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Supervisor’s Foreword

The general theme of Harley Scammell’s Ph.D. thesis is the application of quantum
field theories to quantum magnets. Quantum magnets are strongly correlated
quantum systems, and one invariably requires novel techniques and approaches in
order to understand the behavior of these systems. Specifically, this thesis considers
quantum antiferromagnets, magnon Bose-condensates, and systems exhibiting
deconfined quantum criticality. The main technical achievement of this thesis is the
incorporation of both quantum and statistical fluctuations into a quantum field
theoretic treatment of critical phenomena. This offers a significant new insight into
an abundance of problems, puts them in a much more general context, and provides
an unmatched power in analyzing experimental and numerical data as well as
predicting new effects.

Harley begins the thesis with his exciting results on quantum antiferromagnets.
This work was strongly motivated by experiments with 34+1-dimensional quantum
critical magnet TICuCl;. While the theory of 2+1 quantum criticality is very well
developed, especially in relation to cuprate superconductors, the 3+1 case has not
been studied in as great detail. Harley’s first contribution to this field concerned the
logarithmic renormalization group (RG) running of the coupling constant in the
vicinity of quantum critical point. Of course the running itself was known in theory
for decades; however, the theory was developed only for zero temperature quantum
phase transitions (equivalent to classical 4-dimensional theory). At the same time,
the most important TICuCl; data are taken at nonzero temperatures. Harley has
developed techniques to handle the problem and performed RG + temperature
calculations. Agreement of the theory with experiment is excellent. Analysis of
experimental data has unambiguously pinned down the RG running of the coupling
constant.

Harley goes on to consider the highly interesting and yet mathematically dubious
regime known as dimensional crossover, which is understood to occur in the
vicinity of the nonzero temperature phase transition in 3+1 quantum antiferro-
magnets. In this regime, it is understood that the dimension changes from 3+1 to 3,
and that conventional perturbative quantum field theoretic approaches breakdown
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(typically due to infrared divergences). Harley approaches the problem from two
distinct starting points:

(1) Dynamic observables. First, Harley develops a novel technique for the sum-
mation of infrared divergent diagrams in the vicinity of the Neel temperature,
i.e., dimensional crossover. Using the developed technique, Harley calculates
the lifetimes of magnetic excitations in 3+1 quantum critical magnets.
Comparison between theory and experimental results on TICuCl; shows
excellent agreement.

(2) Static observables. Next, Harley demonstrates a way to reorganize perturbation
theory, which allows for a continuous description of both the 3+1-dimensional
regime and the 3-dimensional regime. Moreover, to an excellent approxima-
tion, it reproduces the known perturbative RG results which can be obtained by
assuming either 3+1- or 3-dimensional field theory separately.

Another significant set of results relate to magnon Bose-condensates. First,
Harley develops a consistent theoretical framework that resolves a long-standing
inconsistency in the theory of Bose-condensation. It has been known for a long time
that the Popov diagrammatic technique leads to a discontinuous Bose-condensation
transition; even so many approaches to magnon Bose-condensation in the modern
literature still rely on this technique. Harley provides a resolution to the problem
using quantum field theory. Using the developed approach as a starting point,
Harley obtains several new results:

(i) Two new universality classes are uncovered within the magnon
Bose-condensation phase diagram. (ii) A long-standing issue with a known critical
index is resolved. The resolution in part relies on the introduction of the logarithmic
running coupling constant. (iii) The prediction of an ultra-narrow Higgs resonance
in magnon Bose-condensates.

A final major result relates to the exotic scenario of deconfined quantum criti-
cality. Within this framework, the thesis predicts Bose-condensation of particles
with half-integer spin, the first ever suggestion. A smoking gun criterion to test for
this exotic condensate is established.

Sydney, Australia Prof. Oleg Sushkov
July 2018



Abstract

This thesis is an exploration of critical phenomena in highly correlated quantum
matter. Specifically, we consider quantum antiferromagnets, magnon Bose-
condensates, and systems exhibiting deconfined quantum criticality. Within these
systems, the critical phenomena of interest are the static properties—quantum and
classical critical points, ground-state symmetries, the order parameter, critical
indices, and universality classes—as well as the dynamic properties—excitation
interactions, lifetimes, and energies.

This thesis may be partitioned according to the system under investigation. In the
first part of this thesis, we consider quantum antiferromagnets. We derive finite
temperature properties of a quantum field theory and use the results to analyze
experimental data. The analysis provides the first identification of asymptotic
freedom of magnetic excitations. We further verify our findings against
high-precision numerical quantum Monte Carlo data. Next, we consider a regime
whereby magnetic excitations become strongly damped due to heat bath scattering.
In this regime, standard perturbative techniques fail. To resolve this issue, we
develop a new finite frequency, finite temperature technique for a nonlinear
quantum field theory. Finally, we develop a theory of the magnetic order parameter
appropriate to probe the phenomenon of dimensional reduction—our results pro-
vide an alternate perspective on this enigmatic problem.

In the second part of this thesis, we consider magnon Bose-condensates. To
begin, we develop a consistent theoretical framework to describe the finite tem-
perature properties of the system—our results resolve a long theoretical compli-
cation. Using the developed theory, we gain unchartered access to the magnon
Bose-condensate phase diagram and subsequently uncover two new universality
classes. Finally, in a related study, we predict the emergence of a long-lived, stable
Higgs excitation in magnon Bose-condensates. The stability of this Higgs excitation
owes to a non-trivial hybridisation mechanism.
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In the final part of this thesis, we consider an aspect of deconfined quantum
criticality. Inspired by numerical studies, we propose a modified quantum field
theory and subsequently discover a magnetic field induced, Bose-Einstein con-
densate of fractionalised magnetic excitations—an apparent violation of the
spin-statistics theorem. We formulate a “smoking gun” criterion to test this novel
prediction.
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Chapter 1 ®)
Introduction Check for

1.1 Preliminary Statements

In the study of quantum phases of matter and their transitions, reducing the prob-
lem to a description of the emergent phenomena has become a paradigm providing
clarity in the face of otherwise unimaginable complexity. This thesis is solely con-
cerned with strongly-correlated electron systems. In such quantum systems, the com-
plexity arises due to interaction-induced correlations between the many electronic
degrees of freedom—rendering exact or analytical calculations impractical or even
impossible. Circumventing the complexity, one instead studies the systems emer-
gent phenomena—emergent collective degrees of freedom, and symmetries that,
upon analysis with a powerful basis set of ideas, allow characteristic aspects of the
original system to be readily understood. To a good approximation, the following
ideas may be regarded as that basis:

e The order parameter description of phase transitions and spontaneously broken
symmetries. The ground state in a (spontaneously) broken-symmetry phase nec-
essarily acquires a nonzero vacuum expectation value, the order parameter, and
corresponds to a macroscopically ordered phase. This idea was introduced by
Landau and Ginzburg [1].

e The renormalisation group, as introduced by Kenneth Wilson [2], has many impli-
cations. It provides a microscopic origin to the already successful scaling analysis
popularised by Widom, Fisher, and Kadanof [3-5]. For this thesis we will under-
stand it as a mathematical way of tracking changes in the degrees of freedom as
different length/energy scales are probed. The renormalisation group together with
the order parameter concept is generally known as the Landau-Ginzburg-Wilson
paradigm of symmetry breaking and phase transitions.

e Universality refers to the observation that distinct physics systems display the same
characteristic physical properties in the vicinity of a phase transition. The distinct
physical systems may then be organised into universality classes. A universality

© Springer Nature Switzerland AG 2018 1
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2 1 Introduction

class is set by the symmetry properties of the order parameter and the dimensional-
ity of the system. The universality class uniquely determines the scaling properties
of a system undergoing a phase transition.

e Quasiparticles will be understood in this thesis to mean the low-energy fluctuations
of the emergent, collective degrees of freedom of the many-body system. The
emergent quasiparticles need not share the properties of the constituent particles—
be it charge, spin, nor mass, yet crucially, the critical singularities observed at phase
transitions are attributed to the low-energy quasiparticle degrees of freedom.

The combination of some or all of the above ideas has proven to be immensely
powerful in describing the physics of metals, superfluids, classical and quantum spin
systems, BCS superconductors, nuclear physics phenomenology, high-energy elec-
troweak symmetry, etc. And has hence provided an insightful connection between
many subfields of physics. Moreover, restricting ones attention to either the purely
quantum (7 = 0) or the purely classical situation, where time dynamics are irrel-
evant, the Landau-Ginzburg-Wilson (LGW) paradigm offers a cookbook recipe to
analyse the critical observables of such systems.

Despite the enormous success of the LGW framework, scenarios arise where the
standard application fails to capture the relevant physics. This thesis considers two
such scenarios: First, the combined interplay of quantum and thermal fluctuations
presents challenges to the above approach. Second, unconventional (exotic) phases
exist with emergent fractionalised quasiparticles/excitations that appear to be for-
bidden by the above arguments relating to the order parameter, and instead require a
modified framework. One such framework, known as deconfined quantum criticality
[6], will be discussed in this thesis.

1.1.1 Notation and Semantics

Throughout this thesis we set i = kz = 1. Semantics relating to the dimensionality
of the system will be understood as follows: A three-dimensional (or 3D) system
refers to the spatial dimensions. A 3+1D system refers to three spatial dimensions
plus a time dimension. Importantly, a 3D or three-dimensional quantum system will
be implicitly understood to have three spatial dimensions plus a time dimension.

1.1.2 Critical Phenomena

1.1.2.1 Observables and Universality

I will speak exclusively about continuous phase transitions. Critical systems, be
they quantum or classical, are identified by a diverging correlation length &. For a
classical critical system, the phase transition is driven by thermal fluctuations and
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the correlation length exhibits a power law divergence as the critical temperature,
T, is approached,

E~(T—-T)™". (1.1)

The exponent v is a universal feature of the system. Other thermodynamic observ-
ables of the system, the specific-heat, susceptibility, order parameter, etc. can be
expressed in terms of power law expressions in &. The corresponding power law
exponents, the critical exponents, are universal features of the system belonging
uniquely to the universality class. Determination of the critical exponents of classi-
cal critical systems immediately follows from the LGW technique [2].

Quantum phase transitions have garnered intense interest over the past twenty
years, finding a broad range of applicability in many interesting systems. For review
articles directly relevant to this thesis, we refer the reader to Refs. [7, 8]. A quantum
phase transition is a critical rearrangement of the ground state driven by non-thermal
fluctuations, which ultimately derive from the Heisenberg uncertainty relations. The
corresponding non-thermal tuning parameter, g, may be achieved via an applied pres-
sure, magnetic field, dopant concentration, etc. The correlation length in a quantum
critical system exhibits analogous power law divergence to Eq. (1.1), but instead is
controlled by g,

E~(g—8)" (1.2)

Once again, universal features of the quantum critical system are understood as
power law expression in &. Unlike their classical counterpart, for quantum critical
systems one must also introduce a temporal correlation length,

& ~E°, (1.3)

where z is the dynamical critical exponent. The dynamical critical exponent encodes
information about the dynamics of the systems quasiparticles and can be understood
in terms of the gapless excitations at the quantum critical point (QCP). Here disper-
sion takes the form wy ~ k%, and k is the momentum (as measured from the ordering
wavevector). We will explicitly deal with two cases, relativistic dispersion k = 1,
and effective non-relativistic dispersions k = 2. The quasiparticle excitation gap, A,
is defined as the minimum of the excitation energy wy. Hence gapless excitations
have a minimum excitation energy of min[wy] = 0.

For critical quasiparticles, their excitation gap A is a characteristic energy scale
which vanishes at the QCP as,

A~ET ~ g — g™ (1.4)

An important mapping exists between 7' = 0 quantum critical systems, and clas-
sical critical systems—a d-dimensional quantum critical system maps to an effective
d+z-dimensional classical critical system. We note that (effective) dimensionality is
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Fig. 1.1 Quantum tuning parameter g and temperature 7' phase diagrams. Crossover boundaries
are shown by dashed lines. a Characteristic three-dimensional phase diagram. b Characteristic two-
dimensional phase diagram. The ordered phase exists only at zero temperature and is indicated by
the red line

a key determinant of the critical exponents, or said differently, of the scaling prop-
erties of the observables. The quantum-to-classical mapping allows for the LGW
techniques [2] to be readily applied to quantum critical systems.

For both quantum and classical critical systems, there exists an upper critical
dimension D,, above which the critical exponents take on their meanfield values,
and below which they become non-trivial. Precisely at the upper critical dimension
exponents are meanfield, yet receive multiplicative logarithmic corrections. To be
explicit, the quasiparticle gap at d 4+ z = D, has logarithmic corrections to scaling,

A~ g —gl”Inf g — gl (1.5)

The exponent of the logarithm, 8, is also set by the universality class. We will
see in Chaps.2 and 3, that the existence of a non-zero exponent, 3, has a profound
influence on the quasiparticles at the QCP.

In Fig. 1.1a and b, we present generic phase diagrams of a spontaneous symmetry
breaking quantum phase transition, in three and two spatial dimensions, respectively.
The broken symmetry phase is designated ordered, while the symmetric phase dis-
ordered. The QCP separating the phases is shown by the yellow point. Including
temperature, the ordered phase for the three dimensional quantum system survives
up to a critical transition temperature curve, solid red line, 7,(g). The dashed lines,
and corresponding shaded regions mark crossover behaviour that can be expected
on the basis of general physical arguments, presented below. Crossovers, however,
are not phase transitions—there are no critical singularities associated with them.

1.1.2.2  Crossovers
In the context of the quantum-to-classical mapping, introducing a nonzero temper-

ature into a d-dimensional quantum system becomes equivalent to working with a
d+z-dimensional classical system, whereby the extra z-imaginary time dimensions
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are truncated to have finite length 1/7. In this sense, by adding temperature to the
quantum system one must consider two length scales, &, = 1/A,and Ly = 1/T.

Tuning the relative size of the quantum &, and thermal L characteristic scales
has novel consequences. Based on the relative size of &; /L, the phase diagram may
be partitioned into qualitatively distinct regimes, see Fig. 1.1:

e & K Ly, the systems behaviour is essentially unchanged from the pure 7' = 0
case.

e & = L7, the system is said to be quantum critical. When &, < oo the system is
non-critical, however if & 2 L the finiteness of the quantum fluctuation length
scale is masked by the length scale set by the temperature. The quantum critical
behaviour, indicative of the QCP, may therefore persist into a finite volume of the
phase diagram.

e & > Ly, thelength scale set by the thermal fluctuations is drastically shorter than
those of the quantum fluctuations. Viewing this as a truncation of the imaginary
time axis, the vanishing ratio L7 /&, — 0 suggests a dimensional reduction. This
region is referred to as classical critical, and universal critical indices are expected
to take on the values of a classical system in d-dimensions. A detailed discussion
of dimensional reduction constitutes the topic of Chap. 5.

1.1.3 Effective Quantum Field Theory

Effective quantum field theories are wonderfully practical theories capable of describ-
ing, to great accuracy, some of the most important phenomena occurring in nature.
Prominent effective quantum field theories include the non-relativistic Schroedinger
field theory, the four-Fermi theory of the weak nuclear force, pi-meson/chiral
Lagrangian theory of the strong nuclear force, and the low energy Einstein Lagrangian
as a perturbative quantum theory of gravity. The shortcoming, of course, is that effec-
tive field theories provide an accurate description of the system only at energy scales
where the effective degrees of freedom and symmetries offer a reasonably faithful
representation of the physics. Moreover, the effective degrees of freedom of the sys-
tem are scale dependent, and hence a complete description of the physics at extended
scales must be able to account for this fact.

In quantum critical systems pertaining to strongly-correlated-electrons, the effec-
tive degrees of freedom and symmetries are almost always markedly different to the
microscopic degrees of freedom, i.e. the electrons. This is both an exciting and lim-
iting feature of such systems. First, it provides the opportunity to study and observe
exotic quantum fields, with unusual symmetry and dimensionality. For example, the
effective degrees of freedom may display emergent Lorentz invariance, confined
dimensions, global rotational symmetries, or even local gauge symmetries. Emer-
gent, local gauge symmetries play an important role in deconfined quantum criticality
scenario [6], to be discussed shortly. However, the effective field theory may then
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bare no resemblance to the underlying microscopic theory, and no hope of complete
microscopic understanding is possible.

Despite any shortcomings effective quantum field theories, equipped with renor-
malisation group techniques [2], are capable of describing physics over sufficiently
broad energy scales to remain predictive. In general, scale changes can be incorpo-
rated into the coupling constants of the field theory, whereby the coupling constants
themselves acquire a scale dependence. We will now discuss a remarkable implica-
tion of coupling constant renormalisation, namely, asymptotic freedom.

1.1.4 Asymptotic Freedom

Asymptotic freedom is a generic property of 3+1 dimensional relativistic quantum
field theories with a dimensionless interaction coupling constant. The argument is
generic and relies on RG, the important point is that such theories sit at their upper
critical dimension D, = 4, and coupling constants of the action receive logarithmic
scale dependent corrections. In either the ultraviolet (UV) or infrared (IR) limit,
the interaction coupling vanishes logarithmically, leaving a free (non-interacting)
quantum field theory.

Consider the interaction between gauge bosons and fermions in QED and QCD,
with charges e and g, respectively. Here e is electric charge of the U (1) gauge sym-
metry, while g is the colour charge of the SU (3) gauge symmetry. In a perturbative,
diagrammatic expansion, the combinations o, = ¢?/(47) and oy = g%/(4m) are the
natural expansion parameters. An RG resummation of the vertex diagrams in either
theory results in the following logarithmic scale dependence of the effective interac-
tion coupling constants [9—-11],

(A A
el oy = —— a0
14 S,,(Ag) In (A—g) 1 — Sy (Ag) In (A—g)

ae(A) = (1.6)

where A is the energy scale in question, say of the scattering experiment, Ay is the
normalisation scale typically set by experimental data at given high energy scale.
The constants S,, S, > 0 are positive and are determined by combinatorics in the
diagrammatic expansion.

From the explicit forms presented in (1.6), and displayed in Fig. 1.2, one sees that
the coupling in QED, «, (A) increases with energy scale A, while the QCD coupling,
ag(A) decreases with energy scale A, and ultimately vanishes in the limit A — oo.
This is the asymptotic freedom [9, 10].

Asymptotic freedom was found to be a key property of an interacting theory of
quarks and gluons, whereby in the limit of infinite energy the interaction coupling
constant between quarks and gluons vanishes. This renders quarks to be weakly
coupled at high energies, in excellent agreement with experimental data [12]. QCD
subsequently became the leading theory for the structure of nucleons, with asymptotic
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Fig. 1.2 Schematic of the scale dependent coupling constants o, (A), and ag(A) for QED and
QCD, respectively. Normalisation scale A is indicated. An infrared cut-off scale Ajr is present
for QED due to the rest energy of the electron

freedom playing a crucial role. For the development of this theory, Gross, Wilczek,
and Politzer were awarded the Nobel Prize in Physics in 2004.

In this thesis, we will be concerned with manifestations of asymptotic freedom
from the perspective of thermodynamic scaling of observables, as well as in relation
to dynamic scattering properties of quasiparticles.

Now that we have reviewed the essential ideas and theoretical preliminaries that
form the conceptual basis of this thesis, I will now discuss the specific systems and
techniques this thesis studies and applies. Within this discussion, I will hint at some
research questions this thesis aims to answer—including problems with previous
approaches and intuition.

1.2 Dimerised Quantum Antiferromagnets

Of primary concern to this thesis are three dimensional quantum antiferromagnets,
whereby phase transitions are induced by temperature, magnetic field, or a quantum
tuning parameter such as pressure. Dimerised quantum antiferromagnets are one such
class that we shall refer to frequently. Dimerised quantum antiferromagnets also serve
as model systems for the exotic phenomena within the deconfined quantum criticality
scenario, to be discussed next in Sect. 1.3, and in Chap. 9.

1.2.1 Theoretical Description

Dimerised quantum antiferromagnets on bi-partite lattices are ideally suited to host
quantum phase transitions. Tuning the relative strength of competing exchange cou-
plings induces spontaneous rearrangements of the ground state. We depict one such
scenario in Fig. 1.3. In the left hand side of Fig. 1.3, the spin system is dimerised
into spin singlet states that form across the J’ bonds. The spin singlet states have
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Paramagnetic phase Antiferromagnetic phase

Fig. 1.3 Quantum phase transition in three dimensional dimerised quantum antiferromagnet as a
function of quantum tuning parameter g = J'/J. (Top) Schematic quantum phase transition for a 3D
dimerised lattice of S = 1/2 spins. Spins reside on the yellow points of the lattice. Antiferromagnetic
exchange parameters J' and J on and between the dimer units, respectively, and their ratio, g =
J'/J, controls the QPT from a quantum disordered dimer-singlet phase (left) to Néel ordered phase
(right), with the QCP occurring at the critical ratio g.. (Bottom) The transition visualised in terms
of the ground state energy of the effective quantum field theory. The energy landscape is in field
space; the quantum disordered/paramagnetic phase is symmetric in field space, while the ordered
antiferromagnetic phase has a reduced symmetry

full SU (2) spin rotational symmetry. Tuning the relative strength of the interdimer
exchange coupling J, or g = J’/J, to some critical value g., the system sponta-
neously rearranges to an antiferromagnetic state, thereby minimising its ground state
energy. The antiferromagnetically ordered state is depicted in the right hand side of
Fig.1.3. The tuning parameter g may be realised in physical systems by, for exam-
ple, an external hydrostatic pressure p. In Sect. 1.2.4 we discuss a specific system
whereby g < —p.

In a low energy/low wavelength theory, the relevant, i.e. critical, degrees of free-
dom are captured by a field theory with three component vector ¢. Below we will
obtain the low energy quantum field theory for ¢. In the symmetric phase—frequently
and interchangeably referred to as the disordered or paramagnetic phase—the sys-
tem has an O(3) symmetry, and correspondingly, the three degrees of freedom are
gapped and triply degenerate. This is depicted in Fig. 1.3 where the potential-well
landscape is in field space, and the excitations/quasiparticles mass gap is represented
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by the curvature of the well. Spontaneous breakdown of symmetry at g. deforms
the potential-well such that two gapless (Goldstone) modes arise as oscillations in
the flat directions, and one gapped Higgs mode arises as an oscillation in the curved
direction.

I will now outline how to obtain the low energy quantum field theory, and then
discuss extensions to the model, namely the addition of magnetic field and temper-
ature. Note that the following derivation of the low energy quantum field theory is
based upon the particular example of the simple cubic lattice of dimers, depicted in
Fig. 1.3. However, in the vicinity of a quantum critical point, the microscopic details
are unimportant and the same effective field theory is obtained for vastly different
systems so long as their ground state symmetry and dimensionality are the same.

Consider the schematic spin-dimerised lattice depicted in Fig. 1.3. Quantum spins
S = 1/2 reside on each yellow point, and there are two Heisenberg exchange cou-
plings J interdimer shown by dotted red lines, and J' intradimer in solid blue lines.
Denoting the spin at the upper and lower position of the bond, SiA and S,B, at any
given bond site i. Hence A and B refer to different sublattices. The Hamiltonian
reads,

H=17Y (St -8t+8F 8P +0> st sP, (1.7)

(i.J) i

where first summation is over nearest neighbours, and the total number of bond sites
is N’ = N /2. The Hamiltonian (1.7) may be thought of as the fundamental theory
of the quantum spin system. Of course, however, it is an approximation to the many-
body Schrodinger equation. We now wish to extract a low-energy effective model
from the Hamiltonian (1.7), namely, an effective quantum field theory. To derive an
effective quantum field theory, we appeal to the bond-operator technique developed
in Ref. [13]. For the purposes of our present goals, the bond-operator technique
acts as the middle ground between the spin Hamiltonian (1.7) expressed in terms
of spin operators SlA and SiB , and a low-energy quantum field theory expressed in
terms of the three-component quantum field ¢. The necessary connection between

. A/B . . . . .
spin operators §; " and quantum field ¢ will come via the introduction of bosonic
operators s; and ;.

To be specific, we perform the following bond-operator transformation [13],

1 .
S = (st s — iapyt]ghy) (1.8)

i
where the + and the A/B refer to different sublattices, the sf /s; are singlet
creation/annihilation operators on bond site i, and the ’Za /ti.« are triplet cre-
ation/annihilation operators on bond site i and polarisation o = {x, y, z}. Impor-
tantly, the singlet and triplet states are bosonic. The bosonic quantum states created
by t:a are referred to as rriplons and will be our central focus. On the other hand,
the bosonic singlet states, created by sf, form a condensate and so we replace the



10 1 Introduction

creation/annihilation operators sf /s; by the condensate value (s) = (s") =5 = 1.
This constitutes a meanfield treatment, and in the last equality we set the conden-
sate to unity for simplicity of the presentation. Now, performing the bond-operator
transformation, the Hamiltonian, to quadratic order, obtains the generic form,

- . 1 &
Hy =" Aty ko + EBk[t,;,atjk,a +Hcl. (1.9)
k

Explicitly for the geometry of an isotropic, cubic-lattice model, one obtains,

Ar = J' + J5*[cos(m + k) + cos(r + ky) +cos(r + k)], (1.10)
By = J5%[cos(m + ky) + cos( + ky) + cos(m + k)] . (1.11)

The argument of the cosines involves (i, 7, ) + k due to the antiferromagnetic
ordering at Q 45, = (7, 7, ) and the lattice parameter is set to unity a = 1. We are
now in a position to pass to a continuum-field theory in the three component field real
@. To do so we note that r = {t,, t,, 1.} is a three component complex field A
and hence to account for all six degrees of freedom we must introduce two three-
component field real ¢ and I1. We make the following definition 7 = Z(¢ + iIT),
such that ¢ o« (S; — S>2), I (S1 + S») while Z is a normalisation factor. Such
an approach has been discussed in, for example, Ref. [14]. Rewriting the lattice
Hamiltonian in the continuum limit, expanding to lowest order in momentum, and
Fourier transforming, one obtains

H =17 / 3xJF2(VP) 4+ (J — 60)@* + J'a*T1? (1.12)

since a first order expansion in momenta k from Q , ), gives By = 1/2J5%[k* — 6]
and Ag = J' + By. The corresponding Euclidean-action is found by including the
Berry phase contribution, Sg = [ d*xdt1'9,f = Z* [ d*xd72iT19.¢, such that,

Selg, M = 72 / d*xdt {2i118,¢ + J5*(V@)* + (J' — 6J)@*> + J'T1?}). (1.13)

One immediately sees that the characteristic energy scales for the ¢ and IT fields
are A, ~ (J' —6J) and A ~ J'. These characteristic energy scales, A, and A,
may be understood as the energy required to excite/create either an ¢ and IT field.
We will see shortly that we are interested in the regime where (J' — 6J) < J/, since
this corresponds to the quantum critical regime. Moreover, since we are interested
in a low energy effective theory, we remove the quantum field IT from the theory.
Formally, removing I involves performing a Gaussian integration of (1.13) over IT.
This provides an effective, low energy field theory in ¢, which remains faithful for
energy scales A < J' = Ap. After straightforward manipulations, and normalisa-
tion Z2 = J'/2, the low energy effective field theory is written,
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S[5] = 3 1 —~\2 1 2 =\2 1 1oy =2
elpl = | dvd x5 (0:9)" + € (Vo)™ + EJ (J' =6J)¢" + S (1.14)

The quadratic coupling term J'(J’ — 6.J) drives the quantum phase transition, and
it is convenient to rewrite this as m3 = y%(g — g.). For this simple approximation
g. = 6and y = JJ'. Such an approximation is rather crude, mainly due to not taking
into account the hard-core constraint (1.15). Ultimately, it is more convenient to leave
g and y as disposable, phenomenological parameters. Finally note that Sy, has been
added to Sg in a phenomenological manner—it has not been derived from the spin
Hamiltonian (1.7).

The above derivation embodies effective quantum field theories—starting from
an effective action comprised of ¢ and IT fields and tuning to the vicinity of the QCP,
g ~ g., the high energy modes IT are integrated out leaving just the lower energy,
three component real field ¢.

The above derivation does not account for what kind of non-linear interaction
term, Sty, should be added. Moreover, we did not explicitly take into account the
hard-core constraint,

sts4+tit,=1. (1.15)

There is some freedom to choose the interaction term, although by symmetry
and stability considerations ¢* is a natural choice to approximate the hard-core con-
straint (1.15) in a low energy description. This is often called the soft-spin constraint.
Throughout this thesis we will exclusively work with the soft-spin constraint as it
naturally describes symmetry breaking phase transitions, and provides convenient
access to amplitude fluctuations or Higgs modes.

1.2.2 Coupling to External Magnetic Field

To introduce an external constant magnetic field one performs the following trans-
formation of the Hamiltonian (1.7),

H, - H, — ZB -S; = H,+1iB, Zea,ﬁﬁ}/t;ﬂti,y . (1.16)

1

The corresponding adjustment to the Lagrangian density is [15-17],

- | 1 _ 1 5. |
Z1¢, Bl = 5 (9§ — ¢ x B)* + zcz(w)2 - Em%goz + Za§¢4. (1.17)
We will study the many effects induced by the presence of an external magnetic
field. For now only a few comments are necessary: B breaks the full O (3) rotational
symmetry of the action (1.14) down to an O(2) rotational symmetry about the axis
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(a) (b)
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Fig. 1.4 Gaps: influence of (g, B, T'). Arrows denote allowed spontaneous decay channels.
Abscissa g increases from left-to-right. a The 7 = 0, B = 0 QPT driven by g. Yellow, red and
green lines in the disordered phase, g > g. are degenerate triplons. In the ordered phase, g < g,
yellow line represents the gapped Higgs mode, while green and red are gapless goldstone modes.
The arrow indicates the possibility of spontaneous decay of Higgs modes into Goldstone modes. b
The T =0, g = 0 QPT driven by B. In the disordered phase, B < B, the yellow, red and green
lines represent the Zeeman-split triplon modes. In the ordered phase, there is just one gapless Gold-
stone mode, red line, one precession mode, green line, and one Higgs mode, yellow line. Arrows
indicate spontaneous decay channels of the Higgs mode. ¢ The 7 = 0, B # 0 QPT driven by g.
The description of the modes is identical to (b), except the functional dependence of the modes on
g is different to that on B.d The T # 0, B = 0 QPT driven by g. The description of the modes is
identical to (a), except now the critical point is shifted by temperature g.(0) — g.(T)

defined by B. The three degenerate modes of the symmetric phase are Zeeman split
such that the excitation gaps are A, = mg + o B, where 0 = 0, £1 are the triplon
polarisations. Hence only the 0 = —1 mode becomes critical. Figure 1.4b depicts
this situation. Upon magnetic field driven condensation, staggered magnetic order
develops and lies in a plane perpendicular to the axis defined by the applied magnetic
field B. Within this phase, there exists one Goldstone mode, and two gapped modes.
Of the gapped modes, one is an amplitude fluctuation or Higgs mode, while the other
is a precession mode with rest energy set by the Larmor frequency, g g B, where g is
the gyromagnetic factor and u p the Bohr magneton. Schematics of the evolution of
the excitation gaps through the magnetic field driven QCP are presented in Fig. 1.4b.

The magnetic field changes the universality of the quantum phase transition—
only one Goldstone mode is generated, as opposed to the O(3) QPT driven by g
which generates two Goldstone modes, in Fig. 1.4a.
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It is worth spending a few lines commenting on the QFT (1.17). Having just one
critical mode and global O(2) symmetry, this effective field theory belongs to the
3+1 dimensional BEC universality class [18]. Furthermore, based on this idea, one
can eliminate the higher energy modes, and extract a lower-energy effective theory,
namely the following,

B 1 - 1 _ 1
ZL1@1, Bl ~ Bo.d,¢y — Boydipx + Eczmu)z + E(mé - BHet + Zaowi :
(1.18)

Here the second order time derivatives are ignored under the assumption B > o,
and the ¢, mode has been dropped as it is non-critical. Note B = BZ. The Bose-
Einstein condensation (of magnons) in dimerised quantum antiferromagnets has
been considered on the basis of such an effective theory in a number of theoret-
ical works [19-21]. Importantly, this critical theory is non-relativistic; dynamical
critical exponent z = 2, and hence effective dimensionality is d + z = 5. The the-
ory now sits above the upper critical dimension D, = 4, and therefore observables
do not receive logarithmic corrections. In contrast, the original field theory (1.17)
receives logarithmic corrections, although there is no associated asymptotic freedom
as B acts as an infrared cutoff—analogously to the role played by the electron rest
energy in Fig. 1.2. Logarithmic corrections in the presence of a magnetic field will
be important in Chap.7, and I will now outline one such reason.

Under the mantra of effective QFT, many approaches to magnon Bose-
condensation have relied on the crifical Lagrangian (1.18), while certainly asymp-
totically correct (at vanishing energy), it has failed to describe real experimental
data—the BEC critical index appeared different from theory. As such, the classifica-
tion of magnetic field induced magnon condensation as belonging to the O(2) BEC
universality has been an open question for ~20 years [19-30]. A proposed resolution
of this issue came from a paper by the present author [31], and will be the subject
of Chap.7, which argues that the combination of (i) logarithmic corrections as well
as (ii) a heat bath of non-critical modes provides strong corrections to the predicted
scaling near the BEC critical point. Both (i) and (ii) arise in a treatment based on
Lagrangian (1.17), and are both absent in Lagrangian (1.18).

It is important now to comment on the validity of the critical theory (1.18). To this
end, we provide Figs. 1.4 and 1.5 for the dependence of all three modes on tuning
(g, B, T) and for the extended (g, B, T) phase diagram. Only asymptotically close
the the BEC quantum critical point can one expect this modified field theory (1.18) to
provide a faithful representation of the physics, namely, when B, > T. Physically,
temperature acts as a bath of low energy modes. The discarding of modes, i.e. the
precession and amplitude modes, may be justified in some limited region B > w at
T = 0, however, at finite T such modes can be readily excited (thermally) and as
T ~ B they become relevant degrees of freedom.

The effective theory (1.18) also has no prospect of describing decay channels
of non-critical modes (including the Higgs modes). Ultimately, Chaps.7 and 8 are
interested in extended regions of the phase diagram, the influence of temperature and
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Fig. 1.5 a The critical surface of the (g, B, T')-phase diagram. The “disordered” phase here corre-
sponds to the dimerised or paramagnetic phase of Fig. 1.3. b (Top): The critical temperature versus
magnetic field in the BEC regime; g > g.. (Bottom): The critical, Néel temperature versus tuning
parameter g at B = 0. AFM order occurs for g < g¢

quasiparticle decay (non-critical modes), for which the full three-mode Lagrangian
(1.17) is essential.

1.2.3 Research Themes and Questions

The overarching, title theme of this thesis is the interplay of quantum and sta-
tistical fluctuations in quantum critical matter. It is instructive to outline spe-
cific research questions commensurate with such a theme—questions that will be
addressed throughout this thesis. To this end, let us give meaning to the different
elements of the thesis statement. First, the quantum critical matter will be the class
of dimerised quantum antiferromagnets introduced above. They will be in a regime
such that only the relevant low energy degrees of freedom come from the original
O (3) symmetry, which may be explicitly or spontaneously broken. Second, the inter-
play of quantum and statistical (thermal) fluctuations will be understood and realised
in many ways: (i) The interplay generates a rich phase diagram Fig. 1.5 with a critical
surface and many crossover regimes. We will be interested in the role played by log-
arithmic scaling, and asymptotic freedom, on such a critical surface, i.e. corrections
to meanfield scaling behaviour. (ii) The influence of the combined fluctuations on the
energy gap of the various excitations, explicitly, the evolution of the gaps under tun-
ing of (g, B, T'). We depict this in Fig. 1.4. (iii) Quasiparticle decay—the influence
of tuning handles (g, B), influence of broken vs unbroken symmetries, influence of
temperature and associated heat bath scattering. Some of the possible spontaneous
decay channels are indicated by black arrows in Fig. 1.4.

Within this set of problems, the influence of temperature for relative scales T > A
represents a substantial challenge to theory. These scales correspond to the crossovers
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into the classical critical regime, and has been depicted in Fig.1.1. Within the
classical-critical regime, temperature cannot be treated as a small perturbation. Worst
still, close to the classical transition (Néel temperature) a straightforward application
of the QFT and RG techniques [32] generates infrared divergences in both the static
observables e.g. the order parameter, and within dynamic observables e.g. the decay
width of Higgs/triplon modes. Techniques going beyond perturbative QFT are called
for. We develop and discuss such techniques in Chaps. 4 and 5.

1.2.4 Experimental and Numerical Realisations

As much as possible, the theoretical results of this thesis are tested against the avail-
able experimental and numerical data. We now introduce the two most prominent
systems appearing in this thesis: TICuCls, studied experimentally, and the double-
cubic J—J' model, studied using quantum Monte Carlo.

Thallium copper chloride, TICuCls, is a model material that realises an insulating,
quantum magnetic system of S = 1/2 Cu* ions. The S = 1/2 spins are dimerised
due to the geometry of the exchange interactions, and at ambient pressure and zero
applied magnetic field, the system exhibits a quantum paramagnetic phase; spin
dimers form singlet states. The structure is depicted in Fig. 1.6, where dimerisation
of the S = 1/2 moments of the Cu®* ions is indicated by the blue ovals. The sys-
tem has anisotropic lattice spacings, and an easy-plane spin-orbit anisotropy, which
influences excitation velocities and gaps, respectively [33-35].

Inelastic neutron scattering studies have determined that the energy gap, at ambi-
ent pressure, is A &~ 0.7 meV [24, 36], and that the magnetic properties are three
dimensional—indicated by the strong excitation dispersion in all three spatial dimen-
sions [24, 26]. These two properties render TICuCls a remarkable material, allowing
for experimental access to a variety of universal critical phenomena:

e Quantum O(3): Remarkably, Tanaka et al. [37] found that an applied hydrostatic
pressure closes the energy gap A — 0, and subsequently induces antiferromag-
netic order. Hence hydrostatic pressure, p, plays the role of the quantum tuning
parameter, g, introduced above, see e.g. Fig.1.3. Note that p <> —g. Ignoring
the influence of the spin-orbit anisotropy, the pressure induced phase transition
belongs to the D = 4, O(3) universality class. A theoretical study by the present
author [35], also detailed in Chap.2, provides strong support in favour of this
universality.

e BEC: The gap, A, may also be closed by application of a magnetic field which,
as discussed in Sect. 1.2.2, induces an antiferromagnetic order in the plane per-
pendicular to the applied field. This theoretical expectation has been confirmed
in TICuCl; by neutron-diffraction measurements [27]. The required critical field,
B, ~ 5.6 T, makes TICuCl; one of the few known inorganic systems in which the
gap may be closed by application of laboratory magnetic fields [22].
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Fig. 1.6 Structure of three dimensional dimerised quantum antiferromagnet TICuCl3. Dimerisation
of the § = 1/2 moments of the Cu?" ions is indicated by the blue ovals

e Classical O(3): Due to the three dimensional magnetic character of the material,
the pressure induced antiferromagnetic ordered phase survives up to a non-zero
Néel temperature [38]. The thermal phase transition is said to belong to the clas-
sical, or 3D, O (3) universality class. This scenario has been realised by inelastic
neutron scattering studies under combined pressure and temperature [39]; the stud-
ies mapped out the evolution of the mode gaps through the thermal/classical phase
transition.

Hence the smallness of the gap, A, places TICuCls in the vicinity of the quantum
critical point separating the quantum paramagnetic phase from the nearby ordered
phases. And the three dimensional character allows magnetic order at non-zero tem-
peratures. TICuCl; therefore hosts a broad variety of critical phenomena and, accord-
ingly, there has been a multitude of experimental [22, 26, 27, 33, 36, 39-42] and
analytical [20, 21, 31, 35, 43—45] studies of this material. There also exists a group
of related compounds, of which we mention KCuCl;. KCuClj hosts a similar spin
dimerised structure [22-24, 40, 46—48], although, due to weaker interdimer exchange
couplings [49], the excitation gap is larger A & 2.7 meV, with corresponding critical
magnetic field, B, &~ 20T [22, 24], being less accessible under laboratory conditions.

1.2.4.1 Numerical Systems

A convenient model system that can be analysed numerically is the double-cubic,
J—J' model. This system consists of two interpenetrating cubic lattices with the
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Fig. 1.7 Dimerised lattice of S = 1/2 spins in the 3D double cubic geometry. Sites of the red and
light green cubic lattices are connected pairwise by dimer bonds; J’ and J are antiferromagnetic
Heisenberg interactions on and between the dimer units, respectively, and their ratio, g = J'/J,
controls the QPT from a Néel ordered phase (left) to a quantum disordered dimer-singlet phase
(right), with the QCP occurring at the critical ratio g,

same antiferromagnetic interaction strength, J, connected pairwise by another anti-
ferromagnetic interaction, J'. It serves as a representative 3D dimerised lattice with
an unfrustrated geometry. The QPT occurs when the coupling ratio g = J'/J is
increased, changing the ground state from a Néel-ordered phase of finite staggered
magnetisation to a dimer-singlet (“quantum disordered”) phase, as illustrated in
Fig. 1.7. The Hamiltonian takes the same form as presented in Eq.(1.7), where A
and B sub-lattices now correspond to the different cubes.

Quantum Monte Carlo (QMC) simulations of this model have been performed
[50-52] and have demonstrated to a high accuracy that the phase transition, driven by
tuning g, belongs to the expected d = 4, O (3) universality class. Namely, the static
quantities, order parameter, Néel temperature, and dynamic quantities, triplon and
Higgs gaps, have been shown to have the correct critical exponents of the multiplica-
tive logarithmic corrections. This is a highly non-trivial issue, and will be discussed
in detail in Chap.3. It is through the latest techniques of stochastic series expan-
sion and analytic continuation, that QMC studies [51, 52] have determined dynamic
quantities.

1.3 Deconfined Quantum Criticality

‘We now consider an exotic scenario proposed for dimerised quantum antiferromag-
nets, one that requires a theoretical framework beyond a nédive application of the
Landau-Ginzburg-Wilson paradigm of spontaneous symmetry breaking. Explicitly,
we consider the quantum phase transition between Néel antiferromagnetic states,
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and a valence bond solid (VBS) ordered state. The VBS phase is a dimerised quan-
tum paramagnetic phase, with essentially identical features to those met in a pre-
vious Sect. 1.2. Previously the dimerised paramagnetic phase arose in the J — J'
model (1.7), see also Fig. 1.3, which comprised a ground state of spin singlet dimers.
An essential feature that distinguishes the dimerised paramagnetic state considered
above in J — J’ model, and the VBS state is the following: in the J — J’ model,
the Hamiltonian explicitly breaks lattice symmetries—some exchanges are stronger
than others J’ > J. Hence, this model pins the dimers to orient in a fixed direction,
say e.g. dimers form on adjacent spin sites in the X-direction. On the other hand,
for VBS states, the important property is that the underlying Hamiltonian does not
break lattice symmetries, yet the formation of the VBS phase does break lattice sym-
metries. This spontaneous breaking of an underlying symmetry makes the VBS an
ordered phase.

It is believed that such quantum phase transitions are in fact second-order, thus
violating the expectation of a ndive application of LGW theory—for the breaking of
two unrelated symmetries, LGW theory generically predicts a first-order, or region
of coexistence, phase transition, and the possibility of a continuous second-order
transition only occurring under fine tuning of parameters.

A theoretical proposal that accommodates a continuous transition is the so called
theory of deconfined quantum criticality (DQC) [6, 53]. In the DQC scenario the
order parameters of the AFM state and the competing VBS state are not fundamental
variables, instead they are comprised of fractional degrees of freedom. The fraction-
alised excitations, spinons, are spin 1/2, bosonic degrees of freedom. In the AFM
phase spinons are condensed in a Higgs-like transition. Additionally, the spinons are
minimally coupled to an emergent U (1) gauge field. In the VBS phase the U(1)
gauge field confines spinon pairs to form triplons. Confinement due to gauge fields is
a familiar concept from particle physics—hadronic bound states of quarks are held
together by gluon strings, the resulting force is distance-independent, and quarks sub-
sequently cannot be isolated [12]. At, or in the near vicinity of, the critical point sep-
arating the AFM and VBS phases, spinons undergo a confinement—deconfinement
transition, whereby coupling to the gauge field becomes sufficiently weak that the
spinons may be treated as individual particles. The phase diagram hosting VBS,
AFM, and deconfined spinons is depicted in Fig. 1.8.

Spontaneous VBS order driven by frustration serves as a natural realisation of
the VBS-AFM transition for SU (2) spin systems, and is a well established theme in
quantum antiferromagnetism [54]. However, the nature of the ground state and exci-
tations in the vicinity of quantum critical points for specific models, such as the 2D
square lattice frustrated Heisenberg antiferromagnet, remains somewhat controver-
sial [55-57]. The application of unbiased numerical techniques, such as the Quantum
Monte Carlo (QMC) method, in the study of frustration driven VBS order would be
enlightening, however frustrated Heisenberg systems suffer the pathological sign
problem [58], and are thus not amenable to a QMC treatment.

Instead, other models have been pursued. A four-spin exchange quantum spin
model without frustration, the J Q model [59], was designed to evade the sign prob-
lem. The QMC method has been applied to this model, which was shown to exhibit
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Fig. 1.8 Schematic picture of the ground state associated with a the AFM state, and b the VBS
state. The arrows represent the direction of the magnetic moments. The encircled lines represent
the bonds in which the spins are paired into a valence bond

columnar dimer VBS order and a magnetically ordered phase with strong hints of
a deconfined QCP separating them [59]. These conclusions were later strengthened
by further QMC studies [60].

1.3.1 JO Model

For clarity and convenience, we will continue to introduce the important aspects of
DQC theory, having in mind the unfrustrated, four-spin exchange model (or JQ) [59].
The J Q model is a designer Hamiltonian with the essential features characterising a
VBS state, and an AFM state. It describes the competition between spin singlet pro-
jectors, with exchange energy Q, and usual antiferromagnetic Heisenberg exchange
J, such that for Q/J > 1 VBS order is favoured, while for J/Q > 1 AFM order
is favoured.

For spins § =1/2, the model is defined using singlet projectors P;; =
1/4— Si . Sj as,
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= e

Fig. 1.9 Schematic picture of the four degenerate ground states associated with the VBS state. The
ground states a and b are distinguished from each other by one horizontal lattice spacing. While, ¢
and d are distinguished from each other by one vertical lattice spacing. The encircled lines represent
the spins that are paired into a valence bond

H:—JZP,-,-—QZPU-PM, (1.19)
(ij) (

ijkl)

where (ij) denotes nearest-neighbour sites on a periodic square lattice with L? sites
and the pairs ij and k/ in (i jkI) form horizontal and vertical edges of 2 x 2 plaquettes.
Importantly, this Hamiltonian maintains all the symmetries of the square lattice.
The VBS ground state existing for g = J/Q < g., g ~ 0.045 [61], arranges in
a columnar configuration as shown in e.g. Fig.1.9a. Such a state thus breaks the
translational and /2 rotational symmetries, spontaneously. Moreover, this model
hosts four degenerate ground states of dimer orientation: along x, along y, and a
single lattice space translation of the two, as depicted in Fig. 1.9. This degeneracy
means the VBS order parameter possesses discrete Z4 symmetry. The resulting phase
has no magnetic order and instead exhibits spatial ordering of the bond energy. In
such a bond-ordered VBS state, the singlet projector (P;;) has an expectation value
that exhibits spatial structure at the VBS ordering wave-vector(s) K, resultantly the
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VBS order parameter is non-zero. The AFM state for g > g, breaks the spin-rotation
symmetry identically to the AFM phase considered in the previous Sect. 1.2.

1.3.2 Spinon Schematic Model

It is instructive to provide a schematic illustration of the deconfinement of spinons.
This illustration follows from the work of [62]. Consider approaching the critical
point from the VBS phase. This phase has a four-fold degenerate ground state as
shownin Fig. 1.9. As the phase transition is approached, patches of different, degener-
ate dimer orientation, and the corresponding domain walls between them, are formed
at a low energy cost. Domain walls intersect at a vertex, which hosts an isolated spin
S = 1/2 moment, a spinon (vortex), Fig. 1.10a. The presence of domain walls hinders
the tunnelling events between spinons, which are ultimately responsible for confine-
ment. The spinons have a characteristic correlation length &, and remain confined
as long as the domain wall thickness is &w, < &, such that tunnelling events take
place between different spinons. Upon approach to the critical point, the domain wall
thickens, Fig. 1.10b, and ultimately diverges &w.; — o0 at the critical point.

If the domain wall thickness diverges faster than the correlation length, &,y ~
g7 ie. a > 0, then tunnelling events between spinons are suppressed, and they
become (approximately) deconfined. According to this picture, when considering
length scales§ < L < &wan, the VBS order parameter will exhibit an enhanced global
symmetry, namely Z4 — U (1). This enlarged symmetry of the VBS order parameter
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has been observed in QMC simulations of the JQ model [59]. Note, an emergent
global U (1) symmetry does not imply the DQC scenario, yet stands as important
test of the present ideas.

1.3.3 Evidence for DQC Spinons

The J Q model has offered a lot of support in favour of the DQC scenario. However,
QMC simulations of the model, which are necessarily performed on finite lattices,
have shown scaling violations affecting many observables [61, 63—65]. It has there-
fore been difficult to draw definite conclusions.

Numerical QMC simulations on the J Q model strongly suggest a second order
phase transition [59, 60], extensions of the model, which include for example addi-
tional (six-spin) interactions, provide additional support for a continuous QCP [66].
However it is not possible to rule out a weakly first-order transition.

The unusual scaling behaviour has been interpreted as evidence that the quantum
phase transitions are in fact of first-order, as generally expected within the LGW
framework [63-65]. Alternate interpretations maintain that the transitions are con-
tinuous, yet unknown mechanisms are responsible for either: strong corrections to
scaling [61, 67], or fundamentally modifying scaling in an unexplained way [68, 69].
The current state of affairs, along with the puzzling aspects, are well documented in
Ref. [69].

An exciting, alternate resolution to the DQC puzzle comes from a recent study
[70], that performs a finite-size scaling ansatz including the two divergent length
scales of the theory: the correlation length £ of the order parameter (either in AFM
or VBS, since both divergence with identical critical indices), and a second diverging
length scale, &wa, associated with the thickness of domain walls in the VBS phase,
as depicted in Fig. 1.10. The work [70] carries out simulations of the J Q model and
demonstrates complete agreement with the two-length scaling hypothesis, removing
all anomalous scaling corrections.

For the purpose of the work presented in Chap.9, we are not concerned with
whether the transition is of weakly first, or purely second-order in nature. We are
only concerned with whether or not the spinons emerge as deconfined, fractional
excitations in the vicinity of the transition, and whether they are the dominant low
energy degrees of freedom—do they saturate the partition function?

Various numerical and theoretical results support existence of deconfined spinons,
regardless of whether the transition is truly second-order or weakly first-order [71,
72]. The authors of Ref. [72] perform QMC simulations of the J Q model and sub-
sequently show how the anomalies in the thermodynamical properties, specific heat,
magnetic susceptibility, coherence length, can be very well accounted for by assum-
ing spinons to be the relevant low energy degrees of freedom (as opposed to spin
S = 1 magnons).
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1.3.4 DQC Field Theory

Considering the 2 4+ 1 dimensional DQC scenario, relating say to the square lattice
model, an effective field theory has been proposed [6] to contain the relevant low
energy degrees of freedom, consistent with the U (1) gauge structure, and having
SU (2) symmetry. It has Euclidean action S = [ dtd 2x.%, where

. ) 1
L =@ +ia)T NG = ia,)2} +m2'z + 5@ + k(e duay)® . (1.20)

Here the complex, two component field z describes the spinons. They are min-
imally coupled to the U (1) gauge field a,. Suppose we sit at the deconfined QCP
between the AFM and VBS phases, then the transition into the AFM phase can be
simply understood as the condensation of the spinon fields at m? < 0, giving (z) # 0,
which after the projection,

p=76z, (1.21)

gives a nonzero expectation value to the real vector field (¢) # 0, and hence describes
the Néel AFM ordering. Going the other direction, i.e. beginning at the deconfined
critical point and approaching VBS phase, the VBS order can be understood as the
proliferation of the topological defects associated with the U (1) gauge field [6].

In Chap.9, we consider a modified version of the effective field theory (1.20)
and study the Bose-Einstein condensation of spinons induced by a static, applied
magnetic field.

1.4 Organisation of Thesis

The rest of the thesis is organised as follows: Chap. 2 discusses non-zero temperature
behaviour of observables in a three dimensional quantum critical antiferromagnet.
An analysis of experimental data on TICuCl; allows the phenomena of asymptotic
freedom to be identified. Chapter 3 provides a comprehensive mapping between
quantum field theory and quantum Monte Carlo simulation data. Chapter 4 analyses
the non-zero temperature decay properties of triplons in three dimensional quantum
antiferromagnets. A nonequilibrium technique is developed and subsequently applied
to discuss the crossover region in the vicinity of the Néel temperature, where it is
known that standard perturbative approaches fail. Chapter 5 discusses the interesting
phenomena of dimensional reduction from the perspective of the order parame-
ter. This chapter is designed to provide an alternate perspective on this interest-
ing subject. Chapter 6 details a perturbative treatment of the non-zero temperature
Bose-condensation transition capable of respecting the underlying symmetries of
the action. This chapter serves as a theoretical basis for Chaps.7 and 8. Chapter 7
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predicts the emergence of two new critical indices in the extended (g, B, T)-phase
diagram, as well as resolve a long standing issue with an expected critical index
of the system. Chapter 8 predicts that the Higgs resonance mode in magnon-Bose
condensates can be made to have vanishingly small decay width. Finally, Chap.9
discusses the Bose-Einstein condensation of particles with half-integer spin, namely,
spinons. This chapter is based on the deconfined quantum criticality framework.
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Chapter 2 ®)
Asymptotic Freedom in Quantum e
Magnets

Abstract In a quantum field theoretic description of three dimensional quantum
antiferromagnets, the magnetic quantum critical point is expected to exhibit free
quasiparticles due to the vanishing of the interaction coupling constant—an effect
known as asymptotic freedom. Despite this expectation, the asymptotic vanishing
of the coupling constant has never been observed such systems. In this chapter, we
establish the existence, as well as explore the implications, of asymptotic freedom
in the setting of three dimensional quantum antiferromagnets.

2.1 Introduction

Relativistic quantum field theories, at the upper critical dimension (3D + time), share
an important, common feature—logarithmic scale dependence of the interaction cou-
pling constant. In Quantum Chromodynamics, the interaction coupling constant log-
arithmically decays at high energies (short distances). Ultimately, at infinite energies
particles do not interact—this is ultraviolet asymptotic freedom [1, 2]. In this case,
the ultraviolet asymptotic freedom is due to non-abelian gauge fields, which act as
an anti-screening mechanism. In the case of non-gauge quantum field theories or
in abelian gauge theories, the coupling constant decays logarithmically in the low
energy limit [3]. To distinguish between the ultraviolet case known to Quantum Chro-
modynamics, we will call this phenomena “infrared asymptotic freedom”. However,
usually this decay is terminated due to a natural low energy cutoff in the system.
For example, in Quantum Electrodynamics the rest energy of the electron acts as
the natural cutoff, preventing the occurrence of infrared asymptotic freedom. On
the other hand, if the relativistic quantum field theory is tuned to a quantum critical
point, such that all energy scales vanish, then asymptotic freedom is expected. The
present work follows this line of reasoning: we search for the fingerprints of infrared
asymptotic freedom within 3D quantum antiferromagnets in the vicinity of a QCP.
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30 2 Asymptotic Freedom in Quantum Magnets

We explicitly consider the 3D quantum antiferromagnet TICuCls, which can be
driven through a QCP—separating a magnetically disordered from a magnetically
ordered phase—Dby the application of an external hydrostatic pressure [4]. This pro-
vides a unique opportunity to study the physics described above. The low energy
logarithmic behaviour at a QCP can, in principle, be pinned down even at zero temper-
ature [5]. However, the existing zero-temperature experimental data are insufficient
to pin down the logarithmic scaling. Instead combined zero and nonzero temperature
data on TICuCl; [6-8] provide additional information on the scaling behaviour of
observables near the QCP, and hence provide an excellent opportunity to search for
fingerprints of asymptotic freedom. In order to perform this search, we first develop
a theory of the QCP which accounts for both quantum and thermal fluctuations. Hav-
ing developed the appropriate, we can reliably compare the theoretical predictions
with experimental data.

Before turning to the theoretical details, we outline the phase diagram and rel-
evant observables of the system. The phase diagram of the dimerised 3D quantum
antiferromagnet TICuCl; is shown in the vertical panel of Fig.2.1a. The disordered
quantum phase consists of an array of spin dimers (a spin dimer consists of two spins
arranged in the spin singlet state), and the ordered quantum state has a long range
Néel order as illustrated in Fig. 2.1a. The Néel temperature curve (red line) separates
ordered and disordered phases, with the QCP indicated by the yellow dot.

Excitations in the disordered phase, triplons, are gapped. These are triplet exci-
tations of spin dimers, Fig.2.1b(i). Note, for clarity we use terminology “triplon”
instead of magnon/paramagnon, even though triplon s typically reserved for magnons
arising in the context bond-operator theory. There are two kinds of excitations in the
ordered phase; gapped longitudinal Higgs and gapless Goldstone excitations. They
are illustrated in Fig.2.1b(ii) and (iii). The horizontal panel in Fig.2.1a displays
excitation gaps versus pressure at zero temperature.

Overall the experimental data [6-8] provide the following information: (i) Néel
temperature versus pressure, (ii) magnetic excitation gap in the disordered phase for
various temperatures and pressures, (iii) Higgs magnon excitation gap in the antifer-
romagnetic phase for various temperatures and pressures, (iv) magnetic excitation
width (lifetime) for various temperatures and pressures. To establish the existence of
asymptotic freedom, we do not use the width data. However, we fully use the data
from points (i), (ii) and (iii). Having established asymptotic freedom, we perform a
detailed analysis of its influence on the decay width.

Finally, we mention that there is a small spin-orbit anisotropy in TICuCl; which
gaps one of the “Goldstone” modes in the antiferromagnetic phase. This implies that
the number of dynamic degrees of freedom change from 3 at high energy to 2 at
very low energy. We neglect this effect throughout the main text, but in Appendix A
we explicitly show that the presence of the anisotropy does not influence the major
conclusions.

The remainder of this chapter is organised as follows: Sect.2.2 introduces the
quantum field theoretic description of the system and the corresponding key observ-
ables. Section 2.3 directly compares the observables from quantum field theory and
experimental data on TICuCl; to demonstrate the existence of asymptotic freedom.
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Fig. 2.1 a The phase/energy diagram of TICuCls. The vertical panel shows the pressure-
temperature phase diagram, the Néel temperature curve separates magnetically ordered and mag-
netically disordered phases. The light red band around the Néel curve indicates the region of dimen-
sional crossover. Points show experimental data from Ref. [7]. The horizontal panel shows both the
triplon gap A; in the paramagnetic phase and the Higgs magnon gap A in the antiferromagnetic
phase versus pressure at zero temperature. b Excitations of a dimerised quantum antiferromagnet.
Panel (i) illustrates the triple degenerate gapped triplon excitations. Panel (ii) is a cartoon schematic
of the gapped longitudinal (Higgs) excitation. Panel (iii) illustrates the quantum phase transition;
the strength of the interactions in either phase is depicted by the steepness of the well. Within the
ordered phase the ‘Mexican hat’ potential has a flat direction which supports the gapless Goldstone
excitations (red arrows). Precisely at the QCP (dashed line), all directions flatten—the Higgs and
triplon excitations become gapless and non-interacting i.e. asymptotically free
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In Sect.2.4 we discuss the implications of asymptotic freedom for other properties
and observables in the system. Our focus in this section will be on properties of the
mass gap, and decay width taking into account both the quantum running coupling
and statistical heat bath. We will use these results to gain a deeper understanding of
the region of quantum criticality. Finally in Sect. 2.5 we provide a comparison of our
results for the decay properties, including the influence of asymptotic freedom, to
experiment data on TICuCls.

2.2 Theory I: Key Observables

To describe the critical properties of the quantum phase transition, we work with the
following Lagrangian [9, 10],

£ = %auaa”@ - %mga i %ao[(ﬁ 1 (2.1)

The three component vector field ¢ describes the critical excitations, and the
derivatives are 9,, = (9o, ¢V) and we set ¢ = 1. We assume the linear expansion
m(z)(p) = y2(p. — p), where y? > 0 is a coefficient, p is the applied pressure and
p = p. is the QCP. Hence the varying the pressure relative to p. leads to two distinct
phases; (i) at p < p,, m% > 0, and the classical expectation value of the field is zero
@2 = 0. This is the magnetically disordered phase (symmetric phase), which hosts
gapped and triply degenerate excitations—the triplons. (ii) At p > p., m§ < 0, and

the field obtains a non-zero classical expectation value > = = ‘)‘ . This describes the
magnetically ordered, antiferromagnetic phase (broken symmetry phase). Due to the
spontaneous symmetry breaking, two gapless transverse (Goldstone [11]) excitations
emerge, as well as one gapped longitudinal (Higgs) excitation. At the meanfield level,
one finds that the Higgs gap/triplon gap= /2 [12], explicitly A,(p) = mo(p) and
An(p) = V2Imo(p)-

2.2.1 Quantum and Statistical Fluctuations

We now wish to take into account quantum and statistical (thermal) fluctuations. We
consider the one-loop fluctuations corrections, which are represented diagrammati-
cally in Fig.2.2; they are the vertex and self-energy. By application of the renormal-
ization group (RG), it is well known that the vertex corrections result in a logarithmic
scale dependence of the coupling constant «,, see e.g. Ref. [13] or Appendix A,

Xo
14 W90 10 (Ag/A)

(2.2)

oA =
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Fig. 2.2 Diagrams for the vertex I" and self-energy X

We will henceforth refer to this as the running coupling constant. Here A is
the energy/momentum scale, Ao is the normalisation point, o, = g, and N =
3 corresponds to the three components of the vector ¢. Since Eq. (2.2) has been
obtained within the one-loop RG, we musthave oy /87 < 1 for areliable perturbative
expansion. We see that the running coupling has apoleat A = A, = Age®™ /(N8
This is the famous Landau pole much debated in quantum field theory [3]. Of course
one cannot rely one-loop RG results to adequately discuss Landau pole effects,
however, we will see later that quantum magnets can shed light on the problem.

In Fig.2.3a, we plot the running coupling constant as a function of pressure at
zero temperature. As explained, the coupling constant vanishes at the QCP—this is
the infrared asymptotic freedom. Figure2.3a represents one of our central results.
In order to plot Fig.2.3a, we have input explicit parameters {p., y, «o}, below we
explain how they were obtained.

The scale dependence of the mass and of the staggered magnetisation (order
parameter) are obtained by considering both the vertex and self-energy diagrams of
Fig.2.2. At zero temperature, they are well known [13], (for an explicit derivation
see Appendix A)

N+2

m*(p. A) = y2(pe — p) [“A}M 2.3)

&00]

oe(p, A) = 24

Qo A

6
v3(p — po) [ﬂ} w43
At zero temperature the running energy scale is set equal to the mass gap A = m.
We now extend the above results to nonzero temperature, i.e. taking into account
statistical fluctuations, and obtain the following expressions (details presented in
Appendix A)

N+2

oy v 1/wk
AL (p, T, A) = y*(pe = p) [—A} + (N +2)an Y
(o)) X

g
e T —

2.5)

Now the running energy scale is set by A = max{A,, T'}. However, hidden in the
above formulation is the triplon dispersion wy. We claim that the naive on-mass-shell
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Fig. 2.3 a Zero temperature running coupling constant versus pressure in TICuCl3. The constant
vanishes at the QCP (yellow point). b Running coupling constant versus pressure along the Néel
temperature curve. Unlike panel a where the temperature is zero, in this case T = Ty (p). According
to Egs. (2.5) and (2.7), the infrared cutoff in Eq. (2.2) for ap is A = Tn(p). The QCP is again
marked by the yellow dot

dispersion wy = /k* + A? is incomplete because at small k and close to the Néel
temperature where A, — O the linewidth I', (temperature broadening) becomes
larger than the gap. Physically the inequality I'; > A, is an indication of the dimen-
sional crossover, 4D — 3D. Sufficiently close to the Néel temperature, critical
indices take the 3D classical values. A detailed analysis of the triplon decay linewidth
I'; is presented in Chap. 4, while in Chaps. 4 and 5 we discuss the 4D — 3D dimen-
sional crossover problem. For the present chapter, to account for the decay linewidth

and dimensional crossover we take the following ansatz wy = \/k* + A? + 2. We
also note that this damping-renormalized dispersion is consistent with that used for
the analysis of spectral data for spin excitations in TICuCls by Ref. [6]. Of course
the modified dispersion is not sufficient to fully describe the dimensional crossover,
but it is sufficient for the purposes of the present work. The line broadening we take
directly from experiment, I', = €T, where & ~ (.15 [6]. Later, in Sect.2.4.2, we
obtain analytic expressions (2.19) and (2.20) which justify the linear-in-7 linewidth
I';, = &T. Later, in Sect. 2.4.2 we will explicitly motivate this ansatz.

To find the Néel temperature as function of pressure, Ty (p), we solve Eq. (2.5)
with A,(p, Ty) = 0, which gives

5 6

Y~ (p — pe) o |

Tv(p)* = 7 [_} , (2.6)
(N +2)00 3y gipy LA

where w, = /2 + ([/Ty)? = /¥ + £2. We note that the critical exponent of the
magnetisation in Eq. (2.4) and the Néel temperature (2.6) are identical, which agrees
with the recent Quantum Monte Carlo simulations [14].
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Fig. 2.4 a Triplon and Higgs gaps versus presssure at temperature T = 1.85 K. Points show experi-
mental data from Ref. [8]. b Néel temperature versus pressure. Points show experimental data from
Ref. [7]. In both plots the solid and dashed curves are quantum field theory fits with and without
account of the running coupling constant, respectively

The temperature dependence of the Higgs gap in the ordered phase is found to be,

N+2
o N+8
Ay (p, T, A) =2{)’2(P—Pc) [a—ﬂ 2.7
1/k 1wk
—(N - 1)(1 —3a o ( -

Again, A = max{Ay, T}, wp = /k* + A2, + T2, and Ty = ¢ T. We take ¢ ~
0.3, which guarrantees that the Néel temperature determined fromA; = 0, Eq. (2.5),
is identical to that determined from Ay = 0, Eq. (2.7). The broadening coefficient
¢ ~ 0.3 is consistent with data on TICulClj; [6]. The Goldstone modes remain mass-
less even in the presence of quantum and statistical fluctuations; being massless is a
symmetry requirement.

2.3 Demonstration of Asymptotic Freedom

Having established the one-loop renormalized mass gaps and Néel temperature, we
are now ready to compare with experimental data on TICuCl; and to demonstrate
asymptotic freedom. We have three fitting parameters at our disposal, the critical
pressure p., the coefficient y, and the coupling constant «y. Note that ag = ap (Ag)
is the running coupling constant evaluated at the normalisation point A. This means
that the normalisation point is itself not an extra fitting parameter, since one can
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always demand a different normalisation point which will just result in an appropriate
rescaling of the coupling «y. To proceed, we set the normalisation point Ao = 1 meV,
which corresponds to the characteristic upper scale in the data taken on TICuCl; [6—
8]. We remind the reader that this choice is arbitrary, one can always use a different
normalisation point with an appropriate rescaling of the coupling «.

We find the best fit parameters

pe = 1.01 kbar, y = 0.68 meV/kbar'/?, g—‘) =0.23. (2.8)
T

In Fig. 2.4a we plot the triplon and Higgs mass gaps as a function of pressure and at
fixed T = 1.85K. Figure 2.4b shows the Néel temperature as a function of pressure.
The points show data taken from Refs. [6—8]. Our primary goal is to demonstrate the
existence of the running coupling constant within the physical system TICuCl;. To
this end, we plot our theoretical results, i.e. Egs. (2.5), (2.6) and (2.7) with parameters
(2.8), both including and excluding the logarithmic running of the coupling constant;
solid curves include running, while dashed exclude the running by setting oy = .
We deduce that the running coupling constant plays an important role in describing
the data, and hence conclude that this intriguing mathematical feature is demonstrable
within TICuCl;.

Finally, we can naively extract the position of the Landau pole for the obtained
parameters (2.8), A, = Age®™ /1'% ~ 3 5meV. This energy is higher than the exper-
imentally studied regime and is comparable with expected ultraviolet cutoff, related
to the lattice spacing. Future experimental studies in this energy range maybe be able
to explore some aspects relations to the Landau pole, i.e. strong coupling phenom-
ena. Alternatively, similar phenomena may be addressed in Quantum Monte Carlo
studies of appropriate dimerised spin-lattice models.

2.4 Further Implications of Asymptotic Freedom

In this section we discuss the implications of asymptotic freedom for other properties
and observables in the system. Our focus in this section will be on properties of the
mass gap, and decay width taking into account both the quantum running coupling
and the statistical heat bath. We will use these results to gain a deeper understanding
of the various regimes of the disordered phase—in particular the region of quantum
criticality. The remaining results relate solely to the disordered side of the phase
diagram. Henceforth we will refer to the quasiparticles in the disordered phase as
paramagnons.
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Fig. 2.5 aDecay diagrams for a paramagnon. The thick blue line represents the probe paramagnon
and thin black lines represent the heat bath paramagnons. b Diagrams corresponding to pumping
(inverse processes) to the paramagnon state. The thick blue line represents the probe paramagnon
and thin black lines represent the heat bath paramagnons

2.4.1 Scattering from the Heat Bath

Let us consider the possible decay (or scattering) processes available to a param-
agnon. Figure?2.5 provides a schematic of the decay channels available to a given
probe paramagnon, represented by the blue arrows in Fig.2.5. All such channels
follow from the contact interaction term, a.¢?, in the Lagrangian (2.1). Figure 2.5a(a)
shows the probe magnon spontaneously decaying into three paramagnons. Due to the
heat bath, the probe paramagnon can also scatter of a heat bath paramagnon, which
is often called a Raman process, and is shown in Fig.2.5a(b). Moreover, there are
fusion processes with two or even three heat bath paramagnons, Figs. 2.5a(c) and (d).

It is worth noting that processes Fig.2.5a(a, ¢, and d) are kinematically forbidden
for on-mass-shell paramagnons [15]. However, once significant deviations from the
on-mass-shell condition are observed, such processes have a nonzero contribution
and must be included in the analysis. This occurs, for instance, in the vicinity of the
Néel temperature and will be the topic of Chap. 4.

Along with the decay processes of Fig.2.5a, one must also consider the corre-
sponding inverse process, i.e. pumping from the paramagnon bath. Figure 2.5b shows
the pumping processes. It is clear that the total decay rate for the probe paramagnon
should be the difference

Iy(@) =T (@) T (), (2.9)

where I, is the total width, F;d) is the decay width due to the processes in Fig.2.5a
and F((]") is the inverse width due to the processes in Fig.2.5b. One can find a formal
derivation, and further discussion, of (2.9) in Ref. [16]. The decay and inverse decay
widths obtain a simple relation due to the condition of detailed balance [16, 17],
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F((ii)(a)) = e_‘”/TF;d) ()
Ty(@) =(1—-e ' w). (2.10)
Let us now write down an explicit expression for I'y (w). A straightforward appli-

cation of the Fermi Golden rule to the processes shown in Fig. 2.5 yields the following
expression for the decay width

16(27)°SB3 Ak, dky dks
2w / 201 (27)3 20, (27)3 2003 (27)3

x [(1+np)(1+n2)(1+n3) 8P(g — ki — ko — k3)

+3n1(1+n2)(1 +n3) 89(q + ki — ky — ks)

+3mny(1 4+ n3) 8P (g + ki + ko — k3)

Ty(@) = (1—e/T)

+nnanz 8Y (g + ki + ky + k3)] . (2.11)
Here 1
= et —1 (2.12)

is the paramagnon occupation number, and the four-dimensional §-function accounts
for the energy and momentum conservation of each process, and we have used the
shorthand notation 8™ (g + k; + ky + k3) = §(wg + w1 + wy + 03)8 (g + ki +
k> + k3). The constant pre-factor S is a combinatorial factor arising due to counting
of the different possible paramagnon polarisations. Here we generalise to O (N) field
theory,

S =2(N +2). (2.13)

For further details on such combinatorial factors see e.g. [18].

2.4.2 Analysis of Quantum Disordered and Quantum Critical
Regimes

Having established a explicit expressions for the mass gaps, Néel temperature, and
decay properties, we now wish to analyse the various proposed regimes of the
phase diagram. Again, we are strictly considering the disordered phase. In nearly
critical, two-dimensional quantum antiferromagnets it is well established that the
phase diagram may be partitioned into three distinct regimes: the quantum disor-
dered (QD), quantum critical (QC), and renormalised classical [19]. Moreover, it is
also widely assumed, see e.g. Ref. [9], that nearly critical, three-dimensional quan-
tum antiferromagnets may be similarly partitioned. In the disordered phase three
regimes are commonly discussed: a quantum disordered (QD), quantum critical (QC),
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Fig. 2.6 The phase diagram and various regimes of a 3D quantum antiferromagnet. The dark red
line is the Néel temperature. The light red band indicates the region of dimensional crossover or
the classical critical regime. a Commonly accepted partition of the phase diagram into its various
regimes. The dashed lines indicate crossovers between different regimes (not transitions). Here
g ~ p (pressure). b The phase diagram derived here, to be specific we use parameters of TICuCl;3.

The black dashed lines separate QD and QC regimes. The cuts: cutl, cut2, cut3, and cut4 are
described in the text

and thermally disordered (TD). We illustrate such regimes in Fig.2.6a. It is the pur-
pose of this section to show that the inclusion of logarithmic corrections, via the

running coupling constant, demands a significant change to this commonly held
picture.

It will be convenient for the following technical discussion to work in terms or

Ba = ap/(8m). Moreover, purely for the readers convenience we rewrite Egs. (2.2)
and (2.5) again here

N+2

N 1 1
A? =% (p, — [’3—“} + 87 (N +2 S — 2.14
(= p)| g 7( mgmﬁ 1 (2.14)

Po
14 B9 1n(Ag/A)

Ba =

(2.15)

Again Ag = max{A, T}, and oy = vk* + AZ + T2

To begin our analysis of the QD and QC regimes, we perform a simplifying
approximation to the decay width expression (2.11); we consider just the Raman
Raman processes shown Fig.2.5a(b) and b(b). Such an approximation is certainly

valid whenever I' << A, which constitutes most of QD and QC regimes. Within this
approximation, we obtain
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7S s l—e T A
quo(w = A) = TIBAT Tj 7 N (216)
6 00 X1
ﬂ(y):y;/ dxl/ dxy ny (1 +ny,)(1+ny,) ,
y y

1

e —1°

X3=y+x1—X2, ny=

Importantly, within this expression we use the running coupling constant 8,
instead of By in (2.11). This substitution accounts for the one-loop RG corrections
to Eq. (2.11), and implies that the paramagnons are non-interacting at the QCP.

We will also find it useful to calculate the Fermi golden rule I'y_o(w) at arbitrary
values of w, i.e. off-mass-shell. As discussed, once the on-mass-shell restriction is
lifted the spontaneous processes, Fig.2.5a(a) and b(a), also contribute. In this case
we find

T 1 —e /T w @
Fy=o(@) = —= AT ——— {fb (7) + (?)} ’
6 00 y=yo+xi
I () = y— dxi / ax
T Jmax{yo,2y0—y} Yo

X nxl(l +n)62)(1 +nX3)F(xl’x25 x3) ’
X3=y+x1—x2, y=A/T,
2 [ y=Yo—xi
A =00 -30y= [ dx [ dn
4 Yo Yo
X (1 +n,))(A+n)(1+n)F(x, x2,x3) ,
X3=y—x1—x2, yo=A/T,

I,if x_ <x3 <x4
F(xi, x2, x3) = {

0, otherwise

2
x:\/(\/xlz—yg—\/xg—yg) + 35

2
vo= (== VB =) . 1)

When considering off-mass-shell energies w, the running energy scale in 8, is
set by A = max{/w? — g2, T}. It is easy to check that at ® = A, Egs.(2.17) and
(2.16) coincide.
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2.4.2.1 Quantum Disordered Regime

To characterise the QD regime, consider the trace, denoted cutl in Fig.2.6b,
through the QD regime of the phase diagram. Deep within the QD regime and at
low temperatures, such that e=2/7 « 1, the gap evaluated via Eq. (2.14) receives
negligible thermal corrections, and is essentially equal to its value at zero tempera-
ture. In this regime, we find that the decay width is given by

Ty—olw= A 3S ,T?
%)z;ﬂiﬁe_A/T <1, (2.18)

which follows from a direct evaluation of (2.16).

2.4.2.2 Quantum Critical Regime

To characterise the QC regime, consider the trace, denoted cut2 in Fig.2.6b, which
begins at the critical point g = g, and rises in temperature. Along cut2, the solution

of Eq. (2.14) gives
A=T,/ w O(Bya) - (2.19)

We introduce the scaling function &, which is nonanalytic at 8 — 0, and has

the small B expansion @(f) = (1 — ,/% + - > This non analytic, cusp

behaviour means that the expression (2.19) undergoes significant deviation from
unity even at small values of f—the coupling constant. Figure2.7 plots & (8) with
N =3.

—
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Fig. 2.7 Scaling functions
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We combine Egs. (2.16) and (2.19) to find an appealing compact expression for
the ration of the decay width to mass gap, appropriate to describe the cut2,
lymo(lw=A4) 3S
A 4N +2)

Ba @(Ba) . (2.20)

We introduce a second scaling function &, which is also nonanalytic at 8 —
0 and normalisation is chosen such that @(0) = 1. See Fig.2.7. Beginning at the
QCP, where all energies vanish, and raising the temperature one may expect the
observables A and T to scale linearly with temperature. Indeed, both A and I', Eqgs.
(2.19) and (2.20), scale linearly with temperature along the cut2. However, from the
expressions (2.19) and (2.20) we also see a multiplicative logarithmic scaling. This
is an interesting result, and offers yet another test of the infrared asymptotic freedom
scenario. We also note that the logarithmic scaling for A and I' are significantly
different.

2.4.3 Crossovers and Contours

We have considered separately the QD and QC regimes, now we wish to understand
the crossover curve between the two regimes. In the QD regime, A > T, while in
the QC regime, A < T. Therefore one obtains the boundary curve by solving the
implicit equation

Alp,T)=T. (2.21)

The black dashed line in Fig. 2.6b shows the crossover curve found via expressions
(2.14) and (2.21). We immediately see that it does not follow the simple power
scaling illustrated in Fig. 2.6a, and commonly referred to in the literature. The rather
dramatic difference in the crossover curves of Fig.2.6a and b is due to the running
of the coupling constant. More physically, we state that this difference is due to the
system being at its upper critical dimension, which implies that we must consider two
energy scales: the infrared scale which is equal to temperature, and the ultraviolet
scale which is determined by position of the Landau pole.

To be sure not to overstep the region of validity of the one-loop RG expressions
presented in this section, we have to check that the running coupling remains smaller
than unity 8 < 1. Obviously at the QCP g — 0, but increasing T increases 5. We
evaluate § at the crossover A = T (the crossing point between the black crossover
line and cut2 of Fig.2.6b), and find it to be 8. ~ 0.23. Hence we see that coupling
remains sufficiently small at the crossover to justify the perturbative results of this
section.

To elucidate the physics of the so called thermal disordered (TD) regime, we
consider the trace, denoted cut3 in Fig.2.6b. First we state that the ratio A /T mono-
tonically decreases from A/T > 1 above the QD-QC crossover, to A/T =0 at
the Néel transition. Meanwhile the ratio I'/A is monotonically increasing. On the
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basis of this analysis, we do not observe any discernible fingerprints of a crossover
to the TD regime. We suggest that this extra regime has very little qualitative dis-
tinction. However, once in the very near vicinity of the Néel temperature, the ratio
I'/ A becomes approaches unity, and with it certainly signals a distinct regime. This
regime change is known as dimensional crossover, and is indicated by the light red
band in Fig.2.6b. The region within the red band is often referred to as classical
critical. We will explicitly develop a theoretical description for decay widths in such
a regime in Chap.4, which considers in detail cut3 and cut4. Moreover, in separate
effort presented in Chap.5 we develop a description of the static properties of the
dimensional reduction.

To complete our discussion of the crossovers and contours of the magnetically
disordered phase, Fig.2.8 presents lines of constant I'/ A. The parameters (2.8) have
been used. The cusps in the I'/A contours occur at the QD-QC crossover line, i.e.
when A = T, we stress that such cusps are merely the result of the logarithmic RG
where the argument is In(max{A, T'}), and should not be mistaken for something
physical.

2.5 Comparison with Experimental Data on TICuCl3

Having completed the theoretical discussion of the paramagnon gap, decay width
and the associated regimes in the phase diagram, all that remains is to compare our
results to available data on TICuCls. Neutron scattering data is available in both the
QD and QC regimes. We have already obtained the fitting parameters (2.8), and do
not need any new parameters.



44 2 Asymptotic Freedom in Quantum Magnets

a b
(a) 2o (b) 0.6
0.5
= = S04
2 g
E 10 203 =
< S u
02 -
05 [}
01| m > ]
ain =
0.0 00
00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14
T [meV] T [meV]
©) 10 d
(0 . (d) 0.20
0.8
] —. 015 n
> 06 >
E £ 0.10
4 04 S
—
0.0 0.00
00 02 04 06 08 10 00 02 04 06 08 10
T [meV] T [meV]

Fig. 2.9 a The gap and b the width in TICuCl3 along the cutl in the phase digram Fig.2.6b. We
take the cut at p = 0 kbar. Squares represent experimental data Ref. [20] and the theory is shown
by lines. ¢ The gap and b the width in TICuCl3 along the critical cut2, p = p., in the phase digram
Fig.2.6b. Squares represent experimental data Ref. [6] and the theory is shown by lines

First, we consider an analogous trace to cutl in Fig.2.6b, except we demand that
it begins at p = 0, such that it corresponds to experimental data. Figure2.9a and b
shows the paramagnon gap (2.14) and width (2.14) along this trace. Our theoretical
results are shown by solid lines and the squares represent the experimental data of
Ref. [20]. We have not used Eq. (2.18), since it is valid only up to exp(—A /T) < 1.
The agreement between experiment and theory for both the gap and the width is
remarkable.

Next we consider the trace analogous to cut2 in Fig. 2.6b, i.e. the quantum critical
regime. Figure2.9c and d shows the paramagnon gap (2.19)and width (2.20) along
this trace. Our theoretical results are shown by solid lines and the squares represent the
experimental data of Ref. [20]. Once again, our theoretical results are in remarkable
agreement with the experimental data. We emphasise that our calculations of the
gaps and widths entering Fig.2.9 had no adjustable fitting parameters; the small set
of parameters were already determined in Sect.2.3.
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2.6 Discussion and Conclusion

Asymptotic freedom is inherent to the mathematics of relativistic quantum field
theories at the upper critical dimension. The present work has demonstrated that
this mathematical intrigue finds a physical realisation in the setting of 3D quan-
tum antiferromagnets. First we establish the existence of this remarkable property
in TICuCl;. We then go on to explore the implications of asymptotic freedom on
various observables. Explicitly, we show how the inclusion of the running coupling
plus renormalization due to statistical fluctuations provides a remarkably accurate
description of the mass gap and decay width of magnons in TICuCl;. Our results
also provide a natural description of the boundary/crossover to the so called quantum
critical regime—we determine the boundary to be qualitatively different from the
commonly accepted picture.

It is important to emphasise that it was the remarkable experimental control of
quantum antiferromagnet TICuCl; that has allowed the present work to identify—for
the first time—the logarithmic decay of the coupling constant.
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Chapter 3 ®)
Unifying Static and Dynamic Properties e
in 3D Quantum Antiferromagnets

Abstract Quantum Monte Carlo offers an unbiased means to study the static and
dynamic properties of quantum critical systems, while quantum field theory pro-
vides direct analytical results in terms of the quasiparticle excitations. We study
three dimensional, critical quantum antiferromagnets performing a combined anal-
ysis by means of quantum field theory calculations and quantum Monte Carlo data.
Explicitly, we analyse the order parameter (staggered magnetisation), Néel tem-
perature, quasiparticle gaps, as well as the susceptibilities in the scalar and vector
channels. We connect the two approaches by deriving descriptions of the quantum
Monte Carlo observables in terms of the quasiparticle excitations of the field theory,
which reduces the number of fitting parameters. Agreement is remarkable, and con-
stitutes a thorough test of perturbative O(3) quantum field theory. We outline future
avenues of research the present work opens up.

3.1 Introduction

Quantum field theory (QFT) and quantum Monte Carlo (QMC) are two indispensable
methods to study critical phenomena in magnetic quantum systems—each offering a
different perspective into the characteristic phenomena of the system. Quantum field
theory comes with a set of fundamental parameters which completely determine all
observables and, in particular, how they scale with detuning, dg, from the critical
point g, (see Fig. 3.1). The parameters are phenomenological and must be determined
by fitting to experimental or numerical data. On the other hand, the QMC simulations
considered here are performed using a lattice Hamiltonian and all observables are
expressed in terms of the detuning parameter §g as well as a set of arbitrary fitting
parameters; the fitting parameters of any observable being unrelated to those of
another.

Recent QMC studies [1-3] have demonstrated excellent agreement with the pre-
dicted scaling behaviour of observables [4, 5], and has only become possible with
recent developments in computational techniques. However, the shortcoming of such
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a treatment is that each observable is detached from the others; information relating
observables is lost in QMCs arbitrary fitting parameters. This is unsatisfying since
one generally expects, and finds from QFT, that observables are intimately linked;
e.g. scaling behaviour of the Néel transition temperature can be determined by the
properties of the critical excitations. Our primary motivation is to derive the relations
between all such quantities, and provide a complete mapping between the QMC and
QFT observables.

In the vicinity of the magnetic critical point the observables of interest are asso-
ciated with the broken or unbroken O(3) symmetry. This group accounts for the
relevant, i.e. critical, degrees of freedom. As described in Chap. 2, the symmetric
(disordered) phase hosts three gapped triplon modes, while in the symmetry broken
phase, a preferred direction is established and is associated with an order parame-
ter or staggered magnetisation, see Fig.3.1a. The amplitude oscillation of the order
parameter is the gapped Higgs mode and the directional oscillations are gapless
Goldstone modes. In three spatial dimensions, order survives up to a non-zero Néel
temperature. An illustration of the phase diagram and some observables is presented
in Fig.3.1a.

Again, the aim of the present work is to connect all such observables via a descrip-
tion in terms of a set of five QFT parameters {c, g., ¥, &, Ao} to be described shortly.
Explicitly, the parameters {c, g.} will be fixed to the values obtained in simulations,
and the remaining three are to be determined using best fit to QMC data.

The remainder of the chapter is organised as follows: Sect. 3.2 provides a descrip-
tion of the lattice Hamiltonian used in QMC. Section 3.3 details the meanfield quan-
tum field theory and single-loop RG corrections. In Sect.3.4 we apply the analytic
QFT formulae to fit the QMC data [1, 2]. Section3.5 provides a detailed analysis
of the vector and scalar response functions, and offers a self-contained treatment.
We use the derived parameters to analyse the Higgs decay linewidth obtained from
the vector and scalar response functions in [2]. In Sect.3.6 we derive approximate
values of the best-fit parameters from bond-operator theory. Here we also explain
the non-universal relationship between m; and ¢.. Section 3.7 discusses the findings
and suggests future research avenues.

3.2 Model and Methods

As a representative 3D dimerised lattice with an unfrustrated geometry, we choose
to study the double cubic model shown in Fig.3.1b. This system consists of two
interpenetrating cubic lattices with the same antiferromagnetic interaction strength,
J, connected pairwise by another antiferromagnetic interaction, J'. The QPT occurs
when the coupling ratio g = J'/J is increased, changing the ground state from a
Néel-ordered phase of finite staggered magnetisation to a dimer-singlet (quantum
disordered) phase, as illustrated in Fig. 3.1a. The Hamiltonian reads,
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Fig. 3.1 a Schematic quantum critical phase diagram for the Heisenberg model on the double
cubic lattice. Staggered magnetisation (red) and Néel temperature (blue) and triplon gap (dashed)
all vanish at the QCP g = g.. b Dimerised lattice of S = 1/2 spins in the 3 D double cubic geometry.
Sites of the red and light green cubic lattices are connected pairwise by dimer bonds; J’ and J are
antiferromagnetic Heisenberg interactions on and between the dimer units, respectively, and their
ratio, g = J'/J, controls the QPT from a Néel ordered phase (left) to a quantum disordered dimer-
singlet phase (right), with the QCP occurring at the critical ratio g.

H=17Y (S-S +S -S)+7) 58 (3.1)

<i,j> i

where subscripts {/, r} denote the left and right position on the dimer.

3.2.1 Observables

The observables of interest in the QMC simulations are the triplon and Higgs exci-
tation gaps, and the staggered magnetisation, all at zero temperature. QMC also
determines the Néel temperature. The zero temperature observables can be cast in
the following generic form [1-5]
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o [ lg = gl
A(g) = ailg — g™ In | (3.2)
L 1 |
v (g — gcl] P2
Ap(g) = azlg — &/ In | (3.3)
L 2
wr [ lg = gl7”
ms(g) = az|lg — ge|” In e (3.4)
L 3
while the Néel temperature is written [1, 5]
| lg =gl 7™
Tn(g) = aslg — &c|™ In |:b— . (3.5)
4

The exponents {v;, B;} have received a great deal of attention, and are known
from scaling hypotheses and general quantum field theoretic arguments; v; = 1/2,
B1=p = —%(N +2)/(N + 8) and B3 = B4 = 3/(N + 8) [4]. Itis the relationship
between all coefficients {a;, b;} that remains unknown from QMC analysis. We will
derive such relations.

3.3 Quantum Field Theory

The quantum phase transition (QPT) between ordered and disordered phases is
described by the effective field theory with the following Lagrangian [6],

&= %aﬂaa% - %mga 7 - %ao[@ 1. (3.6)
The vector field ¢ describes staggered magnetisation, and index p enumerates
time and three coordinates, and 9, = (9;, cV) where c is the (magnon) spin wave
velocity. The QPT results from tuning the mass term, m(z), for which we take the
linear expansion m3(3g) = y* (g — g.) /8., where y? > 0 is a coefficient and g
is the quantum tuning parameter. Varying g leads to two distinct phases: (i) for
g > g. we have m% > 0, and the classical expectation value of the field is zero
gocz = 0. (ii) For g < g, we have m% < 0, and the field obtains a non-zero classical
expectation value ¢? = lZ—(‘j)‘ As per Chap. 2 one easily recovers the known relation
for the bare (unrenormalised) parameters; Higgs gap/triplon gap = /2, explicitly
A:(8g) = mo(8g) and A (8g) = v/2Imo(8g).
The above analysis does not account for quantum or thermal fluctuations. All fluc-
tuations considered in the present chapter originate from the vertex and self-energy
diagrams shown in Fig.3.2. Appendix A provides a full derivation such corrections.
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Fig. 3.2 Diagrammatic expansions for a the four-point vertex, I'®, and b the response function,
Xog> shown for the quantum disordered phase (g > g.). Solid lines denote the free propagation,
governed by the first two terms of Eq. (3.6), of the field ¢, which here corresponds to triplon
propagation. The vertex marked by the solid circle represents the bare interaction, the third term
of Eq. (3.6), whose coefficient, «, is the perturbative parameter. The one-loop corrections to I'®
and xy, are equivalent to retaining next-to-leading-order terms in o. For the expansion of '™ this
implies > terms, which are contained in the three distinct loop diagrams (the Mandelstam s, 7, and
u channels) in panel (a). For the expansion of y,,, this is the order-o loop diagram in panel (b), to
which we refer as the self-energy, X

3.4 Results

For comparison with QMC, we have the following four observables as derived in
one-loop renormalisation group, Appendix A. We rewrite the analytic form of the
zero temperature excitation gaps and order parameter in a more convenient form

N+2 N+2

2 2 N+3 _N+2
2 2 oA [N+ y 167 ( . )\ Nt
AZ(8g) = y=|8g| | = = — —gel|In(lg — gel/b . (3.7
6=y Ig\[ao] o ((N+8)a0 lg — gel |In (1g — gel/bi (3.7
N+2 N+2
NS 2 1672 N+8 . ,L+§
A2 (5g) = 292 15¢] | 22 =2V—<7 — gl (12 = gol/Bn )|, 3.8
(58) V'g'[ao o \ W) & n (Is - gcl/b2) (3.8)

i (g - ec/53) [T (3.9)

6 —6

) y2|5g| o N8 yz 16712 N+8

$e0g) = ——| — =— | = lg — &l
ag  Laa a0ge \ (N +8)ap

and similarly for the Néel temperature
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Here 6g = (g — gc) /g&-» N = 3, ¢ = 2.365 and g, = 4.83704 are extracted from
QMC simulations [1]. The logarithmic scale dependence of the running coupling
constant is

oo

14 WS A0/ A)

82

an @3.11)

where A = max{A;, Ay /+/2, T} is set by the largest energy scale, and A is the
normalisation point. Note, we take running scale to be A /+/2 = |A,| when plotting
Ay (8g) and m(8g). Exact knowledge of coefficients within the logarithms requires
two-loop RG. Our choice of A, and |A;| for the disordered and ordered phases,
respectively, provides scaling in §g symmetric with respect to the QCP g = 0.

On the right-most equality in each Egs. (3.7, 3.8, 3.9, 3.10) shows a
re-parametrisation to give a scaling form identical to Eqs. (3.2, 3.3, 3.4, 3.5). The
constants l;,- are

~ ~ ~ - 2 772
b] =b2=b3=g(—[2\06“\/1j'78)“0,
14
- N + 2apg A2 _ion?
by = (—iiz)#emismo' (3.12)
cy

This is achieved through reparametrising o to show explicit dependence on
detuning §g

1672 —v

NS in (1 - gcl/B:)

an(8g) = . (3.13)

where b; corresponds to by for T = 0, and to b4 along the Néel temperature curve.
The running coupling is uniquely determined by Eq. (3.11) as a function of the energy
scaleratio Ao/ A. However, reparametrising in terms of detuning |g — gol, Eq. (3.13),
we must include the constant b; to account for the different possible dependences
of Ag/A on |g — g.|. The parametrisation (3.13) serves two purposes, first it allows
for simple conversion between QFT running coupling constant language, and the
logarithmic scaling forms used widely in condensed matter literature, see e.g. Ref. [4].
Second, it explicitly shows that the five fundamental parameters of the QFT uniquely
determine the functional form of all four observables above, including coefficients.
Put differently, the free parameters in QMC {a;, b;} and exponents {v;, 8;} are now
directly obtained. Next we provide numerical values of such parameters.
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3.4.1 Best-Fit Parameters

The best-fit parameters are found to be
Ao =0.915J; ag/(8nc’) =0.175; y =3.95J, (3.14)

while ¢ = 2.365 and g. = 4.83704, are extracted from QMC simulations [1]. It is
important to note that the choice of Ay is arbitrary, and that it affects the value chosen
for ap, since g = oy,

The relation between m; and ¢, is found by assuming a form

@ = Tm; (3.15)

with Y =constant. Fitting Eq. (3.9) to QMC data [1] we obtain Y = 0.65. The
proportionality constant Y does not appear in the quantum field theory, however an
approximate value for Y is derived in Sect.3.6.2 by appealing to a bond-operator
technique.

We are now ready to demonstrate the agreement between QMC and QFT. The
Fig.3.3a, b and ¢ show results of Eqgs. (3.7, 3.8, 3.9, 3.10), with parameters (3.14),
plotted on log-log axes. Agreement is remarkable, and clearly demonstrates that QFT,
with a single set of parameters, is capable of quantitatively describing the static and
dynamic observables. This procedure demonstrates, to a high precision, the validity
of the theoretical predictions of the O(3) QFT, and constitutes our main result.
Moreover, the results shown in Fig. 3.3a and b demonstrate excellent agreement over
a large range of detuning from the quantum critical point.

3.5 Higgs Decay Linewidth

In this section we analyse the Higgs decay linewidth of the three dimensional
dimerised QAF. In QFT, QMC and experiment the linewidth is extracted from an
appropriate response function. Experimentally, neutron scattering is a successful
technique to probe Higgs or triplon modes, for example studies of TICuCls [7-9].
Neutron scattering constitutes a vector probe and so provides access to a vector sus-
ceptibility. In QFT and QMC, one is free to use vector or scalar probes to extract
information about the system. Recent QMC studies [2, 3] have performed state-
of-the-art numerical analytic continuation of imaginary time Greens functions, thus
allowing a numerical study of vector and scalar response functions in three dimen-
sional dimerised QAFs. We will now analyse the vector and scalar response func-
tions using QFT, and the parameters derived in Sect. 3.4. The following analysis is
restricted to the ordered phase, where spontaneous decay of the Higgs mode is pos-
sible. In the disordered phase, spontaneous decay of triplons is forbidden due to a
lack of available phase space, see e.g. Ref. [10].
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Fig. 3.4 Diagrammatic representation of the loop contributions to Xéi,), to frst-order in . Double
and dashed lines represent Higgs and Goldstone propagators, respectively
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3.5.1 Vector Response

We now consider the vector susceptibility, x, = (¢(p)@(0)). In the ordered phase
we write ¢ = (¢, + o, ), and decompose the vector susceptibility into the Higgs
and Goldstone components,

Xo = (0 (p)o(0)) + (N — 1){m(p)m (0))
= Xoo + (N — D) Xnr (3.16)

written in this form, the vector response essentially corresponds to an unpolarised
probe and as such is averaged over all components. Since the QMC simulations
are performed on finite size lattices, spin rotation symmetry remains unbroken and
response functions are rotationally averaged analogously to Eq. (3.16). Note, cross
components of the Higgs field o and order parameter ¢. do not contribute x4, = 0.
We now include the frst-order in « corrections to the susceptibility. The goldstone
component of the susceptibility x., does not receive any corrections from the loop
diagrams, this is a direct result of the Goldstone theorem explicitly demonstrated in
Appendix A. The Higgs component receives loop corrections, as shown in Fig. 3.4,
and the real part of the loop corrections has been explicitly treated in Appendix A. In
all following equations, the Higgs gap Ay represents the single-loop renormalised
value. It remains then to evaluate the imaginary contribution of the loop-corrections
to the Higgs susceptibility. The first two loop-diagrams in the right hand side of
Fig.3.4 have purely real contribution and are already accounted for within A . The
second two have an imaginary contribution and are denoted ITy(p), 1 (p) for the
polarisation loop with two Higgs internal lines, and two Goldstone internal lines,
respectively, and p is the external four momentum. Again, the real part of such
polarisation loops have already been taken into account, so we are just evaluating the
imaginary parts, denoted I17,(p) and IT{,(p). To this order, the susceptibilities are

1
2 _ A2 + i AZ [H//( + n )]
)4 H T 30ARY G D) H(P
1
p2+i0’

Xan (D) = (3.18)

where IT7(p) and IT7,(p) are the imaginary parts of the polarisation loops with
two Goldstone, and two Higgs propagators, respectively, and are given by standard
loop-integrals, see e.g. [11, 12]

N -1
s = S Lo, (319

9 p2—4A2
Yo Tt —and). (3.20)
p

I—I// [
#(p) 8
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Fig. 3.5 a Imaginary part of the vector response function, given by —x/_ (w), shown as a function
of w/Ap at p = 0 and normalized to its maximum value. The curves correspond to different values,
|81, of the coupling ratio relative to the QCP. b Ratio I'}, /A iy of the Higgs line width, as determined
from the vector response function, to its gap, shown as a function of |8g|. The solid line is the QFT
result obtained from Eq. (3.21). The dashed line is the ratio extracted from QMC data by averaging
over |8g| and extrapolating in system size (L — oo) [2]. The points are obtained from the QMC
data for systems of sizes L = 14 and 16 at the different values of |§g| for which simulations were
performed

Here p? = w? — p? is the external four momentum, and 6 is the Heaviside theta
function. The vector of momentum is measured from the antiferromagnetic ordering
vector, Q.

Spectral functions come from the imaginary part of the susceptibility. We are pri-
marily interested in the spectral linewidth of the Higgs mode at zero spatial momen-
tum p = 0. To this end, we plot the spectral function — x/_(w, 0) in Fig. 3.5a. It takes
on a Lorentzian shape, with Full-width at half-maximum linewidth (decay width)

. o A (15g])
Iy (18gh) = o5 An(Ig)) = s . (32D
e 873 [14 C5¥an In(v200/Ap) |

This linewidth exactly corresponds to width calculated in Ref. [13] using Fermi
golden rule. And physically it corresponds to the process of a Higgs mode sponta-
neously decaying into two Goldstone modes. The process of the Higgs mode decaying
into two Higgs modes, i.e. I}, (w, 0), has a threshold at w = 2Ay, and is found not
to contribute to the linewidth I'y.

Importantly, the Higgs decay width (in vector channel) as given by Eq. (3.21) is
completely determined by the fundamental parameters of the QFT. Hence, having
determined the best fit parameters (3.14), we can now predict the corresponding
decay linewidth of the Higgs mode. We plot the results of Eq. (3.21) as a function
of |8g|, the blue line in Fig. 3.5b. The decay width reduces to zero logarithmically in
accord with the asymptotic freedom of the QCP, |§g| = 0. The data in red is from
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Fig. 3.6 a Diagrammatic representation of the contributions to x2,2, with notation defined in b.
b Pole and vertex renormalisation. The diagrammatic sub-series to frst-order in o

the QMC simulations, Ref. [2]. We note that QMC data is not sufficiently accurate
to discern logarithmic corrections. Even so, the overlap between QFT and QMC, as
shown in Fig. 3.5b, is convincing and warrants future studies.

3.5.2 Scalar Response

We now consider the scalar susceptibility, x,2,2 = (@*(p) ¢*(0)). Again, in the
ordered phase we write ¢ = (¢, + o, 77) allowing for a decompose the scalar sus-
ceptibility into the Higgs and Goldstone components,

X2 = 4(p(2-Xaa + 4(ﬂc(sz2 + Xoo?) + Xx2? + Xo202 + 2Xo272. (3.22)

For the scalar susceptibility, x,2,2, we will consider contributions at order & ().
We ignore the final term x,2,> since it only contributes at order &'(a'), see Ref. [11,
12] for further details.

Figure 3.6 provides the explicit sub-series to the desired order &'(a”) contribut-
ing to x,2,2. Evaluation of this series gives Eq. (3.23). We explicitly show tadpole
contributions in the top line of Fig.3.6b, and how they are to be incorporated in
all other summations. Tadpoles must be properly accounted to provide the correct
critical indices in Egs. (3.8), (3.9), and (3.10). Importantly, after resummation of the
top two lines in Fig. 3.6 one obtains the x,, (double line), which has identical pole
structure to the vector response; the real and imaginary parts of the Higgs pole are
identical. Performing the diagrammatic resummation outlined in Fig. 3.6, we obtain
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. 2
203 {1 —iea [4(p) + 105 (p)]} ,
an p?— Ay + Jaa A [TG(p) + My (p)]

1
Xp22(P) = |:H/(,;(l7) + §H;1(P)i| s

(3.23)

where I (p) and IT}, (p) are given by Egs. (3.19, 3.20).

There are two important aspects to note in the scalar susceptibility: First, the
numerator in the first term on RHS of Eq. (3.23) contains a phase factor (imagi-
nary part), which comes from vertex renormalisation, see Fig.3.6. Second, there are
non-resonant pole contributions given by the second term on the RHS of Eq. (3.23).
The addition of the phase factor and non-resonant pole terms results in a destructive
interference in the emission channel of two low energy Goldstone modes. The inter-
ference acts to suppress the imaginary part of x,2,2(p) ~ p*at p — 0, which is a
statement of the Adler theorem. To explicitly show this, we rearrange the expression
(3.23) and present the p* dependence of the imaginary part of Xp2g2 at p <4AZ,

X// _ _P4H/é(l’)
202 — .
(P = AP+ (GeARTIG(p)?

(3.24)

In this expression we ignore contributions due to [Ty (p), since they do not con-
tribute to the imaginary part for p> < 4A2,.

In the limit of large momentum p? > A%I, the non-resonant pole terms in (3.23)
dominate. These terms correspond to the background scattering which, from Eqgs.
(3.19) and (3.20), have large-p asymptotic form

" 1 ” 2 2 3
Hg(p) + Sy (p” > Ay) — —. (3.25)
9 8

Taking p = (w, 0), Eq. (3.25) accounts for the spectral weight of the large-w tail
in Fig.3.7.

We now make some general remarks about the results of this section and the
QMC results of Refs. [2, 3]. The line shape, Fig.3.7a, is a Fano resonance with
additional interference resulting in w* suppression at low energy. This asymmetric
shape compares well with the recent QMC results [2, 3]. However, in the present
work we have paid special attention to the logarithmic corrections and have found that
their inclusion prevents any ‘universal data collapse’, which has been approximately
observed in [2, 3]. The data in red is from the QMC simulations, Ref. [2]. Moreover,
in [2] the averaged linewidth to gap ratio is found to be I'; /Ay = 0.43, while from
the present analysis we find that I'; /Ay is essentially identical to that found in the
vector response, Eq. (3.21), and is shown in Fig. 3.7b. Disagreement in the case of the
scalar response function requires further studies. For example, it is possible that the
error bars from QMC have a broadening effect on the spectral function obtained from
the stochastic analytic continuation. One could therefore perform further studies to
test how significantly the statistical error bars affect the shape of certain types of
spectral functions.
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Fig. 3.7 a Imaginary part of the scalar response function, —x”, ,(w), shown as a function of

/Ay at p = 0 and normalized to its maximum value. The curves are evaluated from Eq. (3.23)
and correspond to different values, |§g|, of the coupling ratio relative to the QCP. Dashed lines
show the results obtained from Eq. (3.23) but neglecting the two-Higgs contribution [Eq. (3.20)]. b
Ratio I'}; /A g of the Higgs line width, as determined from the scalar response function, to its gap,
shown as a function of |§g|. The solid line is the QFT result obtained from Egs. (3.23) and (3.21).
The dashed line is the ratio extracted from QMC data by averaging over |§g| and extrapolating in
system size (L — 00) [2]. The points are obtained from the QMC data for systems of sizes L = 14
and 16 at the different values of |§g| for which simulations were performed

3.6 Derivation of Parameters

In this section we motivate the values of best-fit parameters (3.14) and Y from Eq.
(3.15) by appealing directly to the lattice Hamiltonian (3.1). Explicitly, we derive
parameters y, ¢, g. and Y in terms of J/J'.

3.6.1 Gap, Velocity, and Critical Point

A widely used technique to analyse spin-dimerised quantum magnets is to employ
a bond-operator representation [14] of the spin-1/2 operators of the Hamiltonian.
Applying such a technique to (3.1), we can estimate the coefficient y in the QFT
gap A,, Eq. (3.7), from the corresponding gap found using bond operators Agg.

Straightforward analysis presented in Appendix B yields Agp = /AZQ — BZQ, where

A, and By are defined in Eq. (B.6), and Q = (7, 7, 7) is the antiferromagnetic
ordering vector.

The idea is to equate the two gaps at the normalisation point Ay, i.e. A;(Ag) =
Apo(Ag) = Ap, where the last equality defines our normalisation point. The nor-
malisation point Ag = 0.915J is chosen in this way and we remind the reader that
this choice is essentially arbitrary. Equating the gaps provides
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A%, (Ao)
2 _BO 2 3.26
RTINS (3:20)

A simple evaluation of Eq. (3.7) gives |§g(Ag)| ~ 0.056 and we obtain the esti-
mate y = 3.88J, which compares well with y = 3.95J obtained in Eq. (3.14).

The critical point is found in this approximation by setting Ago = 0, and we find
the spin wave velocity at the critical point to be

Qq4(8c
g0 = 4.96, = lim ~2a(8) _59¢ 3.27)

~¢>0lg — Q]

where £2,(g) is the Bogolyubov spectrum given in Appendix B. These values
compare reasonably well with those extracted from QMC [1], g, = 4.83704 and
c =2.365.

3.6.2 Relating mg and ¢,

From QFT alone one cannot directly obtain the staggered magnetisation, m,. Instead
QFT provides the order parameter ¢,. To obtain the relation between m and ¢., we
appeal to the triplon bond-operator ¢ and find the proportionality factor relating it to

¢
IO [N
§=2"2G"+D (3.28)

Employing the Bogolyubov representation,

_ 1 ikx T —ikx
=3 {Be™ + gle=], (3.29)
1@ = Y e —viBly e, (3.30)
k
Ak ikx T —ikx
~Y 0. {/Ske +Ble } , (3.31)
k

where uy and v are usual Bogoliubov coefficients, defined in Appendix B. In the
vicinity of the QCP the most important contribution comes from the low energy
excitations with ¢ ~ Q. We therefore approximate the proportionality factor as

Z= (3.32)

1
VAo
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The staggered magnetisation of an antiferromagnet with sublattice A and B, reads
as follows

Z 1 Z Z
m = N(SA -85 (3.33)
where, §4-8 Z SA Bland N' = lN . Performing the bond-operator transforma-
tion [14]
1
SAE = E(isﬁi’“ + t:asi - iea,ﬂ,yt:ﬁt,-,y) (3.34)

where the siT /s; are singlet creation/annihilation operators on bond site i. We replace

s: /s; with the condensate value (s) = (s7) = § = 0.97, and details of calculation are
left for the Appendix B. Therefore,

v
1 +
mg = ﬁ(Z(Sfti,z +1t.50) + Z(s fie+ 151

icA ieB

(t. + 1) =5Z(¢.) (3.35)

. 1
r=%_ |~ —o062. (3.36)
mé 5249

where (¢,) = ¢.. This value compares well with that used for fitting T = 0.65 in
Fig.3.3b and d. Furthermore, using the relation derived in Ref. [15]

N |«

12
Ty = ¢*? <% (3.37)

=12 15—2m (3.38)

we therefore expect (up to logarithmic corrections) that Ty is proportional to m.
This has been explicitly considered in [1, 16, 17], and is clear from Fig. 3.3d.

3.7 Discussion and Conclusion

At a pragmatic level, the present work offers a means for direct comparison between
QMC and QFT, and explicitly derives the parameters relating the /—J’ Hamiltonian
(3.1) on the double cubic lattice geometry to the QFT (3.6). We now discuss future
research avenues that could utilise and benefit from the present results.
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First, there remains three unresolved issues from the present analysis: (i) The
rather abrupt disagreement of the fits to Ty (|8g|) for |§g| 2 0.2; does this imply the
limit of quantum critical scaling or, instead, is it an issue with numerics at larger
temperatures? (ii) Although the line shape of the scalar spectral function shows
excellent agreement for QFT and QMC, the width of the scalar spectral function
found in the two approaches disagrees by more than a factor of two. We believe
such significant disagreement cannot be assigned to the error margins. (iii) In the
vector channel, the Higgs linewidth shows reasonable agreement between the two
approaches. However, the current QMC data has insufficient accuracy to discern
logarithmic corrections to this quantity. It would be desirable for future numerical
studies to focus on the logarithmic dependence of the Higgs linewidth, which is
expected since the theory becomes asymptotically free at the quantum critical point.
All three questions require further QMC studies to resolve.

Second, the present work considered the zero temperature behaviour of the gaps
and order parameter. However, non-zero temperature behaviour of these observables
and are completely determined by the results of the present work i.e. an analysis
of the non-zero temperature properties would require no new fitting parameters.
Going to non-zero temperatures induces many exotic phenomena not present at
zero temperature. In particular, one generally expects finite temperature crossovers
into regions of the phase diagram known as classical critical and quantum critical,
see Fig.3.1a. Such crossovers are thought to have a significant influence on the
scaling behaviour of the gaps and order parameter. Extending the QMC to non-zero
temperatures and performing a similar analysis to that provided here would therefore
provide a quantitative examination of such a scenario.

Non-zero temperature also generates additional scattering channels for quasipar-
ticles, i.e. scattering from the heat bath, to be discussed in Chap.4 next. This can
have many physical implications. For example, triplons in the disordered phase at
zero temperature have zero decay width (infinite lifetimes), however, through heat
bath scattering the triplons can acquire a substantial decay width. This scenario has
been considered in three dimensional quantum antiferromagnet TICuCl; [9], and
discussed analytically in [10]. A corresponding QMC study of triplon decay at non-
zero temperatures has yet to be performed and is certainly an interesting possibility
for future work.

Finally, we comment on the possibility to extend the present results to include the
influence of an applied, static magnetic field, B. The addition of the magnetic field
provides another tuning handle to generate symmetry breaking and, importantly,
the corresponding critical observables would follow from this work without need
for additional fitting parameters. There are a number of interesting predictions for
critical scaling behaviour in the case of magnetic field, to be discussed in Chaps. 7
and 8. It is straightforward to extend the results present work, without introducing
new parameters, to account for an applied magnetic field and hence the present results
could be directly applied to test such predictions.

In summary, this chapter provides a detailed mapping between QFT results derived
in terms of quasiparticles and QMC data obtained directly in terms of the spin Hamil-
tonian. The purpose is to offer insight into the connection between the static and
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dynamical properties of critical systems. Moreover, a description of the observables
in terms of quantum field theory allows the number of unknown parameters to be
reduced and serves as a basis for future quantitative tests of the low energy effective
quantum field theory against unbiased quantum Monte Caro.
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Chapter 4 ®)
A Nonperturbative Theory e
of Paramagnon Decay

Abstract We consider the dynamics of paramagnons in 3D quantum antiferromag-
nets at nonzero temperature and in the vicinity of the quantum critical point. Upon
approach to the phase transition, the heat bath causes infrared divergences in the para-
magnon decay width calculated using standard perturbative approaches. To describe
this regime we develop a new finite frequency, finite temperature technique for a
nonlinear quantum field theory—the ‘golden rule of quantum kinetics’. The formu-
lation is generic and applicable to any three dimensional quantum antiferromagnet
in the vicinity of a quantum critical point. We obtain all results in the generic O (N)
quantum field theory. Specifically we apply our results to TICuCl; (where we take
N = 3) and find compelling agreement with experimental data.

4.1 Introduction

The interplay between quantum and statistical fluctuations in quantum systems offers
many exciting challenges to theory. In particular, developing appropriate techniques
to describe (quasi)particles in a hot and dense medium is a challenge of fundamental
importance to many areas of physics ranging from condensed matter, to plasma,
nuclear, and particle physics. In this case, the challenge arises because standard
perturbative treatments of quasiparticles in hot dense mediums become plagued by
infrared divergences and are hence unreliable. In this chapter we concentrate on
lifetimes of quasiparticles or, more generally, on the line-shapes of quasiparticle
spectral functions.

Our primary motivation is to develop and present a relatively simple technique
that cures the enigmas of perturbative approaches, and offers reliable results in the
physically interesting regimes of hot, dense mediums. To this end, our developed
technique possesses two key properties: (i) it regulates the infrared behaviour via
a resummation of medium effects i.e. the self-consistent inclusion of line-shapes,
and (ii) allows one to handle the calculation of non-equilibrium responses at finite
temperature.

Physically, the problem we consider was stimulated by the observation of magnetic
excitations (paramagnons) in the magnetically disordered phase of the three dimen-
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Fig. 4.1 The phase diagram 1.0
of TICuCls. The Néel

temperature curve (solid red Magnetically Disordered
line) separates magnetically
ordered and magnetically
disordered phases. The
quantum critical point
(yellow dot) is at

p = pc = 1.01kbar. Points
show experimental data from
Ref. [3]. The light red band
around the Néel curve
indicates the region of
dimensional crossover
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sional, dimerised quantum antiferromagnet TICuCl; [1]. The pressure-temperature
phase diagram of the compound is shown in Fig. (4.1). The data in Ref. [1] is taken
over a range of pressures and temperatures that go beyond the regime of validity of
standard perturbation theory, and hence provides an exiting opportunity to apply and
test our developed technique.

It is important to note that the developed techniques are generic and applicable
to all systems of this kind, i.e. symmetric phases described by O (N) field theories.
For example, they are applicable to the electroweak phase transition in cosmology,
to the wide class of spin dimerised magnetic models [2], and to O (2) superfluids or
superconductors in the vicinity of their quantum critical points.

The remainder of this chapter is organised as follows: Sect.4.2 introduces the
necessary mathematical background. Section4.3 discusses the inconsistency of the
usual perturbative Fermi golden rule, and introduces our proposed golden rule of
quantum kinetics, which simultaneously incorporates decay and heat bath scattering
processes in a self-consistent formalism. A general mathematical analysis of the
golden rule of quantum kinetics, without reference to any particular system, is given
in Sect.4.4. Finally in Sect.4.5 we apply our technique to the specific compound
TICuCl; and directly compare our results with inelastic neutron scattering data.

4.2 General Considerations

We employ a quantum field theoretic description of the system and its excitations
(4, 5]

| N 1 R 1 .
50696 — —m{@* — —apg”, (4.1)

Z = 2 4
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Fig. 4.2 a Decay diagrams for a paramagnon. The thick blue line represents the probe paramagnon
and thin black lines represent the heat bath paramagnons. b Diagrams corresponding to pumping
(inverse processes) to the paramagnon state. The thick blue line represents the probe paramagnon
and thin black lines represent the heat bath paramagnons
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where ¢ = (¢1, 2, @3) is a three component real vector field which describes the
three polarisations of the paramagnons. The partial derivates are defined in 3 + 1
dimensional Minkowski spacetime 9, = (do, ¢V), and the paramagnon speed is set
equal to unity, c = 1. We take the linear expansion m% = y2(p. — p), where y is a
coefficient and p represents, for example, an external pressure. We find it convenient
to present equations using the rescaled coupling constant,

g=2 . 4.2)

Throughout we work in the regime whereby 8 <« 1, such that perturbation theory
is reliable. We apply the renormalization group (RG) to obtain the scale dependence
of the coupling constant and the mass; they become energy, momentum, and temper-
ature dependent, By — B, m(z) — mj We have checked that 8 < 1 throughout the
majority of phase diagram Fig.4.1, and hence the results for the mass and running
coupling derived within one-loop RG (in previous chapters and Ref. [6]), are valid
throughout all regions of interest to the present chapter.

The focus of the present chapter is the decay width and spectral function of para-
magnons in the magnetically disordered phase, Fig.4.1. Unlike the running coupling
and mass, the width and spectral function cannot be obtained within standard one-
loop perturbation theory.

A schematic of the paramagnon decay channels, in the presence of a heat bath,
is present in Fig.4.2. They can be understood as the imaginary part of the sunset
diagram presented in Fig.4.3.
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Fig. 4.3 The sunset
self-energy diagram

Y
Y
Y

2(qo, Q) =

4.2.1 The Spectral Function

The key mathematical object under consideration is the retarded Greens function
of the paramagnon. To allow for a coherent presentation, we outline some essential
properties of the retarded Greens function G® (w, ¢). Consider the noninteracting
field theory, i.e. setting 8 = 0 in the Lagrangian (4.1),

... 1 5.
L = Eau<pa“¢ — Emggoz . 4.3)

This Lagrangian permits an exact Greens function

1 1 1
%{w—wq—i—io_w—i—wq—i—m} '

wg = /4> +m(2) , 4.4)

aconclusion which holds at both zero and nonzero temperatures, as long as interaction
terms are absent from Eq. (4.3). We also immediately deduce the simple symmetry
properties of G¥; the real and imaginary parts of G are even and odd functions
of w, respectively. Importantly, these generic symmetry properties carry over to the
case of non-zero interaction 8 # 0.

Once interactions are taken into account, exactly obtaining the Greens function is
a delicate, if not impossible, task. However, we can still make use of the following
exact relation

G* (o, q)

_ %Im GR(w,q) = (1 — e /T)S, (@) . (4.5)

which is valid at arbitrary interaction and arbitrary temperature.

Taking into account the interaction term ao¢”*/4 in Eq. (4.1), leads to loop cor-
rections to the Greens function. Put in another way, we must take into account
paramagnon self-energy %, (w).

Including the real part of the self-energy was the topic of Chap. 2. Under one-loop
renormalisation group (RG) the real part leads to the replacement m(z) — ms in Eq.
(4.4). We further use notation m, = A to denote the renormalised mass at nonzero
temperature, such that the dispersion is given by
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wy =Vq* + A?, (4.6)

and A depends on momentum and temperature. Below we take w, as given by Eq.
(4.6). Following from Chap.2 and [6], the gap equation in the paramagnetic phase
is given by

N+2
N+

8TV + 2B Y wik;] @D

K er —

= [2]
v (pe — p) 5o

Here have generalised to an N component theory, and 8, is the running coupling
constant

Bo

Ba = ) (4.8)
8T R (A /A)
The normalisation point A is set by A = max{A, T}.
The imaginary part of the self-energy describes broadening (decay)
ImX
I, () = _Im3y(w) (4.9)
1)
1 1
G (w,q) =

—> .
w? — a)g — X, (w) w? — a)z +ioly(w)

There are two points to note, (i) generally I, depends on w and hence the line
shape can be significantly different from that of a simple Lorentzian, and (ii) I'; (w)
is an even function of w since ImX,(w) is an odd function. The spectral function
corresponding to (4.9) immediately follows from Eq. (4.5),

S, () = ! { . ol } (4.10)
[ —

7l —e™7) 2 + @’T2
In this chapter we are explicitly interested in the sunset diagram Fig. 4.3. Following

the calculation presented in Chap.2, we find that the width function, as defined in
Eq. (4.9), is given by

Ty(@) = (1 —eT)

16(27)°sp2 Ky d*ky d*ks
2w / 201 (27)3 2w, (27)3 2003 (27)3
x [(1+n) (1 +n)(1+n3) 8Y(q — ki —ky — k3)
+3n1(1+n2)(1 +n3) 89(q + ki — k — k3)
+3mna(1 +n3) Y (g + ki +ky — k3)
+ninans 8P(q + ki + kr + k3)] . 4.11)
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Here
1

YL (4.12)

ny =

is the paramagnon occupation number, and the four-dimensional §-function describes
energy and momentum conservation, 8¥ (g + ki + kz + k3) = 8(w, + o1 + w2 +
®3)8® (¢ + k| + ko + k3). The combinatorial factor S = 2(N + 2) = 10 is due to
summation over paramagnon polarisations.

4.2.2 The Diagrammatic Expansion

Here we wish to comment on the structure of diagrams included in the self-energy—
the reader may safely skip this technical subsection. The loop diagrams in Fig.4.4a
contribute to the running coupling B,. The external momentum s g, A is the ultravi-
olet cutoff and the momentum in the loop is in the range Ag > p > g. The diagrams
in Fig. 4.4b contribute to the self-energy. All diagrams in Fig. 4.4 posses a quadratic,
ultraviolet divergences. Such quadratic divergences lack physical meaning and are
removed during the renormalisation scheme. Upon subtraction of the quadratically
divergent contributions, the typical momentum in the external loop is k ~ A, T
while the typical momentum in the internal loop is Ag > p > A, T. The internal
loops of the double loop diagrams are shown inside dashed boxes in Fig.4.4b(b and
¢). The series of internal loops in Fig.4.4b coincides with the series of the running
coupling constant shown in Fig.4.4a. Hence we point out that the logarithmically
divergent part of the sunset diagram Fig.4.3, is already taken into account in our
RG calculation of the mass gap A in Eq. (4.7). For example, Fig. 4.4b(c) is a part of
the sunset diagram. In the diagrammatic series Fig.4.4b we consider only the real
part of the sunset diagram. We stress that the a central point of this chapter is the
consideration of the imaginary part of the sunset diagram. And, to extract the most
important physics relating to the imaginary part we will need to consider a different,
infinite sub-series represented in Fig.4.5. The following sections are dedicated to
this point.

4.3 The Golden Rule of Quantum Kinetics

The discussion of the previous section regarding perturbation theory, RG and the
decay width Eq. (4.11) relies on two conditions, (i) smallness of the coupling constant,
B < 1, to justify a finite perturbative expansion, and (ii) a small paramagnon decay
width to energy ratio I’ < A, such that the notion of the thermal occupation number
(4.12) is well defined. The thermal occupation number, Eq. (4.12), requires the quasi-
particles to be on-mass-shell; 0 = w, = \/¢q* + A2. However, broad quasiparticles
do not satisfy this condition and instead their dispersion may (crudely speaking) fall
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Fig. 4.4 Diagrammatic subseries: a Diagrams contributing to the coupling constant. b Diagrams
contributing to the self-energy

anywhere in the range w; — I'/2 < w < w4 + I'/2. For extremely broad quasiparti-
cles I'/A ~ 1, the notion of a quasiparticle breaks down. Note for sufficiently large
q such that ' (w = w,) K w,, the quasiparticles are still well defined. Close to the
Néel temperature where 7 >> A — 0, point (ii) is not satisfied; the paramagnons
experience overdamping due to the heat bath.

Having the above considerations in mind, we will now develop a technique appro-
priate to handle the regime of large heat bath scattering and the subsequent large
deviation from equilibrium thermal occupation numbers Eq. (4.12)—we designate
this the hot quantum soup regime. The hot quantum soup regime will certainly over-
lap with the crossover to the classical critical regime, however, we do persist with
the terminology classical critical. Classical critical is appropriate to underline the
dimensional crossover, 4D — 3D, and with it, the irrelevance of the time dimension.
Chapter 5 explicitly considers this problem. Instead we use the term hot quantum
soup to underline the broadening and overdamped dynamics of paramagnons in the
presence of large heat bath occupation. Furthermore, it is not clear whether these
two regimes exactly coincide.

The first step in our proposed technique is to dispense with the thermal occupation
numbers and instead rewrite Eq. (4.11) in terms of spectral functions. In the limit of
vanishing width, the imaginary part of the retarded Greens function is given simply
as

—iImGR(w )—L[a(a)—w)—a(ww)] (4.13)
b4 = 2w, 1 A ’

which follows from Eq. (4.4). Inserting this in Eq. (4.5) we find

1
Sq(@) = g[(l —i—nq)(S(a)—wq)—l—nqS(w—l—wq)] . 4.14)
q
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Fig. 4.5 Diagrammatic Sy (w1, T, (1))
illustration of Dyson
equation describing the
golden rule of quantum
kinetics
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The first term in brackets in Eq. (4.14) describes the creation of a paramagnon
from the heat bath, while the second term in describes the absorption of a paramagnon
into the heat bath. We now use Eq. (4.14) to rewrite the width Eq. (4.11) as

1 —e /T
z%fSkl(wl)Skz(%)Sh(wS)

x 2m)*8(w — w) — @y — w3)8(q — ki — ka — k)
dw1d3k1 dw2d3k2 dw3d3k3
@Qn)}  @2n)} @Qr)}

I, (o) =S@8n)*p

(4.15)

The key improvement is that we have replaced occupation numbers (4.15), by the
general expression (4.10) of the spectral function. The expression (4.15) is therefore
valid for quasiparticles of significant broadness. Namely, it provides a valid descrip-
tion of the hot quantum soup regime where quasiparticles are poorly defined, I' 2 w.
We name the closed set of equations, (4.10) and (4.15), the golden rule of quantum
kinetics.

The self-consistent solution of the golden rule of quantum kinetics is a Dyson-
equation-like procedure to determine the spectral function S, (w, I'y). Figure4.5
gives a diagrammatic representation of the Dyson equation. Most importantly, the
spectral function can be directly compared with experiment. It is important to
point out that the diagram shown in Fig.4.5 is not a typical perturbative Feyn-
man/Matsubara diagram; the lines in Fig.4.5 are not Greens functions, they are
spectral functions. In the summation of the golden rule of quantum kinetics, Fig. 4.5,
it is the infrared divergences we seek to control. In contrast, and as discussed in
Sect.4.2.2, the summation of usual Feynman diagrams contributing to the mass and
coupling constant renormalization was used to control the logarithmic ultraviolet
divergences.

The self consistent solution of the golden rule of quantum kinetics provides the
spectral and width functions, and is our primary result. We now list the key arguments
and justifications of the method:

(i) We assume proximity, such that 8, < 1, to the quantum critical point to justify
truncation of diagrams.
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(i) Upon approach to the Néel temperature, perturbation theory for the imaginary
part suffers from infrared divergences. Hence failure of perturbation theory in
this regime is not due to a large coupling constant, but instead due to the heat
bath. As discussed, the golden rule of quantum kinetics removes the infrared,
power-divergence in the overdamped regime.

(iii) Importantly, away from the Néel temperature the golden rule of quantum kinet-
ics reduces to the Fermi golden rule.

(iv) The RG procedure accounts only for the on-mass-shell contribution to the real
part of the sunset self-energy. However, in our evaluation of the imaginary
part of the self-energy using Eqgs. (4.15), (4.10), we consider both the on- and
off-mass-shell contributions. One can exploit the analytic properties, i.e. via
Kramers-Kronig relation, of our results to subsequently find the off mass-shell
contribution to the real part of the self-energy. This extra step is beyond what
is presented in the text, instead the calculation is performed in the Appendix
C. We find that the off-mass-shell energy dependent contribution is negligibly
small. Furthermore, away from the Néel temperature/overdamped regime, one
does not need to consider the off mass-shell contribution at all.

We draw the readers attention to other approaches to the thermal field theory, see
e.g. Refs. [7, 8]. These works do not rely on proximity to a QCP, and therefore the
truncation of the Matsubara diagrams is uncontrolled.

4.4 Mathematical Analysis of the Golden Rule of Quantum
Kinetics

We now undergo a mathematical analysis of the golden rule of quantum kinetics,
to understand generic features without reference to any particular system. Our aim
is to demonstrate the necessity of the golden rule of quantum kinetics (4.15) and
(4.10). To facilitate the discussion and presentation, we disregard the RG running of
the coupling constant and set it to a constant value

B =0.2. (4.16)
While in the next section we will explicitly reinstate the running.

We can perform some integrations within Eq. (4.15) analytically. Here we present
equations only for ¢ = 0 in order to avoid lengthy expressions,

S 2 1 — —w/T +00 +o00
Fyo(w) = 220 =¢™) / deyde, / di2di?
T w —00 0

(k1 +k2)? )
x/ i dk3 S, (@1) Sk, (02) S, (@ — w1 — w») “4.17)
(k1 —k2)
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Fig. 4.6 The phase diagram with parameters for TICuCls. The black dashed lines separate QD and
QC regimes. The cuts: cutl, cut2, cut3, and cut4 represent traces through the phase diagram along
which we evaluate the decay width

From here we rely on straightforward numerical evaluation of this expression.

First, we wish to evaluate along the trace, denoted cut3 in Fig.4.6, which
approaches the Néel temperature from above at fixed pressure. Following this cut, we
find it convenient to rescale by temperature, such thatw/T,T';, /T, A /T,and g /T are
dimensionless. We also remind the reader that we have set the paramagnon speed to
unity, ¢ = 1, and hence momentum g — cq has the dimension of energy. Figure 4.7
plots of the paramagnon width function I'j—o(w) versus w for A /T ranging from
A/T=1to A/T =0.1.

Figure 4.7a, shows the width function I'j_o () calculated using the Fermi golden
rule (4.11). Figure 4.7b shows the width function calculated using the golden rule of
quantum kinetics, i.e. by iterative solution of Egs. (4.15) and (4.10). The two methods
must collapse to the same result in the limit of vanishing I'/w. A comparison of
Fig.4.7 shows that they do indeed coincide in this limit. However, when considering
small values of A and w the two methods yield very different results. This is not
surprising since the Fermi golden rule assumes the on-mass-shell notion related to
Eq. (4.12). This notion, and also the Fermi golden rule fail at sufficiently small values
of A/T where the width is very large, ['/A > 1. As we have stressed throughout
this chapter, the golden rule of quantum kinetics does not require the on-mass-shell
condition. For the remainder of our analysis we will use only the golden rule of
quantum kinetics.

The spectral function S, (), as given by Eq. (4.10), provides a direct access to
experimental measurements. In Fig.4.8a we present the spectral functions S,_o(w)
which utilise the width functions I';,_o (w) presented in Fig. 4.7. To balance the dimen-
sion of the spectral function, [Energy]~2, we multiply by § — 72S. To supplement
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Fig. 4.7 Paramagnon width function at zero momentum, I'y—o (), versus frequency. The function
is calculated with the coupling constant (4.16) for different values of the gap A. a Obtained using
the simple Fermi golden rule, Eq. (4.11). b Obtained using the golden rule of quantum kinetics;
Eqgs. (4.15) and (4.10). Note the shifted origin on the w/ T -axis in (a)
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Fig. 4.8 a The spectral function Tqu:O (w) versus frequency for different values of the gap A. b

The spectral density Ay—o(w) = — % ImGR(w, q = 0) versus frequency for different values of the
gap A. Both S;— () and A;—o (@) correspond to I'y—o(w) (solid lines) in Fig.4.7. Note the shifted
origin on the w/ T-axis in (b)

the results shown in Fig.4.8a, in Fig.4.8b we present plots of the spectral density,
Ay(w) = —%I mG®(w, q). The spectral density A(w) and spectral function share a
simple relation, which is given in Eq. (4.5). It is the spectral density which been used
to determine effective line widths from experimental data.

We define Flgo) to be the full width at half maximum (FWHM) of the spectral
density, which is represented by the arrowed lines in Fig. 4.8b. Note that this defini-
tion of T'{”’ has no w-dependence, but it depends on the gap A, momentum g, and
temperature 7.

We see from Fig. 4.8b that for sufficiently small values of A /T, the definition of
I'® as FWHM of the spectral density practically does not make sense—the spectral
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function A(w) becomes asymmetric and even divergent. Such divergent behaviour
indicates the crossover to the overdamped regime. The explicit crossover value of
A, depends on the value of the running coupling constant 8,. The smaller values
of B correspond to the smaller A./T. The available experimental data for TICuCl;
lay within the regime of (reasonably) well defined I'?.

4.5 Comparison with Experimental Data on TICuCl3

We now compare the golden rule of quantum kinetics, in particular the width Ff;zo, to
the paramagnon widths obtained via neutron scattering in TICuCl; [1]. To compare,
we use the parameters derived for TICuCl; in Chap. 2, which are

Bo=0.23 for Ag=1 meV,
pe = 1.01kbar, y = 0.68 meV/kbar!/? . (4.18)

Using parameters (4.18) and the theory developed in the present work we can
calculate decay widths throughout the entire disordered phase diagram. In Chap. 2,
the decay widths have been calculated along cutl and cut2; they correspond to the
perturbative regime.

In this chapter we consider cut3 and cut4 in Fig.4.6. These cuts are coincident
upon the Néel temperature and hence the simple perturbative RG used for cutl and
cut2 is not sufficient. We need RG plus the golden rule of quantum kinetics, Eqgs.
(4.15) and (4.10). In the vicinity of the Néel temperature spectral lines become
asymmetric and hence the definition of width becomes ambiguous. We use values of
I'® defined in Sect. 4.4. In evaluating Eq. (4.15), the coupling 8, formally runs with
energy scale A = max{y/w? — ¢2, T}, yet we use A = max{A, T}, which makes a
negligible difference [9].

InFig. 4.9 we present theoretical and experimental values of the width Fgo and the
gap A. Figure4.9a corresponds to the vertical cut3 in Fig. 4.6, i.e. temperature varies
at fixed pressure, p = 1.75kbar. Figure4.9b corresponds to the horizontal cut4 in
Fig.4.6, i.e. pressure varies at fixed temperature, 7 = 0.5 meV. Agreement between
theoretical and experimental widths presented in Fig. 4.9a is very good. This includes
the highly nontrivial, hot quantum soup regime close to the Néel temperature where
the width calculated via the golden rule of quantum kinetics is different from that
calculated via the simple Fermi golden rule. On the other hand, Fig. 4.9b demonstrates
a disagreement between theory and experiment by a factor of two in the theoretically
straightforward interval 0 < p < p.. In principle one can assign the disagreement
to impurities. However, it is unlikely since the agreement seen in Chap.2 for the
endpoints of this interval, p = 0 in Fig. 2.9a and b and at p = p, in Fig. 2.9c and d
is excellent. Hence, the reason for the disagreement remains unclear to the author.
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Fig. 4.9 Theoretical and experimental values of the width F‘(IO:)O and the gap A. Panel a corre-
sponds to the vertical cut3 in Fig. 4.6, temperature varies at fixed pressure, p = 1.75 kbar. Panel b
corresponds to the horizontal cut4 in Fig. 4.6, pressure varies at fixed temperature, 7 = 0.5meV. In
both panels blue circles show theoretical results of the present work while magenta squares show
experimental results of Ref. [1]. Yellow diamonds show experimental results for the gap [1]. Dashed
blue and magenta as well as solid yellow lines connecting the points are given just for guidance

4.6 Conclusions

Physically, the problem we consider was stimulated by the observation of magnetic
excitations (paramagnons) in the magnetically disordered phase of the three dimen-
sional, dimerised quantum antiferromagnet TICuClj [1]. The data in Ref. [1] is taken
over a range of pressures and temperatures that go beyond the regime of validity of
standard perturbation theory, i.e. close to the Néel temperature where the paramagnon
width becomes comparable to its energy due to multiple scattering events from other
paramagnons in the heat bath.

Motivated by this particular issue, we formulate a generic nonperturbative tech-
nique that cures the enigmas of perturbative approaches, and offers reliable results
in the physically interesting regimes of hot, dense mediums. The developed tech-
nique provides an economical approach to this class of problems and possesses two
key properties: (i) it regulates the infrared behaviour via a resummation of medium
effects i.e. the self-consistent inclusion of line-shapes, and (ii) allows one to handle
the calculation of non-equilibrium responses at finite temperature.

We perform an explicit comparison with data on TICuCls, which yields excellent
agreement between the theory and experiment. We stress that the formulation is
generic and applicable to any quantum field theory with weak coupling.
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Chapter 5 ®)
Dimensional Reduction in Quantum Gouck ko
Critical Systems

Abstract This chapter discusses dimensional reduction in 3+1D antiferromagnets.
The observable of interest is the order parameter (staggered magnetisation). At zero
temperature, the order parameter is well described by a 3+1D theory. In the near
vicinity of the Néel temperature (7 ), the system is expected to crossover into a
regime whereby the order parameter is described by a theory in one lower dimen-
sion. This is ‘dimensional reduction’. A recent analysis of the order paramter versus
temperature, performed on the data for 3+1D antiferromagnet TICuCl; [1], has iden-
tified the crossover boundaries to the dimensionally reduced regime. It was found that
on approach to Ty a relatively sharp crossover occurs, whereby the order parameter
near Ty displays scaling in accord with the 3D theory. In this chapter we analyse the
same scenario. Starting froma 7 = 0, 3+1D quantum field theory, and perturbatively
including temperature, we quantitatively describe the experimental data on TICuCl;
across therange 0 < T < Ty. Our theory cannot reproduce the 3D scaling exponents
inthe limit 7 — Ty, yet it fully accounts for the observed sharp crossover behaviour
in TICuCl;. Ultimately, we expect observables to scale with exponents of a lower
dimensional theory, however, our results provide a new perspective on the enigmatic
problem of dimensional reduction.

5.1 Introduction

Dimensional reduction, as defined in the present context, is a phenomenon attributed
to the interplay of quantum and thermal fluctuations in the vicinity of quantum phase
transitions, see e.g. [2, 3]. Dimensional reduction, also referred to as the quantum-
to-classical crossover, belongs to a class of finite-temperature crossovers, which
also includes the quantum-critical crossover discussed in Chap. 4. Finite-temperature
crossovers in the vicinity of quantum phase transitions are a rich subject alluring a
great deal of attention [3—33], although many aspects either remain poorly understood
or have lacked quantitative tests against experimental or numerical data.

There is an important technical complication with dimensional reduction, that is,
standard field theoretic RG approaches fail since the presence of non-zero tempera-
ture introduces infrared divergences into certain classes of Feynman diagrams as the
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temperature approaches Ty . For a general mathematical discussion of this important
issue see Chap.36 of Ref. [34], or for a discussion directly relevant to this chapter
see Appendix D.

We are solely concerned with the phenomenon of dimensional reduction in 3+1
dimensional quantum critical systems; i.e. d : 3+ 1 — 3, and explicitly the reali-
sation in 3+1 dimensional quantum antiferromagnets. It has long been argued that
3+1D antiferromagnets (i.e. 3D quantum antiferromagnets) undergo a dimensional
reduction or quantum-to-classical crossover in the vicinity of the Néel temperature
transition line, see Fig.5.1.

The key idea being that for parametrically large temperatures, 7 > A, thermal
fluctuations are occurring at a characteristic length scale, 8 = 1/T, that is much
smaller than the characteristic time scales of quantum fluctuations, §&; ~ 1/A. Note,
here the dynamic critical exponent is z = 1. In this regime the system behaves as
though it is uncorrelated along the time dimension and, accordingly, may be consid-
ered as a classical statistical ensemble in one lower dimension.

Alternatively, starting directly from a 4D (Euclidean) statistical theory, finite tem-
perature can be introduced as a truncation along one of the four spatial axes, as
B =1/T. Similar arguments can be made about characteristic length scales such
that for 7 > A, the system acts as a 3D statistical theory. These statements about
crossovers occurring in 3+1D and 4D are essentially equivalent when discussing
static observables. Since this chapter solely considers static observables, we hence-
forth discuss both 3+1D and 4D systems on an equal footing.

Physically, if an effective dimensional reduction were to take place, then observ-
ables, such as order parameter, gaps, etc. would show scaling with critical indices
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Fig. 5.1 Phase diagram and finite-temperature crossovers in 3+1 dimensional quantum critical
systems. a Generic phase diagram with quantum and thermal tuning axes given by g and T, respec-
tively. Two finite-temperature crossover regions are indicated; the quantum critical regime and the
classical critical regime. Dimensional reduction corresponds to the crossover into the classical crit-
ical regime. b Experimental realisation of a 3+1 dimensional quantum critical system; dimerised
quantum antiferromagnet TICuClz. Quantum tuning parameter corresponds to hydrostatic pressure,
p- Red shaded region indicates the classical critical regime. Solid red line schematically represents
the Néel temperature, while data for Néel temperature are taken from [35]
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of the lower dimensional critical theory. Experimental data for the 3+1 dimensional
antiferromagnet TICuCl; [36] provides the order parameter as a function of temper-
ature, and runs from very low temperatures 7 ~ 0, up to T = Ty, and hence, at least
in principle, contains information on the dimensional reduction. Based on fitting
asymptotic scaling forms to this data, it has been argued recently in Ref. [1], that in
the vicinity of Ty the data fits the scaling predictions of a 3D critical theory. From this
analysis, lines of dimensional reduction for the pressure-temperature phase diagram
of TICuCls have been deduced. An illustration of the deduced dimensional reduction
crossover lines is provided in Fig.5.1a and b by the dashing red curves. While this
fitting procedure supports the scenario of dimensional reduction, it provides no ana-
lytic insight into the behaviour of order parameter throughout the temperature range
0 < T < Ty. In particular, it is not clear how observables scale in the intermediate
regime between the, 3+1D at 7 = 0 and 3D at T = Ty limits.

The present work provides a quantitative description of the order parameter over
the entire range, 0 < T < Ty, for the general O (N), 3+1 dimensional critical theory,
and explicitly applies the results to TICuCl;.

5.2 Asymptotic Scaling Forms

Let us briefly recall the RG results for the scaling and critical exponents of the order
parameter, ¢,, for the generic O (N) Euclidean field theory in d = 4 — € dimensions.
To first-order in the e-expansion one obtains [34],

1—1le
g~ (=0 =5, (5.1
— M
where t = T/ Ty, such that (1 — ¢) is a measure of detuning from the 4 — ¢ dimen-
sional classical critical point Ty. Hence, for the O(3) model, in three and four
dimensions one obtains 3 = 1/(2(2 — 5/11)), and B4 = 1/2, respectively.

The problem of dimensional reduction does not simply amount to different scaling
regimes; ¢, ~ (1 — ) att — 0, to @. ~ (1 — )% at t — 1. It is expected that
under dimensional reduction, scaling near the thermal critical point is given by ¢, ~
(1 —t)» att — 1. However, att — 0 one cannot expect the scaling ¢. ~ (1 — )%,
since this is now far from the thermal critical point and so scaling behaviour is not
governed by this fixed point. Instead, at # — 0 one returns to the 3+1D quantum
critical theory whereby critical scaling is measured in terms of detuning, g, from
the quantum critical point, g.. To make this more explicit, the t — 0, 3+1D critical
scaling of the order parameter in detuning, g, is given by,

g~ (1—g/g)f, (5.2)
9 ~ (1 — g/g)" In ((1 — g/g)/by)| 7 . (5.3)
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The second line takes into account the multiplicative logarithmic corrections
expected at the upper critical dimension, and b, is a constant completely determined
by the parameters of the field theory. The point being that there are two relevant pertur-
bations, corresponding to the axes of the phase diagram Fig.5.1; quantum detuning,
g/8., and thermal detuning, 7, and that it is poorly understood how ¢.(g, T') scales
for a given g < g. under thermal detuning throughout the range ¢ € (0, 1). To this
end, one may hypothesise a double scaling ansatz of the form,

g~ (1—g/g)f (1 —0)f, (5.4)

which would account for both the 3+1D quantum and 3D thermal scaling limits. But
how to obtain such scaling behaviour from field theory?

The theoretical purpose of this chapter is to derive the analytic form of ¢.(g, T)
appropriate to describe the entire ordered phase, with range g < g, and 7 € (0, 1).
We will show in the next section that it takes the form

pele. 0~ (1 g/g0 [1 =2 rg.0]™ (5.5)
gete. 0~ (1~ g/g0 [1 = 2 (a0 i (0~ /500 [1 = 2 2. 0] /bz)‘ﬁ . (56)

here t = t(g), since Ty is dependent on detuning g, as per Chaps.2 and 3. The
function f(g, t) plays a crucial role in describing the crossover physics going from
t - O0tot — 1. Explicit form of f (g, ¢) is given in Sect. 5.3. Again, the second line
takes into account multiplicative logarithmic corrections.

The scaling form of ¢.(g, ¢) in Eq. (5.9) has the expected critical exponent for
the quantum detuning, g/g., in 3+1D, i.e. (1 — g/g.)?. On the other hand, for
thermal detuning, ¢, the critical exponent does not replicate the expected value for
a 3D theory. Instead, thermal detuning maintains the 3+1D critical exponent, i.e. B4
in [l — 12 f(g, t)]ﬂ *. However, the function f(g, t) displays a non-analytic cusp at
t — 1, see Fig.5.2, and as a result has a dramatic influence on the scaling of ¢.(g, t)
in the regime of + — 1. The next section explicitly evaluates ¢.(g, t) and f (g, t) for
parameters specific to 3+1D antiferromagnet TICuCls.

5.3 Results and Analysis

We now have in mind comparing to experimental data on TICuCls, as such the
quantum tuning parameter is given by the applied pressure p = —g. Following from
Chap. 2, the order parameter is given by [37],

—6

1 ap 1V 1/k l/a)k
«pf(p,D:a—oyz(p—pc)[aO] —(N—l)Z -3y ——— . (57
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where wy = \/k* + A%, and the (Higgs) gap is given by A%, = 20, ¢2. From here
onwards we specialise to N = 3. Note, we have excluded the thermal damping ansatz
for this analysis, i.e. I' — 0, which appeared in Chap.2. This choice allows for a
simpler presentation, and does not significantly affect our conclusions.

It is instructive to present the Néel temperature,

12y2(p—p) [ @
50[0

Zlor

Ty(p)* = : (5.8)

QA(p.Tv)

which is utilised to rewrite Eq. (5.7) into a form suggestive of the critical scaling
behaviour,

1 T
@2, p) = —y*(p — pc) [“—A} [1-72fa p)], (5.9)
[o4)) [o4))
12 1/x 1/yx QA(p,i=1) i
. p)= 5 (ZXX: (e —1) * SZX: (e¥ — 1)) |: UA(p.1) i| . 610

Herex = k/T, y, = w/T, and now the running scale is written as a function of
pandt, A = A(p, t). Although in this chapter we alter the running scale to be,

1
A(P,t)=\/IZT;$+§AH(PJTN)2, (.11

instead of A(p,t) = max[tTy, \/%AH(p, tTy)], as has been used previously—
Chaps.2, 3 and 4. This subtle change avoids unphysical cusps in the running
coupling constant «,, as seen for example in Figure 2.8. At the same time, this
form reproduces the same results as Chaps.2 and 3 in the important limits; 7 = 0,
A= l/ﬁAH(p, 0) and at T = Ty, A = Ty(p). Values of the fitting parameters
were found in Chap. 2,

o

pe = 1.01 kbar, y = 0.68 meV/kbar '/, o = 0.23. (5.12)
T

Fig. 5.2 The scaling
function f(t) = f(p, t) with
p = 2.5 kbar from Eq.
(5.10), as a function of
thermal detuning 7. f(¢)
displays a non-analytic cusp
att = 1. The limits f(0) and
f(1) are indicated by dashed
lines

£
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Fig. 5.3 Normalised order parameter. a Blue line shows the analytic results derived in this chapter
(5.13), the red dashed line shows the asymptotic 4D scaling form (5.14), and the turquoise dashed line
shows the asymptotic 3D scaling form (5.15). Normalisation is chosen such that the 4D asymptote
(5.14) is fitted to the + — 0 limit, while 3D asymptote (5.15) is fit to the + — 1 limit, the different
limits correspond to where asymptotes are expected to hold. Experimental data taken from TICuCls
is shown by blue markers [36]. The data is normalised to unity in the = 0 limit. b Comparison
of analytic results (5.13) with experimental data [36], for various pressures p = {2.5, 3.5, 4.79}
kbar, shown by blue, maroon, and yellow markers, respectively. The results (5.13) and data [36] are
raised to the power of 1/83 to demonstrate the approximately linear scaling at t — 1

InFig.5.3a we compare the normalised order parameter to the expected 3D scaling
as well as experimental data [36]. The data, taken at various fixed pressures p =
{2.5, 3.5, 4.79} kbar, provides the order parameter as a function of temperature from
T ~0toT ~ Ty and hence contains the desired information on the scaling with
respect to thermal detuning. To compare the thermal scaling behaviour and to give

an understanding to the role played by f(p,t) as well as logarithmic corrections,
we plot the following three curves,

3

0c(t, P)/9e(0, p) = [1 =2 ft, p)]'"° [m] : (5.13)
Y A(p,0)

0.t, p)/9e(0, p) = [1 =121, (5.14)

o922 (1) /9P (0) = Ao (1 — )P . (5.15)

Here (5.13) represents our full solution, (5.14) sets f(p,t) = 1 and omits loga-
rithmic corrections, and (5.15) is the expected 3D scaling limit. Normalisation factor
A is chosen to fit the  — 1 limit of experimental data [36], where 3D scaling is
expected to hold. All three curves are plotted in Fig.5.3a, with solid blue, dashed
maroon, and dashed turquoise lines, respectively for (5.13), (5.14), and (5.15). Exper-
imental data [36] are given by blue markers. The difference between dashed maroon

and solid blue lines demonstrates the combined significance of f(p, t) and logarith-
mic corrections.
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Agreement between our analytic result (5.13) and experimental data [36], blue
line and points in Fig.5.3, respectively, is our key result. We see that our analytic,
3+1D theory of the order parameter tracks the sharp crossover displayed in the data.
Moreover, agreement between scaling forms of blue (5.13) and turquoise (5.15) lines
over the range, 0.8 <t < 1, is a remarkable result. The agreement demonstrates
an apparent change of critical exponent, i.e. 84 — B3, induced by f(p, t) and the
multiplicative logarithmic corrections.

We remind the reader that ultimately we expect the critical exponent of the order
parameter to obey 3D predictions, and hence our results would give the wrong critical
exponent asymptotically close to t — 1. Instead, the primary result of this chapter is
having an analytic description of ¢.(p, t) appropriate to describe 0 < ¢ < 1. To this
end, agreement between theory and experiment in Fig. 5.3a and b is very convincing.
Of course, it remains the task of future high precision experimental or numerical
studies to provide tests of our quantitative predictions for the entire (p, f) parameter
range. And in particular, how close to the + = 1 limit does our theory still remain a
good description?

A final, minor observation follows from (5.9)—it has been cast into a seemingly
pressure independent, universal form, yet due to the p-dependence of f(p,t) and
within the logarithmic corrections, explicit dependence on pressure p can not be
eliminated. We therefore expect the rescaled theoretical and experimental plots for
o.(p,t)/e.(p, 0) evaluated at various pressures to fail to exhibit a universal collapse.
To demonstrate this point, Fig.5.3b plots the rescaled [¢.(p, 1)/¢.(p, 0)]'/ as a
function of thermal tuning ¢. Raised to the power of 1/83 one expects approximately
linear scaling att — 1. We plot for three different values of p, and indeed see a small
but noticeable departure from a universal collapse. The values of pressure are chosen
to match the experimental values [36], and are p = {2.5, 3.5, 4.79} kbar. Once again,
agreement between theory and experiment is very compelling.

5.4 Concluding Remarks and Future Research

The novelty of the present work is that we have provided a continuous, analytic
description of the order parameter across the entire range 0 < 7" < Ty . Most impor-
tantly, our work has demonstrated that the sharp crossover-like behaviour observed
for the order parameter is completely described by our 3+1D theory. Ultimately,
we expect our results to give the wrong critical exponent in the limit 7 — Ty.
Nonetheless, our results provide a new perspective on the enigmatic problem of
dimensional reduction. We therefore hope to inspire future unbiased QMC studies at
non-temperatures to directly test our quantitive predictions over the entire interval,
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Chapter 6 ®)
Continuity of the Order Parameter i
in Magnetic Condensates

Abstract Phase transitions captured by the spontaneous symmetry breaking (SSB)
mechanism are necessarily second-order. Magnetic field induced phase transitions
in quantum antiferromagnets are associated with the SSB-condensation of bosonic
triplet excitations and are hence expected to be continuous. However, theoretical
descriptions of the non-zero temperature, magnetic field induced condensation of
triplons have erroneously predicted a discontinuity in the order parameter. This the-
oretical issue dates back ~50 years to the work of Fadeev and Popov on the dilute
Bose gas condensation, and ultimately arises due to the perturbative treatment not
respecting symmetries of the action. The present work approaches the problem start-
ing from a relativistic quantum field theory and demonstrates how perturbative cor-
rections are to be handled in a method consistent with the underlying symmetries.
A key result is that our treatment satisfies the Goldstone theorem, which is shown to
be a necessary condition for the continuity of the phase transition.

6.1 Introduction

The order parameter, arising in symmetry broken phases, is an indispensable concept
in the study of critical phenomena. For broken continuous symmetries, along with
the order parameter, there must exist gapless modes, called Goldstone excitations,
which reflect the original symmetry of the system. This is a statement of the Goldstone
theorem [1]. For the system under consideration in this chapter—three dimensional,
O (3) quantum antiferromagnets—there exists three tuning handles for the SSB, the
quantum tuning parameter g (explicitly we consider pressure, p = —g), the magnetic
field B, and the temperature, 7. Condensation under the separate tuning of p > p,
or B > B, corresponds to the spontaneous breakdown of either O (2) or O(3), and
supports either one or two Goldstone modes, respectively. In three dimensions, the
ordered phases driven by p and/or B survive up to a non-zero Néel temperature 7.
Here we use T, instead of Ty, for generality.

Inreal compounds, i.e. TICuCl;z, CsFeCls, and others, tuning magnetic field and/or
pressure offers two unique scenarios to study SSB, the order parameter, and Gold-
stone physics. This has by now attracted immense experimental [2-9] and theo-
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(b) ©c(T,B)

Disordered

Fig. 6.1 Schematic of the continuous order parameter, ¢.(p, B, T), across the critical (p, B, T')
phase diagram. a The zero-temperature order parameter, ¢.(p, B). The red line emanating from the
QCP, (pc, 0), designates the pure AFM order parameter, as discussed in previous chapters. The blue
lines show the evolution of the order parameter under non-zero magnetic field, and are hence in the
BEC universality. b The non-zero temperature order parameter, ¢. (7', B). This figure corresponds
to p < pe, since B.(T = 0 > 0), the yellow point. At larger temperatures, larger magnetic field is
required to establish the condensate

retical [10-14] interest over the past two decades. Despite the long history, there
remains a fundamental issue within theoretical approaches to the finite temperature,
field induced phase transition, i.e. the (p < p., B, T) sector. Previous theoretical
approaches, which were concentrated at the (p < p., B, T) sector, have employed
the dilute Bose gas model [11, 15] and/or bond-operator technique [16]. In the end,
these techniques rely on the Hartree-Fock- Popov approximation developed ~50
years ago in the context of the dilute Bose gas [17, 18]. However, it is known that
the Hartree-Fock-Popov approximation breaks down in the vicinity of the critical
temperature 7, and subsequently predicts a first-order phase transition [19]. For the
dilute gas problem this is manifest in the discontinuity of the density, while for the
magnetic BEC, there is a discontinuity in the staggered magnetisation [11].

The statement of interest of the present work is to construct a theory that naturally
allows for the continuity of the order parameter in magnetic condensates across the
entire critical (p, B, T) phase diagram, as depicted in Fig.6.1. This equivalently
allows for a truly second-order phase transition. Results will be explicitly discussed
in terms of magnetic systems, yet the technique/method employed is of generic
importance for systems described by O (N) models, with N > 1. This chapter also
serves as a theoretical basis for future chapters, Chap.7 explores the interesting
aspects of the extended phase diagram (p, B, T), while Chap. 8 looks at the decay
channels of the Higgs mode in the ordered phases of the (p, B, T') diagram.

The quantum phase transition between ordered and disordered phases is described
by the effective field theory with the following Lagrangian [20-22],

1 N - 1 - 1 R 1 .
L =09~ x B)’ — E(W — zmévﬂ — Zdo<ﬂ4~ (6.1)
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The vector field ¢ describes staggered magnetisation, B is an external applied
field, and we set guup = ¢ = 1. We now briefly outline the tree-level phase transitions
captured by this Lagrangian. Consider first B = 0, the pressure induced QPT results
from tuning the mass term, m}, for which we take the linear expansion m§(p) =
v2(pe — p), where y? > 0 is a coefficient and p is the applied pressure. Varying
the pressure leads to two distinct phases; (i) for p < p. we have m(z) > 0, and the
classical expectation value of the field is zero (pf = 0. This describes the magnetically
disordered phase, the system has a global rotational symmetry, and the excitations
are gapped and triply degenerate. (i) For pressures p > p. we have m§ < 0, and the
field obtains a non-zero classical expectation value > = |m(2]| /. This describes the
magnetically ordered, antiferromagnetic phase. Varying m% from positive to negative
spontaneously breaks the O(3) symmetry of the system. In the broken phase there
are two gapless Goldstone excitations, and one gapped Higgs excitation.

Next consider non-zero B at fixed p < p.: For B < m the system has O(2)
symmetry, and the degeneracy of the triplet modes is lifted by Zeeman splitting.
The field induced QPT results from tuning B > m . The order parameter field is
9% = (B* — m}) /oo, and there exists a single gapless Goldstone mode.

6.2 Disordered Phase

We now discuss how to go beyond mean-field. Everywhere in the text m3 =
yoz( pe — p) and o represent the zero temperature mass tuning parameter and cou-
pling constant without quantum fluctuation corrections. Taking into account quan-
tum and thermal fluctuation corrections due to interaction term %aoé“, we will
denote the renormalised parameters m§ — m3 , and ag — a,. The explicit form
for m% , =m3 ,(p, T, B) depends on the location within the phase diagram, and
polarisation o = +1, 0, —1. Explicit expressions will be derived shortly and are
presented in Egs. (6.4) and (6.5).

In the disordered phase the Euler-Lagrange equation with (6.1) results in the

following dispersion
o] =./k*+ m%\’a +oB. (6.2)

Importantly, the o B term is not renormalised. This is a consequence of a Ward
identity (Larmor theorem). While the Lagrangian can be diagonalised by fields that
represent the physical states with corresponding dispersion (6.2), we find it con-
venient to calculate fluctuation corrections in the Cartesian basis ¢ = (¢x, @y, @.).
Let us denote by ¥ the part of the Lagrangian (6.1) independent of derivatives.
Then, using a Wick decoupling of the interaction term 41'10‘0&4’ in the single-loop
approximation we find
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82—7/—m2—32+3a (©2) + ap(@?) + ao(p?)
32 = "o 0¥y 0\¥y, 0{®;
3y
Gg7 = Mo~ B’ +aole) + 3ao(ey) + oo le?)
y
3*Y
— = m + ap(pl) + o (@) + 3ao(@?) 6.3)

where (go%) is the loop integral over the Green’s function of field ¢, . The loops encode
both quantum and thermal corrections. The Greens functions and explicit expressions
for the loops will be presented in the Appendix E. An explicit calculation shows
(¢2) = (¢2), hence from Eq.(6.3) we have rather trivially satisfied the O(2) Ward
identity: 327 /9g? — 3*V/ 8<p§ = 0. Throughout this chapter we use the following
loop-notation to denote the renormalised mass parameters,

my 1 = mg + 300(@r) + ao(9)) + ao(e?l) . (6.4)
m} o = mj + oo (@2) + aol?) + 3o (@?) . (6.5)

as opposed to carrying out the RG procedure. This choice is for notational
convenience—it allows for transparent algebraic manipulations. Of course we have
in mind that at the final step of evaluation, RG will be applied. Exactly what is
meant by this statement is made clear in the Appendix E, where the expressions
corresponding to Egs. (6.4) and (6.5), after the application of RG, are provided.

Beginning from the disordered phase, we can derive the critical magnetic field,
including temperature dependence, by evaluating the gapless point in the dispersion
of the critical mode (6.2). Explicitly setting the critical mode of Eq. (6.2) to zero, i.e.
wy (B.) =0, and substituting Eq. (6.4), one finds

B (T) = \/m% + ao(d@3) + (92)) - (6.6)

We have taken advantage of the O(2) symmetry property (¢2) = ((pg), and once
again note that RG must be applied to the expression (6.6). The superscript, ‘—’, in
B indicates the approach to the critical field from the disordered phase. Next, B
will indicate the approach from the ordered phase.

6.3 Ordered BEC Phase

Consider next the BEC phase, B > B.(T). The vector field is then written ¢ =
(¢c + o, m, z), where ¢, is the order parameter field, and the Lagrange-fields o and
7 correspond to hybridisations of the true Higgs and Goldstone modes. Further
implications of this hybridisation will be discussed in Chap. 8. The Lagrange-field,
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z, directly corresponds to the precession mode. The physical (diagonal) modes of
the system have dispersion,

ol = \/k2 +3B2—m} ,+ \/4sz2 + (3B2—m} )2, (6.7)

wf = \/kz +3B2—m} , — \/4sz2 + (3B* —m3 )?, (6.8)

wp =K +m3 . (6.9)

The superscripts { H, G, z} designate the Higgs, Goldstone, and precession modes,

respectively. The renormalised mass terms of the ordered phase; m§ — m3 , and

m(z) — m%\ .» are analogous to those of the disordered phase Egs. (6.4) and (6.5), and
are defined below in Egs. (6.12) and (6.14).
We write an effective potential, 7", from the non-derivative terms of the Lagrangian

(6.1) including first-order in ¢y loop corrections, and expand about the minimum g,

1 1
V== (B2 =mj) (ge + 0,7, + J07 {3ao(o?) + o () + e (&)
1
+ 18aj@?(0°07) + 2592 (77 %) + 20502 (2°2%) | + Enz {ao(0?) + 3ag(m?)

1
+ao(z?) + dagel o)} + Ezz {a0(02) + arp (%) + 30 (22) + 4ol (022%))
1 1
+ 20 {Ben(o?) + ao(m?) + ool } + ol - (6.10)

The single bracket notation (72) denotes the loop integral over internal 7-
field propagator. Loop integrals and propagators are explicitly evaluated in the
Appendix E. Similarly, the trace over an internal line is given by (o2) and (z?) for the
o-field and z-component loops, respectively. In the effective potential, we also need
to include terms/traces (o27?), (02z%), (w?w?), and (z%z?). Such contributions are
rendered first-order in ¢ due to the presence of the order parameter field squared,
which is of the order (") i.e. 022 — o (B? — m3). Numerical pre-factors in
(6.10) arise from permutation symmetry of the loops, for a general discussion see
e.g. [23].

Minimisation of the effective potential 3% /d¢. = 0, defines the renormalised
order parameter,

22
L R T S S (6.11)
o

This is an important result, and shows how the meanfield order parameter,
i (32 - m(z)) /a, 1s renormalised to leading-order in «p. Having established the

renormalised order parameter, we can now evaluate the curvature of the effective
potential (6.10), with respect to the field directions, o, w and z,
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v
T = 3agp2 — (B2 —m?) +3ep(0?) + ag(n?) + ag(2?) + 18ad¢Z (020?)
+ 2053(,03(712772) + 2a8<p3(z2z2)

=2(B* = md — a0 {307 + (x)) + (D) }) + 20362 {9(0%0%) + (x272) + (22

=28 —m} ). (6.12)
>y 2 p2 2 2 2 2 22,2 2
o2 = (m” — B%) + agp; +ag(o”) + 3ap(n”) + ap(z”) + 4ages (0 n7)

=20 (%) — 2a0(0?) + 4l (o2 . (6.13)
P2V, 2 2 2 2 29,22
P2 +app; +ao(o) +ao(m”) + 3ap(z7) + 4agec (07z7)

= B +2a0(z%) — 2a0(0%) + 4ol (022?)
=m2 .. (6.14)

Simplifications are obtained by the substitution of the renormalised order param-
eter field (6.11). Finally, we obtain the desired expressions for the renormalised mass
terms in the ordered phase,

mf\ﬁ,_, = m% + 30 (02) + ao(m?) + ap(z?) — a%fpcz {9(0202) + (727 + (zzzz)} , (6.15)

m3 . = B? 4+ 200(z%) — 2a0(0?) + 4adp?(022?). (6.16)

Again, these quantities appear in the dispersion relations for modes of the ordered
phase Egs. (6.7), (6.8) and (6.9).

6.4 Results

We are now in a position to demonstrate the continuity of the order parameter as well
as verify the Goldstone theorem.

6.4.1 Order Parameter

First, it is necessary that all modes continuously evolve into their counterpart at the
phase transition B = Bf(T),

D:of =of, (:op =0, (A):w;, =op. (6.17)

It is a straightforward task to check the continuity of the modes, i.e. to confirm
(6.17), and we leave it to Appendix E to do so explicitly.
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Performing an RG treatment of (6.11), one obtains

1 ap T 2(5B% —m3 ) [n(@!)  n(@?)
o= (2] - = -]

@ =@ Lol
H G Z
+2|:n(co;;) +n(wg)]+n(cik>}’ (6.18)
Wy Wy @

where n(wg) = 1/(e F - 1). The order parameter (6.18) is an analytic function of its
arguments, (p, B, T'). To demonstrate the continuity of the order parameter across
the non-zero temperature phase transition, it suffices to show that there is a unique
critical field B, (T) = B[ (T) such that critical mode of the disordered phase, and
the order parameter both identically vanish, i.e.

wy (BY) = ¢.(B}) =0, (6.19)

To demonstrate, we evaluate the critical magnetic field by finding the root of
Eq. (6.11),

BI(T) = \Jm} + ao(3(0%) + (x%) + () . (6.20)

whereas attacking from the disordered phase we obtained Eq. (6.6). At B = BZ,
the loop integrals of the z-field become identical ((pzz) = (z%), which can be simply
understood since the dispersions and Greens functions identically match. Hence, to
demonstrate B (T) = Bj (T), it suffices to show that,

3(02) 4 (1) = 4(¢?) . 6.21)

Evaluating the loop integrals at B, we confirm the condition (6.21),

N (;;l;\/kzl_i_iBz {”(wf)-l-n(w/?)} , (at B=B.)
d3k + _

=2 ] Gy o Men) )]

= 4(p7) .

To obtain the penultimate line, we use the continuity conditions of the mode
dispersions at BE, Eq. (6.17). We have therefore successfully obtained a second-
order phase transition at finite temperature. This is a key result of the chapter.
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6.4.2 Goldstone Theorem

Another crucial result is that the present technique satisfies the Goldstone theorem. At
meanfield level the physical Goldstone mode is gapless. A proper treatment of loop
quantum and thermal corrections leaves such a mode gapless. The effective potential
(6.10) contains the first-order in & corrections, but is written in the non-physical
(i.e. non-diagonal) Cartesian basis. In this basis, to respect the Goldstone theorem it
is necessary and sufficient to show that the 7 -field represents the flat direction in the
field space, i.e. 327 /dm* = 0, Eq. (6.13). Loop integrals are printed below, from
which it is an algebraic task to verify that anywhere in the ordered phase,

>y 2 2 2.2, 2 2
) =20(7”) = 2a(c”) +4a ¢ (c°n") = 0. (6.22)
T

The first two loop integrals are found, in Appendix E, to be

o s [[6B2 =2yt -], [6B2 =2k - of 4 0R]
o = — - s
@)} wl — o} 2wy Yy — 0 206
ooy o [ [P b ] g [P oh ] e |
) @)l w%, — wé 2wy w%, — wé 2w |- :
The final loop integral in Eq. (6.22) is found to be,
d3k 1
(02712) =Re | ———~—
2n)3 2wy2wg
X [(1+n Y1 +ng)—n n] ! — !
H G HIG iO—a)H—a)G iO-‘ra)H-‘ra)G
1 1
1 —ng( - . 6.24
+[( TG =l +nG)]|:iO—wH + wg i0+wH—wg]} ( )

Note, we are dealing with the real part of the loop diagram since we are concerned
with mass corrections. Great care must be taken when obtaining this expression, since
one has to account for contributions of the anomalous Greens functions. A complete
discussion of Greens functions and loop integrals is provided in Appendix E.

Adding the loop integrals (6.23) and (6.24), and performing some straightforward
but lengthy algebra, one confirms (6.22). Once it is verified that the curvature of
the effective potential remains flat under perturbations, it immediately follows that
the physical, i.e. diagonal, Goldstone mode of the system has a gapless dispersion
Eq. (6.8).



6.5 Discussion and Conclusion 97

6.5 Discussion and Conclusion

In general, it is a theoretical challenge to quantitatively describe the influence of
non-zero temperatures on a quantum system. This is certainly the case when con-
sidering the non-zero temperature, magnetic field induced Bose-condensation in
three dimensional quantum antiferromagnets. Perturbative approaches based on the
Hartree-Fock-Popov technique fail to describe the order parameter in the vicinity of
the non-zero temperature transition. The present work instead starts with a relativis-
tic quantum field theory, and demonstrates a general scheme to handle quantum and
thermal perturbations to generate a consistent description of the order parameter and
of the excitations. The essential result is that under renormalisation, we maintain the
Goldstone theorem, i.e. the Goldstone excitations remain gapless. Ultimately, we find
this to be the necessary ingredient to obtain continuity of the order parameter. Hav-
ing established a consistent theoretical description of the order parameter throughout
the (p, B, T) phase diagram, this chapter forms a basis for future explorations of
magnon Bose-condensates. Chapters 7 and 8 are dedicated to this exploration.
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Chapter 7 ®)
Multiple Universalities e
in Order-Disorder Magnetic Phase

Transitions

Abstract We consider isotropic quantum antiferromagnets under applied magnetic
field, pressure and temperature. The combination of these three tuning handles leads
to an extended phase diagram which has not been explored within a single approach.
Employing a quantum field theoretic approach that allows us to consider the entire
extended phase diagram, we predict the emergence of multiple (three) universalities
under combined pressure and field tuning. Changes of universality are signalled by
changes of the critical exponent ¢. Explicitly, we predict the existence of two new
exponents ¢ = 1 and 1/2 as well as recovering the known exponent ¢ = 3/2. We
also predict logarithmic corrections to the power law scaling.

7.1 Introduction

In the study of critical phenomena, a central goal is to uncover and categorise the
universal features. Understanding the universal features allows for a more powerful
and enlightening description of the complex system at hand. A key property of
systems in the vicinity of a critical point is the corresponding critical exponents,
which govern the scaling behaviour of observables. A great effort—experimental,
numerical and theoretical—has been devoted to uncovering new universal behaviour
and critical exponents.

The present work considers three dimensional (3D) quantum antiferromagnets
(QAF), where the combined interplay between pressure, magnetic field and temper-
ature (p, B, T) provides a unique and experimentally achievable arena to explore
new universal behaviour. We are concerned with the critical exponent ¢ which gov-
erns the critical field-critical temperature power law,

(a): 8Bppc ~ T?, (b): 8Ty ~ BY/?, (7.1)

The shift of the BEC transition line at small temperature is shown schematically
in Fig.7.1a, while the shift of the AFM/N¢el transition line at small field is shown
in Fig.7.1b. We also provide Fig.7.2 which depicts the three dimensional (p, B, T)
phase diagram.
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(b) A B>0
T 7 _B=0

BEC Disordered 2
/
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Fig. 7.1 Critical field and temperature power law shifts. a Shift of critical field-pressure line
with temperature § Bggc ~ T?. Solid blue curve is at zero temperature, dashed blue at non-zero
temperature. b Shift of critical (Néel) temperature-pressure line with field Ty ~ B'/%. Solid red
curve is at zero field, dashed red at non-zero field

Fig. 7.2 Multiple
universalities in the

(p, B, T) phase diagram.
Blue curves correspond to
the BEC transition lines;
here p < p. and the critical
exponent is ¢ = 3/2. Red
curves correspond to the
Néel transition lines; here
p > pc and the critical
exponent is ¢ = 1/2. The
dashed, black curve shows
the critical pressure
transition line, with critical
exponent ¢ = 1

Disordered

The primary goal of the present work is to derive the evolution of the critical index
¢ across the phase diagram. Our secondary goal will be to explain the shortcomings
of previous approaches to magnon Bose-condensation presented in the literature.

7.2 Methods

We work with the Lagrangian [1-3],

_ 1 _ 1 _ 1 _ 1 ,_
L1¢. Bl = 5 0,9 — ¢ x B)* + 5c2(w)2 + 5mé¢2 + Zaéw“. (7.2)
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The vector field ¢ describes staggered magnetisation, B is an external applied field,
and for now we set guup = 1. We take the linear expansion m3(p) = y*(p. — p),
where y2 > 0 is a coefficient and p is the applied pressure. Presence of the B-field
explicitly breaks the O (3) rotational symmetry down to an O (2) rotational symmetry
about the axis defined by B. The three degenerate modes of the symmetric phase are
Zeeman split such that the excitation gaps are A, = my + o B, where 0 = 0, =1 are
the polarisations (the projection of angular momentum on the direction of magnetic
field). Hence only the 0 = —1 mode becomes critical. Figure 7.3a depicts this situ-
ation. Upon magnetic field driven condensation, staggered magnetic order develops
and lies in a plane perpendicular to the axis defined by the applied magnetic field B. At
zero temperature, the field induced QPT results from tuning B > mo = y/p. — p,
this corresponds to the blue line in the (B, p) plane, Fig.7.2. The condensate field is
given by ¢? = (32 - m(z)) /ap. Within this phase, there exists one Goldstone mode,
and two gapped modes. Of the gapped modes, one is an amplitude fluctuation or
Higgs mode, while the other is a precession mode with rest energy set by the Larmor
frequency, gup B, where g is the gyromagnetic factor and pp the Bohr magneton.
The evolution of the excitation gaps through the magnetic field driven and pressure
driven (at B # 0) QCPs are presented in Fig.7.3.

7.2.1 Comparison with Standard BEC Effective Field Theory

The magnetic field changes the universality of the quantum phase transition—only
one Goldstone mode is generated, as opposed to the O(3) QPT which generates
two Goldstone modes. Having just one critical mode and global O(2) symmetry,
this effective field theory belongs to the 3+1 dimensional BEC universality class [4].
Furthermore, based on this idea, one can eliminate the higher energy modes, and
extract a lower-energy effective theory, namely the following,

_ . . 1 _ 1 _ 1 _
ZI¢1, B~ Bocdpy — Boydiox + 5c2<vm2 + 5<mé - BH@t + Zaogﬂi . (13

Here the second order time derivatives are ignored under the assumption B > o,
and the ¢, mode has been dropped as it is non-critical (note B = BZ). We call this the
standard BEC effective field theory. The Bose-Einstein condensation (of magnons)
in dimerised quantum antiferromagnets has been considered on the basis of such
an effective theory in a number of theoretical works [5—7]. Importantly, this critical
theory is non-relativistic; dynamical critical exponent z = 2, and hence effective
dimensionality is d + z = 5. The theory now sits above the upper critical dimension
D, = 4, and therefore observables do not receive logarithmic corrections. In contrast,
the original field theory (7.2) receives logarithmic corrections, although there is no
associated asymptotic freedom as B acts as an infrared cutoff. Despite the absence of
an asymptotically free point at the QCP, the logarithmic corrections in the presence
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Fig.7.3 Excitation gaps A, = wj_: (Left) pressure driven at fixed field B = 0.2 meVand 7T = 0.
(Right) field driven at p = 0 kbar and 7 = 1.5 K. Solid lines are theoretical results derived in this
chapter. Markers indicate experimental data for TICuCl3 [18, 19]

of a magnetic field will soon be seen to play an important role on the properties of
the magnetic phase diagram, Fig.7.2.

Under the mantra of effective QFT, many approaches to magnon
Bose-condensation have relied on the critical Lagrangian (7.3), while certainly
asymptotically correct (at vanishing energy), it has failed to describe real experi-
mental data—the BEC critical index appeared different from theory. As such, the
classification of magnetic field induced magnon condensation as belonging to the
O(2) BEC universality has been an open question for ~20 years [5-16].

Moreover, it is widely believed that at p < p., ¢ = 3/2 is the universal BEC
exponent, which can be obtained from the scaling arguments on the dilute Bose gas
[4, 17] or explicitly for magnon BEC [5, 6]. For a review see [7]. On the other hand,
experiments on TICuCl; and KCuClj [8-13] and numerics [14] show 1.5 < ¢ < 2.3.
With the exact value of ¢ depending crucially on which temperature range is used
for fitting [7, 15]. By appealing to Eq.7.2 instead of the approximate form Eq. 7.3,
this chapter will explain why the index depends on the fitting range.

It is important now to comment on the validity of the critical theory (7.3). Only
asymptotically close the the BEC quantum critical point can one expect this modified
field theory (7.3) to provide a faithful representation of the physics, namely, when
B. > T.Physically, temperature acts as a bath of low energy modes. The discarding
of modes, i.e. the precession and amplitude modes, may be justified in some limited
region B > w at T = 0, however, at finite 7 such modes can be readily excited
(thermally) and as T ~ B they become relevant degrees of freedom.

The effective theory (7.3) also has no prospect of describing decay channels of
non-critical modes, including the Higgs modes; this will be the topic of Chap. 8.

To summarise, we claim that if one is interested in extended regions of the phase
diagram, the influence of temperature and quasiparticle decay (non-critical modes),
for which the full three-mode Lagrangian (7.2) is essential. Let us now proceed to
the analysis of this field theory.
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7.2.2 Renormalization

The parameters mq and ¢, do not include the renormalization due to quantum or
thermal fluctuations. The fluctuations arise due to the interaction term iaog_p"‘ in Eq.
(7.2). The one-loop renormalization procedure is explicitly performed in Appendix
E. We denote the renormalized parameters m(z) — m%w and oy — o, which are

now dependent on the energy scale A. The running coupling is given by

o0

T 1+ Uop/(872) In(Ag/A)

aA

(7.4)

Specifically for the problem at hand, the coupling runs with scale A = max{m .,
B, T}. Accordingly, there is just a single point on the phase diagram at which all
energy scales vanish A — 0: the quantum critical point (p,, 0, 0), see Fig.7.2. At
this point the coupling runs to zero oy, — 0 (asymptotic freedom).

To present the renormalised mass m, , we first need to obtain the dispersions of
the modes in the disordered phase. They follow from the Euler-Lagrange equations

of (7.2),
ol = /K> 4+mj , +0B. (7.5)

The explicit form for m3 , = m3 ,(p, T, B) depends on the location within the
phase diagram, and polarisation o. Note that the ¢ B term is not renormalised. All
in all, calculations presented in Appendix E give,

a1
mi’ozmg [a—g] +aAZ 1/w2{n(w,f)+n(w,:)+3n(w2)} ,
k

Sr=an Yy ol 2n(w)) + 2n(wp) + n(wp)} . (7.6)
k

Here n(wy) =1/ (ew'Tk — 1), and we introduce the function X7 for brevity.

In Fig.7.3 we summarise the results for the evolution of the three mode gaps
through the field and pressure quantum phase transitions, separately. The mode gaps,
A, = wj_,, are calculated from Eqs. (7.5) and (7.6). Explicit parameters correspond
to those found in Chap.2 and Ref. [20] for TICuCl;. Here we disregard the small
easy-plane anisotropy seen in TICuCls, which has been shown to have negligible
influence on the critical properties [20], see also comment [21].
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In a magnetic field, the condition of condensation follows from Eq. (7.5), m + —
B, = 0. Using (7.6) this equation can be rewritten as,

5
i
Sy = B — m [“—A] , a.7)
o

which contains all information about the critical indices across the entire (p, B, T)
phase diagram. It is our key theoretical result. Next we analyse this equation in the
three qualitatively distinct regimes of the phase diagram.

7.3 Results and Discussion

We analyse three distinct cases: (I) Above the critical pressure p > p., here the
critical temperature is given by the AFM/Néel temperature 7, = Ty; (II) exactly
at the critical pressure, p = p.; (III) below the critical pressure p < p., which we
denote T, = Tggc.

7.3.1 Casel

Consider case (I), where p > p..In this case according to Eq. (7.1b) the Néel temper-
ature varies in a weak magnetic field. To calculate X7 at B — 0 we take the critical
line dispersions w; = w;, = ») = k. Hence T = Sf‘—zATz, where T = Tyo + 8Ty,
and Ty denotes the Néel temperature in zero magnetic field. Hence using Eq. (7.7)
we find,

6 B’
@D: 6Ty = ——, at B < Tng . (7.8)
SOlA TNO

Hence for case (I) we conclude that the the critical index in Eq. (7.1b)is ¢ = 1/2.
This regime has never been considered before.

7.3.2 Casell

Consider case (II), where we now tune exactly to the quantum critical point, p = p,,
Tno = 0. Again, to calculate X7 at B — 0 we have to take the critical line dispersions
a),ir =w, = a)g = k and hence again X1 = %"—;T? Substitution into (7.7) gives,

5
(I): B, = ,/%T , at B, < T. (1.9)
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The condition B, < T is satisfied at sufficiently low temperatures since the cou-
pling constants decays logarithmically, oy o 1/1n (%) Hence in this case (II), the
critical index of Eq. (7.1) is ¢ = 1. We find that, in addition to the exponent, there is

nontrivial logarithmic scaling. This regime has never been considered before.

7.3.3 Caselll

Finally we consider the BEC case (III), where p < p.. In this case only the w,
%, where Ag = By is the gap at B = 0. The
other two branches are gapped. Calculation of X7 gives X7 = « A%./AOT’V 2,

where ¢ is Riemann’s ¢-function. Hence, using Eq. (7.7) we find,

dispersion branch is critical, w, ~

8B, c(3/2) < T )3/2
(I10): =y ~(— at 8B, < Ag. (7.10)
Ay @m)z \ Ao

As expected the critical index in Eq. (7.1a) is ¢ = 3/2. Such a power could have
been derived from the approximate form of the Lagrangian (7.3). Except, by using
the full form (7.2), we obtain multiplicative logarithmic corrections to this power
law; this is due to the appearance of pre-factor a, . Such multiplicative logarithmic
corrections have not been considered before.

7.3.4 Discussion

We now discuss agreement between the asymptotic forms Eqgs. (7.8), (7.9) and (7.10),
the full solution (7.7) and the experimental data from [13, 22, 23]. To do so, we take
the set of parameters describing TICuCls, which were determined in Chap. 2

pe. = 1.01 kbar, y = 0.68 meV/kbar!/?,

X _023,  Ayp=1meV. (7.11)
8

Note, when fitting experimental data in Chap. 2 the thermal line-broadening had
been accounted via w = k — o = /k? + £2T2, £ =0.15.

InFig. 7.4 we illustrate Eq. (7.8) by dashed yellow line originating from 7o = 2.8
K. The coupling constant is ap /87 = a7,,/87 = 0.107. For comparison, the solid
blue line originating from 2.8 K represents exact solution of Eq. (7.7) with coupling
constant running along the line. We see that the asymptotic solution provides a
faithful description over a large (B, T') parameter range. There is as yet no available
experimental data for this regime.
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T [K]

Fig. 7.4 Critical field vs temperature: Dashed yellow curves show solutions to scaling Egs. (7.8),
(7.9) and (7.10). Dashed maroon shows solution of (7.7) that accounts for thermal mixing of non-
critical modes, but does not account for running coupling; coupling is at fixed value ap — ap, =
0.169 x 8. Solid blue lines are the solution to (7.7) with full account of non-critical modes and
logarithmic running coupling. Blue points are experimental data from [13, 22, 23]

We illustrate the asymptotic (7.9) by the dashed yellow line originating from
B =T = 0inFig.7.4. The solid blue line originating from the same point represents
exact solution of Eq. (7.7). Once again, the asymptotic form is a faithful description
and there is as yet no experimental data.

Finally, we consider the region of validity of Eq. (7.10). To do so we compare
with both the full solution to (7.7) and with TICuCls data [13, 22, 23]. The value
ofthegapat T = p =B =01is Ag =my + = 0.64 meV [24]. The BEC critical
field for T = p = 0is By = 4.73 T [25]. Hence, we obtain the g-factor, g = 2.35
[21]. In Fig.7.4 the dashed yellow line originating from By = 4.73 T shows Bggc
versus T at p = 0 calculated with Eq. (7.10). The value of the coupling constant in
this equation is obtained from Eqs. (7.4) and (7.11), ap /(87m) = aa,/(87) = 0.169.
Experimental data [13, 22, 23] are shown by circles. We see that Eq. (7.10) is valid
onlyat7 <1K.

There are two physical effects accounted in (7.7), but neglect in (7.10). These are
(i) the influence of the non-critical (gapped) modes w,f, wg, and (ii) the logarithmic
running of «» . To illustrate the importance of non-critical modes, the dashed maroon
line originating from 4.73 T in Fig.7.4 shows solution solution of Eq. (7.7) with
account of all three modes, but with fixed coupling constant aa,/(87) = 0.169.
Finally, the solid blue line originating from 4.73 T shows solution of (7.7) with
account of both (i) and (ii). Agreement with experiment is remarkable. And hence
we conclude that by including the effects (i) and (ii), the present analysis resolves
the long standing problem of the BEC critical exponent, which has been consistently
reported at a higher value; 3/2 < ¢ < 2.3 [7-15]. We stress that there is no fitting
in the theoretical curve. The set of parameters (7.11) was determined in Chap.2 and
Ref. [20] from data unrelated to magnetic field.
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Fig. 7.5 Multiple universalities: Various curves show the critical field B.(T') at various pressures
ranging p < p¢, p = pe to p > pc. a Solutions to (7.7) with parameters for TICuCls. b Data for
quantum antiferromagnet CsFeCl3 [16]

The existence of three critical exponents ¢ = 3/2, 1 and 1/2, and even logarith-
mic corrections to these exponents, is a readily testable result and constitutes our
most important prediction for experiment. There is as yet no experimental data on
TICuClj; in the regimes (I) and (II). However, there is experimental data on quantum
antiferromagnet CsFeCl; which covers all three regimes. To make use of this data,
in Fig.7.5a we plot the predicted critical field in TICuCl; vs temperature at various
pressures. And for comparison in Fig.7.5b we present a similar experimental plot
for CsFeCls [16]. For this comparison, we have not performed exact quantitative
calculations (including all pre-factors) for CsFeCls. The existing data for this com-
pound are not sufficient to perform analysis similar to Chap. 2 for TICuCl;. However,
the data [16] shows clear qualitative support for the proposed multiple universality
theory developed in this work.

7.4 Conclusion

In summary, we have employed a quantum field theoretic approach that allows access
to the entire (p, B, T) phase diagram for 3D quantum antiferromagnets. Perform-
ing one-loop renormalization at non-zero temperatures, our approach allows us to
uncover two new universality classes; we find two new critical exponents, as well as
their corresponding logarithmic corrections. We also resolve a long standing prob-
lem relating to a third, known critical exponent in these systems. Our results show
remarkable agreement with existing data on TICuCls.
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Chapter 8 ®)
Prediction of Ultra-Narrow Higgs e
Resonance in Magnon Bose-Condensates

Abstract Higgs resonance modes in condensed matter systems are generally broad,
meaning large decay widths/short relaxation times. This common feature has
obscured and limited their observation to a select few systems. Contrary to this,
the present work predicts that Higgs resonances in magnetic field induced, three-
dimensional magnon Bose-condensates have vanishingly small decay widths. Cru-
cially, our work demonstrates that an applied magnetic field acts as a direct tuning
handle—controlling the strength of the coupling of Higgs to low energy modes, and
hence the Higgs decay width. We calculate the evolution of the decay width under
magnetic field for generic magnon Bose-condensates. Specifically for parameters
relating to TICuCls, we find an energy (Ag) to width (I'y) ratio Ay /'y ~ 500,
making this predicted Higgs mode two orders of magnitude ‘narrower’ than for the
same system without magnetic field.

8.1 Introduction

The Higgs mechanism, and associated Higgs modes, play a central role in modern
physics. The mechanism is responsible for the mass generation of all observed par-
ticles in nature, and is the only known universal mechanism to do so. Higgs modes
are a generic property of systems with a spontaneously broken continuous sym-
metry. This includes prominent condensed matter phenomena, superconductivity,
Bose-condensation (BEC) and superfluidity, quantum magnetism, etc. as well as the
Electroweak vacuum. Due to the ubiquity and importance of Higgs modes across
many branches of physics, their detection has been an exciting, yet difficult, chal-
lenge. Certainly the discovery of the Electroweak Higgs boson [1, 2] meets both of
these descriptions. Also attracting a great deal of attention, and proving to host their
own difficulties, are the Higgs modes of condensed matter systems. They have been
observed in the following settings, superfluid *He-B (1980) [3, 4], the charge density
wave superconductor NbSe; (1981) [5, 6], three dimensional quantum antiferromag-
net (AFM) TICuCl; (2008) [42], superfluid 3 Rb atoms in an optical lattice (2012) [7],
superconducting NbN (2013) [8, 9], and two dimensional quantum AFMs, Ca;RuQOy4
(2017) [10] and CyHgN,CuBr4 (2017) [11, 12]. Each setting offers unique insights
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into the dynamics of Higgs modes and, in particular, the role played by symmetry,
dimensionality, as well as the coupling to different degrees of freedom. Such factors
are seen to have a dramatic influence on the dynamical properties and, ultimately,
the observability of the Higgs modes.

A dimensionless parameter characterising the quality of the Higgs mode is the
ratio of the mode energy over the decay width, Q = Ay /'y. For many interest-
ing, symmetry-broken systems, the Higgs modes obtain Q ~ 1, implying such poor
quality that the mode is unobservable. This is the case for the Higgs partners to the
following low energy modes: the Higgs partner to spin waves in simple Heisenberg
AFM,; the partner to r-mesons (chiral symmetry breaking) [13]; the partners to sound
in atomic BEC and in superfluid 4-He, etc. It is worth noting that in some cases it is
possible to detect Higgs modes indirectly, even for low Q ~ 1. For example, in the
case of superconductors NbSe, and NbN, observation requires either the presence of
charge density wave order, or the implementation of out-of-equilibrium spectroscopy
[14-16].

On the other hand, there are only very few systems exhibiting high quality factor
Higgs modes. First, the quality factor of the fundamental 125 GeV Higgs boson in
particle physics is Q &~ 2 x 10* [17], and is the largest known in nature. Another
remarkable scenario is the Higgs squashing modes of the 3He-B order parameter,
such modes have been shown to be long lived, with Q ~ 10* [3, 4, 18]. Note, if a
discrete symmetry (instead of continuous) is broken, as for an Ising transition, then
the Higgs mode is naturally long lived with a high quality factor. This scenario has
been realised very recently [11, 12], where the Goldstone modes are gapped due to
anisotropy, placing the transition in the Ising universality class.

We are concerned with the Higgs modes arising three dimensional quantum anti-
ferromagnetic systems, such as TICuCl; and similar, whereby the phase transition
breaks a continuous symmetry. As a result the Higgs mode couples to gapless Gold-
stone modes and therefore generally has a low quality factor. For example, the pres-
sure induced antiferromagnetic phase of TICuCl; hosts the highest observed quality
factor for this class of systems, with a mere Q = 5 [7]. The high quality factor is, in
part, due to proximity to the quantum critical point (QCP) where the system becomes
asymptotically free, as discussed in Chap. 2. A result related to asymptotic freedom
was obtained in Ref. [46] in the context of quasi-one-dimensional chains. Ultimately,
asymptotic freedom is a manifestation of the running coupling constant, . For ease
of presentation, in the present chapter we ignore the running of the coupling constant
by setting « = constant. To incorporate the running of « one can simply apply the
results of Chap.2; Eq. (2.2).

In this chapter we predict that the Higgs resonance in isotropic quantum antifer-
romagnetic systems can be made very narrow by application of an external magnetic
field, obtaining a quality factor QO ~ 500. Moreover, with account of small anisotropy,
asin the case of TICuCls, and applying laboratory strength magnetic fields (B ~ 6T),
we obtain quality factors as high as the largest known in nature, Q ~ 10*. The pre-
dicted resonance width is so narrow that it may be beyond the resolution of inelastic
neutron scattering techniques, with meV resolution [7]. Instead measurement would
require peV resolution, for which neutron spin-echo technique is appropriate [19].
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Fig. 8.1 Zero temperature phase diagram. a Magnon gap (p < p.) and spontaneous staggered
magnetisation (p > p.) versus pressure at zero magnetic field, B = 0. b Pressure-Magnetic field
phase diagram. The vertical axis shows spontaneous staggered magnetisation. The dashed line in
the B — p plane shows a contour connecting the simple AFM phase at B = 0 and the BEC phase
at p = 0. The red band in both panels indicates the region where the width of the Higgs excitation
has been measured

Moreover, Raman spectroscopy, which probes the scalar response channel, has been
used to study Higgs modes of magnon-Bose condensates [20, 21]. Raman spec-
troscopy may therefore provide a suitable means to study the Higgs decay width
[22].

Although magnon BEC have attracted immense experimental [23—30] and theo-
retical [31-36] interest over the past two decades, see reviews [37, 38], the issue of
the Higgs magnon width in the BEC phase has not been addressed. Theoretically,
the width in the usual AFM phase, i.e. not the BEC, was considered in [49] and also
in recent Monte Carlo simulations [39].

In this work we address three dimensional (3D) quantum AFMs, having in mind
TICuCl; and similar. The zero temperature phase diagram of the system we consider
is shown in Fig. 8.1, where Fig.8.1a corresponds to a zero magnetic field slice of
Fig. 8.1b. The quantum phase transition is driven by an external parameter, say pres-
sure p. At p > p. the system is in the AFM phase, the order parameter ¢, # O is
proportional to the staggered magnetisation. The region p < p. corresponds to the
magnetically disordered phase, where the excitations—triplons, are gapped and are
triply degenerate. We denote by m the gap in the triplon spectrum. BEC of magnons
at p < p. can be driven by external magnetic field B. Evolution of the triplon gap
under the magnetic field is shown in Fig. 8.2a. At weak field there is simple Zeeman
splitting of the triple degenerate gapped triplon. At the critical value of the field B, the
lowest dispersion branch strikes zero. This is the BEC critical point. At a higher field
the lowest branch remains gapless, this is the Goldstone mode of the magnon BEC.
Gaps in the middle branch (z-mode) and the top branch (Higgs mode) continue to
evolve with magnetic field. The zero temperature B — p phase diagram is presented
in Fig. 8.1b where the vertical axis shows the order parameter. The diagram clearly
indicates that the AFM phase at B = 0, p > p, is continuously connected with the
BEC phase at p = 0, B > B, [41]. Evolution of excitation gaps with magnetic field
at zero pressure, p = 0, is shown in Fig.8.2a. Evolution of excitations gaps along
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Fig. 8.2 Evolution of excitation gaps through the BEC phase transition. Markers indicate experi-
mental data for TICuCl3 [43]. Solid lines are our theoretical results. a Gaps versus B-field at zero
pressure. b Gaps versus B-field along the dashed line in Fig. 8.1b connecting AFM and BEC phases,
described by p(B) = po — B*/y? with py = 2.26 kbar. Letters H, z, and G indicate Higgs, z- and
Goldstone modes in the ordered phase. While numbers {—1, 0, 4-1} refer to Zeeman split modes in
the disordered phase, discussed in text. Experimental points are taken from [7, 43]

the dashed contour in the B — p plane in Fig. 8.1b is shown in Fig. 8.2b. The contour
corresponds to p(B) = py — B%/y?, where py = 2.26 kbar is selected to correspond
to experimental data [7, 43], and the parameter y was introduced in Chap. 2, and is
discussed again below. Markers in Fig. 8.2 indicate experimental data for TICuCl;
[7, 43] and solid lines represent theory described below.

8.2 Method: Isotropic Systems

The systems analysed here are close to quantum criticality, where usual spin-wave
or triplon techniques are insufficient. Instead, the present analysis employs quantum
field theory. The o-model-type effective Lagrangian of the system reads [44—46],

R 1 N > 1 - 1 N 1 .
LIgl =506 — ¢ x B)* — E(V@Z — 5’"2“’ : - 799 ., (8.1)

Here ¢ is a real vector field describing AFM magnons, m? = y2(p. — p) is the
pressure dependent effective mass (y is a coefficient), and « is the coupling constant.
In Eq. (8.1) we set the magnetic moment and the magnon speed equal to unity
gup = ¢ = 1. Of course, when comparing with experimental data these quantities
have to be restored. Quantum fluctuations renormalise values of m? and «. The
effect of renormalisation is well understood —the bare values of m and « are to be
replaced by logarithmically renormalised values, m — mg(A), @ — agr(A). In our
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analysis, the renormalisation scale, A, is equal to the Higgs gap. We will not discuss
logarithmic renormalisation any further. We also strictly consider T = 0.

In the spontaneously symmetry-broken BEC phase, the classical expectation value
immediately follows from (8.1), 9> = (B> — m?)/a > 0. Hence the field is ¢ =
(¢c + 0, my, m;). The magnetic field defines the z-axis and we choose the x-axis
to be directed along the spontaneous magnetisation, ¢.. Equation (8.1) rewritten in
terms of dynamic fields, o, 7y, and 7, reads

L=+ L+ %4, (8.2)

I, . . . .
b= 5[02 + ) + 721+ Bloy, — 6m,]

1 1

— 5[Va2 +Val 4+ Val]l— (B> —m’)o” — Eanf :
L= —agoca(oz —i—n}z, —i—nzz) ,
o

L= _Z(az+n)2,+nf)2.

Fourier transforming the fields, o, 7 o ek and using the relation
19" G™'¢ = £, we obtain the matrix Greens function

w? —k*—2(B*—m? 2iBw 0
G'= —2iBw w? — Kk 0 . (8.3)
0 0 o —k —B?
Evaluating |G~!| = 0 results in the following dispersions for Higgs, Goldstone,

and z-modes,

wll = \/k2 +3B2 —m? + \/43218 + (3B2 —m?)?,

wf = \/kz +3B2 —m? — \/4sz2 + (3B2 —m?)?,
LB 84

Theoretical values of wg—¢, given in Eq. (8.4), are plotted in Fig. 8.2 by solid lines
[47]. The dispersions (8.4) have been obtained in the literature, see e.g. [46, 48],
and do not represent a major conclusion of this chapter. Note that (8.4) is valid in
the spontaneously broken phase, B > B.. In the disordered phase, at B < B,, there
is simple Zeeman splitting of triplon dispersions, a),(cl) = vk? + m? + B, where
[=0,=+£l1.

Plots of dispersions (8.4) versus momentum for two values of magnetic field,
B = B, and B = 1.1B, are presented in Fig.8.3a. At the critical point, B = B,,
the Goldstone mode is quadratic in momentum at k — 0. At B > B, the Goldstone
mode is linear at k — 0, yet with a non-linear bend at k ~ B — B,.

Z
Wy
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Fig. 8.3 a Dispersions of Higgs (H) z- and Goldstone (G) modes for B = B, (solid lines) and
B = 1.1B. (dashed lines). b Scaling functions: ¢ (§) (maroon line) and ¢, (5) (yellow line). The
parameter 82 = 1 — m?/B?. Pink shaded region indicates BEC phase, 5 < 1. The AFM phase at
B = 0 corresponds to § = co. The dashed black line represents the AFM limit of ¢ (6 — o0)

In principle, the decay amplitude of the Higgs mode is given by .%; and % in
Eq. (8.2). However, in the BEC phase there is an important physical and technical
complication that originates from the Berry phase term B[o 7y, — 67, in %5, which
is not present in the usual AFM phase. This term introduces off-diagonal kinetic
terms into the Lagrangian (or equivalently, into the Greens function (8.3)), which
cause mixing, or hybridisation, between the o and 7, modes. In a standard field
theory or spin-wave theory without off-diagonal kinetic terms, the field operator is
represented as a combination of corresponding creation and annihilation operators,
o o Y lage' ™ kx4 gl g=ioxt+ik¥] This remains valid in the AFM phase of the
present work. However, owing to the Berry phase, this is not valid in the BEC phase.
Below we elaborate how to correctly represent the field operators, o, 7, and 7,
in terms of creation/annihilation operators—it is important for understanding the
results of the chapter. .

Let ay/ al, br/ bT, and ¢/ c,T( be the annihilation/creation operators of the Higgs,
Goldstone, and z- modes. Accordingly, the Hamiltonian reads,

H = Z [w,fa,tak + w,?b,tbk + w,zcc,tck] + const. (8.5)
k

It is shown in Appendix F that the field operators are to be expressed in terms of
the creation and annihilation operators in the following way,
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Fig. 8.4 Diagrams for the Higgs and z-mode decay channels
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k

G G
+%G,k[bkelw"t ik-x _bILe lwkt+1kx]} ,

1 S o
ﬂz(x, t) — Z [Ckela)ktflk-x + C’teflwkl#»lk-x] , (86)
k

V2w;,

where, denoting « = H, G, the coefficients are,

w} B?
Ay =
TN (B2 + m2) ()2 + 3B — m?)(2B2 — 2m? + K7
—2iwy B

<%ut = Da vQ{a s @a Y —
k Kok k (wz)z — k2

8.7)

We draw the readers attention to the minus signs in the canonical representation of
7y (x, t) (8.6), these signs are responsible for cancellation with the scattering matrix
elements (8.8), and ultimately the narrowness of the Higgs mode.

In a conventional BEC, the Higgs mode is longitudinal and the Goldstone mode is
transverse. As demonstrated in Egs. (8.6), this is not true for the magnon BEC. Both
longitudinal and transverse waves are linear combinations of Higgs and Goldstone
excitations. The bending of the Goldstone dispersionatk ~ B — B, seeninFig. 8.3a,

is a direct manifestation of this hybridisation.

From the interaction term %5 (8.2) and applying (8.6), we conclude that Higgs
can decay into two Goldstone excitations and into two z-excitations. This is shown
diagrammatically in Fig.8.4. The decay matrix elements follow from Egs. (8.2),
(8.6),

MGG = 200 TH kg TGk 6,0 {3 + D60y D6 ks — D601 Do ko — D6.0r Phoko | »

K4
Mgy =209, —PK0__ (8.8)

/ 2a),zcl 20)22
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Here we denote the momentum of initial Higgs by k¢ and momenta of final particles
by k, and k;. The decay width is given by Fermi’s golden rule,

r— jeot [ T Loy pes ko — ki — ko) . (89)
= = WK, — Wk, — O — ki — , .

2 (27.[)3 (27_[)3 ko ki k> 0 1 2
where the coefficient 1/2 stands to avoid double counting of final bosonic states.

A direct integration gives the decay widths. For clarity, and to avoid lengthy for-
mulas, we present here only the partial widths in the rest frame, ko = 0, 0 =

V2(3B2 —m?),

| 57BN Te

o
o §¢G(5) , (8.10)

o o
— = —0¢,(5) .
7 - ¢.(3)

w

Here the scaling functions ¢ and ¢, depend on the parameter, 8> = ap?/B? =
1 —m?/B?,

) =7

b0 2 (82 — /6% + 267 + 4)?

L@+ V5128 T2 — 82+ 26 £ 287 + 4
(24 82)32/6% £ 282 + 42 + 82 4+ /54 + 282 + 4)2

5) — 832
¢-( )—m~

5 (3 20246 — 42 — VI 25 +4))2

8.11)

The parameter, 8, ranges from 0 < § < 0o, such that § = 0 ata BEC critical point,
where p < p., m? > 0,and B = m, while § = oo in the AFM phase, where p > p.,
m? < 0, and B = 0. Asymptotics of the scaling functions are, ¢ (00) = ¢.(c0) =
1/2, ¢6(8 — 0) o< 8%, ¢.(8 — 0) o< 83. Plots of ¢ (8) and ¢, (8) are presented in
Fig.8.3b. A very strong suppression at small § is evident, and this constitutes our
main physical result.

8.2.1 Q-Factor Analysis

Inthe AFM phase at B = 0,8 = oo, thetotal width, I’ = 'y, g6 + 'z ;;, hasbeen
already measured [7] and calculated [39, 49]. In this regime, Eq. (8.10) gives I' /! =
«/8m, which is consistent with previous work [7, 39, 49]. The most interesting
prediction of Eq. (8.10) is the dramatic suppression of the width at § < co and
especially in the BEC phase (6 < 1). Explicitly for TICuCls, taking p =0 and B =
1.1B. ~ 6.4T, the Higgs gap is o ~ 1.6 meV and the quality factor Q = /T ~
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500, predicted by Eq. (8.10), is much higher than that in the AFM phase, Q ~ 5.
Even at the BEC border line, p = p,, § = 0, the quality factor is Q =~ 50.

8.3 Method: Anisotropic Systems

For three dimensional quantum antiferromagnet TICuCls;, there exist a small easy
plane anisotropy. We now analyse the influence of the anisotropy on the decay line
width of the Higgs mode. If magnetic field is applied perpendicular to the easy plane,
then we make the following adjustment to the Lagrangian (8.2),

1
Lo + 0,7y, 1] = Llpe + 0, 7y, 7] — Eminf . (8.12)

The additional term acts to further gap the z-mode, where m, ~ 0.38 meV is
known from experiment [7]. The Goldstone and Higgs dispersions (8.4) remain
unchanged, however the z-mode dispersion becomes,

@ =/k* + B2+ m?. (8.13)

The partial decay into Goldstone modes, I'y_. g, remains unaffected, but the
partial decay into z-modes, 'y, ., is now influenced by the anisotropy as follows,

1:"H»zz lLag ~
= —— (6,
o 28y P20
- 82
$(8,a) = —————+/82 — 2420 (8> — 24?) . (8.14)

@+ )7



120 8 Prediction of Ultra-Narrow Higgs Resonance in Magnon Bose-Condensates

8.3.1 Q-Factor Analysis

There are now two scaling parameters, 8§ = 1 —m?/B? and a = m,/B, which
makes presentation of the analysis more difficult. So to finish this section, we just
wish to present the quality factor, Q,

ol

= 8.15
Q l—‘H -6t 1—‘H -2z ( )

Here the partial decay widths, I'y_, s and r H—zz, are taken from Egs. (8.10)
and (8.14), respectively. We apply fitting parameters derived in Chap. 2 for TICuCls,
and also select a magnetic field strength, B = 2m,. These parameters allow Q to
be directly evaluated in terms of pressure, p. The result it plotted in Fig.8.5. A step
function non-analyticity appears due to the sudden threshold opening/closing of the
decay channel into the anisotropic mode.

The anisotropy acts to dramatically enhance the quality factor. We therefore sug-
gest scattering experiments in the parameter range 1 < p/p. < 0.5 and B ~ 2m, ~
6 T. Importantly, this parameter range is experimentally realisable within current
techniques [7].

8.4 Discussion

We remind the reader that the present analysis has neglected the logarithmic running
of the coupling constant «, as obtained in Chap. 2; Eq. (2.2). Instead, the primary focus
of this chapter was to demonstrate that an applied magnetic field acts as a direct tuning
handle—controlling the strength of the coupling of Higgs to low energy modes,
and hence the Higgs decay width. We now discuss how the running « influences
the results obtained in this chapter. For the case of the B = 0, Eq. (8.10) gives
I'/w™ = /87, which was also obtained in Chap. 3; see Eq. (3.21) and corresponding
Fig. 3.5b. In Chap. 3 the running coupling was explicitly taken into account, and we
see from Fig. 3.5b that precisely at the quantum critical point, the ratio I'/w =
a/8m — 0 and hence the Q-factor is infinite. The vanishing of the decay linewidth
is a manifestation of asymptotic freedom. We note, however, the vanishing of the
ratio I'/w® = a/87 — 0 occurs only in the very near vicinity of the QCP, see
Fig. 3.5b, and that for any reasonable value of detuning away from the QCP the
ratio I'/w = a /87 ~ constant—since it has a logarithmically-shallow slope. We
point out that a similar result was obtained in Ref. [46] in the context of quasi-one-
dimensional chains. Now, for the case B # 0, the running coupling constant « does
not vanish at the QCP—there is no asymptotic freedom. Hence, we can safely take
« equal to a non-zero constant.

It is interesting to note that the z-mode is even more narrow than the Higgs. The
dominant decay channel is via emission of the Goldstone excitation, z — z + G,
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Fig. 8.4. Moreover, the decay is possible only if the speed of z is higher than the speed
of Goldstone excitation, making this a magnetic analog of Cherenkov radiation. Note,
double Goldstone emission is also possible, z — z + G + G, but with even lower
amplitude.

Due to .% in Eq. (8.2), the Higgs mode can also decay into three Goldstones,
H — G + G + G. However, the probability of this decay mode is much smaller
than H — G + G considered above due to a reduced phase space and being at next-
order in perturbative coupling «. At non-zero temperature Raman processes become
possible, H4+ G — H + G, z + G — z 4+ G. The corresponding broadening can
be calculated using the developed technique supplemented with appropriate Bose-
occupation factors. However, at low 7', the Raman broadening is small due to Bose-
occupation factors, and therefore we do not consider it here.

Comparing with real compounds one often has to account for weak spin-orbit
anisotropy; we explicitly treat this scenario. The anisotropy slightly changes one or
more mode dispersion. Which mode is affected depends on the orientation of the
magnetic field. If the magnetic field is oriented such that the anisotropy only shows
up as an additional gapping of the z-mode, the Higgs partial decay into the z-mode
will be further reduced due to phase space, strengthening the present conclusions.
Finally, it is worth noting that in the BEC phase the width becomes so narrow that the
decay into two phonons may be comparable with purely magnetic decay mechanisms
considered here.

In conclusion, we predict that Higgs modes in a magnon Bose-condensate phase
of 3D quantum magnets are ultra-narrow, i.e. have vanishingly small decay width. We
demonstrate that the Higgs mode in the isotropic Bose-condensate phase can be tuned
to have a decay width two orders of magnitude smaller than the corresponding mode
in the antiferromagnetic phase. An essential feature of the Bose-condensate is a Berry
phase contribution that causes the collective modes; Higgs and Goldstone, to appear
as the hybridisation of longitudinal and transverse excitations of the condensate
order parameter. This hybridisation plays a key role in narrowing the Higgs mode.
Moreover, we calculate dispersions of all collective excitations in the magnon Bose-
condensate phase and find that hybridisation also manifests itself as a bending of the
dispersion branches, thus providing further experimental tests of the scenario posed
here.
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Chapter 9 )
Bose-Einstein Condensation of Particles Geda
with Half-Integer Spin

Abstract We consider the magnetic field induced Bose-condensation of bosonic
particles with spin 1/2. We derive properties of the condensate in both two and three
dimensions, focusing on mode dispersions, phase boundaries, and critical indices.
We find that the unusual condensate supports a Goldstone mode with quadratic
dispersion, and this provides a “smoking gun” criterion for searches of the novel
phase of matter.

9.1 Introduction

The famous spin-statistics theorem [1] claims that particles with integer spin obey
Bose-statistics while particles with half-integer spin obey Fermi-statistics. Therefore,
for all particles restricted to obey the spin-statistics theorem only those particles with
integer spin can undergo Bose-condensation. However, as introduced in Chap. 1,
certain condensed matter systems, e.g. some kinds of spin liquids [2] as well as the
deconfined quantum criticality (DQC) scenario [3, 4], are predicted to host bosonic
quasiparticles with spin 1/2.

In this chapter, we assume the DQC theoretical framework and consider the appli-
cation of an external magnetic field to drive the system to an exotic Bose-condensate
(BEC) of spin 1/2 DQC spinons. This work represents the first suggestion of such
an exotic condensate, and as such our primary motivation will be to derive the key
properties/observables that would allow the exotic phase to be identified in future
experimental or numerical studies.

Before proceeding, it is important to state that bosonic spinons do not contra-
dict the spin-statistics theorem. First, they are quasiparticles in a solid and hence
the Lorentz invariance is explicitly violated. Second, they are quasiparticles with a
nonperturbative origin; only quasiparticles of a nonperturbative origin can violate
the spin statistics theorem. Quasiparticles that can be adiabatically (perturbatively)
transferred from solid/medium to vacuum obey standard statistics. Electrons are
always fermionic. Phonons (atomic displacements) and magnons (spin deflections)
are always bosonic.
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As discussed in detail in the introduction, Sect. 1.3, there is mounting numerical
support for the DQC scenario—we will not repeat the discussion here. Instead we
will just state the essential numerical results obtained on the JQ model, which, to the
best of our knowledge, enables the analysis of the largest lattices among all existing
DQC and spin liquid lattice models.

The DQC scenario was directly addressed in a QMC study Ref. [5]. An analysis of
the results through the lens of DQC quantum field theory demonstrated the following:
(1) the spin of the bosonic quasiparticle is really S = 1/2. This is a major conclusion.
(ii) The spinons are weakly interacting. (iii) The emergent U (1) gauge field proposed
in [3, 4] does not show up as a dynamic variable. (iv) There is a logarithmic correction
to one of the observables (the Wilson ratio). The correction is due to large spinon
occupation numbers in a weak magnetic field, n; > 1, and hence, the correction is
a precursor to spinon Bose-condensation.

Armed with this information, we can now proceed to an effective quantum field
theory description of the DQC spinons in an external magnetic field.

9.2 Theory of the Spinon BEC

Following Refs. [3, 4] we use the CP' representation to describe spinons, so the
mathematical object of the theory, z, is an SU (2) spinor. The effective Lagrangian
of spinons is

=0zt +iS2TG - B)oz —iSG - B)z) — (V2 (V2) — mPzTz — %(z'*‘z)z. 9.1)

We set the spinon speed equal to unity, as well as gSup = 1, where g is the
gyromagnetic factor, § = 1/2 is spin of the spinon, and . is the Bohr magneton.
The B is the external uniform static magnetic field, ¢ are the usual Pauli matrices,
and m is mass of the spinon. The interaction is repulsive, & > 0, and first we assume
that m? > 0. Unlike Refs. [3, 4] the Lagrangian (9.1) does not contain a dynamic
gauge field. This is directly motivated by the QMC analysis [5] which does not
show a contribution of the gauge field. While the DQC motivation comes from
two-dimensional (2D) systems (spatial dimensions), the Lagrangian (9.1) can be
considered both in two and three dimensions.

Consider the case when B < m: the classical expectation of the field z is zero,
and the system is disordered. We are interested in the quantum fluctuations in this
phase, for which we solve the linearised Euler-Lagrange equation

-V —2i@G - B):+ (m* = B%)z=0 9.2)
By ignoring the interaction term, we have in mind that it is reabsorbed in

the quantum renormalisation of the mass term m — m . The plane wave solution
is z(t, x) — wu;e**~ix:1 where the spinor u; follows from (G - B)u, = ABu;,
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A = *£1. Hence,
Wi\ = Qi+ AB . (9.3)

Here Q; = v/m? + k*. The standard canonical quantisation gives,

1
°= ; NeTon

~ ik 5t —ik- pi i attik
5, 1K B stk 9.4)

where, ay ; and 13,(, » are bosonic creation and annihilation operators. Importantly, z
is a usual spinor, z # z', and therefore one must introduce two types of bosons,
and b, or spinons and antispinons. This implies that at a given momentum there are
four degrees of freedom due to the combinations (4, l;) x (A= =%1) [3, 4].

Consider the case when B > m: the system undergoes Bose-condensation (the
dispersion (9.3) becomes negative at k = 0). The energy density corresponding to
(9.1)is E = 272 4+ Vz'Vz 4+ (m> — B}z z + %(z'2). Minimisation of the energy
gives the spin condensate and the classical energy, see also Appendix G

. BZ 2 BZ —n2)\2
Ziz0 = B -m) g B om) 9.5)
o o

This expression has the following implications. First of all, zgzo is a real number
that effectively counts together the number of spinons and antispinons. However, the
condensate z)zo gives no information as to the relative contributions of spinons and
antispinons. The second implication is that the ground state energy has no dependence
on how the spin polarisation vector ¢y = zSE Z0 = (sin 6y cos ¢y, sin O sin @g, cos by)
is directed relative to the magnetic field (l} [12), see Fig.9.1. To obtain this expression,
we have represented the spin condensate as,

. i _00590/2
20 = Aoe (e"/’o sinf/2 )’ ©-6)

where Ag = /(B2 — m?)/a.

Despite the degeneracy of ground state energy on the orientationﬁzo, we are happy
to find that the induced magnetisation is indeed directed along B, M = —% =
4(320[;’"2) B. The degeneracy of the spin alignment with respect to the magnetic field
is a consequence of the system containing both particles and antiparticles. But more
importantly, the degeneracy of a) is intimately linked to the gapless Goldstone exci-
tations, which correspond to variations of the angles 6y and ¢, in Fig.9.1. We will
see below via explicit calculation that there are indeed two Goldstone modes with
precisely these properties. As a final comment on the degeneracy, we note that if
an emergent U (1) gauge field were included in the Lagrangian (9.1) then, via the
Higgs mechanism, one of the Goldstone modes would vanish from the spectrum
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Fig. 9.1 Orientation of the
spin condensate vector o
with respect to magnetic field

implying that the degeneracy with respect to variations of the angles 6, and ¢y would
be (partially) lifted. We leave a detailed analysis of such a scenario for future work.

We now wish to find the excitations of the novel spinon condensate phase. Let us
denote fluctuations about the condensate (9.6) as z = zo + 8z. The Euler-Lagrange
equation for §z reads

83 — V27 —2i(G - B)dz + a(8zz0)z0 + a(z§82)z0 = 0 9.7

The solution takes the form, 8z = 7, e/~ 4 z_e~®+k" " After some algebra,
presented in Appendix G, we find the following modes

oy =VB2+k*—B (9.8)

w2k =\/332—m2+k2—\/(332—’"2)24‘432"2
a)3k:sz+k2+B

w4 = \/332 —m+ K+ \/(3132 —m?)2 + 4B .

The first two modes are gapless (Goldstone), wg—o = 0, while the second two
modes are gapped. We call the modes corresponding to wsx and wa, the precession
and the Higgs modes. Surprisingly the first Goldstone mode has quadratic disper-

sion at small k, w; ~ ﬁ, while the second Goldstone mode has the usual linear

. . B2—m?
dispersion, wy =~ ck, c =,/ ey et

In order to gain a visual understanding of the excitation modes, we appeal to
the spin vector representatlon and look at the variations it receives due to each
mode, i.e. C =zoz=¢+ 8{ where 8; ZOG(SZ + 8276 z¢. Calculations presented
in Appendix G show that for the Goldstone modes at small momenta k — 0, the
variations are
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(a)

Fig. 9.2 Oscillations of the spin polarisation vector Z with respect to the condensate vector 20 in
different excitation modes. The solid black arrow represents an arbitrary ¢o. a Goldstone mode with
quadratic dispersion. Anticlockwise rotation, the orange circle shows the path traced by the oscil-
lations. b Goldstone mode with linear dispersion. Linear oscillations in the direction perpendicular
to the meridian. ¢ Precession mode |3). Clockwise rotation, the orange circle shows the path traced
by the oscillations. d Higgs mode |4). Elliptic oscillations in the plane perpendicular the meridian

. cos 6y cos(Y + ¢o) . — sin 6 sin g
8¢ o | cosBysin(yr + @) |, 8¢ o | sinfpcos gy | sin . (9.9)
— sin 6y cos Y 0

Here  is the plane wave phase, { = wt — k - x. For the quadratic Goldstone
mode, the variation 821 is shown in Fig.9.2a. It represents an anticlockwise rotation
of vector g: around the vacuum polarisation vector ¢,. The spin polarisation variation
8¢, in the linear Goldstone mode is shown in Fig.9.2b. The mode represents linear
oscillations of vector Z around the vacuum polarisation vector ZO in the direction
perpendicular to the meridian.

Both Goldstone modes satisfy the orthogonality condition § 21 . Zo =4 22 . Zo =0.
The spin oscillations are in the plane orthogonal to the spin condensate vector, and



130 9 Bose-Einstein Condensation of Particles with Half-Integer Spin

hence correspond to variations of the angles 6y and ¢o—as anticipated. Polarisations
of the Goldstone modes are intuitive; circular polarisation for the quadratic mode,
similar to a ferromagnet, and linear polarisation in the linear mode, similar to an
antiferromagnet. An interesting consequence of the quadratic mode is that condensate
does not support superfluidity. The Landau criterion of superfluidity is not fulfilled.

Now let us consider the gapped precession and Higgs modes. The corresponding
variations of the spin expectation vector are found to be, see Appendix G for details,

—cos by cos(Y — o) — sin 6y sin ¢g _
8s3 o | cosBosin(y — o) |, S8y oc | sinBgcosgo | siny + bsgocosyr,  (9.10)
sin 6y cos ¥ 0

where by, presented in Appendix G, is anon-zero constant by — const # 0atk — 0.
The third mode represents a clockwise rotation of vector Z around the vacuum polar-
isation vector ¢y, Fig.9.2c, it is truly a precessing mode. Finally, the fourth mode
represents elliptic oscillations in the plane perpendicular to the meridian, Fig.9.2d.
This mode therefore possesses a longitudinal component (parallel to ¢p), and the
terminology Higgs is justified.

9.3 Renormalization, Critical Indices and the Phase
Diagram

We now consider the case where B = 0 and m?> < 0. This can be achieved (at least
in principle) by taking m? o< p. — p in the Lagrangian (9.1), such that p is the
quantum tuning parameter and p = p,. is the quantum critical point. For this QPT
straightforward algebra gives three Goldstone excitations and one gapped Higgs
excitation

w=wy=w3=k

ws = /2lm2| + k2.

We will call this phase the spinon antiferromagnet. With this result in mind, we
can now look at the generic properties of the (p, B, T') phase diagram of spinons.

9.3.1 Phase Diagram

Specialising our discussion to 3+1 dimensions, we will now discuss and uncover
previously unknown properties of the spinon phase diagram, i.e. we will categorise
the universal features of this exotic magnetic condensate. We are interested in the
interplay between the three tuning handles of the phase diagram: the quantum tuning
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(b)A B>0
T 7 _B=0

BEC Disordered 7
/

>
P Pc P

Fig. 9.3 Critical field and temperature power law shifts. a Shift of critical field-pressure line
with temperature § Bgpc ~ T¢. Solid blue curve is at zero temperature, dashed blue at non-zero
temperature. b Shift of critical (Néel) temperature-pressure line with field 7y ~ B'/%. Solid red
curve is at zero field, dashed red at non-zero field

P — P, the magnetic field, B, and the temperature. In Fig. 9.3 we present the generic
phase diagrams of the spinons either condensing via tuning B to form a BEC, or
by tuning p to generate a spinon AFM-like phase. Panel (a) shows the spinon Bose
condensation (BEC) line in the field-pressure diagram, and panel (b) shows the spinon
antiferromagnetic (AFM) transition line in the temperature-pressure diagram. As in
Chap. 7, the point of primary interest is the critical field-critical temperature power
law,

a:8Bgpc ~ T2, b: 8Ty ~ BY?, 9.11)
The shift of the BEC transition line at small temperature is shown schematically in

Fig.9.3a; while the shift of the AFM/Néel transition line at small field is in Fig. 9.3b.
We will now calculate the evolution of the critical index ¢.

9.3.2 Renormalization

The condition for the critical curves in the phase diagram, e.g. Fig.9.3, is given by
2 2 _
my(T.) — B, =0 (9.12)

where the one-loop renormalised mass is found to be
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NA+2
ap |71
miizzmg[—ﬁ] + = (N +2)ap X7
! o 2
Sr=Y o)) +n(wp)), (9.13)
k
ap

T 1+ (N + 8)ao/(1672) In(Ag/A)

ap (9.14)

Here N = 4 (discussed next), n(wg) = 1/ (ewT"( — 1), and we introduce the func-
tion X7 to denote the nonzero temperature part of the self-energy, see related discus-
sions in Chap. 7. The entire renormalization group procedure mimics that developed
in Chap. 6. To most easily see this, one can perform the mapping

I (o1 +ip
=— : 9.15
V2 (‘P3 + 14 ( )
to obtain the following Lagrangian
o _ L.r ([0*=2i0B —k? — (m* — B})]I, 0 Loy
L=5¢ ( 0 [w2+2inszf(mszz)]]Iz)w_g(‘o
(9.16)

where 7 = (@1, @2, @3, @4) are real valued fields and I, is the 2 x 2 identity matrix.
We see that this Lagrangian has a similar structure to that seen in Chaps.6 and 7,
except now the number of real scalar fields is N = 4. The renormalization runs
analogously to that presented in those chapters, however in the present case we see
that there is an added convenience—the matrix kernel (inverse Greens function) is
already diagonal in the cartesian representation.

9.3.3 Critical Indices

There are three distinct cases: (I) Above the critical pressure, when T, = Ty i.e.
critical temperature equals the AFM/Néel temperature; (II) exactly at the critical
pressure, p = p.; (II1) below the critical pressure, when 7, = Tpgc.

Consider case (I); p > p.. In this case according to Eq. (9.11b) the Néel temper-
ature varies in a weak magnetic field. To calculate ¥ at B — 0 we take the critical
line dispersions w; = w, = wy = k. Hence X7 = 572, where T = Ty + 8Ty;
Tno is the Néel temperature in zero magnetic field. Hence using Eq. (8.7) we find

12 B?

08Ty = —— —
(D: 0T (N 4+ 2)ap Tyo

at B < Tyo. 9.17)

So the critical index in Eq. (9.11b) is ¢ = 1/2.
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Fig. 9.4 Multiple universalities: Various curves show the critical field B.(T) for three distinct
cases: m? < 0, m? = 0, and m? > 0. The curves are purely schematic

Consider case (I); tuning exactly to the quantum critical point, p = p., Tyo = 0.
Again, to calculate X7 at B — 0 we have to take the critical line dispersions a),i' =
w; = o) = k and hence again X7 = -5 T2. Substitution into Eq. (8.7) gives

N2
(I): B, = %T at B, < T. (9.18)

The condition B, < T is satisfied at sufficiently low temperatures since the cou-
pling constants decays logarithmically, oz o 1/ ln( ) Hence in this case (II), the
critical index of Eq. (9.11) is ¢ = 1, and we find that in addition to the exponent,
there is nontrivial logarithmic scaling. In Fig. 9.4 we illustrate the asymptotic (9.18)
by straight line labelled ¢ = 1, which originates from B = T = 0.

Finally we consider the BEC case (IID, p < p.. Inthis case only the @, dispersion

branch is critical, w, ~ where Ay is the gap at B = 0. The other modes are

ZA ’
gapped. Calculation of X7 gives X7 = ap = L6/ 2)«/ oT3?, where ¢ is Riemann’s

¢-function. Hence, using Eq. (8.7) we find

32
0B: _ o N+ 2EE/2) ( ) at 8B, < Ao. 9.19)
Ao 10Q27)> Ao

As expected the critical index in Eq. (9.11a) is ¢ = 3/2.

Regimes (I) and (IT) have only been considered before by the present author in
Chap. 7. It is interesting that the same universality carries over to the spinon theory.
Note, we have not attempted to plot the result derived here explicitly, like we did in
Chap. 7, since unlike there we do not have fitted values for the coupling constant and
normalisation point («g, Ag). Instead, it suffices to plot a schematic phase diagram—
depicting the three cases discussed here.
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The existence of three critical exponents ¢ = 3/2, 1 and 1/2, and even logarithmic
corrections to these exponents, is certainly a testable result. However, since these
critical exponents are shared by the analogous magnon (spin S = 1) theory, it is not
a conclusive test of the exotic spinon BEC scenario. Instead, in the next subsection
we discuss a much simpler and direct (smoking gun) test of the spinon BEC.

More importantly, we note that when applying the present analysis to the AFM
— VBS transition in a quantum magnet one must remember that the deconfined
description is valid only within a vicinity of the quantum critical point. There is no
doubt that deep inside the VBS or AFM phase the quasiparticles are usual triplons
or magnons, respectively. This implies that there is a spinon confinement length &
which depends on the detuning from the quantum critical point. It is possible that
the gauge field [3, 4], despite not appearing as a dynamic variable in (9.1), still acts
as a constraint contributing to formation of the confinement length. The deconfined
description, and in particular Eq. (9.20), is valid if the spinon thermal wavelength is
smaller than the confinement scale, A7 ~ 1/ VBT « .

9.3.4 The Smoking Gun

Finally, we point out that the appearance of a Goldstone with quadratic dispersion
is one of the most intriguing properties of the spinon Bose-Condensate. In a con-
ventional Bose-condensate, say of magnons, the specific heat scales quadratically
with temperature, C o T2, in two spatial dimensions and scales cubically with tem-
perature, C o< T? in three spatial dimensions. On the other hand, for the spinon
Bose-condensate

1
2D: C=—¢(2)SBT
T

3D : c(5/2)(SB)* 2137 . (9.20)

1
C=—
8./273/2

Here ¢ (x) is Riemann’s zeta function, and we have explicitly reinstated S = 1/2,
which was absorbed into the definition of B in all previous equations. We therefore
claim that the unconventional temperature scaling of the specific heat is a smoking
gun for the spinon Bose-condensate. Note that in our expression for the 2D case
(9.20), we assume a condensate still exists at finite temperature. Of course we need
to keep in mind the Mermin-Wagner theorem [6], which excludes the existence
of true long range order at 7 # 0 in 2D case. Instead the guasi-condensate has
exponentially large correlation length instead of infinite range, and ultimately this
does not influence the power of temperature in the specific heat (9.20).
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9.4 Conclusion

We have proposed an exciting scenario whereby particles with spin S = 1/2 form a
Bose-condensate. We analyse the condensate in both two and three spatial dimensions
and find the key observables, such as dispersions of all modes in the condensate and
disordered phases, the phase boundaries and critical indices, and some properties of
the condensate itself. The most intriguing finding is a quadratic Goldstone mode in
the condensate phase. We argue that this implies unconventional temperature scaling
of the specific heat, and hence may be used as a diagnostic of this novel phase of
matter.
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Appendix A
Appendix for Chapter 2

In this appendix we discuss the derivation of renormalised mass and running coupling
constant, as well as the Néel temperature, and the influence of spin-orbit anisotropy.

A.1 Running Coupling Constant

The four point vertex in Fig. (2.2) is calculated to second order in « (with a Euclidean
metric)

A gtk 1
r'=o—(N+38 2/ —
o= WNH8a” | o
N + 8)a? A,
=a—(;_7)aln<x). (A1)

The infrared cut-off, A, is given by the mass gap, or the temperature scale. We use
a Callan-Symanzik equation to find the Beta function

- - i @4 _
[dln(Ac/A) +ﬂ(a)da:| =0
(N + 8)a?
= Ba) = T8a
da _ (N + 8)a?
= dIn(Ag/AN) 82
Qg
ap = (A2)

14 W28 1n(Ag/A)

where A, is some momentum cut-off such as the inverse lattice spacing, while A
is the normalisation point.
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A.2  Self-energy in the Disordered Phase

Approaching from the disordered phase, the first perturbative correction to the triplon
gap comes from the one loop self-energy

1[1 1
E(A,T)=(N+2)a1\zk:w—k[§+w—]

erT — 1
=(N+2)aA/WE
bV 42 / k11 (A3)
Moeni e — 1) '

The coupling constant coefficient is the running coupling o, since the two point
corrections are multiplicative with the four point vertices. With these corrections the
triplon gap becomes dependent on both p and T

A%(p, T) = m(p) + Z(A, T). (A.4)

The first term in the self—energy Eq. (A.3) renormalises the bare mass term m%, such

that m3 + (N + 2)ax f (2703 2wk — m?3, has logarithmic dependence on the energy
scale A. After RG, this part results in Eq. (2.3). The second term, or the ‘temperature
perturbation’, only contributes to the logarithmic running via its influence on the
infrared cutoff. To make these statements more clear, consider zero temperature
such that only the first term contributes. We write the two point function as

A dk 1
e =m?+ (N+2)aA/ 3
A 2m)2Vk2 4+ m?
N+2 A,
—m?— %mzln (X) . (A.5)

We use the Callan-Symanzik equation to find the (mass) Beta function

= L+/3m(A)i re
dIn(Ac/A) dm?
(N 4+ 2)apm?
= Bn(N) = 8—2A
T
N dm? _ (N + 2)apm?
dIn(Ag/A) 82
_ <—(N+2)> S a
N+8 )14 W0 nAq/A)
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din(m?) (—(N + 2)) %)
dn(Ag/A) N+8 )14 W0 nA/A)
%
md = m2 <“_A> (A.6)
(o))

Including non-zero temperatures does not change the form of the running coupling
nor mass Egs. (A.2, A.6), but it does shift the infrared cutoff from m(p) - A =
max{A,(p, T), T}.

After accounting for how the coupling terms m? and « depend on the scale, we
find that the gap takes the form

N+2

o N+8 1 1
A (p, T, A) =y*(pe — p) [—A] +(N+2an Y ———. (AT
oo  @ker —1

A.3 Self-energy in the Ordered Phase

The ordered phase is induced by the spontaneous breakdown of the O(3) symmetry
when p > p., as discussed in the introduction. It is a delicate task to calculate
the self-energy contributions to the Higgs gap, since within the ordered phase our
calculations at each order in o must preserve the Goldstone theorem. The Goldstone
theorem is a direct result of the remaining O(2) symmetry. We outline the procedure
here. In the Lagrangian, the field ¢ = (7, @. + o) is shifted such that the minimum
of the potential is ¢., and the field oscillations about this shifted minimum are the
two Goldstone modes 7 and the gapped Higgs mode o.

We can write an effective potential, ¥/, from the non-derivative terms of the
Lagrangian expanded about the the minimum ¢,

1 . 1 >
V= =Sl ge+ 0+ o[+ o) (A8)

The following two conditions must simultaneously hold true to ensure that ¢, is
indeed the minimum of the potential, and that to any order in «, the perturbations
respect the O(2) symmetry and so preserve the Goldstone theorem

dv a*v
—| =0, and —| =0. (A9)
de le. dn? lg.

Since we have already obtained the universal scale dependence of o, and m ,, we
do not need to repeat the Callan-Symanzik, RG procedure. We just outline how the
thermal perturbations are to be treated. Computing the thermal loops explicitly we
obtain the first expression
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av ) 5 1/k 1/wk
—=| =oaxp; — |my|+ (N - Da — +3a mk—=0
g le. — " A AXk:(eT—l) AXk:(eT—l)
(A.10)
2
2 |mA| ]/k 1/wk
o} = ~-N-DY L= 3y (A.11)
o Xk:(ef—l) Xk:(ﬁ"—l)

where the thermal corrections are splitinto two separate contributions. This is because
one type comes from the one loop self-energy with a Higgs propagator, and the other
with a Goldstone propagator. The first summation accounts for loops with massless
Goldstone propagators, while the second accounts for loops with massive Higgs
propagators, so that w7 = k* + Ay (p, T)?. We can now find the Higgs gap using
the result from Eq. (A.11). Directly computing the one loop corrections to the Higgs
gap, we find

1/k 1/ox
A% =3ap@? — ImA |+ (N = Dap 3 —L— +30, 3 L%
A A Moot o TN e @t o
1/k 1/wx
—2mal? —2(N — Dy S —25 _6a, ST L (A1)
’ R TR Py

and we have used Eq. (A.11) in passing from the first to second lines. We see that
A%i = ZaA(pf + 0(a?).
A.4 Néel Temperature

Approaching from the disordered phase, we calculate the Néel temperature by solving
Eq. (A.7) for A;(p, Ty) =0

(A.13)

TN(P)2 — yz(p_pC) [ﬂ}}\/ig

(N +2)ap Zy (;/y—w_yl) op

where wy = /y2 + ([/Ty)* = /y? + £2. Thefit ' = &T was discussed in Chap. 2.
Similarly, we can approach from the ordered phase and calculate the Néel temperature
by solving Eq. (A.12) for Ay (p, Ty) = 0,

2p — ¥
Ty(p)® = l/yy(” pe) [ﬂ] , (A.14)

1
300 Yy s + (N = Dao X0y 25 Lea

here &, = \/y? + ¢?, and the two terms in the denominator are due to the Higgs and
Goldstone self-energies. Since the phase transition is of second order, Egs. (A.13) and
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(A.14) are equivalent. Clearly without account of the finite line width I', the equations
are identical. As discussed in Chap. 2, we approximate I', = &7 and 'y = ¢ T, from
the experimental data. This approximation only becomes important in the vicinity of
the phase transition A,/y < I';/u. Equating Egs. (A.13) and (A.14), we find how &
and ¢ are related at the phase transition. Again, we take £ ~ 0.15 and ¢ ~ 0.3.

A.5 Influence of the Spin-Orbit Anisotropy

There is an easy plane anisotropy in TICuCl; which can be described by the following
additional term in the Lagrangian (2.1)

SL = ——m?p?. (A.15)

The corresponding gap is m, = 0.38 meV [1], implying that the O(3) field theory
described in Chap. 2 is valid at the energy scale A > m,. Far below this scale, A <
m,, the theory is effectively O(2).

InFig. A.1, black lines are identical to that presented in Chap. 2. They are obtained
using Eqgs. (2.2), (2.5),and (2.7) with N = 3 to fit the data. Dashed red lines in Fig. A.1
show the fit of the data using the same equations, but with N = 2. Of course the fitting
parameters for N = 2 are different from that in Eq. (2.8). We find them to be,

(&%)

pe = 1.02 kbar, y = 0.675 meV/kbar'/?, o = 0.3. (A.16)
T

Solid black and dashed red lines in Fig. A.1 are barely distinguishable. This is because
in all equations, N stands next to a large number, see for instance Eq. (2.2). We
have also performed a more sophisticated RG calculation, which shows that for
m, < A < Ao RGruns with N = 3, while forO < A < m,, itruns with N = 2. We
omit the details of this technical calculation and just present the resulting fitting curves
in Fig. A.1. The result is shown by the blue dotted lines, and the fitting parameters
are

pe = 1.04 kbar, y = 0.675 meV/kbar'/?, ;‘—" =0.25. (A.17)
T

Figure A.1 clearly demonstrates that the anisotropy does not influence our conclu-
sions.

It is instructive also to see how accurately the data reproduce the critical index
v=(N+2)/(N+8) =0.4551in Egs. (2.5) and (2.7). To do so we consider v as an
independent parameter keeping at the same time N = 3 in Eq. (2.2) and in pre-factors
in Egs. (2.5) and (2.7). The fitting curves with v = 0.455 (solid black), v = 0.36
(dashed red), v = 0.55 (dotted blue) are shown in Fig. A.2. From here we conclude
that approximately v = 0.45 & 0.1. We do not present a statistical significance of
our fits. The point is that often the gap data in experimental papers are given without


https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2
https://doi.org/10.1007/978-3-319-97532-0_2

142 Appendix A: Appendix for Chapter 2

a b
( )1.2 ( )1.0
1.0 08
508 E
Q
E 0.6 5 v
Q
(=¥ N (5]
3 Z 04
0.4 1.03 =
0.2 Look 02
214 220
0.0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 0
p [kbar] p [kbar]

Fig. A.1 Influence of anisotropy on a gaps and b Néel temperature. Solid black lines, identical to
those in Figs. 2.3 and 2.4, are obtained from Egs. (2.2), (2.5), and (2.7), with N = 3. Dashed red lines
are obtained from Eqs. (2.2), (2.5), and (2.7), with N = 2. Dotted blue lines are obtained by taking
into account the anisotropy, which amounts to having a scale dependent Ny N =3 — N =2
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Fig. A.2 Determination of the critical indices for the a gaps and b Néel temperature. Critical
exponent v replaces the exponent (N + 2) /(N + 8) as seen in Egs. (2.5) and (2.7). The solid black
lines, identical to those in Figs. 2.3 and 2.4, are obtained with v = 0.455. The dashed red and dotted
blue lines are obtained with v = 0.36 and v = 0.55, respectively

error bars, even when the error bars are given (say for the Néel temperature) they do
not represent statistical error bars. Nevertheless, if we very naively consider the error
bars on Néel temperature data as being statistical we conclude that the black curve
has x? ~ 1 per degree of freedom, while the red and the blue curves have x? ~ 1.5
and X2 ~ 3.5. Where the error bars, not shown in Figs. A.1 or A.2, are 0 ~ 0.2 K
~ 0.02 meV [2].
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Appendix for Chapter 3

This appendix provides details of the bond-operator representation utilised in Chap. 3
to derive various parameters.

B.1 Bond Operator Representation

We employ the bond-operator representation of spin S. Define spin at left and right
position of bond, S; and S,. Spins with S = 1/2 must satisfy SU (2) algebra,

[Sm,ou Sm.ﬂ] - iea,ﬂ,ysm,y s [S/,ou Sr,ﬁ] =0 s
3 1 3
S-S, = —Zsfs + Ztgta : S} =8*= 1 (B.1)
Impose constraint s's + 1], = 1 via Lagrange multiplier. Non-derivative/static part
of Hamiltonian written in bond operators immediately follows,

3. 1

Ho=J'Y —stsi+ Ztifati,a — wi(sisi + g tia — 1) (B.2)
i

subscript i on x; makes this a cite dependent chemical potential which accounts for

hard-core constraint. Substitution gives the higher-order terms, we keep only the

quadratic part for the present discussion

<i,j>

For a mean-field treatment, consider Bose-condensation of singlets and replace,

sy = (s) =35.
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B.2 Fourier and Bogolyubov Transformations

Perform standard Fourier transform, ¢, = \/#ﬁ > i tewe * R with N’ = N /2 the

i,
number of dimers. The quadratic term becomes,

_ . 1 P
Hy =Y At ytia + EBk[t,;.atlk.a +Hcl]
k

= By ,Bra - (B.4)
k

and the final result is obtained from the Bogolyubov transformation,

il il [ A2 2
tk,ot = uk,Bk,a - Ukﬁ*k,a s Q= Ak - Bk s

1 Ay By
up/vp = £= + — ukvkzm.

) B.5
2 2 ®-5)

Considering explicitly the geometry of the double cubic lattice model one obtains,

Ay = {T — w+ J§?[cos(ky) + cos(ky) + cos(k,)] ,
By = J§2[cos(kx) + cos(ky) + cos(k;)] . (B.6)

B.3 Mean-Field Solution and Parameters; p, s

The parameters, u, § are found by the saddle point conditions,

oH oH
< "”>=o, < f”>=o, (B.7)
I as

with Hyr = I-_IO + H,. It is convenient to introduce the dimensionless parameter, d,

2J5?
d=—" (B.8)
T M

which results in the following self-consistent equations,

J

3 1
d="(5-=Y ———] .
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_2 . é _ Z 1+d]/k
2 2N & Tt 2dp
3J
= —-—— + JE— _
’ 4 TN Zk: JI+2dy

1
Vi = lcos(ky) + cos(ky) + cos(ko)] -

The spectrum and gap immediately follow,

J/
Qi = (Z - u) [1+2dy]' 2,

J/
Agrnny = (Z - u) [1—3d]"/?.
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(B.9)

(B.10)
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C.1 Real Part of the Self-energy: Non-RG Contribution

In Chap. 4 we self-consistently solve the golden rule of quantum kinetics, Egs. (4.10),
(4.15), to find the imaginary part of the self-energy as well as the structure factor. In
doing so we ignore the small frequency dependence of the real part of the self-energy,
N2, (w). Our approximation is equivalent to taking R X, (w) ~ RNX,(Ao), where A
is the physical mass calculated using RG. In this appendix we take into account the full
frequency dependence of the real part of the self-energy. This is achieved by adding
the frequency dependent correction to the mass gap, X (w) = RN, (w) — RE, (Ap),
and solving the following set of equations self-consistently,

A (@) = Aj+ 83 (w) , (C.1)
Ty(w) = 3% : (C.2)
w

(C.3)

A ol ()
w [@? — (612 i AZ(w))]Z +w21—~5(w) .

Here Iy () is defined as in Eq. (4.15), the spectral density A,(w) = (1 — e /T)
S, (w), while the real part is found via analytic properties (Kramers-Kronig relation),

| (03T, T
R, (o, T)=;33/ w(‘_”w ) d
1 T —'T, (a))

_ 2 . C4

JTgZ/ o —w do/ CH

Here we ignore momentum dependence, which would give some small additional
correction. Since we already know I'; (@) from solving the golden rule of quantum
kinetics, we can use the Kramers-Kronig relation Eq. (C.4) to evaluate the real part.

© Springer Nature Switzerland AG 2018 147
H. Scammell, Interplay of Quantum and Statistical Fluctuations

in Critical Quantum Matter, Springer Theses,

https://doi.org/10.1007/978-3-319-97532-0


https://doi.org/10.1007/978-3-319-97532-0_4
https://doi.org/10.1007/978-3-319-97532-0_4
https://doi.org/10.1007/978-3-319-97532-0_4
https://doi.org/10.1007/978-3-319-97532-0_4

148 Appendix C: Appendix for Chapter 4
(a) ()10
0.20
3 0.8
S 0.15 5
o £ 06
& =
1010 3
3 > 04
3 005
[7 0.2
0.00
0.0
0.0 0.5 1.0 1.5 2.0 00 02 04 06 08 10
w/T w/T

Fig. C.1 a Frequency dependent correction to mass gap; the non-RG contribution to the real
part of self-energy. b The (normalised) spectral density A;—o(w): (Blue curve) Including the non-
RG, frequency dependent correction. (Maroon curve) excluding the non-RG, frequency dependent
correction

The results are shown in Fig. C.1 for the data point {A, T} = {0.2, 0.5} meV, with
coupling constant § = 0.15. Figure C.1a shows the frequency dependence of the non-
RG contribution to the real part of the self-energy. Figure C.1b shows the spectral
density with and without inclusion of the frequency dependent real part of self-
energy, blue and maroon curves, respectively. We see that the inclusion of the real
part has a negligible influence.
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D.1 Perturbation Theory, Infrared Divergences
and Dimensional Reduction: Comments

The technical complication with dimensional reduction is that standard field theo-
retic RG approaches fail—the presence of non-zero temperature introduces infrared
divergences into certain classes of Feynman diagrams as the temperature approaches
Ty, see Chap.36 of Ref. [3]. Due to the infrared divergences, it becomes a deli-
cate task to describe observables across the entire range 0 < 7 < Ty within stan-
dard RG techniques, instead more sophisticated approaches must be developed. In
this appendix we introduce important aspects of the modified perturbation theory
employed in Chap. 5. We also refer the reader to two other developments that relate
to the present work, yet with some important distinctions. We call them Approach I
and II. Approach I has been developed in a series of papers by O’ Connor and Stephens
[4-9], and Approach II due to Sachdev [10]. Both methods are modifications of the
e-expansion whereby d = 4 — ¢, and are hence Euclidean field theories (imaginary
frequency). Moreover, Approaches I and II have been developed as theories below
the upper critical dimension, d. = 4, and as such, logarithmic corrections are not
present. In contrast, the approach of the present work (Chap.5) is explicitly devel-
oped for the upper critical dimension. And we note that the logarithmic corrections,
due to being at the upper critical dimension, are an important feature of our results
in Chap. 5.

D.2 Modified Perturbation Theory

As mentioned, the introduction of non-zero temperature into the 3 + 1D quantum
system renders a certain class of Feynman diagrams are infrared divergent. In fact,
such infrared divergences are not specific to 3 4+ 1D quantum systems, instead they
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are rather generic, see e.g. [3]. In any case, we are solely interested in the problem
of non-zero temperatures in a 3 + 1D quantum system. One such class of Feynman
diagrams exhibiting infrared divergences are those containing the double internal
propagator contributions,

TZ[ dk 1 1T .
— | @n) @2+ K2+ A2 8T A '

here we evaluate for zero external momenta running through the loop, and in this
approximation we take only the n = 0 Matsubara frequency. This is fine for our
purposes since for A < T this contribution dominates the summation, and summa-
tion over all remaining n # 0 modes is infrared convergent. Diagrams containing
such contributions appear at second-order in the perturbative expansion in coupling
constant ¢, and are shown in Fig.D.1. The infrared divergent contributions appear
in both the expansion for the coupling constant and mass gap, Fig.D.la and b, and
ultimately are responsible for the difficulty in providing a systematic description of
dimensional reduction. To see the issue, let us detail the perturbative corrections to
the coupling constant arising from the diagrams shown in Fig. D.1 (ignoring external
momenta),

1
=0y — (N + 8)agT :
o = ( + )(XO Z/ (27_[)3 ((1)2 +k2 A2)2
(N+8)a2 T
~ r D.2
%0 st A (0-2)

In passing to the second line we again take the n = 0 frequency, this is just to most
easily demonstrate our point. The coupling constant then appears to be infrared
divergent for A/T — 0, i.e. at the Néel temperature.

We will only explicitly discuss the infrared divergence in the running coupling
o and illustrate how it is tamed within our approach, as developed in Chap. 2. The
crucial step in our formalism is to insert IR scale max[A, 7] in running coupling. A
standard perturbative expansion would obtain temperature dependent IR divergences
at second-order in . One does not expect IR divergences to be physical—they ought
to be dealt with in some renormalisation scheme. Moreover, for a scale varying from
A(T =0)toT = Ty, with A(0) ~ Ty, one does not expect « to vary significantly
since the relevant energy scales have not varied significantly. This physical expecta-
tion is consistent with our scheme.

Itis now our task to show, using a Callan-Symanzik type approach, that o runs with
scale T, as has been conjectured in previous chapters. We begin with the four point
function, taking into account non-zero temperatures via the Matsubara summation,

1
' =q— (N +8)a’T Z/ @ A (D.3)
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(a)

r = = +

(b)

s = = + + .

Fig. D.1 Diagrammatic subseries: a Vertex, and b Self-energy. The infrared divergent loop contri-
butions are marked with “IR”

Applying the Callan-Symanzik equation one obtains,

9 N + 8)a? A3
pde _ (VH 8 3 , (D.4)
IA 272 (2nmT)? + A2)?
- (D.5)
ap = .
(N+8)01 21 A ’ A2
L+ 555 [ dNT 3, ryrray

Finally, setting A = T, one easily verifies (e.g. numerically) that the running coupling
in Eq. (D.5) is equivalent to the result derived in Chap. 2, namely,

o

1 + (N+8)Ot[) In (Ao) : (D6)

ar =

The point of this analysis being that taking the infrared cut-off to be set by the
temperature 7', in the vicinity of Ty, acts to cure the unphysical infrared divergences.


https://doi.org/10.1007/978-3-319-97532-0_2

Appendix E
Appendix for Chapters 6 and 7

E.1 Greens Functions and Perturbative Decoupling:
Disordered Phase

In the disordered phase we have the Lagrangian,

| -
2 =30"G5'6- 54" (E.1)
R w? —k* — (m* — B?) 2iwB 0
Gyl = —2iwB w? — k* — (m> — B?) 0 . (E2)
0 0 o — k2 —m?

We choose to work with real fields, in the Cartesian basis ¢ = (., ¢y, ¢;) and there-
fore do not diagonalise the kinetic matrix, ég‘ . We are therefore left with anomalous
Greens functions, Gy, Gy, but they do not contribute to loop corrections to first-
order in ¢g. The matrix G p contains the bare Greens functions. We use an effective
potential denoted by ¥, which is the part of the Lagrangian (E.1) independent of
derivatives. Then, using a Wick decoupling of the interaction term i()[()(z 4. to first-
order in o we find

32% 2 2 2 2 2

8_(/)2 =my— B- + 30[0((0x> +050<(Py> +a0<¢z>

R4

8_<p2 =m} — B* + ap(p?) + 3010(903) + ao(@f)
5

827 2 2 2 2

702 = mg + aoley) + aoley) + 3o (p;) (E3)
Z

where (gof) is the loop integral over the Greens function, G,,, of the ¢, field. The
bare Greens functions follow immediately from (E.2), they are
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w* —k?
Grrle 0 = Gl B = oD@ — @)
1
B P 3]
2iwB

Gyx(w, k) = G} (0, k) = (E4)

(@? — (@)@ — (0;)?)’

with dispersions wj as defined in Eq. (6.2).

E.2 Running Coupling Constant

The four point vertex is calculated to second order in «, the infrared cut-off, A, is
given by the mass, the magnetic field or the temperature scale; max{m, B, T'}. We
use a Callan-Symanzik equation to find the Beta function

@ _ g _ 11a2/AC 4% 1
A Qm)*k*

- - i 4)
0= |:dln(AC/A) +'3(a)da:| r

ag
1+ 2% In(Ag/A)

oy = (E.5)

where A, is some momentum cut-off such as the inverse lattice spacing, while Ag
is the normalisation point.

E.3 Running Mass

Consider the corrections to the curvature (E.3), under renormalisation we replace
the bare coupling with the running running coupling oy — a5, and now explicitly
substituting loop integrals (with i = {x, y})

P2, ko1 &1
=m§ — B° + S5« /7—4-05 /7—2nw+ +2n(w;) + n(@? s
8(/;[2 0 A 2m)3 ng A (2m)3 wg{ (@) (@) (@)}

3, k1 k1 N _ 0
@ =m0+50‘1\/w@ +ap Ww—z{n(a)k)—i—n(wk)-i-ﬁ(wk)}. (E.6)

The coupling constant coefficient is the running coupling o, since the two point
corrections are multiplicative with the four point vertices. The integral first terms

. . 3
in (E.6) renormalise the bare mass term m(z), such that m% + Sap f kL, mf\

Qn)? 2wk
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has logarithmic dependence on the energy scale A. The second integral terms, or the
‘thermal perturbations’, only contributes to the logarithmic running via its influence
on the infrared cutoff. To make these statements more clear, consider zero temperature
such that only the first term contributes. We write the two point function as (with
forward substitution of running mass my — mp

po B

‘ 2 s A Bk 1
= =m (07
32 Ir=0 A A

3
8 @)y ke m?

=—5| +B. (E.7)

We note that the logarithmic correction is independent of magnetic field B, which is
essential to ensure that B is not renormalised. We use the Callan-Symanzik equation
to find the (mass) Beta function

B 4 |ro
0= |:d1n(AC/A) +'Bm(A)dm }F

2
A
50(,\1’)13\
m A) =
B (8) = =25
dm? _ _50[Ami
dIn(Ag/A) 812
5
i
m, =m} (Z—A) (E.8)
0

In this last line we explicitly give an index o to denote the different polarisa-
tions. At zero temperature, the terms m, , are equivalent for all polarisations, o.
Including non-zero temperatures does not change the form of the running cou-
pling nor mass Egs. (E.5), (E.8), but it does: (i) influence the infrared cutoff from
A = max{m,, B, T}; and (ii) lift the degeneracy of the mass terms, which now
explicitly become,

5
oap | 1 _
m3 . =m? [a_ﬂ"L o Z E{Zn(a)i{) + 2n(wy) + n(w))} (E.9)
k k
it 1
o _
= m] [a—ﬂ+ an Y @) +n@p) +3n@) . D)
k k

Here n(wy) =1/ (eMTk — 1). It is straightforward to check that expansions of Egs.
(E.9) and (D.5) in powers of B contain only even powers. Interestingly these expan-
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sions are different for m, 4 and m . Therefore the relation w; — 0} = @) — oy,

which is exact at 7 = 0, does not hold at non-zero 7. At non-zero T the relation is
valid only up to the linear-in- B approximation.
E.4 Greens Functions in the Ordered Phase

In the ordered phase the Lagrangian takes the form,

|
¥ =-5"6y'g — —{(o +7° 4+ 20 + 490 +4po (0’ + 10 + 20},

2
(E.10)
w? —k?> —2(B*>—m?) 2iwB 0
G, = —2iwB w® — k? 0 : (E.11)
0 0 w>—k>-B?
where ¢ = (¢, + o, m, z). Similarly to the treatment of the disordered phase we

choose to work with real fields which do not diagonalise the kinetic matrix, Go

We are therefore left with anomalous Greens functions, e.g. G,,. The matrix Go
contains the bare Greens functions as its entries, they are

w? —k* —2(B* —m3 ;)

Gor(w, k
@) = @@ = @i
w? — k2
oo ) = T )@ — @0
1
R A
Gro (@, k) = G (w0, k) = 2iwB E12)

(@ = (@) (@? = (@)

with dispersions as defined in Egs. (6.7), (6.8), and (6.9).

E.S Matsubara Loop Integrals

Finite temperature loop integrals are conveniently carried out utilising the imaginary
time Fourier transform [11],

1

k 1
_ ixt —Et Et
2+ E? _/0 dre E [(1+n(E)e T +n(E)e"] , (E.13)
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where n(E) is the usual Bose-occupation factor, § = 1/T, and a useful identity is
(1/B) Y, e*™~™) = §(1; — 12). The single loop integrals are

Z /(2 )SGmr(wnak)

_/ Pk [[63 —omd ol =] g, [6B2=2md - oh + 0] g ]

(2m)3 a)%l - a)é 20y a)%, - a)é 2wG

Z [(2 )3G7rrr(wn , k)

n=—0o0
Bk [282+2m§\ﬂ+w% —wé] ny [282+2m%\,H —a)%_l—i-wzc] ne
(2n)3 a)%_l — a% 2wy a)%_l — a)é 2wG
&k n,
0 k) = —. (E.14)
Z f (277)3 @)} o,

Here w, = 2nm /B are usual Matsubara frequencies, and notation for Bose-occupation
factors and dispersions has been simplified in an obvious way. It is also worth noting
that the trace over anomalous Greens functions gives zero,

_ Z /(2 )’; Uﬂ(ﬂ)n,k) Z /(2 ),; ﬂa(wn,k)zo. (E15)

n=—00

The double loop integrals have external momenta (E, p) running through the loop,
we only work with p = 0 and eventually set £ = 0. The double-loop integrals are,

(o?2%) Re— Z / Gy Goo @n G (E —wn k)

n=—0o0
&Pk (w0 -k 1
(27)} w} — 0k 20520,

1 1
{[(1 +np)(1+n) —npn] [ — - }

iE—owyg—w, IE+oy+ o,

= Re

1 1
+ [(1+nH)nz_nH(1+nz)]|:. - - ]}

iE —wyg+ow, IIE+owy—o,
2
_Re/ d’k (w%;—k) 1

2n)? 0¥ — Wk 20620,

1 1
{[(1 +ng)(1+n;) — nan] |: - :|

iE —wg—w, IE+ws+ w,

1 1
+ [(1+nG)nz_nG(l+nz)][. I j|} :

iE—wg+w, IE4+w;—o;
(E.16)
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The other important double-loop diagram comes from the trace (o277 2), this diagram
must be included in order to satisfy the Goldstone theorem. Observe now that the
anomalous Greens functions play a crucial role; loops composed of two anomalous
Greens functions are non-zero. Let us explicitly evaluate,

d’k

@) =Reg Y [ 55 1Gan @n 0Gn (E = 00,80 + G 00, 0o (E =, )

/ Ak 1
=Re | ———
2n)3 2wy2we

1 1
{[(1 ) +ﬂG)*ﬂHﬂG][ ]

iE —wy —wg  iE +og +wg

1 1
] e et | RN L)

It is also interesting to note that at zero temperature the contribution due to the trace
over Gy (wy,, k)G 1o (E — w,, k) vanishes.

E.6 Continuity of the Modes

An equally important check of the renormalisation procedure employed in this work
is that all modes continuously evolve into their counterpart at the phase transition
B = BX(T),

0): of =of, A): o) =i, ) o =owf. (E.18)
Using the critical fields B, B from Egs. (6.6) and (6.20), in the dispersion rela-

tions for the upper Zeeman triplon (0 = +1) and Higgs modes Eqs. (6.2) and (6.7),
respectively, we easily verify the continuity Eq. (E.18)I,

2
(wg)? = <\/m% + ao(4{g?) + (p2)) + BC> = 4B (E.19)
(0> =2(3B —m3 ;) =2 (3B2 — m§ — ap(3(0?) + (7%) + (%)) = 4B2.
(E.20)

Similarly, for the z-field/precession mode, we find

(w)” = m§ +ao(py) + ao(pd) + 3ao(e?) = B + 200(92) — 2a0(g;) (E21)
(@5)* = B2 + 2a0(z%) — 20p(0?) + dago? (0727) (E.22)

and hence to verify the continuity Eq. (E.18)IL, it suffices to show that

200(92) — 200{pr) = 200(z%) — 2a0(0?) + dageZ(0?2?). (E.23)
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Evaluating the loop integrals at B, the logarithmic corrections (from the vac-
uum/quantum sector) identically vanish, and it remains to consider the thermal con-
tributions. Substituting the loop integrals and performing straightforward algebra,
we confirm (E.23) and hence the condition (E.18)II.

E.7 Mass Parameter Renormlisation

At zero temperature, the z-field is also unrenormalised by logarithmic corrections;
the gap is fixed at the Larmor precession frequency, 327 /97> = mi,z = B2, All
log corrections in Eq. (6.14) exactly cancel. However at non-zero temperature, the
precession mode receives renormalisation due to the heat bath, i.e. the non-zero
temperature loop integrals in the following expression do not cancel,

= B?, forT =0,

E.24
# B2, forT #0. ( )

., = B +2a(z?) — 2a(0?) + da’p(o?2?) — {

This is at first a somewhat unexpected result, yet does not provide any inconsistencies
within the current treatment.

Now, the other mass parameter appearing in the ordered phase, m 5 g as defined
in Eq. (6.12), does receive logarithmic corrections. Upon RG, as described above,
the explicit form of the renormalised mass parameter is,

2(5B% — (@) n(f)
mﬁ,H=m3[—] Az{( (’Z:)L["‘” T

(wk @k
42 [n(wf'f )4 n(wcf )] + n(wk)} + O (pla?) . (E.25)
wy Wy Wi
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Appendix for Chapter 8

F.1 Amplitude Factors

In this section we show how to obtain amplitude factors o7, x, By.k» Dok, Where
o = H, G, and for convenience we have defined By x = Py k Ao k-

Let ay/ az, br/ b};, and ¢/ c,i be the annihilation/creation operators of the Higgs,
Goldstone, and z-modes. Accordingly, the Hamiltonian reads

H = Z [wfa,tak + w,?b,tbk + co,zcc,tck] + const. (F.1)
k

Field operators are expressed in terms of the creation and annihilation operators in
the following generic form,

il t—ik- T —iwHt+ik-
o(x,1) = Z {WH,k[akelwkI ik-x +Cl£€ iy l+1kx]
k

.G, LG
—‘rﬂfqu[bkelwkt_lk'x + b’te—lwk f-Hk-x]}

CH, g b me T,
ny(x, 1) = Z {%H,k[akelwkt ikx alie iof t+ik ]
k

LG . G
+ %G,k[bkelwk t—ik-x __ bl'ze—zwk t+lk-X]}

T

ia);l—ik-x + C}Ze—iw;l+ik<X]. (F2)

1
=) [cke
= 20,
From the Lagrangian .%; (8.2), we obtain the equations of motion

0=0d,0 —2B7, +2(B> —m’)o
0 =07, +2B6 . (F.3)
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Substituting expressions (F.2) into (F.3) one obtains

— ((0f)? — k*) By = 2wy Bty i
— (@) —K*) Bg = 2iwg Bt . (F4)
We note that the necessity of expressing the field operators o, 7, in terms of mixed

operators ay /a,t, by /bz becomes apparent when solving the equations of motion
(F.3), namely, without mixing one cannot satisfy these equations. Finally, one finds

2iwy B
By = _(a)a‘)z—kz%’k = Dok Dok - (E.5)
@)2 _

It remains to find <7, x. To do so, one must Legendre transform .% to give the fol-

lowing Hamiltonian, note we treat only the hybridised terms o, 7y, the Hamiltonian
for 7, can be treated separately and is trivial,

Hlo, 7] = % [ d3xdt [(Bua(x, )2 +2(B* — m¥)o (x, )2 + (B,7y (x, t))2]
= 3 B[ K 428 ) — (@ff + ), [ + anc]]
k
+ % ; g [@7 + 282 = m?) — (P + )P | [blow + bad]]
=> [wfa}:ak + w,fb,tbk] + const. (F.6)
k

where the last line is taken from (F.1). Upon equating the appropriate coefficient of

a,l'ak and b;{'bk, and after straightforward algebra, one obtains

o wf B?
“ETN (BT mD) (@) + 3B — m2) (2B — 2m? + k)
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G.1 Excitation Modes of the Bose-Condensate

It is convenient to define the following time independent spinors

0[) 1 9()
COS + - — Sin =
u = -6y ZiWU , U= 6y l%pg . (Gl)
s 76‘ Ccos 76‘

Hence the Bose-condensate field (9.6) is zo = Aqu. Substitution of ansatz,
82 — Z+eiwtfik~l‘ + Z_efia)t+ik-r (Gz)

in Euler-Lagrange equation (9.7) results in the following algebraic equations for the
“amplitude” spinors z and z_

(—® + kz)z+ +2w(o - <%j’)z+ + (A — mz)(ziu + uTz+)u =0,
(—0* + k)7 =206 - B + (B —mHu+u'zyu=0.  (G3)

Projecting each Eq. (G.3), onto both u and u, and defining,

'z, =ap, ay+al =a; (G.4)
W'z =a, ay—ay =a- (G.5)
iz =by, by + b3 =b, (G.6)
i'z_=b,, by —bi =b_ (G.7)

we get the following matrix equation for the amplitudes a4, a_, by, b_,
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k* — w? + 2(%B* — m?) 2w cosb 0 —2wABsinby\ [a
2w cos by K —w* —2wHsinb, 0 al_,
0 —2wABsinby kP —w? 2wHBcoshy | | b |
—2wP sin 6 0 —2wABcosby k¥ —w? b_
(G.9)

Frequencies of normal modes (9.8) immediately follow from this matrix equation.
Amplitude vectors (a4, a_, by, b_), corresponding to the normal modes are of the
following form

0 b, 0 by
sinfy | . —costy | . sinfy | . —cos b
o [T e[ T BT s e [T
cos By sin 6y cos 6y sin 6
b VBB —m)? + 4Bk — 3B — m?)
2 2%0)2 ’
— 3@2_ 2)2 4{@2]@_ 3{@2_ 2
by = V( m?)? + ( m?) G9)
2@0)4

At small momenta, k — 0, the coefficients behave as b, — 0, by — const # 0. Note
that there is no naive orthogonality of the eigenvectors, in particular (2|4) # 0. A
similar nonorthogonality is typical for classical (non-quantum) coupled oscillators in
magnetic field. In spite of the nonorthogonality, after an appropriate canonical trans-
formation the Hamiltonian is transformed to the sum of independent Hamiltonians
of the normal modes.

G.2 Spinor Excitations in Vector Representation

Using Eqgs. (G.1) and (G.4) we find,

[(as +a_)cos % — (by +b_)sin 2]

24 X ([(ll+ +a_)sin %0 + (by 4+ b_) cos %O]ei‘/’o (G.10)
[(as —a-)cos % — (by — b_)sin 2]

7o & ([(a+ —a_)sin %0 + (by — b_) cos 970]61'% (G.11)

From here, using
8¢ = 821620 + 25552, (G.12)

together with Eqs. (G.2) and (G.9) we find explicit formulas for the spin vibration
vectors §¢ presented in Egs. (9.9) and (9.10).
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