 Two wooden members of uniform rectangular cross section are

75 mm joined by the simple glued scarf splice shown. Knowing that the
maximum allowable shearing stress in the glued splice is 620 kPa,
determine (a) the largest load P that can be safely applied,
(b) the corresponding tensile stress in the splice.

Fig. P1.29 and P1.30

The 1.4-kip load P is supported by two wooden members of uni-
form cross section that are joined by the simple glued scarf splice
shown. Determine the normal and shearing stresses in the glued
splice.

Two wooden members of uniform cross section are joined by the
simple scarf splice shown. Knowing that the maximum allowable
tensile stress in the glued splice is 75 psi, determine (a) the larg-
est load P that can be safely supported, (b) the corresponding
shearing stress in the splice.

A centric load P is applied to the granite block shown. Knowing
that the resulting maximum value of the shearing stress in the
block is 2.5 ksi, determine (a) the magnitude of P, (b) the orienta-
tion of the surface on which the maximum shearing stress occurs,
(c) the normal stress exerted on that surface, (d) the maximum
value of the normal stress in the block.

Fig. P1.31 and P1.32

6 in.
Fig. P1.33 and P1.34

1.34 A 240-kip load P is applied to the granite block shown. Deter-
mine the resulting maximum value of (a) the normal stress,
(b) the shearing stress. Specify the orientation of the plane on
which each of these maximum values occurs.




1.35 A steel pipe of 400-mm outer diameter is fabricated from 10-mm-
thick plate by welding along a helix that forms an angle of 20°
with a plane perpendicular to the axis of the pipe. Knowing that
a 300-kN axial force P is applied to the pipe, determine the nor-
mal and shearing stresses in directions respectively normal and
tangential to the weld.

A steel pipe of 400-mm outer diameter is fabricated from 10-mm-
thick plate by welding along a helix that forms an angle of 20°
with a plane perpendicular to the axis of the pipe. Knowing that
the maximum allowable normal and shearing stresses in the
directions respectively normal and tangential to the weld are
o = 60 MPa and 7 = 36 MPa, determine the magnitude P of the
largest axial force that can be applied to the pipe.

A steel loop ABCD of length 5 ft and of 3-in. diameter is placed ~Fig- P1.35 and P1.36
as shown around a 1-in.-diameter aluminum rod AC. Cables BE

and DF, each of %—in. diameter, are used to apply the load Q.

Knowing that the ultimate strength of the steel used for the loop

and the cables is 70 ksi, and that the ultimate strength of the alu-

minum used for the rod is 38 ksi, determine the largest load Q

that can be applied if an overall factor of safety of 3 is desired.

Q

12 in, —|<— 12in.

1.38 Link BC is 6 mm thick, has a width w = 25 mm, and is made of
a steel with a 480-MPa ultimate strength in tension. What is the
factor of safety used if the structure shown was designed to sup-
port a 16-kN load P?

Link BC is 6 mm thick and is made of a steel with a 450-MPa
ultimate strength in tension. What should be its width w if the
structure shown is being designed to support a 20-kN load P with
a factor of safety of 3? Fig. P1.38 and P1.39




1.40 Members AB and BC of the truss shown are made of the same
alloy. It is known that a 20-mm-square bar of the same alloy was
tested to failure and that an ultimate load of 120 kN was re-
corded. If a factor of safety of 3.2 is to be achieved for both bars,
determine the required cross-sectional area of (a) bar AB,
(b) bar AC.

Members AB and BC of the truss shown are made of the same
alloy. It is known that a 20-mm-square bar of the same alloy was

tested to failure and that an ultimate load of 120 kN was recorded.
— E C If bar AB has a cross-sectional area of 225 mm?, determine (a) the
factor of safety for bar AB, (b) the cross-sectional area of bar AC
if it is to have the same factor of safety as bar AB.

Fig. P1.40 and P1.41

Link AB is to be made of a steel for which the ultimate normal
stress is 65 ksi. Determine the cross-sectional area of AB for
which the factor of safety will be 3.20. Assume that the link will be
adequately reinforced around the pins at A and B.

600 Ib/ft

5 kips
\
\

1.4 ft 1.4 ft 1.4 ft

Fig. P1.42

Two wooden members are joined by plywood splice plates that
are fully glued on the contact surfaces. Knowing that the clear-
ance between the ends of the members is 6 mm and that the
ultimate shearing stress in the glued joint is 2.5 MPa, determine
the length L for which the factor of safety is 2.75 for the loading
shown.

JT/
/4, 125 mm

Fig. P1.43

1.44 For the joint and loading of Prob. 1.43, determine the factor of
safety when L = 180 mm.




1.45 Three 3-in.-diameter steel bolts are to be used to attach the steel
plate shown to a wooden beam. Knowing that the plate will sup-
port a load P = 24 kips and that the ultimate shearing stress for
the steel used is 52 ksi, determine the factor of safety for this
design.

l)
Fig. P1.45 and P1.46

Three steel bolts are to be used to attach the steel plate shown to
a wooden beam. Knowing that the plate will support a load
P = 28 kips, that the ultimate shearing stress for the steel used is
52 ksi, and that a factor of safety of 3.25 is desired, determine the
required diameter of the bolts.

1.47 A load P is supported as shown by a steel pin that has been
inserted in a short wooden member hanging from the ceiling.
The ultimate strength of the wood used is 60 MPa in tension and
7.5 MPa in shear, while the ultimate strength of the steel is
145 MPa in shear. Knowing that b = 40 mm, ¢ = 55 mm, and
d = 12 mm, determine the load P if an overall factor of safety of
3.2 is desired.

<L
40 mm \>/ \{

Fig. P1.47

1.48 For the support of Prob. 1.47, knowing that the diameter of
the pin is d = 16 mm and that the magnitude of the load is

= 20 kN, determine (a) the factor of safety for the pin

(b) the required values of b and c if the factor of safety for the
wooden member is the same as that found in part a for the pin.




1.49 A steel plate ; in. thick is embedded in a concrete wall to anchor

a high-strength cable as shown. The diameter of the hole in the
plate is % in., the ultimate strength of the steel used is 36 ksi. and
the ultimate bonding stress between plate and concrete is
300 psi. Knowing that a factor of safety of 3.60 is desired when
P = 2.5 kips, determine (a) the required width a of the plate,
(b) the minimum depth b to which a plate of that width should
be embedded in the concrete slab. (Neglect the normal stresses
between the concrete and the end of the plate.)

Fig. P1.49

1.50 Determine the factor of safety for the cable anchor in Prob. 1.49

1.51

B
I \S (Y
|<— 6 in. —>|«4 in.—

P

Fig. P1.51

|\250 mm
~

S5

when P = 2.5 kips, knowing that @ = 2 in. and b = 6 in.

Link AC is made of a steel with a 65-ksi ultimate normal stress and
has a i X %—in. uniform rectangular cross section. It is connected
to a support at A and to member BCD at C by >-in.-diameter pins,
while member BCD is connected to its support at B by a
%—in.-diameter pin. All of the pins are made of a steel with a 25-ksi
ultimate shearing stress and are in single shear. Knowing that a
factor of safety of 3.25 is desired, determine the largest load P that
can be applied at D. Note that link AC is not reinforced around the
pin holes.

Solve Prob. 1.51, assuming that the structure has been redesigned
to use 1“—’73-in.-diameter pins at A and C as well as at B and that no
other changes have been made.

Each of the two vertical links CF connecting the two horizontal
members AD and EG has a 10 X 40-mm uniform rectangular
cross section and is made of a steel with an ultimate strength in
tension of 400 MPa, while each of the pins at C and F has a
20-mm diameter and are made of a steel with an ultimate strength
in shear of 150 MPa. Determine the overall factor of safety for the
links CF and the pins connecting them to the horizontal
members.

Solve Prob. 1.53, assuming that the pins at C and F have been
replaced by pins with a 30-mm diameter.




1.55 In the structure shown, an 8-mm-diameter pin is used at A, and
12-mm-diameter pins are used at B and D. Knowing that the ulti-
mate shearing stress is 100 MPa at all connections and that the
ultimate normal stress is 250 MPa in each of the two links joining
B and D, determine the allowable load P if an overall factor of
safety of 3.0 is desired.

Top view
200 mm »I«ISO mm-—- o
. % n
8 mm <I P)
t A B

20mm | p 8
8 mm mm

D (o

D
Front view 12 mm *>| L
Side view

1.56 In an alternative design for the structure of Prob. 1.55, a pin of
10-mm-diameter is to be used at A. Assuming that all other speci-
fications remain unchanged, determine the allowable load P if an
overall factor of safety of 3.0 is desired.

*1.57 A 40-kg platform is attached to the end B of a 50-kg wooden
beam AB, which is supported as shown by a pin at A and by a
slender steel rod BC with a 12-kN ultimate load. (a) Using the
Load and Resistance Factor Design method with a resistance
factor ¢ = 0.90 and load factors yp, = 1.25 and y; = 1.6, deter-
mine the largest load that can be safely placed on the platform.
(b) What is the corresponding conventional factor of safety for
rod BC?

The Load and Resistance Factor Design method is to be used to
select the two cables that will raise and lower a platform support-
ing two window washers. The platform weighs 160 Ib and each
of the window washers is assumed to weigh 195 Ib with equip-
ment. Since these workers are free to move on the platform, 75%
of their total weight and the weight of their equipment will be
used as the design live load of each cable. (@) Assuming a resis-
tance factor ¢¢ = 0.85 and load factors y, = 1.2 and y; = 1.5,
determine the required minimum ultimate load of one cable.
(b) What is the corresponding conventional factor of safety for
the selected cables?




Review and Summary

R

Fig. 1.41 Axially loaded
member with cross section
normal to member used to
define normal stress.

This chapter was devoted to the concept of stress and to an introduction
to the methods used for the analysis and design of machines and load-
bearing structures. Emphasis was placed on the use of a free-body diagram
to obtain equilibrium equations that were solved for unknown reactions.
Free-body diagrams were also used to find the internal forces in the vari-
ous members of a structure.

Axial Loading: Normal Stress

The concept of stress was first introduced by considering a two-force
member under an axial loading. The normal stress in that member
(Fig. 1.41) was obtained by

0=§ (1.5)

The value of o obtained from Eq. (1.5) represents the average stress
over the section rather than the stress at a specific point Q of the section.
Considering a small area AA surrounding Q and the magnitude AF of the
force exerted on AA, the stress at point Q is

AF

o= lim —
AA—0 AA

(1.6)

In general, the stress o at point Q in Eq. (1.6) is different from the
value of the average stress given by Eq. (1.5) and is found to vary across
the section. However, this variation is small in any section away from the
points of application of the loads. Therefore, the distribution of the normal
stresses in an axially loaded member is assumed to be uniform, except in
the immediate vicinity of the points of application of the loads.

For the distribution of stresses to be uniform in a given section, the
line of action of the loads P and P’ must pass through the centroid C. Such
a loading is called a centric axial loading. In the case of an eccentric axial
loading, the distribution of stresses is not uniform.

Transverse Forces and Shearing Stress

When equal and opposite transverse forces P and P’ of magnitude P are
applied to a member AB (Fig. 1.42), shearing stresses T are created over
any section located between the points of application of the two forces.

P

P’
Fig. 1.42 Model of transverse resultant forces on
either side of C resulting in shearing stress at section C.




These stresses vary greatly across the section and their distribution cannot
be assumed to be uniform. However, dividing the magnitude P—referred
to as the shear in the section—by the cross-sectional area A, the average
shearing stress is:

_P (1.8)

Single and Double Shear

Shearing stresses are found in bolts, pins, or rivets connecting two struc-
tural members or machine components. For example, the shearing stress
of bolt CD (Fig. 1.43), which is in single shear, is written as

1.9

Fig. 1.43 Diagram of a single-shear joint.

The shearing stresses on bolts EG and HJ (Fig. 1.44), which are both in double
shear, are written as

_F2 F

= =— 1.10
A 2A (1.10)

Bearing Stress

Bolts, pins, and rivets also create stresses in the members they connect

along the bearing surface or surface of contact. Bolt CD of Fig. 1.43 creates

stresses on the semicylindrical surface of plate A with which it is in contact

(Fig. 1.45). Since the distribution of these stresses is quite complicated,

one uses an average nominal value o, of the stress, called bearing stress.
p P

o, = —

=— 1.11
A td (1)

Fig. 1.45 Bearing stress from force P and the
single-shear bolt associated with it.

Method of Solution
Your solution should begin with a clear and precise statement of the
problem. Then draw one or several free-body diagrams that will be used

Fig. 1.44 Free-body diagram of a double-shear
joint.
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Fig. 1.46 Axially loaded member
with oblique section plane.

4

Fig. 1.47 Positive stress components at point Q.

to write equilibrium equations. These equations will be solved for unknown
forces, from which the required stresses and deformations can be com-
puted. Once the answer has been obtained, it should be carefully checked.

These guidelines are embodied by the SMART problem-solving
methodology, where the steps of Strategy, Modeling, Analysis, and Reflect
& Think are used. You are encouraged to apply this SMART methodology
in the solution of all problems assigned from this text.

Stresses on an Oblique Section

When stresses are created on an oblique section in a two-force member
under axial loading, both normal and shearing stresses occur. Denoting
by 6 the angle formed by the section with a normal plane (Fig. 1.46)
and by A, the area of a section perpendicular to the axis of the
member, the normal stress o and the shearing stress 7 on the oblique
section are

r P
o=-—cos"0 T =-—sinfcosh (1.149)
Ay Ay

We observed from these formulas that the normal stress is maximum and
equal to o, = P/A, for § = 0, while the shearing stress is maximum and
equal to 7,, = P/2A, for 6 = 45°. We also noted that 7 = 0 when 6 = 0,
while o = P/2A, when 6 = 45°.

Stress Under General Loading

Considering a small cube centered at Q (Fig. 1.47), o, is the normal stress
exerted on a face of the cube perpendicular to the x axis, and 7, and 7.,
are the y and z components of the shearing stress exerted on the same
face of the cube. Repeating this procedure for the other two faces of the
cube and observing that 7, = 7, 7,, = 7, and 7., = 7, it was deter-
mined that six stress components are required to define the state of stress
at a given point Q, being o, oy, 0, Ty, T\, and 7.

Factor of Safety

The ultimate load of a given structural member or machine component is
the load at which the member or component is expected to fail. This is
computed from the ultimate stress or ultimate strength of the material
used. The ultimate load should be considerably larger than the allowable
load (i.e., the load that the member or component will be allowed to carry
under normal conditions). The ratio of the ultimate load to the allowable
load is the factor of safety:

ultimate load

Factor of safety = F.S. = allowable load

(1.25)

Load and Resistance Factor Design

Load and Resistance Factor Design (LRFD) allows the engineer to distin-
guish between the uncertainties associated with the structure and those
associated with the load.




Review Problems

1.59 In the marine crane shown, link CD is known to have a uniform
cross section of 50 X 150 mm. For the loading shown, determine
the normal stress in the central portion of that link.

<15 m

Fig. P1.59

1.60 Two horizontal 5-kip forces are applied to pin B of the assembly
shown. Knowing that a pin of 0.8-in. diameter is used at each
connection, determine the maximum value of the average nor-
mal stress (@) in link AB, (b) in link BC.

0.5 in.

5 kips
5 kips

Fig. P1.60

1.61 For the assembly and loading of Prob. 1.60, determine (a) the
average shearing stress in the pin at C, (b) the average bearing
stress at C in member BC, (c) the average bearing stress at B in
member BC.




1.62 Two steel plates are to be held together by means of 16-mm-
diameter high-strength steel bolts fitting snugly inside cylindri-
cal brass spacers. Knowing that the average normal stress must
not exceed 200 MPa in the bolts and 130 MPa in the spacers,
determine the outer diameter of the spacers that yields the most
economical and safe design.

i
Fig. P1.62

A couple M of magnitude 1500 N ¢ m is applied to the crank
of an engine. For the position shown, determine (a) the force
P required to hold the engine system in equilibrium, (b) the
average normal stress in the connecting rod BC, which has a
450-mm? uniform cross section.

Fig. P1.63

1.64 Knowing that link DE is % in. thick and 1 in. wide, determine
the normal stress in the central portion of that link when
(@ 6 =0, (b) 6 =90

| 4in.




1.65 A 3-in.-diameter steel rod AB is fitted to a round hole near
end C of the wooden member CD. For the loading shown, deter-
mine (a) the maximum average normal stress in the wood, (b)
the distance b for which the average shearing stress is 100 psi
on the surfaces indicated by the dashed lines, (c¢) the average
bearing stress on the wood.

In the steel structure shown, a 6-mm-diameter pin is used at

C and 10-mm-diameter pins are used at B and D. The ultimate

shearing stress is 150 MPa at all connections, and the ultimate

normal stress is 400 MPa in link BD. Knowing that a factor of Fig. P1.65
safety of 3.0 is desired, determine the largest load P that can be

applied at A. Note that link BD is not reinforced around the pin

holes.

. & LE D
Front view

q[F B

Side view

160 mm

|
=
Top view
Fig. P1.66

1.67 Member ABC, which is supported by a pin and bracket at C and
a cable BD, was designed to support the 16-kN load P as shown.
Knowing that the ultimate load for cable BD is 100 kN, deter-
mine the factor of safety with respect to cable failure.

Fig. P1.67




1.68 A force P is applied as shown to a steel reinforcing bar that
has been embedded in a block of concrete. Determine the
smallest length L for which the full allowable normal stress
in the bar can be developed. Express the result in terms of
the diameter d of the bar, the allowable normal stress o,
in the steel, and the average allowable bond stress 7,
between the concrete and the cylindrical surface of the bar.
(Neglect the normal stresses between the concrete and the
end of the bar.)

Fig. P1.68

The two portions of member AB are glued together along a
plane forming an angle 6 with the horizontal. Knowing that the
ultimate stress for the glued joint is 2.5 ksi in tension and 1.3 ksi
in shear, determine (a) the value of 6 for which the factor of
safety of the member is maximum, (b) the corresponding value
of the factor of safety. (Hint: Equate the expressions obtained
for the factors of safety with respect to the normal and shearing
stresses.)

2.4 kips

2.0 in.

Fig. P1.69 and P1.70

1.70 The two portions of member AB are glued together along a
plane forming an angle 6 with the horizontal. Knowing that the
ultimate stress for the glued joint is 2.5 ksi in tension and 1.3 ksi
in shear, determine the range of values of 6 for which the factor
of safety of the members is at least 3.0.




Computer Problems

The following problems are designed to be solved with a computer.

1.C1 Asolid steel rod consisting of 7z cylindrical elements welded together ket
is subjected to the loading shown. The diameter of element i is denoted
by d; and the load applied to its lower end by P;, with the magnitude P; of
this load being assumed positive if P; is directed downward as shown and
negative otherwise. (@) Write a computer program that can be used with
either SI or U.S. customary units to determine the average stress in each
element of the rod. (b) Use this program to solve Probs. 1.1 and 1.3.

1.C2 A 20-kN load is applied as shown to the horizontal member ABC. \
Member ABC has a 10 X 50-mm uniform rectangular cross section and
is supported by four vertical links, each of 8 X 36-mm uniform rectan-
gular cross section. Each of the four pins at A, B, C, and D has the same
diameter d and is in double shear. (a) Write a computer program to cal-
culate for values of d from 10 to 30 mm, using 1-mm increments, (i) the
maximum value of the average normal stress in the links connecting pins
B and D, (ii) the average normal stress in the links connecting pins C
and E, (iii) the average shearing stress in pin B, (iv) the average shearing
stress in pin C, (v) the average bearing stress at B in member ABC, and
(vi) the average bearing stress at C in member ABC. (b) Check your pro-
gram by comparing the values obtained for d = 16 mm with the answers
given for Probs. 1.7 and 1.27. (¢) Use this program to find the permissible
values of the diameter d of the pins, knowing that the allowable values
of the normal, shearing, and bearing stresses for the steel used are,
respectively, 150 MPa, 90 MPa, and 230 MPa. (d) Solve part ¢, assuming
that the thickness of member ABC has been reduced from 10 to 8 mm.

Element 1
Py
Fig. P1.C1




1.C3 Two horizontal 5-kip forces are applied to pin B of the assembly
shown. Each of the three pins at A, B, and C has the same diameter d and
is in double shear. (@) Write a computer program to calculate for values
of d from 0.50 to 1.50 in., using 0.05-in. increments, (i) the maximum value
of the average normal stress in member AB, (ii) the average normal stress
in member BC, (iii) the average shearing stress in pin A, (iv) the average
shearing stress in pin C, (v) the average bearing stress at A in member AB,
(vi) the average bearing stress at C in member BC, and (vii) the average
bearing stress at B in member BC. (b) Check your program by comparing
the values obtained for d = 0.8 in. with the answers given for Probs. 1.60
and 1.61. (¢) Use this program to find the permissible values of the diam-
eter d of the pins, knowing that the allowable values of the normal, shear-
ing, and bearing stresses for the steel used are, respectively, 22 ksi, 13 ksi,
and 36 ksi. (d) Solve part ¢, assuming that a new design is being investi-
gated in which the thickness and width of the two members are changed,
respectively, from 0.5 to 0.3 in. and from 1.8 to 2.4 in.

5 kips
5 kips
0.5 in.

Fig. P1.C3

1.C4 A 4-kip force P forming an angle o with the vertical is applied as
shown to member ABC, which is supported by a pin and bracket at C
and by a cable BD forming an angle 8 with the horizontal. (a) Knowing
that the ultimate load of the cable is 25 kips, write a computer program
to construct a table of the values of the factor of safety of the cable for
values of @ and $ from 0 to 45°, using increments in « and 3 correspond-
ing to 0.1 increments in tan « and tan 3. (b) Check that for any given
value of «, the maximum value of the factor of safety is obtained for
B = 38.66° and explain why. (¢) Determine the smallest possible value
of the factor of safety for 8 = 38.66°, as well as the corresponding value
of @, and explain the result obtained.




1.C5 A load P is supported as shown by two wooden members of uni-
form rectangular cross section that are joined by a simple glued scarf
splice. (a) Denoting by o and 7, respectively, the ultimate strength of
the joint in tension and in shear, write a computer program which, for
given values of a, b, B, oy and 7y, expressed in either SI or U.S. customary
units, and for values of « from 5 to 85° at 5° intervals, can calculate (i) the
normal stress in the joint, (ii) the shearing stress in the joint, (iii) the factor
of safety relative to failure in tension, (iv) the factor of safety relative to
failure in shear, and (v) the overall factor of safety for the glued joint.
(b) Apply this program, using the dimensions and loading of the members
of Probs. 1.29 and 1.31, knowing that o, = 150 psi and 7, = 214 psi for
the glue used in Prob. 1.29 and that oy = 1.26 MPa and 7, = 1.50 MPa
for the glue used in Prob. 1.31. (c) Verify in each of these two cases that
the shearing stress is maximum for « = 45°.

1.6 Member ABC is supported by a pin and bracket at A, and by two
links that are pin-connected to the member at B and to a fixed support
at D. (a) Write a computer program to calculate the allowable load Py,
for any given values of (i) the diameter d, of the pin at A, (ii) the common
diameter d, of the pins at B and D, (iii) the ultimate normal stress o in
each of the two links, (iv) the ultimate shearing stress 7 in each of the
three pins, and (v) the desired overall factor of safety ES. (b) Your pro-
gram should also indicate which of the following three stresses is critical:
the normal stress in the links, the shearing stress in the pin at A, or the
shearing stress in the pins at B and D. (¢) Check your program by using
the data of Probs. 1.55 and 1.56, respectively, and comparing the answers
obtained for P,; with those given in the text. (d) Use your program to
determine the allowable load P,;, as well as which of the stresses is criti-
cal, when d, = d, = 15 mm, oy = 110 MPa for aluminum links,
Ty = 100 MPa for steel pins, and ES. = 3.2.

Top view

|<—200 mm—>|<—180 mm——‘ 12 mm
D]

]

Front view

l

Fig. P1.C5
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Stress and Strain—

Axial Loading

This chapter considers deformations occurring in structural
components subjected to axial loading. The change in
length of the diagonal stays was carefully accounted for in
the design of this cable-stayed bridge.

Objectives
In this chapter, we will:
» Introduce students to the concept of strain.

» Discuss the relationship between stress and strain in different
materials.

« Determine the deformation of structural components under axial
loading.

» Introduce Hooke's Law and the modulus of elasticity.

» Discuss the concept of lateral strain and Poisson's ratio.

» Use axial deformations to solve indeterminate problems.

- Define Saint-Venant’s principle and the distribution of stresses.

« Review stress concentrations and how they are included in design.

- Define the difference between elastic and plastic behavior through
a discussion of conditions such as elastic limit, plastic deformation,
residual stresses.

» Look at specific topics related to fiber-reinforced composite
materials, fatigue, multiaxial loading.
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Introduction

An important aspect of the analysis and design of structures relates to the
deformations caused by the loads applied to a structure. It is important to
avoid deformations so large that they may prevent the structure from ful-
filling the purpose for which it was intended. But the analysis of deforma-
tions also helps us to determine stresses. Indeed, it is not always possible
to determine the forces in the members of a structure by applying only
the principles of statics. This is because statics is based on the assumption
of undeformable, rigid structures. By considering engineering structures
as deformable and analyzing the deformations in their various members,
it will be possible for us to compute forces that are statically indeterminate.
The distribution of stresses in a given member is statically indeterminate,
even when the force in that member is known.

In this chapter, you will consider the deformations of a structural
member such as a rod, bar, or plate under axial loading. First, the normal
strain € in a member is defined as the deformation of the member per unit
length. Plotting the stress o versus the strain ¢ as the load applied to the
member is increased produces a stress-strain diagram for the material
used. From this diagram, some important properties of the material, such
as its modulus of elasticity, and whether the material is ductile or brittle can
be determined. While the behavior of most materials is independent of the
direction of the load application, you will see that the response of fiber-
reinforced composite materials depends upon the direction of the load.

From the stress-strain diagram, you also can determine whether
the strains in the specimen will disappear after the load has been
removed—when the material is said to behave elastically—or whether a
permanent set or plastic deformation will result.

You will examine the phenomenon of fatigue, which causes struc-
tural or machine components to fail after a very large number of repeated
loadings, even though the stresses remain in the elastic range.

Sections 2.2 and 2.3 discuss statically indeterminate problems in
which the reactions and the internal forces cannot be determined from
statics alone. Here the equilibrium equations derived from the free-body
diagram of the member must be complemented by relationships involving
deformations that are obtained from the geometry of the problem.

Additional constants associated with isotropic materials—i.e., mate-
rials with mechanical characteristics independent of direction—are intro-
duced in Secs. 2.4 through 2.8. They include Poisson’s ratio, relating lateral
and axial strain, the bulk modulus, characterizing the change in volume
of a material under hydrostatic pressure, and the modulus of rigidity, con-
cerning the components of the shearing stress and shearing strain. Stress-
strain relationships for an isotropic material under a multiaxial loading
also are determined.

Stress-strain relationships involving modulus of elasticity, Poisson’s
ratio, and the modulus of rigidity are developed for fiber-reinforced com-
posite materials under a multiaxial loading. While these materials are not
isotropic, they usually display special orthotropic properties.

In Chap. 1, stresses were assumed uniformly distributed in any given
cross section; they were also assumed to remain within the elastic range.
The first assumption is discussed in Sec. 2.10, while stress concentrations
near circular holes and fillets in flat bars are considered in Sec. 2.11.



Sections 2.12 and 2.13 discuss stresses and deformations in members made
of a ductile material when the yield point of the material is exceeded, result-
ing in permanent plastic deformations and residual stresses.

2.1 AN INTRODUCTION TO
STRESS AND STRAIN

2.1A Normal Strain Under Axial
Loading

Consider a rod BC of length L and uniform cross-sectional area A, which
is suspended from B (Fig. 2.1a). If you apply a load P to end C, the rod
elongates (Fig. 2.1b). Plotting the magnitude P of the load against the
deformation 6 (Greek letter delta), you obtain a load-deformation diagram
(Fig. 2.2). While this diagram contains information useful to the analysis
of the rod under consideration, it cannot be used to predict the deforma-
tion of a rod of the same material but with different dimensions. Indeed,
if a deformation 6 is produced in rod BC by a load P, a load 2P is required
to cause the same deformation in rod B’'C’ of the same length L but cross-
sectional area 2A (Fig. 2.3). Note that in both cases the value of the stress
is the same: o = P/A. On the other hand, when load P is applied to a
rod B"C" of the same cross-sectional area A but of length 2L, a deformation
26 occurs in that rod (Fig. 2.4). This is a deformation twice as large as the
deformation é produced in rod BC. In both cases, the ratio of the deforma-
tion over the length of the rod is the same at §/L. This introduces the
concept of strain. We define the normal strain in a rod under axial
loading as the deformation per unit length of that rod. The normal
strain, € (Greek letter epsilon), is

€= 2.1

0
IL

Plotting the stress o = P/A against the strain e = §/L results in a
curve that is characteristic of the properties of the material but does not
depend upon the dimensions of the specimen used. This curve is called
a stress-strain diagram.

22 Bl G

Fig. 2.3 Twice the load is required to
obtain the same deformation 6 when
the cross-sectional area is doubled.
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(a)

(D)

Fig. 2.1 Undeformed and deformed axially-
loaded rod.
P

Fig. 2.2 Load-deformation diagram.

gl W F | ¥p

c"

Fig. 2.4 The deformation is doubled when the
rod length is doubled while keeping the load P and
cross-sectional area A the same.
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B
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P

Q

s

Fig. 2.5 Deformation of axially-loaded member
of variable cross-sectional area.

Photo 2.1 Typical tensile-test specimen.
Undeformed gage length is L.

Since rod BC in Fig. 2.1 has a uniform cross section of area A, the
normal stress o is assumed to have a constant value P/A throughout the
rod. The strain ¢ is the ratio of the total deformation & over the total
length L of the rod. It too is consistent throughout the rod. However, for
a member of variable cross-sectional area A, the normal stress ¢ = P/A
varies along the member, and it is necessary to define the strain at a
given point Q by considering a small element of undeformed length Ax
(Fig. 2.5). Denoting the deformation of the element under the given
loading by A§, the normal strain at point Q is defined as

€= lim —=— (2.2)

Since deformation and length are expressed in the same units, the
normal strain e obtained by dividing & by L (or dé by dx) is a dimensionless
quantity. Thus, the same value is obtained for the normal strain, whether
SI metric units or U.S. customary units are used. For instance, consider a
bar of length L = 0.600 m and uniform cross section that undergoes a
deformation 6 = 150 X 10~® m. The corresponding strain is

5§ 150 X 10 °m
6 = -
L 0.600 m

=250 X 10 °m/m = 250 X 10°°
Note that the deformation also can be expressed in micrometers: 6 = 150 um
and the answer written in micros (u):

5 150 um

= = 250 um/m = 250
L 0.600m pm/ ®

€ =

When U.S. customary units are used, the length and deformation of the same
bar are L = 23.6 in. and § = 5.91 X 10~ in. The corresponding strain is
8 591 x10 *in.

e=—="—"—"""=250 X 10 %in./in.
L 23.6in.

which is the same value found using SI units. However, when lengths and
deformations are expressed in inches or microinches (uin.), keep the origi-
nal units obtained for the strain. Thus, in the previous example, the strain
would be recorded as either € = 250 X 10~°® in./in. or € = 250 win./in.

2.1B Stress-Strain Diagram

Tensile Test. To obtain the stress-strain diagram of a material, a fensile
test is conducted on a specimen of the material. One type of specimen is
shown in Photo 2.1. The cross-sectional area of the cylindrical central por-
tion of the specimen is accurately determined and two gage marks are
inscribed on that portion at a distance L, from each other. The distance L,
is known as the gage length of the specimen.

The test specimen is then placed in a testing machine (Photo 2.2),
which is used to apply a centric load P. As load P increases, the distance L
between the two gage marks also increases (Photo 2.3). The distance L
is measured with a dial gage, and the elongation 6 = L — L, is recorded
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for each value of P. A second dial gage is often used simultaneously to
measure and record the change in diameter of the specimen. From each
pair of readings P and §, the engineering stress o is

p
o=— (2.3)
Ao
and the engineering strain ¢ is
)
€=— (2.49)
Ly

The stress-strain diagram can be obtained by plotting & as an abscissa
and o as an ordinate.

Stress-strain diagrams of materials vary widely, and different tensile
tests conducted on the same material may yield different results, depend-
ing upon the temperature of the specimen and the speed of loading. How-
ever, some common characteristics can be distinguished from stress-strain
diagrams to divide materials into two broad categories: ductile and brittle
materials.

Ductile materials, including structural steel and many alloys of other
materials are characterized by their ability to yield at normal tempera-
tures. As the specimen is subjected to an increasing load, its length first
increases linearly with the load and at a very slow rate. Thus, the initial
portion of the stress-strain diagram is a straight line with a steep slope

P

Photo 2.3 Elongated tensile test specimen
Photo 2.2 Universal test machine used to test tensile specimens. having load P and deformed length L > L.
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Fig. 2.6 Stress-strain diagrams of two typical ductile materials.

.
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Photo 2.4 Ductile material tested specimens:
(a) with cross-section necking, (b) ruptured.

(Fig. 2.6). However, after a critical value oy of the stress has been reached,
the specimen undergoes a large deformation with a relatively small
increase in the applied load. This deformation is caused by slippage along
oblique surfaces and is due primarily to shearing stresses. After a maxi-
mum value of the load has been reached, the diameter of a portion of the
specimen begins to decrease, due to local instability (Photo 2.4a). This
phenomenon is known as necking. After necking has begun, lower loads
are sufficient for specimen to elongate further, until it finally ruptures
(Photo 2.4b). Note that rupture occurs along a cone-shaped surface that
forms an angle of approximately 45° with the original surface of the speci-
men. This indicates that shear is primarily responsible for the failure of
ductile materials, confirming the fact that shearing stresses under an axial
load are largest on surfaces forming an angle of 45° with the load (see
Sec. 1.3). Note from Fig. 2.6 that the elongation of a ductile specimen after
it has ruptured can be 200 times as large as its deformation at yield. The
stress oy at which yield is initiated is called the yield strength of the mate-
rial. The stress o corresponding to the maximum load applied is known
as the ultimate strength. The stress o corresponding to rupture is called
the breaking strength.

Brittle materials, comprising of cast iron, glass, and stone rupture
without any noticeable prior change in the rate of elongation (Fig. 2.7).
Thus, for brittle materials, there is no difference between the ultimate
strength and the breaking strength. Also, the strain at the time of rupture
is much smaller for brittle than for ductile materials. Note the absence of
any necking of the specimen in the brittle material of Photo 2.5 and observe
that rupture occurs along a surface perpendicular to the load. Thus, normal
stresses are primarily responsible for the failure of brittle materials.

"The tensile tests described in this section were assumed to be conducted at normal
temperatures. However, a material that is ductile at normal temperatures may display
the characteristics of a brittle material at very low temperatures, while a normally brittle
material may behave in a ductile fashion at very high temperatures. At temperatures
other than normal, therefore, one should refer to a material in a ductile state or to a
material in a brittle state, rather than to a ductile or brittle material.



The stress-strain diagrams of Fig. 2.6 show that while structural steel
and aluminum are both ductile, they have different yield characteristics.
For structural steel (Fig. 2.6a), the stress remains constant over a large
range of the strain after the onset of yield. Later, the stress must be
increased to keep elongating the specimen until the maximum value o
has been reached. This is due to a property of the material known as
strain-hardening. The yield strength of structural steel is determined dur-
ing the tensile test by watching the load shown on the display of the test-
ing machine. After increasing steadily, the load will suddenly drop to a
slightly lower value, which is maintained for a certain period as the speci-
men keeps elongating. In a very carefully conducted test, one may be able
to distinguish between the upper yield point, which corresponds to the
load reached just before yield starts, and the lower yield point, which cor-
responds to the load required to maintain yield. Since the upper yield
point is transient, the lower yield point is used to determine the yield
strength of the material.

For aluminum (Fig. 2.6b) and of many other ductile materials, the
stress keeps increasing—although not linearly—until the ultimate strength
is reached. Necking then begins and eventually ruptures. For such materi-
als, the yield strength oy can be determined using the offset method. For
example the yield strength at 0.2% offset is obtained by drawing through
the point of the horizontal axis of abscissa € = 0.2% (or e = 0.002), which
is a line parallel to the initial straight-line portion of the stress-strain dia-
gram (Fig. 2.8). The stress oy corresponding to the point Y is defined as
the yield strength at 0.2% offset.

A standard measure of the ductility of a material is its percent
elongation:

— L
Percent elongation = 100 %
0

where L, and L are the initial length of the tensile test specimen and its
final length at rupture, respectively. The specified minimum elongation
for a 2-in. gage length for commonly used steels with yield strengths up
to 50 ksi is 21 percent. This means that the average strain at rupture should
be at least 0.21 in./in.

Y Rupture

Ty

—~| < 02% offset

Fig. 2.8 Determination of yield
strength by 0.2% offset method.
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Fig. 2.7 Stress-strain diagram for a
typical brittle material.

Photo 2.5 Ruptured brittle material specimen.
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Another measure of ductility that is sometimes used is the percent
reduction in area:

. . 0 AB
Percent reduction in area = 100 714
0

where Ay and A are the initial cross-sectional area of the specimen and
its minimum cross-sectional area at rupture, respectively. For structural
steel, percent reductions in area of 60 to 70 percent are common.

Compression Test. If a specimen made of a ductile material is loaded
in compression instead of tension, the stress-strain curve is essentially the
same through its initial straight-line portion and through the beginning of
the portion corresponding to yield and strain-hardening. Particularly
noteworthy is the fact that for a given steel, the yield strength is the same
in both tension and compression. For larger values of the strain, the ten-
sion and compression stress-strain curves diverge, and necking does not
occur in compression. For most brittle materials, the ultimate strength in
compression is much larger than in tension. This is due to the presence
of flaws, such as microscopic cracks or cavities that tend to weaken the
material in tension, while not appreciably affecting its resistance to com-
pressive failure.

An example of brittle material with different properties in tension
and compression is provided by concrete, whose stress-strain diagram is
shown in Fig. 2.9. On the tension side of the diagram, we first observe a
linear elastic range in which the strain is proportional to the stress. After
the yield point has been reached, the strain increases faster than the stress
until rupture occurs. The behavior of the material in compression is dif-
ferent. First, the linear elastic range is significantly larger. Second, rupture
does not occur as the stress reaches its maximum value. Instead, the stress
decreases in magnitude while the strain keeps increasing until rupture
occurs. Note that the modulus of elasticity, which is represented by the
slope of the stress-strain curve in its linear portion, is the same in tension
and compression. This is true of most brittle materials.

Oy, tension |- — — — — —, Rupture, tension

Linear elastic range

Rupture, compression

O'U, compression

Fig. 2.9 Stress-strain diagram for concrete shows difference in tensile and
compression response.



*2.1C True Stress and True Strain

Recall that the stress plotted in Figs. 2.6 and 2.7 was obtained by dividing
the load P by the cross-sectional area A, of the specimen measured before
any deformation had taken place. Since the cross-sectional area of the
specimen decreases as P increases, the stress plotted in these diagrams
does not represent the actual stress in the specimen. The difference
between the engineering stress o = P/A, and the true stress o, = P/A
becomes apparent in ductile materials after yield has started. While the
engineering stress o, which is directly proportional to the load P, decreases
with P during the necking phase, the true stress o, which is proportional
to P but also inversely proportional to A, keeps increasing until rupture of
the specimen occurs.

For engineering strain e = 5/ L,, instead of using the total elongation §
and the original value L, of the gage length, many scientists use all of the
values of L that they have recorded. Dividing each increment AL of
the distance between the gage marks by the corresponding value of L, the
elementary strain Ae = AL/L. Adding the successive values of Ag, the true
strain €, is

€, = 2Ae = Z(AL/L)

With the summation replaced by an integral, the true strain can be
expressed as:

L
dL L
€ = J — =In— (2.5)
L L,

Plotting true stress versus true strain (Fig. 2.10) more accurately
reflects the behavior of the material. As already noted, there is no decrease
in true stress during the necking phase. Also, the results obtained from
either tensile or compressive tests yield essentially the same plot when
true stress and true strain are used. This is not the case for large values of
the strain when the engineering stress is plotted versus the engineering
strain. However, in order to determine whether a load P will produce an
acceptable stress and an acceptable deformation in a given member, engi-
neers will use a diagram based on Egs. (2.3) and (2.4) since these involve
the cross-sectional area A, and the length L, of the member in its unde-
formed state, which are easily available.

2.1D Hooke's Law; Modulus oi Elasticity

Modulus of Elasticity. Most engineering structures are designed to
undergo relatively small deformations, involving only the straight-line
portion of the corresponding stress-strain diagram. For that initial portion
of the diagram (Fig. 2.6), the stress o is directly proportional to the strain e:

o = Ee (2.6)

This is known as Hooke’s law, after Robert Hooke (1635-1703), an English
scientist and one of the early founders of applied mechanics. The coefficient E
of the material is the modulus of elasticity or Young’s modulus, after the
English scientist Thomas Young (1773-1829). Since the strain € is a dimen-
sionless quantity, E is expressed in the same units as stress c—in pascals or
one of its multiples for SI units and in psi or ksi for U.S. customary units.
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Fig. 2.10 True stress versus true strain for a
typical ductile material.
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Fig. 2.11 Stress-strain diagrams for iron and
different grades of steel.
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Fig. 2.12 Layer of fiber-reinforced composite
material.

The largest value of stress for which Hooke’s law can be used for a
given material is the proportional limit of that material. For ductile materi-
als possessing a well-defined yield point, as in Fig. 2.6a, the proportional
limit almost coincides with the yield point. For other materials, the pro-
portional limit cannot be determined as easily, since it is difficult to accu-
rately determine the stress o for which the relation between ¢ and €
ceases to be linear. For such materials, however, using Hooke’s law for
values of the stress slightly larger than the actual proportional limit will
not result in any significant error.

Some physical properties of structural metals, such as strength, ductil-
ity, and corrosion resistance, can be greatly affected by alloying, heat treat-
ment, and the manufacturing process used. For example, the stress-strain
diagrams of pure iron and three different grades of steel (Fig. 2.11) show that
large variations in the yield strength, ultimate strength, and final strain (duc-
tility) exist. All of these metals possess the same modulus of elasticity—their
“stiffness,” or ability to resist a deformation within the linear range is the
same. Therefore, if a high-strength steel is substituted for a lower-strength
steel and if all dimensions are kept the same, the structure will have an
increased load-carrying capacity, but its stiffness will remain unchanged.

For the materials considered so far, the relationship between normal
stress and normal strain, o = Eg, is independent of the direction of load-
ing. This is because the mechanical properties of each material, including
its modulus of elasticity E, are independent of the direction considered.
Such materials are said to be isotropic. Materials whose properties depend
upon the direction considered are said to be anisotropic.

Fiber-Reinforced Composite Materials. An important class of
anisotropic materials consists of fiber-reinforced composite materials.
These are obtained by embedding fibers of a strong, stiff material into a
weaker, softer material, called a matrix. Typical materials used as fibers
are graphite, glass, and polymers, while various types of resins are used as
a matrix. Figure 2.12 shows a layer, or lamina, of a composite material
consisting of a large number of parallel fibers embedded in a matrix. An
axial load applied to the lamina along the x axis, (in a direction parallel to
the fibers) will create a normal stress o, in the lamina and a corresponding
normal strain €,, satisfying Hooke’s law as the load is increased and as
long as the elastic limit of the lamina is not exceeded. Similarly, an axial
load applied along the y axis, (in a direction perpendicular to the lamina)
will create a normal stress o, and a normal strain €,, and an axial load
applied along the z axis will create a normal stress o, and a normal
strain €,, all satisfy Hooke’s law. However, the moduli of elasticity E,, E,,
and E, corresponding, to each of these loadings will be different. Because
the fibers are parallel to the x axis, the lamina will offer a much stronger
resistance to a load directed along the x axis than to one directed along
the y or z axis, and E, will be much larger than either E, or E..

A flat laminate is obtained by superposing a number of layers or
laminas. If the laminate is subjected only to an axial load causing tension,
the fibers in all layers should have the same orientation as the load in
order to obtain the greatest possible strength. But if the laminate is in
compression, the matrix material may not be strong enough to prevent the
fibers from kinking or buckling. The lateral stability of the laminate can be
increased by positioning some of the layers so that their fibers are



perpendicular to the load. Positioning some layers so that their fibers are
oriented at 30°, 45°, or 60° to the load also can be used to increase the
resistance of the laminate to in-plane shear. Fiber-reinforced composite
materials will be further discussed in Sec. 2.9, where their behavior under
multiaxial loadings will be considered.

2.1E Elastic Versus Plastic Behavior
of a Material

Material behaves elastically if the strains in a test specimen from a given
load disappear when the load is removed. The largest value of stress caus-
ing this elastic behavior is called the elastic limit of the material.

If the material has a well-defined yield point as in Fig. 2.6a, the elastic
limit, the proportional limit, and the yield point are essentially equal. In
other words, the material behaves elastically and linearly as long as the
stress is kept below the yield point. However, if the yield point is reached,
yield takes place as described in Sec. 2.1B. When the load is removed, the
stress and strain decrease in a linear fashion along a line CD parallel to the
straight-line portion AB of the loading curve (Fig. 2.13). The fact that € does
not return to zero after the load has been removed indicates that a perma-
nent set or plastic deformation of the material has taken place. For most
materials, the plastic deformation depends upon both the maximum value
reached by the stress and the time elapsed before the load is removed. The
stress-dependent part of the plastic deformation is called slip, and the time-
dependent part—also influenced by the temperature—is creep.

When a material does not possess a well-defined yield point, the
elastic limit cannot be determined with precision. However, assuming the
elastic limit to be equal to the yield strength using the offset method
(Sec. 2.1B) results in only a small error. Referring to Fig. 2.8, note that the
straight line used to determine point Y also represents the unloading
curve after a maximum stress oy has been reached. While the material
does not behave truly elastically, the resulting plastic strain is as small as
the selected offset.

If, after being loaded and unloaded (Fig. 2.14), the test specimen is
loaded again, the new loading curve will follow the earlier unloading
curve until it almost reaches point C. Then it will bend to the right and
connect with the curved portion of the original stress-strain diagram. This
straight-line portion of the new loading curve is longer than the corre-
sponding portion of the initial one. Thus, the proportional limit and the

Rupture

€
A D

Fig. 2.13  Stress-strain response of ductile
material loaded beyond yield and unloaded.
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Fig. 2.14 Stress-strain response of ductile material
reloaded after prior yielding and unloading.
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Fig. 2.15 Stress-strain response for mild steel subjected to two
cases of reverse loading.

elastic limit have increased as a result of the strain-hardening that occurred
during the earlier loading. However, since the point of rupture R remains
unchanged, the ductility of the specimen, which should now be measured
from point D, has decreased.

In previous discussions the specimen was loaded twice in the same
direction (i.e., both loads were tensile loads). Now consider that the sec-
ond load is applied in a direction opposite to that of the first one. Assume
the material is mild steel where the yield strength is the same in tension
and in compression. The initial load is tensile and is applied until point C
is reached on the stress-strain diagram (Fig. 2.15). After unloading
(point D), a compressive load is applied, causing the material to reach
point H, where the stress is equal to —oy. Note that portion DH of the
stress-strain diagram is curved and does not show any clearly defined
yield point. This is referred to as the Bauschinger effect. As the compressive
load is maintained, the material yields along line Hj.

If the load is removed after point J has been reached, the stress
returns to zero along line JK, and the slope of JK is equal to the modulus
of elasticity E. The resulting permanent set AK may be positive, negative,
or zero, depending upon the lengths of the segments BC and HJ. If a ten-
sile load is applied again to the test specimen, the portion of the stress-
strain diagram beginning at K (dashed line) will curve up and to the right
until the yield stress oy has been reached.

If the initial loading is large enough to cause strain-hardening of the
material (point C'), unloading takes place along line C'D’. As the reverse
load is applied, the stress becomes compressive, reaching its maximum
value at H' and maintaining it as the material yields along line H'J'. While
the maximum value of the compressive stress is less than oy, the total
change in stress between C' and H' is still equal to 20y.

If point K or K’ coincides with the origin A of the diagram, the per-
manent set is equal to zero, and the specimen may appear to have returned
to its original condition. However, internal changes will have taken place
and, the specimen will rupture without any warning after relatively few
repetitions of the loading sequence. Thus, the excessive plastic
deformations to which the specimen was subjected caused a radical
change in the characteristics of the material. Therefore reverse loadings
into the plastic range are seldom allowed, being permitted only under



carefully controlled conditions such as in the straightening of damaged
material and the final alignment of a structure or machine.

2.1F Repeated Loadings and Fatigue

You might think that a given load may be repeated many times, provided
that the stresses remain in the elastic range. Such a conclusion is correct
for loadings repeated a few dozen or even a few hundred times. However,
it is not correct when loadings are repeated thousands or millions of
times. In such cases, rupture can occur at a stress much lower than the
static breaking strength; this phenomenon is known as fatigue. A fatigue
failure is of a brittle nature, even for materials that are normally ductile.

Fatigue must be considered in the design of all structural and
machine components subjected to repeated or fluctuating loads. The
number of loading cycles expected during the useful life of a component
varies greatly. For example, a beam supporting an industrial crane can be
loaded as many as two million times in 25 years (about 300 loadings per
working day), an automobile crankshaft is loaded about half a billion
times if the automobile is driven 200,000 miles, and an individual turbine
blade can be loaded several hundred billion times during its lifetime.

Some loadings are of a fluctuating nature. For example, the passage
of traffic over a bridge will cause stress levels that will fluctuate about the
stress level due to the weight of the bridge. A more severe condition occurs
when a complete reversal of the load occurs during the loading cycle. The
stresses in the axle of a railroad car, for example, are completely reversed
after each half-revolution of the wheel.

The number of loading cycles required to cause the failure of a spec-
imen through repeated loadings and reverse loadings can be determined
experimentally for any given maximum stress level. If a series of tests is
conducted using different maximum stress levels, the resulting data is
plotted as a o-n curve. For each test, the maximum stress o is plotted as
an ordinate and the number of cycles n as an abscissa. Because of the
large number of cycles required for rupture, the cycles n are plotted on a
logarithmic scale.

A typical o-n curve for steel is shown in Fig. 2.16. If the applied
maximum stress is high, relatively few cycles are required to cause rup-
ture. As the magnitude of the maximum stress is reduced, the number of
cycles required to cause rupture increases, until the endurance limit is
reached. The endurance limit is the stress for which failure does not occur,
even for an indefinitely large number of loading cycles. For a low-carbon
steel, such as structural steel, the endurance limit is about one-half of the
ultimate strength of the steel.

For nonferrous metals, such as aluminum and copper, a typical o-n
curve (Fig. 2.16) shows that the stress at failure continues to decrease as the
number of loading cycles is increased. For such metals, the fatigue limit is
the stress corresponding to failure after a specified number of loading cycles.

Examination of test specimens, shafts, springs, and other compo-
nents that have failed in fatigue shows that the failure initiated at a micro-
scopic crack or some similar imperfection. At each loading, the crack was
very slightly enlarged. During successive loading cycles, the crack propa-
gated through the material until the amount of undamaged material was
insufficient to carry the maximum load, and an abrupt, brittle failure
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Fig. 2.16 Typical o-n curves.
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Photo 2.6 Fatigue crack in a steel girder of the
Yellow Mill Pond Bridge, Connecticut, prior to
repairs.

e BEENGE L

Fig. 2.17 Undeformed and deformed axially-
loaded rod.
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Fig. 2.18 Deformation of axially-loaded member
of variable cross-sectional area.

occurred. For example, Photo 2.6 shows a progressive fatigue crack in a
highway bridge girder that initiated at the irregularity associated with the
weld of a cover plate and then propagated through the flange and into the
web. Because fatigue failure can be initiated at any crack or imperfection,
the surface condition of a specimen has an important effect on the endur-
ance limit obtained in testing. The endurance limit for machined and pol-
ished specimens is higher than for rolled or forged components or for
components that are corroded. In applications in or near seawater or in
other applications where corrosion is expected, a reduction of up to 50%
in the endurance limit can be expected.

2.1G Deformations of Members Under
Axial Loading

Consider a homogeneous rod BC of length L and uniform cross section of
area A subjected to a centric axial load P (Fig. 2.17). If the resulting axial
stress o = P/A does not exceed the proportional limit of the material,
Hooke's law applies and

o = Ee (2.6)
from which
o p
€ = E = E (2.7)
Recalling that the strain € in Sec. 2.1Ais € = §/L
8=¢€lL (2.8)
and substituting for € from Eq. (2.7) into Eq.(2.8):
12,
6= = (2.9)

Equation (2.9) can be used only if the rod is homogeneous
(constant E), has a uniform cross section of area A, and is loaded at its
ends. If the rod is loaded at other points, or consists of several portions of
various cross sections and possibly of different materials, it must be
divided into component parts that satisfy the required conditions for the
application of Eq. (2.9). Using the internal force P;, length L;, cross-
sectional area A;, and modulus of elasticity E;, corresponding to part i, the
deformation of the entire rod is

PiL;
5= 30 (2.10)

i

In the case of a member of variable cross section (Fig. 2.18), the
strain € depends upon the position of the point Q, where it is computed
as € = dd/dx(Sec. 2.1A). Solving for dd and substituting for € from Eq. (2.7),
the deformation of an element of length dx is

asé = edx = Pdx
AE
The total deformation § of the member is obtained by integrating this

expression over the length L of the member:

1L

P

5= J Pdx (2.11)
, AE
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Equation (2.11) should be used in place of (2.9) when both the cross-
sectional area A is a function of x, or when the internal force P depends
upon x, as is the case for a rod hanging under its own weight.

Concept Application 2.1
A=09in A =03in? Determine the deformation of the steel rod shown in Fig. 2.19a under
A / B c i the given loads (E = 29 X 10° psi).
L TT The rod is divided into three component parts in Fig. 2.19b, so
\ 30 kips _ _ X _ X
75kips 45 kips L,=L, = 121n.2 Ly = 161n.2
o |~—16 in.— A=A, =09in> A;=03in
(a) To find the internal forces P,, P,, and Ps, pass sections through each
A |B c of the component parts, drawing each time the free-body diagram of
i D the portion of rod located to the right of the section (Fig. 2.19¢). Each
1Y \%ﬂ of the free bodies is in equilibrium; thus
5ins |45 ks | ‘ :
®) i 75 kips i 45 kips i P, =60 klpS =60 X 10%1b
i . ' P, = —15kips = —15 X 10°Ib
1 1 3
| | 30 kips P; = 30 kips = 30 X 10°1b
e
3 > Using Eq. (2.10)
! 30 kips PL, 1(PL, P, PsL
i 45 kips 5:2 ===+ 22+ 22
I c . T AE; E\ A ) Ay As
. 1 60 X 10%)(12
P < e —> = G[( )12)
’ \ 30 kips 29 X 10 0.9
(¢)  ™kips  45kips . (=15 X 10°)(12) N (30 X 10°)(16)
Fig. 2.19 (a) Axially-loaded rod. (b) Rod 0.9 0.3
divided into three sections. (c) Three 6
sectioned free-body diagrams with internal S = M =759 X 10 %in.
resultant forces Py, P,, and Ps. 29 X 10

N\ J

Rod BC of Fig. 2.17, used to derive Eq. (2.9), and rod AD of Fig. 2.19

have one end attached to a fixed support. In each case, the deformation & A
of the rod was equal to the displacement of its free end. When both ends = = 5.1 —_ =
of a rod move, however, the deformation of the rod is measured by the rela-
tive displacement of one end of the rod with respect to the other. Consider
the assembly shown in Fig. 2.20a, which consists of three elastic bars of L
length L connected by a rigid pin at A. If a load P is applied at B (Fig. 2.20b),
each of the three bars will deform. Since the bars AC and AC’ are attached
to fixed supports at C and C’, their common deformation is measured by
the displacement 5, of point A. On the other hand, since both ends of
bar AB move, the deformation of AB is measured by the difference between B

the displacements 6, and 6 of points A and B, (i.e., by the relative displace- 1})

ment of B with respect to A). Denoting this relative displacement by &g/,
L (@) (b)
Opja =05 — 84 = — (2.12) Fig.2.20 Example of relative end displacement,
AE as exhibited by the middle bar. (a) Unloaded.
where A is the cross-sectional area of AB and E is its modulus of elasticity.  (b) Loaded, with deformation.
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Fig. 1 Free-body diagram of rigid bar
BDE.
F'yp = 60 kN
A
A = 500 mm?
0.3 m E =170 GPa
B
F,5 = 60 kN

Fig. 2 Free-body diagram
of two-force member AB.

Sample Problem 2.1

The rigid bar BDE is supported by two links AB and CD. Link AB is
made of aluminum (E = 70 GPa) and has a cross-sectional area of
500 mm?. Link CD is made of steel (E = 200 GPa) and has a cross-
sectional area of 600 mm?. For the 30-kN force shown, determine the
deflection (a) of B, (b) of D, and (c) of E.

STRATEGY: Consider the free body of the rigid bar to determine the
internal force of each link. Knowing these forces and the properties of
the links, their deformations can be evaluated. You can then use sim-
ple geometry to determine the deflection of E.

MODELING: Draw the free body diagrams of the rigid bar (Fig. 1)
and the two links (Fig. 2 and 3)

ANALYSIS:
Free Body: Bar BDE (Fig. 1)

+YS Mj = 0: —(30kN)(0.6 m) + Fcp(0.2m) = 0
Fep = +90kN  Fop = 90KkN tension
V=M, = 0: —(30kN)(0.4m) — F,;5(0.2m) = 0

F,3 = —60kN F,3 = 60kN compression

a. Deflection of B. Since the internal force in link AB is compres-
sive (Fig. 2), P = —60 kN and

PL —60 X 10°N)(0.3m
=—= ( X ) = —514 X 10 °m

&p = = =
P AE (500 X 10"°m?)(70 X 10° Pa)

The negative sign indicates a contraction of member AB. Thus, the
deflection of end B is upward:

83 = 0.514 mm |

Fop = 90 kN

¢
A = 600 mm?>
0.4m E = 200 GPa
D
Fep = 90 kN

Fig. 3 Free-body diagram of
two-force member CD.

(continued)
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85 = 0514 mm b. Deflection of D. Since in rod CD (Fig. 3), P = 90 kN, write
< B' 8p = 0.300 mm
$ INu D £ 5. _ PL (90 X 10° N)(0.4 m)
= *? = —=
B‘ - T P AE (600 X 10"°m?)(200 X 10° Pa)
1 O =300 X 10 °m 8p = 0.300 mm |
AR |
(200 mm —2) = c. Deflection of E. Referring to Fig. 4, we denote by B’ and D’
500 ot 400 mm —»| the displaced positions of points B and D. Since the bar BDE is rigid,
min

points B, D', and E’ lie in a straight line. Therefore,

Fig. 4 Deflections at B and D of rigid

bar are used to find 8. BB’ BH 0.514mm (200mm) — x
== = X = 73.7mm
DD'" HD  0.300 mm X
EE' HE S (400 mm) + (73.7 mm)
DD’ HD  0.300mm 73.7 mm

oy = 1.928 mm |

REFLECT and THINK: Comparing the relative magnitude and direc-
tion of the resulting deflections, you can see that the answers obtained
are consistent with the loading and the deflection diagram of Fig. 4.

Sample Problem 2.2

18 in. The rigid castings A and B are connected by two 3-in.-diameter steel

bolts CD and GH and are in contact with the ends of a 1.5-in.-diameter

aluminum rod EF. Each bolt is single-threaded with a pitch of 0.1 in.,

and after being snugly fitted, the nuts at D and H are both tightened
one-quarter of a turn. Knowing that E is 29 X 10° psi for steel and

10.6 X 10° psi for aluminum, determine the normal stress in the rod.

STRATEGY: The tightening of the nuts causes a displacement of the

C

12in. ends of the bolts relative to the rigid casting that is equal to the differ-
ence in displacements between the bolts and the rod. This will give a
relation between the internal forces of the bolts and the rod that, when
combined with a free body analysis of the rigid casting, will enable you
to solve for these forces and determine the corresponding normal

5 stress in the rod.

e

P,

G

E F

WP,I MODELING: Draw the free body diagrams of the bolts and rod
" (Fig. 1) and the rigid casting (Fig. 2).

ANALYSIS:
H

e

PI)

Fig. 1 Free-body diagrams of bolts and

aluminum bar.

'ﬁ'; Deformations.
b

Bolts CD and GH. Tightening the nuts causes tension in the
bolts (Fig. 1). Because of symmetry, both are subjected to the same

(continued)
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-

e P,
Pr‘ -l B
[ P,

Fig. 2 Free-body diagram
of rigid casting.

internal force P, and undergo the same deformation §,.
Therefore,
P,L, P,(18in.)

oy = + = 4 = +1.405 X 10°°P, (1
*" TAE,  Im(0.75in.)%(29 X 10° psi) » (1)

Rod EF. The rod is in compression (Fig. 1), where the magnitude of
the force is P, and the deformation §,:

PL, P,(121in.)
AE, +r(1.5in.)%(10.6 X 10° psi)

5, = = —0.6406 X 10 ° P, (2)

Displacement of D Relative to B. Tightening the nuts one-quarter
of a turn causes ends D and H of the bolts to undergo a displacement
of (0.1 in.) relative to casting B. Considering end D,

8psp = 4(0.1in.) = 0.025in. 3)
But 6p/5 = 8 — &g, where &, and &5 represent the displacements of D
and B. If casting A is held in a fixed position while the nuts at D and H

are being tightened, these displacements are equal to the deforma-
tions of the bolts and of the rod, respectively. Therefore,

5D/B =68, — 6, (€))]

Substituting from Egs. (1), (2), and (3) into Eq. (4),
0.025in. = 1.405 X 10" ° P, + 0.6406 X 10°°P, (5)

Free Body: Casting B (Fig. 2)
LsFr=0: P,—2P,=0 P,=2P, 6)

Forces in Bolts and Rod Substituting for P, from Eq. (6) into
Eq. (5), we have

0.025in. = 1.405 X 10 °P, + 0.6406 X 10 %(2P,)
P, = 9.307 X 10°1b = 9.307 kips
P, = 2P, = 2(9.307 kips) = 18.61 kips

Stress in Rod

p, 18.61 kips .
o= —=7T """ o, = 10.53 ksi
A, ym(l.5in.)

REFLECT and THINK: This is an example of a statically indetermi-
nate problem, where the determination of the member forces could
not be found by equilibrium alone. By considering the relative dis-
placement characteristics of the members, you can obtain additional
equations necessary to solve such problems. Situations like this will be
examined in more detail in the following section.




Problems

A nylon thread is subjected to a 8.5-N tension force. Knowing that
E = 3.3 GPa and that the length of the thread increases by 1.1%,
determine (a) the diameter of the thread, (b) the stress in the
thread.

A 4.8-ft-long steel wire of } -in.-diameter is subjected to a 750-1b
tensile load. Knowing that E = 29 X 10° psi, determine (a) the
elongation of the wire, (b) the corresponding normal stress.

An 18-m-long steel wire of 5-mm diameter is to be used in the
manufacture of a prestressed concrete beam. It is observed that
the wire stretches 45 mm when a tensile force P is applied. Know-
ing that E = 200 GPa, determine (@) the magnitude of the force P,
(b) the corresponding normal stress in the wire.

Two gage marks are placed exactly 250 mm apart on a
12-mm-diameter aluminum rod with E = 73 GPa and an ultimate
strength of 140 MPa. Knowing that the distance between the gage
marks is 250.28 mm after a load is applied, determine (a) the
stress in the rod, (b) the factor of safety.

An aluminum pipe must not stretch more than 0.05 in. when it
is subjected to a tensile load. Knowing that E = 10.1 X 10° psi
and that the maximum allowable normal stress is 14 ksi, deter-
mine (a) the maximum allowable length of the pipe, (b) the
required area of the pipe if the tensile load is 127.5 kips.

A control rod made of yellow brass must not stretch more than
3 mm when the tension in the wire is 4 kN. Knowing that
E = 105 GPa and that the maximum allowable normal stress
is 180 MPa, determine (a) the smallest diameter rod that
should be used, (b) the corresponding maximum length of the
rod.

A steel control rod is 5.5 ft long and must not stretch more than
0.04 in. when a 2-kip tensile load is applied to it. Knowing that
E = 29 X 10° psi, determine (@) the smallest diameter rod that
should be used, (b) the corresponding normal stress caused by
the load.

A cast-iron tube is used to support a compressive load. Knowing
that E = 10 X 10° psi and that the maximum allowable change
in length is 0.025%, determine (@) the maximum normal stress in
the tube, (b) the minimum wall thickness for a load of 1600 Ib if
the outside diameter of the tube is 2.0 in.

A 4-m-long steel rod must not stretch more than 3 mm and the
normal stress must not exceed 150 MPa when the rod is sub-
jected to a 10-kN axial load. Knowing that E = 200 GPa, deter-
mine the required diameter of the rod.




A nylon thread is to be subjected to a 10-N tension. Knowing that
E = 3.2 GPa, that the maximum allowable normal stress is
40 MPa, and that the length of the thread must not increase by
more than 1%, determine the required diameter of the thread.
P = 130 kips

A block of 10-in. length and 1.8 X 1.6-in. cross section is to sup-
port a centric compressive load P. The material to be used is a
bronze for which E = 14 X 10° psi. Determine the largest load
that can be applied, knowing that the normal stress must not
exceed 18 ksi and that the decrease in length of the block should
be at most 0.12% of its original length.

D
:‘ .12 A square yellow-brass bar must not stretch more than
2.5 mm when it is subjected to a tensile load. Knowing that
E = 105 GPa and that the allowable tensile strength is 180 MPa,
determine (a) the maximum allowable length of the bar, (b) the
required dimensions of the cross section if the tensile load is
40 kN.

Rod BD is made of steel (E = 29 X 10° psi) and is used to brace
the axially compressed member ABC. The maximum force that
can be developed in member BD is 0.02P. If the stress must not
exceed 18 ksi and the maximum change in length of BD must not
exceed 0.001 times the length of ABC, determine the smallest-
diameter rod that can be used for member BD.

The 4-mm-diameter cable BC is made of a steel with E =
200 GPa. Knowing that the maximum stress in the cable must
not exceed 190 MPa and that the elongation of the cable must
not exceed 6 mm, find the maximum load P that can be applied
as shown.

Fig. P2.14

.95, @hamnelar .15 A single axial load of magnitude P = 15 kips is applied at end C
of the steel rod ABC. Knowing that E = 30 X 10° psi, determine
the diameter d of portion BC for which the deflection of point C
will be 0.05 in.

A 250-mm-long aluminum tube (E = 70 GPa) of 36-mm outer
diameter and 28-mm inner diameter can be closed at both ends
by means of single-threaded screw-on covers of 1.5-mm pitch.

Fig. P2.15 With one cover screwed on tight, a solid brass rod (E = 105 GPa)
of 25-mm diameter is placed inside the tube and the second cover
is screwed on. Since the rod is slightly longer than the tube, it is
observed that the cover must be forced against the rod by rotating
it one-quarter of a turn before it can be tightly closed. Determine
(a) the average normal stress in the tube and in the rod, (b) the
deformations of the tube and of the rod.

N
‘ 25 1\nm T

Fig. P2.16




2.17 The specimen shown has been cut from a }-in.-thick sheet of
vinyl (E = 0.45 X 10° psi) and is subjected to a 350-Ib tensile load.
Determine (a) the total deformation of the specimen, (b) the
deformation of its central portion BC.

A B 04in. C D

P=3501b o —& = P =350 Ib
18T, 1in.
¥ ¥

LI.G in.»L—Q in. »LI.G in.J

Fig. P2.17

The brass tube AB (E = 105 GPa) has a cross-sectional area of
140 mm? and is fitted with a plug at A. The tube is attached at B
to a rigid plate that is itself attached at C to the bottom of an
aluminum cylinder (E = 72 GPa) with a cross-sectional area of
250 mm®. The cylinder is then hung from a support at D. In order
to close the cylinder, the plug must move down through 1 mm.
Determine the force P that must be applied to the cylinder.

Both portions of the rod ABC are made of an aluminum for which
E = 70 GPa. Knowing that the magnitude of P is 4 kNN, determine
(a) the value of Q so that the deflection at A is zero, (b) the cor-
responding deflection of B.

20-mm diameter

60-mm diameter

Cc

Fig. P2.19 and P2.20 228 kN

2.20 The rod ABC is made of an aluminum for which E = 70 GPa.
Knowing that P = 6 kN and Q = 42 kN, determine the deflection 1
of (a) point A, (b) point B. 25m

A D c |
A =
For the steel truss (E = 200 GPa) and loading shown, determine
the deformations of members AB and AD, knowing that their 0 0
Um Um

cross-sectional areas are 2400 mm?” and 1800 mm?, respectively.

Fig. P2.21




| 6f |
Br t C|

—

5 ft

A ﬁi

D
28 kips Y 54 kips

Fig. P2.23

2.22 For the steel truss (E = 29 X 10° psi) and loading shown,
determine the deformations of members BD and DE, know-
ing that their cross-sectional areas are 2 in? and 3 in?
respectively.

30 kips A
—

ft
30 l\l])\

ft
30 l\l])\

:
K >

l F
|<—15 ft—»l

Fig. P2.22

2.23 Members AB and BC are made of steel (E = 29 X 10° psi) with
cross-sectional areas of 0.80 in® and 0.64 in?, respectively. For the
loading shown, determine the elongation of (¢) member AB,
(b) member BC.

2.24 The steel frame (E = 200 GPa) shown has a diagonal brace BD
with an area of 1920 mm?. Determine the largest allowable load P
if the change in length of member BD is not to exceed 1.6 mm.

A

D
A ohte

I
Fig. P2.24

2.25 Link BD is made of brass (E = 105 GPa) and has a cross-sectional
area of 240 mm?®. Link CE is made of aluminum (E = 72 GPa) and
has a cross-sectional area of 300 mm?®. Knowing that they support
rigid member ABC, determine the maximum force P that can be
applied vertically at point A if the deflection of A is not to exceed
0.35 mm.




2.26 Members ABC and DEF are joined with steel links (E = 200 GPa).
Each of the links is made of a pair of 25 X 35-mm plates. Determine
the change in length of (@) member BE, (b) member CE 180 mm

Each of the links AB and CD is made of aluminum (E = 10.9 X 10° psi)
and has a cross-sectional area of 0.2 in>. Knowing that they support

the rigid member BC, determine the deflection of point E. A8 i

A D

18kN ‘« 240 mm »‘
Fig. P2.26

18 kN

Fig. P2.27

The length of the 2-in.-diameter steel wire CD has been adjusted
so that with no load applied, a gap of 15 in. exists between the DT[
end B of the rigid beam ACB and a contact point E. Knowing that T
E = 29 X 10° psi, determine where a 50-1b block should be placed

on the beam in order to cause contact between B and E. Lo,
A homogenous cable of length L and uniform cross section is @
suspended from one end. (a) Denoting by p the density (mass A @
per unit volume) of the cable and by E its modulus of elasticity,
determine the elongation of the cable due to its own weight.
(b) Show that the same elongation would be obtained if the cable
were horizontal and if a force equal to half of its weight were
applied at each end. Fig. P2.28

8

D
|
I

= i,

!
b
16

[ 16 in.
4 in.

The vertical load P is applied at the center A of the upper section
of a homogeneous frustum of a circular cone of height h, mini-
mum radius a, and maximum radius b. Denoting by E the modu-
lus of elasticity of the material and neglecting the effect of its
weight, determine the deflection of point A.

Fig. P2.30

Denoting by e the “engineering strain” in a tensile specimen,
show that the true strain is €, = In(1 + €).

The volume of a tensile specimen is essentially constant while
plastic deformation occurs. If the initial diameter of the specimen
is d,, show that when the diameter is d, the true strain is
€, = 2 In(d,/d).
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2.2 STATICALLY INDETERMINATE
PROBLEMS

In the problems considered in the preceding section, we could always use
free-body diagrams and equilibrium equations to determine the internal
forces produced in the various portions of a member under given loading
conditions. There are many problems, however, where the internal forces
cannot be determined from statics alone. In most of these problems, the
reactions themselves—the external forces—cannot be determined by
simply drawing a free-body diagram of the member and writing the cor-
responding equilibrium equations. The equilibrium equations must be
complemented by relationships involving deformations obtained by con-
sidering the geometry of the problem. Because statics is not sufficient to
determine either the reactions or the internal forces, problems of this
type are called statically indeterminate. The following concept applica-

tions show how to handle this type of problem.

/Tube (Ag, Ey)

Rod (4,, E))

(b)
P, / @% P!,
(c)
Pl
—
—
Py
(d)

Fig. 2.21 (a) Concentric rod and tube,
loaded by force P. (b) Free-body diagram
of rod. (c) Free-body diagram of tube.
(d) Free-body diagram of end plate.

Concept Application 2.2

A rod of length L, cross-sectional area A,, and modulus of elasticity E,,
has been placed inside a tube of the same length L, but of cross-
sectional area A, and modulus of elasticity E, (Fig. 2.21a). What is the
deformation of the rod and tube when a force P is exerted on a rigid
end plate as shown?

The axial forces in the rod and in the tube are P, and P,, respec-
tively. Draw free-body diagrams of all three elements (Fig. 2.21b, ¢, d).
Only Fig. 2.21d yields any significant information, as:

b+ PpP,=P 1)

Clearly, one equation is not sufficient to determine the two unknown

internal forces P, and P,. The problem is statically indeterminate.
However, the geometry of the problem shows that the deformations

8; and 8, of the rod and tube must be equal. Recalling Eq. (2.9), write

PL P,L

o, = 0y = 2
AR 2T A ()]

Equating the deformations &, and &,,

P _ P
AEy AsE,

&)

Equations (1) and (3) can be solved simultaneously for P, and P,:

A,E,P A,E,P

P = - - = =
' AE + AL > AE, + AE,

Either of Egs. (2) can be used to determine the common deformation
of the rod and tube.

~
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N

( ) I
a
l fP”

TRB
(c)

Fig. 2.22 (a) Restrained bar
with axial load. (b) Free-body
diagram of bar. (c) Free-body
diagrams of sections above and

below point C used to determine

internal forces P; and P,.

Concept Application 2.3

A bar AB of length L and uniform cross section is attached to rigid
supports at A and B before being loaded. What are the stresses in por-
tions AC and BC due to the application of a load P at point C
(Fig. 2.22a)?

Drawing the free-body diagram of the bar (Fig. 2.22b), the equi-
librium equation is

R,+Rg=P (1)

Since this equation is not sufficient to determine the two unknown
reactions R, and R, the problem is statically indeterminate.
However, the reactions can be determined if observed from the
geometry that the total elongation 6 of the bar must be zero. The elon-
gations of the portions AC and BC are respectively §, and 8,, so

5=8,+8=0

Using Eq. (2.9), 6, and 6, can be expressed in terms of the correspond-
ing internal forces P, and P,,
_PL, Pl

0= + =0 2
AE AE @

Note from the free-body diagrams shown in parts b and c of Fig. 2.22¢
that P, = R, and P, = —Rj;. Carrying these values into Equation (2),

RyL, — RgL, = 0 (3)

Equations (1) and (3) can be solved simultaneously for R, and Ry, as
R, = PL,/L and Ry = PL,/L. The desired stresses o, in AC and o, in
BC are obtained by dividing P, = R, and P, = —Rj by the cross-
sectional area of the bar:

PL, PL,
L2 o=
AL AL

(251

Superposition Method. A structure is statically indeterminate when-
ever it is held by more supports than are required to maintain its equilib-
rium. This results in more unknown reactions than available equilibrium
equations. It is often convenient to designate one of the reactions as
redundant and to eliminate the corresponding support. Since the stated
conditions of the problem cannot be changed, the redundant reaction
must be maintained in the solution. It will be treated as an unknown load
that, together with the other loads, must produce deformations compati-
ble with the original constraints. The actual solution of the problem con-
siders separately the deformations caused by the given loads and the
redundant reaction, and by adding—or superposing—the results obtained.
The general conditions under which the combined effect of several loads
can be obtained in this way are discussed in Sec. 2.5.
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A= 250 mm_ " 1
T 150 mm

v

. 1
300 kN 150 mm

c Y
A =400 mm%__| 150 mm
600 kN 150 mm

Concept Application 2.4

Determine the reactions at A and B for the steel bar and loading shown
in Fig. 2.23a, assuming a close fit at both supports before the loads are
applied.

We consider the reaction at B as redundant and release the bar
from that support. The reaction Ry is considered to be an unknown
load and is determined from the condition that the deformation § of
the bar equals zero.

The solution is carried out by considering the deformation §;
caused by the given loads and the deformation 63 due to the redun-

(a) dant reaction Rp (Fig. 2.23b).
The deformation §; is obtained from Eq. (2.10) after the bar has
A 4 A been divided into four portions, as shown in Fig. 2.23¢c. Follow the
same procedure as in Concept Application 2.1:
JOOEN l JUOEN P,=0 P,=P,=600x10°N P, =900 X 10°N
- + A=A, =400 X 10 °m* A; = A, =250 X 10 °m?
Ll = Lz = L3 S L4 = 0.150 m
600 kN l 600 kN
Substituting these values into Eq. (2.10),
5= 01 .4 _1og 1
R Ry L PL; 600 X 10°N
B L SLZEll:<O+7762
(b) =1 AE 400 X 10 "m
600 X 10°N 900 X 10°N )0.150m
- 250 X 10 °m* 250 X 10°°m?/ E
1.125 X 10°
mm L = 5 (0]

o Considering now the deformation 6; due to the redundant reac-

tion Rp, the bar is divided into two portions, as shown in Fig. 2.23d

mm

P1:P2:_RB

A, =400 X 10 °m* A, =250 X 10" °m?

TRB

(d)
Fig. 2.23 (a) Restrained axially-loaded
bar. (b) Reactions will be found by
releasing constraint at point B and adding
compressive force at point B to enforce
zero deformation at point B. (c) Free-body
diagram of released structure.
(d) Free-body diagram of added reaction
force at point B to enforce zero
deformation at point B.

L, =L, = 0300 m

Substituting these values into Eq. (2.10),

P\L, P,L 1.95 X 10*R
BR: 11+22:_( )B (2)
AE  AE E
Express the total deformation 6 of the bar as zero:
§=8,+06,=0 3)
and, substituting for 6; and 85 from Egs. (1) and (2) into Egs. (3),
~ 1125 X 10°  (1.95 X 10°)Ry
= - - =
(continued)
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300 kN

C
600 kN
\
B
A
Rp
(e)
Fig. 2.23 (cont.) (e) Complete

free-body diagram of ACB.

N

Solving for Ry,
Ry =577 X 10° N = 577 kN

The reaction R, at the upper support is obtained from the free-
body diagram of the bar (Fig. 2.23¢),

+12F,=0: Ry —300kN — 600kN + R; =0

R, = 900kN — Ry = 900 kN — 577 kN = 323 kN

Once the reactions have been determined, the stresses and strains
in the bar can easily be obtained. Note that, while the total deforma-
tion of the bar is zero, each of its component parts does deform under
the given loading and restraining conditions.

-~

A A
A = 250 mm?® 300 o
300 kN

A = 400 mm?>

300 mm

600 kN
1 6
4.5 mm B B

Fig. 2.24 Multi-section bar of Concept
Application 2.4 with initial 4.5-mm gap at
point B. Loading brings bar into contact
with constraint.

Concept Application 2.5

Determine the reactions at A and B for the steel bar and loading of
Concept Application 2.4, assuming now that a 4.5-mm clearance exists
between the bar and the ground before the loads are applied (Fig. 2.24).
Assume E = 200 GPa.

Considering the reaction at B to be redundant, compute the defor-
mations 6; and &y caused by the given loads and the redundant reac-
tion Rz. However, in this case, the total deformation is 6 = 4.5 mm.

Therefore,
§=06,+6;,=45x%X10°m

0

Substituting for §; and 8y into (Eq. 1), and recalling that E = 200 GPa
=200 X 10° Pa,

(1.95 X 10°)Ry
200 X 10°

_ 1125 X 10°

= =45X10°m
200 X 10

Solving for Rp,
Rp = 115.4 X 10 N = 115.4 kN

The reaction at A is obtained from the free-body diagram of the bar
(Fig. 2.23e):

+12F,=0: Ry — 300kN — 600kN + R; =0
R, =900kN — Rz = 900 kN — 115.4 kN = 785 kN
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| L |
A B
(a)
P
— < —
A B
(b)

Fig. 2.26 Force P develops when the

temperature of the rod increases while ends

A and B are restrained.

2.3 PROBLEMS INVOLVING
TEMPERATURE CHANGES

Consider a homogeneous rod AB of uniform cross section that rests freely
on a smooth horizontal surface (Fig. 2.25a). If the temperature of the rod is
raised by AT, the rod elongates by an amount §; that is proportional to both
the temperature change AT and the length L of the rod (Fig. 2.25b). Here

8r = a(AT)L (2.13)

where « is a constant characteristic of the material called the coefficient of
thermal expansion. Since 6 and L are both expressed in units of length,
a represents a quantity per degree C or per degree F, depending whether
the temperature change is expressed in degrees Celsius or Fahrenheit.

|
Al

()

Fig. 2.25 Elongation of an
unconstrained rod due to temperature
increase.

Associated with deformation §; must be a strain e = §;/L. Recalling
Eq. (2.13),

€r = aAT (2.19)

The strain ey is called a thermal strain, as it is caused by the change
in temperature of the rod. However, there is no stress associated with
the strain €.

Assume the same rod AB of length L is placed between two fixed
supports at a distance L from each other (Fig. 2.26a). Again, there is nei-
ther stress nor strain in this initial condition. If we raise the temperature
by AT, the rod cannot elongate because of the restraints imposed on its
ends; the elongation &7 of the rod is zero. Since the rod is homogeneous
and of uniform cross section, the strain e at any point is €; = 8;/L and
thus is also zero. However, the supports will exert equal and opposite
forces P and P’ on the rod after the temperature has been raised, to keep
it from elongating (Fig. 2.26b). It follows that a state of stress (with no cor-
responding strain) is created in the rod.

The problem created by the temperature change AT is statically
indeterminate. Therefore, the magnitude P of the reactions at the supports
is determined from the condition that the elongation of the rod is zero.



| L |
A ‘B
|
(a) sy —
A B
|
b) —| &p —
A B
—
l)
.

(c)

Fig. 2.27 Superposition method to find force at point
B of restrained rod AB undergoing thermal expansion.
(a) Initial rod length; (b) thermally expanded rod length;
(c) force P pushes point B back to zero deformation.

Using the superposition method described in Sec. 2.2, the rod is detached
from its support B (Fig. 2.27a) and elongates freely as it undergoes the
temperature change AT (Fig. 2.27b). According to Eq. (2.13), the corre-
sponding elongation is

Applying now to end B the force P representing the redundant reaction,
and recalling Eq. (2.9), a second deformation (Fig. 2.27¢) is

P

Op =
P AE

Expressing that the total deformation 6 must be zero,

PL
8=8r+ 8= a(ATL+ =0

from which
P = —AEa(AT)

The stress in the rod due to the temperature change AT is
p
o=7= —Ea(AT) (2.15)

The absence of any strain in the rod applies only in the case of a
homogeneous rod of uniform cross section. Any other problem involving a
restrained structure undergoing a change in temperature must be ana-
lyzed on its own merits. However, the same general approach can be used
by considering the deformation due to the temperature change and the
deformation due to the redundant reaction separately and superposing
the two solutions obtained.

23
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LIQ 111.44—12 in—-|

Rp

(d)

Fig. 2.28 (a) Restrained bar. (b) Bar at
+75°F temperature. (c) Bar at lower
temperature. (d) Force Rz needed to
enforce zero deformation at point B.

Concept Application 2.6

Determine the values of the stress in portions AC and CB of the steel
bar shown (Fig. 2.28a) when the temperature of the bar is —50°F, know-
ing that a close fit exists at both of the rigid supports when the tem-
perature is +75°F. Use the values E = 29 X 10° psiand a = 6.5 X 107°/°F
for steel.

Determine the reactions at the supports. Since the problem is
statically indeterminate, detach the bar from its support at B and let it
undergo the temperature change

AT = (—50°F) — (75°F) = —125°F

The corresponding deformation (Fig. 2.28¢) is

87 = a(AT)L = (6.5 X 10~%/°F)(—125°F)(24 in.)

—19.50 X 10 %in.

Applying the unknown force Rj at end B (Fig. 2.28d), use Eq. (2.10) to
express the corresponding deformation §;. Substituting

L, =L, =12in.
A, =06in*> A, =1.2in?
P,=P,=Ry; E=29 X 10°psi
into Eq. (2.10), write
_ PlLl + P2L2
AE  AE

3 Ry <1zin. N 121n.)
29 X 10°psi \0.6in* 1.2 in’

Or

(1.0345 X 10 ®in./Ib)Ry

Expressing that the total deformation of the bar must be zero as a
result of the imposed constraints, write

8=08r+8;,=0
= —19.50 X 10 *in. + (1.0345 X 10 ®in./Ib)Rz = 0
from which

Ry = 18.85 X 10°1b = 18.85 kips

The reaction at A is equal and opposite.

Noting that the forces in the two portions of the bar are P, = P,
= 18.85 kips, obtain the following values of the stress in portions AC
and CB of the bar:

(continued)
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~

P, 18.85kips .
oy =—=————= +3142ksi

A1 0.6 in

P, 18.85kips .
Oy = "~ ="~ , = +15.71 ksi

A, 1.2in

It cannot emphasized too strongly that, while the total deforma-
tion of the bar must be zero, the deformations of the portions AC and
CB are not zero. A solution of the problem based on the assumption
that these deformations are zero would therefore be wrong. Neither
can the values of the strain in AC or CB be assumed equal to zero. To
amplify this point, determine the strain €, in portion AC of the bar.
The strain €,. can be divided into two component parts; one is the
thermal strain e produced in the unrestrained bar by the temperature
change AT (Fig. 2.28¢). From Eq. (2.14),

er=a AT = (6.5 X 10~ %/°F)(—125°F)

—812.5 X 10 %in./in.

The other component of €, is associated with the stress o; due to the
force Ry applied to the bar (Fig. 2.28d). From Hooke’s law, express this
component of the strain as

o, +31.42 X 10°psi e
—=——————— = +1083.4 X 10 ‘in./in.
E 29 X 10°psi

Add the two components of the strain in AC to obtain

_ on -6 -6
€ic = €7 T E = —812.5 X 10 > + 1083.4 X 10

+271 X 10 %in./in.

A similar computation yields the strain in portion CB of the bar:

vy -6 -6
€cp = €r+ = —8125 X 10° + 541.7 X 10

—271 X 10 °in./in.

The deformations 6, and 6.5 of the two portions of the bar are
Sac = €4(AC) = (+271 X 107%)(12in.)

= +3.25 X 10 *in.

8cp = €cs(CB) = (—271 X 10~ °)(12in.)

—3.25 X 10 %in.

Thus, while the sum 6 = 6, + 6 of the two deformations is zero,
neither of the deformations is zero.
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12in. ;| 8in

18 in. <—>|<_.|
A B Ca gD
= (0 K
|
l]() kips 24 in.

E_

12in. | 8in.

’<—18 in.—-|
A C D

=i B

Bl
B,/
10 kips ) \

F(TF

«

"FI)I’

Fig. 1 Free-body diagram of rigid
bar ABCD.

12 in. | 8in.

’<—18 in. —T—»HD,
*/ p

1y

A' 4

Fig. 2 Linearly proportional
displacements along rigid bar
ABCD.

AFce Fprh
EC\:L :6D
T C D [
g
= ‘*71“
24 in. -
30 in
3.
E ZIY‘L —~—
F L

Fig. 3 Forces and deformations
in CE and DF.

30 in.

Sample Problem 2.3

The i-in.-diameter rod CE and the 3-in.-diameter rod DF are attached
to the rigid bar ABCD as shown. Knowing that the rods are made of
aluminum and using E = 10.6 X 10° psi, determine (a) the force in
each rod caused by the loading shown and (b) the corresponding
deflection of point A.

STRATEGY: To solve this statically indeterminate problem, you must
supplement static equilibrium with a relative deflection analysis of the
two rods.

MODELING: Draw the free body diagram of the bar (Fig. 1)
ANALYSIS:

Statics. Considering the free body of bar ABCD in Fig. 1, note that
the reaction at B and the forces exerted by the rods are indeterminate.
However, using statics,

12F; + 20F,,; = 180 ()
Geometry. After application of the 10-kip load, the position of the

bar is A'BC'D’ (Fig. 2). From the similar triangles BAA', BCC', and
BDD/',

Oc Op
= 8o = 0.68 2
12in.  20in. ¢ b (2)
A -2 5,=095 3
18in. 20in. A b ©)

Deformations. Using Eq. (2.9), and the data shown in Fig. 3, write

_ FeeLeg _ Fpelpr

&, = —£ =
" AgE D ANE

Substituting for 6. and &, into Eq. (2), write

Foil Fpil
8¢ = 0.65; CELCE _ o “DFDF
AciE ApiE
Lpp A 30in.\[ i7(z in.)?
Fop=062X"%p - 0.6( - )[% Fpr Fop = 0.333F,;
L A 241in. /| 3m(; in.)

Force in Each Rod. Substituting for F¢y into Eq. (1) and recalling
that all forces have been expressed in kips,

12(0.333Fp) + 20F,; = 180 Fpr = 7.50 kips
FCE = O.SSSFDF = 0.333(7.50 kips) FCE = 2.50 klpS
(continued)

J




2.3 Problems Involving Temperature Changes

87

Deflections. The deflection of point D is

o FpeLpe  (7.50 X 10°1b)(30in.)
P ApsE  1a(3in.)’(10.6 X 10° psi)

Sy = 48.0 X 10 °in.

Using Eq. (3),

8, =095, = 0.9(48.0 X 10 %in.) &, = 43.2 X 10 °in.

REFLECT and THINK: You should note that as the rigid bar rotates
about B, the deflections at C and D are proportional to their distance
from the pivot point B, but the forces exerted by the rods at these
points are not. Being statically indeterminate, these forces depend
upon the deflection attributes of the rods as well as the equilibrium
of the rigid bar.

~

0.9m

R,
l<0.45 m ——

Fig. 1 Free-body diagram of bolt,
cylinder and bar.

Sample Problem 2.4

The rigid bar CDE is attached to a pin support at E and rests on the
30-mm-diameter brass cylinder BD. A 22-mm-diameter steel rod AC
passes through a hole in the bar and is secured by a nut that is snugly
fitted when the temperature of the entire assembly is 20°C. The tem-
perature of the brass cylinder is then raised to 50°C, while the steel rod
remains at 20°C. Assuming that no stresses were present before the
temperature change, determine the stress in the cylinder.

Rod AC: Steel Cylinder BD: Brass
E = 200 GPa E = 105 GPa
a =117 X 107%/°C a =209 X 107°/°C

STRATEGY: You can use the method of superposition, considering
R; as redundant. With the support at B removed, the temperature rise
of the cylinder causes point B to move down through 6;. The reaction
R must cause a deflection §,, equal to 6; so that the final deflection
of B will be zero (Fig. 2)

MODELING: Draw the free-body diagram of the entire assembly
(Fig. 1).

ANALYSIS:
Statics. Considering the free body of the entire assembly, write
(continued)
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Deflection §;. Because of a temperature rise of 50° — 20° = 30°C,
the length of the brass cylinder increases by &;. (Fig. 2a).

87 = L(AT)a = (0.3 m)(30°C)(20.9 X 107°/°C) = 188.1 X 10 °m |

Deflection &§,. From Fig. 2b, note that 6, = 0.46, and
8, = 8p + 8g/p.

_ R,L R,(0.9 m)
AE  1m(0.022 m)*(200 GPa)

. =11.84 X 10 °R, |

8p = 0.408. = 0.4(11.84 X 10 °R,) = 4.74 X 10 °R, !

RsL Ry(0.3m
Spp = o = < sl - ) = 4.04 X 10 °Ry 1
AE  17(0.03 m)%(105 GPa)

Recall from Eq. (1) that R, = 0.4Rj, so

8, = 8p + Syp = [4.74(0.4Rp) + 4.04R]10™° = 5.94 X 10 °R; 1

But 6, = &, 188.1 X 10 °m = 5.94 X 10 °Ry Ry = 31.7kN

R 31.7kN
Stress in Cylinder: o =— =

=—"——  g;=448MPa
A 17(0.03m) !

REFLECT and THINK: This example illustrates the large stresses
that can develop in statically indeterminate systems due to even mod-
est temperature changes. Note that if this assembly was statically
determinate (i.e., the steel rod was removed), no stress at all would
develop in the cylinder due to the temperature change.

Fig. 2 Superposition of thermal and restraint force deformations (a) Support at B removed.
(b) Reaction at B applied. (c) Final position.




Problems

2.33 An axial centric force of magnitude P = 450 kN is applied to the
composite block shown by means of a rigid end plate. Knowing
that # = 10 mm, determine the normal stress in (a) the brass
core, (b) the aluminum plates.

Brass core
(E =105 GPa) Rigid

Aluminum plates P end plate

(E = 70 GPa) g

\\

h

40 mm

Fig. P2.33 ﬁ@ 3
For the composite block shown in Prob. 2.33, determine (a) the
value of £ if the portion of the load carried by the aluminum

plates is half the portion of the load carried by the brass core, (b)
the total load if the stress in the brass is 80 MPa.

Fig. P2.35

The 4.5-ft concrete post is reinforced with six steel bars, each with a
13-in. diameter. Knowing that E; = 29 X 10° psi and E, = 4.2 X 10° /l:L/ Brass core

psi, determine the normal stresses in the steel and in the concrete K E =105 GPa
when a 350-kip axial centric force P is applied to the post.

For the post of Prob. 2.35, determine the maximum centric force
that can be applied if the allowable normal stress is 20 ksi in the
steel and 2.4 ksi in the concrete.

Aluminium shell
E = 70 GPa

An axial force of 200 kN is applied to the assembly shown by
means of rigid end plates. Determine (a) the normal stress in the
aluminum shell, (b) the corresponding deformation of the
assembly.

The length of the assembly shown decreases by 0.40 mm when S~
an axial force is applied by means of rigid end plates. Determine

(a) the magnitude of the applied force, (b) the corresponding 60 mm
stress in the brass core. Fig. P2.37 and P2.38




- 2.39 A polystyrene rod consisting of two cylindrical portions AB and
A BC is restrained at both ends and supports two 6-kip loads as

i shown. Knowing that E = 0.45 X 10° psi, determine (a) the reac-
s in L tions at A and C, (b) the normal stress in each portion of the rod.

" 6 kips 6 kips

Three steel rods (E = 29 X 10° psi) support an 8.5-kip load P.
Each of the rods AB and CD has a 0.32-in” cross-sectional area
and rod EF has a 1-in” cross-sectional area. Neglecting the defor-
mation of bar BED, determine (a) the change in length of rod EF,

(b) the stress in each rod.

Fig. P2.39

Fig. P2.40

Dimensions in mm 3 Two cylindrical rods, one of steel and the other of brass, are

\ 100, 100 joined at C and restrained by rigid supports at A and E. For

Iy | the loading shown and knowing that E; = 200 GPa and
A

E, = 105 GPa, determine (a) the reactions at A and E, (b) the
deflection of point C.

D E
Steel B e Brass e

/60N /;0 kN .42 Solve Prob. 2.41, assuming that rod AC is made of brass and rod
CE is made of steel.

40-mm diam. 30-mm diam.

Fi Each of the rods BD and CE is made of brass (E = 105 GPa) and
ig. P2.41

has a cross-sectional area of 200 mm?. Determine the deflection
of end A of the rigid member ABC caused by the 2-kN load.

75 mm 100 mm
Fig. P2.43

The rigid bar AD is supported by two steel wires of ;5-in. diameter
(E = 29 X 10° psi) and a pin and bracket at A. Knowing that the
wires were initially taut, determine (a) the additional tension in

12in. ' 12in. each wire when a 220-lb load P is applied at D, (b) the corre-
Fig. P2.44 sponding deflection of point D.




2.45 The rigid bar ABC is suspended from three wires of the same
material. The cross-sectional area of the wire at B is equal to half
of the cross-sectional area of the wires at A and C. Determine the
tension in each wire caused by the load P shown.

The rigid bar AD is supported by two steel wires of 75-in. diameter
(E = 29 X 10° psi) and a pin and bracket at D. Knowing that the
wires were initially taut, determine (a) the additional tension in
each wire when a 120-1b load P is applied at B, (b) the corre-
sponding deflection of point B.

EY-

—VYF

1)
|

|
I

< 8 in. <8 in. —

P
Fig. P2.46

2.47 The aluminum shell is fully bonded to the brass core and the 25 mm
assembly is unstressed at a temperature of 15°C. Considering
only axial deformations, determine the stress in the aluminum /’:’\ P
when the temperature reaches 195°C. s E = 105 GPa
a =209 x10%°C
Solve Prob. 2.47, assuming that the core is made of steel

(E; = 200 GPa, a; = 11.7 X 10 %/°C) instead of brass.

Aluminum shell

E = 70 GP:
The brass shell (o, = 11.6 X 10~%/°F) is fully bonded to the steel «=0936 xd10-6/°c

core (a; = 6.5 X 107 °/°F). Determine the largest allowable
increase in temperature if the stress in the steel core is not to
exceed 8 ksi.

in. in. .
. 1in.
1in.

4 in— Lin,
RS
)&/

Steel core
E =29 X 10° psi

Brass shell
E =15 X 10° psi




2.50 The concrete post (E, = 3.6 X 10° psi and a, = 5.5 X 10" °/°F) is
reinforced with six steel bars, each of %-in. diameter
(E, = 29 X 10° psi and o, = 6.5 X 10" %/°F). Determine the normal
stresses induced in the steel and in the concrete by a temperature
rise of 65°F.

A rod consisting of two cylindrical portions AB and BC is
restrained at both ends. Portion AB is made of steel (E; = 200 GPa,
a; = 11.7 X 107°/°C) and portion BC is made of brass (E, = 105
GPa, a;, = 20.9 X 10 °/°C). Knowing that the rod is initially
unstressed, determine the compressive force induced in ABC
when there is a temperature rise of 50°C.

\?\
'I{i}s/ 10 in.

Fig. P2.50
9 A

L 30-mm diameter

B
,— 50-mm diameter

Fig. P2.51

Arod consisting of two cylindrical portions AB and BCis restrained
at both ends. Portion AB is made of steel (E;, = 29 X 10° psi,
a; = 6.5 X 107 °/°F) and portion BC is made of aluminum
(E, = 10.4 X 10° psi, a, = 13.3 X 10" °/°F). Knowing that the rod

is initially unstressed, determine (a) the normal stresses induced
/ \ in portions AB and BC by a temperature rise of 70°E, (b) the cor-

1 . . . . g
2%'111‘ diameter 13 -in. diameter responding deflection of point B.

Fig. P2.52

Solve Prob. 2.52, assuming that portion AB of the composite rod
is made of aluminum and portion BC is made of steel.

The steel rails of a railroad track (E; = 200 GPa, o, = 11.7 X 10 /°C)
were laid at a temperature of 6°C. Determine the normal stress
in the rails when the temperature reaches 48°C, assuming that
the rails (a) are welded to form a continuous track, (b) are 10 m
long with 3-mm gaps between them.

Two steel bars (E, = 200 GPa and a, = 11.7 X 10 ®/°C) are used
to reinforce a brass bar (E, = 105 GPa, a;, = 20.9 X 10 %/°C) that
is subjected to a load P = 25 kIN. When the steel bars were fabri-
cated, the distance between the centers of the holes that were to
fit on the pins was made 0.5 mm smaller than the 2 m needed.
The steel bars were then placed in an oven to increase their length
so that they would just fit on the pins. Following fabrication, the
temperature in the steel bars dropped back to room temperature.
Determine (a) the increase in temperature that was required to fit
the steel bars on the pins, (b) the stress in the brass bar after the
load is applied to it.




2.56 Determine the maximum load P that can be applied to the brass
bar of Prob. 2.55 if the allowable stress in the steel bars is 30 MPa
and the allowable stress in the brass bar is 25 MPa.

An aluminum rod (E, = 70 GPa, a, = 23.6 X 10 °/°C) and a
steel link (E; = 200 GPa, o; = 11.7 X 10 %/°C) have the dimen-
sions shown at a temperature of 20°C. The steel link is heated
until the aluminum rod can be fitted freely into the link. The
temperature of the whole assembly is then raised to 150°C.
Determine the final normal stress (a) in the rod, (b) in the link.

Dimensions in mm

0.15

Fig. P2.57

2.58 Knowing that a 0.02-in. gap exists when the temperature is 75°F,
determine (a) the temperature at which the normal stress in the
aluminum bar will be equal to —11 ksi, (b) the corresponding
exact length of the aluminum bar.

0.02 in.

’* 14 in. ' 18 in.

Bronze Aluminum

A=24in® A =28in?

E =15 X 10%psi E =10.6 X 10°psi

a =12 X 10°5°F a =129 X 10°%°F 0.5 mm

Fig. P2.58 and P2.59 /
|<— 300 mm — 250 mm ~>|
Determine (a) the compressive force in the bars shown after a

temperature rise of 180°F, (b) the corresponding change in length A B
of the bronze bar.

2.60 At room temperature (20°C) a 0.5-mm gap exists between  Aluminum
the ends of the rods shown. At a later time when the A = 2000 mm? A = 800 mm?2
temperature has reached 140°C, determine (a) the normal E =75GPa E = 190 GPa
stress in the aluminum rod, (b) the change in length of the «=23X10%°C a =173 X 10°%°C
aluminum rod. Fig. P2.60

Stainless steel
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(a)
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>
(Ti:()/\/ (‘7;\
(b)

Fig. 2.29 A bar in uniaxial tension and a
representative stress element.

Fig. 2.30 Materials undergo transverse

contraction when elongated under axial load.

2.4 POISSON'S RATIO

When a homogeneous slender bar is axially loaded, the resulting stress
and strain satisfy Hooke’s law, as long as the elastic limit of the material
is not exceeded. Assuming that the load P is directed along the x axis
(Fig. 2.29a), o = P/A, where A is the cross-sectional area of the bar, and
from Hooke’s law,

€. = 0y/E (2.16)

where E is the modulus of elasticity of the material.

Also, the normal stresses on faces perpendicular to the y and z axes
are zero: o, = o, = 0 (Fig. 2.29b). It would be tempting to conclude that
the corresponding strains €, and e, are also zero. This is not the case. In
all engineering materials, the elongation produced by an axial tensile
force P in the direction of the force is accompanied by a contraction in
any transverse direction (Fig. 2.30)." In this section and the following
sections, all materials are assumed to be both homogeneous and isotro-
pic (i.e., their mechanical properties are independent of both position
and direction). It follows that the strain must have the same value for any
transverse direction. Therefore, the loading shown in Fig. 2.29 must have
€, = €. This common value is the lateral strain. An important constant
for a given material is its Poisson’s ratio, named after the French math-
ematician Siméon Denis Poisson (1781-1840) and denoted by the Greek
letter v (nu).

lateral strain

v —————— (2.17)
axial strain
or
€ €
y=—-t=--= (2.18)
€, €,

for the loading condition represented in Fig. 2.29. Note the use of a minus
sign in these equations to obtain a positive value for v, as the axial and
lateral strains have opposite signs for all engineering materials.” Solving
Eq. (2.18) for €, and €,, and recalling Eq. (2.16), write the following rela-
tionships, which fully describe the condition of strain under an axial load
applied in a direction parallel to the x axis:

o Vo,
€ = — €, =€, = —
E y

(2.19)

It also would be tempting, but equally wrong, to assume that the volume of the rod
remains unchanged as a result of the combined effect of the axial elongation and trans-
verse contraction (see Sec. 2.6).

*However, some experimental materials, such as polymer foams, expand laterally when
stretched. Since the axial and lateral strains have then the same sign, Poisson’s ratio of
these materials is negative. (See Roderic Lakes, “Foam Structures with a Negative
Poisson’s Ratio,” Science, 27 February 1987, Volume 235, pp. 1038-1040.)
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y Concept Application 2.7

6, = 300 um

u

12 kN

material.

X
~

d =16 mm

9, = —2.4 um

Fig. 2.31 Axially loaded rod.

€y

and from Eq. (2.18),

N

€, =

g, = —

Yy =

A 500-mm-long, 16-mm-diameter rod made of a homogenous,
isotropic material is observed to increase in length by 300 wm, and to
decrease in diameter by 2.4 um when subjected to an axial 12-kN load.
Determine the modulus of elasticity and Poisson’s ratio of the
The cross-sectional area of the rod is
A=ar*=m(8 X 10 °m)* = 201 X 10 °m?*

Choosing the x axis along the axis of the rod (Fig. 2.31), write

From Hooke’s law, o, = Ee,,

P 12 X 10°N
= ————— =59.7MPa
A 201 X10 °m
5. 300um
%= 2P 600 x 1070
L 500 mm
1) —2.4 um
Y TEAMR 150 x 107°
d 16 mm
o,  59.7MPa
=2 =—""———=995GPa
€ 600 X 10
€y —150 X 107°
——=—-——"=1025
€, 600 X 10

2.5 MULTIAXIAL LOADING:

GENERALIZED HOOKE'S LAW

All the examples considered so far in this chapter have dealt with slender
members subjected to axial loads, i.e., to forces directed along a single
axis. Consider now structural elements subjected to loads acting in the
directions of the three coordinate axes and producing normal stresses o,
oy, and o, that are all different from zero (Fig. 2.32). This condition is a

Oy

%y
Oy T/
. ‘/\[/
%y

Fig. 2.32 State of stress for
multiaxial loading.
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0
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y
g,
\1 +e.

A

(b)
Fig. 2.33 Deformation of unit cube under
multiaxial loading: (a) unloaded; (b) deformed.

multiaxial loading. Note that this is not the general stress condition
described in Sec. 1.3, since no shearing stresses are included among the
stresses shown in Fig. 2.32.

Consider an element of an isotropic material in the shape of a cube
(Fig. 2.33a). Assume the side of the cube to be equal to unity, since it is always
possible to select the side of the cube as a unit of length. Under the given
multiaxial loading, the element will deform into a rectangular parallelepiped
of sides equal to 1 + €,, 1 + €, and 1 + €,, where €,, €,, and €, denote the
values of the normal strain in the directions of the three coordinate axes
(Fig. 2.33b). Note that, as a result of the deformations of the other elements
of the material, the element under consideration could also undergo a trans-
lation, but the concern here is with the actual deformation of the element,
not with any possible superimposed rigid-body displacement.

In order to express the strain components €,, €y, €, in terms of the
stress components oy, g, 0, consider the effect of each stress component
and combine the results. This approach will be used repeatedly in this
text, and is based on the principle of superposition. This principle states
that the effect of a given combined loading on a structure can be obtained
by determining the effects of the various loads separately and combining
the results, provided that the following conditions are satisfied:

1. Each effect is linearly related to the load that produces it.
2. The deformation resulting from any given load is small and does not
affect the conditions of application of the other loads.

For multiaxial loading, the first condition is satisfied if the stresses
do not exceed the proportional limit of the material, and the second con-
dition is also satisfied if the stress on any given face does not cause defor-
mations of the other faces that are large enough to affect the computation
of the stresses on those faces.

Considering the effect of the stress component o, recall from
Sec. 2.4 that o causes a strain equal to o,/E in the x direction and strains
equal to —vo,/E in each of the y and z directions. Similarly, the stress
component g, if applied separately, will cause a strain o,/E in the y direc-
tion and strains —vo,/E in the other two directions. Finally, the stress
component o, causes a strain o,/E in the z direction and strains —vo,/E
in the x and y directions. Combining the results, the components of strain
corresponding to the given multiaxial loading are

0'x V(Ty Vo,
G = e = —=
E E E
vo, Oy Vo,
Gy = = + — - 2.20
v E E E (2.20)
vo, Vvoy O,
€, = — — —
E E E

Equations (2.20) are the generalized Hooke’s law for the multiaxial
loading of a homogeneous isotropic material. As indicated earlier, these
results are valid only as long as the stresses do not exceed the proportional
limit and the deformations involved remain small. Also, a positive value
for a stress component signifies tension and a negative value compression.
Similarly, a positive value for a strain component indicates expansion in
the corresponding direction and a negative value contraction.
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Concept Application 2.8

The steel block shown (Fig. 2.34) is subjected to a uniform pressure
on all its faces. Knowing that the change in length of edge AB is
—1.2 X 107° in., determine (a) the change in length of the other two
edges and (b) the pressure p applied to the faces of the block. Assume
E =29 X 10° psi and » = 0.29.

a. Change in Length of Other Edges. Substituting o, = o, =
o, = —p into Egs. (2.20), the three strain components have the

common value

Fig. 2.34 Steel block under uniform

6)’
5,

b. Pressure.

pressire b @GS GE GS = %(1 — 2v) (0]
Since
€, = 8,/AB = (—1.2 X 10 %in.)/(4 in.)
= —300 X 10" %in./in.
obtain
€, =€, = € = —300 X 10 °in./in.
from which

€,(BC) = (=300 X 10 °)(2in.) = —600 X 10 °in.
€,(BD) = (—300 X 10 %)(3in.) = —900 X 10 °in.

Solving Eq. (1) for p,

N\

Ee, (29 X 10° psi)(—300 X 107°)
P="1-2 " 1 - 058
p = 20.7 ksi

*2.6 DILATATION AND BULK
MODULUS

This section examines the effect of the normal stresses o, o, and o, on
the volume of an element of isotropic material. Consider the element
shown in Fig. 2.33. In its unstressed state, it is in the shape of a cube of
unit volume. Under the stresses o, o, 0, it deforms into a rectangular
parallelepiped of volume

v=>01+¢€)1+ €)1 +e€)

Since the strains €, €, €, are much smaller than unity, their products can
be omitted in the expansion of the product. Therefore,

v=1+e€ te te
The change in volume e of the element is

e=v—1=1+¢€+¢€ +e —1
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or

e=¢€,t€ te (2.21)

Since the element originally had a unit volume, e represents the change in
volume per unit volume and is called the dilatation of the material.
Substituting for €,, €, and €, from Egs. (2.20) into (2.21), the change is
o, to,+o, 2v(o+o,+ 0)

E E

e =

1—2v
E

e= (o + 0y + 0,) (2.22)"

When a body is subjected to a uniform hydrostatic pressure p, each
of the stress components is equal to —p and Eq. (2.22) yields

31— 2w) 2.23)
e= g P .
Introducing the constant
E
k= (2.29)
3(1 — 2v)
Eq. (2.23) is given in the form
p
= —— 2.25
e k (2.25)

The constant k is known as the bulk modulus or modulus of compression
of the material. It is expressed in pascals or in psi.

Because a stable material subjected to a hydrostatic pressure can
only decrease in volume, the dilatation e in Eq. (2.25) is negative, and the
bulk modulus k is a positive quantity. Referring to Eq. (2.24), 1 — 2v > 0 or
v < 3. Recall from Sec. 2.4 that v is positive for all engineering materials.
Thus, for any engineering material,

0<v<i (2.26)

Note that an ideal material having » equal to zero can be stretched in one
direction without any lateral contraction. On the other hand, an ideal mate-
rial for which v = } and k = « is perfectly incompressible (e = 0). Referring
to Eq. (2.22) and noting that since » <  in the elastic range, stretching an
engineering material in one direction, for example in the x direction (o, > 0,

o, = o, = 0), results in an increase of its volume (e > 0)."

y

Since the dilatation e represents a change in volume, it must be independent of the
orientation of the element considered. It then follows from Egs. (2.21) and (2.22) that
the quantities €, + €, + €, and o, + 0, + 0 are also independent of the orientation of
the element. This property will be verified in Chap. 7.

*However, in the plastic range, the volume of the material remains nearly constant.
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Concept Application 2.9

Use E = 200 GPa and v = 0.29.

k

Determine the change in volume AV of the steel block shown in
Fig. 2.34, when it is subjected to the hydrostatic pressure p = 180 MPa.

From Eq. (2.24), the bulk modulus of steel is
E 200 GPa

and from Eq. (2.25), the dilatation is

p 180 MPa
e=——=

T 31-2v) 3(1-—058)

k  158.7GPa

= 158.7 GPa

= —-1.134 x10°

Since the volume V of the block in its unstressed state is
V = (80 mm)(40 mm)(60 mm) = 192 X 10° mm?
and e represents the change in volume per unit volume, e = AV/V,
AV = eV = (1134 X 10~
AV = —218 mm®

(192 X 10° mm?)

~

2.7 SHEARING STRAIN

When we derived in Sec. 2.5 the relations (2.20) between normal stresses
and normal strains in a homogeneous isotropic material, we assumed
that no shearing stresses were involved. In the more general stress situa-
tion represented in Fig. 2.35, shearing stresses 7, 7,,, and 7, are present
(as well as the corresponding shearing stresses 7,,, 7, and 7,,). These
stresses have no direct effect on the normal strains and, as long as all the
deformations involved remain small, they will not affect the derivation nor
the validity of Egs. (2.20). The shearing stresses, however, tend to deform
a cubic element of material into an oblique parallelepiped.

Yy

2

X

Fig. 2.35 Positive stress components at point Q
for a general state of stress.
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X

Fig. 2.36 Unit cubic element subjected to
shearing stress.

X

Fig. 2.38 Cubic element as viewed in xy-plane
after rigid rotation.

1
2y

2 Yy

X

Fig. 2.39 Cubic element as viewed in xy-plane
with equal rotation of x and y faces.

Al

Fig. 2.37 Deformation of unit cubic
element due to shearing stress.

Consider a cubic element (Fig. 2.36) subjected to only the shearing
stresses 7., and 7, applied to faces of the element respectively perpendi-
cular to the x and y axes. (Recall from Sec. 1.4 that 7, = 7,,..) The cube is
observed to deform into a rhomboid of sides equal to one (Fig. 2.37). Two
of the angles formed by the four faces under stress are reduced from 7 to
5 — 7y, while the other two are increased from 5 to 7 + .. The small angle
7.y (expressed in radians) defines the shearing strain corresponding to the
x and y directions. When the deformation involves a reduction of the angle
formed by the two faces oriented toward the positive x and y axes (as shown
in Fig. 2.37), the shearing strain Yy 18 positive; otherwise, it is negative.

As a result of the deformations of the other elements of the material,
the element under consideration also undergoes an overall rotation. The
concern here is with the actual deformation of the element, not with any
possible superimposed rigid-body displacement.”

Plotting successive values of 7., against the corresponding values of
7Yy, the shearing stress-strain diagram is obtained for the material. (This
can be accomplished by carrying out a torsion test, as you will see in
Chap. 3.) This diagram is similar to the normal stress-strain diagram from
the tensile test described earlier; however, the values for the yield strength,
ultimate strength, etc., are about half as large in shear as they are in ten-
sion. As for normal stresses and strains, the initial portion of the shearing
stress-strain diagram is a straight line. For values of the shearing stress that
do not exceed the proportional limit in shear, it can be written for any
homogeneous isotropic material that

Ty = gy (2.27)

This relationship is Hooke’s law for shearing stress and strain, and the con-
stant G is called the modulus of rigidity or shear modulus of the material.

"In defining the strain 7Yy, SOome authors arbitrarily assume that the actual deformation of
the element is accompanied by a rigid-body rotation where the horizontal faces of the ele-
ment do not rotate. The strain v,, is then represented by the angle through which the other
two faces have rotated (Fig. 2.38). Others assume a rigid-body rotates where the horizontal
faces rotate through %yxy counterclockwise and the vertical faces through %yxy clockwise
(Fig. 2.39). Since both assumptions are unnecessary and may lead to confusion, in this text
you will associate the shearing strain vy,, with the change in the angle formed by the two
faces, rather than with the rotation of a given face under restrictive conditions.



Yy

A%

\x
(a)

Fig. 2.40 States of pure shear in: (a) yz-plane; (b) xz-plane.

D)

Since the strain v,, is defined as an angle in radians, it is dimensionless,
and the modulus G is expressed in the same units as 7, in pascals or in
psi. The modulus of rigidity G of any given material is less than one-half,
but more than one-third of the modulus of elasticity E of that material.’

Now consider a small element of material subjected to shearing
stresses 7, and 7, (Fig. 2.40a), where the shearing strain ,, is the change
in the angle formed by the faces under stress. The shearing strain v,, is
found in a similar way by considering an element subjected to shearing
stresses 7,, and 7, (Fig. 2.40b). For values of the stress that do not exceed
the proportional limit, you can write two additional relationships:

Tyz = Gsz Tox = G‘}’zx (2'28)

where the constant G is the same as in Eq. (2.27).

For the general stress condition represented in Fig. 2.35, and as long
as none of the stresses involved exceeds the corresponding proportional
limit, you can apply the principle of superposition and combine the
results. The generalized Hooke’s law for a homogeneous isotropic material
under the most general stress condition is

€, = +— — — —
E E E
VO, gy Vo,
€, = — - —
J E E E
Vo, voy Oz
= - -+ = 2.29
€ E E E (2.29)
Ty Ty _ T

Y)W:E 'sz:G YZX_G

An examination of Egs. (2.29) leads us to three distinct constants, E,
v, and G, which are used to predict the deformations caused in a given
material by an arbitrary combination of stresses. Only two of these con-
stants need be determined experimentally for any given material. The next
section explains that the third constant can be obtained through a very
simple computation.

See Prob. 2.90.

2.7 Shearing Strain
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)

Fig. 2.41 (a) Rectangular block loaded
in shear. (b) Deformed block showing the
shearing strain.

Concept Application 2.10

A rectangular block of a material with a modulus of rigidity G = 90 ksi
is bonded to two rigid horizontal plates. The lower plate is fixed, while
the upper plate is subjected to a horizontal force P (Fig. 2.41a). Know-
ing that the upper plate moves through 0.04 in. under the action of the
force, determine (a) the average shearing strain in the material and
(b) the force P exerted on the upper plate.

a. Shearing Strain. The coordinate axes are centered at the mid-
point C of edge AB and directed as shown (Fig. 2.41b). The shearing
strain v,, is equal to the angle formed by the vertical and the line CF
joining the midpoints of edges AB and DE. Noting that this is a very
small angle and recalling that it should be expressed in radians, write

0.04 in.
2in.

Yo = tanvy,, = Yy = 0.020 rad

b. Force Exerted on Upper Plate. Determine the shearing stress
T,y in the material. Using Hooke’s law for shearing stress and strain,
Ty = Gyy, = (90 X 10° psi)(0.020 rad) = 1800 psi
The force exerted on the upper plate is
A = (1800 psi)(8in.)(2.5in.) = 36.0 X 10°1b
P = 36.0 kips

P= gy

Yy

% S EENIEN b—

k_ﬁll—vex)

1+ €,
(a)
P’ ‘ P
g+y’E % %—«/')
b)

Fig. 2.42 Representations of strain in an
axially-loaded bar: (a) cubic strain element faces
aligned with coordinate axes; (b) cubic strain
element faces rotated 45° about z-axis.

2.8 DEFORMATIONS UNDER
AXIAL LOADING—RELATION
BETWEEN E, v, AND G

Section 2.4 showed that a slender bar subjected to an axial tensile load P
directed along the x axis will elongate in the x direction and contract in
both of the transverse y and z directions. If €, denotes the axial strain, the
lateral strain is expressed as €, = €, = —ve,, where v is Poisson’s ratio.
Thus, an element in the shape of a cube of side equal to one and oriented
as shown in Fig. 2.42a will deform into a rectangular parallelepiped of sides
1+ €, 1 — ve, and 1 — ve,. (Note that only one face of the element is
shown in the figure.) On the other hand, if the element is oriented at 45°
to the axis of the load (Fig. 2.42b), the face shown deforms into a rhombus.
Therefore, the axial load P causes a shearing strain y’ equal to the amount

by which each of the angles shown in Fig. 2.42b increases or decreases.

The fact that shearing strains, as well as normal strains, result from
an axial loading is not a surprise, since it was observed at the end of
Sec. 1.4 that an axial load P causes normal and shearing stresses of equal
magnitude on four of the faces of an element oriented at 45° to the axis of
the member. This was illustrated in Fig. 1.38, which has been repeated

"Note that the load P also produces normal strains in the element shown in Fig. 2.42b

(see Prob. 2.72).
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here. It was also shown in Sec. 1.3 that the shearing stress is maximum on
a plane forming an angle of 45° with the axis of the load. It follows from
Hooke’s law for shearing stress and strain that the shearing strain y’ asso-
ciated with the element of Fig. 2.42b is also maximum: y’' = vy,),.

While a more detailed study of the transformations of strain is cov-
ered in Chap. 7, this section provides a relationship between the maxi-
mum shearing strain y’ = v,, associated with the element of Fig. 2.42b
and the normal strain €, in the direction of the load. Consider the pris-
matic element obtained by intersecting the cubic element of Fig. 2.42a by
a diagonal plane (Fig. 2.43a and b). Referring to Fig. 2.42a, this new ele-
ment will deform into that shown in Fig. 2.43¢, which has horizontal and
vertical sides equal to 1 + €, and 1 — ve,. But the angle formed by the
oblique and horizontal faces of Fig. 2.43b is precisely half of one of the
right angles of the cubic element in Fig. 2.42b. The angle 8 into which this
angle deforms must be equal to half of 7/2 — v,,. Therefore,

_T_Im
P42
Applying the formula for the tangent of the difference of two angles,
tanz—tanh l—tanh
4 2 2

tan 3 = =
T
1+tanftanyfm l+tanyl
4 2 2

or since 7,,/2 is a very small angle,

tan B = (2.30)
14 m
2
From Fig. 2.43c, observe that
1 — ve,
tanBf = —— 2.31
B 1+ €, ( )

Equating the right-hand members of Egs. (2.30) and (2.31) and solving
for vy,, results in

(1 + v)e,
1—v
2

Ym =

1+ €,
Since €, << 1, the denominator in the expression obtained can be assumed
equal to one. Therefore,

Ym = (1 + Ve, (2.32)

which is the desired relation between the maximum shearing strain vy,,
and the axial strain e,.
To obtain a relation among the constants E, v, and G, we recall that,
by Hooke’s law, y,, = 7,/G, and for an axial loading, €, = o,/E.
Equation (2.32) can be written as
Tm U-X

G=(1+V)E

(b)
Fig. 1.38 (repeated)

Fig. 2.43 (a) Cubic strain unit element,
to be sectioned on a diagonal plane.
(b) Undeformed section of unit element.
(c) Deformed section of unit element.
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Load y

/' \
Layer of .
matenV L

~ \/N\/ Load

Fibers \

)

Fig. 2.44 Orthotropic fiber-reinforced composite
material under uniaxial tensile load.

or

E (o

—=Q1+v= 2.

G-+ (2.33)
Recall from Fig. 1.38 that o, = P/A and 7,, = P/2A, where A is the cross-
sectional area of the member. Thus, o,/7,, = 2. Substituting this value into
Eq. (2.33) and dividing both members by 2, the relationship is

E
— =1+ 2.34
2G v (2.39)

which can be used to determine one of the constants E, v, or G from the
other two. For example, solving Eq. (2.34) for G,

/g

=ity

(2.35)

*2.9 STRESS-STRAIN
RELATIONSHIPS FOR
FIBER-REINFORCED
COMPOSITE MATERIALS

Fiber-reinforced composite materials are fabricated by embedding fibers
of a strong, stiff material into a weaker, softer material called a matrix. The
relationship between the normal stress and the corresponding normal
strain created in a lamina or layer of a composite material depends upon
the direction in which the load is applied. Different moduli of elasticity,
E,, E,, and E, are required to describe the relationship between normal
stress and normal strain, according to whether the load is applied parallel
to the fibers, perpendicular to the layer, or in a transverse direction.

Consider again the layer of composite material discussed in Sec. 2.1D
and subject it to a uniaxial tensile load parallel to its fibers (Fig. 2.44a). It
is assumed that the properties of the fibers and of the matrix have been
combined or “smeared” into a fictitious, equivalent homogeneous mate-
rial possessing these combined properties. In a small element of that layer
of smeared material (Fig. 2.44b), the corresponding normal stress is o,
and o, = o, = 0. As indicated in Sec. 2.1D, the corresponding normal
strain in the x direction is €, = o/E,, where E, is the modulus of elasticity
of the composite material in the x direction. As for isotropic materials, the
elongation of the material in the x direction is accompanied by contrac-
tions in the y and z directions. These contractions depend upon the place-
ment of the fibers in the matrix and generally will be different. Therefore,
the lateral strains €, and €, also will be different, and the corresponding
Poisson’s ratios are

Ve = — — and Ve = — — (2.36)

Note that the first subscript in each of the Poisson’s ratios v,, and v,, in
Eqgs. (2.36) refers to the direction of the load and the second to the direc-
tion of the contraction.
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In the case of the multiaxial loading of a layer of a composite mate-
rial, equations similar to Egs. (2.20) of Sec. 2.5 can be used to describe the
stress-strain relationship. In this case, three different values of the modulus
of elasticity and six different values of Poisson’s ratio are involved. We write

€=  — T —
E, E, E,
VO (o 14
o= 2D % (2.37)
E, E, E,
€ = VO x Vy0y &
‘ E, E, E,

Equations (2.37) can be considered as defining the transformation of
stress into strain for the given layer. It follows from a general property of
such transformations that the coefficients of the stress components are
symmetric:

14 14 1 v
_ o~ o _ Ty e TXxz (2.38)

E, E E E E

Vi
E, y

While different, these equations show that Poisson’s ratios vy and v, are
not independent; either of them can be obtained from the other if the
corresponding values of the modulus of elasticity are known. The same is
true of v,, and v,,, and of v, and v,,.

Consider now the effect of shearing stresses on the faces of a small
element of smeared layer. As discussed in Sec. 2.7 for isotropic materials,
these stresses come in pairs of equal and opposite vectors applied to
opposite sides of the given element and have no effect on the normal
strains. Thus, Egs. (2.37) remain valid. The shearing stresses, however, cre-
ate shearing strains that are defined by equations similar to the last three
of Egs. (2.29) of Sec. 2.7, except that three different values of the modulus
of rigidity, G, G,,, and G, must be used:

Txy Tyz Tox

Yoy T S Yy = A~ VYx = A~ (2.39)

Gy G, G

The fact that the three components of strain €,, €,, and €, can be
expressed in terms of the normal stresses only and do not depend upon
any shearing stresses characterizes orthotropic materials and distinguishes
them from other anisotropic materials.

As in Sec. 2.1D, a flat laminate is obtained by superposing a number
of layers or laminas. If the fibers in all layers are given the same orienta-
tion to withstand an axial tensile load, the laminate itself will be ortho-
tropic. If the lateral stability of the laminate is increased by positioning
some of its layers so that their fibers are at a right angle to the fibers of the
other layers, the resulting laminate also will be orthotropic. On the other
hand, if any of the layers of a laminate are positioned so that their fibers
are neither parallel nor perpendicular to the fibers of other layers, the
lamina generally will not be orthotropic.”

TFor more information on fiber-reinforced composite materials, see Hyer, M. W., Stress
Analysis of Fiber-Reinforced Composite Materials, DEStech Publications, Inc., Lancaster,
PA, 2009.
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Concept Application 2.11

A 60-mm cube is made from layers of graphite epoxy with fibers
aligned in the x direction. The cube is subjected to a compressive load
of 140 kN in the x direction. The properties of the composite material
are: E, = 155.0 GPa, E, = 12.10 GPa, E, = 12.10 GPa, v,, = 0.248,
vy, = 0.248, and v,, = 0.458. Determine the changes in the cube
dimensions, knowing that (a) the cube is free to expand in the y and
z directions (Fig. 2.45a); (b) the cube is free to expand in the z direc-
tion, but is restrained from expanding in the y direction by two fixed
frictionless plates (Fig. 2.45b).

Y yL
60 mm
N

140 kN

Fixed
\ frictionless

140 kN

! plates K140 kN 4
/ 60 mm / 60 mm
) 40 ld\\/{\ ) N N\
& 60 mm Sy z \g) mm Sy

(a) (b)
Fig. 2.45 Graphite-epoxy cube undergoing compression loading along the fiber
direction; (a) unrestrained cube; (b) cube restrained in y direction.

a. Free in y and z Directions. Determine the stress o, in the
direction of loading.
P —140 X 10°N

7x 7 4" (0.060 m)(0.060 m)

= —38.89 MPa

Since the cube is not loaded or restrained in the y and z directions, we

have o, = o, = 0. Thus, the right-hand members of Egs. (2.37) reduce

to their first terms. Substituting the given data into these equations,
o, —38.89MPa

e =—=———"—""——=-2509 X 10°°
E, 155.0 GPa

VO (0.248)(—38.89 MPa)

= = = +62.22 X 107°
€ E, 155.0 GPa
0.248)(—38.69 MPa
€, = — 2T _ (0-248) ) _ +62.22 X 10°°
E, 155.0 GPa

The changes in the cube dimensions are obtained by multiplying the
corresponding strains by the length L = 0.060 m of the side of the cube:

8, = e,L = (—250.9 X 107°)(0.060 m) = —15.05 um
8, = €L = (+62.2 X 10" °)(0.060 m) = +3.73 um
8, = €,L = (+62.2 X 10%)(0.060m) = +3.73 um

(continued)
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b. Free in z Direction, Restrained in y Direction. The stress in
the x direction is the same as in part a, namely, o, = 38.89 MPa. Since
the cube is free to expand in the z direction as in part a, o, = 0. But
since the cube is now restrained in the y direction, the stress o, is not
zero. On the other hand, since the cube cannot expand in the y direc-
tion, 6, = 0. Thus, €, = §,/L = 0. Set o, = 0 and €, = 0 in the second
of Egs. (2.37) and solve that equation for o :

(Ey) (12'1())(0 248)(—38.89 MPa)
O, =\ = VWO = | T _ a - o a
Y O\E/) VT 155.0

= —752.9kPa

Now that the three components of stress have been determined, use
the first and last of Egs. (2.37) to compute the strain components e,
and e,. But the first of these equations contains Poisson’s ratio »,,, and
as you saw earlier this ratio is not equal to the ratio v,, that was among
the given data. To find »),, use the first of Eqs. (2.38) and write

(BN (1210 B
Vyy = ETC Vyy = ﬁ (0.248) = 0.01936

Now set o, = 0 in the first and third of Egs. (2.37) and substitute the
given values of E,, E,, v,;, and v,,, as well as the values obtained for
oy, 0y, and v, resulting in

o, VuOy —38.89MPa (0.01936)(—752.9 kPa)

€, = — — =S

E, E  1550GPa 12.10 GPa
= —249.7 X 10°°
veo,  Pe0y  (0.248)(—38.89 MPa)  (0.458)(—752.9 kPa)
“" "B B, 1550GPa  1210GPa
= +90.72 X 10°°

The changes in the cube dimensions are obtained by multiplying the
corresponding strains by the length L = 0.060 m of the side of the
cube:

=€, = (—249.7 X 10 °)(0.060 m) = —14.98 um

6x
8, = €,L = (0)(0.060m) = 0
8,

€L = (+90.72 X 107%)(0.060 m) = +5.44 um

Comparing the results of parts a and b, note that the difference
between the values for the deformation 6, in the direction of the fibers
is negligible. However, the difference between the values for the lateral
deformation 9§, is not negligible when the cube is restrained from
deforming in the y direction.

~
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Sample Problem 2.5

A circle of diameter d = 9 in. is scribed on an unstressed aluminum
plate of thickness ¢t = 2 in. Forces acting in the plane of the plate later
cause normal stresses o, = 12 ksi and o, = 20 ksi. For E = 10 X 10° psi
~and v = 3, determine the change in (@) the length of diameter AB,
~ (b) the length of diameter CD, (c) the thickness of the plate, and (d) the
volume of the plate.

STRATEGY: You can use the generalized Hooke’s Law to determine
the components of strain. These strains can then be used to evaluate
the various dimensional changes to the plate, and through the dilata-
tion, also assess the volume change.

ANALYSIS:

Hooke’s Law. Note that o, = 0. Using Egs. (2.20), find the strain in
each of the coordinate directions.

G =+———-—=
1 E E
1 [ , 1 . T
= ————| (12ksi) — 0 — =(20ksi) | = +0.533 X 10 " in./in.
10 X 10° psi L S
vo, oy VO,
€=—"—"+——
! ERNE R
1 [ 1 _ 1 ) 3.
= ————| ——(12ksi) + 0 — Z(20ksi) | = —1.067 X 10 " in./in.
10 X 10°psil 3 3
vo o
= =, Os
15 E 18]
1 [ 1 _ _ 3.
= —————| ——(12ksi) — 0 + (20 ksi) | = +1.600 X 10 " in./in.
10 X 10°psiL 3

a. Diameter AB. The change in length is 3/, = €,d.
8pa = €d = (+0.533 X 10 °in./in.)(9in.)
Sp/y = +4.8 X 10 % in.
b. Diameter CD.
8¢p = €.d = (+1.600 X 10 *in./in.)(9 in.)
Sc/p = +14.4 X 103 in.
c. Thickness. Recalling that t = 3in.,
8, = €, = (—1.067 X 10 °*in./in.)(} in.)
5, = —0.800 X 10 % in.
d. Volume of the Plate. Using Eq. (2.21),
e=¢, + e +e = (+0533 — 1.067 + 1.600)10 > = +1.067 X 10 °
AV = eV = +1.067 X 10 °[(15in.)(15in.)( in.)]
AV = +0.180 in®




Problems

experimental plastic. The test specimen is a 3-in.-diameter rod and
itis subjected to an 800-Ib tensile force. Knowing that an elongation
of 0.45 in. and a decrease in diameter of 0.025 in. are observed in
a 5-in. gage length, determine the modulus of elasticity, the modu-
lus of rigidity, and Poisson’s ratio for the material.

2.61 A standard tension test is used to determine the properties of an jP

%in, diameter

2.62 A 2-m length of an aluminum pipe of 240-mm outer diameter and
10-mm wall thickness is used as a short column to carry a 640-kN
centric axial load. Knowing that E = 73 GPa and v = 0.33, deter-
mine (a) the change in length of the pipe, (b) the change in its outer
diameter, (c) the change in its wall thickness.

I,.
Fig. P2.61

640 kN

! I
Fig. P2.62 200 kN 1, |20k

— p—- 50

2.63 A line of slope 4:10 has been scribed on a cold-rolled yellow-brass ‘
plate, 150 mm wide and 6 mm thick. Knowing that E = 105 GPa
and v = 0.34, determine the slope of the line when the plate is L—QOO mmJ
subjected to a 200-kN centric axial load as shown.

Fig. P2.63

2.64 A 2.75-kN tensile load is applied to a test coupon made from 1.6-
mm flat steel plate (E = 200 GPa, » = 0.30). Determine the result-
ing change (a) in the 50-mm gage length, (b) in the width of
portion AB of the test coupon, (¢) in the thickness of portion AB,
(d) in the cross-sectional area of portion AB.

50 mm

L
/[;

|

|

°
B

e
ey

12 mm




22-mm diameter 2.65 In a standard tensile test a steel rod of 22-mm diameter is
/ subjected to a tension force of 75 kN. Knowing that » = 0.30 and
4 E = 200 GPa, determine (a) the elongation of the rod in a 200-mm

|‘7 200 mm *’| gage length, (b) the change in diameter of the rod.

£

Fig. P2.65

The change in diameter of a large steel bolt is carefully measured
as the nut is tightened. Knowing that E = 29 X 10° psi and » =
0.30, determine the internal force in the bolt if the diameter is
observed to decrease by 0.5 X 10~ in.

The brass rod AD is fitted with a jacket that is used to apply a
hydrostatic pressure of 48 MPa to the 240-mm portion BC of the
rod. Knowing that E = 105 GPa and v = 0.33, determine (a) the
change in the total length AD, (b) the change in diameter at the
middle of the rod.

D

50 mm
Fig. P2.67

2.68 A fabric used in air-inflated structures is subjected to a biaxial
loading that results in normal stresses o, = 18 ksi and o, = 24 ksi.
Knowing that the properties of the fabric can be approximated as
E = 12.6 X 10° psi and v = 0.34, determine the change in length
of (a) side AB, (b) side BC, (c) diagonal AC.

A 1-in. square was scribed on the side of a large steel pressure
vessel. After pressurization the biaxial stress condition at the
square is as shown. Knowing that E = 29 X 10° psi and » = 0.30,
determine the change in length of (a) side AB, (b) side BC, (c)
diagonal AC.

Ty = 6 ksi

A

Fig. P2.69




2.70 The block shown is made of a magnesium alloy for which
E = 45 GPa and v = 0.35. Knowing that o, = —180 MPa, deter-
mine (a) the magnitude of o, for which the change in the height
of the block will be zero, (b) the corresponding change in the area
of the face ABCD, (¢) the corresponding change in the volume of
the block.

Fig. P2.70

The homogeneous plate ABCD is subjected to a biaxial loading as
shown. It is known that o, = ¢, and that the change in length of
the plate in the x direction must be zero, that is, €, = 0. Denoting
by E the modulus of elasticity and by » Poisson’s ratio, determine
(a) the required magnitude of o, (b) the ratio o /€,

Yy

LD/A\
. |

~ 0. D

Fig. P2.71

For a member under axial loading, express the normal strain €’
in a direction forming an angle of 45° with the axis of the load in
terms of the axial strain €, by (@) comparing the hypotenuses of
the triangles shown in Fig. 2.43, which represent respectively an
element before and after deformation, (b) using the values of the
corresponding stresses o’ and o, shown in Fig. 1.38, and the gen-
eralized Hooke’s law.

In many situations it is known that the normal stress in a given
direction is zero. For example, o, = 0 in the case of the thin plate
shown. For this case, which is known as plane stress, show that if
the strains €, and €, have been determined experimentally, we
can express oy, g, and €, as follows:
€, t Ve,
o, = E——
* 1 -2
€, T Ve,
1 -2
v

- (€ + ey)

11— Fig. P2.73




2.74 In many situations physical constraints prevent strain from
occurring in a given direction. For example, €, = 0 in the case
shown, where longitudinal movement of the long prism is pre-
vented at every point. Plane sections perpendicular to the longi-
tudinal axis remain plane and the same distance apart. Show that
for this situation, which is known as plane strain, we can express
03, €, and €, as follows:

v(o, + 0,)

%[(1 — ¥, — v(1 + v)o,]

%[(1 = V2)0'y —v(1 + v)o,]

®)

2.75 The plastic block shown is bonded to a rigid support and to a verti-
cal plate to which a 55-kip load P is applied. Knowing that for the
plastic used G = 150 ksi, determine the deflection of the plate.

What load P should be applied to the plate of Prob. 2.75 to pro-
duce a -in. deflection?

Two blocks of rubber with a modulus of rigidity G = 12 MPa are
bonded to rigid supports and to a plate AB. Knowing that
¢ = 100 mm and P = 45 kN, determine the smallest allowable
dimensions a and b of the blocks if the shearing stress in the
rubber is not to exceed 1.4 MPa and the deflection of the plate is
to be at least 5 mm.

~

v

Fig. P2.77 and P2.78

Two blocks of rubber with a modulus of rigidity G = 10 MPa are
bonded to rigid supports and to a plate AB. Knowing that b = 200
mm and ¢ = 125 mm, determine the largest allowable load P and
the smallest allowable thickness a of the blocks if the shearing
stress in the rubber is not to exceed 1.5 MPa and the deflection
of the plate is to be at least 6 mm.




2.79 An elastomeric bearing (G = 130 psi) is used to support a bridge
girder as shown to provide flexibility during earthquakes. The
beam must not displace more than  in. when a 5-kip lateral load
is applied as shown. Knowing that the maximum allowable
shearing stress is 60 psi, determine (a) the smallest allowable
dimension b, (b) the smallest required thickness a.

T J
L s HL/ZJ

Fig. P2.79

2.80 For the elastomeric bearing in Prob. 2.79 with b = 10 in. and
a = 1 in., determine the shearing modulus G and the shear
stress 7 for a maximum lateral load P = 5 kips and a maximum
displacement 6 = 0.4 in.

A vibration isolation unit consists of two blocks of hard rubber
bonded to a plate AB and to rigid supports as shown. Knowing
that a force of magnitude P = 25 kN causes a deflection
6 = 1.5 mm of plate AB, determine the modulus of rigidity of the
rubber used.

T

150 mm
100 mm

30 mm |

30 mm — |
~~

Fig. P2.81 and P2.82

A vibration isolation unit consists of two blocks of hard rubber
with a modulus of rigidity G = 19 MPa bonded to a plate AB and
to rigid supports as shown. Denoting by P the magnitude of the
force applied to the plate and by 6 the corresponding deflection,
determine the effective spring constant, k = P/§, of the system.




7, = —58 MPa

E =105 GPa
v =0.33

Fig. P2.84

/ 1 in. diameter

11 kips{
\

|
|
i

> 11 kips

TP

Fig. P2.85

80 mm

Fig. P2.87 and P2.88

E,=50GPa  v_= 0254
E,=152GPa v, = 0254
E,=152GPa v, = 0428

Fig. P2.91

A 6-in.-diameter solid steel sphere is lowered into the ocean to a
point where the pressure is 7.1 ksi (about 3 miles below the sur-
face). Knowing that E = 29 X 10° psi and » = 0.30, determine
(a) the decrease in diameter of the sphere, (b) the decrease in
volume of the sphere, (c) the percent increase in the density of
the sphere.

(a) For the axial loading shown, determine the change in
height and the change in volume of the brass cylinder shown.
(b) Solve part a, assuming that the loading is hydrostatic with
o,=0,= 0, = —70 MPa.

Determine the dilatation e and the change in volume of the 8-in.
length of the rod shown if (@) the rod is made of steel with E =
29 X 10° psi and v = 0.30, (b) the rod is made of aluminum with
E =10.6 X 10° psi and v = 0.35.

Determine the change in volume of the 50-mm gage length seg-
ment AB in Prob. 2.64 (a) by computing the dilatation of the
material, (b) by subtracting the original volume of portion AB
from its final volume.

A vibration isolation support consists of a rod A of radius
R, = 10 mm and a tube B of inner radius R, = 25 mm bonded to
an 80-mm-long hollow rubber cylinder with a modulus of rigidity
G = 12 MPa. Determine the largest allowable force P that can be
applied to rod A if its deflection is not to exceed 2.50 mm.

A vibration isolation support consists of a rod A of radius R, and
a tube B of inner radius R, bonded to an 80-mm-long hollow
rubber cylinder with a modulus of rigidity G = 10.93 MPa. Deter-
mine the required value of the ratio R,/R; if a 10-kN force P is to
cause a 2-mm deflection of rod A.

The material constants E, G, k, and v are related by Egs. (2.24) and
(2.34). Show that any one of the constants may be expressed in
terms of any other two constants. For example, show that
(a) k = GE/(9G — 3E) and (b) v = (3k — 2G)/(6k + 2G).

Show that for any given material, the ratio G/E of the modulus of
rigidity over the modulus of elasticity is always less than 3 but
more than 1. [Hint: Refer to Eq. (2.34) and to Sec. 2.1e.]

A composite cube with 40-mm sides and the properties shown is
made with glass polymer fibers aligned in the x direction. The
cube is constrained against deformations in the y and z directions
and is subjected to a tensile load of 65 kN in the x direction.
Determine (a) the change in the length of the cube in the x direc-
tion and (b) the stresses o, 0, and o.

The composite cube of Prob. 2.91 is constrained against deforma-
tion in the z direction and elongated in the x direction by
0.035 mm due to a tensile load in the x direction. Determine (a)
the stresses o, 0, and o, and (b) the change in the dimension
in the y direction.




2.10 Stress and Strain Distribution Under Axial Loading: Saint-Venant’s Principle

2.10 STRESS AND STRAIN
DISTRIBUTION UNDER
AXIAL LOADING: SAINT-
VENANT'S PRINCIPLE

We have assumed so far that, in an axially loaded member, the normal
stresses are uniformly distributed in any section perpendicular to the axis
of the member. As we saw in Sec. 1.2A, such an assumption may be quite
in error in the immediate vicinity of the points of application of the loads.
However, the determination of the actual stresses in a given section of the
member requires the solution of a statically indeterminate problem.

In Sec. 2.2, you saw that statically indeterminate problems involving
the determination of forces can be solved by considering the deformations
caused by these forces. It is thus reasonable to conclude that the determina-
tion of the stresses in a member requires the analysis of the strains produced
by the stresses in the member. This is essentially the approach found in
advanced textbooks, where the mathematical theory of elasticity is used to
determine the distribution of stresses corresponding to various modes of
application of the loads at the ends of the member. Given the more limited
mathematical means at our disposal, our analysis of stresses will be restricted
to the particular case when two rigid plates are used to transmit the loads
to a member made of a homogeneous isotropic material (Fig. 2.46).

If the loads are applied at the center of each plate,” the plates will
move toward each other without rotating, causing the member to get
shorter, while increasing in width and thickness. It is assumed that the
member will remain straight, plane sections will remain plane, and all ele-
ments of the member will deform in the same way, since this assumption
is compatible with the given end conditions. Figure 2.47 shows a rubber
model before and after loading.* Now, if all elements deform in the same

(a) (b)
Fig. 2.47 Axial load applied by rigid
plates to rubber model.

"More precisely, the common line of action of the loads should pass through the cen-
troid of the cross section (cf. Sec. 1.2A).

*Note that for long, slender members, another configuration is possible and will prevail
if the load is sufficiently large; the member buckles and assumes a curved shape. This
will be discussed in Chap. 10.

P’
Fig. 2.46 Axial load applied by rigid plates.
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’

e

Fig. 2.48 Concentrated axial load applied
to rubber model.

1 1 oo
T

way, the distribution of strains throughout the member must be uniform.
In other words, the axial strain €, and the lateral strain €, = —ve, are con-
stant. But, if the stresses do not exceed the proportional limit, Hooke’s law
applies, and o, = Ee,, so the normal stress o, is also constant. Thus, the
distribution of stresses is uniform throughout the member, and at any point,

Oy = (Uy)ave = %

If the loads are concentrated, as in Fig. 2.48, the elements in the
immediate vicinity of the points of application of the loads are subjected to
very large stresses, while other elements near the ends of the member are
unaffected by the loading. This results in large deformations, strains, and
stresses near the points of application of the loads, while no deformation
takes place at the corners. Considering elements farther and farther from
the ends, a progressive equalization of the deformations and a more uni-
form distribution of the strains and stresses are seen across a section of the
member. Using the mathematical theory of elasticity found in advanced
textbooks, Fig. 2.49 shows the resulting distribution of stresses across various
sections of a thin rectangular plate subjected to concentrated loads. Note

l)
/
I

1
T
W \, _r

g,

Onin

1

max

Omin = 0'9730'3\/(% Omin = 0'6680-;\\0 Oin = 0'1980';)\(’,

max ave

T Opax = 102707, Opax = 138707, Opax = 25750,
P’

Fig. 2.49 Stress distributions in a plate under concentrated axial loads.

that at a distance b from either end, where b is the width of the plate,
the stress distribution is nearly uniform across the section, and the value of
the stress o, at any point of that section can be assumed to be equal to the
average value P/A. Thus, at a distance equal to or greater than the width of
the member, the distribution of stresses across a section is the same, whether
the member is loaded as shown in Fig. 2.46 or Fig. 2.48. In other words,
except in the immediate vicinity of the points of application of the loads,
the stress distribution is assumed independent of the actual mode of appli-
cation of the loads. This statement, which applies to axial loadings and to
practically any type of load, is known as Saint-Venant’s principle, after the
French mathematician and engineer Adhémar Barré de Saint-Venant
(1797-1886).

While Saint-Venant’s principle makes it possible to replace a given
loading by a simpler one to compute the stresses in a structural member,
keep in mind two important points when applying this principle:

1. The actual loading and the loading used to compute the stresses
must be statically equivalent.



2. Stresses cannot be computed in this manner in the immediate
vicinity of the points of application of the loads. Advanced theoreti-
cal or experimental methods must be used to determine the distri-
bution of stresses in these areas.

You should also observe that the plates used to obtain a uniform stress
distribution in the member of Fig. 2.47 must allow the member to freely
expand laterally. Thus, the plates cannot be rigidly attached to the member;
assume them to be just in contact with the member and smooth enough not
to impede lateral expansion. While such end conditions can be achieved for
a member in compression, they cannot be physically realized in the case of
a member in tension. It does not matter, whether or not an actual fixture can
be realized and used to load a member so that the distribution of stresses in
the member is uniform. The important thing is to imagine a model that will
allow such a distribution of stresses and to keep this model in mind so that
it can be compared with the actual loading conditions.

2.11 STRESS CONCENTRATIONS

Asyou saw in the preceding section, the stresses near the points of application
of concentrated loads can reach values much larger than the average value of
the stress in the member. When a structural member contains a discontinuity,
such as a hole or a sudden change in cross section, high localized stresses can
occur. Figures 2.50 and 2.51 show the distribution of stresses in critical sec-
tions corresponding to two situations. Figure 2.50 shows a flat bar with a cir-
cular hole and shows the stress distribution in a section passing through the
center of the hole. Figure 2.51 shows a flat bar consisting of two portions of
different widths connected by fillets; here the stress distribution is in the nar-
rowest part of the connection, where the highest stresses occur.

These results were obtained experimentally through the use of a pho-
toelastic method. Fortunately for the engineer, these results are independent
of the size of the member and of the material used; they depend only upon
the ratios of the geometric parameters involved (i.e., the ratio 2r/D for a
circular hole, and the ratios r/d and D/d for fillets). Furthermore, the
designer is more interested in the maximum value of the stress in a given
section than the actual distribution of stresses. The main concern is to
determine whether the allowable stress will be exceeded under a given load-
ing, not where this value will be exceeded. Thus, the ratio

= 2= (2.40)

Uave

is computed in the critical (narrowest) section of the discontinuity. This ratio
is the stress-concentration factor of the discontinuity. Stress-concentration fac-
tors can be computed in terms of the ratios of the geometric parameters
involved, and the results can be expressed in tables or graphs, as shown in
Fig. 2.52. To determine the maximum stress occurring near a discontinuity in
a given member subjected to a given axial load P, the designer needs to com-
pute the average stress o, = P/A in the critical section and multiply the
result obtained by the appropriate value of the stress-concentration factor K.
Note that this procedure is valid only as long as o, does not exceed the
proportional limit of the material, since the values of K plotted in Fig. 2.52
were obtained by assuming a linear relation between stress and strain.

2.11 Stress Concentrations 1 1 7
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Fig. 2.50 Stress distribution near circular hole in
flat bar under axial loading.
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Fig. 2.51 Stress distribution near fillets in flat bar
under axial loading.
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(a) Flat bars with holes

(b) Flat bars with fillets

Fig. 2.52 Stress concentration factors for flat bars under axial loading. Note that the average stress must be computed across the narrowest
section: o,,. = P/td, where t is the thickness of the bar. (Source: W. D. Pilkey and D.F. Pilkey, Peterson’s Stress Concentration Factors, 3rd ed.,
John Wiley & Sons, New York, 2008.)

Concept Application 2.12

Determine the largest axial load P that can be safely supported by a
flat steel bar consisting of two portions, both 10 mm thick and, respec-
tively, 40 and 60 mm wide, connected by fillets of radius r = 8 mm.
Assume an allowable normal stress of 165 MPa.
First compute the ratios

D 60mm r _ 8mm

d 40mm d 40 mm
Using the curve in Fig. 2.52b corresponding to D/d = 1.50, the value
of the stress-concentration factor corresponding to r/d = 0.20 is

K =182

Then carrying this value into Eq. (2.40) and solving for o .,

= 0.20

_ Tmax
Oave = E
But 0.« cannot exceed the allowable stress o,; = 165 MPa. Substitut-
ing this value for o, the average stress in the narrower portion
(d = 40 mm) of the bar should not exceed the value
165 MPa
1.82

Tave —

= 90.7 MPa

Recalling that o, = P/A,
P = Ao, = (40 mm)(10 mm)(90.7 MPa) = 36.3 X 10°N
P =36.3kN




2.12 PLASTIC DEFORMATIONS

The results in the preceding sections were based on the assumption of a
linear stress-strain relationship, where the proportional limit of the mate-
rial was never exceeded. This is a reasonable assumption in the case of
brittle materials, which rupture without yielding. For ductile materials,
however, this implies that the yield strength of the material is not exceeded.
The deformations will remain within the elastic range and the structural
member will regain its original shape after all loads have been removed.
However, if the stresses in any part of the member exceed the yield strength
of the material, plastic deformations occur, and most of the results
obtained in earlier sections cease to be valid. Then a more involved analy-
sis, based on a nonlinear stress-strain relationship, must be carried out.

While an analysis taking into account the actual stress-strain relation-
ship is beyond the scope of this text, we gain considerable insight into plastic
behavior by considering an idealized elastoplastic material for which the stress-
strain diagram consists of the two straight-line segments shown in Fig. 2.53.
Note that the stress-strain diagram for mild steel in the elastic and plastic
ranges is similar to this idealization. As long as the stress o is less than the yield
strength oy, the material behaves elastically and obeys Hooke’s law, o0 = Ee.
When o reaches the value oy, the material starts yielding and keeps deforming
plastically under a constant load. If the load is removed, unloading takes place
along a straight-line segment CD parallel to the initial portion AY of the loading
curve. The segment AD of the horizontal axis represents the strain corresponding
to the permanent set or plastic deformation resulting from the loading and
unloading of the specimen. While no actual material behaves exactly as shown
in Fig. 2.53, this stress-strain diagram will prove useful in discussing the plastic
deformations of ductile materials such as mild steel.

2.12  Plastic Deformations 1 1 9

Iyp———- vi Rupture

A D €

Fig. 2.53 Stress-strain diagram for an idealized
elastoplastic material.
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Concept Application 2.13

€c =

€y =

Note from Fig. 2.53 that

A rod of length L = 500 mm and cross-sectional area A = 60 mm? is
made of an elastoplastic material having a modulus of elasticity
E = 200 GPa in its elastic range and a yield point oy = 300 MPa. The
rod is subjected to an axial load until it is stretched 7 mm and the load
is then removed. What is the resulting permanent set?
Referring to the diagram of Fig. 2.53, the maximum strain repre-
sented by the abscissa of point C is
B Oc _ 7mm
L 500 mm
However, the yield strain, represented by the abscissa of point Y, is
_ oy 300 X 10°Pa
E 200 X 10°Pa

The strain after unloading is represented by the abscissa €, of point D.

=14 x10°

=15x%x10°

ep=AD = YC = €¢c — €y
=14X10°%-15X10°=125X10"°
The permanent set is the deformation 6, corresponding to the strain €.
8p = €pL = (12.5 X 107%)(500 mm) = 6.25 mm
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Concept Application 2.14

A 30-in.-long cylindrical rod of cross-sectional area A, = 0.075 in® is

Tube
/ placed inside a tube of the same length and of cross-sectional area

-~ Plate A, = 0.100 in®. The ends of the rod and tube are attached to a rigid

Rod support on one side, and to a rigid plate on the other, as shown in the

P longitudinal section of Fig. 2.54a. The rod and tube are both assumed

to be elastoplastic, with moduli of elasticity E, = 30 X 10° psi and
E, = 15 X 10° psi, and yield strengths (o,)y = 36 ksi and (o,)y = 45 ksi.

P, (kips)
2.7

Draw the load-deflection diagram of the rod-tube assembly when a
(a) load P is applied to the plate as shown.

Determine the internal force and the elongation of the rod as it
begins to yield

(P)y = (0,)yA, = (36 ksi)(0.075 in®) = 2.7 kips

P, (kips)
45p-------

18f-------

(a',)yL 36 X 10° psi

= 30in.
E, 30 X 10°psi )

5. (1051, (8r)y = (€)yL =

=36 X 10 %in.

Since the material is elastoplastic, the force-elongation diagram of the
7777777777777 rod alone consists of oblique and horizontal straight lines, as shown
in Fig. 2.54b. Following the same procedure for the tube,

(P)y = (0)yA; = (45 ksi)(0.100 in?) = 4.5 kips

P (kips)
) S

45F—=—=—=-

(o[)yL 45 X 10’ psi

30in.
E, 15 X 10° psi( )

36 90 8, (103 in.) (S)y = (el =

=90 X 10 %in.

The load-deflection diagram of the tube alone is shown in Fig. 2.54c.
Observing that the load and deflection of the rod-tube combination are

P=P,+P, 6=25 =25,

we draw the required load-deflection diagram by adding the ordinates
of the diagrams obtained for both the rod and the tube (Fig. 2.54d).
Points Y, and Y, correspond to the onset of yield.

0

axially loaded by

assembly.

N\

36 90 8 (10 in.)
(d)

Fig. 2.54 (a) Concentric rod-tube assembly

rigid plate. (b) Load-

deflection response of the rod. (c) Load-
deflection response of the tube. (d) Combined
load-deflection response of the rod-tube
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Fig. 2.55 (a) Rod load-deflection response
with elastic unloading (red dashed line).
(b) Tube load-deflection response; note that
the given loading does not yield the tube, so
unloading is along the original elastic loading
line. (c) Combined rod-tube assembly
load-deflection response with elastic
unloading (red dashed line).

Concept Application 2.15

If the load P applied to the rod-tube assembly of Concept Application
2.14 is increased from zero to 5.7 kips and decreased back to zero,
determine (a) the maximum elongation of the assembly and (b) the
permanent set after the load has been removed.

a. Maximum Elongation. Referring to Fig. 2.54d, the load
P« = 5.7 kips corresponds to a point located on the segment Y,Y; of
the load-deflection diagram of the assembly. Thus, the rod has reached
the plastic range with P, = (P,)y = 2.7 kips and o, = (o,)y = 36 ksi.
However the tube is still in the elastic range with

P,= P — P, = 5.7kips — 2.7 kips = 3.0 kips

P, 3.0kips .
o, =—= — = 30ksi
A, 0.1in
o 30 X 10° psi
8, =el=—L= 7613.(30 in.) = 60 X 10*in.
E, 15 X 10” psi

The maximum elongation of the assembly is
Smax = 6, = 60 X 10 % in.

b. Permanent Set. As the load P decreases from 5.7 kips to zero,
the internal forces P, and P, both decrease along a straight line, as
shown in Fig. 2.55a and b. The force P, decreases along line CD paral-
lel to the initial portion of the loading curve, while the force P, decreases
along the original loading curve, since the yield stress was not exceeded
in the tube. Their sum P will decrease along a line CE parallel to the
portion 0Y, of the load-deflection curve of the assembly (Fig. 2.55c).
Referring to Fig. 2.55¢, the slope of 0Y, (and thus of CE) is

4.5 kips o
m = —————— = 125kips/in.
36 X 10 “in.
The segment of line FE in Fig. 2.55¢ represents the deformation 6’ of
the assembly during the unloading phase, and the segment OE is the
permanent set o, after the load P has been removed. From triangle
CEF,

pmax _

5.7 kips

—45.6 X 10 %in.
125 kips/in.

6/

m

The permanent set is

8p = Opa + 6 =60 X 1073 — 45.6 X 10°

14.4 X 10 %in.

~
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Fig. 2.56 Distribution of stresses in elastic-
perfectly plastic material under increasing load.

Stress Concentrations. Recall that the discussion of stress concentra-
tions of Sec. 2.11 was carried out under the assumption of a linear stress-
strain relationship. The stress distributions shown in Figs. 2.50 and 2.51,
and the stress-concentration factors plotted in Fig. 2.52 cannot be used
when plastic deformations take place, i.e., when o, exceeds the yield
strength oy.

Consider again the flat bar with a circular hole of Fig. 2.50, and
let us assume that the material is elastoplastic, i.e., that its stress-strain
diagram is as shown in Fig. 2.53. As long as no plastic deformation takes
place, the distribution of stresses is as indicated in Sec. 2.11 (Fig. 2.50a).
The area under the stress-distribution curve represents the integral
[o dA, which is equal to the load P. Thus this area and the value of 07,
must increase as the load P increases. As long as o ,,x = oy, all of the
stress distributions obtained as P increases will have the shape shown
in Fig. 2.50 and repeated in Fig. 2.56a. However, as P is increased
beyond Py corresponding to o« = oy (Fig. 2.56b), the stress-distribu-
tion curve must flatten in the vicinity of the hole (Fig. 2.56¢), since the
stress cannot exceed the value oy. This indicates that the material is
yielding in the vicinity of the hole. As the load P is increased, the plastic
zone where yield takes place keeps expanding until it reaches the edges
of the plate (Fig. 2.56d). At that point, the distribution of stresses across
the plate is uniform, o = oy, and the corresponding value P = Py of
the load is the largest that can be applied to the bar without causing
rupture.

It is interesting to compare the maximum value Py of the load that
can be applied if no permanent deformation is to be produced in the bar
with the value Py that will cause rupture. Recalling the average stress,
owe = P/A, where A is the net cross-sectional area and the stress concen-
tration factor, K = 0 /0 avey Write

O max A
P=0,.A= —“}? (2.41)

for any value of o, that does not exceed oy. When o, = oy (Fig. 2.56b),
P = Py, and Eq. (2.40) yields

UyA
Py = ? (2.42)

On the other hand, when P = Py, (Fig. 2.56d), 0. = oy and
Py = oyA (2.43)

Comparing Eqgs. (2.42) and (2.43),

py=—2 (2.44)

*2.13 RESIDUAL STRESSES

In Concept Application 2.13 of the preceding section, we considered a rod
that was stretched beyond the yield point. As the load was removed, the
rod did not regain its original length; it had been permanently deformed.
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However, after the load was removed, all stresses disappeared. You should
not assume that this will always be the case. Indeed, when only some of
the parts of an indeterminate structure undergo plastic deformations, as
in Concept Application 2.15, or when different parts of the structure
undergo different plastic deformations, the stresses in the various parts of
the structure will not return to zero after the load has been removed.
Stresses called residual stresses will remain in various parts of the
structure.

While computation of residual stresses in an actual structure can be
quite involved, the following concept application provides a general
understanding of the method to be used for their determination.

4 )

P, (kips) . Concept Application 2.16
oli7] |

Determine the residual stresses in the rod and tube of Fig. 2.54a
after the load P has been increased from zero to 5.7 kips and
decreased back to zero.
0 E' 60 5. (10 1in.) Observe from the diagrams of Fig. 2.57 (similar to those
» in the previous concept application) that, after the load P has
P, (kips) Y, returned to zero, the internal forces P, and P, are not equal to
zero. Their values have been indicated by point E in parts a
@) and b. The corresponding stresses are not equal to zero either
after the assembly has been unloaded. To determine these
residual stresses, first determine the reverse stresses o', and
o', caused by the unloading and add them to the maximum
stresses o, = 36 ksi and o, = 30 ksi found in part a of Concept
0 60 8, (107 in.) Application 2.15.
The strain caused by the unloading is the same in both

AN

—
S

=

9 Y,
P (ldps) : the rod and the tube. It is equal to §'/L, where &’ is the defor-
@ mation of the assembly during unloading found in Concept
57", 71 Application 2.15:
Y, 7
,,,,,,,, / 1
45 S © |8 —456 % 10 %in. o
/o € =—=—"—"—"=-152 X 10 %in./in.
/ | P L 30 in.
/ i
/ ! . .
/ : The corresponding reverse stresses in the rod and tube are
I
4 i
'E 1z 0/ = €'E, = (—1.52 X 107%)(30 X 10° psi) = —45.6 ksi

0
‘ 8 (10 in.)
5 5 o= €'E = (—1.52 X 10%)(15 X 10°psi) = —22.8 ksi

P
Fig. 2.57 (a) Rod load-deflection response with

elastic unloading (red dashed line). (b) Tube Then the residual stresses are found by superposing the

load-deflection response; the given loading does stresses due to loading and the reverse stresses due to
not yield the tube, so unloading is along elastic unloading_

loading line with residual tensile stress. (c)

Combined rod-tube assembly load-deflection (O'r)res =0, + o, = 36ksi — 45.6ksi = —9.6 ksi

response with elastic unloading (red dashed line).
(01)es = 0 + 0y = 30ksi — 22.8ksi = +7.2ksi
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Temperature Changes. Plastic deformations caused by temperature
changes can also result in residual stresses. For example, consider a small
plug that is to be welded to a large plate (Fig. 2.58). The plug can be

Fig. 2.58 Small rod welded
to a large plate.

considered a small rod AB to be welded across a small hole in the plate.
During the welding process, the temperature of the rod will be raised to
over 1000°C, at which point its modulus of elasticity, stiffness, and stress
will be almost zero. Since the plate is large, its temperature will not be
increased significantly above room temperature (20°C). Thus, when the
welding is completed, rod AB is at T = 1000°C with no stress and is
attached to the plate, which is at 20°C.

As the rod cools, its modulus of elasticity increases. At about 500°C,
it will approach its normal value of about 200 GPa. As the temperature
of the rod decreases further, a situation similar to that considered in
Sec. 2.3 and illustrated in Fig. 2.26 develops. Solving Eq. (2.15) for AT,
making o equal to the yield strength, assuming oy = 300 MPa for the
steel used, and @ = 12 X 107%/°C, the temperature change that causes
the rod to yield is

o 300 MPa .
AT=—-—=— ———— = —125°C
Ea (200 GPa)(12 X 10 %/°C)

So the rod starts yielding at about 375°C and keeps yielding at a fairly
constant stress level as it cools down to room temperature. As a result of
welding, a residual stress (approximately equal to the yield strength of the
steel used) is created in the plug and in the weld.

Residual stresses also occur as a result of the cooling of metals that
have been cast or hot rolled. In these cases, the outer layers cool more
rapidly than the inner core. This causes the outer layers to reacquire their
stiffness (E returns to its normal value) faster than the inner core. When
the entire specimen has returned to room temperature, the inner core will
contract more than the outer layers. The result is residual longitudinal
tensile stresses in the inner core and residual compressive stresses in the
outer layers.

Residual stresses due to welding, casting, and hot rolling can be
quite large (of the order of magnitude of the yield strength). These stresses
can be removed by reheating the entire specimen to about 600°C and then
allowing it to cool slowly over a period of 12 to 24 hours.
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~
Sample Problem 2.6

Areas: B The rigid beam ABC is suspended from two steel rods as shown and
AD = goo mmz Ev is initially horizontal. The midpoint B of the beam is deflected 10 mm
CE = 500 mm

downward by the slow application of the force Q, after which the force
is slowly removed. Knowing that the steel used for the rods is elasto-
plastic with E = 200 GPa and oy = 300 MPa, determine (a) the required
maximum value of Q and the corresponding position of the beam and
(b) the final position of the beam.

1 0 STRATEGY: You can assume that plastic deformation would occur
5 5 first in rod AD (which is a good assumption—why?), and then check
- . this assumption.

MODELING AND ANALYSIS:

Statics. Since Q is applied at the midpoint of the beam (Fig. 1),

PAD:PCE and QZZPAD

Elastic Action (Fig. 2). The maximum value of Q and the maximum
elastic deflection of point A occur when o = oy in rod AD.

(Pap)max = 0yA = (300 MPa)(400 mm?) = 120 kN
Qmax = 2(Pap)max = 2(120 kN) Quax = 240 kN

oy <300 MPa

4 = €= g 200 GPa

)(2m)=3mm

P,-\I) P(.’E
A Iil C

L]

Fig. 1 Free-body
diagram of rigid beam.

4

1

1

i

L @
03 1114 mm 0 6 mm
Rod AD Rod CE

Fig. 2 Load-deflection diagrams for
steel rods.
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p

Ay Q=0

Final deflections -«

Fig. 4 Beam'’s final deflections
with load removed.

Since Pz = P,p = 120 kN, the stress in rod CE is

Pcg 120 kN
Oce = — - 5 _240MPa
A 500 mm?

The corresponding deflection of point C is

Ocp (240 MPa

S =Gl =—-Z] =
G &= g 200 GPa

)wm)=emm

The corresponding deflection of point B is

= 3(84, + 8¢) = 3(3mm + 6 mm) = 4.5mm

B,
Since 6z = 10 mm, plastic deformation will occur.

Plastic Deformation. For Q = 240 kN, plastic deformation occurs
in rod AD, where 0,5, = oy = 300 MPa. Since the stress in rod CE is
within the elastic range, . remains equal to 6 mm. From Fig. 3, the
deflection 6, for which 63 = 10 mm is obtained by writing

85, = 10mm = 3(§,, + 6mm)  §,, = l4mm
3 mm 4. 5 mm 6 mm
0 kN

10 mm 6 mm

/ C;
= 240 kN

Deflections for 65 = 10 mm <

14 mm

Fig. 3 Deflection of fully-loaded
beam.

Unloading. As force Q is slowly removed, the force P, decreases
along line HJ parallel to the initial portion of the load-deflection dia-
gram of rod AD. The final deflection of point A is

04, = 14mm — 3mm = 11 mm

Since the stress in rod CE remained within the elastic range, note that
the final deflection of point C is zero. Fig. 4 illustrates the final position
of the beam.

REFLECT and THINK: Due to symmetry in this determinate problem,
the axial forces in the rods are equal. Given that the rods have identical
material properties and that the cross-sectional area of rod AD is
smaller than rod CE, you would therefore expect that rod AD would
reach yield first (as assumed in the STRATEGY step).




Problems

2.93 Knowing that, for the plate shown, the allowable stress is 125 MPa, P
determine the maximum allowable value of Pwhen (a) r = 12 mm,

(b) r = 18 mm.
Knowing that P = 38 kN, determine the maximum stress when ‘m -
(a) r = 10 mm, (b) r = 16 mm, (c) r = 18 mm. <

2.95 A hole is to be drilled in the plate at A. The diameters of the bits
available to drill the hole range from 3 to 13 in. in }-in. increments.
If the allowable stress in the plate is 21 ksi, determine (a) the \/\‘
diameter d of the largest bit that can be used if the allowable load

P at the hole is to exceed that at the fillets, (b) the corresponding
allowable load P.

\
120 mm,

N 15 mm
Fig. P2.93 and P2.94

in.

4;

Fig. P2.95 and P2.96

(a) For P = 13 kips and d = 3 in., determine the maximum stress
in the plate shown. (b) Solve part a, assuming that the hole at A
is not drilled.

Knowing that the hole has a diameter of 9 mm, determine (a) the

radius r; of the fillets for which the same maximum stress occurs

at the hole A and at the fillets, (b) the corresponding maximum 96 mm
allowable load P if the allowable stress is 100 MPa.

For P = 100 kN, determine the minimum plate thickness ¢

required if the allowable stress is 125 MPa. Fig. P2.97

rg = 15 mm

64 mm
\

)




2.99 (a) Knowing that the allowable stress is 20 ksi, determine the
maximum allowable magnitude of the centric load P. (b) Deter-
mine the percent change in the maximum allowable magnitude
of P if the raised portions are removed at the ends of the
specimen.

Fig. P2.99

2.100 A centric axial force is applied to the steel bar shown. Knowing
that o,; = 20 ksi, determine the maximum allowable load P.

Fig. P2.100

2.101 The cylindrical rod AB has a length L = 5 ft and a 0.75-in. diam-
eter; it is made of a mild steel that is assumed to be elastoplastic
with E = 29 X 10° psi and oy = 36 ksi. A force P is applied to the
bar and then removed to give it a permanent set §,. Determine
the maximum value of the force P and the maximum amount §,,
by which the bar should be stretched if the desired value of 6p is
(a) 0.1 in., (b) 0.2 in.

N 5

P
Fig. P2.101 and P2.102

The cylindrical rod AB has a length L = 6 ft and a 1.25-in. diam-
eter; it is made of a mild steel that is assumed to be elastoplastic
with E = 29 X 10° psi and oy = 36 ksi. A force P is applied to the
bar until end A has moved down by an amount §,,. Determine
the maximum value of the force P and the permanent set of the
bar after the force has been removed, knowing (a) §,, = 0.125 in.,
(b) 8,, = 0.250 in.




2.103

2.104

2.105

Rod AB is made of a mild steel that is assumed to be elastoplastic
with E = 200 GPa and oy = 345 MPa. After the rod has been
attached to the rigid lever CD, it is found that end C is 6 mm too
high. A vertical force Q is then applied at C until this point has
moved to position C'. Determine the required magnitude of Q
and the deflection 8, if the lever is to snap back to a horizontal
position after Q is removed.

AQ

Q

»— 9-mm diameter

B D
— S/ )
(R
|

Fig. P2.103

Solve Prob. 2.103, assuming that the yield point of the mild steel
is 250 MPa.

Rod ABC consists of two cylindrical portions AB and BC; it is
made of a mild steel that is assumed to be elastoplastic with
E = 200 GPa and oy = 250 MPa. A force P is applied to the rod
and then removed to give it a permanent set 6, = 2 mm. Deter-
mine the maximum value of the force P and the maximum
amount 8,, by which the rod should be stretched to give it the
desired permanent set.

40-mm
diameter

B

30-mm
" diameter

A

1)
Fig. P2.105 and P2.106

2.106 Rod ABC consists of two cylindrical portions AB and BC; it is

made of a mild steel that is assumed to be elastoplastic with
E = 200 GPa and oy = 250 MPa. A force P is applied to the rod
until its end A has moved down by an amount §,, = 5 mm. Deter-
mine the maximum value of the force P and the permanent set
of the rod after the force has been removed.




2.107 Rod AB consists of two cylindrical portions AC and BC, each with
a cross-sectional area of 1750 mm?. Portion AC is made of a mild
steel with E = 200 GPa and oy = 250 MPa, and portion BC is
made of a high-strength steel with E = 200 GPa and oy = 345
MPa. A load P is applied at C as shown. Assuming both steels to
be elastoplastic, determine (a) the maximum deflection of C if P
is gradually increased from zero to 975 kN and then reduced back
to zero, (b) the maximum stress in each portion of the rod, (c) the

L permanent deflection of C.

For the composite rod of Prob. 2.107, if P is gradually increased

Fig. P2.107 from zero until the deflection of point C reaches a maximum
value of 6,, = 0.3 mm and then decreased back to zero, deter-
mine, (a) the maximum value of P, (b) the maximum stress in
each portion of the rod, (¢) the permanent deflection of C after
the load is removed.

Each cable has a cross-sectional area of 100 mm? and is made of
an elastoplastic material for which oy = 345 MPa and E = 200
GPa. A force Q is applied at C to the rigid bar ABC and is gradu-
ally increased from 0 to 50 kN and then reduced to zero. Knowing
that the cables were initially taut, determine (a) the maximum
stress that occurs in cable BD, (b) the maximum deflection of
point C, (¢) the final displacement of point C. (Hint: In part c,
cable CE is not taut.)

B @C—

P
A&o
1 m*»Ll m

Fig. P2.109

Q
—

Solve Prob. 2.109, assuming that the cables are replaced by rods of
the same cross-sectional area and material. Further assume that the
rods are braced so that they can carry compressive forces.

Two tempered-steel bars, each 1% in. thick, are bonded to a %-in.
mild-steel bar. This composite bar is subjected as shown to a cen-
tric axial load of magnitude P. Both steels are elastoplastic with
E = 29 X 10° psi and with yield strengths equal to 100 ksi and
50 ksi, respectively, for the tempered and mild steel. The load P
is gradually increased from zero until the deformation of the bar
reaches a maximum value 8,, = 0.04 in. and then decreased back
to zero. Determine (@) the maximum value of P, (b) the maxi-
mum stress in the tempered-steel bars, (¢) the permanent set
Fig. P2.111 after the load is removed.




2.112 For the composite bar of Prob. 2.111, if P is gradually increased
from zero to 98 kips and then decreased back to zero, determine
(@) the maximum deformation of the bar, (b) the maximum stress
in the tempered-steel bars, (c) the permanent set after the load
is removed.

The rigid bar ABC is supported by two links, AD and BE, of uni-
form 37.5 X 6-mm rectangular cross section and made of a mild
steel that is assumed to be elastoplastic with E = 200 GPa and
oy = 250 MPa. The magnitude of the force Q applied at B is
gradually increased from zero to 260 kN. Knowing thata = 0.640 m,
determine (a) the value of the normal stress in each link, (b) the
maximum deflection of point B.

- .

D

Fig. P2.113

2.114 Solve Prob. 2.113, knowing that @ = 1.76 m and that the magni-
tude of the force Q applied at B is gradually increased from zero
to 135 kN.

Solve Prob. 2.113, assuming that the magnitude of the force Q
applied at B is gradually increased from zero to 260 kN and then
decreased back to zero. Knowing that a = 0.640 m, determine
(a) the residual stress in each link, (b) the final deflection of point
B. Assume that the links are braced so that they can carry com-
pressive forces without buckling.

2.116 A uniform steel rod of cross-sectional area A is attached to
rigid supports and is unstressed at a temperature of 45°F. The
steel is assumed to be elastoplastic with oy = 36 ksi and
E = 29 X 10° psi. Knowing that @ = 6.5 X 10 °/°F, determine the
stress in the bar (a) when the temperature is raised to 320°F
(b) after the temperature has returned to 45°F.

|A B

:

Fig. P2.116




The steel rod ABC is attached to rigid supports and is unstressed
at a temperature of 25°C. The steel is assumed elastoplastic
with E = 200 GPa and oy = 250 MPa. The temperature of both
portions of the rod is then raised to 150°C. Knowing that
a = 11.7 X 10 °/°C, determine (a) the stress in both portions of
the rod, (b) the deflection of point C.

<~— 150 mm —{=——250 mm ——

Fig. P2.117 Solve Prob. 2.117, assuming that the temperature of the rod is

raised to 150°C and then returned to 25°C.

For the composite bar of Prob. 2.111, determine the residual
stresses in the tempered-steel bars if P is gradually increased
from zero to 98 kips and then decreased back to zero.

For the composite bar in Prob. 2.111, determine the residual
stresses in the tempered-steel bars if P is gradually increased
from zero until the deformation of the bar reaches a maximum
value §,, = 0.04 in. and is then decreased back to zero.

Narrow bars of aluminum are bonded to the two sides of a thick
steel plate as shown. Initially, at 7} = 70°E all stresses are zero.
Knowing that the temperature will be slowly raised to T, and then
reduced to T}, determine (a) the highest temperature T, that does
not result in residual stresses, (b) the temperature T, that will
result in a residual stress in the aluminum equal to 58 ksi. Assume
a,= 12.8 X 10 °/°F for the aluminum and a, = 6.5 X 10~ %/°F for
the steel. Further assume that the aluminum is elastoplastic with
E = 10.9 X 10° psi and ay = 58 ksi. (Hint: Neglect the small
stresses in the plate.)

Fig. P2.121

Bar AB has a cross-sectional area of 1200 mm? and is made of a
steel that is assumed to be elastoplastic with E = 200 GPa and oy
= 250 MPa. Knowing that the force F increases from 0 to 520 kN
and then decreases to zero, determine (a) the permanent deflec-
tion of point C, (b) the residual stress in the bar.

A C B

a =120 mm

e———— 440 mm ——

Fig. P2.122

*2.123 Solve Prob. 2.122, assuming that ¢ = 180 mm.




Review and Summary

Normal Strain

Consider a rod of length L and uniform cross section, and its deformation &
under an axial load P (Fig. 2.59). The normal strain e in the rod is defined
as the deformation per unit length:

€ =

% @.1)

C

P

(a) ®)
Fig. 2.59 Undeformed and deformed
axially-loaded rod.

In the case of a rod of variable cross section, the normal strain at any given
point Q is found by considering a small element of rod at Q:
As _ ds

€ lim —

= = 252
Ax—0 Ax dx ( )

Stress-Strain Diagram

A stress-strain diagram is obtained by plotting the stress o versus the strain e
as the load increases. These diagrams can be used to distinguish between
brittle and ductile materials. A brittle material ruptures without any notice-
able prior change in the rate of elongation (Fig. 2.60), while a ductile material

(o8

€

Fig. 2.60 Stress-strain diagram for a typical
brittle material.
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(a) Low-carbon steel (b) Aluminum alloy

Fig. 2.61 Stress-strain diagrams of two typical ductile metal materials.

Yy

%

4 \
Layer of

Fibers

Fig. 2.62 Layer of fiber-reinforced
composite material.

yields after a critical stress oy (the yield strength) has been reached (Fig. 2.61).
The specimen undergoes a large deformation before rupturing, with a
relatively small increase in the applied load. An example of brittle material
with different properties in tension and compression is concrete.

Hooke’s Law and Modulus of Elasticity
The initial portion of the stress-strain diagram is a straight line. Thus, for
small deformations, the stress is directly proportional to the strain:

o = Ee (2.6)
This relationship is Hooke’s law, and the coefficient E is the modulus of

elasticity of the material. The proportional limit is the largest stress for
which Eq. (2.4) applies.

Properties of isotropic materials are independent of direction, while prop-
erties of anisotropic materials depend upon direction. Fiber-reinforced
composite materials are made of fibers of a strong, stiff material embedded
in layers of a weaker, softer material (Fig. 2.62).

Elastic Limit and Plastic Deformation

If the strains caused in a test specimen by the application of a given load
disappear when the load is removed, the material is said to behave elasti-
cally. The largest stress for which this occurs is called the elastic limit of
the material. If the elastic limit is exceeded, the stress and strain decrease
in a linear fashion when the load is removed, and the strain does not
return to zero (Fig. 2.63), indicating that a permanent set or plastic defor-
mation of the material has taken place.

(o

Rupture

€
A D

Fig. 2.63 Stress-strain response of ductile
material loaded beyond yield and unloaded.




Fatigue and Endurance Limit

Fatigue causes the failure of structural or machine components after a
very large number of repeated loadings, even though the stresses remain
in the elastic range. A standard fatigue test determines the number 7 of
successive loading-and-unloading cycles required to cause the failure
of a specimen for any given maximum stress level ¢ and plots the
resulting o-n curve. The value of o for which failure does not occur,
even for an indefinitely large number of cycles, is known as the endur-
ance limit.

Elastic Deformation Under Axial Loading
If a rod of length L and uniform cross section of area A is subjected at its
end to a centric axial load P (Fig. 2.64), the corresponding deformation is

P

S =
AE

(2.9

P

Fig. 2.64 Undeformed and
deformed axially-loaded rod.

If the rod is loaded at several points or consists of several parts of various
cross sections and possibly of different materials, the deformation 6 of the
rod must be expressed as the sum of the deformations of its component
parts:

b.L;

5= Z A;Ei (2.10)

Statically Indeterminate Problems

Statically indeterminate problems are those in which the reactions and the
internal forces cannot be determined from statics alone. The equilibrium
equations derived from the free-body diagram of the member under con-
sideration were complemented by relations involving deformations and
obtained from the geometry of the problem. The forces in the rod and in
the tube of Fig. 2.65, for instance, were determined by observing that their
sum is equal to P, and that they cause equal deformations in the rod
and in the tube. Similarly, the reactions at the supports of the bar of

/Tube (Ag, E5)

B
Rod (A, E;)

"N End plate
| L |

Fig. 2.65 Statically indeterminate problem where
concentric rod and tube have same strain but
different stresses.




A B
Fig. 2.67 Fully restrained bar of length L.

B
Ry

)
Fig. 2.66 (a) Axially-loaded statically-indeterminate
member. (b) Free-body diagram.

Fig. 2.66 could not be obtained from the free-body diagram of the bar
alone, but they could be determined by expressing that the total elonga-
tion of the bar must be equal to zero.

Problems with Temperature Changes
When the temperature of an unrestrained rod AB of length L is increased
by AT, its elongation is

6r = a(AT)L (2.13)
where « is the coefficient of thermal expansion of the material. The cor-
responding strain, called thermal strain, is

€r = aAT (2.19)
and no stress is associated with this strain. However, if rod AB is restrained by
fixed supports (Fig. 2.67), stresses develop in the rod as the temperature

increases, because of the reactions at the supports. To determine the magni-
tude P of the reactions, the rod is first detached from its support at B (Fig. 2.68a).

i L
A

_}B
.

4

b

TL

i~

]

(c)

Fig. 2.68 Determination of reactions for bar of Fig. 2.67
subject to a temperature increase. (a) Support at B removed.
(b) Thermal expansion. (c) Application of support reaction to
counter thermal expansion.




The deformation &7 of the rod occurs as it expands due to of the temperature
change (Fig. 2.68b). The deformation 8, caused by the force P is required to
bring it back to its original length, so that it may be reattached to the support
at B (Fig. 2.68¢).

Lateral Strain and Poisson’s Ratio

When an axial load P is applied to a homogeneous, slender bar
(Fig. 2.69), it causes a strain, not only along the axis of the bar but in any
transverse direction. This strain is the lateral strain, and the ratio of the
lateral strain over the axial strain is called Poisson’s ratio:

P >
lateral strain x

R R Fig. 2.69 A bar in uniaxial tension.
axial strain

Multiaxial Loading
The condition of strain under an axial loading in the x direction is

(o Vo,

- —e=-— (2.19)

€, —
A multiaxial loading causes the state of stress shown in Fig. 2.70. The
resulting strain condition was described by the generalized Hooke’s law for
a multiaxial loading.

Fig. 2.70 State of stress for multiaxial loading.

Dilatation
If an element of material is subjected to the stresses oy, o, 0, it will
deform and a certain change of volume will result. The change in volume
per unit volume is the dilatation of the material:

1—-2v

e= = (o + 0y + 0,) (2.22)

Bulk Modulus

When a material is subjected to a hydrostatic pressure p,

e = —

P
k

where k is the bulk modulus of the material:

3

LT




X

Fig. 2.71 Positive stress components at
point Q for a general state of stress.

Shearing Strain: Modulus of Rigidity

The state of stress in a material under the most general loading condition
involves shearing stresses, as well as normal stresses (Fig. 2.71). The
shearing stresses tend to deform a cubic element of material into an
oblique parallelepiped. The stresses 7,, and 7,, shown in Fig. 2.72 cause
the angles formed by the faces on which they act to either increase or
decrease by a small angle v,,. This angle defines the shearing strain cor-
responding to the x and y directions. Defining in a similar way the shear-
ing strains v,,and v,,, the following relations were written:

Ty =Gy T=GY Tu= Gyx (2.27, 28)

/

z

Fig. 2.72 Deformation of unit cubic
element due to shearing stress.

which are valid for any homogeneous isotropic material within its propor-
tional limit in shear. The constant G is the modulus of rigidity of the mate-
rial, and the relationships obtained express Hooke’s law for shearing stress
and strain. Together with Egs. (2.20), they form a group of equations rep-
resenting the generalized Hooke’s law for a homogeneous isotropic mate-
rial under the most general stress condition.

While an axial load exerted on a slender bar produces only normal
strains—both axial and transverse—on an element of material oriented




along the axis of the bar, it will produce both normal and shearing strains
on an element rotated through 45° (Fig. 2.73). The three constants E, v,
and G are not independent. They satisfy the relation

S
2G

=1+v (2.39)

This equation can be used to determine any of the three constants in terms
of the other two.

Saint-Venant’s Principle

Saint-Venant's principle states that except in the immediate vicinity of the
points of application of the loads, the distribution of stresses in a given
member is independent of the actual mode of application of the loads. This
principle makes it possible to assume a uniform distribution of stresses in
a member subjected to concentrated axial loads, except close to the points
of application of the loads, where stress concentrations will occur.

Stress Concentrations
Stress concentrations will also occur in structural members near a discon-
tinuity, such as a hole or a sudden change in cross section. The ratio of
the maximum value of the stress occurring near the discontinuity over the
average stress computed in the critical section is referred to as the stress-
concentration factor of the discontinuity:

O-max

K== (2.40)

a-ave

Plastic Deformations

Plastic deformations occur in structural members made of a ductile material
when the stresses in some part of the member exceed the yield strength of
the material. An idealized elastoplastic material is characterized by the
stress-strain diagram shown in Fig. 2.74. When an indeterminate structure

Rupture

A €

Fig. 2.74 Stress-strain diagram for an
idealized elastoplastic material.

undergoes plastic deformations, the stresses do not, in general, return to
zero after the load has been removed. The stresses remaining in the various
parts of the structure are called residual stresses and can be determined by
adding the maximum stresses reached during the loading phase and the
reverse stresses corresponding to the unloading phase.

Fig. 2.73 Representatlons of strain in an
axially-loaded bar: (a) cubic strain element with
faces aligned with coordinate axes; (b) cubic strain
element with faces rotated 45° about z-axis.




Review Problems

2.124 The uniform wire ABC, of unstretched length 2/, is attached to
the supports shown and a vertical load P is applied at the mid-
point B. Denoting by A the cross-sectional area of the wire and
by E the modulus of elasticity, show that, for 6 << J, the deflec-
tion at the midpoint B is

Fig. P2.124

The aluminum rod ABC (E = 10.1 X 10° psi), which consists
of two cylindrical portions AB and BC, is to be replaced with
a cylindrical steel rod DE (E = 29 X 10° psi) of the same over-
all length. Determine the minimum required diameter d of the
steel rod if its vertical deformation is not to exceed the defor-
mation of the aluminum rod under the same load and if the
allowable stress in the steel rod is not to exceed 24 ksi.

28 kips 28 kips

30 kips 30 kips

— ~— 2in.

Fig. P2.125

2.126 Two solid cylindrical rods are joined at B and loaded as shown.
Rod AB is made of steel (E = 29 X 10° psi), and rod BC of brass
P = 40 kips (E = 15 X 10° psi). Determine (a) the total deformation of the
Fig. P2.126 composite rod ABC, (b) the deflection of point B.




2.127 The brass strip AB has been attached to a fixed support at A
and rests on a rough support at B. Knowing that the coeffi-
cient of friction is 0.60 between the strip and the support at B,
determine the decrease in temperature for which slipping will
impend.

Brass strip:
E =105 GPa 100 kg

a =20 X 107%°C 40 c

3mm 20 mm

Fig. P2.127

2.128 The specimen shown is made from a 1-in.-diameter cylindrical
steel rod with two 1.5-in.-outer-diameter sleeves bonded to the
rod as shown. Knowing that E = 29 X 10° psi, determine (a)
the load P so that the total deformation is 0.002 in., (b) the cor- o
responding deformation of the central portion BC. I3-in. diameter

1L-in. diameter

1-in. diameter

Each of the four vertical links connecting the two rigid hori-
zontal members is made of aluminum (E = 70 GPa) and has a
uniform rectangular cross section of 10 X 40 mm. For the load-
ing shown, determine the deflection of (a) point E, (b) point F,
(¢) point G.

Fig. P2.128

300 mm

Fig. P2.129

2.130 A 4-ft concrete post is reinforced with four steel bars, each
with a 3-in. diameter. Knowing that E, = 29 X 10° psi and
E. =36 X 10° psi, determine the normal stresses in the steel
and in the concrete when a 150-kip axial centric force P is
applied to the post. Fig. P2.130




2.131 The steel rods BE and CD each have a 16-mm diameter
(E = 200 GPa); the ends of the rods are single-threaded with a
pitch of 2.5 mm. Knowing that after being snugly fitted, the nut
at C is tightened one full turn, determine (a) the tension in rod
CD, (b) the deflection of point C of the rigid member ABC.

——

150 mm
B
g

100 mm
4 3 g J
|

|<;2 m

Fig. P2.131

2.132 The assembly shown consists of an aluminum shell (E, =
10.6 X 10° psi, a, = 12.9 X 10" %/°F) fully bonded to a steel
core (E; = 29 X 10° psi, a; = 6.5 X 10 ®/°F) and is unstressed.
Determine (a) the largest allowable change in temperature if
the stress in the aluminum shell is not to exceed 6 ksi, (b) the
corresponding change in length of the assembly.

I~

8 in.

Aluminum shell

1.25 in.
Fig. P2.132
The plastic block shown is bonded to a fixed base and to a hori-
zontal rigid plate to which a force P is applied. Knowing that for

the plastic used G = 55 ksi, determine the deflection of the plate
when P = 9 kips.

5.5in. \>/

Fig. P2.133




2.134 The aluminum test specimen shown is subjected to two equal
and opposite centric axial forces of magnitude P. (@) Knowing
that E = 70 GPa and o,; = 200 MPa, determine the maximum
allowable value of P and the corresponding total elongation of
the specimen. (b) Solve part a, assuming that the specimen has
been replaced by an aluminum bar of the same length and a
uniform 60 X 15-mm rectangular cross section.

Dimensions in mm
Fig. P2.134

2.135 The uniform rod BC has cross-sectional area A and is made of a
mild steel that can be assumed to be elastoplastic with a modu-
lus of elasticity E and a yield strength 0. Using the block-and-
spring system shown, it is desired to simulate the deflection of
end C of the rod as the axial force P is gradually applied and
removed, that is, the deflection of points C and C’ should be the
same for all values of P. Denoting by u the coefficient of friction
between the block and the horizontal surface, derive an expres-
sion for (a) the required mass m of the block, (b) the required
constant k of the spring.

B ' '
—"/‘Nv— <

Fig. P2.135




Computer Problems

The following problems are designed to be solved with a computer. Write
each program so that it can be used with either SI or U.S. customary units
and in such a way that solid cylindrical elements may be defined by either
their diameter or their cross-sectional area.

Element n Element 1 2.C1 A rod consisting of n elements, each of which is homogeneous and
/ of uniform cross section, is subjected to the loading shown. The length of
n P1 element i is denoted by L, its cross-sectional area by A;, modulus of elas-

ticity by E; and the load applied to its right end by P;, the magnitude P; of
this load being assumed to be positive if P; is directed to the right and
Fig. P2.C1 negative otherwise. (@) Write a computer program that can be used to
determine the average normal stress in each element, the deformation of
each element, and the total deformation of the rod. (b) Use this program

to solve Probs. 2.20 and 2.126.

B /Element n  Element 1 2.C2 Rod AB is horizontal with both ends fixed; it consists of 7 elements,

each of which is homogeneous and of uniform cross section, and is sub-
P, jected to the loading shown. The length of element i is denoted by L, its

cross-sectional area by A,;, its modulus of elasticity by E; and the load
applied to its right end by P;, the magnitude P; of this load being assumed
Fig. P2.C2 to be positive if P; is directed to the right and negative otherwise. (Note
that P, = 0.) (a) Write a computer program that can be used to determine
the reactions at A and B, the average normal stress in each element,
and the deformation of each element. (b) Use this program to solve Probs.
2.41 and 2.42.

Element 1 it I 2.C3 Rod AB consists of n elements, each of which is homogeneous and
- = of uniform cross section. End A is fixed, while initially there is a gap §,
between end B and the fixed vertical surface on the right. The length of
:[:] element i is denoted by L, its cross-sectional area by A, its modulus of
B elasticity by E; and its coefficient of thermal expansion by «;. After the
temperature of the rod has been increased by AT, the gap at B is closed
and the vertical surfaces exert equal and opposite forces on
the rod. (@) Write a computer program that can be used to determine the
magnitude of the reactions at A and B, the normal stress in each element,
and the deformation of each element. (b) Use this program to solve Probs.

2.59 and 2.60.

2.C4 Bar AB has a length L and is made of two different materials of

given cross-sectional area, modulus of elasticity, and yield strength. The

bar is subjected as shown to a load P that is gradually increased from zero

until the deformation of the bar has reached a maximum value 6,, and

then decreased back to zero. (a) Write a computer program that, for each

of 25 values of §,, equally spaced over a range extending from 0 to a value

equal to 120% of the deformation causing both materials to yield, can be

used to determine the maximum value P,, of the load, the maximum

Ay, Ey, (0y)y normal stress in each material, the permanent deformation 8, of the bar,

Fig. P2.C4 and the residual stress in each material. (b) Use this program to solve
Probs. 2.111 and 2.112.




2.C5 The plate has a hole centered across the width. The stress concen-
tration factor for a flat bar under axial loading with a centric hole is

2r 2r\? 2r\?
K =3.00 —3.13{ — | + 3.66 — | — 1.53( —
D D D

where r is the radius of the hole and D is the width of the bar. Write a
computer program to determine the allowable load P for the given values
of r, D, the thickness ¢ of the bar, and the allowable stress o, of the mate-
rial. Knowing that ¢ = } in., D = 3.0 in. and o = 16 ksi, determine the
allowable load P for values of r from 0.125 in. to 0.75 in., using 0.125 in.
increments.

2.C6 A solid truncated cone is subjected to an axial force P as shown.
The exact elongation is (PL)/(27c*E). By replacing the cone by n circular
cylinders of equal thickness, write a computer program that can be used
to calculate the elongation of the truncated cone. What is the percentage
error in the answer obtained from the program using (a) n = 6,
(b) n =12, (c) n = 60?

P’
<

Fig. P2.C5

Fig. P2.C6







Torsion

In the part of the jet engine shown here, the central shaft

links the components of the engine to develop the thrust

that propels the aircraft.

Objectives
In this chapter, you will:

» Introduce students to the concept of torsion in structural mem-
bers and machine parts

Define shearing stresses and strains in a circular shaft subject to
torsion

Define angle of twist in terms of the applied torque, geometry of
the shaft, and material

Use torsional deformations to solve indeterminate problems
Design shafts for power transmission

Review stress concentrations and how they are included in torsion
problems

Describe the elastic-perfectly plastic response of circular shafts
Analyze torsion for noncircular members

Define the behavior of thin-walled hollow shafts
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Introduction

3.1 CIRCULAR SHAFTS IN
TORSION

3.1A The Stresses in a Shaft

3.1B Deformations in a Circular Shaft

3.1C Stresses in the Elastic Range

3.2 ANGLE OF TWIST IN THE
ELASTIC RANGE

3.3 STATICALLY
INDETERMINATE SHAFTS

3.4 DESIGN OF
TRANSMISSION SHAFTS

3.5 STRESS
CONCENTRATIONS IN
CIRCULAR SHAFTS

*3.6 PLASTIC DEFORMATIONS
IN CIRCULAR SHAFTS

*3.7 CIRCULAR SHAFTS
MADE OF AN
ELASTOPLASTIC
MATERIAL

*3.8 RESIDUAL STRESSES IN
CIRCULAR SHAFTS

*3.9 TORSION OF
NONCIRCULAR MEMBERS

*3.10 THIN-WALLED HOLLOW

SHAFTS
\B
I ™ T
T~
(a)
T
~C.
B
s, %
A C{
)
Fig. 3.1 Two equivalent ways to represent a

torque in a free-body diagram.

Introduction

In this chapter, structural members and machine parts that are in forsion
will be analyzed, where the stresses and strains in members of circular
cross section are subjected to twisting couples, or torques, T and T’
(Fig. 3.1). These couples have a common magnitude T, and opposite
senses. They are vector quantities and can be represented either by curved
arrows (Fig. 3.1a) or by couple vectors (Fig. 3.1b).

Members in torsion are encountered in many engineering appli-
cations. The most common application is provided by transmission
shafts, which are used to transmit power from one point to another
(Photo 3.1). These shafts can be either solid, as shown in Fig. 3.1, or
hollow.

Photo 3.1

In this automotive power train, the shaft transmits power from the
engine to the rear wheels.

The system shown in Fig. 3.2a consists of a turbine A and an electric
generator B connected by a transmission shaft AB. Breaking the system
into its three component parts (Fig. 3.2b), the turbine exerts a twisting
couple or torque T on the shaft, which then exerts an equal torque on the
generator. The generator reacts by exerting the equal and opposite torque
T’ on the shaft, and the shaft reacts by exerting the torque T’ on the
turbine.

First the stresses and deformations that take place in circular
shafts will be analyzed. Then an important property of circular shafts
is demonstrated: When a circular shaft is subjected to torsion, every
cross section remains plane and undistorted. Therefore, while the vari-
ous cross sections along the shaft rotate through different angles, each
cross section rotates as a solid rigid slab. This property helps to deter-
mine the distribution of shearing strains in a circular shaft and to con-
clude that the shearing strain varies linearly with the distance from the
axis of the shaft.
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Generator

Turbine

)

Fig. 3.2 (a) A generator receives power at a constant number of revolutions per minute
from a turbine through shaft AB. (b) Free-body diagram of shaft AB along with the driving
and reacting torques on the generator and turbine, respectively.

Deformations in the elastic range and Hooke’s law for shearing stress
and strain are used to determine the distribution of shearing stresses in a
circular shaft and derive the elastic torsion formulas.

In Sec. 3.2, the angle of twist of a circular shaft is found when
subjected to a given torque, assuming elastic deformations. The solu-
tion of problems involving statically indeterminate shaffts is discussed in
Sec. 3.3.

In Sec. 3.4, the design of transmission shafts is accomplished by
determining the required physical characteristics of a shaft in terms of its
speed of rotation and the power to be transmitted.

Section 3.5 accounts for stress concentrations where an abrupt
change in diameter of the shaft occurs. In Secs. 3.6 to 3.8, stresses and
deformations in circular shafts made of a ductile material are found
when the yield point of the material is exceeded. You will then learn how
to determine the permanent plastic deformations and residual stresses
that remain in a shaft after it has been loaded beyond the yield point of
the material.

The last sections of this chapter study the torsion of noncircular
members (Sec. 3.9) and analyze the distribution of stresses in thin-walled
hollow noncircular shafts (Sec. 3.10).
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Fig. 3.3 Shaft subject to torques and a section
plane at C.

B
C
dF
T' 7
(a)
— B
T
C
T
(b)

Fig. 3.4 (a) Free body diagram of section BC with
torque at C represented by the contributions of
small elements of area carrying forces dF a radius p
from the section center. (b) Free-body diagram of
section BC having all the small area elements
summed resulting in torque T.

3.1 CIRCULAR SHAFTS IN
TORSION

3.1A The Stresses in a Shait

Consider a shaft AB subjected at A and B to equal and opposite torques
T and T'. We pass a section perpendicular to the axis of the shaft through
some arbitrary point C (Fig. 3.3). The free-body diagram of portion BC of
the shaft must include the elementary shearing forces dF, which are per-
pendicular to the radius of the shaft. These arise from the torque that
portion AC exerts on BC as the shaft is twisted (Fig. 3.4a). The conditions
of equilibrium for BC require that the system of these forces be equivalent
to an internal torque T, as well as equal and opposite to T’ (Fig. 3.4D).
Denoting the perpendicular distance p from the force dF to the axis of
the shaft and expressing that the sum of the moments of the shearing
forces dF about the axis of the shaft is equal in magnitude to the torque
T, write

fpdF =T

Since dF = tdA, where 7 is the shearing stress on the element of area dA,
you also can write

Jp(rdA) =T (3.1)

While these equations express an important condition that must be
satisfied by the shearing stresses in any given cross section of the shaft,
they do not tell us how these stresses are distributed in the cross section.
Thus, the actual distribution of stresses under a given load is statically
indeterminate (i.e., this distribution cannot be determined by the methods
of statics). However, it was assumed in Sec. 1.2A that the normal stresses
produced by an axial centric load were uniformly distributed, and this
assumption was justified in Sec. 2.10, except in the neighborhood of con-
centrated loads. A similar assumption with respect to the distribution of
shearing stresses in an elastic shaft would be wrong. Withhold any judg-
ment until the deformations that are produced in the shaft have been ana-
lyzed. This will be done in the next section.

As indicated in Sec. 1.4, shear cannot take place in one plane only.
Consider the very small element of shaft shown in Fig. 3.5. The torque
applied to the shaft produces shearing stresses 7 on the faces perpen-
dicular to the axis of the shaft. However, the conditions of equilibrium
(Sec. 1.4) require the existence of equal stresses on the faces formed by
the two planes containing the axis of the shaft. That such shearing

Axis of shaft ) T~

Fig. 3.5 Small element in shaft showing how
shearing stress components act.
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Fig. 3.6 Demonstration of shear in a shaft (a) undeformed;
(b) loaded and deformed.

stresses actually occur in torsion can be demonstrated by considering a
“shaft” made of separate slats pinned at both ends to disks, as shown in
Fig. 3.6a. If markings have been painted on two adjoining slats, it is
observed that the slats will slide with respect to each other when equal
and opposite torques are applied to the ends of the “shaft” (Fig. 3.6b).
While sliding will not actually take place in a shaft made of a homoge-
neous and cohesive material, the tendency for sliding will exist, showing
that stresses occur on longitudinal planes as well as on planes perpen-
dicular to the axis of the shaft."

3.1B Deformations in a Circular Shaft

Deformation Characteristics. Consider a circular shaft attached to a
fixed support at one end (Fig. 3.7a). If a torque T is applied to the other
end, the shaft will twist, with its free end rotating through an angle ¢
called the angle of twist (Fig. 3.7b). Within a certain range of values of T,
the angle of twist ¢ is proportional to T. Also, ¢ is proportional to the
length L of the shaft. In other words, the angle of twist for a shaft of the
same material and same cross section, but twice as long, will be twice as
large under the same torque T.

When a circular shaft is subjected to torsion, every cross section
remains plane and undistorted. In other words, while the various cross
sections along the shaft rotate through different amounts, each cross sec-
tion rotates as a solid rigid slab. This is illustrated in Fig. 3.8a, which shows
the deformations in a rubber model subjected to torsion. This property is
characteristic of circular shafts, whether solid or hollow—but not of mem-
bers with noncircular cross section. For example, when a bar of square
cross section is subjected to torsion, its various cross sections warp and
do not remain plane (Fig. 3.8b).

The cross sections of a circular shaft remain plane and undistorted
because a circular shaft is axisymmetric (i.e., its appearance remains the
same when it is viewed from a fixed position and rotated about its axis
through an arbitrary angle). Square bars, on the other hand, retain the
same appearance only if they are rotated through 90° or 180°. Theoreti-
cally the axisymmetry of circular shafts can be used to prove that their
cross sections remain plane and undistorted.

"The twisting of a cardboard tube that has been slit lengthwise provides another dem-
onstration of the existence of shearing stresses on longitudinal planes.

Fig. 3.7 Shaft with fixed support and line AB
drawn showing deformation under torsion loading:
(a) unloaded; (b) loaded

(b)

Fig. 3.8 Comparison of deformations in
(a) circular and (b) square shafts.
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B
( D
T’ C \)
(a)
B
G
T @
A
(b)

Fig. 3.9 Shaft subject to twisting.

—

Fig. 3.10 Concentric circles at a cross section.

a

Consider points C and D located on the circumference of a given
cross section, and let C' and D’ be the positions after the shaft has been
twisted (Fig. 3.9a). The axisymmetry requires that the rotation that would
have brought D into D' will bring C into C'. Thus, C' and D’ must lie on
the circumference of a circle, and the arc C'D’ must be equal to the arc
CD (Fig. 3.9b).

Assume that C' and D’ lie on a different circle, and the new circle
is located to the left of the original circle, as shown in Fig. 3.9b. The same
situation will prevail for any other cross section, since all cross sections
of the shaft are subjected to the same internal torque 7, and looking at
the shaft from its end A shows that the loading causes any given circle
drawn on the shaft to move away. But viewed from B, the given load looks
the same (a clockwise couple in the foreground and a counterclockwise
couple in the background), where the circle moves toward you. This con-
tradiction proves that C’' and D’ lie on the same circle as C and D. Thus,
as the shaft is twisted, the original circle just rotates in its own plane.
Since the same reasoning can be applied to any smaller, concentric circle
located in the cross section, the entire cross section remains plane
(Fig. 3.10).

This argument does not preclude the possibility for the various con-
centric circles of Fig. 3.10 to rotate by different amounts when the shaft is
twisted. But if that were so, a given diameter of the cross section would be
distorted into a curve, as shown in Fig. 3.11a. Looking at this curve from
A, the outer layers of the shaft get more twisted than the inner ones, while
looking from B reveals the opposite (Fig. 3.11b). This inconsistency indi-
cates that any diameter of a given cross section remains straight (Fig. 3.11¢);
therefore, any given cross section of a circular shaft remains plane and
undistorted.

Now consider the mode of application of the twisting couples T
and T'. If all sections of the shaft, from one end to the other, are to
remain plane and undistorted, the couples are applied so the ends of the
shaft remain plane and undistorted. This can be accomplished by apply-
ing the couples T and T’ to rigid plates that are solidly attached to the
ends of the shaft (Fig. 3.12a). All sections will remain plane and undis-
torted when the loading is applied, and the resulting deformations will
be uniform throughout the entire length of the shaft. All of the equally
spaced circles shown in Fig. 3.12a will rotate by the same amount rela-
tive to their neighbors, and each of the straight lines will be transformed
into a curve (helix) intersecting the various circles at the same angle
(Fig. 3.12b).

c

Fig. 3.11 Potential deformations of diameter lines if section’s
concentric circles rotate different amounts (g, b) or the same amount (c).



Shearing Strains. The examples given in this and the following sec-
tions are based on the assumption of rigid end plates. However, loading
conditions may differ from those corresponding to the model of Fig. 3.12.
This model helps to define a torsion problem for which we can obtain
an exact solution. By use of Saint-Venant’s principle, the results obtained
for this idealized model may be extended to most engineering
applications.

Now we will determine the distribution of shearing strains in a cir-
cular shaft of length L and radius c that has been twisted through an
angle ¢ (Fig. 3.13a). Detaching from the shaft a cylinder of radius p,
consider the small square element formed by two adjacent circles and
two adjacent straight lines traced on the surface before any load is
applied (Fig. 3.13b). As the shaft is subjected to a torsional load, the ele-
ment deforms into a rhombus (Fig. 3.13¢). Here the shearing strain vy in
a given element is measured by the change in the angles formed by the
sides of that element (Sec. 2.7). Since the circles defining two of the sides
remain unchanged, the shearing strain y must be equal to the angle
between lines AB and A'B.

Figure 3.13c shows that, for small values of vy, the arc length AA’ is
expressed as AA’ = Ly. But since AA" = pd¢, it follows that Ly = p¢, or

Y= (3.2)

where y and ¢ are in radians. This equation shows that the shearing
strain vy at a given point of a shaft in torsion is proportional to the angle
of twist ¢. It also shows that vy is proportional to the distance p from the
axis of the shaft to that point. Thus, the shearing strain in a circular shaft
varies linearly with the distance from the axis of the shafft.

From Eq. (3.2), the shearing strain is maximum on the surface of the
shaft, where p = c.

Ymax = % (3.3

Eliminating ¢ from Egs. (3.2) and (3.3), the shearing strain vy at a distance
p from the axis of the shaft is

Y = 7 Vmax (3'4)

3.1C Stresses in the Elastic Range

When the torque T is such that all shearing stresses in the shaft remain
below the yield strength 7y, the stresses in the shaft will remain below both
the proportional limit and the elastic limit. Thus, Hooke’s law will apply,
and there will be no permanent deformation.

Recalling Hooke’s law for shearing stress and strain from Sec. 2.7,
write

T =Gy (3.5)
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Fig. 3.12 Visualization of deformation

resulting from twisting couples:
(a) undeformed, (b) deformed.

A’

Ny P
F\ %
« \I
Fig. 3.13 Shearing strain deformation. (a) The
angle of twist ¢. (b) Undeformed portion of shaft
of radius p. (c) Deformed portion of shaft; angle

of twist ¢ and shearing strain y share the same arc
length AA"
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where G is the modulus of rigidity or shear modulus of the material. Mul-
tiplying both members of Eq. (3.4) by G, write

_P
G‘y - c GYmax
or, making use of Eq. (3.5),
T= BTmaX (3.6)
c

This equation shows that, as long as the yield strength (or proportional
limit) is not exceeded in any part of a circular shaft, the shearing stress in
the shaft varies linearly with the distance p from the axis of the shafft.
Figure 3.14a shows the stress distribution in a solid circular shaft of
radius c. A hollow circular shaft of inner radius ¢, and outer radius c, is
shown in Fig. 3.14b. From Eq. (3.6),

4

Tmin = 7. Tmax (3'7)
Gy

Tmax

"min

(a) (D)
Fig. 3.14 Distribution of shearing stresses in a torqued shaft:
(a) Solid shaft, (b) Hollow shaft.

Recall from Sec. 3.1A that the sum of the moments of the elementary
forces exerted on any cross section of the shaft must be equal to the mag-
nitude T of the torque exerted on the shaft:

Jp(rdA) =T 3.1
Substituting for 7 from Eq. (3.6) into Eq. (3.1),

Tmax

T= prdA:TI'DZdA

The integral in the last part represents the polar moment of inertia J of the
cross section with respect to its center O. Therefore,
TmaxJ
T = s (3.8

or solving for 7,

Tmax = — (3.9



Substituting for 7., from Eq. (3.9) into Eq. (3.6), the shearing stress at any
distance p from the axis of the shaft is

= (3.10)

Equations (3.9) and (3.10) are known as the elastic torsion formulas. Recall
from statics that the polar moment of inertia of a circle of radius c is
J = mc’. For a hollow circular shaft of inner radius ¢, and outer radius c,,
the polar moment of inertia is

J=imc; — smwel = smw(c; — ) (3.11)

When SI metric units are used in Eq. (3.9) or (3.10), T is given in
N'm, c or p in meters, and J in m*. The resulting shearing stress is given
in N/m? that is, pascals (Pa). When U.S. customary units are used, T is
given in lb-in., ¢ or p in inches, and J in in*. The resulting shearing stress

3.1
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Sr
1.5m \‘

Fig. 3.15 Hollow, fixed-end shaft
having torque T applied at end.

Concept Application 3.1

A hollow cylindrical steel shaft is 1.5 m long and has inner and outer
diameters respectively equal to 40 and 60 mm (Fig. 3.15). (a) What is
the largest torque that can be applied to the shaft if the shearing stress
is not to exceed 120 MPa? (b) What is the corresponding minimum
value of the shearing stress in the shaft?

The largest torque T that can be applied to the shaft is the torque
for which 7, = 120 MPa. Since this is less than the yield strength for
any steel, use Eq. (3.9). Solving this equation for T,

_ JTmax

c

T (@

Recalling that the polar moment of inertia J of the cross section is
given by Eq. (3.11), where ¢ =3(40mm)=0.02m and
¢, = 5(60mm) = 0.03 m, write

J =37 (c3 — ¢f) = 37 (0.03* — 0.02*) = 1.021 X 10 °m*

Substituting for | and 7,,, into Eq. (1) and letting ¢ = ¢; = 0.03 m,

1.021 X 10 ®m*)(120 X 10° Pa
_ JTmax _ ( X ) T
c 0.03m

T

The minimum shearing stress occurs on the inner surface of the
shaft. Equation (3.7) expresses that 7,;, and 7,,,, are respectively pro-
portional to ¢, and ¢,:

! ~0.02m

Tmin — _ Tmax — 7(120 MPa) = 80 MPa
Cy 0.03m
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S

(b)
Fig. 3.16 Shaft with variable cross
section. (a) With applied torques and section
S. (b) Free-body diagram of sectioned shaft.

The torsion formulas of Egs. (3.9) and (3.10) were derived for a shaft
of uniform circular cross section subjected to torques at its ends. However,
they also can be used for a shaft of variable cross section or for a shaft
subjected to torques at locations other than its ends (Fig. 3.16a). The dis-
tribution of shearing stresses in a given cross section S of the shaft is
obtained from Eq. (3.9), where J is the polar moment of inertia of that
section and T represents the internal torque in that section. T is obtained
by drawing the free-body diagram of the portion of shaft located on one
side of the section (Fig. 3.16b) and writing that the sum of the torques
applied (including the internal torque T) is zero (see Sample Prob. 3.1).

Our analysis of stresses in a shaft has been limited to shearing
stresses due to the fact that the element selected was oriented so that its
faces were either parallel or perpendicular to the axis of the shaft (Fig. 3.5).
Now consider two elements a and b located on the surface of a circular
shaft subjected to torsion (Fig. 3.17). Since the faces of element a are
respectively parallel and perpendicular to the axis of the shaft, the only
stresses on the element are the shearing stresses

Tc
max — 5 3.9
T 7 (3.9)

On the other hand, the faces of element b, which form arbitrary angles
with the axis of the shaft, are subjected to a combination of normal and
shearing stresses. Consider the stresses and resulting forces on faces that

Fig. 3.17 Circular shaft with stress elements at
different orientations.



T I\A() o 50 Tinax?
45

B<—CB<—C

Trnax? () Tmax? l)

(a) (D)
Fig. 3.18 Forces on faces at 45° to shaft axis.

are at 45° to the axis of the shaft. The free-body diagrams of the two tri-
angular elements are shown in Fig. 3.18. From Fig. 3.18a, the stresses
exerted on the faces BC and BD are the shearing stresses 7., = Tc/J. The
magnitude of the corresponding shear forces is 7., Ay, where A, is the
area of the face. Observing that the components along DC of the two shear
forces are equal and opposite, the force F exerted on DC must be perpen-
dicular to that face and is a tensile force. Its magnitude is

F = 2(TmaxAg)C08 45° = TpoAg V2 (3.12)

The corresponding stress is obtained by dividing the force F by the area A
of face DC. Observing that A = A,V/2,

F TmaxAO\/§
o= —=-Dax 0"~

" yRY; (3.13)

= Tmax

A similar analysis of the element of Figure 3.18b shows that the stress
on the face BE is ¢ = —1 ... Therefore, the stresses exerted on the faces
of an element ¢ at 45° to the axis of the shaft (Fig. 3.19) are normal
stresses equal to =7, Thus, while element a in Fig. 3.19 is in pure
shear, element c in the same figure is subjected to a tensile stress on
two of its faces and a compressive stress on the other two. Also note
that all of the stresses involved have the same magnitude, Tc/ J.f

Because ductile materials generally fail in shear, a specimen sub-
jected to torsion breaks along a plane perpendicular to its longitudinal
axis (Photo 3.2a). On the other hand, brittle materials are weaker in ten-
sion than in shear. Thus, when subjected to torsion, a brittle material
tends to break along surfaces perpendicular to the direction in which ten-
sion is maximum, forming a 45° angle with the longitudinal axis of the
specimen (Photo 3.2b).

3.1 Circular Shafts in Torsion
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e

Tc o= + L€
J ]
Fig. 3.19 Shaft elements with only shearing
stresses or normal stresses.

A
T

Tmz\\ =

(a) Ductile failure

Photo 3.2 Shear failure of shaft subject to torque.

Stresses on elements of arbitrary orientation, such as in Fig. 3.18b, will be discussed in
Chap. 7.

(b) Brittle failure
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T, =6kN.m

A @AB
X
Fig. 1 Free-body diagram

for section to left of cut
between A and B.

Ty =6kN-m

/\ Tg=14kN.m
B QBC
X

Fig. 2 Free-body diagram for
section to left of cut between B
and C.

¢; =45 mm

¢y = 60 mm

Fig. 3 Shearing stress
distribution on cross section.

Sample Problem 3.1

Shaft BC is hollow with inner and outer diameters of 90 mm and
120 mm, respectively. Shafts AB and CD are solid and of diameter d.
For the loading shown, determine (a) the maximum and minimum
shearing stress in shaft BC, (b) the required diameter d of shafts AB
and CD if the allowable shearing stress in these shafts is 65 MPa.

Ty =14kN - m

Tc=26kN - m
Tp=6kN.m

STRATEGY: Use free-body diagrams to determine the torque in
each shaft. The torques can then be used to find the stresses for shaft
BC and the required diameters for shafts AB and CD.

MODELING: Denoting by T,z the torque in shaft AB (Fig. 1), we pass

a section through shaft AB and, for the free body shown, we write
ZMX = 0: (6 kN'IIl) - TAB =0 TAB = 6 kN-m

We now pass a section through shaft BC (Fig. 2) and, for the free body

shown, we have

TBC = 20 kN'm

SM,=0: (6kN-m)+ (14kN-m) — Ty =0

ANALYSIS:
a. Shaft BC. For this hollow shaft we have

J= g(c‘é — )= g[(o.oeo)4 — (0.045)"] = 13.92 X 10 °m*

Maximum Shearing Stress. On the outer surface, we have

Tsec 20 kN-m)(0.060 m
- : 13.92 ><)(10*‘5 m* ) Tmax = 86:2MPa

Tmax — T2 = ]

(continued)
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4 )
Minimum Shearing Stress. As shown in Fig. 3 the stresses are
proportional to the distance from the axis of the shaft.

Tmin _ Q1 Tmin ___ 45 mm

Tmax  Co 86.2MPa 60 mm

Tomin = 64.7 MPa

b. Shafts AB and CD. We note that both shafts have the same
torque T = 6 kN-m (Fig. 4). Denoting the radius of the shafts by ¢ and

Fig. 4 Free-body diagram of knowing that 7,; = 65 MPa, we write
shaft portion AB.

Tc (6 kN*m)c
T=— 65MPa = ——
J Ty
—c
2

A =588X%X10°m°> ¢=2389x10°%m

d = 2c = 2(38.9 mm) d = 77.8 mm

Sample Problem 3.2

The preliminary design of a motor to generator connection calls for
the use of a large hollow shaft with inner and outer diameters of 4
in. and 6 in., respectively. Knowing that the allowable shearing
stress is 12 ksi, determine the maximum torque that can be trans-
mitted by (a) the shaft as designed, (b) a solid shaft of the same
weight, and (c) a hollow shaft of the same weight and an 8-in. outer
diameter.

STRATEGY: Use Eq. (3.9) to determine the maximum torque using
the allowable stress.

MODELING and ANALYSIS:

a. Hollow Shaftas Designed. UsingFig. 1 and setting 7, = 12ksi,
we write

J= g(c‘é — )= g[(s in.)* — (2in.)'] = 102.1 in*

Fig. 1 Shaft as designed.

Using Eq. (3.9), we write

Tc, ~ T(3in.) o
=— 12ksi = ———— T = 408 kip-in.

-
max 102.1 in*

(continued)
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b. Solid Shaft of Equal Weight. For the shaft as designed and
this solid shaft to have the same weight and length, their cross-sectional
areas must be equal, i.e. Ay = Ay,

m[(3in.)* — (2in.)’] = 73 c; = 2.241n.
Using Fig. 2 and setting 7,; = 12 ksi, we write

Tcy T(2.24 in.)

Tmax — 7 12ksi = T = 211 kip-in.

a
—(2.241in.)*
5 (224in.)

{BACS
T
Fig. 2 Solid shaft having equal weight.

c. Hollow Shaft of 8-in. Diameter. For equal weight, the cross-
sectional areas again must be equal, i.e., A, = Ay (Fig. 3). We deter-
mine the inside diameter of the shaft by writing

m[(3in.)* — (2in.)’] = w[(4in.)* — 5] ¢s = 3.317in.
For ¢; = 3.317 in. and ¢, = 4 in,,
m™ . \4 . \4 s 4
J= 5[(4 in.)* — (3.317in.)’] = 212in

With 7,; = 12 ksi and ¢, = 4 in.,

Tc, . T(4in.)
Tmax = —— si =
| 12in*

T = 636 kip-in.

REFLECT and THINK: This example illustrates the advantage
obtained when the shaft material is further from the centroidal axis.

cy = 4in.

NG

T

Fig. 3 Hollow shaft with an 8-in.
outer diameter, having equal weight.




Problems

3.1 Determine the torque T that causes a maximum shearing stress
of 70 MPa in the steel cylindrical shaft shown.

3.2 For the cylindrical shaft shown, determine the maximum shearing
stress caused by a torque of magnitude T = 800 N-m.

(a) Determine the torque T that causes a maximum shearing stress
of 45 MPa in the hollow cylindrical steel shaft shown. (b) Determine
the maximum shearing stress caused by the same torque T in a
solid cylindrical shaft of the same cross-sectional area.

Fig. P3.1 and P3.2

Fig. P3.3

(a) Determine the maximum shearing stress caused by a ’\
40-kip-in. torque T in the 3-in.-diameter solid aluminum shaft 4 ft

shown. (b) Solve part a, assuming that the solid shaft has been
replaced by a hollow shaft of the same outer diameter and of
1-in. inner diameter.

(a) For the 3-in.-diameter solid cylinder and loading shown, \j
Sin/ T

determine the maximum shearing stress. (b) Determine the inner
diameter of the 4-in.-diameter hollow cylinder shown, for which
the maximum stress is the same as in part a. Fig. P3.4

rB;Tr‘

T
4 in. f}i
T =40 kip - in. T

(a) ‘(/3

T =40 kip - in.
(b)




T = 3kN - m L/ZOO mm/l

Fig. P3.6

A torque T = 3 kN-m is applied to the solid bronze cylinder
shown. Determine (a) the maximum shearing stress, (b) the
shearing stress at point D, which lies on a 15-mm-radius circle
drawn on the end of the cylinder, (c) the percent of the torque
carried by the portion of the cylinder within the 15-mm radius.

The solid spindle AB is made of a steel with an allowable shearing
stress of 12 ksi, and sleeve CD is made of a brass with an allow-
able shearing stress of 7 ksi. Determine (a) the largest torque T
that can be applied at A if the allowable shearing stress is not to
be exceeded in sleeve CD, (b) the corresponding required value
of the diameter d of spindle AB.

The solid spindle AB has a diameter d, = 1.5 in. and is made of
a steel with an allowable shearing stress of 12 ksi, while sleeve
CD is made of a brass with an allowable shearing stress of 7 ksi.
Determine the largest torque T that can be applied at A.

A |

Fig. P3.7 and P3.8
The torques shown are exerted on pulleys A, B, and C. Knowing

that both shafts are solid, determine the maximum shearing
stress in (a) shaft AB, (b) shaft BC.

6.8 kip - in.

10.4 kip - in.

3.6 kip - in.

Fig. P3.9 and P3.10

3.10 The shafts of the pulley assembly shown are to be redesigned.
Knowing that the allowable shearing stress in each shaft is 8.5 ksi,
determine the smallest allowable diameter of (a) shaft AB,
(b) shaft BC.




3.11 Knowing that each of the shafts AB, BC, and CD consist of a solid
circular rod, determine (a) the shaft in which the maximum
shearing stress occurs, (b) the magnitude of that stress.

60 N . m

144 N - m

48N . m\ \dCD=21 mm

dpc =18 mm

dyg = 15 mm

Fig. P3.11 and P3.12

Knowing that an 8-mm-diameter hole has been drilled through
each of the shafts AB, BC, and CD, determine (a) the shaft in
which the maximum shearing stress occurs, (b) the magnitude of
that stress.

Under normal operating conditions, the electric motor exerts a
torque of 2.4 kN-m on shaft AB. Knowing that each shaft is solid,
determine the maximum shearing stress in (a) shaft AB, (b) shaft BC,
(c) shaft CD.

Tg=12kN-m
Te=08kN - m

Tp=04kN.m

Fig. P3.13

In order to reduce the total mass of the assembly of Prob. 3.13, a
new design is being considered in which the diameter of shaft BC
will be smaller. Determine the smallest diameter of shaft BC for
which the maximum value of the shearing stress in the assembly
will not be increased.

The allowable shearing stress is 15 ksi in the 1.5-in.-diameter
steel rod AB and 8 ksi in the 1.8-in.-diameter brass rod BC.
Neglecting the effect of stress concentrations, determine the larg-
est torque T that can be applied at A.

The allowable shearing stress is 15 ksi in the steel rod AB and
8 ksi in the brass rod BC. Knowing that a torque of magnitude
T = 10 kip-in. is applied at A, determine the required diameter
of (a) rod AB, (b) rod BC. Fig. P3.15 and P3.16




3.17 The solid shaft shown is formed of a brass for which the allowable
shearing stress is 55 MPa. Neglecting the effect of stress concen-
trations, determine the smallest diameters d,z and dp. for which
the allowable shearing stress is not exceeded.

Solve Prob. 3.17 assuming that the direction of T is reversed.

The solid rod AB has a diameter d,z; = 60 mm and is made of a
steel for which the allowable shearing stress is 85 MPa. The pipe
CD, which has an outer diameter of 90 mm and a wall thickness

Fig. P3.17 and P3.18 of 6 mm, is made of an aluminum for which the allowable shear-
ing stress is 54 MPa. Determine the largest torque T that can be
applied at A.

Fig. P3.19 and P3.20

The solid rod AB has a diameter d,z = 60 mm. The pipe CD has
an outer diameter of 90 mm and a wall thickness of 6 mm. Know-
ing that both the rod and the pipe are made of steel for which the
allowable shearing stress is 75 MPa, determine the largest torque
T that can be applied at A.

3.21 A torque of magnitude 7 = 1000 N-m is applied at D as shown.
Knowing that the allowable shearing stress is 60 MPa in each

shaft, determine the required diameter of (a) shaft AB, (b) shaft
CD.

T = 1000 N - m

Fig. P3.21 and P3.22

3.22 A torque of magnitude T = 1000 N-m is applied at D as shown.
Knowing that the diameter of shaft AB is 56 mm and that the
diameter of shaft CD is 42 mm, determine the maximum shear-
ing stress in (a) shaft AB, (b) shaft CD.




3.23 Under normal operating conditions a motor exerts a torque of
magnitude Ty at F. The shafts are made of a steel for which the
allowable shearing stress is 12 ksi and have diameters
depr = 0.900 in. and dggy = 0.800 in. Knowing that rp, = 6.5 in.
and r; = 4.5 in., determine the largest allowable value of T%.

Fig. P3.23 and P3.24

3.24 Under normal operating conditions a motor exerts a torque of mag-
nitude T = 1200 lb-in. at F. Knowing that r,, = 8 in., r; = 3 in., and
the allowable shearing stress is 10.5 ksi in each shaft, determine the
required diameter of (a) shaft CDE, (b) shaft FGH.

The two solid shafts are connected by gears as shown and are

made of a steel for which the allowable shearing stress is 7000
psi. Knowing the diameters of the two shafts are, respectively,
dpc = 1.6 in. and dgr = 1.25 in. determine the largest torque T¢
that can be applied at C.

Fig. P3.25 and P3.26

3.26 The two solid shafts are connected by gears as shown and are
made of a steel for which the allowable shearing stress is 8500 psi.
Knowing that a torque of magnitude 7. = 5 kip-in. is applied at
C and that the assembly is in equilibrium, determine the required
diameter of (a) shaft BC, (b) shaft EF.




3.27 For the gear train shown, the diameters of the three solid shafts are:

d,z = 20 mm dcp = 25 mm dpr = 40 mm

Knowing that for each shaft the allowable shearing stress is
60 MPa, determine the largest torque T that can be applied.

Fig. P3.27 and P3.28

3.28 A torque T = 900 N-m is applied to shaft AB of the gear train
shown. Knowing that the allowable shearing stress is 80 MPa,
determine the required diameter of (a) shaft AB, (b) shaft CD,
(c) shaft EF.

3.29 While the exact distribution of the shearing stresses in a hollow-
cylindrical shaft is as shown in Fig. P3.29a, an approximate
value can be obtained for 7,,, by assuming that the stresses are
uniformly distributed over the area A of the cross section, as
shown in Fig. P3.29b, and then further assuming that all of the
elementary shearing forces act at a distance from O equal to
the mean radius 3(c; + ¢,) of the cross section. This approxi-
mate value is 7, = T/Ar,,, where T is the applied torque. Deter-
mine the ratio 7., /7, of the true value of the maximum
shearing stress and its approximate value 7, for values of c,/c,
respectively equal to 1.00, 0.95, 0.75, 0.50, and 0.

3.30 (a) For a given allowable shearing stress, determine the ratio
T/w of the maximum allowable torque T and the weight per
unit length w for the hollow shaft shown. (b) Denoting by (T/w),
the value of this ratio for a solid shaft of the same radius c,,
express the ratio T/w for the hollow shaft in terms of (7/w), and
c/cs .




3.2 ANGLE OF TWIST IN THE
ELASTIC RANGE

In this section, a relationship will be determined between the angle of
twist ¢ of a circular shaft and the torque T exerted on the shaft. The entire
shaft is assumed to remain elastic. Considering first the case of a shaft of
length L with a uniform cross section of radius ¢ subjected to a torque T
at its free end (Fig. 3.20), recall that the angle of twist ¢ and the maximum
shearing strain y,,,, are related as

Ymax = (3'3)

But in the elastic range, the yield stress is not exceeded anywhere in the
shaft. Hooke’s law applies, and y,,.x = Tmax/ G- Recalling Eq. (3.9),

— Tmax — E
G JG

(3.14)

ymax

Equating the right-hand members of Egs. (3.3) and (3.14) and solving
for ¢, write

o

¢ = G (3.15)

where ¢ is in radians. The relationship obtained shows that, within the
elastic range, the angle of twist ¢ is proportional to the torque T applied to
the shaft. This agrees with the discussion at the beginning of Sec. 3.1B.

Equation (3.15) provides a convenient method to determine the
modulus of rigidity. A cylindrical rod of a material is placed in a forsion
testing machine (Photo 3.3). Torques of increasing magnitude T are applied
to the specimen, and the corresponding values of the angle of twist ¢ in
a length L of the specimen are recorded. As long as the yield stress of the
material is not exceeded, the points obtained by plotting ¢ against T fall
on a straight line. The slope of this line represents the quantity /G/L, from
which the modulus of rigidity G can be computed.

Photo 3.3 Tabletop torsion testing machine.

3.2 Angle of Twist in the Elastic Range

Yimax

C

)
L \‘
Fig. 3.20 Torque applied to fixed end shaft
resulting in angle of twist ¢.
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T 60 mm

.
By

Fig. 3.15 (repeated) Hollow, fixed-end
shaft having torque T applied at end.

Concept Application 3.2

What torque should be applied to the end of the shaft of Concept
Application 3.1 to produce a twist of 2°? Use the value G = 77 GPa for the
modulus of rigidity of steel.

Solving Eq. (3.15) for T, write

JG
T==—
7 ®
Substituting the given values
G = 77 X 10° Pa L=15m
2 rad
b= 2°< L ) = 34.9 X 10 °rad
360

and recalling that, for the given cross section,

J=1.021 X 10 *m*

we have
JG (1.021 X 10~°m*)(77 X 10’ Pa)
%7 1.5m

T =1.829 X 10°N-m = 1.829 kN-m

T = (34.9 X 10 *rad)

Concept Application 3.3

What angle of twist will create a shearing stress of 70 MPa on the inner
surface of the hollow steel shaft of Concept Applications 3.1 and 3.2?

One method for solving this problem is to use Eq. (3.10) to find
the torque T corresponding to the given value of 7 and Eq. (3.15) to
determine the angle of twist ¢ corresponding to the value of T just
found.

A more direct solution is to use Hooke’s law to compute the shear-
ing strain on the inner surface of the shaft:

Tmin _ 70 X 10°Pa

= =————— =909 X 10°°
Ymin =TT T 27 X 10° Pa

Recalling Eq. (3.2), which was obtained by expressing the length of arc
AA' in Fig. 3.13c in terms of both y and ¢, we have
_ Lymin 1500 mm

= (909 X 107°% = 68.2 X 10 *rad
(o} 20 mm

¢

To obtain the angle of twist in degrees, write

360°
= (68.2 X 10 °rad = 3.91°
¢ = )<2’7T rad)




Equation (3.15) can be used for the angle of twist only if the shaft is
homogeneous (constant G), has a uniform cross section, and is loaded
only at its ends. If the shaft is subjected to torques at locations other than
its ends or if it has several portions with various cross sections and pos-
sibly of different materials, it must be divided into parts that satisfy the
required conditions for Eq. (3.15). For shaft AB shown in Fig. 3.21, four
different parts should be considered: AC, CD, DE, and EB. The total angle
of twist of the shaft (i.e., the angle through which end A rotates with
respect to end B) is obtained by algebraically adding the angles of twist of
each component part. Using the internal torque T;, length L;, cross-sec-
tional polar moment of inertia J;, and modulus of rigidity G;, correspond-
ing to part i, the total angle of twist of the shaft is

T;L;
= (3.16)
lGl

v= 2

The internal torque T; in any given part of the shaft is obtained by passing
a section through that part and drawing the free-body diagram of the por-
tion of shaft located on one side of the section. This procedure is applied
in Sample Prob. 3.3.

For a shaft with a variable circular cross section, as shown in
Fig. 3.22, Eq. (3.15) is applied to a disk of thickness dx. The angle by which
one face of the disk rotates with respect to the other is

T dx

@6

where J is a function of x. Integrating in x from 0 to L, the total angle of
twist of the shaft is

(3.17)

The shafts shown in Figs. 3.15 and 3.20 both had one end attached
to a fixed support. In each case, the angle of twist ¢ was equal to the angle
of rotation of its free end. When both ends of a shaft rotate, however, the
angle of twist of the shaft is equal to the angle through which one end of
the shaft rotates with respect to the other. For example, consider the
assembly shown in Fig. 3.23a, consisting of two elastic shafts AD and BE,
each of length L, radius ¢, modulus of rigidity G, and attached to gears
meshed at C. If a torque T is applied at E (Fig. 3.23b), both shafts will be
twisted. Since the end D of shaft AD is fixed, the angle of twist of AD is
measured by the angle of rotation ¢, of end A. On the other hand, since
both ends of shaft BE rotate, the angle of twist of BE is equal to the differ-
ence between the angles of rotation ¢ and ¢y, (i.e., the angle of twist is
equal to the angle through which end E rotates with respect to end B).
This relative angle of rotation, ¢g3, is

TL
¢E/B_¢E_¢B_]7G

3.2 Angle of Twist in the Elastic Range
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Fig. 3.21
dimensions and multiple loads.

Shaft with multiple cross-section

i

"
Fig. 3.22 Torqued shaft with variable cross section.

Fixed support

| d
D Ve
s
L
B

= b

¢

(b)

Fig. 3.23 (a) Gear assembly for transmitting

torque from point E to point D. (b) Angles of twist
at disk E, gear B, and gear A.
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C ="p£)
B

F

Fig. 3.24 Gear teeth forces for gears A
and B.

Concept Application 3.4

For the assembly of Fig. 3.23, knowing that r, = 2r3, determine the angle
of rotation of end E of shaft BE when the torque T is applied at E.

First determine the torque T, exerted on shaft AD. Observing
that equal and opposite forces F and F’ are applied on the two gears
at C (Fig. 3.24) and recalling that r, = 2r, the torque exerted on shaft
AD is twice as large as the torque exerted on shaft BE. Thus, T,, = 2T.

Since the end D of shaft AD is fixed, the angle of rotation ¢, of
gear A is equal to the angle of twist of the shaft and is

 glh 2

*="16 T 6

Since the arcs CC' and CC” in Fig. 3.23b must be equal, r,¢4 = rz¢p. So,
b5 = (VA/VB)¢A = 2¢,

Therefore,

4TL

¢B=2¢>A=]7G

Next, consider shaft BE. The angle of twist of the shaft is equal to the
angle ¢/ through which end E rotates with respect to end B. Thus,

TBEL _ E
G JG

Q"E/B =

The angle of rotation of end E is obtained by

¢E:¢B+¢E/B
_4IL TL_SIL
JG JG JG

3.3 STATICALLY
INDETERMINATE SHAFTS

There are situations where the internal torques cannot be determined
from statics alone. In such cases, the external torques (i.e., those exerted
on the shaft by the supports and connections) cannot be determined from
the free-body diagram of the entire shaft. The equilibrium equations must
be complemented by relations involving the deformations of the shaft and
obtained by the geometry of the problem. Because statics is not sufficient
to determine external and internal torques, the shafts are statically inde-
terminate. The following Concept Application as well as Sample Prob. 3.5

show how to analyze statically indeterminate shafts.
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¥ &

B
(d)
Fig. 3.25 (a) Shaft with central
applied torque and fixed ends.
(b) Free-body diagram of shaft AB.
(c) Free-body diagrams for solid and
hollow segments.

TB

Concept Application 3.5

A circular shaft AB consists of a 10-in.-long, z-in.-diameter steel cylin-
der, in which a 5-in.-long, 3-in.-diameter cavity has been drilled from
end B. The shaft is attached to fixed supports at both ends, and a
90 1b-ft torque is applied at its midsection (Fig. 3.25a). Determine the
torque exerted on the shaft by each of the supports.

Drawing the free-body diagram of the shaft and denoting by T,
and Ty the torques exerted by the supports (Fig. 3.25b), the equilib-
rium equation is

T, + Ty = 90 Ib-ft

Since this equation is not sufficient to determine the two unknown
torques T, and T, the shaft is statically indeterminate.

However, T, and T can be determined if we observe that the total
angle of twist of shaft AB must be zero, since both of its ends are
restrained. Denoting by ¢, and ¢,, respectively, the angles of twist of
portions AC and CB, we write

b=¢ +¢d=0

From the free-body diagram of a small portion of shaft including end
A (Fig. 3.25¢), we note that the internal torque T, in AC is equal to T};
from the free-body diagram of a small portion of shaft including end
B (Fig. 3.25d), we note that the internal torque T, in CB is equal to Tj.
Recalling Eq. (3.15) and observing that portions AC and CB of the shaft
are twisted in opposite senses, write

TAL, TgL,

=¢ + = —— — =0
b=¢t ¢ 76 LG
Solving for Tj,
LiJ,
T =
U Lnt

Substituting the numerical data gives
L, =1L, =5in.
J, = 37(%in.)* = 57.6 X 10 %in*
I = i7[(Gin.)* — (Fin.)*] = 42.6 X 10 in*
Therefore,
Ty = 0.740 T,
Substitute this expression into the original equilibrium equation:

1.740 T, = 90 Ib-ft
T,=5171b-ft Tz = 38.3Ib-ft

~
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Sample Problem 3.3

The horizontal shaft AD is attached to a fixed base at D and is sub-

jected to the torques shown. A 44-mm-diameter hole has been drilled
0 into portion CD of the shaft. Knowing that the entire shaft is made of
steel for which G = 77 GPa, determine the angle of twist at end A.

STRATEGY: Use free-body diagrams to determine the torque in
each shaft segment AB, BC, and CD. Then use Eq. (3.16) to deter-
mine the angle of twist at end A.

MODELING:

Passing a section through the shaft between A and B (Fig. 1), we
find
ZMx =0: (250 N'm) - TAB =0 TAB = 250 N'm

Passing now a section between B and C (Fig. 2) we have
SM, = 0: (250 N-m) + (2000N-m) — Tgc = 0 Tyc = 2250 N-m
Since no torque is applied at C,

TCD = TBC = 2250 N-m

TBC

2000 N - m

Tx\ B

250 N - m 250 N - m

A x A X

Fig. 1 Free-body diagram for finding Fig. 2 Free-body diagram for finding
internal torque in segment AB. internal torque in segment BC.

(continued)
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30 mm ANALYSIS:
30 mm

15 mm Polar Moments of Inertia

@ Using Fig. 3

. =T =T (0.015m)* = 0.0795 X 10 °m*
AB 2 2
Fig. 3 Dimensions for three T T _
cross sections of shaft. Joc = 564 = 5(0‘030 m)! = 1.272 X 10"°m’
T4 4 w 4 4 6.4
Jop = 5 (¢ = ¢f) = 2(0.080m)" ~ (0.022m)"] = 0.904 X 10"°m
Angle of Twist. From Fig. 4, using Eq. (3.16) and recalling that
by G = 77 GPa for the entire shaft, we have
T;L; 1/ TysL TgcL 1,
2 ¢A:E ll:7<ABAB+ BCBC+ CDLCD>
JiG G\ s Jsc Jep
C
p 1 [(250N'm)(0.4m)  (2250)(0.2)  (2250)(0.6)
A ba = Soa T mr -6
77GPal0.0795 X 10 ®m* 1272 X 10°°  0.904 X 10

Fig. 4 Representation of angle of twist

~

at end A. = 0.01634 + 0.00459 + 0.01939 = 0.0403 rad
360°
= (0.0403 rad = 2.31°
¢a = ( ) 27r rad 4
/
\

Sample Problem 3.4

Two solid steel shafts are connected by the gears shown. Knowing that
for each shaft G = 11.2 X 10° psi and the allowable shearing stress is
8 ksi, determine (a) the largest torque T, that may be applied to end
A of shaft AB and (b) the corresponding angle through which end A of
shaft AB rotates.

STRATEGY: Use the free-body diagrams and kinematics to deter-
mine the relation between the torques and twist in each shaft seg-
ment, AB and CD. Then use the allowable stress to determine the
torque that can be applied and Eq. (3.15) to determine the angle of
twist at end A.

(continued)
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rg = 0.875 in.

rg = 245 in.

re = 2451n.

Fig. 1
g

A

fgf

e

rg = 0.875 in.

Fig. 2 Angle of twists for gears B and C.

f\rl‘,m =T,

Fig. 3 Free-body diagram of shaft AB.

N—('n

Fig. 5 Angle of twist results.

N

Free-body diagrams of gears B and C.

MODELING: Denoting by F the magnitude of the tangential force
between gear teeth (Fig. 1), we have

Gear B. XMj
Gear C. XM,

0: F0.875in) — T, =0
0:  F(245in.) — Tep =0

TCD = 28TO (1)

Using kinematics with Fig. 2, we see that the peripheral motions
of the gears are equal and write

2.45in. _
€0.875 in.

rgbp = rede 2.8¢¢ (2)

¢B=¢C§Z=¢

ANALYSIS:

a. Torque T,. For shaft AB, T,z = T, and ¢ = 0.375 in. (Fig. 3);
considering maximum permissible shearing stress, we write

TABC

T,(0.375 in.
8000 psi = - "( )

————" T, =663Ib-in.
17(0.375 in.)* 0

T =

For shaft CD using Eq. (1) we have T, = 2.8T, (Fig. 4). With
¢ = 0.5 in. and 7,; = 8000 psi, we write

Tene 2.8T,(0.5 in.)

3m(0.5in.)*

T= 8000 psi = T, = 561 Ib-in.

The maximum permissible torque is the smaller value obtained
for To.
T, = 561 Ib-in.

b. Angle of Rotation at End A. We first compute the angle of
twist for each shaft.
Shaft AB. For T,z = T, = 561 lb-in., we have

B (561 1b-in.)(24 in.)
bap = G

3m(0.375in.)*(11.2 X 10° psi)

= 0.0387rad = 2.22°

Shaft CD. Tgp = 2.8T, = 2.8(561 lb-in.)

Tepl  2.8(5611b+in.)(36in.)

= = 0.0514 rad = 2.95°
JG  3m(0.5in.)*(11.2 X 10° psi)

¢’C/D =

Since end D of shaft CD is fixed, we have ¢ = ¢¢/p = 2.95°. Using
Eq. (2) with Fig. 5, we find the angle of rotation of gear B is

¢p = 2.8¢c = 2.8(2.95°) = 8.26°
For end A of shaft AB, we have

b4 = ¢p + Pup = 8.26° + 2.22° P, = 10.48°
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Sample Problem 3.5

A steel shaft and an aluminum tube are connected to a fixed support
and to a rigid disk as shown in the cross section. Knowing that the
initial stresses are zero, determine the maximum torque T, that can be
applied to the disk if the allowable stresses are 120 MPa in the steel
shaft and 70 MPa in the aluminum tube. Use G = 77 GPa for steel and
G = 27 GPa for aluminum.

8 mm

76 mm 50 mm

500 mm |

STRATEGY: We know that the applied load is resisted by both the
shaft and the tube, but we do not know the portion carried by each
part. Thus we need to look at the deformations. We know that both the
shaft and tube are connected to the rigid disk and that the angle of
twist is therefore the same for each. Once we know the portion of the
torque carried by each part, we can use the allowable stress for each
to determine which one governs and use this to determine the maxi-
mum torque.

MODELING:
We first draw a free-body diagram of the disk (Fig. 1) and find

TO = Tl + T2 (1)

Knowing that the angle of twist is the same for the shaft and tube,
we write

b=y b=
]lGl ]2G2
T,(0.5m) 3 T,(0.5m)

(2.003 X 10 °m*)(27 GPa)  (0.614 X 10 °m")(77 GPa)

T, = 0.874T, 2

Fig. 1 Free-body diagram of end cap.
(continued)

~
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Aluminum

Gy =27 GPa
=508 mm)* — (30 mm)*]
=2.003 X 10 5m*

Fig. 2 Torque and angle of twist for
hollow shaft.

ANALYSIS: We need to determine which part reaches its allowable
stress first, and so we arbitrarily assume that the requirement 7, =
70 MPa is critical. For the aluminum tube in Fig. 2, we have

Taum)i (70 MPa)(2.003 X 10 °m*)

T, =
0.038 m

= 3690 N-m

(%]
Using Eq. (2), compute the corresponding value T, and then find the
maximum shearing stress in the steel shaft of Fig. 3.

T, = 0.874T, = 0.874(3690) = 3225 N-m
Tyc, (3225N-m)(0.025 m)
Tsteel — =

A

= 131.3 MPa

0.614 X 10 ®m*

Steel

G, =77 GPa

Ji = 3 [(25 mm)*]
=0.614 X 10 5m*

25 mm

by

Fig. 3 Torque and angle of twist for
solid shaft.

Note that the allowable steel stress of 120 MPa is exceeded; the
assumption was wrong. Thus, the maximum torque T, will be obtained
by making 7., = 120 MPa. Determine the torque T:

Teteel): 120 MPa)(0.614 X 10~ ° m*
Tz _ steel /2 _ ( )( ) = 2950 N-m
@ 0.025 m
From Egq. (2), we have
2950 N'm = 0.874T; T, = 3375N-m

Using Eq. (1), we obtain the maximum permissible torque:

T, =T, + T, = 3375N-m + 2950 N-m
T, = 6.325 kN-m

REFLECT and THINK: This example illustrates that each part must
not exceed its maximum allowable stress. Since the steel shaft reaches
its allowable stress level first, the maximum stress in the aluminum
shaft is below its maximum.




Problems

3.31 Determine the largest allowable diameter of a 3-m-long steel rod
(G = 77.2 GPa) if the rod is to be twisted through 30° without
exceeding a shearing stress of 80 MPa.

The ship at A has just started to drill for oil on the ocean floor at
a depth of 5000 ft. Knowing that the top of the 8-in.-diameter
steel drill pipe (G = 11.2 X 10° psi) rotates through two complete
revolutions before the drill bit at B starts to operate, determine
the maximum shearing stress caused in the pipe by torsion.

(a) For the solid steel shaft shown, determine the angle of twist Fig. P3.32
at A. Use G = 11.2 X 10° psi. (b) Solve part a, assuming that the

steel shaft is hollow with a 1.5-in. outer radius and a 0.75-in.

inner radius.

T = 60 kip - in.

Fig. P3.33

(a) For the aluminum pipe shown (G = 27 GPa), determine the
torque T, causing an angle of twist of 2°. (b) Determine the angle
of twist if the same torque T, is applied to a solid cylindrical shaft
of the same length and cross-sectional area.




3.35 The electric motor exerts a 500 N-m-torque on the aluminum
shaft ABCD when it is rotating at a constant speed. Knowing that
G = 27 GPa and that the torques exerted on pulleys B and C are
as shown, determine the angle of twist between (a) B and C,
(b) B and D.

T, =300N-m

30 mm
Fig. P3.35
Tz =400 N - m

46 mm : .36 The torques shown are exerted on pulleys A and B. Knowing that
the shafts are solid and made of steel (G = 77.2 GPa), determine the
angle of twist between (a) A and B, (b) A and C.

The aluminum rod BC (G = 26 GPa) is bonded to the brass
rod AB (G = 39 GPa). Knowing that each rod is solid and has
a diameter of 12 mm, determine the angle of twist (a) at B,
(b) at C.

Fig. P3.36

60 mm ,— Aluminum

Tp = 1600 N - m

36 mm

T, =800N - m
Fig. P3.37

400 mim .38 The aluminum rod AB (G = 27 GPa) is bonded to the brass rod
BD (G = 39 GPa). Knowing that portion CD of the brass rod is
hollow and has an inner diameter of 40 mm, determine the angle
of twist at A.




3.39 The solid spindle AB has a diameter d; = 1.75 in. and is made of
a steel with G = 11.2 X 10° psi and 7,; = 12 ksi, while sleeve CD
is made of a brass with G = 5.6 X 10° psi and 7, = 7 ksi. Deter-
mine (a) the largest torque T that can be applied at A if the given
allowable stresses are not to be exceeded and if the angle of twist
of sleeve CD is not to exceed 0.375°, (b) the corresponding angle
through which end A rotates.

A |

Fig. P3.39 and P3.40

The solid spindle AB has a diameter d; = 1.5 in. and is made of
a steel with G = 11.2 X 10° psi and 7,; = 12 ksi, while sleeve CD
is made of a brass with G = 5.6 X 10° psi and 7, = 7 ksi.
Determine the largest angle through which end A can be rotated.

3.41 Two shafts, each of ;-in. diameter, are connected by the gears
shown. Knowing that G = 11.2 X10° psi and that the shaft at F is
fixed, determine the angle through which end A rotates when a
1.2 kip-in. torque is applied at A.

Fig. P3.41 30 mm 1

3.42 Two solid steel shafts, each of 30-mm diameter, are connected by E
the gears shown. Knowing that G = 77.2 GPa, determine the
angle through which end A rotates when a torque of magnitude
T = 200 N-m is applied at A.




3.43 A coder F, used to record in digital form the rotation of shaft A,
is connected to the shaft by means of the gear train shown, which
consists of four gears and three solid steel shafts each of
diameter d. Two of the gears have a radius r and the other two a
radius nr. If the rotation of the coder F is prevented, determine
in terms of T, [, G, ], and n the angle through which end A rotates.

Fig. P3.43

3.44 For the gear train described in Prob. 3.43, determine the angle
through which end A rotates when T = 5 lb-in., [ = 2.4 in,,

d = +in., G = 11.2 X 10° psi, and n = 2.

The design specifications of a 1.2-m-long solid circular transmis-
sion shaft require that the angle of twist of the shaft not exceed
4° when a torque of 750 N-m is applied. Determine the required
diameter of the shaft, knowing that the shaft is made of a steel
with an allowable shearing stress of 90 MPa and a modulus of
rigidity of 77.2 GPa.

3.46 and 3.47 The solid cylindrical rod BC oflength L = 24 in. is attached
to the rigid lever AB of length a =15 in. and to the support at C.
Design specifications require that the displacement of A not
exceed 1 in. when a 100-1b force P is applied at A. For the material
indicated, determine the required diameter of the rod.
3.46 Steel: 7, = 15 ksi, G = 11.2 X 10° psi.
3.47 Aluminum: 7, = 10 ksi, G = 3.9 X 10° psi.

Fig. P3.46 and P3.47




3.48 The design of the gear-and-shaft system shown requires that steel
shafts of the same diameter be used for both AB and CD. It is
further required that 7,,,, = 60 MPa and that the angle ¢, through
which end D of shaft CD rotates not exceed 1.5°. Knowing that
G = 77.2 GPa, determine the required diameter of the shafts.

T = 1000 N - m

600 mm

Fig. P3.48

The electric motor exerts a torque of 800 N-m on the steel shaft
ABCD when it is rotating at a constant speed. Design specifica-
tions require that the diameter of the shaft be uniform from
A to D and that the angle of twist between A and D not exceed
1.5°. Knowing that 7., = 60 MPa and G = 77.2 GPa, determine
the minimum diameter shaft that can be used.

300 N - m

3.50 Aholeis punched at A in a plastic sheet by applying a 600-N force
P to end D of lever CD, which is rigidly attached to the solid cylin-
drical shaft BC. Design specifications require that the displace-
ment of D should not exceed 15 mm from the time the punch
first touches the plastic sheet to the time it actually penetrates it.
Determine the required diameter of shaft BC if the shaft is made
of a steel with G = 77.2 GPa and 7,; = 80 MPa.




3.51 The solid cylinders AB and BC are bonded together at B and are
attached to fixed supports at A and C. Knowing that the modulus
of rigidity is 3.7 X 10° psi for aluminum and 5.6 X 10° psi for
brass, determine the maximum shearing stress (a) in cylinder AB,
(b) in cylinder BC.

Solve Prob. 3.51, assuming that cylinder AB is made of steel, for
which G = 11.2 X 10° psi.

The composite shaft shown consists of a 0.2-in.-thick brass jacket
(G = 5.6 X 10° psi) bonded to a 1.2-in.-diameter steel core
(Ggeer = 11.2 X 10° psi). Knowing that the shaft is subjected to
5 kip-in. torques, determine (a) the maximum shearing stress in
the brass jacket, (b) the maximum shearing stress in the steel
core, (c) the angle of twist of end B relative to end A.

—

T Brass jacket

Fig. P3.51

1.2 in. i A
1 Steel core

0.2 in.
Fig. P3.53 and P3.54

The composite shaft shown consists of a 0.2-in.-thick brass jacket
(G = 5.6 X 10° psi) bonded to a 1.2-in.-diameter steel core
(Ggeet = 11.2 X 10° psi). Knowing that the shaft is being subjected
to the torques shown, determine the largest angle through which
it can be twisted if the following allowable stresses are not to be
exceeded: T = 15 ksi and 7,5 = 8 ksi.

Two solid steel shafts (G = 77.2 GPa) are connected to a coupling
disk B and to fixed supports at A and C. For the loading shown,
determine (a) the reaction at each support, (b) the maximum
shearing stress in shaft AB, (¢) the maximum shearing stress in
shaft BC.

200 mm \

38 mm

14kN - m
50 mm

Fig. P3.55

3.56 Solve Prob. 3.55, assuming that the shaft AB is replaced by a hollow
shaft of the same outer diameter and 25-mm inner diameter.




3.57 and 3.58 Two solid steel shafts are fitted with flanges that are then
connected by bolts as shown. The bolts are slightly undersized
and permit a 1.5° rotation of one flange with respect to the other
before the flanges begin to rotate as a single unit. Knowing that
G = 77.2 GPa, determine the maximum shearing stress in each
shaft when a torque of T of magnitude 500 N-m is applied to the
flange indicated.

3.57 The torque T is applied to flange B.
3.58 The torque T is applied to flange C.

600 mm

Fig. P3.57 and P3.58

3.59 The steel jacket CD has been attached to the 40-mm-diameter
steel shaft AE by means of rigid flanges welded to the jacket and
to the rod. The outer diameter of the jacket is 80 mm and its wall
thickness is 4 mm. If 500-N-m torques are applied as shown,
determine the maximum shearing stress in the jacket.

Fig. P3.59

3.60 A torque T is applied as shown to a solid tapered shaft AB. Show
by integration that the angle of twist at A is




3.61 The mass moment of inertia of a gear is to be determined exper-
imentally by using a torsional pendulum consisting of a 6-ft
steel wire. Knowing that G = 11.2 X 10° psi, determine the
diameter of the wire for which the torsional spring constant will
be 4.27 1b-ft/rad.

Fig. P3.61

3.62 A solid shaft and a hollow shaft are made of the same material
and are of the same weight and length. Denoting by 7 the ratio
¢,/ ¢,, show that the ratio T,/ T}, of the torque T; in the solid shaft to
the torque T}, in the hollow shaft is (@) V(1 — n®)/(1 + n®) if the
maximum shearing stress is the same in each shaft, (b) (1 - n)/
(1 + »?) if the angle of twist is the same for each shaft.

3.63 An annular plate of thickness t and modulus G is used to connect
shaft AB of radius r, to tube CD of radius r,. Knowing that a
torque T is applied to end A of shaft AB and that end D of tube
CD is fixed, (a) determine the magnitude and location of the
maximum shearing stress in the annular plate, (b) show that the
angle through which end B of the shaft rotates with respect to end
C of the tube is

T (1 1
e ,g)




3.4 DESIGN OF TRANSMISSION
SHAFTS

The principal specifications to be met in the design of a transmission shaft
are the power to be transmitted and the speed of rotation of the shaft. The
role of the designer is to select the material and the dimensions of the
cross section of the shaft so that the maximum shearing stress allowable
will not be exceeded when the shaft is transmitting the required power at
the specified speed.

To determine the torque exerted on the shaft, the power P associ-
ated with the rotation of a rigid body subjected to a torque T is

P=To (3.18)

where o is the angular velocity of the body in radians per second (rad/s).
But w = 27rf, where fis the frequency of the rotation, (i.e., the number of
revolutions per second). The unit of frequency is 1 s~ and is called a hertz
(Hz). Substituting for w into Eq. (3.18),

P=2xfT (3.19)

When SI units are used with f expressed in Hz and T in N-m, the
power will be in N-m/s—that is, in watts (W). Solving Eq. (3.19) for T, the
torque exerted on a shaft transmitting the power P at a frequency of rota-
tion fis

P
= —— 3.20
2 (3.20)
After determining the torque T to be applied to the shaft and select-
ing the material to be used, the designer carries the values of T and the
maximum allowable stress into Eq. (3.9).

T
. (3.21)
C Tmax

This also provides the minimum allowable parameter J/c. When SI units
are used, T is expressed in N-m, 7., in Pa (or N/m?), and J/c in m®. For
a solid circular shaft, J = %7704, and J/c = %7703; substituting this value for
J/c into Eq. (3.21) and solving for ¢ yields the minimum allowable value
for the radius of the shaft. For a hollow circular shaft, the critical param-
eter is J/c,, where c, is the outer radius of the shaft; the value of this
parameter may be computed from Eq. (3.11) to determine whether a given
cross section will be acceptable.

When U.S. customary units are used, the frequency is usually
expressed in rpm and the power in horsepower (hp). Before applying
Eq. (3.20), it is then necessary to convert the frequency into revolutions
per second (i.e., hertz) and the power into ft-1b/s or in-1b/s using:

1 1

1
lrpm = —s ~ = —Hz
P 60

60
1 hp = 550 ftlb/s = 6600 in‘1b/s

3.4 Design of Transmission Shafts
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When the power is given in in-lb/s, Eq. (3.20) yields the value of the torque
T in lb-in. Carrying this value of T into Eq. (3.21), and expressing 7, in
psi, the parameter J/c is given in in®.

Photo 3.4 In a complex gear train, the maximum allowable
shearing stress of the weakest member must not be exceeded.

Concept Application 3.6

What size of shaft should be used for the rotor of a 5-hp motor operat-
ing at 3600 rpm if the shearing stress is not to exceed 8500 psi in the
shaft?

The power of the motor in in-lb/s and its frequency in cycles per
second (or hertz)

6600 in-Ib
P=( hp)(llfllp/s) — 33,000 in-1b/s

f= (3600 rpm) =60Hz = 605"

1
60 rpm
The torque exerted on the shaft is given by Eq. (3.20):

P 33,000in-Ib/s

=— = = 87.541b-in.
2nf 2w (60s7")

Substituting for T and 7,,,, into Eq. (3.21),
J T _ 87.54lbein.

C  Tmax 8500 psi

=10.30 X 10 %in®

But J/c = ymc’ for a solid shaft. Therefore,
3mc® = 10.30 X 10" %in®
¢ = 0.18721n.
d = 2c = 0.374in.

A 3-in. shaft should be used.




3.5 Stress Concentrations in Circular Shafts 1 87

~
Concept Application 3.7

A shaft consisting of a steel tube of 50-mm outer diameter is to trans-
mit 100 kW of power while rotating at a frequency of 20 Hz. Determine
the tube thickness that should be used if the shearing stress is not to
exceed 60 MPa.

The torque exerted on the shaft is given by Eq. (3.20):

P 100 X 10°W

res=——m= = 795.8 N'm
2 f 2w (20Hz)

From Eq. (3.21), the parameter J/c, must be at least equal to

J T 795.8 N-m

== — = 1326 X 10°m® ¢y
C;  Tmax 60 X 10°N/m
But, from Eq. (3.10),
Lo = ) = —T[(0.025) — ¢!] 2)
o 2 0.050

Equating the right-hand members of Egs. (1) and (2),
~0.050

(0.025)* — ¢f = ——(13.26 X 10°°)

v

¢i =390.6 X 1077 — 211.0 X 10°? = 179.6 X 10 ’m*
c; = 20.6 X 10°m = 20.6 mm
The corresponding tube thickness is
C, — ¢ = 25mm — 20.6 mm = 4.4 mm

A tube thickness of 5 mm should be used.

3.5 STRESS CONCENTRATIONS
IN CIRCULAR SHAFTS

The torsion formula 7., = Tc/J was derived in Sec. 3.1C for a circular
shaft of uniform cross section. Moreover, the shaft in Sec. 3.1B was loaded
at its ends through rigid end plates solidly attached to it. However, torques
are usually applied to the shaft through either flange couplings (Fig. 3.26a)
or gears connected to the shaft by keys fitted into keyways (Fig. 3.26b). In
both cases, the distribution of stresses in and near the section where the
torques are applied should be different from that given by the torsion for-
mula. For example, high concentrations of stresses occur in the neighbor-
hood of the keyway shown in Fig. 3.26b. These localized stresses can be
determined through experimental stress analysis methods or through the
use of the mathematical theory of elasticity.

D)

Fig. 3.26 Coupling of shafts using
(a) bolted flange, (b) slot for keyway.
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Fig. 3.27 Shafts having two different
diameters with a fillet at the junction.

The torsion formula also can be used for a shaft of variable circular
cross section. For a shaft with an abrupt change in the diameter of its
cross section, stress concentrations occur near the discontinuity, with
the highest stresses occurring at A (Fig. 3.27). These stresses can be
reduced using a fillet, and the maximum value of the shearing stress at
the fillet is

Tmax = K— (3.22)

where the stress Tc/] is the stress computed for the smaller-diameter shaft
and K is a stress concentration factor. Since K depends upon the ratio of
the two diameters and the ratio of the radius of the fillet to the diameter
of the smaller shaft, it can be computed and recorded in the form of a
table or a graph, as shown in Fig. 3.28. However, this procedure for deter-
mining localized shearing stresses is valid only as long as the value of 7,
given by Eq. (3.22) does not exceed the proportional limit of the material,
since the values of K plotted in Fig. 3.28 were obtained under the assump-
tion of a linear relation between shearing stress and shearing strain. If
plastic deformations occur, the result is a maximum stress lower than
those indicated by Eq. (3.22).

ii \\ A
. \)(-57):1.111 g}ﬁbﬂif
\EREE

1o L?I:125
s\ 1

e N

1.3 \i\/\d_ij; =25
12 \i
11 -~
1.0

0005 0.10 015 020 025 0.30
rid
Fig. 3.28 Plot of stress concentration factors for
fillets in circular shafts. (Source: W. D. Pilkey and
D. F. Pilkey, Peterson’s Stress Concentration Factors,
3rd ed., John Wiley & Sons, New York, 2008.)
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Sample Problem 3.6

The stepped shaft shown is to rotate at 900 rpm as it transmits power
from a turbine to a generator. The grade of steel specified in the design
has an allowable shearing stress of 8 ksi. (a) For the preliminary design
shown, determine the maximum power that can be transmitted. (b) If
in the final design the radius of the fillet is increased so that r = 12 in.,
what will be the percent change, relative to the preliminary design, in
the power that can be transmitted?

STRATEGY: Use Fig. 3.28 to account for the influence of stress con-
centrations on the torque and Eq. (3.20) to determine the maximum
power that can be transmitted.

MODELING and ANALYSIS:

a. Preliminary Design. Using the notation of Fig. 3.28, we have:
D =750in., d = 3.75 in.,, r = 15 in. = 0.5625 in.

D 7.50in.

B r_ 05625in. 0.15
d 3.75in. d 3.75in. ’

A stress concentration factor K = 1.33 is found from Fig. 3.28.
Torque. Recalling Eq. (3.22), we write

Tc 7
Tmax — K— T= lﬂ

7 . Q)

where J/c refers to the smaller-diameter shaft:

Jjc = 3mc® = 3m(1.875in.)° = 10.35in®

and where

Tmax _ 8 ksi
K 1.33

= 6.02 ksi

(continued)
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Substituting into Eq. (1), we find (Fig. 1) T = (10.35 in®)(6.02 ksi) =
62.3 kip-in.

1Hz
Power. Since f= (900 rpm) = 15Hz = 155, we write

60 rpm

=27 fT = 27(15 s ')(62.3 kip-in.) = 5.87 X 10° in-lb/s

P,
P, = (5.87 X 10° in-Ib/s)(1 hp/6600 in-lb/s) P, = 890 hp

_ 9.
r=igin.

T, = 62.3 kip - in.

a

Fig. 1 Allowable torque for design
having r = 9/16 in.

b. Final Design. Forr = 12in. = 0.9375 in.,

r  0.9375in.
=2 —=——=10.250 K =1.20

L
d d  3.75in.

Following the procedure used previously, we write (Fig. 2)

Tmax S ksi

= = 6.67 ksi
K 120
1= %T“‘?“ = (10.35 in®)(6.67 ksi) = 69.0 kip-in.
;(/3 5 P, = 2w fT = 2m(15s ')(69.0 kip-in.) = 6.50 X 10°in-lb/s

15 .
T, = 69.0kip-in. 7~ 1611
p = DRBp - : P, = (650 X 10°in-Ib/s)(1 hp/6600 in-lb/s) = 985 hp

Fig. 2 Allowable torque for design
having r = 15/16 in.
Percent Change in Power

p,—- P, 985 — 890
Percent change = 100 =100——— = +11%
P, 890

REFLECT and THINK: As demonstrated, a small increase in radius
of the fillet at the transition in the shaft produces a significant change
in the maximum power transmitted.

~




Problems

Determine the maximum shearing stress in a solid shaft of
1.5-in. diameter as it transmits 75 hp at a speed of (a) 750 rpm,
(b) 1500 rpm.

Determine the maximum shearing stress in a solid shaft of
12-mm diameter as it transmits 2.5 kW at a frequency of
(a) 25 Hz, (b) 50 Hz.

Using an allowable shearing stress of 4.5 ksi, design a solid steel
shaft to transmit 12 hp at a speed of (a) 1200 rpm, (b) 2400 rpm.

Using an allowable shearing stress of 50 MPa, design a solid steel
shaft to transmit 15 kW at a frequency of (a) 30 Hz, (b) 60 Hz.

While a steel shaft of the cross section shown rotates at 120 rpm,
a stroboscopic measurement indicates that the angle of twist is
2° in a 4-m length. Using G = 77.2 GPa, determine the power
being transmitted.

—

30 mm 75 mm

Fig. P3.68

Determine the required thickness of the 50-mm tubular shaft of
Concept Application 3.7, if it is to transmit the same power while
rotating at a frequency of 30 Hz.

A steel drive shaft is 6 ft long and its outer and inner diameters
are respectively equal to 2.25 in. and 1.75 in. Knowing that the
shaft transmits 240 hp while rotating at 1800 rpm, determine
(a) the maximum shearing stress, (b) the angle of twist of the
shaft (G = 11.2 X 10° psi).

The hollow steel shaft shown (G = 77.2 GPa, 7, = 50 MPa)
rotates at 240 rpm. Determine (a) the maximum power that can
be transmitted, (b) the corresponding angle of twist of the shaft.

A steel pipe of 3.5-in. outer diameter is to be used to transmit a
torque of 3000 lb-ft without exceeding an allowable shearing
stress of 8 ksi. A series of 3.5-in.-outer-diameter pipes is available
for use. Knowing that the wall thickness of the available pipes
varies from 0.25 in. to 0.50 in. in 0.0625-in. increments, choose
the lightest pipe that can be used.

25 mm

Fig. P3.71




The design of a machine element calls for a 40-mm-outer-
diameter shaft to transmit 45 kW. (a) If the speed of rotation is
40 mm : 720 rpm, determine the maximum shearing stress in shaft a. (b) If
the speed of rotation can be increased 50% to 1080 rpm, deter-
mine the largest inner diameter of shaft b for which the maxi-
@ ®) mum shearing stress will be the same in each shaft.

Fig. P3.73 . .
Three shafts and four gears are used to form a gear train that will
transmit power from the motor at A to a machine tool at F. (Bear-
ings for the shafts are omitted in the sketch.) The diameter of
each shaft is as follows: d,z = 16mm, d;p = 20 mm, dg = 28 mm.
Knowing that the frequency of the motor is 24 Hz and that the
allowable shearing stress for each shaft is 75 MPa, determine the

maximum power that can be transmitted.

Three shafts and four gears are used to form a gear train that will
transmit 7.5 kW from the motor at A to a machine tool at F. (Bear-
ings for the shafts are omitted in the sketch.) Knowing that the
frequency of the motor is 30 Hz and that the allowable stress for
each shaft is 60 MPa, determine the required diameter of each
shaft.

The two solid shafts and gears shown are used to transmit 16 hp
from the motor at A operating at a speed of 1260 rpm, to a
machine tool at D. Knowing that each shaft has a diameter of
1 in., determine the maximum shearing stress (@) in shaft AB,

Fig. P3.74 and P3.75 (b) in shaft CD.

Fig. P3.76 and P3.77

3.77 The two solid shafts and gears shown are used to transmit 16 hp
from the motor at A operating at a speed of 1260 rpm to a machine
tool at D. Knowing that the maximum allowable shearing stress
is 8 ksi, determine the required diameter (a) of shaft AB, (b) of
shaft CD.




The shaft-disk-belt arrangement shown is used to transmit 3 hp
from point A to point D. (a) Using an allowable shearing stress of
9500 psi, determine the required speed of shaft AB. (b) Solve part
a, assuming that the diameters of shafts AB and CD are, respec-
tively, 0.75 in. and 0.625 in.

A 5-ft-long solid steel shaft of 0.875-in. diameter is to transmit
18 hp between a motor and a machine tool. Determine the lowest
speed at which the shaft can rotate, knowing that G = 11.2 X 10°
psi, that the maximum shearing stress must not exceed 4.5 ksi,
and the angle of twist must not exceed 3.5°.

A 2.5-m-long steel shaft of 30-mm diameter rotates at a frequency
of 30 Hz. Determine the maximum power that the shaft can
transmit, knowing that G = 77.2 GPa, that the allowable shearing
stress is 50 MPa, and that the angle of twist must not exceed 7.5°.

The design specifications of a 1.2-m-long solid transmission shaft
require that the angle of twist of the shaft not exceed 4° when a
torque of 750 N-m is applied. Determine the required diameter
of the shaft, knowing that the shaft is made of a steel with an
allowable shearing stress of 90 MPa and a modulus of rigidity of
77.2 GPa.

A 1.5-m-long tubular steel shaft (G = 77.2 GPa) of 38-mm outer
diameter d, and 30-mm inner diameter d, is to transmit 100 kW
between a turbine and a generator. Knowing that the allowable
shearing stress is 60 MPa and that the angle of twist must not

exceed 3°, determine the minimum frequency at which the shaft
can rotate.

Fig. P3.82 and P3.83

3.83 A 1.5-m-long tubular steel shaft of 38-mm outer diameter 4, is to
be made of a steel for which 7,; = 65 MPa and G = 77.2 GPa.
Knowing that the angle of twist must not exceed 4° when the shaft
is subjected to a torque of 600 N-m, determine the largest inner
diameter d, that can be specified in the design.

The stepped shaft shown must transmit 40 kW at a speed of
720 rpm. Determine the minimum radius r of the fillet if an
allowable stress of 36 MPa is not to be exceeded.

The stepped shaft shown rotates at 450 rpm. Knowing that
r = 0.5 in., determine the maximum power that can be transmit-
ted without exceeding an allowable shearing stress of 7500 psi. Fig. P3.85




3.86 Knowing that the stepped shaft shown transmits a torque of
magnitude 7 = 2.50 kip-in., determine the maximum shearing
stress in the shaft when the radius of the fillet is (@) r = §in.,
(b) r = &in.

The stepped shaft shown must rotate at a frequency of 50 Hz.

Knowing that the radius of the fillet is 7 = 8 mm and the allowable

shearing stress is 45 MPa, determine the maximum power that
Fig. P3.86 can be transmitted.

T

60 mm

/

Fig. P3.87 and P3.88

The stepped shaft shown must transmit 45 kW. Knowing that the
allowable shearing stress in the shaft is 40 MPa and that the
radius of the fillet is 7 = 6 mm, determine the smallest permis-
sible speed of the shaft.

A torque of magnitude 7 = 200 lb-in. is applied to the stepped
shaft shown, which has a full quarter-circular fillet. Knowing that
D = 1 in., determine the maximum shearing stress in the shaft
when (a) d = 0.8 in., (b) d = 0.9 in.

Full quarter-circular fillet
extends to edge of larger shaft.

Fig. P3.89, P3.90 and P3.91

3.90 In the stepped shaft shown, which has a full quarter-circular
fillet, the allowable shearing stress is 80 MPa. Knowing that
D = 30 mm, determine the largest allowable torque that can
be applied to the shaft if (a) d = 26 mm, (b) d = 24 mm.

In the stepped shaft shown, which has a full quarter-circular
fillet, D = 1.25 in. and d = 1 in. Knowing that the speed of the
shaftis 2400 rpm and that the allowable shearing stress is 7500 psi,
determine the maximum power that can be transmitted by the
shaft.




*3.6 PLASTIC DEFORMATIONS
IN CIRCULAR SHAFTS

Equations (3.10) and (3.15) for the stress distribution and the angle of twist
for a circular shaft subjected to a torque T assume that Hooke’s law applied
throughout the shaft. If the yield strength is exceeded in some portion of
the shaft, or the material involved is a brittle material with a nonlinear
shearing-stress-strain diagram, these relationships cease to be valid. This
section will develop a more general method—used when Hooke’s law does
not apply—to determine the distribution of stresses in a solid circular shaft
and compute the torque required to produce a given angle of twist.

No specific stress-strain relationship was assumed in Sec. 3.1B,
when the shearing strain vy varied linearly with the distance p from the
axis of the shaft (Fig. 3.29). Thus,

P
Y = 7 Vmax (3'4)

c
where c is the radius of the shaft.

Assuming that the maximum value 7, of the shearing stress 7 has
been specified, the plot of 7 versus p may be obtained as follows. We first
determine from the shearing-stress-strain diagram the value of vy, cor-
responding to 7, (Fig. 3.30), and carry this value into Eq. (3.4). Then, for
each value of p, we determine the corresponding value of y from Eq. (3.4)
or Fig. 3.29 and obtain from the stress-strain diagram of Fig. 3.30 the
shearing stress 7 corresponding to this value of y. Plotting 7 against
p yields the desired distribution of stresses (Fig. 3.31).

We now recall that, when we derived Eq. (3.1) in Sec. 3.1A, we
assumed no particular relation between shearing stress and strain. We
may therefore use Eq. (3.1) to determine the torque T corresponding to
the shearing-stress distribution obtained in Fig. 3.31. Considering an
annular element of radius p and thickness dp, we express the element of
area in Eq. (3.1) as dA = 2mp dp and write

T= J pT(2mp dp)
0
or

c
T=2nw J p*1dp (3.23)
0
where 7 is the function of p plotted in Fig. 3.31.
If 7 is a known analytical function of y, Eq. (3.4) can be used to express
T as a function of p, and the integral in Eq. (3.23) can be determined analyti-
cally. Otherwise, the torque T can be obtained through numerical integra-
tion. This computation becomes more meaningful if we observe that the
integral in Eq. (3.23) represents the second moment, or the moment of
inertia, with respect to the vertical axis of the area in Fig. 3.31 located above
the horizontal axis and bounded by the stress-distribution curve.
The ultimate torque Ty, associated with the failure of the shaft, can
be determined from the ultimate shearing stress 7 by choosing 7., = 7y
and carrying out the computations indicated earlier. However, it is often

*3.6 Plastic Deformations in Circular Shafts 1 95

Fig. 3.29 Distribution of shearing strain for
torsion of a circular shaft.

Tmax f——mmmmmmm o

Yimax Y

Fig. 3.30 Nonlinear shearing-stress-strain
diagram.

Fig. 3.31 Shearing strain distribution for shaft
with nonlinear stress-strain response.
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more convenient to determine T, experimentally by twisting a specimen
until it breaks. Assuming a fictitious linear distribution of stresses, Eq. (3.9)
can thus be used to determine the corresponding maximum shearing stress
Ry
Ry = Tue (3.29)
J

The fictitious stress Ry is called the modulus of rupture in torsion. It can be
used to determine the ultimate torque T, of a shaft made of the same mate-
rial but of different dimensions by solving Eq. (3.24) for T};. Since the actual
and the fictitious linear stress distributions shown in Fig. 3.32 must yield the
same value for the ultimate torque Ty, the areas must also have the same
moment of inertia with respect to the vertical axis. Thus, the modulus of
rupture Ry is always larger than the actual ultimate shearing stress 7.

In some cases, the stress distribution and the torque T corresponding
to a given angle of twist ¢ can be determined from the equation of Sec. 3.1B
for shearing strain vy in terms of ¢, p, and the length L of the shaft:

_re
L

Fig. 3.32 Stress distribution in circular shaft
at failure.

Y (3.2)
With ¢ and L given, Eq. (3.2) provides the value of y corresponding to any
given value of p. Using the stress-strain diagram of the material, obtain the
corresponding value of the shearing stress 7 and plot 7 against p. Once the
shearing-stress distribution is obtained, the torque T can be determined

T analytically or numerically.

Ty p-----

*3.7 CIRCULAR SHAFTS MADE
OF AN ELASTOPLASTIC
> MATERIAL

Fig. 3.33 Elastoplastic stress-strain diagram. Consider the idealized case of a solid circular shaft made of an elastoplas-
tic material having the shearing-stress-strain diagram shown in Fig. 3.33.
Using this diagram, we can proceed as indicated earlier and find the stress
distribution across a section of the shaft for any value of the torque T.
As long as the shearing stress T does not exceed the yield strength
Ty, Hooke’s law applies, and the stress distribution across the section is
linear (Fig. 3.34a) with 1, given as:

Tc
max 7 3.9
T 7 (3.9)

Ty Ty

(a) (b) (c)
Fig. 3.34 Stress distributions for elastoplastic shaft at different stages of loading: (a) elastic,
(b) impending yield, (c) partially yielded, and (d) fully yielded.
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As the torque increases, T, eventually reaches the value 7y (Fig. 3.34b).
Substituting into Eq. (3.9) and solving for the corresponding value of the
torque Ty at the onset of yield

Ty = %TY (3.25)

This value is the maximum elastic torque, since it is the largest torque for
which the deformation remains fully elastic. For a solid circular shaft
J/c = +mc®, we have

Ty = ymc’ry (3.26)

As the torque is increased, a plastic region develops in the shaft
around an elastic core of radius py (Fig. 3.34¢). In this plastic region, the
stress is uniformly equal to 7y, while in the elastic core, the stress varies
linearly with p and can be expressed as

Ty

3.27
0P (3.27)

T =

As T is increased, the plastic region expands until, at the limit, the defor-
mation is fully plastic (Fig. 3.34d).

Equation (3.23) is used to determine the torque T corresponding to
a given radius py of the elastic core. Recalling that 7 is given by Eq. (3.27)
for 0 = p = pyand is equal to 7y for py = p = ¢,

Py c
2 Ty 2
T:27TJ p<*p)dp+27rf p-Tydp
o Py
Py
1 2 2

3 3 3
=— + -ty — =
27TPY7'Y 377 Ty SWPYTY
2 1 pi)
T==umryl1 — —— 3.28
37T TY( 4 C3 ( )

or in view of Eq. (3.26),

4 1 p@)
T=—-Ty1——— 3.29
3 Y( 4 C3 ( )

where Ty is the maximum elastic torque. As py approaches zero, the torque
approaches the limiting value

4

T, =3 Ty (3.30)
This value, which corresponds to a fully plastic deformation (Fig. 3.34d),
is the plastic torque of the shaft. Note that Eq. (3.30) is valid only for a solid

circular shaft made of an elastoplastic material.
Since the distribution of strain across the section remains linear
after the onset of yield, Eq. (3.2) remains valid and can be used to express
the radius py of the elastic core in terms of the angle of twist ¢. If ¢ is large

197
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T
4
TV = §TY ****************************
Y
Typ------
|
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|
|
|
|
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|
|
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|
|
1 | |
0 oy 2¢y 3oy ¢

Fig. 3.35 Load-displacement relation for
elastoplastic material.

enough to cause a plastic deformation, the radius py of the elastic core is
obtained by making y equal to the yield strain yy in Eq. (3.2) and solving
for the corresponding value py of the distance p.

I

¢
Using the angle of twist at the onset of yield ¢y (i.e., when py = ¢) and
making ¢ = ¢y and py = c in Eq. (3.31), we have

(3.31)

Lyy
=0 (3.32)
by
Dividing Eq. (3.31) by (3.32)—member by member—provides the
relationship:'

py _ v (3.33)

c ¢
If we carry the expression obtained for py/c into Eq. (3.29), the
torque T as a function of the angle of twist ¢ is

T=én<1—l£$ (3.34)

where Ty and ¢y are the torque and the angle of twist at the onset of yield.
Note that Eq. (3.34) can be used only for values of ¢ larger than ¢y. For
¢ < ¢y, the relation between T and ¢ is linear and given by Eq. (3.15).
Combining both equations, the plot of T against ¢ is as represented in
Fig. 3.35. As ¢ increases indefinitely, T approaches the limiting value
T,= 3Ty corresponding to the case of a fully developed plastic zone
(Fig. 3.34d). While the value T), cannot actually be reached, Eq. (3.34) indi-
cates that it is rapidly approached as ¢ increases. For ¢ = 2¢y, T is within
about 3% of T, and for ¢ = 3¢y, it is within about 1%.

Since the plot of T against ¢ for an idealized elastoplastic material
(Fig. 3.35) differs greatly from the shearing-stress-strain diagram (Fig. 3.33),
itis clear that the shearing-stress-strain diagram of an actual material can-
not be obtained directly from a torsion test carried out on a solid circular
rod made of that material. However, a fairly accurate diagram can be
obtained from a torsion test if a portion of the specimen consists of a thin
circular tube.” Indeed, the shearing stress will have a constant value 7 in
that portion. Thus, Eq. (3.1) reduces to

T = pAt

where p is the average radius of the tube and A is its cross-sectional area.
The shearing stress is proportional to the torque, and 7 easily can be com-
puted from the corresponding values of T. The corresponding shearing
strain vy can be obtained from Eq. (3.2) and from the values of ¢ and L
measured on the tubular portion of the specimen.

"Equation (3.33) applies to any ductile material with a well-defined yield point, since its
derivation is independent of the shape of the stress-strain diagram beyond the yield
point.

In order to minimize the possibility of failure by buckling, the specimen should be
made so that the length of the tubular portion is no longer than its diameter.



*3.8 Residual Stresses in Circular Shafts

199

-~

4.60 kN - m

%

Fig. 3.36 Loaded circular shaft.

4.60 kN - m

1.2m

N

50 mm

Concept Application 3.8

A solid circular shaft, 1.2 m long and 50 mm in diameter, is subjected
to a 4.60-kN-m torque at each end (Fig. 3.36). Assuming the shaft to
be made of an elastoplastic material with a yield strength in shear of
150 MPa and a modulus of rigidity of 77 GPa, determine (a) the radius
of the elastic core, (b) the angle of twist of the shaft.

a. Radius of Elastic Core. Determine the torque Ty at the onset
of yield. Using Eq. (3.25) with 7y = 150 MPa, ¢ = 25 mm, and

J = lmc* = (25 X 10°m)* = 614 X 10 °m*
write
_ Jry _ (614 X 10"°m")(150 X 10° Pa)

y = = = 3.68 kN'm
c 25 X 10 °m

Solving Eq. (3.29) for (py/c)’ and substituting the values of T and Ty,
we have

3
3T 3(4.60 KN-m
(&> g 3T, 0S0Nm)_o

c) Ty 3.68 kN-m

% ~ 0630  py = 0.630(25mm) = 15.8 mm

b. Angle of Twist. The angle of twist ¢y is determined at the
onset of yield from Eq. (3.15) as

T, L (3.68 X 10°N'm)(1.2 m)

= = = 93.4 X 10 *rad
JG (614 X 10"°m*)(77 X 10’ Pa)

by

Solving Eq. (3.33) for ¢ and substituting the values obtained for ¢y and
py/c, write

¢y 934 X 10 °rad
py/c 0.630

= 148.3 X 10 ®rad

or

360°
= (148.3 X 10 ®rad = 8.50°
¢ = )<27r rad)

~

*3.8 RESIDUAL STRESSES IN
CIRCULAR SHAFTS

In the two preceding sections, we saw that a plastic region will develop in
a shaft subjected to a large enough torque, and that the shearing stress 7
at any given point in the plastic region may be obtained from the shearing-
stress-strain diagram of Fig. 3.30. If the torque is removed, the resulting
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T reduction of stress and strain at the point considered will take place along
a straight line (Fig. 3.37). As you will see further in this section, the final
value of the stress will not, in general, be zero. There will be a residual
stress at most points, and that stress may be either positive or negative.
We note that, as was the case for the normal stress, the shearing stress will
keep decreasing until it has reached a value equal to its maximum value
at C minus twice the yield strength of the material.
0 Consider again the idealized elastoplastic material shown in the
/ 4 shearing-stress-strain diagram of Fig. 3.33. Assuming that the relationship
between 7 and vy at any point of the shaft remains linear as long as the
stress does not decrease by more than 27y, we can use Eq. (3.15) to obtain
Fig. 3.37 Shear stress-strain diagram for loading  the angle through which the shaft untwists as the torque decreases back
p,asi;y'e'd' followed by unloading until compressive ¢, ;o1 Ag a result, the unloading of the shaft is represented by a straight
yield oceurs. line on the T-¢ diagram (Fig. 3.38). Note that the angle of twist does not
return to zero after the torque has been removed. Indeed, the loading and
unloading of the shaft result in a permanent deformation characterized by

bp=0¢— ¢ (3.35)

where ¢ corresponds to the loading phase and can be obtained from 7 by
solving Eq. (3.34) with ¢’ corresponding to the unloading phase obtained
T from Eq. (3.15).

The residual stresses in an elastoplastic material are obtained by
applying the principle of superposition (Sec. 2.13). We consider, on one
hand, the stresses due to the application of the given torque T and, on the
other, the stresses due to the equal and opposite torque which is applied
s 447(1)/4» ¢ to unload the shaft. The first group of stresses reflects the elastoplastic

P behavior of the material during the loading phase (Fig. 3.39a). The second
¢ group has the linear behavior of the same material during the unloading
Fig. 3.38 Torque-angle of twist response for phase (Fig. 3.39b). Adding the two groups of stresses provides the distribu-
loading past yield, followed by unloading. tion of the residual stresses in the shaft (Fig. 3.39c¢).

Figure 3.39c shows that some residual stresses have the same sense
as the original stresses, while others have the opposite sense. This was to
be expected since, according to Eq. (3.1), the relationship

[p(rdA) =0 (3.36)

Ty b

21y

must be verified after the torque has been removed.

]
T

_Te
/ (c)

Fig. 3.39 Stress distributions for unloading of shaft with elastoplastic material.

(a) D)
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4.60 kN - m

Fig. 3.36 (repeated) Loaded
circular shaft.

4.60 kN - m

e
J/SO mm

Concept Application 3.9

For the shaft of Concept Application 3.8, shown in Fig. 3.36, determine
(a) the permanent twist and (b) the distribution of residual stresses
after the 4.60-kN-m torque has been removed.

a. Permanent Twist. Recall from Concept Application 3.8 that
the angle of twist corresponding to the given torque is ¢ = 8.50°. The
angle ¢’ through which the shaft untwists as the torque is removed is
obtained from Eq. (3.15). Substituting the given data,

T = 4.60 X 10°N-m
L=12m
G = 77 X 10°Pa

and J = 614 X 10" m*, we have

TL (4.60 X 10° N-m)(1.2 m)
~JG (614 X 102 m*)(77 X 10° Pa)

¢!
= 116.8 X 10 3rad

or

360°
27 rad

¢’ = (116.8 X 10 °rad) = 6.69°

The permanent twist is

¢, =¢ — ¢’ =850°— 6.69° = 1.81°

b. Residual Stresses. Recall from Concept Application 3.8 that
the yield strength is 7, = 150 MPa and the radius of the elastic core
corresponding to the torque is py = 15.8 mm. The distribution of the
stresses in the loaded shaft is as shown in Fig. 3.40a.

The distribution of stresses due to the opposite 4.60-kN-m torque
required to unload the shaft is linear, as shown in Fig. 3.40b. The maxi-
mum stress in the distribution of the reverse stresses is obtained from
Eq. (3.9):

Tc  (4.60 X 10°N-m)(25 X 10 °m)
T max — 5, — —
o 614 X 10 °m*

= 187.3 MPa

Superposing the two distributions of stresses gives the residual
stresses shown in Fig. 3.40c. Even though the reverse stresses exceed
the yield strength 7y, the assumption of a linear distribution of these
stresses is valid, since they do not exceed 27y

(continued)

~
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7 (MPa) 7 (MPa) 7(MPa)
150 f---- ]
- R N \
J N —
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//// :
-/
C
! 1
— |
15.8 mm | 1184 F----
-~
25 mm
7B |pe==mm==
(a) b) (c)

Fig. 3.40 Superposition of stress distributions to obtain residual stresses.

Sample Problem 3.7

Shaft AB is made of a mild steel that is assumed to be elastoplastic
with G = 11.2 X 10° psi and 7y = 21 ksi. A torque T is applied and
gradually increased in magnitude. Determine the magnitude of T and
the corresponding angle of twist when (a) yield first occurs and (b) the
deformation has become fully plastic.

STRATEGY: We use the geometric properties and the resulting stress
distribution on the cross section to determine the torque. The angle of
twist is then determined using Eq. (3.2), applied to the portion of the
cross section that is still elastic.

MODELING and ANALYSIS:

Y

. ) o The geometric properties of the cross section are
Fig. 1 Elastoplastic stress-strain diagram.

7y = 21 ksi ¢ = 3(1.5in.) = 0.75in. ¢, = 3(2.25in.) = 1.125 in.
J =37(c; — c}) = 3m[(1.125in.)* — (0.75in.)*] = 2.02in*
a. Onset of Yield. For 7., = 7y = 21 ksi (Figs. 1 and 2), we find

tyJ  (21ksi)(2.02in%)
& 1.125in.

y =

¢YL=/E'730 TY = 37.7 klp'll’l

Fig. 2 Shearing stress distribution at
\ impending yield.

(continued)
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¢f = 8.59°

Fig. 3 Shearing stress
distribution at fully plastic state.

Making p = ¢, and y = yyin Eq. (3.2) and solving for ¢, we obtain the
value of ¢y:

oyl myL (21 X 10°psi)(60in.)

v ¢ G (1.125in.)(11.2 X 10° psi)

= 0.100 rad

¢y = 5.73°
b. Fully Plastic Deformation. When the plastic zone reaches the
inner surface (Fig. 3), the stresses are uniformly distributed. Using Eq.
(3.23), we write

C
I, = ZWTyJ p®dp = 2mry(c3 — c)
&1
= 2m(21 ksi)[(1.125in.)’ — (0.75 in.)*]
T, = 44.1 kip-in.

When yield first occurs on the inner surface, the deformation is fully
plastic; we have from Eq. (3.2),
oyl mL (21 X 10°psi)(60in.)
o G (0.75in.)(11.2 X 10° psi)

lon = 0.150 rad

¢; = 8.59°

REFLECT and THINK: For larger angles of twist, the torque remains
constant; the T-¢ diagram of the shaft is shown (Fig. 4).

Fig. 4 Torque-angle of twist
diagram for hollow shaft.

N

Sample Problem 3.8

For the shaft of Sample Problem 3.7 determine the residual stresses
and the permanent angle of twist after the torque T, = 44.1 kip-in. has
been removed.

STRATEGY: We begin with the tube loaded by the fully plastic torque
in Sample Problem 3.7. We apply an equal and opposite torque, know-
ing that the stresses induced from this unloading are elastic. Combin-
ing the stresses gives the residual stresses, and the change in the angle
of twist is fully elastic.

(continued)
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/
MODELING and ANALYSIS:

Recall that when the plastic zone first reached the inner surface, the
applied torque was T, = 44.1 kip-in. and the corresponding angle of
twist was ¢, = 8.59°. These values are shown in Figure 1a.

Elastic Unloading. We unload the shaft by applying a 44.1 kip-in.
torque in the sense shown in Fig. 1b. During this unloading, the
behavior of the material is linear. Recalling the values found in Sam-
ple Prob. 3.7 for c,, ¢,, and J, we obtain the following stresses and
angle of twist:

Tc, (44.1kip-in.)(1.125in.)

oy = —2 = = 24.56 ksi
ey 2.02 in*
a 0.75 in.
= Tt = (24.56 ksi)— - = 16.37 ksi
Toin = Tmax = 1125,

_ TL _ (44.1 X 10° psi)(60in.)
JG  (2.02in*)(11.2 X 10°psi)

¢ = 0.1170 rad = 6.70°

Residual Stresses and Permanent Twist. The results of the load-
ing (Fig. 1a) and the unloading (Fig. 1b) are superposed (Fig. 1c) to
obtain the residual stresses and the permanent angle of twist ¢,.

441 kip - in. 44.1 kip - in.

T, = 44.1 kip - in. 44.1 kip - in.

7y = 21 ksi
16.37 ksi
7, = 4.63 ksi
/ 7y = 3.56 ksi

44.1 kip - in. ‘ \
T, = 441 kip - in. J:Y;sg" ] ) ]
fo @ =G 24,56 ksi ¢p = 189

(a) (b) (c)

Fig. 1 Superposition of stress distributions to obtain residual stresses.




Problems

The solid circular shaft shown is made of a steel that is assumed
to be elastoplastic with 7y = 145 MPa. Determine the magnitude
T of the applied torques when the plastic zone is (a) 16 mm deep,
(b) 24 mm deep.

A 1.25-in. diameter solid rod is made of an elastoplastic material
with 7, = 5 ksi. Knowing that the elastic core of the rod is 1 in.
in diameter, determine the magnitude of the applied torque T.

The solid shaft shown is made of a mild steel that is assumed to
be elastoplastic with G = 11.2 X 10° psi and 7 = 21 ksi. Deter-
mine the maximum shearing stress and the radius of the elastic
core caused by the application of a torque of magnitude (a) T =
100 kip-in., (b) T = 140 kip-in.

The solid shaft shown is made of a mild steel that is assumed to
be elastoplastic with G = 77.2 GPa and 7, = 145 MPa. Determine
the maximum shearing stress and the radius of the elastic core
caused by the application of a torque of magnitude (@) T = 600 N-m,
(b) T = 1000 N-m.

30 mm

Fig. P3.95 and P3.96

The solid shaft shown is made of a mild steel that is assumed to
be elastoplastic with 7, = 145 MPa. Determine the radius of the
elastic core caused by the application of a torque equal to 1.1 Ty,
where Ty is the magnitude of the torque at the onset of yield.

It is observed that a straightened paper clip can be twisted
through several revolutions by the application of a torque of
approximately 60 N-m. Knowing that the diameter of the wire in
the paper clip is 0.9 mm, determine the approximate value of the
yield stress of the steel.

The solid shaft shown is made of a mild steel that is assumed to
be elastoplastic with G = 77.2 GPa and 7, = 145 MPa. Determine
the angle of twist caused by the application of a torque of mag-
nitude () T = 600 N'm, (b) T = 1000 N-m.




Fig. P3.104

B
Qm\\‘ T =300N .- m

For the solid circular shaft of Prob. 3.94, determine the angle
of twist caused by the application of a torque of magnitude
(@) T = 80 kip-in., (b) T = 130 kip-in.

For the solid shaft of Prob. 3.98, determine (a) the magnitude of
the torque T required to twist the shaft through an angle of 15°,
(b) the radius of the corresponding elastic core.

A 3-ft-long solid shaft has a diameter of 2.5 in. and is made of a
mild steel that is assumed to be elastoplastic with 7y = 21 ksi and
G = 11.2 X 10° psi. Determine the torque required to twist the
shaft through an angle of (a) 2.5°, (b) 5°.

An 18-mm-diameter solid circular shaft is made of a material that
is assumed to be elastoplastic with 7, = 145 MPa and G = 77.2 GPa.
For a 1.2-m length of the shaft, determine the maximum shearing
stress and the angle of twist caused by a 200-N-m torque.

A 0.75-in.-diameter solid circular shaft is made of a material that
is assumed to be elastoplastic with 7, = 20 ksi and G = 11.2 X
10° psi. For a 4-ft length of the shaft, determine the maximum
shearing stress and the angle of twist caused by a 1800-1b-in.
torque.

The shaft AB is made of a material that is elastoplastic with
Ty = 90 MPa and G = 30 GPa. For the loading shown, determine
(a) the radius of the elastic core of the shaft, (b) the angle of twist
at end B.

A solid circular rod is made of a material that is assumed to be
elastoplastic. Denoting by Ty and ¢y, respectively, the torque and
the angle of twist at the onset of yield, determine the angle of
twist if the torque is increased to (@) T = 1.1 Ty, (b) T = 1.25 Ty,
() T=13Ty

A hollow shaft is 0.9 m long and has the cross section shown. The
steel is assumed to be elastoplastic with 7, = 180 MPa and G =
77.2 GPa. Determine (a) the angle of twist at which the section
first becomes fully plastic, (b) the corresponding magnitude of
the applied torque.

30 mm 70 mm

Fig. P3.106 and P3.107

A hollow shaft is 0.9 m long and has the cross section shown.
The steel is assumed to be elastoplastic with 7, = 180 MPa and
G = 77.2 GPa. Determine the applied torque and the correspond-
ing angle of twist (a) at the onset of yield, (b) when the plastic
zone is 10 mm deep.




A steel rod is machined to the shape shown to form a tapered
solid shaft to which a torque is of magnitude T = 75 kip-in. is
applied. Assuming the steel to be elastoplastic with 7, = 21 ksi
and G = 11.2 X 10° psi, determine (a) the radius of the elastic
core in portion AB of the shaft, (b) the length of portion CD that
remains fully elastic.

If the torque applied to the tapered shaft of Prob. 3.108 is slowly
increased, determine (a) the magnitude T of the largest torque
that can be applied to the shaft, (b) the length of the portion CD
that remains fully elastic.

A solid brass rod of 1.2-in. diameter is subjected to a torque that
causes a maximum shearing stress of 13.5 ksi in the rod. Using
the 7-y diagram shown for the brass rod used, determine (a) the
magnitude of the torque, (b) the angle of twist in a 24-in. length
of the rod.

Fig. P3.708 and P3.109

A solid brass rod of 0.8-in. diameter and 30-in. length is twisted
through an angle of 10°. Using the 7-y diagram shown for the
brass rod used, determine (a) the magnitude of the torque
applied to the rod, (b) the maximum shearing stress in the rod.

A 50-mm diameter cylinder is made of a brass for which the /
stress-strain diagram is as shown. Knowing that the angle of twist
is 5° in a 725-mm length, determine by approximate means the
magnitude T of torque applied to the shaft. 000l 0002 0003
4
Fig. P3.110 and P3.111

7 (MPa)

100
80
60

40 _—

725 mm/"
20 T L/

0 0.001 0002 0003 vy
Fig. P3.112

3.113 Three points on the nonlinear stress-strain diagram used in Prob.
3.112 are (0, 0), (0.0015, 55 MPa), and (0.003, 80 MPa). By fitting
the polynomial T = A + By + Cy® through these points, the fol-
lowing approximate relation has been obtained.

T = 46.7 X 10%y — 6.67 X 10'%?

Solve Prob. 3.112 using this relation, Eq. (3.2), and Eq. (3.23).

The solid circular drill rod AB is made of a steel that is assumed to
be elastoplastic with 7, = 22 ksi and G = 11.2 X 10° psi. Knowing
that a torque T = 75 kip-in. is applied to the rod and then removed,
determine the maximum residual shearing stress in the rod.

3.115 In Prob. 3.114, determine the permanent angle of twist of the rod.  Fig. P3.114




3.116 The solid shaft shown is made of a steel that is assumed to be
elastoplastic with 7, = 145 MPa and G = 77.2 GPa. The torque is
increased in magnitude until the shaft has been twisted through
6°; the torque is then removed. Determine (a) the magnitude and
location of the maximum residual shearing stress, (b) the perma-
nent angle of twist.

After the solid shaft of Prob. 3.116 has been loaded and unloaded
as described in that problem, a torque T, of sense opposite to the
original torque T is applied to the shaft. Assuming no change in
the value of ¢y, determine the angle of twist ¢, for which yield is
initiated in this second loading and compare it with the angle ¢y
for which the shaft started to yield in the original loading.

Fig. P3.116 The hollow shaft shown is made of a steel that is assumed to be
elastoplastic with 7, = 145 MPa and G = 77.2 GPa. The magni-
tude T of the torques is slowly increased until the plastic zone
first reaches the inner surface of the shaft; the torques are then
removed. Determine the magnitude and location of the maxi-
mum residual shearing stress in the rod.

25 mm
Fig. P3.118

3.119 In Prob. 3.118, determine the permanent angle of twist of the rod.

3.120 A torque T applied to a solid rod made of an elastoplastic mate-
rial is increased until the rod is fully plastic and then removed.
(a) Show that the distribution of residual shearing stresses is as
represented in the figure. (b) Determine the magnitude of the
torque due to the stresses acting on the portion of the rod located
within a circle of radius c,.

Fig. P3.120




*3.9 TORSION OF
NONCIRCULAR MEMBERS

The formulas obtained for the distributions of strain and stress under a
torsional loading in Sec. 3.1 apply only to members with a circular cross
section. They were derived based on the assumption that the cross section
of the member remained plane and undistorted. This assumption depends
upon the axisymmetry of the member (i.e., the fact that its appearance
remains the same when viewed from a fixed position and rotated about
its axis through an arbitrary angle).

A square bar, on the other hand, retains the same appearance only
when it is rotated through 90° or 180°. Following a line of reasoning similar to
that used in Sec. 3.1B, one could show that the diagonals of the square cross
section of the bar and the lines joining the midpoints of the sides of that sec-
tion remain straight (Fig. 3.41). However, because of the lack of axisymmetry
of the bar, any other line drawn in its cross section will deform when it is
twisted, and the cross section will be warped out of its original plane.

Equations (3.4) and (3.6) define the distributions of strain and stress
in an elastic circular shaft but cannot be used for noncircular members.
For example, it would be wrong to assume that the shearing stress in the
cross section of a square bar varies linearly with the distance from the axis
of the bar and is therefore largest at the corners of the cross section. The
shearing stress is actually zero at these points.

Consider a small cubic element located at a corner of the cross sec-
tion of a square bar in torsion and select coordinate axes parallel to the
edges (Fig. 3.42a). Since the face perpendicular to the y axis is part of the
free surface of the bar, all stresses on this face must be zero. Referring to
Fig. 3.42b, we write

Ty =10 T, =0 (3.37)

For the same reason, all stresses on the face perpendicular to the z axis
must be zero, and

Ty =10 Ty =0 (3.38)
It follows from the first of Egs. (3.37) and the first of Egs. (3.38) that
Ty =0 T =0 (3.39)

Thus, both components of the shearing stress on the face perpendicular
to the axis of the bar are zero. Thus, there is no shearing stress at the
corners of the cross section of the bar.

By twisting a rubber model of a square bar, one finds no deforma-
tions—and no stresses—occur along the edges of the bar, while the largest
deformations—and the largest stresses—occur along the center line of
each of the faces of the bar (Fig. 3.43).

Fig. 3.43 Stress elements in a torsionally loaded, deformed square bar.

*3.9 Torsion of Noncircular Members

Fig. 3.41 Twisting a shaft of square
cross section.

(a)

Yy
T~

Tyx /L\ Yz

\rs A{ T,
\ j<
Ty Ty
(b)
Fig. 3.42 Element at corner of square bar
in torsion: (a) location of element in shaft

and (b) potential shearing stress components
on element.

Tax
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Fig. 3.44 Shaft with rectangular cross section,
showing the location of maximum shearing stress.

Table 3.1. Coefficients for
Rectangular Bars in Torsion

a/b C C,
1.0 0.208 0.1406
1.2 0.219 0.1661
1.5 0.231 0.1958
2.0 0.246 0.229
2.5 0.258 0.249
3.0 0.267 0.263
4.0 0.282 0.281
5.0 0.291 0.291
10.0 0.312 0.312
o 0.333 0.333

The determination of the stresses in noncircular members subjected
to a torsional loading is beyond the scope of this text. However, results
obtained from the mathematical theory of elasticity for straight bars with
a uniform rectangular cross section are given here for our use.” Denoting
by L the length of the bar, by a and b, respectively, the wider and narrower
side of its cross section, and by T the magnitude of the torque applied to
the bar (Fig. 3.44), the maximum shearing stress occurs along the center
line of the wider face and is equal to

T
T = —— 3.40
c,ab’ (3-40)

The angle of twist can be expressed as
TL
¢ =

— 3.41
c,ab’G (3-41)

Coefficients ¢, and ¢, depend only upon the ratio a/b and are given in
Table 3.1 for a number of values of that ratio. Note that Egs. (3.40) and
(3.41) are valid only within the elastic range.

Table 3.1 shows that for a/b = 5, the coefficients ¢, and ¢, are equal.
It may be shown that for such values of a/b, we have

¢, = ¢ = 3(1 — 0.630b/a) (for a/b = 5 only) (3.42)

The distribution of shearing stresses in a noncircular member may be
visualized by using the membrane analogy. A homogeneous elastic mem-
brane attached to a fixed frame and subjected to a uniform pressure on one
of its sides constitutes an analog of the bar in torsion, (i.e., the determina-
tion of the deformation of the membrane depends upon the solution of the
same partial differential equation as the determination of the shearing
stresses in the bar.)* More specifically, if Q is a point of the cross section of
the bar and Q' the corresponding point of the membrane (Fig. 3.45), the

Tangent of

max. slope
Horizontal

tangent

Rectangular frame

Membrane

Fig. 3.45 Application of membrane analogy to
shaft with rectangular cross section.

See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3d ed., McGraw-Hill, New
York, 1969, sec. 109.

Ibid. Sec. 107.
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Fig. 3.46 Membrane analogy for various
thin-walled members.

7
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shearing stress 7 at Q has the same direction as the horizontal tangent to
the membrane at Q’, and its magnitude is proportional to the maximum
slope of the membrane at Q'." Furthermore, the applied torque is propor-
tional to the volume between the membrane and the plane of the fixed
frame. For the membrane of Fig. 3.45, which is attached to a rectangular
frame, the steepest slope occurs at the midpoint N’ of the larger side of the
frame. Thus, the maximum shearing stress in a bar of rectangular cross sec-
tion occurs at the midpoint N of the larger side of that section.

The membrane analogy can be used just as effectively to visualize
the shearing stresses in any straight bar of uniform, noncircular cross sec-
tion. In particular, consider several thin-walled members with the cross
sections shown in Fig. 3.46 that are subjected to the same torque. Using
the membrane analogy to help us visualize the shearing stresses, we note
that since the same torque is applied to each member, the same volume
is located under each membrane, and the maximum slope is about the
same in each case. Thus, for a thin-walled member of uniform thickness
and arbitrary shape, the maximum shearing stress is the same as for a
rectangular bar with a very large value of a/b and can be determined from
Eq. (3.40) with ¢; = 0.333.F

*3.10 THIN-WALLED HOLLOW
SHAFTS

In the preceding section we saw that the determination of stresses in non-
circular members generally requires the use of advanced mathematical
methods. In thin-walled hollow noncircular shafts, a good approximation
of the distribution of stresses in the shaft can be obtained by a simple
computation. Consider a hollow cylindrical member of noncircular section

"This is the slope measured in a direction perpendicular to the horizontal tangent at Q'.

*It also could be shown that the angle of twist can be determined from Eq. (3.41) with
¢, = 0.333.

*3.10 Thin-Walled Hollow Shafts
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Fig. 3.48 Segment of thin-walled hollow shaft.

Fig. 3.49 Small stress element from segment.

Fig. 3.50 Direction of shearing stress on cross
section.

Fig. 3.47 Thin-walled hollow shaft subject
to torsional loading.

subjected to a torsional loading (Fig. 3.47)." While the thickness t of the
wall may vary within a transverse section, it is assumed that it remains
small compared to the other dimensions of the member. Now detach the
colored portion of wall AB bounded by two transverse planes at a distance
Ax from each other and by two longitudinal planes perpendicular to the
wall. Since the portion AB is in equilibrium, the sum of the forces exerted
on it in the longitudinal x direction must be zero (Fig. 3.48). The only
forces involved in this direction are the shearing forces F, and Fy exerted
on the ends of portion AB. Therefore,

EFX = 0: FA - FB =0 (3.43)

Now express F, as the product of the longitudinal shearing stress 7,
on the small face at A and of the area t, Ax of that face:

FA = TA(tA Ax)

While the shearing stress is independent of the x coordinate of the point
considered, it may vary across the wall. Thus, 74 represents the average
value of the stress computed across the wall. Expressing Fj in a similar
way and substituting for F, and Fjy into (3.43), write

TA(tA Ax) - TB(tB Ax) =0

or Tala = Tplp (3.44)

Since A and B were chosen arbitrarily, Eq. (3.44) shows that the product
7t of the longitudinal shearing stress 7 and the wall thickness ¢ is constant
throughout the member. Denoting this product by g, we have

g = 7t = constant (3.45)

Now detach a small element from the wall portion AB (Fig. 3.49).
Since the outer and inner faces are part of the free surface of the hollow
member, the stresses are equal to zero. Recalling Egs. (1.21) and (1.22) of
Sec. 1.4, the stress components indicated on the other faces by dashed
arrows are also zero, while those represented by solid arrows are equal.
Thus, the shearing stress at any point of a transverse section of the hollow
member is parallel to the wall surface (Fig. 3.50), and its average value
computed across the wall satisfies Eq. (3.45).

"The wall of the member must enclose a single cavity and must not be slit open. In other
words, the member should be topologically equivalent to a hollow circular shaft.



dF
Fig. 3.51 Shear force in the wall.

At this point, an analogy can be made between the distribution of
the shearing stresses 7 in the transverse section of a thin-walled hollow
shaft and the distributions of the velocities v in water flowing through a
closed channel of unit depth and variable width. While the velocity v of
the water varies from point to point on account of the variation in the
width ¢ of the channel, the rate of flow, g = vt, remains constant through-
out the channel, just as 7¢ in Eq. (3.45). Because of this, the product
g = ttis called the shear flow in the wall of the hollow shaft.

We will now derive a relation between the torque T applied to a hol-
low member and the shear flow g in its wall. Consider a small element of
the wall section, of length ds (Fig. 3.51). The area of the element is dA = ¢ ds,
and the magnitude of the shearing force dF exerted on the element is

dF = 7 dA = 17(tds) = (tt) ds = q ds (3.46)

The moment dM,, of this force about an arbitrary point O within the cavity
of the member can be obtained by multiplying dF by the perpendicular
distance p from O to the line of action of dF.

dMy = p dF = p(q ds) = q(p ds) (3.47)

But the product p ds is equal to twice the area d( of the colored triangle
in Fig. 3.52. Thus,

dM, = q(2dq) (3.48)

Since the integral around the wall section of the left-hand member of
Eq. (3.48) represents the sum of the moments of all the elementary shear-
ing forces exerted on the wall section and this sum is equal to the torque
T applied to the hollow member,

T= §dM, = ¢q(2da)
The shear flow g being a constant, write
T = 2qa (3.49)

where ( is the area bounded by the center line of the wall cross section
(Fig. 3.53).

The shearing stress 7 at any given point of the wall can be expressed
in terms of the torque T if g is substituted from Eq. (3.45) into Eq. (3.49).
Solving for 7:

7= (3.50)

*3.10 Thin-Walled Hollow Shafts

Fig. 3.52 Infinitesimal area used in finding
the resultant torque.

Fig. 3.53 Area for shear flow.
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where ¢ is the wall thickness at the point considered and (@ the area
bounded by the center line. Recall that 7 represents the average value of
the shearing stress across the wall. However, for elastic deformations, the
distribution of stresses across the wall can be assumed to be uniform, and
thus Eq. (3.50) yields the actual shearing stress at a given point of the wall.

The angle of twist of a thin-walled hollow shaft can be obtained also
by using the method of energy (Chap. 11). Assuming an elastic deforma-
tion, it is shown' that the angle of twist of a thin-walled shaft of length L

and modulus of rigidity G is

TL ds
¢= 402G |t

(3.51)

where the integral is computed along the center line of the wall section.

21 4 Torsion
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Al | |5
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(c)
Fig. 3.54 Thin-walled aluminum tube:
(a) with uniform thickness, (b) with
non-uniform thickness, (c) area bounded
by center line of wall thickness.

N\

Concept Application 3.10

Structural aluminum tubing of 2.5 X 4-in. rectangular cross section
was fabricated by extrusion. Determine the shearing stress in each of
the four walls of a portion of such tubing when it is subjected to a
torque of 24 kip-in., assuming (a) a uniform 0.160-in. wall thickness
(Fig. 3.54a) and (b) that as a result of defective fabrication, walls AB
and AC are 0.120-in. thick and walls BD and CD are 0.200-in. thick
(Fig. 3.54b).

a. Tubing of Uniform Wall Thickness.
center line (Fig. 3.54c) is

The area bounded by the

@ = (3.84 in.)(2.34 in.) = 8.986 in?

Since the thickness of each of the four walls is £ = 0.160 in., from
Eq. (3.50), the shearing stress in each wall is
T 24 kip-in.

=S e =

2t 2(0.1601in.)(8.986 in®)

= 8.35 ksi

b. Tubing with Variable Wall Thickness. Observing that the
area @ bounded by the center line is the same as in part a, and substi-
tuting successively ¢ = 0.120 in. and ¢ = 0.200 in. into Eq. (3.50), we
have

24 kip-in. ST
Tap = Tac = = 11.13 ksi
AR TACT 900,120 in.)(8.986 in?)
and
24 kip-in. .
Tgp — TcD = 6.68 kSl

~ 2(0.200 in.)(8.986 in?)

Note that the stress in a given wall depends only upon its thickness.

~

See Prob. 11.70.
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Fig. 1 General dimensions of
solid rectangular bar in torsion.

N
Sample Problem 3.9

Using 7,; = 40 MPa, determine the largest torque that may be applied
to each of the brass bars and to the brass tube shown in the figure
below. Note that the two solid bars have the same cross-sectional
area, and that the square bar and square tube have the same outside
dimensions.

®3)

STRATEGY: We obtain the torque using Eq. (3.40) for the solid cross
sections and Eq. (3.50) for the hollow cross section.

MODELING and ANALYSIS:

1. Barwith Square Cross Section. For a solid bar of rectangular
cross section (Fig. 1), the maximum shearing stress is given by
Eq. (3.40)

T
c,ab’

Tmax

where the coefficient ¢, is obtained from Table 3.1.

a
a=b=0.040m b = 1.00 ¢; = 0.208

For 7, = 7.1 = 40 MPa, we have

T, T,

= 40MPa = ——————
0.208(0.040 m)

Tmax Clllbz Tl = 532 N'm

2. Bar with Rectangular Cross Section. We now have

a = 0.064 m b = 0.025m % = 2.56

(continued)

/
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/
Interpolating in Table 3.1: ¢; = 0.259
1o 40 MP 1o T, = 414N
— Q= - .m
o ab? 0.259(0.064 m)(0.025 m)>

3. Square Tube. For a tube of thickness ¢ (Fig. 2), the shearing
stress is given by Eq. (3.50)

34 mm

|
|
i
40 mm | |
|
I
|
|

Fig. 2 Hollow, square brass bar
section dimensions.

where (1 is the area bounded by the center line of the cross section. We
have

@ = (0.034 m)(0.034m) = 1.156 X 10 °m*

We substitute 7 = 7,; = 40 MPa and ¢ = 0.006 m and solve for the
allowable torque:

T T
T=—— 40MPa= - —— T, =555N'm
211 2(0.006 m)(1.156 X 10~ ° m?)

REFLECT and THINK: Comparing the capacity of the bar of solid
square cross section with that of the tube with the same outer dimen-
sions demonstrates the ability of the tube to carry a larger torque.




Problems

Determine the smallest allowable square cross section of a steel
shaft of length 20 ft if the maximum shearing stress is not to
exceed 10 ksi when the shaft is twisted through one complete
revolution. Use G = 11.2 X 10° psi.

Determine the smallest allowable length of a stainless steel shaft of
2 X 3.in. cross section if the shearing stress is not to exceed 15 ksi
when the shaft is twisted through 15°. Use G = 11.2 X 10° psi.

Using 7,; = 70 MPa and G = 27 GPa, determine for each of the
aluminum bars shown the largest torque T that can be applied
and the corresponding angle of twist at end B.

Knowing that the magnitude of the torque T is 200 N-m and that
G = 27 GPa, determine for each of the aluminum bars shown the
maximum shearing stress and the angle of twist at end B. Fig. P3.123 and P3.124

Determine the largest torque T that can be applied to each of the
two brass bars shown and the corresponding angle of twist at B,
knowing that 7,; = 12 ksi and G = 5.6 X 10° psi.

B >4

&

Fig. P3.125 and P3.126

3.126 Each of the two brass bars shown is subjected to a torque of mag-
nitude T = 12.5 kip-in. Knowing that G = 5.6 X 10° psi, deter-
mine for each bar the maximum shearing stress and the angle of
twist at B.




Jl\
30 mm

750 mm

Fig. P3.127 and P3.128

3.127 The torque T causes a rotation of 0.6° at end B of the aluminum

3.131

bar shown. Knowing that b = 15 mm and G = 26 GPa, determine
the maximum shearing stress in the bar.

The torque T causes a rotation of 2° at end B of the stainless steel
bar shown. Knowing that b = 20 mm and G = 75 GPa, determine
the maximum shearing stress in the bar.

Two shafts are made of the same material. The cross section of
shaft A is a square of side b and that of shaft B is a circle of diam-
eter b. Knowing that the shafts are subjected to the same torque,
determine the ratio 7,/75 of maximum shearing stresses occur-
ring in the shafts.

e
18

Fig. P3.129

Shafts A and B are made of the same material and have the same
cross-sectional area, but A has a circular cross section and B has a
square cross section. Determine the ratio of the maximum torques
T, and Tz when the two shafts are subjected to the same maximum
shearing stress (7, = 7). Assume both deformations to be elastic.

Ty
Fig. P3.130, P3.131 and P3.132

Shafts A and B are made of the same material and have the same
length and cross-sectional area, but A has a circular cross section
and B has a square cross section. Determine the ratio of the maxi-
mum values of the angles ¢, and ¢z when the two shafts are
subjected to the same maximum shearing stress (74, = 7p).
Assume both deformations to be elastic.

Shafts A and B are made of the same material and have the same
cross-sectional area, but A has a circular cross section and B has
a square cross section. Determine the ratio of the angles ¢, and
¢ through which shafts A and B are respectively twisted when
the two shafts are subjected to the same torque (7 = Tj). Assume
both deformations to be elastic.




3.133 A torque of magnitude 7 = 2 kip-in. is applied to each of the steel
bars shown. Knowing that 7,; = 6 ksi, determine the required
dimension b for each bar.

Fig. P3.133 and P3.134

3.134 A torque of magnitude 7' = 300 N-m is applied to each of the
aluminum bars shown. Knowing that 7,; = 60 MPa, determine
the required dimension b for each bar.

3.135 A 1.25-m-long steel angle has an L127 X 76 X 6.4 cross section.
From Appendix C we find that the thickness of the section is 6.4
mm and that its area is 1250 mm?® Knowing that 7,; = 60 MPa
and that G = 77.2 GPa, and ignoring the effect of stress concen-
trations, determine (a) the largest torque T that can be applied, //
T

(b) the corresponding angle of twist.

3.136 A 36-kip-in. torque is applied to a 10-ft-long steel angle with an  Fig. P3.135
L8 X 8 X 1 cross section. From Appendix C we find that the thick-
ness of the section is 1 in. and that its area is 15 in®>. Knowing that
G = 11.2 X 10° psi, determine (a) the maximum shearing stress
along line a-a, (b) the angle of twist.

»‘ ‘«1 in.

-

gi || 18x8x1 W310 X 60 |

a
a
L—Sin.*»|

Fig. P3.136

3.137 A 4-m-long steel member has a W310 X 60 cross section. Know-
ing that G = 77.2 GPa and that the allowable shearing stress is
40 MPa, determine (a) the largest torque T that can be applied,
(b) the corresponding angle of twist. Refer to Appendix C for the
dimensions of the cross section and neglect the effect of stress
concentrations. (Hint: consider the web and flanges separately
and obtain a relation between the torques exerted on the web
and a flange, respectively, by expressing that the resulting angles
of twist are equal.) Fig. P3.137




3.138 An 8-ft-long steel member with a W8 X 31 cross section is sub-
jected to a 5-kip-in. torque. The properties of the rolled-steel sec-
tion are given in Appendix C. Knowing that G = 11.2 X 10° psi,
determine (a) the maximum shearing stress along line a-a,
(b) the maximum shearing stress along line b-b, (c) the angle of
twist. (See hint of Prob. 3.137.)

3.139 A 5-kip-ft torque is applied to a hollow aluminum shaft having
W8 X 31 the cross section shown. Neglecting the effect of stress concentra-
Fig. P3.138 tions, determine the shearing stress at points a and b.

m.

1
4
a
[}

|
!
~ & in. Lin

j o
f

—

6 in.

Fig. P3.139

3.740 A torque T = 750 kN-m is applied to the hollow shaft shown that
has a uniform 8-mm wall thickness. Neglecting the effect of stress
concentrations, determine the shearing stress at points a and b.

<90 mm ———

a
°

Fig. P3.140

3.741 A 750-N-m torque is applied to a hollow shaft having the cross
section shown and a uniform 6-mm wall thickness. Neglecting
the effect of stress concentrations, determine the shearing stress
at points a and b.

3.142 and 3.143 A hollow member having the cross section shown is

formed from sheet metal of 2-mm thickness. Knowing that the

Fig. P3.141 shearing stress must not exceed 3 MPa, determine the largest
torque that can be applied to the member.

50 mm i 50 mm i

20 mm
50 mm
— —

10 mm 20 mm
Fig. P3.143 Fig. P3.142




3.144 A 90-N-m torque is applied to a hollow shaft having the cross
section shown. Neglecting the effect of stress concentrations,
determine the shearing stress at points a and b.

2 mm

/(M

N

40 mm

4 mm

|
f

55 mm

Fig. P3.144

3.145 and 3.146 A hollow member having the cross section shown is to
be formed from sheet metal of 0.06-in. thickness. Knowing that a
1250-1b-in. torque will be applied to the member, determine the
smallest dimension d that can be used if the shearing stress is not
to exceed 750 psi.

] ]

Fig. P3.145 Fig. P3.146

A cooling tube having the cross section shown is formed from a
sheet of stainless steel of 3-mm thickness. The radii ¢, = 150 mm
and ¢, = 100 mm are measured to the center line of the sheet
metal. Knowing that a torque of magnitude "= 3 kN-m is applied
to the tube, determine (a) the maximum shearing stress in the
tube, (b) the magnitude of the torque carried by the outer circular
shell. Neglect the dimension of the small opening where the
outer and inner shells are connected.

Fig. P3.147




3.148 A hollow cylindrical shaft was designed to have a uniform wall
thickness of 0.1 in. Defective fabrication, however, resulted in the
shaft having the cross section shown. Knowing that a 15-kip-in.
torque is applied to the shaft, determine the shearing stresses at
points a and b.

Fig. P3.148

3.149 Equal torques are applied to thin-walled tubes of the same length
L, same thickness ¢, and same radius c. One of the tubes has been
slit lengthwise as shown. Determine (a) the ratio 7, /7, of the
maximum shearing stresses in the tubes, (b) the ratio ¢, /¢, of
the angles of twist of the tubes.

3.150 A hollow cylindrical shaft of length L, mean radius c,,, and uni-
Fig. P3.149 form thickness ¢ is subjected to a torque of magnitude 7. Con-
sider, on the one hand, the values of the average shearing stress
Twe and the angle of twist ¢ obtained from the elastic torsion
formulas developed in Secs. 3.1C and 3.2 and, on the other hand,
the corresponding values obtained from the formulas developed
in Sec. 3.10 for thin-walled shafts. (a) Show that the relative error
introduced by using the thin-walled-shaft formulas rather than
the elastic torsion formulas is the same for 7., and ¢ and that
the relative error is positive and proportional to the ratio ¢ /c,,.
(b) Compare the percent error corresponding to values of the

ratio t /c,, of 0.1, 0.2, and 0.4.

T~

L

Fig. P3.150




Review and Summary

This chapter was devoted to the analysis and design of shafts subjected
to twisting couples, or torques. Except for the last two sections of the
chapter, our discussion was limited to circular shaffts.

Deformations in Circular Shafts

The distribution of stresses in the cross section of a circular shaft is stati-
cally indeterminate. The determination of these stresses requires a prior
analysis of the deformations occurring in the shaft [Sec. 3.1B]. In a cir-
cular shaft subjected to torsion, every cross section remains plane and
undistorted. The shearing strain in a small element with sides parallel
and perpendicular to the axis of the shaft and at a distance p from that
axis is

_r¢

3 (3.2)

Y
where ¢ is the angle of twist for a length L of the shaft (Fig. 3.55). Equa-
tion (3.2) shows that the shearing strain in a circular shaft varies linearly
with the distance from the axis of the shaft. It follows that the strain is
maximum at the surface of the shaft, where p is equal to the radius ¢ of
the shaft:

3.3,9

Shearing Stresses in Elastic Range

The relationship between shearing stresses in a circular shaft within the
elastic range [Sec. 3.1C] and Hooke’s law for shearing stress and strain,
T = Gy, is

p
= ;Tmax (3.6)

which shows that within the elastic range, the shearing stress T in a circular
shaft also varies linearly with the distance from the axis of the shaft. Equat-
ing the sum of the moments of the elementary forces exerted on any sec-
tion of the shaft to the magnitude T of the torque applied to the shaft, the
elastic torsion formulas are

_Tp

3.9, 10
7 ( )

-
where cis the radius of the cross section and J its centroidal polar moment
of inertia. J = 3mc" for a solid shaft, and J = 37(c; — c}) for a hollow shaft
of inner radius ¢, and outer radius c,.

We noted that while the element a in Fig. 3.56 is in pure shear, the element
cin the same figure is subjected to normal stresses of the same magnitude,

(c)

Fig. 3.55 Torsional deformations.

(a) The angle of twist ¢. (b) Undeformed
portion of shaft of radius p. (c) Deformed
portion of shaft; angle of twist ¢ and
shearing strain y share same arc

length AA".

Fig. 3.56 Shaft elements with only
shearing stresses or normal stresses.




Fig. 3.57 Torque applied to fixed end shaft
resulting in angle of twist ¢.

Tc/J, with two of the normal stresses being tensile and two compressive.
This explains why in a torsion test ductile materials, which generally fail
in shear, will break along a plane perpendicular to the axis of the speci-
men, while brittle materials, which are weaker in tension than in shear,
will break along surfaces forming a 45° angle with that axis.

Angle of Twist
Within the elastic range, the angle of twist ¢ of a circular shaft is propor-
tional to the torque T applied to it (Fig. 3.57).

TL
¢ = G (units of radians) (3.15)

where L = length of shaft
J = polar moment of inertia of cross section
G = modulus of rigidity of material
¢ is in radians

If the shaft is subjected to torques at locations other than its ends or con-
sists of several parts of various cross sections and possibly of different
materials, the angle of twist of the shaft must be expressed as the algebraic
sum of the angles of twist of its component parts:

TL;
3.16
G, (3.16)

¢= 275,

When both ends of a shaft BE rotate (Fig. 3.58), the angle of twist is
equal to the difference between the angles of rotation ¢ and ¢, of its ends.
When two shafts AD and BE are connected by gears A and B, the torques
applied by gear A on shaft AD and gear B on shaft BE are directly propor-
tional to the radii 7, and ry of the two gears—since the forces applied on
each other by the gear teeth at C are equal and opposite. On the other

hand, the angles ¢, and ¢ are inversely proportional to r, and rz—since
the arcs CC' and CC" described by the gear teeth are equal.

Fig. 3.58 Angles of twist at £, gear B, and gear A
for a meshed-gear system.




Statically Indeterminate Shafts

If the reactions at the supports of a shaft or the internal torques cannot be
determined from statics alone, the shaft is said to be statically indetermi-
nate. The equilibrium equations obtained from free-body diagrams must
be complemented by relationships involving deformations of the shaft
and obtained from the geometry of the problem.

Transmission Shafts
For the design of transmission shafts, the power P transmitted is

P =27 fT (3.19)

where T is the torque exerted at each end of the shaft and fthe frequency
or speed of rotation of the shaft. The unit of frequency is the revolution
per second (s™') or hertz (Hz). If SI units are used, T is expressed in
newton-meters (N-m) and P in watts (W). If U.S. customary units are used,
T is expressed in lb-ft or 1b-in., and P in ft-1b/s or in-lb/s; the power can
be converted into horsepower (hp) through

1 hp = 550 ft-Ib/s = 6600 in-lb/s

To design a shaft to transmit a given power P at a frequency f, solve
Eq. (3.19) for T. This value and the maximum allowable value of 7 for the
material can be used with Eq. (3.9) to determine the required shaft
diameter.

Stress Concentrations

Stress concentrations in circular shafts result from an abrupt change in the
diameter of a shaft and can be reduced through the use of a fillet (Fig. 3.59).
The maximum value of the shearing stress at the fillet is

(3.22)

where the stress Tc/] is computed for the smaller-diameter shaft and K is
a stress concentration factor.

Plastic Deformations

Even when Hooke’s law does not apply, the distribution of strains in a circu-
lar shaft is always linear. If the shearing-stress-strain diagram for the material
is known, it is possible to plot the shearing stress 7 against the distance p
from the axis of the shaft for any given value of 7,,,, (Fig. 3.60). Summing the
torque of annular elements of radius p and thickness dp, the torque T is

T= J p1(2mp dp) = 2'7TJ' p*1 dp (3.23)
0 0

where 7 is the function of p plotted in Fig. 3.60.

Modulus of Rupture

An important value of the torque is the ultimate torque Ty, which causes
failure of the shaft. This can be determined either experimentally, or by
Eq. (3.22) with 7, chosen equal to the ultimate shearing stress 7, of the

Fig. 3.59 Shafts having two different diameters
with a fillet at the junction.

Fig. 3.60 Shearing stress distribution for shaft
with nonlinear stress-strain response.




Fig. 3.61 Stress distribution in circular
shaft at failure.

Timax <TY

material. From Ty, and assuming a linear stress distribution (Fig 3.61), we
determined the corresponding fictitious stress Ry = Tyc/J, known as the
modulus of rupture in torsion.

Solid Shaft of Elastoplastic Material

In a solid circular shaft made of an elastoplastic material, as long as 7,
does not exceed the yield strength 7y of the material, the stress distribu-
tion across a section of the shaft is linear (Fig. 3.62a). The torque Ty cor-
responding to T, = Ty (Fig. 3.62b) is the maximum elastic torque. For a
solid circular shaft of radius c,

Ty = smcTy (3.26)

As the torque increases, a plastic region develops in the shaft around an
elastic core of radius py. The torque T corresponding to a given value of

pyis

4 3]
T= gTy<1 - Z?) (3.29)

Fig. 3.62 Stress distributions for elastoplastic shaft at different stages of
loading: (a) elastic, (b) impending yield, (c) partially yielded, and (d) fully yielded.

| |

0 Py 2¢y 3y ¢
Fig. 3.63 Load-displacement relation for
elastoplastic material.

As py approaches zero, the torque approaches a limiting value T, called
the plastic torque:

Iy =

&
3

Ty (3.30)

Plotting the torque T against the angle of twist ¢ of a solid circular shaft
(Fig. 3.63), the segment of straight line 0Y defined by Eq. (3.15) and fol-
lowed by a curve approaching the straight line T = T, is

Permanent Deformation and Residual Stresses

Loading a circular shaft beyond the onset of yield and unloading it results
in a permanent deformation characterized by the angle of twist ¢, = ¢ — ¢/,
where ¢ corresponds to the loading phase described in the previous para-
graph, and ¢’ to the unloading phase represented by a straight line in




¢

Fig. 3.64 Torque-angle of twist response for
loading past yield and, followed by unloading.

Fig. 3.64. Residual stresses in the shaft can be determined by adding the
maximum stresses reached during the loading phase and the reverse
stresses corresponding to the unloading phase.

Torsion of Noncircular Members

The equations for the distribution of strain and stress in circular shafts are
based on the fact that due to the axisymmetry of these members, cross
sections remain plane and undistorted. This property does not hold for
noncircular members, such as the square bar of Fig. 3.65.

Fig. 3.65 Twisting a shaft of square
cross section.

Bars of Rectangular Cross Section

For straight bars with a uniform rectangular cross section (Fig. 3.66), the
maximum shearing stress occurs along the center line of the wider face of
the bar. The membrane analogy can be used to visualize the distribution
of stresses in a noncircular member.

Thin-Walled Hollow Shafts

The shearing stress in noncircular thin-walled hollow shafts is parallel to
the wall surface and varies both across and along the wall cross section.
Denoting the average value of the shearing stress 7, computed across the
wall at a given point of the cross section, and by ¢ the thickness of the wall
at that point (Fig. 3.67), we demonstrated that the product g = ¢, called
the shear flow, is constant along the cross section.

The average shearing stress 7 at any given point of the cross section is

T

7=
210

(3.50)

Fig. 3.66 Shaft with rectangular cross section,
showing the location of maximum shearing stress.

Fig. 3.67 Area for shear flow.




Review Problems

3.151 A steel pipe of 12-in. outer diameter is fabricated from j-in.-thick
plate by welding along a helix that forms an angle of 45° with a
plane parallel to the axis of the pipe. Knowing that the maximum
allowable tensile stress in the weld is 12 ksi, determine the largest
torque that can be applied to the pipe.

3.152 A torque of magnitude 7 = 120 N-m is applied to shaft AB of the
gear train shown. Knowing that the allowable shearing stress is
75 MPa in each of the three solid shafts, determine the required
diameter of (a) shaft AB, (b) shaft CD, (c) shaft EF.

75 mm

Fig. P3.151
30 mm

25 mm
Fig. P3.152

3.153 Two solid shafts are connected by gears as shown. Knowing
that G = 77.2 GPa for each shaft, determine the angle through
which end A rotates when T, = 1200 N-m.

Fig. P3.153




3.154 In the bevel-gear system shown, @ = 18.43°. Knowing that the
allowable shearing stress is 8 ksi in each shaft and that the system
is in equilibrium, determine the largest torque T, that can be
applied at A.

0.625 in.

TB
Fig. P3.154

The design specifications for the gear-and-shaft system shown
require that the same diameter be used for both shafts and
that the angle through which pulley A will rotate when sub-
jected to a 2-kip-in. torque T, while pulley D is held fixed will
not exceed 7.5°. Determine the required diameter of the shafts
if both shafts are made of a steel with G = 11.2 X 10° psi and
Ta = 12 ksi.

Fig. P3.155 72 mm

54 mm

3.156 A torque of magnitude 7 = 4 kN-m is applied at end A of the
composite shaft shown. Knowing that the modulus of rigidity is
77.2 GPa for the steel and 27 GPa for the aluminum, determine
(a) the maximum shearing stress in the steel core, (b) the maxi- Aluminum jacket
mum shearing stress in the aluminum jacket, (¢) the angle of
twist at A. Fig. P3.156

P
A \ |
Steel core —<7 &




3.157 Ends A and D of the two solid steel shafts AB and CD are fixed,
while ends B and C are connected to gears as shown. Knowing
that the allowable shearing stress is 50 MPa in each shaft, deter-
mine the largest torque T that can be applied to gear B.

Fig. P3.157

3.158 As the hollow steel shaft shown rotates at 180 rpm, a strobo-
scopic measurement indicates that the angle of twist of the shaft
is 3°. Knowing that G = 77.2 GPa, determine (a) the power being
transmitted, (b) the maximum shearing stress in the shaft.

25 mm
Fig. P3.158

Knowing that the allowable shearing stress is 8 ksi for the
stepped shaft shown, determine the magnitude T of the largest
torque that can be transmitted by the shaft when the radius of
the fillet is (a) r = < in., (b) r = L in.

Fig. P3.159




3.160 A hollow brass shaft has the cross section shown. Knowing that
the shearing stress must not exceed 12 ksi and neglecting the
effect of stress concentrations, determine the largest torque that
can be applied to the shaft.

0.2 in.
L-1.5 in.
B
\0.2 in.

A
|
0.51in. — |60'2 in. »I ~0.2 in.

5 in.

Fig. P3.160

3.161 Two solid brass rods AB and CD are brazed to a brass sleeve EF.
Determine the ratio d,/d; for which the same maximum shearing
stress occurs in the rods and in the sleeve.

Fig. P3.161

3.162 The shaft AB is made of a material that is elastoplastic with
Ty = 12.5ksi and G = 4 X 10° psi. For the loading shown, deter-
mine (a) the radius of the elastic core of the shaft, (b) the angle
of twist of the shaft.

B
6 ft \J T = 3 kip - in.

Fig. P3.162




Computer Problems

The following problems are designed to be solved with a computer. Write
each program so that it can be used with either SI or U.S. Customary units.

3.C1 Shaft AB consists of n homogeneous cylindrical elements, which
can be solid or hollow. Its end A is fixed, while its end B is free, and it is
subjected to the loading shown. The length of element i is denoted by L;
its outer diameter by ODj, its inner diameter by ID;, its modulus of rigidity
by G; and the torque applied to its right end by T, the magnitude T; of
this torque being assumed to be positive if T; is counterclockwise from end
B and negative otherwise. (Note that ID; = 0 if the element is solid.) (a)
Write a computer program that can be used to determine the maximum
shearing stress in each element, the angle of twist of each element, and
the angle of twist of the entire shaft. (b) Use this program to solve Probs.
3.35, 3.36, and 3.38.

Element n

Element 1
/

@,

T,
Fig. P3.C1

3.C2 The assembly shown consists of n cylindrical shafts, which can be
solid or hollow, connected by gears and supported by brackets (not
shown). End A, of the first shaft is free and is subjected to a torque T,
while end B,, of the last shaft is fixed. The length of shaft A;B; is L; its outer
diameter ODj, its inner diameter ID,, and its modulus of rigidity G;. (Note
that ID; = 0 if the element is solid.) The radius of gear 4; is a; and the
radius of gear B; is b;. (a) Write a computer program that can be used to
determine the maximum shearing stress in each shaft, the angle of twist
of each shaft, and the angle through which end A, rotates. (b) Use this
program to solve Probs. 3.41 and 3.44.




3.C3 Shaft AB consists of n homogeneous cylindrical elements, which
can be solid or hollow. Both of its ends are fixed, and it is subjected to the
loading shown. The length of element i is denoted by L, its outer diameter
by OD;, its inner diameter by ID;, its modulus of rigidity by G; and the
torque applied to its right end by T;, the magnitude 7T; of this torque being
assumed to be positive if T; is observed as counterclockwise from end B
and negative otherwise. Note that ID; = 0 if the element is solid and also
that 7} = 0. Write a computer program that can be used to determine the
reactions at A and B, the maximum shearing stress in each element, and
the angle of twist of each element. Use this program (a) to solve Prob. 3.55
and (b) to determine the maximum shearing stress in the shaft of Sample
Problem 3.7.

Element n

Element 1

Fig. P3.C3

3.4 The homogeneous, solid cylindrical shaft AB has a length L, a
diameter d, a modulus of rigidity G, and a yield strength . It is subjected
to a torque T that is gradually increased from zero until the angle of twist
of the shaft has reached a maximum value ¢,, and then decreased back
to zero. (a) Write a computer program that, for each of 16 values of ¢,,
equally spaced over a range extending from 0 to a value 3 times as large
as the angle of twist at the onset of yield, can be used to determine the
maximum value T,, of the torque, the radius of the elastic core, the maxi-
mum shearing stress, the permanent twist, and the residual shearing
stress both at the surface of the shaft and at the interface of the elastic core
and the plastic region. (b) Use this program to obtain approximate answers
to Probs. 3.114, 3.115, 3.116.




3.C5 The exact expression is given in Prob. 3.64 for the angle of twist of
the solid tapered shaft AB when a torque T is applied as shown. Derive an
approximate expression for the angle of twist by replacing the tapered
shaft by n cylindrical shafts of equal length and of radius r; = (n + i — %)
(¢/n), where i = 1, 2, .. ., n. Using for T, L, G, and c values of your choice,
determine the percentage error in the approximate expression when
(@)n =4, (b)n =8, (c)n =20, and (d) n = 100.

Fig. P3.C5

3.C6 A torque T is applied as shown to the long, hollow, tapered shaft
AB of uniform thickness ¢. Derive an approximate expression for the angle
of twist by replacing the tapered shaft by n cylindrical rings of equal length
and of radius r; = (n + i — 3)(c/n), where i = 1, 2, . . ., n. Using for T, L,
G, ¢, and t values of your choice, determine the percentage error in the
approximate expression when (a) n = 4, (b) n =8, (c) n = 20, and
(d) n = 100.
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Pure Bending

The normal stresses and the curvature resulting from pure
bending, such as those developed in the center portion of
the barbell shown, will be studied in this chapter.

Objectives
In this chapter, you will:

Introduce students to bending behavior

Define the deformations, strains, and normal stresses in beams
subject to pure bending

Describe the behavior of composite beams made of more than
one material

Review stress concentrations and how they are included in the
design of beams

Study plastic deformations to determine how to evaluate beams
made of elastoplastic materials

Analyze members subject to eccentric axial loading, involving both
axial stresses and bending stresses

Review beams subject to unsymmetric bending, i.e,, where bend-
ing does not occur in a plane of symmetry

Study bending of curved members
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4.1 SYMMETRIC MEMBERS
IN PURE BENDING

4.1A Internal moment and stress
relations

4.1B Deformations

4.2 STRESSES AND
DEFORMATIONS IN THE
ELASTIC RANGE

4.3 DEFORMATIONS IN A
TRANSVERSE CROSS
SECTION

4.4 MEMBERS MADE OF
COMPOSITE MATERIALS

4.5 STRESS
CONCENTRATIONS

*4.6 PLASTIC DEFORMATIONS

*4.6A Members Made of Elastoplastic
Material

*4.6B Members with a Single Plane of
Symmetry

*4.6C Residual Stresses

4.7 ECCENTRIC AXIAL
LOADING IN A PLANE OF
SYMMETRY

4.8 UNSYMMETRIC BENDING
ANALYSIS

4.9 GENERAL CASE OF
ECCENTRIC AXIAL
LOADING ANALYSIS

*4.10 CURVED MEMBERS
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(b)
Fig. 4.2 (a) Free-body diagram of the barbell
pictured in the chapter opening photo and

(b) free-body diagram of the center portion of
the bar, which is in pure bending.

Introduction

This chapter and the following two analyze the stresses and strains in pris-
matic members subjected to bending. Bending is a major concept used in
the design of many machine and structural components, such as beams
and girders.

This chapter is devoted to the analysis of prismatic members sub-
jected to equal and opposite couples M and M’ acting in the same longi-
tudinal plane. Such members are said to be in pure bending. The members
are assumed to possess a plane of symmetry with the couples M and M’
acting in that plane (Fig. 4.1).

Fig. 41 Member in pure bending

An example of pure bending is provided by the bar of a typical bar-
bell as it is held overhead by a weight lifter as shown in the opening photo
for this chapter. The bar carries equal weights at equal distances from the
hands of the weight lifter. Because of the symmetry of the free-body dia-
gram of the bar (Fig. 4.2a), the reactions at the hands must be equal and
opposite to the weights. Therefore, as far as the middle portion CD of the
bar is concerned, the weights and the reactions can be replaced by two
equal and opposite 960-1b-in. couples (Fig. 4.2b), showing that the middle
portion of the bar is in pure bending. A similar analysis of a small sport
buggy (Photo 4.1) shows that the axle is in pure bending between the two
points where it is attached to the frame.

The results obtained from the direct applications of pure bending
will be used in the analysis of other types of loadings, such as eccentric
axial loadings and transverse loadings.

Photo 4.1
rear axle of the sport buggy is in pure
bending.

The center portion of the



Photo 4.2 shows a 12-in. steel bar clamp used to exert 150-1b forces
on two pieces of lumber as they are being glued together. Figure 4.3a
shows the equal and opposite forces exerted by the lumber on the clamp.
These forces result in an eccentric loading of the straight portion of the
clamp. In Fig. 4.3b, a section CC' has been passed through the clamp and
a free-body diagram has been drawn of the upper half of the clamp. The
internal forces in the section are equivalent to a 150-1b axial tensile force
P and a 750-1b-in. couple M. By combining our knowledge of the stresses
under a centric load and the results of an analysis of stresses in pure bend-
ing, the distribution of stresses under an eccentric load is obtained. This
is discussed in Sec. 4.8.

|<—5in.“
| )
1P' =1501b

TP’: 150 1b
c o c o

Y1/ M=7501b-in.
*P =150 1b

I«—Sm.“

P=1501b

X
(a) )

Fig. 4.3 (a) Free-body diagram of a clamp, (b) free-body diagram of the
upper portion of the clamp.

The study of pure bending plays an essential role in the study of
beams (i.e., prismatic members) subjected to various types of transverse
loads. Consider a cantilever beam AB supporting a concentrated load P at
its free end (Fig. 4.4a). If a section is passed through C at a distance x from
A, the free-body diagram of AC (Fig. 4.4b) shows that the internal forces
in the section consist of a force P’ equal and opposite to P and a couple
M of magnitude M = Px. The distribution of normal stresses in the section
can be obtained from the couple M as if the beam were in pure bending.
The shearing stresses in the section depend on the force P’, and their
distribution over a given section is discussed in Chap. 6.

The first part of this chapter covers the analysis of stresses and
deformations caused by pure bending in a homogeneous member pos-
sessing a plane of symmetry and made of a material following Hooke’s
law. The methods of statics are used in Sec. 4.1A to derive three funda-
mental equations which must be satisfied by the normal stresses in any
given cross section of the member. In Sec. 4.1B, it will be proved that trans-
verse sections remain plane in a member subjected to pure bending, while
in Sec. 4.2, formulas are developed to determine the normal stresses and
radius of curvature for that member within the elastic range.

Sec. 4.4 covers the stresses and deformations in composite members
made of more than one material, such as reinforced-concrete beams, which
utilize the best features of steel and concrete and are extensively used in the

Introduction
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Photo 4.2 Clamp used to glue lumber pieces
together.

Y C
)M
A T

P’
(b)

Fig. 4.4 (a) Cantilevered beam with end loading.

(b) As portion AC shows, beam is not in pure

bending.
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construction of buildings and bridges. You will learn to draw a transformed
section representing a member made of a homogeneous material that
undergoes the same deformations as the composite member under the
same loading. The transformed section is used to find the stresses and
deformations in the original composite member. Section 4.5 is devoted to
the determination of stress concentrations occurring where the cross section
of a member undergoes a sudden change.

Section 4.6 covers plastic deformations, where the members are
made of a material that does not follow Hooke’s law and are subjected to
bending. The stresses and deformations in members made of an elasto-
plastic material are discussed in Sec. 4.6A. Starting with the maximum
elastic moment My, which corresponds to the onset of yield, you will con-
sider the effects of increasingly larger moments until the plastic moment
M, is reached. You will also determine the permanent deformations and
residual stresses that result from such loadings (Sec. 4.6C).

In Sec. 4.7, you will analyze an eccentric axial loading in a plane of
symmetry (Fig. 4.3) by superposing the stresses due to pure bending and
a centric axial loading.

The study of the bending of prismatic members concludes with the
analysis of unsymmetric bending (Sec. 4.8), and the study of the general case
of eccentric axial loading (Sec. 4.9). The final section of this chapter is
devoted to the determination of the stresses in curved members (Sec. 4.10).

4.1 SYMMETRIC MEMBERS IN
PURE BENDING

4.1A Internal Moment and Stress
Relations

Consider a prismatic member AB possessing a plane of symmetry and
subjected to equal and opposite couples M and M’ acting in that plane
(Fig. 4.5a). If a section is passed through the member AB at some arbitrary
point C, the conditions of equilibrium of the portion AC of the member
require the internal forces in the section to be equivalent to the couple M
(Fig. 4.5b). The moment M of that couple is the bending moment in the
section. Following the usual convention, a positive sign is assigned to M
when the member is bent as shown in Fig. 4.5a (i.e., when the concavity
of the beam faces upward) and a negative sign otherwise.

Denoting by o, the normal stress at a given point of the cross section
and by 7., and 7, the components of the shearing stress, we express that

M’

(a) b)

Fig. 4.5 (a) A member in a state of pure bending. (b) Any intermediate
portion of AB will also be in pure bending.



M

IA

Fig. 4.6 Stresses resulting from pure bending moment M.

the system of the elementary internal forces exerted on the section is
equivalent to the couple M (Fig. 4.6).

Recall from statics that a couple M actually consists of two equal and
opposite forces. The sum of the components of these forces in any direc-
tion is therefore equal to zero. Moreover, the moment of the couple is the
same about any axis perpendicular to its plane and is zero about any axis
contained in that plane. Selecting arbitrarily the z axis shown in Fig. 4.6,
the equivalence of the elementary internal forces and the couple M is
expressed by writing that the sums of the components and moments of
the forces are equal to the corresponding components and moments of
the couple M:

X components: Jo.dA =0 (4.1)
Moments about y axis: Jzo, dA =0 4.2)
Moments about z axis: [(—yo, dA) =M (4.3)

Three additional equations could be obtained by setting equal to zero the
sums of the y components, z components, and moments about the x axis,
but these equations would involve only the components of the shearing
stress and, as you will see in the next section, the components of the
shearing stress are both equal to zero.

Two remarks should be made at this point:

1. The minus sign in Eq. (4.3) is due to the fact that a tensile stress
(o, > 0) leads to a negative moment (clockwise) of the normal force
o, dA about the z axis.

2. Equation (4.2) could have been anticipated, since the application of
couples in the plane of symmetry of member AB result in a distribu-
tion of normal stresses symmetric about the y axis.

Once more, note that the actual distribution of stresses in a given
cross section cannot be determined from statics alone. It is statically inde-
terminate and may be obtained only by analyzing the deformations
produced in the member.

4.1B Deformations

We will now analyze the deformations of a prismatic member possessing
a plane of symmetry. Its ends are subjected to equal and opposite couples
M and M’ acting in the plane of symmetry. The member will bend under
the action of the couples, but will remain symmetric with respect to that
plane (Fig. 4.7). Moreover, since the bending moment M is the same in

4.1 Symmetric Members in pure bending

Fig. 4.7 Initially straight members in pure
bending deform into a circular arc.
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D

E

E’

any cross section, the member will bend uniformly. Thus, the line AB
along the upper face of the member intersecting the plane of the couples
will have a constant curvature. In other words, the line AB will be trans-
formed into a circle of center C, as will the line A’B" along the lower face
of the member. Note that the line AB will decrease in length when the
member is bent (i.e., when M > 0), while A’B" will become longer.

Next we will prove that any cross section perpendicular to the axis
of the member remains plane, and that the plane of the section passes
through C. If this were not the case, we could find a point E of the original
section through D (Fig. 4.8a) which, after the member has been bent,
would not lie in the plane perpendicular to the plane of symmetry that
contains line CD (Fig. 4.8b). But, because of the symmetry of the member,
there would be another point E’ that would be transformed exactly in the
same way. Let us assume that, after the beam has been bent, both points
would be located to the left of the plane defined by CD, as shown in
Fig. 4.8b. Since the bending moment M is the same throughout the mem-
ber, a similar situation would prevail in any other cross section, and the

Fig. 4.8 (a) Two points in a cross section at
D that is perpendicular to the member’s axis.
(b) Considering the possibility that these points

points corresponding to E and E’ would also move to the left. Thus, an
observer at A would conclude that the loading causes the points E and E’

do not remain in the cross section after

bending.

z

(1;)

M

in the various cross sections to move forward (toward the observer). But
an observer at B, to whom the loading looks the same, and who observes
the points E and E’ in the same positions (except that they are now
inverted) would reach the opposite conclusion. This inconsistency leads
us to conclude that E and E’ will lie in the plane defined by CD and, there-
fore, that the section remains plane and passes through C. We should
note, however, that this discussion does not rule out the possibility of
deformations within the plane of the section (see Sec. 4.3).

Suppose that the member is divided into a large number of small
cubic elements with faces respectively parallel to the three coordinate
planes. The property we have established requires that these elements be
transformed as shown in Fig. 4.9 when the member is subjected to the
couples M and M'. Since all the faces represented in the two projections
of Fig. 4.9 are at 90° to each other, we conclude that y,, = y,, = 0 and,
thus, that 7,, = 7,, = 0. Regarding the three stress components that we
have not yet discussed, namely, o, o, and 7,,, we note that they must be
zero on the surface of the member. Since, on the other hand, the deforma-
tions involved do not require any interaction between the elements of a
given transverse cross section, we can assume that these three stress com-
ponents are equal to zero throughout the member. This assumption is
verified, both from experimental evidence and from the theory of elastic-
ity, for slender members undergoing small deformations.” We conclude
that the only nonzero stress component exerted on any of the small cubic
elements considered here is the normal component o,. Thus, at any point
of a slender member in pure bending, we have a state of uniaxial stress.
Recalling that, for M > 0, lines AB and A'B’ are observed, respectively, to
decrease and increase in length, we note that the strain €, and the stress
o, are negative in the upper portion of the member (compression) and
positive in the lower portion (tension).

It follows from above that a surface parallel to the upper and lower

Fig. 4.9 Member subject to pure bending shown
in two views. (a) Longitudinal, vertical section
(plane of symmetry). (b) Longitudinal, horizontal
section.

faces of the member must exist where €, and o, are zero. This surface is

TAlso see Prob. 4.32.
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(a) Longitudinal, vertical section (b) Transverse section

(plane of symmetry)

Fig. 4.10 Establishment of neutral axis. (a) Longitudinal-vertical view.
(b) Transverse section at origin.

called the neutral surface. The neutral surface intersects the plane of sym-
metry along an arc of circle DE (Fig. 4.10a), and it intersects a transverse
section along a straight line called the neutral axis of the section
(Fig. 4.10b). The origin of coordinates is now selected on the neutral sur-
face—rather than on the lower face of the member—so that the distance
from any point to the neutral surface is measured by its coordinate y.

Denoting by p the radius of arc DE (Fig. 4.10a), by 6 the central
angle corresponding to DE, and observing that the length of DE is equal
to the length L of the undeformed member, we write

L = p6 (4.9)

Considering the arc JK located at a distance y above the neutral surface,
its length L’ is

L' =(p—ye (4.5)
Since the original length of arc JK was equal to L, the deformation of JK is
6=L -1 (4.6)

or, substituting from Egs. (4.4) and (4.5) into Eq. (4.6),
8= —y)0—po=—y0 @7

The longitudinal strain €, in the elements of JK is obtained by dividing 6
by the original length L of JK. Write
) —
S
L pb

or

(4.8)

€. = —

Y
p

The minus sign is due to the fact that it is assumed the bending moment
is positive, and thus the beam is concave upward.

4.1

Symmetric Members in pure bending
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Neutral surface a
s

:

Fig. 4.11 Bending stresses vary linearly with
distance from the neutral axis.

Because of the requirement that transverse sections remain plane,
identical deformations occur in all planes parallel to the plane of sym-
metry. Thus, the value of the strain given by Eq. (4.8) is valid anywhere,
and the longitudinal normal strain €, varies linearly with the distance y
from the neutral surface.

The strain €, reaches its maximum absolute value when y is largest.
Denoting the largest distance from the neutral surface as c (corresponding
to either the upper or the lower surface of the member) and the maximum
absolute value of the strain as €,,, we have

€n = — (4.9)

€. = — €, (4.10)

To compute the strain or stress at a given point of the member, we
must first locate the neutral surface in the member. To do this, we must
specify the stress-strain relation of the material used, as will be considered
in the next section.’

4.2 STRESSES AND
DEFORMATIONS IN THE
ELASTIC RANGE

We now consider the case when the bending moment M is such that the
normal stresses in the member remain below the yield strength oy. This
means that the stresses in the member remain below the proportional
limit and the elastic limit as well. There will be no permanent deforma-
tion, and Hooke’s law for uniaxial stress applies. Assuming the material to
be homogeneous and denoting its modulus of elasticity by E, the normal
stress in the longitudinal x direction is

o, = Ee, (a.11)

Recalling Eq. (4.10) and multiplying both members by E, we write

y
Ee, = — =(E
€x C( €m)
or using Eq. (4.11),

g, = — =0, (4.12)

where o, denotes the maximum absolute value of the stress. This result
shows that, in the elastic range, the normal stress varies linearly with the
distance from the neutral surface (Fig. 4.11).

Let us note that, if the member possesses both a vertical and a horizontal plane of
symmetry (e.g., a member with a rectangular cross section) and the stress-strain curve
is the same in tension and compression, the neutral surface will coincide with the plane
of symmetry (see Sec. 4.6).



Note that neither the location of the neutral surface nor the maximum
value o, of the stress have yet to be determined. Both can be found using
Eqgs. (4.1) and (4.3). Substituting for o, from Eq. (4.12) into Eq. (4.1), write

Y T
JO‘X dA = J(—*am)dA = —— JydA =0
c c

J ydA =0 (4.13)

from which

This equation shows that the first moment of the cross section about its
neutral axis must be zero.” Thus, for a member subjected to pure bending
and as long as the stresses remain in the elastic range, the neutral axis
passes through the centroid of the section.

Recall Eq. (4.3), which was developed with respect to an arbitrary
horizontal z axis:

J(—ycrx dA) =M 4.3)

Specifying that the z axis coincides with the neutral axis of the cross sec-
tion, substitute o, from Eq. (4.12) into Eq. (4.3):

[n(Low)aa-u

% J y*dA = M (4.149)

or

Recall that for pure bending the neutral axis passes through the centroid
of the cross section and I is the moment of inertia or second moment of
area of the cross section with respect to a centroidal axis perpendicular to
the plane of the couple M. Solving Eq. (4.14) for 7,

_ Me

I (4.15)

Om

Substituting for o, from Eq. (4.15) into Eq. (4.12), we obtain the
normal stress o, at any distance y from the neutral axis:

My

: (4.16)

Oy =

Equations (4.15) and (4.16) are called the elastic flexure formulas, and the
normal stress o, caused by the bending or “flexing” of the member is
often referred to as the flexural stress. The stress is compressive (o, < 0)
above the neutral axis (y > 0) when the bending moment M is positive
and tensile (o, > 0) when M is negative.

See Appendix A for a discussion of the moments of areas.
*Recall that the bending moment is assumed to be positive. If the bending moment is
negative, M should be replaced in Eq. (4.15) by its absolute value |M|.

4.2 Stresses and Deformations in the Elastic Range
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A =24in?

h = 6in. h = 8in.

b =4in. I‘—’I
b = 3in.
Fig. 4.12 Wood beam cross sections.

Returning to Eq. (4.15), the ratio I/c depends only on the geometry
of the cross section. This ratio is defined as the elastic section modulus S,
where

I
Elastic section modulus = S = . (4.17)
Substituting S for I/c into Eq. (4.15), this equation in alternative form is

M
Oy = E (4.18)

Since the maximum stress o, is inversely proportional to the elastic sec-
tion modulus S, beams should be designed with as large a value of S as is
practical. For example, a wooden beam with a rectangular cross section
of width b and depth & has

I bi’

=== =ilpn*=1A 4.1
S = w2 1ph? = LAn (4.19)

where A is the cross-sectional area of the beam. For two beams with the
same cross-sectional area A (Fig. 4.12), the beam with the larger depth h
will have the larger section modulus and will be the more effective in
resisting bending."

In the case of structural steel (Photo 4.3), American standard beams
(S-beams) and wide-flange beams (W-beams) are preferred to other

Photo 4.3 Wide-flange steel beams are used in the
frame of this building.

"However, large values of the ratio h/b could result in lateral instability of the beam.



shapes because a large portion of their cross section is located far from
the neutral axis (Fig. 4.13). Thus, for a given cross-sectional area and a
given depth, their design provides large values of I and S. Values of the
elastic section modulus of commonly manufactured beams can be
obtained from tables listing the various geometric properties of such
beams. To determine the maximum stress o, in a given section of a stan-
dard beam, the engineer needs only to read the value of the elastic section

modulus S in such a table and divide
section by S.

The deformation of the member caused by the bending moment M

4.2 Stresses and Deformations in the Elastic Range

the bending moment M in the
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Fig. 4.13 Two types of steel beam cross sections:

is measured by the curvature of the neutral surface. The curvature is beam (W).
defined as the reciprocal of the radius of curvature p and can be obtained

by solving Eq. (4.9) for 1/p:

(4.20)

In the elastic range, €,, = o,,/E. Substituting for €,, into Eq. (4.20) and

recalling Eq. (4.15), write

or

(a.21)

(a) American Standard beam (S) (b) wide-flange

0.8 in.

M’ M*‘ ’f

( )=
2.5 in.
4

-

1.25in.

¢ |

2.5 in. ~Ca
N. A.

(b)
Fig. 4.14 (a) Bar of rectangular
cross-section in pure bending. (b)
Centroid and dimensions of cross section.

Concept Application 4.1

A steel bar of 0.8 X 2.5-in. rectangular cross section is subjected to two
equal and opposite couples acting in the vertical plane of symmetry
of the bar (Fig. 4.14a). Determine the value of the bending moment M
that causes the bar to yield. Assume oy = 36 ksi.

Since the neutral axis must pass through the centroid C of the
cross section, ¢ = 1.25 in. (Fig. 4.14b). On the other hand, the centroi-
dal moment of inertia of the rectangular cross section is

I=3bh* =5(0.8in.)(2.5in.)’ = 1.042 in*

Solving Eq. (4.15) for M, and substituting the above data,

I 1.042 in* .
M = =0,, = ———(36 ksi)
c 1.25in.
M = 30 kip-in.
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(b)
Fig. 4.15 (a) Semi-circular

section of rod in pure bending.

(b) Centroid and neutral axis of
cross section.

Concept Application 4.2

An aluminum rod with a semicircular cross section of radius r = 12 mm
(Fig. 4.15a) is bent into the shape of a circular arc of mean radius p =
2.5 m. Knowing that the flat face of the rod is turned toward the center
of curvature of the arc, determine the maximum tensile and compres-
sive stress in the rod. Use E = 70 GPa.

We can use Equation (4.21) to determine the bending moment M
corresponding to the given radius of curvature p and then Eq. (4.15)
to determine o ,,. However, it is simpler to use Eq. (4.9) to determine
€,, and Hooke’s law to obtain o,.

The ordinate y of the centroid C of the semicircular cross section is

4r  4(12mm)

y:3777 37

= 5.093 mm

The neutral axis passes through C (Fig. 4.15b), and the distance c to
the point of the cross section farthest away from the neutral axis is

c=r—y=12mm — 5.093 mm = 6.907 mm
Using Eq. (4.9),

c 6907 X 10°m L
€p=—=—""—""—""=2763 X10
P 25m

and applying Hooke’s law,
o, = Ee,, = (70 X 10° Pa)(2.763 X 10~°) = 193.4 MPa

Since this side of the rod faces away from the center of curvature, the
stress obtained is a tensile stress. The maximum compressive stress
occurs on the flat side of the rod. Using the fact that the stress is pro-
portional to the distance from the neutral axis, write

Yy 5.093mm

g = g -
e c " 6.907 mm

—142.6 MPa

(193.4 MPa)

4.3 DEFORMATIONS IN A
TRANSVERSE CROSS
SECTION

While Sec. 4.1b showed that the transverse cross section of a member in
pure bending remains plane, there is the possibility of deformations
within the plane of the section. Recall from Sec. 2.4 that elements in a state
of uniaxial stress, o, # 0, 0, = 0, = 0, are deformed in the transverse y



and z directions, as well as in the axial x direction. The normal strains €,
and €, depend upon Poisson’s ratio » for the material used and are
expressed as

€, = Ve €. = —VE,
or recalling Eq. (4.8),
v v
€, = e €, = e (4.22)
P P

These relationships show that the elements located above the neu-
tral surface (y > 0) expand in both the y and z directions, while the ele-
ments located below the neutral surface (y < 0) contract. In a member of
rectangular cross section, the expansion and contraction of the various
elements in the vertical direction will compensate, and no change in the
vertical dimension of the cross section will be observed. As far as the
deformations in the horizontal transverse z direction are concerned, how-
ever, the expansion of the elements located above the neutral surface and
the corresponding contraction of the elements located below that surface
will result in the various horizontal lines in the section being bent into
arcs of circle (Fig. 4.16). This situation is similar to that in a longitudinal
cross section. Comparing the second of Egs. (4.22) with Eq. (4.8), the neu-
tral axis of the transverse section is bent into a circle of radius p’ = p/v.
The center C’ of this circle is located below the neutral surface (assuming
M > 0) (i.e., on the side opposite to the center of curvature C). The recip-
rocal of the radius of curvature p’ represents the curvature of the trans-
verse cross section and is called the anticlastic curvature.

1
Anticlastic curvature = — = (4.23)

14
PP

In this section we will now discuss the manner in which the couples
M and M’ are applied to the member. If all transverse sections of the
member, from one end to the other, are to remain plane and free of shear-
ing stresses, the couples must be applied so that the ends remain plane
and free of shearing stresses. This can be accomplished by applying the
couples M and M’ to the member through the use of rigid and smooth
plates (Fig. 4.17). The forces exerted by the plates will be normal to the
end sections, and these sections, while remaining plane, will be free to
deform, as described earlier in this section.

Note that these loading conditions cannot be actually realized, since
they require each plate to exert tensile forces on the corresponding end
section below its neutral axis, while allowing the section to freely deform
in its own plane. The fact that the rigid-end-plates model of Fig. 4.17 can-
not be physically realized, however, does not detract from its importance,
which is to allow us to visualize the loading conditions corresponding to
the relationships in the preceding sections. Actual loading conditions may
differ appreciably from this idealized model. Using Saint-Venant’s princi-
ple, however, these relationships can be used to compute stresses in engi-
neering situations, as long as the section considered is not too close to the
points where the couples are applied.
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=<

Neutral P

. / p
surface

Neutral axis of
transverse section

Fig. 4.16 Deformation of a transverse cross
section.

Fig. 4.17 Pure bending with end plates to insure
plane sections remain plane.
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Sample Problem 4.1

The rectangular tube shown is extruded from an aluminum alloy for
which oy = 40 ksi, o7y = 60 ksi, and E = 10.6 X 10° psi. Neglecting the
effect of fillets, determine (a) the bending moment M for which the
factor of safety will be 3.00 and (b) the corresponding radius of curva-
ture of the tube.

M
\/’
t X
t STRATEGY: Use the factor of safety to determine the allowable
t stress. Then calculate the bending moment and radius of curvature
using Egs. (4.15) and (4.21).
o c* ! MODELING and ANALYSIS:
—~ N Moment of Inertia. Considering the cross-sectional area of the
S B tube as the difference between the two rectangles shown in Fig. 1 an
f be as the diff b h les shown in Fi d
f recalling the formula for the centroidal moment of inertia of a rect-
t t=0.25in. angle, write
[<~— 3.25 in. —

I=1(3.25)(5)° — 13(2.75)(4.5° I=12.97in*

=

¢l = 5_[ - 45 in. Allowable Stress. For a factor of safety of 3.00 and an ultimate
a stress of 60 ksi, we have

|
— ] oy 60ksi

3.25 in. 2.75 in. Tall = 7F.S. = 3.00

= 20 ksi

Fig. 1 Superposition for calculating

moment of inertia. Since o, < 0y, the tube remains in the elastic range and we can apply
the results of Sec. 4.2.

' a. Bending Moment. With ¢ = 3(5in.) = 2.5 in., we write

_Me 1 _ 12.97in*
Ty ¢7™~ 25in.

(20ksi) M = 103.8 kip-in.
b. Radius of Curvature. Using Fig. 2 and recalling that
M E = 10.6 X 10° psi, we substitute this value and the values obtained
for I and M into Eq. (4.21) and find

( 1 M 103.8 X 10° Ib-in.

=== =0.755 X 10 %in"!
p  EI  (10.6 X 10°psi)(12.97 in*)

p = 1325in. p = 110.4 ft

Fig. 2 Deformed shape
of beam.

N

(continued)
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REFLECT and THINK: Alternatively, we can calculate the radius of
curvature using Eq. (4.9). Since we know that the maximum stress is
0 a1 = 20 ksi, the maximum strain €,, can be determined, and Eq. (4.9)
gives

Oan 20 ksi =3 5 o
G, = = —————— =1.887 X 10 ’in./in.
1g 10.6 X 10° psi
c c 2.5in.
€ = — = — =
mTp P, T 1887 x 10 %in./in.

p = 1325in. p = 110.4 ft

N

M =3kN . -m
S

|<— 90 mm —»I

20 mm

40 mm

S
—

30 mm

Sample Problem 4.2

A cast-iron machine part is acted upon by the 3 kN-m couple shown.
Knowing that E = 165 GPa and neglecting the effect of fillets, deter-
mine (a) the maximum tensile and compressive stresses in the casting
and (b) the radius of curvature of the casting.

STRATEGY: The moment of inertia is determined, recognizing that
it is first necessary to determine the location of the neutral axis. Then
Eqgs. (4.15) and (4.21) are used to determine the stresses and radius of
curvature.

MODELING and ANALYSIS:

Centroid. Divide the T-shaped cross section into two rectangles
as shown in Fig. 1 and write

Area, mm? y, mm | yA, mm’®
1| (20)(90) = 1800 | 50 90 X 10° YA = ZyA
(40)(30) = 1200 | 20 24 X 10°  Y(3000) = 114 X 10°
SA = 3000 SyA =114 X 10° Y = 38mm

|<—90mm—>|
| = 1] Joomn

y; = 50 mm f C*S
j 40mm — |—e Y
A e .
75 = 20 mm |‘_’|
30 mm

Fig. 1 Composite areas for calculating centroid.
(continued)

/
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19 mm A ° il 22 mm
4——¢%= X'
18 mm _
—* Y = 38 mm
2

Fig. 2 Composite areas for calculating
moment of inertia.

Fig. 3 Radius of curvature is measured
to the centroid of the cross section.

A
"~ fey =0.022m
o %
c cg = 0.038 m
) o
/ Center of curvature

Centroidal Moment of Inertia. The parallel-axis theorem is
used to determine the moment of inertia of each rectangle (Fig. 2)
with respect to the axis x’' that passes through the centroid of the
composite section. Adding the moments of inertia of the rectangles,

write
S(I+ Ad?) = (bW + AdP)

= $5(90)(20)* + (90 X 20)(12)* + #(30)(40)> + (30 X 40)(18)

I,

868 X 10° mm*

I=2868 X 10 °m*

a. Maximum Tensile Stress. Since the applied couple bends the
casting downward, the center of curvature is located below the cross
section. The maximum tensile stress occurs at point A (Fig. 3), which
is farthest from the center of curvature.

Mc, (3kN-m)(0.022 m)
I 868 X 10 °m*

o, = +76.0 MPa

Ty —

Maximum Compressive Stress. This occurs at point B (Fig. 3):

Mcg  (3kN-m)(0.038 m)

op=—— =

= —131.3 MP
I 868 X 10 °m?* o 4

b. Radius of Curvature. From Eq. (4.21), using Fig. 3, we have

1 M _ 3kN-m
p EI (165GPa)(868 X 10 °m?)

=20.95 X 10 *m " p=47.7m

REFLECT and THINK: Note the T-section has a vertical plane of
symmetry, with the applied moment in that plane. Thus the couple
of this applied moment lies in the plane of symmetry, resulting in
symmetrical bending. Had the couple been in another plane, we
would have unsymmetric bending and thus would need to apply the

principles of Sec. 4.8.




Problems

4.1 and 4.2 Knowing that the couple shown acts in a vertical plane,
determine the stress at (a) point A, (b) point B.

20 40 20

— | |~

i

20

A
80 2 in.2 in.2 in

i "—'|H|<X> M = 25 kip - in.
B .

T 11.5 in.

121&

Dimensions in mm

Fig. P4.1

4.3 Using an allowable stress of 155 MPa, determine the largest
bending moment M that can be applied to the wide-flange beam
shown. Neglect the effect of fillets.

200 mm
12 mm

<
—>M-<S8 mm;{

12 mm

Fig. P4.3

4.4 Solve Prob. 4.3, assuming that the wide-flange beam is bent
about the y axis by a couple of moment M,

4.5 Using an allowable stress of 16 ksi, determine the largest couple
that can be applied to each pipe.

4.6 Knowing that the couple shown acts in a vertical plane, deter-
mine the stress at (a) point A, (b) point B.

rf 20 mm

= M=28kN . .m
o)
ISO mm (

A

|<— 120 mm —»l

Fig. P4.6




4.7 and 4.8 Two W4 X 13 rolled sections are we