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Supervisor’s Foreword

This is an exciting time for physics, and particularly for the field of atomic and
molecular physics. Scientists can exert nearly perfect control over atomic motion
and quantum states and use this exquisite precision to seek answers to fundamental
questions. In recent years, there has been a surge in growth of cold and ultracold
molecular science. Molecules are in many ways similar to atoms but offer greatly
expanded possibilities for understanding a wide array of physical phenomena. This,
of course, comes with new challenges, since even diatomic molecules have much
more complicated spectra than atoms.

Mickey McDonald’s thesis work unites studies of basic molecular quantum
physics with the high-precision techniques of ultracold-atom optical lattice clocks.
His sophisticated experiment involves microkelvin diatomic strontium molecules in
an optical lattice trap and utilizes optical spectroscopy to study physics near the
atom-molecule threshold. Mickey obtained unique lattice clock-style spectroscopic
measurements that clearly demonstrate the potential of ultracold molecule science
and open the door to table-top tests of fundamental physics, such as molecular
quantum electrodynamics and nanometer-scale deviations from Newtonian gravity,
at a level that was not possible before.

Mickey’s thesis carefully demonstrates how forbidden transitions in molecules
can be enabled with much weaker magnetic fields than in their constituent atoms,
with implications for metrology and precision measurement. It also describes work
on two-body subradiance, reporting by far the deepest subradiance to date, a 300-
fold suppression of radiative emission. This is a fundamental two-particle quantum
optics effect, and it turns out that homonuclear diatomic molecules in an optical
lattice are the ideal system for studying its properties.

Furthermore, Mickey’s thesis describes pioneering work on ultracold chem-
istry via studies of molecular photodissociation. At extremely low temperatures,
processes that create or break chemical bonds proceed according to quantum
mechanical rules, and several approaches had been tried to observe these non-
classical phenomena. In our lab, we had been detecting weakly bound molecules
by fragmenting them into atoms, which were then imaged with a camera facing
perpendicular to the lattice trapping axis. Mickey was curious what would happen

vii



viii Supervisor’s Foreword

if we aligned a camera on axis with the lattice and looked at the photofragment
angular distributions. So he led an effort to build this setup and learn how to process
and interpret the images. The textbook-quality images shown in this thesis are
beautiful pictures of diatomic molecules breaking apart in up to eight different
directions, exhibiting coherent quantum mechanical patterns. This nonclassical
behavior challenged intuition that was established before the 1980s. The thesis
demonstrates how to break molecular bonds while imparting only a miniscule level
of excess energy to the fragments and thoroughly explores the cold regime from
100 nK to tens of millikelvin. The results show matter-wave interference of reaction
products as well as quantum mechanical reaction barrier tunneling.

Measuring ultralow temperatures, down to the nanokelvin level, is in itself an
important outstanding problem, and Mickey’s thesis describes an invention of an
excellent technique that relies purely on spectroscopy, thus yielding very high
precision. It only requires the atoms or molecules to be tightly trapped in a lattice
and to possess a narrow transition. Mickey uses this technique to characterize the
temperature of ultracold strontium molecules and even to cool them down with a
new technique of “carrier cooling.”

The pioneering experiments described in this thesis set the stage for optical
precision measurements with simple molecules at a level of quantum control that
was previously impossible. With this new toolkit of controlling and measuring
molecular properties at an unprecedented level, we can be sure to unlock many
additional mysteries of molecular and fundamental physics.

New York, NY, USA Tanya Zelevinsky
July 2017
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Chapter 1
Introduction

Over the past several decades, rapid progress has been made toward the accurate
characterization and control of atoms, made possible largely by the development
of narrow-linewidth lasers and techniques for trapping and cooling at ultracold
temperatures. Extending this progress to molecules will have exciting implications
for chemistry, condensed matter physics, and precision tests of physics beyond
the Standard Model. These possibilities are all consequences of the richness of
molecular structure, which is governed by physics substantially different from that
characterizing atomic structure. This same richness of structure, however, increases
the complexity of any molecular experiment manyfold over its atomic counterpart,
magnifying the difficulty of everything from trapping and cooling to the comparison
of theory with experiment.

This thesis describes work performed over the past 6 years to establish the state of
the art in manipulation and quantum control of ultracold molecules. The molecules
I discuss are very weakly bound (and therefore very large) #Sr, dimers, produced
via photoassociation of ultracold strontium atoms followed by spontaneous decay
to a stable ground state. We study their rovibrational structure from several different
perspectives, including determinations of binding energies; linear, quadratic, and
higher order Zeeman shifts; transition strengths between bound states; and lifetimes
of narrow subradiant states. The physical intuition gained in these experiments
applies generally to weakly bound diatomic molecules, and suggests extensive
applications in precision measurement and metrology. In addition, I present a
detailed analysis of the thermally broadened spectroscopic lineshape of molecules in
anon-magic optical lattice trap, showing how such lineshapes can be used to directly
determine the temperature of atoms or molecules in situ, addressing a long-standing
problem in ultracold physics. Finally, I discuss the measurement of photofragment
angular distributions produced by photodissociation, leading to an exploration of
quantum-state-resolved ultracold chemistry.

© Springer International Publishing AG 2018 1
M. McDonald, High Precision Optical Spectroscopy and Quantum State Selected
Photodissociation of Ultracold 88Sr2 Molecules in an Optical Lattice,
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2 1 Introduction
1.1 Why Build a Molecular Clock? And How to Go About It?

Our work in the Zelevinsky lab straddles the border between two formerly unrelated
fields. The first field is metrology, or precision measurements, a focus which is
built into our lab’s very DNA. Construction of our experiment first began in 2008
with the intention of adapting techniques originally intended for the development
of optical atomic lattice clocks (which currently represent the best timekeepers
in the world, so accurate that they can sense the gravitational potential difference
induced by a height difference of 1 cm [9]), to the development of a new kind of
clock entirely: a molecular lattice clock. Such a clock would use as its resonator
not the oscillations of an electron between energy levels in an atom, but rather the
relative vibrations of the two nuclei in a diatomic molecule. The second field is
chemistry, but in the physicist’s sense: stripping down a chemical reaction to its
barest essentials, controlling every quantum mechanical degree of freedom, and
using ab initio calculations to try and predict the behavior of reactions and the
structure of molecules.

Why is this interesting? If atomic clocks are already so amazingly precise, is it
really necessary to build a substitute? It turns out that this is a rather deep question.
A clock is a device which measures time, ideally in a way which is independent of
the local environment. But whether or not the clock’s oscillator is decoupled from
its environment is a tricky question to answer, and in fact requires comparison with
another clock which is certain not to depend on the environmental factor in question.

To illustrate this, consider the pendulum clock, whose oscillator consists of a
hanging mass swinging with a period 7' given by

L
T ~2m,[—, (1.1)
8

where L is the pendulum length and g is the local acceleration due to gravity.
Immediately we can see that the period of a pendulum clock is in fact strongly
coupled to the environment in that its period is inversely proportional to the square
root of the local gravitational acceleration. But how would a scientist living before
the discovery of Newton’s Laws know this? If he were to bring such a pendulum
clock to perform an experiment on Mt. Everest, would he realize that the times he
measured were just a bit too short?

One way to discover this effect would be to bring two clocks: a pendulum, and
another whose mechanism does not depend on the local gravity. Then, as the two
clocks are brought to different heights, any relative drift between the two would be a
sign of a change in the physics governing one of their oscillators. In this way, we’ve
now turned the task of building clocks which depend on different physics into a
technique for discovering temporal or spatial variations in the laws of physics.

This gets to the core of our desire to construct a molecular clock. The current
record for accuracy in atomic clocks is impressive, but currently these claims
of accuracy can only be checked by beating against other atomic clocks. Such
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comparisons between clocks that rely on similar resonator mechanisms could be
blind to spatial or temporal changes in the physics governing those resonators. And
while physicists work hard to minimize the influence of environmental effects, we
do not know whether physics itself, embodied in natural constants parameterizing
the strengths of interactions between nuclei and electrons, might be changing.

1.1.1 A New Kind of Clock

The primary physics governing the “tick rate” of an atomic clock is the strength of
the attraction of an electron to the nucleus, embodied in the fine structure constant
«. For a molecular clock, however, it turns out that the situation is different. Here,
the clock’s tick rate is most sensitive to the ratio of the masses of the nuclei to their
electron clouds, embodied in the electron-to-proton mass ratio u [2, 10]. Therefore
building an extremely precise molecular clock serves also as a relatively model-
independent method for determining whether or not the mass of the electron is
drifting with respect to the mass of the proton.

Much of my work has focused on developing techniques to be eventually applied
toward the construction of a molecular clock. In this thesis I'll describe work
to understand lineshapes, a new technique for measuring temperature in optical
lattices, precise determinations of the binding energies of weakly bound levels as
well as their differences, and the discovery of super-narrow transitions to subradiant
states, as well as a slew of other techniques and tricks which represent the state of
the art in coherent control and interrogation of ultracold molecules.

1.2 A Testbed for Quantum Chemistry

While progress towards a molecular clock has always been our long-term goal, our
day-to-day investigations into the properties of strontium molecules often stray into
the regime of quantum chemistry and molecular physics. Indeed, our most fruitful
collaboration to date has been with Robert Moszynski at the University of Warsaw
in Poland, whose group has used our measurements to refine quantum chemistry
models of the structure of %3Sr,.

From an experimental point of view, making precise measurements which fall
neatly on a theory curve can be extremely satisfying. But perhaps even more
satisfying is discovering a new kind of quantity to measure. A molecule is more
than the sum of its rovibrational levels, which is to say: there are many different
experimental observables which can be used to characterize a molecule, besides
simply its spectrum. The history of publications produced by ZLab is in part
a history of discovering new quantities to measure, each of which tells part of
a larger story of the structure of a molecule. In this thesis I'll describe precise
measurements of molecular binding energies, Zeeman shifts, transition strengths,
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lifetimes, lineshapes, and photofragment angular distributions (PADs). While the
precise values obtained from these measurements are interesting when they can be
compared against theory, their dependence upon other molecular parameters, such
as bond length, level spacing, or quantum numbers, allows for an intuition to be built
up that deepens our general understanding of weakly bound two-body systems.

1.3 This Thesis

This thesis is divided into chapters which each focus on the precise measurement
and physical interpretation of a different experimental observable. The measure-
ments and techniques described herein summarize and expand upon work performed
and published over the past 6 years [3—8]. A brief overview of what’s covered in the
following chapters is given below.

Structure of ¥Sr and %¥Sr, (Chap.2) In many ways, ®Sr, is the simplest
molecule one could hope for. It consists of only two atoms, is homonuclear, and
possesses zero nuclear spin. The advantage of working with a molecule so simple is
that attempts to fully understand its structure from first principles become tenable.
This chapter summarizes the structure of 88Sr, in terms of Hund’s cases, and defines
the labeling scheme we will use to refer to different rovibrational levels. Knowledge
of how quantum statistics influences the allowed values of certain quantum numbers
will be important for interpreting several experiments described in later chapters.

Measurements of Binding Energies (Chap.3) We have observed molecular
resonances corresponding to every rovibrational level in %8Sr, with a binding
energy less than 8.5 GHz and rotational angular momentum J < 4 (except for
those occupying the 0, potential, which remain to be observed). Nearly every
measurement is made with sub-percent level accuracy, with certain measurements
considerably more accurate. A complete table listing these levels is presented for
the first time in this thesis.

Additionally, a thorough discussion of the techniques used to record the positions
of these levels is presented. Lineshapes associated with the common technique
of photoassociation spectroscopy are discussed in great detail and compared to
those associated with the less common photodissociation spectroscopy. Careful
evaluations of systematic effects are performed for a selection of levels to illustrate
the capabilities and limitations of our experiment. Molecule-light coherence times
approaching 10 ms are demonstrated, paving the way for future molecular clock
studies.

Measurements of Zeeman Shifts (Chap.4) When subjected to a magnetic field,
the magnetic sublevels of a rovibrational level can split apart and shift via what’s
known as the ‘“Zeeman effect.” The magnitude of this shift can be related to the
interaction of different types of angular momentum within the molecule, and can be
a helpful tool for gaining more information about a molecule’s structure.
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We present detailed measurements of the linear Zeeman shifts for the majority
of all observed levels in ®Sr,, most of which are made at the percent level or
better. Fascinatingly, we observe certain rovibrational levels whose linear Zeeman
shifts hew extremely closely to the values derived under the ideal Hund’s case (c)
approximation, and others which dramatically differ from this approximation. The
fact that we can see both ideal and non-ideal behavior within the same molecule is
explained as a consequence of whether or not Coriolis coupling with nearby levels
is allowed or forbidden for different combinations of quantum numbers.

We also present tables of quadratic (and higher order) Zeeman shifts, and derive
mathematical explanations for why the magnitude of the quadratic Zeeman shift
increases approximately with the bond length to the power of %

Finally, we describe the configuration of our magnetic Helmholtz coils, and show
observable consequences of the ~5mV quantization of our DAQ-supplied control
voltage.

Magnetic Control of Transition Strengths (Chap.5) Electric dipole selection
rules require that E1 transitions must connect states of opposite parity (¢ <> g and
g < u)and AJ = 0, £1. However, these rules can be broken in the presence of
magnetic fields, which can cause mixing among nearby levels and cause previously
“good” quantum numbers to become “bad.”

We provide a simple framework for understanding this phenomenon based on
perturbation theory, and discuss its experimental implications. This framework
implies that previously forbidden transitions can become allowed in the presence of
small magnetic fields. Specifically, the strengths of “singly-forbidden” transitions
should increase quadratically with magnetic field, while the strengths of “doubly-
forbidden” transitions should increase quartically.

We test these predictions by accurately measuring relative transition strengths for
a series of “forbidden” transitions in 38Sr,. This study required developing state-of-
the-art techniques for the quantitative measurement of transition strengths, which is
surprisingly poorly described in the literature. We demonstrate a series of interesting
effects, including observation of mixed quantization for transitions between states
defined by orthogonal quantum axes and millionfold enhancement of the strengths
of “forbidden” AJ = 2, 3 transitions with the application of magnetic fields of only
a few tens of Gauss. We also discuss the relative strengths and weaknesses of three
different techniques for quantitatively determining transition strengths.

Subradiant Spectroscopy (Chap.6) We have observed several singly electroni-
cally excited “subradiant” states in 88Sr,, so-called because electric dipole radiative
decay to the ground state is forbidden. These subradiant states are extremely long-
lived, in some cases possessing lifetimes several hundreds of times longer than that
of the 3P; state of 38Sr. We precisely measure these lifetimes, and achieve record
molecule-light coherence times. We show how the lifetimes of these states depend
on bond length and magnetic field, and provide theoretical motivation for these
behaviors. We also discuss in detail the experimental methods used to accurately
measure these lifetimes, as well as for characterizing higher order M1 and E2
transition strengths from the ground state.
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Carrier Thermometry in Optical Lattices (Chap.7) Access to extremely narrow
transitions to subradiant states has enabled our group to make detailed investigations
of spectroscopic lineshapes not limited by the natural lifetimes of the final states. We
derive accurate expressions for the lineshapes of transitions of particles confined to
non-magic harmonic traps, and show why these expressions remain exact even in
the presence of fourth-order corrections to the harmonic potential.

With knowledge of the lineshape’s functional form, we invert the problem
and describe a technique for directly measuring molecular temperature by fitting
a spectrum with this lineshape. Previously, it has been impossible to directly
measure the temperature of trapped, ultracold molecules lacking cycling transitions.
We also demonstrate the first-ever observation of lattice sidebands in trapped
ultracold molecules, and compare the temperatures derived from our lineshape-
fitting technique with the more familiar process of comparing red and blue sideband
areas. We use our new technique to investigate sources of heating in our molecular
sample, and make the surprising discovery that in our experiment, molecules are
hotter than the atoms from which they were photoassociated by more than a factor
of two.

Finally, we discuss techniques for achieving high contrast, low-noise spectro-
scopic traces, including the removal of “cavity drift” in post-processing.

Photodissociation and Ultracold Chemistry (Chap.8) When a molecule is
subjected to sufficiently energetic laser light, it can break apart into fragments
via a process called photodissociation. While this process has been known to and
exploited by chemists for decades, it has received comparatively little attention from
the precision measurements and ultracold molecules communities.

We demonstrate a series of experiments involving the photodissociation of ultra-
cold molecules placed in well-defined quantum states with all quantum numbers
controlled. We describe how information encoded in the angular distribution of the
photofragments can reveal phenomena such as quantum interference and barrier
tunneling. Finally, we list several unresolved mysteries which have the potential to
better our understanding of how photochemistry behaves in the ultracold regime.

The work described in this chapter can also be found in our recently published
article in Nature [4], as well as in the Master’s Thesis of Florian Apfelbeck [1].
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Chapter 2
Structure of 3Sr and ®Sr,

Molecules are complicated, much more so than atoms. As Art Schawlow famously
once said, “a diatomic molecule is a molecule with one atom too many.” This
complexity over atomic structure arises due to the new degrees of freedom available
to molecules in the form of vibration and rotation, which causes the energy spectra
for even relatively simple homonuclear diatomic molecules to become fabulously
complex. In order to make sense of this chaos, physicists like to make simplifying
approximations about molecular structure so that different species of molecules can
be discussed using a common language.

Unfortunately, learning this common language is much like learning any lan-
guage, in that you really need to absorb through immersion and osmosis: targeted
questions can only take you so far. One difficulty is that some of the most important,
seminal work laying the foundations for characterizing molecular structure was
written in the 1920s and 1930s...and in German [4, 7]. The great, synthesizing
textbooks [1-3] cite these important papers and work out special cases, and the
best strategy for understanding molecular structure is to absorb these books and the
relevant papers they cite. It might perhaps also be a good idea to learn German. ..

It would be foolish to attempt in one chapter of an experimental thesis to
reproduce a body of knowledge which in reality takes a lifetime to master. Instead,
this chapter will specifically focus on the structural features of 33Sr,. Specifically, a
brief overview of the physics responsible for deciding which quantum numbers are
“good” will be presented, as well as a discussion of the symmetries which restrict
the set of allowed quantum numbers in both the electronic ground and excited states.
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2.1 Rotational Structure

In theory, the full energy structure of a molecule can be ascertained by writing down
its Hamiltonian and then solving the Schroedinger equation. We can start the process
of simplification by first recognizing that the Hamiltonian H for a diatomic molecule
can be divided into three different parts:

H=H, + H, + Hy, (2.1)

where I:Ie, I:IU, and I:IR denote the electronic, vibrational, and rotational degrees of
freedom of the molecule, respectively [6].

These three terms are fairly well decoupled from one another. The electronic
energy of the molecule can be approximated as the total electronic energies of the
atomic states forming the molecule (either IS, or P, for the molecules considered
in this thesis), and the vibrational energy can be characterized by a single number
describing how quickly the nuclei vibrate with respect to one another (e.g., v
can take any value between 1 and 62 for 38Sr, in the electronic ground state).
The rotational part of the Hamiltonian is most complicated, however, because of
the many different forms of angular momentum (spin and orbital, nuclear and
electronic) which must be accounted for and properly added together to produce
a total rotational energy. It is consideration of the rotational part of the Hamiltonian
which will influence our choice for how to properly label the rovibrational levels of
8881'2.

The rotational Hamiltonian can be written in terms of the total rotational angular
momentum R in the following way:

Hy = BR?, (22)
where the rotational constant B = 2;‘% is related to the size (i.e., bond length)

of the molecule R and its reduced mass p, and will generally be a function of
the vibrational state. However, the Hamiltonian above glosses over the fact that
electronic momentum fa =1 + S can be carried by one or both of the Sr atoms,
where L and § are the total orbital and spin electronic angular momenta, respectively.
Since we are interested in how these various angular momenta interact, we should
rewrite Eq. (2.2) as

Hp = BR®> = B(J — L - $)%, (2.3)

where J = R + j,, is the total (rotational plus electronic) angular momentum of the
molecule (excluding nuclear spin in this case because the 38Sr nucleus is spinless).
Determining how to summarize the rotational energy of our molecule depends on
which terms in the above Hamiltonian are most important, which is a complicated
question to answer. Whether or not spin and orbital angular momentum can be
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considered separately, and how strongly they couple to the total rotational angular
momentum, will depend upon the size and structure of the atoms comprising a
particular molecule.

2.1.1 Hund’s Cases

The standard language used for characterizing different coupling types is to classify
molecules according to different Hund’s cases, which assign “good” quantum
numbers based upon the relative strengths of coupling between different angular
momenta. The ¥Sr, molecule is best described by either Hund’s case (a) or (c),
depending on whether we are discussing the electronic ground state or excited state.
An excellent description of when and why various Hund’s cases apply in different
situations is given by Stepanov and Zhilinskii [5]. Here we’ll just make a few brief
remarks.

2.1.1.1 Hund’s Case (a)

In Hund’s case (a), it is assumed that the orbital angular momentum Lis strongly
coupled to the internuclear axis, while the electronic spin S is strongly coupled
to L [2]. The result is a situation in which we have a maximal number of “good”
quantum numbers:

* A, the projection of the electronic orbital angular momentum L onto the
internuclear axis.

» 3, the projection of the electronic spin angular momentum S onto the internuclear
axis.

e S, the total electronic spin angular momentum of the system.

e J, the total angular momentum (rotational plus electronic).

* (2, the projection of the electronic angular momentum L+ S onto the internuclear
axis.

Hund’s case (a) is a good description of the electronic ground state of %3Sr,,
which possesses no electronic angular momentum at all. However, it turns out that
strontium molecules comprised of a ground state atom plus an excited atom will be
better described by a different approximation.

2.1.1.2 Hund’s Case (c)

In Hund’s case (c), it is assumed that the spin-orbit coupling between L and S
is stronger than that of either to the internuclear axis. In this case, the Land S
operators combine to form a total electronic angular momentum operator J, which is
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only weakly coupled to the rotational motion of the nuclei. Rewriting the rotational
Hamiltonian as

Hp = B(J —J,)* = BUJ? +J*—2J-J,), (2.4)

assuming Hund’s case (c) is a valid description then amounts to assuming that the
term —2BJ - fa is small [6]. The Hamiltonian then consists of two parts: a “zeroth-
order” contribution H) = B(J? + J2), which informs which labels we choose to
describe our molecule’s rotational levels; and a “perturbation” contribution H }3 =
—2BJ - J,,, which will cause mixing between the zeroth-order basis states.

The operators which commute with ﬁlg should serve as the labels for our Hund’s
case (c) basis states, since their eigenfunctions will diagonalize the Hamiltonian.
Upon inspection, it’s clear that J2, JE, and their projections will commute with A9,
and so we will label our Hund’s case (c) basis states with four quantum numbers J,
Ja, My, and €2, as well as a catch-all label 7(£2) describing electronic and vibrational
degrees of freedom (itself labeled by €2 for purposes of bookkeeping):

|‘I’)Hund’scase(c) = M(Q)’Ja;J»MJvQ) (2.5)

A semicolon separates the labels J, and J to indicate that these two vector spaces are
decoupled from one another. This assumption amounts to requiring the perturbation
I:I}e = —2BJ - fa to be small. Cases for which IEI}e is not small result in Coriolis
coupling, whereby states with different €2 can be mixed together. See Sect.4.2.2.2
for details.

Given this set of possible quantum numbers to work with, let’s now consider
what possibilities are allowed for #Sr, molecules in both the electronic ground and
singly-excited !So-+>P; states.

2.1.2 Electronic Ground State

In the 'So+'Sy electronic ground state, the situation is relatively simple. Neither
component atom of the strontium molecule carries either spin or orbital angular
momentum (i.e., L = § = 0), implying that both the total electronic angular
momentum J, and its projection along the internuclear axis €2 must equal 0.

We can also make some general statements about the symmetry required of such
a molecule. Because the ®8Sr nucleus is bosonic, it must be true that upon exchange
of the two nuclei, the total molecular wavefunction should retain the same sign.

However, whether or not the molecular wavefunction acquires a minus sign can
also be determined from the symmetries of the electronic wavefunctions and the
molecular wavefunction’s quantum numbers. According to Herzberg (Section V,2c,
p. 238) [3], nuclear exchange for a molecular wavefunction comprised of two even,
electronic ground state atomic wavefunctions will remain unchanged for even values
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of J, and acquire a minus sign for odd values of J. (Why exactly this is so is
complicated. A hint is that the nuclear exchange operator is equivalent to a reflection
of all particles [electrons plus nuclei] at the origin, followed by a reflection of only
the electrons at the origin. Each of these operations has a well-defined effect on the
rotational, vibrational, and electronic wavefunctions whose product comprises the
total molecular wavefunction. Determining the sign behavior of nuclear exchange
is then a matter of evaluating the effect of each inversion on each component of the
wavefunction.)

This result leads to dramatic consequences. If odd-J states acquire a minus sign
upon nuclear exchange, but bosonic nuclei require that the wavefunction remain
unchanged, then it must be true that only even J levels are allowed in the electronic
ground state. Sure enough, we have so far only observed even-J in the ground state.
See Table 3.2 for details.

There is one additional symmetry which must be true of ground state molecules.
The inversion symmetry of the total ground state molecular wavefunction must
be even since it is composed of two atoms in identical states. Odd symmetry is
impossible because symmetrization would force the wavefunction to equal zero.
This can also be thought of as a result of the Wigner-Witmer rules [3, 7]. The name
we give this inversion symmetry is gerade for even and ungerade for odd.

2.1.3 Electronic Excited State

The electronic state is naturally more complicated. First, because the atomic wave-
functions of each of the component atoms are different, the molecular wavefunction
can have either ungerade or gerade symmetry. However, bosonic symmetry upon
exchange of the nuclei must still be respected.

Because the 3P, atom carries 1 unit of electronic angular momentum J,,, the total
projection €2 of J, onto the internuclear axis can take on the value of either 0 or 1.
This leads to four distinct possible combinations of inversion symmetry (= u, g) and
Q (= 0, 1) which serve as labels for our singly excited rovibrational levels: 1,, 0,,
1¢, and 0,. And by considering once again how each component of the wavefunction
transforms under different symmetry rules, we arrive at the following restrictions for
the quantum numbers of singly-excited rovibrational levels:

e 1, supportsJ > 1
e 0, supports J > 1 and odd
* 1, supports J > 1
* 0, supports J > 0 and even

These restrictions on the possible combinations of J, g/u, and 2 will have dramatic
implications for both the interpretation of linear Zeeman shifts and our ability to
control all quantum numbers in both the initial and final state of photodissociation
experiments. See Fig. 2.1 for an illustration of the various potentials describing 3%Sr,
molecules in the electronic ground and singly excited states.
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Fig. 2.1 Qualitative potential curves (not to scale) are drawn illustrating the structure of 38Sr,
molecules in both the electronic ground and singly excited states for different values of inversion
symmetry and Q. El transitions connect states of opposite inversion symmetry and AJ = 0, £1.
El, M1, and E2 selection rules combined with the restriction of J to either even or odd values
for different potentials enable observations of pure Hund’s case (c) linear Zeeman shifts (Chap. 4),
precise measurements of strongly forbidden transition strengths (Chap. 5), precise determinations
of transition strengths to and lifetimes of highly subradiant states (Chap. 6), and explorations of
quantum state resolved photochemistry (Chap. 8 and attached publication)

2.1.3.1 Aside: On Parity-Adapted Wavefunctions

In Hund’s case (a) and (c), the rotational energy for a molecule with total rotational
angular momentum J and projection along the internuclear axis €2 is given by the
following expression [3]:

E = B,lJ(J + 1) — Q7] (2.6)

where B, is a vibrational level-dependent rotational constant. What’s interesting
about this equation is that rotational energy doesn’t depend on the sign of 2. This
means that 2 = =1 are energy-degenerate. Therefore to truly diagonalize our
Hamiltonian, we should use parity-adapted superpositions of positive and negative
Q [8]:
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|\IJ)Hund’s case (¢) — %(M(Q), Ja3 J, My, Q) + (—1)p|7}(—§2), Jas I, My, _Q)),
(2.7)
where p is the parity of the state being considered. This fact will have implications
for how we interpret the state mixing responsible for linear Zeeman shifts of 0,
levels, and may additionally have something to do with the mystery of magnetic
field dependence of the 1,/0, potential alluded to in Chap. 8.
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Chapter 3
Measurements of Binding Energies

The first step toward understanding a molecule’s structure is to measure its
spectrum, i.e. the locations of its energy levels. A careful analysis of this spectrum
can provide a wealth of knowledge which can then be applied toward numerous
applications. One current application lies in the design of direct laser-cooling
schemes for molecules, so as to “engineer” cycling transitions which can accom-
modate a photon scattering rate sufficient for producing a large cooling force [27].
Another, more germane to the work described in this thesis, is related to searches
for new physics.

For a simple molecule such as 88Sr,, amenable both to ab initio theoretical
modeling and ultra-high precision spectroscopy, the energy spectrum provides a
benchmark which can be compared with a high level of accuracy to the predictions
of state-of-the-art quantum chemistry models. In this scenario, measurements of
the spectrum can serve as valuable feedback for the improvement of these models,
which as a result have improved dramatically in recent years [3, 26].

With a better understanding of quantum chemistry in hand, we’re particularly
interested in combining those theoretical tools with the measurement precision
achievable with spectroscopy in an optical lattice to probe subtle effects such as
quantum electrodynamics (QED), as well as physics beyond the current Standard
Model. We have in mind several future experiments which might accomplish this
goal.

One possibility is a careful measurement of the differences in binding energies
between weakly, intermediately, and deeply bound molecules in the electronic
ground state over a long (~1 year) period of time. Because the vibrational level
structure depends strongly on how heavy the nuclei are compared to their electron
clouds, and because variations in that mass ratio would affect intermediately bound
levels more strongly than deeply or weakly bound levels, such a self-referencing
“molecular clock” measurement would allow for constraints to be placed on the
possible time variation of the electron to proton mass ratio in a way which would be
only weakly model-dependent [4, 31].
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Another exciting experiment would involve making precise measurements of
binding energies for very deeply bound molecules in the same rovibrational state,
but comparing among the six stable even isotopologues (33Sr,, 8Sr,, 34Sr,, 38Sr86Sr,
etc.). With an accurate enough understanding of the isotope shifts in Sr,, one could
begin to look for deviations from theory, and attempt to assign these deviations to
“new physics.” One source of new physics might be an anomalous gravitational
interaction between the nuclei. If the gravitational attraction between two masses
were to deviate strongly from Newtonian physics at small length scales, that
deviation could manifest itself as a difference in the vibrational level spacing among
molecules with different nuclear masses. Though such an effect would presumably
be extremely small, the fact is that Newtonian gravity is quite poorly constrained at
the few-nanometer scale characterizing the bond lengths of strontium dimers [10].
Such an experiment would rely heavily on precise modeling of the internuclear
potential for strontium and a thorough understanding of isotope shifts [12], which
is excellent motivation for working to perfect our understanding of quantum
chemistry [25].

In this chapter I will describe several techniques we have adapted for pre-
cise measurements of binding energies of molecules in both ground and excited
electronic states. In approximate order from low spectroscopic resolution to high,
they are: photoassociation spectroscopy, involving the conversion of free atoms
into molecules; photodissociation spectroscopy, involving the fragmentation of a
molecule into energetic atoms; and bound-bound spectroscopy, involving transitions
between bound states. Perfecting techniques such as these will be essential in
designing new molecular spectroscopy experiments in the future.

3.1 Catalog of All Known Rovibrational Levels

Besides possibilities of making precision tests of fundamental physics with targeted
measurements of certain levels, it is also true that with access to large data sets
comes the possibility of discovering deeper patterns and broader generalities about
the physics of the system in question. For that reason, we present here a summary
of our lab’s 6-year effort to characterize the energies of nearly all weakly bound
levels near the singly excited 1S,43P; dissociation threshold of 38Sr,, as well as
improved values for several of the levels near the ground state 'Sy+'S, threshold.
The availability of accurate binding energies for the J = 1 levels has already led to
a better understanding of Coriolis coupling and of the quantum chemistry required
to predict molecular structure [3], and it’s exciting to imagine what new progress,
e.g. in molecular QED, could be made with the complete list of the higher J states
presented here. And even without having to appeal to the precise comparison of
esoteric computations to accurate data, when looking at these tables one can discern
certain patterns that hint toward a deeper level of understanding. For example,
comparing the level spacings among the 1,, 1,, and 0, potentials yields a hint about
their relative shapes which can be grasped immediately without having to rely on
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complex calculations or exact measurements. The fact that only odd J are possible
for the 0, states hints at the importance of quantum statistics in determining the
structure of molecules (see Chap.?2). And a careful look at the rotational spacing
of different states reveals that it gets larger for molecules which are more deeply
bound—exactly the result we’d expect from a semiclassical picture of a molecule
which gets smaller when it is trapped more deeply within the well.

3.1.1 Sy+3P,

Table 3.1 lists the measured binding energies of all currently known rovibrational
levels of singly excited ('So+>P;) 88Sr,. This represents a complete accounting of
all rovibrational levels with J < 4 and E, < 8.5 GHz, with the exception of levels
within the 0, manifold, which so far remain unobserved. The most accurate binding
energy measurements are of the 1,(—1, 1), 0,(—1, 1), and 0,(—2, 1) states, which
are known to few-kHz accuracy. For these states, careful evaluations of systematic
shifts have been performed. Determination of the absolute binding energies of these
levels was limited to a few kHz due to the difficulty in determining the exact location
of the broad dissociation threshold (~15kHz width). For states with linewidths
much narrower than 15 kHz, such as those within the 1, manifold, relative binding
energy differences between very narrow states could in principle be determined
much more accurately, since relative binding energy differences would not be tied
to the broad “shelf” lineshape of the dissociation threshold.

Many of the listed states cite uncertainties of 0.5 or 1 MHz. These are conserva-
tive estimates, acknowledging that no systematic evaluations of the effects of light
shifts, magnetic fields, etc. have been performed. But there is no inherent roadblock
(besides an investment of experiment time) to determining the binding energies of
these states to a much greater precision in the future.

3.1.2 1Sy+'So

Table 3.2 lists the binding energies of all currently known rovibrational levels in the
electronic ground state of ¥ Sr,. Upon inspection, two things are immediately clear.
One is that the electronic ground state is far simpler than the electronic excited
state. The lack of electronic angular momentum in the constituent atoms means that
there’s only one possibility for its projection along the internuclear axis (namely
0), which further restricts the possible symmetry of the wavefunction to gerade and
the values of the rotational angular momentum J to be even (see Chap. 2). Another
is that our knowledge of the ground state is less complete than that of the excited
state, with only three vibrational manifolds found and J only as large as 2. Precise
measurements of more deeply bound vibrational levels will require phase-locking
lasers with a frequency comb, since phase offset-locking is restricted to <9 GHz
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Table 3.2 A list of all currently known electronic ground state levels of $%Sr,

Energy Source Energy Source
X(—1,J) | 136.6447(50) | McDonald [14] 66.6(2) Martinez de Escobar et al. [13]

X(=2,J) | 1400.1(2) Reinaudi et al. [24] | 1245.6(2) | McGuyer et al. [19]
X(=3,J) |5110.6(1) Reinaudi et al. [24] |?

Note that the uncertainty in the binding energy of the X(—1,0) state reported here is 5kHz,
representing an improvement by a factor of 40 over previously reported measurements [13]

due to RF electronics limitations in our experiment. And the reason we have only
observed ground state levels with J = 0, 2 is because only those states are produced
naturally via spontaneous decay from the J = 1 electronically excited levels to
which we can photoassociate.

3.2 Photoassociation (Free-Bound) Spectroscopy

When we say that a pair of atoms has been photoassociated, we mean that
they have absorbed a photon and subsequently bound together into a molecule.
Photoassociation spectroscopy [9] is a common tool for studying molecular spectra,
and has been used previously to characterize the binding energies of electronic
excited states and electronic ground states in 38Sr, to few-tens and few-hundreds
of kHz precision, respectively [13, 30].

In our experiment we are particularly interested in using photoassociation (PA)
as a tool for the creation of ground state molecules. To do so efficiently requires
being able to characterize how strongly a particular molecular electronic excited
state will decay into a particular electronic ground state. This can be accomplished
by observing the splitting of a PA peak into an Autler-Townes doublet, but to do
so accurately requires understanding precisely the lineshape characterizing this
process.

In this section I will describe our work to better understand the photoassociation
lineshape under various experimental conditions, and discuss the physics we’ve
extracted through applying this understanding to measurements.

3.2.1 Observing Photoassociation Losses

When a single laser is used to coerce pairs of atoms in the electronic ground state
(!Sp+'8p) into a molecule in the electronic excited state (!So+>P;), the resulting
molecule will be unstable, and will therefore rapidly decay. For all except those
most weakly bound (which can decay directly into free atoms), these molecules will
primarily decay into bound molecules in the electronic ground state. Similarly, two-
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photon transitions will either directly produce molecules in the electronic ground
state, or molecules which decay quickly from unstable excited states. In either case,
for an experiment (such as ours) which counts the number of afoms remaining in
a cloud via absorption imaging on a strong atomic cycling transition, these decay
pathways will result in dark states, invisible to our imaging scheme. By sweeping a
laser across a photoassociation transition and counting atom losses, we can therefore
obtain information about the molecular excited state in question.

3.2.1.1 Considerations for Determining the Lineshape

The rate at which atoms are photoassociated will depend on their density squared,
since one atom must “find” another in order for photoassociation to occur. The
differential equation describing the density of an atom cloud whose losses are
dominated by these two-body, density-dependent losses (“PA losses”), and also
incorporating one-body losses due to, e.g., heating by the trap laser (“vacuum
losses™), can be written as:

an(s)

- = ~2Ka(8) -n(8)*> —T - n(8), (3.1)

where § is the detuning(s) of the photoassociation laser(s) from resonance, n(§) is
the density of atoms in the trap, I is the one-body “vacuum” loss rate, and K ()
is an “effective” photoassociation rate governed by the rate at which collisions
between pairs of atoms occur. This effective rate takes into account an integration
over all possible relative collision energies within the gas, as will be discussed later.

There is a technical detail in an experiment like ours in that we don’t have
experimental access to the atom density 7, but rather only the total atom number
N. We can make an approximation, however, by substituting into Eq.(3.1) n =
A - N, i.e. by assuming that density is proportional to the atom number [23]. This
approximation is exact in the limit of a uniform density across the cloud, which
obviously isn’t exactly true in an optical lattice. For the purposes of this analysis,
however, we’ll ignore this detail. (Note however that this assumption represents a
critical difference between photoassociation and photodissociation spectrosocopy
which will be elaborated upon later.) Making this substitution yields the following
equation:

dN(6)

e —2A - Kei¢(8) - N(8)> — T - N(8), (3.2)

This equation has the following exact solution, describing atom losses after a
photoassociation pulse of length t:

Noe—rt
1+ 2A'Kefli(5)'N0 (1- e—l"r)'

N (%) = (3.3)
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Vacuum losses in our experiment are small on the timescale of the <100 ms PA
pulse [23, 24]. Taking the limit of Eq. (3.3) as (I't) — 0 yields:

No
14+2A-Kg(8) -No- 1T’

N:(8) = (3.4)

where A is in our experiment left as an empirically determined fit parameter.

The “Effective” PA Rate K(8) The photoassociation rate describes the likeli-
hood that two atoms will collide to form a molecule when brought close to one
another in the presence of laser light. In fact, this probability should also depend
upon the relative collision energy of the atoms, since conservation of energy must
be satisfied such that the sum of the energy of the photoassociation laser(s) and the
kinetic energy of the colliding atom pair combines to yield the total energy of final
molecule, which will equal the electronic energy of the excited *P; atom minus the
molecular binding energy.

We incorporate this energy-dependence by integrating an energy-dependent PA
rate K.(8) over all possible collision energies. (Quantum mechanically, we are
actually calculating a total transition rate by summing over all possible output
channels.) However, because the atoms in the cloud being probed are thermally
distributed among many energies, we must weight each K (§) by the likelihood that
a particular energy € will be represented. The end result is the following equation:

KeG) = - /V /0 " K. ()i gle)avide, (3.5)

where Z is the partition function, g(¢) is the density of states, and the integral over
volume V is for bookkeeping purposes and will disappear in this approximation
(since we are assuming uniform trap density) [30]. The exact form of K.(§) can be
calculated quantum mechanically, and will depend upon whether one or two lasers
participate in the photoassociation process [2, 22].

Dimensionality Considerations In our experiment, the atoms are tightly con-
fined to a 1D optical lattice with a small (spectroscopically unresolved) radial
trap frequency, ensuring that collisions primarily occur in directions transverse
to the trapping axis with an approximately continuous distribution of collision
energies. Building this physics into Eq. (3.5) means summing over a continuous
energy distribution in two dimensions, i.e. using gp(€)de = #dé and Zop =

Sy Jo” gap(€)e™iTdVde = 2 (kT)Vap, which gives the following:

2D ey _ o - de
K2 (8) = /0 K@) 3:6)

However, though collisions in the axial direction should be suppressed due to the
large axial trap spacing, they will not be completely negligible. Parity considerations
will restrict interactions to only those between atoms separated by even multiples
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of the trap quantum hAw,, where w, is the axial trap angular frequency of the
lattice [19]. (Incidentally, this statement is also true for collisions in the transverse
direction. However, because the radial trap frequency is so small, assuming a
continuous energy distribution and ignoring the restriction to even multiples of the
trap frequency leads to no experimentally observable differences.)

To account for the contributions of collisions in the axial direction, we can
include in the above integral a weighted sum over axial trap states:

i 2 ok * de
[RIUES SUa ol B S
eff ( ) ng o (e+2nhwx)( ) (kT)

(3.7)

By substituting Eq.(3.7) into Eq.(3.3), and using the correct expression for
KGPH a5 a function of photoassociation laser frequencies (discussed in the
following sections), we obtain a spectroscopic lineshape describing N, as a function

of laser detuning.

3.2.2 One-Photon (Electronic Excited State)

For one-photon PA, K, (8;) will have the form of a modified Lorentzian, where §; is
the detuning from resonance as defined in Fig. 3.1a [22]:

¥s(€)
k() =¢- 2 votys(€))2” (3.8)
(e/h+ 81 — 810)> + (229
In the above equation, §;. is the location of the PA resonance for ¢ = 0, §; is

the detuning from resonance of the PA laser being swept across resonance, y,
is an empirically determined broadening parameter accounting for our observed
linewidths, y,(€) is an energy-dependent linewidth representing decay probability to
a continuum state with energy €, and C is a scaling pre-factor accounting for Franck-
Condon overlap between continuum and bound state [2]. In practice, this equation
is more complicated than necessary. For the states for which photoassociation
measurements will be covered in detail in this thesis, the decay probability to con-
tinuum is both very small and approximately constant across the few-uK energies
characterizing our atom cloud. In this case we can make a good approximation by
assuming y; to be constant (which additionally simplifies the math considerably),
yielding our operational fitting function:

Vs
(e/h+ 8 — 817 + (232)’

K@) =C (3.9)

Combining Eq.(3.9) with Egs.(3.7) and (3.4) yields a lineshape which is a
function of six free parameters: T, the temperature of atomic gas; Ny, the initial
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Fig. 3.1 Illustrations of laser detunings used for (a) one-photon photoassociation spectroscopy,
(b) two-photon photoassociation spectroscopy, (¢) one-photon photodissociation spectroscopy, and
(d) two-photon photodissociation spectroscopy. Definitions of detunings in panels (a) and (b) are
based on [22] and [2], respectively

(off-resonant) atom number; §;, the location of the 1-photon PA resonance (which is
determined by the spectroscopy laser’s absolute calibration); (y, + V), a linewidth-
broadening coefficient unrelated to thermal broadening; (C - y, - A), a scaling
pre-factor accounting for both the Franck-Condon overlap between ground and
excited state as well as the proportionality constant between atom number and
density in an optical lattice; and wy, the axial trap frequency of the 1D optical
lattice. In principle, the axial trap frequency can be determined separately either
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Fig. 3.2 This figure shows experimental data resulting from one-photon photoassociation into the
0,(—4, 1) state. The data is fitted by combining Eq. (3.9) with either Eq. (3.6) (blue) or (3.7) (red).
In the figure above, residuals for each fit are plotted in the inset boxes at the lower left corner. Note
that the small “bump” on the left side of the trace is fitted well by Eq. (3.7), i.e. by accounting for
discrete axial trap motion. This figure has been adapted from [19]

by monitoring atom losses induced by “lattice shaking” [7] or spectroscopically
resolving sideband transitions [15]. However, in our experiment we generally left
this as a free parameter as well.

Figure 3.2 shows a representative trace of a one-photon PA spectrum. Note
that the bump on the left side of the PA lineshape is well represented by proper
accounting for the effect of a quantized axial trap frequency [19].

3.2.3 Two-Photon (Electronic Ground State)

If a second laser, tuned close to resonance with a transition from a molecular level
in the electronic ground state to one in the electronic excited state, is applied during
the photoassociation pulse, the single photoassociation peak will split into two (see
Fig.3.1). When the second laser (Lgg) is far from resonance, we can think of the
condition for losses in the PA spectrum as adhering to one of two scenarios: either
(1) the first laser (Lgg) is tuned to resonance with the transition from free atoms to
an electronic excited state, or (2) the difference in frequencies between Lgg and Lgg
is equal to the binding energy of a level in the electronic ground state. As Lgg gets
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closer and closer to resonance, this picture begins to break down: we can no longer
assign each dip in the spectrum to the addressing of a particular rovibrational level,
but rather must invoke a superposition of the two.

The splitting of a single PA line into a doublet is called the Autler-Townes effect
[5]. Following Bohn and Julienne [2], the PA rate K in this case has the form:

ybys(e/h - AZ)Z

K@) =C .
o [(e/h— Ap)(e/h— AP+ 3(vs + ¥)*(e/h — A2)?

(3.10)

where I have again assumed the decay rate y; to the atomic continuum to be small
and constant across all relevant collision energies. In the equation above, several
new variables have been introduced in addition to those present in Eq. (3.9):

e Ay = %(A1+A2)i%\/(A1—A2)2+4§2%2
o Ay =—(8—b1)
o Ay =36 — (81 —bic)

where §,. is detuning of Lgg from the bound-bound resonance and €2 is the
“molecular Rabi coupling,” or rather (operationally) the minimum frequency sep-
aration between the two peaks comprising the PA spectrum, occurring when Lpg is
exactly on resonance.

Whereas Eq.(3.9) can be used to study rovibrational levels in the electronic
excited state, Eq. (3.10) can be used to study rovibrational levels in the electronic
ground state. In particular, binding energies can be determined by the frequency
difference of lasers L and Lrg when the splitting between two peaks in the Autler-
Townes doublet is minimized.

3.23.1 Autler-Townes Spectroscopy

Figure 3.3 shows a representative set of two-photon PA traces interrogating the
0,(—6,1) < X(—3,0) transition. The binding energy of the ground state is
determined by first taking several spectra. For each spectrum, the detuning of Lgp is
changed by a discrete amount, and Lgp is then swept across resonance to reveal the
locations of the two PA peaks. Figure 3.3a shows a plot of §,. vs the detuning of Lgg,
which reveals a linear dependence with a slope of 4-1. (Any deviation would imply a
disagreement with the model used for fitting the two-photon spectrum.) When Lpp is
on resonance, the PA peaks will be symmetrically split into a doublet, and the fitted
value of ;. will be zero. We can determine the value of Lgg’s detuning necessary
to achieve this condition by fitting a line to Fig. 3.3a and calculating the x-intercept.
Figure 3.3b shows §;. at several detunings of Lgg. Since §;. can be thought of as
the “true” location of the 1-photon resonance, this value should be the same for all
fits. The binding energy can then be determined by evaluating the difference in the
frequencies of Lgg and Lgg when §,. = 0.
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If we plot the locations of the two photoassociation peaks A4 and A_ vs the
detuning of Lgp (Fig. 3.3c), we see an avoided crossing when Lgg is on resonance.
If we plot the difference in the positions of these peaks vs the detuning of Lgg
(Fig. 3.3d), we can see from the definitions of A and A_ that the functional form

will be:
1 1
5B+ —A) = 5,/530 +4Q3, (3.11)

By reading off the value of the above fitting function at 6, = 0 we can therefore
determine €21,, which will be important for determining transition strengths from
photoassociation spectra (see Sect. 5.2.3). The agreement of the value €21, (which
is a free fitting parameter in Eq. (3.10)) with the minimum of Eq. (3.11) serves as a
reassuring consistency check for the validity of our fitting function.

3.3 Photodissociation (Bound-Free) Spectroscopy

As is clear from Figs. 3.3 and 3.2, the lineshape of a photoassociation spectrum will
be quite broad due to the spread collision energies with different thermal weights.
We attempt to fully model the shape of this broadening with Eq. (3.7), but in doing
so we make two critical assumptions:

1. The collision energies are distributed according to the Maxwell-Boltzmann
distribution (Eq. (3.5)).
2. The atomic density is constant across the entire sample (Eq. (3.2)).

Each of the above assumptions stands on somewhat shaky ground.

With respect to the first, we know from experiments with thermometry in an
optical lattice that Maxwell-Boltzmann statistics are a fairly good description for
the initial distribution of energies in our trap [15], though for experiments operating
nearer to quantum degeneracy a different model would have to be used. But our
thermal sum over collision energies does not allow for the possibility of dynamical
effects like frequency-dependent heating of our atoms by the photoassociation laser.
In fact, strong heating of an atom cloud from a resonant photoassociation beam has
already been reported in ultracold helium [11]. Our own measurements confirm that
this effect is present in our experiment as well: see Fig. 3.4 for details.

The second assumption, i.e. that the atomic density is everywhere constant, is
potentially even more worrisome. We interrogate atoms trapped in an optical lattice
whose depth changes dramatically across its extent, which necessarily means that
the density in different parts of the cloud must be different. Though shifts due to
the trapping potential can in theory be modeled out [13], realistically this process
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Fig. 3.3 Two-photon PA spectra are fitted with the combination of Eqgs. (3.10) and (3.6). In order
to cut down on computer processing time, Eq. (3.7) was not used (i.e., the trap was assumed to
be exactly 2D). Panels (a)—(d) are plotted against Agg, which is the experimentally controlled
frequency offset of the bound-bound laser (Lgg) from an arbitrary reference point (ultimately
determined by the length of our high-finesse cavity), and which is set by a programmable RF
frequency driving an acousto-optic modulator (AOM). (a) Fitted value of the offset from resonance
8, of the bound-bound laser Lgg vs Agg. (b) Fitted value of the offset from resonance §;. of the
free-bound laser Lgg vs Apg. (¢) Locations of the left and right photoassociation peaks, given by the
value of AL (defined in the text) when §; = 0, vs Agg. (d) %(A+ — A_) vs Agg. Traces (e)—(k)
were taken by first changing the offset of the Lgp laser Apg, and then sweeping the Lgp laser across
the two-photon resonance. The data shown represents spectroscopy of the X(—3,0) <> 0,(—6, 1)
(E =~8430MHz) transition, and was recorded on September 23, 2014

will be imperfect, and can cause systematic uncertainties in the fit-determined value
for the ground-state binding energy which are a significant fraction of the thermal
linewidth.

The process of photodissociation on the other hand, describing the conversion of
a bound molecule into a pair of atoms upon the absorption of a photon, does not
suffer from either of these problems. The process is analogous to “photoassociation
in reverse,” with the primary difference being that there is no thermal weighting of
the collision energies. Photodissociation is commonly used in experiments involving
molecules as part of an imaging scheme, since it is usually far easier to photograph
atoms (which possess strong cycling transitions) than molecules (which generally
do not).
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Fig. 3.4 Photoassociation spectra are recorded by first sweeping a ~200 uW probe laser of
duration 10ms across resonance while atoms are trapped in a 1D optical lattice, then shutting
off the lattice trapping beam and thereby releasing the atom cloud, and finally imaging the atom
cloud after a ~5.6 ms time of flight. Black points are measured values for (% — 1) (where Ny is
the off-resonant atom number and N is the measured atom number at detuning (§ — §,.)), which
is proportional to the photoassociation rate (see Eq. (3.4)). Red lines are measured values of the
temperature of the atom cloud remaining after photoassociation, as determined by a Gaussian fit
to the cloud’s spatial profile along the vertical axis assuming a Maxwell-Boltzmann distribution
of velocities [1, 28]. Three of the panels show data for two-photon photoassociation spectra of
the X(—3,0) <> 0,(—4, 1) transition, with detuning of the bound-bound laser noted at upper
left, while the final panel shows data for one-photon photoassociation of the 0,(—4, 1) state. The
discrepancy in off-resonant temperatures among graphs is likely due to a drifting magnetic field
leading to a changing alignment between the MOT-cooled atom cloud and the optical lattice trap

In the following sections I will describe how we use photodissociation to perform
accurate spectroscopy of both ground and excited state levels, with an absolute
precision that can improve upon that achievable with photoassociation by a factor
of 40 or more. For this thesis I will group photodissociation into two categories:
“indirect,” involving a transition to an electronic excited state which quickly decays
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Fig. 3.5 Here is shown a spectrum resulting from irradiating X(—1, 2) molecules with a ~900 W W
laser for 20 ps, recorded on January 13, 2015. Frequencies are defined with respect to the
X(—1,2) = (!Sp+3P)) dissociation threshold. The bumps in the spectrum are enhancements in
the dissociation probability due to resonances with various bound states in the !Sy+>P; manifold
(labeled in the figure). The steep rise for f > 0 is representative of our empirical observation that
the direct dissociation process is more efficient at larger frequencies (tens of MHz) above threshold
than for smaller frequencies

to free atoms (i.e. the interrogation of recovery transitions); and “direct,” involving
the direct transition of a bound molecule into a pair of energetic atoms upon
absorption of a photon. Figure 3.5 shows a particularly nice example of a spectrum
showing both processes at work for a variety of different transitions.

3.3.1 Observing Photodissociation Gains

Whereas a photoassociation spectrum records losses from an atom cloud, a
photodissociation spectrum will show gains in atoms observed. To determine the
functional form of the gain versus time, we first recognize that unlike photoasso-
ciation, the probability for a photon-molecule interaction to occur does not rely
upon the atoms coming into close contact with one another, and therefore will not
be proportional to n? (Eq.(3.2)). Instead, the rate will be proportional simply to
N, the number of atoms in the cloud. We can then write the following differential
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equation describing photodissociation losses from the molecule cloud (ignoring
long-timescale processes like “vacuum’ losses):

dN(8 i
dg ) — _Kgflf“((g) 1\/‘(5)7 (312)

which has the solution N (§) = Noe ket ©)7_ (Note that there is no difficulty here in
converting from “density” to “number” since the differential equation is everywhere
linear in N, guaranteeing that a photodissociation lineshape will not be negatively
affected by making the questionable assumption of n o< N.)

N;(8) describes the number of molecules remaining in the original cloud.
However, what’s actually observed is atoms resulting from the dissociation process.
If we assume that our recovery process has an efficiency «, i.e. that only the fraction
a of molecules which are dissociated end up as atoms which can be imaged, then
the number of atoms observed will be:

NO(8) = aNo(1 — &K O)r) (3.13)

The lineshape, i.e. the dependence of N°* upon frequency, can then be determined
from the frequency dependence of K%:(§), which will have different forms
depending on whether atoms are being gained via “recovery transitions” or by direct
single-photon dissociation.

3.3.2 Recovery Transitions

For certain levels in Sr,, with either conveniently placed binding energies or large
transition moments to the free atom decay channel, a simplified scheme making
use of only two lasers can be adopted for spectroscopy. The first creates a sample
of ultracold molecules via photoassociation and subsequent spontaneous decay to
a stable ground state molecule. The second excites a transition from the stable
electronic ground state to a weakly bound excited state, and which is quickly
converted to free atoms either by light-assisted photodissociation or spontaneous
decay.

3.3.2.1 Spontaneous Decay

To determine the branching ratio governing what fraction of a molecular sample in
some unstable electronic excited state |W;) will decay into a particular channel |Wy),
it is necessary to calculate the transition dipole moment (\I!f|21 |¥;) and compare the
amplitude squared of this moment with the amplitudes of transition moments to
all other possible decay channels. For most bound states, spontaneous decay will
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be dominated by transitions to other bound states in the electronic ground state.
However, if the initial state is very weakly bound, there can be a significant transition
rate to free atoms.

In #Sr, it turns out that there are several levels with a significant branching
ratio for decay to free atoms. We took advantage of this fact to make highly precise
determinations of the Zeeman shifts of some of the most weakly bound levels in
8Sr, in 2013 [17], and have since characterized their binding energies to high
precision (see Table 3.1).

3.3.2.2 Two-Photon Dissociation

Spontaneous decay isn’t the only pathway toward free atoms which can be induced
with a single spectroscopy laser. If the binding energy of the final state is less
than half the binding energy of the initial state, i.e. if £y < %Ei, then the
laser driving the transition from initial to final state can drive the final state to
photodissociate into a pair of excited *P; atoms, which will quickly decay into
'Sy atoms which can subsequently be imaged in the normal way. This condition
is illustrated schematically in Fig. 3.6.

If the only experimentally accessible variable when recording a spectrum were
“atom number after recovery,” then it would be difficult to discern how much of
a role each of these two processes, spontaneous decay vs two-photon dissocia-
tion, plays in the total recovery signal. However, we have access to additional
information: the spatial distribution of the atoms being recovered. Atoms produced
via two-photon dissociation will have a well-defined kinetic energy, and therefore
should form a ring expanding outward from the point of dissociation. Atoms
produced via spontaneous decay should instead be emitted with a larger spread of
energies, the exact details of which could be calculated by calculating the transition
dipole moment’s amplitude squared |(\Ilb0und|ZZ |Wiiee (€)) |2, Where the wavefunction
describing free atoms |Wge.(€)) is a function of the kinetic energy of the fragments e.
An example of this difference in patterns is shown in the right-hand side of Fig. 3.6,
which shows the recovery of X(—1, 0) molecules via the 24 MHz 0,(—2, 1, 0) state.

In either case, the dissociation rate Ky should have the form of a Lorentzian,
since it represents simply the probability of driving a transition between two bound
states.

3.3.3 Direct One-Photon Photodissociation

Another option for recovering ground state molecules is their direct photodissocia-
tion into pairs of 'Sy +3 P; atoms. An accurate understanding of this process can
also aid in accurately determining binding energies. In order to assign to vibrational
levels absolute binding energies, we must have an absolute frequency reference
against which they can be compared. The 'Sy+°P; dissociation threshold is a
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Fig. 3.6 When a laser is tuned to a transition between a weakly bound ground state of energy E|
and a weakly bound excited state of energy E, < %E 1, the molecule can break apart into atoms
either through spontaneous decay directly to the ground state or light-assisted photodissociation
to the *P;+>P; continuum. The left half of this figure shows schematically the possible routes
toward dissociation, while the right half is an experimental image showing the resulting pattern
of photofragments formed when a laser is tuned to the X(—1,0) (E = 136.6MHz) —
0,(—2,1) (E = 24.0 MHz) transition. The dark middle ring labeled “(2)” is incidental dissociation
of the X(—1,2) (E = 66.6 MHz) state, present because our initial sample contains both J = 0 and
J = 2 molecules

convenient choice, for if a bound state resonance occurs when a spectroscopy laser
is tuned to fyound, and the dissociation threshold occurs at fig,y3p,, then the binding
energy of the bound state under investigation with respect to this threshold will be:

Epinding = —h + (fisy43p, — foound) (3.14)

It is therefore of great interest to be able to spectroscopically determine the location
of the dissociation threshold to high accuracy.
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3.3.3.1 Derivation of ‘‘Shelf”’ Lineshape

In order to calculate a lineshape describing the dissociation threshold, we can
appeal for inspiration to the single-photon photoassociation lineshape described by
Egs. (3.6) and (3.8), since single-photon association appears similar in many ways to
single-photon dissociation with time running backwards. There are, however, some
specific differences which must be considered.

One is that while photoassociation requires performing an integral over collision
energies which are distributed according to the Boltzmann distribution, photodisso-
ciation requires no such thermal weighting of the output channel. This dramatically
decreases the “linewidth” of the transition, with a concomitant improvement in the
precision with which the transition can be inferred. We can incorporate this fact by
setting the factor of e~ 77 in Eq. (3.5) equal to 1. We can then proceed to calculate the
lineshape, which will have different forms depending on whether our trap geometry
is two-dimensional or three-dimensional.

2D Lineshape Making the above substitution, using gop(€) (which should be
approximately valid for energies above threshold smaller than the axial trap
spacing), and using K. = K _photon (Eq. (3.8)) yields an equation which can be solved
exactly [19]:

28, — 61,
KE(81) = Cop - {% + tan™! (%)} (3.15)

where C,p is an overall scaling parameter and y is an empirically determined
linewidth.

3D Lineshape Equation (3.15) should be valid for small frequencies above thresh-
old, where “reverse-collisions” occur at energies which are much smaller than the
axial trap spacing. At very large energies above threshold, we can assume that the
direction of the fragments is uninhibited by the dimensionality of the ~1 MHz
deep lattice trap. Therefore in this case we must use gip(€)de = #(i—’;’)%e%de
Surprisingly, this scenario also admits an analytical solution:

Kefrsp = Cip - \/(51 —810) + V(61 — 81)% + (v/2). (3.16)

Figure 3.7 shows an example of 1-photon “shelf recovery,” in this case coming
from data set used to calibrate the binding energy of the 1,(—1, 1) state. Both the 2D
“arctan” and 3D “square root” fits are shown, demonstrating that at least for small
energies above threshold the 2D fit is a much better description of the data.
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Fig. 3.7 X(—1,0) molecules are photodissociated via the !So+3P; threshold. The resulting
spectrum is fit with either a 2D (red) or 3D (blue) function described in the text. For the 3D
function, the linewidth y was forced to equal the fitted value of the 2D fit (14.6 kHz) in order to
aid in visual comparison. This trace is one of several used to calibrate the binding energy of the
1g(—1, 1) state, and was recorded on April 24, 2014

3.3.3.2 Caveats and Assumptions

The derivations of Egs.(3.15) and (3.16) make several simplifying assumptions
which must be considered before absolute binding energies obtained via these
equations can be absolutely trusted.

(1) Energy Dependence of y;(€) In our quest to obtain a simple analytical fitting
function, we assumed that the bound-free transition moment y,(¢) in Eq.(3.8)
was constant across all relevant collision energies. However, we know that at
large frequencies (i.e., 10s of MHz), the bound-to-free transition dipole moment
|(W;]d|W¥(€))| can vary dramatically due to the presence of shape resonances [16]
and varying Franck-Condon factors. This problem can be minimized by focusing
on very small detunings above threshold, where the transition moment would not be
expected to vary by much.

(2) Recovery Efficiency of Dissociated Atoms At smaller frequencies, a more
pressing concern lies in the ballistics of atoms escaping from the trap before we’ve
had a chance to image them. In our experiments, we record the spectrum of a shelf
by applying a long (several ms) dissociation pulse, and then after waiting for a few
ms, image the remaining atom fragments in the usual way. At very large frequencies
above the dissociation threshold, the atoms will possess enough kinetic energy
to escape the ~1 MHz deep trap. At very small frequencies, nearly all should be
captured. And at frequencies in between, the fraction remaining can be estimated
by assuming a Boltzmann distribution for the energies of the initial molecules and
carefully considering how the energy of fragments in the “lab frame” depends upon
both the direction of the molecule and the direction of the emitted photofragments.
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Single-photon dissociation threshold at various lattice powers
(1 ms dissociation pulse followed by a 20 ms wait)
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Fig. 3.8 Spectra of the one-photon dissociation threshold (!Sg+3P)) are shown at various lattice
powers. As lattice power (and therefore trap depth) increases, more atoms are observed at higher
energies above threshold, since they are less likely to escape a deeper trap. The red curves are plots
of Eq.(3.15), which describes the likelihood of a molecule photodissociating in 2D, but not the
likelihood of an energetic atom being observed. In the future, spectra such as this may be used as a
form of thermometry, since the steepness of fall-off of the “shelf tail” is related to the temperature
of the molecules being dissociated

Figure 3.8 shows spectra describing the dissociation of molecules trapped in a 1D
optical lattice at various lattice powers. I leave the derivation of this dependence as
an exercise for the future grad student reader.

(3) Systematic Shifts Due to Inhomogeneous Lineshape Blurring The assump-
tion that the photodissociation probability is given by a Lorentzian (i.e., Eq. (3.9))
ignores any possibility of inhomogeneous lineshape broadening. One source of
broadening about which we’re already aware (see Chap. 7) is due to inhomogeneous
lattice light shifts, caused whenever the trap depths for initial versus final states
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are unequal. For transitions to electronic excited states this broadening should be
minimal, since we generally operate at the magic wavelength for these transitions.

For two photon transitions between ground state levels, however, we will see
that the lattice is certainly not magic, and that lattice-broadened lineshapes can have
widths as large as ~3 kHz. Additionally, it’s also true that the lineshapes describing
these two-photon dissociation processes are in fact much more complicated than
those describing one-photon dissociation [29], with “linewidths” being determined
by a combination of both lasers’ powers and detunings.

For all shelf lineshapes used for the purposes of calibration to the dissociation
threshold in this thesis, I have truncated the spectrum after a few tens of kHz in order
to limit the possibility of systematic shifts due to recovery efficiency or the presence
of shape resonances. Numerical simulations have shown that at most this procedure
may result in shifts of ~1 kHz. However, note that these precautions do not guard
against the possibility of inhomogeneous lineshape broadening inducing systematic
shifts, and therefore the interpretation of shelf lineshapes for the determination of
ground state energies (described below) is potentially fraught with uncertainty.

3.3.4 Direct Two-Photon Photodissociation

Rather than inferring the binding energy of a ground state molecule via two-photon
association, a potentially more precise method is to use two-photon dissociation,
whereby a molecule is dissociated into two 'Sy atoms by two lasers whose frequency
difference is equal to the molecule’s binding energy. See Fig. 3.1d for a schematic
representation of this process. Just as in the case of one-photon dissociation, the
“linewidth” of the transition will not be governed by an integral over thermally
distributed collision energies. Instead, the lineshape will be determined by Eq. (3.5),
with K = K5 photon and the Boltzmann factor eI set equal to 1.

Whereas when dissociating to the 1S,4-3P; threshold the linewidth is determined
by the lifetime of the atomic excited state, in two-photon dissociation the final state
consists of ground state atoms which are infinitely long-lived. While in principle
this means that the dissociation linewidth can be made arbitrarily narrow, we are
currently limited to ~3 kHz widths due to ill-understood power broadening from
our dissociation lasers and inhomogeneous broadening from a slightly non-magic
lattice. See Fig. 3.9 for an example of the lineshape observed with this technique.

3.3.4.1 Comment on Lineshapes

In principle, lineshapes describing two-photon dissociation can be calculated
analogously to how we proceeded for one-photon dissociation, i.e. by setting the
Boltzmann weight e equal to 1 in Eq.(3.5) and integrating over all energies.
Unfortunately, the integral of Eq. (3.10) with respect to € doesn’t admit a simple
analytical solution, which meant that in order to fit photoassociation spectra (e.g.,
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Fig. 3.9 A typical two-photon dissociation lineshape, fitted with Eqgs. (3.13) and (3.15). This
particular trace is one of many used to precisely determine the absolute binding energy of the
X(—1,0) state (see Fig.3.12), and was recorded on March 19, 2015 with the bound-bound laser
detuned ~20 to the red of the X(—1,0) — 0,(—4, 1) transition. Note that the width of this “shelf”
lineshape is much narrower than that of the one-photon dissociation data shown in Fig. 3.7

in Fig. 3.3) we needed to perform a numerical integration, which is time-intensive
(several minutes per fit) and somewhat unwieldy. But the resulting fit functions did
rather beautifully describe our data, and we might ask whether it’s worth pursuing a
similar course for our photodissociation spectra.

A key difference between these two experiments which makes the analogy
imperfect is that while photoassociation spectroscopy is sensitive to atom losses,
photodissociation spectroscopy is sensitive to atom gains. This means that with
photodissociation we care not only about the interaction between laser and molecule
describing the likelihood of a molecule producing fragments (the physics of which
is described by Eq.(3.10)), but also about the dynamics of the fragments after
dissociation, which will affect our probability of observing them.

We can reduce the importance of dynamical effects influencing our results by
focusing only on energies close to threshold, where any photofragments produced
are slow enough to be captured and imaged with near perfect fidelity. In our case
that means probing energies above threshold of only a few tens of kHz in a lattice
roughly 1 MHz deep. We also can arrange our spectroscopy lasers so that the fitting
function should approximate the arctan fit given by Eq. (3.15). This should work
well so long as the free-bound laser Lgg is far from resonance with the one-photon
PA transition, and the difference between the frequencies of Lgg and Lgg is very
close to the binding energy of the initial state. Put more concisely, if

(A= A% > Q1 (3.17)
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Fig. 3.10 (a) Spectra showing two-photon dissociation of the X(—1, 0) state are shown, with the
bound-bound laser at several small detunings with respect to the 0,(—4, 1) state. Conventions for
Aj and A; are defined in Fig. 3.11. (b) Locations of the onset of photodissociation (i.e., rightmost

5 9

edge of the spectroscopic “shelf” feature, labelled on the y-axis as “A, ‘atresonance’ ) vs detuning
of the bound-bound laser. For all data, the 2 ms photodissociation pulse was followed by a 20 ms
wait, so the spectra reflect both the probability of photodissociation occurring and the likelihood
that the photofragments will remain in the trap to be imaged

then the two-photon PA rate given by Eq. (3.10) reduces to the simple one-photon
rate, whose integral yields the arctan fit given by Eq. (3.15). For the X(—1, 0) “case
study” described below, we have in fact used the arctan fit for all data analysis,
which is somewhat justified because we have chosen A to be very large (~20 MHz)
and care only about fitting data very near threshold. However, it’s likely that
this assumption introduces small systematic errors into our final binding energy
determination which will be discussed later.

3.3.4.2 Taming Highly Nonlinear Light Shifts

When A; &~ 0, we would expect the two dissociation features to form an avoided
crossing in analogy to Autler-Townes photoassociation spectroscopy. And indeed,
when the bound-bound laser power is low, this is what we observe. Figure 3.10a
shows several traces of the two-photon dissociation spectrum at various detunings
of the bound-bound laser, and Fig.3.10b plots the locations of the onset of these
“shelves” vs laser frequency.

When the bound-bound laser power gets larger, however, strange things begin
to happen. Figure 3.11 shows the locations of shelves versus bound-bound laser
detuning for three different combinations of laser power. At large bound-bound laser
powers, the Autler-Townes doublet apparently splits into a triplet, whose locations
are highly nonlinear with laser frequency. Oddly, we have not observed similar
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Fig. 3.11 The locations of two-photon dissociation “shelves” are plotted vs bound-bound laser
detuning A for a variety of laser powers. Note that the convention used to define A and A, here
differs from that used for two-photon photoassociation (described in Fig. 3.1b)

behavior with photoassociation spectroscopy, but this may be a result of the higher
resolving power inherent to photodissociation absent the need to weight collision
energies by a Boltzmann distribution.

The possible nonlinearity of light shifts near resonance is especially worrisome
from the perspective of needing to make precision measurements extrapolating to
zero power. In the case study described in the next section, we avoid this “danger
region” by setting A; ~ —20MHz, far enough away to ensure that light shifts
should be well-behaved.
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3.3.4.3 Case Study: Binding Energy of X (-1, 0)

The reason we’ve been so careful in describing the possible pitfalls one might
face in recording two-photon photodissociation spectra is because we’d like to use
such spectra to make precise measurements of the absolute binding energies of
ground state molecules. In particular, the most weakly bound rovibrational level
of the electronic ground state is interesting because knowledge of its exact energy
combined with the shape of the long-range interaction potential can be used to
calculate the atomic scattering length [6, 8], which for 888t is smaller than that of
any of strontium’s other stable isotopes.

To date, the most accurate measurements of ground-state binding energies have
involved two-photon photoassociation of Sr atoms, but such measurements have
only achieved precisions of a few hundred kHz [13, 24] due to reasons already
discussed. These measurements, combined with theoretical calculations of the
Cs, Cg, and C coefficients describing the long-range interaction potential, have

constrained the scattering length of 33Sr to be a = —1.4(6) Bohr radii [13], where
the uncertainty is in large part due to uncertainty in the absolute value of the binding
energy.

In the following section I’'ll show that this precision can be improved by a factor
of at least ~40 with two-photon photodissociation spectroscopy. To do so carefully
requires evaluating several systematic effects which shift the position of the two-
photon resonance, and then extrapolating these shifts to zero.

Magnetic Field Shifts Because the ground state of %3Sr is nonmagnetic, stray
magnetic fields of a few gauss will not shift the position of ground state rovibrational
levels by an amount which can be detected in our experiment. A drifting magnetic
field could, however, conceivably alter the light shifts induced by the spectroscopy
lasers by shifting the m = =1 sublevels of the intermediate state. In order to
minimize this effect, a small (but constant) magnetic field of ~1.1 gauss was
applied during all measurements in order to define a stable quantization axis, and
the detuning of the bound-bound laser was kept large so that the effect of magnetic
shifts of far-away magnetic sublevels would be minimal.

Density Shifts Anecdotally, we have not yet observed in any of our measurements
a clear dependence of frequency upon molecule density. This is in line with what
we might expect for dilute molecules which carry no permanent dipole moment. We
did try again here to observe a density shift by recording the threshold at “high”
and “low” signal (accomplished by tuning the photoassociation laser used to create
molecules away from perfect resonance), but found the slope of this dependence
to be consistent with zero. Therefore in the calculations below, no corrections have
been made for possible density shifts, since their magnitude is likely swamped by
other sources of uncertainty.

RF Clock Uncertainty Our probe lasers are offset phase-locked to a stable
master laser via RF synthesizers, which are themselves phase-locked to a stable
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10 MHz clock source. Since we define the binding energy of a rovibrational state
operationally as the difference in laser frequencies required to drive transitions to an
interesting bound state or the dissociation threshold, our value for the binding energy
will depend critically upon how we define the RF frequency difference between
these two lasers.

For all measurements described in this thesis, we used RF synthesizers locked
to the 10 MHz clock output provided by an Stanford Research Systems SG384
equipped with a standard OXCO timebase. This synthesizer was calibrated in 2009,
and is rated for less than 0.05 ppm aging per year. Measurements of the binding
energy of the X(—1, 0) state were made in March of 2015, implying (conservatively)
an uncertainty in our absolute clock calibration of 6 years x 0.05 % = 0.3 ppm.
This translates to an absolute uncertainty of ~0.3 ppmx 136.6 MHz ~ 41 Hz, which
is utterly negligible compared to the few-kHz uncertainties to be discussed in the
next section. This RF calibration uncertainty will, however, be a dominant source of
error when we evaluate binding energy differences among ground state levels (see
Sect. 3.5).

Light Shifts Light shifts are the largest, most important systematic shift to
evaluate. Determining the unperturbed energy then requires a triple extrapolation
to zero power, because the molecules interact with three separate lasers: two for
photodissociation and one for trapping.

Figure 3.12 shows how the position of the dissociation threshold depends on
different laser powers. There are two halves to this figure (labelled “a” and “b”)
because this set of measurements was performed twice with very different laser
frequencies. In panel (a), the bound-bound laser was tuned ~20 MHz to the red of
the X(—1,0) — 0,(—3, 1) transition, while in panel (b) it was tuned ~20 MHz to
the red of the X(—1,0) — 0,(—4, 1) transition. This guaranteed that the magnitudes
(and in some cases even the signs) of light shifts induced by the three lasers for
each of these experiments were substantially different. Then, if after independent
extrapolations for each set of experimental parameters the final calculated binding
energies disagree, we can attribute the disagreement to undiagnosed systematic
effects.

For each row in the top half of this figure, one laser power was varied while
the others were kept constant. In addition to the fitted “shelf” positions vs laser
power, the fitted values of full-width-half-max (FWHM) are shown as well. Linear
broadening with laser power could be a possible sign of systematic shifts, since we
make no effort to model inhomogeneous broadening in our lineshapes, but rather
simply use the arctan fit given by Eqgs. (3.13) and (3.15). However, such shifts are
almost certainly smaller than the measured width of the shelves at low laser power
(i.e., a few kHz).

The bottom half of the figure shows the calculated “zero-power” binding energies
for the X(—1,0) state for each data set shown in the top half of the figure. The
binding energies are calculated for each point as the difference in laser frequencies
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Fig. 3.12 (Top half) Evaluations of the position of the two-photon dissociation threshold are
plotted vs bound-bound, free-bound, and lattice laser power. Measurements were performed twice,
with the bound-bound laser tuned near the (a) X(—1,0) — 0,(=3,1) or (b) X(—1,0) —
0,(—4, 1) transition. Red lines are linear fits to the data, and unfitted panels are plots of FWHM
(as determined by a simple tan—! fit) vs laser power. (Bottom half) Binding energies calculated
from the above data by performing a triple extrapolation to zero power. The range of extrapolated
binding energies from these six data sets spans less than 6 kHz

needed to drive the two-photon dissociation process minus the light shift due to
each laser at that point. For all points shown in this figure, the laser powers were
measured to <5% accuracy using a Thorlabs PM320E optical power meter with an
S121B power head.
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Final Binding Energy Determination Performing a weighted average of the
fitted binding energies shown in the bottom half of Fig.3.12 gives the value
E = 136.64467 MHz. This average clearly doesn’t tell the whole story, since the
measurements shown at left are uniformly a little higher than the measurements at
right. However, their disagreement is small, and in fact is about the same size as the
width y of the dissociation threshold, which is about the size we might expect of
systematic errors due to our imperfect fit function.

To accommodate both the left and right fitted values for the binding energy, we
assign a conservative uncertainty of 5 kHz, yielding our final value for the binding
energy of this state:

Ex(_1.0) = 136.6447(50) MHz - h. (3.18)

This value represents an improvement by a factor of 40 over the current state of the
art [13], and could be used to calculate more accurately the very small ®Sr scattering
length, possibly to an absolute precision competitive with that of the most accurate
measurements for any atom [21].

3.4 Bound-Bound Spectroscopy

Bound-bound spectroscopy, involving transitions between rovibrational levels in
the electronic ground and electronic excited state, represents an even more precise
method for characterizing the locations of resonances, since (1) no integral over
collision energy needs to be performed and (2) the lineshapes involved are sym-
metric. In order to determine the absolute binding energy of a state, however, it is
necessary to compare the location of the (narrow) transition resonance described
by a symmetric Lorentzian lineshape to the location of the (broad) dissociation
threshold described by an asymmetric “shelf” lineshape. The measured binding
energy will be affected by many systematic effects shifting the locations of both
of these features, including shifts due to the optical lattice, the probe laser, magnetic
fields, and molecule cloud density. To describe how these effects are evaluated, it’s
best to offer a case study for consideration.

3.4.1 Case Study: 1,(—v,J = 1)

The most weakly bound state in the 1, potential is extremely long-lived, with a
lifetime of roughly 5 ms (see Chap.6). This long lifetime implies that transitions
to this state should correspondingly be extremely narrow, and makes it attractive
as a “proving ground” for honing our abilities to do precision spectroscopy. As a
case study, I will discuss the techniques we used to determine the binding energy
of this state with an uncertainty of <5kHz. This number is primarily limited by
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the uncertainty in determining the onset of the (~10kHz wide) “shelf transition,”
though future experiments focusing instead on measuring the relative difference
between two narrow subradiant states could be made even more accurately.

34.1.1 Correcting “Cavity Drift”

A frustrating technical issue in our experiment is that our main cavity-stabilized
laser is not locked to an absolute external frequency reference, but instead is allowed
to drift with the cavity. While the cavity was built to minimize these effects through
vacuum shielding and active temperature feedback, we are still left with a residual
cavity drift of several hundred hertz per minute. Since evaluating the strength of a
systematic effect typically requires several tens of minutes to check the shift of a
transition as an experimental parameter is varied, the cavity drift must be measured
and corrected for.

To correct for this drift, data sets evaluating systematic shifts are interspersed
with “calibration measurements,” taken at a repeatable set of experimental con-
ditions (i.e., the same lattice power, probe powers, magnetic field, etc.). Using
timestamps from the logged data, we then plot the locations of the calibration
measurements versus time and fit with a low-order polynomial (usually linear, but
sometimes quadratic or higher). The polynomial fit is then used to subtract off a
correction for every time-stamped measurement in the entire data set, ensuring that
the calibration measurements do not move with time and that the shifts of all other
data points are due only to the systematic effect being studied. For extremely precise
lineshape studies, the frequency axis of individual traces is also “squeezed” in an
analogous manner (see Fig. 7.6).

Note that for two-photon measurements sensitive only to frequency differences,
cavity drift is unimportant. This is because when both lasers are locked to the same
cavity (as is true when one is optically phase-locked to the other), drifts are common
mode, and therefore cancel when evaluating their difference.

3.4.1.2 Zeroing the Magnetic Field

Rather than performing measurements with the magnetic field zeroed, we instead
perform all binding energy measurements in the presence of an applied magnetic
field which is small but large enough to properly set the quantization axis. We do
this because there are two effects which compete in determining the quantization
axis for our molecules: Zeeman shifts induced by the magnetic field, and tensor
light shifts induced by our linearly polarized optical lattice. The quantization axis
will be determined by whichever effect produces a larger energy splitting among
different magnetic sublevels. See Fig. 3.13 for details.

In order to avoid nonlinear complications due to a changing quantization axis,
we performed all measurements at an applied magnetic field of 430(30) mG. The
uncertainty in this value comes from the procedure we use to zero the magnetic



47

3.4 Bound-Bound Spectroscopy

suonIsuel) pueqopis are sduing I9[[ews 9y} S[IYM ‘S[AAJIQNS T ‘() = |w|
Ay 03 suonisueny are syead juourword Ay, ‘Uoye) 2Iom (B) Ul UMOUS BIeP 9} YIIUM WOIJ ‘SP[oy dnouSew pajodfes je enoads (q) "G4 "SI Ul 18] PaqLIOsap
ejep mex sajerodioour 21y sy, "Ow (¢ Jo prey oneudew pardde ue je jess (1 ‘1—) %1 oy 105 AS10us Surpurq oY) Jo sjuswRINSEAW [[e Junjew £q  uorsar
IoSuep,, SIY) PIOAB 9AN ‘TOAQ[QNS () = 4 9y) Jo uonisod ayy ur Jy1ys Idniqe ue s1 219y} Sp[oy dnouIew [[ews Je Jey) AJON [eINIOA I8 uonodIIp uonezirejod 9ome|
Ay} pue UondIp Py 2y og "prey ondusew parjdde o jsureSe payofd are ayess (1 ‘T—)1 ayp Jo s[eas[qns 1 ‘0 = |w| oy Jo suoneso] oYL, (B) €1°¢ S

(zHN) Aotenbaig (DHu) py orouse)y

G1'8- 02’8 G¢'8-  0€8 G€8-  0v'8- Gl'8-  0C8- Gg8-  0€8  G€8-  0v'8- 00
j ' ) j j j j ' j j j j 0st 00l 0s 0 0G- 00}~ 0G1-
Dw gl = |g]| o gy = |4| T T T T T T T T T T T
110 [ ]
= - ov'g-
{zo @ . v or'8
Q
10 3 v 1
170 o ° o ° o © ol Ge'8- Mwﬂ
mw ° ° ° ° [ ] [ ] | DW.
so B . v 5
= | o Q
GL'g- 028 GZ'8- 0€8 GE€8 08 Gl'g- 028 GZ'8- 0€8 GE€8 08 00 m v Om w W\V
T T T T T T T T T T T T u ™ —_
=}
DL = |g| D g9l = |g| g 1 £
g 410 = Aurepsoun Aousnbaly ~ syulod jo yipipy - v —
. =
= (Nlv=w ~ - Q528 =
] e & T
. 0O=W o v 1 =
— L]
J de0 m l-=w L]
& v - -1 028
) 1o —
. p
p 450 [}
Gl1'8-

(9) (e)



48 3 Measurements of Binding Energies

field, which is to find the value of applied magnetic field which makes the m = +1
magnetic sublevels degenerate. At very small magnetic fields, the quantization
axis is determined by the lattice polarization, and unfortunately in this case the
trap is extremely non-magic for transitions to the m = =1 sublevels. As a
result, the lineshape describing transitions to these levels is very asymmetric and
approximately 20kHz broad. This limits the certainty with which we can say
definitively whether these sublevels are absolutely energy-degenerate. Additionally,
our magnetic field stabilization is very rudimentary, and prone to small drifts over
the course of the day. This fact has been taken into consideration in assigning the
magnetic field uncertainty above.

The frequency f of the transition to the 1,(—1,1,m = 0) state will shift
quadratically with magnetic field according to f = fy + kB>. The uncertainty due to
magnetic field can therefore be estimated as:

Af ~ 2kBAB 3.19)

The 1,(—1, 1) is weakly bound, and therefore has a very large quadratic Zeeman
shift of k = 121(3) kHz/G? (see Chap. 4). We can then estimate the uncertainty due
to magnetic field as:

kH
Af ~ 2121 G—ZZ -0.430G-0.03G = 3.1kHz (3.20)

Note that since the uncertainty is proportional to both B and «, this uncertainty
will be smaller for more deeply bound states with smaller quadratic Zeeman shifts,
and can be minimized for any state by decreasing the B-field (so long as the
quantization axis remains well-defined).

3.4.1.3 Nearly-Magic Lattice Light Shifts

Care was taken to arrange the optical lattice so that it was as nearly magic as
possible for the transition under investigation. Unfortunately, the “magic lattice”
condition for a transition to the 1,(—1, 1, m = 0) state is different from that which is
required for the 'Sy +>P; dissociation threshold. A future experiment could improve
precision by quickly rotating the lattice laser polarization between measurements
of the 1,(—1,1,m = 0) state and the 1S,+3P; dissociation threshold so that it
remained approximately magic in both cases. For the data presented here, however,
the total shift was simply measured for each feature and calibrated out in order to
determine the final binding energy.

Figure 3.14 shows the lattice light shift for both the 1,(—1,1,m = 0) state and
the 'So+>P; dissociation threshold. The magnitude of this shift was measured by
recording the location of each feature at alternately high and low lattice power (i.e.,
trap depth), correcting the data for cavity drift, and then fitting a line to the resulting
plot of frequency vs lattice power.
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Fig. 3.14 Because the “magic lattice” conditions for the X(—1,0) = 1,(—1,1,0) and 'Sy —3P;
transitions are mutually exclusive (i.e., they require different lattice laser polarization orientations),
we can only minimize lattice light shifts for one of these transitions. For the measurements
described in this section, we arranged for the lattice to be magic for X(—1,0) — 1,(—1,1,0). (a)
Location of the 'Sy, —>P; “shelf” transition (as determined by a simple tan™! fit) plotted vs lattice
power. (b) Location of the X(—1,0) — 1,(—1, 1, 0) transition (as determined by a Lorentzian fit)
plotted vs lattice power. While the shift in (b) is consistent with zero, the shift in (a) is large enough
to induce an error of ~5 kHz if not properly accounted for

The resulting light shift for the 1,(—1,1,m = 0) state is very small
(—1.5(1.1) Hz/mW), resulting in an overall shift of ~255(187)Hz compared to
the zero lattice-power location. The shift for the !Sy43P; dissociation threshold
is larger at 42.2(13.1) Hz/mW, resulting in a net shift of 7.6(2.2) kHz for our
180 mW lattice. It is clear that the dominant contribution to the uncertainty in this
measurement comes from uncertainty in measurement of the lattice light shift of
the !Sy+3P; dissociation threshold.

3.4.14 Probe Light Shifts

The probe lasers can also induce (very small) light shifts in the features under
examination. However, these light shifts can be made to be extremely small by using
very small probe powers and simply increasing the interrogation time. (Note that this
option is not available in the case of lattice power, since the minimum possible trap
depth is set by the ~3 WK temperature of our trapped molecules, and higher lattice
powers generally lead to higher signal-to-noise—see Fig. 3.8).

Figure 3.15 shows plots of the light shifts measured for these states. Note that the
light shifts were measured by increasing the probe power to much higher levels than
was actually used for the final determination of binding energy, so that the actual
shift is very small.



50 3 Measurements of Binding Energies
-0.590 -0.610
(a) (b)
-0.592 |- 0612 |
N S
= =
< -0.594 | T h < 0614 |
Z 059 - 1 l Z 08161,
= )
< 0598 S 0618 |
73} o
-0.600 |- Slope = 0.5(5.0) Hz/pW .0.620 I Slope = 299(94) Hz/uW

0 50 100 150 200 250 0 2 4 6

Probe power (W)

Fig. 3.15 (a) Location of the 'Sy —>*P; “shelf” transition (as determined by a simple tan™!
fit) plotted vs probe laser power. (b) Location of the X(—1,0) — 1,(—1,1,0) transition (as
determined by a Lorentzian fit) plotted vs probe laser power

3.4.1.5 REF Clock Uncertainty

Measurements of the binding energy of the 1,(—1, 1) state were made on April 24,
2014. As was discussed in Sect. 3.3.4.3, the uncertainty due to 0.05 ppm aging per
year of our SG384’s OXCO (“oven-controlled crystal oscillator”) internal timebase
last calibrated in 2009 will be of the order of only a few Hz, and therefore completely
negligible for this particular measurement.

3.4.1.6 Final Calculation of Binding Energy

Extrapolating shifts for both the 1,(—1, 1) state and the 'Sy+>P; shelf to zero power
and field, and then calculating the difference in laser frequencies between these two
resonance conditions, yields the following value for the binding energy:
Ej,(—1.1) = 19.0420(38) MHz - h (3.21)

The ~4 kHz uncertainty in this value is dominated mostly by two systematics: the
uncertainty in the absolute magnetic field (yielding ~3.1kHz), and the uncertainty
in the lattice laser light shift of the dissociation threshold (yielding ~2.2 kHz). The
magnetic field uncertainty can in the future be minimized by either operating at
a smaller magnetic field, or choosing to observe a state with a smaller quadratic
Zeeman shift (or by discovering a better way to characterize and stabilize the
magnetic field within the chamber). The uncertainty in the lattice light shift of the
dissociation threshold is more difficult to contend with, but could be minimized by
making measurements under magic lattice conditions (perhaps by rapidly switching

lattice polarization between measurements of the positions of the shelf and the
1,(—1, 1) state).
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3.5 Coherent Two-Photon Raman Transitions (Ground State
Binding Energy Differences)

The most accurate measurements our lab can currently make (in terms of absolute
frequency uncertainty) turn out to be relative differences in the binding energies
of different rovibrational levels in the electronic ground state. This is because
molecules in the electronic ground state are inherently stable, so that the linewidth
of the transitions we can observe are not limited by finite lifetime of the final state.
These measurements are made by determining the frequency difference between
lasers required to drive a two-photon Raman transition between levels with binding
energies Ep; and Ep, (see Fig. 3.16), extrapolating to the limit of zero power for all
lasers.

The achievable precision with which we can measure frequency differences
is ultimately limited by the linewidth we can achieve for the 2-photon Raman
transition. This linewidth is related to the coherence time characterizing Rabi
oscillations between the two levels under consideration.

3.5.1 Comments on Coherence Time

Figure 3.17 shows Rabi oscillations between the X(—2, 0) and X(—1, 0) levels under
various conditions. To observe these oscillations, we (1) prepare molecules in a state
with binding energy Ej1, (2) subject them to a 2-color probe pulse of duration t and

Fig. 3.16 A schematic
representation of the scheme
used to excite Raman
transitions between bound
states. For the measurements
described in this section, A is
several hundred MHz from
the nearest bound state, and
binding energy differences
represent the extrapolated
zero-power difference in
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Fig. 3.17 The coherence time of a two-photon Raman transition is dramatically affected by the
waist of the probe lasers used to drive it, since smaller waists can result in inhomogeneous laser
intensity across the molecule cloud. Here are shown Rabi oscillations observed for the X (—2,0) —
X(—1, 0) transition for three different values of the probe waist

detuning § = 0 as depicted in Fig.3.16, and (3) count the molecules remaining
in the initial state by photodissociation and absorption imaging of the resulting
atomic fragments. Figure 3.17 illustrates that the primary impediment to long
coherence times is inhomogeneous probe laser intensity across the atom sample.
This limitation can be minimized along the transverse direction by expanding the
probe waist so that the entire molecule cloud sees a more homogeneous probe beam.
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Fig. 3.18 (a) As the probe beam passes through the molecular cloud, it can become attenuated,
causing molecules near the front of the cloud to cycle through Rabi oscillations more quickly
than molecules near the back. (b) We observe hints of this effect by measuring the population
of a particular electronic ground state vs probe duration at three different points in the cloud, as
viewed from a camera oriented perpendicular to the lattice trapping and probe axis. The fitted Rabi
frequency for molecules at the left of the cloud is observed to be slightly smaller than for molecules
at the right

Another effect which is not so easy to mitigate is the fact that as the probe
beam travels through the molecule cloud, it will be partially absorbed. Therefore
molecules near the “front” of the cloud will see a more intense beam, while
molecules near the “back” will see a less intense beam. Figure 3.18 illustrates
the problem schematically, and shows some rough data confirming that the Rabi
frequency can vary by approximately 3% across the cloud. The importance of this
effect can be minimized, however, by simply operating at smaller probe powers (and
therefore smaller Rabi frequencies), since the degree of decoherence will be smaller
if the molecules oscillate through fewer Rabi cycles.

3.5.2 Determination of Binding Energy Differences Among
X(-1,0), X(-2,0), and X(-3, 0) States

We have so far precisely measured binding energy differences between two pairs of
levels in the electronic ground state [19]:

o Ex(—10) — Ex(—2.0) = 1263.673582 % (63)exp & (320)ca MHz
o Ex(—2.0) — Ex(_3.0) = 3710.255610 = (170)cxp % (930)c MHz

Here, errors labeled “exp” result from uncertainty in extrapolating resonance
frequencies to zero laser power, while errors labeled “cal” result from imperfect
calibration of our SG384’s OXCO internal clock. The following sections clarify
how these systematic effects were evaluated.
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Fig. 3.19 The location of the two-photon resonance for X(—2,0) — X(—1,0) (left) and
X(—2,0) — X(—3,0) (right) as defined by the detuning of one of the two spectroscopy lasers
from an arbitrary reference point is plotted against lattice power

3.5.2.1 Dominant Sources of Uncertainty

Lattice Light Shifts Though the optical lattice is approximately magic for the
1Sy +>P; atomic transition, it is in general slightly non-magic for transitions between
molecular states. When one of the states involved in the transition possesses a
rotational momentum J # 1, it is often possible to balance tensor and scalar light
shifts such that the net differential shift is zero (see “Subradiant Spectroscopy”).
For two-photon transitions between J = 0 molecules in the electronic ground state,
however, no tensor light shift is present, and therefore our options are more limited.
It is believed that magic wavelengths should exist for pairs of rovibrational levels
which would be interesting for the construction of a molecular clock [31]. The
development of magic-wavelength traps for these molecular clock transitions will
therefore be an important task for future experimental work. For this thesis, however,
we simply measured the (small) differential lattice light shift and extrapolated to
zero lattice power.

Figure 3.19 shows the shift in the two-photon resonance as a function of lattice
power. Note that though the shift is extremely small (only 4.1(1) HzZ/mW), we can
nevertheless measure it with impressive precision. This is due in equal parts to
the facts that the raw data used to construct this plot consisted of very narrow
spectroscopic traces (linewidth &~ 300 Hz), and that cavity drift does not influence
differential frequency measurements.

Probe Light Shifts Because two lasers are simultaneously applied to the
molecules, we must separately determine the shifts imparted by each, and then
extrapolate to zero power. Figure 3.20 shows the shift of the resonance location
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Fig. 3.20 The Rabi flopping rate for a two-photon transition between levels in the electronic
ground state will be proportional to the square root of the product of laser powers used for
spectroscopy. In the top row, this Rabi flopping rate is plotted against each laser power. In the
bottom row, the location of the two photon resonance is plotted against each laser power. All data
is for the X(—2,0) — X(—1,0) transition

vs power for both probe lasers L; and L,. The total shift was assumed to simply
be the sum of the shifts separately induced by each probe laser, which should be
a safe assumption so long as L; is tuned far from resonance with the intermediate
state (i.e., so long as all light shifts are linear), which was indeed the case for this
experiment. In this case, the light shift due to L; can be measured by setting the
power of L, to a small value, varying the power of L;, and recording the position of
the 2-photon resonance.

Inhomogeneous Lineshape Fitting These measurements were made in May,
2013, before we fully understood the nature of how the small differential lattice
light shift acted upon our lineshape. We now know that for molecules at ~3 pK
in an approximately harmonic optical lattice trap, the lineshape of the two-photon
resonance will be asymmetric, with a linewidth approximately one third of the total
shift induced by the lattice trap [15]. At the time this data was analyzed, we did not
account for the asymmetric nature of this lineshape, but instead fit our data with a
simple Lorentzian function. In cases where the molecule cloud temperature does not
asymptotically approach zero at zero lattice power, we know that this can induce a
systematic error in the determination of the unperturbed resonance location. In our
experiment, however, the molecule temperature does closely approach zero at zero
lattice power (see Fig. 7.7a). Therefore we don’t expect the error due to an incorrect
fitting function to be significant.

RF Electronics Calibration Measurements of both binding energy differences
described at the beginning of this section were made within 1 month of one another
in 2013. They therefore both suffer from approximately the same fractional error
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due to an aging RF clock, and because the frequencies involved are so large (and the
other experimental uncertainties so small), RF clock calibration contributes to a very
significant uncertainty in our reported binding energy. Conservatively assuming a
fractional uncertainty for the >4 year drift of 0.25 ppm, we calculate an uncertainty
of:

1264 MHz x 0.25 ppm ~ 320Hz
3710 MHz x 0.25 ppm & 930 Hz

* A(Ex(-1,0) — Ex(-2,0))cal
* A(Ex(—2.0) — Ex(-3,0))cal

QR

These uncertainties are larger than any other source of experimental uncertainty,
and therefore dominate our error budget. But note that this is an easy problem to
fix—future measurements can reduce this number by simply calibrating the RF
electronics to a better clock. This is in fact already being done in our lab, as we
now discipline our 10 MHz clock to GPS.

References

1. Arora, P, Purnapatra, S., Acharya, A., Kumar, R., Gupta, A.: Measurement of temperature of
atomic cloud using time-of-flight technique. MAPAN 27(1), 31-39 (2012)

2. Bohn, J., Julienne, P.: Semianalytic treatment of two-color photoassociation spectroscopy and
control of cold atoms. Phys. Rev. A 54(6), R4637 (1996)

3. Borkowski, M., Morzynski, P., Ciuryto, R., Julienne, P., Yan, M., DeSalvo, B., Killian, T.:
Mass scaling and nonadiabatic effects in photoassociation spectroscopy of ultracold strontium
atoms. Phys. Rev. A 90(3), 032713 (2014)

4. Chin, C., Flambaum, V.: Enhanced sensitivity to fundamental constants in ultracold atomic
and molecular systems near Feshbach resonances. Phys. Rev. Lett. 96(23), 230801 (2006)

5. Cohen-Tannoudji, C.: The Autler-Townes effect revisited. In: Amazing Light, pp. 109-123.
Springer, Berlin (1996)

6. Crubellier, A., Dulieu, O., Masnou-Seeuws, F., Elbs, M., Knockel, H., Tiemann, E.: Simple
determination of Na, scattering lengths using observed bound levels at the ground state
asymptote. Eur. Phys. J. D 6(2), 211-220 (1999)

7. Friebel, S., D’andrea, C., Walz, J., Weitz, M., Hinsch, T.: CO,-laser optical lattice with cold
rubidium atoms. Phys. Rev. A 57(1), R20 (1998)

8. Gao, B.: Zero-energy bound or quasibound states and their implications for diatomic systems
with an asymptotic van der Waals interaction. Phys. Rev. A 62(5), 050702 (2000)

9. Jones, K., Tiesinga, E., Lett, P, Julienne, P.: Ultracold photoassociation spectroscopy: long-
range molecules and atomic scattering. Rev. Mod. Phys. 78(2), 483 (2006)

10. Kamiya, Y., Itagaki, K., Tani, M., Kim, G., Komamiya, S.: Constraints on new gravitylike
forces in the nanometer range. Phys. Rev. Lett. 114(16), 161101 (2015)

11. Léonard, J., Mosk, A., Walhout, M., van der Straten, P., Leduc, M., Cohen-Tannoudji, C.:
Analysis of photoassociation spectra for giant helium dimers. Phys. Rev. A 69(3), 032702
(2004)

12. Lutz, J., Hutson, J.: Deviations from Born-Oppenheimer mass scaling in spectroscopy and
ultracold molecular physics. J. Mol. Spectrosc. 330, 43-56 (2016)

13. Martinez de Escobar, Y., Mickelson, P., Pellegrini, P., Nagel, S., Traverso, A., Yan, M., Coté,
R., Killian, T.: Two-photon photoassociative spectroscopy of ultracold 38Sr. Phys. Rev. A 78,
062708 (2008)

14. McDonald, M.: High precision optical spectroscopy and quantum state selected photodissoci-
ation of ultracold %8Sr, molecules in an optical lattice. Ph.D. Thesis, Columbia University in
the City of New York (2016)



References 57

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

McDonald, M., McGuyer, B., Iwata, G., Zelevinsky, T.: Thermometry via light shifts in optical
lattices. Phys. Rev. Lett. 114(2), 023001 (2015)

McDonald, M., McGuyer, B., Apfelbeck, F., Lee, C.-H., Majewska, 1., Moszynski, R.,
Zelevinsky, T.: Photodissociation of ultracold diatomic strontium molecules with quantum
state control. Nature 534(7610), 122-126 (2016)

McGuyer, B., Osborn, C., McDonald, M., Reinaudi, G., Skomorowski, W., Moszynski, R.,
Zelevinsky, T.: Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic
Zeeman shifts. Phys. Rev. Lett. 111(24), 243003 (2013)

McGuyer, B., McDonald, M., Iwata, G., Skomorowski, W., Moszynski, R., Zelevinsky, T.:
Control of optical transitions with magnetic fields in weakly bound molecules. Phys. Rev. Lett.
115(5), 053001 (2015)

McGuyer, B., McDonald, M., Iwata, G., Tarallo, M., Grier, A., Apfelbeck, F., Zelevinsky, T.:
High-precision spectroscopy of ultracold molecules in an optical lattice. New J. Phys. 17(5),
055004 (2015)

McGuyer, B., McDonald, M., Iwata, G., Tarallo, M., Skomorowski, W., Moszynski, R.,
Zelevinsky, T.: Precise study of asymptotic physics with subradiant ultracold molecules. Nat.
Phys. 11(1), 32-36 (2015)

Moal, S., Portier, M., Kim, J., Dugué, J., Rapol, U., Leduc, M., Cohen-Tannoudji, C.: Accurate
determination of the scattering length of metastable helium atoms using dark resonances
between atoms and exotic molecules. Phys. Rev. Lett. 96(2), 023203 (2006)

Napolitano, R., Weiner, J., Williams, C., Julienne, P.: Line shapes of high resolution
photoassociation spectra of optically cooled atoms. Phys. Rev. Lett. 73(10), 1352 (1994)
Osborn, C.: The physics of ultracold Sr, molecules: Optical production and precision
measurement. Ph.D. Thesis (2014)

Reinaudi, G., Osborn, C., McDonald, M., Kotochigova, S., Zelevinsky, T.: Optical production
of stable ultracold 38Sr, molecules. Phys. Rev. Lett. 109, 115303 (2012)

Salumbides, E., Koelemeij, J., Komasa, J., Pachucki, K., Eikema, K., Ubachs, W.: Bounds on
fifth forces from precision measurements on molecules. Phys. Rev. D 87(11), 112008 (2013)
Skomorowski, W., Pawtowski, F., Koch, C., Moszynski, R.: Rovibrational dynamics of the
strontium molecule in the A'X}, *I1,, and a®=F manifold from state-of-the-art ab initio
calculations. J. Chem. Phys. 136(19), 194306 (2012)

Tarallo, M., Iwata, G., Zelevinsky, T.: BaH molecular spectroscopy with relevance to laser
cooling. Phys. Rev. A 93(3), 032509 (2016)

Weiss, D., Riis, E., Shevy, Y., Ungar, P, Chu, S.: Optical molasses and multilevel atoms:
experiment. J. Opt. Soc. Am. B 6(11), 2072-2083 (1989)

Zanon-Willette, T., De Clercq, E., Arimondo, E.: Ultrahigh-resolution spectroscopy with
atomic or molecular dark resonances: exact steady-state line shapes and asymptotic profiles
in the adiabatic pulsed regime. Phys. Rev. A 84(6), 062502 (2011)

Zelevinsky, T., Boyd, M., Ludlow, A., Ido, T., Ye, J., Ciurylo, R., Naidon, P., Julienne, P:
Narrow line photoassociation in an optical lattice. Phys. Rev. Lett. 96(20), 203201 (2006)
Zelevinsky, T., Kotochigova, S., Ye, J.: Precision test of mass-ratio variations with lattice-
confined ultracold molecules. Phys. Rev. Lett. 100(4), 043201 (2008)



Chapter 4
Measurements of Zeeman Shifts

4.1 Introduction and Summary of Measurements

The term Zeeman shift refers to the perturbation of atomic or molecular energy
levels due to the presence of a magnetic field, and was first observed by Pieter
Zeeman in 1897 [21]. In those original observations, Zeeman noticed that certain
spectral lines in sodium would become broader in the presence of a magnetic
field. Even more dramatically, the light emitted from the edges of these lines was
circularly polarized, hinting at a connection between angular momentum and the
“vibrations” of the particles which emitted the light. These observations (as well as
a partial explanation of their origins) earned Pieter Zeeman and Hendrik Lorentz
a Nobel Prize in 1902. But whereas more than 100 years ago measurements were
only able to resolve a slight blurring and change in the degree of polarization from
magnetically-broadened lines, today we can do quite a bit better.

Considering that our experiment was designed to adapt techniques originally
intended for the construction of the most accurate clocks in the world to the task
of molecular spectroscopy, it’s fair to say that we take pride in making extremely
precise measurements. The best clocks in the world routinely interrogate spectral
features at the part in 10'® level (a record which will almost certainly be broken
soon after this thesis is published), and our own lab hopes to eventually measure
binding energy differences to within a few orders of magnitude of this precision.
To make measurements of molecular binding energies so accurately requires
isolating molecules from external perturbations, so that the resulting measurements
are sensitive only to universal molecular physics rather than the vagaries of the
local environment. But an accurate understanding of how the environment affects
molecular structure is of course a necessary step toward achieving this goal, and
moreover can reveal aspects of molecular physics which are plenty interesting in
their own right.

© Springer International Publishing AG 2018 59
M. McDonald, High Precision Optical Spectroscopy and Quantum State Selected
Photodissociation of Ultracold 88Sr2 Molecules in an Optical Lattice,

Springer Theses, https://doi.org/10.1007/978-3-319-68735-3_4


https://doi.org/10.1007/978-3-319-68735-3_4

60 4 Measurements of Zeeman Shifts

Molecular Zeeman shifts are one such “environmental effect” which can reveal
a great deal about molecular structure. And whereas a single, highly precise
measurement of an experimental quantity can reveal the answer to specific, targeted
question, examining patterns in larger data sets (and when these patterns are
broken) can reveal general trends and deeper rules. For this reason, I include in the
introduction to this chapter four Tables (Tables 4.1, 4.2, 4.3, and 4.4) summarizing
linear and quadratic Zeeman shifts for the majority of levels so far discovered. Two
patterns are immediately apparent:

¢ Cells highlighted in green have approximately the same linear Zeeman shift
coefficients. And whether the green cells belong to the 1, or 1, potentials
depends on whether the rotational angular momentum J is odd or even.

* Quadratic Zeeman shifts among levels with the same character (1,, 0,, 1,)
increase as states become more weakly-bound. And a more careful look shows
that the quadratic Zeeman shifts scale approximately with (bond length)™3.

These observations hint at something deeper than coincidence, and the following
sections will aim to connect these trends to a deeper, more general understanding of
molecular physics.

4.1.1 Details About Data Presented in Tables 4.1, 4.2, 4.3,
and 4.4

Tables 4.1, 4.2, 4.3, and 4.4 present linear and quadratic Zeeman shifts for the
majority of all singly-excited states of ¥Sr, with J/ < 4 and E, < 8.5 GHz. Green
cells represent levels for which the ideal Hund’s case (c¢) Zeeman shift calculation
should apply exactly (explained in Sect. 4.2.3 below). The column heading “(B;, By)
(G)” refers to the magnetic field range over which Zeeman shift data was recorded.

For all entries in these tables, Zeeman coefficients were extracted from a fit of
the peak positions versus magnetic field with the function

i=6 i
B =h+3 (%) BB .
i=1

i
where m is the magnetic sublevel being studied and the factor (ﬁ) is to ensure the

correct sign for positive and negative sublevels. For the case of m = 0, B(odq) Were
forced to equal O because of symmetry.

For the large majority of cases, Zeeman shift coefficients were extracted from
a fit of peak positions vs magnetic field which forced (83, B4, Bs, Bs) = O.
Entries marked with “*”, however, allowed higher fit coefficients. Whether higher
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orders than quadratic should be used was determined by whether the residuals of
the fit appeared to be randomly distributed about zero. For the full magnetic field
dependence of these starred entries, see Table 4.5.

@For the quadratic Zeeman shift of the m = 0 sublevel of the 0,(—1, 1) state,
the value published in [10] does not properly account for the effect of tensor light
shifts, which cause the transition frequency to artificially jump at very small values
of magnetic field as the magnetic field no longer defines the quantization axis (see,
e.g., Fig. 3.13). The value quoted in this table represents a new analysis of the same
data, but properly accounts for this effect and is therefore more trustworthy.

Table 4.1 Linear and quadratic Zeeman shifts for all singly-excited rovibrational levels of %¥Sr,
with E < 8.5GHz andJ' = 1

J =1
E (MHz) Im|| B1 (MHz/G)| B, (MHZ/G?) | (B;, B;) (G) | Ref.
0,(—1,1)| 0.4653(45) |0 |X —0.355(31) | (—0.3,40.5)| McGuyer et al. [10]*
1 10.932(19) | —0.764(61) | (—0.4,+0.3) McGuyer et al. [10]
l,(—1.1)| 19.0420(38) |0 |X —0.121(3) (—1.8,2.0) | McGuyeretal. [12]
1 1.048(2) —0.065(2) (—1.8,2.0) | McGuyeretal. [12]
0,(—2,1)|23.9684(50) |0 | X —0.0253(8) | (—4.0,1.0) | McGuyer et al. [10]
1 10.3247(44) | —0.0621(18) |(—4.0,1.0) | McGuyer et al. [10]
0,(—3,1)|222.161(35) |0 |X —0.00323(88) | (—4.0,1.0) | McGuyer et al. [10]
1 10.2248(32) | —0.00925(58) | (—4.0,1.0) | McGuyer et al. [10]
1,(—=2,1)| 316(1) 0 |X —0.0269(4) | (—1.8,2.0) | McGuyer et al. [12]
1 1.042(3) —0.019(3) (—1.8,2.0) | McGuyer et al. [12]
1,(—1,1)]353.236(35) |0 |X —0.01570(5)* | (=50, 50) McGuyer et al. [11]
1 |0.8751(121)| —0.0108(14) |(—4.0,1.0) | McGuyer et al. [10]
0,(—4,1)| 1084.093(33)|0 | X —0.0026(10) | (—4.0,1.0) | McGuyer et al. [10]
1 10.1994(28) | —0.0058(4) |(—4.0,1.0) | McGuyer et al. [10]
1,(=3.1)| 1669(1) 0 | X —0.01143(8) | (—2.0,—2.0) | McGuyer et al. [12]
1 1.046(1) —0.0087(5) | (—1.8,2.0) | McGuyer etal. [12]
1,(—2,1)2683.722(32) 0 | X —0.0112(25) | (—4.0,1.0) | McGuyer et al. [10]
1 0.8171(113)| —0.0047(15) |(—4.0,1.0) | McGuyer et al. [10]
0,(—5,1)| 3463.280(33)| 0 | X —0.0022(11) | (—4.0,1.0) | McGuyer et al. [10]
1 10.2703(40) | —0.0040(7) |(—4.0,1.0) | McGuyeretal. [10]
1,(—4,1)| 5168(2) 0 | X —0.00765(6) | (—1.8,2.0) | McGuyer et al. [12]
1 1.045(1) —0.0066(7) |(—1.8,2.0) | McGuyer et al. [12]
1,(—3,1)]8200.163(39) 0 | X —0.0157(17) | (—4.0,1.0) | McGuyer et al. [10]
1 10.2085(31) | —0.0056(5) |(—4.0,1.0) | McGuyeretal.[10]
0,(—6,1)| 8429.650(42)| 0 | X —0.0011(8) | (—4.0,1.0) | McGuyer et al. [10]
1 |1.3037(178)| —0.0084(18) | (—4.0,1.0) | McGuyer et al. [10]

See text for details
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Table 4.2 Linear and quadratic Zeeman shifts for all singly-excited rovibrational levels of $%Sr,
with E <8.0GHz and J' = 2

J =2
E (MHz) ||m| | By (MHZ/G) | 8, (MHz/G?) | (B;, Bf) (G) |Ref.
1,(—=1.2) |7(1) 0 X 0.0423(14) (—1.8,1.8) | McGuyer et al. [12]
1 0.5990(15) |0.0189(14) (—1.8,1.8) | McGuyer et al. [12]
2 1.1854(29) | —0.0544(25) | (—1.8,1.8) | McGuyer et al. [12]
1,(—=2.2) | 270(1) 0 X 0.01418(73) | (—1.8,2.0) | McGuyer et al. [12]
1 0.4882(13) | 0.0058(15) (—1.8,2.0) | McGuyeretal. [12]
2 0.9720(14) | 0.0123(17) (—1.8,2.0) | McGuyeretal. [12]
L(=12) [287() o [X 0.01220(8)* | (—50,50) | McGuyeretal. [11]
1 0B3471(5) | 0.00839(2)* | (—38,38) | McGuyeretal. [11]
2 0.6939(8) —0.0025(1) | (—14,14) |McGuyeretal.[11]
1,(=3.2) [1581(1) [0 X
1 0.434(4) 0.002(7) (1.8,2.0) McGuyer et al. [12]
2 0.8553) —0.002(3) | (1.8,2.0) | McGuyer et al. [12]
1.(=2.2) |2569(1) |0 |X
1 - 0.006(1) (—4.0,1.0) | McDonald [9]
2 | pm2s@) —0.004(2) | (—4.0,1.0) | McDonald [9]
1,(—4.2) [5035(1) [0 |X
1 |04128(13) |0.00124(12) | (—18,18) | McGuyeretal. [12]
2 0.823(2) —0.005(2) (—1.8,2.0) | McGuyer et al. [12]

See text for details. Note that all measurements assume negligible Zeeman shift of the ground
state, an assumption which could introduce errors in the recorded linear Zeeman shifts for |m| > 2
at the few hundred Hz/G level

4.2 Linear Zeeman Shifts (Low-Field)

Linear Zeeman shifts are due to interactions between the angular momentum of
charged particles and an externally applied magnetic field. For %8Sr, which lacks
nuclear spin, the Zeeman shift is due entirely to interactions with the electronic
angular momentum, defined by the Hamiltonian

Hy = - B = up(gsS + g.L) - B. 42)
where g; = 1 and gg &~ 2 are the electron orbital and spin g-factors, respectively.
The linear Zeeman shift is then defined simply as the first-order perturbation induced

by this perturbing Hamiltonian:

AE = (W°|H,|9°) (4.3)
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Table 4.3 Linear and quadratic Zeeman shifts for all singly-excited rovibrational levels of $¥Sr,

with E < 2.3GHzand J' =3

J =3
E(MHz) ||m| | B (MHz/G) | B, (MHz/G?) | (B, By) (G) | Ref.
0,(—2.3) 1 0.626(12) |0 | X —0.1820(67) | (—1.0,1.0) | McGuyer et al. [10]
1 0.3835(55) | —0.1421(68) | (—1.0,1.0) | McGuyer et al. [10]
2 0.7525(101) | —0.1326(80) | (—1.0,1.0) | McGuyer et al. [10]
3 | 1.1256(150) | —0.1256(62) | (—1.0,1.0) | McGuyer et al. [10]
0.(—3,3) | 132 0 |X —0.0058(21) | (—3.8,1.0) | McGuyer et al. [10]
1 10.2457(36) | —0.0060(7) (—3.8,1.0) | McGuyer et al. [10]
2 10.4855(69) | —0.0086(13) | (—3.8,1.0) | McGuyer etal. [10]
3 10.7098(96) | —0.0084(20) | (—3.8,1.0) A McGuyer et al. [10]
L(—1.3) [171) |0 |Xx —0.00638(6) | (—17,20) | McDonald [9]
1 0.04715(61) | —0.00599(4)* | (—17,20) | McDonald [9]
2 0.09438(45) | —0.00480(2)* | (—17,20) | McDonald [9]
3 0.14228(60) | —0.00255(3)* | (—17,20) | McDonald [9]
1,(=2.3) [193(1) |0 X
1 0.1473(26) (—2.3,1.0) | McDonald [9]
2 0.2946(17) (—2.3,1.0) | McDonald [9]
3 0.448537) (—2.3,1.0) | McDonald [9]
0.(—4.3) |901.05) |0 |X —0.00242(35) | (—1.0,4.0) | McDonald [9]
1 0.1806(24) | —0.0014(9) (—1.0,4.0) | McDonald [9]
2 0.36369(87) | —0.00293(33) | (—1.0,4.0) | McDonald [9]
3
1,(—3.3) | 1438(1) |0 X
1 0.1880(56) (0.0,6.1) | McDonald [9]
2 0.3550(38) (0.0,6.1) McDonald [9]
3 0.5291(28) (0.0,6.1)  McDonald [9]

See text for details. Note that all measurements assume negligible Zeeman shift of the ground
state, an assumption which could introduce errors in the recorded linear Zeeman shifts for |m| > 2

at the few hundred Hz/G level

4.2.1 Calculation of the Linear Zeeman Shift of the 3P, State
of 8Sr

In labelling the 3P; state as we have, we are implicitly assuming Russell-Saunders
coupling, i.e. that spin-orbit coupling is small and that the applied magnetic fields
are weak. In this case, the atomic wavefunctions are assumed to be eigenstates of 2,
2, and J?, where the total electronic angular momentum J=L+Shasa projection
along the quantization axis of m;. The linear Zeeman shift for such a system is given
by the well-known formula [20]:
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Table 4.4 Linear and quadratic Zeeman shifts for all singly-excited rovibrational levels of Sr,
with E < 1.2GHz and J' = 4
J =4
E (MHz) | [m| | Bi (MHZz/G) | B, (MHz/G?) | (B;, Bf) (G) | Ref.
1,(=1,4) 156.2(1.0) |0 |X 0.01234(2)* | (—40, 40) McGuyer et al. [11]

1 | OMOZI@® |0.01163(2)* | (—40,40) McGuyer et al. [11]
2 | 0@0B0E) | 0.0087(1) (=13, 13) McGuyer et al. [11]
3
4
,(—2.4) [ 1141) |0 X —0.009(14) | (—0.15,0.35) | McDonald [9]
1 0.2477(30) | —0.038(29) | (—0.15,0.35) | McDonald [9]
2 04934(51) |0.024(24) (—0.15,0.35) | McDonald [9]
3
4

See text for details. Note that all measurements assume negligible Zeeman shift of the ground
state, an assumption which could introduce errors in the recorded linear Zeeman shifts for [m| > 2
at the few hundred Hz/G level

= UB i | 8L %G+ 1) 8s 25+ .

4.4

The 3P, state carries s = 1,/ = 1, and j = 1. Assuming that g, = 2, we get the
following result for the total linear Zeman shift:

AE 3
W = E;Lij ~2.0994 ... - (m;) MHz/G (4.5)
The Zeeman shift calculated above has been used to calibrate all of our coils,
and therefore all Zeeman shifts reported in this thesis are defined with respect to
this calibration. However, note that even if Russel-Saunders coupling is a perfectly
accurate description for the 3P, state, we would expect our calculated Zeeman shift

to be wrong at approximately the part-per-thousand level due to the fact that g, is
not exactly 2, but rather equal to 2.002 319 304 361 82(52) [6, 14].

4.2.2 ‘Ideal’ Linear Zeeman Shifts for Molecules Satisfying
Hund’s Case (c)

Calculating the linear Zeeman shift in our Hund’s case (c) basis is complicated by
the fact that while the magnetic field defined in Eq. (4.2) is defined with respect to
an external “laboratory frame,” the labels of our basis functions |1, J,; J, 2, M;) are
defined with respect to the (rotating) molecular frame. To transform between these
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4.2 Linear Zeeman Shifts (Low-Field)
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frames we can make use of spherical tensor algebra (see, e.g., Chapter 5 of Brown
and Carrington [2], and a closely related calculation of linear Zeeman shifts of the
long-range He. .. ArT molecular ion in Ref. [3]).

In spherical tensor notation, Eq. (4.2) has the form:

Hy = gsusT" (B) - T'(S) + grpusT' (B) - T (L). (4.6)

Assuming the magnetic field is directed along the p = 0 (i.e., “z”) axis, while S and
L are defined with respect to the internuclear axis, their dot products can be rewritten
with Wigner rotation matrices:

;= gspusTo(B) Y 25) (@) T)(S) + gusTy(B) > 200 () THD)  (4.7)
q q

The process for solving for the energy perturbation due to each of the above terms
is practically identical, and so for the rest of this calculation I’ll focus only on the
first. The result for the second follows directly by analogy.

First, note that the total electronic angular momentum J, is decoupled from the
total angular momentum J, i.e. that fa . J is small compared to JB and J2. Then,
because S acts on the electronic angular momentum and @é:]) (w)* is a function of
the basis in which the molecular coordinates are written, we can rewrite the first
order perturbation of the first part AE, as:

gsisTo(B) > 7y, (@)*TL(S)
q

Yo

AE| = <n(9),Ja;J,Q,M/

() J/'J’,Q’,Mr>

(4.8)

= gssB: Y (1. Q. My|25) (@) |1/, Q . My) {10 QTNS)|J,. @) (4.9)
q

A B

where I have chosen (7(2),J,.J, R, M;) # (i (), J.,J, Q' ,My) for now for
completeness. For the ideal Hund’s case (c) result, we will eventually set initial and
final quantum numbers equal to one another.

Written in this way, we can see that there are two components of this equation
which can be solved individually.

Part A From Brown and Carrington [2] Equation 5.184, we find:
_ J 17 J 17
7.9, M| 2D (w)* |7, Q' M) = (=)= /N ,
- 92.M5| 75, )1 2 M) = DM VI o) (g o
4.10)

where I have adopted the shorthand [J] = 2J + 1 for the sake of clarity, and the
terms in parentheses represent “Wigner 3j symbols.”
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We are most interested in the first-order perturbation to an ideal Hund’s case
(c) state, which in the above expression requires that the initial and final quantum
numbers are equal. Doing so, and using the following result from Appendix C of
Brown and Carrington,

( J 1 J) _ 5qo(—1)3j+mL @11

—mgqm VIU+ DT

yields the following result:

<JanMJ}@(§;)(a))*|J,Q,M1):(—I)MJ—Q[]]( J o J)(J 11)

—MJOM] —Q qQ
4.12)
M;2
= (1Mo g 4.13
( ) ](J~|—1) q0 ( )

Part B To evaluate the next component of Eq. (4.9), we again turn to Brown and
Carrington. Using Equation 5.172 (i.e., the Wigner-Eckart theorem) we find:

Jo 17,

e lri @l 2) = ote (B L

) (]| T3S 2). (4.14)

where (Ja| |T(; (5)\ |J;) is a reduced matrix element.

To evaluate this reduced matrix element, we need to be careful. The operator S
acts on only part of the operator J, = § + L. Rewriting {Ja) as |L, S, J,) and using
Equation 5.175 of Brown and Carrington yields:

Ul A1) = (.. ]| T .. ) @15)

S'J L

= Sy (=)t i
(1) DI

}(S||T1(§)||S’), (4.16)

where the term in brackets is a Wigner 6j symbol.
The final inner product is a truly reduced matrix element, and can be evaluated
with Brown and Carrington Equation 5.179:

(S||T"(S)||S') = 855 V/S(S + DIS] 4.17)

Putting everything together results in a monster expression which can be reduced
once again by setting all initial and final quantum numbers equal to one another:
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N _ J. 1J,
{Va QT (e, Q) = (=) (—sz q sz)

J. S 1

x (1)t ] { S Ja L} « VSSTDE]  (4.18)

We need one more identity from Brown and Carrington (Appendix D), which states:

; S Ja L} = (c])letStLA SS+ 1) +J.(J,+1)—LIL+1)

Ja S'1 VSQ2S + 128 + 2)(Jo)(2J, + 1) (2], + 2)
(4.19)

Carefully adding all contributions yields the final result for part B:

Jo(Ja+ 1) —L(L+ 1)
20,J.+ 1)

] g Q 6J,+2L+2S+ S S+ 1 =+
(J(va| ;(S)|J/’ /) (_1) Ja L+2S 28 Q ( )

Total Linear Zeeman Shift Assuming all angular momentum quantum numbers
take integer values (as is true in our case), the complicated factors of (—1)"
disappear. We then recognize that if we were to repeat the calculation for the orbital
angular momentum L component, then the effect would be to replace gg with g;,
as well as to swap the positions of L and S in the final expression. Combining
everything then yields a final result for the total linear Zeeman shift in a Hund’s
case (c) molecule:

2

M;
200 + 1)

A

(HZ) = upB:

((gs b o) + (g5 —g) B D LE A 1))

JalJa + 1)

421

(Note that a slightly less general version of this formula was also given in [19].)

We’re strictly interested in only two “flavors” of molecule for the purposes of this
thesis: those consisting of two atoms in each in the IS, state, and those for which one
of the atoms is in the 3P; state. The linear Zeeman shift for electronic ground-state
molecules is clearly zero, since all electronic angular momentum quantum numbers
are equal to zero. In the excited *P; state, we have S = 1, L = 1, and J, = 1.
Plugging these values into Eq.(4.21), as well as g, = 1 and gg = 2, yields the
following predictions for the Zeeman shifts for molecules with various total angular
momenta J and 2 = 1 (2 = 0 yields zero linear Zeeman shift for all J):

¢ 7= 1: AL = OASTRMVHZG)
+ 7 =2 AL = (34995M; (MHZIG)

+ 7 =3 AL = (ITH95M; (VMHZIG)
+ J = 4 AL = QIO9T5M; (MHZIG)
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How well do these predictions match our data? Tables 4.1, 4.2, 4.3, and 4.4 show
all measurements of linear Zeeman shift coefficients made to date by our lab. While
there is clearly a large spread in the measured Zeeman shifts for different levels,
a pattern can be identified (highlighted in green in the table) which seems to do a
good job of predicting when the measurement will match the calculation of the ideal
Hund’s case (c) prediction: If J is odd and the wavefunction symmetry is gerade,
or if J is even and the wavefunction symmetry is ungerade, then linear Zeeman
shifts will be close to “ideal.”

What determines whether or not a particular rovibrational level will adhere to
the ideal Hund’s case (c) prediction? The answer lies in investigating our original
assumption about whether 2 was a valid quantum number.

4.2.2.1 Aside: Note on the Impact of Using Pure 2 States vs
Parity-Adapted Eigenstates

As we discovered in Chap. 2, states with the 1,, label are actually linear superposi-
tions of eigenfunctions with 2 = +1. However, in deriving ideal predictions for
linear Zeeman shifts, we assumed 2 to take a single value. Will this impact our
predictions for what should be observed in experiment? For linear Zeeman shifts
it turns out that the answer is no, since the total shift is proportional to ©? and
independent of the sign of 2. However, we will need to take into account the full
form of the “1,” basis states in order to accurately describe Coriolis coupling.

4.2.2.2 Coriolis Coupling and Mixing Angles

Coriolis coupling, i.e. a coupling between the vibration and rotation of a molecule,
can cause the unperturbed rovibrational levels in a molecule to become linear
superpositions of states with A2 = 1. There’s no simple rule for predicting the
degree of mixing for a particular rovibrational level when such mixing is allowed,
but this quantity can be calculated numerically with sufficient knowledge of the
shapes of molecular potentials and their interactions [1, 10]. And since Coriolis
coupling can cause deviations of linear Zeeman shifts from the ideal Hund’s case
(c) predictions, we can invert the problem and use precise measurements of linear
Zeeman shifts to characterize the degree to which particular rovibrational levels are
mixed.

Instead of assuming that an observed rovibrational level is a pure |2| = 0 or 1
state, let’s instead let an observed state |v, J, M;) be a superposition of ideal Hund’s
case (c) states, e.g.

|v,J,M;) = cos (0)|v(0),J, My) + sin (0)|v(1),J, M,), (4.22)

where the component wavefunctions |v(2), J, M,) are defined by
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10(0).7.My) = [njgo: v(12] = O 2 = 0,My) (423)
1 1
— |, Q=+1.M)+ —|J,Q=—-1,M ,
7 )+ J>)
(4.24)

10(1).4. M) = [y =i v(12] = 1)) (

where |J,Q2,M;) is a purely rotational state, and |nq; v(]2])) represents the
electronic and vibrational parts of the wavefunction.

According to the above definition, states for which 8 = 0° represent pure 0,
states, while states for which 6 = 90° represent pure 1, states. Using Eq. (4.22) to
define our wavefunction, we can then calculate the linear Zeeman shift, and relate
this quantity to the purity of our state through the mixing angle 6. We therefore find:

AE = (v,J, My|Hz|v,J, My)

=cos® 0(J, 2 = 0,My|Hz|J, 2 = 0, M)

s 2
= b (V.2 = LMylfz). @ = 1.M)) + (1.2 = — LMy |fiz]0. @ = =1.M)))
sin 26 (v(0)|v(1)) N
SO (100,92 = 0, My| Bz | 0.2 = 1M
+ NG ((770 J|Hz|m 1)
+ (10302 = 0.y |z n1: 0. @ = —1.M))). (4.25)

Note that only terms satisfying A2 = 0, =1 are present (i.e., there is no mixing
between 2 = —1, 41), which is required because of a selection rule for the Zeeman
Hamiltonian. We’ve already calculated the first two terms, since they represent
simply the first-order Zeeman shifts for ideal Hund’s case (c) states. The third term
can be calculated in the same way, with the only difference being that €, Q' are not
forced to be equal.

Solving for this third term (which for clarity is not repeated here) and adding
everything together yields the linear Zeeman shift as a function mixing angle 6
between 2 = 0, 1 states:

3 sin® 6 sin 20
AE = 5M]/,LBB(J(J+ 0 + \/m(v(o)h)(l))). (4.26)

In our calculation of mixing angles from experimental Zeeman shift data, we
assumed the vibrational wavefunction overlap (v(0)|v(1)) was exactly equal to
1, an approximation which was supported by numerical calculations from our
collaborators. Later work [1] improved agreement between experiment and theory
partly by making more accurate calculations of this overlap.
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4.2.3 Validity of Hund’s Case (c)

We’re now in a position to understand why only odd-J gerade states and even-
J ungerade states adhere nearly perfectly to the ideal Hund’s case (c) prediction.
When both 2 = 0 and |2| = 1 states are possible for a given combination of
parity and rotational angular momentum, Coriolis coupling will cause strong mixing
between the 0, and 1, potentials, and the observed levels will have Zeeman shifts
determined by a competition between the ideal 0, shift (i.e. zero) and the ideal 1,
shift given by Eq. (4.21). If, however, 2 = 0 is forbidden by quantum statistics, then
the observed levels must be pure 1, states, and therefore adhere nearly perfectly to
the ideal Hund’s case (c) prediction.

It is pretty neat that within one molecule, and between rovibrational levels
differing only by one unit of rotational angular momentum, we can see both the
validation and breakdown of the Hund’s case (c) model.

4.3 Quadratic (and Higher Order) Zeeman Shifts

Quadratic Zeeman shifts are the result of second-order perturbations of molecular
binding energies due to the presence of a magnetic field. The second order correction
E,(f) to the unperturbed energy E,({O) of a state |k) is given by the well-known formula

© ©
@ _ |(k©|HZ|n@)?
AE; Z 200 (4.27)

where the perturbing Hamiltonian Hy is in this case the Zeeman Hamiltonian, which
connects states with AJ = 0, 1 and AM; = 0 (but AJ # 0if J = 0).

It is clear that the sum in Eq.(4.27) means that any exact calculation of the
expected shift will be extremely complicated. However, we can develop an intuitive
understanding of how these shifts relate to the structure of the molecule by making a
few simplifying assumptions. There are (at least) two different ways we can proceed,
which give different pictures about the underlying physics responsible for these
shifts.

4.3.1 Option 1: Coriolis Coupling of the & = 0, 1 Potentials

As was discussed in Sect. 4.2.2.2, the states we observe in singly-excited *¥Sr, are
not perfectly ideal Hund’s case (c) eigenfunctions. Instead, they are superpositions
of @ = 0 and Q = 1 eigenstates given by Egs. (4.23) and (4.24). This realization
implies that the dominant contribution to the perturbation sum might be due to the
Zeeman Hamiltonian coupling states of different 2.
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From our knowledge of the form of the Zeeman Hamiltonian H; and the Coriolis
mixedAwavefunctions described by (4.23) and (4.24), it’s clear that the numerator
[(kOH,|n©)|? of Eq. (4.27) will take the form:

(numerator) = ;L,zg - B? - |(v(0)|v(1))|* x (function of J, M;, 2. ..). (4.28)

Numerical calculations show that (v(0)|v(1)) is of order unity (though recent
work has modeled this wavefunction overlap more accurately [1]). The “function
of J,M;,Q...” takes a bit more work (i.e., spherical tensor algebra), but can
also be shown to be approximately of order unity. Therefore the behavior of this
perturbation will be mainly determined by the denominator.

The denominator is the difference in energies of the two states being coupled
by the Zeeman Hamiltonian. Since we’re assuming that Coriolis coupling is the
dominant contributor here, let’s approximate this energy difference simply as the
difference in energies between a state of radius R confined to the 0, (or 0,) potential
vs one confined to the 1, (or 1,) potential. The shapes of the 1, and 0, potentials
are well-known [1, 16, 18, 22]. At long range, the electronic parts of the 1, and O,
potentials can be modeled primarily by van der Waals (V %) and dipole—dipole
(V x %) interactions, where C¢ and Cj are coefficients determined primarily by
atomic properties. They can be approximated with the following Equations [22]:

V&l[ectronic = —Cep, /R6 _ 2C3/R3 (4.29)
Vil‘ectronic = —Cq,, /R6 + C3/R3 (4.30)

The coefficients Cs o, and Cg ;, are very nearly equal (to within ~ 6% according to
recent calculations [16]), but there is a sign and factor of 2 difference in the 1/R3
term which dominates the difference between these two potentials. (This positive
1/R3 term accounts for the repulsive bump in the 1, potential seen, e.g., in Fig. 5.2.)
If in Eq. (4.27) we then approximate the denominator Eﬁ,o) — E,EO) ~ V;, — Vo,, and
assuming that the largest contribution to the perturbation comes from this Coriolis
mixing, we find:

AED — w3 - B? - (function of J,M;, 2 .. .)
K (=Ce,1,/RS + Co0,/RS) + (C3/R3 + 2C5/R)

fU, My, Q)R?
~ M%Bz—,

4.31
3G, (4.31)

where f(J, My, ) is a function which can be determined via angular momentum
algebra.

According to this argument, the quadratic Zeeman shift coefficients f,
described in Tables 4.1, 4.2, 4.3, and 4.4 should scale with bond length cubed.
In other words, as a molecule gets bigger, the magnetic field-induced second-order
perturbations to its energy levels should increase as well.
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Figure 4.1 shows the quadratic Zeeman shift coefficients 8, plotted vs bond
length R for all J/ = 1 levels observed so far, with M; = 0 in panel (a) and |[M;| = 1
in panel (b). The dashed lines represent fits to the data with the function 8, oc R?,
while the solid lines represent another fit to be discussed in the next section. And
while the dashed line fit does do a fair job of qualitatively describing the data, it
clearly disagrees with the most accurate measurements taken (i.e., data for the 14,
M; = 0 states). Since this is only a hand-wavy approximation, we might be satisfied
with that level of agreement; this approach is described in [10]. But it turns out that
we can make another valid approximate argument which reproduces the data even
better.

4.3.2 Option 2: Decreased Level Spacing Near the Top of the
Potential

The shape of an energy potential determines the locations of bound states within
it. The canonical example of the harmonic oscillator potential possesses energy
levels whose spacing is constant no matter how high above the ground state one
goes (see, e.g., Fig. 7.2a). For molecular potentials, however, which rise steeply at
intermediate bond lengths but taper off as R — oo, the levels become more tightly
bunched as one approaches dissociation. Clearly the level spacing will be important
for determining the second order energy perturbations, since the denominator of
Eq. (4.27) is precisely this spacing. If we can relate the level spacing in a simple
way to the shape of the potential, we’ll have another conceptual tool for thinking
about how quadratic Zeeman shifts are related to structure.

4.3.2.1 Applying the LeRoy-Berstein Formula

If a potential can be approximately described at long range by the formula
V(R) = D — C,/R", where D is the dissociation energy, then the binding energy
of the vth level E(v) will be approximately given by what’s known as the “LeRoy-
Bernstein formula”:

E() ~ —[(vp — v)H,]", (4.32)

where H,, is a function of n and various constants, vy is the “effective” vibrational
number for a state bound at the dissociation limit, and E(v) represents the
rovibrational level energy minus the dissociation threshold [8].

This formula is helpful because it connects the vibrational number v to the
molecular bond length R. To see why this is useful, let’s first assume that the sum
in Eq. (4.27) is dominated by mixing with nearby states. The denominator of the
largest term is then just the difference between adjacent levels, or:
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E E
E.—E, =AE~ a—Av = a—, (4.33)
’ av av

where the final equality is because Av = 1 for the nearest neighbor. The LeRoy-

Bernstein formula then allows us to write gif in terms of R by differentiating
Eq. (4.32) with respect to v:

(4.34)

If, as in Sect.4.3.1, we then assume that the numerator of Eq. (4.27) is of order
unity (or at least roughly independent of vibrational number and bond length), then
we substitute £y — E,, ~ ‘;—f to obtain the result:

0EN—1 n
AED oy B (50) ocph B R (4.35)

At very large bond lengths, the largest term in the potential V(R) will be of the
G

form o< 23, and so for very large molecules we would expect Ba o R*S. At
smaller bond lengths, when V(R) is dominated by the o % term, we would expect
,32 X R4.

In Fig. 4.1, solid lines represent fits to the data of the form 8, = A-R?>° + B-R*.
Though A and B were both left as free parameters, in all four fits the coefficient
B is within a few standard deviations of zero. For nearly every series shown this
fit is better than the dashed line fit, because the slope of the R* on the log-log
plot is clearly a little too steep. The agreement for the 1,(/ = 1,M; = 0) data
is particularly striking.

Note that the above result is directly related to another result which will be
discussed later, i.e. that the predissociative linewidths of weakly-bound subradiant
states are proportional to the level spacing. In the case of linewidths, R* dependence
seemed to prevail over nearly the entire experimental range, whereas here the
data is well-summarized by R>> dependence. Why this difference might be isn’t
immediately clear, but would certainly be worthy of future follow-up.

4.3.3 Comparison of Atomic and Molecular Quadratic Zeeman
Shifts

Is it really so surprising that the quadratic Zeeman shift coefficient for a particular
rovibrational level should get larger as the molecular bond length increases? Why
invest so much time and energy in trying to explain this quirk of molecular physics?
One reason is that from a certain perspective, this quirk seems to contradict “com-
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mon sense” intuition about the relationship between the properties of molecules and
their constituent atoms. One might expect that as a molecule grows larger and larger,
it would start to behave more and more like an unbound pair of atoms separated at
infinity. Certainly the rovibrational level energy of an infinitely large molecule is
simply the sum of the electronic energies of its constituent atoms. So perhaps as
molecules grow larger, their quadratic Zeeman shifts also approach in some sense
the sum of those of their constituent atoms.

But our data dramatically show that this is not the case. The quadratic Zeeman
shift coefficient of the *Py(m; = 0) state is only ~0.179 Hz/G? (see calculation
below), while for the weakly-bound 0,(—1, 1,0) state it is —0.355(31) MHz/G?>.
That represents more than a million-fold enhancement over the atomic value for
two atoms which are separated by more than 400 Bohr radii, a disagreement which
would diverge even more strongly if the atoms were separated to larger distances.
Discovering patterns such as these helps to inform our intuition about where and
when we can apply classical ideas, and when we’re forced to use the full machinery
of quantum mechanics to understand the results of our experiments. We’ll see this
pattern again when we look at how the lifetimes of subradiant states depend upon
bond length in Chap. 6.

4.3.3.1 Aside: Calculation of Quadratic Shift Coefficient for 3P, (m = 0)
Atoms

We can calculate the expected second order Zeeman shift once again using second
order perturbation theory. The m; = 0 component of the 3P, state will have
zero linear Zeeman shift because (*Py,m; = O|Hz|’P;,m; = 0) = 0, where
I:IZ = zime (iz—}— g‘Y.SA'Z)BZ. Second order terms do not vanish, however. The expression

. 2) .
for a second order correction to an energy level Egp)l is:

3 4 2
@ _ |(*P1,m; = 0|H’|n)|
E =3 Eo E, (4.36)
n#3P) !

We should technically sum over all excited states in the strontium atom, but since
there are only two excited states within a few nanometers of Py (i.e., >Py and P5),
the denominator guarantees that contributions from these two states will dominate.
So we can rewrite our sum explicitly:

2
Ey)

5 |(*Py, mj = O|Hz|*Py, m; = 0)|? N |(*Py, mj = O|Hz|*Py, m;)|?
m; E}Pl — E3PO E3Pl - E3P2

(4.37)
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In order to calculate these terms, we need to know how I:IZ acts on the 3Pj states.
It’s easiest if we change to the eigenbasis of the H; operator by writing:

PPrm) = U =x.m)u=rs=1) = Y ChlSoM=HL=1,m)|S = 1.m,),

mp,mg,mj
mj+ms=m;
(4.38)
where C,% | is a Clebsch-Gordan coefficient.
Expanding all three states of i importance (see, e.g., Griffiths Quantum Mechanics

2nd Edition, Section 4.4.3 for an explanation of how to read Clebsch-Gordan

tables [5]), and using the convention |J,m;) = 3 CpSy . |L,m)|S,ms), and
(J,m| =) C,I;”S,,{E - (L, my|(S, mg|, we find:

¢ PPom = 0) = [0.0)u=is=y = (HLNIL-1) — HL0)L0) +
NOREITIRY

. |3P1,m]~=0)=Il,O)(L=1,s=1>=\/gll,l)ll, [H |1, 1)

C PPam = 0) = [2.00umismy = féu,lu,—l + 200 +

VAL -nin

Note that of the possible *P, terms, only m; = 0 will contribute to the energy
perturbation. This is because higher m; terms will be built out of states orthogonal
to |1,1)[1,—1) and |1, —1)|1, 1), i.e. orthogonal to |*P;).

Acting on 3Py and P, with the perturbing Hamiltonian gives:

N 1 1 1
S7)B; (\/;1’])“’_1) — \/;|1,0)|1,0) + \/;|l,—1)|1, l))

(I—-g) B(Il DL =1) =1, =11, 1)) (4.39)

I:Iz|3P(),mj = 0)

eh
2m,

I:Iz|3P2, m; = 0)

A 1 2 1

sz)Bz(\fgu, DiL-1) - \@|1,o>|1,o> + \/;u,—l)n, 1)
1

ge)\ngz(u, DIL=1) = |1,=1)]1.1)) (4.40)
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With these results in hand, we may evaluate the numerators of the terms in
Eq. (4.37):

(P, m; = O|H, Py, m; = 0) =

= \E(u,llu,—ll - <1,—1|(1,1|)2%(1 —ge)\EBz(ll,nll,—l) —I1.=DI1.D)
;:1’6(1 —ge)\EBz(u, (=11 = (=1L ) (1L D1 =1 = [1L=1)[1,1))

..="h( —g) B 2 (4.41)
2m,

CP,my = O|1}Z|3P2smj =0) =

= @((Lll(l,—ll—<1,—1|(1,1|);—h(1—ge)\/IBz(ll,wll,—l)—|1,—1>|1,1>)
—(1—ge>\/> (L (1 =1 = (L =11 ) (1L DL =1) = L =D, 1)

eh 1
L= 2me( —g.) 2B -2 (4.42)

Finally squaring and summing gives the perturbation energy:

1 ( eh \? 2 1
ER = () (1-g + (4.43)
1 3 2me E3Pl - E3P() E3P1 - E3p2

(Note that this result was also calculated for magnesium [4], though the cited
reference leaves out intermediate steps and simply gives the result.)

The NIST handbook for strontium [7, 17] gives detunings for 3P, from 'Sy in
cm™!. Plugging these values in gives:

] 0
EQ =119 10—2"’T —179. 10722 —0.179G—§ (4.44)

This calculated result is very close to the recently measured quadratic Zeeman shift
of the 3Py state in %8Sr [13], as might be expected.
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4.3.4 Determination of Higher (up to Sixth) Order Zeeman
Shifts

Stopping at linear plus quadratic shifts is a somewhat arbitrary distinction to make,
since there is no reason why perturbation theory should stop there. But while the
truly exact description of the Zeeman shifts will be a complicated polynomial of
infinite (or close to it) order, at small magnetic fields approximating the shift as
linear plus quadratic is well-justified. This is the reason why, in addition to Zeeman
shift coefficients B and B, we have also included the magnetic field ranges over
which the data was taken in Tables 4.1, 4.2, 4.3, and 4.4.

That being said, it is interesting to ask whether we might be able to observe
cases where the linear plus quadratic approximation breaks down. And it turns
out, we have been able to observe such cases, sometimes quite dramatically.
Figure 4.2 shows the shifts of certain sublevels of the 1,(—1,J) states with
J =1,2,3,4, vs magnetic field at fields as large as ~50 Gauss. With the exception
of the 1,(—1, 3) state, these plots show data originally published by our group in
2015 [11]. Figure 4.2b in particular shows a beautiful “octopus-like” plot which
clearly requires higher than second order terms for a full description. The full set of
higher order terms used to describe these plots is given in Table 4.5, and (with the
possible exception of the 1,(—1, 3) state, which has not been studied theoretically),
the fits describing this data have been shown to be in good agreement with theory
calculations from a quantum chemistry model, even when they involve terms up to
sixth order in magnetic field [11].

4.3.4.1 Discussion of Fit-Determined Uncertainties

The fits shown in Fig. 4.2 and summarized in Table 4.5 were produced by plotting
the data using OriginLab graphing software. The uncertainties in the shift coeffi-
cients are those which are calculated by Origin’s fitting routines when assigning
values to the coefficients of the fitting function. The choice of fit function was
made by determining how many terms were necessary to fully summarize the
data. Operationally, this meant examining the fit residuals for structure, and adding
higher degree terms until the fit residuals were randomly distributed about zero. This
process is illustrated for the 1,(—1, 1) state in Fig. 4.3.

4.4 Description of Magnetic Field Coils

Magnetic fields were applied to the molecules during spectroscopy by driving
current through pairs of Helmholtz coils which surround the science chamber. As
described in Chris Osborn’s thesis [15], pairs of Helmholtz coils are arranged for
each spatial direction, allowing the net magnetic field to be zeroed before applying
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Fig. 4.2 The locations of selected sublevels of the 1,(—1,J) states with (a) J = 1, (b) J = 2,
(¢) J = 3, and (d) J = 4 are plotted against magnetic field, showing strongly nonlinear (and even
non-quadratic) shifts in many cases. The data depicting different sublevels for panels (b) and (d)
were taken on different days, with slightly different calibrations for absolute laser frequency. For
clarity of presentation, each pair of sublevels in these panels has been shifted so that the center of
the fit coincides with the origin. Note, however, that in reality these sublevels would have different
y-intercepts due to tensor light shifts, as shown in Fig. 3.13

magnetic field along the vertical (z-axis) direction. Depending on the required
sensitivity of the measurement, the magnetic field gradient produced by the MOT
coils can either be left on or pulsed off before molecules are created and probed.
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Fig. 4.3 (a) The position of the M; = 0 sublevel of the 1,(—1, 1) state is plotted vs magnetic
field and fit with a quadratic; quadratic plus quartic; or quadratic plus quartic plus sextic fit. The
residuals of the (b) quadratic and (c¢) quadratic plus quartic fits are clearly not randomly distributed
about zero. Only the residuals of the (d) quadratic plus quartic plus sextic fit are small and random
enough to have confidence that we are accurately summarizing the relevant physics

Since the atoms collect near the bottom of the MOT trapping region due to the pull of
gravity, turning off the MOT coils leads to a magnetic field offset of approximately
0.9 G pointing mostly vertically. This offset is corrected for during measurements
via the pulsing of a small set of compensation Helmholtz coils which are ramped on
as the MOT coils are ramped off.

Whereas only small vertical fields of ~4 Gauss could be applied during the first
iteration of this experiment (i.e., from 2008-2013), we have subsequently added
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a new pair of coils with many more turns to achieve fields as strong as ~=60
Gauss (where negative fields are produced simply by reversing the polarity of the
Helmbholtz coils), which has facilitated studies of highly nonlinear Zeeman shifts
and magnetic control of transition strengths (see Chap.5). The limiting factor for
achieving large magnetic fields is the resistance of the Helmholtz coils combined
with the finite power which can be supplied by our Delta Elektronika ES-030-5
power supplies. When using the coils to produce fields near their maximum, heating
of the coils can cause their resistance to increase with time. If care is not taken, this
increasing resistance can cause the power load to exceed the maximum power output
attainable by the Delta Elektronika ES-030-5 supply, leading to apparently non-
linear effects. This potential problem can be avoided by a combination of operating
at small currents and only pulsing the coils for short amounts of time, so that the
coils do not have time to resistively heat. (Note that the duty cycle is also important,
so that the coils have time to air-cool between experimental shots.)

4.4.1 Calibration to the 'Sy+3P; Intercombination Line

Because 33Sr carries zero net nuclear spin, the Zeeman shifts of its energy levels
are entirely determined by magnetic field interactions with the magnetic moment
produced by electronic angular momentum. For a %8Sr atom in the singlet 'S,
electronic ground state, the paired electrons in the valence shell carry no net angular
momentum, and thus possess no magnetic moment. Therefore 33Sr atoms in the
electronic ground state have zero first-order Zeeman shift. If the atom is in an
electronically excited 3P state, however, then the paired electrons form a triplet
state with orbital electronic angular momentum / = 1 and total spin s = 1. These
two forms of electronic angular momentum can combine to form a total angular
momentum j = |/ —s|,|/ —s| + 1,...|l + s|, where j can take on the values
0, 1, or 2, with projection m; along of the quantization axis taking on the values
mj = —j,_j+ 1,,]

We choose to calibrate our coils by examining the magnetic field dependence of
the m = 41 components of the atomic intercombination line transition (!Sy —3P)),
whose frequency shift Af can be summarized with the following equation:

Af = gappm;B + O(B?), (4.45)

where g4 is the atomic Lande g-factor, pp is the Bohr magneton, B is the applied
magnetic field, and terms of order B? or higher can be neglected at our magnetic
field strengths (see Sect.4.3.3.1). By plotting the measured frequency shift of this
transition vs the current supplied to the coils, we can compare to the expected
frequency shift vs magnetic field (Eq. (4.5)) to extract a conversion from Amperes
(controlled by a DAQ-supplied Voltage) to Gauss. Figure 4.4 shows data used for
the calibration of our highest-field coils.
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Fig. 4.4 (a) The locations of the magnetic sublevels of the P, atomic state (corrected for cavity
drift) are plotted vs magnetic field, using our maximum field-producing coil configuration. (b)
Sample spectra at several positive applied voltages. Lineshapes are produced by heating out of the
lattice, and are ~100 kHz broad

4.4.1.1 Spectroscopy on the 'Sy —3P; Intercombination Line

Because the 'Sy —3P; transition is closed, interrogating the magnetic sublevels of
the excited state is slightly nontrivial. To observe losses due to the spectroscopy
laser, we interrogated atoms in the 1D lattice with a long-duration (several hundred
ms) and low power (few-nW) probe laser, and monitored atom losses due to heating
out of the trap. This means that the data from Fig. 4.4 consisted of the locations of
the blue lattice sideband, rather than carrier transitions. However, since the same
lattice power was used for all measurements, results derived in this manner should
be equivalent to results derived from carrier transitions.

4.4.2 Quantized Output from NI PXI-6713 Card

The currents supplied by the Delta Elektronika supplies are controlled by a
programmable input voltage supplied by a NI PXI-6713 card. This card can produce
voltages ranging from —10 to 10V, but with 12 bit resolution, resulting in a small
(but measurable) step size of 20 V212 =4.88mV.
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Fig. 4.5 When the magnetic sublevels of the narrow X(—1,0) — 14,(—1,1,m) transition are
interrogated at small magnetic fields, the peak positions appear to “jump” discretely as a result of
the quantized voltage output from our PXI card. This data was recorded with the same set of field
coils as Fig. 4.4, and is the unaveraged version of Fig. 3.13a

This small quantization of the output voltage results in quantized values for
the magnetic field. For the largest field coil configuration, the magnetic field will
be stepped by (0.00488 V) x 12.275G/V = ~60 mG. For our smallest-field coil
configuration, the step size would be (0.00488 V) x 0.76073 G/V =~3.7 mG. Both
of these step sizes could be reduced in the future by purchasing a PXI card with a
higher bit resolution. Figure 4.5 shows measurements of the positions of the three
magnetic sublevels of the 1,(—1,1) state vs different control voltages, showing
discrete changes in the peak positions for different voltages clearly indicative of
the fact that multiple values of input voltage result in the same magnetic field.
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Chapter 5
Magnetic Control of Transition Strengths

5.1 Introduction (Defining “Transition Strength”’)

So far we’ve talked about discrete rovibrational levels in 38Sr, in isolation, and
described how these levels can be characterized through precise measurements of
their binding energies and Zeeman shifts. Both of these quantities are interesting
because they reflect something about the larger scale structure of the molecule,
each forming part of a “fingerprint” giving every level a subtly different flavor. The
flavor of each level is inextricably related to the flavor of every other level through
perturbation theory, since small fields or terms within the molecular Hamiltonian
itself can cause interactions perturbing the properties of nearby levels. But while
such large-scale characterization is interesting from a general perspective, we have
another tool we can use to make targeted, controlled studies of the interactions
between particular pairs of levels.

By characterizing the transition strength of a pair of levels, we evaluate the
magnitude of a single matrix element (1 |IEI’ |2) connecting two states |1) and |2),
rather than a quantity depending on the result of a sum over many different levels
connected by the perturbing operator H'. For a laser spectroscopy experiment such
as ours, the perturbing operator describes the interaction of the laser fields with the
bound states in question. The coarse behavior of these strengths is often summarized
by selection rules, which approximate the strength of a transition as 0 or 1 depending
on the initial and final quantum numbers (J, M;, €2, etc.) of the states being probed.
But as we’ve seen already, these quantum numbers are sometimes only approximate.
Moreover, they can be strongly modified when subjected to large external fields.

In order to make quantitative statements about these effects, we need a rigorous
way to define the transition strength. A natural place to begin would be to start
with Einstein’s A and B coefficients, which represented the first successful attempt
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to characterize the strength of the interactions between light and matter [1].
Specifically, however we define our transition strength should be proportional to
the induced absorption coefficient BYf,.

5.2 Three Ways to Measure

We’ve studied three different experimentally observable quantities which can be
related to BY,. Our choice of which to use in a particular situation depends upon the
experimental accessibility of the transition under investigation.

5.2.1 Normalized Area Under a Lorentzian

A typical molecular spectroscopy experiment in our lab has the following structure.
First, a sample of molecules is prepared in some initial state. Next, a spectroscopy
laser pulse is applied which is resonant with a transition to some final state, trans-
ferring some amount of population. Finally, the amount of population remaining
in the initial state after spectroscopy is measured. If the transition is open (i.e., if
spontaneous decay from final to initial state is minimal), and if the duration of the
probe pulse is much longer than the lifetime of the final state, then we can describe
the observed initial state population N(¢) with the following rate equation:

%N(t) = —T@)N®) (5.1)

where I"(§) is a function of the laser detuning from resonance §. The solution to this
equation gives the population remaining in the initial state after spectroscopy with
a probe pulse of duration t:

N(t) = N(0)e "®r, (5.2)

To characterize the total transition strength, we define the following experimental
quantity Q:

1
0= I—)/F((Y)d& (5.3)

where P is the laser power used to drive the transition. Because the signal we
measure is proportional not to I'(§), but rather to the initial state population N(t),
we can rewrite Eq. (5.3) as:
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_1 SO) 1,5- =4
o=% ln[s(oo)}dS == (5.4)

where the signal S(8) oc N(z) = N(0)e~"®7 has been written to emphasize that the
total scaling for the molecule number is unimportant, and A is defined as the total
area underneath the natural log of the total signal curve.

We have defined Q in this way because it is a relatively simple quantity to
measure, requiring knowledge of only three quantities (probe power, pulse time, and
area under a spectroscopic curve). For Q to be a “good” description of the transition
strength, however, it should be proportional to the induced absorption coefficient
B?,. We can show that this is in fact the case in the following way.

Following Hilborn [3], we recognize that I"(§) is an induced absorption rate per
molecule

i
W12

I'() = N

(5.5)

where Wi, is the total rate of induced absorption and N, is the population of the
initial state. We can rewrite W{ , using Egs. (5.17)—(5.19) of Hilborn:

Wi, = / W (@)do = N, / b (@)p(@)dw = NiBY, / s@p@)do,  (56)

where p(w) is the energy density per angular frequency at w, bjx(w) = B{,g(w),
and g(w) is a normalized transition lineshape function satisfying [ g(w)dw = 1.

For a nearly monochromatic directional light beam (e.g., a laser) we can relate
the total irradiance I (i.e., the total power per unit area received by the molecule) to
the energy density per angular frequency p(w) with the following formula:

1= /cp(u))da) = /i(a) —27nd)dw, (5.7)

where i(w—276) is a function describing the lineshape of a laser with peak intensity
at frequency 6. (Note that in the limit of a very narrow linewidth laser, i(w —278) —
I16(w — 2768), where (w — 276) is the Dirac delta function.) Substituting p(w) =
%i(w — 276) into Eq. (5.6), we can rewrite I'(§) as:

0]

re)= %/g(a))i(a) —2nd)dw (5.8)

Plugging this result into our definition of Q from Eq.(5.3) gives the following
expression:

0= f—%/d&/da)-g(w)i(w—hﬂ (59)
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By Fubini’s theorem, we can reverse the order of integration in the above double
integral. Since the limits of integration are over all frequencies, we can use [ i(w —
278)ds = %I and [ g(w)dw = 1 to reach our final result:

2wcP cm? %

where for the second equality I have made use of the result that the maximal
irradiance I for a Gaussian laser beam is related to its maximal power P and its
ceo|E)? 2P

waist wo by I =

2 awl’

Note that relationship betwegn Q and B, depends upon the value of the probe
waist wy. This means that so long as the same probe laser optics are used to make
Q-measurements (i.e., so long as wy remains unchanged), different measurements
can be compared against one another. For relative transition strength measurements
presented in this thesis, we were careful to make measurements as quickly as
possible to minimize the risk of the effective waist changing.

5.2.1.1 Accounting for Degeneracy in the Initial and Final States
(or, the Consequences of “m-Mixing”’)

The above derivation of the relationship between Q and B{, assumes no degeneracy
in the initial state, implying that the population being measured is exactly the
population being probed. While this is true for experiments starting from J = 0,
this assumption can be violated for experiments starting from J = 2 due to mixed
quantization.

The quantization axis will be primarily defined by the orientation of whatever
field causes the largest splitting among sublevels. The electronic excited states of
88Sr, possess strong Zeeman shifts due to the angular momentum projection of
the 3P; atom, meaning that the quantization axis will be defined by the magnetic
field orientation. Ground state Sr,, however, is very nearly non-magnetic: whereas
linear Zeeman shifts in the excited state will be on the order of the Bohr magneton
(~1.4 MHz/G), in the ground state they will be of the order of the nuclear magneton
(~760Hz/G)—a factor of nearly 2000 smaller, and potentially measurable only
at our lab’s highest achievable magnetic fields (though so far not unambiguously
observed). If no other sublevel-perturbing fields were present, then the ground
state sublevels would simply be undefined, and transitions would begin from an
incoherent mixture of many possible initial sublevels. In our case, however, our
molecules are probed in a linearly-polarized 1D optical lattice, which induces small
(tens of kHz) tensor light shifts among different magnetic sublevels. Since these
tensor light shifts are much larger than the magnetic Zeeman shifts in this case, the
quantization axis for ground state 38Sr; is defined by the polarization orientation of
the lattice.
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We can choose to probe molecules with the lattice polarization axis either parallel
or perpendicular to the magnetic field. If the two axes are perpendicular (as they
would be when operating in the “magic wavelength” condition at ~914 nm for the
1S0+3P; transition [4]), then the same basis cannot be used to describe both initial
and final states. In other words, the Hamiltonian for the final state will have off-
diagonal elements when written in the basis of the initial state [6]. We call this
phenomenon m-mixing.

The consequences of this effect are dramatically illustrated in Fig. 5.1. The plots
show interrogation of the X(—2,J = 2) state, which possesses five magnetic
sublevels (Fig.5.1a). In panels (b)—(d), a depletion laser is resonantly applied
to preferentially deplete a single sublevel, after which the magnetic sublevel
distribution in the initial state is probed by sweeping a laser across a weakly-bound
recovery transition. The surprising result is that depleting a magnetic sublevel m also
(apparently) depletes sublevels m+2, m=+4, and so on. This is a wonderfully bizarre
result that defies classical intuition. We cannot think of the magnetic sublevels as
“good” quantum labels, but in this case must instead consider that the basis functions
of the initial state are best represented as superpositions of those of the final state [6].
Panels (e)—(g) depict a similar experiment from a complementary perspective. See
the figure caption for details.

While this all sounds horribly complicated and undesirable, there are in fact cases
for which we can use m-mixing to our advantage. For example, since we produce our
ground-state molecules via one-photon photoassociation followed by spontaneous
decay, then when the lattice polarization is parallel to the magnetic field we are at the
mercy of the selection rule Am = 0, £1 to determine the distribution of magnetic
sublevels in the ground state (e.g., to produce m = —2 we must photoassociate to
the m" = 1 sublevel). Furthermore, inconvenient branching ratios in this case might
ensure that the population of the target sublevel is only a small fraction of the total
population. However, if we choose for our lattice to be perpendicular to the magnetic
field, then transitions starting from m = —2 can be observed simply by populating
m = 0.

The Effect of m-Mixing on Transition Strength Measurements The fact that a
single probe laser can simultaneously deplete several magnetic sublevels implies
that we should think carefully about what the “strength” we measure means, since
m is no longer a good quantum number. In order to correct for this effect in cases
where it is applicable, we in practice multiply the measured quantity Qpx (obtained
in the way described in the previous section) by a correction factor R to obtain the
“true” transition strength Q according to:

Q(my, m') = R(my, m2) Qmix(my, m', my), (5.11)

where m; is the magnetic sublevel of the probed initial state, m, is the magnetic
sublevel of the detected state, and m’ is the magnetic sublevel of the probed final
state (where for m-transitions, m’ = m). For information on how to calculate this
correction factor, see the supplement of reference [6].
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5.2.1.2 Effect of Power Saturation

Note that the previous derivation is only strictly correct in the limit of small probe
powers. At large probe powers, i.e. powers comparable to the saturation power
Psa, power broadening can significantly alter the measured value of the transition
strength. For example, if the transition can be approximated at large probe powers
as a two-level system described by a Lorentzian lineshape, then the form of I'(§)
from Eq. (5.1) will be [9]

r'e) =

y2(1 + 50)2 [ 50 ] : £a + 50)? (5.12)

4 1 +S() %y(] +S())%]2 +82’

where y is the natural linewidth of the molecular transition (technically the decay
rate from final to initial state in this approximation) and the saturation parameter
5o = (P/Psy) (assuming a uniform probe intensity across the cloud). Plugging this
into our definition of Q from Eq. (5.3) and integrating over all frequencies yields the
following:

Q=y2(1+s0)5.[ 50 ]/+oo‘ Y (1 + 50)2 5 ),2_7,[ 5 ]

4P 1 +s0d/ [%y(lﬂo)%]u(gz T 4r LT+
(5.13)

Since sy o P, our definition of Q is independent of the probe power used to perform
the measurement in the limit of low power (as it should be!). At higher powers,
however, where the denominator /1 + s¢ differs significantly from 1, the measured
value of Q becomes noticeably smaller than the “true” value of the transition
strength.

We have in fact observed that in regimes where power broadening is obvious,
our measured values of transition strength decrease (as expected) with increasing
probe power. See, e.g., Fig. 6.1b. Because of this, we have been careful to make
spectroscopic transition strength measurements at very low probe powers, where
power broadening is negligible.

5.2.2 Rabi Oscillations

Consider a situation in which a probe laser is tuned very close to resonance with
states |1) and |2), and is strong enough to drive transitions at a rate much faster than
the natural decay rate I of state |2). The Hamiltonian H () describing such a system
can be divided into two parts:

H(t) = Hy + Hj cos (1), (5.14)

where Holn) = E,|n), and H; cos (w?) is the time-dependent perturbation induced
by the laser [2].
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Neglecting for now decay to other states, we can write the wavefunction |W(r))
for the system as

¥ (@) = c1(@]1) + 2(1)[2), (5.15)

where the variables c;(7) and c¢;(f) represent the probability amplitudes for finding
the molecule in state |1) or |2), respectively. It’s relatively straightforward [2] to
show that by applying the time-dependent Schroedinger equation to Eq. (5.15), we
find the following pair of differential equations describing the population evolution
between states |1) and |2):

—iwot

ic; = 12 cos (a)t)e (&)

ity = QF, cos (wt)e™'cy, (5.16)
where wy = %(Ez — E}), and the molecular Rabi frequency €25 is given by
| A
Q= z(1|H1|2), (5.17)

where for E1, M1, and E2 transitions the interaction Hamiltonian has the following
forms:

. I:I,,El =—d- Eo, where d is the electric dipole moment operator and EO is the
electric field . .

. I:I,,Ml = —[1 - By, where [1 is the magnetic dipole moment operator and By is the
magnetic field

. I:I,,EZ = —(1/ 6)QUVI-E]~, where Q,-j is the electric quadrupole moment operator

and E; is the j-th component of the electric field

To solve this pair of differential equations, it’s common to expand cos (wf) =
1(ef@=e0) 4 ¢i@F@)) and then to make the rotating wave approximation, which
assumes that when @ ~ @y the evolution of the system will be dominated by slowly
oscillating terms, and therefore that terms proportional to ¢/“*) can be thrown
out. If we make this approximation, we get the following equations:

o Q2
L. st Ne12
11 = e —2
(5.18)
P —iStQTZ
IC) = C1€ T,

where § = w — wy.

Atresonance (i.e., § = 0), and assuming the population starts entirely in state |1),
the solution to Egs. (5.18) describes sinusoidally oscillating populations of initial
and final states:
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Q -t
1 = cos? (%)

Q ot
() = sin® (T)

The variable €21, is called the Rabi frequency, and represents the frequency at which
population oscillates between states |1) and |2) due to the presence of the probe
laser.

(5.19)

5.2.2.1 Comment on Coherence Time and Natural Linewidth

In our lab we have achieved record molecule-light coherence times [8]. Despite this,
the Rabi oscillations we observe are still not very well described by the solutions to
Egs. (5.18), since the coherence times we achieve are on the order of a few hundred
microseconds, limited mainly by the lifetimes of our longest-lived subradiant states
(see Chap. 6) and comparable to the durations of our probe pulses.

We can achieve a better fit to our data by building in a mechanism for
spontaneous decay. One way to do so is to modify Egs. (5.18) in the following way:

s §2
l'(.,‘l = Czelét—zl2
(5.20)
i —iézQTZ ir
Icp = c1e — — —<¢C
2 1 ) ) 2

Note that in the limit of no laser coupling between states |1) and |2), a population
starting initially entirely in state |2) would evolve according to

lea(t)> = e, (5.21)

which is exactly what we’d expect for spontaneous decay.
The general solution to Egs. (5.20) for § # 0 is complicated. But if we assume
that our probe laser is on resonance before solving, we get the following result:

1
_r 2\ 2
e~ 7' cos? [(Q%Z—%) t], when Q; >

ler()]* = (5.22)

(] L I ST L

when le <

The full solution can be well approximated by adding small offsets for y-intercept
and phase to Eq.(5.22). This has been done in fits to Rabi oscillation data for
subradiant states described in a later chapter. The Rabi frequency €2, is then
extracted from the fit and plotted against power in order to determine the transition
strength.
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5.2.2.2 Relating Transition Strength Q to Rabi Frequency 2,

We can once again turn to Hilborn [3] to determine how our measurement of Rabi
frequency will relate to transition strength. In that reference’s Table 1, we find the
following relationship:

,  (hQ)? _ 8 eoh?

= 3=——BY 5.23
12 2 PR (5.23)
From Eq. (5.10) we know that Q = 21537 Using once again the relationship between
electric field and irradiance, I = %, we find [6, 8]:
QZ
o=%.2x2 (5.24)
g1 12pP

where g| and g, are the magnetic sublevel degeneracies of the initial and final states,
respectively. For transitions from J = 0 — J’ = 1 (which are the only transitions
described in this thesis for which Rabi flopping measurements have been made),

g2/81 = 3.

5.2.3 Autler-Townes Splitting (Two-Photon Spectroscopy)

Determining transition strength via a measurement of the Rabi-flopping frequency
(Sect.5.2.2) is only possible when the transitions can be probed on timescales
shorter than the lifetime of the excited state. In our experiment, we’ve found that
this is possible for only a few subradiant states within the 1, potential, while for
the more easily-accessible superradiant 1, states (with ~10 s lifetimes), Rabi
oscillations are damped out too quickly to allow for accurate characterization.

Spectroscopic determination of a transition strength via measurement of a
normalized area under a lineshape (Sect.5.2.1) is less restrictive, requiring only
the possibility of producing a stable population in the initial state from which the
transition will be excited, and is in fact better suited to situations where probing
is incoherent and can be described by a rate equation. However, it is not easy to
produce such populations in arbitrary rovibrational states. We take advantage of
favorable branching ratios to produce sizable samples of molecules in the X(v =
—1;J = 0,2) and X(v = —2;J = 0,2) ground states with only a single laser,
but to produce populations in more deeply-bound ground states would require more
lasers (possibly phase-locked to one another via a frequency-comb), which, as of
the writing of this thesis, has not been conclusively demonstrated by our lab.

In cases for which the previous two techniques fail, a third option is avail-
able: measurement of a transition’s Rabi frequency via two-photon Autler-Townes
spectroscopy, whereby a photoassociation spectrum is split into a doublet upon
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simultaneous application of a second probe laser tuned to resonance with the
transition to be studied. This technique has been used by ours and other exper-
imental groups to determine ground state binding energies to few-hundred kHz
precision [5, 11], and was described in detail in Chap. 3. The salient details relating
to determination of transition strength are described below.

5.23.1 Theory

From Chap. 3, we know that the photoassociation spectrum describing an Autler-
Townes doublet can be described by a frequency-dependent PA rate K given by
Eq. (3.10) (reproduced here):

(e/h—As)?

K(&.8) =l m A e /h = BOF + (/2 fh = 2o

(5.25)

with the following variable definitions:

¢ A= 1A+ A (A - 8y + 412020,
e A =—(8—61)
o Ay =368 — (81 —b1c)

The variable “S2;,” is just the molecular Rabi frequency given by Eq.(5.17).
Therefore we can follow the same technique as we did in the previous section,

2
le

namely measure the transition strength 0 = 12,

bound laser used to split the doublet [10].

This method is more generally applicable than the Rabi oscillation method
because it can be applied to even very broad transitions. However, it is also
much more time-intensive than the previous two techniques. Whereas spectroscopic
and Rabi oscillation measurements require only ~50 points (varying either laser
frequency or duration) to extract a transition strength, Autler-Townes spectroscopy
requires several spectroscopic traces with the bound-bound laser at various detun-
ings to confidently extract a Rabi frequency (see Fig. 3.3).

where P is the power of the bound—

5.2.3.2 Results

Table 5.1 shows measurements of 22,/P for transitions between weakly—-bound
levels. The particular levels shown in this table were chosen because they were
predicted to have the largest transition strengths, and therefore held the most
promise for producing large samples of ground state molecules via one-photon
photoassociation. Values for the Rabi frequency €2;, were obtained by fitting
Eq. (3.10) to two-photon PA spectra. A detailed description of this fitting process,
as well an illustration of the data used to create the X(—3,0) — 0,(—6, 1, 0) entry,
is given in Sect. 3.2.3.1.
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Table 5.1 This table shows measurements of Q3,/P via two-photon photoassociation (Autler-
Townes spectroscopy) for transitions between weakly—bound levels thought to be relevant to
ground-state molecule production (i.e., those predicted to have the largest strengths)

X'zt (o D1,
v -3 —4 -5 —6 -3
v E, E} : 222 1084 3463 8429 8200
—1 137 0.66(8) 0.53(2)
0.606 0.545
-2 1400 0.158(6) 1.00(8)
0.144 1
-3 5111 1.88(9) 0.46(3)
1.651 0.553

Because of the difficulty in measuring laser probe waist, relative strengths are shown, normal-
ized to the X(—2,0) — 0,(—5, 1,0) transition. Uncertainties are indicated on experimental
points, and ab initio theoretical values [7, 12] are shown beneath the measured values. The
strengths of transitions to the three more weakly-bound levels were measured within a few
hours of one another, while more deeply-bound points were measured the next day. Adapted
from [7]

5.3 Enabling “Forbidden’ Transitions with Magnetic Fields

Having described three methods we have of characterizing transition strengths,
it’s time to start talking about why these kinds of measurements are interesting
in the first place. Of course, as means to an end, these kinds of measurements
are necessary in order to plan efficient routes toward producing large samples
of molecules in rovibrational ground states of our choosing. But since transition
strengths are intimately related to the shapes of the wavefunctions describing the
states we’re interrogating, these measurements can additionally serve as a window
into molecular structure. In particular, the degree to which transition strengths
change with applied fields can tell us something about how well-approximated by
traditional, selection rule-preserving molecular symmetry labels the rovibrational
levels really are. Additionally, knowledge of how transition pathways are affected
by the presence of external fields can be used as a tool for building new atomic and
molecular clocks [13].

The following sections describe the results of our measurements of how tran-
sition strengths are affected by modest magnetic fields, as well as offer a simple
model for understanding the qualitative behavior of forbidden transitions becoming
allowed due to the application of small fields. While these results were obtained
specifically through study of 8 Sr,, they should be broadly applicable to many other
systems. In particular, the idea that the sensitivity of transition strengths to external
fields is proportional to the level spacing (implying that molecular transitions can be
manipulated millions of times more strongly than atomic transitions) is very general.
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5.3.1 Intuitive Model Based on Perturbation Theory

Consider a transition from a ground state |y) to an excited state |u). As was
discussed in Sect.5.2.2.2, the transition strength should be proportional to Rabi
frequency €2, squared, i.e.

2

1.
QxQ}, = ‘£<V|Hint|/vb) : (5.26)

where I:Im, is the perturbation induced by the laser.

If the molecule is subjected to an external field capable of perturbing the
molecule’s energy levels, then perturbation theory tells us that a state |«) will be
modified according to

|(B)) ~ [a(0)) + Y _(B/Bw)|v(0)), (5.27)
aFv

where the characteristic field B,, = (E, — E,)/ (a|%|v) gives the admixing per
unit field B for a pair of states |«) and |v) which are coupled by the perturbation
Hamiltonian H; induced by the field B. In this thesis, we’re interested in applied
magnetic fields and the associated Zeeman Hamiltonian Hy = "B (gLi + gsﬁ) -B.

For transitions from levels in the electronic ground state to those in the electronic
excited state, we can use Eq. (5.27) to approximate the dependence of the transition
strength on magnetic field by calculating the Rabi frequency:

2,,(0)27,(0) 27, (0)2,(0)
> ( B, + B, '

Q,,(0) p
12, B ~ 12,0 + 8| Y =22 4+ B
i

B
vFEL

vFER
(5.28)

where I have made the assumption that the initial state |y) is unperturbed by the
magnetic field. For the case of 38Sr, this assumption is a good one, since the ground
state is non-magnetic (see Chap. 4).

Equation (5.28) is quite general: the only bit of molecular physics we’ve
employed is the requirement that the ground state be insensitive to perturbations
from the applied field. Let’s now consider the implications for the strengths of
forbidden transitions, i.e. those for which £2,,,(0) = 0. In the case of electric dipole
transitions, these would involve transitions for which AJ > 1 orJ = J = 0.
Plugging €2,,,(0) = 0 into Eq. (5.28) reduces the expression to a single term:

12,8 ~ 32] 3
VER

2,,(0) 2
o ’ (5.29)

Equation (5.29) implies that the strength of a “forbidden transition” from |y) to
|[v) will increase quadratically with the applied magnetic field, so long as there
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exist characteristic fields B, which are not too large. This caveat is equivalent
to requiring that there exist “nearby” levels [v) for which the matrix element
(u|Hz|v) # 0.

When will these conditions be met? Well, consider that the Zeeman Hamiltonian
I:IZ couples rovibrational levels with Am = 0 and AJ = 0, £1 (butnotJ = J' = 0).
Then clearly transitions satisfying AJ = 2 can be described by this model, since
while such transitions are El-forbidden, nearby levels satisfying AJ = 1 with
respect to the initial state can be mixed into the final state with the Zeeman
Hamiltonian. A transition satisfying AJ = 3, however, would not be described
simply by this first-order model, since the Zeeman Hamiltonian could at best only
mix in levels satisfying AJ = 2 with respect to the initial state. Such a forbidden
transition, with AJ > 2, would require a higher order description than is provided
by Eq. (5.29). For a visual explanation of this process, see Fig.5.2.

0 1S0+3P1
§ J =4
<] i
< J =3
s 02f Bi
Y J = e
(=1 iVBg
3 7y
0.4 F :
- 150+ 15y = (b)
R B A Tt
<) (B) X2,
/{ -0.7 F E
R
-1.4 T—=0 / v=—2
20 50 100 200

Internuclear separation (Bohr)

Fig. 5.2 A diagram illustrating how magnetic field mixing can cause forbidden transitions
between rovibrational levels in the (a) excited state and (b) ground state to become allowed with
the application of small magnetic fields. The dashed arrow represents the probe laser, while the
solid arrow represents the effective transition after the final state has become admixed with J/ = 1
character. Note that while in this simple picture only two levels are mixed into the final state, the
full ab initio calculations include J < 6, and |Q’| = 0, £1. Adapted from [6]
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5.3.1.1 Higher Order Terms
For transitions satisfying AJ = 3, we can go up to second order perturbation

theory to get a sense of the behavior at small magnetic fields. Expanding the field-
dependent wavefunction | (B)) to second order, we have:

(k(0)] 22| (0))

|4(B)) = |1(0)) + Bk% kO =22 (5.30)
(k(0)] 22 11(0)) (1(0) | 22| . (0))
+ B? |k(0)) B B (5.31)
k#zu ; (Ey — EW)(E, — Ey)
(1£(0)| 221 1(0)) (k(0) | 22| . (0))

— k(O 5.32
,;' ) E. —EP (5.32)
o Y (0|52 (0)) 53

2" kp (Ey = E? . .

Keeping in mind that AJ = 0, 1 for E1 transitions, and that the Zeeman Hamiltonian
I:IZ connects states with AJ = 0,1 as well, we can calculate the approximate
transition strength |©22/=>(B)|*. With a bit of tedious algebra, it’s straightforward
to show that only a single term survives. The result is the following:

(5.34)

|Q0=3(B)* = B* ZZW«(O)(

k#Fu l#1 (Eyp — E)(Ey — E))

K(0)| % 110)) (10) % 1(0)) ‘
Therefore for AJ = 3 transitions we would expect that at small fields, the lowest
order contributions to the transition strength would be fourth-order in B.

In fact, we have been able to observe transitions satisfying AJ = 3, but
unfortunately not at small enough fields to see unambiguously quartic dependence.
However, ab initio calculations of the full transition strength dependence on
magnetic field performed by our collaborators confirm this behavior at small
fields [6]. Figure 5.3 shows theory ab initio calculations for both forbidden and
“extra-forbidden” (AJ = 3) transition strengths vs magnetic field, as well as
parabolic and quartic curves to guide the eye and to give a sense of when even
higher order perturbation theory is necessary.

5.3.2 Results

Figure 5.4 shows several examples of measurements we’ve made of transition
strengths for a representative sample of both forbidden and allowed transitions
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1 O Measured Q, X(-2,0)—1,(-1,2,0)
10 O Measured Q, X(-2,0)—0,(-3,3,0)
10 —— Ab initio theory, X(-2,0)—1,-1,2,0)
103 —— Ab initio theory, X(-2,0)—0,(-3,3,0)
104k — QuB?

— QxB*

105

Ab initio calculations by Wojciech Skomorowski

10 E s
E and Robert Moszynski

107
10°
107k

1071

Transition strength Q [relative to X(-2,0)—1,(-1,1)]

10'“: B —
0.1 1 10

Magnetic field magnitude |B| (Gauss)

Fig. 5.3 At small magnetic fields, the strengths of “singly-forbidden” transitions (such as
X(—=2,0) — 1,(—1,2,0)) are expected to increase quadratically with magnetic field. “Doubly-
forbidden” transitions (such as X(—2,0) = 0,(—3, 3, 0)) are expected to increase with the fourth
power of magnetic field. Here are shown experimental data (taken from Fig. 5.4) and theoretical ab
initio calculations. The solid lines represent simple quadratic and quartic fits to the data. While a
quadratic fit to the strength of X(—2,0) — 1,(—1, 2, 0) is fairly accurate for all measured points,
the strength of X(—2,0) — 0,(—3, 3, 0) is markedly non-quartic at the fields at which we make
observations

across a range of applied magnetic fields. All transition strength measurements
in this case were made by measuring the normalized area under a spectroscopic
lineshape, as described in Sect. 5.2.1.

Because of the difficulty of determining our spectroscopy laser’s beam waist,
we did not measure absolute strengths, but rather relative strengths as compared
to a reference El-allowed transition which was not expected to vary much with
magnetic field (see Fig.5.4b). The “calibration measurement” shown in Fig. 5.4b
was made on September 11, 2013, and all other transition strength measurements
shown in Fig. 5.4 were made within approximately 2 weeks and without altering
the laser optics. The different behaviors shown in Fig. 5.4 are interesting enough to
merit some further discussion:

e The AJ = 1 transition depicted in Fig. 5.4b is relatively constant for all fields.
For this reason, this transition was chosen as a “calibration measurement.” All
other transition strengths shown in Fig. 5.4 are defined relative to this allowed
AJ = 1 transition.

* In the most extreme cases, we demonstrate control of transition strengths over
a range of more than five orders of magnitude with field magnitudes of only a
few tens of Gauss, with some strengths becoming comparable in magnitude to
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the allowed AJ = 1 transition. This is dramatically larger than the control which
can be achieved by analogous atomic transitions, and is due to the very dense
level spacing of weakly bound molecules as compared to atoms.

In Fig.5.4c, d, describing “forbidden” transitions for which AJ = 2, the
dependence of the transition strength upon magnetic field is approximately
quadratic, as we would expect from our first-order perturbation theory arguments
in the previous section. The m = 0 component of Fig.5.4a also increases
quadratically with field. This is because the (J/ = 2,m = 0) — (J/ = 2,
m’ = 0) transition is “accidentally” forbidden due to a vanishing Clebsch-
Gordon coefficient.

The dramatic m’ & 1 asymmetry seen in Fig. 5.4a is a result of interference effects
induced by admixing. This interference and linear magnetic field dependence
can be seen as a consequence of the third term of Eq. (5.28), and is present to a
smaller degree in Fig. 5.4d as well.

We believe that similar physics is at play in governing the behavior of the

linewidths of transitions to subradiant states in the presence of magnetic fields, since
such transitions are observed to narrow linearly with field in some cases and broaden
quadratically in others. For details, see Chap. 6.
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Chapter 6
Subradiant Spectroscopy

6.1 Introduction: Subradiance vs Superradiance

When a single atom undergoes a transition to an unstable excited state, it will
eventually decay. The exact time at which that atom will decay is impossible to
predict, but we can quantify the probability that after a certain time ¢ the atom will
have decayed to its ground state with the following formula:

P(decay) = 1 — ¢ (6.1

The quantity I' is the radiative decay rate, and its inverse T = — is the state’s

lifetime, i.e. the amount of time it takes for the probability of decay to reach 1-1/e
(~63%).

The molecules described in this thesis can be thought of as two atoms “glued
together,” one in the stable ground state and one in the unstable excited state. As a
first guess at the properties of such molecules, we might try to reason by analogy
with atoms. We would expect such an analogy to be imperfect, but perhaps to get
better and better as the molecular bond length increases. But in many cases, such as
was described in Chap. 4 concerning the behavior of quadratic Zeeman shifts, the
analogy breaks down completely, and we’re forced to reckon with molecules in their
full quantum mechanical glory. The decay rates of unstable molecular states are no
exception.

“Subradiance” and “Superradiance” are terms describing inherently quantum
mechanical effects, arising from the collective interactions of several particles.
The terms first appeared in the scientific literature in a 1953 paper by Robert
Dicke [5], and denote the suppression or amplification, respectively, of spontaneous
radiation. When particles are closer together than the wavelength of their emitted
radiation, interference between the radiation of nearby particles becomes important.
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Depending on the initial quantum state of the gas, the interference can be either
constructive, leading to an amplification of the decay rate, or destructive, causing
the decay rate to approximate zero.

Historically, superradiance has proven far easier to study than subradiance, since
for a system exhibiting both effects, superradiance will dominate observations. In
molecules, there are few examples of precise studies of subradiance. Subradiant
states have been observed in ytterbium [15], though careful measurements of
the decay rates at the time were impossible. Suppression and amplification of
spontaneous emission from a pair of nearby ions has also been demonstrated [4],
though the magnitude of the effect was small owing to the relatively large particle
separation. Recently, it has been demonstrated that it is possible to observe both
many-body subradiance and superradiance by monitoring the time evolution of
spontaneous radiation from a specially prepared atomic cloud [6].

In this chapter I'll describe work published in 2015 [9] describing our obser-
vations of highly subradiant states in 38Sr,, which were enabled by several factors
relatively unique to our experiment. First, our ability to produce and probe ultracold
molecules in an optical lattice allows for high resolution, Doppler-free spectroscopy
and quantum state control. Fine spectroscopic resolution is essential for charac-
terizing narrow linewidths, while precise quantum state control is necessary for
engineering conditions such that electric dipole (El) transitions are forbidden,
leaving only higher order magnetic dipole (M1) and electric quadrupole (E2)
transitions for accessing subradiant states. Second, theoretical understanding of
the %8Sr, molecule has advanced enough to allow for ab initio predictions of
many molecular properties [12—-14] such as binding energies, state lifetimes, and
transition strengths from the ground state. Calculations by Robert Moszynski and
Wojciech Skomorowski at the University of Warsaw were critical to the discovery
and eventual understanding of these states.

6.2 Characterizing Transition Strengths

Because M1 and E2 interactions are so much weaker than E1 transitions, the very
first question we should ask is how much weaker. Answering this is critically
important, because it influences whether or not we have any hope of finding
subradiant states in ®Sr,, and informs the strategy we should choose when searching
for them. For E1, M1, and E2 transitions, we define dimensionless oscillator
strengths f}, in the following way:

2 2m,w1y A
" ““2 Z' (XOF v, J. M|#|1, 0", J' M) (6.2a)

2m, N
Ml _ g'; . Z |G x €) - (XOF, v, J, M| 1,0, T, M') 2 (6.2b)
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mew12

B2 = T e Z|e (X0, v, 7, M|Q[1, v T M) - & (6.2¢)

where T, fi, and Q are the electric dipole, magnetic dipole, and electric quadrupole
operators, respectively (defined as in [16]), € is the polarization vector, ¢; is the
dimensionless unit wave vector of the light, g; is the degeneracy of the initial state,
iy is the angular frequency of the transition (nearly equal for all weakly-bound
states), and all other constants should be self-evident.

Note that the E1, M1, and E2 operators are functions of the local field intensity,
which is notoriously difficult to measure precisely. This difficulty in fact prevents
us from making accurate determinations of the absolute transition strengths of these
states. However, it is much easier to guarantee that even if the total field intensity is
unknown, it is the same for a series of measurements of different states. Therefore,
rather than measure absolute uncertainties, we measure relative uncertainties (as
discussed in Chap. 5). The following sections give the results of our measurements
of transition strengths via two complementary methods.

6.2.1 Aside: Isolating E1, M1, and E2 Transitions from One
Another

For a given transition ¥; — 1, it may be the case that there are several allowed
pathways (e.g., both M1 and E2). This situation would result in the measured
strength of the transition being the superposition of two contributions, which would
make comparison with theory more difficult and less precise. To avoid this scenario,
we make use of selection rules to guarantee that one and only one pathway from
among the choices of E1, M1, or E2 is allowed, so that the transition strength we
measure is due purely to a single channel. For the data presented in this chapter,
we study the following cases, which each guarantee that only the listed transition
pathway is allowed:

* El transitions
Vertical magnetic field (i.e., quantization axis), vertical laser polarization, study-
ing transitions from (gerade, J = 0, m = 0)—(ungerade, /' = 1, m’ = 0)

e M1 transitions
Vertical magnetic field (i.e., quantization axis), horizontal laser polarization,
studying transitions from (gerade, J = 0, m = 0)—(gerade, J' = 1, m’ = 0)

* E2 transitions
Vertical magnetic field (i.e., quantization axis), horizontal laser polarization,
studying transitions from (gerade, J = 0, m = 0)—(gerade, J' =2, m' = +1)

For the case of E2 transitions, which allow transitions between both Am = +1
and Am = —1, we measure the total strength to both spectroscopic peaks and then
take the average of the two.
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6.2.2 Normalized Area Under a Lorentzian

This method of measuring the relative transition strength involves recording high-
resolution spectroscopic traces of transitions to subradiant states, and then normal-
izing the area under the trace to the product of (probe time)x(probe power), as was
discussed in detail in Chap. 5. Because of the extremely narrow linewidths of these
transitions, we were concerned that power-broadening could have an especially
adverse effect on these measurements as compared to transitions to superradiant
states. We therefore recorded traces at a series of probe powers in order to search
for evidence of power-broadening or obvious outliers, taking a weighted average of
only those traces exhibiting no obvious relationship between the probe power used
and the linewidth of the state.

Figure 6.1 shows representative data sets describing transition strength measure-
ments for E1, M1, and E2 transitions from the initial state X(—1,0). In order to
define a standard transition strength reference, measurements of transitions to the
1,(—1, 1) state were made first. This is shown in part (a). Immediately afterward,
the transitions to subradiant states were studied at various probe powers. In all cases,
a Lorentzian function is fit to the natural log of the data, as described in Chap. 5.
So as not to bias the fit with noisy, low signal data points, error bars are added to
each point according to A[ln(signal)] = A(signal)/(signal), where A(signal) was
estimated as the shot-to-shot noise on the signal.

6.2.3 Rabi Oscillations

The exceptionally long lifetimes of subradiant states in ¥ Sr, enable Rabi oscilla-
tions to become visible in the excited state population after interaction with a probe
laser of finite duration. Since the rate at which the population oscillates between
ground and excited state is proportional to both the square root of the intensity of
the probe and the transition dipole moment of the transition, a measurement of the
Rabi-flopping rate can be used to determine transition strength, as was described in
detail in Chap. 5.

Figure 6.2 shows measurements of Rabi oscillations between X(v,0) and
1,(v', 1,0) states, as well as the dependence of Rabi frequency upon probe power.
Only the J' = 1 1, states were probed in this way because only these states appear to
be narrow enough to allow for coherent manipulations at long (several hundred vs)
timescales. In part (a), the Rabi frequencies €2 for transitions to the four 1 g(v’ ,1,0)
states from X(—1,0) or X(—2,0) are shown at various probe powers, and all fall
along curves given by Q(P) = A - P2.0Ona log-log plot, this means that all curves
will have the same slope, and a larger value of A implies a larger vertical offset of
the curve. These Rabi frequencies plotted in this way are determined by fitting the
data shown in part (b) to the following equation:
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Fig. 6.1 Here are shown three example data sets, used for calculating (a) E1, (b) M1, and (c) E2
transition strengths from the starting state X(—1,0). For each data set, a spectrum was taken at
several probe powers. Then the quantity (area)/(powerXtime) was calculated for each trace (see
text). To arrive at the final “transition strength” Q, values at low probe power (i.e., those displaying
no obvious power broadening) were combined in a weighted average. Since we are interested in
the area of a Lorentzian fit the log() of the signal, error bars in the “Raw data” images were defined
as Alln(signal)] = A(signal)/(signal) before fitting. A(signal) was estimated as the shot-to-shot
noise on the signal

_n, vy 1 r;
N(t) = yoe” 2" + Ae” 2" cos 3 QZ—T-(t—to) , (6.3)

where for all data except that which describes transitions to 1,(—1,1,0) we set
Fl = 0.
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Fig. 6.3 (a) A comparison of Rabi flopping-derived (red points/left axis) and spectroscopy-
derived (black points/right axis) measurements of the transition strengths of transitions from
X(v,0) to 14(v, 1,0). Note that while the units for both measurements are the same, the relative
scaling has been adjusted to allow for easier relative comparison. (b) Published relative transition
strength values (black points) derived from spectroscopy measurements, as well as comparison
with ab initio theory calculations (red points) (adapted from [9])

Surprisingly, the state with the longest lifetime, 1,(—1, 1, 0), appears to exhibit
damping of its Rabi oscillations at a rate much faster than its natural decay rate
of ~30Hz. This is due to an experimental quirk, in which the same laser driving
the transition from X(—1,0) to 1,(—1, 1,0) is simultaneously energetic enough to
dissociate the newly created 1,(—1, 1, 0) molecules above the 3P, 43P, threshold
(see, e.g., Fig. 3.6). The short coherence times for the remaining data sets are less
well-understood.

The dependence of the Rabi frequency on probe power can be used to extract
information about the transition strengths. As was described in detail in Chap. 5, we
would expect that the transition strength Q should be related to the Rabi frequency
g via

0=1(%)

where P is the laser power used to produce a Rabi frequency wg. Alternatively, since
the dependence of Rabi frequency upon probe power can be written wg = A - P'/2,
we can write:

A2

0=" (6.5)

Figure 6.3a compares transition strength measurements made spectroscopically
to those made with Rabi flopping. Because of a stubborn disagreement in the overall
scaling between the two methods, the data plotted in Fig.6.3a has been scaled
so as to allow relative comparison between the two data sets (see the differently
colored axes at left and right). One possible reason for this disagreement in the
overall scaling would be a slight drift in the alignment of the probe laser with
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the atom cloud. This is a hard problem to completely eliminate. All spectroscopy-
derived transition strength measurements presented in this chapter were made over
the course of 2 days (from February 5, 2014 to February 6, 2014), while the Rabi-
flopping measurements were made over the course of 5 days, but nearly 2 weeks
later. While each set of measurements should be self-consistent, a small bump of
a mirror during the intervening time could potentially cause disagreement between
the two sets. The relative disagreement of the 1,(—2, 1, 0) state with its companions
is harder to explain away, and as of the writing of this thesis still remains somewhat
mysterious.

Figure 6.3b shows plots of relative transition strengths, normalized to the value
of the transition strength of an E1 transition to the 1,(—1, 1, 0) state. For the data
presented here (and published in [9]), our data is derived purely from spectroscopic
measurements because of some lingering doubts about our ability to accurately
interpret our Rabi frequency data. However, because of the jarring disagreement
of the Rabi frequency data for the 1,(—2, 1, 0) state, we have increased the error bar
for that datum so that the two techniques agree to within 20.

6.3 Characterizing Linewidths (I): Sources of Artificial
Broadening

After finding subradiant states and characterizing the strengths of transitions to
them from the electronic ground state, we can begin to ask more detailed questions
about what makes them special. Perhaps the most obviously interesting quantity
is their very long lifetimes and narrow transition linewidths, since the hallmark of
subradiance (as opposed to superradiance) in singly-excited homonuclear diatomic
molecules is a transition linewidth narrower than twice the linewidth of the atomic
transition [5, 15].

We use two methods for measuring linewidths which complement one another:
spectroscopy, suitable for broad transitions to shorter-lived states, and “in the dark”
lifetime measurements, better suited for narrow transitions to long-lived states.
Experimental imperfections can plague each of these methods in different ways, and
need to be properly accounted for in order to reveal the true linewidth of a transition.
The following sections describe a few of the experimental issues we’ve uncovered,
and the tricks we’ve used to minimize them in order to ensure that our measurements
reflect the true natural linewidths of the transitions under investigation.

6.3.1 (I) Spectroscopy

“Spectroscopy” refers to sweeping a laser across a molecular transition and record-
ing its lineshape, i.e. the excitation probability as a function of laser frequency.
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A lineshape recorded in this way will reflect the transition’s “natural linewidth”
only if all other artificial sources of broadening are significantly smaller than the
transition’s natural linewidth y = ﬁ, where 7 is the % exponential decay lifetime
of the excited state. Here are some of the most important issues which can contribute
broadening larger than the natural linewidth if not carefully controlled.

6.3.1.1 Blurring Due to a ‘“Messy Probe”

A measurement of any experimental quantity can only be as good as the tool used
to measure it. For spectroscopy our tool is a narrow-linewidth extended cavity diode
laser (ECDL), stabilized to a high-finesse cavity. Several factors can combine to
artificially broaden our probe laser.

Finite Interrogation Pulse Time (‘“Fourier Broadening”) No finite laser pulse
can have exactly zero linewidth. This can be thought of as a result of the uncertainty
principle: a finite measurement time implies a finite uncertainty governing the
photon energy (or frequency). Alternatively, it can also be derived simply as a
result of Fourier decomposition. For example, for a laser pulse which is discretely
switched on and off via a fast AOM (as we do in our experiment), the electric field
of the laser at the location of the molecules being probed can be modeled as the
product of a cosine wave times a box function:

Ey - Re[e@™ 0]t € (0,T)

E(t) =
otherwise

(6.6)

The spectral composition of this function is given by its Fourier transform, which
in this case is a sinc function centered at f = f;. Since the transition probability is
proportional to laser intensity rather than electric field, the lineshape for a Fourier-
limited square pulse will be proportional to a sinc? function.

Figure 6.4 gives a visual illustration of this effect, as well as experimental data
proving its very real existence. The data shown in Fig. 6.4 depicts spectroscopy of
a transition from X(—1,0) — 14,(—1,1,0). For this measurement the pulse time
was chosen to be very small (50 ws) in order to reveal Fourier broadening as the
dominant line-broadening mechanism. Note that the Fourier-broadened linewidth
VEB R % and therefore revealing the natural linewidth of 30 Hz would require a
pulse duration of 7 2 ﬁ ~ 33 ms. However, other effects in our experiment,
namely the natural linewidth of our spectroscopy laser, limit us to useful coherence
times of 5-10 ms.

Finite Laser Linewidth While Fourier broadening can be minimized simply by
increasing the probe time, broadening due to the inherent linewidth of the laser
can be decreased only by building a better laser. Characterizing the linewidth of a
narrow laser is difficult [2]. In our experiment, however, we have access to very
narrow molecular transitions, which allow us to infer the linewidth of our probe
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Fig. 6.4 Fourier broadening of a gated laser pulse. On the left is shown a qualitative illustration
of the mathematical underpinning of Fourier broadening, while on the right is shown real data
depicting spectroscopy of the X(—1,0) — 1,(—1, 1, 0) transition

laser operationally as the linewidth of a transition to a long-lived molecular state
when all other sources of broadening have been minimized.

The black points in Fig. 6.5a depict spectroscopy of the X(—1,0) — 1,(—1,1,0)
transition. The linewidth of a (properly scaled) Lorentzian fit to these points is
150(20) Hz, substantially larger than the natural linewidth of 28.5(2) Hz (determined
by “in the dark” lifetime measurements described later). Several sources of broad-
ening must be accounted for before extracting the laser linewidth.

In Chap.7 we will learn that FWHM =~ 0.3 x (Total light shift). For the data
shown, recorded at 209 mW lattice power and a measured lattice light shift of
~1Hz/mW, we would expect 209 mW x 1 Hz/mW x 0.3 ~ 63 Hz of broadening
due to light shifts. The 20 ms probe time used for this trace would lead to ~ﬁ ~
50Hz of Fourier broadening. The ~20ms collisional lifetime of ground state
molecules would contribute another ~50 Hz to the linewidth. Finally, the 430 mG
applied magnetic field used to set the quantization axis would produce ~60 Hz of
natural broadening due to mixing of nearby shorter-lived states (see Fig. 6.11).

If we ignore the detailed lineshapes for each of these effects, and instead
model each as a Gaussian (bell curve) with a linewidth Ygouce, We can relate
the experimentally observed linewidth ye, to the laser linewidth ypope With the
following equation (which makes use of the fact that the convolution of two
Gaussians with FWHM’s of y; and y, produces another Gaussian with FWHM

Ytotal = vV )/12 + )’22):

— 2 2 2 2 2 2
Vexp = \/yprobe + Vnatural + Vattice + YFourier + ymagnetic + Yeollisional (67)
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Fig. 6.5 Spectroscopic data depicting measured lineshapes for transitions (a) X(—1,0) —
1,(=1,1,0); (b) X(—1,0) — 1,(=2,1,0); (¢) X(—2,0) — 14,(=3,1,0); and (d) X(—2,0) —
1g(—4,1,0). Black points represent experimental data while solid black curves represent
Lorentzian fits to the data (log-scaled to account for linear probe absorption). Dashed curves
represent Lorentzians with the “true” linewidth (shown in the red dashed boxes above the data), as
determined by “in the dark” lifetime measurements described in Sect. 6.3.2. Adapted from [9]

150 Hz = \/ V2ope + (28.5 H2)? + (63 Hz)? + (50 Hz)? + (60 Hz)? + (50 Hz)?
6.8)

— Vprobe ~ 95 Hz (6.9)

This admittedly rough calculation gives an idea of the linewidth of our probe
laser, and allows us to estimate when spectroscopy is a valid tool to use for
determining linewidths. Figure 6.5 shows spectroscopic lineshapes measured for
transitions to 1, states whose natural linewidths range from ~30Hz— 1.25kHz.
Clearly spectroscopy (black points and solid line) gives artificially broad results
for the narrowest two transitions, but agrees nearly perfectly with results derived
from lifetime measurements (dashed red curve) for the two broadest transitions.
(For lifetime measurement details, see Fig. 6.7.)

6.3.1.2 Blurring Due to “Messy Molecules”

In addition to line blurring due to a messy probe, blurring due to “messy transitions,”
i.e. effects which cause the transition frequencies of different molecules to become
shifted with respect to one another, is important to minimize. It’s critical that all
molecules in the trap are subject to the same perturbing environment, so that the
same shift is common to all molecules. If this condition is satisfied, then transitions
will be narrow, and the accuracy with which these shifts can be evaluated and
subtracted is greatly improved.
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Fig. 6.6 This shows a comparison of the linewidth of the X(—1,0) — 1,(—1,1,0) transition
with the MOT coils left ON during probing (which introduces a magnetic field gradient across
the cloud) vs with the MOT coils turned OFF. The “MOT coils ON” measurements were made
spectroscopically, whereas the “MOT coils OFF” measurements were made either by determining
the lifetime of 1,(—1, I, 0) molecules “in the dark™ (for small widths) or spectroscopically (for
large widths)

Zeeman Shift Blurring Due to Magnetic Field Gradients It is an unfortunate
coincidence that the narrowest transitions to subradiant states also posses the largest
quadratic Zeeman shifts (see Fig.4.1). For a transition which shifts according to
f = fo + gB?, a blurring AB of the magnetic field can produce a blurring Af of
approximately:

d
Af ~ d—J;AB = 2|q|BAB (6.10)

From the above equation, it is clear that to minimize blurring due to field gradients,
one must either minimize the gradient AB, minimize the magnetic field B, or choose
a state with a small quadratic Zeeman shift ¢g. Quantization-axis considerations (e.g.,
the magnitude of the lattice tensor light shift compared to the linear Zeeman shift)
place a lower limit on B, and we have no control over the quadratic Zeeman shift
coefficient g. Therefore we’d like to work as hard as possible to minimize AB.

In order to minimize magnetic field gradients, we switched the MOT field coils
off during measurements. Figure 6.6 shows measurements of the X(—1,0) —
14(—1, 1, 0) transition linewidth at various magnetic fields, with the MOT coils kept
ON vs OFF. The linear broadening of ~3.3kHz/G allows us to estimate the total
“magnetic field blur” experienced by the molecules being probed:

1 A
AB ~ f

A~ — x L 6.11)
2lq| B
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1
2 x 121 kHz/G?
~ 14 mG (6.13)

x 3.3 kHz/G 6.12)

This result is of the same order as that which we would expect from multiplying the
known field gradient of our MOT coils of ~11 G/cm [11] by the approximate size of
our probed molecule sample of ~20 wm. The small discrepancy in the two results
can be attributed to not being super-careful with our definitions of “Af” and “AB,”
as well as the magnetic field gradient not being exactly linear in only one direction.

From the figure, it’s clear that any broadening due to B-field gradients is
significantly smaller when the MOT coils are turned off. We worked hard to
minimize any other sources of B-field blurring (both spatial and temporal) by
making a careful survey of magnetic fields produced by electronics and permanent
magnets near the vacuum chamber, repositioning those which were the worst
emitters so that they were as far from the science chamber as possible.

Note that quantifying the magnitude of spatial and temporal field gradients
near the science chamber was not a trivial task. Doing so required a probe with
high relative precision, capable of making measurements of small changes in the
magnetic field at fairly high fields, since we are interested in determining field noise
in realistic experimental conditions (e.g., when the DC magnetic loading coils are
turned on). We used a Bartington Mag-03MSESB 1000 three-axis magnetometer to
search for DC field gradients. For AC gradients, we build a magnetic flux probe
consisting of a single loop of coax cable with the shielding split at one end.

Differential (“Non-magic’”) Lattice Light Shift Broadening If the initial and
final molecular states see different trap depths, and if the initial molecular cloud
is at non-zero temperature, then transitions will be blurred due to inhomogeneous
light shifts seen by molecules at different positions and initial energies. Empirically,
we’ve observed that for our experiment, FWHM =& 0.3 x (total light shift). See
Chap. 7 for details.

All measurements of narrow linewidths were made in lattices set to be as
nearly magic as possible. Our experimental resolution enables us to determine the
magnitude of a lattice light shift to a precision of ~1 Hz/mW, limited mainly by the
spectroscopic resolution of our probe lasers and the limited lattice power available
for measurements. This value would imply for a typical lattice power of 200 mW a
lattice light shift-induced blurring of ~60 Hz. Future improvements to this 1 Hz/mW
precision can come from better stabilization of the high finesse cavity resonance
(e.g., better thermal stability), a narrower intrinsic probe laser linewidth, better
stabilization of the lattice power, or an increase of the total lattice power available
for trapping.
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6.3.2 (II) “In the Dark” Lifetime Measurements

The most significant source of blurring described in the previous section consisted
of a broad (~100 Hz) intrinsic probe laser linewidth. This sets a lower limit on the
linewidth measurable by spectroscopy, and rules out studying the ~30 Hz linewidth
of the narrow X(—1,0) — 1,(—1, 1, 0) transition or the ~150 Hz linewidth of the
X(=1,0) — 14(=2,1,0) transition with this technique. Instead, to measure these
very narrow transitions we have developed a technique to measure state lifetimes,
illustrated in Fig. 6.7. The following sections describe the precautions which must
be taken in order to ensure that lifetime measurements record the true lifetimes of
the molecular states under study.

6.3.2.1 Spontaneous Decay to “Visible” States (i.e., Atoms)

Our pumping and imaging scheme relies on the idea that molecules decaying
from the states under investigation will decay to states invisible to imaging and
inaccessible to pumping. For the 1,(v = —2,-3,—4;J = 1) states this is
satisfied easily, since the primary decay mechanism is predissociation, whereby
the molecules tunnel to an unbound atomic state with large kinetic energy which
quickly escapes the trap, as discussed in Sect.6.4.2. For the 1,(—1,1) state,
however, a significant fraction of molecules decay to slow-moving free atoms, which
subsequently can be imaged, artificially inflating the recovery signal. This process
is represented by the open squares in Fig. 6.7. Since there is no guarantee that the
spontaneously decaying atoms will produce a signal with a decay constant exactly
equal to that of the properly recovered atoms (and in fact, the functional form of the
number of decaying atoms versus time should not even be exactly exponential), this
spontaneous decay signal must be subtracted from the “true” signal before fitting
with an exponential decay.

6.3.2.2 Imperfect r-Pulse Generation

In order to measure the lifetime of a molecular state, significant population must
first be pumped into that state, held for a variable length of time, and then reliably
retrieved for imaging. We achieve high-efficiency state transfer with Rabi z-pulses,
as shown in Fig. 6.7a. However, we must be careful: an imperfect choice for the
duration for a m-pulse can dramatically affect the measured value for the state
lifetime. If the duration of the “w-pulse” differs significantly from the “true value,”
the “recovery pulse” will sample a superposition of initial and final states rather
than a pure state, and as a result the number of recovered molecules will vary as
a function of “wait time” in a way which is unrelated to the excited state’s natural
lifetime.
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Fig. 6.7 Direct measurements of the lifetimes of long-lived molecular states can be made by
coherently pumping ground state molecules into the 1, state under consideration, waiting for a
variable amount of time, and then measuring the amount of population remaining in the 1, state.
(a) Coherent Rabi oscillations are observed by measuring the population of X(—1, 0) after being
subjected to a probe laser (resonant with the X(—1,0) — 1,(—1,1,0) transition) of variable
duration. The duration of the pumping pulse is chosen as the smallest value which minimizes the
number of X(—1,0) molecules observed. (b) Data depicting the number of molecules observed
in the 1,(—2,1,0) state as a function of wait time, along with an illustration outlining the
experimental sequence in more detail. (¢c) Molecule population in the 1,(—1, 1, 0) state can be
measured by photodissociating via the 'Sg+'Sq (left) or 3P;+3P; (right) thresholds. (d) Data
depicting the number of molecules observed in the 1,(—1, 1, 0) state as a function of wait time,
with an illustration describing the modified experimental sequence. Note that because 1,(—1, 1, 0)
molecules can spontaneously decay to free atoms, this signal (which can be measured simply by
omitting steps 2 and 3 in the illustration) must be subtracted from the total recovery signal in order
to determine the true lifetime. Adapted from [9]
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Fig. 6.8 (a) A sample of molecules is initially produced in the X(—1, 0) state, and then subjected
to a pump laser resonant with the 1,(—2, 1, 0) state of variable duration. Afterward, the number of
X(—1,0) molecules remaining is imaged. This number exhibits Rabi oscillations as a function
of pump time. (b) The same experimental sequence as that which is depicted in the previous
panel, but with finer time resolution. Arrows mark the pump durations which will be used later.
(¢) A full “pump, wait, recover” sequence is shown for four different choices of “pump/recovery”
duration. When the pump duration differs significantly from the optical 7-pulse value of ~36 s,
large oscillations in the recovered molecule number develop due to sampling of a time-evolving
superposition of initial and final states rather than a single pure state. (d) Measurements of the
1,(=2, 1, 0) state lifetime with the “correct” -pulse duration of 36 s vs the “incorrect” m-pulse
duration of 44 j1s. An exponential fit to each data set yields decay constants which differ by nearly
a factor of two

Figure 6.8 shows this effect at play in a measurement of the lifetime of the
1,(=2, 1, 0) state. Since state lifetime is determined by fitting a plot of the molecule
population vs time with an exponential decay function, the fitted value for the decay
constant t can be strongly affected by “wiggles” in the decay curve. For the data
shown in Fig. 6.8c, the fitted value of t changes by a factor of nearly 2 with an
incorrect choice of w-pulse duration.

6.4 Characterizing Linewidths (II): Sources of Natural
(i.e., Inherent) Broadening

After minimizing or eliminating all experimental sources of broadening, what
should be left are natural sources of broadening, i.e. physics influencing the lifetime
of the excited state irrespective of the spectroscopy or trapping scheme. In the
limit of zero perturbing fields, two effects dominate the lifetimes of 1, states:
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predissociation and radiative decay. When magnetic fields are applied, these natural
lifetimes can be modified dramatically through state mixing with nearby levels.

6.4.1 Radiative Decay

Radiative decay refers to the process by which an electronic excited state sponta-
neously decays to the ground state through emission of a photon. It can be described
in terms of an interaction Hamiltonian Hgy, representing the interaction of the
electron cloud with a radiation field, having the following form [17]:

Hpy = B0 ki p. (6.14)

mw

where € is the electric field polarization unit vector, T is the electronic position
operator, P is the electronic momentum operator, k is the EM wave vector, and
I have omitted a sum over all electronic coordinates for clarity. The total decay
rate can then be computed by evaluating the following transition element (i.e., by
applying Fermi’s golden rule):

(Total transition rate) o | (W, |Hem|¥,) |2, (6.15)

where |\W;) represents a sum over all possible output channels.

However, it is much more common to Taylor-expand the interaction Hamiltonian
to first or second order before computing, which is valid when R/A << 1 and the
radiation intensity is low (as is true for our experiment). A convenient classification
groups these low-order terms into E1, M1, and E2 transitions:

- iEge | - .

Hpy = ——= | é-p +ilky-H)E-P)+--- |. (6.16)
mo —— N——
El M1,E2

6.4.1.1 E1 Transitions

For molecules in superradiant states, electric dipole (E1) radiative decay to the
electronic ground state is the dominant contributor to a state’s natural lifetime. The
E1 decay rate can be computed by calculating the transition dipole matrix for just
the first term of Eq. (6.16):

2

iE
120¢ 6.17)
m

El decay rate ‘(\111|( € f)>|‘l’2)
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L ih N -
Using the well-known result [r, Hy] = l—p [1] (where H = Hy + Hgy), we can
m
rewrite the decay amplitude in a way more amenable to computation:

(] (5052 B) 1) = 2w (32) 2 Gt — o) )

Epe oA
= i(Ez—El)we-rwz)

= E()€<‘~IJ1|€ 'I'|\I/2). (618)

Equation (6.18) contains no explicit dependence upon the size of the atom or
bond length of the molecule in question, and so to a first approximation it’s clear that
the E1 radiative decay rate for rovibrational states in 88Sr, should be independent of
bond length. The story is different, however, for higher-order transitions.

6.4.1.2 MI1/E2 Transitions

Subradiant states are defined as such because electric dipole radiation to the ground

state is forbidden by parity selection rules. Higher-order radiation due to the second

term of Eq.(6.16), however, is allowed. To understand the physics behind such

transitions more clearly, we can make use of the following vector identity:
(AxB)-(CxD)=A-C)B-D)—(B-C)(A-D) (6.19)

to rewrite the “M1, E2” radiative term:

Bk, D@ p)] = [ DR D)+ R xD-GExB)] 620

oA A . e e A ih
We can rewrite T X p = L and again make use of the identity [r, Hy] = —p to get:
m

Eer - .. . Eperm _ . - A A a - L o
22 [k, D)@ D)) =~ | 2@ DK, - (o — Hob) + (K, x ) - L]
mw mw Lih
(6.21)
E, oo A N N ~
=2 imwn@E D@D @ xe L], (622
mc

E2 Ml

where €; is a unit vector defining the radiated photon propagation direction, and I
have again assumed a transition between states with energy difference E, — E| =
hw 12-
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By rewriting the above operators in the molecular frame, it’s possible to see that
both M1 and E2 decay rates should scale with the square of the bond length. For
example, consider a diatomic molecule consisting of atoms A and B for which the
internuclear axis is along z, so that x, y lay in the bisecting plane. Let atoms (A, B)
be located at (x,y,z) = (O, 0, §) For M1 transitions, the transition moment due to

the z-component of the L operator will be zero in the asymptotic, large-R limit. This
can be seen by rewriting L = Xp, — D, and evaluating the transition moment using
the properly symmetrized asymptotic wavefunctions [3, 15]. If we next consider just
the x-component of the M1 operator (the y-component would give the same result),
we can approximate the total angular momentum operator L, as simply the sum of
the individual atomic angular momentum operators [3]:

N . - R R
L, =Ly +Lg+ EPy — EPyB (6.23)
Let the molecular wavefunction have the simplified form |W,) = |[Wa)|¥p).

Matrix elements due to I:xA and I:xB will be zero since the atomic wavefunctions
have zero angular momentum projection along axes perpendicular to the internu-
clear axis [3]. It is then straightforward to show that for transitions to molecular
states in which one of the atom’s energies has changed from E; to E;, the M1
transition moment can be rewritten:

(M1 transition moment) (q!i|ﬁx|\yf) '8 wlzR(\IJ/",|§'A|\IIZ) (6.24)
— (M1 decay rate) R? (6.25)

The same result can be found for E2 transitions by performing a similar calculation.
This time, only components of the E2 operator containing the z-axis (i.e., (€ -T) = z
or (€ - F) = z) will contribute to the transition moment, for reasons similar to those
outlined above.

The implication of Eq. (6.25) is that, in the absence of other decay mechanisms,
subradiant molecules with larger bond lengths (or, equivalently, smaller binding
energies) should decay faster. Surprisingly, we discovered the exact opposite
behavior: molecular lifetime for the subradiant states in our experiment increased
with bond length (see, e.g., Fig. 6.5). Furthermore, the decay rates calculated with an
ab initio molecular model gave decay rates on the order of 1 to ~several Hz, nearly
three orders of magnitude smaller than the experimentally observed linewidths.
Both of these facts support the idea that another source of inherent broadening
must dominate the decay rate. And in fact, there is another well-known source of
broadening of molecular lines not yet considered here: predissociation.
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Fig. 6.9 A schematic representation of the predissociation process (adapted from [9])

6.4.2 Predissociation

Predissociation involves the direct tunneling of a bound molecular state to an
unbound atomic state without the emission of a photon, and is represented schemati-
cally in Fig. 6.9. In order for energy to be conserved, the outgoing atomic fragments
must carry away a large amount of kinetic energy. For ®Sr, molecules in the 1,
potential, the dominant predissociative channel is to the 0, threshold of 1So+3Py
molecules. We can estimate the amount of kinetic energy liberated in such an event
as the energy difference between 3Py and *P; atoms:

AEpre = E3P1 - ESP()
= 14504.351 cm ™" (h¢) — 14317.520 cm™ ! (he)

= 186.831 cm™ ! (hc)
~ 5.6 THz(h) (6.26)

The above value is large. For comparison, the most energetic atoms produced
in the ultracold photodissociation studies described in this thesis (see Chap. 8)
have energies of ~400 MHz. We can estimate the velocity of predissociated atom
fragments using conservation of energy:

1
2 x Em(ss_gr)vz = 5.6 THz(h)

5.6 THz(h)
— UV = —_—
I’l’l(sssr)

~ 159 m/s (6.27)

Since the entire field of view of our imaging system is <1cm, atom fragments
produced by predissociation will fly out of view in at most ~60s. This is
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unfortunately too fast to allow for direct imaging, since it’s nearly twice as brief
as the lifetime of even the shortest lived 1, state described in this thesis. It is,
however, fast enough to be confident that predissociated atom fragments will always
be “invisible,” meaning that unlike the possibility of spontaneous decay to the
ground state (Sect. 6.3.2.1), this decay mechanism will not artificially influence our
measured values for the lifetime.

Whereas radiative M1 and E2 decay rates increase with increasing bond length,
predissociation in this case displays the opposite behavior. We can estimate the
predissociative decay rate by again using Fermi’s golden rule [9]:

21 PN
Tpre & 7|(1g, v, J ' |HR|0g E.J . m)|%, (6.28)

where |Og_, E,J',m’) is the energy-normalized continuum wavefunction with energy

E matching that of the bound level v'. Hp represents the coupling Hamiltonian
between states of the 1, and 0, potentials, the physics of which is due to coupling

between electronic angular momentum} = L + $ and total angular momentum J,
A 2 A A A A
and has the form Hg = —#(h.j_ +J_jy).
In the asymptotic, long-range limit, I, = O because (lg[;i|0;) ~
(P1j<*Po) = 0 [9]. In the short-range limit, however, the matrix element is
non-zero, and we can separate the transition element into radial and rotational parts:

2
Ty %lwv/(R)lwf(E))F FU ), (6.29)

where v/(R) is the rotational part of the wavefunction describing the initial
vibrational state, Yy(E) is the final continuum wavefunction, and f(J',m’) is
(constant with R) function of the angular momenta.

Evaluating Eq. (6.29) exactly would show that the predissociative decay rate is
several orders of magnitude larger than the radiative decay rate for all subradiant
states explored by our group except for 1,(—1, 1), which possesses radiative and
predissociative contributions of comparable magnitudes. This calculation, though,
is beyond the scope of this thesis because it requires knowledge of the shapes of
the initial and final wavefunctions (which our theorist collaborators in Poland have
worked hard to provide). But we can get an intuitive understanding of the long-range
behavior in the following way.

Taking a cue from quantum defect theory, we can write the rovibrational
wavefunction in the following form [10]:

1/2 12
W, (R) = (ai) (2“ ) ay (R, k) sin (B (R, k), (6.30)

2
W Jpp, \7h

where aa% is the vibrational spacing, « (R, k) and 8, (R, k) are the quantum amplitude
and phase, respectively, of the state v, and k(R) = /2[E, — V(R)]u/h is the
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local wavenumber. Equation (6.30) is a convenient way to represent the vibrational
wavefunction for the following reasons. First, since the rovibrational states we deal
with are very weakly-bound compared to the depth of the potential, the functions
(R, k) and B, (R, k) are nearly constant at short range. Since the final continuum
wavefunctions |/¢(E)) are also very nearly constant for all initial v" due to the large
dissociation energy, it becomes clear that the predissociative linewidth will be a
function only of the vibrational energy level spacing:

oE

1—‘Pre(v) :P( 3 U) ) (6.31)
v JE=E,

where p is a free parameter quantifying the overlap between the initial bound and

final continuum wavefunctions.
v

v
of the measured binding energies. We can also approximate it by applying the
LeRoy-Berstein formula [7], which relates binding energy to vibrational number
according to:

We have direct experimental access to ( ) via numerical differentiation
E=E,

E, = —[(vp — v)f(n)]7=2, (6.32)

where the potential is assumed to have the form V(R) = —C,/R", vp is the
“effective” vibrational number of the dissociation limit, the vibrational energy E,
is defined as zero at the dissociation threshold, and f(n) is a complicated function
of n. Differentiating the above expression with respect to v yields:

JoE, 2 2
T = o f (v — V) (] (6.33)
v n—72
n+2
o« E,” (6.34)
< R™'T (6.35)

where the last equality came from equating a bound state’s energy E, with the value
of the potential V(R) at its bond length.

Equation (6.35) implies that the predissociation rate should scale differently in
the large- and small-bond length regimes. At large length scales, the interaction
potential for 88Sr, dimers can be expanded in terms of C; and Cy coefficients [18]
via V(R) ~ —% + % + (higher order...). For relatively small bond lengths where

. , _6+2 _
the Cs term dominates, we’d expect the decay rate I'ye  R™ 2 = R 4 whereas

at larger bond lengths we’d expect the decay to rate scale as I'pe R = g25,

For rovibrational states within the 1, potential, it turns out that the crossover occurs
between the 1,(—2, 1) and 1,(—1, 1) states.
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Fig. 6.10 The measured linewidths of the four most least-bound 1, states are shown plotted
against bond length, as well as those of two representative supperradiant states. The bond length
is defined as the classical turning point for a state with binding energy E confined to its respective
potential (1,, 0,, 1¢). Theory curves displaying radiative and predissociative contributions to the
linewidth are shown in red and blue, respectively. Black lines show y & R™* or R~2 and serve
to guide the eye. Note that while radiative decay rates increase with bond length, predissociative
decay rates decrease with bond length (adapted from [9])

6.4.3 Results: Linewidth vs Bond Length at Zero Field

Figure 6.10 shows the measured values of linewidths for the four most least-
bound 1, states, as well as theory curves describing both the radiative and the
predissociative contributions. Two superradiant state linewidths are also shown for
comparison. In the figure, the theory curves are fits based on the approximations
of Egs. (6.31) and (6.35), while open circles denote ab initio calculations based on
numerical solutions of Eq. (6.28) [9].

As is clear from the figure, the linewidths are completely dominated by the
contribution from predissociation. Only for the narrowest, least-bound state, where
the radiative linewidth is ~30% of the predissociative linewidth, can the effects of
radiative decay be observed.



130 6 Subradiant Spectroscopy

Table 6.1 All values used for plotting data and theory curves in Fig. 6.10

v E;, (MHzXxh) ‘3—5 (MHzxh) | R (Bohr radii) | ¥rag (Hz) | Ypre (HZ) | Yexp (Hz)
1,(—1,1) 19 132.3 132 5.7 19.7 28.5(2.0)
1,(—2,1) 316 643.3 71 1.6 166 156.3(5.3)
1,(=3.1) | 1669 22443 52 0.8 555 525(30)
l,(—4,1) |5168 4935.3 42 0.6 1243 1250(90)
L,(=1,1) 353 N/A 59 N/A N/A 14,000(1000)
0;" (—4,1) | 1084 N/A 58 N/A N/A 23,000(1000)

Calculations of predissociative and radiative decay linewidth contributions were performed by
Wojciech Skomorowski and Robert Moszynski [9]

6.4.3.1 Details on Data Used in Fig. 6.10

Table 6.1 shows all theory and experiment values used to produce the data points
and theory curves shown in Fig. 6.10.

Two theory curves are shown in Fig. 6.10, depicting linewidth contributions from
predissociation and M1/E2 radiation. The predissociation theory curve is drawn to
be proportional to the value for g—f at all v, which was calculated numerically from
knowledge of the binding energies E,. Specifically, a third-order polynomial fit was
fitted to a plot of Ej, vs v, and then differentiated to obtain W ly=(=1,—2.—3.—4).-
This fit had the following form:

Ep poly-fiy = —312 —711.3 x v — 562 x v* — 181.6 x v°, (6.36)

The predissociative linewidths y,.. were then calculated according to Eq. (6.31).
The scaling coefficient p can in principle be calculated ab initio, but in our case was
determined simply by fitting Eq. (6.31) to a plot of the experimentally determined
linewidths yex, vs v for the three most deeply-bound states (ignoring the least-
bound state because its linewidth is expected to reflect a significant contribution
from radiative decay, rather than be dominated by predissociation). The value of p
found by following this method was p = 0.24806.

In order to convert a plot of Ypre Vs v into a plot of ypee Vs R, a function was found
by trial and error which could approximate the correct value of % at every R. It had
the following form:

IE -3, p2 6., p3

3 exp[13.7616—0.16315xR+1.0>< 107" xR"—2.07185x107° xR ] (6.37)
This function gives results which differ from the calculated value for % by no more
than 3%, which is plenty accurate enough for a curve intended only to guide the
eye. This curve was then multiplied by the scale factor p discussed in the previous
paragraph in order to convert to linewidth, and is represented by the dotted blue
curve in Fig. 6.10.
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The radiative decay curve (red line on Fig.6.10) was found by fitting the
calculated ab initio values for the radiative decay linewidth contributions (found
by our collaborators Wojciech Skomorowski and Robert Moszynski) to the function
Yrad = Kk X R2. The fitted value of x was 3.26(3) x 10~* Hz/(Bohr radius)?, and the
residuals on the fit were small enough to be consistent with the difference being due
to rounding error.

6.4.4 Magnetic Field Mixing of Nearby Levels

Somewhat surprisingly, we’ve found that the values we measure for linewidth can
be strongly influenced by the application of small magnetic fields. This effect is
unrelated to the spectroscopic blurring which can be caused by magnetic field
gradients as discussed in Sect.6.3.1.2, but rather represents a real modification
of the excited state lifetime. Figure 6.11 illustrates this phenomenon, showing
experimentally determined values for the linewidth of both / = 1 and J = 2
1, states (measured either “in the dark” or via spectroscopy depending on the
magnitude of the linewidth).

Several interesting trends in this figure are worth pointing out. First, notice
that while for the J/ = 1 data depicted in Fig. 6.11a the linewidths broaden with
increasing magnetic field, for the J' = 2 data depicted in Fig. 6.1 1b—e the linewidths
actually narrow. Experimentally this is comforting because it proves that we are not
simply observing an artificial, experimentally induced broadening mechanism, but
rather are seeing something which reflects inherent molecular physics. Second, as
implied by the dotted lines drawn to guide the eye, notice that the linewidths of all
1,(v',J" = 1) states are well-described as increasing quadratically with magnetic
field. One possible explanation for this behavior would be magnetic field-induced
mixing of nearby states [8]. As was discussed in Chap. 5, small magnetic fields can
induce a pure state |) to become slightly mixed with its neighbors |v) according to

|w(B)) ~ |1£(0)) + Y (B/By)Iv). (6.38)
vEL

where B, = (E, — E,)/ (/L(O)|I:IZeeman/B|v(O)). In this case, radiative decay

transitions between two states |y) and |u) which were initially forbidden (i.e.,
|2,,.|> = 0) could become slightly allowed according to:

(6.39)

2 BF ~ B| Z
vFEL

which would cause broadening that is quadratic with field, just as we observe.
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Fig. 6.11 Linewidths vs magnetic field for 1,(v’;J’ = 1, 2). Solid points represent spectroscopic
measurements of linewidth, while hollow points represent “in the dark” measurements of lifetime.
(a) Linewidths of the four least-bound 1,(v’,J’ = 1) states plotted against magnetic field. The
dotted lines are to guide the eye, and have the functional form y(B) = y, + A - B2, where y,
is the zero-field linewidth for each state as described in Table 6.1, and A = 3 X 10~* Hz/G? for
v = —1,-3,—4and A = 5x 10~* Hz/G? for v’ = —2. (b—e) Linewidths of the four least-bound
1,(v',J” = 2) states plotted against magnetic field. Note how for the majority of cases a clear
narrowing of the linewidth is observed with increased magnetic field—the exact opposite of the
behavior observed for 1,(v",J’ = 1) states

6.5 Comment on the Search for 0, States

Over the course of my PhD, our group has devoted a significant amount of
experiment time to the search for states within the 0, potential. These searches
consisted of creating a population in one of the X(v = —1, —2;J = 0, 2) states, and
then applying a strong, long-duration laser pulse which would deplete the population
of the initial state if tuned into resonance with a 0, state.

Unfortunately, each one of these searches has so far come up empty, despite
laser sweeps across several GHz and theory guidance from our collaborators at the
University of Warsaw. There are several possible reasons why our searches might
have failed so far:
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* Transitions to 0, states may simply be too weak to see with our setup.
The weakest transitions we’ve observed have been highly-forbidden, magnetic
field-enabled transitions satisfying AJ = 2,3 (see Fig. 5.4). Preliminary theory
calculations have indicated that most of the transitions to 0, states we hope
to observe may be weaker than the weakest demonstrations we have so far
demonstrated the capability to see. One possible way around this difficulty would
be to prepare a spectroscopy scheme for which E1 transitions are allowed, such
as a two-photon process starting from the metastable 1,(—1, 1) state.

¢ Predissociation (or another unknown mechanism) may broaden these states
so much that losses due to the spectroscopy laser are difficult or impossible to
disentangle from losses due to other effects. For example, we sweep our lasers
using acousto-optic modulators (AOMs) whose bandwidth is ~100 MHz. Since
the amount of laser power passing through our AOMs depends upon frequency,
shallow, broad dips in signal with widths comparable to or larger than the AOM
bandwidth would be difficult to recognize as genuinely due to resonance with a
broad transition to a O, state.

* Transitions to O, states could be so narrow that we simply “stepped” over
them. For a given amount of time we want to invest in any spectroscopic search,
we must make a choice between frequency step size and sweep range. We
generally erred on the side of large sweep ranges by using step sizes of a few
hundred kHz, reasoning that at large probe powers the transitions we hoped to
find would be power-broadened enough to see. However, this assumption may
not have been valid, and we may have stepped over 0, states without realizing it.

* The binding energies of 0, states may be so close to those of 0, and 1, states
that weak, E1-forbidden transitions to 0g states are effectively ‘“hidden” by
the strong, E1-allowed transitions to states of u-symmetry. If this is true, then
we could circumvent this problem by either operating at extremely low probe
powers and very small step sizes (hoping that transitions to the 0, states are
both very narrow and spectroscopically resolvable from the ~15kHz natural
linewidth of transitions to the u-symmetry states), or by designing a spectroscopy
scheme which severely suppresses transitions to u-symmetry states (such as the
two-photon scheme starting from 1,(—1, 1) described above).

We are still very interested in eventually finding these states, since there is the
possibility that they may be even longer-lived than 1, states, which would make
them interesting from a metrological perspective. Perhaps the next generation of
ZLab will discover this final piece of the puzzle and fill in the last gap in our
understanding of weakly-bound strontium molecules.
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Chapter 7
Carrier Thermometry in Optical Lattices

The first step of nearly every experiment in modern atomic physics consists of
cooling an atomic or molecular sample. But why is this so universally important?
Why can’t accurate measurements be performed on room-temperature or “hot”
samples?

The truth is that very accurate measurements of frequency can be made on hot
samples, and that for many years (before the late 1980s) the best measurements of
atomic properties were obtained with beam experiments using Ramsey’s method
of separated oscillating fields [12]. However, the accuracy of such devices suffered
from a fundamental limitation. The linewidth y of a transition under investigation
with the Ramsey method is related to the time 7 the molecules are allowed to evolve
between probe pulses, roughly according to the following equation:

L 71
YTy 7.1y
where v is the velocity of the atoms under investigation and d is the length of the
interaction region. Hotter atoms move faster, and so there are only two options for
decreasing linewidth (and therefore improving frequency resolution): increase the
length of the interaction region, or decrease the temperature of the atoms.

As a practical matter, the interaction region for a clock designed to fit within
a room will be limited to no more than a few meters at most. And in fact, every
primary NIST frequency standard from the late 1950s until 1998 included a very
long pipe through which hot atoms could flow [7]. But with the invention of laser
cooling in the late 1970s and early 1980s, a new possibility emerged. If atoms
can be slowed to very small velocities, it becomes possible to envision performing
Ramsey’s separated fields technique on a pipe which has been oriented vertically,
so that the time between interactions is simply the time it takes for an atom to
ballistically fly up, reach the apex of its trajectory, and then fall down. For a pipe a
few meters long, this results in an interaction time which has been increased from
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tens of ms to as much as a second, with a corresponding decrease in linewidth and
increase in frequency resolution. The current US frequency standard, NIST-F2, is
based on this technique [11].

In order to achieve even longer interrogation times, not limited by the free-
fall of an atom over a few-meter-long path, the most accurate clocks today make
use of optical lattices or ion traps [4, 10]. The advantage of this technique is an
improvement of both the duration and the ability to control the interrogation time.
The drawback is the introduction of new systematic shifts due to the presence of the
trapping potential, which must be controlled and corrected for. In our experiment,
as well as other optical lattice clock experiments, we operate a so-called “magic
wavelength lattice,” whereby the lattice wavelength is tuned so that the trap depth is
equivalent for atoms or molecules in both the initial and final states of the transition
[5]. In such a trap, if the wavelength of the optical lattice is at all non-magic,
then the “blurring out” of the lineshape of the transition under investigation will
be influenced by the temperature of the atoms or molecules within the trap. It is
therefore of great interest to know exactly the temperature of the trapped atoms or
molecules.

Today, measuring and lowering ultracold temperatures is an active field of
research in modern optical lattice experiments [9], and many different approaches
exist. For thermal clouds of atoms, the most common technique for determining
temperature is “time of flight imaging,” whereby a cloud of atoms is released and
their locations are recorded after having been allowed to expand for some amount of
time [6]. Since hotter atoms move faster, the temperature of the cloud can be inferred
from its spatial extent. This method, however, relies on the ability to image the
particles undergoing expansion. For atoms this is possible because atoms generally
possess strong cycling transitions, which allow for the possibility of absorption
imaging. For molecules, however, there is generally no easy way to determine their
temperature.

In this chapter I will describe a new technique for determining the temperature
of atoms or molecules confined to an approximately harmonic trap, which depends
on accurately recording the lineshape of a transition “smeared out” by the thermal
distribution of particles in a slightly non-magic trap. Our technique offers a solution
for determining temperature when narrow transitions are available (in any frequency
regime). This chapter represents a more detailed analysis of work first published by
myself and colleagues in 2015 [8].

7.1 A Roadmap for Determining Temperature

In order to determine the temperature of a sample of ~harmonically-trapped
particles, it is necessary to measure only three “frequencies”: (1) the differential trap
depth for the transition, manifest as a non-zero light shift; (2) the axial trap spacing;
and (3) the full width at half maximum (FWHM) of the thermally-broadened
lineshape.
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Each measurement requires some care, and it will take several pages to derive
the exact relationships between all of these quantities. But when traveling through a
dense forest it’s often helpful to have a compass and a map, so as to have some idea
about where we hope to end up. So with that in mind, here is a roadmap (justified and
elaborated upon in the following sections) describing the sequence of measurements
which must be made in order to determine the temperature of trapped particles:

1. Under non-magic (o//o # 1, where a and o’ are the initial and final trap
polarizabilities, respectively) conditions, record the carrier spectrum at several
lattice powers and fit with the following lineshape:

Noexp [A(f —fo)?e V], B(f —fo) = 0

(Eq. (7.28))
No, B(f —fy) <0

N(f)=§

2. Plot the fitted values of f; vs lattice power P according to the following equation:

/

¢ ) U (Eq. (7.50))

1
=LP=-(1-—
fo=Lo 5 ( o
3. Under magic (¢’/a = 1) conditions, record the axial trap frequency f, vs lattice
power P according to the following equation:

fi= (&) = kP? (Eq.(7.52))
2
The trap frequency can be determined several ways. In this thesis we take
high resolution spectra of the red and blue sidebands, fitted with the following
equation:

Ny exp [C(f —fi)3e_D(f_fi)], D(f —f+) =0

(Eq. (7.43))
Ny, D(f —f+) <0,

N(f)={

and determine the trap spacing as f, = %(}Sr —fo).

4. With knowledge of the light shift Ly, and the axial trap frequency f;, the
temperature T can be extracted from the fits of the non-magic carrier
lineshapes, using the following equation:

—1
/ 2hLy A2PM
Tearier = h | kgB l———1 o Eq. (7.56
carrier |:B ( AZKZM ):| kBBLO ( Q( ))

The details of why the above equations are valid, and how measurements can be
faithfully obtained, will be explained in the following sections.
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7.2 Overview: Setting Up the Problem

The advantage of performing spectroscopy in a 1D optical lattice is that motion
along the axial (x) direction is strongly quantized. This fact allows for the difference
in initial and final motional trap states along the axial direction to be selected for by
changing the frequency of the probe laser. Transitions which conserve motion along
the axial direction are called carrier transitions. Transitions which add or subtract
an axial motional trap quantum are called sideband transitions.

The popular method traditionally used for determining the temperature of trapped
particles is to study the structure of their sideband transitions. Transitions which
add a motional trap quantum are called blue sidebands, while transitions which
subtract a motional trap quantum are called red sidebands. A cartoon illustrating
this process is shown in Fig.7.1a, while an example ¥Sr, spectrum showing red
and blue sidebands is shown in Fig. 7.1b.

Because molecules which are already in the lowest possible trap state cannot
be cooled further, the red sideband in a spectrum will always be smaller than
the blue sideband. This fact is commonly taken advantage of in order to estimate
the temperature of a sample. Since the motional states will be occupied with
probabilities determined by the Boltzmann distribution, the ratio of the integrated
sideband absorption cross sections will obey the following equation [1]:

total ZNx —Ey, /(kgTy) —Eo/(kpTy)
ored _ ny=1 ¢ ! =1 ¢ - (7 2)
total N, —E, /(knT.) Ny —E, /(knT.) :
oblue E n,,:=0 e nX/( BTy) E n;=0 e nx/( BTx)

where temperature is labelled 7, to be clear that this is an axial temperature, i.e.
it describes only the probability distribution of axial trap states while ignoring the

(@) (b)

o' /o= 0.996(3)

Sr, number (arb.u.)

Blue sideband 1 1 1 L L

Cari
Red sideband 75 50 25 0 25 50 75

Laser frequency detuning (kHz)

Fig. 7.1 (a) An illustration of a molecule in the electronic ground state undergoing a transition to
the electronic excited state via a red sideband (An, = —1), carrier (An, = 0), or blue sideband
(An, = +1) transition. (b) A spectrum (adapted from [8]) showing sideband and carrier transitions
under nearly-magic lattice conditions. The spectrum depicts a narrow (<30 Hz) transition from a
stable ground state to a metastable subradiant state, X(—1,0) — 1,(—1, 1). The sidebands were
exposed for ~60x longer than was the carrier in order to produce a significant signal
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radial trap state distribution. For a perfectly harmonic trap, E,, = haw,(n, + %) and
N, — o0, and the equation above can be solved for T:

hw,

Oloéal
re
k ln ( total )

Oblue

(7.3)

(harmonic) __
T, =

In reality, our trap is not exactly harmonic, and in fact N, will be finite. With a
trap spacing of ~70kHz (trap depth of ~50 wK), there should exist ~ hU—LSX ~ 15
axial trap quanta. But given a temperature of ~5 K, over 90% of the molecules will
occupy just the first four axial trap states, implying that the harmonic approximation
of Eq. (7.3) isn’t so bad.

There are, however, a few flaws in defining temperature in this manner. Besides
the fact that this method for measuring temperature is only sensitive to one
dimension, it is also frequently difficult to measure with high confidence the ratio
of areas between two sidebands, particularly at low temperatures where the red
sideband becomes vanishingly small. These facts serve as motivation to find another
technique for reliably measuring temperature.

7.2.1 Modeling the Trap Potential

The trap potential is formed by a retro-reflected Gaussian laser beam. Ignoring the
(small) perturbation due to gravity, this potential can be modeled with the following
equation [2, 3, 8]:

UF) = —Upe 2" "™ cos? 2rrx/ 1), (7.4)

where w(x) is the lattice waist at position x with a minimum value of wy, and A is
the wavelength of the light used to form the trapping potential. Uy is the trap depth,
given in terms of the total trapping laser power P by

Uy = 4aP/(rwice), (7.5)

where « is the polarizability of the molecules in the trap. (Note that this polar-
izability will generally depend upon the rovibrational state of the molecule being
trapped.)

To simplify the analysis of this system, we note that near the lowest energy states
of this trap the potential will appear to be approximately harmonic [2]. With this
approximation, we can rewrite the trapping potential near the center of the well
(i.e., when w(x) = wy) in the following way:

1 1
U®F) ~ EwaxZ + EMa)frz — Uy, (7.6)
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where the axial and radial trap frequencies (wy and w,, respectively) have the
following forms:

we = /2)2Us/M (7.7)
w, = (2/wo)y Uo/M (7.8)

where M is the mass of the trapped molecule.

Assuming that particles are trapped near the optical lattice focus (i.e., that the
trapping potential is symmetric about the origin), the next highest order corrections
to the harmonic approximation above would be quartic, and would have the
following form:

Vaalr) = — (Mw? x*/2)" /(3U0) (7.9)
Vi (r) = — (Mo} x*/2) (Mo} ?/2) /Uy (7.10)
Vo (r) = — (Mo? 2/2)° ] (2U0) (7.11)

While it turns out that these fourth-order corrections will have precisely no effect on
our derivation for the lineshape of a non-magic carrier transition (which incidentally
is one of the reasons this method for determining temperature is so powerful), they
will be critically important for the derivation of sideband transitions.

7.2.1.1 Visualizing the Harmonic Approximation

We can get an intuitive picture of how temperature can affect lineshape by first
picturing the limiting scenario of a perfectly harmonic, magic-wavelength trap in
one dimension, with motional states separated by Zw. In this scenario, the separation
between adjacent trap states is constant no matter how high up in the potential
one goes. It is then easy to see that the lineshape for both carrier and sidebands
should consist of a very narrow peak, since the same laser frequency is required to
drive a transition no matter which motional trap state a particle initially occupies.
Figure 7.2a illustrates this scenario.

If the trap is not exactly harmonic, however, then the separation between adjacent
trap states is no longer constant at higher trap energies. The laser frequency required
to drive a sideband transition therefore changes as the molecule’s initial motional
energy increases, resulting in a sideband lineshape which becomes smeared out.
The carrier lineshape, however, remains a narrow peak, since it is insensitive to
differences between adjacent levels. This scenario is depicted in Fig. 7.2b.

Finally, if the trap is both anharmonic and non-magic, then both carrier and
sideband transitions will become blurred. The blurring of the carrier is caused by
the difference in trap depths, which creates a progressively worse mismatch among
initial and final motional state energies as the initial trap state energy increases. This
scenario is depicted in Fig. 7.2c.
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Fig. 7.2 In the illustrations above, an arrow represents a transition from |n,) — |n}), its length
represents the frequency of this transition, and its thickness represents the occupation number of the
initial state |n,). (a) For a perfectly harmonic, magic trap, the lineshapes describing all transitions
will consist of narrow peaks, since the frequencies of both carrier and sideband transitions are
independent of the initial state. (b) When a magic trap is anharmonic, sideband transitions become
“blurred out” due to the variable spacing between axial trap state energies. The carrier, however,
remains a narrow peak. (c¢) If the trap is non-magic, both carrier and sidebands will be subject to
broadening. Notice, however, that in certain cases “broadening” due to the non-magic nature of the
trap can be counteracted by “narrowing” due to the trap’s anharmonicity, as is illustrated in the red
sideband above
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7.2.2 Calculating Lineshapes

To determine the lineshape of a transition will require summing over transition
probabilities for many molecules distributed across a wide range of motional trap
states in the lattice. But to begin, let’s consider just a single particle of mass M
confined to a single well of an optical lattice, and ask about the difference in energies
between initial state |\W;) and final state |W;). The evolution of its initial and final
wavefunctions will be governed by the Hamiltonians

h? .
H; = —wvz + U@) +E; and
(7.12)

h? -
Hp = =2 V> + U'() + By,

where U(7) and U’(¥) describe the initial and final lattice potentials, and E; and
E; describe the initial and final internal energies (i.e., the lattice-free energies),
respectively.

The eigenfunctions of Eq.(7.12) will be harmonic oscillator states which can
be characterized by three numbers (n,, ny, n;) describing which motional states are
occupied. Let’s consider the following transition:

W) = |nenyn) — |¥5) = [y’ (7.13)

We can characterize a transition between initial and final state generically with the
condition n; = n; + D. Carrier transitions are defined as those preserving motional
trap state, i.e. D = 0, while sideband transitions change the motional trap state
by 1, i.e. D = £1. Whether or not this condition is satisfied depends on how the
experiment is constructed.

In our experiment, we interrogate molecules confined to a 1D optical lattice in
the axial resolved sideband regime (RSB). This means that the linewidths of the
transitions we study (~100 Hz — ~20kHz) are smaller than the axial trap spacing
(~60kHz), allowing us to drive either axial carrier or axial sideband transitions
simply by adjusting the frequency of the probe laser. I will also assume that radial
sideband transitions are driven at a negligible rate, i.e. that (n,, ny) = (1}, n;). This
is true for our experiment because we operate in the Lamb-Dicke regime and with a
very small mismatch between the probe direction and 1D lattice axis [1].

The energy of a molecule in the |n.nyn;) state is given by the following
expression:

1 1 1
Enxnynz = ha)x (I’lx + E) + ha)y (ny + 5) + ha)z (I’lz + E)

. (7.14)
= hwy (nx + E) + hw,(ny +n, + 1),
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where the second equality is due to the cylindrical symmetry of the potential (i.e.,
wy, = w; = w,) and I have ignored the energy E; due to the internal degrees of
freedom of the molecule. The lineshape can be calculated by performing a weighted
sum over frequencies required to drive all possible transitions from |n.nyn;) to
The required driving frequencies will simply equal the energy differences §E

between these states, which can be calculated according to the following equation:
8E = (nnnl|Hy|nnlnl) — (nenyn|Hy|ngnyn.) (7.15)

Xy XYz

7.2.2.1 Carrier Transitions in a Non-magic Lattice (o' /ox # 1)

Using the harmonic approximation (Eq.(7.14)), it’s easy to show that for carrier
transitions (n; = n}) the energy difference can be divided into two components:

1
SE = SE, + 8E, = h(w) — wy) (nx + 5) + (], — w,)(n, + 1). (7.16)

Note that though the occupation number #; is preserved in the transition, the trap
spacing w; will generally change. We can rewrite the above equation in a more
convenient form by realizing that since w; x /Uy and Uy x «, then:

SE, = (Vo' [/a — Dhw, (nx + %)
SE, = (Vo!'/aa — Dhw,(n, + 1)

These equations describe the change in energy accumulated by a particle undergoing
a carrier transition between simple harmonic oscillator eigenstates. To obtain the
total lineshape, we must now evaluate the weighting factor for a particular §E, and
then sum over all possibilities. To proceed, let’s consider §E, and §E, separately.

(7.17)

Probability Distribution for §E, The x-direction is relatively straightforward,
since the degeneracy for all axial trap states is 1. The weighting factor govern-
ing how strongly-represented a §E-transition will be should then just equal the
occupation probability for the initial state, which itself is simply governed by the
Boltzmann distribution, i.e.:

1
Px(BEy) = pi(ny) = 7“(5’*), (7.18)

X

LT ) _
where Z; = Zgoeksr(n'+2) = %CSCh(%) and u(3E;) = 0is

SE; -
kT (/a'Ja —1)
defined for clarity.

Note that this represents a discrete probability distribution parameterized by the
Boltzmann step size of A; = hw;/(kgT).
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Probability Distribution for §E, The radial direction is slightly trickier, since the
energy degeneracy g(n,, n;) of the |n,, n;) state is not simply equal to 1, but rather:

g(ny,n) =ny,+n, + 1. (7.19)

But not so tricky. The probability for a transition to be characterized by a particular
SE, is now simply the Boltzmann probability characterizing the occupation of a state
|1y, ny), i.e. p(ny, n;) = p(ny)p(n;), multiplied by the energy degeneracy g(ny, n.):

pr(SEr) = g(”yv nz)p(”y)p(nz)

1 1
— — ”(SEV) — u(SE;)
= (ny+ny,+1) (Zye ) (Zze ) (7.20)

11
- u(8Ey)
= r2 ru(8E,)e ,

where u(8E;), A;, and Z; are defined as before.

Probability Distribution for E The probability that a particular energy difference
SE will be represented in our lineshape is then just equal to the probability that a
state characterized by |ny, n,), satisfying §E, + S§E, = SE, will be represented. To
calculate the exact, discrete lineshape, we should then evaluate the following sum:

Pdiscrete (SE) = Z p(SEx)p(SEr) (7.21)

{neny}se

where the set “{n,, n,}sg” denotes all pairs (n,, n,) satisfying the condition §E, (n,) +
0E,(n,) = SE.

To obtain a more convenient analytical form for this sum, we can make the
approximation of converting the discrete sum into a continuous integral. For
the radial coordinate this is clearly an excellent approximation. The radial trap
frequency for our experiment is ~600 Hz, while the temperature is ~5 wK, and so
A, ~ 0.006 < 1. For the axial coordinate, the step size A, &~ % ~ 0.7. This
also turns out to be small enough to reasonably approximate the discrete sum as a
continuous integral—see Fig. 7.3.

In the continuum limit, the probability density should have the form:

piluE)] = lim pi(8E;)/A; (7.22)

Using lirr(l) csch(x) = 1, we find:
X—>

X

- eTMOE) -y >0
Px[u(8Ey)] = B (7.23)
0, u<0
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Fig. 7.3 Computations of the discrete lineshape given by Eq. (7.21), with various values for A, =
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O . The dashed blue curve represents the limit of A, — 0. Curves were plotted in Mathematica.

B
The case of A, as large as 1, though noticeably lumpy, still hews closely to the continuum limit

(courtesy of Dr. Bart H. McGuyer)

—u(8Ey)
prlu(SE)] = u(BEr)e , uz0 (7.24)

u<0

’

The final expression for the probability density p[u(§E)] will then be given by the
following convolution:

0o 1.2 —u
Blu(BE)] = [ Bt — )1 dut, = {3” et u=z0 (7.25)
0

, u<o0

This Is the Result We’ve Been Looking For It describes the probability density
for a given value of SE to be represented among energy differences between
thermally distributed initial and final simple harmonic oscillator states. Equivalently,
it is the strength at which a laser will be absorbed by a sample of molecules in a
thermally distributed ensemble of simple harmonic oscillator states, assuming that

AN

the strength of a particular transition from |n,n,n.) — [nin/n}) is independent of

(ny, ny, n;). This assumption is reasonable so long as we are operating in the Lamb-
Dicke regime and o’ /v isn’t too far from unity, which is true for the carrier transition
data presented in this thesis. However, we will later see that this assumption is not
valid for the case of sideband transitions.
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Comment: The Effect of Anharmonic Corrections to the Potential Equa-
tion (7.25) was derived under the assumption that the trapping potential is perfectly
harmonic. Of course this assumption is not perfectly satisfied, and so we might
wonder how strongly our result will change as a result of the trap’s deviation from
harmonicity.

As was discussed in Sect. 7.2.1, near the center of a symmetric trap the leading
order corrections to the harmonic potential will be quartic (Eqgs. (7.9)—(7.11)). To
evaluate whether these corrections will induce broadening, we should consider the
first-order correction §Ej; to the original §E of the following form:

SEj ~ (n;n’vni|VU|n;nini) — (nenyn; |Vijlnenyn;) (7.26)

We don’t yet need to explicitly evaluate these expressions, however. Using

. h . 35 -
(| |ny) = m(znx + 1) and (n]3*|n,) = > (n)zc + ny + %), 1t 18
straightforward to see that:

hzwia)j .
(nynyn;|Vijlngnyn,) o x (A function of n,, n,) (7.27)

Notice that since wy, w, & /Uy, the expression (n.n,n,|V;|nnyn;) can be re-written
in a way which is clearly independent of the trap depth Uy. Therefore for carrier
transitions, where (1, n,) = (ny, n,), we will have §Ej;; = 0, which means that these
corrections cannot contribute broadening to the carrier lineshape.

This result is important. It means that the lineshape we derived, which is exact
for harmonic traps, is also an extremely good approximation even when fourth-
order corrections to the potential are incorporated. Note however that for sideband
transitions (n, = n, + D) the same result does not apply: we will need to account
for these anharmonic corrections when deriving the full lineshape.

A Practical Carrier Lineshape for Fitting Equation (7.25) can be fitted to a
spectroscopic lineshape as is shown later in Fig. 7.6g. In practice, we describe the
transition probability with the following equation:

P(f) = A(f — fo) e BI—) (7.28)

where A is a catch-all scaling factor, fj is the zero-temperature transition frequency,

h
andB = ———
kgT (o' /e — 1)
rather the number of molecules remaining after a probe laser has been shone onto a
molecular sample. Similar to the discussion in Sect. 3.3.1, we can write a differential

equation describing the rate at which molecular transitions are observed:

. And in fact, we don’t actually measure a probability, but

dN

= PN, (7.29)
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with the following solution:
N(f) = Noexp [ — A(f — fo)*e BU=0], (7.30)

where I have folded the probe time 7 into the overall scaling factor A. Equa-
tion (7.30) is what’s fitted to real data in our experiment. The value of “B” can
be determined from the fit, but extracting the temperature 7 requires a separate
measurement of the polarizability ratio. We can do this without having to rely on
knowledge of the probe waist wy by combining measurements of the total light shift
and the axial trap spacing. To measure the axial trap spacing accurately, however,
requires a better understanding of the shape of axial sideband transitions.

7.2.2.2 Sideband Transitions When («¢/a’) = 1

The exact sideband lineshape can be calculated numerically from the shape of
the lattice potential and resulting energies of the radial and axial trap states [1].
However, an analytical solution can also be obtained by approximating the exact
lattice potential shape as harmonic plus lowest order corrections.

Let’s consider the lineshape for sideband transitions in a perfectly magic lattice,
i.e. where (o//a) = 1. From the qualitative discussion of Fig.7.2, it’s clear that
blurring in the lineshape will be entirely due to deviations from perfect trap har-
monicity. Therefore we need only consider energy differences §Esg incorporating
higher order corrections (Egs. (7.9)—(7.11)) to the harmonic potential (Eq. (7.6)) in
order to derive a lineshape:

8Esp = O0Ey, + 8E, + OE,,. (7.31)

These new terms SE,,, 6E,,, and 8E,, can be calculated according to Eq.(7.15),
where SEj; considers only the portion of the Hamiltonian H defined by the
perturbation V;.

From the discussion of the previous section, we also know that broadening is
contributed only by transitions which change the motional trap state. Since we are
assuming only axial sideband transitions (n, = n, + D and n, = n,), it’s clear
that 6E,, = 0 for a perfectly magic lattice, and therefore only terms resulting from a
change in the axial trap number (§E,, and 8 E,,) will contribute to the final lineshape.
We can then proceed as before, so long as we incorporate another bit of physics.

Inhomogeneous Excitation of Axial Sidebands Unlike carrier transitions, the
strength of an axial sideband transition does in fact depend upon the initial
occupation number n,. This dependence is governed by the following equation:

1 D=0
Q(ny, D)? o (1. = n, + D™ |n) | ~ { 2 n, D=—1 (7.32)
nz(nx+l) D= +1,
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where the LD parameter n = ky/%/(2Mw,) and the axial wavenumber k = 27 /1.
(This result can be derived by expanding ¢ ~ 1 + ikx and rewriting % in terms of
creation and annihilation operators.)

To calculate the final lineshape contribution from each term, we must (1)
determine the dependence of each term upon (n,, n,), (2) write down the occupation
probability for the n; present in that term and participating in the transition, and (3)
multiply by the transition strength given by Eq.(7.32). Let’s again consider each
term individually.

Probability Distribution for §E,, Using the results from the discussion preceding
Eq. (7.27), we can calculate the following expression:

hwxhw,

(ne +1/2)(n, + 1) (7.33)

(nynyng|Vig[ngnyn;) = —

Combining Eq. (7.15) with Eq. (7.33) and substituting (n/, = n,+ D, n,. = n,) yields
the following:

SE.(n,) = —D(n, + 1) hw, hw,/(4U)). (7.34)

Since the above expression is linear in n,, and since the strength of carrier transitions
between radial trap states is independent of the initial occupation number n,, it is
clear that p,,(§E,,) will simply be the occupation probability for the state |n,). The
result is similar to Eq. (7.20):

Pu(SEy) = V(SE,,) eV E) (7.35)

1

ZZA,
where v(8E,,) = —0E,,/[kgT hw, D/(4Up)] > 0. The expression for p,,(SE,,) will
be trickier because we must incorporate the extra weighting due to inhomogeneous

driving of sideband transitions.

Probability Distribution for §E,, Once again using the results from the discus-
sion preceding Eq. (7.27), we can derive the following:

( w*) (z +on 4+ 1) (1.36)

<nxnynz | Vxx|nxnynz) =

Proceeding as before, we then find:

SEw(ny) = — [2D(ns + 1/2)(ho,)* + (Dhw,)*] / (8Uy)

(7.37)
~ —D(n, + 1/2)(hwy)?/ (4Up),
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where the approximation in Eq. (7.37) is to ignore the constant offset (Dhw,)? (i.e.,
half the lattice-photon recoil energy), which contributes no broadening to the final
lineshape because it is constant for all initial trap states.

The final probability density for §E,, (i.e., the degree to which the energy
difference §E,, will be represented in the final lineshape) must incorporate both the
occupation probability of state |n,) (i.e., p.(n,)) and the weighting factor governing
the strength of an axial sideband transition starting from |n,) (i.e., Q(n,, D)* from
Eq. (7.32)). We should therefore write:

Par (1) ¢ Q(ny, D) pi(ny). (7.38)

For all n, we’ll have p,(n,) = Zixe_”(‘SE“) , where v(8Ey) = —08E./
[kgT hiw, D/ (4Up)] > 0O as before.

Because the weighting factor ©(n,, D)? has different forms for D = 41, we get
two slightly different expressions for the probability for red versus blue sidebands
after substituting Eq. (7.37) into the expression for p,(n,), multiplying by Eq. (7.32),
and normalizing:

V(SEx) + Ay/2 V()
Z A (1 + e=2:/27))
Pe(BEy) = (7.39)

VOB = A2 ez p = i,
Z2A,

D=+1

Probability Distribution for §Esg We can write the discrete probability
Ddiscrete (8Esg) analogously to Eq. (7.21):

PaisereieBEsp) = Y pul8E)pur(SEx), (7.40)

{nx.ny }SESB

where Z{%nr}wﬂ? represents a sum over all pairs of (ny,n,) which ensure that
8Esp(ny,n,) = SEx(ny) + SE,(n,).

An analytical form for this lineshape can once again be computed by evaluating
the above sum in the continuum limit, i.e.

- . Pdiscrete (SESB)
SE)] = . .
plv@E)] Ax.lg,n»o ALA, (7.41)

To evaluate this limit, we first note that when we compare Eqgs. (7.35) and (7.39),
we see that all three expressions simplify to the same result in the continuum limit
(Ayr — 0):

pxi(SExi) _ —v
— = Ve

A, (7.42)

pxi[v(gExi)] = AI}EO
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for i = x,r and D = %1. The final answer is then just the following convolution:
_ < _ - >0
POGEN = [ () (06E) — vi)du = 1 6 (7.43)
0

where v = —8E/[kgT hw, D/(4Up)] > 0.

An appropriately scaled version of Eq.(7.43) (along the lines of the carrier
lineshape from Eq. (7.30)) was used to fit the sidebands shown in Fig.7.1b. The
reason getting this lineshape right was so critical is because it significantly affects
the determination of the axial trap frequency, which we operationally define as half
the distance between the “start” of the sideband lineshapes on either side of the
carrier. An inspection of Fig. 7.1b shows that if we were to naively use the “center
of mass” of the sideband lineshape, our calculation of the axial trap frequency would
be wrong by as much as 10%. Note also that for D = =+1, the “sharp edge” of the
lineshape is always furthest from the carrier, since v(§E) o —8E/D.

With a functional sideband lineshape in hand, we can determine the axial trap
frequency. However, in order to determine the polarizability ratio we must also
measure the light shift of the carrier transition under non-magic conditions. This
will be the last piece of the puzzle required for a temperature measurement.

7.2.2.3 Evaluating Light Shifts

The total shift W of a carrier transition is just the difference in expectation values
for the energy between initial and final states:

W = (H') — (H) (7.44)

From Eq. (7.6) (i.e., the simple harmonic oscillator potential) we can rewrite (H) as:
1

(H) = hwx(nx + 5) + haon(ny + 1) — Up (7.45)

Note that the evaluation of the expectation values above is slightly subtle. We might
naively apply the equipartition theorem to get:

ha)x<nx + %> = I}za)y<ny + %) = hwy(ny + %> = kgT (equipartition) (7.46)

But we must be careful: this result is only exactly true in the limit of temperatures
much larger than the trap spacing. We can calculate the exact values of (n, + %) and
(n, + 1) by again making use of Boltzmann occupation probabilities:
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1 1 & 1\ _hex(utd)
hwx<nx + §> = Z_x Z_ (nx + E) e kpT

ny=0
hwy hw,
_ ho h 1)
2 2kgT
(7.47)
| R R 1\ _hor(metd
o) =3} = 35 e g)
ho; hw,
= coth
2 2kgT
Still assuming carrier transitions (n; = n;), we can use the result above (and

Egs. (7.7) and (7.8)) to evaluate the total light shift. It will consist of three distinct
parts, which we’ll label Wy, W,, and W,:

W=W,+W,+ W, (7.48)

o o how, how, ho,
=|{1-——)U ——1]x th hw, coth
( a) 0+(Va ) ( 2 |:2kBT:|+ @reo |:2kBT:|)
Note that in the limit of large temperatures where equipartition is valid (hw,, <
kpT) the above equation reduces to the following simplified form:

/ !
Wax(l—a—) Uo+3(,/°‘——1)kBT (7.49)
(07 o

Equations (7.48) and (7.49) imply that the total light shift can be divided into
two parts: a thermal component (W, + W,) and non-thermal component (W).
The non-thermal component U, can be extracted easily by fitting a spectrum with
Eq. (7.28), since the “edge” of the lineshape (located at fy) is produced by transitions
of molecules at zero temperature. Therefore let’s imagine a plot of (the easily
observable) fy vs P. Let the slope of this plot be given by L;. Then we can relate
the total frequency shift to the trap depth in the following way:

(1 - “—) Uo = hfy = hLoP. (7.50)
(07

7.2.2.4 Putting It All Together

Next, we can rewrite Eq. (7.7) to solve for Uy in terms of w,:

Uy = MT)‘Z (;‘)_ﬂ)2 (7.51)
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Since Uy is proportional to P, the above equation implies that we can rewrite w, as:
(&) — P}, (1.52)
2
which can be measured in straightforward way. Substituting Egs. (7.51) and (7.52)
into Eq. (7.50), and then solving for (¢’ /«), gives the following result:

oy 2 (7.53)
a A2kM '

This is the result we were after, i.e. a method for measuring the polarizability
ratio using only frequency measurements (light shifts and axial trap frequencies).
Combining this with the definition for B in Eq. (7.28),

h
B=———, 7.54
kgT (o' Ja — 1) (739

allows us to rewrite the temperature 7 solely in terms of parameters which can be
experimentally measured:

-1
2hL,
Tearier = h | kpB 1- m —1 (7.55)

The above equation is exact (assuming carrier transitions in a harmonic lattice with
quartic corrections in the Lamb-Dicke regime), but is slightly cuambersome. But so
long as (&'/a) =~ 1 (which we are assuming anyway for this derivation), we can
simplify a bit:

A2IM
kBL,

(7.56)

Tcarrier ~

7.3 Experimental Techniques and Results

Figure 7.4 shows a comparison of temperatures determined via either the novel
“carrier transition” technique described in this thesis or the old “sideband area
comparison” technique often used elsewhere. The agreement between the two
techniques serves as reassuring confirmation that our math is sound. The fact
that the error bars are generally much smaller for the new technique serves as an
advertisement for its future use.

In the following sections, I will describe the steps necessary to produce a
clean, thermally-broadened lineshape suitable for publication and analysis using our
(imperfect) experimental setup. I will then discuss how these clean lineshapes can
be used to investigate the hidden thermal properties of our molecules.
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Fig. 7.4 A comparison of the temperatures of molecules as determined either by fitting the carrier
lineshape in a non-magic trap (solid stars) or comparing the areas of red and blue sideband
lineshapes in a magic trap (open circles). (a) Temperature of molecules prepared in the X(—1,0)
state vs lattice trapping power. (b) Temperature of molecules prepared in the X(—2,0) state vs
lattice trapping power. The large error bars on the open circles are mainly due to the difficulty
in extracting the area of low-contrast sideband lineshapes. Our relative inefficiency in creating
X(—2,0) molecules compared to X(—1,0) molecules causes this issue to be much worse in (b).
Adapted from [8]

7.3.1 Recording High S/N Lineshapes

There are several experimental factors which make the process of obtaining
clean, lattice-broadened lineshapes something of an art. Low signal-to-noise, laser
frequency drift, fluctuating lattice power, and imperfectly-stabilized magnetic fields
all combine to warp the recorded lineshape away from the theoretical expectation.
However, some of these effects can be controlled, and others corrected for.

7.3.1.1 Stabilizing Lattice Power

Before recording any data, it is essential that the lattice power be stabilized to high
precision. The reason this is so essential is that the critical quantity being measured,
the “linewidth” of a thermally-broadened transition, will generally equal only a
fraction of the total light shift, the exact value being determined by relationship
of trap depth to molecule temperature. In our experiment, we’ve found that the
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Fig. 7.5 A schematic illustrating the important components used in our lattice power stabilization
scheme. Note that in order to reduce noise from interference effects, we found that we needed to
sample the beam with a pellicle beam splitter

FWHM of the transition is related to the total light shift Ly approximately according
to FWHM = 0.3 x L. Clearly if the lattice power drifts, it becomes impossible
to record the true lineshape, since the recorded spectrum will be a superposition of
several (narrow) features occurring at slightly different total light shifts.

The scheme we use to stabilize our lattice power is schematically represented
in Fig.7.5. Because we form our optical trap by retro-reflecting a laser beam,
interferences are critically important to understand and control for, both in forming
the potential and in sampling the lattice power. We learned by trial and error that it
is necessary to use a fiber with an angled output face in order to reduce unwanted
interferences due to reflections from the fiber. When the lattice power entering the
chamber was viewed with an IR viewer, the use of an angled output face fiber had
the effect of substantially reducing “flicker.” i.e. high-frequency fluctuations in the
power caused by interfering reflections.

Sampling the lattice power is also a surprisingly delicate task, since the sam-
pler combined with a retro-reflected laser beam can form what is essentially an
interferometer. We experimented with many different types of beam samplers and
sampling locations in order to find a combination which produced a stable sampled
beam power. The most important diagnostic for the stability of the sampled beam
power was determining if the noise in the sampled power changed depending on
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whether or not the retro-reflected beam was blocked. We finally settled on using a
pellicle beam splitter (Thorlabs BP108) to sample the light, as indicated in Fig. 7.5.
Surprisingly, our first attempt, using a D-shaped mirror to pick off a tiny fraction of
the lattice power, also produced significant interference noise.

7.3.1.2 Eliminating “Cavity Drift” and ‘‘Signal Drift”

Figure 7.6a shows a spectrum depicting the loss of X(—1,0) molecules as a
laser is swept across the X(—1,0) — 1,(—1,1) resonance. The figure shows
the superposition of seven individual traces taken one after the other. In this

Molecule number (arb. units)
Molecule number (arb_ units)

= e pol
0 50 100 150 200 250
Datum index

mber
o
»
7
=

Normalized molecule number

Normalized molecule

"070 -066  -062 058 0 50 100 150 200 250
Frequency (MHz) Datum index

Normalized molecule number

oxp [A(f — fol?eBU=R0], B(f — fo) = ¢
|\/‘7{\n\][<‘f fo B(f— fo) =0

0 B(f ~ fo) <0

0.0 L 1 1 1 ! L L
-0.70 -0.68 -0.66 -0.64 -0.62 -0.60 -0.58

Corrected frequency (MHz)

Normalized molecule number

T 50 100 150 200 250 0007 s w062 058

Datum index Corrected frequency (MHz)

Fig. 7.6 An illustration of the process used to correct for cavity and signal drift after recording
a dataset. Note that the cavity drift during this dataset of ~3.3 kHz/min was atypically large, and
that more realistic values for the cavity drift in 2016 are on the order of ~100Hz/min. (a) An
uncorrected set of seven traces taken one after another, and superimposed onto the same plot. This
data depicts the loss of X(—1,0) molecules as a laser is swept across the X(—1,0) — 1,(—1,1)
resonance. (b) The same data plotted against datum index (duty cycle = 0.821 ms). The red curve
is a fifth-order polynomial fit to the blue points, which were chosen to be far from resonance. (c)
The “normalized” data (i.e. the raw data divided everywhere by the value of the polynomial fit) vs
frequency. (d) The same normalized data plotted vs datum index. (e) Using the carrier lineshape,
each iteration was fitted in order to extract a value for fy. This value of f; was then plotted vs
datum index and fitted with a third-order polynomial. The first two traces were neglected for this
and the following analyses because they appeared qualitatively different from the following five.
(f) The amplitude-corrected data plotted vs “corrected frequency,” defined so as to squeeze the
aforementioned third-order polynomial fit into a flat line. Notice the (previously unresolvable)
bump on the left-hand side of the plot, revealing a red sideband. (g) The fully amplitude- and
frequency-corrected data plotted vs corrected frequency, and fitted with the carrier lineshape
(Eq. (7.30))
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example, the experimental duty cycle (i.e., the time required to record a single
datum) is 821 ms, with each lineshape consisting of ~42 data points, meaning that
approximately 34 s is required to record a single lineshape. As is apparent from the
figure, over the course of the ~4 min required to record seven traces, both frequency
of the spectroscopy laser and the amplitude of the signal drift in a way unrelated to
the physics of the transition under investigation. These effects must be corrected for
in order to extract the true lineshape.

Correcting for “Signal Drift” To determine the “shape” of the amplitude drift,
we can look for a spectral feature which should have the same amplitude for each
trace. A safe bet is to use simply those points which are off-resonance from either
carrier or sideband transitions. These points are then plotted vs time, and a smooth
function is fit to the data. We chose to use as our fitting function the lowest-order
polynomial which could reasonably be said to capture all the qualitative features of
the amplitude drift. This fitting process is depicted in Fig. 7.6b.

This drift is then corrected for in the data by “normalizing” (i.e. “dividing”) the
entire data set by the value of the polynomial at every point. The final result, plotted
against frequency and time, is shown in Fig. 7.6c, d, respectively.

By inspection, it’s obvious that there is something qualitatively different about
the first two traces, which dip deeper and more sharply than the following five.
It’s possible that probe power, which is not actively stabilized, was larger for these
traces before it hopped to a more stable lower value. For this reason, in the following
analysis these first two traces have been removed.

Correcting for “Cavity Drift” Cavity drift is corrected using a method similar
to those already described. Using the amplitude-corrected data, the full data set
is divided into subsets containing a single lineshape each. The derived carrier
lineshape is then fit to the data, and the fit-determined value of f; for each lineshape
is plotted vs time. As with amplitude correction, the lowest order polynomial
necessary to capture all qualitative features of the drift is used to fit the data.

The final frequency correction is then applied so as to ensure that the location of
fo remains constant in time. This process and the results are illustrated in Fig. 7.6e, f.

The lineshape depicted in Fig.7.6f is the final result of these machinations.
Compared to the unprocessed data depicted in Fig. 7.6a, it is now much easier to
identify subtle features in the spectrum, such as the small lattice cooling sideband
on the left-hand side of the figure. Figure 7.6g depicts the final processed data fitted
with the carrier lineshape described by Eq. (7.30). Points (in red) which are clearly
part of the cooling sideband, and therefore not part of the carrier lineshape, have
been removed from the fit. Note that in order to fit the data as shown in Fig. 7.6g, it
is necessary to either first take the natural log of the data before fitting, or instead fit
the data as shown with a function taking into consideration linear probe absorption,
such as Eq. (7.30):
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7.3.2 Identifying Sources of Molecular Heating

Clean lattice-broadened carrier lineshapes fitted with Eq. (7.30) allow a direct probe
of the molecular temperature, and therefore offer a window into the dynamics of the
molecule creation process. Figure 7.7 shows measurements of the molecule temper-
ature under various experimental conditions. Several features deserve elaboration.

Molecule Temperature Is ~2x Atom Temperature Figure 7.7a shows the
molecule temperature vs lattice power for various durations of the photoassociation
pulse. Also shown (green points) is the temperature of the atomic cloud before
photoassociation, as determined by time-of-flight imaging of the atom cloud
after expanding for several ms upon release from the optical lattice. Even for a
photoassociation pulse as short as 40 s, only twice as long as the lifetime of the
atomic 3P, state, the molecules we produce are nearly twice the temperature of the
atom cloud.

Note that our lattice is kept on during blue MOT and red MOT cooling, and
that the atomic temperature is highly dependent upon the overlap of the red MOT
position with the lattice beam. A consequence of this dependence is that noise in
the magnetic field used for red MOT loading is imprinted onto both the number
and temperature of our atom cloud. The green points in Fig.7.7a are the average
of atom cloud temperature measurements taken at the beginning and the end of
the data-taking session. This was done in order to disentangle heating due to
photoassociation pulse length from heating due to a drifting magnetic field.

Longer Photoassociation Pulse Times Result in Hotter Molecules This trend
is apparent in Fig.7.7a, b. Note that the duration of the photoassociation pulse is
closely related to the number of molecules produced, and so the total signal at very
small photoassociation pulse lengths is tiny. This is exactly the regime where carrier
thermometry thrives when compared to other methods, since it is difficult to resolve
red sidebands when plagued by low signal.

Off-Resonant Scattering of Lattice Photons Causes Additional Molecule Heat-
ing This trend is shown in Fig.7.7c, where molecules produced by a 1.2ms
photoassociation pulse are held for various lengths of time before being probed.
Investigations of this process will likely be important for future molecule clock
experiments, as it could end up becoming a limiting factor for achieving long
coherence times.

Molecules Can Be ‘““Cooled” by Tuning a Probe to the Hot ‘“Tail” of the
Broadened Carrier Lineshape This process is demonstrated in Fig.7.7d. In the
plot shown, molecules are first pumped into the X(—1, 0) state. Next, a 5 ms probe
pulse is tuned somewhere in the red tail of the X(—1,0) — 1,(—1, 1, 0) transition
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Fig. 7.7 Adapted from [8]. (a) Black, blue, and red points show molecule temperature vs lattice
power for three different photoassociation pulse durations. Green points show the temperature of
the atomic cloud, calculated as the average of measurements taken at the beginning and the end
of the data-taking session. (b) Molecular temperature plotted vs photoassociation pulse duration.
(c) Molecular temperature plotted vs lattice hold time, showing few-pK heating over the course of
several hundred ms. (d) “Carrier cooling” (or perhaps more accurately, “hole-burning”), whereby
hot molecules are depleted by a 5ms probe pulse tuned to the hot tail of the lattice-broadened
lineshape, resulting in a lower overall temperature for the molecules remaining in the trap

in order to deplete the hotter molecules. Finally, a second probe is pulsed, and
eventually swept across resonance in order to record the lineshape and therefore
the temperature.

Note that unlike in traditional resolved sideband cooling, molecules pumped
out of the red tail will generally be lost rather than decay down to cooler states.
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Interestingly, we also measured the molecular temperature before and after driving
the axial red sideband transition and found no observable temperature chance of
the molecules, whereas “carrier cooling” produced a very noticeable change in the
lineshape.
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Chapter 8
Photodissociation and Ultracold Chemistry

8.1 A ZLab History of Photodissociation Measurements

As early as 2012, we had noticed some strange features in the shapes of atom
clouds formed from the photodissociation of our ultracold ®Sr, molecules. With
a single imaging camera oriented perpendicular to our lattice trapping axis, a cloud
of trapped molecules appears as an elongated “cigar” shape. When these molecules
were photodissociated, the resulting fragments would expand outward with a kinetic
energy determined by the dissociating light’s frequency above threshold. At the
time, we weren’t aware of any mechanism which might cause the photofragments
to exhibit an angular dependence, particularly when the initial state was spherically
symmetric with J = 0. And yet something strange was happening—the “fuzz” of
the dissociated atom cloud seemed to change shape with changing dissociating laser
frequency. Figure 8.1 shows an early example of what we were seeing.

As is evident in the figure, clouds which at small frequencies appeared to be
concentrated above and below the lattice axis at small dissociation frequencies
were soon replaced with a “fuzz” filling in the middle at larger frequencies.
We could think of several possible mechanisms which might cause this fuzz.
Our best guess was that there might exist some J = 1 quasibound state (or
shape resonance) ~30 MHz above threshold to which the dissociation laser was
inadvertently transferring population, and which was creating low-energy fragments
when it spontaneously decayed. To investigate this possibility, we turned to our
theory collaborators Robert Moszynski and Wojtek Skomorowski, and asked them
to use their ab initio model to try to predict where these purported shape resonances
might occur. But when no matter how they tweaked their model no shape resonances
emerged. So we were stuck. Our best guess for the cause of the “fuzziness” seemed
to be unsupported by theory, and we didn’t yet know of a way to check our next best
guess that the photofragment angular distribution might be anisotropic and depend
upon laser frequency.
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Fig. 8.1 Images from March 20, 2013 showing photodissociation of X(v = —2;J = 0,2)
molecules at (a) 20 MHz and (b) 30 MHz above threshold. The noticeable “filling” of the middle
of the picture was at first assumed to be due to the population of a quickly-decaying J = 1 shape
resonance, but was later attributed to a changing photofragment angular distribution

So the situation stood until mid-2014, when Master’s student Florian Apfelbeck
joined our lab from the Ludwig Maximilian University of Munich. After having
spent several months working on laser construction for a different experiment in our
group, Florian was eager for a chance to do experiments which might yield more
data which could eventually be written up in a Master’s thesis. I recognized that
this offered a perfect opportunity to steal away a smart, motivated student to help
solve a problem Bart McGuyer and I had struggled with for several months, and so
I suggested that Florian might be interested in the following project.

The primary impediment to extracting angular information from our photodis-
sociation clouds was the fact that the atoms emerged not from a single point, but
from an elongated cigar-like shape. This caused the cloud to become blurred out
horizontally, hiding angular information. However, if we were to install another
camera to view the cloud from along the lattice axis, then the initial distribution of
molecules would appear as a point. Then the locations of the photofragments on
the CCD would depend only upon the angle at which they emerged, and not on
their initial location within the cloud. Figure 8.2 shows examples of both the initial
molecule distribution and a photofragment cloud from these two perspectives.

After several months of hard work and failed attempts, we were finally able
to integrate another camera system into our experiment, using D-shaped mirrors
to bounce an absorption imaging beam as close as possible to the lattice axis
and a microscope objective with a working distance just long enough to accom-
modate our ~22cm diameter vacuum chamber. It took several months more to
develop techniques for maximizing the signal-to-noise of our experimental images.
Figure 8.3 shows a timeline of representative images demonstrating improvements
in our imaging ability.
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Fig. 8.2 The orientation of the imaging beam (illustrated schematically at left) dramatically
affects the appearance of the cloud of photofragments. Here are shown photofragments produced
from a mixture of X(—1,0) and X(—1, 2) molecules, imaged from either the side or nearly along
the lattice axis. The energy of the photofragments is the same in both pictures

With this new imaging ability, we’ve found that we can access an entirely
new spectrum of questions to ask about the properties of molecules. This can
be attributed to the fact that the data we record in photodissociation studies are
qualitatively different than the kind of data so far described in previous chapters.
Up until now, we’ve described a multitude of properties of molecular states which
can be measured in order to build up a coherent understanding of a molecule and
its environment, including binding energies, Zeeman shifts, transition strengths,
lineshapes, and state lifetimes. But in order to measure any one of these quantities,
the same basic technique is applied: a laser is swept across a transition, and
the number of atoms remaining after some manipulation is measured. Therefore
every one of these quantities can be traced back to a measurement of atom
number. In photodissociation, however, we record a fundamentally different kind
of information in the direction of photofragments upon dissociation. And just as the
advent of a new kind of telescope often heralds unforeseen discoveries in astronomy,
so has our ability to record photofragment direction led to surprising discoveries in
the physics of ultracold molecules.
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8.2 A Slightly Broader History of Photodissociation
Measurements

8.2.1 Early (Classical) Theory

Photodissociation is a tool which has been used by chemists since the 1960s in
order to reveal information about a molecule’s structure. The realization that such
measurements could be useful came in 1963, when Richard Zare and Dudley Her-
schbach discovered [16] that the angular distribution of photofragments produced
in a photodissociation reaction could be described by the expression

1(0) < 1 + BaP2(cosB), B2 € (—1,2), (8.1

where 0 is the angle of the emitted photofragments with respect to the dissociating
light’s polarization axis and P,(cos 8) is the second Legendre polynomial. If the
dissociating light is linearly polarized and the axial recoil approximation is assumed
(i.e., fragments are assumed to recoil along the direction of the internuclear axis
upon dissociation), then the value of 8 in the above equation can be directly
related to the orientation of the molecule’s transition moment, with § = 2
corresponding to parallel transitions (e.g., in diatomic molecules those for which
the transition moment is parallel to the internuclear axis) and § = —1 corresponding
to perpendicular transitions [14].

8.2.2 The First Experiments

At the time Zare and Herschbach made their prediction, anisotropic photofrag-
ment angular distributions had not yet been experimentally observed, much less
quantitatively analyzed. This would have to wait until 4 years later, when Jack
Solomon (interestingly enough, also a graduate student at Columbia) made the first
experimental observation of an anisotropic photofragment angular distribution using
a method called “photolysis mapping” [13]. This early experiment was performed
by coating a glass hemisphere with tellurium and surrounding the hemisphere with a
gas of molecular iodine (I;). When a photodissociation laser was passed through the
hemisphere, iodine molecules would dissociate into atoms, hitting the hemisphere
anisotropically in a way reflecting the character (parallel or perpendicular) of the
photodissociative transition. Because the tellurium coating would react strongly
with iodine atoms, but not at all with iodine molecules, the anisotropy could be
measured by examining the thickness of the tellurium coating at different points on
the hemisphere.

Needless to say, this was a painstaking way of measuring anisotropic photofrag-
ment angular distributions. Later experiments would make use of molecular beams,
where a collimated beam is subjected to a polarized dissociation laser and the
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fragments are collected on a plate some distance away. The first experiments of
this kind were performed by Kent Wilson and company in the late 1960s [6],
and experiments of this same basic architecture are still carried out today. For an
excellent summary of these early results, see Zare’s 1972 review [14].

8.2.3 Difficulties in Comparing Experiment to a Fully
Quantum Mechanical Theory

Almost immediately after Zare and Herschbach’s 1963 result, theorists began
refining photofragment angular distribution (PAD) predictions for different systems
using the full machinery of molecular quantum mechanics. However, comparison of
theory with experiment was difficult. This is because as systems become complex,
full quantum mechanical calculations become extremely difficult, and the hot
molecular beams serving as the starting points for most photodissociation exper-
iments were certainly complex. High temperatures imply a multitude of quantum
states being represented in the initial sample, and a fully quantum mechanical
calculation would have to sum over matrix elements connecting every represented
initial state to every allowed final state, with weighting factors which might only be
determinable empirically.

In an effort to simplify matters, it was suggested in the late 1980s [7, 15]
that rather than evaluating a complicated expression summing over a multitude
of channels, the photofragment angular distribution could be summarized by a
quasiclassical formula of the form

o

1) = 4

Pkp(cos 0)[1 4 BaPy(cos 0)], (8.2)

where Pjkp(cos ) is a function representing the “shape” of the initial state and
[1 4 B2P2(cos 0)] is the usual probability of photodissociation occurring for parallel
or perpendicular transitions.

The above formula has intuitive appeal. It makes sense that the direction of
recoiling fragments should be influenced by the initial orientation of the molecule.
However, at the time this result was published, it was controversial, since it appears
to have a dramatically different form than the fully quantum mechanical solution.

Several experiments have been performed which appear to show qualitative
agreement with the quasiclassical formula [2, 3]. And after a few more years of
theory investigations, it became clear why this might be. Perhaps the first detailed
investigation of the applicability of the quasiclassical formula was performed by
Tamar Seideman in 1996 [12]. (Another excellent analysis was performed by
Beswick and Zare in 2008 [4].) Seideman’s conclusion was that the quasiclassical
and fully quantum mechanical calculations reduce to the same result only if it is
assumed that “the scattering wavefunctions are independent of the rotational branch
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and that the transition dipole vector is very simple.” The first assumption in this
statement is self-explanatory, while the second is equivalent to the requirement that
the angular momentum projection €2 along the internculear axis for the initial and
final states is a good quantum number [4].

Is it possible to perform experiments in a regime where the quasiclassical
approximation would be expected to break down? And even if the answer were
yes, can experimental precision be made high enough to unambiguously detect it?
Up until the middle of 2016 the answer had been a resounding. .. “maybe.” While
several early experiments showed consistency with the quasiclassical interpretation,
several others hinted at violations. A result from 1997 by Pipes et al. examining
the Doppler profiles of photodissociated fragments implied that the quasiclassical
approximation should fail when interference effects become important (i.e., when
the system cannot be described by an incoherent sum over states) [10]. An
unambiguous exploration of the breakdown of the quasiclassical approximation
would require experiments to be performed in a regime where quantum interference
effects dominate the reaction mechanism, and where those interference effects could
be cleanly observed. Our experiment provides the first glimpse of photochemical
reactions in this exciting regime.

8.3 Photodissociation of Ultracold Sr, Molecules in an
Optical Lattice

To study photodissociation reactions in a fully quantum mechanical way, we start
with ultracold molecules whose initial internal state can be completely defined.
As was discussed in Chaps.3 and 4, vibrational and rotational numbers can be
selected by tuning the frequencies of our probe lasers, while magnetic sublevel
can be selected by splitting rotational levels with a magnetic field. The fragments
are emitted with a velocity depending on the energy of the dissociation laser
above threshold, and with angles 6 and ¢ defined with respect to the molecular
quantization axis (Fig. 8.4a). The fragments expand outward in a spherical shell,
which is projected onto a 2D plane via absorption imaging (Fig. 8.4b). In order to
most clearly resolve the angular direction of the photofragments, the absorption
imaging beam is aligned as closely as possible with the lattice axis (Fig. 8.4c and
discussion in Sect. 8.1).

8.3.1 Imaging Photofragment Angular Distributions (PADs)

In order to achieve high sensitivity to photofragment direction (unclouded by
blurring from the initial molecule distribution), we allow the fragments to expand for
a distance much larger than the initial trap size and ensure that the photodissociation
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Fig. 8.4 Photodissociation of diatomic molecules in an optical lattice. (a) A homonuclear
molecule (black circles) producing fragments (green circles) with well-controlled speeds forms a
Newton sphere. The distribution of the fragments on the sphere surface is parameterized by a polar
angle 0 relative to the z-axis and an azimuthal angle ¢ relative to the x-axis in the xy-plane. The
photodissociating (PD) light propagates along —+x. (b) An experimental image of the fragments
corresponds to the Newton sphere projected onto the yz-plane. This particular image is one of
many we observed that is highly quantum mechanical in nature, manifest in the distinct lack of
cylindrical symmetry about the z-axis. (¢) The fragments (green ovals) are detected by absorption
imaging using a charge-coupled device (CCD) camera and a wide light beam from an optical fiber.
The photodissociating light is co-aligned with the lattice axis along x. The imaging light is nearly
coaligned with x (a small tilt is present for technical reasons). A magnetic field can be applied
along the z-axis. Adapted from [8]

pulse duration is much smaller than the expansion time. However, both of these
requirements must be balanced with the requirement for high signal to noise.
Large expansion times dilute small signals across a large number of CCD pixels,
while short-duration photodissociation pulses limit the number of molecules which
ultimately dissociate. Because of this, it is imperative to remove as many sources
of imaging noise as possible. For an excellent discussion of how we achieved this
in our experiment, see Florian Apfelbeck’s Master’s Thesis [1]. For convenience,
Fig. 8.5 (reproduced with permission from the author) outlines the process we used
to achieve high signal-to-noise from averages of hundreds of experimental shots.
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8.3.2 Extracting Quantitative Angular Information

The general form for the photofragment angular distribution (PAD) produced by a
photodissociation reaction can be parameterized by the following formula [11]:

Lmax  +L

10,¢) <Y Y Bun¥in(6, ), (8.3)

L=0M=—L

where Ly, is twice the angular momentum of the highest L output channel and
the By coefficients can be complex functions of ¢ (but will be scalar constants in
situations where the PAD is cylindrically symmetric). Comparing the results of a
photodissociation experiment with theory can then be achieved by comparing the
measured versus calculated B, parameters, which requires being able to extract
information about a 3D angular distribution (parameterized by angles 6 and ¢) from
a 2D image of fragment positions (parameterized by x and y).

If the PAD possesses cylindrical symmetry about the z-axis, then we can
achieve this through Abel inversion, specifically implemented through a software
implementation of the pBasex algorithm by Luka Pravica. Figure 8.6 (reproduced
with permission from Florian Apfelbeck) outlines the process we use to extract
angular information from 2D images.

Figures 8.7 and 8.8 demonstrate two examples where we plot S-coefficients
extracted from experimental images and compare with theory calculations. How-
ever, the Abel inversion algorithm is only applicable to situations for which
cylindrical symmetry exists about an axis lying in the imaging plane. This condition
holds when the polarization vector is parallel to the quantization axis, but generally
fails for the equally interesting case of polarization perpendicular to the quantization
axis.

In order to compare theory predictions to this special case, we use theory-
provided B-coefficients to produce simulated images, and then compare these
simulated images to experimental results. Figure 8.9 shows a library of such com-
parisons for both parallel and perpendicular polarization directions, demonstrating
excellent theory agreement in every case.

8.3.3 Kinematics of a Photodissociation Reaction

The molecules we dissociate do not exist in free space, but rather are trapped
in a lattice with a total depth of ~1 MHz. It’s fair to ask whether this confining
potential would affect to the natural trajectories of the photofragments we observe.
We certainly do not expect the confining potential to influence photofragment
trajectories when the dissociation energy is much larger than the trap energy, since
in this extreme case the potential serves only as a “bump on the road” for fragments
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Fig. 8.7 Photodissociation to a multichannel continuum. (a) Schematic for PD of %8Sr, in the
initial ground state X(v;, J;) to an excited continuum energy €, which is subsequently expressed
in MHz or in mK (via the Boltzmann constant kB). (b) Potential energy structure (<1 mK) of the
'S+3P; continuum, showing both of the electronic potentials (0 and 1,) that couple to the ground
state via El transitions [5]. (¢) The angular anisotropy parameter By for this process measured
by two imaging methods (using axial-view and side-view CCD cameras) and calculated using a
quantum chemistry model. The inset images show fragments at three different energies € /h labeled
in MHz. The images and curves indicate a steep change in the angular anisotropy in the 0-2 mK
continuum energy range. The experimental errors for axial imaging were estimated by varying the
choice of center point for the pBasex algorithm and averaging the results, and for side imaging from
least-squares fitting to Eq. (2) in our Nature publication [8] convolved with a blurring function to
account for experimental imperfections. Reproduced from [8]

racing out of the trap. And empirically, we observe agreement in the calculated
photofragment angle whether observed axially or from the side (Fig. 8.7), evidence
that the distributions we observe truly are cylindrically symmetric.

Figure 8.10 plots the radius of photofragment rings from both / = 0 and J = 2
molecules observed in the data set described in Fig.8.7. The clear square root
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Fig. 8.8 Energy-dependent photodissociation near a shape resonance. (a) Molecules prepared in
the O,j' (vi = —3,J; = 3,M; = 0) state are photodissociated at the ground continuum. For
p = 0, selection rules lead to a single M = 0 but a mixture of / = 2, 4. The branching ratio
and interference amplitude of this mixture, as described in the text, evolve with energy and reveal a
J = 4 (g-wave) shape resonance at ~3 mK. The experimental data were analyzed with pBasex and
errors were estimated by varying the effective saturation intensity, used to process the absorption
images, within its uncertainty. The theoretical curves were calculated with a quantum chemistry
model. (b) Images of fragments labeled by their continuum energies /A in MHz that show the
evolution with energy. The faint anisotropic, energy-independent pattern with roughly the same
radius as the 62 MHz image is from spontaneous decay into the shape resonance. Adapted from [8]

dependence of ring radius vs dissociation energy agrees with what is expected from
energy conservation, and in Fig. 8.10d evidence of a ~1 MHz potential barrier is
clearly visible.
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Fig. 8.9 Photodissociation of singly-excited ('S+3P;) molecules to the ground-state continuum
with energies of several millikelvin. Each row and column corresponds to molecules prepared in
the indicated 1,(v;, J;) state and M; sublevel. (M; = 4 was not accessible experimentally.) The
upper and lower sections correspond to PD light polarizations |p| = 1 and 0, respectively, where
the PD lasers electric field is Epp. Within each square panel, the experimental image is on the
top right, with a comparable simulation of a projected Newton sphere on the bottom right. The
full sphere rendition is on the bottom left and the top left shows the mapping of the fragment
detection probability at each angle onto the radial coordinate of a surface. For |p| = 1, matterwave
interference occurs if two values of M are produced, leading to strongly ¢-dependent patterns. For
each case, the degree of agreement with the quasiclassical approximation is indicated by a colored
dot, as explained in our Nature publication. Reproduced from [8§]
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Fig. 8.10 In (a), the radius of the two signal rings is plotted against the frequency above the
1S,-3P; asymptote when dissociating from X(—1, 0). (b) and (c) show the residuals, while in (d) the
shelf line on the left side and a zoomed in version of the X(—1, 0) plot in (a) is illustrated. The
effect of the depth of the lattice becomes visible, as the dissociation fragments can only be seen
after 1.04(2) MHz and not right above at the dissociation threshold. Reproduced with permission
from Florian Apfelbeck from [1]

8.3.4 A Fully Quantum Mechanical Understanding
of Photodissociation

In Fig. 8.9 and Extended Data Figs. 2 and 3 of our Nature paper [8] we observe many
cases in which the quasiclassical approximation fails dramatically. But perhaps
even more interesting is when it succeeds. It turns out that when selection rules
allow for only a single rotational state (i.e., partial wave) to be present in the
output channel, the fully quantum mechanical and quasiclassical calculations yield
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identical predictions. This is in keeping with Seideman’s requirement that the
scattering wavefunctions be “independent of the rotational branch,” as well as with
the conjecture by Pipes et al. that the quasiclassical approximation might fail when
interference effects become important (since if there is only a single rotational state
possible, no interference is possible).

Our ability to precisely populate single quantum states and manipulate them
for extended periods of time is what enables these surgical, targeted studies of
when different theoretical regimes should be applicable. And the relative simplicity
of our ultracold, homonuclear, diatomic molecular system has enabled our theory
collaborators to calculate exactly the fully quantum mechanical predictions from a
quantum chemistry model, allowing us to understand from first principles the results
of almost every experiment we can think to perform.

Almost...but not completely. In the next section I'll describe several sets of
experimental results which (as of the writing of this thesis) continue to beguile
us. I hope that these mysteries might serve as inspiration to the next generation
of ultracold photodissociation researchers to jump in and develop an even deeper
understanding of this simple chemical reaction.

8.4 Preliminary Data and Unresolved Mysteries

8.4.1 Magnetic Field Dependence of Dissociation
Above the 1, /0, Barrier

One of the salient points we attempted to make in our recent Nature paper [8] was
to show that in the ultracold, fully quantum state selected regime, the quasiclassical
model describing the photodissociation of diatomic molecules is simply wrong. And
the reason that model fails is because it makes the explicit assumption that the direc-
tion of outgoing photodissociation fragments depends upon the initial orientation
of the molecule being photodissociated. While this idea has intuitive appeal (if a
molecule starts off pointing in a certain direction, shouldn’t the fragments continue
along that direction once the bond is cut?), it hides the true nature of the physics
which determines photofragments’ trajectories. As we explained in our paper, what
actually matters is the superposition of rotational wavefunctions allowed in the final
output channel. And while it’s true that the initial state will influence which channels
are allowed in the final state through selection rules, knowledge of the initial state’s
“shape” is only helpful in determining the final photofragment angular distribution
in scenarios for which interference effects are unimportant or where the final output
channel is independent of rotational angular momentum [4].

This insight forms the nucleus of our understanding about what types of
photofragment angular distributions are possible for a given experiment. It was what
allowed us to explore the J = 4 shape resonance above the 'Sy+'Sy threshold
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by fitting photofragment angular distributions with only two free parameters (an
“amplitude” and an “interference” coefficient describing the interplay between
J = 2 and J = 4 spherical harmonics). It also explains why the dissociation of
states with different values of €2 (0 or 1) can produce nearly identical photofragment
angular distributions, despite the “shapes” of the initial states (as defined by Wigner
D-functions) being dramatically different. Having developed an intuition which is so
powerful in categorizing the behaviors of different photodissociation experiments,
we would be very surprised to discover a case in which this intuition failed.

The behavior of one-photon dissociation of X(—1,0) molecules above the
1,/0, threshold in the presence of a magnetic field, however, currently appears
to be just such a case. Figure 2 from our Nature paper shows an analysis of the
photofragment angular distribution at an applied magnetic field of ~0G. Because
the initial state is spherically symmetric, this experiment can be interpreted semi-
classically, such that when photofragments are emitted mostly vertically we are
observing a parallel transition, and when they are emitted mostly horizontally
we are observing a perpendicular transition, where “parallel” or “perpendicular”
refers to the orientation of the transition moment with respect to the internuclear
axis. According to Zare and Herschbach’s 1963 derivation, the photofragment
angular distributions in these cases will be proportional to either cos? 6 or sin” 6
respectively, where 6 is the angle between the dissociating light’s polarization
axis and the photofragment’s emission direction. However, if our fully quantum
mechanical intuition is justified, we should be able to think of this experiment in
terms of shapes of the allowed final state rotational wavefunctions as well. And
in this case, the quantum mechanical picture works fine. Linear laser polarization
ensures that Am = 0. Selection rules require |AJ| = 0, 1. Since J = 0 is forbidden
for the 1, and O, potentials, there are only two allowed channels in the final state.
And as luck would have it, the shape of the m = 0 component of a J = 1,
0, wavefunction is proportional to cos? @, while the shape of its counterpart 1,
wavefunction is proportional to sin® #. The quantum mechanical and semiclassical
pictures of photodissociation in this case mesh nicely with one another.

We would not expect the situation to change dramatically in the presence of an
applied magnetic field. For linearly polarized light parallel to the quantization axis,
the selection rule Am = 0 should still be enforced. The shapes of the wavefunctions
describing the final state should probably not change by much. And yet when
we perform this experiment, we see a discreet change in the appearance of the
photofragment angular distribution. Figure 8.11 summarizes the observed behavior
of this process at a variety of magnetic fields and detunings above threshold.

There are two very difficult-to-explain features in the data shown in Fig. 8.11:

1. Photofragment angular distributions appear to be described by functions
more complicated than cos?6.
As we discuss in our Nature publication (see Methods), the “shape” of the rota-
tional wavefunction for a diatomic molecule is given by the Wigner D-function
Do (¢, 0, ). For J = 1, it turns out that the D-functions have the simple form
sinf or cosf for Q = 1, 0. Since there are only two channels possible in the final
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output channel for this process, we would expect that the photofragment angular
distribution could be written as the generic sum A -cos? # + B-sin® 6. The pattern
described by such a sum smoothly varies between two lobes of high intensity at
either top and bottom or left and right, to spherically symmetric.

Indeed, at zero magnetic field this is what we see. However, once the magnetic
field becomes large enough to resolve the m = =£1 sublevels, the pattern clearly
becomes more complicated. Perhaps the most striking example of this is in the
top-rightmost image in Fig.8.11, showing clear evidence of six lobes in the
photofragment angular distribution. Currently, our only idea for explaining this
would be magnetic field-induced J-mixing, the same phenomenon responsible
for enabling the control of forbidden transitions described in Chap. 5. However,
this would seem to imply that the photofragment angular distribution should
become more distorted as the magnetic field increases, a fact which seems to
be contradicted by the lower half of Fig. 8.11.

2. Am selection rules in some cases appear to be broken.
When the dissociation laser polarization is parallel to the applied magnetic field
direction, we would expect that for El transitions, Am = 0. Conversely, when
the polarization is perpendicular to the applied magnetic field, we should see
Am = +£1.

We can identify a ring’s magnetic sublevel designation by its linear Zeeman

shift. This is illustrated in the expression A, ~ 2.1 Mgz given at the left side of
Fig.8.11. And in nearly every image where both m = 0 and m = —1 are energy-
allowed (indicated by the colored borders on the images), we see two rings. The
strong m = 0 ring when EPD 1B might be attributed to the possibility that the
m = 0 component of the 0, shelf has zero linear Zeeman shift (though this too
would be surprising, since it contradicts the intuition we’ve built up concerning
0, bound states). The fainter |m| = 1 rings observed when Epp I B, is harder to
explain.

Solving these mysteries would be extremely satisfying, because it would help
confirm that we fully understand this chemical reaction in the quantum regime. But
there might be another added benefit as well. Since ring radius is proportional to
the square root of kinetic energy, image sets like the lower row of Fig. 8.11 can be
used to perform spectroscopy on the m = —1 component’s energy versus applied
magnetic field. This would tell us the Zeeman shift of one of the components of
the dissociation threshold, which would be a very interesting number to have, since
we’ve already shown that the quadratic Zeeman shifts of rovibrational levels get
larger and larger as they approach the dissociation threshold. It would also be
interesting to calculate mixing angles for the 1, and 0,, components of the threshold
(if they could indeed be separately resolved) by measuring their linear Zeeman shifts
and following the procedure we used in 2013 [9].
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8.4.2 Frequency Dependence of One-Photon Dissociation
of J = 1 States Down to 'Sy+'S¢ Threshold in the
Absence of Shape Resonances

As was shown in Fig. 5 of our Nature publication [8], the photofragment angular
distribution produced by dissociation of the 0,(—3, 3) state with linearly polarized
laser light tuned just above the 'Sy+'S, threshold will change dramatically with
laser frequency. Because there are only two allowed output channels, we found that
the full angular distribution can be summarized with only two free parameters R and
§ in the following way:

[F(6,9)1> = [VR Y2 (0, ¢) + /T — R Yao (6, $) |, (8.4)

where ¢ is the azimuthal angle and Y is a spherical harmonic.

A plot of the value of R vs laser frequency revealed a dramatic dip at ~66 MHz
above threshold, which we interpreted as evidence of the presence of a J = 4
shape resonance. However, even when no shape resonances are thought to exist
for the quantum numbers allowed in the final output channel, we still observe
dramatic variation among photofragment angular distributions, depending upon
both frequency above threshold and the initial state.

Figure 8.12 shows a collection of photofragment angular distributions recorded
at four energies above threshold and starting from six different initial states.
What’s interesting in this figure is that photofragment angular distributions produced
from nearly all initial states show a dependence upon frequency above threshold.
Photodissociation of the 0,(—3, 1) state is also interesting, because its obvious near-
spherical symmetry implies that the J = 2 channel contributes only very weakly to
the final output state.

Preliminary calculations by our theorist collaborators at the University of
Warsaw have already begun to show qualitative agreement with our data. But careful
comparison has not been made, and it will be exciting to see whether in the future
more general rules can be discovered to predict the shapes of these patterns.
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Fig. 8.12 The photofragment angular distribution produced by photodissociation of J = 1 excited
states by a laser tuned above the 'Sy+'S, dissociation threshold is not only frequency-dependent,
but dramatically different for nearly every level observed. No shape / = 0 or / = 2 shape
resonances are known to exist for 8Sr. Ts this variation among different initial states an incidental
fluke which can be explained by exact calculations of the transition moment, or is a deeper
explanation possible?
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