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Preface

Every writer is surprised anew how, once a book has detached itself from him, it goes on to
live a life of its own; it is to him as though a part of an insect had come free and was now
going its own way.

Friedrich Nietzsche was an experienced writer and knew a thing or two about the
book publishing industry. A book is whatever the reader makes of it, and while for a
fiction book this is not a big issue (sometimes, it is quite the opposite), for a
scientific work, a skewed perception might be lethal. Of course, there are happy
exceptions to this rule, such as when these skewed perceptions are positive, and
benevolent readers find in the book something that was not even there to begin
with. Perhaps the most graphic example of this can be seen in a Sadi Carnot book,
where future generations managed to find a 2nd law of thermodynamics, something
about which Carnot himself did not, and could not, have the slightest idea. Even
Carnot’s statement:

…when a body has experienced any changes, and when after a certain number of trans-
formations it returns to precisely its original state, that is, to that state considered in respect
to density, to temperature, to mode of aggregation – let us suppose, I say, that this body is
found to contain the same quantities of heat absorbed or set free in these different trans-
formations are exactly compensated.

which is in blatant contradiction to thermodynamics and proves ineffectualH
dQ ¼ 0: most of our contemporaries are confident that the 2nd law originated in

Carnot’s book and that Clausius only developed it later on. Incidentally, Clausius
himself (the actual author of the 2nd law of thermodynamics), explained quite
reasonably the perceived priority of his predecessor: Carnot’s proponents had
simply never read his books. This really can happen, and quite often, too.

However, authors usually cannot rely on a reader’s benevolence. Very few
people were able to perform a “Sadi Carnot.” There are many more of those whose
works were unappreciated and/or forgotten. For example, when reading Anatoly
Vlasov’s neglected books, one can only wonder not at how deeply understood
physical kinetics can be, but rather how shallow modern textbooks are on this
subject.
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What can the author do to prepare their dear child for an independent journey,
where the parent can support them in neither word nor deed? Apparently, the only
possible way is to equip them with a special travel bag which contains weapons to
counter threats and accusations, even if some of these weapons seem just too bizarre
(like in the old Australian movie “Around The World in Eighty Days”).

The role of the traveling bag is played by this preface. First of all, there is a
credential letter, the book’s “passport,” explaining what it should be, and more
importantly, what it should not. Besides this, there is a tuning fork to establish the
key for its correct interpretation … in addition to many other things, of course.

The title might be misinterpreted by those who are used to understanding
“kinetics” as a relevant branch of theoretical physics called “physical kinetics,” that
is, according to the common unofficial classification used in Russia as per Landau
and Lifshitz’, Physical Kinetics, Vol. 10. Although this book discusses the kinetic
equation itself, and all its solutions in relation to the evaporation problem, its
content is not limited to solving Boltzmann’s equation using, say, the momentum
method.

The term “kinetics” is used in the title in a broader sense, as a definition of a
process that has evolved over time. We could have used the term “dynamics of
evaporation” for the title, but that indicates a different scale for the processes
described.

We look at the evaporation process at the molecular and atomic level, not on a
larger scale. More precisely, macroscopic magnitudes are also defined, but only as a
reduction from the previous, microscopic level. The book does not cover at all the
empirical correlations required for “engineering” applications and similar purposes.
Where necessary, a degree of self-discipline was required in order to remain faithful
to, and so not go beyond, the scope of the project: it was essential to keep a focus on
detail rather than provide readers with an exhaustive list of all the findings obtained
for evaporation.

The key purpose of Kinetics of Evaporation is to discuss the essential principles
of this phenomenon, which manifest themselves in various forms: from a child’s
toy called “drinking bird” to amazing thermocouple indicators near evaporating
liquid surfaces. The emphasis throughout the book is on the word “discuss,” i.e.,
this is not intended to be a didactic account of the available scientific findings. We
go on to posit that overall in the field of evaporation, we have had few findings that
have been obtained under sufficiently rigorous controls or which have been wholly
unambiguous. For instance, a lot of results were obtained because of the incorrect
use of Maxwell’s distribution function as a boundary condition at the evaporating
surface. We are not sure what to do about such results now.

The hardest part of any endeavor is to find a balance between “everything and
everything.” This is particularly true for a book. That said, below is a brief list of
traps we, like many others, tried to avoid when writing.

Trying to see the wood for the trees: how much detail does one go into? How
comprehensively should a formula derivation be described? We have had countless
debates on this, the most heated of which were with students at lectures. Our firm
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stance is that formula deductions in this book should be comprehensive while also
being complex to the extent that they can be followed and understood by your
average postgraduate or a good student. Authors are often tempted to demonstrate
the depths of their intelligence with phrases like “Now we can easily derive that…”
(which actually should have been followed by 3 pages of calculations). We believe
that we successfully avoided that evil.

“Old and new works.” We saw not only overviews, but even monographs that
contain nothing but references to old works that had already been published. There
is nothing wrong with this: someone gathered all the findings into a single volume
and insofar as it was published, they did a good job. In this case, the monograph is
just an extensive organized digest of known publications and does not contain any
new research. We could criticize this style by saying that it is unclear what is to be
gained from such works, if readers are already familiar with the original research
and the book does not contain any summaries therein. The opposite extreme would
be to posit a new great theory without mentioning previous findings at all; although
few authors have gone that far in recent times. We strove to achieve a happy
medium, however, it should be admitted that we often found ourselves gravitating
to the latter scenario, simply because of the specific nature of our subject matter.
Hopefully, we avoided doing so to the greatest extent possible, certainly insofar as
the Alexander Alekhine aphorism about an Aron Nimzowitsch book:

This book has both new and good ideas, however all good ideas here are old, and all the
new ones are bad.

“Straightforward and comprehensive.” The “no redundancy” principle is
meaningless because it depends on how “necessary” is defined. Can the topic of
evaporation be explored without mentioning issues of radiation heat transfer or the
structural design of a thermocouple and its operation principle? And what if they
determine the interpretation of experimental data, based on which fundamental
conclusions are drawn about the physical nature of this phenomenon itself? We
were unable to avoid including such matters, amongst others, in Kinetics of
Evaporation. There you have it. Such sections are marked in side headings titled
“sidesteps.” These may be skipped by the reader without any risk to the compre-
hension of matters of evaporation.

“Specialist or student?” It is an obviously challenging goal to write a book that
would be equally fascinating to both an expert (who knows pretty much everything
about the subject) and student (who has a lot to learn). It is doubtful that an
acceptable balance is possible. We aimed to make the material comprehensible for
as wide an audience as possible. In fact, the book should be understood by any
senior student who is familiar with physics.

“Why did you ignore X, Y, and Z’s work?” In conclusion we need to touch upon
the most sensitive matter: the completeness of citations. More specifically, the
citation system we use. Evaporation and contiguous matters are the subject matter
of thousands of valuable scientific publications. We did not aim to create a pub-
lication guidebook and, as such, avoided starting every section with “This matter
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was explored by …” Some findings are looked into in detail in this book, and many
works are cited at the end of each chapter. It goes without saying that we have not
been able to mention all the publications that deserve to be cited within the scope of
this work. One of us still remembers when, as a postgraduate, he looked through the
references section of a newly published book, did not find any reference to his own
work, and thus put the book back on the shelf with a sigh. This scenario is
inevitable, and we apologize in advance to the authors of all the works we did not
mention.

Having dealt with general morphological principles, we can move on to the
book’s content. The structure of the book is determined by its purposes and
objectives and the aforementioned balances.

The first, introductory chapter describes the evaporation process with broad
brushstrokes. In a way, this is the only chapter that does not fit into the “no larger
than a molecule” principle we proclaimed earlier.

Chapters 2–4 are preparatory, and outline the methods mentioned in the book:
methods of statistical physics, physical kinetics, and numerical modeling. Those
chapters cannot be left out completely, even though we have a wide range of
monographs and even textbooks on each of those subjects. We tried to balance
conciseness and oversimplicity with a more detailed elaboration of more or less
unconventional issues that are not always covered, at least in textbooks.

Chapters 5 and 6 define the distribution functions of evaporating particles. This
path was long and winding, particularly in Chap. 6, but overall, it looks like we
were successful.

Chapters 7 and 8 look at the direct application of the outcomes of the previous
two chapters. It should be emphasized that absolute exact matching of theory and
experiment is not the goal in itself. Theory should be theory, it should aim at
defining general physical regularities, albeit in a simplified form, and in no way
attempt to translate half-empirical expressions into experimental data. Simply put,
in some cases the concordance between the theory and the experiment was too
perfect, but we do not make a big deal of it: with such a complex process as
evaporation, we are happy to settle for a matching order of magnitude.

Chapter 9 is a step beyond. This chapter is not about boiling! It looks at boiling
in relation to its close relative: evaporation. We did not even try to systemize the
physics of boiling here, or look into specific matters of boiling. Dear colleagues,
save your breath! Some evaporation issues overlap with boiling, which we gladly
report in Chap. 9, but certainly without going into too much detail. We did not even
mention that there is actually no such thing as the boiling curve (that was a joke).

In essence, this book discusses the physics of evaporation at the microlevel,
which already suggests that it is not intended to be in any way a comprehensive
overview. To be honest, no approach would succeed in achieving this, simply
because of the current state of the issue. In short, to quote Bohr:

The task of this book is not to find out how evaporation is. This book concerns what we say
about evaporation.
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We would like this to be the point of departure for our reader also.
We are deeply grateful to Svetlana Morgunova for her invaluable help with

illustrations, Roman Makseev for the experiments, Maria Lyalina for proofreading,
and Oleksandr Dominiuk for editing the English translation.

Moscow, Russia Denis N. Gerasimov
Eugeny I. Yurin
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Chapter 1
“Liquid–Vapor” Phase Transition

1.1 Evaporation and Condensation

1.1.1 Phases and Transitions

Every substance consists of molecules, but these molecules may coexist in various
forms, creating many kinds of matter at different aggregate states. In thermody-
namics, aggregate states are a particular case of phases: substances with uniform
properties.

Almost any substance can be in a solid state at a sufficiently low temperature. In
this state, closely arranged molecules (or atoms) form a periodic structure, which
can be destroyed at a high temperature (note that we simplify all the processes; e.g.,
a short-range order may be preserved during melting).

In liquid, molecules can move relatively freely. Despite the permanent interac-
tion with its neighbors, any molecule may travel in the medium, but in heavy traffic:
this motion represents the diffusion process—a molecule moves from point A to
point B in a very winding way, like a sailor who is drunk.

When the temperature rises, a liquid will turn into a gas.
Molecules move freely in the gas phase—from collision to collision. Usually,

gas is a rarefied medium, and molecules rarely interact (i.e., collide) with one
another; in a limiting case we may assume that interaction is absent entirely. Such a
gas is referred to as the ideal gas, and its properties can be described by simple
relations, such as the Clapeyron equation:

p ¼ nT ; ð1:1:1Þ

that connects the pressure p, number density of particles n ¼ N=V (the ratio of the
number of particles to the volume) and temperature T.

The most popular theories usually describe a liquid as a dense vapor; this
approach is suitable far from the melting point. The higher the pressure, the higher
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the density of the vapor, thus, in such a representation, the gas becomes more
and more similar to a liquid as the pressure increases. At some point—the critical
point—the difference between a liquid and its gas vanishes. At higher pressures, the
substance represents a so-called supercritical fluid—neither a liquid, nor gas, but
something else: a dense medium with strong fluctuations.

The subject of this book is the “liquid–vapor” phase transition. The first
requirement of such transition is the existence of two separate phases: liquid and
vapor. As we shall see, these phases may not be distinguishable for all thermo-
dynamic parameters, but only if pressure and temperature are less than critical
values: p\pc; T\Tc.

The standard description of the phase transition implies heating (or, alterna-
tively, cooling) of the substance and, after the temperature of the phase transition
has been achieved, this substance turns into a new phase at the same temperature—
the temperature of the phase transition; all the energy transferred to the body at this
temperature is spent on the phase transition. This description is suitable for boiling
—the volume phase transition from liquid to vapor, but it cannot be applied for
evaporation.

The thermodynamic approach given above is based on an important assumption:
both liquid and vapor phases must be in equilibrium (we discuss the thermody-
namic concept of equilibrium in the next section). In simple terms, equilibrium
means that the rate of the “liquid–vapor” phase transition is equal to the “vapor–
liquid” phase transition at these conditions, i.e., without additional heat being
transferred to the system no phase transition occurs—the observer cannot see any
variations in the amount of the two phases.

Evaporation is a surface process: molecules of a liquid detach from the surface
and become vapor. The reverse process of evaporation is condensation: molecules
of vapor fall onto a liquid surface and attach to it, becoming part of the condensed
phase. The rate of the direct process (evaporation) and the reverse process (con-
densation) are equated in rare cases: the most frequent occurrence being when one
of these two processes dominates the other.

Thus, evaporation is only a half of the total process of the interfacial
“evaporation-condensation” mass exchange, which is likely to be in non-equilibrium.
It is dangerous to apply the conclusions of equilibrium thermodynamics to the
evaporation process, i.e., the phase transition going in only one direction.

1.1.2 Units

To some, the Clapeyron equation in the form of (1.1.1) looks strange. One may feel
intuitively that something has been lost in this correlation.

The missing factor in (1.1.1) is the Boltzmann constant k ¼ 1:38� 10�23 J=K.
This constant was introduced to physics by Max Plank (simultaneously with “his
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own” constant h) as the proportional coefficient between the entropy S and the
logarithm of thermodynamic probability W:

S ¼ k lnW ; ð1:1:2Þ

note that this constant is displayed on the monument of Boltzmann’s grave.
Indeed, in physics, k is used only in combination with temperature; e.g., in the

differential form TdS, as the mean kinetic energy of a molecule kT=2, or in the
factor of the Boltzmann distribution exp �e=kTð Þ. Interestingly, in the Stefan–
Boltzmann law E ¼ rT4 the Boltzmann constant (at the forth degree) hides in r.
Thus, the purpose of constant k is to convert temperature into energy units.

Here and almost everywhere in this book we omit the Boltzmann constant.
Moreover, we will usually also use kelvin as the unit of energy (except in some
sections, where joules are native units—such as in thermodynamics), thus, k has no
value for us. If someone wants to reduce any correlation from this book to the
“normal view” (e.g., to transform (1.1.1) to its regular form), then one may simply
replace T ! kT .

Perhaps it looks inconvenient when we state that the interaction energy of two
atoms is 112 K, however, because temperature is the measure of all kinds of energy
distributed on atoms (kinetic energy as well as potential, etc.), this approach seems
logical.

1.1.3 Evaporation Perennially

Evaporation is a surface process: molecules of liquid are torn from their neighbors
and fly out as a gas. Why does this happen?

Molecules in liquid are bound to each other—both in the bulk of the liquid and at
its surface. Surface molecules can see a way to escape, however, commonly they
cannot achieve such an escape: they are bound within their neighborhood. To break
such a connection, a molecule must have high kinetic energy—so high that it can
overcome the potential energy binding it in place. The probability of evaporation
for a given particle is not very high, but is non-zero: after Maxwell, we know that
the kinetic energy is distributed as:

f � exp �e=Tð Þ ð1:1:3Þ

(see the exact relations in Chaps. 5 and 6), so this probability increases with
temperature; thus, there always exist molecules with sufficient kinetic energy at any
temperature.

Try to leave a glass of water for the night: you will find it partially empty in the
morning. Despite the low chance a particle has to break away from the surface,
many molecules do. Alas, not all liquids can repeat this trick: an open bottle of
glycerol will not change its liquid level, even after a year.
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The persistence of evaporation is the main distinction between evaporation and
boiling: with the second process taking place only at high temperatures, while
evaporation occurs in any temperature condition, albeit, at a sufficiently different
speed.

A more “scientific” issue in terms of evaporation is that it is a non-equilibrium
process. Usually, when we observe evaporation, we are dealing with a system that
is far from an equilibrium state (note that in an equilibrium state, in very wet air, the
level of water in the glass will stay the same all night). Thus, the best recom-
mendation for treating evaporation may be to forget all the principles of equilib-
rium. We may say that evaporation is a non-equilibrium phase transition.

1.1.4 This Book Is Not About Condensation

This book considers only evaporation. Despite the fact that we will need to turn our
attention to condensation from time to time, we will not discuss any special
problems associated to condensation.

This one-direction focus of our book is determined by the single special property
of condensation: for this phenomenon, gas processes are very important. Our book
considers, mainly, the processes at, or near, to a liquid surface. The “kinetics of
condensation” would need to consider how a gas attaches itself to a liquid, and a
book containing such information would be about double the number of pages of
this book.

Thus, the title of our book is very specific: a book of short stories about the
detachment of atoms from a liquid surface. Some may wonder how a 300-page
book can be written on such a plain subject? Well, this is evaporation. There are
many angels on the head of this pin.

1.1.5 Evapotranspiration

Evapotranspiration is one of the main processes supporting life—the life of
land-based creatures. Possibly, evapotranspiration takes second or the third spot in
terms of importance after sunlight (they say that air is significant too).

It is hard to imagine Earth with non-evaporating water; let us better imagine the
planet Glyz. On this planet, all life forms are based on glycerol; typical Glyzenians
consist of *80% glycerol. It all looks rather unusual, but so what? Less than two
decades ago there were conceptions about methane-based life forms on Titan
(Saturn’s moon), so why should we not assume a glycerol-based life form in this
subsection? Here consider a life based on super-glycerol (a not yet discovered
modification), that cannot evaporate absolutely.

As a freak of nature, there are oceans of glycerol on Glyz, seas of glycerol, rivers
of glycerol … Stop. How would there be rivers on Glyz? Rivers have sources, they
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cannot flow from nowhere. Since our glycerol (the future super modification) is
non-evaporating, there is no glycerol in the Glyz atmosphere. Thus, there is no fog,
no rain, no river sources or rivers (except for possible glycerol volcanic activity, as
in the cryovolcano on Triton). Actually, from the point of view of the biology of
Glyzenian organisms, our Glyz is a desert surrounded by an ocean of glycerol.
Glycerol-based life forms might live in the ocean, but no crossopterygian walks on
the dry land of Glyz.

Sad story. Fortunately, the history of Earth followed a different path: we have
water cycle.

On our planet, water evaporates from large reservoirs (oceans and seas), and vapor
is spread by winds above dry land, where it falls as rain. Rivers collect the water,
bring it to the oceans, and so on, until our dear Sun initiates the cycle once more.

1.1.6 A Droplet on a Candent Surface

We can put a droplet of water on a table and watch how it evaporates. Actually, this
is not a very interesting pastime. However, the same process can look much more
impressive when a liquid is placed on a hot surface. In this case, instead of a puddle
of water, one sees many droplets moving around the surface.

Who first saw droplets on an overheated surface? In modern literature, this effect
is referred to as the “Leidenfrost effect” (named after Johann Gottlob Leidenfrost
who observed such an effect in the middle of eighteenth century).

Because the term “overheated” depends on the kind of liquid, we present this
effect for liquid nitrogen at room temperature. For nitrogen, with its boiling tem-
perature of 77 K (at atmospheric pressure), a table at 300 K is like a frying pan; we
may also observe this phenomenon in domestic conditions (see Fig. 1.1.).

Initially, nitrogen is poured into a cup of diameter *1 cm. Once placed in a cup
(i.e., a frying pan), nitrogen began to evaporate and form a droplet (Fig. 1.1a). After
that, a spherical droplet formed (Fig. 1.1b), which evaporated gradually (Fig. 1.1c).
Perhaps, “gradually” is not the correct word: all process shown in Fig. 1.1 take less
than 1 min.

Fig. 1.1 Formation and evaporation of a nitrogen droplet in air
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To be more accurate, various effects may lead to the formation of a spherical
droplet on a surface, not least wettability. However, the main physical reason that
governs the Leidenfrost effect is intensive evaporation of a liquid—a surface being
so hot that a liquid simply cannot coexist with it; because of such a high rate of
evaporation droplets bounce back from the surface and even roll on it, like solid
beads. However, in Fig. 1.1 we see a caught droplet: there is no way it can escape,
so we can take pictures of it.

In the last chapter of this book, we will consider a similar effect.
We have used a lot of thermodynamic concepts here. Let us investigate the

ability of thermodynamics to describe the evaporation process.

1.2 What Can We Obtain from Thermodynamics?

1.2.1 Basic Principles of Thermodynamics

Many details of this book are concerned with thermodynamic concepts, so we must
discuss these basic assertions of science closely. Perhaps, it seems strange to dis-
cuss the foundations of thermodynamics in such a place, but we feel that it is
necessary in order to consider results obtained and discussed in this book. For
example, we will discuss situations where temperature is not temperature, and
consider how we can obtain an equilibrium state with a Maxwellian distribution
function (MDF) from mechanical equations. So, we spend several pages consid-
ering common observation, especially considering the fact that all the thermody-
namics can be expounded in a single lection.

Thermodynamics is a comparatively simple science, if you are not in the mood
to overload it with epic concepts such as the “heat death of the Universe.” The main
principle of thermodynamics is the assumption of equilibrium: each isolated system
reaches a stationary stable state, with no subsequent changes. Our daily experience
acknowledges this assumption, but we have no sufficient proof from a mechanics
standpoint (see Chap. 2).

There are only a few basic laws of thermodynamics, and enormous amounts of
consequences arising from them.

Zeroth law. There exists a single parameter—temperature T—that describes
equilibrium: the stationary state with the absence of fluxes. This means that the
condition T ¼ const is enough (at zero total fluxes) to describe the equilibrium state.

First law. All heat dQ conducted to the system is spent changing the inner
energy of this system dU and to do work dA ¼ pdV :

dQ ¼ dUþ dA: ð1:2:1Þ

For complex systems, there are many kinds of work that can be done; for instance,
the surfaceworkrdF (r is the surface tension andF is the surface area) and the electric
field work EdD (E is the electric field strength and D is the magnetic induction).

6 1 “Liquid–Vapor” Phase Transition



Second law. The differential form of (1.2.1) has an integrating multiplier, i.e.,
there exists a function of entropy S with the following differential:

dS ¼ dQ
T

: ð1:2:2Þ

This integrating multiplayer is the inverted temperature T�1, the existence of
which was stated in the 0th law.

The 2nd law from (1.2.2) can be obtained through pure mathematical proce-
dures. Entropy exists in any case of a simple system—a system with a single kind
of work. For complex systems, the differential form (1.2.1) can be represented in
the form:

dQ ¼
XN
k¼1

Xkdxk; N[ 2; ð1:2:3Þ

(note that in (1.2.3) X1 ¼ 1 and x1 ¼ U). The form of (1.2.3) is holonomic only if
the Frobenius conditions are satisfied:

X1
@X3

@x2
� @X2

@x3

� �
þX2

@X1

@x3
� @X3

@x1

� �
þX3

@X2

@x1
� @X1

@x2

� �
¼ 0 ð1:2:4Þ

for any triad of X1;2;3; (1.2.4) may also be represented as ~X � rot~X ¼ 0. We see that,
actually, the 2nd law in this formulation is reduced to a mathematical theorem. But
historically the 2nd law was established by Clausius with some physical assump-
tions—the inability of spontaneous heat transfer from a cold body to a hot body.
However, this “physical approach” to the 2nd law is not the most debated
statement.

In reality, there exist several formulations of the 2nd lawwith different strengths, as
was noted by T.A. Afanasieva-Erenfest. Briefly, these formulations may be expressed
as:

• The existence of entropy as a thermodynamic parameter in (1.2.2).
• The directness of entropy to the maximum value S ! Smax in an isolated system.
• The assertion that the state with Smax is the only attractor of any isolated

(thermo-)dynamic system.

Usually, the spears were broken at the fields of the second and third statements,
since the first assertion is clear, at least from the mathematical point of view.

There is also the 3rd law of thermodynamics that can be formulated in various
ways. The simplest expression of which is:

lim
T!0

CV ¼ 0; lim
T!0

Cp ¼ 0; ð1:2:5Þ

while in a more common form the 3rd law can be expressed as (Bazarov 1991):
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lim
T!0

@S
@p

� �
T
¼ 0; lim

T!0

@S
@V

� �
T
¼ 0: ð1:2:6Þ

Another formulation of the 3rd law is the statement that T ¼ 0 is an unreachable
value, because there are no processes that could provide a transition to this point.
However, the 3rd law is not as interesting as the first three laws, especially the 0th
law.

Temperature is a special function, indeed. From the statistical point of view,
temperature determines all energy distributions in a system or in any sub-system.
For instance, T determines velocity distributions of particles, the electron energy of
atoms, vibrational and rotational degrees of freedom of molecules, etc. There
also exists the temperature of thermal radiation (for instance, a non-adjusted TV set
receives radiation of 2.7 K—cosmic background radiation). These many of roles of
temperature exist due to the 0th law: temperature defines the equilibrium state.

The reverse side of this is the fact that the term “temperature” can be formulated
only for equilibrium media. In non-equilibrium, all distributions mentioned above
lose their sense, just like temperature itself loses its sense. Sometimes temperature is
defined only through the mean chaotic energy of molecules in a gas, i.e., T ¼ mv2,
and for some cases we may see that v2x 6¼ v2y 6¼ v2z (e.g., at the evaporation surface a
normal component of velocity vz 6¼ vx � vy). Being consecutive, we have to con-
clude that there are three temperatures Tx; Ty; Tz in the general case; however, this
consistency may cause irritation to an expert of pure thermodynamics.

The famous half-measure to avoid this problem is the assumption of a local
thermal equilibrium. Following this concept, we may apply the term “temperature”
to an elementary point (a microscopic volume containing many particles) of the
medium, despite the fact that temperature in the neighborhood of this elementary
point is different. So, total equilibrium does not exist, but we are able to use all the
equilibrium correlations at a given point; i.e., all distribution functions determined
at this point correspond to equilibrium ones at the relevant (local) temperature.

However, this approach does not work in every case: to apply this idea, we have
to be sure that temperature exists at least on a small scale. For many situations, this
assumption is wrong, i.e., distributions at any point (in any microscopic volume) do
not correspond to the equilibrium distribution. In such a case, the problem is not
reduced to the value of temperature: such a term as “temperature” cannot be used.
For a third-party example let us consider the Boltzmann distribution of excited
energy:

w� e�E=T ; ð1:2:7Þ

which cannot be applied for non-equilibrium plasma; consequently, attempts to
determine its temperature based on the assumption of distribution (1.2.7) gives an
error of *100% for T. This error is not a kind of experimental inaccuracy but is a
systematic error, which follows from an incorrect theory.
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Another instance is appropriate to the theme of this book. Temperature cannot be
defined in the so-called Knudsen layer (the region with the spatial scale of about
one mean free path—the average distance between two successive collisions of
molecules) in case of different conditions at the boundaries of this layer. Such a
situation takes place near the evaporation surface; in simple words, the temperature
of vapor near the evaporation surface does not exist.

Note that we will consider the problems of spatial scales in detail in Chaps. 2
and 3; here we return to thermodynamics.

In addition to the inner energy, several thermodynamic functions can be
introduced:

1. Enthalpy H ¼ Uþ pV .
2. The Helmholtz free energy F ¼ U � TS.
3. The Gibbs free energy U ¼ Uþ pV � TS.

Each potential describes a stable equilibrium at corresponding external condi-
tions in the most frequent case.

Using specific parameters (per unit of mass) ½x� ¼ ½X�=m, where ½x� denotes any
quantity given above, we can rewrite (1.2.1) in the form:

Tds ¼ duþ pdv; ð1:2:8Þ

which is correct in any case: as for a closed system with m ¼ const so for an open
system where m 6¼ const. For an open system we can multiply (1.2.8) by m and
obtain:

TdS ¼ dUþ pdV � udm; ð1:2:9Þ

where the specific Gibbs energy u ¼ uþ pv� Ts. If our system consists of n sub-
stances, then we must use the sum

Pn
i¼1 uidmi instead of the last term of (1.2.9).

1.2.2 Phase Equilibrium

For an isolated system with two phases of substance (see Fig. 1.2), we have for
each phase:

dS1 ¼ dU1

T1
þ p1dV1

T1
� u1 p1; T1ð Þdm1

T1
; ð1:2:10Þ

dS2 ¼ dU2

T2
þ p2dV2

T2
� u2 p2; T2ð Þdm2

T2
: ð1:2:11Þ

As U ¼ U1 þU2 ¼ const, V ¼ V1 þV2 ¼ const and m ¼ m1 þm2 ¼ const so
dU1 ¼ �dU2, dV1 ¼ �dV2, dm1 ¼ �dm2 and for the total dS ¼ dS1 þ dS2 we get:
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dS ¼ 1
T1

� 1
T2

� �
dU1 þ p1

T1
� p2
T2

� �
dV1 � u1

T1
� u2

T2

� �
dm1: ð1:2:12Þ

The condition of equilibrium for such a system is dS ¼ 0, and for arbitrary
deviations dU1; dV1 and dm1 we obtain that:

T1 ¼ T2 ¼ T ; p1 ¼ p2 ¼ p; u1 p1; T1ð Þ ¼ u2 p2; T2ð Þ: ð1:2:13Þ

Let us consider small variations of pressure dp and temperature dT in both
phases. In a common case we will use different deviations of pressures: dp1 6¼ dp2.
This inequation arises, for example, in a system with a gaseous phase consisting of
vapor and a buffering (non-condensing) gas. We have:

u1 p1 þ dp1; T þ dTð Þ ¼ u2 p2 þ dp2; T þ dTð Þ; ð1:2:14Þ

u1 p1; Tð Þþ @u1

@p1
dp1 þ @u1

@T
dT ¼ u2 p2; Tð Þþ @u2

@p2
dp2 þ @u2

@T
dT: ð1:2:15Þ

Derivatives of the Gibbs energy are
@u
@p

¼ v,
@u
@T

¼ �s (specific volume and

specific entropy correspondingly) and u1 p1; Tð Þ ¼ u2 p2; Tð Þ because of (1.2.13).
The difference of entropies is:

s2 � s1 ¼ r
T
; ð1:2:16Þ

Fig. 1.2 The isolated system
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where r is the specific heat of the phase transition (e.g., the latent heat of vapor-
ization). Thus:

v2
dp2
dT

� v1
dp1
dT

¼ r
T
: ð1:2:17Þ

This important equation has two particular forms. The first case is the
Clapeyron–Clausius relation for dp1 ¼ dp2 ¼ dp:

dp
dT

¼ r
T v2 � v1ð Þ : ð1:2:18Þ

This equation establishes the correlation between pressure and temperature along
the phase equilibrium curve. As we know, a single-phase substance has two degrees
of the freedom; this fact is reflected in the equation of state in form p ¼ f v; Tð Þ. In a
two-phase system, we have a single freedom degree, i.e., the dependence p ¼ f ðTÞ,
represented in (1.2.18). In other words, phase transition occurs at p ¼ const and
T ¼ const.

The second equation that follows from (1.2.17) describes isothermal variation of
pressure—the Poynting equation for dT ¼ 0:

@p2
@p1

¼ v1
v2

: ð1:2:19Þ

It follows from (1.2.19) that the increase of pressure in one of equilibrium phases
tends to the pressure increase in the second phase. For example, if the pressure of a
liquid was increased (e.g., with a noble gas added to the chamber), the pressure of
the saturated vapor will increase too.

Note that we may take into account an inequality of temperatures dT1 ¼ dT2, but
this consideration would not contain any physical meaning.

1.2.3 The Nucleation of a New Phase

Nucleation is an important but slightly overestimated aspect of the problem.
Thermodynamics predicts some interesting results for nuclei of a new phase in a
given media, but it is rare in practical situations for the basic assumptions of this
consideration to be correct.

Let us consider a thermodynamic system at constant pressure p and temperature
T. Initially there is a homogeneous phase in a chamber, with mass m at the Gibbs
energy:

U0 ¼ F0 þ pV0 ¼ u1m ¼ f1 v1; Tð Þþ pv1ð Þm: ð1:2:20Þ
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After the formation of a nucleus of mass m2 with radius R (see Fig. 1.3) the
Gibbs energy becomes:

U ¼ f1 v1; Tð Þm1 þ f2 v2; Tð Þm2 þFr þ pv1m1 þ pv2m2: ð1:2:21Þ

Here the free surface energy is:

Fr ¼ rS ¼ r � 4pR2; ð1:2:22Þ

where r is the surface tension.
There are three independent parameters in (1.2.21)—let them be v1; v2 and m2.

Other parameters can be expressed as m1 ¼ m� m2 and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3m2v2
4p

3

r
. That is, the

variation of the Gibbs energy of a two-phase system is:

dU ¼ @U
@v1

dv1 þ @U
@v2

dv2 þ @U
@m2

dm2: ð1:2:23Þ

In equilibrium this variation must be equal to zero, i.e., for independent dv1, dv2
and dm2 we have:

@U
@v1

¼ 0;
@U
@v2

¼ 0;
@U
@m2

¼ 0; ð1:2:24Þ

or, with (1.2.21):

Fig. 1.3 Formation of a
droplet
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� @f1 v1; Tð Þ
@v1

¼ p1 ¼ p; ð1:2:25Þ

� @f2 v2; Tð Þ
@v2

¼ p2 ¼ pþ 2r
R

; ð1:2:26Þ

f1 v1; Tð Þþ pv1 ¼ f2 v2; Tð Þþ pþ 2r
R

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

p2

v2: ð1:2:27Þ

Equations (1.2.25)–(1.2.27) describe phase equilibrium in a two-phase system
with a spherical separation surface. And we see that pressure in the first phase
coincides with external pressure, while pressure in the new phase exceeds this value
by 2r

R (the so-called Laplace jump, see Sect. 1.3.2). Introducing a specific Gibbs
energy in the form of (1.2.20), we can rewrite (1.2.27) as a usual condition:

u1 p1; Tð Þ ¼ u2 p2; Tð Þ: ð1:2:28Þ

Equation (1.2.28) is similar to (1.2.13), which was obtained for an isolated
system.

How expedient is a nucleation in the given thermodynamic system? To answer
this question, we must consider the change in the Gibbs energy DU ¼ U� U0:

DU ¼ u2 p; Tð Þ � u1 p; Tð Þð Þm2 þ 4pR2r: ð1:2:29Þ

When DU\0 the formation of a new phase is more favorable (from the ther-
modynamic point of view). To establish a function DU of thermodynamic
parameters, and of the radius R, we use expansions for u1 and u2:

u2 p; Tð Þ � u1 p; Tð Þ ¼ u2 ps; Tð Þ � u1 ps; Tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

þ @u2

@p|{z}
v2

p� psð Þ � @u1

@p|{z}
v1

p� psð Þ ð1:2:30Þ

where ps is the saturation pressure for a flat interfacial surface. Thus, we have:

DU ¼ v2 � v1ð Þ p� psð Þ 4pR
3

3v2
þ 4pR2r: ð1:2:31Þ

In the case of v2 � v1ð Þ p� psð Þ\0 the variation DU can be negative for suffi-
ciently large R. In this case, function DUðRÞ has a maximum at:
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R ¼ Rm ¼ 2rv2
v2 � v1ð Þ ps � pð Þ : ð1:2:32Þ

Usually the radius in (1.2.32) is referred to as the critical radius of nucleation,

because when R[Rm we have
@DU
@R

\0 (see Fig. 1.4), i.e., the growth of the

nucleus is thermodynamically favorable. Note that if v2 [ v1 (the new phase is
“lighter” than the old phase, such as steam in water) then p\ps, otherwise the
actual pressure in a system would exceed the saturation pressure.

The formation of nuclei in an electrical field has special features; this physics is
used in the Wilson cloud chamber—the track detector of ionized particles—a vessel
filled with saturated (or even oversaturated) vapor.

However, despite the oversaturation, the vapor does not condense. Why?
Because for condensation, the critical size of a nucleus (of a droplet) must not be
less than the size calculated in (1.2.32). There may be two kinds of nuclei:

• The spontaneous nucleus: due to fluctuations, a large cluster (or a small droplet)
is formed in the vapor.

• The heterogeneous nucleus: in this case, small impurities play a role as the
condensation center.

We see that experimental conditions must provide the absence of both types of
nuclei: oversaturation must be insignificant, i.e., the probability of the formation of
nucleus of radius Rm must vanish, and the vapor must be of high purity. Under these
conditions, there is no condensation in the Wilson chamber; of course, in addition,
we must prevent condensation on the chamber walls.

Condensation begins in a cloud chamber with the presence of ionized particles
inside it: ionized radiation produces charged particles inside the chamber, and these
charges form droplets around them. Again, why?

To take into account the effect of electricity we must add a term of corresponding
free energy into (1.2.20) and (1.2.21). The free energy of an electric field in a media
with dielectric permittivity e is:

Fig. 1.4 Critical radius
corresponds to a maximum of
DU

14 1 “Liquid–Vapor” Phase Transition



FE ¼
Z

ED
2

dV ¼
Z

e0eE2

2
dV : ð1:2:33Þ

Since the electric field around the charge q of radius d is:

E ¼ q2

4pee0r2
; ð1:2:34Þ

we have for the initial stage (a pure vapor with e ¼ 1) energy (1.2.33):

F0
E ¼

Z1
d

e0E2
v4p r

2dr
2

¼ q2

8pe0d
; ð1:2:35Þ

while for the vapor with a droplet around the charge we have:

FE ¼
ZR
d

ee0E2
l

2
dV þ

Z1
R

e0E2
v

2
dV ¼ q2

8pe0R
1� 1

e

� �
þ q2

8pee0d
; ð1:2:36Þ

where e is the permittivity of the liquid. Thus, we see that the difference of the total
Gibbs energy now is:

DU ¼ U� U0 þFE � F0
E; ð1:2:37Þ

and, because e[ 1 for any liquid, and d ! 0, we see that DU\0 and the formation
of a new phase is thermodynamically favorable.

Note that the cloud chamber has a close relative: the boiling chamber, where
liquid boils up under the influence of ionizing radiation. The physical basis of the
boiling chamber is absolutely different; this subject will be discussed in Sect. 9.4.6
of the last chapter of this book.

1.2.4 The Evaporation Temperature

Now we are ready to apply our knowledge of thermodynamics to a real-life
problem. Let us take a thermocouple (for details about the thermocouple, see
Sect. 8.3), put it in warm water and get it out in air. Can we predict the
temperature-time dependence TðtÞ for this wet thermocouple?

Why not? It is easy: we know that temperature must converge to the temperature
of the surrounding medium, which plays the role of a thermostat in this experiment.
Then, we may expect that the temperature of the thermocouple will monotonically
decrease with time, tending to room temperature.
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Then, let us conduct this experiment. The temperature dependence on time (the
so-called thermogram) is presented in Fig. 1.5 (obtained with K-type thermocou-
ples ATA-2008 for recorder ATE-2036).

Well, we have to realize that a mistake has crept into our chain of logic. We see
that temperature drops significantly, to values much lower (by several degrees) than
room temperature. How can it be possible? When the temperature of the thermo-
couple becomes equal to the temperature of the surrounding air, how can further
heat transfer be feasible—at zero temperature difference between the wet thermo-
couple and air? Then, on the next cooling stage, when T drops below room tem-
perature, is it an infringement of the 2nd law of thermodynamics—heat transferring
from the cold body (wet thermocouple) to the hot body (air)?

The answer from amolecular point of view is simple: high-energy molecules leave
the liquid shell on the thermocouple, as a result, liquid cools further and further. It is
more interesting to answer these questions from a thermodynamic point of view.

Thermodynamics says that evaporation of a droplet from the thermocouple
junction is a non-equilibrium process. In our experiment, conducted in an ordinary
dry atmosphere, the reverse (condensation) flux is negligible, and the liquid phase is
out of equilibrium with the vapor phase. In such conditions, for example, the
Clapeyron–Clausius equation makes no sense.

As for breaking the 2nd law of thermodynamics, our formulation given above is
only a logical trick, a sophism. Heat transfers from air to a liquid film on the
thermocouple, this heat is being spent on evaporation, and the non-equilibrium
phase transition, leads to the temperature decrease of the liquid layer, and, conse-
quently, of the thermocouple.

Now, let us discuss an even more interesting trick.

1.2.5 Magic Bird

Magic bird is an old popular toy known in different countries under various names.
For instance, in Russia it is called the “Hottabych’s bird” (Hottabych is a wizard

Fig. 1.5 Temperature of a
wet thermocouple: real and
expected
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from a Russian fairy tale). Sometimes they call it “Chinese duck” or “drinking
duck.” At the time of writing this book, you can find and buy this toy on Amazon
by searching for “drinking bird.” This toy is a glass tube (in the shape of a bird)
filled with a volatile liquid and a vapor of this liquid; e.g., non-magic methylene
chloride (CH2Cl2, dichloromethane) can be used.

Magic bird cannot fly but it shows a confusing trick. Initially, you have to
position it in front of a glass of water and humidify its sponge-covered head (see
Fig. 1.6a). Upon releasing the toy, the bird begins to sway, and the liquid inside the
bird’s body rises. Its center of mass rises, and, at some moment, the bird falls face
down into the glass (see Fig. 1.6b). Liquid transfuses to the lower part of the bird,
as shown in the figure, the bird straightens and the cycle repeats.

And the cycle repeats … and repeats. Actually, magic bird can work for days or
weeks, while it has enough fuel (i.e., enough water to drink).

We have met people who seriously consider magic bird to be a perpetual motion
machine of the second kind. They do not know much about thermodynamics, of
course!

Magic bird possesses two “liquid–vapor” transitions: (1) at its head and
(2) within its body. The phase transition at its head is water evaporation from the
sponge covering its head into the air. This is a non-equilibrium phase transition:
there is no equilibrium between the liquid (water in the sponge) and its vapor (in
air) here. The phase transition in the bird’s body is the equilibrium vaporization of
methylene chloride.

For methylene chloride we have the Clapeyron–Clausius equation:

dps
dT

¼ r
T v00 � v0ð Þ ; ð1:2:38Þ

Fig. 1.6 a Magic bird, stage 1 (straightened), b magic bird, stage 2 (inclined)
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where ps is the saturation pressure, T is temperature, r is the enthalpy of vapor-
ization and v0 and v00 are specific volumes of liquid and vapor correspondingly. This
vaporization occurs far from the critical point (the critical pressure for CH2Cl2 is
63.6 bar, taken from the National Institute of Standards and Technology (NIST)
database), at low pressure, so we can neglect v0 in (1.2.38) and use the Clapeyron
equation for vapor:

v00 ¼ RT
ps

; ð1:2:39Þ

with R ¼ 98 J
kg K for methylene chloride.

Let us estimate the height of the column of the liquid inside the bird’s body that
can be reached when the bird’s head is cooled by 1 K. First, for such low DT we

can replace the derivative on the left-hand side of (1.2.38) as dp
dT ! Dp

DT and put

r ¼ 3:4� 105 J
kg ¼ const (all data is taken from the NIST database). Then,

according to (1.2.39), when the temperature of the bird’s head falls to DT , pressure
in the upper part (over the liquid) decreases to Dp ¼ Dps, and the column of liquid
rises to a height:

Dh ¼ Dp � v0
g

; ð1:2:40Þ

where g ¼ 9:8 m/s2 is the acceleration of gravity. Thus, we have from (1.2.40) and
(1.2.38) with (1.2.39):

Dh ¼ rpsv0

gRT2 DT : ð1:2:41Þ

Using ps ¼ 63 kPa for room temperature T ¼ 300 K and a specific liquid vol-
ume v0 ¼ 7:7� 10�4 m3

kg we obtain Dh � 20 cm.

As we saw in Sect. 1.2.4, the value of *1 K for the temperature difference
between the evaporating water and air can be easily achieved; thus, we understand
that a bird of *10 cm height works well. Note that the bird cannot work on water:
if dichloromethane was replaced by water, the lifting height calculated with (1.2.41)
would be very small.

Again, it is all clear from a thermodynamics point of view. Of course, this magic
bird is not a perpetual motion machine of the second kind; it does not scoop up
energy from an equilibrium environment to produce work. The source of the
non-perpetual motion of the drinking bird is the non-equilibrium conditions that are
in place: in the absence of evaporation from the bird’s head its motion is impos-
sible. We may suggest two ways to prevent evaporation: create a wet atmosphere
(the condensation flux equalizes that of evaporation) or cool down the room (rein
up the evaporation itself). In both cases, the show would stop.
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We may note that, of course, magic bird needs water to perform its magic
motion: the evaporation of water from the bird’s head is the driving force of this
machine. In the absence of a glass of water (but with a wet head) the bird performs
many wobbles but will stop sooner or later.

1.2.6 Thermodynamic Diagrams

In the final part of this section, we present thermodynamic diagrams for two main
substances that will be treated in this book: water and argon. Water is the ordinary
liquid for experimental investigations, while argon is the hero of computational
simulations.

The most popular thermodynamic diagrams for phase transitions are P–T, P–V
and T–S diagrams. Phase diagrams for water and argon - two liquids that will be
often used in this book—are shown in Fig. 1.7 (data taken from the NIST database) .

On T–S and P–V diagrams saturation curves have two branches: the left branch
from the side of a liquid, and the right branch from the side of a vapor. Inside these
curves one can see two-phase regions: an area of the coexistence of both phases.

It is easy to show that on a T–S diagram the saturation curve from the side of the
liquid phase almost coincides with the isobars. The incline of the saturation curve is
defined by the derivative:

@s
@T

� �
sat
¼ @s

@T

� �
p
þ @s

@p

� �
T

@p
@T

� �
sat
: ð1:2:42Þ

Then, we can transform this derivative with:

@s
@p

� �
T
¼ � @v

@T

� �
p
;

dp
dT

� �
sat
¼ r

T v00 � v0ð Þ ;
@s
@T

� �
p
¼ cp

T
: ð1:2:43Þ

(the first expression follows from Maxwell equations, while the second is the
Clapeyron–Clausius correlation), where:

@v
@T

� �
p
¼ av: ð1:2:44Þ

Here a is the volumetric thermal expansion coefficient. Far from the critical point
v00 � v0, and we have for the left saturation curve:

@s
@T

� �left

sat
¼ c0p

T
� a0

v0

v00
r
T
: ð1:2:45Þ
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For example, for water c0p � 103 J/(kg K); thus, the first term for T � 102 K is

*10 J/(kg K2). As a0 � 10�4 K�1, v0=v00 � 10�3 and r� 106 J=Kg, we see that the
second term is *10−3 J/(kg K2), and, consequently, this term can be neglected.

For the right branch of the saturation curve—from the vapor side:

@s
@T

� �right

sat
¼ c00p

T
� a00

r
T
: ð1:2:46Þ

Fig. 1.7 Thermodynamic diagrams for argon and water
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Assuming that vapor is an ideal gas, we have a00 ¼ 1
T, and for water, for example,

the first term is still *10 J/(kg K2) while the second term is *102 J/(kg K2). That
is the reason why the right branch of the saturation curve has a negative incline.

Analogically, it is easy to explain why in the P–V diagram the left branch is
almost vertical; however, we are now far away from evaporation—the
non-equilibrium phase transition of “liquid–vapor.” Let us go back.

1.3 What Can We Obtain from Hydrodynamics?

1.3.1 Navier–Stokes Equations

Hydrodynamics is based on three conservation equations. All three may be written
in common form:

@A
@t

þ div~JA ¼ _A; ð1:3:1Þ

where A is the volume quantity,~JA is the flux of the quantity A, and _A is the source
of A. So, for the mass we have A ¼ q (mass density), ~JA ¼ q~v and _A ¼ 0:

@q
@t

þ divq~v ¼ 0: ð1:3:2Þ

The equation for momentum conservation is much more complicated. Omitting
all preliminary considerations, we may write for the ith projection of velocity vi the
Navier–Stokes equation (Landau and Lifshitz 1959):

q
@vi
@t

þ qvk
@vi
@xk

¼ � @p
@xi

þ @1ik
@xk

þ qgi; ð1:3:3Þ

where gi is the projection of gravity acceleration, and the viscous stress tensor is:

1ik ¼ l
@vi
@xk

þ @vk
@xi

� 2
3
dik

@vm
@xm

� �
þ gdik

@vm
@xm

: ð1:3:4Þ

We use the regular definition for the mute summation—the convention on the
summation of repeated indexes, i.e., aibi ¼

P
i aibi; for instance, the operator

@vm=@xm means the divergence of vector~v.
In (1.3.4) coefficient l is the shear viscosity, while g is the bulk (volume,

second) viscosity. For an incompressible fluid, q ¼ const, @vm=@xm ¼ 0 and the
quantity g does not play a role in (1.3.4). However, for problems of compressible
flows, where div~v 6¼ 0, coefficient g becomes significant.
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Navier–Stokes equations cannot be solved analytically; moreover, there are
serious doubts that these constructions have a solution at all. Until now, there is no
certain proof whether (1.3.3) has a solution or not (as far as we can judge, the
answer is “no”). However, these problems are absolutely out of the scope of this
book.

Because of the complexity of Navier–Stokes equations, other representations of
velocity may be used. For instance, from Helmholtz theorem, velocity (specifically,
any vector) may be expressed with scalar potential / and vector potential ~W:

~v ¼ r/þ rot~W: ð1:3:5Þ

For some problems, it is easier to find potentials / or ~W. For example, for the 2D
flow of an incompressible fluid the velocity ~v x; yð Þ may be expressed with a
potential ~W that has a single z projection Wz x; yð Þ; in this case the function Wz is
termed the “stream function.”

1.3.2 Conditions on an Interfacial Surface

The Navier–Stokes equation is the second-order differential equation for vi; thus,
we have to define two boundary conditions for any projection of velocity. Note that
for a non-viscous fluid l ¼ g ¼ 0 we have a single-order differential equation that,
consequently, demands a single boundary condition.

The simplest boundary condition for a fluid velocity on a solid wall is the zero
tangential and normal projections of velocity: vs ¼ vn ¼ 0. However, for the liquid
surface circumstances aremuchmore complicated: here—on the interfacial surface—
we may have the source (for evaporation) or the sink (for condensation) of the vapor
mass flux.Wewill consider the boundary conditions for velocity in Sect. 1.4, but here
we want to scrutinize conditions for pressure.

At the interfacial boundary, defined as f x; yð Þ, pressure takes a discontinuity—
the Laplace jump of pressure: the difference in pressure of two phases:

p1 � p2 ¼ r
fxxffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2x

q þ fyyffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2y

q
0
B@

1
CA; ð1:3:6Þ

where indexes at f denote corresponding derivatives. Pressure is higher in the
convex phase. For a smooth curvature of the interface, we may omit derivatives
fxj j; fy
�� ��	 1.

Now let us consider the liquid surface; the corresponding coordinate that defines
this surface is z ¼ fðxÞ (for simplicity, we will not consider the second coordinate y).
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The velocity in the liquid phase may be described with the scalar potential/, i.e., with

vx ¼ @/
@x

and vz ¼ @/
@z

, so for an incompressiblefluid fromcondition div~v ¼ 0we have:

D/ 
 @2/
@x2

þ @2/
@z2

¼ 0: ð1:3:7Þ

We can write (1.3.6) for the difference between the pressure of the vapor p1 and
of the liquid p2. Suppose that p1 ¼ const and express p2 from the Bernoulli law:

p2 ¼ p1 � qgf� q
@/
@t

: ð1:3:8Þ

Finally, we have the equation at the surface:

qgfþ q
@/
@t

� r
@2f
@x2

¼ 0: ð1:3:9Þ

For the following circumstances, we assume the dependence rðfÞ.
Differentiating (1.3.9) for time and taking into account that the normal velocity at

the interface is @f
@t

¼ vz ¼ @/
@z
, while also considering correlation (1.3.7), we have:

q
@2/
@t2

þ qg� rffxxð Þ @/
@z

þ r
@3/
@z3

¼ 0; ð1:3:10Þ

where rf ¼ dr
df

and fxx ¼ @2f
@x2

are as declared above.

Then, represent the dependence /ðzÞ ! /ðkzÞ, where k is defined as
@/
@z

¼ k/,

consequently, @
3/
@z3

¼ c3k
3/, where parameter c3 depends on the function / kzð Þ; if

/� exp kzð Þ, then c3 ¼ 1. Thereby, (1.3.10) may be expressed as:

1
/
@2/
@t2

þ g� rf
q
fxx

� �
kþ rc3k3

q
¼ 0: ð1:3:11Þ

In a particular case, for rf ¼ 0, we may obtain the solution for the
gravitational-capillary wave on the surface as the function:

/ ¼ Aekzeix t�ikx ð1:3:12Þ

with the dispersion equation in the form that follows from (1.3.11):

x2 ¼ gkþ r k3

q
: ð1:3:13Þ

Note that the dependence on coordinate x in (1.3.12) arises after the dependence
� ekz due to (1.3.7).
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However, when the surface tension depends on the local level of the liquid
surface, i.e., rf 6¼ 0, we cannot describe the problem in such a simple manner;
function (1.3.12) is not the solution to (1.3.10). At first, we have to enucleate the
realism of dependence r fð Þ: how may the surface tension depend on the coordinate
of the surface?

The dependence r fð Þ exists for binary liquids at their condensation from a vapor
on cooled solid surfaces. At these conditions, the temperature at the surface depends
on the liquid height f; thus, if the components have different rates of evaporation,
the fractions of components will depend on f. Thereby, because surface tension
strongly depends on concentrations C of components, we finally get the dependence
r fð Þ. Specifically, we have:

dr
df

¼ dr
dC

dC
dT

dT
df

: ð1:3:14Þ

As a result of this process, a pseudo-dropwise condensation occurs: condensa-
tion, in the form of large drops, sits on a very thin liquid film (Ford and Missen
1968; Hijikata et al. 1996). In the belles-lettres version, this effect is named the “tear
of wine.”

We can see something similar in (1.3.11). Neglecting gravity, i.e., considering

pure capillarity, with relation fxx ¼ q
r
@/
@t

from (1.3.9) we get:

1
/
@2/
@t2

¼ rf
r
@/
@t

� c3r k3

q
: ð1:3:15Þ

For example, if rf [ 0 and @/
@t

[ 0 we may see that for a sufficiently large first

term on the right-hand side of (1.3.15) that the second derivative (on the left-hand
side) would be positive. This means that if the potential / starts to grow at a
sufficiently high rate (at rf [ 0), it will show accelerated growth. We may refer to
this behavior as instability, and the process as a whole represents a strong defor-
mation of the liquid surface.

Thus, evaporation may appear by itself even on a foreign object—during the
condensation process.

1.3.3 Movement of the Interfacial Boundary

The problem depicted in the title of this section is termed as the Stefan problem.
The surface of a phase transition is determined by two conditions:

• The temperature is equal to the temperature of the phase transition Ts.
• The heat flux normal for the interface takes a jump:
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�k1
@T1
@n|fflfflfflffl{zfflfflfflffl}

q1

þ k2
@T2
@n|fflfflfflfflffl{zfflfflfflfflffl}

�q2

¼ q rv; ð1:3:16Þ

with thermal conductivity k, mass density q, latent heat of phase transition r and
velocity of the moving interfacial boundary v.

Equation (1.3.16) must be solved in combination with the heat conductance
equation:

@T
@t

¼ aDT; ð1:3:17Þ

(a ¼ k
q cp

is the thermal diffusivity and D ¼Pk
@2

@x2k
) and the boundary condition for

(1.3.17). In general, it is impossible to solve this problem analytically, except in
some special cases. For slow boundary motion, when v 	 a=l (l is the spatial scale;
this is certainly not a perfect estimation), we may solve the Stefan problem in two
steps: (1) find the temperature distributions in two phases and (2) determine the
boundary velocity v from (1.3.16).

Equation (1.3.16) can be applied to find the velocity of the evaporation front:
due to mass leakage because of evaporation, the coordinate of the liquid surface
moves. Sometimes, this velocity may be found neglecting the heat flux q2 in
(1.3.16), i.e., the velocity v ¼ q

qr is determined only by the heat flux conducted from
one of the phases (e.g., from the vapor). The rate of mass lost per unit of the surface

area J ¼ 1
S
dm
dt

can be calculated in this case as J ¼ q=r.

Nevertheless, one key feature distinguishes evaporation from other sorts of
phase transitions, such as boiling or melting. Evaporation takes place at any surface
temperature, consequently, we cannot assume that the temperature of the evapo-
ration surface is equal to some special temperature Ts. We cannot put the tem-
perature of the evaporation surface, for example, equal to the boiling temperature,
especially considering the fact that the surface temperature is lower than the tem-
perature of the bulk of a liquid: because fast molecules leave the surface (evapo-
rate), the mean kinetic energy of surface molecules is always lower than inside the
liquid. In simple words, fast molecules always sink at the liquid surface, so the
temperature of the surface always decreases. Another question is how big is this
temperature difference − 0.1 K or 10 K?

1.3.4 Dynamics Near the Evaporation Surface

Far from the interface, we have a common hydrodynamic problem. The mass flux
in a vapor consists of two parts: the convective term q~v and the diffusive one
�Drn, where n is the mass concentration of the vapor.
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Usually, for simplicity, only one part of the mass flux is considered: either
convective or diffusive. In the case of evaporation in air, the latter approach can be
used, so we have the diffusion equation in vapor:

@n
@t

¼ D
@2n
@x2

ð1:3:18Þ

with a boundary condition at the evaporation surface for the mass flux:

@n
@x

����
x¼0

¼ � J
D
: ð1:3:19Þ

The mass flux can be determined under the assumptions discussed in the pre-
vious subsection through the heat flux q from the liquid phase, i.e.:

J ¼ q
r
¼ � k

r
@T
@x

����
x¼0

: ð1:3:20Þ

As for temperature, in our statement—in the absence of convective fluxes—we
have the diffusive form of (1.3.17).

Note that we may formulate the problem for a droplet in spherical coordinates;
such a solution directs us to J. C. Maxwell and will be considered in Chap. 7.

Here we discuss the non-stationary solution of the system of (1.3.17)–(1.3.18)
for liquid at x < 0 and vapor at x > 0 (axis~x is directed for the liquid surface into
the vapor), with initial and boundary conditions:

Tðt ¼ 0; x\0Þ ¼ T0; T t; x� 0ð Þ ¼ Tg; n t ¼ 0; x� 0ð Þ ¼ 0; ð1:3:21Þ

Further, we will neglect to consider the movement of the interface: strictly, as it
was discussed in Sect. 1.3.3, if the position of the interface was x ¼ 0 at t ¼ 0, then
this position will be x\0 for t[ 0. The gas temperature is assumed to be constant:
Tg ¼ const.

Thus, we obtain a simple solution for temperature inside a liquid, i.e., for x\0:

T t; xð Þ ¼ Tg � T0 � Tg
� �

erf
x

2
ffiffiffiffi
at

p
� �

; ð1:3:22Þ

where erfðxÞ is the error function (see Appendix B). Thus, the heat flux on the
liquid surface is:

qðtÞ ¼ �k
@T
@x

����
x¼0

¼ k T0 � Tg
� �ffiffiffiffiffiffiffiffi

p at
p : ð1:3:23Þ

Consequently, we have for vapor concentration x[ 0ð Þ:
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n t; xð Þ ¼ 1ffiffiffi
p

p
Z t

0

JðsÞffiffiffiffiffiffiffiffiffiffi
t � s

p exp � x2

4D t � sð Þ
� �

ds; ð1:3:24Þ

where the mass flux on boundary JðtÞ is defined by (1.3.20) with (1.3.23).
Correlation (1.3.24) determines the vapor mass in the gaseous phase. We see that

we may obtain the solution even for a non-stationary problem. Of course, we make
some assumptions here, such as constant temperature in the vapor, so that all the
heat flux on the liquid surface is spent on evaporation. However, actually, we have
the complete solution to the problem in macroscopic language. We may also
introduce the convective flux to the problem, and solve it at least numerically. Do
we see any problem with the macroscopic description presented here?

We have a sufficient description, what else?

1.4 Boundary Conditions

1.4.1 Boundary Conditions for Hydrodynamics

As mentioned in Sect. 1.3, hydrodynamic equations (Navier–Stokes equations)
require velocities on the interfacial surface: normal projection vn and tangential
projection vs. One may hope that by defining these velocities, it becomes possible
to find all the physics of evaporation. In reality, hydrodynamic equations are
exact, fundamental correlations; for instance, Navier–Stokes equations represent
momentum conservation. Then, we may expect that proper hydrodynamic solutions
provide us with the full description of evaporation.

Let us try to define the velocities of the vapor near the evaporation surface. At
first glance, it is easy to find velocity vn: if we know the temperature of the liquid,
we may calculate the corresponding mean velocity in a given direction, e.g., we
have something like:

vn ¼
ffiffiffiffiffiffiffi
2T
pm

r
ð1:4:1Þ

for the Maxwell distribution function (MDF) of particles. Thus, (1.4.1) would be
the normal velocity, and the mean tangential velocity would be equal to the velocity
of the liquid, i.e., in the most frequent case vs ¼ 0. Done!

However, one problem faces us with this approach: the hydrodynamic
description considers physical problems on large spatial scales, larger than the mean
free path (MFP) of a molecule. In other words, the “mean velocity” for the
hydrodynamic description implies the mean velocity of a huge amount of molecules
in the volume of a specific size (*10 MFPs).

In a vapor, the MFP is a considerable distance, and the most interesting processes
that define the evaporation phenomenon as a whole, take place at scales which are
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approximately equal to the MFP or even smaller, e.g., the DF of evaporated atoms is
established at distances much shorter than the MFP (about several nanometers from
the evaporation surface, see Chap. 5). Thereby, in the better case, velocity (1.4.1)
may be adequate only directly at the evaporation surface (actually perhaps not, see
Chap. 5); then, at distances approximately equal to the MFP, the DF of evaporated
particles changes, and changes significantly at distances much greater than the
MFP. Thus, the distribution function varies significantly in an “elementary dot” of the
medium (for the scale of hydrodynamic description) near the evaporation surface, so
velocity in this elementary point of the vapor is undefined.

Thus, hydrodynamics is insufficient: it cannot describe properly the evaporation
process itself; it is rather the evaporation that determines the boundary conditions
for hydrodynamic equations.

But hydrodynamics has a younger sister—physical kinetics.

1.4.2 Boundary Conditions for Kinetics

As always, kinetics hastens to the rescue of hydrodynamics. Boundary conditions
may be obtained from the solution of the kinetic equation—the equation for the
so-called DF f ðvÞ (the velocity probability distribution function). Actually, there are
many forms of the kinetic equation (see Chap. 3); almost all of them present
themselves as differential (or integral–differential) equations.

Thus, one may find the boundary conditions for the Navier–Stokes equation, if
one solves the kinetic equation, i.e., by calculating the mean velocity:

�v ¼
Z

vf ðvÞ dv; ð1:4:2Þ

etc. However, first one has to solve the kinetic equation for DF f ðvÞ. For this
operation, boundary conditions for the DF must be formulated, in turn.

The most popular boundary condition for the DF at the liquid surface is the MDF:

f vð Þ ¼
ffiffiffiffiffiffiffiffiffi
m
2pT

r
exp �mv2

2T

� �
; ð1:4:3Þ

where m is the mass of the molecule and T is temperature. Probably, the charac-
teristic of “popular” does not sound appropriate for scientific literature, but in most
works the DF (1.4.3) is accepted without any serious discussion. Sometimes, one
may find the following justification of (1.4.3): the Maxwellian must be observed in
a fluid, thus, because evaporated particles move from the liquid surface, they have
the same DF as particles in the liquid.

Sometimes, the DF (1.4.3) is modified to take into account the average velocity
of vapor V as:
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f vð Þ ¼
ffiffiffiffiffiffiffiffiffi
m
2pT

r
exp � v� Vð Þ2

2T

 !
: ð1:4:4Þ

But the DF here is not justified more strictly than the DF in (1.4.3). In both cases,
the source of these DFs is rather intuition than physical analysis.

The central part of this book is devoted to determination of the DFs on the
evaporation surface. In Chap. 5 we define the DF of velocities and in Chap. 6 the
DF of potential energy.

1.5 Conclusion

Evaporation occurs everywhere: it governs life on Earth and rules the ever-thirsty
bird toy. One may suppose that evaporation is an elementary process, but its oddity
may be observed even in a glass of wine.

Evaporation is a “liquid–vapor” surface phase transition. This is a non-equilibrium
process, which occurs at any temperature of a liquid’s surface. Evaporation is not
boiling, however, many aspects of the boiling process can be explained using aspects
of evaporation.

One should avoid applying equilibrium thermodynamics relations for evapora-
tion, because evaporation only represents the non-equilibrium part of the (eventu-
ally) equilibrium phase transition that is “liquid–vapor”, which consists of both
evaporation and condensation. Even here, in the conclusion, we must repeat that
using the quantity of “temperature” for strong non-equilibrium processes should be
avoided: you get nothing except confusion.

The hydrodynamic description of evaporation is fundamentally insufficient. Despite
the fact that we can obtain some results on a macroscopic level, any refinement of the
physical problem is impossible, because the spatial scale of hydrodynamic formulation
is too large for the evaporation process. Indeed, during evaporation all the events occur
over shorter distances, where hydrodynamics makes no sense.

Kinetics appears more suitable for the description of the evaporation phe-
nomenon. However, kinetic equations demand boundary conditions (boundary
distribution functions) too. These boundary functions represent tough opponents, so
we have to move step by step.

Let us begin.
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Chapter 2
The Statistical Approach

An essential part of this book is computational simulation. Many analytical results
will be examined by numerical calculations; for instance, we will represent the
Maxwellian distribution function obtained with molecular dynamics simulations,
i.e., we will present a statistical distribution function from the solution of mechanical
equations. Taking into account the strengths of the mechanical and statistical
approaches, we have to discuss the nuances of the statistical description itself.

Our goal is not to revive past discussions, but explain connections between
mechanics and statistics, specifically, to reconcile molecular dynamics simulations
results with the opinion that mechanics cannot predict the thermal equilibrium state
in principal.

The second aim of this chapter is to connect the term “probability” (which often
means randomness) with the deterministic character of mechanics. As we will see
below, this is an easy task.

2.1 From Mechanics to Probability

2.1.1 From Mechanics …

Any attempt to consider the world around us as a mechanical system capitulates in
the face of an army of countless units—of fast, poorly known and badly predictable
units—atoms. But in the middle of the 19th century physics discovered a backdoor
to the problem: despite the fact that the motion of a single particle is practically
unpredictable, we can predict the motion of a large group of particles. Specifically,
we can predict some overall parameters of motion of a large group of atoms. These
are non-mechanical parameters of a mechanical system … so is this system really
mechanical? The contradiction between the principle of least action and the 2nd law
of thermodynamics led to a radical point of view that mechanics cannot describe
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this world without an additional hypothesis of randomness. More precisely, the
most radical point states that the randomness hypothesis represents an instrument
which is sufficient for physical description.

However, mechanics has never given a reason to doubt its correctness—in cases
where the laws of mechanics have been applied, reliable results are obtained every
time. Sometimes it seems like something extra-mechanical has been found in a
well-known mechanical system; maybe, the last example is the “Pioneer effect.”
However, as for these space satellites, such problems are always being solved
successfully without breaking the fundamentals of mechanics.

Evidently, nature always tries to hide its mechanics from us. It could be a
problem of small denominators, or the common problem of integrability of a
mechanical system, or strong dependence on initial conditions, etc. Nature performs
good attempts to disappoint us with its power of mechanics. At least in one case,
such an attempt is almost successful.

Physics surrenders to the number of particles in a real system. We cannot track
(i.e., calculate the trajectories of) even a small number of particles in a room, and,
moreover, we cannot predict the motion of even a single atom over any significant
time interval. However, as we know today, we can predict some integral parameters
of gas in a room, and, in a general case, this is what we need (until we want to
predict the weather in our common “room”—on Earth). Many areas of science were
developed to describe nature on a macroscopic level, without any information of
molecules and their interaction. For instance, to analyze a flow in a pipe we can
neglect the atomistic structure of a fluid and use such terms as “mass density,”
“flow rate,” etc. Even coefficients (like viscosity) which can be, theoretically,
obtained with atomistic theory, are usually taken from the experimental data, i.e., in
frame of the macroscopic level.

Thus, physics successfully overcomes the unpredictability of a mechanical
system: we can always use a description of a higher level, such as hydrodynamics
or thermodynamics … with the next part—the analysis of the connection between
the higher level and the mechanical fundament—being optional. As a rule, we tend
to be satisfied with circumstances where we can describe a system, with questions
of predictability of a group of molecules fading into the background.

There exists an analog in popular physics literature: we cannot predict the
behavior of a single citizen, but we can predict the behavior of a mob. Of course we
could argue both points, but here we have to review the possibility of prediction in
nature.

2.1.2 … Through a Chaos …

Many physical terms come from common language, where a word means some
elusive, intuitively comprehensible matter. The word “chaos” is an excellent
example of such a term: originating from the Greek “vaof,” this term means any
perturbing, disordered matter of any kind. What was before the beginning of time?
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Chaos. What do we see in a child’s room? Chaos. What is the turbulent motion of a
liquid? Chaos. Sometimes the overloading of a scientific term is not harmful, but in
physics the term “chaos” has a precise meaning, and applications of this term must
be adequate.

A chaotic system is a system with a strong dependence on its initial conditions.
Specifically, if the fluctuation d of a parameter x obeys the exponential law:

d tð Þ ¼ d 0ð Þek t; k[ 0; ð2:1:1Þ

then any initial deviation will increase with time. Thus, even a small disturbance
d 0ð Þ leads to a large deviation d tð Þ at a sufficiently large t, and because of high d our
parameter x becomes unpredictable for long periods of time t. Such a system
(a system with a strong dependence on initial conditions) is termed a chaotic
system. Such a system “forgets” its initial conditions; this property is illustrated in
Fig. 2.1.

In Fig. 2.1 the results of numerical 2D simulations for electron plasma are pre-
sented [method of the macroparticles was used, see Sigov (2001)]. We simulate the
dynamics of plasma at time Dt, then stop the particles and recourse their velocities.
The parameter C ¼ uR=eR—the ratio of the total potential energy of particles to the
total kinetic energy of particles—is shown for the two cases and for the velocity
recourse moment Dt ¼ 5 ns and Dt ¼ 200 ns. We see that in the first case the plasma
returns to its initial state, while in the second case our stop–reverse operation does
not lead to any effect: system “forgot” its initial state.

Thus, when Boltzmann said to Loschmidt “Try to recourse them!”, he was
partially right: it is not so easy. However, this fact has no relation to the problem
that was discussed by them. Of course, the image in Fig. 2.1b has nothing to do
with irreversibility.

A chaotic system is unpredictable in terms of its parameters [for the deviation of
any parameter xi we have a condition (2.1.1)], but we may introduce some new
parameters for our system and try to describe our system using them.

For example, if a mechanical system is a chaotic system, then we cannot predict
the motion of its particles, e.g., we cannot predict the motion of gas atoms in a

Fig. 2.1 We can return “them,” but not from the distant future
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room. How tragic is this fact? Usually, we are not interested in the motion of
particles of a gas, we are interested in such parameters as temperature T or pressure
p. However, both parameters can be evaluated for an average state of the system,
without detailed information about any particle. If the velocity of particle A
increases by Dv with time while the velocity of particle B decreases by Dv, then the
overall result stays the same.

Thereby, if we do not need to know the velocity of any individual particle, but
want to know the fraction of particles dw which have velocity from v to vþ dv, we
may formulate our interests in terms of a distribution function (DF):

f vð Þ ¼ dw=dv: ð2:1:2Þ

This is the function that mathematicians term as a “probability density function.”
Here we avoid this name for two reasons: because physicians call it (for unknown
reasons) the “distribution function” and, mainly, because we want to avoid the word
“probability” for as long as possible.

2.1.3 … to Probability

How can we calculate the DF? From a mechanical standpoint, it is both easy and
not very easy: one has to calculate the number of particles Ni in the room for the ith
range of velocity Dv, corresponding to the velocity vi, then wi ¼ Ni=N, where
N ¼PNi is the total number of particles, and fi ¼ wi=Dv.

Do we see any probability there? Actually, no. We see no randomness, no more
randomness than the height distribution of players in a basketball team (where the
player’s height correlates with his role). As yet, it is only statistics: we count
participators and obtain their DF.

However, one may try to construct the DF f ðvÞ in other way. What if there exist
some common principles, according to which some universal DF may be found for
some universal state? If so, we may establish the DF f vð Þ a priori, without calcu-
lating the velocities of all the particles in a room. However, can mechanics predict
the existence of such an “universal state”? In mathematical language: does a
mechanical system tend to the universal attractor?

To add intrigue, we can point out that this universal state has a special name in
thermodynamics: it is called a “thermal equilibrium state.” Thus, the existence
(specifically, the absence) of thermal equilibrium is a possible point where
mechanics, considered by many, has a weakness: evidently, the existence of thermal
equilibrium is an obvious empirical fact (look around). Thus, we have two choices:

• Mechanics predicts thermal equilibrium.
• Mechanics is wrong.

We cannot consider here such matters in detail (the aim of this book is to
describe various regimes of evaporation, e.g., in Chap. 9), but, actually, we have

34 2 The Statistical Approach



not exaggerated the fervor of this discussion. For example, you may read a popular
book by Ilya Prigogine, The End of Certainty (with a subtitle Time, Chaos, and the
New Laws of Nature), which is full of indeterministic ideas and critical arrows
toward classical Newtonian mechanics, or other similar books.

Now, once the intrigue has been overcome, we can analyze arguments calmly.
The fact is that there are no special states in mechanics. A mechanical system is a

reversible system, and the theorem of Poincare-Zermelo states that any state
(determined by the coordinates and velocities of all its particles) of an isolated
system must be repeated with a given accuracy. In other words, such a function as
entropy (that only may increase in an isolated system, according to the most radical
formulation of the 2nd law of thermodynamics) cannot exist. Let us follow the
arguments of Zermelo (1896a, b).

Let xl be the 3N coordinates and 3N components of the velocity of N particles.
Thereby, the Hamilton equations have the form:

dxl
dt

¼ Xl x1; x2; . . .; xnð Þ; n ¼ 6N; ð2:1:3Þ

where Xl does not depend on xl. For instance, for a given coordinate the time
derivative dx=dt ¼ v 6¼ f ðxÞ. So we have:

@X1

@x1
þ @X2

@x2
þ � � � þ @Xn

@xn
¼ 0: ð2:1:4Þ

Let in the initial state P0 (i.e., at t ¼ 0) for every l:

xl ¼ nl: ð2:1:5Þ

Thereby, for a state P at instant t all our quantities may be represented as
solutions of (2.1.3):

xl ¼ Ul t � t0; n1; n2; . . .; nnð Þ: ð2:1:6Þ

This solution is as correct for t � t0 [ 0 as for t � t0\0, because P0 is an
arbitrary state, in general. For the phase volume of initial states, we have:

c0 ¼
Z

dn1dn2. . .dnn ð2:1:7Þ

correspondingly, for moment t:

c ¼
Z

dx1dx2. . .dxn: ð2:1:8Þ

However, due to the Liouville theorem, in the case of (2.1.4) c ¼ c0.
Consequently:
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dc ¼ dx1dx2. . .dxn ¼ const: ð2:1:9Þ

Thereby, let us consider the phase region g0 at moment t ¼ 0 (of volume c0) and
its future images—phase regions gt, t[ 0 (of volume c ¼ c0); i.e., all future regions
of g0, denoted as G0, is the set of gt. The volume C of G0 will be of finite value if
quantities x1; x2; . . .; xn are limited. Because G0—the future of g0—is fully deter-
mined by g0, there can be no new states in G0. Some states may leave G0, but the
dimension of that set is less than the dimension of C itself, i.e., the states that leave
G0 cannot be represented as the finite volume in G0 (Zermelo termed these states as
“singular”). Then, g0 is contained in G0, gt is contained in Gt, thereby, g0 is
contained in Gt, and we see that g0 ! gt ! g0. . .: except for the singular states, all
other states will return to the initial state. Thus, there is no irreversibility. From the
indeterministic point of view, mechanics signed its own death sentence with this
conclusion.

In light of his work, Zermelo stated that it is impossible to prove that the
Maxwell distribution represents the final state of a system.

In his immediate answer Boltzmann agreed that the theorem is true, but stated
that its application is wrong. The Maxwell distribution corresponds to the most
probable states of a system; there is no confrontation between a “particular function
(i.e., Maxwellian) vs. all other functions,” because, according to Boltzmann, “the
maximum number of possible velocity distributions has specific properties of the
Maxwell distribution.” In other words, Boltzmann stated that there is no special
limit state established in the system, but this system fluctuates around the “most
probable” state. For a single molecule, this “most probable” (i.e., the most fre-
quently observed) state corresponds to any equitable component of velocity, which
leads to the Maxwellian distribution function (see Sect. 2.2.3).

The next round of discussion between Zermelo and Boltzmann (with partici-
pation of Poincare) was devoted to the H-function, its behavior with time H(t) and a
correspondence between the 2nd law of thermodynamics and mechanical princi-
ples. A lot of effort was spent to prove the unprovable and to reconcile the irrec-
oncilable. For our purposes, it is important to conclude that an agreement was
achieved in this polemic: Maxwellian may be considered as the most probable
velocity distribution (not as the final state of the system).

We may not doubt the Maxwellian DF—it can be obtained for a mechanical
strongly chaotic system. As an illustration, in Fig. 2.2 we represent the velocity DF
of macroparticles (the total number of macroparticles is 1800); see also Fig. 2.1.

Initially, all the particles were divided in two groups: 900 particles formed a
uniform background and 900 particles were concentrated in the corner of a square
area (see Fig. 2.3a); the initial velocity DF of all 1800 particles was uniform. With
time, all particles were mixed (see Fig. 2.3b). Moments in time in Fig. 2.2 corre-
spond to Fig. 2.1, i.e., the DF at a 300-ns instant correspond to the quasi-reverse
motion.
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Thereby, the chaotization helps us introduce a function that may describe the
distribution of particles to their velocities. The fraction of particles with velocity v
may be considered as the probability for a single particle to have a velocity v, or for
us to find a particle with such a velocity. However, in both cases probability only
means a fraction of particles, nothing more. No randomness. Chaos is chaos, chance
is chance. These are different things.

Fig. 2.2 Velocity distribution functions at different moments of time curved line represents the
2D Maxwellian distribution function
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2.1.4 Irreversibility Versus Unidirectionality

Newtonian mechanics describes reversible systems. For instance, in Hamiltonian
equations:

dx
dt

¼ v; ð2:1:10Þ

dv
dt

¼ F
m

ð2:1:11Þ

we may replace t ! �t and v ! �v, and these equations will stay the same. Or, as
Loschmidt proposed, we may recourse particles of gas in a room, and they return to
their initial position. Chaoticity (i.e., strong dependence on initial conditions)
prevents the observation of this process in numerical simulations. However, it does
not prevent reversibility in principal: Fig. 2.1b does not illustrate any irreversibility
in the system. For a demonic condition dð0Þ ¼ 0 in (2.1.1), any dðtÞ ¼ 0, and the
system is fully predictable in a demon’s mind.

However, despite the reversibility, unidirectional motion is quite possible.
A stone moves toward the Earth, not back from it or in an arbitrary direction. The
directionality of motion is determined by the direction of force.

Irreversibility is a thermodynamicconcept. Irreversibilitymeans thatwe cannot return
system A to its initial state without changing environment B; a long time ago Planck
explained that the process that goes in one direction may, in general, be reversed in the
opposite direction. Irreversibility is a more complicated, overly mechanical property.

It looks mysterious, but sometimes concepts of irreversibility and unidirection-
ality are mixed even by scientists. Some process, e.g., the flight of a stone released
from a sling, may be unidirectional, but it can be turned back, if we stop a stone

Fig. 2.3 a Initial spatial distribution and b the spatial distribution at 200 ns
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during this flight (by some magical force) and change the sign of its velocity. Thus,
a unidirectional process may be reversible.

All that we see around us is directionality, not irreversibility. As Plato said to
Diogenes during a feast: “You have the eyes to see the cup, but you don’t have the
mind with which to comprehend cupness;” in other words, we have eyes for
directionality, but we must also have a mind for reversibility. The diffusion process
is irreversible because it is described by the irreversible equation:

@n
@t

¼ D
@2n
@x2

; ð2:1:12Þ

which is asymmetrical with replacement t ! �t, not because we see some irre-
versibility of the process of diffusion by eye.

In other words, reversibility is a scientific construction, while directionality is an
observed feature. These are absolutely different matters. It is logically wrong to
attempt to illustrate irreversibility with reference to any observable, unidirectional
process. For instance, in his books Prigogine gives an example of a flower, which
can never be seen to return to a seed. Of course, such mysterious things have never
been seen, but a stone flying away from the ground has also never been seen
(without external forces being applied to it, of course), while the flight of a stone
obeys classical, reversible mechanics. Briefly, our eyes are bad advisers in such a
complicated matter as irreversibility.

In fine, we may propose a pure mechanical “arrow of time.” Let us launch a
rocket named “Arrow of time” out of our solar system. On its endless voyage, the
distance from this spacecraft to the Sun may be used to calculate a value of time by
those who assume that reversibility is an equivalent to the absence of time.

2.1.5 “Tomorrow It Will Be Raining with 77% Probability”

Like chaos, the term “probability” has an elusive, ordinary meaning, and this
domestic meaning confuses our logic. Evidently, it is better to banish the word
“probability” from our everyday language forever, but the probability of success of
this attempt is negligible.

Let us imagine a column of ducks crossing a street, and a mad motorcycle driver
at a previous turn in the road. Observing all this tragedy with a naked eye, we may
conclude that one of these ducks will be found under the wheel of that bike. From
this point of view, the probability for any duck to die in this accident is 1=N.
Moreover, a smart duck (intuitively feeling impending doom) may decide that with
an increase in N its personal probability of dying decreases; from this point of view,
this smart duck may invite more friends to cross the road. However, if we get a job
calculating the trajectory of the driver and the exact position of any duck at the
moment of the catastrophe, we have to conclude that for a single duck this prob-
ability is equal to unity, for other ducks—equal to zero. Can we use the term
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“probability” as a measure of our incomplete knowledge? Some may answer “yes”
to this question, incorporating a lot of philosophy to their conclusion. However, it is
uncomfortable to realize that the term “probability” may be a measure of our
laziness (our laziness to analyze and to calculate).

To introduce a probability, we have to organize a set of independent tests with
the same conditions. At least, in a mental experiment. Sometimes, it is possible, but
sometimes not. In an attempt to predict such mysterious things as weather or the
result of a football match, we talk about probability, despite the impossibility of
filling this definition with any definite content. Sometimes, probability is an inap-
propriate term. We cannot take thousands of tomorrows and observe the weather or
sporting competitions in such cases, we cannot even imagine how this mental
examination could be realized.

One girl from a famous anecdote says that the probability of meeting a dinosaur
on the street is 50%: we may meet it or not. This is an example of an intuitive
estimation of probability, and not the worst one by the way. Honestly, how many
times have we made the same conclusions, i.e., how many times have we used the
term “probability” where its definition has made no sense?

A dramatic example—with what probability will I die tomorrow? At first glance,
one may construct some probability density function based on the average lifespan
of people sharing my gender, social group, job, weight, and of my pernicious
habits, and of the other billion parameters that, in fine, identify me as a certain
person. However, in this case we cannot construct such a probability density
function because of the absence of statistical material—I am a unique subject, so are
you. Otherwise, for restricted description (restricted by the “gender–country” dyad,
for instance) the death probability function may miss some significant information:
did I mention the radiation dose that I have received up to my current age? And so
on. Indeed there are no reasons to worry about such mindless questions. Actually,
the grim question from the beginning of this paragraph has no more serious sense
than the question “With what probability will I get married tomorrow?”

In fine, we say that the term “probability” here and below, throughout this book,
means a “fraction.” A fraction of particles with velocity v, a fraction of evaporated
atoms, etc. No randomness conceptions are used in this book.

2.2 Distribution Function

2.2.1 Probability Density Function

The probability density function f ðxÞ can be determined with the probability dw that
a variable has a value from x to xþ dx:

dw ¼ f ðxÞdx: ð2:2:1Þ
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In mathematics, the distribution function is:

F yð Þ ¼
Zy
�1

f ðxÞdx; ð2:2:2Þ

while traditionally in physics under the term “distribution function” the function
f ðxÞ is meant; in this book the last variation is used, i.e., DF f xð Þ in (2.2.1).

Note that DF does not necessarily suggest any randomness (see Sect. 2.1.3). We
may use functions like f ðxÞ when the quantity x is distributed because of a quite
deterministic process, like in mechanics. In this case, the probability dw means the
fraction of particles with property x (coordinates, velocities, energy, etc.).

2.2.2 Special Probability Functions

The generalized function vðxÞ can be defined only inside the corresponding
integrals:

Z1
�1

vðxÞdx; ð2:2:3Þ

they make no sense outside of it. For instance, the Dirac delta function (see
Appendix B) may be defined as:

Z1
�1

dðxÞdx ¼ 1; d x 6¼ 0ð Þ ¼ 0: ð2:2:4Þ

Out of its integral, such a function cannot be represented analytically, but we
may use some constructions to approach this (see Appendix B).

However, we can use a generalized function for the DF, because, strictly, only a
probability function has a “physical meaning:” only an integral means the fraction
of particles with corresponding properties (for instance, the number of particles with

velocities from a to b is
R b
a f ðvÞdv). Thus, as long as we do not use some mathe-

matical constructions for the DF and its evolution (like differential equations), we
may use any functions for the DF, including generalized functions.

For example, in the simplest case when a particle is localized at point x0 with a
probability of 100%, the DF can be expressed as:

f ðxÞ ¼ d x� x0ð Þ: ð2:2:5Þ
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For the DF of a single particle at a determined coordinate x0 with a velocity v0:

f ðx; vÞ ¼ dðx� x0Þdðv� v0Þ: ð2:2:6Þ

With a delta function, we have for any function g:

G yð Þ ¼
Z1
�1

g xð Þd x� yð Þdx ¼ g yð Þ: ð2:2:7Þ

2.2.3 Poisson and Gauss

Let us denote pn x1; x2ð Þ as the probability of n events at interval x1; x2ð Þ. For a
single event we have:

p1 x; xþDxð Þ ¼ n xð ÞDx; ð2:2:8Þ

that is, the average number of events on x1; x2ð Þ is:

l ¼
Zx2
x1

n xð Þdx: ð2:2:9Þ

For a chain of probabilities pm one may obtain the system of differential
equations:

dp0
dl

¼ �p0;
dpn
dl

¼ �pn þ pn�1; n[ 1: ð2:2:10Þ

with conditions p0 ¼ 1 and pn ¼ 0 n[ 1ð Þ. The solution of (2.2.10) is a Poisson
distribution:

pn ¼ lne�l

n!
: ð2:2:11Þ

The normal distribution (or the Gaussian):

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2pD

p exp �ðx� x0Þ2
2D

 !
ð2:2:12Þ

follows from the limit theorem. In the simplest formulation, this theorem establishes
the distribution (2.2.12) for random independent values with limited dispersion. In
other words, the distribution (2.2.12) may be obtained for a large amount of small
symmetrical deviations from the mean value x0.
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In (2.2.12) quantity x0 is the mean value:

x0 ¼
Z1
�1

xf xð Þdx; ð2:2:13Þ

and the dispersion D is:

D ¼
Z1
�1

x� x0ð Þ2f xð Þdx: ð2:2:14Þ

As we will see in Sect. 2.3, in the case of full chaotization (in the thermal
equilibrium state) the DF of any projection of velocity satisfies (2.2.12), in this case
the distribution is called “Maxwellian.”

2.2.4 Spatial Scales

Thus, the DF must determine the number of particles with coordinates x and
velocities v. How many particles must be taken into account to define this DF?

The extreme answer, discussed in Vlasov (1978), is as follows: the statistical
approach does not restrict the amount of particles, thus, we may consider even
the statistical physics of a single particle. Of course, it is easy to argue this theory,
and we will not consider this method here. However, we have to answer the
question.

We do not consider time or spatial scales for variation of f here; this question
will be discussed in Chap. 3. In this section we provide only the preliminary
consideration.

We may require two properties for spatial scale L, which must be large enough:

• To construct any DF—there must be a lot of particles on such a scale.
• To neglect fluctuations of the DF: the DF shows a fraction of particles at this

point with certain velocity; this fraction variates because of fluctuations—
because of thermal motion, atoms move to and from this point.

Combining these requirements, the number of particles N xð Þ at x must be much
greater than the value Nmin:

N xð Þ � Nmin: ð2:2:15Þ

For the first condition, Nmin ¼ 1; for the second, Nmin could be obtained for
certain information about fluctuations. Let us consider the spatial region of volume
V ¼ L3. The averaged number density of particles is n ¼ N=L3, thus, the spatial
scale for the DF, according to the first requirement is:
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L � n�1=3: ð2:2:16Þ

For example, for an ideal gas at pressure p ¼ 105 Pa and temperature T ¼ 300K,
we have the left-hand side of (2.2.16) at 3.5 nm; thereby, the spatial scale only for
the density calculation must be *10 nm to satisfy only the simplest condition
N � 1, and, moreover, the velocity DF obtained on such a small scale will be of
bad resolution Dv.

Let us estimate the fluctuation of the number of particles in volume V . From
each of the six sides of this volume the flux is j ¼ nv with a characteristic velocity
v� ffiffiffiffiffiffiffiffiffi

T=m
p � 102m/s for T � 102K and m� 1u. Thus, the number of particles

crossing one side of volume V at time Dt is defined by correlation:

Nmin ¼ nvL2Dt; ð2:2:17Þ

which leads to the estimation of the spatial scale:

L � vDt: ð2:2:18Þ

Here Dt is the timescale for a collision, thus, the product on the left-hand side of
(2.2.18) is the mean free path (MFP) of the molecule (see Chap. 3). Thus, we see
that fluctuations are negligible on spatial scales much larger than the MFP of the
molecule. This case corresponds to the continuum medium; for a statistical (kinetic)
approach the condition (2.2.16) is sufficient.

2.2.5 Example: The Debye Radius

This is an interesting example of an incorrect interpretation of the DF. Let us
consider only the spatial distribution function, i.e., the number density function:

n xð Þ ¼
Z

f x; vð Þdv: ð2:2:19Þ

In plasma (ionized gas) we must consider three sorts of particles: neutral par-
ticles with density nn xð Þ, electrons with ne xð Þ and ions (we will consider only
single-charged ions, that is every ion with the charge þ e) with ni xð Þ.

From the Poisson equation for the electrostatic potential of an electric field u :

Du ¼ � q
e0
; ð2:2:20Þ

where q is the charge density q ¼ e ni � neð Þ, we have with the Boltzmann distri-
bution function:
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n ¼ n0e�u=T ð2:2:21Þ

and the equation:

Du ¼ � n0
e0

exp � eu
2T

� �
� exp

eu
2T

� �� �
: ð2:2:22Þ

One may expand the exponents of (2.2.22) into series with words about “… the
small values of eu=2T …” However, as we will see in Sect. 2.2.7, distributions
(2.2.21) and, consequently, (2.2.22) have a physical sense only in the case of
eu=2Tj j � 1; see also Ecker (1972). Thus, instead of (2.2.22) we have:

Du ¼ n0eu
e0T

: ð2:2:23Þ

The expression (2.2.23) has a common sense, and we can apply it to special
problems. For example, we may consider a spatial distribution of potential around a
point charge (ion or electron) in plasma. For this purpose, (2.2.23) becomes:

1
r2

d
dr

r2
du
dr

¼ n0eu
e0T

; ð2:2:24Þ

with a boundary condition at the radius of the point charge r0:

u r0ð Þ ¼ u0: ð2:2:25Þ

We may define the Debye radius as the spatial scale for the electrostatic potential
that appears from (2.2.24):

RD ¼
ffiffiffiffiffiffiffi
e0T
n0e

r
; ð2:2:26Þ

and (2.2.24) has a solution:

u rð Þ ¼ u0
r0
r
exp

r0 � r
RD

� �
¼ A

r
e�r=RD : ð2:2:27Þ

The equality of (2.2.26) is what we usually need from this consideration (the
description of electrical potential shielding), but in some books the expression from
(2.2.27) is discussed. According to this formula, the distribution of electric potential
around any charge in plasma obeys (2.2.27).

Thereby, we must conclude that around any plasma particle (any ion or any
electron) the electric filed is spherically symmetric. However, of course, it is an
absolutely absurd conclusion. It is impossible, but where is the error in our logic in
(2.2.20–2.2.27)?
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Strictly, the weak (i.e., the wrong) point is the problem statement as a whole, and
the weakest point is expression (2.2.25). There, we demand a certain value of
electric potential at the scale of the size of a single particle r0. On such scales the
DF (2.2.21) cannon be defined, thus, the entire consideration becomes absurd.

However, we can easily save the situation, if we consider a large (external)
macroparticle of size r0; for instance, it may be a charged dust grain. For this
problem, the solution in (2.2.27) is correct.

2.2.6 Distribution of Potential Energy

A crucial part of Chap. 6 is where we find this DF—particularly, for an evaporating
fluid. However, in this chapter, we may discuss a common question: are the kinetic
energy and potential energy statistically independent quantities? That is, can we
represent a DF for kinetic and potential energy multiplicatively:

f e; uð Þ ¼ f eð Þf uð Þ; ð2:2:28Þ

assuming that a particle with a kinetic energy e may have an independent (i.e., any)
value of potential energy u?

At first (mechanical) glance, it is absolutely impossible. Let us consider, for
example, a pendulum: here the kinetic energy depends on the potential energy; in
the lowest point with minimum u the kinetic energy has a maximum, and vice versa
—for the highest (dead) points, where u ¼ umax we have e ¼ 0. In common, if the
total energy s is a constant:

s ¼ eþ u ¼ const; ð2:2:29Þ

then we cannot, of course, assume the independence of e and u.
However, for a given particle in an N-particle system the total energy is not a

constant. The quantity s fluctuates as other quantities, thus, we have no direct
restriction such as (2.2.29). Thus, we may assume that any particle can have any
potential energy at the given kinetic energy. With time, both e and u of the particle
variate, and it can be supposed that at t ! 1 we may observe any possible value of
e accompanying any possible value of u. Thus, despite the fact that the variation of
velocity (and, correspondingly, of kinetic energy) of the particle is determined by
the gradient of the potential energy:

d~v
dt

¼ �ru
m

; ð2:2:30Þ

at a sufficiently long time we just observe any possible combinations of e and u.
Consequently, we may assume that (2.2.28) is correct. Results of a numerical
calculation, where this representation will be verified, can be found in Chap. 6.
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2.2.7 The Statistical Approach

This subsection is given only for completeness. The statistical approach led to
thermodynamics in the following way (according to Gibbs).

For an adiabatic system at constant energy E the DF (probability density) of a
system determined by internal parameters x and external parameters a may be
written as:

p x; að Þ ¼ 1
B að Þ d E � H x; að Þð Þ; ð2:2:31Þ

where d is the Dirac function, H is the Hamiltonian of the system (total kinetic and
potential energy of a system) and B að Þ is the normalizing factor:

B að Þ ¼
Z

d E � H x; að Þð Þdx: ð2:2:32Þ

The DF (2.2.31) is the so-called Gibbs microcanonical distribution. For the
system in a thermostat, where one may consider two parts of the system with
Hamiltonians H1 x1ð Þ and H2 x2ð Þ, with interaction energy U12 we have:

H x1; x2; að Þ ¼ H1 x1; að ÞþH2 x2; að ÞþU12: ð2:2:33Þ

Assuming that U12 ¼ 0, i.e., the interaction energy is much lower than the
energy of both subsystems (we used this property above when we discussed the
linearization of the exponent in the Boltzmann distribution), we have:

p1 x1; að Þ ¼ / H1 x1; að Þð Þ; p2 x2; að Þ ¼ / H2 x2; að Þð Þ; ð2:2:34Þ

p x1; x2; að Þ ¼ / H1 x1; að ÞþH2 x2; að Þð Þ:

At last, we note that the probability density for the total system is multiplicative
due to the independence of subsystems:

p x1; x2; að Þ ¼ p x1; að Þp x2; að Þ: ð2:2:35Þ

Thus, if the function of the sum equals the product of the functions of the terms,
then this function is the exponent:

p xð Þ ¼ C að Þe�bHðxÞ: ð2:2:36Þ

This is the canonical Gibbs distribution; inserting the expression for Hamiltonian,
one may obtain the Maxwell-Boltzmann distribution. Here, the normalizing constant
may be represented as:
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1
C að Þ ¼ e�bF að Þ ¼

Z
e�bH x;að Þdx; ð2:2:37Þ

that is, we may introduce functions:

Z b; að Þ ¼
Z

e�bH x;að Þdx; ð2:2:38Þ

F b; að Þ ¼ � 1
b
ln Z b; að Þ: ð2:2:39Þ

Function (2.2.38) is the partition function. The sense of the function F a; bð Þ
(2.2.39) and the parameter b ¼ 1=H may be ascertained with the equation (fol-
lowing from the canonical Gibbs distribution):

Hd � @F
@H

� �
¼ d�HþAda: ð2:2:40Þ

Here, the mean total energy:

�H ¼
Z

H x; að ÞebF b;að Þ�bH x;að Þdx ð2:2:41Þ

may be treated as the internal energy of a system, the H is the temperature of the
system and the function F is the free energy of the system; the entropy is:

S ¼ � @F
@H

¼ ln p ¼
Z

F � �H
H

eðF��HÞ=Hdx: ð2:2:42Þ

In this manner, we obtained all the thermodynamics. We started from an almost
mechanical consideration, and found the joined 1st and 2nd law of thermodynamics
(2.2.40). Did we obtain the 2nd law in its full complexity? No, of course. As was
mentioned Chap. 1, the 2nd law consists of different statements—statements of
different force (see Sect. 1.2). Above, we figured out only the equilibrium equation
(2.2.40), but the most interesting feature of entropy—increasing in an isolated
system—cannot be explained this way. This increasing was the point of discussion
between Zermelo (and Poincare) and Boltzmann, this is a point where mechanics
contradicts thermodynamics (see Sect. 2.1.3).

Mechanics is based on the principal of least action; reversible mechanical
equations cannot state the law of maximum entropy. However, we have seen that
mechanics leads to some equations that may be interpreted as definitions (me-
chanical analogs) of thermodynamic functions like (2.2.41) and (2.2.42) and the
connection between them in the form of (2.2.40). Can the principal of maximum
entropy repeat this trick?

48 2 The Statistical Approach



2.2.8 The Principle of the Maximal Entropy

This principle allows one to construct all statistical physics without appellations to
other ideas, especially, to ideas taken from mechanics. Thus, it represents a
self-sufficient approach. All we need is the basic statement.

We assume that the entropy S of the given system has a maximum at some
additional conditions, specifically, in a closed system with a constant amount of
particles N and at the constant total energy E of this system (Haken 1988).

Let us define the probability of the state with energy ei as the ratio of the particles
with this energy to the total number of particles: pi ¼ ni=N, then we have:

S ¼ �
X

pi ln pi ! max; ð2:2:43Þ
X

pi ¼ 1; ð2:2:44Þ
X

eipi ¼ �e ¼ e
N
: ð2:2:45Þ

Then we find variations of (2.2.43–2.2.45). We have:

dS ¼ �
X

ln pi þ 1ð Þdpi ¼ 0; ð2:2:46Þ
X

dpi ¼ 0; ð2:2:47Þ
X

eidpi ¼ 0: ð2:2:48Þ

Multiplying (2.2.47) by ðln a� 1Þ and (2.2.48) by ð�bÞ and taking the sum of
all equations we see that:X

� ln pi þ 1ð Þþ ln a� 1ð Þ � b ei½ �d pi ¼ 0 ð2:2:49Þ

Due to independence of variations dpi, any term in sum (2.2.49) must be equal to
zero, thus:

� ln pi þ ln a� b ei ¼ 0 ð2:2:50Þ

pi ¼ a e�b ei ð2:2:51Þ

Here constant a can be obtained from (2.2.44), so:

a�1 ¼
X

e�be ð2:2:52Þ

Thus, we obtain the Gibbs canonical distribution. From this point on, we may
continue in the manner of the previous subsection and obtain that b ¼ 1=T , for
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example. Thus, as we see, we may deduce all thermodynamics from the starting
point of the principal of the maximum entropy.

This method can be applied for various systems, even for instance, for boiling
(Gerasimov and Sinkevich 2004).

2.2.9 The Virial Theorem

This is a useful correlation, especially when we know two of the three parts of the
pressure-kinetic energy-potential energy triad and we need to find the third
part. This correlation is a kind of bridge between mechanics and statistics.

Let us consider the system of N particles; ~ri and ~pi are coordinates and
momentum of the ith particle. The time derivation of the sum on all N particles of
products~ri~pi is:

d
dt

X
~ri~pi ¼

X d~ri
dt

~pi þ
X d~pi

dt
~ri: ð2:2:53Þ

Using the Lagrange function L ¼ E � U, we have:

d~ri
dt

¼ @L
@~pi

¼ @E
@~pi

¼ @

@~pi

X p2i
2m

¼~pi
m
; ð2:2:54Þ

then the first term in (2.2.53) is:

X d~ri
dt

~pi ¼
X p2i

m
¼ 2E: ð2:2:55Þ

Then we average (2.2.53) with (2.2.55). Under the averaging of function F we
mean the operation:

F ¼ lim
t!1

1
t

Z t

0

Fdt; ð2:2:56Þ

thus, averaging the left-hand side of (2.2.53) we obtain:

lim
t!1

1
t

Z t

0

d
dt

X
~ri~pi

� �
dt ¼ lim

t!1

P
~ri tð Þ~pi tð Þ �

P
~ri 0ð Þ~pi 0ð Þ

t
¼ 0; ð2:2:57Þ

since every product in the numerator of (2.2.57) is finite for a finite volume. Then:

2Eþ
X

~ri
d~pi
dt

¼ 0; ð2:2:58Þ
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and with the Hamilton equation (or with the Newton’s 2nd law):

d~pi
dt

¼ ~Fi ¼ ~Fout
i � @U

@~ri
; ð2:2:59Þ

with two types of forces: outer forces from outer bodies at the boundary of
the system and inner forces, from other particles of the system with the potential
energy U:

X
~ri
d~pi
dt

� �
¼ �

X
~ri
@U
@~ri|fflfflfflfflffl{zfflfflfflfflffl}

Ur

þ
X

~ri~Fout
i ¼ �Ur � p

Z
~rd~S ¼ �U � 3pV ;

ð2:2:60Þ

because
R
~rd~S =

R
div~rdV = 3V . Finally:

2E � Ur � 3pV ¼ 0: ð2:2:61Þ

For instance, for an ideal system of non-interacting particles U ¼ 0, and we have
an analog of the Clapeyron equation:

p ¼ 2E
3V

; ð2:2:62Þ

which leads to the normal form for E ¼ 3
2NT . For interaction potential U� 1

rn we
have Ur ¼ �nU, and (2.2.61) turns into:

2Eþ nU ¼ 3pV : ð2:2:63Þ

For example, these correlations can be used to calculate pressure in a system if
the parameter Ur is available. Note that the introduction of pressure slightly
changes the character of the description: the definition of the boundary surface
S implies some hypothesis about the uniformity of pressure on it, which may lead to
hypothesis of the uniform distribution of particles on S, etc.

2.3 The Maxwell Distribution Function

2.3.1 Physical Models

Possibly, the main difference between physics and mathematics is hidden in the
accuracy of definitions used by these two sciences. Mathematics is based on logic
while physics is led by the common experience and personal intuition of its adepts.
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Every mathematical definition is precise and clear. Every physical formulation was
grown in a wilderness of experimental facts known at its birth and was shaped by
contemporary views.

Some physical formulae can be obtained from known physical principles with
some neglections, but this fact does not mean that these neglections are an essential
part of these formulae: possibly, there exists another way to establish this law
without such strict circumstances. Any theorem begins from the formulation of
conditions of its correctness while very rare physical contention has definitive area
of its application; almost every physical law has no definite boundary of its use.
Most physical laws were obtained for model systems or elementary objects (ideal
gas, Newtonian fluid, mass point, etc.), thus we have an open range for applicability
of these laws in real nature.

The Maxwellian distribution function (MDF) is a vivid example. It was dis-
covered, criticized, observed in experiments and denied for complicated systems
only to be resurrected later in a changed form. In physics, the MDF has a status of
being the “distribution function by default:” this DF can be applied to any problem
when any other DFs are not strictly proved. Of course, evaporation is not an
exception (see Chap. 5).

Possibly, it is enough to say that the Maxwellian is the analog for the Gaussian
(in physics): the DF on any projection of velocity in the thermal equilibrium state
has a form:

f vxð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2 pDv

p exp � v2x
2Dv

� �
ð2:3:1Þ

with the dispersion Dv ¼ T=m.
Gabriel Lippman once said that “all scientists trust the Gaussian: physicists

believe that it is proved mathematically while mathematicians thought that it was
justified experimentally;” Henri Poincare cited this dictum in his “Probability
Theory” with a reference to Lippman, but, as usual, details were missed and now
this aphorism is attributed to Poincare.

For a physicist, there are more than enough proofs for the MDF, but from the
point of view of a mathematician this is an unsolved problem (see Sect. 2.1.3): the
stumbling block is the state of the thermodynamic equilibrium as it is. The Gaussian
(2.3.1) can be obtained for a stochastic set of velocities (which may be interpreted
as a thermal equilibrium by definition), but how does a mechanical system enter
such a state? However, if one is able to jump over this stumbling block, then the rest
of the proof will be direct and simple. In common, the condition for MDF is stated
more or less firmly from the physicist’s point of view, especially if one takes into
account that the existence of the MDF was the only point of agreement between
Zermelo and Boltzmann.

Below we represent the old—original—derivation of the MDF, and a nice clear
modern view on a problem.
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2.3.2 The Maxwellian of Maxwell

The most famous DF was born in 1859 and was re-analyzed further by its author
several times. Today, we may obtain the MDF in various ways (one of them will be
considered in Sect. 2.3.3) but under the same assumption: the stochastization (i.e.,
the isotropic property) of velocity is needed. Actually, this assumption is a kind of
synonym of the “thermal equilibrium.” Maxwell used this approach in an early
derivation of his DF, but later he applied the principle of the detailed equilibrium to
determine the MDF.

In 1959, in the work Illustrations of the Dynamical Theory of Gases the MDF
appeared for the first time.

Let vx; vy; vz be components of a velocity vector~v. Due to independence of these
components from each other we have that number of particles with velocities
vx � vx þ dx, vy � vy þ dvy and vz � vz þ dvz is proportional to:

Nf vxð Þf vy
� 	

f vzð Þdvxdvydvz: ð2:3:2Þ

On the other hand, from the isotropic property of the velocity space, we can
conclude that the number of particles can only depend on the radius from the origin
in the velocity space:

f vxð Þf vy
� 	

f vzð Þ ¼ u v2x þ v2y þ v2z
� �

¼ u v2
� 	

: ð2:3:3Þ

From here we see that:

f vxð Þ ¼ C exp Av2x
� 	

and u v2
� 	 ¼ C3 exp Av2

� 	
: ð2:3:4Þ

Concluding that A\0 (otherwise the number of particles would be unlimited),
and normalizing functions we obtain:

f vxð Þ ¼ 1
a
ffiffiffi
p

p exp � v2x
a2

� �
: ð2:3:5Þ

For constant a we have:

v2 ¼ v2x þ v2y þ v2z ¼
3
2
a2: ð2:3:6Þ

Maxwell did not state this fact in that work, but from a modern standpoint we
may note that a2 ¼ 2T=m.

That was Proposition IV in Illustrations of the Dynamical Theory of Gases. It is
also interesting that in Proposition V Maxwell, in fact, establishes that his distri-
bution is stable (to say in modern terms): the number of pairs of particles with
relative velocity w satisfies the same distribution (see also Appendix A):
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f wð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p 1ffiffiffi
p

p exp � w2

a2 þ b2

� �
; ð2:3:7Þ

where a and b are parameters of distributions for particles of two sorts; in particular
the case a ¼ b.

Next, Maxwell derived his DF in 1866, in the work On the Dynamical Theory of
Gases. Later, almost the same method (except for nuances) was applied in On the
Final State of a System of Molecules in a Motion Subject to Forces of Any Kind of
1873.

Here another approach was used. Maxwell treated a collision of particles; in
common terms, Maxwell found the DF that could provide a dynamic equilibrium in
such a system—or may nullify the collision integral (despite the fact that this term
did not exist at that time).

Let v, v0 and w,w0 be the velocities of two particles before and after a collision
correspondingly. The rate of direct collisions v;wð Þ ! v0;w0ð Þ in elementary vol-
ume dV between the particles of numbers n1 ¼ f1 vð ÞdV and n2 ¼ f2 wð ÞdV is:

dc1 ¼ Ff1 vð Þf2 wð Þ dVð Þ2dt; ð2:3:8Þ

where F is a function of the relative velocity of particles.
For reverse collisions v0;w0ð Þ ! v;wð Þ we have a similar equation:

dc2 ¼ Ff1 v0ð Þf2 w0ð Þ dVð Þ2dt; ð2:3:9Þ

with the same function F. In equilibrium dc1 ¼ dc2, and:

f1 vð Þf2 wð Þ ¼ f1 v0ð Þf2 w0ð Þ: ð2:3:10Þ

We must include the energy conservation law in our consideration:

m1v2

2
þ m2w2

2
¼ m1v02

2
þ m2w02

2
: ð2:3:11Þ

Because of relations (2.3.10) and (2.3.11), the only form for function f1 and
function f2 is:

f1 vð Þ ¼ C1 exp � v2

a2

� �
and f2 wð Þ ¼ C2 exp �w2

b2

� �
; ð2:3:12Þ

with correlation m1a2 ¼ m2b
2. Constants C1;2 may be found from the normalizing

conditions
R
f1;2 vð Þdv ¼ N1;2. Again, we have the same distribution functions—the

MDF.
In other words, here Maxwell provided the operation that may be found in every

modern textbook on physical kinetics—at the stage when the “equilibrium” DF is
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being found from the condition “the collision integral is equal to zero.” However,
Maxwell did it in a slightly more elegant and more direct way.

As we discussed in Sect. 2.2.1, some problems concerning the condition of
application of the MDF were debated by mathematicians. Despite the fact that all
considerations represented in this subsection look quite solid, the answer to the key
question for the MDF is unclear: how can this function be obtained from
mechanics? For a better understanding, we provide the mathematical method to
determine the MDF in Sect. 2.3.3.

2.3.3 Modern View on Maxwellian

Returning to the beginning of Sect. 2.3.1, we may conclude that physicists, of
course, have more than sufficient proof for the MDF, provided in the previous
section. However, to physicists’ surprise, from a mathematical point of view, the
thoughts represented above are not sufficiently strict.

To the question concerning the relation between the MDF and mechanics (from
which, evidently, the MDF was obtained), we may add a typical “physicist’s”
question: where the mount begins? We mean, how many particles must be in an
ensemble to provide sufficient accuracy of the MDF? Usually, physicists rely on
their intuition, when they named some great numbers as “ten in Nth degree.”
However, probably, we may derive a more common relation under the same
assumption about thermal equilibrium, which has the MDF as the asymptotic
function for N ! 1?

Below we will follow Kozlov (2002).
Let each ith particle of N particles in n-dimensional space have components of

velocity vi;1, vi;2, …, vi;n. The total kinetic energy of all particles is:

XN
i¼1

m~v2i
2

¼
XN
i¼1

Xn
j¼1

mv2i;j
2

¼ E ¼ �eN; ð2:3:13Þ

where �e is the mean kinetic energy of a single particle. The state of the medium is
defined by the point:

vi;1; vi;2; . . .; vi;n; . . .; vN;1; vN;2; . . .; vN;n

 � 2 <nN ð2:3:14Þ

on the ðnN � 1Þ-dimensional hypersphere S of radius:

R ¼
ffiffiffiffiffiffi
2E
m

r
¼

ffiffiffiffiffiffiffiffi
2�eN
m

r
: ð2:3:15Þ

Then, we have to define the probability measure p on this sphere S. This is
always a problematic step; in Kozlov (2002) p is defined as a volume of S, i.e., the
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probability measure for a given velocity projection of the given particle may be
defined as:

p a\vi;j\b
� 	 ¼ mes a\vi;j\b

� 	
mesS

; ð2:3:16Þ

where:

mes a\vi;j\b
� 	 ¼ Zb

a

1� mx2

2�eN

� �nN�3
2

dx; ð2:3:17Þ

mesS ¼
ZR
�R

1� mx2

2�eN

� �nN�3
2

dx: ð2:3:18Þ

Thus, the probability density function (in our language, the DF) may be repre-
sented in an N-particle system as:

f N vð Þ ¼ 1� mv2

2�eN

� �nN�3
2

: ð2:3:19Þ

For n ¼ 1 and N ! 1 one can obtain the regular form of the Maxwell
distribution:

f1 vð Þ ¼
ffiffiffiffiffiffiffiffiffi
m

4 p�e

r
e�

mv2
4�e : ð2:3:20Þ

Hear the quantity �e, as usual, is:

�e ¼
Z1
�1

mv2

2
f vð Þdv ¼ T

2
: ð2:3:21Þ

Thus, from this consideration we may see a more common form of the MDF is
(2.3.19); this function is represented in Fig. 2.4.

However, the function f N was obtained at the same condition of thermal equi-
librium represented by the correlation for the measure of probability (2.3.17), this
condition may be also explained as an equality of velocities (specifically, the
equality of each velocity projection of each particle).

Returning to the previous consideration, and replacing the term “probability”
with the term “fraction,” we may conclude that for a sufficiently disordered system
the MDF may be expected. Note also that the absence of the potential energy in this
consideration does not mean that this method can be applied only for ideal gas.
Contrary to this, from a physical consideration it follows that only the interaction of
particles may lead to disorder in a system.
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2.3.4 The Maxwellians for 2D and 3D Cases

In 2D geometry, on a plane, the MDF is:

f vð Þ ¼ mv
T

exp �mv2

2T

� �
; v[ 0: ð2:3:22Þ

This DF follows from (2.3.20) written for f vxð Þf vy
� 	

dvxdvy, considering that
v2x þ v2y ¼ v2 and replacing dvxdvy ¼ 2 pvdv. Analogically, for a 3D case:

f vð Þ ¼ m
2pT

� �3=2
4pv2 exp �mv2

2T

� �
; v[ 0: ð2:3:23Þ

In a general case, for ND geometry (why not? especially for numerical simu-
lations) we have:

f vð Þ ¼ 2ð2�nÞ=2

C n=2ð Þ
m
T

� �n=2
vn�1 exp �mv2

2T

� �
; v[ 0 ð2:3:24Þ

There is no contradiction between (2.3.24) for n ¼ 1 and (2.3.20) because of the
different definition area of v in these formulae.

2.3.5 The Maxwellian Distribution Function of Kinetic
Energy

Expression (2.3.23) represents the velocity distribution function. However, one also
may need a DF for kinetic energy. Such a DF—which can also be termed the MDF
—can be obtained from the corresponding velocity DF for e ¼ mv2=2:

Fig. 2.4 The distribution function (2.3.19) for N = 10 particles and the Maxwellian distribution
function (T = 300 K). DF—distribution function
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f eð Þde ¼ 1ffiffiffiffiffiffiffiffi
peT

p exp � e
T

� �
de; for 1D; ð2:3:25Þ

f eð Þ ¼ 1
T
exp � e

T

� �
; for 2D; ð2:3:26Þ

f eð Þde ¼ 2
ffiffi
e

pffiffiffiffiffiffiffiffi
pT3

p exp � e
T

� �
de; for 3D: ð2:3:27Þ

The average kinetic energy for function (2.3.27) is, of course:

em ¼
Z1
0

e f eð Þde ¼ 2ffiffiffiffiffiffiffiffi
pT3

p
Z1
0

e
ffiffi
e

p
e�e=Tde ¼ 1:5T : ð2:3:28Þ

The dispersion of the MDF (2.3.27) is:

De ¼ e� emð Þ2 ¼ 2ffiffiffiffiffiffiffiffiffi
p T3

p
Z1
0

e� emð Þ2 ffiffi
e

p
e�e=Tde ¼ 1:5T2: ð2:3:29Þ

We will use these correlations further in Chap. 6.

2.3.6 The Meaning of the Maxwellian Distribution
Function

This problem was discussed in Sect. 2.2.1, but here we repeat and emphasize key
aspects.

The MDF is not the pinnacle of evolution of a dynamic system. We do not state
that at any instant the velocity DF of molecules in the system obeys the
Maxwellian; it would be a wrong and confusing assertion. The velocity DF
oscillates (non-regularly) around the MDF which represents a weak attractor for a
chaotized system. In the common case, a deviation of the DF from Maxwellian at a
given moment of time depends on the number of particles N in the system, but even
when N ! 1 the DF does not turn into the MDF forever, because, generally, the
“fluctuations” in a dynamic system may be of any intensity. Note that the term
“fluctuations” is non-mechanical in its nature; this definition belongs to another set
of physical terminology (that of thermodynamics). A dynamic system does not
“fluctuate,” it performs perpetual motion. Due to the chaotization of velocities, we
may (specifically, Maxwell did) note some special property of the averaged velocity
DF: in this case any projection of velocity must satisfy the Gaussian, which is
named here as the MDF.
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In another formulation, the DF f v; tð Þ, even for t ! 1, is not Maxwellian; the
MDF can be observed only for function:

lim
Dt!1

1
Dt

ZtþDt

t

f v; tð Þdt: ð2:3:30Þ

In turn, this equation can be easily proven. On a “physicist severity level,” it is
sufficient to point out that the measure (2.3.17) can be used for mean values of
velocities. In correlated systems (and other systems, of course) we may expect that
any particle would repeat the fate of any other particle, i.e., particles are indistin-
guishable on their kinetic energy spectrum. In this case, we have (2.3.17) and
(2.3.20) as a consequence.

2.4 Conclusion

In this observation chapter we discussed some important problems facing the
upcoming results obtained and presented in this book.

We cannot obtain any results from a numerical calculation of a real system,
consisting of 10[very much] particles. This is a super complicated task, which will
probably remain unrealizable. Thus, we have to turn to statistical science. Instead of
the coordinates and velocities of all the particles, we may use the probability density
function (the DF)—a function which determines the fraction of particles at corre-
sponding coordinates with corresponding velocities.

The statistical approach uses the term “probability” as a rule. For our purposes—
for the description of a mechanical system of many particles—the probability does
not mean “chance;” it is synonymous with the word “fraction.” We never involve
any randomness concept in our considerations. However, on several pages of this
chapter chaos is discussed.

Chaos is not chance, a chaotic system is a deterministic system. Due to a strong
dependence on initial conditions, a chaotic system forgets its initial state. We may
also observe even a quasi-irreversibility in such a system, however, this is not an
irreversibility in its direct sense, but a mirage of it.

The MDF may be obtained in numerical simulations without any additional
factors such as stochastic forces, etc. The chaotization of particle velocities—even
in a deterministic system—is a sufficient condition to obtain the MDF; there are no
contradictions with principles of mechanical reversibility in this result. At sufficient
chaotization, we may expect that the velocity distribution function of particles will
oscillate around the Maxwellian. This is something we have observed.
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Chapter 3
The Kinetic Approach

This chapter further develops Chap. 2. The dynamics of the distribution function
(DF) may be represented with various methods and different equations. Despite the
fact that the Boltzmann kinetic equation is the most popular expression, there are
many other correlations that can do the same.

This chapter describes several kinetic approaches.

3.1 Dynamics of Probability

3.1.1 Kinetic Equations

The DF f x; vð Þ, introduced in Chap. 2, describes a static picture: the number of
particles at point x with velocity v. However, for transient processes we have to
evaluate the variation of DF, i.e., we must consider the function f t; x; vð Þ.

Correlations for the dynamics of f t; x; vð Þ are referred to as the kinetic equations.
The most famous equation is the Boltzmann kinetic equation, but it is not the only
one, and is not even the best construction for many practical purposes. Many kinds
of kinetic equations may be used; some of them are discussed in this chapter.

A common way to determine an expression of time evolution of a DF can be
explained by analogy with the continuity equation (the law of mass conservation):

@q
@t
þ divq~v ¼ S: ð3:1:1Þ

In normal conditions the mass source S ¼ 0 (if we do not consider a pair pro-
duction by gamma-quants, for example), however, in a mixture the density of a
component of the said mixture can be expressed by (3.1.1) with a non-zero source
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term (due to chemical reactions). For a pure substance, with S ¼ 0, (3.1.1) states
that mass may flow to this point or from it, but cannot be produced in any way.

As we remember, a DF, by its nature, is a number density in expanded space (not
only in the usual coordinate space, but also in the velocity space), thus, we can
formulate the dynamic equation for a DF similar to (3.1.1):

@f
@t
þ~v @f

@~x
þ~a @f

@~v
¼ I: ð3:1:2Þ

The last two terms on the left-hand side may be written as the divergence term
div~Vf in the phase space ~x;~vð Þ, where the vector ~V unites vectors~v and ~a. Such a
“derivation” of the kinetic equation provides many questions; some of them may be
unexpected, and we will consider the nuances of the kinetic approach, as a whole,
later in Sect. 3.4.

The single question concerning (3.1.2) must be settled here: the source term on
the right-hand side, denoted as I. This is the collision integral; its form defines the
type of kinetic equation. The oldest versions of the collision integral were obtained
by Maxwell and Boltzmann, and the corresponding equation is referred to as the
Boltzmann equation.

The Boltzmann kinetic equation may be obtained in various ways; it can be
written almost immediately with simple consideration of collisions between particles
with a DF f ~x;~vð Þ, and, actually, it was almost written in Chap. 2. However, from a
certain point of view, such an approach raises more questions than provides answers.

We prefer the most common approach, which demands that we first redetermine
the DF.

3.1.2 The Liouville Theorem

The DF f ~x;~vð Þ that was used previously defines the probability to find a single
particle at coordinates ~x with a velocity ~v. However, one may use another
approach: to obtain the probability to find particle #1 with ~x1 and ~v1, then find
particle #2 with ~x2 and ~v2, etc., for all N particles. This approach might make
sense when particle #1 at ~x1;~v1ð Þ influences the probability to find particle #2 at
~x2;~v2ð Þ.
Let us introduce a multiparticle DF that describes the probability that the first

particle has coordinate~x1 and velocity~v1, the second particle has coordinate~x2 and
velocity~v2, and so on:

dwN ¼ f N t;~x1;~v1; . . .;~xN ;~vNð Þd~x1d~v1. . .d~xNd~vN : ð3:1:3Þ
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Of course, the DF f N is normalized:

Z
f Nd~x1. . .d~xNd~v1. . .d~vN ¼ 1: ð3:1:4Þ

The DF of N − 1 particles may be obtained with (3.1.3) as:

f N�1 ~x1;~v1; . . .;~xN�1;~vN�1ð Þ ¼
ZZ

f Nd~xNd~vN : ð3:1:5Þ

In such a manner, we may continue to integrate forever, until we find a
single-particle DF f ~x;~vð Þ.

Then, we introduce the “probability conservation equation” for a DF in the form
that was discussed above:

@f N

@t
þ div2N~Vf N ¼ 0; ð3:1:6Þ

where ~V is the vector of generalized velocities, consisting of N regular velocities~vi
and of N accelerations~ai. Equation (3.1.6) represents the discontinuity equation for
DF f N . In a slightly more traditional representation:

@f N

@t
þ

XN
k¼1

~vk
@f N

@~xk
þ

XN
k¼1

~ak
@f N

@~vk
¼ 0: ð3:1:7Þ

Equation (3.1.6) can be substantiated by many ways; for instance, in Cercignani
(1969) a mechanical analog of f N was used:

f N ¼
YN
i¼1

d ~x�~X tð Þ� �
d ~v� _~X tð Þ
� �

; ð3:1:8Þ

where ~X tð Þ and _~X tð Þ are coordinates and velocities of particles, correspondingly,
which are determined by mechanical equations (the Hamilton equations), and d xð Þ
are the Dirac delta functions (see Appendix B). Actually, to use the generalized
function for such purposes, we have to define its derivative; in fine, in this modus,
(3.1.6) can be obtained.

Equation (3.1.6) is only a starting point for the derivation of kinetic equations.
This equation means that, across the whole system of N particles, probability is a
conserved quantity (in contrast to the single-particle DF, it obeys (3.1.2) when
I 6¼ 0).

In Sect. 3.2 we briefly provide a real show—considering such exercises which
are analogous to a short program in figure skating.
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3.2 The Bogoliubov–Born–Green–Kirkwood–Yvon Chain

3.2.1 Kinetic Equations

The Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) chain (or hierarchy)
defines the kinetic equation for the DF f k through the DF f kþ 1.

The acceleration~a in the kinetic equation may be of dual nature: this may be the
acceleration in the external force ~F or the result of an interparticle interaction. In the
latter case, the quantity ~a depends on the coordinates of interacting particles, i.e.,
each term ~ak

@f
@~vk

in the sum of (3.1.7) may be represented with the pair interaction
potential uik ~xi �~xkj jð Þ as:

~ak
@f N

@~vk
¼

~Fk

m
@f N

@~vk
� 1
m

X
i 6¼k

@uik

@~xk

@f N

@~vk
; ð3:2:1Þ

where m is the mass of the particle.
Integrating (3.1.7) for coordinates ~xN and velocities ~vN of the Nth particle, we

have:

Z
@f N

@t
d~xNd~vN ¼ @f N�1

@t
; ð3:2:2Þ

Z XN
k¼1

~vk
@f N

@~xk
d~xNd~vN ¼

XN�1
k¼1

~vk
@f N�1

@~xk
þ

Z
~vN

@f N

@~xN
d~xNd~vN|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

: ð3:2:3Þ

Analogically, the last term in (3.1.7) may be represented as:

Z XN
k¼1

~ak
@f N

@~vk
d~xNd~vN ¼

XN�1
k¼1

Z
~ak

@f N

@~vk
d~xNd~vN þ

Z
~aN

@f N

@~vN
d~xNd~vN|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

: ð3:2:4Þ

We may rewrite (3.2.1) as follows:

XN�1
k¼1

~Fk

m
@f N�1

@~vk
� 1
m

XN�1
k¼1

X
j6¼k

Z
@uik

@~xk

@f N

@~vk
d~xNd~vN : ð3:2:5Þ

Integrating (3.1.7) for variables ~xN�1;~xN ;~vN�1;~vN , we get the corresponding
equation for function f N�2. Actually, (3.1.7) may be integrated further and further;
for the DF f i one may obtain:
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@f i

@t þ
Pi
k¼1

~vk
@f i

@~xk
þ Pi

k¼1
~Fk
m

@f i

@~vk

¼ 1
m

Pi
k¼1

P
j6¼k

R @u ~xk�~xjj jð Þ
@~xk

@f iþ 1

@~vk
d~xiþ 1d~viþ 1

: ð3:2:6Þ

In fine, after integrating for all variables~x2; . . .;~xN and~v2; . . .;~vN , we obtain the
kinetic equation for the single-particle DF f 1:

@f 1

@t
þ~v1 @f

1

@~x1
þ

~F1

m
@f 1

@~v1
¼ 1

m

XN
k¼2

Z
@u ~x1 �~xkj jð Þ

@~x1

@f 2

@~v1
d~xkd~vk; ð3:2:7Þ

or, to simplify, and to avoid confusion, removing index “1” and denoting the
two-particle DF as f1k , then taking the derivate @=@~v out of the integral, we may
rewrite (3.2.7) as:

@f
@t
þ~v @f

@~x
þ

~F
m
@f
@~v
¼ 1

m

XN
k¼2

@

@~v

Z
ruf1kd~xkd~vk: ð3:2:8Þ

Thus, to obtain a certain equation for the single-particle DF, we have to include
the two-particle DF f1k, but we cannot obtain such an expression directly from the
BBGKY chain because this function is represented through the three-particle DF,
etc. Therefore, we may design some correlation for the function f1k immediately,
based on some physical assumptions.

We will use this approach in Sect. 3.3 and obtain the Boltzmann equation.

3.3 The Boltzmann Kinetic Equation

3.3.1 Derivation from the BBGKY Chain

As we mentioned in Sect. 3.1, the Boltzmann equation may be constructed with the
“physical” consideration of the collision processes, but we prefer a more formalistic
way.

Kinetic equations of Boltzmann type can be obtained from the BBGKY hier-
archy; this is the kinetic equation for a single-particle DF. As it follows from the
previous section, for function f we have a kinetic equation, which has a two-particle
DF on its right-hand side (under the integral). Usually, this operation—derivation of
the Boltzmann equation—is executed in a pair of pure mathematical steps. Here we
follow the method of Vlasov; which is a deeper and more interesting approach.

The kinetic equation for the single-particle DF f can be obtained under seven
assumptions (Vlasov 1966).
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1. There is no spread of accelerations. This means the absence of the term
� @f =@a in the kinetic equation; see discussion in Sect. 3.4.

2. The system must be restricted with regular conditions for the convergence of
integrals [e.g., for (3.2.3)].

3. Collisions take place at a spatial scale much smaller than the mean distance
between particles in a gas. In other words, the scale of interactions named
“collisions” is very short, i.e., these are local point interactions. This is an
important remark because of Sects. 3.4 and 3.5.

4. The interaction between particles is reduced to pair collisions.
5. In the kinetic equation:

@f
@t
þ v

@f
@x
¼ I ð3:3:1Þ

on a time arrow the left-hand side describes events that follow the collision, i.e.,
the event described in the right-hand side.

6. The time taken for the collision is small, i.e., this time is negligible, and we may
assume that the collision is a momentary process in which the velocities of
collided particles change their values and directions.

7. The two-particle DF is multiplicative: f1s ¼ f1fs. This assumption is the main
requirement from a mathematical point of view. It allows us to obtain certainty
from of the integral on the right-hand side of the kinetic equation. Note that
usually this condition is the only condition discussed during the derivation of the
Boltzmann equation.

We need the first two assumptions to obtain the BBGK chain, and then we have:

I ¼ 1
m

XN
k¼2

@

@~v

ZZ
ruf1kd~xkd~vk: ð3:3:2Þ

Here the term ru means the force acting between the particles during the time
of collision; at the time gap between two successive collisions ru ¼ 0.

This integral can be represented using correlation:

divv f1kruð Þ ¼ divx f1k~vð Þ ð3:3:3Þ

in a form:

I ¼ 1
m

XN
k¼2

ZZ
nrf1kd~xkd~vk; ð3:3:4Þ

where n ¼ ~v�~vkj j is the relative velocity of the colliding particles. How many
terms must be taken into account in the sum? That depends on the timescale s for
derivative @f =@t relative to the time between two successive collisions tcol.
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The first limiting case is s\tcol. If so, either all terms in the sum are equal to
zero, or one term is non-zero. The second choice assumes n collisions at time
s[ tcol. In the last case, for non-correlated collisions, we will have n identical terms
from the sum. Renormalizing the single-particle DF f ! nf , we obtain the same
result, i.e., the same final equation.

Then we represent the integral in coordinate space in a cylindrical system with
axis z and radius a:

d~x ¼ adadzd#: ð3:3:5Þ

where a has the role of an impact parameter and axis z is directed along the vector
~v�~vk. Thus, the integral is:

Z
adad#d~vk

Z
n
@f1k
@z

dz: ð3:3:6Þ

The last integral of z must be taken from “before the collision” up to “after the
collision.” Using assumption 6, we can take out n from the integral, so:

Z
n
@f1k
@z

dz ¼ n
Z

@f1k
@z

dz ¼ n f 01k � f1k
� �

: ð3:3:7Þ

where the apostrophe denotes the two-particle DF after the collision.
Finally, with assumption 7 we obtain:

@f
@t
þ~v @f

@~x
þ

~F
m
@f
@~v
¼ 1

m

Z
n f 0f 0k � ffk
� �

adad#d~v: ð3:3:8Þ

This is the Boltzmann equation. To use this equation, we have to establish one
more additional condition for the existence of derivatives in (3.3.8) and, conse-
quently, for the existence of (3.3.8) as a whole.

3.3.2 The Differentiability

We formulate physical laws in mathematical language, and this is the language of
differential equations. Sometimes we add integral terms to these equations (e.g., the
collision integral in the kinetic equation), but one can say without much exagger-
ation that mathematical physics is the theory of differential equations: we formulate
a theory by applying various derivatives to physical quantities and combining them
into equations. This theoretical method seems to be the only one that can be used,
but indeed it is not.

The alternative way is the formulation of a physical problem in the language of
maps. Actually, this is not a bad way considering the dominative role of numerical
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simulations in modern theoretical physics: it looks reasonable to omit the phase of a
differential equation, formulating a problem as a map xiþ 1  F xið Þ immediately.
However, this method is used vary rarely, in extraordinal models (e.g., in the Fermi
acceleration problem). Mathematical descriptions of physical problems and differ-
ential equations become almost synonymous.

Many mathematicians are convinced that physics (in its theoretical part) contains
nothing more than equations. It is not true: theoretical physics consists not only of
equations, but also of variables within these equations. An adequate formulation of
a physical description implies correctness of the chosen scale of these variables, and
this is a difficult task.

To apply a derivative to a physical variable, the variable representing a physical
quantity must be:

• Well defined at a given point in a medium.
• Discontinuous.
• Smooth.

We may start the discussion about these matters by considering the example of
temperature.

First, this means that temperature exists. In the simplest case, temperature
can be determined as the mean kinetic energy of chaotic motion, i.e., for a 1D
case:

T
2
¼ �e ¼ 1

N

XN
k¼1

m vk � �vð Þ2
2

; ð3:3:9Þ

where �v ¼ 1
N

PN
k¼1 vk. A single particle (i.e., for N = 1) has zero mean kinetic

energy �e (because �v1 ¼ �v), thus, we see that T = 0, and some may say that the
temperature of a single particle is absent. Then we take two particles and notice that
�e[ 0 in such a system. Does this system have such a quantity as temperature?
Actually, no. The thermodynamic arguments behind this were considered in
Chap. 1; briefly, the “equilibrium distribution function” is the key phrase here. Here
we provide alternative reasoning.

Temperature is a quantity which appears in various physical relations. For cer-
tainty, we will consider Fourier’s law:

q ¼ �k @T
@x

: ð3:3:10Þ

On the left-hand side of this equation we see the heat flux q, on the right-hand
side we see the heat conductivity k and the gradient of temperature T. Thereby,
temperature is a quantity, the gradient of which determines the heat flux (with a
proportional coefficient that may be found in references). In the case of two par-
ticles in each of two neighboring elementary volumes, obviously, the heat flux from
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one volume to another does not obey the correlation in (3.3.10); consequently, we
cannot replace T ! �e and hope to obtain reasonable results.

How many particles do we need in order to introduce temperature? Of course,
this question has no certain answer. We can be sure of the correctness of (3.3.9), if
and only if it provides the same results for limited N and for N ! ∞ at the accepted
accuracy d, i.e.:

1
N

PN
k¼1

m vk��vð Þ2
2 � lim

N!1
1
N

PN
k¼1

m vk��vð Þ2
2

����
����

lim
N!1

1
N

PN
k¼1

m vk��vð Þ2
2

\d: ð3:3:11Þ

Of course, (3.3.11) is a kind of theoretical estimation, because it is difficult to obtain
N !1 in a real system. The requirement of (3.3.11) is suitable for various physical
quantities (such as pressure, density, etc.), but temperature is a special case: in
addition to the common relation in (3.3.11), we have to demand that any value of
temperature—obtained with different physical methods—must be the same.

We mean that temperature is the parameter that determines the equilibrium state
(according to the 0th law of thermodynamic, see Chap. 1). Any energy distribution
must have the same module (here and below under the term “module” we under-
stand the parameter of the probability density function that determines the scale of
the distributed quantity). For instance, in the equilibrium medium:

• Temperature determines all the distribution functions.
• A body placed in this medium takes this temperature.
• Radiation emitted by this medium has the same temperature; we do not mean

that any medium emits thermal radiation, e.g., it can be impossible for a thin
optic layer of gas, but the rotational and vibrational temperatures of gas must
coincide with the transitional temperature.

Therefore, we have discussed the first requirement: the existence of the physical
quantity. As for discontinuity, there are no problems at first glance: any physical
quantity exists at any point in space. “Nature abhors a vacuum,” and so on.
However, for extraordinary cases, for rarefied medium, defining the quantity uni-
formly (at the same spatial scale in every point of the medium), we may have a
problem in some (more rarefied) areas. The next counterexample is the temperature
of a non-uniformly heated liquid (see Sect. 9.3). Actually, this second item in the
list of requirements must not be missed.

The last requirement is more serious. As we know from L. F. Richardson, “wind
has no velocity:” because of the irregular motion of liquid particles, their trajectory
may be interpreted as a non-differentiable function, i.e., the quantity v ¼ dx=dt does
not exist.

For instance, in Fig. 3.1 the variation of velocity V of a particle is presented.
This particle collides with other particles through an equal distance L (of, course,
this is a model). In each collision, the value of velocity varies drastically on discrete
random values DV.
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Can we determine the operator dV=dx ? Of course not. The derivative does not
exist at any point of the collision (at any “step” in the “stairs” in Fig. 3.1), thus, the
function presented in Fig. 3.1 is non-differentiable. We cannot compose any dif-
ferential equation for such a function, but we can average our “stairs” over many
“steps” (see Fig. 3.2) and obtain a smooth “hill” (i.e., a differentiable function) in
that way. Using this smooth function on that “hill” we cannot pretend to calculate
the exact value of V at a given point: we can only find an averaged value. In other
words, on a large scale we may replace the real step function V xð Þ with the
smoothed function Vs xð Þ, represented in Fig. 3.2. From a physical point of view,
there are no serious problems here: this replacement demands some variations in the
physical model describing the variation of Vs xð Þ, but no dramatic changes.
However, at this price, we gain a benefit: we now can compose a differential
equation for the function Vs xð Þ, in contrast to function V xð Þ.

Thus, by replacing V xð Þ ! Vs xð Þ we have the advantage of a differential
equation, with the disadvantage being the value Vs xð Þ represents the averaged
quantity V on some spatial interval Dx around the coordinate x.

This example explains the restrictions for the physical quantity that arise when
we formulate a differential equation for this quantity. Now we are ready to discuss
the spatial scale specifically for the DF obtained as a solution to the Boltzmann
equation.

Fig. 3.1 The step function
V(x) has no derivatives at
several points

Fig. 3.2 The step function
and its “smoothed” variant
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3.3.3 Spatial Scales for the Distribution Function

There are three types of spatial scales that can be separated:

1. The scale where the physical quantity exists: LA.
2. The scale where the physical quantity varies: LB.
3. The scale where the physical quantity can be described by a smooth, differen-

tiable function: LC.

As we noticed in Chap. 2, the scale LA of the number of particles that determines
the DF is sufficiently large, i.e., N LAð Þ � 1.

The spatial scale LB is obviously the distance l—the mean free path (MFP) of the
particle. At distance LB the velocity of a single particle undergoes drastic variations;
thus, strictly, we may have problems with the differential equation for f .

Of course, the DF f x; vð Þ does not repeat the velocity function of the single
particle V(x) from Fig. 3.2: the DF represents the number density of many particles,
and one may hope that the averaged (over many particles) velocity �VðxÞ is a more
“smoothed” function than VðxÞ. Indeed, some particles undergo collisions directly
at the MFP, whilst others undergo collisions at MFP/2 or at p�MFP, etc. Alas, the
possibility to construct a differentiable DF for gas is questionable anyway (the
answer depends on a small-scale model of collisions), and the problem depicted in
the previous subsection remains. In the common case, we have to conclude that the
calculated DF is a function smoothed on scales approximately equal to the MFP. In
other words, the spatial resolution of our DF is approximately equal to the scale of
the MFP—we cannot predict the exact values of the DF at smaller scales with
differential equations for the DF.

However, we may use a differential equation for the “smoothed” DF f. In this
case, the spatial scale LC for the function f is around a few MFPs of the particle (in
the general case it is impossible to be more precise; the minimal scale is � l):
LC � LB� l.

By the way, we may remember from Chap. 2 that there exists the spatial scale
LD � l, where fluctuations of the DF are small, and we have a continuous
approach.

3.3.4 Temporal Scale for the Distribution Function

An interesting property of the collision integral is the issue that I fMð Þ ¼ 0, where fM
is the Maxwellian distribution function (MDF). We showed this in Chap. 2 (when
we obtained the Maxwellian from conditions f 01f

0
2 ¼ f1f2 at v021 þ v022 ¼ v21þ v22).

Thus, the kinetic equation predicts the Maxwellian as the final state of the
non-equilibrium system.

However, we saw (in Chap. 2) that this statement contradicts the mechanical
nature of the system: the Maxwellian is the most frequent state of the system, not
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the destination point of the system’s evolution. The simplest way to reconcile both
approaches is to consider the evolution of a DF on timescales much longer than the
period of the DF fluctuations, i.e., at times where many collisions take place.

Thus, from another point of view, we again obtain the condition s� tcol that we
used above in Sect. 3.3.1.

3.4 The Vlasov Approach: No Collisions

3.4.1 Collisionless

At first glance, it is easy to understand (and explain to somebody else) what a
“collision” is. Actually, it is a much harder task in physical terms. Molecules are not
elastic dots, and “collision” implies, from a strict point of view, interaction between
two (or more) molecules by means of physical forces. These forces are conditioned
by an interaction potential, and, strictly, “collision” means a motion with alternating
acceleration at the field of these forces. For the given particle from the system, these
forces are caused by other particles from this very system. Since our goal is to find
the DF for particles, then perhaps a “collision”—we mean motion with alternating
accelerations, the forces which cause this acceleration, the instant distribution of
particles which provide these forces—can be described by means of this DF itself
(along with the potential of intermolecular interaction). How far can we go in this
direction?

Anatoly Vlasov had his own ideas about every aspect of physical kinetics. In his
books Many-Particle Theory, Statistical Distribution Functions (of special interest)
and Nonlocal Statistical Mechanics he presented many original ideas. His kinetic
equation for plasma became a classical implementation of the statistical approach to
a strongly coupled system, and this success meant that he tended to generalize this
approach to all types of systems. As we know now, this was too brave a move and
incorrect in some nuanced situations, but anyway … The kinetic theory of Vlasov
deserves much more attention than it has today. We bet that 9 out of 10 physicists
would find something new in the theory described below. Here we decline all the
previous considerations from Sects. 3.1–3.3 and start from the very beginning.

Let us introduce the multiparametric DF f ðt;~x;~v; _~v; €~v; . . .Þ, which depends, as
one can see, not only on coordinates and velocities, but also on _~v (acceleration), on
€~v, etc. That is, the number of particles at corresponding parameters is defined as:

dn ¼ f t;~x;~v; _~v; €~v; . . .
� �

d~xd~vd _~vd€~v. . . ð3:4:1Þ

Note that to unify all the independent variables~x;~v; _~v. . . we can use notification
_~x; €~x;v~x; . . .. However, in fine, we get a more or less regular kinetic equation, thus, we
distinguish the coordinates and velocities.
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With the DF in (3.4.1), density, for example, can be calculated as an integral:

q t;~xð Þ ¼
Z

f t;~x;~v; _~v; €~v; . . .
� �

d~vd _~vd€~v. . .

¼
Z

f t;~x;~vð Þd~v ¼
Z Z

f t;~x;~v; _~v
� �

d _~v
� 	

d~v ¼ . . .;

ð3:4:2Þ

with appropriate limits for its corresponding variables (usually these limits may be
put as �1). In such a way, every DF of N parameters~x;~v; _~v; . . . can be expressed
through the function of the larger number of parameters.

Then we establish a conservation law—a sort of discontinuity equation—for
function f ðt;~x;~v; _~v; €~v; . . .Þ in the same manner as the mass conservation law equa-
tion for q t;~vð Þ:

@f
@t
þ divx~vf þ divv _~vf þ div _v€~vf þ . . . ¼ 0: ð3:4:3Þ

Here we take divergences in appropriate spaces. For example:

divv _~vf ¼ @ _vxf
@vx
þ @ _vyf

@vy
þ @ _vzf

@vz
: ð3:4:4Þ

How many terms must be left in (3.4.4)? To truncate the series of divergences in
(3.4.3) we need additional information about the average value of~v, _~v or €~v, etc., i.e.,
a certain expression for a term like:

_~v
D E
¼

Z
_~vf t;~x;~v; _~v
� �

d_v; ð3:4:5Þ

or with any other quantities of dots above~v.
Usually, we know a specific expression exactly for (3.4.5): from the 2nd law of

Newton it follows that:

_~v
D E
¼~a ¼

~F
m
: ð3:4:6Þ

The force acting on the particle ~F must be determined by the external closing
relation. In this case, we have the usual kinetic equation (3.4.3) for function
f t;~x;~vð Þ that follows from (3.4.3):

@f
@t
þ divx~vf þ divv _~v

D E
f ¼ 0: ð3:4:7Þ

Is the truncation performed above unique? No. For instance, in a system of
particles emitting electromagnetic radiation, the reaction of radiation is:
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~Frr ¼ e2

6pe0c3
€~v; ð3:4:8Þ

so we have a different closing correlation instead of (3.4.6):

€~v
D E
¼ 6pe0c3

e2
m _~v�~Fother

� �
; ð3:4:9Þ

where ~Fother represents all sorts of other forces. Thus, the kinetic equation in this
case is:

@f
@t
þ divr~vf þ divv _~vf þ div _v €~v

D E
f ¼ 0: ð3:4:10Þ

Usually radiation forces are small, so the spread of accelerations is also narrow,
as it follows from (3.4.9): still _~v�~Fother=m. However, the fact that we may (or
must?) take into account the DF depending on accelerations deserves attention.

Now let us return to (3.4.7). In many cases, force ~F can be represented through
the pair potential u ~x1 �~x2j jð Þ—the energy of interaction between two particles,
which depends only on the coordinate difference. Therefore, the total force acting
on a given particle is:

~F ¼
X
i

�ru ~x�~xij jð Þ ¼ �r
Z
V

Zþ1
�1

u ~x�~x0j jð Þf t;~x0;~v0ð Þd~v0d~x0

¼ �r
Z
V

u ~x�~x0j jð Þq t;~x0ð Þd~x0 ¼ �rU t;~xð Þ:
ð3:4:11Þ

Equation (3.4.11) means that:

• The energy of the interaction between two particles does depend on a third
particle.

• The distribution of particles which influence this given particle can be described
by the required DF f t;~x;~vð Þ.
We can use any pair potential in (3.4.11), for instance, the regular Coulomb

potential:

u rð Þ ¼ � e2

4pe0r
; ð3:4:12Þ

or the exotic potential for two grains in a dusty plasma (Gerasimov and Sinkevich
1999):
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u s ¼ r=r0ð Þ ¼ Ae�s
B
s
� 1

� 	
; ð3:4:13Þ

where r0 ¼
ffiffiffiffiffi
ne2
e0T

q
is the Debye radius (see also Sect. 2.2.5).

Moreover, we can try to construct a potential which describes a “collision”
between two particles (a sort of potential with sharp dependence on coordinates in a
repulsive term). In any case, it seems that the kinetic equation:

@f
@t
þ~v @f

@~r
�rrU rð Þ

m
@f
@~v
¼ 0 ð3:4:14Þ

provides an adequate description of our physical problem. Or does it? We will
discuss this question later in Sect. 3.4.4. Here we want to extrapolate on some other
ideas of Vlasov.

3.4.2 The Hamiltonian of the Macrosystem

Everybody knows that the Hamiltonian of a system can depend only on coordinates
and velocities of particles with this system, right? Well, this is not so, because of the
reason noted above: electromagnetic forces (3.4.8).

The second reason, specifically, the second example that may be considered, is
the potential of interaction shown in (3.4.13). This relation was used for two dust
grains in thermal plasma, and, as we see, this pair potential depends on temperature.
Thus, the Hamiltonian of a system of macroparticles depends on temperature.

The first question to address is how may this be possible? How might the
potential energy of a system depend on such a parameter as temperature? It is
impossible for dot particles, but when we consider a macroscale system, we may
obtain such a result. Briefly, the interaction of two macroparticles in plasma consists
of two forces:

• The repulsion of charged dust particles.
• The attraction between the dust particle and the plasma cloud surrounding

another dust particle; actually, the dust grain in plasma is a kind of “macroatom”
(the dust grain is a nucleus, the plasma cloud is a shell), thus, the interaction of
these atoms is a sort of a covalent bond.

The second type of force depends on the plasma conditions and, therefore,
depends on temperature.

The second question to address is how can we deal with HðTÞ? Are we able to
use traditional statistical physics (see Sect. 2.2.7) to obtain all the results in the
same manner?
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The answer is no. Indeed, if the Hamiltonian is the function of temperature, then
we have to change all of the theory. We may do it here, however, Vlasov already
obtained the solution (it is not a very hard problem, by the way). Finally, we may
conclude that the internal energy in all thermodynamic equations must be replaced
by the function:

U ¼ H Tð Þ � T
dH
dT

: ð3:4:15Þ

Thus, it is a question of taste regarding what we call the “intrinsic energy:” the
function U or the function HðTÞ. For example, the Gibbs-Helmholtz equation has
the form:

U ¼ F � T
@F
@T

; ð3:4:16Þ

where U is defined by (3.1.15) and free energy of the system is the function from
the Gibbs canonical distribution (2.2.36).

3.4.3 Crystallization

Another result obtained by Vlasov is crystallization theory; below we will follow
his original treatise.

Let us return to the Vlasov equation. In its simplest form, equation:

@f
@t
þ v

@f
@x
þ a xð Þ @f

@v
¼ 0 ð3:4:17Þ

has a stationary solution for any function U of the total energy of the particle
E ¼ mv2

2 þU xð Þ. Indeed:

@f
@x
¼ df

dU
@U
@x
¼ �ma df

dU
; ð3:4:18Þ

@f
@v
¼ df

dU
@U
@v
¼ mv

df
dU

; ð3:4:19Þ

and (3.4.17) is satisfied with (3.4.18) and (3.4.19). For instance, one may choose
U1 ¼ e�E, U2 ¼ lnE2 or U3 ¼ sin E. So, which function of U Eð Þ should be
preferred?

The answer follows from the statistical independence of coordinates and
velocities. The stationary DF must be represented as:
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f ~x;~vð Þ ¼ fx ~xð Þfv ~vð Þ: ð3:4:20Þ

If so, then we have the DF in exponential form f Eð Þ ¼ Ae�E=T , where potential
energy is defined with (3.4.11) as:

U ~xð Þ ¼
Z

u ~x�~x0j jð Þq ~x0ð Þd~x0; ð3:4:21Þ

where q is the number density (3.4.2). Thereby, for a stationary case we have the
following condition for potential energy:

U ~xð Þ ¼ A
Z

u ~x�~x0j jð Þe�U ~x0ð Þ=Td~x0: ð3:4:22Þ

Equation (3.4.22) has the solution Uð0Þ ¼ const, where:

Uð0Þ ¼
Z

u ~x�~x0j jð Þq 0ð Þd~x0 ð3:4:23Þ

The last integral may be represented in spherical coordinates in the form:

U 0ð Þ ¼ q 0ð Þ 4p
Z1
0

u rð Þr2dr
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�k T=A

: ð3:4:24Þ

Then we introduce function:

u ~xð Þ ¼ �U ~xð Þ � U 0ð Þ
T

; ð3:4:25Þ

Equation (3.4.22) may be written as:

u ~xð Þ ¼ k
Z

u� ~x�~x0j jð Þeu ~x0ð Þd~x0; ð3:4:26Þ

where u� rð Þ ¼ u rð Þ
4p
R1
0

u yð Þy2dy.

For constant potential energy u rð Þ ¼ const ¼ C we have the condition for the
existence of the spatial uniform solution from (3.4.26):

C ¼ k eC ð3:4:27Þ
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This equation has a solution for k\1=e (two real roots) and has no solutions for
k[ 1=e. For k ¼ 1=e the only solution is C ¼ 1; in this case q ¼ Ae ¼ q0 and we
have the condition:

� 4pq0
T

Z1
0

u rð Þr2dr ¼ 1: ð3:4:28Þ

In other words, relation (3.4.28) determines the limit of the existence of the
spatial uniform distribution. On the other hand, this condition defines the beginning
of periodic solutions of (3.4.26) in form:

uðrÞ ¼ CþBeikr: ð3:4:29Þ

After linearization and the assumption that B� C, we obtain the relation
determining the existence of the periodic structure with wave vector k:

1 ¼ 4pkeC
Z1
0

u� rð Þ sin kr
kr

r2dr: ð3:4:30Þ

Thus, the Vlasov equation predicts the existence of periodic solutions, the range
and validity of which are defined by (3.4.30). However, we also have to determine
the range of validity of the Vlasov equation itself.

3.4.4 Limitations of the Vlasov Approach

Vlasov’s arguments look so logical that it is hard to argue with them. Previously,
we ignored collisions. But what are collisions? Any interaction between particles
can be described in terms of forces and, consequently, with an interaction potential.
We can represent this in the kinetic equation of form:

Z
u ~x�~x0j jð Þq ~x0ð Þd~x0; ð3:4:31Þ

(see above for details). This description satisfies any physical model with the
given uðrÞ: the Coulomb interaction, Van der Waals forces or any other sort of
forces. Collisions can be interpreted as short-scale interactions with corresponding
form u rð Þ or as a short repulsive potential in the form r�n, with a high value of n.
It is difficult to expect that a single term in a differential equation would make all
the approaches incorrect when we use many possible kinds of interaction potentials.

What else could it be? What physical reasons can restrict the Vlasov approach?
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To answer these questions, we must return to the discussion about scales for
quantities and their derivatives in kinetic equations. The DF was defined on a
spatial scale L and this fact means that our “spatial resolution” is restricted by
sufficiently large scales: an elementary volume L3 must contain a lot of particles.
Equation (3.4.31) means that we consider, at a given moment in time, an interaction
between the given particle at the point~x and a large amount of particles at point~x0,
i.e., the corresponding averaged force acting on the given particle from point~x0 is:

~F ¼ �ru ~x�~x0j jð Þ q ~x0ð Þd~x0|fflfflfflffl{zfflfflfflffl}
dN 0

: ð3:4:32Þ

Thus, the Vlasov equation initially implies a collective interaction. The source of
the applied force is a smeared point in space, and we cannot localize it more
precisely to the scale of the size of the given particle. The integrating procedure of
(3.4.31) amplifies the effect of collectivization.

Thereby, even taking the initial position held at the start of this section, we may
see that the approach of the self-consisted field is restricted: we cannot consider
short-scale instantaneous interactions (collisions). One may also add arguments
from the viewpoint of the correlation function, two-particle DF, etc.

3.5 The Kinetic Equation for Practical Purposes

3.5.1 The Split Decision

As we have seen, we may represent the interaction between particles by two lim-
iting methods:

• As collisions: the local instantaneous interaction—before and after this inter-
action one may assume that particles are uncorrelated.

• As long-range interactions, when a given particle is effected by others according
to the single-particle DF.

These approaches lead to different forms of the kinetic equation: the Boltzmann
equation for the first case, the Vlasov equation for the second. The Boltzmann
equation is suitable for gases, where collisions are an adequate representation of this
type of interaction. Contrary to this, for strong-coupled plasma, collective inter-
actions play the main role.

However, sometimes we have intermediate conditions: both long-range corre-
lations and collisions are insufficient as approaches in their own separate ways.
Usually, the kinetic equation for such a case may be composed directly as the
combination of the two basic equations:

3.4 The Vlasov Approach: No Collisions 79



@f
@t
þ~v @f

@~x
þ

~F
m
@f
@~v
¼ I; ð3:5:1Þ

where I is the collision integral and ~F is the total force that affects the particle—this
is the sum of the external force ~Fext and forces which influence all other particles:

~F ~xð Þ ¼ ~Fext ~xð Þ �
Z
ru ~x�~x0j jð Þf ~x0ð Þd~x0 ð3:5:2Þ

Of course, we see that if u ¼ 0 (without interactions) then (3.5.1) turns into the
Boltzmann equation, and vice versa for I ¼ 0. It is more interesting to discuss the
physical meaning of Frankenstein’s monster (3.5.1) and to figure out alternative
approaches.

3.5.2 Interactions at Intermediate Scales

Actually, (3.5.2) can be obtained from the BBGKY chain if we separate the forces
according to the scales they acting across, i.e., separate all types of interactions into
two limiting cases described at the beginning of this section. In this method, we
obtain two types of term:

~along
@f
@~v
þ~ashort @f

@~v
; ð3:5:3Þ

and we obtain the Vlasov relation for ~along and the Boltzmann integral from the
second term. This method may be rather more suitable to correct the kinetic
equation for plasma (by taking short-range correlations into account).

However, for dense gases or liquids this approach is problematic. In this case, we
have no long-range collective effects in their pure form (3.4.30), because a
short-range interaction potential like the Lennard-Jones does not provide such a
type of interaction. For liquids, we have another starting point: we have short-range
correlations, but we also have to take medium-range ones into account.

The correct method is to find the two-particle DF directly from the BBGKY
chain (i.e., to also consider the kinetic equation for f1k), or deny the multiplicative
approximation for this DF:

f1k ¼ f1fk þ g1k; ð3:5:4Þ

and compose some relations for the correlation function g1k; this function plays the
main role in the kinetic theory of liquids (Croxton 1974).
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3.5.3 The Relaxation Approach

Of course, practical purposes imply simplicity as one of the main advantages (at
least) of the mathematical description of the problem. From this point of view,
the collision integral must provide the transition to the equilibrium state, i.e., the
transition to the DF f0, which corresponds to the MDF of velocities. In this case, the
collision integral may be represented in the form � f0 � fð Þ, i.e., the kinetic
equation has the form:

@f
@t
þ~v @f

@~x
þ

~Fext

m
@f
@~v
¼ � f � f0

s
: ð3:5:5Þ

Sometimes this equation is referred to as the Bhatnagar-Gross-Krook approach.
This relation found wide application in condensed media physics—first of all,
because of its rusticity.

3.6 The Evolution of Probability: The Mathematical
Approach

One can imagine two ways to apply theoretical physics.
The first way is to have universal equations that hold all the answers within

them; any solution can be obtained from these perfect equations. The second way,
almost forgotten now, is to construct an equation for a given problem. Here we
open the door leading to kinetics.

3.6.1 The Master Equation

Here we will use function p instead of function f, which is used everywhere in this
book, to distinguish this approach from other, more traditional equations. We obtain
some results for a 1D case only for clarity; it is not difficult to generalize these
results for 3D equations.

First of all, we will consider the function describing the probability to be at
instant t, at coordinate x with velocity v, which can be named formally the
“probability density function” p t; x; vð Þ, but, as with everywhere else, we will call it
the “distribution function.” This function describes a fraction of the particles at
parameters t; x; vð Þ.

Then we have to formulate the equation for the evolution of p t; x; vð Þ. Assuming
that particles cannot appear or disappear, we can write:
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p tþ s; x; vð Þ ¼
ZZ

p t; x� D; v� Xð Þw s;D;Xð ÞdDdX: ð3:6:1Þ

Here, function w s;D;Xð Þ defines the probability of a change in the coordinate D
and velocity X at time interval s; of course, this probability is normalized:

ZZ
w s;D;Xð ÞdDdX ¼ 1: ð3:6:2Þ

The double integral in (3.6.1) and (3.6.2) must be taken at all ranges of D and X.
In adjacent areas of science (such as non-linear dynamics) (3.6.1) is known as

the Fokker-Plank-Kolmogorov (FPK) equation. In its integral form it does not
contain any serious assumptions. For instance, there is no special assumption on the
differentiability of function p t; x; vð Þ. Further, in Chap. 7, we will apply (3.6.1)
directly. Here we choose another path.

Then, supposing a sufficiently short time step s, we can represent our DF in series:

p tþ s; x; vð Þ ¼ p t; x; vð Þþ s
@p
@t
þ . . .; ð3:6:3Þ

p t; x� D; v� Xð Þ ¼ p t; x; vð Þ � D
@p
@x
þ D2

2
@2p
@x2
� X

@p
@v
þ . . .; ð3:6:4Þ

and so on, including mixed derivatives.
Keeping a sufficient number of terms in (3.6.3) and (3.6.4), and inserting these

expansions into (3.6.1), one can obtain a kinetic equation for the given problem,
identified by the certain function of probability w s;D;Xð Þ. In general, function
w s;D;Xð Þ can be designed in various forms. For instance, it can be multiplicative
like w s;D;Xð Þ ¼ wx s;Dð Þwv s;Xð Þ, or not. This function may even depend on the
probability distribution function itself, thus, in the common case, w is a function of
all parameters.

The next sections are devoted to such problems: by choosing one or another
function w, we will obtain various forms of the kinetic equation.

3.6.2 The Kinetic Equation in an External Field

We hold only the first derivatives in (3.6.3) and (3.6.4). Then, the right-hand side of
(3.6.1) is:

ZZ
p t; x; vð ÞwdDdX�

ZZ
D
@p
@x

wdDdX�
ZZ

X
@p
@v

wdDdX

¼ p t; x; vð Þ � @p
@x

ZZ
DwdDdX� @p

@v

ZZ
XwdDdX:

ð3:6:5Þ
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Combining (3.6.5) and (3.6.3) in (3.6.1), we have:

@p
@t
þ @p

@x

ZZ
D
s
wdDdXþ @p

@v

ZZ
X
s
wdDdX ¼ 0: ð3:6:6Þ

The second term in (3.6.6) contains the mean value of displacement of a particle
during time interval s:

�D ¼
ZZ

Dw s; x; vð ÞdDdX ; ð3:6:7Þ

divided by this time step s. This ratio is the velocity of the particle v ¼ �D=s.
The third term, analogically, has a factor of the mean acceleration:

a ¼
�X
s
¼ F

m
¼ � 1

m
rU: ð3:6:8Þ

where U is the potential of external forces. Thus, we see a regular form of the
kinetic equation for particles at the external field U:

@p
@t
þ v

@p
@x
�rU

m
@p
@v
¼ 0: ð3:6:9Þ

There is nothing new here. There is nothing new in the next section either, but
we must demonstrate how it works.

3.6.3 The Kinetic Equation for a Self-consisted Field

When the probability of the displacement of a particle (in both spaces: coordinates
and velocities) depends on the configuration of all particles, we observe a more
complicated situation.

At first, we consider the interaction of a given particle with others through a
self-consisted field: the field of potential forces created by other particles with the
same DF p t; x; vð Þ. The “probability” of displacement in X (in velocity space) is
now fully determined by the Newton’s 2nd law, thus:

w s;D;Xð Þ ¼ w Dð Þd X
s
� F xð Þ

m

� 	
: ð3:6:10Þ

Here we can represent forces through the function p, as in Sect. 3.4:
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F xð Þ ¼ �
Z Z

rup t; x0; vð Þdx0dv; ð3:6:11Þ

where u x� x0j jð Þ is a pair potential function. Then we obtain the Vlasov equation:

@p
@t
þ v

@p
@x
�
RR rupdx0dv

m
@p
@v
¼ 0: ð3:6:12Þ

This description is incorrect for sufficiently small spatial scales. As we discussed
above, we cannot define forces from other particles at this point in this manner. The
spatial resolution for the forces in the Vlasov approach is about the spatial scale
where the probability function is defined. In some cases, for long-range forces (for
objects like plasma, where long-range electromagnetic forces dominate) this
description may be sufficient.

However, usually, especially for gases, we need a more detailed circumscribing.
For these purposes, another form of the function w s;D;Xð Þ must be used; now this
function must depend on the DF itself.

3.6.4 The Kinetic Equation for Collisions

An interesting situation appears when the probability function w, which describes
displacements of a given particle at point x� Dð Þ, is determined by other particles at
this very point. It is a radically different problem, and we will solve it in several steps.

First, for simplicity, we will consider only the function p t; vð Þ, i.e., we neglect the
spatial distribution. Next we exclude the time step s from the probability function w.
This function is now determined by interaction at this very point with “scattered
centers”—particles with the same DF p. Let the probability x v; v0;Xð Þ define the
transfer of velocity X in one collision between two particles with velocities v and v0.
The probability of such a collision is determined by the fraction of atoms with
velocity v0: p v0ð Þdv0. To take into account all possible collisions—with particles at
various velocities—one must consider an integral of all v0. Finally, we have:

p tþ s; vð Þ ¼
Z

p t; v� Xð ÞdX
Z

x v� X; v0;Xð Þp t; v0ð Þdv0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
w Xð Þ

: ð3:6:13Þ

Expanding p tþ s; vð Þ into series (3.6.3), we obtain a kinetic equation in the
form:

@p
@t
¼ P� p

s
: ð3:6:14Þ

where P is the right-hand side of (3.6.13).
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Moreover, we can conclude that in equilibrium p ¼ p0 and, consequently, in
equilibrium P ¼ p0 too (the right-hand side must vanish at equilibrium; this is one
of the possible definitions of the equilibrium state). Of course, this circumstance
does not mean that P 	 p0: a more correct formulation is P p0ð Þ ¼ p0; but, assuming
that near the equilibrium state P 
 p0, we obtain a kind of kinetic equation in
relaxation form.

In addition to (3.6.14), we may choose another path. Considering that:

p t; vð Þ ¼
Z

p t; vð Þw Xð ÞdX ¼
ZZ

x v� X; v0;Xð Þp t; vð Þp t; v0ð ÞdXdv0; ð3:6:15Þ

we may represent (3.6.14) with (3.6.13) and (3.6.15) in a more “Boltzmannian”
form, especially after some manipulations with probability function
x v� X; v0;Xð Þ. However, we are not going rewrite the same equation here a
thousand times; we must show other forms of the kinetic equation.

3.6.5 The Diffusion Equations

One of the first applications of the FPK equation was a derivative of a diffusion
equation (Einstein 1905). Neglecting all velocity parts of (3.6.1) (by integrating
velocities, for example), and assuming that the mean displacement is equal to zero:

Z
Dw s;Dð ÞdD ¼ 0: ð3:6:16Þ

If we hold the second spatial derivative in (3.6.4); then we have:

@p
@t
¼ 1

2s

Z
D2w s;Dð ÞdD|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D

� @
2p

@x2
: ð3:6:17Þ

The first factor on the right-hand side of (3.6.17) is the diffusion coefficient—the
ratio of the mean-square displacement to the corresponding doubled time step:

D ¼ D2

2s
: ð3:6:18Þ

The final, well-known form of the equation—the diffusion equation—is:

@p
@t
¼ D

@2p
@x2

: ð3:6:19Þ
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It is more interesting to obtaining same equation in velocity space. Assume that
the variation of velocity is determined by collisions with particles of another nature,
for instance, with particles with different masses. In one such collision the velocity
of our particle changes its direction while the absolute value of velocity stays
(assumingly) the same: in a single collision of particles with masses m1 � m2 only
energy of the order �m1=m2 can be transferred. Thus, in many collisions (the
number of collisions must be fewer than m2=m1) the particle velocities only change
direction chaotically.

Performing the same operations, we have:

@p
@t
¼ Dv

@2p
@v2

: ð3:6:20Þ

In the literature, this equation is referred to as the Fokker-Planck equation too.
Here the diffusion coefficient Dv, of course, differs from the usual analog D: these
quantities determine diffusion in different spaces.

3.6.6 The Stationary Equations

We are free to use (3.6.1) in a slightly different manner. Instead of the time–
coordinate–velocity triad we may consider a stationary (or quasi-stationary) prob-
lem and write the following correlation:

p xþD; vð Þ ¼
Z

p x; v� Xð Þw D;Xð ÞdX : ð3:6:21Þ

Thus, we consider a stationary probability density function along axis x and find
a dependence on its velocity. This equation may be useful when we try to establish
the variation of the velocity DF along a selected direction; for instance, at the
boundary surface.

Adopting results from previous sections, we can rewrite it as:

p xþD; vð Þ ¼
ZZ

p x; v� Xð Þp x; v0ð Þx v� X; v0;Xð Þdv0dX; ð3:6:22Þ

and follow the previous consideration. Otherwise, for example, we can expand
(3.6.21) into series of D and X. Thus, we have on the left-hand side:

p xþD; vð Þ ¼ p x; vð ÞþD
@p
@x
þ . . . ð3:6:23Þ

We can leave the right-hand side of (3.6.23) as it is, assuming that this function
is � p0, and obtain the equation in relaxation form:
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@p
@x
¼ p0 � p

D
: ð3:6:24Þ

Thus, we may find the simplest representation:

p x; vð Þ ¼ p0ðvÞ � p0ðvÞ � p 0; vð Þð Þe�x=D; ð3:6:25Þ

where D is about the MFP. This simplest relation is suitable for a problem when the
DF at the origin is defined as p 0; vð Þ, and we know that p x!1; vð Þ ¼ p0. We may
estimate fluxes at any coordinate x this way, but, to be fair, there are too many
simplifications here.

3.7 The Kinetics of Gas Near the Evaporation Surface

At the vicinity of the evaporation surface, the region may be divided into several
zones (see Fig. 3.3), which will be referred to in the following text.

3.7.1 The Liquid

The first zone (<A) is liquid—the condensed phase, where the density of particles is
high, and the “elementary volume” of the medium is low in comparison to the
gaseous phase. In the liquid, the characteristic spatial scale is about r—the
parameter of the interatomic interaction. For instance, in argon r 
 0:34 nm (the
parameter of the Lennard–Jones potential), while the density *1300 kg/m3, cor-
responding to 100 K, and we have an interparticle distance of 0.6 nm, i.e., of
similar order.

In such a dense substance we may expect the quasi-equilibrium state to be on a
scale of approximately 1–10 nm: we may define the temperature of a part of the
liquid to this size, and we may expect that the temperature of that part is close to the
temperature of the neighboring part of the liquid. In most cases these remarks are
valid, however, even in a liquid we may produce strong non-equilibrium conditions,
where the temperature of the liquid would be an inappropriate quantity (see Chap. 9).

3.7.2 The Region of Vapor-Liquid Interaction

In layer A–B the vapor molecules of gases are not free, they interact with the liquid.
We mean direct interaction of vapor particles with molecules of the liquid: at long
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ranges atoms attract one another. As the spatial scale of the interatomic potential is
0.34 nm, then the width of the layer A–B is about 1 nm (actually, more: several
nanometers, see Chap. 5 for results from numerical simulations).

For non-superdense vapor the number of vapor atoms in A–B is small; the width
of this layer is much smaller than the MFP of a molecule. Of course, the continuous
medium approach cannot be applied on such scales; moreover, the correctness of
the kinetic equation is subject to doubt too, because of an insufficient amount of
particles in this layer.

If, anyway, someone needs to calculate the DF in this layer, one must take into
account the interaction with a liquid of external forces, at least. We have no such
goal in this book; however, in Chap. 5 we will find the DF at plane B. We think that
it is sufficient for any practical purpose; it is hard to imagine the reason to calculate
the DF inside zone A–B.

Fig. 3.3 Areas considered during the processes of evaporation and condensation. Planes: A—
Vapor–liquid interface, B—Boundary of area where evaporated atoms interact with a liquid; there
are problems with the DF in A–B; if one would desire to solve the kinetic equation here, it must
contain external forces (if the DF for evaporated atoms is considered separately) or a self-consisted
field (for a total distribution function), C—Boundary of the Knudsen layer B–C; here we can
construct some kind of DF f(z), but this function is averaged at several MFPs, D—Boundary of the
medium that can be considered as a boundary layer; in C–D we can use macroscopic parameters
and, in the absence of other restrictions (non-equilibrium in nature), formulate an equation such as
the Navier–Stokes or the heat conduction equation. Here the DF is not strictly a MDF, because
there are fluxes present
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3.7.3 The Knudsen Layer

Layer B–C is a layer with a width of about several MFPs of a molecule; this is the
so-called Knudsen layer—a thin but very important zone at the surface of the phase
transition.

The MFP of a particle in a medium with number density n, i.e., the path length of
free motion between two successive collisions, may be estimated as:

l� 1
nr2

: ð3:7:1Þ

In an ideal gas n ¼ p=T , and we have:

l� T
pr2

: ð3:7:2Þ

For example, for temperature T = 100 K, p = 105 Pa and r = 0.34 nm the MFP
l� 0:1 lm. In such conditions, the mean interparticle distance is *4 nm. Thereby,
on scales of approximately 10 nm (we mean several tens of nanometers) we may
introduce the DFf, but a substance on such a scale is not a continuous medium. For
example, we cannot use Fourier’s law here, or any other macroscopic equation.

Kinetic equations must be used in the Knudsen layer. The simplest version (the
relaxation equation) may be applied, as well as more complicated versions of the
Boltzmann equation. However, for our purposes in Chap. 7 we will use kinetic
equations from Sect. 3.6.

3.7.4 The Boundary Layer

In this layer the hydrodynamic description can be applied. This is a thick layer, and
we may enter large “elementary volumes” here, the size of which are greater than
the MFP of a molecule. Thus, the macroscopic description is possible
(Navier-Stokes equations, etc.).

Indeed, macroscopic circumscribing is what we usually need. The flow of gas
near the liquid surface is an ordinary physical problem, which can be considered
with continuous media equations. As we know, this description demands boundary
conditions for the gas flow—conditions for macroscopic parameters of a gas near
the interface, i.e., on plane C, while we have to connect these conditions with
parameters of a liquid, i.e., at plane A.

As we see in Fig. 3.3, planes A and C are separated by two particular regions:
zone A-B, where particles “unbound” from the liquid, and the Knudsen layer B-C,
where macroscopic definitions do not exist. Thus, we cannot immediately equate,
for example, the temperature of the liquid TC at plane C to the temperature of the
liquid TA at plane A, because, at first, TA 6¼ TC. The temperature difference between
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the vapor and the liquid—the so-called temperature jump—is the matter of Chap. 8
of this book; this problem is even more interesting than it looks at the first glance.

Also, we cannot connect mass fluxes JA and JC directly, because even fluxes JB
and JC must be associated with others through parameters of the Knudsen layer.
Some aspects of this problem will be considered in Chap. 7.

Indeed, the boundary conditions for a boundary layer are a complicated problem,
and there full solution may only come in time.

3.7.5 The Bulk of the Gas

In some problems, there may exist a region of equilibrium vapor, where T ¼ const,
and the macroscopic velocity of the vapor is equal to zero; this steady bulk volume
of the vapor is the limiting case of layer C–D. Otherwise, the steady flow may be
defined at this region, etc.

In common, far away from the interface, specific external macroscopic condi-
tions may be formulated, however, these formulations would be hydrodynamic in
nature and, therefore, outside of the scope of this book.

3.8 Conclusion

The kinetic equation may be written in various forms, the most important fact being
that these forms are, in fact, different equations. We cannot say that one form of the
kinetic equation is more convenient for a certain problem, while another form of the
equation is more suitable for another case. It is more likely that the kinetic equation
suitable for a given problem is absolutely inappropriate for another one.

For practical purposes, the kinetic equation for the single-particle DF must be
used. It may be designed in various ways, but the most promising and the least used
representation follows directly from the Kolmogorov equation. By formulating a
kinetic equation in integral form (not as a differential equation), we may, at least,
avoid some problems concerning the scales of the DF, which may distort the
solution obtained by the differential equation. This approach is not a panacea, but
can be applied to a wider class of physical problems.

As for differential kinetic equations, there are two limiting forms: the Boltzmann
approach and the Vlasov equation. Of course they can be combined and applied for
some physical systems too. Both these approaches are characterized by the special
scales of forces that these models take into account.

The spatial scale of the DF itself is a specific problem. This function may be
introduced for scales L where the number of particles is high: NL � 1. However,
the scale where the DF varies more or less smoothly may be somewhat greater.
Indeed, the spatial scale is the bane of interphase problems. The macroscopic flow
of gas cannot be described properly, because it is impossible to formulate boundary
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conditions based on same-scale physics: the statistical and kinetic approach, which
consider problems on much smaller scales, are items required for physical
descriptions.

Throughout this book we will analyze all the problems only on the small-scale
level, even in Chap. 9, where we will discuss problems of boiling and cavitation.
Despite the common difficulty—the results of small-scale considerations needing to
be linked to the original problem—we may say that many issues of macroscopic
processes can be described on the microscopic level.

Moreover, the macroscopic problem can be fully modelled by the microscopic
system; this is the matter of the next chapter.
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Chapter 4
Numerical Experiments: Molecular
Dynamics Simulations

It is very hard to solve kinetic equations directly. Thus, if we want to obtain
information about the dynamics of a complicated system, we have to find another
way.

One of these ways is to analyze the dynamics of a small amount of particles
(*103 to 104, sometimes more, sometimes even less) and to consider them as the
representative set, from which we can obtain the properties of the real system.

Thus, now we shall return to the very beginning: to mechanics.

4.1 From Statistics to Mechanics: There and Back Again

4.1.1 From Kinetics to Mechanics

As we discussed in Chap. 2, the evolution of a real mechanical system is impossible
now and, most likely, will remain impossible forever.

So physics invented another way: to represent parameters of the real system with
statistical characteristics: through distribution functions (DFs), etc. However, the
statistical approach describes a static picture of the system, while we need infor-
mation about the dynamics of the system—about its evolution.

The area of science that considers the evolution of DFs is called “kinetic theory.”
Based on the early works of Maxwell and Boltzmann, this theory derives a set of
integral–differential equations—kinetic equations.

However, it is very hard to solve a kinetic equation analytically; actually, it is
impossible. After the cycle that is “mechanics-statistics-kinetics” we find ourselves
at the starting point: we must select one of two impossibilities, the impossibility of
mechanics or the impossibility of kinetics.
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Of course, as usual, there exists a third way: to solve the kinetic equation
numerically. Sometimes, this way leads to interesting (from the conceptual point of
view) results.

Let us consider, for example, the Vlasov equation:

@f
@t

þ~v
@f
@~x

þ~a ~xð Þ @f
@~v

¼ 0: ð4:1:1Þ

Here, as we remember from Chap. 3, the acceleration is determined by the
distribution of particles themselves:

~a t;~xð Þ ¼ � 1
m

Z
ru ~x�~x0j jð Þf t;~x0;~v0ð Þd~x0d~v0: ð4:1:2Þ

From the mathematical point of view, (4.1.1) represents the hyperbolic equation
for function f. This equation has characteristics:

d~x
dt

¼~v;
d~v
dt

¼~a ¼ q~E
m

; ð4:1:3Þ

where the electric field strength ~E acting on the charge q may be found from the
Poisson equation.

Thus, actually, the solution of (4.1.1) through its characteristics is similar to the
consideration of the dynamics of the mechanical system. Originally, this interpre-
tation led to the consideration of the dynamics of so-called macroparticles—clouds
of regular particles (Sigov 2001). Since the Vlasov approach suits plasma
dynamics, these clouds consist of charged particles—ions or electrons; moreover,
usually even the distribution of particles inside such clouds is considered in this
method (for instance, the Gaussian, of course).

The method of macroparticles was used in Chap. 2 as an illustration of (ir)
reversibility. Thus, one may say that the results of the solution of the Vlasov
equation were indeed presented in that chapter.

However, in problems of such condensed matter as liquids, the Vlasov equation
does not provide adequate results, because of the different spatial scales of forces in
liquid dynamics problems. Thus, we need to find another foundation for the
approach based on the Newtonian dynamics equation.

4.1.2 The Statistics for the Boltzmann Case

This method—the method of molecular dynamics (MMD)—is, strictly speaking,
not just for the Boltzmann equation, but is adequate for various types of problems
where the interaction potential is known for given types of particles.
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The idea of the MMD is to model the mechanical system with a number of
particles of the order “unity with several zeros.” Of course, this is much less than
the number of particles in the real system, or even in a part of the real system.
However, we have no goal to model the real system itself, we want to consider a
“sufficient amount” of particles to model the essential properties of the real system
with an appropriate accuracy.

Then, what amount of particles is “sufficient?” Sometimes, it is possible to meet
estimations as 1 mol, 1020 or some similar value; these estimations are based on the
number of particles in some real system (for instance, in a microdroplet), i.e. reflects
the reason described above. However, the valuation of the number of particles must
follow from the statistical and kinetic arguments.

To model a property of volume (such as density), we must consider a region of
the medium of a size where the surface deviation of energy is negligible: boundary
conditions contribute to the MMD analysis, even for periodic boundary conditions.
Then, the spatial scale of the considered volume must be much greater than the
interparticle distance lip (which is the scale for the surface). For instance, in a liquid
lip � r (see Sect. 3.7), thus, the scale of the model system must be � r. Translating
this assertion into the language of the “required number of particles,” we obtain an
old demand N � 1 (see Chap. 2; note that this amount of particles is sufficient for
the Maxwellian distribution function (MDF)).

To model the vapor phase, we have to take into account the mean free path
(MFP) of the molecule: only on such scales does a gas represent a continuum; this
requirement rather concerns the volume of the molecular dynamics (MD) cell
rather than the number of particles.

It follows from this consideration, that setting the number of particles to *103

looks adequate for a simple problem, when one needs to calculate properties of an
evaporating liquid, for example. Not all aspects can be taken into account with such
a number of particles, e.g., the liquid layer is quite thin and, therefore, is isothermal,
so we cannot treat the influence of evaporation on the liquid surface’s temperature
properly (because this surface has the temperature of the solid surface beneath it).
However, again, for simple problems setting the number of particles to *103 is
satisfactory. It is hard to imagine what new results can be obtained for such ordi-
nary problems with *106 particles (excluding the wow effect from colleagues).
Results that are much more adequate can be obtained by “ensemble averaging,” i.e.,
repeating the calculations for small MD cells (*103 particles) over and over.

Of course, there are problems where a great amount of particles is necessary,
e.g., if we want to model a bubble in a liquid. We do not state that it is enough to
consider 103 particles for any possible case. Special problems demand special
solutions.

The technique of the MMD is described in Sect. 4.2. Below this section, we
discuss some principal aspects of MD simulations.
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4.1.3 Interaction Potential

One may say that the MD simulation is a direct numerical investigation of the given
problem. This is not exactly true, but this statement is close to the truth.

The interaction potential of Lennard–Jones type, which may be written as:

u rð Þ ¼ 4e
r
r

� �12
� r

r

� �6� �
; ð4:1:4Þ

is usually applied for rare gases. Here the second term � r�6 describes the attraction
of two dipoles; this formula can be obtained theoretically. The first, repulsive term
� r�12, reflects only our imagination about its “sharp” form. There is no solid theory
beneath (4.1.4) as a whole. Moreover, the dipole-interaction term � r�6 in (4.1.4)
was obtained for two isolated particles; in vicinity of the third particle this expres-
sion, generally, must have another form. In other words, the potential (4.1.4) is not as
fundamental as we like to think. We may repeat these arguments for almost any
interaction potential, except for the Coulomb interaction of dot charged particles.

Thus, the MD simulation represents the exact method with the non-exact
function of the interaction potential. This means that it is difficult to obtain precise
quantities of the physical system, while qualitative properties or parameters of
dynamics of the given system may be examined quite correctly.

As for the interaction potential, we have the old problem: to cut or not to cut?
Cutting the potential (4.1.4) at some certain radius (for instance, at 3r), means that
we receive many bonuses in terms of calculations, because the calculation of the
total potential energy (i.e., of the forces acting on the particle) is the most
time-consuming procedure in the MMD. Practically, the truncation of uðrÞ is the
most popular scheme in the MMD. However, such a direct sort of cutting leads to
problems which are common in mathematical nature, because the function of the
potential energy has a special point at the cutting radius. One may provide argu-
ments about the negligible influence of such a small contribution to the total energy
(the part which has been cut may be of the order of size of rounding errors, etc.),
but, anyway, this non-differential point spoils the clear picture of MD simulations.

4.1.4 The Wrong Method to Solve Equations

Let us consider a 1D system (in order to write fewer symbols) of N particles. The
dynamics of this system are described by the Hamilton equations:

dxi
dt

¼ pi
mi

;
dpi
dt

¼ �
XN
k¼1
k 6¼i

@uik

@xi
; i ¼ 1. . .N; ð4:1:5Þ
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where function uik xikð Þ is the pair potential of interaction between the ith and kth
particles, placed at a distance xik from one another.

The system (4.1.5) can be solved only numerically. The simplest method to
solve the differential equation:

df
dt

¼ F fð Þ ð4:1:6Þ

is the explicit scheme. According to this method, we may represent a derivative
through a finite difference, and express the function Fðf Þ on the right-hand side with
f at the previous time step:

f nþ 1 � f n

s
¼ F f nð Þ; ð4:1:7Þ

for each nth time step. This scheme allows one to evaluate the function f recur-
sively, if one knows the initial condition f 0:

f nþ 1 ¼ f n þ sF f nð Þ: ð4:1:8Þ

The explicit scheme (4.1.8) applied to the Hamilton equations (4.1.5) gives:

xnþ 1
i ¼ xni þ s

pni
m
; ð4:1:9Þ

pnþ 1
i ¼ pni þ sF xni

� �
: ð4:1:10Þ

However, this method is wrong, as shown by Tabor (1989). From the mathe-
matical point of view, the system (4.1.9)–(4.1.10) represents the map
xni ; p

n
i

� �! xnþ 1
i ; pnþ 1

i

� �
. Mechanics demands we save the phase volume; thus, this

map must satisfy this requirement too. For this, the Jacobian J of this transformation
must be equal to unity. However, from (4.1.9) and (4.1.10) we have:

J ¼ 1 s=m
�sF0 xni

� �
1

����
���� ¼ 1� s2

m
F0 xni
� �

; ð4:1:11Þ

where F0 ¼ dF=dxi.
We see that if F0 6¼ 0, then J 6¼ 1 for any time step s[ 0. Thus, the explicit

numerical scheme is the non-conservative map for the initial Hamilton system; so,
there are no appropriate time steps, which may correct this problem—any numerical
solution of the Hamilton system by the explicit method will be wrong.

Thereby, we have to use another numerical method to obtain the solution for
(4.1.5). This method will be explained in Sect. 4.2.

4.1 From Statistics to Mechanics: There and Back Again 97



4.1.5 The Results of Numerical Simulations

After the calculations, we get all the coordinates ~xi and velocities ~vi for all
N particles in our system. We rarely need these quantities directly (e.g., we explore
the trajectories of individual particles during the condensation process in Chap. 7).
Usually, we look for averaged, statistical parameters of the system, such as the DF,
temperature, pressure, heat flux, etc.

The single-particle DF can be constructed as the histogram fj vj
� �

:

fj ¼ Nj

N
; j ¼ 1. . .M; ð4:1:12Þ

where Nj is the number of particles with the corresponding projection of velocity
from vj � Dv=2 to vj þDv=2. The interval of velocity Dv is connected with the
number of intervals M as Dv ¼ vmax � vminð Þ=M, where vmin and vmax are the
limiting values of the calculated velocities of all particles.

The number of intervals M can be adopted more or less arbitrarily. There are
several estimations of M, following from mathematical statistics, probably, the most
convenient relation between M and N is:

M ¼
ffiffiffiffi
N

p
: ð4:1:13Þ

For example, for 1000 particles the number of intervals is about 30. As we see,
the number of particles in the system determines the “resolution” of the DF
obtained in numerical simulations.

4.1.6 How to Calculate Temperature

When the solution of (4.1.5) is (somehow) obtained, and we have the set of
coordinates and velocities of all N particles, we may calculate the temperature of the
system with the relation �e ¼ g T=2, where g is the number of degrees of freedom
and �e is the kinetic energy of the chaotic motion of particles. For a 3D system
g ¼ 3, and we have:

T ¼ 1
3N

XN
i¼1

X3
k¼1

vi;k � �vk
� �2

; ð4:1:14Þ

where index k denotes the projection of the velocity, and the mean velocity is:

�vk ¼ 1
N

XN
i¼1

�vi;k: ð4:1:15Þ
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Correlation (4.1.14) shows that we should remember the average velocity of
particles: when particles move in one direction with the same velocity, the temper-
ature of this group is zero. From another viewpont, practically, the velocity (4.1.15) is
much less than the chaotic velocity, and often the term �vk is omitted in (4.1.14).

4.1.7 How to Calculate Pressure

The pressure corresponding to the Clapeyron equation p ¼ nT follows from the
ideal gas approach, as the integral:

p ¼
Z

2mv2f vð Þdv; ð4:1:16Þ

with the MDF for f vð Þ. However, this is not a single part of the total pressure, which
also contains the contribution corresponding to the interaction of particles. The total
pressure is usually calculated as:

p ¼ nT þ 1
3V

X
i

X
j

~rij~Fij; ð4:1:17Þ

where ~rij is the interparticle distance and ~Fij is the pair force. However, for a
non-equilibrium case, it is more appropriate to consider integral representation
(4.1.16) instead of the first term in (4.1.17).

Note that the pressure can also be calculated with the virial theorem (see
Sect. 2.2.9).

4.1.8 How to Calculate Heat Flux

Actually, this is not a trivial problem. The flux of energy can be calculated in a
simple form:

q ¼
Z

mv2

2
vf vð Þdv ð4:1:18Þ

only for an ideal gas. Expression (4.1.18) contains only the flux of kinetic energy,
but in the common case the interaction of particles is also significant, especially in
such a condensed medium as a liquid.

In solid-state physics, the energy flux is described by phonons—quasi-particles
that have no mass but have energy and momentum (Kittel 2005). This theory (or,
specifically, this language) can also be used for disordered media like liquids, but it
is not the best approach, especially for numerical experiments.
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Another approach can be used in MD simulations (Ohara 1999). Considering
two particles, one may obtain the relation for the energy that transfers from one
particle to another (interparticle energy exchange rate) per unit of time:

@Q
@t

¼
~F12

2
~v1 þ~v2ð Þ: ð4:1:19Þ

The energy flux may be obtained from (4.1.19), taking the sum of all particles
and dividing it by the corresponding surface area.

Let us consider this problem from another angle. The total kinetic energy of all
particles in the given volume V is:

E ¼
XN
i¼1

m~v2i
2

: ð4:1:20Þ

The time derivative of (4.1.20) is:

@E
@t

¼
XN
i¼1

~vi m
d~vi
dt|ffl{zffl}

~Fi

¼
XN
i¼1

~vi ~F
in
i þ~Fout

i

� �
; ð4:1:21Þ

where ~Fin is the force from the particles inside the volume V and ~Fout is the force
from the particles outside. Relation (4.1.21) is a well-known mechanical theorem
about the variation of kinetic energy in a system.

Thus, even when not a single particle crosses the boundary of the volume V, the
kinetic energy of the particles inside this volume varies with time, because of the
interaction between particles. Taking the limit V ! 0, we may introduce (4.1.21)
into the balanced equation for kinetic energy (or the total energy) in two ways. We
may represent (4.1.21) as the source term in this equation, but also we may interpret
(4.1.21) as the energy flux through the boundary of that volume, in the manner
described above (considering the flux into and out of the volume V, corresponding
to the time derivative @E=@t).

4.1.9 From Mechanics to Statistics, Part Two

Briefly, up to this point we have taken the following journey:

• A real system cannot be described as a mechanical system, because we cannot
solve a system of *1023 equations.

• We have to use statistics to define some macroscopic properties of the given
system, i.e., we have to use DFs.

• To treat the dynamics of the system, we must consider the time dependence of
the DF, i.e., solve the kinetic equation.
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• There are many forms of kinetic equations, with most of them being very hard to
solve.

• Thus, we have to return to the mechanical system of a small amount of particles:
we obtain statistical characteristics from this diminished system, and hope to
attribute the obtained results to the real (large) system.

It was discussed above that the volume properties of the diminished system may
be adequate to be used as parameters of the real system. Is this enough?

Not just yet. The key word here is “fluctuations.”
The fluctuation of any property of an N-particle system is usually estimated as

the quantity proportional to 1=
ffiffiffiffi
N

p
. For instance, we may obtain such an estimation

from the dispersion:

D ¼ 1
N

XN
i¼1

Xi � �Xð Þ2; ð4:1:22Þ

with the estimation of error DX� 1=
ffiffiffiffi
N

p
. Thus, at first, fluctuations in a small

(model) system are higher than in a big (initial) system. Based on this consideration,
one may conclude that the role of fluctuations is overestimated in numerical sim-
ulations, even if

ffiffiffiffi
N

p � 1.
However, the opposite statement does not make sense either. Small-scale sim-

ulation principally omits long-scale fluctuations, but many processes in nature are
based on such fluctuations; for instance, our world and the people living in it are
long-scale fluctuations. We cannot describe a large-scale process properly if we
suspect that long-scale (or long-time) deviations play a crucial role in the process.

From a technical point of view: in the MMD, we can obtain results for a small
system (*103 particles) for certain conditions (for instance and simplicity, at a
given boundary temperature). We realize that our results (the average values) are
representative for the large system under the same conditions; see above. However,
how can we be sure that the boundary conditions for any small sub-system of the
large system are the same, i.e., T = const at any side of this volume? It is difficult to
find a small volume in a sea with constant temperatures at its boundaries; it is more
probable that the temperature of different boundaries would be different. If so, we
would see energy fluxes through our sub-volume of sea, with a distorted DF in this
volume, etc.

Thus, in any sub-volume of a real, large system the DF differs from the DF in
our small “representative” volume, the representativeness of which, actually, is
reduced by negligible surface effects. How can we make sure that the Maxwellian
obtained in our numerical simulation for 1,234 particles can be attributed to the real
system?

The answer to this question may be based on the considerations made in Chap. 2
(the chaotization of velocities leads to the Maxwellian), but here we require a
solution from another point of view. The Maxwellian is a Maxwellian everywhere,
of course, but we have to understand how the DF varies with the size of the system:
it should be noted that the MDF is only the “most frequent” distribution (in terms of
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L. Boltzmann), nothing more. But what about the deviations from the most frequent
distribution?

Thus, answering the previous question, we may say that:

• The equilibrium DF (Maxwellian) of the small system with 1234 particles
corresponds to the equilibrium (averaged) DF of the large system.

• The momentary DF of the small system may be absolutely inadequate as a
sub-system of the large (the whole) system.

• Note that usually we have to deal not with the whole system, but with a part of it.

The Fourier series for a MD distribution function:

f t; vð Þ ¼
X
k

f̂k vð Þ exp i2p kt
T

� �
ð4:1:23Þ

differs from the series for the real system due to a significantly different period T of
decomposition: coefficients f̂kðvÞ vary with T, i.e., with the size of the system.
Theoretically, the justification of the correctness of the MMD must contain the
estimation of coincidence (4.1.23) for a certain number of particles N and for
N ! ∞, i.e., it must describe the tendency:

f̂ Nk vð Þ ! f̂1k vð Þ: ð4:1:24Þ

In simple words, when Alice (the experimenter) determines the DF in a gas
volume, she obtains results different from Bob’s calculations (MD simulations),
because the experimental conditions are not “the equilibrium” found in the MD cell
of size 10 � 10 � 10 nm. Local but macroscopic fluxes may distort the surgically
clear picture explored by the MMD. For instance, Bob obtained that the heat
transfer coefficient is equal to zero, because in his numerical simulations the mean
velocity of the gas is absent. However, Alice noticed that the mean velocity of a gas
is non-zero at any moment in time (this velocity fluctuates periodically with a large
period around the averaged zero value), and the heat transfer coefficient is non-zero
too. What might Bob do? There is not much sense in artificial simulations of
long-scale modeling by variations of boundary conditions at opposite sides of the
MD cell: the result obtained in such a simulation will be fully determined by
artificial external conditions.

Finally, we may state that we can obtain the equilibrium properties of a large
system by considering the diminished system in numerical simulations, but we
cannot obtain full information about fluctuations with MD simulations without
additional methods, i.e., without applying the tricks involving these fluctuations in
the numerical simulation artificially. However, such tricks do not seem to be very
useful, and it is difficult to compare the MMD results to experiments: this cir-
cumstance causes problems when we try to translate the results from the MMD to
the real system; see Chap. 9 where we discuss some of the problems of boiling (the
macroscopic process).

102 4 Numerical Experiments: Molecular Dynamics Simulations



4.1.10 The Role of Molecular Dynamics Simulations

Perhaps, we overcriticized the MMD in the previous section. The MMD is only an
instrument, like combination pliers: we may use them only for the purposes for
which they are intended.

First, the MMD lets us establish properties of the equilibrium system. By the
way, the fact that we were able to obtain the MDF from the MD simulation is worth
something too.

Then, the MMD lets us analyze elementary processes that cannot be explored
experimentally, e.g., the interaction of a single incoming particle with a liquid
surface. Such applications make the MMD a useful testing device for any theory.

The MMD also helps us to understand some principals of evolution of a
mechanical system; we will use the MD for such a purpose in Chap. 6, finding the
DF of potential energy.

Definitely, the MMD may be applied to various problems. If we do not raise our
expectations of the MMD too high, we may easily find appropriate applications for
it: in the frame of its validity.

4.2 Techniques of Molecular Dynamics

B. Alder and T. Wainwright’s work (Alder and Wainwright 1957) is known as the
first work dedicated to MD. They analyzed phase transitions in systems containing
32 and 108 hard spheres with periodic boundary conditions. Even in systems that
small they observed an equilibrium velocity distribution. The MD method was then
described in their further work (Alder and Wainwright, 1959).

In 1964, A. Rahman studied the properties of liquid argon (Rahman 1964) using
a system of 864 particles interacting with Lennard–Jones (LJ) potential (Jones
1924).

4.2.1 Motion Equations

Motion equations for N interacting particles are defined as follows (Landau and
Lifshitz 1960):

_~Xi ¼ ~Vi
_~Vi ¼~ai

(
ð4:2:1Þ

where i is the sequence number of the particle, 1…N; ~Xi is the radius vector of the
ith particle; and ~Vi and ~ai are the velocity and acceleration of the ith particle.
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To numerically solve this problem, a sequence t = sDt is considered, where s is
the sequence number of the time step Dt. The velocity of the ith particle is denoted

as ~V sþ 1=2
i , then the differential equation is discretized:

_~Xi ¼ d~Xi

dt
¼

~Xsþ 1
i �~Xs

i

Dt
¼ ~V sþ 1=2

i ð4:2:2Þ

The velocity at time step s + 1/2 corresponds to a particle change of position
between time steps s + 1 and s. Then the second derivative of~X in time step s + 1/2 is:

_~Vi ¼ d~Vi

dt
¼

~V sþ 1=2
i � ~V s�1=2

i

Dt
¼~asi ð4:2:3Þ

The method for solving motion equations using a system where position and
velocity are calculated at interleaved time points that “leapfrog” each other
(Skeel 1993) is called the “leapfrog integration:”

~Xsþ 1
i �~Xs

i
Dt ¼ ~Vsþ 1=2

i
~V sþ 1=2
i �~V s�1=2

i
Dt ¼~asi

8<
: ð4:2:4Þ

It is also useful to know the velocity and position at integer steps:

~V s
i ¼

~V sþ 1=2
i þ~V s�1=2

i

2
; ð4:2:5Þ

or

~Xsþ 1
i �~Xs

i
Dt ¼ ~V s

i þ 1
2~a

s
i � Dt

~V sþ 1
i �~Vs

i
Dt ¼ ~asþ 1

i þ~asi
2

(
ð4:2:6Þ

Eventually, in MD, the following equations are solved at each time step:

~Xsþ 1
i ¼ ~Xs

i þ~V s
i � Dtþ 1

2~a
s
i � Dt2

~V sþ 1
i ¼ ~Vs

i þ ~asþ 1
i þ~asi

2 Dt

(
ð4:2:7Þ

Such an integration is known as the “velocity Verlet” (Swope et al. 1982).
Despite these methods being similar, the second one is more convenient due to the
position and velocity being calculated at the same time step.

The Verlet method (Verlet, 1967) involves expanding ~X in Taylor series; by
expanding in the second power we obtain:
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~Xi tþDtð Þ ¼ ~Xi tð Þþ _~Xi tð Þ � Dtþ €~Xi tð Þ �~asi � Dt2=2þOðDt3Þ: ð4:2:8Þ

Considering (4.2.1) and the expression for the discrete time step Dt:

~Xsþ 1
i ¼ ~Xs

i þ~Vs
i Dtþ~asiDt

2=2: ð4:2:9Þ

The series expansion for ~Xi t � Dtð Þ is:

~Xs�1
i ¼ ~Xs

i � ~Vs
i Dtþ~asiDt

2=2: ð4:2:10Þ

It is shown that velocity reversion gives the position at the previous time step.
Velocity is expressed from the previous equations as:

~V s
i ¼

~Xsþ 1
i �~Xs�1

i

2Dt
: ð4:2:11Þ

However, this is an obvious way to take the derivative. In addition, these
equations give:

~Xsþ 1
i ¼ 2~Xs

i �~Xs�1
i þ~asiDt

2: ð4:2:12Þ

It should be noted that the last expression allows us to solve motion equations
without using the velocity variable. We use it though to obtain the numerator in the
velocity expression:

~V s
i ¼ 2~Xs

i � 2~Xs�1
i þ~asi � Dt2
2Dt

: ð4:2:13Þ

For the next time step:

~V sþ 1
i ¼ 2~Xsþ 1

i � 2~Xs
i þ~asþ 1

i � Dt2
2Dt

: ð4:2:14Þ

Taking into account (4.2.9) in order to calculate ~Xsþ 1
i , we get the expression for

velocity:

~V sþ 1
i ¼ ~V s

i þ
~asi þ~asþ 1

i

2
Dt: ð4:2:15Þ

Evidently, (4.2.9) and (4.2.15) set the desired system (4.2.7).
The above-mentioned algorithm requires the calculation of acceleration.
According to Newton’s 2nd law:
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~asi ¼ � 1
mi

r
X
j6¼i

uij: ð4:2:16Þ

In this equation, the force that affects the ith particle from the jth particle is
written using the interaction potential uij.

4.2.2 Interatomic Potential

As we already discussed, to calculate the force, one needs to define the potential u.
A common method is the LJ potential, which accurately describes the interaction
between atoms in noble gases:

uij ¼ 4 � e � r
rij

� �12

� r
rij

� �6
" #

; ð4:2:17Þ

where e and r are interaction parameters, which depend on the particle type; and
rij ¼ ~Xi �~Xj

�� �� is the distance between the ith and jth particles.
The second term is in charge of atomic attraction as a result of the London

dispersion force. The first term represents atomic repulsion at small distances due to
exchange interaction. Figure 4.1 shows the LJ potential. Minimal energy corre-
sponds to r ¼ r

ffiffiffi
26

p
, so at larger distances particles attract one another while at

shorter distances they repel.
The interaction potential in the form of (4.2.17) is suitable for pure substances

and, strictly, can be applied only for rare gases: Ar, Ne, etc. However, this relation
can be applied to determine the interaction between different atoms. In this case we
replace r ! rij and e ! eij, i.e., we consider different parameters for different
atoms: parameters for the interaction of i–j particles (e.g., Ar–Xe) are calculated
according to the Lorentz–Berthelot rule (Lorentz 1881; Berthelot 1898):

Fig. 4.1 The Lennard–Jones
potential
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rij ¼ ri þ rj
2

; ð4:2:18Þ

eij ¼ ffiffiffiffiffiffi
eiej

p
: ð4:2:19Þ

Moreover, this representation can be used for the interaction of various atoms—
not only for noble gases. For instance, below we will consider the interaction of
liquid Ar with a Cu solid surface (see Chap. 9).

Using the divergence of the LJ potential, the acceleration is defined as:

~asþ 1
i ¼

X
j6¼i

eij � ~Xsþ 1
i �~Xsþ 1

j

� �
mi � rsþ 1

ij

� �2 48 � rij
rsþ 1
ij

 !12

�24 � rij
rsþ 1
ij

 !6
2
4

3
5: ð4:2:20Þ

To complete the molecular dynamics method, one needs to specify the inter-
action parameters of potential, boundary and initial conditions.

In this simulation, we used atoms of three types: argon (White 1999), xenon
(Whalley and Shneider 1955) and copper (Seyf and Zhang 2013). Interaction
parameters are given in Table 4.1.

Note that these parameters are different in different reference works. For
example, for Ar we have from White (1999): e ¼ 119:8 K and r ¼ 0:3405nm.

As an alternative to the LJ potential, one may also use, for example, the
Buckingham potential (it features exponents instead of terms raised to the power
12) (Buckingham 1938). The potentials of harmonic, torus and angular interactions
are used to simulate polyatomic molecules (Morse 1929; Dau and Baskes 1984;
Tersoff 1988). However, here we confine ourselves to considering simulations of
monatomic substances.

4.2.3 Initial and Boundary Conditions

To calculate system (4.2.7), one needs to place particles in the computational region
and set their velocities, i.e., set their initial conditions.

One should specify the type of system under consideration. If it is a solid body,
then atoms are placed corresponding to the chosen lattice (e.g., the face-centered
lattice). More complicated schemes are sometimes used: the properties of nanos-
tructured surfaces were studied in Seyf and Zhang (2013), Diaz and Guo (2015) and
Shavik et al. (2016) (surfaces with various macrostructures built upon them for heat

Table 4.1 Parameters of
atoms in the simulation

Atom m (kg) 10�26 r (Å) e (К)

Ar 6.633543 3.345 125.7

Cu 10.5521 2.33 3168.8

Xe 21.8018 4.568 225.3
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transfer enhancement). In liquid and vapor, atoms are not set in a regular structure
and their position is rather chaotic. However, they should not be placed randomly—
at least they should not be too close to each other. In fact, to form a liquid, atoms
can be placed at lattice positions—the structure will be lost after hundreds of time
steps if the initial velocities (i.e., temperature) are chosen properly (see Fig. 4.2).

As for velocities, their values should correspond to the chosen temperature. For
N monoatomic molecules with mass m and at time step s , the instant value of
temperature can be calculated neglecting the average velocity (see Sect. 4.1):

Ts ¼
X
i

m � V s
i

� �2
3 � N : ð4:2:21Þ

In other words, the mean square velocity should be equal to 3 T/m. The simplest
way to reach it is to set the velocity projections � ffiffiffiffiffiffiffiffiffi

T=m
p

for each particle. Although
this arrangement does not provide the Maxwellian distribution, the equilibrium
distribution will be certainly settled this way. A more complicated method suggests

Fig. 4.2 a Initial positions (Cu atoms in face-centered cubic (FCC) lattice and Ar atoms in
body-centered cubic (BCC) lattice). b 100 time steps later (crystal Cu and liquid Ar)

108 4 Numerical Experiments: Molecular Dynamics Simulations



generating a set of velocity projections that correspond to the Maxwell–Boltzmann
distribution at a specified temperature.

Many problems require either to change or maintain temperatures in the com-
putational region—and there are a lot of ways to perform this. Here we mention the
easiest one, called the “velocity rescaling” method. Let us assume that at time step s
the temperature is equal to Ts. Then, to set the temperature T*, one should multiply
all velocities by a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T�=Ts

p
factor. Now, the temperature calculated according to

(4.2.21) will be equal to T*.
An example of the application of this algorithm is given in Fig. 4.3. The tem-

perature is corrected every 20 time steps. The initial temperature is equal to 100 K,
and is then set to T* = 120 and 90 К.

Setting the boundary conditions and temperature is not enough to solve the
problem—one should also select the computational region. A common computa-
tional region is represented by a parallelepiped (with face lengths Lx;y;z), with
boundary conditions set at its faces.

Fig. 4.3 Setting temperature by the velocity rescaling method; 1—predetermined temperature T*;
2—actual temperature Ts; 3—mean temperature

Fig. 4.4 Boundary conditions. 1, 2—side with reflection boundary conditions; 3, 4—side with
periodic boundary conditions; 5—the “phantom” particle; 6—particle from the computational
region
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The reflection boundary condition is rather simple: when a particle reaches the
side it bounces and changes its velocity vector. An example of a computational
region that includes sides with reflection boundary conditions (with sides of
length 2L) and periodic boundary conditions (with sides of length 1L) is given in
Fig. 4.4.

Periodic boundary conditions ought to save (somehow) the situation with an
insufficient number of particles. The molecular dynamics method allows one to
simulate systems of thousands (and even millions) of particles, but in fact there are
far more of them, as one cubic millimeter contains about 1016 molecules (not to
mention liquid). To simulate a large/infinite volume (of gas or liquid), periodic
boundary conditions are used (Xiong et al. 1996), that are represented by additional
particles moving simultaneously with the main ones. The positions and velocities of
these particles are known and do not need to be calculated, however, main particles
interact with these additional (“phantom”) particles too. In Fig. 4.4, periodic
boundary conditions are set on two sides of the computational region.

Note that Fig. 4.4 represents a 2D projection of the computational region.
Usually, periodic boundary conditions are also set on two further sides, so there are
eight phantom computational regions.

In this case, the periodicity for the X coordinate is represented: a particle that
crossed a side of the computational region comes to the other side (the coordinate of
this particle shifts either by ~P1 ¼ ð0;�2L; 0Þ or by ~P2 ¼ ð0;2 L; 0Þ, see Fig. 4.4).
One also needs to take into account the interaction between the particles and
boundaries that simulate periodicity. Each particle has copies shifted by ~P1 and ~P2

(phantom particles), the interaction with which is considered:

~asþ 1
i ¼

X
j 6¼i

eij � ~Xsþ 1
i �~Xsþ 1

j

� �
mi � rsþ 1

ij

� �2 48 � rij
rsþ 1
ij

 !12

�24 � rij
rsþ 1
ij

 !6
2
4

3
5

þ
X
n

X
j

eij � ~Xsþ 1
i �~Xsþ 1

j þ~Pn

� �
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i �~Xsþ 1
j þ~Pn
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j þ~Pn

��� ���
0
B@

1
CA

12

�24 � rij
~Xsþ 1
i �~Xsþ 1

j þ~Pn

��� ���
0
B@

1
CA

62
64

3
75:

ð4:2:22Þ

It is worth mentioning again the problem of the initial conditions: while placing
particles, they should not be too close to each other. For periodic boundary con-
ditions the distance between the real and “phantom” particles should be controlled.

110 4 Numerical Experiments: Molecular Dynamics Simulations



4.2.4 Step-by-Step Guide for Simple Modeling

To perform MD calculations, one should select a substance (with parameters m, r
and e for the LJ potential, for example). Based on this, the integration step is
adjusted, which may be estimated as:

Dt ¼ r
32

ffiffiffiffiffiffiffiffiffiffiffi
m

48 � e
r

ð4:2:23Þ

For argon, we have Dt = 10 fs. Examination of the energy conservation for the
set integration step should be performed anyway.

Hereafter, the initial conditions must be set: the positions and velocities of all the
particles. Consequently, the algorithm at (s + 1) time step is:

• ~Xsþ 1
i ¼ ~Xs

i þ~V sþ 1
i � Dtþ 1

2 �~asi � Ds2:

• ~asþ 1
i ¼Pj6¼i

eij� ~Xsþ 1
i �~Xsþ 1

jð Þ
mi� rsþ 1

ijð Þ2 48 � rij
rsþ 1
ij

� �12

�24 � rij
rsþ 1
ij

� �6
" #

:

• ~V sþ 1
i ¼ ~V s

i þ ~asi þ~asþ 1
i

2 Dt:
• Calculation of new boundary condition.
• Repetition for the next time step.

It is inconvenient to solve this system in dimensional form, because the char-
acteristic times and distances are small (femtoseconds and angstroms) while
velocities are large. For this reason, all the equations translate to the dimensionless
form with corresponding scales:

• For coordinates—r.

• For velocities—r/Dt or
ffiffiffiffiffi
48e
m

q
;

• For time—Dt or r
ffiffiffiffiffi
m
48e

p
:

At each time step, the macroscopic properties such as temperature, density,
pressure, heat flux, etc., are calculated.

Fig. 4.5 Saturation liquid
argon density: line—National
Institute of Standards and
Technology data; dots—
results of molecular dynamics
calculations
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The algorithm is verified by performing an analysis of liquid density at the
saturation line. Density is calculated for a system where liquid and vapor exist in
equilibrium, using the mean kinetic energy (temperature) and number of atoms
(density). A comparison of the calculated and reference density of argon is given in
Fig. 4.5.

At each time step, one should calculate 3 N acceleration projections: in other
words, calculate the expression under the sum in (4.2.22) aboutN2 times. For 1 ns with
step 10 fs, there will be 100,000 time steps. Let us assume that the system contains
1000 particles. Then, at each time step, the interaction between particles is evaluated
about 1 million times, and for 1 ns this calculation repeats 100 billion times. The same
calculation for 10,000 particles demands 100 times higher the number of operations.
So, researchers always try to speed up the calculation process.

Using a cut-off radius seems to be the most effective way to do this, as it
eliminates the quadratic dependence of computation complexity. A cut-off radius
(rcut) is a distance where the interaction potential becomes zero and interaction with
particles that are farther away is not taken into account. If there are n particles in the
rcut radius, one can use the linear dependence nN instead of the quadratic one. To
apply this method, one should zero out the interaction potential at the rcut distance,
i.e.:

uij ¼ 4 � eij � rij
rij

� �12
� rij

rij

� �6� �
� 4 � eij � rij

rcut

� �12
� rij

rcut

� �6� �
; r	 rcut

0; rij [ rcut

8<
: : ð4:2:24Þ

Cut-off radius values usually lie in the range from 2.5 r to 6 r. However, this
method is rather specific: depending on the rcut, for the same e and r , properties of
the system will differ (pressure, density, etc.) Also, since the vapor particles without
any other particles in their vicinity are attracted by the liquid at a distance of about
one nanometer anyway, the “cut-off radius method” should be used with caution.

4.3 Compute Unified Device Architecture

The problem mentioned above appears to be extremely time-consuming to solve,
especially if the cut-off radius is not applied. Computational power of a device is
usually measured in “flops” (floating-point operations per second) the number of
which mostly depends on the clock frequency of the central processing unit (CPU),
its size and architecture. In 2000s, the development of classic CPUs hit the ceiling:
clock frequency reached a value of 3–4 GHz (without special coolers) and per-
formance—about 10 Gflops. However, the industry managed to improve the per-
formance by using multicore CPUs. Consequently, performance can be increased
with parallel calculations. Although we initially mention the the CPU, it is the
graphics processing unit (GPU) that shows the highest performance.
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High demand for computer graphics encouraged the development of the GPU as
a powerful multithreaded, multiprocessor computing device. The GPU was built for
massively parallel computing in graphic rendering, so chips in it contain way more
transistors than for data processing.

In the problem described in Sect. 4.2, at each time step the same set of opera-
tions is performed to calculate coordinates, velocities and accelerations for each
particle. Besides this, to obtain these parameters for ith particle on the (s +1)th time
step, one does not need to know the coordinates of the rest of the particles on the
(s +1)th time step.

This means that at each time step, coordinates, velocities and accelerations for
N particles can be calculated independently of one another—simultaneously and
parallel. The advantage in time consumption is obvious: hypothetically, if N devices
are employed, they complete the task N times faster. Let us recall that in molecular
dynamics N amounts to thousands and millions. Of course, common GPUs are not
capable of performing so many operations simultaneously, but even speeding up the
process by 100 times is beneficial.

One of the technologies allowing the use of GPUs for performing calculations is
known as CUDA (Compute Unified Device Architecture) and was developed by the
NVIDIA Corporation for GPUs they produced in 2006.

This section deals with CUDA, as it is the first and probably the most common
architecture that speeds up MD calculations with GPUs and greatly simplifies
handling them. Back in 2006 and 2007, Elsen (2006) published work where
accelerated MD calculations using GPUs, using shader language, were performed.
However, with the release of CUDA by NVIDIA in 2007, the use of GPUs became
available to a wider audience, because the CUDA programming interface is based
on a slightly modified C language.

At the moment of writing this chapter, CUDA is used in programming languages
such as C, C++, Fortran, Java, Python, Wrappers, DirectCompute and Directives.
The capabilities of CUDA are embedded in such apps as MATLAB and
Mathematica. All modern MMD programs use the GPU; particularly NAMD
(NAnoscale Molecular Dynamics) (NAMD 2016), GROMACS (Groningen
Machine for Chemical Simulations) (Abraham et al. 2015) and LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator) (LAMMPS 2018)
allow the use of CUDA technologies.

This section includes an overview of the possible ways one might use a GPU for
the MMD. For a more detailed study, one should refer to the original guides
(CUDA 2018). It should be noted that the NVIDIA company considered the
problem of N-body simulation in 2008 (Mittring 2008).

The smallest sequence of programmed instructions in a program unit is called a
thread. It usually means that threads are implemented in parallel, but actually this is
not the case in every instance. Code that is performed in threads is called a kernel,
which contains a set of instructions that are to be implemented in parallel, but with
different data elements.

In CUDA, threads are combined in blocks. Threads in blocks are processed
using warps. Actually, only warps are performed in a block simultaneously
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(usually, the warp size is 32). Blocks, in turn, are combined into a grid. Blocks and
grid sizing can be 1D, 2D or 3D. This multilevel structure is very convenient. While
processing a thread, its address is defined—so, each thread corresponds to a par-
ticular data array.

Such an approach allows us to process huge data arrays in parallel (actually, a
certain number of warps is processed). Also, data is not manually divided into
pieces according to a certain GPU and number of processed elements. CUDA
became widespread not only because of its interface, but also thanks to the scalable
programming model. Actually, GPUs have different numbers of multiprocessors
and are able to complete different data arrays. A multithreaded program is divided
into blocks of threads that are performed independently from one another, thus the
GPUs with more multiprocessors automatically run programs faster than GPUs with
fewer multiprocessors.

All aforementioned terms (threads, blocks, warps and grids) refer to software.
Blocks are processed on a streaming multiprocessor (that refers to a hard), each of
which can process several blocks (Fig. 4.6).

To sum up, now we know how to speed up the calculation process using GPUs:
one should create a kernel containing operations that are to be performed in parallel.
In this case, the calculation of the accelerations for N particles seems to be the most
time-consuming operation. To process N data sets, n threads for m blocks should be
defined, so as n � m = N (generally n � m > N).

A GPU works with its own memory: first, it is necessary to allocate the required
amount of GPU memory. In our case, there are arrays of acceleration, velocities and
coordinates. It hardly makes sense to generate initial conditions on a GPU, since it
is a one-time definition that does not require large computational cost. So, when
initial arrays are formed, they should be transferred to the GPU memory.

Next, the required parallel operations are performed on the GPU (in the so-called
CUDA function). To process/save data, the results of the CUDA function calcu-
lation are transferred back to the CPU, i.e., the GPU data is copied to the
CPU DRAM (Dynamic Random Access Memory).

Upon completion of the program, the GPU allocated memory is cleared.
The general calculation algorithm is:

Fig. 4.6 Layout of thread
block processing on a
graphics processing unit
multiprocessor
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• To define the source data: to declare variables and pointers (for the source
module and for the GPU); to initialize the required variables (including the
initial condition).

• To allocate the place for the variables processed by the CUDA function, in the
GPU memory.

• To configure and invoke the CUDA function.
• To copy the necessary data from the GPU memory.
• To clear the GPU memory.

Actually, when modeling molecular dynamics, it becomes necessary to analyze
the results. This can be more laborious than the calculations themselves, e.g., the
construction of the potential energy DF or calculation of the energy flux (which also
requires calculating the energy value). Therefore, it is efficient to collect arrays of
coordinates and velocities during the calculation. Then, in post-processing, it will
be possible to calculate any interesting quantities and, if necessary, interrupt and
resume the calculation.

Often there is a need to adjust the program (change the boundary conditions,
temperature, etc.) during the execution, and not with a rigidly defined scenario. For
such time-consuming calculations, any unnecessary recounting is an unattainable

Fig. 4.7 Layout of the program structure. CUDA—compute unified device architecture; GPU—
graphics processing unit; CPU—central processing unit
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luxury. Therefore, our code saves data on velocities and coordinates with a certain
periodicity (which allows rolling back the calculation in the case of an error), and
the main calculation is executed in parallel on the CPU and controlled by the driver.
The layout of the program structure is provided in Fig. 4.7.

As for the acceleration achieved by the presented method, we should consider
the ratio of the time spent on the same calculation on the same PC with and without
using the GPU. In fact, this comparison makes clear whether it is expedient to use
the GPU.

Most of the authors’ calculations were performed on a monoblock PC with a
relatively weak, mobile-grade GPU and a powerful multicore processor at the same
time. Using a GPU on such a PC speeds up calculations by a dozen times. However,
in comparison, for example, with a minimal MacBook Air (with a rather weak
CPU) gives an acceleration of more than 20 times. In fact, as it was already
mentioned, using the GPU not only speeds up the calculations, but also frees up the
CPU (which can be used for post-processing).

The obtained results are neither record-setting nor indicative in terms of the
potential of the video card. However, they show the expediency of using GPUs on
ordinary PCs. For calculations that last about a day, the acceleration represents the
difference between calculations done in a day and in a week.

It should be noted that in 2009 Open Computing Language (OpenCL) was
introduced. It allows the user to create instructions not solely for use on GPUs
produced by NVIDIA. Also, this language is supported by CUDA. The afore-
mentioned parallel calculations on the MacBook were performed using OpenCL.

4.4 Conclusion

The MMD simulations is often referred to as the direct numerical simulation
method, keeping in a mind that one may obtain a final answer to any question using
the MMD. This is not true because:

• The interaction potential used in the MMD is a model correlation that neglects
many nuances such as the influence of a third particle on the two-particle
interaction, etc.

• The MMD increases short-range fluctuations.
• The MMD cannot take into account large-scale or long-time fluctuations.

However, the MMD is a very useful instrument for the analysis of local pro-
cesses. When we do not require the exact quantitative calculations, but want to
consider the physical nature of the given process, MD is a convenient and, actually,
an indispensable instrument.

The most frequent question answered by the MMD is how many particles must
be taken into account? The simplest answer:

ffiffiffiffi
N

p � 1, this condition follows from
the requirement of negligible fluctuations and may be obtained in other ways. In
other words, a number of particles approximating to 1000 is quite sufficient. Of
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course, when you want to, for example, consider a bubble in a liquid, the number of
particles must be correspondingly large, but this is a special case.

Anyway, we have to solve the system of the corresponding number of equations
(specifically, 6 N equations in a 3D case). Moreover, we cannot use the simplest
(explicit) scheme, and have to consider methods that are more complicated.
Numerical simulations of even 1000 particles demands time-consuming calcula-
tions, so it is not superfluous to boost them somehow.

The most direct way to speed up the calculations is to parallelize them. Despite
the fact that the MMD is not a very suitable object for program parallelism, we may
organize simultaneous computations on several computing devices (note that even
the summation of the series can be parallelized). The most evident devices for such
calculations are CPUs, but we chose another way.

In our calculations, we used the CUDA technique: computations on graphics
cards. For domestic conditions, this the most convenient way to boost the speed of
calculations by an order or two.

The results of these computations will be presented in the Chaps. 5–9.
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Chapter 5
Velocity Distribution Function
of Evaporated Atoms

Some scientists perceive all situations around the distribution function (DF) of
evaporated particles as a sort of gamble; the title of the article by Knox and Phillips
(1998) is eloquent: Maxwell versus non-Maxwell Velocity Distributions for
Molecules Emitted from a Liquid Surface. We may admit that this fight continues to
this day.

5.1 The Maxwellian Distribution Function?

5.1.1 Our Expectations

Due to the specific structure of human mind we always expect familiar things to
happen even when we are facing absolutely new matters. We prefer to use standard
physical descriptions for investigated objects and we invent many circumstances to
keep this situation as it is.

Probably, the most dramatic illustration took place in 1899–1900 when the black
body spectrum was studied. In the previous decade (during the 1890s) it had been
“firmly” proven that Wien’s law was absolutely correct—because, as we now
know, only a range of sufficiently high values of quantity hm=T had been treated in
experiments. Max Planck was assured that Wien’s law was absolutely correct and
aimed his theory in this direction; actually, Planck wanted to explain the irre-
versibility of the fundament of electromagnetic field theory. His first work, pub-
lished in the beginning of 1900, contains the phrase that “the area of application of
the [Wien] law coincides with the area of application of the second law of ther-
modynamics” (see end of §23 in this work). And this confusion took place not only
in theory. As it became known later, experimental investigations in 1899 (e.g., by
Lummer and Pringsheim) showed clearly that Wien’s law did not describe exper-
imental data for sufficiently large T, i.e., for relatively low hm=T . Only in March of
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1900 were the first observations of the deviation from Wien’s law officially
reported.

Max Planck applied tremendous force to correct his mistake; no less than a new
scientific area—quantum mechanics—arose from his subsequent work. However,
the moral of the story is clear: an open mind is always needed.

TheMaxwellian distribution function (MDF) has become almost a synonym for the
term “equilibrium state.”We expect the MDF to be everywhere, at least to be bundled
in with the equilibrium state; in non-equilibrium, we expect a shifted MDF. Usually,
there are no serious discussions precluding the choice of theMDF for any problem.We
have an equilibrium state for liquid—oh, yes, we may use a Maxwellian there.

Of course, it is peculiar for anyone to doubt. Proofs are needed always and
everywhere, especially for obvious things (at least in physics). The proofs were
sought, and evidence was not obtained. Thus, the story begins.

5.1.2 Experimental Results

It is not easy to determine the DF of velocity (or of kinetic energy) experimentally. In
fact, to find such a function by measuring is a very hard job. The usual experimental
method—the so-called time-of-flight method (TOF), where we actually use time
(that was spent to reach a detector) instead of velocity, must exclude any interaction
of evaporated molecules with a gas, otherwise all the measurements lose their value.

As we know, the first work where the DF of evaporated atoms was treated, was
in the article written by Otto Stern in 1920. To be precise, there were two papers:
the first paper with experimental results, and the second one with discussions about
them (in polemics with Einstein, by the way). In these experiments, the evaporation
of silver wire was treated and agreement with the MDF was obtained; in many
works from the middle of the Twentieth century these results were referred to if
necessary as an experimental confirmation of the MDF. As an example, take a look
at an excellent review by Knake and Stranskii (1959), where the question about the
MDF arises several times only to be faded out (with a positive answer).

Many works were devoted to the DF in sorption/desorption processes. This
problem has some relation to evaporation, however, it is hardly possible to transfer
results obtained for desorption directly to evaporation, due to differences in types of
intermolecular forces in these cases.

Possibly, the first experimental report regarding the non-MDF for desorbed
molecules was by Dabirli et al. (1971); the desorption of D2 molecules from a
nickel polycrystalline surface was investigated with the TOF method. While the
temperature of the surface was 1073 K, the observed spectrum corresponded to a
shift-Maxwellian with a temperature of *1500 K.

In Cardillo et al. (1975), for desorbing atoms of H2 from a nickel surface, a
non-MDF, skewed to a high-velocity range, was obtained. The same results—an
increasing number of high-energy particles—were later observed in Matsushima
(2003).
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However, everything is not that clear (of course). In Hurst et al. (1985) the
obtained DF was not the MDF, but was shifted toward a low-energy range, as were
the results of Rettner et al. (1989). In both cases the desorption of argon was
investigated, from platinum and tungsten, correspondingly.

We recommend the paper by Comsa and David (1985) for those who want to delve
more deeply into experimental problems—both methodological and technical; this
work also contains a wide discussion concerning the non-MDF for desorbed particles.

In Hahn et al. (2016) the evaporation of rare gases from water was treated. There
were reports about the MDF in the case of the evaporation of argon and about
“super-Maxwellian” evaporation of helium both from fresh and saline water.

Finally, we refer the reader to an important result for the DF of evaporated
molecules of the same substance (Faubel et al. 1988; Faubel and Kisters 1989). In
the first of these works an agreement with the shifted MDF was obtained:

f � v2 exp �m v� Vð Þ2
2T

 !
: ð5:1:1Þ

For water evaporation, it was determined that T ¼ 210K—the lowest temper-
ature that has been observed ever for a liquid surface. It is also interesting that DFs
measured at different distances from the surface (at 4 and 8 mm) were quite dif-
ferent. Note that the authors admit that a collision-free regime was not achieved;
evidently, it is the only reason for different DFs at different distances.

In the next work (Faubel and Kisters 1989) the authors reported a double result.
The MDF was observed for monomers of carboxylic acid, but a non-MDF observed
for dimers.

In fine, M. Faubel and T. Kisters concluded that “it would be interesting to
investigate these phenomena further with realistic molecular-dynamics simulation.”
Let us follow this advice.

5.1.3 Numerical Simulation Results

Today we have a big database of numerical simulation results. Contrary to natural
experiments, numerical simulations allow us to obtain clearer results for such a
complicated problem as a DF.

While experimental data can be divided into two sets—Maxwellian or
non-Maxwellian—the results of numerical simulations can be divided also into two
groups, but based on another DF.

The DF:

f vð Þ ¼ mv
T

exp �mv2

2T

� �
ð5:1:2Þ
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is often used to describe the results of numerical simulations. The most recent paper
where this function was used was Kobayashi et al. (2017). A DF of the same kind
was also obtained by Tsuruta and Nagayama (2004), Cheng et al. (2011), Frezzotti
(2011) and especially—Varilly and Chandler (2012), and the DF has been (almost)
obtained analytically by Kon et al. (2016) and Kobayashi et al. (2016). We will not
represent DF (5.1.2) here, because we will treat this function in the next section in
detail.

However, in other works DFs of different forms have been obtained. Below we
present results from Ishiyama et al. (2004) and Lotfi et al. (2014); see Figs. 5.1 and
5.2, correspondingly.

To these works we may add Meland et al. (2004), Kryukov and Levashov (2011)
and Xie et al. (2012) where various DFs for evaporation were obtained.

Analyzing all these results, it is important to understand in what nearby region of
a liquid surface this velocity DF has been constructed. Unfortunately, not all articles
contain this information. In Zhakhovskii and Anisimov (1997) DFs in various
liquid layers were calculated; we provide the same operation with the same results

Fig. 5.1 Distribution functions from Ishiyama et al. (2004). DF—distribution function

Fig. 5.2 Distribution functions from Lotfi et al. (2014). DF—distribution function
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in the next section. Here we may briefly conclude that DFs in a liquid are
Maxwellian, but this function is being strongly distorted if we include a region of a
gas, i.e., of the evaporated molecules themselves. Thus, it is logical to remove all
the liquid particles from the consideration, however, sometimes it is hard to say
whether the authors of the given paper have performed this operation or not.

In fine, we want to compare function (5.1.1), which is a popular function in
analytical solutions, and function (5.1.2) (see Fig. 5.3).

This figure gives us a lot of food for thought, especially if we take inevitable
errors of calculations into account. There is a good chance to confuse these two.
Thereby, we have to move on from the question that was asked in the beginning of
this section and restate it in a more solid form. We asked a shrewd question “What
DF is observed in experiments (natural or numerical)?” As we can see, different
answers are possible.

But this is absolutely the wrong approach.
We need an answer to the question “What is the DF for evaporated particles?”

We need a theory here. Not some speculation or reasoning, we need a strict
derivation. Only in that case we can surely define which function is correct—(5.1.1)
or (5.1.2). Or, possibly, a third option.

5.2 Theoretical Calculation of the Distribution Function

5.2.1 The Simplest Form of Velocity Distribution Function

It is hard to name the author who addressed the most direct approach to the problem
of evaporation, where the work function U of the evaporated atom was considered
for the first time. Possibly, it was Jakov Frenkel who introduced U for evaporated
atoms in his fundamental book Kinetic Theory of Liquids. However, the idea looks
rather evident.

Let us consider a DF in an evaporating liquid. If we assume an equilibrium state,
then we may expect that the MDF can be applied:

Fig. 5.3 Distribution (5.1.2)
versus the shifted Maxwellian
distribution function. DF—
distribution function
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f vð Þ ¼
ffiffiffiffiffiffiffiffiffi
m
2pT

r
exp �mv2

2T

� �
: ð5:2:1Þ

There is no doubt that this function is correct for the bulk of the liquid. But by
applying (5.2.1) for an evaporation problem, we assume that the atoms at the
surface obey Maxwellian law too; this assumption is merely brave and, strictly,
demands a proof. One can identify two problems concerning the application of
(5.2.1) for a liquid surface:

1. Due to the evaporation, atoms with high kinetic energy leave the liquid, so the
temperature of a liquid tends to decrease; the deficit of fast atoms repairs because
of the energy drift from the dipper layer of a liquid. In the common case, we can
say that the temperature of the surface is lower than the temperature of the bulk
of the liquid; one question to address is “by how much?” Thus, the parameter
T from (5.2.1) is (somewhat) undefined.

2. The influence of evaporation on a DF is not restricted by the uncertainty of T. In
the general case, because of evaporation, a liquid can be far out of equilibrium
state, and all arguments from Chap. 2 in favor of the Maxwellian may be
eliminated in such a case. Thus, even the form of a DF of velocity may be
undefined.

Both problems are serious and it is very difficult to provide any certain answers.
However, we may partly overcome function (5.2.1) in both objections:

1. The temperature of the surface differs from the bulk temperature indeed (see
Chaps. 6 and 8). However, the temperature of the liquid surface may actually be
an external parameter defined by experimental data.

2. Liquid is a condensed matter. There are many collisions between atoms of liquid
at the surface layer, thus, we can expect that equilibrium conditions will be
stated. As for the escaping high-energy particles, one may hope that for an
intermediate evaporation rate the “high-energy tail” of the DF will recover
rapidly due to the collisions between atoms. The bulk of a liquid transfers
energy to its surface, thus, at least a stationary state can be achieved at the
interface.

However, this consideration is not a proof, it is only an eventual explanation.
Below we will use the MDF for a liquid surface—the first thing that will be checked
in the next section (with results from a computer simulation) is the DF for atoms in
the liquid.

Thus, we have (by agreement) that the DF of liquid atoms is Maxwellian. The
next point to consider—or, in fact, that Frenkel considered—is the fact that to leave
a surface an atom of a liquid must overcome the binding energy that holds it inside
a liquid. If a particle leaves a surface in the direction of the z axis (axes x and y are
tangential to the liquid’s surface), then the positive binding energy U (or the
negative potential energy u ¼ �U) will lead to a decrease in the normal projection
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of velocity (i.e., of the vz). Formally, the total energy of a particle before (we denote
corresponding quantities with an prime) and after a detachment is:

mv02x
2

þ mv02y
2

þ mv02z
2

� U ¼ mv2x
2

þ mv2y
2

þ mv2z
2

: ð5:2:2Þ

Because of the absence of forces in directions x and y the corresponding pro-
jections of velocity stay the same: v0x ¼ vx and v0y ¼ vy, and we have to deal only
with the normal projection of velocity. For this reason, in this subsection we omit
index “z” for velocity.

We are interested in the DF of evaporated atoms, i.e., of atoms which lose their
kinetic energy on value U; with (5.2.2) we have a relationship between velocities
before and after evaporation:

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 2U

m

r
: ð5:2:3Þ

Thus, under an “evaporated atom” we mean an atom which becomes absolutely
free, i.e., its potential energy is equal to zero. Thereby, we find the DF of velocities
on the evaporation surface not directly on the very interface, because the atom is
bound with other particles there; we construct our DF at some distance from the
evaporation surface (*1 nm) where atoms unbound from their neighbors (see
Fig. 3.3). All this consideration may look obvious, of course. Considering the fact
that usually the DF is needed as a boundary condition for a kinetic equation, we
may depict that if someone wants to use the MDF in a liquid (5.2.1) as this
boundary condition, then one must solve not a Boltzmann kinetic equation (con-
sisting of a hyperbolic differential operator in the left-hand part of the equation and
a collision integral in the right-hand part), but a kinetic equation with a
self-consisted field, or with a collision integral and an external field, etc.: somehow,
one must consider the potential forces influencing the particles.

Further we will use velocity v0 which is defined from the equality U ¼ mv20
2 .

Then, for the DF f vð Þ we must reconstruct the MDF for atoms in a liquid,
remembering that dv 6¼ dv0:

f vð Þ ¼ f v0ð Þ dv
0

dv
¼ f v0ð Þ vffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ v20
p : ð5:2:4Þ

So, we must replace v0 with v in (5.2.1) and (5.2.2), and then the DF of the
velocity of evaporated atoms will be obtained in accordance with (5.2.4). We have:

f vð Þdv ¼ A
vffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ v20
p exp �mv2

2T

� �
exp �mv20

2T

� �
dv; ð5:2:5Þ

where factor A provides normalization
R1
0 f vð Þdv ¼ 1:
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A ¼
ffiffiffiffiffiffi
2m
T

r
1

C 1
2 ;

mv20
2T

� � : ð5:2:6Þ

We emphasize that our DF (5.2.5) is defined for v 2 0;1½ �; this is the reason for
normalization being in the form

R1
0 rather than

R1
�1.

The function (5.2.5) can be simplified. Suppose that the work function is huge,
that is, U � T and v0 � v in all intervals of significant v, i.e., where v� ffiffiffiffiffiffiffiffiffi

T=m
p

. In
such conditions we get a simple and convenient expression instead of (5.2.5):

f vð Þ ¼ mv
�e
exp �mv2

2�e

� �
; ð5:2:7Þ

with the mean kinetic energy �e of an atom in a vapor phase (i.e., after evaporation)
that can be obtained from the balance of energy (5.2.3). Of course, one may see
directly from the expression (5.2.5) that �e ¼ T ; but, keeping in the mind the next
sections, we should point out that this equation also follows from (5.2.3) in the
general case after the averaging procedure:

�e ¼ mv2

2
¼ mv02

2
� U: ð5:2:8Þ

Note that to calculate mv02
2 we must take into account only v0 [ v0, because only

these particles may be detached, and change the normalized factor to consider only
the particles that are of interest. Thus, the mean kinetic energy of all the particles in
liquid with v[ 0 is:

R1
0

mv02
2 e�

mv02
2 dv0R1

0 e�mv02
2 dv0

¼ T
2
; ð5:2:9Þ

while only for detached particles their averaged kinetic energy is:

mv02

2
¼
R1
v0

mv02
2 e�

mv02
2T dv0R1

v0
e�mv02

2T dv0
¼ T

C 3
2 ;

U
T

� �
C 1

2 ;
U
T

� � : ð5:2:10Þ

For U=T � 1 we have (see Appendix B):

C
3
2
;
U
T

� �
�

ffiffiffiffi
U
T

r
1þ T

2U

� �
e�U=T ; ð5:2:11Þ

C
1
2
;
U
T

� �
�

ffiffiffiffi
T
U

r
1� T

2U

� �
e�U=T ; ð5:2:12Þ
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so, for the mean kinetic energy of evaporated particles we have:

�e ¼ lim
U=T!1

T
C 3

2 ;
U
T

� �
C 1

2 ;
U
T

� �� U
T

" #
¼ T : ð5:2:13Þ

Thus, the mean kinetic energy that corresponds to the z projection of the velocity
of the detached particles is the temperature of the liquid T, while the average kinetic
energy corresponding to all Maxwellian-distributed particles is T/2. One may note
that the escaped particles (i.e., the tail of the MDF for v[ v0) have the average
kinetic energy U + T in a liquid.

In fine, we can rewrite the DF for the velocity of atoms after evaporation as:

f vð Þ ¼ mv
T

exp �mv2

2T

� �
: ð5:2:14Þ

This DF for vapor particles is a non-equilibrium DF. Here the parameter T is not
the temperature of these particles but the temperature of the liquid which emitted
these vapor particles.

From some points of view, the DF (5.2.14) is very interesting: it contains some
confusing issues. This function coincides with a well-known DF—the MDF function
for absolute velocity in a 2D case. In our case we have �e ¼ T in (5.2.14) for the mean
flux energy: the so-called mean value for the quantity Q vð Þ is calculated as:

Q ¼ 1
j ¼ m�vf g

Z1
0

Q vð Þmvf vð Þdv: ð5:2:15Þ

For Q vð Þ ¼ mv2
2 and the MDF f vð Þ we get �e ¼ T :

However, of course, this is only a confusing coincidence. The function (5.2.14)
describes the distribution of velocities in a 1D case. The mean kinetic energy �e was
calculated based on the number density DF, not on the flux DF with (5.2.15). And,
certainly, �e represents the mean energy for a single translational degree of freedom:
due to its value, it may be confused with the mean energy for the vibrational degree
of freedom. Any resemblances are random and should not be processed further.

As already obtained, the DF for the normal velocity can be described by the
simple relation (5.2.14) if U � T . Practically, “much larger” here means that
U must be several times larger than T. In Fig. 5.4 the DFs (5.2.5) for various ratios
of U/T are presented: from U=T ¼ 0, which corresponds to the MDF, to U=T ! 1
with function (5.2.14).

5.2.2 Probability of Evaporation

The probability of evaporation can be calculated for the MDF of atoms in a liquid.
To leave the surface, an atom must have a kinetic energy higher than its binding
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energy U, or a longitude velocity higher than v0. Thus, the total number of such
atoms is:

N ¼ N0

Z1
v0

ffiffiffiffiffiffiffiffiffi
m
2pT

r
exp �mv2

2T

� �
dv; ð5:2:16Þ

where N0 is the total number of atoms with any velocity: �1\v\1. Defining
probability as w ¼ N=N0, we get:

w ¼ 1
2
ffiffiffi
p

p C
1
2
;
U
T

� �
: ð5:2:17Þ

Obviously, if the work function vanishes U
T ¼ 0 then w ¼ 1

2: one half of the
particles—which have velocities towards a vapor phase—would leave the surface,
in this case we also have the MDF for evaporated atoms. However, we always have
U[ 0, thus, the DF of evaporated particles has the property f 0ð Þ ¼ 0, i.e., there are
no particles with zero velocity in the evaporation flux (however, see Sect. 5.2.5).

5.2.3 Distribution of Tangential Velocities

After detachment from the surface, particles hold their tangential components of
velocities, that is, axes x and y DFs for velocities vx and vy stay the same as in the
liquid (MDF):

Fig. 5.4 Distribution functions for the different binding energy of particles. DF—distribution
function
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f vx;y
� � ¼ ffiffiffiffiffiffiffiffiffi

m
2pT

r
exp �mv2x;y

2T

 !
; �1\v\1: ð5:2:18Þ

As we know, the mean kinetic energy corresponding to distribution (5.2.18) is
T=2, therefore, the sum of the mean kinetic energy for projections of velocities
x and y is T. Thereby, the total mean kinetic energy of the atom after evaporation is:

�e ¼ 2T ð5:2:19Þ

Possibly, this is the most important result that we have obtained. It means that:

• The flux of evaporated atoms is “overheated:” while atoms of a liquid at
equilibrium have kinetic energy 1:5T , evaporated atoms have an energy which
is higher by 0:5T .

• One may expect that an object placed close to the evaporation surface tends to
obtain an increased temperature; the spatial scale of such an effect is approxi-
mately equal to the mean free path (MFP); we will discuss the consequences of
this issue in Chap. 8.

Again, the total DF of the evaporated atom has no such parameter as a temperature;
for instance, it is incorrect to compose a “temperature” corresponding to any
direction, such as Tx;y ¼ T , Tz ¼ 2T . Temperature is not a vector!

5.2.4 Some Thoughts Concerning Condensation

This book is devoted to evaporation, not to condensation. The process of con-
densation is not a process of “evaporation with a reversed sign:” many nuances
arise when an atom moves from vapor toward an interface, through a mob of its
colleagues, and attaches to a liquid surface. For example, we can consider evapo-
ration in vacuum—this is a comfortable and convenient model which allows us to
exclude interactions with atoms of a surrounding gas. However, we cannot, of
course, consider condensation from a vacuum; the condensation process is neces-
sarily tied to an interaction between atoms.

Nevertheless, we are forced to treat some aspects of condensation from time to
time. Here, we must discuss the problem of attachment itself. We have obtained a
DF (5.2.15) which considers how to overcome the potential barrier U. For the
attached particle, we must consider the same factor: when an atom “falls” on an
evaporation surface, its energy rises to the value of U. Thus, because of conden-
sation, the surface of the liquid obtains additional energy, something which must be
kept in mind for the many problems that will be discussed in this book later.

For instance, this effect may define the different temperatures of evaporation
surfaces under conditions of a contemporary condensation process, or the absence
of it.
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5.2.5 Distribution Function on an Irregular Surface

As usual, the reality is slightly more complicated than the simple theoretical model.
The evaporation surface may not be absolutely flat (see Fig. 5.5). What will the
black atom do on this figure if it has sufficient kinetic energy to leave the interface?
It cannot move straight up in the direction of the z axis, because its neighbors
prevent its motion in this direction: its upper neighbor would repel it. In such a case
the preferred direction for escape from the surface is to move to one side, as is
shown in Fig. 5.5. Here the normal component of velocity (normal to the local area
of the surface) does not coincide with the z axis (normal to the “averaged” surface).
Consequently, the binding energy will be overcome in the direction at an angle h
relative to the z axis.

Then, the DF (5.2.14) describes velocities in some new, local direction. Different
local areas have different angles h with the z axis, and an overall DF for velocities
must be obtained by averaging all possible values of h. To provide this averaging
we must have a probability density function p(h) which describes the probability of
a local tilt of angle h:

f vzð Þ ¼
Zhmax

0

f vz; hð Þp hð Þdh ð5:2:20Þ

Here the DF (5.2.20) describes the probability of velocity vz when the atom
leaves the surface at an angle h.

Gerasimov and Yurin (2014) wrote that there is no good hypothesis about the
function p(h); today we still do not have such a hypothesis. We still use an equal
probability of tilt for any angle from zero to the maximal angle hmax, thus, our
problem is reduced to the determination of the function f vz; hð Þ. Consequently, the
solution to the problem is f vzð Þ ¼ f vz; hð Þ with h� hmax (note that quantity hmax is
unknown too).

Fig. 5.5 An irregular
evaporation surface. The
white circles represent steady
atoms in a liquid and the
black circle represents an
atom which is ready to escape
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As one can see in Fig. 5.5, the z projection of velocity for that black particle is:

vz ¼ vn cos hþ vs sin h: ð5:2:21Þ

The corresponding DF of the z-directed velocity can be found with (5.2.21) if we
put the DF for the normal component of velocity according to (5.2.14), denoting it
as fn vnð Þ, and the DF for the tangential projection of velocity as the MDF, denoting
it as fs vsð Þ.

Summarizing, we have:

f vz; hð Þ ¼
Zvmax
s

vmin
s

fn
vz � vs cos h

sin h

� �
fs vsð Þdvs: ð5:2:22Þ

As for the upper limit of this integral, we see that vmax
s ¼ vz= sin h. Previously,

we put the lower limit to zero: vmin
s ¼ 0; we are going to discuss this convenient, but

poorly corrected, move later.
Omitting all the manipulations, we get a solution for (5.2.22):

f vz; hð Þ ¼ a
2c1

exp � A� c1c
2
2

� �
v2z

� �
exp �c1v

2
z 1=a� c2ð Þ2

� �
� exp �c1v

2
z c

2
2

� �h i
þ 1� ac2ð Þ vzffiffiffiffiffi

c1
p exp � A� c1c

2
2

� �
v2z

� �
erf vz

ffiffiffiffiffi
c1

p
1=a� c2ð Þð Þþ erf vzc2

ffiffiffiffiffi
c1

pð Þ½ �

ð5:2:23Þ

where:

a ¼ sin h; A ¼ m
2T cos2 h

; B ¼ m
2T

; c1 ¼ Aa2 þB; c2 ¼ aA
c1

: ð5:2:24Þ

Of course, expression (5.2.23) is absolutely huge; this construction does not suit
any analytical consideration. However, two limiting cases can be considered. The
first one is the case of small angles h ! 0, that is, for a ! 0 and A ! m=2T , where
we have a DF (5.2.14) representing an obvious result. In the opposite case, for large
h, we represent (5.2.23) in the form:

f vzð Þ ¼ Cv2z exp �mv2z
2!z

� �
; ð5:2:25Þ

where constant C must be determined from the normalized condition.
Functions (5.2.25) and (5.2.14) in comparison to (5.2.23) are shown in Fig. 5.6

for different values of angle h.
By finding a constant we can finally represent the DF for the z projection of

velocity for a strongly irregular surface:
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f vzð Þ ¼
ffiffiffi
2
p

r
m
!z

� �3=2

v2z exp �mv2z
2!z

� �
: ð5:2:26Þ

It is also worth noting that we choose the lower limit vmin
s ¼ 0 for integral

(5.2.22) in some arbitrary manner. From Fig. 5.5 one may see that the black atom
can leave the liquid even with a (small) value vmin

s \0. The corresponding DF
[calculated numerically with integral (5.2.22)] is shown in Fig. 5.7. Now we can
see that f 0ð Þ[ 0; this fact may be useful for the analysis of DFs presented in the
previous section.

The module of distribution (5.2.26), quantity !z, is:

!z ¼ 2
3
mv2z
2

; ð5:2:27Þ

that is, 2/3 of the mean kinetic energy.
According to our model, the DF for tangential projections of velocities vx and vy

must keep the Maxwellian form, but with different mean kinetic energy:

f vx;y
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2p!x;y

r
exp �mv2x;y

2!x;y

 !
: ð5:2:28Þ

Despite any oscillations of the evaporation surface, the total kinetic energy of the
detached atom must be the same, i.e., 2T:

mv2x
2

þmv2y
2

þmv2z
2

¼ 2T ; ð5:2:29Þ

that is, for all our parameters !k we have the condition:

Fig. 5.6 Distribution function (5.2.23) for different values of angle h. DF, distribution function
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!x þ 3
2
!z ¼ 2T; ð5:2:30Þ

because !x ¼ !y ¼ mv2x .
Distinct from the results for a plain evaporation surface, here, parameters !x and

!z depend on the unknown angle h in (5.2.23), and, as we understand, can be
calculated only with numerical simulations. The test for correctness of all these
considerations is correlation (5.2.30).

However, before the results of the numerical simulations are presented, we
discuss some important questions.

5.2.6 A Generalization

We may generalize all our DFs for the z projection of velocity in a form that
combines both DFs and allows approximation for a common case:

f vzð Þ ¼ Cvnz exp �mv2z
2!z

� �
; ð5:2:31Þ

where the normalizing constant is:

C ¼ mðnþ 1Þ=2

2ðn�1Þ=2!ðnþ 1Þ=2
z C ðnþ 1Þ=2ð Þ ð5:2:32Þ

and the mean kinetic energy is:

mv2z
2

¼ nþ 1
2

!z: ð5:2:33Þ

There is not a lot of physics here, but a bit of mathematics. Note that parameter
n here is not necessarily an integer.

Fig. 5.7 Distribution
function with vs\0 (see
Fig. 5.5). DF—distribution
function
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5.2.7 About Fluxes from an Evaporation Surface

Fluxes from the evaporation surface may be calculated with our DFs from the
previous section, but not completely.

For example, the mean velocity of the atoms evaporated from the flat surface is:

�vz ¼
Z1
0

vzf vzð Þdvz ¼
ffiffiffiffiffiffi
pT
2m

r
: ð5:2:34Þ

Thus, the flux from the surface is:

j ¼ n

ffiffiffiffiffiffi
pT
2m

r
: ð5:2:35Þ

We may also calculate fluxes for DF (5.2.26) (see Sect. 5.2.9). One problem
remains: we do not know the number density of evaporated atoms n. For the
approach presented in this section, this quality is absolutely external; we have no
idea about it. Possibly, we may find n with (5.2.17), however, the work function
U is required.

5.2.8 The Binding Energy: Preliminary Remarks

The work function U that has been introduced at the early stage of our consideration
in this section disappeared in a mystical manner in the normalizing constants.
However, this is not a reason to forget this quantity, since this is probably the most
important parameter concerning the process of evaporation.

It is evident that U may depend on spatial coordinates: in different zones of the
evaporation surface the work function can be different due to fluctuations in number
density of surface atoms, etc. How may this fact affect our consideration?

As we see from the formulae in this section—it has no affect. Both our DFs—for
a flat surface and for an irregular one—keep the form:

f v;Uð Þ ¼ f vð Þf Uð Þ: ð5:2:36Þ

This multiplicative form allows us to consider both parts of the DF indepen-
dently. In other words, even if the work function depends on coordinates U x; y; zð Þ,
we can have no worries about the final results: in such a case, our normalizing
factors are averaged for the whole surface (both for coordinates and time, in general
the case).

Thus, the question about quantity U is rather a question about its physical nature.
If it is not a constant, then fluctuations of this quantity may have an effect on the
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evaporation flux; thus, we have to find this parameter … When some fluctuating
quantity is unknown, it always tempting to use a Gaussian for its DF. This approach
was discussed in Frenkel (1946), but in next chapter we try to establish a real
expression for the DF on U.

5.2.9 Fluxes at the Surface

Here we briefly give the expressions for evaporation fluxes at different distances
from the evaporation surface (see Fig. 3.3):

• At the liquid surface (plane A in Fig. 3.3):

j ¼ n0

ffiffiffiffiffiffiffiffiffi
T

2pm

r
e�U=T ; ð5:2:37Þ

q ¼ n0T

ffiffiffiffiffiffiffiffiffi
T

2pm

r
e�U=T 2þ U

T

� �
: ð5:2:38Þ

• In the vapor (plane B in Fig. 3.3):

j ¼ ne

ffiffiffiffiffiffi
pT
2m

r
; ð5:2:39Þ

q ¼ neT

ffiffiffiffiffiffiffiffiffiffiffi
25pT
8m

r
: ð5:2:40Þ

The correlation between the number of particles in the liquid n0 and the number
of evaporated particles ne will be discussed in next chapter.

5.2.10 Atoms or Molecules?

Strictly speaking, our approach can only be applied to the evaporation of atoms.
Molecules have inner degrees of freedom, which can be excited during interactions
with their neighbors. During the process of evaporation, in detaching from the
surface (i.e., from other molecules) some energy may be transferred from transitional
degrees of freedom to the inner ones. Because of this nuance, the whole detachment
phenomenon is an inelastic process, and (5.2.2) must be written with inner energy:
vibrational, rotational and probably more. There are many experimental works
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where excitations of the inner degrees of freedom during evaporation or desorption
were observed (e.g., Michelsen et al. 1993; Maselli et al. 2006).

On the other hand, accounting for other types of energy would significantly
complicate our approach. Actually, all that we need is the binding energy, which
can be determined from experimental data. In Chaps. 7 and 8 we will compare our
results with experimental data for water, and an agreement between calculations
and experiments will be achieved.

Anyway, we can always consider our approach as an approximation.

5.3 Molecular Dynamics Simulations

5.3.1 A Classification

We do not claim this classification to be of any completeness, obviously, it is only
our opinion. However, we are able to distinguish several approaches to numerical
simulation.

For some, this is a method which can be used to calculate the properties of the
medium (or of a process), which cannot be measured in experiments. It could be a
P–V–T diagram for extreme conditions, calculations of kinetic coefficients of
plasma, wrapping of bodies by supersonic flow, etc. Here the digits are the main,
and often the only, results of calculations. No new physical problems are consid-
ered, no new physical (we mean, conceptually) results are obtained. This approach
is widespread in technical physics.

Other scientists use numerical simulation as a part of theoretical analysis. Here
snip–snap methods of numerical simulations are combined with, for example,
approximate solutions of the Boltzmann kinetic equation. As a rule, this approach is
used for uncertain problem statements because of its complexity. If we cannot
formulate a problem solidly, thus, we cannot pretend to have a direct solution to it.
Some numerical simulations of the evaporation problem can be attributed to this
class; for instance, we may also refer to the works devoted to approximated solu-
tions of the Boltzmann equation.

We assume that numerical simulation has a value in its pure performance. For
us, molecular dynamics simulation (MDS) helps us to understand the fundamental
problems of physics, which cannot be predicted analytically or obtained in exper-
iments. Of course, MDS is not a direct numerical experiment in the strictest
meaning of the term (because of problems with interaction potential; see Chap. 4),
however, results of numerical simulations can verify the theoretical considerations
of the previous section very well. With numerical simulations, we can observe
processes that are not available for experimental setups, but it is important to
consider clear tasks for these purposes. For instance, perhaps a certain value of a cut
radius for the interaction potential provides a better agreement between the cal-
culated saturation curve and experimental data; however, we assume that
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exceptional points in a flux may influence the integrability property of a system;
thus, we use the uncut Lennard-Jones (LJ) potential.

Below we present the numerical simulation results for the evaporation of liquid
argon.

5.3.2 Numerical Simulation of Evaporation

We considered the evaporation of argon in a vacuum, i.e., initially only one (liquid)
phase was placed in the calculation region. The LJ potential was used:

u rð Þ ¼ 4e
r
r

� �12
� r

r

� �6	 

: ð5:3:1Þ

with parameters e ¼ 119:8 K and r ¼ 3:405 Å.
The calculation region is shown in Fig. 5.8. This is a cube with an edge of 6.5

(for 2000 particles in the region) or 11 nm (for 10,000 particles). Periodic boundary
conditions were used for the side faces of this cube; on the bottom of the cube a
layer of immobile particles holds the liquid inside. The upper face is open: when
particles reach this side they “disappear” from calculations.

The liquid argon (depth *2 nm) was initially heated to a temperature *120 K
(see below for specific conditions). We consider the evaporation process during a

Fig. 5.8 The calculation
region; at the upper face of the
cube we see evaporated
particles (excluded from the
calculation)
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period of *10−1 ns, then we repeat the calculations, and so on. In each simulation
mode, only *100 particles were evaporated with the temperature of the liquid
dropping by several degrees. Due to the repetition of calculations, we obtained an
number of escaping particles that was sufficient for treatment, namely, to construct a
DF for evaporated atoms.

First, we have to make sure that the DF of the velocities in a liquid corresponds
to the MDF. In Fig. 5.9 we represent the velocity DF in a liquid for all three
projections of velocity; good coincidence can be seen for every component. Here
we represent DFs averaged on spatial scales of *2 nm; this is a rather thick layer.
In the next section we present a DF calculated for a thin surface layer of *0.5 nm
thickness; the results stay the same, i.e., the MDF describes the results of numerical
simulations with sufficient accuracy.

The potential energy of the interaction of an evaporating particle (i.e., of an atom
in a process of detachment) with others (i.e., with a bulk of a liquid) is shown in
Fig. 5.10.

We can see that the binding energy decreases at the rate of approximately two
orders of a magnitude for 1 nm. This is the scale of the thickness of the surface
layer; we also have to understand that for any coordinate on Fig. 5.10 the detaching
atom must have a non-zero longitude velocity vz in order to escape. In other words:
strictly speaking, there is not a single point on the graph where the atom cannot be

Fig. 5.9 Velocity distribution functions in a liquid (dots) and the Maxwellian distribution
function at the temperature of the liquid (curve). DF—distribution function
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considered as a free particle; but practically, at the upper side of the calculated
region, where the interaction energy is *10−2 K, one may neglect such a binding
energy and assume that particles are free.

5.3.3 Velocity Distribution Function for Evaporated
Particles

Next we calculate the DF of velocity for particles that cross planes at some dis-
tances from the evaporation surface (see Fig. 5.8). Note that the term “evaporation
surface” is unclear: this is an irregular surface, so some plains that were considered

Fig. 5.10 The binding energy of an evaporated atom as a function of the distance from the liquid
surface

Fig. 5.11 The distribution function at different distances from the surface (see corresponding
planes in Fig. 5.8). DF—distribution function
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can be crossed by particles in both directions, i.e., both out from the bulk and
toward it; in the latter case, we see particles that cannot fly out and return back.

The velocity DF at different distances from the surface is shown in Fig. 5.11.
One may see that at short distances from the surface the DF of velocities

“consists of two parts.” Some particles have a velocity sufficient to escape ðvz [ 0Þ,
some of them return to the liquid after an ineffective attempt to escape ðvz\0Þ. Of
course, the number of returning particles decreases with the distance from the
surface (i.e., with the number of corresponding planes in Fig. 5.8). Far from the
evaporation surface, on the upper side of the cube, we can calculate the DF for
particles which may be considered as free atoms.

We will compare the DF obtained from numerical simulations with our formulae
from the previous section; specifically, with (5.2.26) and (5.2.30).

The first regime that was considered was 2000 particles, with an initial tem-
perature of the liquid argon of 125 K; during evaporation, the temperature was
decreased to 115 K. For calculations, using (5.2.30), we accepted a mean tem-
perature of 120 K. Results of numerical simulations are presented in Fig. 5.12.

The second regime considered had 10,000 particles; during evaporation the
temperature was decreased from 120 to 110 K; for calculations we used 115 K.
Results are presented in Fig. 5.13.

Fig. 5.12 The calculated distribution function (dots) and analytical curves—(5.2.28) for x and
y projections and (5.2.26) for the z projection. The system contained 2000 particles. DF—
distribution function
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All parameters for DFs were calculated with DFs obtained in numerical simu-
lations; there are two aspects of theory that can be tested in such conditions:

• Agreement of calculated DFs with results from numerical simulations.
• Agreement with correlation (5.2.30).

The parameters for theoretical DFs (5.2.26) are presented in Table 5.1, along with
the average energy of particles �eNSR calculated in the numerical simulations.

Thus, we see that the theory presented in the previous section works well. It has
two uncertainties: first, we cannot establish a priori what kind of velocity DF must
be chosen for the given situation; second, the work function U is undefined as yet.

The last problem is considered in next chapter.

Fig. 5.13 The calculated distribution function (dots) and analytical curves—(5.2.28) for x and
y projections and (5.2.26) for the z projection. The system contained 10,000 particles. DF—
distribution function

Table 5.1 Parameters for distribution functions presented in Figs. 5.12 and 5.13

NN !x (K) !y (K) !z (K) 2T, K �eNSR (K)

#1 100 100 93 240 239

#2 90 90 93 230 231
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5.4 Conclusion

Maxwellian or not? This is the first question that must be answered. Many ana-
lytical solutions work on the assumption of a positive answer to this question, and
use the MDF as a boundary condition for a liquid surface. However, despite the
“obviosity” of such an approach, some proof is needed. They say that physics is an
experimental science, thus, one may expect that the velocity DF of atoms from an
evaporation surface can be obtained directly from experiments. Indeed, the first
measurements were provided in 1920.

However, this task is not very simple. A few experiments—a significant number
that is—obtained contradictory results. In some experiments the MDF was con-
firmed, in others it was refuted. Actually, it is hard to make a definitive conclusion,
especially if we take into account that particles registered in the TOF method must
originate from a liquid surface and cannot interact with other molecules, solid
surfaces, etc., on their path to the detector. Finally, one may conclude that more
new questions have arisen from experiments than have been answered. It is a rare
thing, when in a paper with experimental data an author says that numerical sim-
ulation is needed. Usually, we meet the opposite scenario: after long and difficult
calculations simulators state that natural experiments would not be superfluous …

Thus, we have to turn our attention to theoretical considerations.
Despite the fact that intuition suggests the MDF for evaporated atoms, the real

DF differs significantly from this equilibrium correlation. In the simplest case, the
DF for normal velocities for detached particles from a liquid surface at temperature
T is:

f vð Þ ¼ mv
T

exp �mv2

2T

� �
:

In following chapters we will use this DF for almost all analytical approaches,
because this formula represents all the significant issues concerned with an evap-
oration DF. This is a non-symmetric function which provides non-zero total fluxes.

The main property of this DF and, probably, the main result of this chapter is the
fact that the average kinetic energy of evaporated atoms is �e ¼ 2T . The evaporated
flux is a non-equilibrium, high-energy flux; this fact determines many issues of
evaporation that will be discussed further in this book.

However, it is worth remembering that the DF is only an approximation of the
real DF; this relation is correct if and only if:

• The energy barrier U is very high, if not, function (5.2.16) must be used. Indeed,
this condition “works” when the ratio U=T � 5 (see Fig. 5.4).

• The evaporation surface is “flat,” i.e., particles overcome the energy barrier at a
direction which is normal to the surface. If not—if this barrier is overcome at
some angle h[ 0 to the normal of the surface—then the DF is determined by
(5.2.25). Moreover, the property f ð0Þ ¼ 0 may be disturbed in this case.
Anyway, �e ¼ 2T here too.
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Numerical simulations confirm that the DF for evaporated particles is not
Maxwellian. This is an asymmetric function with a non-zero total flux (in oppo-
sition to the MDF). In most articles the results of numerical simulations correspond
with our calculations.

Thus, the DF for evaporated atoms at a liquid surface is not Maxwellian.
Considering how many analytical solutions were composed with MDF as a
boundary condition for evaporating liquid, we feel that a kind of resistance to such a
function to be an eventual reaction.

Let us try to save the MDF as a boundary condition for an evaporated liquid
anyway.

An attempt

Non-MDF for evaporated atoms? May be so; it is hard work to parse calculations,
but it is evident that for short distances from the interface a flux from the surface is
thermalized due to collisions with atoms of gas. In this case we may use the MDF at
other distances from the surface.

An answer

Thermalization occurs at long spatial scales, much longer than the MFP of a
molecule. Then, it is difficult to imagine an application where the boundary con-
ditions for an interface would actually be established within a vapor phase.

An attempt

What about the condensation flux? It may also change the DF of evaporation
particles. Collisions with them change the DF to its Maxwellian form right at the
interface.

An answer

Again, collisions take place on large scales. The condensation flux cannot turn a
non-Maxwellian function into a MDF at the evaporation surface.

In fine, let us allow ourselves a forecast. The MDF for evaporation will still be
used for decades to come. Let us see which of these will happen first: a human to
step on Mars or the MDF for evaporated particles be banished forever.
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Chapter 6
Total Fluxes from the Evaporation
Surface

The distribution function (DF) of velocities obtained in Chap. 5 gives us a guiding
thread to solve some problems of evaporation, but, as they say this is only “the
smaller part” of the problem. We still cannot calculate absolute values of evapo-
ration fluxes, we have no idea about the work function for surface atoms and do not
know how deviations of this parameter might affect evaporation processes.

In this chapter we will provide answers to these questions.

6.1 Distribution Function for Potential Energy
in Condensed Media

6.1.1 Work Function as a Distribution Function

In Chap. 5 we obtained important relationships for the velocity DF of atoms
detached from the interface. Consequently, we have expressions for fluxes at the
evaporation surface, but with an unknown parameter n—number density of evap-
orated particles—which could be calculated, in principal, through balance corre-
lations at the interfacial surface. However, the number of evaporated atoms can be
calculated analytically, without any additional assumptions for the fluxes on the
interface or even the existence of balanced equations of any kind. If the total
number density at the surface of a liquid is n0, then the density of particles which
have sufficient kinetic energy is:

n ¼ n0

Z1
U

f eð Þde; ð6:1:1Þ
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where U is the work function—the energy that must be overcome by an atom to
leave the surface.

To calculate n analytically we must add parameter U in (6.1.1)—the binding
energy of an atom at the surface. It is indeed obvious that U is not a constant. As
with any energy in a mechanical system, the binding energy fluctuates, i.e., particles
on the interfacial surface have different potential energy to one another. Thus, the
problem is not to establish a single value of U: we have to find the DF gðUÞ—the
DF of the binding energy of an atom at the surface of a liquid. Specifically, we have
to find the probability:

dw ¼ g Uð ÞdU ð6:1:2Þ

that the atom has binding energy from U to U + dU. Note that we are not interested
in the DF in phase space in the form g0ðUÞdC; instead we have to find gðUÞ from
(6.1.2). Thus, Boltzmann with his distribution cannot help us here. We must find
the DF gðUÞ independently.

6.1.2 Potential Energy Distribution Function

Further, we will use the potential energy of the particle u ¼ �U, that is, u\0 and
U[ 0 (generally, it is important to note that, at least theoretically, there may be
u[ 0; these particles would leave a surface independently of their kinetic energy).

Of course, the potential energy DF g0ðUÞ can be represented as the Maxwell-
Boltzmann DF, but this is a dead-end approach because we cannot establish a
correlation for dC

dU in the general case. To find a function gðUÞ we will use another
approach here based on mechanical principles: the possibilities of mechanics might
not be exhausted yet.

In mechanics, a fundament of all constructions is the principal of least action.
The integral of the function L (termed the Lagrange function or Lagrangian) tends
to be minimal:

Zt2
t1

Ldt ! min: ð6:1:3Þ

It can be shown [for instance, see Landau and Lifshitz (1976)] that the Lagrange
function is the difference between the kinetic energy E and the potential one U:

L ¼ E � U: ð6:1:4Þ

Now we transform (6.1.3) for statistical purposes. At first, we must use the
statistical approach: a consideration which involves DFs for every mechanical
quantity, that is:
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• f ðeÞ, the DF of kinetic energy e, e 2 ½0;1�:
• gðuÞ, the DF of potential energy u, u 2 ð�1;1Þ:
• hðlÞ, the DF of the Lagrangian l ¼ e� u; which can be expressed through f and

g as:

h lð Þ ¼
Z1
0

g e� lð Þf eð Þde: ð6:1:5Þ

• jðsÞ, the DF for the total energy s ¼ eþ u:

j sð Þ ¼
Z1
0

g s� eð Þf eð Þde: ð6:1:6Þ

Thus, we suppose that a particle can have any value of potential energy at a
given kinetic energy, or—in statistical language—the DFs f ðeÞ and gðuÞ are sta-
tistically independent functions. Thereby, we assume that both e and u of any
particle take on a continuous series of values. At such conditions the mean-time
value of the Lagrangian in (6.1.3) can be replaced by its statistical analog:

Zl2
l1

lh lð Þdl ! min; ð6:1:7Þ

which reflects the minimum condition of the mean Lagrangian on its statistical
trajectory. At first, we may consider an infinite trajectory, because only in that case
can one expect that all possible states, with all possible e and u energy values, will
be realized. Therefore, in (6.1.7) we have l1 ¼ �1 and l2 ¼ 1. This is a simple
part of our treatment.

The difficult part is this. Equation (6.1.6) alone is insufficient to define a certain
function h(l); we have to impose restrictions on the form of this function. For this
assumption, we suppose that the most probable value of the Lagrangian l0 [which
corresponds to the maximum of the function h(l)] is defined. Then we see from
(6.1.7) that l0 must coincide with the probable value lm of the Lagrangian [the mean
value of l with DF h(l)]:

l0 ¼ lm ¼
Z1
�1

lh lð Þdl; ð6:1:8Þ

that is, at our assumption:

Z1
�1

l� l0ð Þh lð Þdl ¼ 0; ð6:1:9Þ
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and the DF h(l) is a symmetrical function on the argument l� l0 ¼ l� lm .
We emphasize that our consideration rather reflects some intuitive properties of

the Lagrangian than provides a strict proof of the symmetry of the h(l) function.
Some additional evidence of this property must be provided; further we present the
results of a numerical simulation.

We find a DF gðuÞ in the following form:

g uð Þ ¼
Z1
0

ge e; uð Þf eð Þde; ð6:1:10Þ

where function geðe; uÞ is the conditional DF of potential energy u for a particle
with a certain kinetic energy e, and the DF of kinetic energy is the Maxwellian
distribution function (MDF):

f eð Þ ¼ 2ffiffiffiffiffiffiffiffi
pT3

p ffiffi
e

p
exp � e

T

� �
: ð6:1:11Þ

For example, in the case of a certain total energy s ¼ eþ u ¼ const, function
geðe; uÞ degenerates into the Dirac function, and the DF of potential energy rep-
resents the DF of kinetic energy f ðs� uÞ (with restrictions for u in this case: u� sÞ.
However, the total energy of a particle, of course, is uncertain: a particle might have
any value of s. The connection between the kinetic energy of a particle and its
potential energy follows from the principal of least action, i.e., from the condition
of the symmetric form of hðlÞ, as we discussed above.

To achieve the symmetricity of the DF of the Lagrangian, function geðe; uÞ
should have a form geðe� uÞ, if:

geðe� u� lmÞ ¼ geðlm � eþ uÞ; ð6:1:12Þ

then:

h l� lmð Þ ¼
Z1
0

Z1
0

ge e� nþ l� lmð Þf nð Þf eð Þdnde

¼
Z1
0

Z1
0

ge n� eþ l� lmð Þf nð Þf eð Þdnde

¼
Z1
0

Z1
0

ge e� n� lþ lmð Þf nð Þf eð Þdnde ¼ h lm � lð Þ:

ð6:1:13Þ

Q.E.D: at condition (6.1.12) we see from (6.1.13) that h(l) is symmetric, as was
discussed above.
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The function geðe� uÞ ¼ geðlÞ for certain e describes a distribution of the
potential energy of a given particle (at a defined value of kinetic energy). This
potential energy is the sum of the energy of interaction between this particle and
many, many others. Thus, one can expect that geðe� uÞ is the stable DF (see
Appendix A). Finally, we have:

geðe; uÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ph2

p exp � e� u� lmð Þ2
2h2

 !
: ð6:1:14Þ

Parameter h of the DF has a clear purpose. It determines the fluctuations of
potential energy which are “additional” to the fluctuations caused by variations in
kinetic energy. Possibly, its meaning can be understood by the following analogy.
Let us imagine a pendulum in an external random potential field. When this pen-
dulum is placed at a certain point (with fully defined mean potential energy),
variations in its potential energy are uniquely connected with variations of its
kinetic energy; these fluctuations are described by parameter T of the DF (6.1.11).
However, the location of our pendulum variates, and the value of the mean potential
energy determines additional variations of the total potential energy of the pen-
dulum; these fluctuations are described by parameter h.

At equilibrium state, all fluctuations are expected in the Gaussian form. We may
refer to common principles like “the Boltzmann principle” (Einstein 1904) or “the
Gauss principle” (Lavenda 1991). Thus, we may suppose that for an equilibrium
state h ¼ T ; because temperature is the measure of fluctuations.

However, for an equilibrium state only, we have some arguments to set h ¼ T;
and both parameters can be referred to as a “temperature.” In the common case,
there may be h 6¼ T; we will hold the term “temperature” for T and introduce a new
term “fluctura” (because this parameter describes fluctuations) for h. There are not
many chances that this term will survive, but we have to refer to the parameter h
someway other than “the parameter h.” Fluctura, its value and calculation in
numerical experiments will be discussed below, in Sect. 6.1.5.

The dispersion of potential energy can be obtained in two ways. As we see, the
DF of potential energy is determined as:

g uð Þ ¼
Z1
0

f eð Þge e� uð Þde: ð6:1:15Þ

In fact, according to (6.1.15), potential energy can be determined as a difference
between two independent random values: u ¼ e� z, and the DF for e is f ðeÞ, while
the DF for z is geðzÞ. Because the dispersion of the sum (or of the difference) of two
random independent quantities is the sum of their dispersions, we see that
Du ¼ De þDz, or:

Du ¼ 1:5T2 þ h2: ð6:1:16Þ

Another way to obtain (6.1.16) is more complicated. By definition:
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Du ¼
Z1
�1

u� umð Þ2g uð Þdu ¼
Z1
�1

Z1
0

u� umð Þ2f eð Þge e� uð Þdedu: ð6:1:17Þ

With some rearrangement, we get:

Du ¼
Z1
0

f eð Þ
Z1
�1

u� umð Þ2ge e� uð Þdu
2
4

3
5de

¼
Z1
0

f eð Þ
Z1
�1

e� em � zþ zmð Þ2ge zð Þdz
2
4

3
5de:

ð6:1:18Þ

Because
R1
0

R1
�1 ðe� emÞðz� zmÞf ðeÞgeðzÞ ¼ 0 and functions f ðeÞ and geðzÞ are

normalized:
R1
0 f ðeÞde ¼ 1;

R1
�1 geðzÞdz ¼ 1, we have:

Du ¼
Z1
0

e� emð Þ2f eð Þdeþ
Z1
�1

z� zmð Þ2ge zð Þdz ¼ De þDz; ð6:1:19Þ

that is, correlation (6.1.16) again.
The dispersion of the total energy of a particle s ¼ eþ u can be obtained easily

with the consideration given above, and:

Ds ¼ De þDu ¼ 3T2 þ h2: ð6:1:20Þ

The same correlation is quite true for the dispersion of the Lagrangian Dl ¼ Du.
Now, to establish a DF of potential energy we have to take integral (6.1.10) with

functions f ðeÞ (6.1.11) and geðe; uÞ (6.1.14), that is:

g uð Þ ¼
Z1
0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e

2p2h2T3

r
exp � e

T

� �
exp � e� u� lmð Þ2

2h2

 !
de: ð6:1:21Þ

As it follows from (6.1.21), the DF actually depends on the relation u
h : This

scaling property is important in the analysis of numerical simulation data: the
tradition to normalize energy on the parameter of interaction potential (Lennard-
Jones (LJ), etc.), possibly, played a confusing role previously.

Using dimensionless parameters:

~e ¼ e
h
; ~u ¼ u

h
;~lm ¼ em � um

h
;~t ¼ h

T
; ~g ~uð Þ ¼ g ~uð Þh; ð6:1:22Þ

we can represent integral (6.1.21) in the form:
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~g ~uð Þ ¼
ffiffiffi
2

p
~t3

p

Z1
0

ffiffi
~e

p
exp �~e~tð Þ exp � ~e� ~u�~lm

� �2
2

 !
d~e: ð6:1:23Þ

Here, the sub-integral function can be rewritten as:

� exp
ln~e
2

� ~e~t � ~e� ~u�~lm
� �2

2

 !
; ð6:1:24Þ

which is suitable for the saddle-point method. The sub-exponential function has a
maximum at the point:

~e0 ¼ 1
2

~uþ~lm �~tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ~uþ~lm �~t

� �2q� �
; ð6:1:25Þ

and (6.1.23) can be approximately represented in the form:

� exp a� b ~e� ~e0ð Þ2
� �

; ð6:1:26Þ

where a ¼ ln
ffiffiffiffi
~e0

p � ~e0~t � 0:5ð~e� ~u� lmÞ2 and b ¼ 1
2 ð1þ 1

2~e20
Þ. Thus, we have:

~g ~uð Þ ¼
ffiffiffiffiffiffiffiffi
~t3~e0
2pb

r
1þ erf

ffiffiffi
b

p
~e0

� �� �
exp �~e0~t �

~e0 � ~u�~lm
� �2

2

 !
: ð6:1:27Þ

Function (6.1.27) provides a simplified answer—the DF of potential energy in the
general case. Actually, because of approximation, the integral of

R1
�1 ~gð~uÞd~u 6¼ 1: it is

slightly less than unity, so a correctness factor should be used. A multiplicator
1:05~t0:25 corrects this problem for ~t 2 ½1; 2�: the discrepancy between the analytical
DF and the calculated one is less than 3%.

The DF (6.1.27) with a correctness factor 1:05~t0:25 is shown in Fig. 6.1. The
coincidence with the curve obtained by the numerical integration of (6.1.21) is
good, but it is worth nothing since our analytical function is too complicated for
analytical analyses.

In a more complicated form, we can obtain the solution of (6.1.21) by expanding
f ðeÞ into series:

f ~eð Þ ¼
X1
n¼0

Qn ~e� ~e0ð Þn; ð6:1:28Þ

with ~e0 ¼ ~uþ~lm . This expansion may be provided only for ~e0 [ 0, i.e., for suffi-
ciently small (on absolute values) potential energy ~u—for the right tail of the DF in
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Fig. 6.1. This tail is “more important” in applications of the evaporation problem
because usually particles with relatively low binding energy leave the surface.

Thereby, one can find coefficients for (6.1.28):

Qn ~e0ð Þ ¼ 2~t3=2ffiffiffi
p

p �1ð Þn
n!

exp �~e0~tð Þ ~tn
ffiffiffi
~e0

p
�
Xn
i¼1

Ki;n
~tn�i

~e0 2i�1ð Þ=2

" #
; ð6:1:29Þ

Ki;n ¼ 2i� 3ð Þ!!Ci
n

2i
; ð6:1:30Þ

Ci
n ¼ n!

i!ðn�iÞ! is a binomial coefficient, and N!! is the so-called double factorial: the

multiplication of all even numbers smaller than N, i.e., here:

2i� 3ð Þ!! ¼ 2i� 3ð Þ � 2i� 5ð Þ � 2i� 7ð Þ � . . . � 5 � 3 � 1; �1ð Þ!! ¼ 1: ð6:1:31Þ

Thus, we have integral (6.1.23) in the form:

ffiffiffiffiffiffi
2~t3

p

p

X1
n¼0

Z1
0

Qn ~e0ð Þ ~e� ~e0ð Þnexp � ~e� ~e0ð Þ2
2

 !
d~e: ð6:1:32Þ

Integrating carefully, we obtain the DF of potential energy as:

~g ~uð Þ ¼
ffiffiffiffiffiffi
2~t3

p

p

X1
n¼0

Qn ~e0ð Þ2 n�1ð Þ=2 C
nþ 1
2

	 

þð�1Þnc nþ 1

2
;
~e02

2

	 
� �
: ð6:1:33Þ

Here, the incomplete gamma-functions (see Appendix B) are:

C a; bð Þ ¼
Z1
b

ta�1e�tdt; c a; bð Þ ¼
Zb
0

ta�1e�tdt: ð6:1:34Þ

Fig. 6.1 The distribution
function of potential energy:
numerical integration of
(6.1.21) in comparison to
analytical expression (6.1.27)
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Again, we should note that function (6.1.33) may be used only for e0 [ 0, i.e.,
for ~u[ ~um � ~em.

Later, we will use the DF of potential energy in our problem—evaporation—but
some parameters of (6.1.21) must be defined first. In (6.1.21) ~lm ¼ em�um

h ; and,
obviously, em ¼ 1:5T (see Chap. 2). We also need information about:

• The mean potential energy um.
• The fluctura h.

As for fluctura, the question is complicated. In the following sections we
establish some common principles for it, but do not provide full information. We
hope that the final answers about this parameter will be understood sooner or later.

The determination of the average potential energy is a much simpler problem. Of
course, this value could be obtained from numerical simulations. But can the
information about ~um possibly be obtained from existing experimental data?
Actually, the answer is not very complicated (and affirmative), but we will establish
it in a long manner.

6.1.3 Analytical Description of Vaporization

First, we apply our theory—or, to be exact, consider a fact that not all of our initial
arguments were quite solid, our ideas concerning the form of the potential energy
DF are appropriate—for vaporization, which is a phase transition inside a volume.

Returning to the last question from the previous section, one may note that the
answer is simple: it is easy to conclude that the average potential energy of a single
particle is ~um=2 (because the mean potential energy of a given particle with other
particles is ~um, and the calculation of the total potential energy of the system
involves any pair of particles twice). Thus, it is clear (at first glance) that the latent
heat of vaporization per a single particle, i.e., the binding energy, is �~um=2.
Consequently, ~um ¼ �2D~H, where D~H was measured in experiments.

Some people may object to this consideration.
In the simplest case of equilibrium h ¼ T (see above), i.e., ~t ¼ 1. The DF of the

binding energy for vaporized atoms (i.e., for the freed particles—for particles with
positive total energy) must be obtained on account of the probability of particles
being free

R1
U f ðeÞde. The corresponding DF is:

p Uð Þ ¼ g �Uð Þ
Z1
U

f eð Þde ¼ g �Uð Þ 2ffiffiffi
p

p C
3
2
;
U
T

	 

: ð6:1:35Þ

This function indicates the distribution of the binding energy for particles with
s[ 0. Thus, it is logical to assume that the average binding energy for such
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particles (the vaporization energy per particle) must be calculated as the average
value of the DF pðUÞ:

U ¼
Z1
�1

Up Uð ÞdU: ð6:1:36Þ

We try to obtain the mean value (6.1.36) analytically under some assumptions.
At first, we will not find the average value directly: instead of the probable value of
U [which is determined by (6.1.36)] we will find the most probable value, i.e., the
value of U which corresponds to the maximum of the distribution pðUÞ. This
substitution is possible in our case because of the sharp peak of this DF. Thereby,

we will find U0 such that @pðUÞ
@U

���
U0

¼ 0:

Then, we represent the incomplete gamma function (see Appendix B) as:

C
3
2
; ~U

	 

�

ffiffiffiffi
~U

p
exp �~U
� �

: ð6:1:37Þ

For j~umj � 1 we see from (6.1.25) that ~e0 � ~uþ~lm ¼ ~lm � ~U, and the last
multiplier in expression (6.1.27) is:

exp �~e0 �
~e0 � ~u�~lm
� �2

2

 !
� exp ~U �~lm

� �
: ð6:1:38Þ

Consequently, combining (6.1.25), (6.1.35), (6.1.37) and (6.1.38), we have:

p ~U
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~U ~lm � ~U
� �
1
2 þ 1

4~e20

vuut 1þ erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ ~e20

2

s0
@

1
A

0
@

1
A: ð6:1:39Þ

At sufficiently large values of ~e0 one may see that 1
4~e20

� 0 and erfð
ffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þ

~e20
2

q
Þ � 1.

In other words, the dependence (6.1.39) actually has a form pðUÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Uð~lm � ~UÞ

q
,

and the maximum of this function is reached at:

~U0 �
~lm
2
� � ~um

2
; ð6:1:40Þ

because ~em ¼ 1:5 	 ~lm � �~um.
Thus, we finally obtain the result that had been predicted at the beginning of this

section: the binding energy ~U0 may be interpreted as the specific latent heat of
vaporization. Consequently, the value of �2um may be found in any reference data
under the term “the specific enthalpy of vaporization.”
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In Sect. 6.1.6, the results of numerical simulations will be presented. From the
National Institute of Standards and Technology (NIST) database, for argon at
100 K, we obtain DH=T ¼ ~U0 ¼ 7:24 K, thus, we will use ~um ¼ �14:5 K in the
following sections.

However, first we have to discuss an interesting question.

6.1.4 Sidestep: Trouton’s Rule

In this section we provide a common consideration without any concretization of
the DF. We think that it may be useful. To obtain some results we do not need to
know any certain details of the DF; results may be obtained by common consid-
eration. For this problem, only the following circumstances are related to an
interesting feature of the average value of binding energy:

• The binding energy of a particle inside a liquid has a universal form for any
substance.

• The spread of binding energy may be described by the scaling parameter U=T
for any substance.

If the binding energy is parametrized by temperature, then the corresponding DF
has the form pðU=TÞ with a normalizing factor A that can be found from the
condition: Z

Ap U=Tð ÞdU ¼ 1; ð6:1:41Þ

that is, A ¼ C=T (where C is a constant). Thereby, for the mean value of U we
have:

U ¼
Z

AUp U=Tð ÞdU ¼ T2
Z

C
T
U
T
p

U
T

	 

d

U
T

	 

¼ CT

Z
xp xð Þdx|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

�x

: ð6:1:42Þ

U
T
¼ C�x: ð6:1:43Þ

Thus, in the common case we see that the ratio U=T is defined only by the
constant C and the mean-integral value �x. For a universal DF pðU=TÞ both C and �x
are the same for any substance. Consequently, (6.1.43) means that the ratio of the
average binding energy to the temperature is the universal constant for any liquid.

A similar expression is known from experimental results under the name
“Trouton’s rule”. For the latent heat of vaporization DH:
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DH
T

¼ B: ð6:1:44Þ

Note that there also exists an analog for melting; the corresponding rule is named
after Richard (Swalin 1972). Sometimes correlations of the kind in (6.1.44) are
described as obvious, in style “it’s evidently the latent heat of vaporization must be
proportional to the temperature,” but, in our opinion, such a consideration is only a
half truth. The meaning of Trouton’s rule is not the proportionality DH� T , but the
fact that the constant of proportionality is the same (of course, nearly the same) for
any substance.

Is the constant B truly the same for any substance? For instance, in Swalin
(1972) one may find the value B ¼ 87:9 J/(mol K). However, this “constant” is not
strictly a constant. This parameter slightly depends on the substance: in Table 6.1
we present the parameter B for liquids of inert substances (calculated from NIST
data). We may also calculate that parameter in numerical simulations, but there is
no point here: the coincidence with experimental data will be tested by comparison
of the simulation results with analytical expressions containing an experimental
value of um ¼ �2DH:

First, as we see, B differs from the “universal” value presented above; the
difference is huge for helium, but helium is a special liquid in many aspects. For
other elements variations are not dramatic.

Next, the ratio U=T slightly varies with temperature for the same substance. This
fact can be easily predicted: really, the mean value of binding energy U (hidden in
constant C) depends on temperature, because the binding energy depends on the
distance between particles, which depends on temperature.

Trouton’s rule, of course, is only a rule—not a law. However, the ability of the
theory presented above to predict such formulae make us sure that the method of
DFs can be used for a more complicated problem—evaporation.

However, one parameter is still undefined and unexplained.

6.1.5 Fluctura

As we have seen above, in equilibrium the DF for the additional fluctuation of
potential energy (see Sect. 6.1.2) can be represented in the form:

ge uð Þ ¼ 1ffiffiffiffiffiffi
2p

p
h
exp �ðu� umÞ2

2h2

 !
: ð6:1:45Þ

Table 6.1 Parameter B in Trouton’s rule

Substance He Ne Ar Kr Xe Rn

B, J/(mol K) 19.8 65.8 74.5 75.4 76.5 79.5
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We termed parameter h here as a “fluctura” because h determines additional
fluctuations of potential energy. In this section we try to establish the value of
fluctura both in the equilibrium liquid and in the evaporated one.

At equilibrium, fluctura determines the magnitude of the potential energy fluc-
tuations. Usually, temperature T plays an analogic role in statistical mechanics. We
may mention “the Boltzmann principle” or “the Gauss principle” from which the
condition:

h ¼ T ð6:1:46Þ

follows for normal-distributed fluctuations. Indeed, if we return to our analogy with
the pendulum, we may conclude that the average energy on this vibrational degree
of freedom is T.

Formula (6.1.45) is obtained for homogenous systems. However, in the evap-
orated fluid one may expect the parameters of a liquid to be different at various
distances from the evaporation surface: significant heat flux brings the liquid out of
equilibrium. Thus, parameters um and h of the DF (6.1.45) are not constants, and
here we establish a connection between them.

There are two reasons for variations of h:

• A physical reason. Due to non-equilibrium, fluctura may differ from temperature
and, moreover, may differ from point to point in the non-equilibrium liquid.

• A calculation-based reason. We always determine statistical parameters of a
medium by averaging across a spatial volume or time interval (or both). Thus,
we may mix the variations of mean potential energy um with the general
parameter h that describes fluctuations of u:

For the last option, the correlation of um and h is clear. Fluctura h describes
fluctuations around the average level of energy um. Variations of level um itself—for
example, between two neighboring points—leads to an increase of these fluctua-
tions: the range of values u is wider now. Thus, if um varies then h increases
(independently of the sign of Dum between these two points) relative to the
homogenous case um ¼ const:

Let us turn these physical ideas into mathematical formulae. At first, from the

consideration provided above, it follows that Dh ¼ f Dumð Þ2
� �

: The deviation of

fluctura cannot depend on the sign of Dum without depending on an increase or
decrease of um in two consequent layers.

Let us suppose that in two neighboring layers the parameters in (6.1.45) are uam
and ubm, and the difference between them is small: jDumj ¼ jubm � uamj 	 juamj; jubmj.
Thus, we consider two infinitesimal narrow layers at constant average potential
energy. Note that these conditions are needed only for the correctness of approxi-
mation using the resultant distribution function: the main conclusion—the expression
for variation of fluctura—stays the same even for large deviations of Dum.

For certainty, let Dum [ 0. Let the fluctura in each of these two separated layers
be h, i.e., in each layer we have DF (6.1.45) with h and uam or ubm. Thus, the DF of
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potential energy for the particle which may be found with equal probability both in
layer a and layer b is:

ge uð Þ ¼ 1

2
ffiffiffiffiffiffi
2p

p
h

exp � u� um þ nð Þ2
2h2

 !
þ exp � u� um � nð Þ2

2h2

 !" #
; ð6:1:47Þ

where um ¼ uam þ ubm
2 and n ¼ ubm�uam

2 :

We will try to approximate DF (6.1.47) using the normal DF with the new
fluctura H (since we can state right now that H[ hÞ:

g0e uð Þ ¼ 1ffiffiffiffiffiffi
2p

p
H
exp �ðu� umÞ2

2H2

 !
: ð6:1:48Þ

Formally, we must define H in (6.1.48) with (6.1.47), i.e.:

H2 ¼
Z1
�1

u� umð Þ2ge uð Þdu: ð6:1:49Þ

Substituting (6.1.47) into (6.1.49), we get for each term of kind:

Z1
�1

u� umð Þ2exp �ðu� um 
 nÞ2
2h2

 !
du ¼

Z1
�1

x� nð Þ2exp � x2

2h2

	 

dx ð6:1:50Þ

three integrals:

Z1
�1

x2 exp � x2

2h2

	 

dx ¼

ffiffiffiffiffiffi
2p

p
h3; ð6:1:51Þ

Z1
�1

2xn exp � x2

2h2

	 

dx ¼ 0; ð6:1:52Þ

Z1
�1

n2 exp � x2

2h2

	 

dx ¼

ffiffiffiffiffiffi
2p

p
h n2: ð6:1:53Þ

Finally, we have dispersion (6.1.49):

H2 ¼ h2 þ n2: ð6:1:54Þ

Thus, if the mean energy in two neighboring layers differs by 2n; then the
average dispersion in the combined layer is determined by (6.1.54) (and it depends
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on n2, of course). Note again that there are no principal restrictions for n there (i.e.,
for DumÞ, only from the viewpoint of the correctness of (6.1.45).

We may—moreover, we must—generalize our result on many layers with dif-
ferent energy values um. Suppose that we have 2N layers with a linear distribution of
energy um between them: from umin

m to umax
m . That is, the mean potential energy in

these layers is um ¼ umin
m þ umax

m
2 , and we want to approximate the DF of potential energy

for a particle which may be found in any of these layers with equal probability:

ge uð Þ ¼ 1
2N

XN
i¼1

1ffiffiffiffiffiffi
2p

p
h
exp �ðu� um 
 inÞ2

2h2

 !
; ð6:1:55Þ

[where n ¼ umax
m �umin

m
2N ; both signs in the exponent must be accounted for in each term

of the sum in (6.1.55)] by the normal DF (6.1.48) with dispersion (6.1.49).
Analogically with previous considerations, this method gives us:

H2 ¼ h2 þ 1
N

XN
i¼1

inð Þ2: ð6:1:56Þ

Finally, me must take limits for N ! 1. Because:

lim
N!1

XN
i¼1

i2 ¼ lim
N!1

NðN þ 1Þð2Nþ 1Þ
6

¼ N3

3
; ð6:1:57Þ

we finally obtain:

H2 ¼ h2 þ Dumð Þ2
12

; ð6:1:58Þ

where Dum ¼ umax
m � umin

m .
Thus, we may approximate the DF of potential energy in layers with different um

by a single Gaussian function with the extended dispersion—the significantly
increased dispersion H2.

In Fig. 6.2 we represent DF (6.1.55) with umin
m ¼ 8; umax

m ¼ 12; h ¼ 1 and the
Gaussian (6.1.48) with um ¼ 10 and H ¼ 1:53 [according to (6.1.58)]. One can see
that the agreement is rather good, and it is possible to use the Gaussian DF even for
such a large difference Dum between average energy in this layer. Note that this
method can be applied also for cases when mean energy varies in the same spatial
layer over time: all our calculations stay the same, only the sense of DF (6.1.55)
changes. By the way, it is difficult to say what kind of averaging is more important
at the vicinity of the evaporation surface: the spatial averaging or the temporal one.
In such an irregular area, both sorts of averaging may be applied.

In fine, we must discuss the value h in the infinitely thin layer (or at the single
instant). It is hard to give a certain instruction to calculate this quantity for a
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non-equilibrium case. Possibly, it would differ from temperature T significantly, but
we have no theory to define h in terms of its dependence on a heat flux or gradient
of the number density, etc.

Numerical simulations seem to be useless for solving this problem, because the
layers, in which the DF has been calculated, are significantly wider, and in these
thick layers:

• The difference Dum always exists.
• The distribution of um along the layer is likely non-linear; i.e., correlation

(6.1.58) is only an approach here, because we cannot define the exact proba-
bility for a particle to be in each layer with certain um.

Thereby, the “calculation disturbance” of the calculated parameter h is strong,
and h can only be evaluated approximately with (6.1.58) through the calculated
value H: In other words, it is hard to extract h from the calculated (in numerical
experiments) value H with an appropriate accuracy.

In any way, numerical simulations are necessary to test many details of the
model. Questions have been accumulated. Is the DF of the Lagrangian symmetri-
cal? Does the DF of potential energy obey the (6.1.21)? Can fluctura really be put as
h ¼ T in an equilibrium system? How does the DF of potential energy vary at the
vicinity of the surface of the evaporated liquid?

6.1.6 Numerical Simulations

The method of molecular dynamics (MMD) is almost an exact equivalent to real
experiments. Nuances of construction of the interaction potential do not matter if
we want to examine such basic features of the system.

Fig. 6.2 Averaging of the distribution functions: single Gaussian as the approximation of the
distribution function of potential energy in the non-uniform layer. The dashed curve represents
distribution function (6.1.55) obtained by averaging many distribution functions with different
mean potential energy from umin

m ¼ 8 to umax
m ¼ 12: Solid curve represents the Gaussian (6.1.48)

with um ¼ 10 and increased dispersion H2 from (6.1.58)
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In this section we present our results of numerical simulations for liquid argon
(see Chap. 4 for details of the numeric scheme, etc.).

First, we investigate the equilibrium liquid at temperature T ¼ 100 K, without
evaporation. The results of numerical simulations are compared to DF (6.1.21) with
h ¼ T and ~um ¼ �14:5; thus, there are no adjustment parameters in our analytical
function. The results are presented in Fig. 6.3.

There are four DFs shown in Fig. 6.3: the DF of the Lagrangian of a particle
~l ¼ ~e� ~u (6.1.5); the DF of the kinetic energy (6.1.11); the DF of the potential
energy (6.1.21); and the DF of the total energy (6.1.6) ~s ¼ ~eþ ~u: All the DFs are
normalized on unity. Despite the fact that the aim of this section is the DF of
potential energy, the main DF in Fig. 6.3 is the DF of the Lagrangian: the
assumption about its symmetricity is the fundament for all other DFs.

Two of the four DFs from Fig. 6.3 were obtained under the assumption about
independent quantities e and u. Actually, this fact is not so obvious, and this
question was the subject of discussion between Loschmidt and Boltzmann: in his
work (Loschmidt 1876) Loschmidt argued that kinetic energy is independent of
potential; now only a single paragraph of this work is remembered—the one about
the reverse motion of particles. Thus, we may see that these two types of energy are
indeed independent, because the calculated DF of the total energy and of the
Lagrangian coincide with the results of numerical simulations.

The inferences of the good coincidence between numerical and analytical DFs
are:

• The DF of the Lagrangian is symmetrical.
• That h ¼ T for equilibrium, condensed media.
• The kinetic energy and potential energy are independent, as established by

(6.1.5–6.1.6).
• The DF of the potential energy (6.1.21) is correct.
• The MDF is also correct.

Fig. 6.3 Distribution
functions from this chapter for
an equilibrium liquid. Energy
is given as the ratio of the
temperature of the system
T. DF, distribution function

6.1 Distribution Function for Potential Energy in Condensed Media 163



Next, we provide the results of numerical simulations for an evaporated liquid.
We calculate the potential energy DFs in the 0.5-nm layer—from the solid surface
to the evaporation surface. The results are presented in Fig. 6.4. To compare
analytical results with these simulations, parameters ~um and H were calculated from
the numerical simulations for each layer; the results are presented in Table 6.2; note
that z ¼ 2 nm corresponds to the solid surface and z ¼ 5 nm corresponds to the
liquid surface. Quantities U are values um from Table 6.2 multiplied by H.

It should be remembered that ~um ¼ u=H, not u=T .
As we see from Fig. 6.4, we can sufficiently describe all “experimental”

numerical functions with (6.1.21) with H derived from the same numerical
experiment. On the other hand, as was discussed in the previous section, it is
important to calculate the “true” value of fluctura h. Let us try here.

From the data in Table 6.2 we can find that in the last layer the mean potential
energy varies from Umax

m ¼ 13:7T to Umin
m ¼ 6:4T: Thereby, we can see from

(6.1.55) that the assumption for any layer that h ¼ T gives:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 7:32T2

12

r
� 2:3T ; ð6:1:59Þ

which is close to the value in Table 6.2 (where h = 2T, so the difference is *10%),
especially considering the fact that we do not know for certain the value of Dum in
this layer (other uncertainties were discussed above). We cannot pretend we have
better accuracy; thus, we may conclude that the assumption h � T , for a
non-equilibrium system, does not contradict numerical simulations.

Fig. 6.4 Distribution
functions of binding energy at
different coordinates

Table 6.2 Parameters for
distribution function (6.1.18)
for different layers in the
liquid

z (nm) 2–2.5 3–3.5 4–4.5 5–5.5

H (K) 100 105 115 200

~um −14.5 −13.7 −12.0 −3.2
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The DF of the kinetic energy at the surface layer is presented in Fig. 6.5: we see
that the calculated DF coincides with the MDF at temperature T. Thus, the tem-
perature of the surface does not differ significantly from the temperature in the
“bulk” of the liquid: one of the reasons for this is a thin layer of liquid on the heated
solid surface.

We see that for the last layer H � 2T: It is also interesting how the potential
energy of a particle depends on its number of neighbors in this layer. We divide the
ensemble from the near-surface layer into two groups:

• Particles with � 10 neighbors (group #1).
• Particles with \10 neighbors (group #2).

Next we construct DFs separately for each group of particles (each group con-
sists of *104 particles); the result of numerical simulations is shown in Fig. 6.6.
Analytical DFs were calculated with parameters:

~Um ¼ 13:7 and H ¼ T for group #1.
~Um ¼ 4:6 and H ¼ 2T for group #2.

One can see that the sub-ensembles of particles have significantly different
parameters, especially ~Um. This issue has a clear explanation: the binding energy of a

Fig. 6.5 Distribution
function of kinetic energy
nearby the evaporation
surface. The Solid curve is the
Maxwellian distribution
function at the temperature of
the bulk of the liquid

Fig. 6.6 Distribution
functions for particles with
different numbers of
neighbors: N � 10 (circles)
and N < 10 (squares). Results
obtained using numerical
simulations
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particle is associated with its number of neighbors, thus, the perceptible deviations in
the binding energy may be observed only if the particle has a significantly different
number of neighbors nearby, i.e., for a relatively low number density—for group #2.
One may see that for these particlesH coincides with the existing value (see above).

In the dense sub-system, for a large number of particles in the vicinity of a given
particle (group #1), strong fluctuations of potential energy are impossible and we
see the usual picture: H ¼ h ¼ T :

To avoid misunderstanding, we have to note that the results in Fig. 6.6 were not
obtained from the same numerical simulations as the data in Fig. 6.4: a thicker
surface layer was considered in the first case. Among other inferences, the diversity
of the numerical simulation results indicates a problem concerning the definition of
the term “surface of a liquid” (see next sections).

Finally, we may conclude that the results of the comparison are encouraging. All
our theoretical results provided confirmation of the following good aspects, i.e., the
DF of the Lagrangian, the DF of the potential energy gðUÞ, the fluctura h ¼ T ; as
well as the not so good aspects, i.e., at the surface the averaged DF for changing um
may be approximated by gðUÞ but with an enlarged value of H, and there is no way
to as yet avoid this averaging or to extract the exact value of h from HÞ. The bad
news is really not all that bad, and hopefully sometime in the future the problems
associated with gðUÞ may be solved.

We are almost ready to solve problems of evaporation itself. One additional step
remains.

6.1.7 Numerical Simulations (Continued)

Actually, this section should be titled “Numerical simulation (beginning)” because
the work by Anisimov and Zhakhovskii (1993) was a predecessor to our work. In
their article the DF of the potential energy was obtained in standard (for a numerical
simulation) coordinates. However, after recalculation, we can represent this
numerical simulation data with our traditional variables ~u ¼ u=T ; the result is
shown in Fig. 6.7.

Fig. 6.7 The dashed curve
represents the distribution
function of the potential
energy from 2. The solid
curve represents distribution
function (6.1.21) from this
book
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Note that from a technical point of view, the method of numerical simulation in
Anisimov and Zhakhovskii (1993) significantly differs from ours. However, as we
see, the coincidence of the results is good. Unfortunately, we do not know of other
works where the DF of the potential energy has been obtained: an additional
comparison would not be out of place here.

There is an additional moral to this story: the dimensionless variables must be
chosen carefully. The traditional manner to construct scales from the parameters of
the LJ has, at least, two weak points:

• The results are unclear for a direct physical analysis.
• LJ-derived scales may not hold real physical invariants of the problem.

6.2 Number of Evaporated Particles

6.2.1 The Possibility to Escape

As was shown in Chap. 5, the probability to leave a liquid surface may be
expressed as:

w ¼ 1
2
ffiffiffi
p

p C
1
2
;
U
T

	 

; ð6:2:1Þ

where U is the work function and T is the temperature of the surface. For U ¼ 0, we
see that w ¼ 1=2: the particle leaves the liquid with a 50% probability (if its
velocity is directed away from the liquid). Of course, this value has no sense for a
given particle: in the next moment in time a particle, which had a negative
z-projection velocity, may obtain the “correct” direction and escape (but, it might
not—see below). Function (6.2.1) establishes a ratio of the total number of particles
which leave the surface at this moment.

To use (6.2.1), we must know two parameters: U and T. As for the last quantity,
the following chapters will show that it is not obvious what exactly we should insert
into (6.2.1) for T. However, here we are only concerned about the binding energy
U. Previously, in Chap. 5, we thought that it was sufficient to find (in reference) a
certain value of U, and thereby solve the problem. However, in the previous section
we found that the work function is indeed a DF, and the function gðUÞ was
constructed there. Thus, one may suppose that it is enough to calculate the mean
value U ¼ R UgðUÞdU, with the function w U

� �
providing an answer: the proba-

bility for a particle to escape.
However, the problem is still not that simple. The probability to escape cannot

be found so easily. The total DF—distribution of the velocity ~v (i.e., of kinetic
energy e) and the binding energy U—may be expressed under the assumption of the
independence of~v and U:
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dn ¼ n0g Uð Þf ~vð ÞdUd~v; ð6:2:2Þ

where n is the number density of particles in a liquid. Consequently, the number

density of particles with sufficient velocity on the z axis vz � v0 ¼
ffiffiffiffiffi
2U
m

q
:

n ¼ n0

Z1
�1

g Uð Þ
Z1
v0

Z1
�1

Z1
�1

f vxð Þf vy
� �

f vzð Þdvxdvydvz
2
4

3
5dU; ð6:2:3Þ

where we integrate for U from �1, that is, we also consider particles with positive
potential energy. For such particles the probability to escape is 1/2 (these particles
leave the surface if their velocity vz [ 0Þ; finally, we have:

n ¼ n0

Z1
�1

g Uð Þw Uð ÞdU: ð6:2:4Þ

Thus, according to (6.2.4), we need the function:

w Uð Þ ¼ n=n0 ¼
Z1
�1

w Uð Þg Uð ÞdU ð6:2:5Þ

rather than wðUÞ: However, we can always avoid this difficulty with a standard
trick: defining the mean binding energy hUi from the equality wðhUiÞ ¼ wðUÞ;
with such redefining we can use a much more convenient correlation (6.2.1) for our
estimations.

Which value is greater: wðUÞ or wðUÞ? This is an easy question to answer; one
may solve this without any calculations. Function wðUÞ defines the probability of
escaping from the surface for particles with the same energy U. The mean value
w Uð Þ considers the probability of detachment both for particles with high binding
energy U[U [with low and very low values of wðUÞ] and low binding energy
U\U [with high values of wðUÞ]. It is obvious, that due to the strong non-linearity
of function wðUÞ the main contribution to wðUÞ is defined by low values of U.
Consequently, one may conclude that wðUÞ[wðUÞ or even wðUÞ � wðUÞ:

To strengthen these considerations with calculations wemight consider, e.g., the case
forU ¼ 14:5wherewe havewðUÞ ¼ 3:6
 10�8 whilewðUÞ ¼ 4:6
 10�6 , i.e., it is
100 times greater. Using definitions for hUi (see above), we obtain hUi � 9:5—this
binding energy corresponds to a value wðhUiÞ ¼ wðUÞ; see also Fig. 6.8.

Thus, due to the DF of potential energy, the flux from the interface is determined
par excellence by the particles with low binding energy. The mean value U deter-
mines only the shape of the DF of binding energy, not the probability w itself.
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Can we now conclude that we have enough information to calculate the prob-
ability of detachment? We have a DF of potential energy (6.1.21) and we have
correlation (6.2.5) which determines this probability. Are we done with our
consideration?

No, not at all. Not all the nuances have been discussed yet. Actually, on the
surface of the liquid, the DF of the binding energy differs from gðUÞ because of an
interesting reason which will be discussed further on in this chapter.

However, first, let us consider the terms “surface” and “detachment” more
closely.

6.2.2 The Surface Layer of a Liquid

What is the surface? This is the real question. In numerical simulations one may
construct a correlation function for particles and try to extract the coordinates of the
interface from it. However, this method is insufficient for us, because we are inter-
ested in the probability of a particle leaving a liquid, not in the abstract “surface”
itself. Thus, we mean that the “surface” is the area of a liquid from which the escape
of a particle may be possible. This means that other particles on the surface do not
prevent this escape directly by colliding with the escaping particles on their way out.

The particles of a liquid surface have finite lifespan because of evaporation, but
this time is sufficiently long because of the small probability of escape. Atoms from
deep in a liquid arrive at its surface, where they may be evaporated sooner or later.
Thus, we must take into account that particles “move through” a surface layer: they
enter the surface with a significant binding energy, but, with time, this energy
decreases as the particle moves toward a more “hollowed” zone at the surface. Note
that any motion—in the literal sense of the word—is not necessary: the number of
neighbors also may vary with the same result—decreasing or increasing potential
energy. We showed earlier (see Sect. 6.1.6), that at the surface layer some particles
have a lower number of neighbors; these particles are the first candidates to escape.

Fig. 6.8 The dependence of
~U

 �

, such that wðh~UiÞ ¼
wð~UÞ , on the mean value of
potential energy ~Um
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Thus, we have a problem: the DF at the liquid surface is probably poor in terms
of low-energy particles—particles may leave a liquid with higher binding energy,
they cannot decrease their energy further because they leave a liquid earlier, with
larger binding energy.

This scheme becomes significant for a small binding energy U [with large
probabilities (6.2.1)] and prevents establishing a stable DF with a tale of negative
U (i.e., with positive potential energy) or even with a significantly smaller positive
U. However, as was discussed above, this part of the DF is the most important for
evaporation. Consequently, we cannot determine gðUÞ for a surface directly,
without complementary assumptions. Additional treatment is needed.

However, before we proceed with this treatment we have to consider an unex-
pected object. To the “low-energy tail” problem we may add the problem of
uncertainty of the term “escape.” Do we understand what the “work function for the
particle of the liquid” really is?

6.2.3 The Moment of Escape

This sudden problem concerns the fact that an atom in a liquid does not have a
stable binding energy. An atom moves, atoms around it move, thus, the binding
energy of the atom variates. If this atom leaves a liquid, from which moment of time
must we consider the process of detachment? That is, which value of binding
energy must be put in formulae like (6.2.1)?

The work function may be defined as the work needed to remove a particle from
condensed phase to infinity. This definition looks logical until we take into account
the distribution of potential energy in the condensed phase. A given particle has
different potential energy at different points and at different moments in time. In
order to try to determine a work function in a numerical experiment, for example,
we must clearly define the moment of detachment.

Fig. 6.9 A particle moves
toward the surface and
evaporates; the moment when
z(t) becomes a linear function
may be accepted as the
moment of detachment
(approximately)
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Let us look at Fig. 6.9, where coordinate z of the particle (axis ~z is directed
normally to the liquid surface) is shown to be dependent on time. Details of the
numerical simulation (argon at T = 100 K) can be found in the previous section; we
represent the function zðtÞ for the particle that has been evaporated.

As we see in Fig. 6.9, a particle moves toward the surface. One may note the
absence of clear separation between the oscillations and the jumps: the dependence
zðtÞ is quite uniform. The question raised at the beginning of this section may be
asked in other way: what point on the graph in Fig. 6.9 corresponds to the moment
of detachment? Generally, one may choose—arbitrarily—any point on this graph as
the “detachment point,” but one method is preferred.

It is logical to assume that after evaporation the particle becomes free (no forces
affect it), and its velocity is a constant. We can establish this point in Fig. 6.9, but
actually we need to look for some moment before this—when the particle was part
of the liquid (the first moment of time when the total energy of the particle becomes
a constant).

In Fig. 6.10 the evolution of the potential energy of a particle is presented (here
~u ¼ u=TÞ: There is no straight correlation between ~uðtÞ and zðtÞ in Fig. 6.9 until the
moment t * 0.04 ns, when a particle arrives in the zone with high fluctuations both
of potential energy and coordinates; evidently, this is a “rarefied” region where such
fluctuations are possible.

Of course, not every particle that reaches the surface leaves it. Perhaps, the most
dramatic situation is illustrated in Fig. 6.11: a particle gets very close to the surface,
but in this case “very close” is not close enough. As we see in Fig. 6.11, this
unsuccessful atom returns to the bulk of the liquid; possibly, it will receive a second
chance at some other moment in time.

To illustrate the term “surface” in our sense (i.e., the place from which
detachment is possible), let us look at Fig. 6.12. Here, one particle leaves the
surface at coordinate z � 4:7 nm, while another atom at z � 5:2 nm. Thus, the
width of the surface layer *0.5 nm: this is a wide layer, considering all the pre-
vious results for the DF. The potential energy DF in the evaporation region rep-
resents a combination of various DFs with different mean energy; this DF is
widened relative to the DF which is unique to the mean potential energy because of
the averaging of different DFs (see previous section). This widening is not artificial
as a whole: we cannot really establish a single DF with H ¼ h here.

The next problem concerning the determination of the detachment moment is
shown in Fig. 6.12. One may see deviations from the linear dependence zðtÞ after
the moment of detachment: this atom interacts with another atom; thus, its potential
energy variates. Only after *0.01 ns does this atom become absolutely free.

Thus, we may conclude that the moment of departing cannot be fully formalized.
We can determine this moment only approximately, but it is difficult to turn this
explanation into an algorithm. On the other hand, in the frame of our approach, we do
not need a certain value of the work function derived from numerical simulations. We
need a DF of binding energy and we must take into account all the nuances of the
process of evaporation that have been discussed in this and previous sections.
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6.2.4 Deformation of the Distribution Function

Now we will try to take into consideration the scheme that was described above: the
particle has two opportunities at the evaporation surface—to decrease its binding
energy or to escape at its existing binding energy (of course, a third one—to
increase its binding energy—exists too, but here we consider only the most prob-
able situations).

Two issues have to be accounted for:

• At a surface, a particle may obtain a lesser binding energy U2 only if it has
larger energy U1 [U2 prior to that.

• At a surface, a particle may leave a liquid with a larger binding energy U1.

This is a simplified construction, of course. However, under this assumption we
may redesign the surface DF of binding energy. Let the number of particles with
binding energy be UþDU with gðUþDUÞdU. Thus, the number of particles that
can obtain lesser energy is ð1� wðUþDUÞÞgðUþDUÞdU; we consider only
non-escaped particles. Finally, assuming that DU ! 0 we have:

gsf Uð Þ ¼ g Uð Þ 1� w Uð Þð Þ: ð6:2:6Þ

Thus, we take the DF (6.1.16) and reform it using factor ð1� wÞ; which takes
into account the probability of staying at the surface. This is a model approach, and
we believe that it may be significantly improved in the future.

An interesting question is what probability of escape w must be used in (6.2.6).
The answer depends on the kinetic energy of a particle near the surface: if any
change in the velocity is accompanied by variation in the binding energy, then this
probability may be expressed by (6.2.1); otherwise—if the particle can change its
velocity (especially, the direction of its velocity) and hold its binding energy at the
same value—we must double the probability (6.2.1) to obtain w for (6.2.6). Based
on the material from the previous subsection, we prefer the first choice: the

Fig. 6.10 The evolution of
the potential energy of a
particle (this figure
corresponds to Fig. 6.9)
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probability of the departure from any state at the surface cannot exceed 1/2; we
cannot suppose that at the next moment of time the velocity changes direction and
the act of detachment becomes possible: that will be a new state with a different
binding energy. For example, take a look at the fate of the unhappy particle in
Fig. 6.11: not quite taking its chance.

We present the surface DF (6.2.6) in Fig. 6.13. As we see, the deviations from
DF (6.1.16) may be distinguished only for a small binding energy. However,
despite this fact, deviations between the total number of evaporated particles in
different DFs is significant: for DFs in Fig. 6.13 the difference is *15%.

In fine, we may repeat that the scheme described in this section is far from ideal,
of course. Improvements are needed; a more complicated model for the DF of
binding energy near the evaporation surface may be achieved later.

Fig. 6.11 A particle at the surface; its maximum potential energy was ~u � �0:1: However, in
fine, it was an unsuccessful attempt to escape: the particle returning to the inner layers of the liquid

Fig. 6.12 Various coordinates for detachment. Look at the left-hand picture: here detachment
does not mean the absence of any interaction with other atoms
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6.2.5 Number of Particles at the Surface

We discussed the probability of escaping w in detail above. However, one problem
remains: what is the number density of particles at the surface? If we want to
calculate the number of evaporated particles with an equation like (6.2.4), i.e.,
n ¼ n0w, then we also need n0 ¼ nsf—the number density on the evaporation
surface. As was considered in the previous section, the number of neighbors a
surface particle has may be lower than for particles within the bulk of a liquid.
Thus, the number density at the surface nsf differs from the bulk value nb that may
be calculated with reference data through density q and mass of molecule m:

nsf 6¼ nb ¼ q=m: ð6:2:7Þ

Moreover, numerical simulations are not much help because the surface layer is
tiny and irregular; it is hard to distinguish the surface layer and to count the particles
in this layer, but it is much harder to define the volume of this surface layer. We
suppose that the error in the estimation of nsf , by numerical simulations, is *10%
at least; in the worst case an uncertainty of *100% may be expected: these
problems ruin all possible attempts to eject nsf from the numerical simulation
results. The last reason to decline the numerical simulation as a source of such
uncertain information: definitely, in this way nsf becomes an additional free
parameter.

We may choose another way, however.
To estimate the number density of particles at the surface, we assume that the

binding energy of a particle is proportional to the number density at this region of a
liquid. Thus, we suppose that U ¼ U1n, where U1 is a constant. Therefore, we have
that in the bulk of the liquid Ub ¼ U1nb, while at the surface Usf ¼ U1nsf . Thereby,
we obtain a correlation:

nsf � nb
Ub

Usf : ð6:2:8Þ

Fig. 6.13 The low-energy
tail of distribution functions:
for the standard uncorrected
distribution function (6.1.20)
and for distribution function
(6.2.6). DF, distribution
function

174 6 Total Fluxes from the Evaporation Surface



Here, we replace the symbol “=” with “�” because this consideration is, of
course, based on assumptions. In (6.2.8) the energy of the surface layer may be
determined with much higher accuracy than the volume V of such an undefined
structure as the liquid surface (to calculate the number density n ¼ N=VÞ:

The second advantage of the approach in (6.2.8) is that we have one fewer free
parameter, because now only Usf will be determined in numerical simulations.

However, we may use (6.2.8) in another way. If we represent the surface of a
liquid as a rough cut of the condensed medium, then we may conclude that the
number of neighbors at the surface is N/2, where N is the number of neighbors in
the bulk of the liquid. Consequently, the binding energy at the surface must be half
the binding energy in the depth of the liquid, i.e., Usf ¼ Ub=2: This expression may
be a simple estimation of the binding energy at the surface; indeed, we see from our
numerical simulations (see Sect. 6.1) that Usf � 6:4T while Ub ¼ 7:24T : Not bad
for such a simple estimation.

6.3 Mass and Energy Fluxes from an Evaporation Surface

6.3.1 Evaporation, Condensation and Their Sum

Let us forget, for a minute, all the information from the previous chapter and from
the beginning of this chapter, i.e., suppose that we do not know anything about the
DFs of the velocities of evaporated particles. All that we have now are the
expressions for the fluxes corresponding to the MDF.

In gas with a MDF the total flux is equal to zero, but this zero consists of two
parts: of equal fluxes in opposite directions with each of them being easily eval-
uated according to the Hertz formula j ¼ n�v=4: Thus, in such a manner we may
calculate a flux from a vapor on a surface, i.e., try to calculate a condensation flux
on a surface.

Take a closer look at the values that follow from this equation. For the mass flux
of water vapor (molecular mass m ¼ 3
 10�26 kg) we have, e.g., at a pressure
p ¼ 103 Pa temperature T ¼ 300 K:

J ¼ p

ffiffiffiffiffiffiffiffiffi
m
2pT

r
� 1

kg
m2 s

: ð6:3:1Þ

In equilibrium, or in the vicinity of an equilibrium state, one may expect a value
of the same order of magnitude for a reverse flux, i.e., for an evaporation flux.
These are enormous fluxes, actually. In experiments, the total mass of the fluxes for
both p and T is less than 1 g/m2/s1. From the discrepancy between the calculation
flux (6.3.1) and experimental value, one may make one of two conclusions:

• If it is assumed that the total flux has the same order of the evaporation or
condensation flux; then we obtain that the real fluxes on an interface are Jcond ¼
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cJ; where c 	 1 is the so-called condensation (or the evaporation) coefficient,
i.e. the flux of particles absorbed by the interface differs significantly from the
flux of particles dropped on a surface.

• If it is assumed that the total flux J tot is the difference between two close
quantities Jev and Jcond, then the value of the total flux is very sensitive to the
variation of the parameters of the liquid or of the gas.

These alternatives are very unpleasant. As for the first alternative, we will
consider such a problem with the evaporation/condensation coefficient in Chap. 7.
The condensation coefficient is the property of the interface, this is an external
parameter for Molecular Kinetic Theory (MKT): we cannot calculate the conden-
sation flux without this quantity, and it is impossible to extract c from the solution
of the kinetic equation. One may suppose that this quantity can be obtained by
experimentation. Yes, there exists a large volume of experimental data for the
condensation coefficient … with many values of c; for water there exists are range
of values c ¼ 0:01�1; this uncertainty is appropriate only if you want to set c equal
to any value you want, for serious calculations such a spread is a problem. The last
chance is to find the condensation coefficient from the results of numerical simu-
lations (see Chap. 7), but here this is a forbidden trick. Thus, we cannot determine
yet, whether the value for the condensation coefficient c 	 1 or not.

However, we may calculate (at least, estimate) the evaporation flux with all the
formulae from Chap. 5 and this chapter without any additional parameters like c
(see next sections). Consequently, we may determine which estimation is correct:
J tot � Jev or J tot 	 Jev.

Note that if J tot 	 Jev; Jcond then it would be very difficult to measure the
coefficient c because of the strong sensibility of J tot to Jev or Jcond. Let the absolute
deviation of the flux be DJ; then the relative deviation of the total flux is:

DJ tot

J tot
� Jev þ Jcond
� �
Jev � Jcondj j max

DJev

Jev
;
DJcond

Jcond

	 

: ð6:3:2Þ

This well-known expression determines the relative error of calculation J tot by
subtraction ðJev � JcondÞ. Of course, nature runs this mathematical operation without
any calculation errors; expression (6.3.2) demonstrates the sensibility of the total flux
to the values of the evaporation or condensation flux. In the case of jJev � Jcondj 	
ðJev þ JcondÞ the relative oscillations of a total flux will be enormous.

The fact that the mass flux (6.3.1) is huge may also be understood with the
following consideration. The mass balance for the droplet may be written as the
balance equation:

dm
dt

¼ �JS; ð6:3:3Þ

where m is the mass of the droplet and S the surface area. With dm=dt ¼
dðqVÞ=dt ¼ qSdm=dt we have:
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q
dR
dt

¼ �J; ð6:3:4Þ

that is, the dependence of the radius of our droplet on time and the time of the full
evaporation are:

R tð Þ ¼ R 0ð Þ � Jt=q; ð6:3:5Þ

tmax ¼ R 0ð Þq
J

: ð6:3:6Þ

Let us consider a droplet of *1 mm size (i.e., with a surface area of *10−6 m2

and mass of *10−3 g). For the flux J� 1 kg
m2 s we get tmax ¼ 1 s. Thus, a droplet

with such a radius will be fully evaporated in *1 s.
However, here we have assumed that the evaporation flux is a constant, i.e., the

temperature of the surface has not varied during the evaporation process. One can
imagine two opportunities:

• The surface temperature must continuously drop during the evaporation process
because the most “hot” particles have left it.

• The surface temperature is constant, because a stationary state of evaporation is
established with time, i.e., the temperature of the surface may be found through
the equality of the conductive heat flux qc ¼ k T�Tsf

d and that of evaporation
qevðTsfÞ; from this point of view the temperature of the interface will be constant
due to the heat flux from the bulk of the liquid.

The stationary state of evaporation is a problematic matter (see next section), and
the energy balance strictly depends on the conditions of the solid surface under the
liquid. However, the second option to address the dilemma presented above looks
more adequate. The temperature of the interface tends to decrease due to evapo-
ration, but also tends to increase due to the heat flux from deep layers in the liquid.
Atoms at the surface receive energy from their neighbors, and one may expect that
the temperature of the evaporation surface will not drop continuously, unless the
liquid holds heat within itself. Thus, the temperature of the evaporated liquid drops,
but there is a limit to this decrease.

Anyway, the temperature of the interface differs from the temperature of the
main mass of a liquid, and this is an interesting point.

6.3.2 Temperature of the Evaporation Surface

The following fact may be confusing if it is the first time you have stumbled upon
it. From the early work of T. Alty and co-workers in the 1930s we know that the
temperature of the surface of evaporated water may be *0 °C or even lower (see

6.3 Mass and Energy Fluxes from an Evaporation Surface 177



Chap. 7). For example, in Fang and Ward (1999) a minimum temperature was
established of −12 °C and in Duan et al. (2008) the temperature of the water’s
surface was measured as low as −16 °C.

Thus, the temperature of the interface may reach values significantly below zero,
and one may expect that at such temperatures the liquid must freeze. However,
experiments show that this tiny surface layer would still be in a liquid state.

In our numerical simulations (results presented in Sect. 6.1) the heated solid
surface was at a distance of *1 nm from the liquid surface, thus, a significant
temperature drop was not observed: the temperature difference between the bulk of
the liquid and the surface was *1 K. When calculating the parameters of the
evaporating liquid we neglected this difference.

However, in real life, when you pour a glass of water and leave it in open air at
room temperature, it is naive to expect that the evaporation flux must be determined
for 25 °C: the temperature of the surface may be significantly lower than this value;
see below for details of how the evaporation flux varies when the temperature of the
surface changes by 10 °C.

Practical tip: because evaporation is a very efficient cooling process, you may
leave an open can of Coca-Cola outside the fridge and expect the temperature of the
drink to remain lower than the room temperature by several degrees. In cold season,
this may be enough.

6.3.3 Fluxes from the Evaporation Surface

With all our knowledge, let us return to the method of derivation of the DF of
velocity from Chap. 5. For a liquid phase we have:

dn ¼ n0f vxð Þf vy
� �

f vzð Þg Uð ÞdvxdvydvzdU ð6:3:7Þ

with MDFs f ðvÞ; n0 is the number density of atoms at the liquid surface. The DF of
velocity ~V in a vapor can be obtained if we replace the velocities in (6.3.7) (axis z is
directed normally from the surface of a liquid to vapor):

vx ¼ Vx; vy ¼ Vy; v
2
z ¼ V2

z þ
2U
m

¼ V2
z þ v20: ð6:3:8Þ

Thereby, (6.3.7) becomes:

dn ¼ n0f Vxð Þf Vy
� � f Vzð ÞVzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
z þ v20

q g Uð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F Vx;Vy;Vz;Uð Þ

dVxdVydVzdU: ð6:3:9Þ
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If we only want to obtain the DF of velocity Vz, as in Chap. 5, then we have to
integrate the DF F from (6.3.8) for all other variables, keeping in mind that Vz [ 0
and U[ 0. Because

R1
�1 f ðVx;yÞdVx;y ¼ 1; one may obtain:

f Vzð Þ ¼ n0

ffiffiffiffiffiffiffiffiffi
m
2pT

r
Vz exp �mV2

z

2

	 
Z1
0

exp �U=Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
z þ 2U=m

p g Uð ÞdU: ð6:3:10Þ

Thus, for the case of large V2
z 	 2U=m we have the integral:

f Vzð Þ ¼ n0
mVz

2
ffiffiffiffiffiffi
pT

p exp �mV2
z

2T

	 
Z1
0

exp �U=Tð Þffiffiffiffi
U

p g Uð ÞdU; ð6:3:11Þ

or, with dimensionless variable Û ¼ U=T :

f Vzð Þ ¼ n0
mVz

2T
ffiffiffi
p

p exp �mV2
z

2T

	 
Z1
0

expð�ÛÞffiffiffiffî
U

p g Û
� �

dÛ: ð6:3:12Þ

Considering the fact that for Û � 1—the condition that was practically used

above, because V2
z � T=m—we may represent e�Û=T=

ffiffiffiffî
U

p
� Cð1=2; ÛÞ (see

Appendix B), we see that (6.3.11) is equivalent for:

f Vzð Þ ¼ mVz

T
exp �mV2

z

2T

	 

n0

Z1
0

1
2
ffiffiffi
p

p C
1
2
; Û

	 

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

w U=Tð Þ

g Û
� �

dÛ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

: ð6:3:13Þ

Function (6.3.13) differs from its analog (5.2.14) by the normalizing factor.
Function (5.2.14) was normalized on unity, while (6.3.12) was normalized on the
number density of the escaped particles n; one may compare n from (6.3.13) with
expressions from Sect. 6.2 (of course, we may replace gðUÞ in (6.3.13) with a more
complicated function discussed in Sect. 6.2.4). In other words, in this section we
have obtained the same formulae as in previous sections: here, more directly from
the mathematical point of view, and previously, from the physical point of view.

Note that we may also use the DF of the irregular surface (5.2.23) instead of the
first component of (6.3.13).

Thereby, we are ready to calculate fluxes from the evaporation surface. All
components for this were obtained in Chap. 5 and earlier sections of this chapter.
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For the mass flux in the common case we have the expression:

J ¼ mn�V ; ð6:3:14Þ

with the mean velocity for the flat evaporation surface:

�V ¼
ffiffiffiffiffiffi
pT
2m

r
; ð6:3:15Þ

or for the irregular surface:

�V ¼
ffiffiffiffiffiffiffiffi
8!z

pm

r
: ð6:3:16Þ

For the heat flux we obtain for the flat surface:

q ¼ nT

ffiffiffiffiffiffiffiffiffiffiffi
25pT
8m

r
; ð6:3:17Þ

while for the irregular surface:

q ¼ n !x þ 2!z½ �
ffiffiffiffiffiffiffiffi
8!z

pm

r
; ð6:3:18Þ

where !x and !z are parameters of the DF of velocity at the irregular surface.
Let us estimate the value of the evaporation flux, e.g., for water at 300 K; here

we mean the temperature of the surface. For the number of the evaporated particles
n ¼ n0

2
ffiffi
p

p Cð12 ; UTÞ we have U � 3700K (see Sect. 6.2.1) and n0 � 3
 1028 m�3, so

n � 1022 m�3 (for simplification, we use the number density n0 in the bulk of the
liquid). Then, the average velocity (6.2.15) is �V � 460m/s and the mass flux
(6.2.14) J � 140 g

m2 s : As a comparison, for a temperature 310 K we have

J � 220 g
m2 s :

For the heat flux, we have from (6.2.17) q � 1:6
 104 W=m2 for 300 K and
q � 2:5
 104 W=m2 for 310 K.

Thus, the “clean” evaporation flux is huge. At this rate, a glass of water of mass
200 g and surface area *4 
 10−3 m2 would fully evaporate in 6 min. Of course,
in reality that would not be the case due to the condensation process. Therefore, the
total flux would be much lower than the value calculated above.

The high evaporation (and condensation) fluxes cause some problems to the
description of condensation. Let us consider the mixture of water vapor and air
(under “air” here and below we mean “dry air”), then suppose the absence (for
some reasons) of evaporation. Vapor molecules condense—and do it intensively.
Due to condensation, the concentration of vapor decreases near the surface. In a
gas, pressure levels itself at the speed of sound, but it does not concern the number
density of components: the concentration of water vapor molecules recreates
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because of a much slower process—diffusion. This process of diffusion controls the
number density of vapor molecules close to the interface and, consequently, the
condensation flux. As stated, condensation is a more complicated problem than
evaporation.

In fine: we see that the evaporation flux exceeds the total flux by a few orders of
magnitude. In real situations the evaporation process always runs alongside con-
densation and we may expect that in equilibrium the total flux is equal to zero: the
evaporation flux is counterbalanced by the condensation flux. Is this really the case?

6.4 Evaporation and Condensation: the Balance
Equations

In this section we discuss a fundamental problem. This is not a problem about te
special conditions at the interfacial surface. This problem does not concern the
fluxes of evaporation and condensation and the balance between them. This
problem is whether balanced equations actually exist?

This is partially a provocative question. There exists an equilibrium state when
the total fluxes of a given quantity vanish and the quantity itself does not vary with
time. However, is there really a state where the fluxes are constant, or does a
fluctuating regime exist with a total flux operating as a periodic function of time
with a zero mean?

6.4.1 Attractors of a Dynamic System

It is a well-known fact that a dynamical system may have different types of ultimate
trajectory (attractor).

The first type of attractor is a stable point: the system goes to its limiting
parameters, and once these parameters have been achieved, the system “stops:”
there being no further variations. Inevitable fluctuations cannot drive this system
out of equilibrium: these deviations fade with time, and the system returns to a
stable state.

The second type of attractor is a cycle: parameters of the system vary periodi-
cally. There may be one independent frequency or more, it does not matter: any
quality of a system undergoes oscillations.

The third type of attractor is a strange (chaotic) attractor. This is a very unusual
thing, which has been discovered at least twice (by Lorenz in 1963 for the first time
and later by Ruelle and Takens in 1971). This type of attractor may possibly
describe a phenomenon called “turbulence” (but it might not)—this subject is
absolutely out of the scope of this book.

Possibly, the simplest example of a dynamic system which demonstrates all
three types of attractors is:
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dx
dt

¼ yz� ax;

dy
dt

¼ by� xz; ð6:4:1Þ

dz
dt

¼ xy� cz:

This dynamic system was discussed, for instance, in Turner (1996). System (6.4.1)
may have clear physical explanations: each pair of quantities affects the third quantity,
while this third quantity tends to increase (the “+” sign in (6.4.1) on the right-hand side
at the corresponding term for y) or decrease (a “−” sign for x and z) by itself.

This is a dissipative system if �aþ b� c\0. The type of attractor depends on
parameters a, b and c. There is a stable point (0, 0, 0) at b\0 and fixed but unstable
points ð
 ffiffiffiffiffi

bc
p

;
 ffiffiffiffiffi
ac

p
;
 ffiffiffiffiffi

ab
p Þ (for each stable point the number of pluses is odd) at,

for example, a ¼ 5; 0\b\0:71 and c ¼ 1: Dynamical system (6.4.1) has limiting
cycles (for instance, see Fig. 6.14 for a ¼ 5; b ¼ 1:2 and c ¼ 1Þ or a strange
attractor (for a ¼ 5; b ¼ 1:9 and c ¼ 1 see the attractor in Fig. 6.14).

This is only an example: non-linear dynamic systems have reach dynamics as a
rule. Despite this fact, for unknown reasons, physicists almost always expect a
stable point as a unique solution for any problem they encounter. Many analytical
treatments of dynamic systems begin with the words “now we will find a stationary
solution for system X…,” but rarely is the stability of the point or the uniqueness of
the attractor studied (except for special problems where instability is the very point
of the study). From this position, any non-point attractor should be considered as a
confusing abnormal special case.

However, of course, there may be other types of attractors than the stable point.
Periodic attractors may be expected for various physical problems; one of these
being evaporation.

6.4.2 What We May Expect for Phase Transitions

As discussed above, one should distinguish the evaporation flux (i.e., the flux of the
evaporated particles) and the flux on the evaporation surface (i.e., the total flux,
consisting of evaporation and the condensation fluxes).

We expect equilibrium and, consequently, we expect zero total fluxes on the
evaporation surface. In the language of DFs, we expect equalities in the moments of
DFs for evaporation and the condensation fluxes.

Z1
0

mvf ev vð Þdv ¼
Z1
0

mvf cond vð Þdv; ð6:4:2Þ
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Z1
0

2mv2f ev vð Þdv ¼
Z1
0

2mv2f cond vð Þdv; ð6:4:3Þ

Z1
0

mv2

2
vf ev vð Þdv ¼

Z1
0

mv2

2
vf cond vð Þdv: ð6:4:4Þ

We added condition (6.4.3) for the equality of the pressures (with a little vari-
ation, it can be interpreted as the equality of temperatures); thus, we expect that the
first three moments of the evaporation distribution function (EDF) f evðvÞ and the
condensation distribution function (CDF) f condðvÞ will coincide.

To analyze these equations in the common case we must take into account the
fact that DFs for the evaporated particles and for the condensed ones can be
different functions of velocity. The EDF was defined in Chap. 5, but here we cannot
give a specific expression for the CDF (see also Chap. 7, where we also cannot give
a specific expression for the CDF, because this book is about the “kinetics of
evaporation”, not the “kinetics of condensation”), so will consider the general case
for uncoinciding DFs.

The EDF is fully determined by two parameters: the number density of the
evaporated particles nev and the temperature of the liquid surface T; for the simplest
case this function is:

f ev vð Þ ¼ nev
mv
T

exp �mv2

2T

	 

: ð6:4:5Þ

Thereby, only two parameters of the EDF may be defined. Suppose that the
pressure and the fluxes of mass and energy in the vapor phase are determined, thus,
in this case, it is impossible to satisfy (6.4.2)–(6.4.4) completely: one or more
expressions in these equations will turn to inequalities.

For instance, let us assume that the DF in a vapor phase is a MDF. Thus, we
desire the balanced equations for the fluxes on the interface:

Fig. 6.14 The limiting cycle (left) and the strange attractor (right) for (6.4.1)
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nl

ffiffiffiffiffiffiffi
pTl
2m

r
� jev ¼ jcond � nv

ffiffiffiffiffiffiffiffiffi
Tv
2pm

r
; ð6:4:6Þ

4nlTl � pl ¼ pv � nvTv; ð6:4:7Þ

nlTl

ffiffiffiffiffiffiffiffiffiffiffiffi
25pTl
8m

r
� qev ¼ qcond � nvTv

ffiffiffiffiffiffiffi
2Tv
pm

r
ð6:4:8Þ

We may put Tl ¼ Tv and nl ¼ nv=4 (from (6.4.7), see Chap. 7 for details), but in
this case we see that jev 6¼ jcond and qev 6¼ qcond; the fluxes differ by tens of percent.
There may be various speculations made from balanced (6.4.6–6.4.8), but the
simplest conclusion is the inexistence of them in principle.

Thus, if it is difficult (moreover, impossible) to satisfy all conditions (6.4.2–
6.4.4) for different DFs f ev and f cond, then we are inclined to suppose that the
equilibrium is a state where only average fluxes are equal: jev ¼ jcond; qev ¼ qcond,
but where momentary quantities fluctuate.

In the following subsections we try to estimate the period of such fluctuations.

6.4.3 Timescale from the Viewpoint of a Vapor

The period of oscillations may be estimated in various ways and, strictly, there may
exist numerous specific time frames for this problem. Actually, a full theoretical
picture must be painted first, including all equations, boundary conditions, etc.
However, this is too complicated a task for us now; many aspects of the
near-interface processes must be solved first. We restrict ourselves here with a much
simpler problem: here we want to estimate only the period of oscillations of the
condensation flux at the interface.

Assume that the limiting process at the interface is establishing an “equilibrium”
value for vapor density, e.g., when evaporation is too intensive, then the density of
the vapor will increase until the condensation flux equalizes the evaporation one,
and vice versa. In other words, if the evaporation (or condensation) flux sponta-
neously varies, then a new value of density will be established after a certain period
of time; this time is the point of our treatment here, because the timescale for the
establishment of a vapor density value may be considered as the characteristic time
for the evaporation-condensation problem as a whole.

Let us consider an evaporating droplet of surface area S in the vapor phase of
volume V. The vapor obeys the Clapeyron equation, i.e.:

p ¼ NT
V

: ð6:4:9Þ

Assume that due to some fluctuation the flux on the interface increased (or
decreased). The number of vapor particles that appear due to evaporation (or dis-
appear because of condensation) is:
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dN
dt

¼ jS; ð6:4:10Þ

because, as was discussed in the previous section, the total flux is much less than
the momentary evaporation (or condensation) flux.

The flux on the interface—both of evaporation and of condensation—may be
estimated as:

j� pffiffiffiffiffiffiffiffiffiffiffiffi
2pmT

p ; ð6:4:11Þ

where strong equality arises between the condensation of vapor and the Maxwellian
distribution of velocities. Thus, we may estimate the timescale from the equation
dN
dt � N

s , and from (6.4.7) with (6.4.6) and (6.4.8) we have for the required timescale

the estimation:

s� N
jS

� V
S

ffiffiffiffiffiffiffiffiffi
2pm
T

r
: ð6:4:12Þ

For example, for a water ðm� 3
 10�26 kg) droplet of size *1 mm (i.e.,
S� 10�6 m2) in a volume of *1 L (i.e., V � 10�3 m3) we obtain s� 7 s.
Considering all the approximations, it is more appropriate to state that for real
conditions this timescale is *1–10 s.

Returning to the beginning of this section, we may conclude that s may serve as
an estimation for the period of oscillations due to the slow “adjustment” of a vapor
phase to variations of fluxes at the interface.

Note that only a pure vapor in the absence of a buffering gas was treated above.
If diffusion of vapor molecules is a vital part of a process (for instance, for a vapor
in the air, see Sect. 6.3), then the timescale may be estimated directly through the
diffusion coefficient D:

sdiff � L2

D
: ð6:4:13Þ

Usually, in gases D� 0:1 cm2=s, and for spatial scales of L� 1� 10mm we
obtain sdiff � 0:1� 10 s: Thus, we may conclude that the gaseous phase may pro-
vide oscillations with periods of *1 s (with an order of magnitude spread).

At least for completion’s sake, we should examine the timescale for processes in
the liquid phase.

6.4.4 Timescale from the Viewpoint of a Liquid

The limiting process in the evaporating liquid is the cooling caused by evaporation.
The variation of the temperature of the liquid mass m due to the heat flux q through
the surface area S is:
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cpm
dT
dt

¼ qS: ð6:4:14Þ

Let us consider variations of temperature at the surface: fast atoms leave the
surface, and the temperature of the surface decreases. Then, because of the heat flux
from the bulk of the liquid to the liquid surface, the temperature of the surface will
increase; evaporation rate grows, and so on.

As was discussed in Sect. 6.3, the heat fluxes on the interface are huge, so we may
assume that the limiting process (i.e., the slowest process) is the heat conductance
from the liquid. Thus, from (6.4.14) we have the timescale of the process directly:

s� cpq
k

d2 ¼ d2

a
: ð6:4:15Þ

where q is the density, k is the thermal conductivity of the liquid and a ¼ k
qcp

is the

thermal diffusivity; the last quantity is � 10�7 m2/s, thus, the value of s depends on
d—the “thickness of the interface.”

We must note that:

• The parameter d is small; it may be *1–10 nm or even 100 nm. Anyway, the
answer for s would be the same in any case: this timescale is very small and
these time variations may be better observed in numerical simulations (where
the total time interval for calculations may be *1 ns) than in experiments.

• Any estimations like (6.4.15), which imply a definite scale for a diffusion
process, strictly, are not fully acceptable, because the character of the time-space
variations have a self-similar form for their Boltzmann variable x2=t; i.e., due to
(1) the non-linear character of dependence (6.4.15) and (2) the uncertainty of the
spatial scale we have significant uncertainty for the timescale.

Comparing results from this section with results from the previous one, it is easy
to conclude that the condensed phase briefly “adjusts” to the variation in external
(or, as in this case, of eternal) conditions. However, the gaseous phase cannot repeat
such a trick, consequently, changes to its parameters lead to a significant lag for any
dynamic processes.

6.4.5 The Simple Experiment

All philosophers and some physicists believe that a theory must be supported by
experiments. This optimistic positivism excludes such a factor as vitality, which
usually is a feature of any non-contradictory theory. As a rule, a single experiment
tests only a single point of a theory, and this one-to-one combat adds nothing to a
theory as a whole. Even in the worst case, a theory may survive by mutating,
holding its basic principles untouched. Indeed, it is very hard to kill a theory with an
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experiment, despite the idealistic view of philosophers. Moreover, sometimes a
theory strikes back, see Chap. 8.

Here, we present some experimental results for the temperature of a wet ther-
mocouple. Here we used a chromel–alumel thermocouple with a radius of 0.5 mm,
its inertial time was determined as *0.5 s.

We put the thermocouple’s tip into hot water (*40 °C) and then released it from
the vessel, holding it at a height of *1 cm above the interface for minutes.
A droplet with a radius of *1 mm on the tip of the thermocouple was allowed to
evaporate, but, because of the vicinity of the hot evaporating liquid surface, vapor
condensed on the droplet too. Thus, the surface of the droplet represented the battle
ground for evaporation and condensation processes.

The temperature of the thermocouple dropped until a quasi-equilibrium state was
established. We discussed this process in Chap. 1 from another point of view: at the
early stages of the investigation of evaporation we wondered how it was possible
that the temperature of the evaporated liquid be lower than the temperature of the
surrounding air. Here we treat such tiny matters as fluctuations.

At a quasi-steady-state (we suppose that it is more correct to term this process in
such a way) one could see oscillations in the temperature of the thermocouple (see
Fig. 6.15). We propose several reasons for these oscillations:

• Oscillations of the cold wires in the thermocouple.
• Convection processes.
• Oscillations caused by condensation–evaporation processes.

The first of these reason may cause a temperature oscillations up to *0.5 °C,
but no higher. Both the first and the second reasons could be manifested in both a
wet and dry thermocouple. However on dry tip we see (and not in every experi-
ment) weak oscillation less than 1 °C. On the wet thermocouple we always observe
oscillations by several degrees. Thus, as Sherlock Holmes taught us, we have to
admit the last unfalsified version.

This last unfalsified version, considering the volume of our chamber was *1 L,
leads us to the estimation that was made above: the period of oscillation must
be *1–10 s, this value is significantly higher than the inertial time of the

Fig. 6.15 Temperature of a
wet thermocouple over a
liquid surface
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thermocouple. We can see the corresponding frequencies on the experimental graph
(Fig. 6.15).

However, we prefer to soften our conclusion. This is a very simple experiment,
and many factors must be examined before a final conclusion be stated. It is more
convenient to say that the hypothesis that has been proposed in previous sections
does not contradict these experiments.

6.4.6 Fluctuations with Temperature

It is useful to understand how fluctuations in temperature, or of the work function,
affect the evaporation flux:

j ¼ n�v; n ¼ n0
1

2
ffiffiffi
p

p C
1
2
;
U
T

	 

: ð6:4:16Þ

It is evident that small changes in the temperature of the surface do not sig-
nificantly affect the average velocity �v or the number density of the liquid at the
surface n0. However, if the temperature increases by a small value, how does it
influence the total number of evaporated particles through the term containing the
gamma function?

Usually, we have to deal with a situation where U=T[ 1. In the case where
argument of an incomplete gamma function is sufficiently large, we can represent
the number density in a more suitable form as:

n � n0
2
ffiffiffi
p

p
ffiffiffiffi
T
U

r
exp �U

T

	 

: ð6:4:17Þ

The difference between dn ¼ Dn=n0 in (6.4.16) and (6.4.15) is shown in
Fig. 6.16. In simple terms, if U=T [ 1 then this difference is practically negligible.

Fig. 6.16 The difference
between exact (6.4.16) and
approximation (6.4.17)
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Thus, with (6.2.17) we can estimate the influence of temperature on the particle
efflux. We have:

dn
dT

¼ n0
2
ffiffiffi
p

p U
T2

1
2

T
U

	 
3=2

þ T
U

	 
1=2
 !

exp �U
T

	 

; ð6:4:18Þ

1
n
dn
dT

¼ U
T2 1þ 1

2
T
U

	 

: ð6:4:19Þ

The dependence (6.4.18) is illustrated in Fig. 6.17 for different values of the
work function U.

We see that at temperatures of *100 K the variation of 1 K leads to a change of
evaporation flux of the order of 10%. This fact helps us to understand the variations
in the flux with time: because the evaporated particles remove a lot of energy (only
high-energy particles can leave the liquid), the temperature of the surface decreases,
and in Fig. 6.17 we can see the corresponding decrease in evaporation flux. Later,
due to the heat flux from the bulk of the liquid, the temperature returns to its
original level, and the process continues (see previous section).

The next important point is the variation in the pressure of the vapor emitted by
the evaporating liquid. Quantitatively, this process can be described by the same
dependence (6.4.19) and, in brief, one may conclude that this dependence is strong.

It is more interesting that we can recognize the Clapeyron-Clausius equation in
(6.4.19). In the Clapeyron equation p ¼ nT the main dependence of pressure on
temperature is hidden in the function of the number density of molecules in a gas
nðTÞ (6.4.16). The number density in a gas, in turn, is proportional to the number
density of the evaporated particles. Thus, the pressure of the evaporated particles
depends on the temperature of the liquid surface as:

1
p
dp
dT

� 1
n
dn
dT

: ð6:4:20Þ

Fig. 6.17 The responsivity
of the number of evaporated
particles to the temperature of
the liquid surface
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The right-hand side of (6.4.20) can be expressed with (6.4.19). We also may take
into account that T 	 2U; i.e., the last term in (6.4.19) can be ignored, so:

d ln p
dT

� U
T2 : ð6:4:21Þ

Because U�DH (the latent heat of vaporization, see Sect. 6.1.3), (6.4.21) is a
kind of analog to the Clapeyron-Clausius equation.

In brief, we may note that dependence (6.4.21) arises not for the special function
nðU; TÞ such as in (6.4.17). It is sufficient that p� nðU=TÞ—the same scaling that
led us to Trouton’s rule earlier.

The strong temperature dependence of the pressure leads to some difficulties in
numerical simulations. To determine some parameters (like the evaporation coef-
ficient, for example) we have to calculate the pressure that corresponds to the
temperature of the liquid surface. For sharp dependence pðTÞ the error will be large,
and this error will be reflected in the error of the value of this parameter (e.g., the
evaporation coefficient).

Thereby, evaporation into a vacuum becomes a special process which is “too
pure” to simulate a real situation, when the evaporating liquid contacts with its vapor.
However, of course, the investigation of pure evaporation helps us to understand the
nature of this processes and, moreover, helps us to point out the details that must be
considered in a liquid-vapor system: first of all, the role of U=T at the surface.

These nuances will be discussed in the next chapters.

6.5 The Non-linear Effect Within Evaporation:
Hyperevaporation

In Chap. 5 we used U = const for binding energy. Actually, this is not correct. The
binding energy of a given atom depends on many factors, so it is more accurate to
consider the DF ofU. In this chapter we discussed this DF and found this function as an
analytical expression, but we did not touch upon another nuance. Is the binding energy
an independent parameter? There is no doubt that the rate of evaporation depends onU,
but is the reverse true—can binding energy be a function of the rate of evaporation?

Generally, the answer is affirmative. When an atom (or a molecule) leaves its
place at the surface of a liquid, its neighbors acquire a lower binding energy. Thus,
the probability of evaporation of such atoms—neighbors of the newly vacated atom
—is higher. This means that one of them may leave the surface, producing a newly
vacated site, etc. The evaporation in such a regime is a cascade process: a particle
which has evaporated will lead to the evaporation of one of its neighbors.
Considering fast relaxation in liquids, this process may be observed only a short
time period after the evaporation of the first atom; thereby, this process may be
looked at as the escape of a “molecule”—with a cluster of two or more atoms
detaching from a liquid.
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Let us estimate the result of lowering the binding energy described above. Denote
UN as the binding energy of an atom with N neighbors, consequently, the binding
energy of atom with N � 1 neighbors is UN�1. Let UN ¼ NU1, where U1 is the
binding energy to a single neighbor. Thus, the probability of leaving the surface is:

p Uð Þ ¼ 1
2
ffiffiffi
p

p C
1
2
;
U
T

	 

: ð6:5:1Þ

After the escape of one neighbor this increases to:

d ¼ p UN�1ð Þ
p UNð Þ ¼

C 1
2 ;

U1 N�1ð Þ
T

� �
C 1

2 ;
U1N
T

� � � exp
U1

T

	 

: ð6:5:2Þ

This simplified approach does not take into account that an “escaped” particle
“pulls out” its neighbor.

In Table 6.3 we present some values of d for different U1=T and N ¼ 6 [we use
the absolute equality in (6.5.2)].

On the one hand, d is rather significant. On the other hand, the probability p is
low. Actually, this means that the effect of non-linearity is small, due to the low
probability of evaporation for the given atom. Even when the probability increases—
by an order of magnitude—its value is still too low. Most probably the configuration
of surface atoms “would recreate” and any trace of the vacancy vanishes before one
of the atoms nearby this vacancy leaves the surface.

This is good news because we can use our “linear” approach correctly; otherwise all
the theory presented in this chapter would need to be adjusted. However, this optimistic
conclusion is correct only for “typical” situations. For extremely high temperatures,
when the ratioU1=T is sufficiently small and probability pðUNÞ� 1, we can expect the
non-linear regime of hyperevaporation, described in this section. Anyway, such
interesting effects cannot be neglected entirely. There may be exceptional conditions
where such process may appear, and one of these special cases is 2D geometry.

The evaporation of two or more particles at once may be observed much better in
a 2D system. In 2D geometry the number of bonds for an atom in a liquid is less
than for 3D geometry; thus, as it follows from our consideration, the absence of a
single bond exhibits itself more clearly: the relative weight of one bond is higher in
a 2D system. Consequently, one can observe the detachment of several particles at
once with much higher probability.

We can see an illustration of such a process in Fig. 6.18. Here we represent the
flight of five atoms detached from the evaporation surface—an impressive sight.

Table 6.3 Parameters of
possible hyperevaporation

U1=T ¼ 1 U1=T ¼ 2 U1=T ¼ 3

d 3 8 22

pðUNÞ 2:5
 10�4 5
 10�7 10�9
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Fig. 6.18 Hyperevaporation: detachment of five particles from the evaporation surface
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6.6 Conclusion

The work function of a surface atom is not a constant. There exists a potential
energy DF:

g uð Þ ¼
Z1
0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e

2p2h2T3

r
exp � e

T

� �
exp � e� u� lmð Þ2
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 !
de;

where e is the kinetic energy of the particle; T is the temperature of the liquid (i.e.,
the mean potential energy of the particles); lm ¼ em � um is the Lagrangian (the
difference between the average kinetic energy and the potential energy) and h is the
special parameter termed “fluctura.” This DF was obtained for condensed media
and, strictly, the area of its application is unclear.

Our numerical simulations for liquids in equilibrium confirm both the form of
the DF of potential energy and the assumptions that led to this function: the
potential energy of a particle and its kinetic energy are statistically independent
parameters; the DF of the Lagrangian of the particle is a symmetrical function.

Parameter h is the source of the problems which were not solved analytically in
this chapter (and in this book as a whole). In equilibrium, the fluctura is equal to the
temperature of a media, this fact follows from the definitions of terms “equilibrium”
and “temperature” (as a measure of equilibrium fluctuations). However, we have no
sufficient reason to state that h ¼ T everywhere, including in non-equilibrium
systems (with temperature gradients, heat fluxes, etc.). Actually, we do not know
much about h, but we suppose that the theory presented in this chapter is strong
enough to point out its problems.

We have no solid arguments to establish h in a general case, and we cannot
establish the form of the DF ge in a substance at the ideal gas limit.

Does the fluctura depend on the density of a media? At first glance, for an ideal gas
—the gas of non-interacting particles, where u � 0—theremust be um ¼ 0 and h ¼ 0.
Thus, from this point of view, we see the limit lim

T!1
hðTÞ ¼ 0; and the dependence

hðTÞ is important in itself. From another point of view, this description is too
sophisticated, because in a real ideal gas (the gas in a room,which obeys theClapeyron
equation, but consists of real molecules) for collided molecules the energy of inter-
action is non-zero; moreover, at the very moment of a collision this energy is huge.
Additionally, to continue the argument at the beginning of this paragraph, it is more
logical to demand the condition Du ¼ 0 instead of h ¼ 0. Finally, we have to admit
that we cannot give a full explanation offluctura in a general case. It rather looks like
all the methods to obtain a DF of potential energy are incorrect for an ideal gas, where
the potential energy is equal to zero and, consequently, all the approaches based on the
principle of least action lose their force.

We cannot point out the value of fluctura in a common case, but we have ideas
about its measured value: in a wide layer of a liquid where the mean potential
energy in a layer differs by Dum, the DF of potential energy may be represented
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(exactly, approximated) by the DF gðuÞ but with the replacement h ! H, where the
measured fluctura (e.g., the value of H determined in numerical simulations) is:

H2 ¼ h2 þ Dumð Þ2
12

:

Our calculations show that at the surface layer with temperature T the measured
fluctura is H� 2T , which corresponds to h� T . Can we conclude that
h = T always? No, because we still need more arguments to make such a common
conclusion.

Thus, we obtained the DF of binding energy at the liquid surface and estimated
the probability of evaporation, number density of evaporated particles, fluxes from
the evaporation surface, etc.

The probability of detachment is different for particles with different potential
energy; actually, the main part of the evaporation flux is determined by particles
with low binding energy. To estimate this probability, one may use the old equation
from Chap. 5: wðUÞ ¼ 1

2
ffiffi
p

p Cð12 ; UTÞ, however the value U here corresponds not to

the average energy
R1
�1 UgðUÞdU but to the value that satisfies the condition

wðUÞ ¼ wðUÞ. Thereby, the number of evaporated particles may be found with the
total number density of particles at the liquid surface n0:

n ¼ n0w Uð Þ ¼ n0

Z1
�1

w Uð Þg Uð ÞdU:

If gðU\0Þ 6¼ 0, i.e., if we take into account particles with negative binding
energy, then the probability of detachment is wðU\0Þ ¼ 1=2. Actually, the DF of
potential energy at a surface differs from the DF in the bulk of a liquid: particles
arrive at the surface with high binding energy, and they always have a choice—to
decrease their binding energy or to leave the surface.

The number density at the liquid surface n0 does not coincide with the number
density in the bulk of the liquid. It is lower; we can estimate this quantity through
the binding energy at the surface. Note that the accuracy of this estimation seems to
be not much worse than the accuracy of numerical simulation: it is difficult to
calculate n0 in molecular dynamics simulations.

The fluxes from the evaporation surface may be expressed with results from
Chap. 5: one can take the expressions for the fluxes and multiply them by the
number density n. The mass and energy fluxes are:

J ¼
n

ffiffiffiffiffiffiffiffiffiffi
pmT
2

r
;

n

ffiffiffiffiffiffiffiffiffiffiffi
8m!z

p

r
:

8>>><
>>>: q ¼

nT

ffiffiffiffiffiffiffiffiffiffiffi
25pT
8m

r
;

n !x þ 2!zð Þ
ffiffiffiffiffiffiffiffi
8!z

pm

r
:

8>>><
>>>:
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where the first expression for each flux corresponds to a flat evaporation surface, the
second one to a strongly irregular surface and in the last case the parameters !x and
!z are modules of the velocity DFs (see Chap. 5).

Simple estimations of the evaporation fluxes show very large values; the total
flux on the interface is much less than the pure evaporation flux. Thus, the con-
densation flux plays a role too; then we go to conditions of equilibrium, but the DF
of evaporated particles on velocities, so to say, has an unusual form. We have no
expression for a condensation flux on an interface, but it is difficult to expect that
this function has an analog form. In the case of different DFs all the balanced
equations for fluxes and thermodynamic parameters (for pressure and temperature)
cannot be satisfied at any instant; thus, one may expect fluctuations in all these
parameters. At the equilibrium state, i.e., when the evaporation flux is compared to
the condensation flux, we estimate the period—timescale—of such fluctuations; at
ordinary external parameters this period is around 1 s. Note that fluctuations in an
evaporated liquid are much faster; their timescale is *1 ns or less.

All our approaches concern only a simple linear approximation: the evaporation
flux does not affect itself. Usually, this approach is correct, but sometimes evap-
orated particles may leave a surface altogether: in this special regime we need a
non-linear description of evaporation.
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Chapter 7
The Evaporation Coefficient

Probably, this is a unique situation in physics: for a quite defined physical
parameter (almost of a mechanical nature, because a mass flux is a well-defined and
well-understood physical quantity), with a simple substance such as water, in rel-
atively clear experiments, the evaporation–condensation coefficient differs from
experiment to experiment by about two or even three orders of magnitude. This is
not, for instance, the vibrational temperature of hydroxyl in a non-equilibrium
plasma: the proportional factor for a mass flux seems to be a certain and
easily-measureable parameter. Alice measures a mass flux under known tempera-
ture and external pressure, then she divides the obtained value by the calculated
Hertz flux and … she obtains a number that differs, by a factor of five, from the
value obtained by Bob in the laboratory next door. Why?

7.1 The Evaporation and Condensation Coefficients

7.1.1 Overview

Generally, these two quantities—the coefficients of evaporation and condensation—
are surplus. For the complete theory of interfacial processes both coefficients must be
corollaries but not independent external parameters.

Unfortunately, we still have no “complete theory” of surface processes.
Historically, the Hertz-like correlations:

j� pffiffiffiffiffiffiffiffiffiffiffiffi
2pmT
p ð7:1:1Þ

were used both for the evaporation and condensation fluxes, and these coefficients
were introduced into the right-hand side of (7.1.1) to take into account the
“non-ideality” of the processes.
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It is easy to explain the meaning of the condensation coefficient: it is the fraction of
the stuck particles relative to the overall number of particles that fall onto a surface.
Assuming that the flux of the striking particles obeys the Hertz flux (actually—it does
not, see below), one may see that this consideration leads us to the usual definition.

It is harder to explain the meaning of the evaporation coefficient. Usually it refers
to the inequality of the number density of particles at the liquid surface and in the
bulk vapor, but this interpretation is insufficient, because, of course, the number
density inside a liquid is much higher than the number density inside a vapor. That
is, the number density at the liquid surface means the “number density of particles
in vapor phase near the liquid surface.” That sounds better, but in this case we must
explain what the pressure in (7.1.1) is. Why does this vapor, with a “reduced”
number density of particles, produce an “unreduced” pressure p?

Another way to explain the meaning of the evaporation coefficient follows from
the determination of the flux. According to this interpretation, the flux (7.1.1)
represents a maximum flux that can be reached in an ideal case (exactly, which can
never be reached). Actually, this explanation leaves an open question: what makes
the flux non-ideal? What processes at the surface prevent the achievement of a
maximum flux? From this group of explanations we may highlight the concept that
the flux with a = 1 is the evaporation flux into a vacuum, i.e., the evaporation
coefficient arises only at the point of contact of liquid and vapor.

We can also try to interpret the existence of the evaporation coefficient through
the condensation coefficient. Since the condensation flux (defined by (7.1.1) with
condensation coefficient <1) must be equal to the evaporation flux at the saturation
parameters, then the evaporation flux must contain the same factor—the evapora-
tion coefficient. From this point of view it is difficult to understand how the ability
of the surface to attach particles from a gas is connected with the ability of the same
surface to emit particles. As a variation, we may state (according to H. Hertz) that
the evaporation flux is only a part a of the flux emitted from the surface; the other
ð1� aÞ fraction represents reflected molecules. From this consideration we again
obtain the same form for the evaporation flux.

In fine, there always exists a last option: not to explain anything. The beginning of
such non-explanation is: “The evaporation flux can be represented in a form
Jev ¼ aps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2pTs

p
, where a is the evaporation coefficient…” Such “positivism” has

many advantages (besideswhich it leaves space for imagination), andwe start the next
section in thismanner.Wewill return to the discussion about the problems concerning
the meaning of the evaporation coefficient, but will do that later, in Sect. 7.3.

7.1.2 The Hertz–Knudsen Formula

The evaporation coefficient a and the condensation coefficient b play an important
role in the theoretical description of processes at the interfacial surface. Both of
them are determined as factors for mass fluxes:
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jev ¼ ajH; jcond ¼ bjH: ð7:1:2Þ

Here jH is a unidirectional mass flux in the equilibrium gas; according to the
Hertz formula:

jH ¼ 1
4
ng�v ¼ 1

4
ng

ffiffiffiffiffiffiffi
8T
pm

r
; ð7:1:3Þ

where ng is the number density in a gas (usually the ideal gas approach can be
applied and ng ¼ p=T), m is the mass of an atom and �v is the thermal velocity. For
the mass flux J ¼ mj we have a similar equation, thus:

JH ¼ p

ffiffiffiffiffiffiffiffiffi
m
2pT

r
: ð7:1:4Þ

We see that both a and b have been added to the gas flux as proportional factors.
We can expect that the temperatures of liquid and gas are equal, with no problems
hiding on this front. Indeed, the first approach would always be to use an equi-
librium description; thereby, we may use the saturation number density ng ¼ ns.

For the condensation coefficient, we can provide some reasons concerning its
predictable value. If we use (7.1.2) for the condensation flux then the condensation
coefficient has a sense of being the fraction of the atoms attached to the surface:
when an atom hits the interface, it has a probability of becoming attached or being
reflected. In old numerical simulations or analytical considerations there was a
standard model of interaction between an atom and a wall: it might result in an
absolutely elastic impact or something else.

However, in reality, an interaction between an atom and a continuous wall does
not exist. It is always an interaction between atoms of vapor and atoms of liquid (or
of solid), with there being a drastic change in their physical descriptions. Even in a
solid the mean distance between two neighboring atoms is sufficiently large, and a
“solid” represents a quite “porous” object for an incoming atom. Atoms of gas do
not interact with a continuously solid wall but impact a rather hollowed structure of
surface atoms and, after several (or many) collisions with this structure atoms may
move back into a gas or stay attached to the condensed media for a long time. Per
se, this refinement does not change the common situation concerning the conden-
sation coefficient; this consideration will be continued in detail in Sect. 7.4. Thus,
we expect almost all impacting atoms to attach rather than to be reflected.

We can formulate the expression for the total flux on the surface as:

J tot ¼ Jev � Jcond ¼
ffiffiffiffiffiffi
m
2p

r
a

plffiffiffiffi
Tl
p � b

pvffiffiffiffiffi
Tv
p

� �
; ð7:1:5Þ

where indexes “l” and “v” denote liquid and vapor, correspondingly. This corre-
lation is termed the Hertz–Knudsen equation, but usually this expression does not
look exactly like (7.1.5).
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First, the evaporation coefficient is usually conceived to be equal to the con-
densation coefficient (except for very rare considerations). The reason behind this is
clear: at equilibrium conditions pl ¼ pv and Tl ¼ Tv and one can expect that
J tot ¼ 0; consequently, we must have a ¼ b.

The next particularity of (7.1.5) consists in the assumption that pressure pl is the
saturation pressure for temperature Tl; this leads to the following substitutions in
(7.1.5) pl ! ps and Tl ! Ts.

Finally, it is usually supposed that the temperature of the vapor is equal to the
temperature of the liquid; thus, the total flux is determined only by the pressure
difference in (7.1.5). Of course, as in other cases, this is only an assumption: in the
next chapter we consider the “temperature jump” between the liquid and the vapor
at the interface. After all these simplifications, instead of (7.1.5) we have:

J tot ¼ a

ffiffiffiffiffiffiffiffiffiffi
m

2pTs

r
ps � pvð Þ: ð7:1:6Þ

Again, we note that Ts here is only the temperature of the liquid; the corresponding
pressure is psðTsÞ.

With these refinements, (7.1.5) and (7.1.6) come to represent the fundaments for
many experimental works devoted to the determination of the evaporation (con-
densation) coefficient. However, (7.1.5) needs some improvement in its part con-
taining the condensation flux.

7.1.3 The Condensation Flux

The Hertz equation implies that the distribution function (DF) of velocities is
Maxwellian. This assumption is correct when we consider, for example, the flux of
molecules from air to the surface of a table, but we have different physical con-
ditions at an interface. Ignoring evaporation, we would see that vapor molecules
“vanish” at the liquid surface due to condensation. Thereby, the average velocity of
the vapor is non-zero, i.e., the DF of the vapor cannot have the equilibrium
Maxwellian form (Kucherov and Rikenglaz 1960a, b). In the presence of the
evaporation flux, there may be a contrary occurrence: vapor moves away from the
interface. Again, in this case the DF of particles would not be Maxwellian.

The easiest way to take into account the average velocity of the vapor V is to
assume that the DF can be represented as for a stream:

f vð Þ ¼
ffiffiffiffiffiffiffiffiffi
m
2pT

r
exp �m v� Vð Þ2

2T

 !
: ð7:1:7Þ
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The flux for such a DF differs from the Hertz formula. We have:

j ¼ n
Z1
0

vf vð Þdv ¼ n

ffiffiffiffiffiffiffiffiffi
m

2p T

r Z1
0

v exp �m v� Vð Þ2
2T

 !
dv: ð7:1:8Þ

Integrating, we have:

j ¼ n

ffiffiffiffiffiffiffiffiffi
T

2pm

r
W ~V
� �

; ð7:1:9Þ

where quantity:

W ~V
� � ¼ exp �~V2� �þ ~VC

1
2
; ~V2

� �
; ð7:1:10Þ

~V ¼ V

ffiffiffiffiffiffi
m
2T

r
: ð7:1:11Þ

Here ~V [ 0 if the vapor moves toward the liquid surface (condensation) and
~V\0 if the vapor moves away from the interface (evaporation).

For low values of average velocity ~V ! 0 and Wð~VÞ ! 1 and (7.1.9) gives the
regular Hertz equation. For any value of ~V , the expression for the total flux is (with
the assumptions listed above):

J tot ¼ a

ffiffiffiffiffiffiffiffiffi
m
2pT

r
ps �W ~V

� �
pv

� �
: ð7:1:12Þ

It is useful to understand what the “low average velocities” mean in this case.
Function Wð~VÞ is shown in Fig. 7.1. Note that the scale for the velocity V isffiffiffiffiffiffiffiffiffiffiffiffi

2T=m
p � 102 m/s for room temperatures of T * 102 K.

The average velocity V is not a free parameter, it is connected to the total mass
flux J tot at the interface:

~V ¼ � J tot

n
ffiffiffiffiffiffiffiffiffi
2mT
p ; ð7:1:13Þ

where the “−” sign appears as a consequence of the user’s choice: the “+” sign
being used for the evaporation flux in (7.1.12) but also for the condensation flux in
(7.1.7). Then, expanding into series we have:

W ~V
� � � 1þ ~V

ffiffiffi
p
p þ � � � ; ð7:1:14Þ
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and combining (7.1.11) and (7.1.12) with the correlation for the total flux we have:

J tot ¼ a

ffiffiffiffiffiffiffiffiffi
m
2pT

r
ps � 1� J tot

mn

ffiffiffiffiffiffiffi
mp
2T

r� �
pv

� �
: ð7:1:15Þ

Finally, we use pv ¼ nT again and get:

J tot ¼ a

ffiffiffiffiffiffiffiffiffi
m
2pT

r
ps � pvð Þþ a

2
J tot; ð7:1:16Þ

J tot ¼ 2a
2� a

ffiffiffiffiffiffiffiffiffi
m
2pT

r
ps � pvð Þ: ð7:1:17Þ

Equation (7.1.17) is sometimes referred to as the Hertz–Knudsen–Schrage for-
mula. This correlation takes into account a relatively slow vapor flux at the inter-
face: for both the vapor motion to the interface (condensation) and for the flux away
from the liquid surface (evaporation). As shown in Fig. 7.1, this approximation—
based on linearization (7.1.14)—is valid for:

J totj j � 0:1mn

ffiffiffiffiffiffi
2T
m

r
� 0:1p

ffiffiffiffi
m
T

r
; ð7:1:18Þ

where we omit the factor
ffiffiffi
2
p

, because (7.1.18) is only an estimation to one order of
magnitude. Strictly, here p ¼ pv, but it does not matter because it follows from
(7.1.17) that at condition (7.1.18) ps� pv.

One may assume that (7.1.17) is better than (7.1.6) for three reasons:

• Expression (7.1.17) transients to (7.1.6) at a! 0, thereby, (7.1.6) is a particular
case of (7.1.17).

• Expression (7.1.17) takes into account the factor that is ignored in correlation
(7.1.6): the effect of the total non-zero flux on the DFs of gas particles.

• Expression (7.1.17) was obtained in a more complicated way.

Fig. 7.1 Function Wðj~V jÞ for
evaporation [the “−” sign
before the second term in
(7.1.10)] and for the
condensation [the “+” sign in
(7.1.10)]
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Actually, the second reason is not that much more serious than reason three. Yes,
the Hertz–Knudsen equation assumes that both DFs are Maxwellian (for the
evaporated particles and for the particles in the condensation flux). This is a model,
and it is very hard to verify it, especially for commensuration of the fluxes of
evaporation and condensation.

However, correlation (7.1.17) is based on model assumptions too. First of all,
there are no clear foundations for the DF in form of (7.1.7). This DF considers only
one issue—a non-zero total flux; but there are infinite possibilities to compose
non-symmetric DFs which can provide the desirable mass flux. Strictly, DF (7.1.7)
may be used for an equilibrium flow—a steady flow with average velocity V where
particles are thermalized at temperature T. The possibility of using (7.1.7) near the
interface is questionable.

Besides this complication, we face the problem of discontinuity at the interface:
DF (7.1.7) pretends to describe both branches of the DF (both for particles that
move toward a liquid surface and for particles that move away from it), but for the
runaway particles we must have the same DF at the evaporation surface (in the
absence of an energy barrier, of course; see Chap. 5). It is evident that
Maxwellian DF (MDF) used in (7.1.17) for the evaporation flux cannot coincide
with DF (7.1.7) having V 6¼ 0.

7.1.4 A Sidestep: The Accommodation Coefficient

This coefficient shows how the temperature T 0v of a particle which has been
absorbed having departed from vapor at temperature Tv differs from the temperature
of the liquid (or solid) surface at temperature Tl:

j ¼ T
0
v � Tl

Tv � Tl
: ð7:1:19Þ

Consequently, when a gas accepts the temperature of the liquid surface, after the
sorbing–desorbing process, then j ¼ 0; when the gas does not change its temper-
ature after interaction with the condensed phase, then j ¼ 1.

Sometimes, the accommodation coefficient plays a notable role in analytical
considerations, but we assign it to our “sidestep” sections. When the temperature of
desorbed particles differs from the temperature of the liquid, this means that an
ensemble of the departed particles is not thermalized, and for this out-of-equilibrium
group it is difficult to expect the MDF. In the case when 0\j\1 a much more
complicated consideration is needed, where such a parameter as temperature cannot
be used.

As for the case of an absolutely elastic reflection of particles, j ¼ 1, we have
discussed this earlier. It is unlikely that this happen in a real situation.
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7.2 The Experiment

7.2.1 How to Determine an Evaporation Coefficient

There are several methods which can be used to calculate an evaporation coefficient
from experiment data. We mean here that after measurement of the total mass flux
at the interface with known parameters p and T, various correlations can be used to
define (to extract) the evaporation coefficient from this data.

In the presence of a condensation flux from the vapor at pressure pv, in the
earliest works (Alty 1933) the Hertz–Knudsen equation, in its simplest form, was
used for the total flux on the interface (in this section we omit the index “tot” at
J because here we do not consider the evaporation or condensation flux separately):

J ¼ a ps � pvð Þ
ffiffiffiffiffiffiffiffiffi
m
2pT

r
: ð7:2:1Þ

Thus, it is supposed here that both the evaporation flux and the condensation flux
satisfies the Hertz formula with the condensation coefficient b ¼ a. There are no
distinctions of temperature in the liquid and in the vapor, as discussed in the
previous section.

The total mass flux J was determined experimentally, as in many successive
works, by the weight method: J ¼ Dm=SDt, where Dm is the variation of liquid
mass at time Dt on surface area S.

This method, based on (7.2.1), was also used in Delaney et al (1964) and Barnes
(1978) and several others (see Table 7.1).

Another method has been applied in later works. The modified equation for the
total mass flux was used (see Sect. 7.1.3):

J ¼ 2a
2� a

ps � pvð Þ
ffiffiffiffiffiffiffiffiffi
m
2pT

r
: ð7:2:2Þ

For some reason, this equation is supposed to be more precise than the Hertz–
Knudsen formula. Here, as we see, there is no difference between the evaporation
and the condensation coefficients. However, for example, in Bonacci et al. (1976)
two kinds of coefficient a were measured: at conditions of total evaporation (i.e., for
J > 0), where the obtained value a was termed the “evaporation coefficient,” and at
the condition of condensation (J < 0), where the “condensation coefficient” a was
determined.

It is interesting to compare experimental results with methods based on (7.2.1)
and (7.2.2). For small evaporation coefficients a� 1 the data obtained with these
two expressions is the same. But for a large a the discrepancy will be huge; for
instance, assuming that the true value of a = 1, the mass flux in (7.2.2) exceeds the
mass flux in (7.2.1) by a factor of two. Anyway, the difference between the two
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Table 7.1 The evaporation (condensation) coefficient of water

References Model a Comments

Alty and Nicoll
(1931)

(7.2.1) 0.0156

Alty (1931) (7.2.1) 0.0083–0.0155

Alty (1933) (7.2.1) 0.04 The average value and actual values are
within the range 0.0268–0.0584

Barnes (1978) (7.2.1) 0.0002 The apparent evaporation coefficient

Bonacci et al.
(1976)

(7.2.2) 0.55, 0.7–1 “with
plausible corrections”

Used both for evaporation and
condensation experiments

Chodes et al.
(1974)

(7.2.24) 0.033 ± 0.005

Delaney et al.
(1964)

(7.2.1) 0.0415 ± 0.0036
0.0265 ± 0.0031

For 0 °C
For 43 °C

Finkelstein and
Tamir (1976)

(7.2.8) From
0.006 ± 0.0003
to 0.060 ± 0.002

For condensation:
Tv = 99 °C
Tv = 60 °C

Hagen et al.
(1989)

(7.2.24) 1.0
*0.01

For condensation:
Fresh drops
Aged drops

Hickman (1954) (7.2.1) 0.243 (uncorrected)
0.424 (corrected)

Not less than 0.25 and probably
approximates to unity

Jamieson (1964) See text >0.305 Data for long residence times (a < 0.3)
were ignored

Li et al. (2001) (7.2.1) 0.17 ± 0.03
0.32 ± 0.04

At 280 K
At 258 K

Levine (1973) (7.2.24) 1

Maa (1967) (7.2.3) 1 Uncorrected value (see text) where
a0 � 0:5� 1

Mills and Seban
(1967)

(7.2.2) 0.45–1

Nabavian and
Bromley (1963)

(7.2.2) 0.35–1

Narusawa and
Springer (1975)

(7.2.2) 0.038
0.17–0.19

Surface stagnant
Surface replenished

Shaw and Lamb
(1999)

(7.2.24) 0.04–0.1 b and c (7.1.19) were determined in
common

Sinnarwalla
et al. (1975)

(7.2.24) 0.022–0.032 Condensation

Smith et al.
(2006)

(7.2.10) 0.62 ± 0.09

Tamir and
Hasson (1971)

(7.2.8) 0.18
0.23
0.11

Vacuum evaporation
Vacuum condensation
Pressure condensation

Vietti and
Fastook (1976)

(7.2.24) 0.1–1
0.036

For drops of *2 lm size
For larger drops

(continued)
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methods cannot be responsible for the spread of experimental points of two orders
of magnitude.

In some cases expression (7.2.1) was modified. In Offringa et al. (1983) the
coefficient ac was used instead of a in (7.2.1), where c is the degree of the surface
roughness. In this work a value ac ¼ 0:99� 0:07 was presented for trans-
diphenylethene, but the “clear” value of the evaporation coefficient (or the esti-
mation of c) was not calculated.

In Maa (1967) an attempt to obtain a “true” evaporation coefficient a from the
measured value a0 was realized. The “true” evaporation coefficient is the factor in
(7.2.1), but with a different pressure and temperature:

J ¼ a ptr tð Þ � pv tð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2pTtr tð Þ

r
; ð7:2:3Þ

where ptr and Ttr is the pressure and the temperature at the interface. Here we
emphasize that all parameters actually depend on time. Then, according to Maa
(1967), another flux is determined in the real experiment: the value J 0 averaged over
time interval Dt:

J 0 ¼ 1
Dt

ZDt
0

Jdt: ð7:2:4Þ

Thus, the measured evaporation coefficient a0 corresponds to the flux J 0, not to
the true flux J. Under some assumptions, for a certain scheme of the experimental
setup, the correlation between a and a0 was obtained in Maa (1967).

An approach taking into account the temperature dependence of a was made by
Zientara et al. (2008). For droplet evaporation in air the authors used correlation
(7.2.1) for the mass flux on the surface of a small droplet; the evaporation coeffi-
cient was determined from the data on dR/dt—the rate of droplet diminishment. The
effect of the temperature difference DT ¼ Ta � TR on the evaporation coefficient is:

a
a DT ¼ 0ð Þ ¼

n� qv Tað Þ
qv TRð Þ

n� 1
; ð7:2:5Þ

Table 7.1 (continued)

References Model a Comments

Wakeshima and
Takata (1963)

(7.2.24) 0.02

Winkler et al.
(2006)

(7.2.34) 0.8–1
0.4–1

250–270 K
270–290 K

Zientara et al.
(2008)

(7.2.5) 0.13–0.18 Decreases with temperature according to
the Arrhenius’ law
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where n is humidity, Ta is the temperature of the droplet surface and TR is the
temperature of the reservoir (i.e., of the surrounding medium).

Evaporation coefficient can also be obtained through heat exchange measure-
ments (Tamir and Hasson 1971). The heat transfer coefficient h on the interface can
be expressed by (7.2.1) with different temperatures for phases, i.e., for a general
case:

h ¼ DH
Ts � Tv

a

ffiffiffiffiffiffi
m
2p

r
psffiffiffiffiffi
Ts
p � pvffiffiffiffiffi

Tv
p

� �
; ð7:2:6Þ

where DH is the enthalpy of vaporization. For high values of a, one can expect that
Ts � Tv and with the Clapeyron-Clausius equation in the form:

Dp 	 ps � pv ¼ Ts � Tvð Þ DH
vsTs

; ð7:2:7Þ

(vs is the specific volume of the vapor at saturation point) we have:

h � a

ffiffiffiffiffiffi
m
2p

r
DHð Þ2
vsT

3=2
s

: ð7:2:8Þ

Then, a was determined from the correlation between the local Nusselt number
Nux ¼ 2sh

k (s is the thickness of the liquid layer and k is the thermal conductivity of

the liquid) and the Graetz number Gz ¼ ð2sÞ2�uxa (x is the distance from the origin and �u
is the constant liquid velocity for no phase change):

Nux
4
¼ Gz1=3

R
; ð7:2:9Þ

which is obtained for small Gz, with the surface resistance parameter R that can be
calculated from experimental data. Thus, the experimental dependence Nux ¼
f ðGzÞ was fitted by (7.2.8) with adjustment parameter a.

This method is rather original. Under many assumptions we obtain coefficient a
through the heat exchange equations, the correctness of which is restricted not only
by the usual allowance of the local equilibrium, etc., but also by the form of the
equations themselves. Taking into account that usually errors of heat exchange
experiments are high, it is difficult to expect great precision for the evaporation
coefficient measured using such a method. Note that the initial problems (con-
cerning correctness of the Hertz–Knudsen equation with a ¼ b) remain in this
method too.

Another method where the evaporation coefficient can be determined with the
heat balance equation has been applied in Smith et al. (2006). The main correlation
is the equation of the heat balance of the evaporated droplet in a vacuum:
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dT
dt
¼ �JF DH

cpM
; ð7:2:10Þ

with J taken from (7.2.1), F ¼ 4pr20 is the surface area of the droplet, cp is the
isobaric heat capacity and M ¼ 4

3 pd
3q is the mass of the spherical shell of the liquid

(with density q) of radius d.
Thus, the heat flux on the surface of the evaporated droplet is supposed to be the

mass flux multiplied by the equilibrium value of the enthalpy difference between
two phases; this approach is widespread in heat transfer science.

In an experiment (Smith et al. 2006), the temperature dependence T(t) of the
interface of the droplet was approximated by (7.2.10), with the unique free
parameter a (from J) determined in this way. Actually, the “philosophy” of mea-
suring the evaporation coefficient in Smith et al. (2006) is old: here the Hertz flux is
interpreted as the theoretical maximum of the evaporation rate.

As we discussed above, in the literature the evaporation coefficient and the
condensation coefficient are mixed. The condensation coefficient usually may be
obtained from experiments for droplet growth; the mass balance for a droplet is:

dM
dt
¼ �4pR2J; ð7:2:11Þ

where M and R are the mass and radius of a droplet, correspondingly. The “−” sign
holds our agreement about the sign of the flux: plus for evaporation, minus for
condensation. In a macroscopic (hydrodynamic) description one can define the total
mass flux J as a diffusion flux, i.e.:

J ¼ �D @q
@r

; ð7:2:12Þ

according to Fick’s law (D is the diffusion coefficient and q is the density of a vapor
surrounding our droplet). In a stationary case, div~J ¼ 0 and we see from:

1
r2
@ r2Jð Þ
@r

¼ 0 ð7:2:13Þ

that r2J ¼ const and that:

q ¼ qvþ qi � qvð ÞR
r
; ð7:2:14Þ

where qv ¼ qð1Þ is the vapor density far from the droplet and qi is the density of
gas near the interface: q ¼ qðRÞ.

Thus, with (7.2.14) we have for the diffusion flux (7.2.12):
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J ¼ D
qv � qi

R
; ð7:2:15Þ

and for the so-called diffusion-controlled growth rate we have, with (7.2.11):

dM
dt
¼ 4pDR qv � qið Þ; ð7:2:16Þ

Then, we may note that because of phase transitions the variation of droplet mass
is connected to the variation of the amount of heat in the droplet. For this amount of
heat Q we have:

dQ
dt
¼ �4pR2q; ð7:2:17Þ

where the heat flux for a small droplet can be expressed only through heat
conduction:

q ¼ �k @T
@r

; ð7:2:18Þ

where k is the heat conductivity. Analogically, from div~q ¼ 0 we see the temper-
ature distribution in the vapor phase and the heat balance at the droplet surface as:

T rð Þ ¼ Tvþ Ti � Tvð ÞR
r
; ð7:2:19Þ

dQ
dt
¼ 4pkR Tv � Tið Þ ð7:2:20Þ

Thereby, (7.2.16) and (7.2.20) describe the growth of the liquid droplet in a
vapor at density qv and temperature Tv, with the droplet having a temperature Ts.
Taking into account that the energy DH released due to condensation must be
dissipated in vapor, we have the connection:

DH
dM
dt
¼ � dQ

dt
: ð7:2:21Þ

We can rewrite (7.2.16) as:

1
qs

dM
dt
¼ 4pDR

qv
qs
� qi
qs

� �
; ð7:2:22Þ

with the saturation density qs. Then, we can use a simplified version of the
Clapeyron-Clausius equation (far from the critical point, where the specific volume
of vapor is much greater than the specific volume of a liquid, and the Clapeyron
equation p ¼ qT

m can be correctly applied to the vapor phase) in the form:
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dp
dT
¼ pmDH

T2
s

; ð7:2:23Þ

where the latent heat DH is measured in K. The next step depends on the
assumption concerning the variation of T. If Tv� Ti� Ts, then we can neglect the
dependence of DH on T at this interval and from (7.2.23) we obtain:

ln
pi
ps

� �
� mDH

T2
s

Ti � Tsð Þ; ð7:2:24Þ

pi
ps
¼ qi

qs
� 1þ mDH

T2
s

Ti � Tsð Þ: ð7:2:25Þ

Substituting for Ti � Ts the expressions (7.2.20) and (7.2.21):

Ti � Ts ¼ DH
4pRk

dM
dt

: ð7:2:26Þ

Combining (7.2.22), (7.2.25) and (7.2.26) we have:

1
qs

dM
dt
¼ 4pDR

qv
qs
� 1� DH2m

4pRkT2
s

dM
dt

� �
; ð7:2:27Þ

dM
dt
¼

4pR qv
qs
� 1

	 

1

qsD
þ mDH2

kT2
s

: ð7:2:28Þ

Here qv=qs is the saturation ratio. Equation (7.2.28) is usually referred to as the
Maxwell equation. In Fukuta and Walter (1970) this equation was generalized in
the form:

dM
dt
¼

4pR qv
qs
� 1

	 

1

f3bq1D
þ mDH2

f3ckT2
s

; ð7:2:29Þ

where f3a and f3b are correction factors for temperature and vapor density differ-
ences, correspondingly; these factors depend on the condensation coefficient b and
the accommodation coefficient c and appear in corrected equations:

dM
dt
¼ 4pDRf3b qv � qið Þ; ð7:2:30Þ

dQ
dt
¼ 4pkRf3c Tv � Tið Þ: ð7:2:31Þ
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Fukuta and Walker (1970) obtained that:

f3b ¼ R
Rþ Lb

; f3c ¼ R
Rþ Lc

; ð7:2:32Þ

Lb ¼ D
b

ffiffiffiffiffiffiffiffiffi
2pm
Tv

r
; Lc ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmTv
p

cP Cvþ 1=2ð Þ : ð7:2:33Þ

An equation of the same type was obtained by Langmuir, but under some
assumptions: with b ¼ 1 and without consideration of heat conduction.

In brief, the equations of Maxwell (7.2.28) and Fukuta and Walter (7.2.28) take
many factors into account, including diffusion. In the case when we restrict our
consideration to only diffusion, we may obtain the correlation for the mass flux on
the surface of a droplet of radius R (Winkler et al. 2004):

J ¼ bC
4pRmD1p

T1
ln

1� x1
1� xR

� �
; ð7:2:34Þ

where x1 and xR are the vapor mole fraction far from the droplet and at its surface,
correspondingly, p is the total pressure and C is a quantity that takes into account
the temperature dependence of the diffusion coefficient D.

7.2.2 The Experimental Results

Considering that, at first glance, there are so many methods to obtain a experi-
mentally, it is no wonder that the difference in results is large. Actually, the spread
of values of a is wide, but the reason seems to be something other than the large set
of methods for its determination.

In this section we present the evaporation coefficient only for water. Also, we
present some values of the condensation coefficient for two cases: obtained using
the methods in (7.2.1) or (7.2.2), at conditions of total condensation, and for
comparison, derived using the method in (7.2.29) of Fukuta and Walter. Evidently,
if there is no distinction between a and b in theory, then it is impossible to find this
distinction in experiments, where the same parameter from (7.2.1) is referred to as
the “evaporation coefficient” for J[ 0 and termed as the “condensation coefficient”
otherwise. We suppose that the uncertainty in the presented results of the evapo-
ration (condensation) coefficient demonstrates the problem as a whole.

Table 7.1 features experimentally measured evaporation coefficients. We also
provide a theoretical model that stands behind the treatments—we assume that this
is an important factor; under the “theoretical model” we understand the equation in
which the evaporation coefficient appears. We slightly generalize these approaches;
for instance, we always refer to (7.2.29) even for cases when simplified variations
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of this equation were used, e.g., for Wakeshima and Takata (1963). Also, for
instance, in Li et al. (2001) the evaporation coefficient was extracted from the
experimental data in a complicated way, but the basic equation used was the
Knudsen correlation, thus, we refer to (7.2.1).

In the work by Bonacci et al. (1976) a dependence on time was observed (at time
intervals *1 s). In some works (see Table 7.1) temperature dependence has been
examined, but, in the context of the spread of overall results, it is difficult to discuss
such results in detail. In Marek and Straub (2001) the a� p diagram is presented;
despite the huge spread one may see a certain trend: the evaporation coefficient
tends to decrease with an increase in pressure. Specifically, low values of a were
observed at any pressures while a� 1 was obtained only for low pressures. As for
the condensation coefficient, it is problematic to see any dependence from the field
of points on the b� p diagram presented in that review.

A rather interesting aspect is that some experimental works do not even contain
any exact value of the evaporation coefficient in the form a ¼ a� b, where b� a.
In several works a is presented only as an estimate to an order of magnitude. In
some works the dispersion of a is large even for the same (or close) experimental
conditions. In other works a differs by ten or more times for the same methods but
at different special conditions: for instance, the evaporation coefficient varies with
the size of droplets. As an example, it is an interesting fact that the value obtained in
Hickman (1954) is referred to in Nabavian and Bromley (1963) as a ¼ 0:42, while
in Eames et al. (1997) this value is highlighted as a
 0:25; in Mills and Seban
(1967) a ¼ 1 was obtained (after recalculation). The most interesting fact in this
story is that all these references are indeed correct.

7.2.3 Explanations for Discrepancy (A Preliminary Round)

Of course, this strange situation—when a physical parameter varies by a few orders
of magnitude—demands explanation. Usually, these interpretations do not concern
the initial form of equations for evaporation coefficient determination. There is no
doubt in these works that:

• the evaporation flux can be calculated by a Hertz-like formula, where a deter-
mines a difference between the real flux and the theoretical (maximum) flux—an
unreachable maximum flux, as stated in some works (Knake and Stranskii
1959), i.e., the Hertz formula directly.

• thermodynamic parameters in this Hertz-like formula for evaporation flux
(temperature and pressure) correspond to the saturation quantities of this liquid,
i.e., in this formula the pressure p ¼ psðTÞ if the temperature of the liquid is T.

• the expression for the condensation flux has the same Hertzian form, but,
generally, with parameters corresponding to the vapor, i.e., in common case
Tv 6¼ Tl and pv 6¼ ps.
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• because of the two previous statements and the obvious fact that the total flux at
saturation must be equal to zero, the condensation coefficient must be equal to
the evaporation coefficient.

• last, but not least, the evaporation coefficient is an “external” physical property
for the evaporation flux, it cannot be found directly from the same theory as the
evaporation flux itself; this quantity must be accepted from the outer
consideration.

Thus, from our point of view, the principal and most interesting reasons were
banished from the analysis. We will argue four positions from the five in this list in
the next two sections (except for the second statement about psðTÞ for the evapo-
ration flux). Setting these factors to one side, the only two sorts of explanation for
the range of evaporation coefficient a� 10�3 � 1 are:

• Inaccuracy of experiments or of methods of calculations during the treatment of
experimental data, e.g. in Jamieson (1964) the neglection of evaporation was
mentioned in its discussion.

• Some “uncontrolled” factors.

The second group may be expanded as follows:

• The temperature of the water surface being lower than the estimated value
(Hickman 1954; Barnes 1978).

• The orientation of water molecules (Alty and Nicoll 1931).
• The contamination of the water surface (Hickman and White 1971).
• The thermal resistance of the interface (Mills and Seban 1967).
• The convective heat exchange (Mozurkewich 1986).
• The presence of foreign non-condensing gases and diffusion (Pound 1972).

The temperature of the surface is an important parameter, of course, and
sometimes it is difficult to understand at what point inside the liquid the temperature
has been measured, especially considering the fact that the temperature of the
surface notably differs from the temperature of the bulk of the liquid.

As for the effect of contamination, this in an old problem (Rideal 1924), and
contradictory results can be found in the literature. One may intuitively assume that
this influence must be strong; this conclusion corresponds, e.g., to experiments by
Miles et al. (2016). On the other hand, for example, we can refer to a work (Barnes
1978) which was devoted to the determination of the “apparent” evaporation
coefficient. To investigate the influence of the contamination of the water surface,
Barnes covered the liquid surface with a monolayer of octadecanol. However, there
was no resultant effect: the presence of the octadecanol film did not lower the
measured evaporation coefficient.

The role of convection–diffusion processes that lead to different correlations for
the fluxes on the interface also seems to be important (however, all these factors
do), but we cannot imagine that these factors altogether can provide a difference of
up to three orders of magnitude.
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7.3 Calculation of the Evaporation Coefficient

7.3.1 Some Definitions

We should distinguish two kinds of fluxes here: a flux (of mass, energy, etc.) on an
evaporation surface and a flux of evaporated atoms. The first one is the total flux:
the difference between the evaporation and the condensation fluxes. Below we will
assume that the total flux is represented by a “+” sign for the total evaporation
condition and a “−” sign for the condensation.

The next important issue: we are interested in fluxes on the outskirts of the
near-surface zone, where evaporated particles do not interact with the liquid surface
(see Fig. 3.3). For this purpose, it is incorrect to consider fluxes in the liquid or near
a surface (at distances *1 nm), because the evaporation flux varies (diminishes) as
the distance from the surface increases: large amounts of energy from molecules are
spent to overcome forces originating from the liquid surface.

Then we have to define the term “evaporation coefficient,” and this is not an easy
task.

7.3.2 What Is the Evaporation Coefficient?

The DF of the evaporated particles has a non-Maxwellian shape (see Chap. 5).
Thus, the evaporation flux does not have the Hertz form:

Jev 6¼ mn�v
4

; ð7:3:1Þ

with thermal velocity �v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8T=pm

p
, because, first of all, the non-equilibrium flux

has no such parameter as thermal velocity. Due to the non-symmetrical shape of the
DF of velocities of evaporated particles, the expression for the mass flux has a
non-Hertzian form, anyway, (see below) the factor � ffiffiffiffi

T
p

(where T is the tem-
perature of a liquid) arises for the mean velocity, and, consequently, we may write
an expression in a form similar to (7.3.1):

Jev ¼ a
mns�v
4

: ð7:3:2Þ

Thus, we express our evaporation flux as being proportional to the Hertzian flux
at corresponding parameters. Two questions follow from the (7.3.2).

Why do we use such a strange representation? Historically, when the MDF was
assumed to be correct for the DF of evaporated molecules, such a form as (7.3.2)
looked logical, and parameter a described the distinction of real number density in a
vapor phase at vicinity of a liquid n from the saturation value ns in (7.3.2).
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Honestly, we cannot explain this matter properly, because, from our point of view,
it is impossible to do so: any consequent consideration based on the MDF must lead
to a ¼ 1, as we understand. Possibly, the references to the non-maximum rate of
evaporation could be useful to understand the understandable. Actually, the
meaning of the evaporation coefficient is plain and simple: it is the adjustment
coefficient which must repair some problems concerning the question of agreement
with experiments. Indeed, many parameters in physics have this meaning.

The second question to consider is: what are the “corresponding parameters?”
These are parameters are the ones which satisfy the saturation state, i.e., the number
density of particles in (7.3.2) must be chosen on the saturation curve: nsðTÞ.

Thus, from the traditional position, the evaporation coefficient must be defined
experimentally, or, at least, with additional theoretical methods.

However, if we are informed about the results of Chap. 5, then we understand
that representation (7.3.2) leads to the determination of the evaporation coefficient
almost immediately. No problems arise here in a sense of the discussion about a
theoretically maximum flux, possibility of a ¼ 1, etc. With certain DFs (7.3.2) is a
clear definition of the evaporation coefficient with a clear physical meaning of this
value: we want (for some reason) to express the evaporation flux through the Hertz
flux, then calculate the corresponding factor a from (7.3.2).

We may calculate a in two ways: with number density n obtained from the
results of Chap. 6, or by constructing some correlations for n, connecting this
quantity with vapor parameters.

Because the second way looks more sophisticated, we shall start with this
approach.

7.3.3 Analytical Calculation

To calculate the evaporation coefficient, we must clearly understand its redundancy.
As we stated above, we may calculate fluxes without such parameters as a. Thus,
because we can find mass flux independently from expression (7.3.2), we may use
(7.3.2) to define parameter a.

As it follows from Chap. 5, the evaporation flux is:

jev ¼ nL�v ¼ nL

ffiffiffiffiffiffi
pT
2m

r
: ð7:3:3Þ

According to the consideration presented above, we have to find the number
density nL in (7.3.3), connecting it with the vapor pressure. The simplest way seems
to replace the number density in (7.3.3) with a Clapeyron equation–like nL ¼ p=T .
However, this would be an erroneous move. Actually, for non-equilibrium state
(with a non-MDF) the equation of state differs from the Clapeyron expression.
Thus, to bind the pressure of the evaporated particles we must find the “equation of
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state” for the evaporation flux, i.e., find the dependence p ¼ f ðnL;TÞ for the
evaporation flux.

As it follows from statistical physics, pressure p that is exerted perpendicular to
the surface of a liquid (i.e., in the direction of z axis) can be calculated through the
DF as the moment of flux:

p ¼ 2mv2 ¼ n
Z1
0

2mv2fz vð Þdv: ð7:3:4Þ

Here n (the number density of the particles) appears because all our DFs f ðvÞ are
normalized on unity. We must integrate (7.3.4) for all velocity components; (7.3.4)
is written with regards to the normalized condition for DFs on all other projections
of velocity:

R1
�1 f ðvx;yÞdvx;y ¼ 1; in (7.3.4) we omit the index “z” for the velocity v.

For example, for the MDF we have from (7.3.4):

p ¼ nsT ; ð7:3:5Þ

that is, the Clapeyron equation. With (7.3.5), we are able to represent the Hertz flux,
rewriting it in the form:

jH ¼ pffiffiffiffiffiffiffiffiffiffiffiffi
2pmT
p : ð7:3:6Þ

Evaporated atoms have a DF with a more “filled” high-energy tail, thus, the
pressure of this flux is:

p ¼
Z1
0

2mnLv2
mv
T

e�
mv2
T dv ¼ 4nLT ; ð7:3:7Þ

As we see, our demanded “equation of state” differs from the usual correlation.
Note, of course, that this is not an equation of state per se: pressures for directions
x and y correspond to the Clapeyron equation.

Consequently, the flux from the evaporation surface can be expressed with
nL ¼ ns=4 as:

jev ¼ nL

ffiffiffiffiffiffi
pT
2m

r
¼ p

4
pffiffiffiffiffiffiffiffiffiffiffiffi

2pmT
p ¼ p

4
jH: ð7:3:8Þ

Thus, if one demands that the pressure of evaporated particles must be equal to
the pressure of the saturated vapor, then we obtain from (7.3.8) that the evaporation
coefficient is:

a ¼ p
4
� 0:785: ð7:3:9Þ
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As we see, this number is very close to some experimental values for the
evaporation coefficient (or, considering its history, to the most frequently measured
value). Note that this value of a is also obtained in various numerical simulations,
e.g., Zhakhovskii and Anisimov (1997), Tsuruta and Nagayama (2004) and
Yasuoka et al. (1995).

For a DF for an irregular surface (see Chap. 5 for detail) we have by analogy:

p ¼ 6nL!z; ð7:3:10Þ

a ¼ 2
3

ffiffiffiffiffi
T
!z

s
: ð7:3:11Þ

We see from (7.3.10) that in a more general case the evaporation coefficient
varies according to the parameter �e. As usual !z\T (see Chap. 5) then a[ 2=3;
for instance, for conditions of numerical simulations from Chap. 5, T ¼ 120K,
!z ¼ 93K and a � 0:76, i.e., almost the same value.

However, someone may state that all our considerations are speculative … the
“equation of state” which is not, in fact, an equation of state, and so on. We have to
calculate the evaporation coefficient in another way, under another assumption.

Another approach to calculate the evaporation coefficient may be based on the
equality of heat fluxes. That is, the heat flux from the evaporation surface:

qev ¼ nLT

ffiffiffiffiffiffiffiffiffiffiffi
25pT
8m

r
; ð7:3:12Þ

and the heat flux from the vapor obtained with the MDF:

q ¼ nsT

ffiffiffiffiffiffiffi
2T
pm

r
: ð7:3:13Þ

As we see, to satisfy both (7.3.11) and (7.3.12) with qev ¼ q, there must be
nL ¼ 0:8ns

p . Consequently, for the evaporation flux we have:

jev ¼ nL�v ¼ 0:8ns
p

ffiffiffiffiffiffi
pT
2m

r
¼ 0:8

psffiffiffiffiffiffiffiffiffiffiffiffi
2pmT
p : ð7:3:14Þ

Thus, we obtain (once again!) that the evaporation coefficient a ¼ 0:8. This
result is not surprising, considering the fact that now nL ¼ 0:255ns instead of
nL ¼ 0:25ns from the previous consideration.

Analogically, for an irregular surface one may obtain a ¼ 1
1þ!z=4T

, i.e., slightly

larger than 4/5. For values !z ¼ 93K and T ¼ 120K we have a � 0:84.
As we see from the analytical consideration a � 0:8� 0:1 regardless of the

method applied. Let us see the results of numerical simulations next.
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7.3.4 Numerical Calculations

It is not very hard to calculate the total mass flux from the evaporation surface. The
problem is to associate this flux with the corresponding Hertz flux. We will
compare our calculated flux with the Hertz flux (7.3.3) for p ¼ psðTÞ—the satu-
ration pressure at the interface temperature T; saturation pressures were taken from
the National Institute of Standards and Technology database.

As in previous chapters, in numerical calculations we consider the evaporation
of liquid argon into a vacuum; results are presented in Table 7.2.

In the general case, the calculated value of the evaporation coefficient is close to
values predicted for an absolutely flat evaporation surface and for a highly disturbed
surface, for which DF (5.2.25) was obtained. Evidently, this situation is predictable
considering the fact that these two DFs were obtained for two limiting cases; thus,
one may expect that the true value of any quantity lays between these two limiting
values aflat and airregular.

The final matter to discuss is to what degree the results for evaporation into a
vacuum are adequate for real situations of evaporation into a gas? Evaporation into
a vacuum is the limiting or the model case which allows us to consider the case of
pure evaporation. This is not an adequate consideration, this is the consideration we
need. Complicated situations, where the evaporation flux is affected by the con-
densation flux will be considered later.

7.3.5 The Evaporation Coefficient Is Unnecessary

The evaporation flux may be calculated without any hypothesis about the pressure
on the evaporation surface, the value of the total heat flux (operations which were
used above), etc.

From the results of Chap. 6, we see that the evaporation flux may be defined
through the number density at the liquid surface n0 and the binding energy of the
atom on the surface U:

jev ¼ n0C
1
2
;
U
T

� � ffiffiffiffiffiffi
T
8m

r
: ð7:3:15Þ

If, for unknown reasons, someone needs the evaporation coefficient anyway,
they may obtain it from (7.3.14) and (7.3.15):

Table 7.2 Evaporation
coefficient from numerical
simulations

T (K) anumerical airregular aflat

115 0.83 0.83 0.8

120 0.86 0.84 0.8
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a ¼
ffiffiffi
p
p
2

n0
ns

C
1
2
;
U
T

� �
; ð7:3:16Þ

where the ratio n0=ns is the ratio of the densities of the liquid and the vapor.

7.3.6 Condensation Coefficient Versus Stick Coefficient

Can we calculate the condensation coefficient as easily as the evaporation one? The
answer depends on our definitions.

One of the definitions of the condensation coefficient is the ratio:

b ¼ number of molecules that stick to a liquid
number of molecules that strike a liquid

: ð7:3:17Þ

However, actually, this value would differ from the factor in Hertz–Knudsen
equation in cases when the condensation flux on the interface from the vapor phase
does not obey the Hertz formula. Thus, the condensation coefficient and the
quantity defined by relation (7.3.17) are different things.

This is an interesting point, deserving special consideration.

7.4 About the Condensation Coefficient

7.4.1 Two Types of Condensation Coefficient

Under the term “condensation flux” jcond we mean the number of vapor particles
attaching to a liquid surface per second per a square unit. This is a solid-state
quantity in contrast to the condensation coefficient. As we discussed in the
beginning of this chapter, the condensation coefficient may be defined in two
different ways:

• As the striking coefficient—ratio of the surface flux jsurf to the Hertz flux jH ¼
n�vT
4 at corresponding parameters, i.e., the condensation coefficient Mark I is:

bI ¼ jsurf

jH
: ð7:4:1Þ

• As the sticking coefficient—the fraction of particles attached to the surface, i.e.,
if the flux from the vapor on the evaporation surface is jsurf then condensation
coefficient Mark II is:
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bII ¼ jcond

jsurf
: ð7:4:2Þ

• Thereby, the total condensation coefficient is:

b ¼ bIbII ¼ jcond

jH
: ð7:4:3Þ

The condensation coefficient bI may also be redefined through the corrected flux
in the style of Kucherov-Rickenglaz instead of jH (i.e., with the shifted MDF for
vapor particles; see Sect. 7.2), but, anyway, the logic behind both approaches is the
same. Below we will strictly use expression (7.4.1) for bI.

The two definitions of condensation coefficient, i.e., (7.4.2) and (7.4.3), are
equivalent if and only if the surface flux is determined by the Hertz formula.
Because a vapor phase is supposed to be an equilibrium state and the DF of vapor
molecules is Maxwellian, then we may expect the Hertz formula for the flux on the
surface. However, commonly, this is not the case. We may point out at least two
reasons for the inequality jsurf 6¼ jH.

The first reason for a non-Hertzian flux on an interface is the possible
non-equilibrium state of vapor near a liquid surface. For instance, this
non-equilibrium may be caused by the temperature difference between a liquid
surface and a vapor.

The second reason is the interaction of the condensation flux with particles being
evaporated from the liquid surface. Collisions between two fluxes lead—again, in
the common case—to a suppressed condensation flux. One may expect that
evaporated particles (which have higher velocities than Maxwellian-distributed
particles) may repel the condensing atoms from the liquid surface. Thus, the con-
densation flux on the interface may be jsurf\ jH, and the diminishing of the mea-
sured condensation flux on the surface—relative to our expectations that
jsurf ¼ jH—is not caused by the sticking properties of the liquid surface, but induced
by the decreasing vapor flux on the liquid surface.

It is difficult to describe this problem in the latter sense, but we may at least
depict a description to estimate the influence of the evaporation flux on the flux of
condensing particles.

7.4.2 A Sidestep: A Collision Map

As we discussed in Chap. 3, a differential equation is a questionable theoretical
instrument for use on small scales. During a single collision, the velocity DF may
undergo appreciable deviations, thus, one cannot expect the DF to have a contin-
uous character on such scales.
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Usually, it is assumed that any DF would be “thermalized” at scales much
greater than the mean free path (MFP) l; i.e., after *101 collisions any DF turns
into a Maxwellian. Of course, one may find a smoothed DF with a kinetic equation
anyway, but, usually, the next step after such solutions is the interpretation of the
results obtained from them.

Let us try to avoid the use of differential equations using anold alternativeway:maps.
Assume that we have a velocity DF f ðvÞ at x ¼ 0. Then we want to know this DF

at x ¼ L, where distance L� l, i.e., an order of magnitude of the MFP. Note that,
e.g., L ¼ 0:5l satisfies this condition too: in this case some particles would also
undergo collisions.

Thus, we want to construct a map K for a new DF: if the DF before a collision is
f0ðvÞ and after a single collision is f1ðvÞ, then:

f1 vð Þ  Kf0 vð Þ: ð7:4:4Þ

Thereby, for n collisions we have DF in the form:

fn vð Þ  Knf0 vð Þ: ð7:4:5Þ

Then, we have to enter the probability pn of a particle extending the distance Lwith
n collisions; i.e., the probability to pass all the way without any collision is p0, the
probability to move through with one collision is p1, etc. Of course, there must be:

X1
n¼0

pn ¼ 1: ð7:4:6Þ

To construct the final form of the DF at distance L, we should remember the
meaning of the DF: f ðvÞdv is simply the number of particles with velocity v. Thus,
the total number of particles with velocity v can be found at distance L with:

f v; Lð Þdv ¼
X1
n¼0

pnK
nf v; 0ð Þdv: ð7:4:7Þ

As for the probability to pass distance L with n collisions, the Poisson distri-
bution seems to be a convenient function with a mean value k ¼ L=l ¼ Kn�1:

pn ¼ e�kkn

n!
: ð7:4:8Þ

Map K is the key of course. It may be represented in the style found in Chap. 3:

Kf ¼
Z

w Dð Þf v� Dð ÞdD; ð7:4:9Þ

where wðDÞ is the probability of changing velocity t to D due to a collision. In turn,
function wðDÞ may be represented with DFs of particles which have collided; note
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that in the general case we may consider different DFs: f ðvÞ for the particles of
interest and FðVÞ for scattering particles; see also Chap. 3, where such construc-
tions like (7.4.9) were discussed in detail. Below we give an example of the use of
(7.4.9) for evaporation–condensation DFs.

Finally, we may note that one may expect that limn!1 Knf , or at least
limk!1

P1
n¼0 pnK

nf for any function f , tends to be a MDF; in this case it is
necessary that the DF of scattering particles is F ¼ f . We discuss the nature of the
MDF in Chap. 2.

7.4.3 Estimation of the Role of an Evaporation Flux

Here we apply the consideration given in the previous section to estimate the
influence of the evaporation flux on the condensation flux.

Let us consider the flux from a vapor with a DF f1ðvÞ and the flux of the
countermoving particles from the liquid surface, DF f2ðvÞ. We want to find the DF
for vapor particles after collisions with the evaporation flux. To simplify, we will
consider only a single projection of velocity—normal to the liquid surface. In this
section we only illustrate how an evaporation flux distorts the condensation flux
from the bulk of a vapor, rather than attempting to calculate the exact value of the
condensation coefficient.

Assume that far from the evaporation surface the DF is Maxwellian:

f1 v1ð Þ ¼
ffiffiffiffiffiffi
2m
pT

r
|fflffl{zfflffl}

A

exp �mv21
2T

� �
: ð7:4:10Þ

We normalize this function in a such manner that
R1
0 f1ðvÞ dv ¼ 1. For evapo-

ration particles, we will use the DF:

f2ðv2Þ ¼ mv2
T

exp �mv22
2T

� �
: ð7:4:11Þ

After a collision, using the probable density function xðhÞ and a scattering angle
h in a center-mass coordinate system, the vapor particle obtains velocity:

v ¼ v1þ v2ð Þ cos2 h=2ð Þ � v2: ð7:4:12Þ

We are interested in DF f ðvÞ, which may be found as:

f vð Þ ¼
Z Z

f1 v1ð Þf2 v2ð Þx hð Þ dv1
dv

dhdv2: ð7:4:13Þ

Below we will use the solid-sphere potential of interaction with:
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x hð Þ ¼ sin h
2

: ð7:4:14Þ

After a collision, the flux on the liquid surface consists of two parts:

• Particles from the vapor which were scattered at angle u ¼ h
2\

p
2 in a laboratory

coordinate system.
• Particles from the liquid, that are returning to the liquid after a collision at angle

u[ p
2.

Let us find the first part of the flux. We have:

f ð1Þ vð Þ ¼
Z1
0

f2 v2ð Þ
Zp
0

f1
vþ v2

cos2 h=2ð Þ � v2

� �
sin hdh

2 cos2 h=2ð Þ

0
@

1
Adv2

¼ A
2

C 1=2; zð Þffiffi
z
p þ 2=

ffiffiffi
p
p ;

ð7:4:15Þ

where:

z ¼ mv2

2T
: ð7:4:16Þ

Thus, in this case only a fraction
R1
0 f ð1ÞðvÞdv ¼ 0:38 of the vapor molecules

reach the liquid surface after a single collision. The DF for other particles, which
were scattered back to the vapor, is:

f 1ð Þ
� vð Þ ¼

Z1
�v

f2 v2ð Þ
Zp

2 arccos
ffiffiffiffiffiffiffi
vþ v2
v2

p f1
vþ v2

cos2 h=2ð Þ � v2

� �
sin hdh

2 cos2 h=2ð Þ

2
6664

3
7775v2

¼
Z1
�v

f2 v2ð Þ
Z�1
ffiffiffiffiffiffiffi
vþ v2
v2

p 2f1
vþ v2
x2
� v2

	 
 dx
x

2
6664

3
7775dv2:

ð7:4:17Þ

The fraction of vapor particles that is reflected back to the bulk of a vapor after a

collision is
R 0
�1 f ð1Þ� ðv2Þdv2 ¼ 0:62. Thus, the flux from the liquid surface pushes

back the vapor molecules: as we discussed above, evaporated particles have higher
velocities and their flux is “stronger” than the condensation flux. For example, let
the temperature of the liquid surface be 100 K, while the temperature of vapor is
only 0.1 K (that is only an approximation of a limiting case of a super-cooled gas, a
model of almost immobile particles). In such a case we have *2% of the vapor
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particles reaching the surface; the other 98% of very slow vapor particles are thrown
back by the evaporated particles, akin to billiard balls.

However, as we remember, there also exists a second part of the flux—evapo-
rated particles that have been scattered back to the liquid surface after collision. To
obtain this flux, we replace the DFs in (7.4.14) as f1ðv1Þ ! f2ðv1Þ, f2ðv2Þ ! f1ðv2Þ
with functions (7.4.10) and (7.4.11); then we have to take into account that now the
velocity after collision v has an opposite sign relative to the initial velocity v1.
Finally, we have:

f ð2Þ vð Þ ¼ 2A
Z1
v

exp �mv22
2T

� � Z ffiffiffiffiffiffiv2�v
v2

p

0

m
xT

f2
v2 � v
x2
� v2

	 

dx

0
BB@

1
CCAdv2; ð7:4:18Þ

where x ¼ cosðh=2Þ and v[ 0 is the velocity directed toward the liquid surface.
Integrating, we have the same expression as (7.4.15), and the total DF f3ðvÞ ¼
f ð1ÞðvÞþ f ð2ÞðvÞ of the particles on the liquid surface is:

f3 z ¼ mv2

2T

� �
¼

ffiffiffiffiffiffi
2m
pT

r
C 1=2; zð Þffiffi
z
p þ 2=

ffiffiffi
p
p : ð7:4:19Þ

Figure 7.2 shows a representation of the initial DF f1ðvÞ in the bulk of the vapor
along with the distorted function (7.4.19).

If we restrict our consideration to only function (7.4.19), i.e., assume that every
vapor particle undergoes exactly one collision with evaporated particles (no more,
no less), we may find for the ratio of fluxes, i.e., for a “type I” condensation
coefficient:

bI ¼ jsurf

jH
¼
R1
0 v f3 vð ÞdvR1
0 v f1 vð Þdv ¼

1
2
: ð7:4:20Þ

It is interesting to apply the approach from the previous section, i.e., use the
expressions in (7.4.15) and (7.4.19) as definitions of operator K (see Sect. 7.4.2).
Of course, the flux of scattered particles cannot be described in 1D geometry, but,
again, we can approximately calculate the DF after the second collision using
(7.4.15) and (7.4.18) by replacing f1 ! f3 from (7.4.19). In this manner, the total
DF may be represented by the expression:

F vð Þ ¼ p0F0 vð Þþ p1F1 vð Þþ p2F2 vð Þþ � � � ð7:4:21Þ

where each ith term describes the contribution of i collisions with probabilities pi
according to (7.4.8). Specifically, F0 ¼ f1, F1 ¼ f3 and F2 must be calculated in the
manner described in the previous paragraph.
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The DF (7.4.21) is represented in Fig. 7.3; as one can see, there are no quali-
tative differences from the DF in Fig. 7.2. However, for DF (7.4.21) we have a
slightly larger condensation coefficient for Kn� 1, because a part of the conden-
sation flux reaches the surface unimpeded (using function f3 (7.4.20) we have just
assumed that every particle in the vapor undergoes a collision). Specifically, for
Kn ¼ 1 (i.e., for L = 1) we have bI � 0:6:

Possibly, it is not superfluous to depict that for our treatment—when we find the
distortion of the condensation DF because of its interaction with the evaporation
flux—the MFP l in the Knudsen number means “mean free path between two
successive collisions with evaporated particles.” For a weak evaporation flux, the
effect of evaporated particles on the condensation flux would be negligible. For
high evaporation conditions, we must take into account both collisions of vapor
molecules with evaporated ones, and secondary “vapor molecule-vapor (scattered)
molecule” interactions, etc. The only, and weak, excuse for such an approximate
consideration of such a complex problem is the statement that such a complex
problem is out of the scope of this book, evidently (because this is not a book about
the “kinetics of condensation”).

There more often path L is taken by a particle, the more collisions this particle
undergoes. For a low Knudsen number, every vapor molecule has many collisions,
thus, the DF (7.4.21) will be skewed to the ordinate axis, and the flux on the interface

Fig. 7.2 Distribution
function at the surface both
before and after one collision.
DF, distribution function;
MDF, Maxwellian
distribution function

Fig. 7.3 Distribution
function calculated from
(7.4.20) and its components
for Kn = 1. DF, distribution
function
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will be significantly different from the Hertz flux of Maxwellian-distributed
particles. In this case, one may expect that bI � 1.

In fine, we should also note that for a cold evaporation surface (slow-moving
evaporated particles) and hot vapor, the fast vapor molecules would “grab” evap-
orated molecules and return them to the liquid surface. In this case, the former
condensation flux increases (because now it consists not only of the condensation
flux itself but of the returning evaporated particles too). Depending on the exper-
imental method, in this case the condensation coefficient b[ 1 would be measured.

Let us briefly analyze these conditions. In an experiment, for “the total con-
densation conditions” (i.e., for the mass flux on the interface J < 0) the measured
flux:

J ¼ b JH; ev � JH; cond
� �

; ð7:4:22Þ

where JH; ev and JH; cond are the Hertz fluxes at the interface. In the case when the
evaporation flux is partially suppressed by the condensation flux, i.e., the evapo-
ration flux is JH; ev � DJH; ev (because part of the flux DJH;ev returns to the surface),
the form of the calculated (or measured) condensation coefficient b (7.4.22) would
be different from the “true” value b0 as:

1
b
� 1
b0
¼ DJH; ev

J
: ð7:4:23Þ

7.4.4 A Sidestep: A Common Consideration

The problems of the evaporation/condensation coefficients may be discussed in
common, without any certain DFs. This appears logical, because, as we see, we have
some difficulties with certain DF for particles condensing on the liquid surface.

Let us consider a quasi-equilibrium DF in the form:

f vð Þ ¼ Af
v2

T

� �
; ð7:4:24Þ

where A is the normalizing factor. The simplest example of such a DF is the MDF
f � expð�mv2=2TÞ or a shifted Maxwellian—a Maxwellian-like DF with a
non-zero average velocity. Then, from the normalization condition

R
Af ðvÞdv ¼ 1

we have A� 1=
ffiffiffiffi
T
p

. Consequently, for the flux we can obtain the correlation:

j ¼ n
Z

vAf
v2

T

� �
dv ¼ x ¼ v2

T
; dv ¼ 1

2

ffiffiffiffi
T
x

r
dx

( )
�

ffiffiffiffi
T
p

n
Z

f xð Þdx|fflfflfflfflffl{zfflfflfflfflffl}
C

; ð7:4:25Þ
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where the last integral is represented as a constant. Again, for a quasi-equilibrium
system it follows from the Clapeyron equation that n ¼ p=T , and that the flux from
the vapor to the interface is:

jcond ¼ C
pffiffiffiffi
T
p ¼ bIbIIpffiffiffiffiffiffiffiffiffiffiffiffi

2pmT
p : ð7:4:26Þ

In other words, when the temperature exists as a measure of the kinetic energy of
particles, the flux must take the form of (7.4.26). Expression (7.4.26) could be
obtained even more easily based on dimension reasons: if we can operate with such
parameters as pressure and temperature, then we must have (7.4.26).

In (7.4.26) the quantity bI is the parameter defining the distinction of the con-
densation flux from the Hertz expression, bII is a sticking coefficient.

As discussed above, for an evaporation flux we have a relation in the same form.
Combining the expressions for evaporation and condensation fluxes in one
expression for the total flux, we obtain the Hertz–Knudsen formula:

jtot ¼ apffiffiffiffiffiffiffiffiffiffiffiffi
2pmT
p � bIbIIpffiffiffiffiffiffiffiffiffiffiffiffi

2pmT
p : ð7:4:27Þ

Actually, we have made an assumption in this consideration—about the
equilibrium-like DF (7.4.27) in the vicinity of the interface: indeed, in common the
case, a non-equilibrium state cannot be described by such a parameter as temper-
ature. In the case of a strongly non-equilibrium state, one may replace T in the
second term of the right-hand side of (7.4.27) with the measure of kinetic energy �e,
this is an absolutely essential move. Also, pressure p, in the common case, must be
calculated as described in the beginning of Sect. 7.2.

The sticking coefficient bII may be found very easily in comparison to the
mysterious parameter bI.

7.4.5 The Sticking Coefficient

As we see from the previous section, the condensation coefficient can be defined as
the fraction of the adsorbed particles on the liquid surface, i.e., as the sticking
coefficient. We also defined it above as the condensation coefficient.

It is difficult to determine this experimentally, but easy to calculate this ratio in
numerical simulations. In comparison with other calculations presented in this
book, this a relatively simple task. The only requirement is “purity” of the
numerical experiment: we need to exclude interference from condensation and
evaporation fluxes. The easiest way to suppress the evaporation process is by
introducing a low-temperature condition; thus, we may expect that the evaporation
flux would be weak.
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Let us consider a liquid (as usual for our calculations we chose argon) at a
sufficiently low temperature. We will not consider an interaction between the
vapor phase and the liquid phase; we will “throw” atoms from a vacuum (yes,
remember what we wrote about condensation from a vacuum) onto a liquid sur-
face. In such a manner, we can easily observe the fate of any particle impacting the
liquid surface. It is a clear method: we can determine atom energy (i.e., velocity)
and then construct a dependence of the condensation coefficient on this energy
(velocity).

However, our numerical experiment did not let us define any function of the
condensation coefficient, because all the atoms that were dropped on the liquid
surface were attached. These particles draw different trajectories (see Fig. 7.4), but
all these trajectories contain their longest part inside the liquid. Actually, this fact
was predictable: in previous chapters, we discussed the difference between a solid
wall (a model construction) and a real surface. The local area of a liquid surface
consists of a few atoms and wide holes between them, these holes are large enough
to accept a new guest atom without any problem.

It is possible, of course, that an atom from the vapor would strike an atom from
the surface directly, thus, after such a collision the impacting particle can be
reflected. Such cases decrease the value of the sticking coefficient, but the proba-
bility of such processes is very low. Indeed, in our calculations we saw that all 22
particles became attached; in simulations by Kryukov and Levashov (2016) we find

Fig. 7.4 The trajectories of striking atoms in a liquid
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similar results: the value of the condensation coefficient is about 0.98. In recent
work by Iskrenova and Patnaik (2017) a result of b � 0:93� 0:96 was obtained.

Thus, we may conclude that bII � 1, distinct from bI which has, generally, a
badly predicted value.

7.4.6 Experimental Values for Evaporation
and Condensation Coefficients

In this section we try to explain how values of the evaporation coefficients differ in
their magnitudes.

First, we admit that some explanations from Sect. 7.2 look reasonable: indeed,
there are many uncontrolled parameters during the evaporation process. However,
we also want to point out that there exists a deeper problem: a problem of the
definition of the evaporation and condensation coefficients themselves.

As follows from considerations made in this section, the meanings of evapo-
ration and condensation coefficients are unclear. The vapor flux on the liquid sur-
face depends on the evaporation process, and vice versa, thus, the expression for the
total mass flux is:

J tot ¼ JevðJcondÞ � JcondðJevÞ: ð7:4:28Þ

By this formulation we mean that in the general case, when both fluxes are
presented and are commensurable, the total mass flux on the interface is determined
by a function f ðJev; JcondÞ. It is almost impossible to extract the quantities a
(evaporation coefficient) and b (condensation coefficient) from the measured value
J tot, especially considering the fact that the condensation flux is defined by two
condensation coefficients:

J tot ¼ bIbIIJH: ð7:4:29Þ

Thus, we are faced with the task of determining three coefficients a, bI and bII

from the single measured quantity J tot and, evidently, it seems to be a rather
impossible problem. Note that we do not see any physical reason for the equality
a ¼ bI; bII, because all three parameters have a different meaning, as well as the fact
that there appears to be no cause for the equalities a ¼ bII at bI ¼ 1.

Evaporation and condensation coefficients can only be determined for the
clearest of cases of evaporation (when condensation is negligible) or condensation
(neglecting evaporation, in this case b ¼ bII). If we consider option #1, then we
expect to find the evaporation coefficient a � 0:8. For option #2, the expected value
for the sticking coefficient is b � 1. In all other cases, when Jev and Jcond are
comparable, any value of the coefficient c, which portrays an illusory coefficient
a ¼ bII at an illusory condition bI ¼ 1, will be obtained. Because of incomparable
fluxes Jev � J tot at the interface, we expect c� 1 to be measured in such
experiments.
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7.5 Conclusion

The evaporation coefficient and its condensation analog are delicate things.
The evaporation coefficient a establishes a connection between the real mass flux

from the interface and the Hertz expression with corresponding parameters: the
temperature of the liquid (specifically, of the liquid surface) and with the mass
(number) density or the pressure. Traditionally, pressure is always used, and its
value corresponds to T, i.e., p ¼ psðTÞ.

We should distinguish the condensation coefficient and the sticking coefficient
from one another. Nowadays, they are different parameters, despite the definitions.
The sticking coefficient is close to unity, while the condensation coefficient in its
common sense is a mysterious quantity. Initially, the condensation coefficient
represents the fraction of the sticking particles of the incoming flux, but this
incoming flux must be defined correctly. The Hertz formula can be applied to a
solid (non-evaporating) surface at equilibrium conditions, where the DF of the gas
atoms is undisturbed.

However, we have another situation at the “liquid-vapor” interface. In a similar
manner to flak artillery, the evaporation flux opposes part of the condensation flux.
Evaporated particles distort the DF of vapor atoms, and the DF of the impacting
particles is no longer Maxwellian. In this case the condensation coefficient obtains
dual sense: the sticking coefficient bII is unequal to the ratio of the condensation
flux to the Hertz flux, which is now equal to the product bIbII, where parameter bI

defines deviations from the Hertz formula. We emphasize that bI is not a constant: it
depends on the evaporation flux and, more commonly, on conditions near the
interface.

Under these considerations, the total flux on the interfacial surface may be
represented in the form:

jtot ¼ apffiffiffiffiffiffiffiffiffiffiffiffi
2pmT
p � bIbIIpffiffiffiffiffiffiffiffiffiffiffiffi

2pmT
p :

Strictly speaking, the second term does not matter much, because the depen-
dence bIðp; TÞ is stronger than the factor p=

ffiffiffiffi
T
p

extracted from this term.
Thus, in experiments, the quantity jtot can be measured (comparatively) easily

using the weight method, for example. However, the unknown form of the
right-hand side of the expression presented above forcefully obstructs any attempt
to determine the evaporation and condensation coefficients. We cannot predict with
any certain result bI (except with estimations), thus, we cannot predict results
obtained in certain treatments. However, we may predict that the range of the
“artificial” (or “apparent”, if we use existing terminology) coefficients will be wide.

However, within this chapter we present some certain results for the evaporation
coefficient and—considering known relationships—for the condensation coefficient
too.
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With the DF function from Chap. 5, we find the value of the evaporation
coefficient. With any method used the value obtained is always a� 0:8 for any kind
of evaporation surface (see Chap. 5).

In addition, in this chapter we calculated the sticking coefficient, i.e., bII � 1.
This result is not surprising, because, as we understand it, a liquid is always ready to
accept atoms from a vapor. Both results—for a and bII—were obtained earlier in
numerical simulations.

However, we cannot determine bI. With ponderous consideration we only
estimate that the interaction with the evaporation flux strongly changes the DF of
the condensing vapor atoms. Even a single collision between a vapor atom and
evaporated atom leads to a noticeable decrease in parameter bI.

Finally, we may conclude (just like a student defending their thesis) that further
research is needed.
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Chapter 8
Temperature Jump on the Evaporation
Surface

We always expect the character of physical quantities to be continuous. For example,
when we formulate a problem of heat transfer between two contacted bodies we put
the temperatures of both bodies at the contact point as the same value—the so-called
contact temperature.

This approach is generally incorrect for contact between two condensed matter
bodies as well as being incorrect for more standard solid-gas or liquid-vapor con-
tacts. At the contact point the temperature between two contacted phases differs.
Starting in the late nineteenth century there were many works, both theoretical and
experimental in approach, that tried to establish correlations between this temper-
ature difference at an interface, along with other physical parameters.

In Sect. 8.1 we give an overall description of the theoretical expectations. In
Sect. 8.2 we discuss the results of some experimental investigations of this phe-
nomenon, which drastically differ from theoretical results. In fine, in Sect. 8.3 we
give explanations for experimental data without corrupting the kinetic theory of
gases.

8.1 Out of Equilibrium: The Difference Between
the Temperature of a Liquid and of a Vapor

8.1.1 Non-equilibrium Kinetics

As was mentioned in Chap. 1, temperature T is the main thermodynamics param-
eter: in equilibrium all parts of a system have the same temperature T ¼ const:
However, evaporation is not an equilibrium process and one can expect that the
temperature between two contacting phases can be different.

At first, we must explain what the “contacting phases” are. The macroscopic
phase is a continuous medium; its kinetic properties (like viscosity, thermal
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conductivity, etc.) may be subject to a physical description only under conditions of
continuity. The macroscopic spatial scale L, must be much larger than the mean free
path (MFP, l) of the molecules. Thus, if we introduce a Knudsen number:

Kn ¼ l
L
; ð8:1:1Þ

the condition for a continuous medium is Kn � 1: For Kn � 1; we have a
so-called free molecular flow: particles move without collisions along a distance
L. In both limiting cases (both on small scales and large scales) we have proper
physical descriptions; for Kn � 1 this physical description collapses to the
Navier-Stokes equations. The spatial scale corresponding to Kn � 1 is very
inconvenient: rare collisions affect the flow here, but we cannot average these
collisions on a sufficiently large scale and describe the whole medium as in
continuum.

Thus, a medium is a continuous medium only at scales of Kn � 1: As for a
liquid, the MFP there is approximately the mean inter-particle distance, so any
volume of liquid that has a sufficient number of molecules to require the intro-
duction of the parameter density can be considered a continuous medium (here are
some remarks in terms of thermodynamics: we at least need locally defined prop-
erties of a medium, such as temperature and pressure; in any case, a large volume
may be considered as a “continuous medium;” see Sect. 9.3). However, a gas is not
so “continuous.” The MFP of a molecule can be estimated as:

l � 1
nr

; ð8:1:2Þ

where the cross section of collisions is r � d2 (d is the diameter of a molecule) and
the number density can be expressed through the Clapeyron equation n ¼ p=T:
Thus, for vapor at pressure p the MFP l � T= pd2ð Þ; for molecules with diameters
of a few angstroms (further we will use 0.5 nm for consistency and precision) and
temperatures of *102 K we have an estimation for the MFP:

l � 10�2

p Pa½ � ; m½ �: ð8:1:3Þ

We omit all the *1 multipliers here, thus, the (8.1.3) is only an estimate to one
order of magnitude. For example, for low pressures *103 Pa we see that the
MFP *10 lm; for high pressures *106 Pa we have a MFP *10 nm.

Thus, a gas is not in continuum at scales approximating to the MFP. Particularly,
a gas in not a continuum at distances approximating to the MFP from the liquid
surface. For instance, on that spatial scale the distribution function (DF) of evap-
orated particles conserves its non-equilibrium form.
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In other words, vapor in a continuous phase “begins at a distance” of *10
MFPs from the liquid surface; here, the number 10 (which is equal to the number of
fingers on two hands—the source of magic is finally identified here) reflects our
representation of the term “a lot.” Of course, the actual multiplier at the MFP
represents the number of collisions which is sufficient to establish a stationary,
uniform (or even equilibrium) DF.

On scales with Kn * 1 (inside the so-called Knudsen layer), at non-equilibrium
conditions, vapor does not even have such a parameter as temperature. The DF of
molecules and, thereby, the mean kinetic energy of molecules too, varies signifi-
cantly from collision to collision; here it is impossible to provide any averaging to
smooth the DF and quantities derived from it.

To obtain the expression for fluxes close to the evaporation surface, one needs to
know the DF of velocity for vapor molecules near the evaporation surface.

The problem of determination of mass and energy fluxes in the Knudsen layer
(see Sect. 3.7) may be solved using different formulations. One of these possible
formulations is the problem of re-condensation: a gas flow between two parallel
liquid layers with evaporation/condensation boundary conditions at the layers. The
solution to this problem—functions for fluxes j Dp;DTð Þ and q Dp;DTð Þ; i.e.,
functions of the temperature and of the pressure differences. The key problem is the
DF in the gas layer.

Here we will follow the work of Labuncov (1966). Let us represent the velocity
of a molecule as the sum of the mean (macroscopic) velocity ~u and the chaotic
component of velocity~c :

~v ¼~cþ~u: ð8:1:4Þ

Thus, we represent all the fluxes—both from and to the evaporation surface—
with two quasi-Maxwellian distribution functions (MDF) denoted as “a” and “b”;
each DF has its own module (the mean kinetic energy ea;b) and normalizing factor:

Fa vð Þ ¼ naffiffiffi
p

p
eað Þ3

exp � vz � uað Þ2 þ v2x þ v2y
e2a

 !
; vz [ 0; ð8:1:5Þ

Fb vð Þ ¼ nbffiffiffi
p

p
ebð Þ3

exp � vz � ubð Þ2 þ v2x þ v2y
e2b

 !
; vz\0: ð8:1:6Þ

Thus, six constants must be obtained: na; nb; ea; eb; ua; ub—number density of
particles, mean kinetic energy (analog of temperature) and velocities of two streams
(from and at the interface). These parameters can be found from the kinetic equation
having the form:

d
dz

Z
vzuk vð ÞF vð Þdv ¼ I uk vð Þð Þ; ð8:1:7Þ
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where I ukð Þ is the collision integral for functions uk that can be constructed for the
moments of velocities. Here, the integral is:

Z
vzuk vð ÞF vð Þdv ¼

Z1
0

Z1
�1

Z1
�1

vzuk vð ÞFa vð Þdvxdvydvz

þ
Z0
1

Z1
�1

Z1
�1

vzuk vð ÞFb vð Þdvxdvydvz:
ð8:1:8Þ

Here we use the functions which were chosen in Labuncov (1966):

u1 ¼ 1; u2 ¼ vz; u3 ¼
v2

2
; u4 ¼ v2z ; u5 ¼

vzv2

2
; u6 ¼

v2z
2
: ð8:1:9Þ

For the first three momentums I u1;2;3 vð Þ� � ¼ 0: For Maxwellian molecules
(molecules with an interaction potential u rð Þ � r�4) one may represent:

I v2z
� � ¼ 1

9
m
g
I c2
� �

I c2
� �� 3I c2z

� �� �
; ð8:1:10Þ

I
vzv2

2

� �
¼ � 1

9
m
g
I c2
� �

I czc
2

� �þ uIc v2z
� �

; ð8:1:11Þ

I
v2z
2

� �
¼ 1

6
m
g
I c2
� �

I czc
2� �� 3I c3z

� �� �þ 3uI v2z
� �

; ð8:1:12Þ

where m, as usual, is the mass of the molecule and g is the dynamic viscosity of the
vapor. The equations presented above, in principal, can be applied to various
problems in which the DF in the Knudsen layer is needed; below we use it for the
problem of re-condensation: gas evaporates from the liquid surface A and con-
denses on liquid surface B.

To solve system (8.1.7) with (8.1.10–8.1.12) we need boundary conditions. Let
us consider a layer between planes A and B with known temperatures TA [ TB
(under the condition TA � TBð Þ=TA;B � 1); each plane corresponds to a liquid with
a certain condensation coefficient b, i.e., fraction b is absorbed and fraction 1� bð Þ
is reflected (under diffusive or mirror conditions).

We omit the method of the solution of that system; in Labuncov (1966) various
functions for various cases were obtained. For small Knudsen numbers and diffu-
sive types of reflections we have simple equations for a continuous media:

j ¼ k bð Þ Dpffiffiffiffiffiffiffiffiffi
2pT

p ; q ¼ jCpT; k bð Þ � b
1� 0:4b

: ð8:1:13Þ
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For high Knudsen numbers and mirror conditions for reflected molecules we
have the following expressions for the fluxes:

j ¼ 2b
2� b

Dpffiffiffiffiffiffiffiffiffiffiffiffi
2pmT

p 1� 1
2
DT
Dp

p
T

� �
; ð8:1:14Þ

q ¼ 2b
2� b

ffiffiffiffiffiffiffi
2T
pm

r
Dp 1þ 1

2
DT
Dp

p
T

� �
: ð8:1:15Þ

As we can see, we represent here the fluxes from the finite differences of the
pressure and temperature of the liquid layers. One may find from (8.1.14) and
(8.1.15) the expressions for Dp and DT to calculate these quantities with known
mass and energy fluxes.

The problems of discontinuities on the liquid surface were considered in Albertoni
et al. (1963) and Bassanini et al. (1967); more directly, the problem of the temperature
jump on the evaporation surface was considered in Pao (1971) and using methods of
irreversible thermodynamics in Cipolla et al. (1974). Actually, it is difficult to point out
the singlemilestonework that determined the required temperature jump. This problem
was solved step-by-step over a decade from the mid-1960s to the mid-1970s.

Using a modern approach, the temperature discontinuity between the vapor and
the liquid phases can be expressed as:

TV � TL
TL

¼ �C1q� C2J; ð8:1:16Þ

with C1 ¼ 1:03
ffiffiffiffiffiffi
m
2TL

q
1
ps
and C2 ¼ 0:45 1ffiffiffiffiffiffiffiffi

2mTL
p TL

ps
: For instance, in the absence of a

heat flux for water at J � 1 g
m2s ; TL ¼ 283K and, consequently, ps � 1:2� 103 Pa;

we have TV � TL � � 0:03K:
We provide some explanations for correlation (8.1.16) in Sect. 8.1.3.
The temperature jumps predicted by (8.1.16) are very small, usually they are much

less than 1 K. It is very difficult to measure such small temperature differences,
especially considering the fact that these measurements must be done near the
evaporated liquid surface (at distances of less than 1 mm). Some scientists were
certain that it was impossible to determine such a small temperature discontinuity on
such a small spatial scale experimentally, however, such experiments were performed
with surprising results, see Sect. 8.2. However, before we examine such experimental
data, we should discuss some overall problems with the temperature jump.

8.1.2 Some History of the Temperature Jump

The general concept about an inequality of temperatures between two contacted
phases developed at the dawn of the theory of kinetics. Possibly, the earliest work
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devoted to the temperature discontinuity is by Kundt and Warburg (1875). At the
transition between the nineteenth and twentieth centuries, the temperature jump
between the solid phase and the gas phase was considered in by Gregory (1936):

DT ¼ �m
dT
dn

; ð8:1:17Þ

where DT is the temperature difference between the heated solid and the gas and dT
dn

is the temperature gradient in the gas near the surface in a normal direction.
Quantity m was the object of investigation; in early works it was established that
m � 1=p or m � l (mean free path).

Later, the first theory of the temperature jump at a “solid-gas” interface was
provided by Smoluchowski in 1911; Smoluchowski obtained his results partly as a
consequence of the work by Maxwell (1879), who introduced a method to solve a
kinetic problem for a Knudsen layer. Note that the term “Knudsen layer” itself
appeared in physics much later than Maxwell published that work: at that time
Martin Knudsen was only 8 years old.

Smoluchowski found that (in simplified form provided by Gregory):

m ¼ 15
2p

2� b
2b

l: ð8:1:18Þ

The temperature jump in the form of (8.1.17) was widely used in the
mid-twentieth century, for example, in experiments for the determination of the
thermal conductivity of gases at low pressure (earlier in that century the coefficient
m was derived from the same experiments) (see, e.g., Makhrov 1977a, b).

Then, in 1960s–1970s the modern life of the temperature discontinuity in the
Knudsen layer near the evaporation surface began.

8.1.3 Discontinuity of Parameters: A Brief Overview

There is no exceptional magic accounting for jumps in physical parameters. Natura
diligit vacuum, and finite differences of physical quantities are common things.

For instance, let us consider two large vessels containing gas at different tem-
peratures and pressures (see Fig. 8.1). The vessels are connected with a sufficiently
short tube: the Knudsen number here is Kn � 1; thus, molecules of gas can travel
from one vessel to another without any collisions; arriving molecules can interact
with their new neighbors only in the receiving vessel.

The flux from each vessel connected to the tube is:

j1;2 ¼ p1;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmT1;2

p : ð8:1:19Þ
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In equilibrium state, flux j1 ¼ j2, and we have:

p1ffiffiffiffiffi
T1

p ¼ p2ffiffiffiffiffi
T2

p : ð8:1:20Þ

This is a so-called Knudsen effect. Thus, for instance, at unequal pressures we
have some sort of a temperature jump in such a system.

The Knudsen effect is the key to understand the physics of the temperature
jump. For a non-equilibrium state, but one which is in the vicinity of equilibrium, the
scale of the velocity is the thermal velocity � ffiffiffiffiffiffiffiffiffi

T=m
p

. Thus, the flux is � n
ffiffiffiffiffiffiffiffiffi
T=m

p
� p=

ffiffiffiffiffiffiffi
mT

p
, leading to the following expression for the total flux at the interface:

j ¼ C1p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmT1

p � C2p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmT2

p : ð8:1:21Þ

Constants C1 and C2 are close to one another, moreover, one can expect that in
the case of full equilibrium p1 ¼ p2 ¼ p0, T1 ¼ T2 ¼ T0 and, since the total zero
flux is expected, C1 ¼ C2. We may slightly generalize this consideration, assuming
that quantities C1;2 are not constants and may depend on parameters of the
non-equilibrium state, i.e., only at the equilibrium state does C1 ¼ C2; for
near-equilibrium states we may only have C1 � C2.

For a weak non-equilibrium—when pressures and temperatures in both phases
almost coincide: p1 � p2 and T1 � T2—one can expand the expression for flux
(8.1.21) into a series both for p and T. Supposing that C1 ¼ C2 ¼ C; we obtain an
equation for the total flux in the form:

j ¼ CDpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmT0

p � p0
T0

CDTffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pmT0

p : ð8:1:22Þ

This equation coincides with (8.1.14) at C ¼ 2b
2�b :

The meaning of (8.1.22) is clear: the total flux is caused by temperature or
pressure differences. However, we can reverse this consideration: for a non-zero

Fig. 8.1 The Knudsen effect
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total flux a difference in pressures or temperatures must exist. Actually, we doubt
that these explanations are equivalent in their nature, because it seems to us that in
the second case the cause and the effect has switched place.

In the most general case, we may compose a similar equation for the heat flux,
obtaining a system of equations of the form:

j ¼ cpj Dpþ cTj DT ;
q ¼ cpqDpþ cTqDT :

�
ð8:1:23Þ

We can then solve this system to find the jumps in temperature and pressure:

DT ¼ c jT jþ cqTq;
Dp ¼ c jpjþ cqpq:

�
ð8:1:24Þ

According to (8.1.24), one may calculate the temperature (and the pressure)
difference through the fluxes. We may note, repeating ourselves here, that actually
(8.1.23) describes the cause–effect relationships.

As we see, the principle that lays behind the existence of these jumps is clear.
The kinetic theory of gases only defines coefficients cj;qp;T for (8.1.24); this is its role.
Note that the same kind of system could be obtained for any fluxes, not exclusively
for a flux of form j � p=

ffiffiffiffi
T

p
. For this to happen, all that is needed is: (1) the

definition for parameters p and T and (2) the ability to represent fluxes in series for
these parameters.

In some works, differences Dp and DT are connected with the
Clapeyron-Clausius equation:

Dp
DT

¼ r
TDv

: ð8:1:25Þ

However, this approach is correct only for a limited number of cases, when
parameters at both sides of the Knudsen layer correspond to the thermal equilibrium
state. In the common case (see Fig. 8.2, where the saturation curve in p–T coordinates
is presented) the differences in values of p and T for two arbitrary points A0 and B0; of
course, have nothing in common with the differences along the saturation curve.

8.2 Confusing Experiments

We have seen that kinetic theory predicts a temperature jump between liquid and
gaseous phases. This jump is comparatively small and it is difficult to discover
experimentally. Even in the late twentieth century this temperature jump sometimes
was described as “unmeasured,” but recently the temperature difference was
explored with stunning results: experimental values being a magnitude of order
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larger and having an opposite sign. While theory predicts both “+” and “−” for
DT ¼ TV � TL, almost all experiments show DT [ 0. In some experiments DT
exceeds 10 K.

This discrepancy is the source of far-reaching conclusions. In some works,
kinetic theory was doubted with new theories being proposed; here we should
mention SRT—statistical rate theory (Ward and Fang 1999). We will not enter into
this battle by providing a new theory or defending an old one. Our explanation of
the measured temperature jump follows from our previous consideration (especially
from Chap. 5). We present these results in the next section.

Here we must treat these experimental results with care.

8.2.1 Experimental Temperature Jump: An Overview

Measuring a temperature jump is a delicate experimental procedure, which
demands a unique experimental technique and skills. The area of the effect is
narrow, and standard measurement error can negate any results: usually, the error of
the thermocouple (TC) measurement is *0.1 K, i.e., the same order of magnitude
as the predicted temperature jump. Of course, it is impossible to determine such an
effect with rough experimental equipment.

However, there still exists one serious aspect of the problem that must be
considered here, before Sect. 8.3. Initially, from the early works of Knudsen and
Smolukhovskii, the temperature jump was interpreted as the temperature difference
between two contacting phases (here it does not matter whether they are solid-gas
or liquid-vapor contacts). To determine the temperature difference, first we have to
define the temperatures of the contacting phases; and, so to speak, the existence of
temperature itself must be an essential point of this definition. We mean that
temperature can be defined only for continuous media; in the general case, this
parameter cannot be entered into the kinetic description for a non-equilibrium phase
or used for extremely small spatial scales. Thus, strictly speaking, the temperature
jump may be defined as follows:

• The temperature of the liquid at the surface is TL; this temperature must be
determined in a near-surface layer of thickness that is wider than the “contin-
uous scale”; there is no problem for such a condensed phase as liquid.

Fig. 8.2 Points A0 and B0 do
not sit on the saturation curve.

Thus, Dp A0B0ð Þ
DT A0B0ð Þ cannot be

determined with Clapeyron–
Clausius equation
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• The temperature of the vapor phase must be defined in the same way, but here
the requirement for a sufficient thickness of the vapor phase leads to serious
problems: we have to define TV near the liquid surface in a layer that is wider
than *10 MFPs; also the DF of atoms in this layer must correspond to the
MDF.

• If both TL and TV exist then we may define DT ¼ TV � TL.

However, what should we do in the case of problems with TV?
We may depict at least two sorts of problems concerning vapor temperature:

(1) it may not exist or (2) this parameter may be defined only with insufficient
accuracy making it inappropriate for further analysis of a temperature jump.

Let us look at the problem from another viewpoint. We figured out that the vapor
layer must be thick, so let us define the vapor temperature on a scale of *1 cm
(while the MFP, for instance, is *10 lm) close to the liquid surface. With this
method we obtain temperatures determined by averaging too large a volume; if the
temperature difference works on scales of *1 mm (i.e., the temperature varies only
at a distance of *1 mm from the interface), then after averaging at a scale
of *1 cm we would have nothing—we would simply the temperature of the bulk
of the vapor. Evidently, the temperature jump in this case has nothing in common
with the temperature jump that was predicted by the kinetic theory of gases (KTG).

Thus, the temperature of the vapor must be determined on intermediate scales:
not too small, not too large. This is the worst situation that can be imagined. There
is always the risk of moving into one of these two extremes of scale.

8.2.2 Some Experiments and Experimental Data

As an example of experimental technique, we describe here the experimental
procedure used in Badam et al. (2007).

Distilled and deionized water evaporates from a rectangular base through a
channel (see Fig. 8.3). The height of the meniscus—i.e., the evaporation surface—
was maintained *1 mm above the mouth of the channel. The temperature of both
the liquid and the vapor was measured by a U-shaped TC: the ratio of the length of
the horizontal wire (*3 mm) to its diameter (*25 lm) was large enough to neglect
thermal conduction fluxes along the wire (as is stated in the work). Radiation fluxes
were also negligible compared to the heat fluxes from the vapor. The TC was
mounted at the centerline of the channel and could be moved up and down.
Temperature was measured at two points in the vapor (distance 10 lm) near the
liquid surface and at two points in the liquid (distance 20 lm); the distance between
the vapor measurement point and the liquid measurement point was 50 lm.

An interesting part of the experimental setup of Badam et al. (2007) was the
heating element mounted at *3 mm above the interface. This heater provided a
significant heat flux from the vapor onto the liquid surface, and, consequently,
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allowed a comparison between the measured temperature jump and the value
predicted by the KTG.

The experimental results of Badam et al. (2007) are presented in Table 8.1 (full
data set can be found in the original paper). As one can see, the measured values of
the temperature jump are much higher than those predicted by the KTG: while the
theory predicts DT ¼ TV � TL � 0:1 K, the experiment gives DT � 1� 10 K.

Besides the values of temperature difference, the dependence of DT on the
pressure of the vapor p is particularly noteworthy. As one can see, DT decreases
with an increase of p.

The same result for temperature discontinuity was obtained earlier by Fang and
Ward (1999); see Table 8.2. With the same accurate technique, values for a tem-
perature jump of 1–8 K were obtained. Again, the temperature measured in the
vapor phase exceeded the temperature of the liquid.

8.2.3 The Temperature of the Interface

Actually, the temperature of the heating element in Badam et al. (2007) weakly
influences the temperature of the surface of the liquid. Let us analyze the experi-
mental data set: for vapor at *560 Pa pressure the temperature of the liquid in all
data sets varies from −0.77 °C (with the temperature of the heater being 80 °C) to
−1.1 °C (for conditions without additional heating). At *300 Pa the temperature
of the liquid was −9.6 °C (with a spread *0.1 °C).

Fig. 8.3 Experimental setup used by Badam et al. (2007)
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Thus, the role of the heater is the creation of a weak additional heat flux; the
temperature of the liquid surface obeys the deep, inner dependencies of the evap-
oration–condensation processes and cannot be significantly disturbed by such
insignificant fines as the heat flux.

Note that the temperature difference in these experiments differed significantly for
different heater temperatures: for *560 Pa DT ¼ 1:8� 11:6K while for *300 Pa
DT ¼ 2:8� 14:4K.

Thereby, one may conclude that DT does not depend on the temperature of the
liquid and on the pressure of the gas explicitly: for almost identical TL and p the
temperature jump differs by an order of magnitude. In other words, the measured
value of the temperature of the vapor TV near the liquid surface does not depend on
TL and p; or, specifically, it does not depend on TLðpÞ:

Considering the fact that the evaporation flux is determined exactly by this
parameter, it is interesting to check whether the temperature jump depends on the
evaporation mass flux or not. Is it possible that the temperature of the vapor is
determined only by the temperature of the heating element? Indeed, the larger the
temperature of the heater—the higher the temperature of the gas. There are no
contradictions in this statement, and the evaporation process is out of the game. Or
is it?

Table 8.1 Experimental data obtained by Badam et al. (2007)

Heating
temperature (°C)

Evaporation flux
[g/(m2s)]

Pressure in
vapor (Pa)

Experimental
DT (°C)

KTG DT
(°C)

30 0.578 736.0 3.99 0.15

30 0.607 569.5 3.84 0.17

30 0.636 483.0 4.22 0.20

30 0.687 391.2 4.76 0.26

30 0.737 295.2 5.50 0.33

30 0.768 240.3 5.76 0.43

50 0.766 847.9 6.25 0.24

50 0.781 743.0 6.71 0.27

50 0.836 572.4 7.29 0.36

50 0.904 391.4 8.80 0.51

50 0.970 288.5 9.69 0.68

50 1.01 236.0 10.25 0.84

70 0.882 966.8 4.10 0.30

70 0.922 850.5 8.62 0.33

70 0.958 747.0 9.52 0.38

70 1.02 573.1 10.47 0.50

70 1.09 389.2 11.51 0.72

70 1.13 290.7 12.81 0.95

70 1.18 215.6 14.63 1.26

KTG Kinetic theory of gases
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8.2.4 Correlation with the Mass Flux

The correlation between the temperature jump and the total flux on the evaporation
surface is shown in Fig. 8.4a (taken from Badam et al. 2007) and Fig. 8.4b (taken
from Fang and Ward 1999).

On these graphs all the experimental points are plotted: for all pressures, for all
heating modes. As one can see from these figures, a good linear dependence may
approximate these data sets:

DT ¼ C1 þC2J
tot; ð8:2:1Þ

where coefficients for Badam et al. (2007) are: C1 � �9K; C2 � 19 Km2 s/g; and
for Fang and Ward (1999): C1 � �0:5K; C2 � 15 Km2 s=g:

Thus, the temperature difference, generally, has a function of the linear depen-
dence of the total mass flux on the evaporation surface, as almost predicted by the
KTG, but with a sharper slope and with C1 6¼ 0; however, for the second data set
this constant is nearly equal to zero.

Note that the total flux is defined as:

J tot ¼ Jev � Jcond; ð8:2:2Þ

and, for example, the condensation flux for the MDF of vapor atoms is:

Table 8.2 Experimental data obtained by Fang and Ward (1999)

Evaporation
rate (ll/h)

Evaporation flux
[g/(m2s)]

Pressure in the
vapor (Pa)

TC position
(MFP)

Experimental
DT (°C)

70 0.2799 596.0 2.2 3.5

75 0.2544 493.3 3.7 3.7

85 0.3049 426.6 1.6 4.2

90 0.4166 413.3 1.7 4.2

100 0.3703 310.6 1.8 5.1

100 0.3480 342.6 4.7 5.3

100 0.3971 333.3 1.3 6.2

110 0.4081 269.3 2.7 6.3

110 0.4347 277.3 1.6 6.1

120 0.4097 264.0 1.4 6.2

120 0.4860 269.3 1.3 6.5

130 0.4166 245.3 2.0 6.0

140 0.4938 233.3 1.9 7.4

150 0.5086 213.3 2.2 7.5

160 0.5386 194.7 1.2 8.0

MFP Mean free path
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Jcond ¼ p
ffiffiffiffiffiffiffiffiffiffiffi
m

2pTV

r
: ð8:2:3Þ

Consequently, if we suppose that the evaporation flux is a constant Jev ¼
f TLð Þ ¼ const (because, as we stated above, TL ¼ constÞ, then the increase in the
total flux on the evaporation surface is determined only by the decrease in the
condensation flux on the liquid surface. Since the deviations of the vapor tem-
perature are small (*10 K compared with T0 � 273KÞ, we may expand (8.2.3)
into a series in the vicinity of T0, finding that:

J tot ¼ Jev � p
ffiffiffiffiffiffiffiffiffiffi
m

2pT0

r
þ p

2T0

ffiffiffiffiffiffiffiffiffiffi
m

2pT0

r
TV � T0ð Þ: ð8:2:4Þ

From this equation we may:

• Identify constant C1 from (8.3.1); we will not even represent this expression
here because it is hard to extract useable information from it.

• Estimate constant C2 from expression (8.3.1); this is a much more interesting
move:

C2 ¼ @TV
@J tot

¼ 2T0
p

ffiffiffiffiffiffiffiffiffiffi
2pT0
m

r
: ð8:2:5Þ

For instance, for pressure p ¼ 300 Pa and temperature T0 ¼ 273K we have (for
water) C2 ¼ 1:6 Km2 s/g; i.e., constant C2 is smaller than the constant C2 obtained
from the experimental data (see above) by an order of magnitude. As icing on the
cake, note that constant (8.2.5) is not really a constant—it is a function of the vapor
pressure, while the experimental value of C2 was obtained at various pressures.

Thus, our blitzkrieg fails—we cannot explain the experimental data in such
manner. The total flux on the evaporation surface cannot be explained by
condensation flux variations due to variation in the vapor temperature near the

Fig. 8.4 Temperature jump as a function of the mass flux. a Taken from Badam et al. (2007).
b Taken from Fang and Ward (1999)
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evaporation surface. We see that @TV=@J tot is too small, consequently, the
derivation @J tot=@TV is too large (we discussed this matter in Chap. 6) to explain
the experiment results.

We have to admit that:

• At various regimes with different heater temperatures, the total flux on the
evaporation surface is determined not only by the condensation flux, but also by
the evaporation flux itself, despite the fact that the temperature of the liquid
surface and the pressure of the gas stays the same.

• The temperature jump at the evaporation surface cannot be explained only by
variations in the vapor temperature caused by variations in the heater temperature.

Both problems are confusing. We may also note that it follows from the first
problem that the evaporation flux is somehow directly connected to the process of
condensation: the temperature of the liquid surface remains the same, but under a
condensation flux atoms of liquid evaporate “more willingly.” As for the second
problem, we mention again that the KTG cannot explain temperature jumps this
big. Double trouble!

8.2.5 The First Step of a Thousand-Mile Journey

The experiments that were discussed in this section are very subtle. Instead of the
temperature of the bulk of the vapor at the vicinity of the liquid surface, the
temperature inside the Knudsen layer was measured both in Badam et al. (2007)
and Fang and Ward (1999).

Strictly speaking, this is a new problem in respect to the problem that was solved
in the KTG. However, does this remark change anything concerning the problem
itself? If we care about the KTG, we may refer to the nuance that was stated above
in this section and feel at ease.

But we do not.
The experiments discussed in this section raise a couple of serious problems

concerning evaporation, and these problems must be solved. Any experiment needs
be explained, especially in the case of such delicate and accurate experiments.

In the next section we provide explanations for the temperature differences
observed in these experiments. However, considering all the circumstances, we will
refer to this quantity as a “measured temperature jump.”

8.3 Measured Temperature Jump

Two matters are important here: (1) the problem of the measured temperature
difference between the liquid phase and the gaseous phase; (2) the fact that a
non-equilibrium DF (with a rich, high-energy tail relative to the MDF) must be
manifesting clearly at short distances from the evaporation surface.
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As we have seen form the previous section, mysterious experimental results
break all expectations about the KTG: in a few words, the measured temperature
difference between the liquid and the gaseous phase has nothing in common with
the predictions of the KTG. Does this mean that kinetic theory is compromised and
we need some new theoretical description? Or, is it possible that KTG predicts
adequately but we poorly understand the properties of the evaporation process?

We think that the second choice is correct. Experimental results presented in the
previous section confirm the main conclusion of Chap. 5: a non-equilibrium DF of
atoms, after evaporation, “bears” higher energy. That is one reason why objects
near the evaporation surface are always overheated. For instance, one such object
may be the TC: its tip may be overheated if placed at a distance of about one MFP
from the evaporated atoms in a surrounding gas.

8.3.1 Which Is Stronger: The Equilibrium
or Non-equilibrium Distribution Function?

Everybody knows that a whale is stronger than an elephant. What about DFs?
A MDF for a 1D case:

f Mx vð Þ ¼
ffiffiffiffiffiffiffiffiffi
m
2pT

r
exp �mv2

2T

� �
; ð8:3:1Þ

provides a mean kinetic energy:

�eMx ¼
Z1
�1

mv2

2
f vð Þdv ¼ T

2
; ð8:3:2Þ

while the mass and energy fluxes are:

jM ¼ n
Z1
0

vf M vð Þdv ¼ 1
4
n�vT ¼ n

ffiffiffiffiffiffiffiffiffi
T

2pm

r
; ð8:3:3Þ

qMx ¼ n
Z1
0

v
mv2

2
f M vð Þdv ¼ nT

ffiffiffiffiffiffiffiffiffi
T

2pm

r
; ð8:3:4Þ

where the thermal velocity is:
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�vT ¼
ffiffiffiffiffiffiffi
8T
pm

r
: ð8:3:5Þ

Correlation (8.3.3) is also referred to as the Hertz formula. Here n is the number
density of particles (atoms or molecules) of the medium; we factor it out from the
DF, which is normalized on unity:

R1
�1 f M vð Þdv ¼ 1: Note that, of course:

Z1
�1

vf M vð Þdv ¼ 0 and
Z1
�1

v
mv2

2
f M vð Þdv ¼ 0; ð8:3:6Þ

because a symmetrical MDF does not “transfer” any flux: the absence of fluxes is a
necessary property of equilibrium and the MDF describes an equilibrium state.

In a 3D case, where the DF is the multiplication:

f M vð Þ ¼ f M vxð Þf M vy
� �

f M vzð Þ ð8:3:7Þ

of three functions of the kind found in (8.3.1), the total kinetic energy is:

�e ¼ 3
2
T; ð8:3:8Þ

and total energy flux may be obtained for v2 ¼ v2x þ v2y þ v2z :

q ¼ n
Z1
�1

Z1
�1

Z1
0

mv2

2
vxf

M vxð Þf M vy
� �

f M vzð Þdvxdvydvz ¼ nT

ffiffiffiffiffiffiffi
2T
pm

r
: ð8:3:9Þ

The mass flux in the 3D case is still determined by the Hertz formula (8.3.3),
because

R1
�1
R1
�1 f M vy

� �
f M vzð Þdvydvz ¼ 1; and we have the 1D integral again.

Evaporation in the simplest case of a flat surface DF:

f vð Þ ¼ mv
T

exp �mv2

2T

� �
; ð8:3:10Þ

gives for mean energy and fluxes:

�e ¼ T ; j ¼ n

ffiffiffiffiffiffi
pT
2m

r
; q ¼ nT

ffiffiffiffiffiffiffiffiffi
9pT
8m

r
: ð8:3:11Þ

For the 3D case, as discussed in Chap. 5, the DFs of tangential velocities are
Maxwellian, so, the mean energy:
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�e ¼ 2T : ð8:3:12Þ

We calculate fluxes for 3D geometry later. We may emphasize that the temper-
ature T in (8.3.9) is the temperature of the liquid, not the temperature of evaporated
atoms: their non-equilibrium DF does not contain such a parameter as temperature.

Then, we may conclude that the evaporation flux bears a higher energy than the
equilibrium flux. Of course, the DF becomes Maxwellian far from the evaporation
surface due to collisions with atoms of gas. However, at the very edge of the
interfacial boundary, where DF (8.3.4) is undistorted, there must exist clear evi-
dence of this non-equilibrium DF. Objects placed close to the evaporation surface
receive a high-energy flux of evaporated atoms, and, generally, reach higher tem-
peratures than in the bulk of gas. We would like to emphasize that even for equal
liquid and gas temperatures an object gains temperature To [ T :

8.3.2 What Is a Thermocouple

A TC is the most widely used temperature meter for technical applications. It
consists of two separate wires (made of different metals); the melted contacts (tips)
of these wires have different temperatures Thot and Tcold. Due to the Zeebeck effect,
the emf N in such a circuit is:

N ¼ # Thot � Tcoldð Þ; ð8:3:13Þ

where # is the Zeebeck coefficient; this parameter depends on the materials (metals
wires) that are used in the TC.

Thus, the temperature of the hot tip of the thermocouple may be determined
with:

• The known Zeebeck coefficient.
• The specific temperature of the cold tip Tcold; usually this temperature is created

by inserting a cold tip of a TC into a medium with a well-defined temperature:
an old fashioned way is to position it in melting ice (i.e., one may expect that
Tcold ¼ 0 	CÞ; today modern devices are used (so-called “zero-point devices”:
special thermostats).

• The measured emf N.

The temperature Thot can be determined in this manner. As for the accuracy of
the TC measurement, all three parameters mentioned above make their contribution
to the total error. Usually, deviations of Tcold from the required value (caused by
fluctuations or by more prosaic reasons such as heating from fully melted ice—i.e.,
water—in a Dewar vessel, when the experimenter falls asleep!) play a restrictive
role. For good experimentation, the error of Thot is *0.1 K; however, sometimes
special tricks (such as using a differential TC) are used to decrease this error by an
order of magnitude.
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However, there is a delicate question here: why are we sure that the temperature
of the TC—i.e., the temperature of the juncture of two wires—has the same tem-
perature as the medium surrounding this TC? Actually, we are not interested in the
temperature of the hot tip, the temperature of the external substance is what we are
looking for. As for the accuracy of the measurement: we also have to know the
discrepancy between the read-out of Thot and the true value of the temperature of the
medium, not the discrepancy between the read-out and the true value of the TC
temperature.

To be sure that Thot ¼ Tmedium, one needs to provide a “perfect” heat transfer
between the TC and the medium where the TC junction is placed: in stationary
cases, the heat that the TC collects from the medium must be equal to the heat that
the TC gives back to the medium; only in this case one may declare an equilibrium
state. If, for example, the TC takes heat from the gas and transfer this heat through
its wires somewhere else, then the real temperature of the medium is undetermined.
Thus, strictly speaking, for measurements to be correct, a TC’s wires must be laid
along isotherms; only in this case is the conductive heat flux equal to zero. In real
experiments, however, sometimes it is difficult to determine an isotherm position; in
such cases the estimation of the additional heat flux (along the wires) is necessary
(but, rarely provided).

It is easy to organize incorrect measurements with a TC. Let us, for example,
irradiate the TC’s tip (which means that the incoming heat flux would be deter-
mined by the thermal radiation). The outcoming flux from the tip would be the sum
of all possible types: of conductance (through the wires), of convection (into the
surrounding gas) and of radiation (this part is usually negligible, see the next
section).

There are many works dedicated to the correct processes used for measuring
with a TC (Mingchun 1997; Jones 2004; Roberts et al. 2011; Hindasageri et al.
2013; Fu and Luo 2013; and especially Kazemi et al. 2017, which is devoted to
experiments by Fang and Ward 1999). However, we are faced with a slightly
different problem: what is the temperature of a TC in a gas that has no temperature?

8.3.3 What Does a Thermocouple Measure?

As depicted in previous sections, it is not superfluous to discuss this question. In a
previous section we discussed how a TC measures temperature. However, how can
we explain that the temperature of a TC is equal to the temperature of the sur-
rounding medium? In addition, and perhaps the main question, what is the tem-
perature of a TC in a non-equilibrium media, where temperature does not exist?

Atoms of gas (or of a liquid—if a TC is placed into a liquid) bombard the TC
surface. Reflection of atoms from the TC surface is not absolutely elastic and the
reflected flux is in equilibrium with the TC temperature: in the case when atoms of
gas do not react with atoms of the TC we may expect that the work function U of an
atom detached from a TC is equal to zero. For the short-range potential of a “gas
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atom-TC atom” interaction, we expect many collisions of adsorbed atoms of gas
with atoms of the TC surface, and “thermalization” is expected as a result of these
collisions. Atoms of gas detached from the metallic TC surface have a Maxwellian
distribution with the temperature of the TC.

Strictly speaking, the scheme described above is only a simplified assumption.
The main feature of this approach is the renunciation of analysis of the
“atom-surface” collisions; we consider “atom-atom” interaction, for which the
opportunity of absorbance is clear (see Chap. 7).

Finally, we conclude that when a TC contacts with an equilibrium gas with
temperature T, it takes the temperature of the gas: TTC ¼ T : However, what happens
when the gas around the TC is out of equilibrium? For instance, when the DF of gas
atoms is (8.3.4), parameter T is not even the “temperature of gas”: for a
non-equilibrium state, the parameter “temperature” does not have any sense. It is
obvious that in any external conditions a TC would obtain a certain temperature, but
in non-equilibrium media the value of this temperature is not a trivial parameter.

Here we calculate the temperature of the TC under the following assumptions:

1. The TC has uniform temperature: any part of the TC has the same temperature.
2. The DF of detached atoms is Maxwellian.
3. There is an equilibrium between the gas and the TC: total mass and energy

fluxes on the TC are absent, that is, the fluxes from the gas phase onto the TC
surface are equal to the fluxes of atoms detached from the TC.

4. We neglect any radiation losses. For the TC at high temperatures this is a rather
bold assumption, but here (and everywhere in this book) we have to deal only
with intermediate temperatures.

All these assumptions will be discussed further, especially in Sect. 8.3.8. First,
we want to estimate the temperature of the TC placed in a non-equilibrium gas.

8.3.4 Temperature of the Thermocouple

Actually, here we return to the original works of Smoluchowski and Maxwell. The
main distinction of our consideration from the previous attempts is that we tend to
find the temperature of the thermocouple in a gas that has no temperature of its own.
To find the TC temperature, we will consider the fluxes on/from the TC surface (see
Fig. 8.5). Temperature will be found from the balanced equations written for the
TC.

Further, we will use a model of a cubic TC (see Fig. 8.5), i.e., the junction of the
wires has a cubic form. This is the simplest model that lets us obtain a solution to
our problem, because in this case we can calculate fluxes separately for each cubic
surface. By the way, we have never seen a cubic TC, of course.

At first, we consider a TC placed in the vicinity of the evaporation surface in a
vacuum. This means that there are not any additional fluxes on the TC surface,
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except for the fluxes from the evaporation surface. This model explains all the basic
principles of our solution to the problem and, moreover, gives an answer to the
limiting case that will be correct for a more complicated problem.

We can formally write the flux from the TC as:

jMTC ¼ 1
4
nTC

ffiffiffiffiffiffiffiffiffiffi
8TTC
pm

r
: ð8:3:14Þ

Here nTC is the corresponding number density of adatoms (adsorbed atoms of
gas at the TC surface). The mass flux (8.3.14) is obtained from the MDF.

Analogically, the energy flux is:

qMTC ¼ nTC TTC

ffiffiffiffiffiffiffiffiffiffi
2TTC
pm

r
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

~qMTC

¼ nTC~q
M
TC: ð8:3:15Þ

If our special cubic TC collects atoms only via its underside, the fluxes on the
TC surface from the evaporation surface are:

jbL ¼ nLvz ¼ nL

ffiffiffiffiffiffiffiffi
pTL
2m

r
: ð8:3:16Þ

qbL 
 nL
mv2

2
vz: ð8:3:17Þ

The last flux must be calculated accurately. We have:

Fig. 8.5 The thermocouple
and fluxes on its surfaces:
from the gas (index “G”),
from the evaporated liquid
(index “L”) and from the
thermocouple itself (index
“T”)
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qbL ¼ nL

Z1
0

Z1
�1

Z1
�1

mv2x
2

þ mv2y
2

þ mv2z
2

 !
vzf vxð Þf vy

� �
f vzð Þdvxdvydvz; ð8:3:18Þ

where the DFs f vxð Þ and f vy
� �

are Maxwellian and f vzð Þ is (8.3.4). Thus:

mv2x;y
2

vz ¼ TL
2
�vz ¼ TL

2

ffiffiffiffiffiffiffiffi
pTL
2m

r
; ð8:3:19Þ

mv2z
2

vz ¼ 3TL

ffiffiffiffiffiffiffiffi
pTL
8m

r
; ð8:3:20Þ

qbL ¼ nLTL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
25pTL
8m

r
: ð8:3:21Þ

In equilibrium there must be:

qMTC ¼ qbL; jMTC ¼ jbL: ð8:3:22Þ

From (8.3.14) we see that (8.3.14) is equal to (8.3.16) and (8.3.15) is equal to
(8.3.21). We get:

nTC ¼ nLp

ffiffiffiffiffi
TL
T

r
; ð8:3:23Þ

TTC ¼ 1:25TL: ð8:3:24Þ

Thus, in the simplest consideration we obtain a huge increase in temperature.
However, the TC collects fluxes not only via its underside: the faces of its sides
collect and emit fluxes too. Can this possibly change the result (8.3.16)?

For each of the four faces of the cubic TC the fluxes from the evaporation
surface are:

jsL ¼ 1
4
nL�vx;y ¼ nL

ffiffiffiffiffiffiffiffiffi
TL
2pm

r
; ð8:3:25Þ

and because the DF of velocities vx and vy are Maxwellian:

qsL ¼ nL
mv2x
2

þ mv2y
2

þ mv2z
2

� �
vx;y: ð8:3:26Þ

Again:
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mv2x
2

vx ¼ nLTL

ffiffiffiffiffiffiffiffiffi
TL
2pm

r
; ð8:3:27Þ

mv2y
2

vx ¼ nLTL

ffiffiffiffiffiffiffiffiffi
TL
8pm

r
; ð8:3:28Þ

mv2z
2

vx ¼ nLTL

ffiffiffiffiffiffiffiffiffi
TL
2pm

r
; ð8:3:29Þ

and, consequently:

qsL ¼ nLTL

ffiffiffiffiffiffiffiffiffiffi
25TL
8pm

r
: ð8:3:30Þ

For this situation, the upper face of the TC is empty: there are no incoming or
emitted fluxes, while for the side faces we have a balance of the mass fluxes:

nsTC

ffiffiffiffiffiffiffiffiffi
TTC
2pm

r

 jsTC ¼ jsL 
 nL

ffiffiffiffiffiffiffiffiffi
TL
2pm

r
; ð8:3:31Þ

nsTC ¼ nL

ffiffiffiffiffiffiffiffi
TL
TTC

r
: ð8:3:32Þ

For the underside, (8.3.23) is correct for the number density of adsorbed atoms
nbTC. Finally, the balanced equation for the energy flux is:

4qsL þ qbL ¼ 4qsTC þ qbTC ¼ 4nsTC þ nbTC
� �

~qMTC; ð8:3:33Þ

where were ~qMTC is defined in (8.3.15). From (8.3.33) we see that still:

TTC ¼ 1:25TL: ð8:3:34Þ

Thus, the temperature of the TC in a vacuum is 25% higher than the temperature
of the liquid. There is no thermodynamic problem here, since the evaporating
system is in non-equilibrium; it would be an error to expect equality of temperatures
in (8.3.34).

Now we take a gas into account—a gaseous phase that does not originate from a
liquid phase; it may be a vapor at its own temperature (similar to the experiments
described in previous section). Suppose that this vapor is in equilibrium and its
temperature is TG.

Additional fluxes from the gas to any face of the cubic thermocouple are:
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jG ¼ nG

ffiffiffiffiffiffiffiffiffi
TG
2pm

r
; ð8:3:35Þ

qG ¼ nGTG

ffiffiffiffiffiffiffiffi
2TG
pm

r
: ð8:3:36Þ

As previously, we demand the balance of the mass fluxes at any face of the TC
and the total zero energy flux, i.e.:

jbTC ¼ jbL þ jG; jsTC ¼ jsL þ jG; ð8:3:37Þ

nbTC þ 4nsTC
� �

~qMTC ¼ qbL þ 4qsL þ 5qG: ð8:3:38Þ

Here we consider a TC depicted in Fig. 8.5: the upper face does not “measure”
temperature. Otherwise, we must add a term with nuTC to left-hand side of (8.3.38)
and replace 5 with 6 on the right-hand side of this equation.

From (8.3.37) we have:

nbTC ¼ nLp

ffiffiffiffiffiffiffiffi
TL
TTC

r
þ nG

ffiffiffiffiffiffiffiffi
TG
TTC

r
; ð8:3:39Þ

nsTC ¼ nL

ffiffiffiffiffiffiffiffi
TL
TTC

r
þ nG

ffiffiffiffiffiffiffiffi
TG
TTC

r
: ð8:3:40Þ

Combining (8.3.31) and (8.3.32) with (8.3.30), we obtain:

TTC ¼ 20vTG
ffiffiffiffiffiffi
TG

p þ 5 pþ 4ð ÞTL
ffiffiffiffiffi
TL

p
20v

ffiffiffiffiffiffi
TG

p þ 4 pþ 4ð Þ ffiffiffiffiffi
TL

p ; ð8:3:41Þ

where v ¼ nG
nL
; this ratio demonstrates the role of the buffering gas in the heat

transfer on the TC surface. To take the upper face into account we must replace 20
with 24 here.

We see from (8.3.33) that if the evaporation is negligible, v ! 1 and
TTC ! TG. In the absence of gas v ¼ 0 and TTC ¼ 1:25TL, as in (8.3.26).

The most interesting result that follows from (8.3.33) is that even in the case of
equal temperatures TG ¼ TL, the indication of the TC:

TTC ¼ TL
20vþ 5 pþ 4ð Þ
20vþ 4 pþ 4ð Þ ; ð8:3:42Þ

does not coincide with the temperature of both phases. This is the first difficulty that
stands in the way of the experimental determination of the temperature jump
between a liquid and its vapor.
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The second difficulty is the necessity to calculate parameter v with accuracy that,
at least, does not eliminate the evaluation of TTC; it is a hard task when the expected
temperature difference is *0.1 K, while the temperature of a liquid is of the order
of *102 K.

The third difficulty is the form of the TC tip. The cubic thermocouple was a
model that allowed us to find an estimation of the temperature, and nothing more.
Even for a cubic junction, one may suggest different geometric schemes (see
Fig. 8.6). Thus, the numerical coefficients in (8.3.42) vary for different geometric
schemes; below, in the calculation section, we combine all these difficulties into a
single parameter.

8.3.5 Additional Fluxes

The theory (or, specifically, consideration) described above might need some
improvements. We take into account only the equilibrium flux on the TC surface in
a gas: the one-directional part of the zero total flux. This assumption is correct only
for full equilibrium, in absence of the non-zero total flux. However, usually this
zero total heat flux is present in experiments. One question which arises is what is
the exact amount of flux that taken into account?

The energy flux (8.3.15) can be rewritten through thermal velocity �vT as:

q ¼ p�vT
2

: ð8:3:43Þ

Thus, for thermal velocities of *102 m/s and pressures of *102–3 Pa we have
q � 104�5 W/m2. Thus, strictly, the *102–3 W/m2 heat flux measured in some

Fig. 8.6 Various schemes of a cubic thermocouple
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experiments may be considered only as a correction to the whole energy flux on a
TC surface. However, this correction should be done in the common case.

In the balanced equation of mass and energy fluxes on the TC surface we must
add the terms of the total fluxes, i.e.:

jTC ¼ jL þ jG þ jG; ð8:3:44Þ

qTC ¼ qL þ qG þ qG: ð8:3:45Þ

where jG and qG are the total fluxes brought into consideration. Thus, we should
introduce the additional term 4jG=�vT to (8.3.41) (for the bottom or the upper face of
a TC) and, correspondingly, for a 6-faced TC tip we have:

TTC ¼ 24cTG
ffiffiffiffiffiffi
TG

p þ 5 pþ 4ð ÞTL
ffiffiffiffiffi
TL

p þ ~q

24c
ffiffiffiffiffiffi
TG

p þ 4 pþ 4ð Þ ffiffiffiffiffi
TL

p þ~j
; ð8:3:46Þ

with ~j ¼ jG
ffiffiffiffiffiffi
2pm

p
nL

and ~q ¼ qG
ffiffiffiffiffiffi
2pm

p
4nL

:

Equation (8.3.46) defines the temperature of the TC at external fluxes. It still
assumes that the DF of atoms in a gas is Maxwellian and the DF of the evaporated
atoms is function (5.2.14) for the plane surface in Chap. 5. Both assumptions, of
course, are only assumptions. When the TC is placed far from the interface (at a
distance of *1 MFP or farther), the DF of evaporated atoms is disturbed and fluxes
that were calculated so accurately become incorrect. In addition, because of colli-
sions of gas atoms with evaporated atoms, the temperature of the vapor near the
interface will increase with the distance from the liquid surface. All these nuances
will be considered in the final section of this chapter.

8.3.6 A Sidestep: Thermal Radiation

Let us consider a TC over a surface of a liquid in the absence of evaporation or any
media around it. Here we cannot neglect radiation because it is all that we have.
The TC takes its temperature from equilibrium conditions, when the radiation flux
from the TC is equal to the absorption flux.

The flux from the liquid surface to the TC is:

Qin ¼ að1ÞTC|{z}
absorption
coefficient

� eLrk�4T4
LFL|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

emitted
by a liquid

�uL � TC|fflfflfflfflffl{zfflfflfflfflffl}
angle
factor

; ð8:3:47Þ

where að1ÞTC is the absorption coefficient of the TC corresponding to the spectral range of
the thermal radiation of the liquid TL; eL and FL are the radiation coefficient and the
area of the liquid surface, correspondingly; the Stephen-Boltzmann constant is r ¼

258 8 Temperature Jump on the Evaporation Surface



5:67� 10�8 W/m2 K4 and also we have to use here the Boltzmann constant k ¼
1:38� 10�23 J=Kbecause of the accepted dimension of the temperature (Sect. 1.1.2).

The radiation flux from the TC is:

Qout ¼ eð2ÞTCrk
�4T4

TCFTC; ð8:3:48Þ

where eð2ÞTC is the radiation coefficient of the TC at the range of wavelengths cor-
responding to the temperature of the TC itself TTC; and FTC is the area of the TC.

For Kirchhoff’s law there should be:

að1ÞTC ¼ eð1ÞTC � eð2ÞTC; ð8:3:49Þ

that is, (a) the absorption coefficient is equal to the radiation coefficient at the same
spectral range and (b) we suppose that the temperatures of the TC and of the liquid
are close.

The angle factor is:

uL � TC ¼ uTC � L
FTC

FL
; ð8:3:50Þ

according to the rule of reciprocity. Supposing that the TC is very close to the
liquid, i.e., the radiation from five of the six sides of our cubic TC reaches the
liquid, we have uTC � L ¼ 5=6; if we want to consider a TC “without an upper
face,” as in the previous section, uTC � L ¼ 1: Consequently, the temperature of
the TC is:

TTC ¼ TL
ffiffiffi
4

p
eL; ð8:3:51Þ

or is the same equation but with a factor of “5/6” under the square root.
Of course, the square root of the 4th order here is close to 1. However, strictly

speaking, the second factor in (8.3.51) is slightly less than unity, in this case, the
temperature of the TC is slightly less than the temperature of the liquid. For
example, if eL ¼ 0:5 then TTC ¼ 0:84TL; for eL ¼ 0:9 we have TTC ¼ 0:97TL.
Thus, we see that the temperature of the TC may differ by a few percent from the
temperature of the liquid; consequently, radiation may be an important factor in the
general case. Let us estimate the role of radiation in the total heat balance.

Let us compare the radiation flux on the TC surface (at one of its faces):

qrad ¼ eLrk
�4T4

TC; ð8:3:52Þ

and the heat flux from the equilibrium gas:

qgas ¼ nGTG

ffiffiffiffiffiffiffiffi
2TG
pm

r
: ð8:3:53Þ
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In order not overcomplicate the problem, we put TTC ¼ TL ¼ T and eL ¼ 1:
Then, for nG ¼ p=T we get the expression for the pressure that is needed to
compensate the radiation flux:

p � rT7=2

k4

ffiffiffiffiffiffiffi
pm
2

r
: ð8:3:54Þ

For example, for argon at a temperature of 100 K the “critical” pressure
p � 0:1 Pa; for water at 273 K the pressure is p � 1 Pa: This means that at gas
pressures of *100 Pa (for instance, as in experiments discussed in Sect. 8.2), the
role of thermal radiation from the TC is negligible.

8.3.7 Comparison with Experimental Results

Here we apply our ideas to a real situation: we will analyze experimental data which
raised the problem of an “anomalous” temperature jump at an interface (Fang and
Ward 1999; Badam et al. 2007). In brief, we suppose that the temperature jump
measured in these experiments is not a real temperature difference between a vapor
phase and a liquid phase. In fact, the measured temperature jump is the difference
between the temperature of the TC’s tip and that of the liquid. The temperature of
the TC is not the temperature of the vapor in the general case: at the vicinity of an
evaporation surface the gaseous phase is out of equilibrium due to evaporated atoms
and their non-equilibrium DF. Gas even has no such parameter as “temperature.” In
other words, we suppose that TG � TL; in the final section we discuss the limita-
tions of this approach.

In accordance with previous remarks, in order to calculate the temperature jump,
we will use (8.3.34), but in a slightly changed form. We will take into account that
the number density of evaporated atoms is:

nL �C
1
2
;
U
TL

� �
ð8:3:55Þ

By reference to Chaps. 5 and 6, we assume that the temperature of vapor is equal
to the temperature of liquid, then, we may use (8.3.42) instead of a more common
correlation (8.3.41). Applying the Clapeyron equation for nG ¼ p

kTG
; we obtain for

DT ¼ TTC � TL:

DT ¼ TL
p

p0C 0:5;U=TLð Þ þ 4
ð8:3:56Þ

Here parameter p0 includes an uncertainty regarding the geometry of the TC’s
tip. As follows from the previous consideration, actually, p0 � TL, but further we
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neglect this dependence because usually the temperature interval for one experi-
mental data set is quite narrow, for example, it could be water at temperatures of
270–280 K. Note that we cannot neglect this temperature dependence in the
gamma-function because of the strong dependence on TL.

Expression (8.3.56) is the simplest correlation for a measured temperature jump.
We do not pretend to describe all the experimental data perfectly; we only provide
some theoretical estimations for the experimental data presented in the previous
section. At first, we analyze the behavior of the temperature jump (8.3.56) as a
function of two basic parameters—the pressure and temperature of the liquid.

The dependence of the temperature jump (8.3.56) on the pressure (for TL ¼
273KÞ and temperature of the liquid surface (for p ¼ 300 PaÞ is shown in Figs. 8.7
and 8.8, correspondingly. These are common dependencies for illustration, because
to compare our results with experimental data (see previous section) we have to
consider both dependencies—on p and on TL—for certain experiment conditions.
However, first, we need to determine all the free parameters in (8.3.56).

We have two parameters in (8.3.56) that must be defined: p0 and U. Strictly
speaking, both of them vary from experiment to experiment: even the work function
U may depend on external conditions, as follows from Chap. 6. However, we hold

Fig. 8.7 Pressure
dependence

Fig. 8.8 Temperature
dependence
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constant the analytically calculated parameter U and try to fit the experimental
results of Badam et al. (2007) and Fang and Ward (1999) by changing p0.

Let us try to analytically calculate the work function U: As was discussed in
Chap. 6, to use the probability of detachment in the form w ¼ 1

2
ffiffi
p

p C 1
2 ;

U
T

� �
; we have

to insert into this function the mean value of U calculated using a special method
(briefly, we must average w on all binding energies with the DF gðUÞ from Chap. 6).
Next, we put the average value of the work function Um ¼ DH; i.e., the latent heat
of vaporization per particle. From the National Institute of Standards and
Technology database we find that for water at temperature *0 °C the value DH ¼
5400K: Thus, the mean value Uh i ¼ 3700K will be used as the work function in
the expression for w (for T ¼ 273K; ~Um ¼ 20 and ~U

	 
 ¼ 13:7; see Chap. 6).
It is very difficult to predict a precise value for p0 analytically, because, among

other problems, it depends on the distance from the TC to the interface—and it is
rather complicated to predict this dependence on such an uncomfortable spatial
scale. Nonetheless, we may estimate the value of p0, at least to an order of mag-
nitude. According to our consideration:

p0 � nLT
2
ffiffiffi
p

p : ð8:3:57Þ

Taking nL ¼ n0Lw and number density n0L in the bulk of the liquid from the
reference data, we have n0L � 3� 1028 m�3 and p0 � 4� 107 Pa. Thereby, all that
we can predict is the more or less certain value for the work function of the liquid,
and estimate to an order of magnitude the parameter p0.

Comparing our calculations to the experimental data set of Badam et al. (2007),
without heating, we obtain p0 ¼ 1:5� 107 Pa: This value will be used later for all
calculations in these experiments, i.e., for experiments when the heater was turned
on.

To take into account the heat flux from the heater, we must redefine the tem-
perature of the liquid. Suppose, that any vapor particle that hits a liquid surface
excites the atoms of the liquid (we do not mean electronic excitation, of course; the
atom of the vapor transfers its energy to the atoms of the liquid). Assuming that this
excitation is comparatively small, we may try to describe this additional energy
with the effective temperature lTL with factor l� 1: We emphasize that the tem-
perature of the liquid surface is still TL; the multiplier l describes the short time
increase of the local mean kinetic energy. We further discuss this process for a
common case in Sect. 9.4.

Thus, we will calculate the temperature jump with (8.3.56), holding U ¼ 3700K
and p0 ¼ 1:5� 107 Pa; but varying the parameter l from one heating regime to
another, i.e., for the each temperature of the heater we will have a separate
parameter l.

As we see from Table 8.3, we can achieve sufficient agreement with the
experiment. Note that the dependence on the temperature of the liquid surface
(through the gamma-function) is crucial; this function determines the shape of the
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curves DT ¼ f TLð Þ presented in Figs. 8.9 and 8.10 (we show two curves from
Table 8.3 graphically).

We think that the agreement is acceptable; it is important not to overestimate the
degree of matching from Fig. 8.10: the model that is presented in (8.3.56) is too
rough to obtain such a perfect agreement with experiments. Sometimes the
agreement is only a coincidence.

Table 8.3 Comparison
between calculations and
experimental results (Badam
2007)

p (Pa) DTexp
(K)

DTcalc
(K)

p (Pa) DTexp
(K)

DTcalc
(K)

No heating, l ¼ 1:0 Theating = 30 °C, l ¼ 1:05

561.0 1.83 2.29 736.0 3.99 4.04

490.0 2.03 2.36 569.5 3.84 4.31

389.1 2.27 2.49 483.0 4.22 4.49

336.5 2.60 2.58 391.2 4.76 4.73

292.4 2.78 2.68 295.2 5.50 5.12

245.3 3.25 2.82 240.3 5.76 5.48

Theating = 40 °C, l ¼ 1:08 Theating = 50 °C, l ¼ 1:10

736.0 5.33 5.68 847.9 6.25 6.78

567.0 5.79 6.09 743.0 6.71 7.02

485.0 6.14 6.33 572.4 7.29 7.50

392.3 6.52 6.70 391.4 8.80 8.29

288.5 7.59 7.31 288.5 9.69 9.05

236.6 8.18 7.75 236.0 10.25 9.59

Theating = 60 °C, l ¼ 1:115 Theating = 70 °C, l ¼ 1:13

866.0 7.86 7.86 850.5 8.62 9.12

743.9 8.27 8.17 747.0 9.52 9.42

569.2 8.89 8.78 573.1 10.47 10.09

386.3 9.80 9.81 389.2 11.51 11.24

291.7 10.73 10.64 290.7 12.81 12.22

235.5 11.49 11.28 215.6 14.63 13.40

Fig. 8.9 Badam et al. (2007),
40 °C
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Next we compare correlation (8.3.56) with data from Fang and Ward (1999). We
hold U ¼ 3700 K and set p0 ¼ 2:5� 107 Pa; the results are presented in Fig. 8.11.

In Fig. 8.10 we see an agreement with the experimental results at high pressures,
however, at low pressures (below 400 Pa) distinctions are sharp. It is worth noting
that this experimental data set represents miscellaneous experimental points
obtained in various modes, for different positions of the TC over the interface (in

Fig. 8.10 Badam et al.
(2007), 60 °C

Fig. 8.11 Fang and Ward
(1999) with different TL

Fig. 8.12 Fang and Ward
(1999) with TL = const
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the vapor) and inside the liquid. Considering the fact that the slope of theoretical
correlation strongly depends on the temperature of the liquid, we can easily avoid
any inconvenience by calculating DT with constant TL ¼ 265 K, corresponding to
the average temperature of the liquid in these experiments; see Fig. 8.12 (with
p0 ¼ 3:1� 107 Pa). One may see a much better matching for all the ranges of
pressure.

Summarizing all the results of our calculations, we assume that we can fit experimental
data with correlation (8.3.56) with parameters that follow from the theory presented in
Chap. 6 (the work function U) or in agreement with them (the parameter p0). The spread
of 
0:5K (or less) is explained by the factors discussed in the next section.

The main result of these calculations is the true state of the temperature differ-
ence between the TC tip and the liquid. As we see, the amplitude of the measured
temperature difference at the interface is *10 K: actually, this is almost all that we
need to know about this value … almost!

8.3.8 What Features Should Be Brought into Account

First, we enumerate the factors that were omitted in our approach:

• The temperature of the gas is not equal to the temperature of the liquid.
• The temperature of the gas increases with the distance from the surface once

larger than one MFP.
• Fluxes from the evaporation surface decrease at the same distances as mentioned

in the previous point.
• The energetic characteristic of vapor that was called “temperature” is really not a

temperature, because the DF of the vapor molecules on velocities is not
Maxwellian.

• The geometry of the TC is undefined.

Considering all these factors together, one may wonder how the theory that
discounts such features may predict anything. For self-defense purposes, again, we
should mention that we did not pretend to fit the experimental data, and the most
encouraging result following on from our estimations is the matching of the tem-
perature jump, for the theoretically calculated work function with the number
density at the surface (i.e., the parameter p0), to the predicted order of magnitude.

Let us address the concerns for those who believe that with the single adjustment
constant we can describe an elephant as a large mouse and enforce him to wag the
tail if we add one free parameter more (we are talking about p0, for sure). For
example, if the work function is chosen for thousands of degrees less—at 2700 K—
in order to fit experimental data, then pressure p0 � 105 Pa should be used in the
calculations. This value is absolutely contradictory to all the theory (which was
mostly described in Chap. 6); it is impossible to explain the value of such an order
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of magnitude. Thus, the results of our calculations are in agreement with them-
selves, something which is not coincidental.

To treat the effect of the inequality of temperatures TG 6¼ TL we must return to
the more common equation:

DT ¼
20v
pþ 4

ffiffiffiffi
TG
TL

q
TG � TL½ � þ 5TL

20v
pþ 4

ffiffiffiffi
TG
TL

q
þ 4

: ð8:3:58Þ

Thus, the temperature jump that is measured by the TC in a gas with temperature
TG 6¼ TL differs from the simplest estimation (8.3.56) (of course), as well as from
the temperature difference TG � TL. The result also depends on parameter v, that
shows the relative role of the vapor phase in establishing the TC temperature. In
Fig. 8.13 we show the ratio:

d DTð Þ ¼ DT
DTTG¼TL

; ð8:3:59Þ

that is, the ratio of the measured temperature jump calculated with (8.3.58) and
(8.3.42). The temperature of the liquid is TL ¼ 273K for v ¼ 1� 20; note that in
our previous calculations v � 10:

Thus, one may see how the gas temperature affects the measured temperature
jump. For instance, if TG � TL ¼ 1K then DT is 20% higher than in the case of
TG ¼ TL (for v ¼ 20Þ. This influence is appreciable, from the other hand, we see
that the order of the temperature jump stays the same for TG � TL � 1K:
Concluding, we may note that this factor, possibly, deserves to be taken into
account, but there is no way to do it in the absence of an independent method to
determine TG, especially with to an accuracy of *0.1 K.

The temperature of the vapor, generally, must have a tendency to increase with
the distance L from the interface for L > MFP. When collisions take place, the heat
flux from the evaporation surface transfers energy to the vapor; then, one may

Fig. 8.13 Temperature jump
for TG 6¼ TL
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expect an increase in temperature. However, it should be remembered that vapor
near the liquid surface exchanges its energy not only with the interface, but also
with the bulk of the vapor. Parameters of the vapor at infinity also determine the
dependence TGðLÞ; this simple answer deserves attention too. For example, in some
experiments (Badam et al. 2007) the use of a heater in front of the evaporation
surface is the evident reason for a temperature rise.

As for the effect of the non-Maxwellian distribution of vapor particles, it is
difficult to provide any estimation without this non-MDF. We may expect that the
difference with our approach would not be enormous. Consequently, our “tem-
perature of gas” is not exactly a temperature, but a sort of a measure of the mean
kinetic energy of the vapor molecules. Theoretically, this is represents a significant
difficulty, but, practically, there is no a difference between TG and some other
parameter eG.

An interesting consideration to be had is the behavior of the measured tem-
perature jump with the distance from the evaporation surface (we mean for dis-
tances larger than 1 MFP). From one point of view, the fluxes from the interface
attenuate because of the interaction with molecules of vapor; thus, one may expect
that the heat flux from the evaporation surface onto a TC surface would decrease as
well as the measured temperature jump. From another point of view, as discussed
above, in these collisions the evaporated molecules transmit their energy to the gas
molecules, thus, it is difficult to say whether the energy flux on a TC would
decrease or increase. Moreover, we can easily propose a model according to which
the heat flux from the evaporation surface, onto the surface of the TC tip, would
increase even more due to collisions of molecules from the interface.

Let us imagine two particles: one moves toward the z axis, i.e., v1z [ 0; and the
other in the plane z = const., i.e., v2z ¼ 0: Before the collision these particles had
energy mv21=2 and mv22=2; correspondingly. After the collision there must be:

v1z ¼ v01z þ v02z; ð8:3:60Þ

mv21
2

þ mv22
2

¼ mv021
2

þ mv022
2

: ð8:3:61Þ

We are not interested in other projections of velocity vx;y. Thus, before the
collision the “energy flux” from the single molecule is:

q ¼ v1z
mv21
2

; ð8:3:62Þ

and after collision this flux—now from both particles—is:

q0 ¼ v01z
mv021
2

þ v02z
mv022
2

: ð8:3:63Þ
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Here v02z ¼ v1z � v01z. In the case of 1D motion, when viz ¼ vi, we have from
these conditions that after the collision v02 ¼ v1, v01 ¼ 0 and q0 ¼ q: However, in the
3D case, actually, the kinetic energy of particle number 2 is arbitrary. Thus, it is
possible that q0 [ q:

In other words, the flux of particle number 1 (axial) captures the flux of particle
number 2 (coplanar), and the total energy flux in the direction of the z axis increases.

We suppose that now the application of this model is clear. The energy flux on
the TC surface may be magnified because of collisions between the vapor mole-
cules and the evaporated ones with respect to the pure energy flux of molecules
from the evaporation surface. Does this mean that the temperature of the TC would
increase? Actually, the temperature of the TC is determined by the ratio q=j; not by
the energy flux q itself; in other words, the temperature is determined by the
velocity DF of molecules in the flux. Collisions kill the high-energy tail of the DF
of evaporated particles, but they increase the energy of the vapor fluxes (i.e., TG or
eG). Thereby, there are two opposite tendencies for dependence DT Lð Þ; at least, in
experiments (Fang and Ward 1999) the measured difference DT increased with L.

Last, but not least, is the question concerning the matter of the geometry of the
TC. In strong non-equilibrium conditions, such as those in the vicinity of the
evaporation surface, the TC obtains heat fluxes from various directions: both by its
tip, placed in front of the interface, and its wires, located in the surrounding gas that
has a strictly non-uniform temperature distribution (especially in cases when a
heater with a temperature of tens of degrees higher than the temperature of an
interface is placed in the vicinity of the TC).

8.4 Conclusion

The temperature jump between the evaporating liquid and the vapor is a delicate
matter. Rough experiments cannot determine such a subtle parameter: if one tries to
measure the temperature of the vapor with a standard TC, with a large tip (*1 mm,
like domestic TCs), then we may predict that one would find out nothing from the
experiment. Much subtler equipment is needed.

However, a TC too small is not suitable either. If a TC with a tip of *10 lm is
placed in the vapor near the evaporation surface (i.e., *1 MFP from the liquid),
then the result of such an experiment becomes very interesting from various
viewpoints. However, one problem remains: the temperature jump at the interface
that is predicted by the KTG. We honestly see no problem with this; it is the
problem of the measured temperature jump which is far more interesting.

We should distinguish temperature and the measure of an average kinetic energy
of molecules in a common manner. These are different things. A TC placed in a
substance always gives some readout, but, possibly, this readout has nothing in
common with the temperature of the media. Here we do not consider such examples
as the temperature of the TC with radiation conditions; we mean that sometimes
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temperature may not exist as a physical parameter (while a TC always gives some
sort of readout).

As was shown in Chap. 5, the DF of evaporated particles is non-Maxwellian.
The parameter T that is identified in this DF of the normal projection of velocity:

f vð Þ ¼ mv
T

exp �mv2

2T

� �
;

is the temperature of the liquid, not the temperature of the vapor. This DF is in
non-equilibrium, and, for example, the mean kinetic energy of a particle is 2T
(instead of 1:5T as in the equilibrium Maxwellian function). Thereby, the gaseous
phase near the interface (at a distance approximately equal to the MFP) is a kind of
a mixture: here molecules from the evaporated surface are adjoined with molecules
from the vapor. In the vicinity of the evaporation surface, this non-equilibrium
cocktail has no such parameter as temperature.

In the presence of the non-equilibrium flux from the evaporation surface the TC
takes, of course, some temperature TTC: in the absence of a vapor, a metallic tip has
a real temperature. Thus, actually, in experiments one measures the temperature
difference between the TC in a vapor and the temperature of the liquid:

DT ¼ TTC � TL

instead of the difference TV � TL. We believe that a TC in a liquid takes the
temperature of that liquid. Note that a TC in front of the evaporation surface would
read some temperature even in a vacuum; moreover, in this case its temperature
would be a maximum (neglecting thermal radiation).

We established a correlation between the temperature of a TC and the parameters
of the flux from the evaporation surface and from the surrounding gas (or vapor);
however, this expression contained vapor temperature TG as an external parameter.
We could not extract this temperature from the experimental data, thus, we simply
put TG ¼ TL, assuming that the difference between them must be small.

To compare the results of our calculations with the experimental data, we used
formulae from Chap. 6: we calculated the work function directly and estimated the
number density of the evaporated particles according to the approach presented in
that chapter. The agreement between theory and experimental data is quite good,
but we do not overestimate this. Actually, it is enough for us that we can predict, to
within an order of magnitude, the temperature discontinuities (between the liquid
and the TC) and the dependence of DT on the pressure of the vapor. Note that our
formula allows a limiting transition for the case of the absence of evaporation: for
this case, the TC temperature is equal to the temperature of the gas: TTC ¼ TG.

However, our theory contains a special feature: according to our model, the
condensation of the vapor stimulates the evaporation process. In the last section of
the last chapter we will return to this approach and discuss it in further detail.
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Chapter 9
Evaporation in the Processes of Boiling
and Cavitation

The most evident application for the physics of evaporation is the regular
“liquid-vapor” phase transition, i.e., boiling. Various types of boiling may be
considered with the approach developed in previous chapters. Evidently, boiling is
a convenient object for the application of the evaporation technique.

The cavitation process—the formation of gaseous cavities in a cold liquid—may
also be considered interesting.

9.1 Nucleate Boiling

9.1.1 The Boiling Curve

Here we will consider the boiling processes with a q� DT diagram, where q is the
heat flux on the solid surface overheated at temperature DT ¼ Tw � Ts, relative to
the saturation temperature. Such a curve—the so-called Nukiyama curve—is pre-
sented in Fig. 9.1.

The boiling curve has three distinct zones corresponding to three types of
boiling:

• Nucleate boiling (A–B in Fig. 9.1); at these parameters boiling is the formation
of bubbles on a solid wall.

• Transient boiling (B–C in Fig. 9.1); this is an unstable type for experimental
condition q = const; this type is a mix between nucleate boiling and film
boiling.

• Film boiling (C–D in Fig. 9.1); a thin film of vapor separates the solid wall from
the liquid, this type of boiling is pure evaporation from a liquid surface.

Usually, in domestic conditions, we have all seen nucleate boiling. Film boiling
may be observed when we put a very hot object into a liquid volume. To observe
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and identify transient boiling, one needs to learn about it first. An example of
transient boiling may be observed during the cooling of the pan in the water.

9.1.2 A Sidestep: The Mathematics of the Boiling Curve

Formally, the boiling curve represents a bifurcation diagram with two points of
saddle-node bifurcations: at point B (Fig. 9.1; from nucleate boiling to film boiling)
and at point C (Fig. 9.1; reverse transition).

Thereby, we can use some formalistic reasons to describe boiling at the bifur-
cation point by non-stationary equations; for example, at the vicinity of point B with
dimensionless variables for the flux and temperature there must be:

d~T
dt

¼ ~T2 � ~q ð9:1:1Þ

for ~T ¼ DT � DTcr and ~q ¼ qcr � q with parameters at the critical point of
the bifurcation diagram DTcr and qcr. Equation (9.1.1) is the normal form of the
saddle-node bifurcation; from (9.1.1) it follows that the stationary solution at
the vicinity of the critical point is:

~T ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcr � q

p
; ð9:1:2Þ

that is, there are no solutions if q[ qcr, and two solutions in the opposite case.
Stability analysis shows that the perturbation of temperature depends on time as:

d~T ¼ d~T0 exp 2~Tt
� �

; ð9:1:3Þ

where ~T in the exponent is defined by (9.1.2), and therefore only the “−” sign in
(9.1.2) corresponds to the stable solution (for the temperature on the branch of
nucleate boiling) while the “+” sign in (9.1.2) gives an unstable result—transient
boiling.

Fig. 9.1 The boiling curve:
AB represents nucleate
boiling, BC represents
transient boiling and CD
represents film boiling
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This simple consideration based on elementary bifurcation theory gives an
example of how mathematics opens a doorway between theory and physics.
According to these considerations we see that there should be a non-stationary

theory of boiling which should predict dependence (9.1.2), i.e., correlation q ¼
qcr � ~T � ~Tcr

� �2
in the vicinity of point B (Fig. 9.1).

This represents a mathematical approach; however, physics is not in a hurry to
walk through this mathematical doorway. From a physicist’s point of view, the first
statement that needs to be proven is the fact that function q DTð Þ even exists. This
assumption will be considered later in this chapter; initially, we have to consider the
basic physical matters of nucleate boiling.

9.1.3 The Physics of Nucleate Boiling

Nucleate boiling is the growth of vapor bubbles on a heated surface. These bubbles
grow because of the evaporation on their walls: in the vicinity of a hot wall, the
heated liquid has a temperature sufficiently high for intense evaporation. The
interesting question is: where is the main front of evaporation in nucleate boiling—
under the bubble, in the direction of the solid wall, or at the “bubble – bulk of the
liquid” interface? At first glance, heat is conducted from the solid surface, thus, we
may expect the evaporation front to be there. Another view is that there is no liquid
below the bubble on the solid wall, therefore, there is nothing to evaporate below
the bubble.

However, the last statement is wrong. According to old theories and modern
investigations (for instance, Labuncov 1963; Gao et al. 2012; Chen and Utaka
2015), the growing bubble lays on a thin liquid microlayer, with the main role in the
process of the nucleate boiling belonging to the evaporation of this microlayer (see
Fig. 9.2).

Fig. 9.2 The bubble and its
microlayer
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This microlayer is very thin: its width d is *10 lm. The heat flux is supplied
from the solid surface through this microlayer by heat conductance qc, and is
mainly spent on evaporation qev at the liquid-vapor interface; a small part of the
heat is withdrawn into the bubble by free convection and heat conductance.
Neglecting this heat flux, we may equate:

qc � kDT
d

¼ qe; ð9:1:4Þ

where DT ¼ Tw � T is the temperature difference between the wall and the inter-

face and qe ¼ n0T
ffiffiffiffiffiffi
T

2pm

q
e�U=T 2þ U

T

� �
is the heat flux directly on the evaporation

surface. The heat flux qe differs from the evaporation heat flux in the vapor

qev ¼ nevT
ffiffiffiffiffiffiffiffi
25pT
8m

q
: the first flux is determined on the liquid surface while the second

is the energy flux of particles, each of which lose energy U during the process of
detachment.

We have based our logic on the fact that heat is conducted to the bubble from the
heated wall. However, in actuality, that depends on certain conditions. If the liquid
is cold (subcooled below saturation temperature), then the mechanism of microlayer
evaporation is the only way for the bubble to grow; moreover, in this case the upper
side of the vapor (of the cold liquid) is the condensation surface.

In an opposite case, if the liquid is sufficiently hot, then the heat may be con-
ducted to the bubble surface from any direction: both from the solid surface and
from the hot liquid. To better understand the combination of these two processes,
we should note that:

• The liquid evaporates at any temperature.
• The rate of evaporation strongly depends on the temperature of the interface.
• The evaporation flux is higher than the condensation flux only for a sufficiently

hot liquid surface.

In other words, the assumption that the bubble surface is always the isotherm of the
saturation temperature Ts is only a brave, simplified assumption. This approach is
useful for theoretical estimations, but we would not be surprised if the result of such
an estimation would differ from experimental results by an order of magnitude (due to
the sharp dependence qevðTÞ on the evaporation surface, i.e., on the bubble wall).

For evaporation of the liquid microlayer, the static picture of (9.1.4) is incom-
plete. Usually, the flow of the liquid in this microlayer is considered; see, for
example, Cooper and Lloyd (1969). However, in a real case, this is not a flow on
the plane surface: usually, the scale of the roughness is not less than *1 lm, i.e., it
is comparable with the depth of the liquid. On such scales, the movement of liquid
tongues rather represents an infiltration of the liquid in a disordered media, not the
axisymmetric flow of a liquid from the periphery of the bubble toward the dry spot
in the center of it. Indeed, the replenishment of the microlayer represents a difficult
problem in the grand scheme.
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Let us estimate the time for full evaporation of the liquid microlayer and
the corresponding bubble radius. Mass loses of the liquid (see Chap. 1) may be
estimated with the heat flux from the heated wall qc and the latent heat of vapor-
ization hLG:

J ¼ qc

hLG
: ð9:1:5Þ

The mass flux for J, corresponding to the heat flux *102 kW/m2 in water
(where the enthalpy of vaporization is *2 � 106 J/kg), is *0.1 kg/m2 s (we omit
the 2, of course). This means that a layer of diameter *1 mm (i.e., under a bubble
of the same radius) with an average height of 10 lm (i.e., a liquid mass *10−8 kg)
would evaporate in*0.1 s. The bubble radius corresponding to such an evaporated
liquid mass at a pressure of *105 Pa is *1 mm; thus, this consideration is
consistent.

The next point to consider for the heat transfer during nucleate boiling may be
the determination of the heat transfer coefficient. Instead of this, we consider dis-
carding such an item completely.

9.1.4 A Sidestep: The Heat Transfer Coefficient

Traditionally, in heat transfer science the main parameter is the heat transfer
coefficient (HTC): the ratio of the heat flux q and the temperature difference
between the wall and the liquid:

a ¼ q
DT

: ð9:1:6Þ

For the phase transitions, DT ¼ Tw � Ts is the difference between the temper-
ature of the wall and the saturation temperature. Actually, the main (and, possibly,
the last) convenience of representation (9.1.6) is its simplicity. However, this
representation may seem strange to any person who knows the principles of general
physics but has never studied heat transfers.

Note that the approach of (9.1.6) (among many others) was criticized in the very
original book of E. F. Adiutori The New Heat Transfer. Despite the fact that we
share almost no convictions of the author (for instance, in our book we obtain some
results based on dimension theory, while the book by Adiutori is checkered with
headings like “The method of dimensions is awful”; we believe that the
Stefan-Boltzmann law, as a consequence of Plank’s law, is a fundamental principle
of physics, while Adiutori states that this law will be canceled in twenty first
century; many, many others statements from The New Heat Transfer urge us to
prefer the old heat transfer), we may note that such an unorthodox approach is
undoubtedly interesting—under critical consideration, of course.
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Here we provide statements based only on common physical and mathematical
reasoning. We do not deny that for many problems the HTC provides adequate
results, but sometimes the HTC approach seems to be the source of problems.

At first glance, correlation (9.1.6) reflects only our wishes: we may interpret any
physical quantity in any way. For example, we may introduce a new HTC quantity
according to (9.1.6): after any experiment, where the heat flux and the temperatures
of the wall and of the liquid were measured, one may represent results in a form of
the ratio of (9.1.6).

However, heat transfer science is constructed in such a way that it tries to find
the universal correlation for the HTC (or its dimensionless analog—the Nusselt
number) with other parameters~x for a certain class of problems (turbulent flow in a
pipe, laminar wrapping of a plate, pool boiling, etc.). Then, this universal function
a ~xð Þ may be used for this class of problems in order to calculate the heat flux for the
given temperature head DT : q ¼ a ~xð ÞDT .

However, to use correlation (9.1.6) we have to be assured, at least in terms of
two common principles:

• That the representation of (9.1.6) may be designed correctly for the first degree
of quantity DT .

• That the HTC is stable for small deviations in the determining parameters~x.

For example, let us consider the radiation heat transfer of the surface with
temperature T inside a large chamber (with a much larger surface area) with tem-
perature T0. Let us suppose that we do not know that in the case of absence of
self-irradiation on the surface, the heat flux on it is determined by:

q ¼ re Tð Þ T4 � T4
0

� �
; ð9:1:7Þ

where e Tð Þ is the total emissivity of the surface.
Then, one tries to find an answer in the form q ¼ a T � T0ð Þ, where the HTC

must be obtained experimentally by approximation of an experimental data set for
q T ;T0ð Þ. Evidently, we know the answer: for this problem, the HTC is:

a ¼ reðTÞ T þ T0ð Þ T2 þ T2
0

� �
: ð9:1:8Þ

However, this correlation must be extracted from the experimental data set. Let
us try to perform this operation, obtaining this “experimental” set from (9.1.8) and
representing data in a manner acceptable to heat transfer science.

Assume that this data set is obtained by various scientific groups at different
chamber temperatures, with each group representing their results in a form of a Tð Þ
or even a T � T0ð Þ. Thus, all that we see is the HTC; we have no direct access to the
set of heat fluxes [from which we may guess dependence (9.1.8)]. The material of
our surface is aluminum with:

e Tð Þ ¼ 0:05þ 4:8� 10�5 T ½K� � 400ð Þ; 400� T � 900: ð9:1:9Þ
The imaginary reference data aðTÞ is presented in Fig. 9.3; for plausibility, we

add a 5% “experimental” error to our data. We see a wide spread of experimental
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points. Possibly, one may decide to represent these data points applying the
“physical sense”: for many reasons, the HTC may depend on the temperature
difference DT ¼ T � T0 itself; for instance, the main dependence may be in the
form q ¼ a0 DTð Þn. However, the representation a DTð Þ is even worse (see Fig. 9.4)
than function a Tð Þ; actually, this fact may have been evident earlier from the trend
in Fig. 9.3.

Another approach for the argument of function að?Þ may be described in
Figs. 9.3 and 9.4. A crazy idea: for unknown, elusive reasons, let us assume that the
HTC depends on the sum T þ T0; the corresponding function a T þ T0ð Þ is shown in
Fig. 9.5.

At first glance, the agreement in Fig. 9.5 seems much better than for the rep-
resentation aðTÞ (mainly, since it is visual). Thus, one may try to describe the

Fig. 9.3 “Experimental” data
set for radiation heat transfer
coefficient

Fig. 9.4 Another
representation of the data set
in Fig. 9.3
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experimental data with a simple correlation which is useful for practical
applications:

a ¼ A T þ T0ð Þn; ð9:1:10Þ

with experimental constants A ¼ 1:06� 10�10 and n ¼ 3:4. The discrepancy
between theory (9.1.10) and the experiment data is *20%—not the worst agree-
ment for such a complicated process as heat transfer. No doubt, in time, some
physics will be assigned to correlations of the kind similar to (9.1.8).

As for the stability of the results obtained for the HTC, note that we omitted the
main experimental difficulty for experiments of such type: the total emissivity
strongly depends on surface conditions. Correlation (9.1.9) is suitable for a clean,
polished surface. The roughness, the grime, the oxide films, etc., are all factors which
change the emissivity by tens of percent, or in some cases by several times. Thus, the
real experimental set would have a much wider spread than is shown in Fig. 9.3 and,
consequently, the analysis of this data would be much more interesting.

We suppose that it is almost impossible to see the common form of correlation
(9.1.8) in the experimental data set in Fig. 9.3. The only way to obtain such
formulae as (9.1.7) and (9.1.8) is a process named “theory first.” The radiation heat
transfer has an element of scientific luck because of the short lifetime of inter-
polative correlations for the heat flux in form of:

q k; Tð Þ ¼ aT5�lk�l exp � b
kT

� �
; ð9:1:11Þ

where a and b are constants and l is an adjustment parameter. For example, l ¼ 5
gives Wien’s law, l ¼ 4 and b ¼ 0 provides the Rayleigh–Jeans formula and l ¼
4:5 corresponds to the Thiesen correlation (the geometric mean between the

Fig. 9.5 Quasi-theory
(9.1.10) fits experimental
data… the problem is solved?
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Rayleigh correlation and Wien’s formula), etc. Planck’s law finished the discussion
almost in a cradle.

9.1.5 Back to Boiling and Evaporation

As we understand, the heat flux expenditure on the bubble surface is determined by
the temperature of the surface rather than by the temperature difference between the
wall and the solid surface. Moreover, the temperature of the bubble surface may
differ from the saturation temperature; thus, it is difficult to expect that the defining
parameter for nucleate boiling is DT ¼ Tw � Ts. According to Sect. 9.1.4, it would
be abnormal if we could extract a certain universal correlation for the heat transfer
coefficient in such conditions.

However, we have to try to represent at least the heat flux on the solid wall
through the temperature of the bubble surface.

Both the heat flux and the mass one have strong dependence on the temperature
of the liquid at the bubble surface. This temperature variates with time during
evaporation: it tends to decrease because of the evaporation and tends to increase
due to the heat conducted from the hot wall.

The main dependence on the surface temperature is expressed through the
number of evaporated particles:

n�C
1
2
;
U
T

� �
�

ffiffiffiffi
T
U

r
exp �U

T

� �
: ð9:1:12Þ

Multiplying (9.1.12) by T
ffiffiffiffi
T

p
(for the evaporation heat flux), we obtain the

temperature dependence for the heat flux in the form:

qev �AT2 exp �U=Tð Þ: ð9:1:13Þ

It is noteworthy that (9.1.13) is similar to the Richardson-Dushman correlation
for thermionic emission. Again, we should note that here T is the temperature of the
bubble wall; generally, T 6¼ Ts.

We should remember what (9.1.13) means. The heat flux q is not the heat flux on
the solid wall; correlation (9.1.13) determines only the heat flux on the surface of
the bubble. Suppose that the bubble is a sphere of radius R tð Þ at instant t; of course,
it is not a sphere (it is rather a hemisphere), but we may correct this circumstance
with an adjustment factor later. Then, the total heat spent for a single bubble during
its growth time s is:

Q1 ¼
Zs

0

4pR2 tð Þqevdt: ð9:1:14Þ
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If there are m bubbles formed and detached per unit time per unit area of the
heated wall, then the average heat flux on the wall is qw ¼ mQ1. Taking into account
the fact that usually at a given moment of time the major part of the solid surface is
free from bubbles, we must conclude that local evaporation fluxes are much higher
than the average value qw. This circumstance will be important later on in the
chapter.

9.2 Film Boiling

9.2.1 Common Description

Film boiling takes place at the very high temperatures of a solid wall. For water, the
corresponding DT is so high that surface burnout can be expected. In many
experiments, the moment of transfer from nucleate boiling to film boiling is
detected by burnout of a heating wire.

During film boiling (when the surface is able to withstand this type of boiling),
the solid surface contacts only with the vapor phase: a thin vapor layer of width
*1 mm or less. The heat from the solid wall transfers to the liquid through this
vapor layer. Such a heat flux (heat conductance plus free convection in vapor)
cannot be very large—that is the reason for burnout at the moment of “nucleate
boiling–film boiling” transition.

Anyway, the heat flux is non-zero and the liquid at the interface is hot, thus,
intensive evaporation on the liquid surface takes place. Let us imagine a hot body
(wire, sphere, etc.) submerged in liquid at the conditions required for film boiling.
Due to evaporation of the liquid from the interface, vapor pressure in the film will
increase, thus, we can expect that at some moment vapor pressure would become so
high that liquid will be thrown from the solid surface (or in the opposite case: the
solid will be thrown from the liquid).

However, this consideration is wrong. The vapor film can “discharge” itself,
emitting bubbles into the bulk of the liquid; this mechanism prevents high pressures
in the vapor layer. The mechanism, according to which gaseous bubbles may
penetrate the interface to the liquid, is very interesting; the key word here being
“instability.”

9.2.2 The Rayleigh–Taylor Instability

We have not provide a detailed consideration of this type of instability here because
we are only interested in the final result, which can be obtained easily with a
simplified approach; common analysis can be found in many books devoted to such
topics.

280 9 Evaporation in the Processes of Boiling and Cavitation



Let us consider two separate phases with densities q1 and q2 [ q1; phase #1 is
placed under phase #2. Thus, our common intuition suspects an instability in such a
configuration: try to imagine a glass with a gas (air) at the bottom and with water
over this gas. What forces, at least theoretically, may keep this configuration?
Heavy liquid tends to move downward, however, when the interface bends toward
the gas phase, the capillary forces try to prevent further bending. Thus, we have a
duel between gravity and surface tension. Despite the fact that we can predict the
winner immediately (if we only remember the Laplace formula for the pressure
jump; see Sect. 1.2), we will obtain the answer in several steps.

First, we have to write the equation of the boundary of these two phases zðxÞ,
where z is the normal coordinate and x is the coordinate along the interface.

Assuming hydrostatic law for the pressures in both phases, we have:

p1 zð Þ ¼ p01 � q1gz; p2 ¼ p02 � q2gz: ð9:2:1Þ

Then, in equilibrium, the difference in pressures between the two phases must be
balanced with the capillary force rf (r is the surface tension and f is the curvature),
thus:

p01 � q1gzþ r
z00

1þ z02ð Þ3=2
¼ p02 � q2gz; ð9:2:2Þ

where z0 ¼ dz=dx. For instance, neglecting gravity, we may obtain the usual
expression for the Laplace jump of the curve z2 þ x2 ¼ R2, when f ¼ � 1

R:

p01 ¼ p02 �
r
R
; ð9:2:3Þ

where the “+” sign corresponds to the surface deflected toward phase #2 (for
equation z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
), and vice versa. Actually, this expression is not a usual

Laplace formula because for our flat geometry we missed the multiplier 2 in the
second term of the right-hand side of (9.2.3), which appears for spherical geometry.

For our problem, it is logical to assume the condition p01 ¼ p02 for the flat surface,
where z xð Þ � 0. Then, we assume that:

• The interfacial disturbances have sinusoidal form, i.e., z ¼ Asin kx.
• The amplitude A is small, so we may neglect the term z02 in (9.2.2).

This way, we have from (9.2.2) that equilibrium takes place when:

gDq ¼ k2r; ð9:2:4Þ

where Dq ¼ q2 � q1 [ 0.
Thus, gravity forces may be dominated by the surface tension only for a suffi-

ciently short-wave disturbance (i.e., for sufficiently large k; in this case the
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right-hand side of (9.2.3) is greater than the left-hand part). In the opposite case, if
the wavelength exceeds the critical value:

k ¼ 2p
ffiffiffiffiffiffiffiffiffi
r

gDq

r
; ð9:2:5Þ

the system becomes unstable, because the capillary forces can no longer equal the
mass forces: in regions where z\0, heavier liquids tends to move down, while for
z[ 0, lighter liquid tends to move up.

Indeed, the results were predicted at the very beginning: we know that the
surface tension forces are stronger for high curvatures (small radiuses), thus,
long-wave deflections from the surface cannot be balanced by capillary forces.

For film boiling, the Rayleigh–Taylor instability means—visibly—that vapor
cavities penetrate into the liquid, forming pop-up bubbles. However, all these
consideration have no allusion to boiling or evaporation processes: we considered
two separate phases in the absence of phase transitions. However, how does
evaporation affect instability?

9.2.3 Evaporation and Instability

Another popular demonstration of the Rayleigh–Taylor instability is moving a glass
with water upside down with an acceleration a[ g. In this case, the result is an
acceleration ða� gÞ\ 0, and again we obtain the situation where a “heavy liquid
sits over a light one.” In this situation our “over” has the opposite sign, according to
the direction of the total acceleration. Thus, in the glass accelerated toward the
Earth one may observe waves on the water surface (because of the Rayleigh–Taylor
instability).

This simple experiment may be applied to the instability of the evaporation
surface. For intensive evaporation, two forces push the liquid away from the solid
wall: the increasing pressure and the reactive forces that act on the evaporation
surface. Both these factors may cause instability, for instance, if the liquid tries to
jump off the wall (i.e., starts to move with an acceleration), then the Rayleigh–
Taylor instability leads to a large disturbance of the interface, vapor bubbles enter
the liquid, and, as a result, pressure inside the film decreases, and the interface goes
back.

In addition, we may propose a more complicated scheme for the effect of
evaporation on instability. When the vapor phase moves into the liquid (see
Fig. 9.6), the amount of vapor in this cavern increases because of the increase of the
evaporation surface area. Thus, the surface development gains the pressure that
fosters surface development, etc. We cannot describe this process simply by
replacing p01 ! p1 zð Þ in (9.2.2), because pressure equalizes with the speed of sound,
and we need to decide what timescale is used in (9.2.2); this time must be connected
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with the characteristic time of instability development, however, linear stability
theory cannot provide a value for this quantity. Physics becomes much more
complicated, thus, here we have to restrict our consideration to qualitative analysis.

In the general case, the flow of the vapor in the film may affect instability too;
however, we will not consider such complicated schemes here. Note also that the
instability of the interface under conditions of a phase transition was discussed in
Sinkevich (2008).

9.3 Transient Boiling

9.3.1 Common Description

Transient boiling is an unstable type with condition q = const. for a heat flux on a
solid wall, i.e., at a certain heat flux. However, when boiling is determined by the
wall temperature (which is usually described by DT ¼ Tw � Ts, i.e., the difference
between the temperature of the wall and the saturation temperature), it can be
observed experimentally. For example, you can see this process in domestic con-
ditions, e.g., plunging a hot pot into cold water.

Transient boiling is unstable. Liquid moves to an overheated surface, boils and
jumps away. Vapor bubbles form large agglomerates near the solid surface; such
groups of bubbles lay on the so-called macrolayer (in opposition to the microlayer
which exists under a single growing bubble).

The non-stationarity of transient boiling leads to some interesting effects. In
several works (for instance, Hsu et al. 2015; Yagov et al. 2015) it was described as
a type of boiling with a high cooling rate for a solid wall; the heat flux being
comparable to that for nucleate boiling despite the fact that the temperature of the
wall exceeds the critical temperature of the liquid. Questions that will be discussed
in this section are: what is the maximum heat flux that can be diverted from the
solid wall and what are the conditions required for the existence of this flux.

Fig. 9.6 Instability of the
vapor film
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9.3.2 Maximum Heat Flux on a Solid Surface

At the first glance, a heat flux of any intensity can be transferred from a solid wall
through a liquid. Indeed, the heat flux in a liquid at a solid surface is:

q ¼ �k
dT
dn

¼ k
DT
d

; ð9:3:1Þ

where we introduce the scale d for the temperature difference DT at the surface, for
future consideration. Thus, since the gradient of temperature can be as large as we
can imagine—or, with the finite difference approach of (9.3.1), DT at the given
scale d can accept any value—one may expect that the heat flux in the liquid can be
as large as we want.

Of course, as always, our imagination and desires are restricted by nature.
Due to the temperature distribution in liquid, different layers of liquid have

different tensions, i.e., the strength gradient in a liquid in the normal direction (away
from the solid wall), that is:

@r
@n

¼ @r
@T

� �
X

@T
@n

; ð9:3:2Þ

where X denotes the corresponding process: it can be an isochoric process, or a
process along the saturation curve, etc.

The stress caused by this temperature gradient can be rather high. For instance,
in the simplest case we may put r ¼ p, and for water at isochoric conditions
ð@p@TÞV � 106 Pa/K. Of course, this value is somewhat of a maximum estimation, and
for the process at saturation parameters we have a much smaller derivation
ð@p@TÞsat � 102 Pa/K. On the other hand, the condition V ¼ const looks logical for the
heat transfer inside a liquid over short periods of time.

Anyway, we see the clear mechanism that restricts the maximum value of the
temperature gradient and, consequently, the maximum value of the heat flux. In the
vicinity of a heated wall, one may expect a high value for the temperature gradient
to cause thermal stress inside a liquid. In the case when the thermal stress is enough
to overcome all the forces that hold a liquid close to a solid surface, the liquid will
“jump away” from the wall. The forces which need to be overcome are:

• External pressure.
• Binding forces between the liquid and the wall, or—in the case when the

“liquid-wall” binding energy is higher than that of “liquid-liquid”—forces
between the atoms of the liquid.

Moreover, at high temperatures of the wall we may expect that the kinetic energy
of atoms of liquid near the solid surface is high, thus, the total energy of many
particles is positive. Thereby, a kind of “partial phase transition” close to the wall
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may be expected, i.e., the “liquid-wall” binding energy is weakened and the second
type of forces can be neglected. In the limiting case, one can imagine vapor on the
solid surface that attempts to push out the liquid; however, for wall temperatures
which are higher than the critical temperature of the liquid, this simplification is
incorrect.

The maximum heat flux on the surface can be estimated with (9.3.1) and (9.3.2).
Expressing the maximum temperature difference from (9.3.2) as DTmax ¼
rmax @T=@rð ÞX , and substituting this in (9.3.1), we have:

qmax ¼ krmax

d
@T
@r

� �
X
: ð9:3:3Þ

For instance, neglecting the binding energy as it was discussed above, and

estimating the derivate (in the absence of a better choice) @T
@r

� �
X � @T

@p

� �
V
� 10�6 K

Pa,

with atmospheric pressure rmax � 105Pa, k� 1W=ðm 	 KÞ and d� 10 nm (the most
difficult parameter for estimation; this value corresponds to our assumptions taken
from Sect. 9.3.8), we obtain qmax � 107 W=m2.

However, the account of the binding energy between the liquid and the wall may
enlarge this estimation by an order or a two of magnitude.

Some people may assume that because these heat fluxes are abnormally huge,
they can never be observed in nature (or in experiments). However, the mechanism
described above can be significant for non-stationary processes on the surface,
when temperature gradients at the solid wall can be high enough over small spatial
scales of *10 nm. These states—with such a high temperature gradient at the
surface—cannot last long, so the heat fluxes discussed above are momentary fluxes.

9.3.3 Types of Heat Fluxes

It is possible that some statements from Sect. 9.3 need explanation. Here we discuss
the heat flux from another—technical—point of view.

As we remember from Chap. 4, the heat flux in a condensed matter consists of
two parts. The first being the usual heat flux, which is determined by the motion of
particles:

q ¼
Z

mv2

2
vf vð Þdv: ð9:3:4Þ

In an ideal gas the flux (9.3.4) represents the only contribution to the heat flux.
However, for a solid dielectric, this flux is approximately zero, because atoms are
almost stable in such conditions (for metals, electron heat conductance, another
mechanism of heat exchange, must be considered).
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The second part of the heat flux is caused by the exchange of potential energy
between particles in the medium, see Chap. 4. This type of heat transfer corre-
sponds to the heat conductance.

Thus, in the usual case—for instance, in nucleate boiling—heat is transferred
from a solid wall through a liquid by the heat conductance mechanism. When the
liquid is seen to be “jumping away” from the surface, the convective term in (9.3.4)
switches on. Due to this contribution, the total heat flux increases. In simple words,
when heat flux (9.3.4) is present, the heat flux exceeds the normal heat conductance
flux, i.e., the stationary heat flux in nucleate boiling is not the theoretical maximum
of the heat flux: a jumping liquid provides higher fluxes, however, not for long.

The ability of a liquid to “turn” heat flux (9.3.4) into the total energy flux
depends on the condition of a wall surface. Interaction potential between atoms of a
liquid and a solid depends, first of all, on what sort of atoms the solid surface
consists of. We have two different situations here, i.e., when a liquid contacts a
metal surface or an oxide of it. This factor must be taken into account in the
eventual comparison with experimental results.

In fine, we see that the maximum heat flux which can exist in the liquid near the
solid wall is restricted by the temperature gradient in the liquid. The last quantity
depends on the temperature that the liquid can reach near the solid wall. Indeed, if
water contacts hot tungsten at 2000 K, does it mean that liquid water may obtain a
temperature of 2000 K?

9.3.4 The Maximum Contact Temperature

Contact temperature is the measurement which represents the equal temperature of
a solid and a liquid at the point where these two phases are in contact. For equi-
librium state, this assumption is not in doubt. The initial question addressed in this
subsection concerns the maximum value of such a contact temperature.

At the first glance—of course, the first glance may be only from a thermody-
namics standpoint—this temperature cannot exceed the temperature on the spinodal
curve Tsp of the liquid contacted with the solid wall. Actually, this conclusion is
based on these two initial postulates:

• At the contact point, the temperatures of the solid and liquid are equal.
• The liquid cannot reach a temperature higher than Tsp, because otherwise the

liquid represents an unstable thermodynamic phase.

Thus, as a summary of these suggestions, we have the overview given above.
Moreover, we can continue this logical train of thought. The highest heat fluxes

may only be observed for a wall temperature T\Tsp, because only in such cases do
we have contact between a solid and a liquid: otherwise, for the “solid-vapor”
contact a much smaller energy flux can be removed from the wall.
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As per the final statement, one may conclude that the maximum contact tem-
perature cannot exceed the critical temperature Tcr, and the heat fluxes at Tw [ Tcr
must be lower than the ones at nucleate boiling. Indeed, the main mechanism of
heat transfer in boiling is phase transition, thus, how can phase transition be pos-
sible in the absence of separate phases?

These inferences look solid. According to them, we cannot observe a contact
between the liquid and the wall at Tw [ Tcr, cannot obtain high heat fluxes for such
temperatures, etc.

However, all of this contains one weak point: it is all about equilibrium. All the
conclusions above are based on the hypothesis of stationarity: analogously, this
represents the description of a frame of a movie, while the boiling process rather
represents the entire movie.

When a cold (comparatively) liquid contacts a solid wall, its temperature at this
solid surface rises at the rate that depends on the temperature difference between the
liquid and the solid. Simultaneously, heat transfers from the solid wall to the inner
layers of the liquid. However, this rate is limited, so there might be a situation when
the temperature of the liquid would have an enormous gradient (see above).

Temperature is determined as being the average kinetic energy of molecules.
The temperature gradient means that the kinetic energy of molecules varies with
distance from the solid-liquid surface. However, to define temperature as an
equilibrium parameter, we have to be sure of the local thermal equilibrium state:
between two neighboring points the temperature must differ insignificantly. In the
opposite case, when the temperature differs over a scale of *1 nm (i.e., at the scale
of the interaction radius) by an order of magnitude, it is impossible to define such a
parameter as temperature. One may calculate the average kinetic energy at a given
point (i.e., of a small group of molecules), at the next point and at a point between
(see Fig. 9.7), and obtain three different values of �e:

�e1 � �e2
�e1

� �e2 � �e3
�e2

� 1: ð9:3:5Þ

In such a case, as discussed in Chap. 1, the usual correlations (all obtained for a
local thermal equilibrium state) become incorrect; all equilibrium conceptions,
including “binodal” and “spinodal”, lose any sense, etc.

Thus, at high temperatures of a solid wall, at short contact times with a liquid
(i.e., almost in a trice), the physical description cannot be provided in our usual,

Fig. 9.7 Energy at
neighboring points 1 and 3
and between them at
2 = (1 + 3)/2
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equilibrium terms. This would not be a problem, if over such short timescales no
“interesting processes” occurred, and we could wait for equilibrium, i.e., we would
be able consider this problem over long timescales. Unfortunately, some primary
processes, which determine the entire physical picture, may occur on these short
timescales. In this situation, we have two options, both of which are bad:

• To use an old equilibrium description, but replace its terms for non-equilibrium
analogs; for instance, T ! �e.

• To construct some new correlations for non-stationary parameters such as �e.

Here we choose option one. Specifically, we will explain our results in terms of
previous subsections. We suppose that it is sufficient to understand the basic
physical mechanisms, even when the temperature is not the temperature (but only
the mean kinetic energy of molecules at this point), liquid is not a liquid (but only a
condensed phase at high temperature T [ Tcr), etc. The second option in the list
above appears too complicated for now.

9.3.5 A Sidestep: “An Infinite Rate of Diffusion”

We feel that our assertion about the limited rate of heat transfer process demands
explanations.

Possibly, this is one of the most popular tricks that professors perform in front of
confused students. For example, the following question would be raised: “We take
a very long rod, from here to Mars; then we instantly heat up our end of the rod; at
what moment in time do Martians feel the heat?” A variation of this question may
involve diffusion: at what instant does the first molecule of a gas sprayed in the
opposite corner of a room reach us?

All such questions (specifically, tricks) are based on the infinite rate predicted by
the diffusion equation:

@n
@t

¼ D
@2n
@x2

: ð9:3:6Þ

Thus, from this point of view, the correct answers must contain the word “in-
stantly.” However, these answers are wrong (to be fair, the questions are wrong
too); Einstein stands in the way of such tricks. Here, we do not mean special
relativity, according to which nothing can move faster than light. We mean his work
(Einstein 1905) where the diffusion equation was obtained by expansion into series:

n x; tþ sð Þ ¼
Z1

�1
w D; sð Þn xþD; tð ÞdD; ð9:3:7Þ
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so that:

n x; tþ sð Þ ¼ n x; tð Þþ s
@n
@t

; ð9:3:8Þ

n xþD; tð Þ ¼ n x; tð ÞþD
@n
@x

þ D2

2
@2n
@x2

: ð9:3:9Þ

We will not discuss here all the technical nuances (such as the circumstances at
which the second term in (9.3.9) gives zero after substitution in (9.3.7), etc.), but we
will mention only the important fact: in this way, we obtain the diffusion equation

with the diffusion coefficient D ¼ D2=2s for only a small spatial displacement D,
over short moments of time s. It is an evident condition for the correctness of
expansion (9.3.9). Thus, we cannot expect to find solutions for cases when D ! 1
from our diffusion equation; for such cases, we must hold another number of terms
in (9.3.9) and even in (9.3.8).

In simple terms, the diffusion equation can be applied only at reasonable spatial
and temporal scales. The rate of disturbance propagation is limited, despite any
predictions which follow on from the equation which is indeed incorrect for
unlimited scales.

In fine, what we really wanted to explain in this short subsection is that we cannot
expect an infinite rate for any process. Not only does physics forbid such construc-
tions—mathematics does too. Now let us return to our evaporation problems.

9.3.6 Stationary Evaporation Versus Explosive Evaporation

The physical process described in the first eight chapters of this book is evapora-
tion: a liquid heated from a solid wall emits atoms from its free surface; possibly,
sometimes, even groups of atoms are emitted (see Chap. 6 for so-called hypere-
vaporation), but common principles stay the same.

However, we may imagine a different mode for the type of the phase transition
occurring for a liquid on a solid surface; the physics of this mode is described in
Sect. 9.3.2 of this chapter.

Over short timescales, with large gradients of surface temperature, liquid may
jump away from a solid wall because of the thermal stresses inside it. After
detachment from the wall, the back face of the liquid (facing toward the solid
surface) has a high temperature, the liquid evaporates, and due to this evaporation
the pressure in the vapor layer between the solid and the liquid rises, continuing to
move the liquid away from the wall.

This process may be referred to as explosive boiling, but we prefer here to term
this it as “explosive evaporation.” Boiling (i.e., the process observed in the corre-
sponding experiments) is a process operating on another timescale (see Chaps. 2–4
for the scales of processes).
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9.3.7 Boiling

All non-stationary, unstable types considered in this chapter, describe processes
over very short timescales. Usually, in experiments, much larger timescales are
investigated. For instance, in numerical simulations we may use an ultimate rate of
wall heating, while in experiments this rate may be slower by several orders of
magnitude. Consequently, it is harder to obtain enormous rates of heating in
experiments: in contrast with numerical simulations, in experiments, the tempera-
ture of the liquid varies much less obviously, therefore, it is more difficult to
observe temperature gradients in liquids (however, this is not impossible to do).

Another reason: we cannot predict the fate of any liquid which jumps away from
the wall. Maybe it returns to the solid surface because of:

• Surface tension (large-scale quantity).
• Instability at the interface (large-scale process).
• Different conditions at a site nearby to the solid wall - e.g., a different tem-

perature (large-scale phenomena).

If the liquid returns back to the wall, then we can perform a time-averaging
procedure with the heat flux considered in this section. If it does not, then the
momentary flux is unlikely to define large-scale and long-timescale boiling pro-
cesses. However, we have to take into account that explosive evaporation takes
place across the whole surface, while the heat flux measured for nucleate boiling
represents only an averaged value …

In fine, we want to refrain from the direct analogy between a steam explosion
and the explosive evaporation described in this chapter. Many details must be
investigated to define whether this jumping liquid is a steam explosion or not.
Thereby, we prefer to consider the results from this section as a pure theoretical
description, without direct links to certain experimental conditions.

9.3.8 Numerical Simulation of Explosive Evaporation

In this section, we present the results of molecular dynamics (MD) simulations. Of
course, here we consider argon; molecules of argon are bound with a copper surface
by a corresponding interaction potential.

Initially in the experiment we brought the “liquid argon + vapor argon” system
into a thermal equilibrium state at a temperature T ¼ 100 K; we remind the reader
here that the critical temperature of argon is 150 K.

Next, under this equilibrium system, we spontaneously increased the tempera-
ture of the wall, to 200, 225, 250, 300 and 400 K. Depending on the initial con-
ditions (i.e., mainly the temperature itself), one may observe either ordinary
evaporation, or an extreme version of it—explosive evaporation. For this set of
temperatures, we observed usual evaporation for 200 K, and explosive evaporation
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for all other wall temperatures. Consequently, we can establish the lowest limit for
explosive evaporation is between 200 and 225 K.

“Usual” evaporation at T ¼ 200 K is shown in Fig. 9.8. Despite such a high
temperature (note that T [ Tcr), we observe stationary type evaporation. Here the
liquid layer “expands” and evaporates (one may see that the width of the liquid
layer increases).

The temperature in various liquid layers is shown in Fig. 9.9. We see that the
temperature gradient is high, however, it is insufficiently high to throw liquid away

Fig. 9.8 Usual evaporation of argon from a very hot surface (200 K). (Shades of grey represents
the value of kinetic energy in the layers, black color corresponds to higher level of energy)
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from the solid surface. On the whole, the liquid is heated more or less uniformly
throughout its depth, especially in comparison to other calculated types.

The example of explosive evaporation is shown in Fig. 9.10. Here we see how
the liquid jumps away from the wall with a temperature T ¼ 400 K.

The speed of that departed liquid reaches 120 m/s. The corresponding “temper-
ature” dependences at various layers of the liquid are shown in Fig. 9.11. At such
high wall temperatures, the temperature difference between two neighboring layers of
liquid (at *1 nm distance) has values of *150 K (from 350 K at the liquid surface
to 200 K in the next layer). Of course, this is a “quasi-temperature”—the mean
kinetic energy of the particles; this is not a real, equilibrium parameter “temperature”;
we hope that the discussion presented earlier explains this sufficiently (Fig. 9.11).

Also, it is worth noting that the “quasi-temperature” of the nearest layer did not
reach the 400-K temperature of the wall, the maximum registered value was lower
by *50 K. One may suggest that the liquid does not achieve wall temperature,
because it has departed the wall; this conclusion may be considered with one
important refinement: for a narrower liquid layer the value of “temperature” will be
greater, however, this does not make much sense because the scale of the interatom
interaction for argon is *0.34 nm.

Thus, we have seen how liquid departs from an overheated surface. It is easy to
criticize this approach because of the evident model character of the problem. Yes,
we see that the liquid jumped away from the surface when the temperature was
increased abruptly from 100 to 400 K. However, this is an idealistic approach; in
real life such rates are impossible. For slow heating, one may expect that the liquid
will be warmed uniformly, thus, any jump will be impossible.

Fig. 9.9 Temperature in layers at various distances from the center of mass of the liquid.
Temperature of the solid wall is 200 K. At the wall, temperature of liquid *200 K (layer at
z = −4 nm from the center of mass: because axis z is directed out from the solid wall, this
coordinate is negative)
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Fig. 9.10 “Explosive evaporation” of argon from the wall at 400 K

Fig. 9.11 Same as in
Fig. 9.9, however, this time
with a wall temperature of
400 K

9.3 Transient Boiling 293



We have to consider a more realistic situation for the contact between the liquid
and the hot solid wall.

9.3.9 Liquid-Wall Interaction

Here we treat the movement of the liquid to the solid overheated wall. In contrast to
the previous consideration, we may expect, first, a more realistic time of contact
between the liquid and the overheated solid.

Another question that may be addressed with such numerical modeling is
whether this contact between the liquid and the solid is ever possible? In reality, the
hot vapor between the liquid and the wall initiates the evaporation of the liquid
while it moves toward the hot wall. Evaporated atoms obtain high temperatures
(high kinetic energy) from the solid wall, then they provoke additional evaporation,
and so on; the final result of this cycle is that one may expect high-pressure vapor to
act as a buffer between the liquid and the wall, preventing their contact.

Actually, it is difficult to examine the last matter, because the answer depends on
the mass of the oncoming liquid (i.e., on the momentum of the part of the liquid
approaching the wall). Moreover, because of technical restrictions we cannot
consider a large set of particles in a liquid, i.e., a large liquid mass. However, there
is nothing else we can do: we must tackle the task as best we can. If we observe
contact of *103 particles with the wall, we may expect that a larger mass of the
liquid would similarly contact the wall.

This process is illustrated in Fig. 9.12. The initial velocity of the liquid was
40 m/s, the initial temperature of argon was 100 K and the temperature of the solid
wall remained at 400 K. During motion, the speed of the liquid decreases; however,
contact with the solid wall does take place. After contact, the temperature of the
liquid increases, and, in common, we obtain the situation described in Sect. 9.3.8.

In Fig. 9.13 the temperature in different liquid layers (relative to the center of
mass of the liquid) is presented.

We see that all the conclusions from Sect. 9.3.8 are correct. First, the interaction
time is still *0.1 ns, as in the previous problem. One may conclude that during its
motion toward the solid surface the liquid stayed “unprepared” for its meeting with
the hot wall: its temperature remained at 100 K, as was its initial state. Thus, the
temperature gradient remained approximately the same. Probably, the most
important result of this numerical calculation is that we may analyze the
“liquid-solid” contact in the frame of the previous consideration: with the initial
conditions when the liquid was on the solid wall.

The next interesting thing to be observe from this simulation was that during
motion toward the wall, a relatively cold liquid (*100 K) interacted with vapor
which had a temperature (that of the hot solid wall) of *400 K. How did this
process occur? Why did the hot vapor not heat the liquid mass properly? We will
consider these questions in Sect. 9.4.4.
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9.4 Cavitation

9.4.1 Cavitation and Sonoluminescence

Cavitation is a close relative to boiling; some aspects of boiling theory can be
applied to cavitation, however, its non-thermal nature provides uniqueness to this
phenomenon. Besides scientific interest, treatment of cavitation is important for
practical reasons.

Fig. 9.12 Liquid–wall interaction with a contact time of *0.1 ns
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Cavitation is a non-thermal formation—an extinction of bubbles in a cold liquid
due to mechanical effects. At alternating external pressure, a liquid ruptures, cre-
ating gaseous space inside it; collapsing, these cavitation bubbles produce an
interesting and dangerous processes.

In the bulk of a liquid, cavitation is a very interesting process, which is
accompanied in an ultrasonic (sometimes, not only ultrasonic, but normal acoustic)
field by one of the most mysterious phenomena—sonoluminescence. It might look
strange, but the nature of the light emission during ultrasonic cavitation remained
undiscovered for almost a century (sonoluminescence was first reported in 1934); at
first glance, such a simple (for observation) phenomenon should not require an
overcomplicated explanation. “This is not synchrotron radiation!”—some may
exclaim, and they would be right on two fronts: first, sonoluminescence is not
synchrotron radiation; second, sonoluminescence is a much more complicated
phenomenon than synchrotron radiation (see below). However, the scientific part of
the exploration of cavitation has a secondary value: the main reason for the treat-
ment of cavitation is its practical value.

On solid surfaces, cavitation is a very dangerous process, because cavitation on
solid (metallic) surfaces leads to their destruction: these small gaseous bubbles
determine the lifespan of huge metallic constructions like pumps, stirrer arms,
propeller screws, etc.

In Fig. 9.14 we present images of a new metallic (titanium) waveguide and a
waveguide after *10 h of work in a jug containing a liquid (glycerol) at
*20.5 kHz frequency (see Fig. 9.15).

In these images we can observe dramatic destruction; such damage may be
tolerated on laboratory equipment (as on these images), but impairment of technical
elements—for example, of propeller screws—is simply dangerous.

The main distinction between cavitation and boiling is the absence of external
heating. Thus, without a heat source, one might expect a lack of evaporation,
however, this expectation is wrong for two reasons.

Fig. 9.13 Temperature in the
liquid during the process
depicted in Fig. 9.12
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The first reason is the fact that evaporation always takes place. Slower or faster,
counterbalanced by condensation or not (or even dominated by condensation),
evaporation is always present. Thereby, many results from this book can be applied
to the cavitation process. However, on the whole, we have to admit that this first
reason is insufficient to devote a “personal” section to cavitation.

The second reason was already mentioned above: sonoluminescence.
Sonoluminescence is a phenomenon of emission of light by a liquid under the

influence of ultrasound. Sonoluminescence has been known since 1934, but until
recently the nature of this light has remained a mystery. There are many theories
about the physical processes inside a cavitation bubble that could—theoretically—
cause this glow, but none of them can explain coherently all the physical mecha-
nisms involved in this strange type of luminescence.

In general, there are two types of sonoluminescence: single-bubble sonolumi-
nescence and multi-bubble. In the last case, there are many forms of glow (see
Fig. 9.16). All patterns of luminescence were registered in the same experiment
over a period of less than 1 min.

Fig. 9.14 New titanium waveguide (left) and its surface after 10 h of cavitation (right)

Fig. 9.15 (Left) Cavitation on the titanium waveguide in glycerol (with external light). (Right)
Sonoluminescence on the titanium waveguide (no external light)
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It is well established, that sonoluminescence is associated with the cavitation
process: cavitation is the necessary precursor of this glow. So, it seems logical to
assume that some processes during cavitation are responsible for light emission.
Usually, the scheme of explanation of sonoluminescence is described as follows.
Let us consider a process X, which—as it is reliably established for other physical
objects—leads to some kind of a glow in common conditions (examples of X
include electrization and gas discharge, chemical reactions, heating, etc.). Next, one
must explain how process X could take place during cavitation. In case of success,
X is proposed by the author as an explanation of sonoluminescence; however, this
method of deduction has not yet led to a comprehensive theory.

One such explanation is overheating of gas inside a collapsing bubble. Possibly,
this is the most popular theory of sonoluminescence to date. Many people think that
this is the final answer, however, these people become confused when they find out
that this theory has a few issues. According to this theory, the gas compressed in the
collapsing bubble achieves temperatures so high that light emission is possible. In
addition, the glow of incandescent solids and of plasma are well-known phenom-
ena, thereby sonoluminescence joins this team.

Actually, this explanation in such a form is inadequate. It raises many questions
in terms of optical and plasma physics:

1. What is the specific mechanism of light emission: recombination, brems-
strahlung or something else?

2. What is the spectra of sonoluminescence? In some works it is assumed that these
spectra have a Planck shape, but actually they do not.

3. How thin an optic layer of plasma can produce an equilibrium “hill-shaped”
spectrum?

Fig. 9.16 Sonoluminescence on a titanium waveguide in glycerol
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4. One may expect that at the extension stage of the cavitation bubble, the
recombination of plasma, would also lead to a glow, and, generously, the
spectrum of this glow must differ from the spectrum at the collapse stage of the
bubble oscillations.

This list can be easily extended. It is interesting to discuss any item on this list,
however, we can add a more primal question: how can such enormous temperatures
be achieved in a collapsing bubble? To produce high internal temperatures, the
bubble must collapse to very small sizes. During the compression stage, gas (as a
vapor of the liquid, as with other gases like, e.g., air) is heated; thus, we may expect
that this hot gas would intensify the evaporation of the liquid surrounding this
gaseous space. As a result, the mass of the vapor inside the bubble would increase,
so too would pressure, and, consequently, the collapse phase would be stopped
because of such high internal pressures. Thus, high compression ratios as well as
high temperatures inside the bubble would not be achieved.

The last question deals with evaporation, and fits the scope of this book 100%.
In Sect. 9.4.4, we provide an answer to another question: what does a liquid do at
the vicinity of a super-overheated gas?

Certainly, despite the fact that this problem is inspired by the phenomenon of
sonoluminescence, the application areas of obtained results are not restricted to a
collapsing bubble. The neighborhood of overheated vapor and cold liquid is an
interesting example of a strongly non-equilibrium system. Thus, we suppose that
the results of this section will be interesting on many levels.

However, cavitation is the process that binds all the problems together, and
sonoluminescence will be our guideline. First of all, let us see how high temper-
atures in bubbles can be predicted theoretically.

9.4.2 The Rayleigh Equation and Its Boundary Condition

The main trend in the theoretical description of sonoluminescence involves the
Rayleigh equation, which can be obtained as follows.

Let us consider a spherical bubble of radius R in a liquid. Assuming that the
liquid is incompressible, we have from the discontinuous equation:

1
r2

d
dr

r2v
� � ¼ 0 ð9:4:1Þ

where the product r2v ¼ const, but this constant depends on time. At the interfacial

surface, the velocity of the liquid v Rð Þ ¼ dR
dt ¼ _R, thus, at any point inside a liquid:

v r; tð Þ ¼ _R tð ÞR tð Þ2
r2

: ð9:4:2Þ

From the Navier-Stokes equation:
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(we use partial derivative for p because pressure also depends on time) and with
(9.4.2) we have:

1
r2

€RR2 þ 2
r2

_R2R� 2
r5

_R2R4 ¼ � 1
q
@p
@r

: ð9:4:4Þ

Integrating (9.4.4) from r ¼ R to r ¼ 1, we get:

€RRþ 3
2
_R2 ¼ p Rð Þ � p 1ð Þ

q
: ð9:4:5Þ

This is the Rayleigh equation. We have to insert Dp ¼ p Rð Þ � p 1ð Þ here to
obtain the final form of the equation.

To define pressure pðRÞ in the liquid, we may connect this value to the pressure
inside the bubble p. Neglecting all pressure jumps (such as the Laplacian jump) on
the interface, we have p Rð Þ ¼ p, and for the pressure inside the bubble of volume
V ¼ 4pR3=3 we may use the Clapeyron equation p ¼ nT ¼ MT=mV ; in turn, in the
last formula we need information about the mass of gas inside a bubble M.

Quantity M consists of two parts: the mass of the gas (e.g., air) Mg and the mass
of the vapor Mv. Usually, it is assumed that Mg ¼ const, while the vapor mass is
found from the Hertz–Knudsen relation:

dMv

dt
¼

ffiffiffiffiffiffi
m
2p

r
plffiffiffiffi
Tl

p � pvffiffiffiffiffi
Tv

p
� �

4pR2; ð9:4:6Þ

where indexes 0l0 and 0v0 denote liquid and vapor phases correspondingly.
At first glance, we may consider that we have discussed this equation enough in

previous chapters; we have mentioned the condensation flux and the overall
structure of this correlation in Chap. 7. However, some properties of the evapo-
ration flux from the liquid surface in the vicinity of the vapor were not investigated
fully in Chap. 8; these features will be considered here.

To finish the mathematical description of the cavitation bubble, we need the
correlation of the temperature inside a bubble. The simplest way is to assume an
adiabatic condition, so:

pV c ¼ const and TV c�1 ¼ const; ð9:4:7Þ

where c ¼ cp=cv is the specific heat ratio.
It is follows from (9.4.7) that at an unlimited collapse phase, when V ! 0 then

temperature T ! 1, i.e., this simple theory #1 predicts an infinite growth of
temperature.
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However, one may suggest another simple theory #2: let the temperature inside the
bubble be a constant. Thus, despite the bubble collapse, T ¼ const, anyway. Probably,
thesemodels dQ ¼ 0 andT ¼ const look equivalent, however, they are not, of course.
The condition of a constant temperature implies a slow process, when the heat transfer
may level out the temperature of the gas inside the bubble and the liquid. However, for
a fast-collapsing bubble (with a timescale of *1 ls or less) this assumption is
absolutely wrong; a time such as dQ ¼ 0 represents a much more suitable condition.

Now, one may also propose theory #3, when the temperature of the liquid
remains constant, and the evaporation flux is determined with the saturation pres-
sure psðTlÞ. The temperature of the vapor may be calculated through the heat
balance on account of the energy loss (or source) on the bubble surface, with the
vapor mass inside the bubble still being determined by (9.4.6)

The main part of theory #3 is the assumption that the evaporation flux does not
depend on the conditions of the gas (vapor). However, as discussed in Chap. 7, the
model of independent evaporation and condensation fluxes is incorrect; mainly, in
that chapter we considered the effect of the evaporation flux on the condensation
flux. Moreover, in Chap. 8 we considered how the gas may affect the evaporation
flux; however, that consideration was framed as a specific problem (the temperature
jump in the vicinity of the evaporation surface) of certain experiments; we did not
discuss all the physics involved.

Before we consider the interaction of a hot gas and a cold liquid, we must briefly
finish our description of sonoluminescence.

9.4.3 The Evolution of the Cavitation Bubble

Here we present the results of bubble dynamics, recalculating the solution of the
Rayleigh equation (specifically, its modified version) from Gaitan et al. (1992). We
do not discuss all the details of the calculation here, because all that we need is an
illustration: whether the temperature inside the cavitation bubble reaches enormous
values or not.

The dependence between the bubble radius and the temperature inside the
bubble is presented in Fig. 9.17.

As we see, according to these calculations, the temperature inside a cavitation
bubble may achieve several thousands of kelvin (note that T0 = 300 K). Thus, all
our consideration from previous subsections remains valid: indeed, such tempera-
tures are expected in the bubble.

9.4.4 Evaporation Induced by Condensation

For a normal situation, condensation leads to the increase of a liquid’s mass and
tends to decease the resulting heat flux from the surface. In an ordinary case when
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the temperature of vapor and liquid are approximately same, these statements are
correct. However, in the case when cold liquid contacts a (very) hot vapor, the first
illation needs to be corrected: when an atom hits a surface, its energy transfers to
atoms of a liquid. Due to strong interaction between atoms in a condensed matter,
this additional energy distributes among many atoms comprising the surface of the
liquid. Thus, a few atoms acquire additional kinetic energy and, consequently, they
have an increased probability of evaporating. In other words, when a surface is
bombarded by a flux of high-energy atoms from a hot vapor, this surface is locally
(at areas where atoms of vapor strike a liquid) overheated and evaporates more
intensively.

Strictly speaking, a velocity distribution function (DF) of atoms on the surface of
a liquid is distorted and has an increased mean energy. Above, in Sect. 8.3, we
assumed that the DF is Maxwellian: only approximately that is, because the real
form of the DF is more complicated. However, under this assumption the problem
was solved immediately: the local overheated area of the surface has a temperature
X[ T (T is the temperature of the bulk liquid), the problem being reduced to the
previous results. For instance, the probability of evaporation is 1

2
ffiffi
p

p C 1
2 ;

U
X

� �
, etc.

Adopting X ¼ lT (where coefficient l
 1) and calculating the constant v from the
experimental data (this constant was *1, see Sect. 8.3), means that we obtained
sufficient agreement with the experiment.

However, actually, the interaction of an incoming particle and the liquid surface
is more complicated and involves other nuances.

First, when the atom of vapor dives onto the interface, it takes additional energy
U due to its acceleration at the field of surface atoms—as a body does due to Earth’s
gravity. This is the reverse process of the act of detaching an atom from the
interface at evaporation. Thus, if an atom has kinetic energy �e far from the liquid
surface (“at infinity”) then it has energy �eþU at the surface.

In a specific situation, when the energy of the impacting vapor particle is very
high, one may expect that after the impact this incoming particle transfers such high

Fig. 9.17 The bubble radius (a) and the temperature inside the vapor bubble (b) during ultrasound
cavitation
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energy to the atom of the liquid that it leaves the surface immediately. However, it
should not be forgotten that:

• The “guest” particle does not give all its energy to a single atom in the liquid in
one collision.

• After the impact the atom of the liquid receives a velocity that is directed away
from the interface into the bulk of the liquid, and redirection of velocity takes a
comparatively long time and is provided by the loss of energy in further col-
lisions. Several atoms on the liquid surface take their energy from the single
incoming particle.

The next important question to address is the character of the energy transfer to
the interface. We can discuss, generally, two ultimate models of the additional
evaporation initiated by the impact of the vapor atom:

• Case A. A group of atoms of gas at the interface have so much non-thermalized
energy that they leave the surface immediately if their velocity is directed away
from the liquid. The timescale for this process is about the same as the relaxation
time s (see below); the DF of these atoms is non-Maxwellian and this problem
cannot be solved by our standard approach with the function of probability (as
we did in Sect. 8.3). Fortunately, we can deal with this problem using another
approach. Of course, this model can be applied only for the very high energies
of an incoming particle.

• Case B. Contrariwise, if the energy of our impacting atom is not so high—i.e.,
the energy of the atoms at the interface is not being increased so drastically after
collisions with this “guest” atom—then the immediate escape of interface atoms
is impossible. The impact leads to an increased probability of escape for atoms
from the liquid surface, as was considered in Chap. 8. The additional energy of
the incoming particle is “thermalized” in the liquid, i.e., atoms at the surface of
the liquid obtain an increased temperature X (locally). This approach was briefly
discussed and used in Sect. 8.3. The timescale of this process is *10s. The
energy then dissipates in the liquid.

Thus, Case B was considered and applied in Chap. 8. In the case where
immediate departure of surface atoms in response to an impact is impossible, we
may try to describe the evaporation process with the usual Maxwellian distribution
function (MDF) of surface atoms, redetermining the local temperature with respect
to increased energy (due to the impact of the vapor atom). Of course, this is an
assumption, a limiting case, because, strictly, the surface atom may leave the liquid
before thermalization of the additional energy. However, we always have to deal
with limiting cases, as a rule.

Let us consider Case A—another limiting case—more closely. The first question
is: how many particles of vapor hit the interface during the relaxation time?
Probably, the consequence of strikes is to heat the surface continuously; in this case
the energy of atoms at the liquid surface may reach colossal values.
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Relaxation time can be estimated through the energy of interaction u, spatial
scale of this interaction l and the mass of a particle m. We may compose a cor-
responding correlation which is even based on the arguments of dimension:

s ¼ l
ffiffiffiffi
m
u

r
: ð9:4:8Þ

Next, we have to choose characteristic parameters for (9.4.8), i.e., the size of the
relaxation area. Because the spatial scale of the interatomic interaction is several
angstroms, we may adopt l� 1 nm. As for the ratio m=u, we may note that both
parameters are proportional to the number of particles Nr in this relaxation area; that
is, we may take m� 10�26 kg and u� 10�21 J. Thus, we have the relaxation time
s� 10�12 s (with a multiplier of *1).

To estimate the number of vapor particles that hits the liquid surface during the
relaxation time, we adopt the vapor flux on the surface as:

j� p
T
�vT : ð9:4:9Þ

We have discussed this correlation for the common case in previous chapters;
again, such a correlation can be constructed based on the dimensions of its char-
acteristic variables. The thermal velocity for temperatures of a few hundred (up to
*103) kelvin is �vT � 102�3 m/s. For pressures p� 105 Pa and temperatures
T � 102�3 K, we get the upper estimation for the flux j� 1028 m−2 s−1. If the
“effect area” of the strike is about S� 1 nm2, we have an expression for the number
of particles that hits the interface during time s:

N� j 	 S 	 s� 10�2: ð9:4:10Þ

In other words, there are no additional collisions during the relaxation time (at
intermediate pressures), hence, there is no additional overheating: for the ultimate
case A the total additional energy of the group of atoms at the liquid surface is
provided by the energy of a single atom from the vapor phase.

To estimate the maximum number of escaping particles M, we must remember
that only a third of the kinetic energy (a generous estimate; corresponding to the
normal axis z) can be spent overcoming the potential energy U, while the kinetic
energy corresponding to tangential axes x and y stay the same during the evapo-
ration process.

Consequently, if the energy of the vapor atom is �e (far from the interface), the
energy �eþUð Þ will be distributed between M atoms of the liquid. Remembering
that the initial energy of the liquid particle is �e0, we have an approximate condition:

�eþUþM �e0
3M

[U ð9:4:11Þ
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for the case when M particles of the liquid leave the surface as a response to the
single particle of vapor with energy �e. Probably, it is worth noting that (9.4.11)
determines the condition of immediate detachment of M particles, without ther-
malization of additional energy. Note also, that for this case - when we consider the
detachment of several atoms from a single place on the interface at a short time
interval—Sect. 6.5, where hyperevaporation was considered, could be referred to.
Here we mean that for a number of evaporated particles greater than unity, we may
expect the binding energy to decrease relative to the normal situation.

As it follows from (9.4.11), the energy �e of the vapor particle must be very high
(a well-accepted conclusion, of course). For example, despite the fact that any
incoming vapor atom obtains additional energy U, a single atom from the surface
cannot accept all this energy in order to leave, because after the first collision (with
the impacting vapor atom) this surface atom has a velocity directed toward the bulk
of the liquid, and its subsequent collisions (with atoms of a liquid) will be
accompanied by an energy loss. Thus, low-energy vapor atoms cannot transfer
sufficient energy to the surface atoms for them to depart.

Forgetting for a second all the considerations made about the possibility of an
energy transfer to a single atom of a liquid (developed no further than on the
previous page), we can find the threshold energy �e for M = 1:

�e ¼ 2U � �e0; ð9:4:12Þ

and, for example, for argon with U * 103 K (slightly less) we see that the
threshold energy for such a process is *2000 K (slightly less actually, however,
this is an estimation). Thus, if the vapor of argon is heated to thousands of kelvin,
then the condensation of this vapor gives rise to evaporation of the liquid: in
response to the single vapor particle with energy �e, the single particle from the
liquid flies outward. If the energy of the vapor atom was larger than �e, we may
expect the detachment of a few atoms almost simultaneously. The word “conden-
sation” is not an exact term for such a process, which is more like a sputtering
process: in response to a single incoming atom (from vapor to liquid) a few atoms
appear (from liquid to vapor).

The last common question concerns the possibility of such a situation in prin-
ciple: under what conditions would a cold liquid be in contact with an overheated
gas? We discussed this in Sect. 9.3.4. It is supposed that during cavitation (at the
stage of bubble collapse) the temperature of a gas can reach enormous values (due
to adiabatic compression, as is assumed in the simplest models). However, at high
temperatures this hot gas (or vapor) induces a very intense evaporation, and the
mass of the gaseous phase increases. The increased pressure inside the bubble will
stop the collapse and, therefore, will prevent the subsequent increase of
temperature.

From this point of view, it is hard to expect that the temperature inside a
collapsing bubble could even achieve temperatures of *104 K. It seems to be that
the nature of sonoluminescence does not hide in extremely high temperatures inside
a collapsing bubble. However, the nature of sonoluminescence is not the matter of
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this chapter, or even of this book. The subject of this section is the possibility of
induced evaporation due to a high-energy condensation flux. Here we present only
estimations for characteristic parameters of this process; possibly, these evaluations
need concrete illustrations. As usual, these results will be obtained with the method
of molecular dynamics.

In the next section we are going to present the corresponding results of nu-
merical simulations.

9.4.5 Numerical Simulations

For the purposes of this problem, we will consider a deep layer (*10 nm) of cold
liquid (argon), placed on a cold solid surface. However, to keep the total number of
particles at level of *103 for the same calculation time, we have to use a narrow
column of liquid (see Fig. 9.18).

Next, we bombard the surface of the liquid with separate vapor atoms (the set of
which, however, obeys the MDF of velocity with a corresponding temperature of
vapor Tv). The 100-K temperature of the liquid is sufficiently low to slow evapo-
ration, and, actually, surface atoms wait for impacts from the vapor atoms in order
to detach from the interface.

At temperature Tv ¼ 103 K, we have an increased evaporation flux, but this flux
is lower than the condensation flux. At temperature Tv ¼ 2000 K we see that
jev=jcond � 1; for the accuracy of the numerical method, it is difficult to determine
exactly whether this ratio is higher or lower than unity.

However, for temperature Tv ¼ 5000 K the results are clear. In Fig. 9.18 we
represent the departure of five surface atoms in response to a single vapor atom.

That is all that we wanted to prove. Indeed, a high-energy vapor particle causes
the immediate evaporation of several particles from the liquid surface. The liquid
stays cold, because the energy of the vapor atom was spent on emitting evaporated
particles.

In addition, as it was considered above, the evaporation flux may exceed the
condensation flux. Consequently, the vapor mass must significantly increase at
temperatures of *103 K inside the gaseous phase, even if the temperature of the
liquid stays the same.

9.4.6 A Sidestep: The Boiling Chamber

Thus, we have seen that a single incoming atom leads to evaporation of many atoms
from the liquid surface. Similar arguments were involved to explain the physical
principles of boiling chambers. Gerasimov and Rudavina (2008) propose a mech-
anism of local overheating with high-energy particles of ionizing radiation.
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The boiling chamber is a kind of a track detector for ionized radiation; like the
famous Wilson camera, but with opposite principles of action.

In the Wilson camera the supersaturated vapor (which cannot condense because
of the absence of nuclei with critical radiuses) awaits a particle of ionized radiation
(for instance, a beta-particle). When such a particle comes into the volume of the

Fig. 9.18 One impacting atom (filled circle, labelled a) forces the evaporation of five atoms from
the liquid surface (open circles, labelled b–f). Numbers are the mean kinetic energy in the
corresponding layers
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Wilson camera, it ionizes the medium, i.e., vapor. It can be shown via thermody-
namical methods (see Chap. 1) that ions produced by ionization processes play the
role of centers of condensation, because the critical radius of the nucleus (i.e., of the
droplet in the vapor) around the ion is equal to zero. Thereby, each ion appearing in
the vapor grows a droplet around it, and we can follow the track of an incoming
beta-particle by observing the chain of droplets emerging along its path.

The boiling (or bubble) chamber (invented by Glaser, earning him the Nobel
Prize in 1960) uses the contraction principle. Instead of an overcooled vapor, an
overheated liquid is used. As in the Wilson camera, this liquid cannot boil without
nuclei (in this case—centers of vaporization). As in the Wilson camera, a particle of
ionized radiation causes the formation of a new thermodynamic phase (here—
vapor), and one can follow the track of ionizing particles using the chain of bubbles
in the boiling camera. The advantage of the boiling camera over the Wilson camera
is the increased drag property of the vessel with the liquid (in comparison to a jug of
vapor).

However, we cannot explain the principal of action of the boiling camera in the
same manner as the Wilson camera. Thermodynamics predicts the growth of the
charged droplet in a metastable vapor, but the bubble in the liquid is the opposite
case (different electrostatic permittivities); thus, the thermodynamic approach
cannot explain the formation of a bubble around the ion (we omit here the dis-
cussion about the (un)physical forces that hold this ion in the middle of the vapor
space, preventing its diffusion into the bubble wall and attachment, which is an
obvious process). One may assume that the bubble grows because of many charged
particles placed on its wall; however, the charge density in the boiling chamber is
quite low.

Thus, it was assumed in Gerasimov and Rudavina (2008), that the kinetic energy
of vapor molecules, which increases after collisions with high-energy particles of
ionized radiation, is sufficient for the local vaporization of the overheated liquid.
This mechanism—when a single particle leads to a macroscopic process—is similar
to the problem considered in this chapter.

For the boiling camera, the energy transferred in a single collision between a
beta-particle and one vapor molecule, distributed in N particles, leads to the for-
mation of a bubble with a critical size.

9.5 Conclusion

This chapter does not represent any attempt to systematically consider boiling and
cavitation. This is a mosaic of separate problems, connected through evaporation.

Two main features of evaporation were discussed in this chapter: explosive
evaporation and the sputtering of liquid by hot vapor. Both phenomena are
non-equilibrium, short-scale processes which can be investigated, mainly, with
numerical simulations.
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Explosive evaporation takes place after contact between a cold liquid and a hot
solid (at temperatures higher than the critical temperature of the liquid). Actually,
the processes occurring in such a system are so intensive that they cannot be
described in usual terms, even the definition of “temperature” cannot be applied to
the liquid.

It is interesting how such an unusual type of evaporation is connected to pro-
cesses of non-stationary boiling, especially to transient boiling. Probably, explosive
evaporation (the type when a liquid jumps away from a solid surface) may explain
some aspects of boiling, but may not explain others, because the timescale of the
process is too short. We cannot even directly connect explosive evaporation and
steam explosions because of the significantly different spatial scales of the
numerical simulation area and real systems.

Despite all the disclaimers, we assume that the processes considered in this
chapter may be useful, at least, for understanding of some details of the physics of
boiling or cavitation.

One such detail is the interaction between very hot vapor and cold liquid. In
some cases, the effect of an overheated vapor on a liquid surface leads to an
increased evaporation flux. Specifically, this process takes place in all cases, but the
more distinctive results may be observed when the vapor has a temperature of
*103 K. For such a hot gas, the evaporation flux exceeds the condensation flux,
i.e., the interaction of the vapor and the gas represents some kind of spraying of the
surface atoms: in response to a single incoming atom several atoms are evaporated
from the cold liquid. In our opinion, this process limits the compression ratio of the
collapsing bubble.
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Appendix A
Distribution Functions

A.1 Distribution Function

In this book we use the term “distribution function” as a “probability density
function.” The last variant is more correct, but due to weird reasons the function
f xð Þ that determines the probability from x to xþ dx:

dp ¼ f xð Þdx;

is referred to as a distribution function (DF), despite the fact that mathematicians
understand under that name the function:

F yð Þ ¼
Zy
a

f xð Þdx;

where a is the lowest value of x.
Thus, we put our two cents into incorrect terminology.

A.2 Distribution of a Sum

Let the parameter z be the sum of two random parameters x and y: z ¼ xþ y,
x 2 �1;1½ � and y 2 �1;1½ � are independent and DFs f xð Þ and g yð Þ are known.
The DF of z is:

h zð Þ ¼
Z1
�1

f xð Þg z� xð Þdx:
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Correspondingly, for z ¼ x� y:

h zð Þ ¼
Z1
�1

f xð Þg x� zð Þdx:

A.3 Stable Distribution Functions

The Fourier representation of a stable DF has the form:

f̂ tð Þ� exp �k tj jað Þ; k[ 0; 0\a� 2:

Two of the simplest examples of stable distributions are the Cauchy distribution
(for a ¼ 1):

f xð Þ ¼ c

p c2 x� að Þ2 þ 1
� � ;

and the Gaussian (for a ¼ 2):

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � x� að Þ2
2r2

 !
:

Dispersion of any stable DF with a\2 is 1.
The main property (for physical applications) of stable DFs is that if two vari-

ables x and y are distributed with function f, then the sum of these variables xþ y
obeys the same distribution f.

The Gaussian satisfies this condition. Let us consider two functions:

f1 xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r1

exp � x� að Þ2
2r21

 !
;�1� x�1;

f2 yð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r2

exp � y� bð Þ2
2r22

 !
;�1� y�1:

To find a DF for z ¼ xþ y, we must integrate for:

f3 zð Þ ¼
Z1
�1

f1 z� yð Þf2 yð Þdy ¼ 1
2pr1r2

Z1
�1

exp �Ay2 þ 2By� C
� �

dy ¼

¼ 1
2pr1r2

ffiffiffi
p
A

r
exp �AC � B2

A

� �
;
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where:

A ¼ 1
2r21

þ 1
2r22

;B ¼ z� að Þ
2r21

þ b
2r22

;C ¼ z� að Þ2
2r21

þ b2

2r22
:

Thus, we have:

f3 zð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p r21 þ r22
� �q exp � z� aþ b½ �ð Þ2

2 r21 þ r22
� �

 !
:

Thereby, the final DF also has a Gaussian form with the mean value aþ bð Þ and
dispersion r2 ¼ r21 þ r22.
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Appendix B
Special Functions

B.1 The Gamma Function

The gamma function C zð Þ represents a solution of the functional equation:

C zþ 1ð Þ ¼ zC zð Þ:

For integers z ¼ n the gamma function reduces to a factorial function:

C nð Þ ¼ n� 1ð Þ!

In the common case:

C zð Þ ¼ 1
2p i

Z0
�1

ett�zdt;

and in the particular case of Re z[ 0:

C zð Þ ¼
Z1
0

e�ttz�1dt:

Below are some formulae:
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C 1=2ð Þ ¼ ffiffiffi
p

p
;

C zð ÞC �zð Þ ¼ � p
z sin pzð Þ ;

C 1þ zð ÞC 1� zð Þ ¼ pz
sin pzð Þ ;

C
1
2
þ z

� �
C

1
2
� z

� �
¼ p

cos pzð Þ ;

C zð ÞC 1� zð Þ ¼ p
sin pzð Þ :

Practically, the gamma function can be calculated through:

C zð Þ ¼ 1
z

Y1
n¼1

1þ 1
n

� �z

1þ z
n

� ��1
:

B.2 The Incomplete Gamma Function

C z; að Þ ¼
Z1
a

e�ttz�1dt;

c z; að Þ ¼
Za
0

e�ttz�1dt;Re a[ 0;

c z; að Þ ¼ C zð Þ � C z; að Þ:

Corresponding functional equations for the incomplete gamma function include:

C zþ 1; að Þ ¼ zC z; að Þþ aze�a;

c zþ 1; að Þ ¼ zc z; að Þ � aze�a:

If a 6¼ 0;�1;�2; . . .

a�zc z; að Þ ¼
X1
n¼0

�1ð Þnan
n! zþ nð Þ ¼ e�a

X1
n¼0

an

z zþ 1ð Þ. . . zþ nð Þ:

For � 3p
2 þ e� arg a� 3p

2 � e, e[ 0 and aj j � 1:

C z; að Þ ¼ az�1e�a 1þ
X1
n¼1

z� 1ð Þ z� 2ð Þ. . . z� nð Þ
an

 !
;

c z; að Þ � C zð Þ � az�1e�a 1þ
X1
n¼1

z� 1ð Þ z� 2ð Þ. . . z� nð Þ
an

 !
:
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B.3 The Error Function

erf zð Þ ¼ 2ffiffiffi
p

p
Zz
0

e�t2dt ¼ 1ffiffi
t

p
Zz2
0

e�tffiffi
t

p dt ¼ 1ffiffiffi
p

p c
1
2
; z2

� �
;

erfc zð Þ ¼ 1� erf zð Þ:

Series:

erf zð Þ ¼ 2ffiffiffi
p

p e�z2
X1
n¼0

2n

2nþ 1ð Þ!! z
2nþ 1:

B.4 The Heaviside Step Function

H xð Þ ¼ 0; x\0;
1; x� 0:

	

Variants of the Heaviside step function are:

H xð Þ ¼ 0; x� 0;
1; x[ 0:

	

H xð Þ ¼
0; x\0;
1=2; x ¼ 0;
1; x[ 0:

8<
:

B.5 The Dirac delta function

Generalized function
The delta function d xð Þ can be defined as:

Zb
a

f xð Þd x� yð Þdx ¼ 0; x\a or y[ b;
f yð Þ; a� y� b:

	

Variants of the Dirac delta function are:
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Zb
a

f xð Þd x� yð Þdx ¼
0; y\a or y[ b;
f yþ 0ð Þ=2; y ¼ a;
f y� 0ð Þ=2; y ¼ b
f yþ 0ð Þþ f y� 0ð Þð Þ=2; a\y\b:

8>><
>>:

Some properties of the Dirac delta function are:

d �xð Þ ¼ d xð Þ;
d axð Þ ¼ 1

a
d xð Þ;

d xð Þ ¼ dHðxÞ
dx

:

Some asymptotic representations of the Dirac delta function are:

d xð Þ ¼ lim
a!1

a
p a2x2 þ 1ð Þ ;

d xð Þ ¼ lim
a!1

affiffiffi
p

p e�a2x2 :
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