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Preface

A solid-solution series is the continuous sequence of substances with compositions inter-
mediate between two distinct mineral phases, called end members. In a solid-solution
series, the components may be thought to substitute for one another on a molecular level in
the crystal structure; the intermediate members have properties that vary continuously with
composition from those of one end member to those of another. Solid-solution series are
said to be complete if examples of complete variation exist in nature or have been syn-
thesized in the laboratory…

… only the appearance of the computer provided a qualitative jump and made it possible to
perform effective study of really complex systems in various areas of knowledge. Actually,
the concern is with coarse qualitative criteria, differentiating simple systems from complex;
if the structure and behaviour of a system can be studied by a single man in a reasonable
time, the system is called simple. If the efforts of many persons and the use of special
technical equipment (computers) are required to draw the whole picture, the system is
called complex.

Encyclopædia Britannica Ultimate Reference Suite

In the last decades, crystallographic and compositional engineering has become
an important tool in the development of functional materials and in enhancing their
physical properties and related parameters. Ferroelectrics represent a vast class of
modern functional materials that find applications from medical equipment to
aeronautics. Intricate domain, twin and heterophase structures, sequences of
structural phase transitions (mainly the first-order phase transitions), complex
systems of solid solutions with different structural and polar orderings and out-
standing electromechanical properties in the poled state make ferroelectric materials
attractive for basic research within the framework of the well-known dependency
triangle of ‘composition–structure–properties’. As is known from numerous
experimental studies, the first-order phase transitions in ferroelectrics are charac-
terized by jumps of the spontaneous polarization, unit-cell parameters, by hetero-
phase states concerned with an internal mechanical field, etc. The present book is
intended to discuss recent experimental and theoretical results on heterophase states
and to provide crystallographic interpretations of heterophase structures in the
ferroelectric solid solutions, especially in the presence of heavily twinned phases.
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The most studied group of ferroelectric solid solutions is characterized by the
perovskite-type structure (from the mineral perovskite, CaTiO3). Components
of these solid solutions are perovskite oxides with a composition ABO3, where
A and B are cation elements or mixtures of two or more such elements, or vacancies.
The importance of ferroelectric perovskite-type materials is concerned with the
almost unlimited isomorphism of their crystal structure. As a consequence, a con-
tinuous change in the composition, structural characteristics and physical properties
is achieved by substitution of different elements at equivalent positions (A and/or B).
The isomorphism favours the formation of the ferroelectric solid solutions with
properties that can be varied within a wide range. It should be added that many of the
ferroelectric perovskite-type solid solutions exhibit excellent piezoelectric and
pyroelectric properties, and such a performance makes these materials the important
group of modern active dielectrics. Experimental data on various perovskite-type
solid solutions show that the heterophase states in these materials are observed in
certain ranges of temperature, composition and electric field strength, where volume
densities of free energy of the coexisting phases are approximately equal. Recent
studies on the representative perovskite-type solid solutions (for instance, ferro-
electric Pb(Zr1−xTix)O3, KNbO3-based and BaTiO3-based, and relaxor-ferroelectric
(1 − x)Pb(L1/3Nb2/3)O3 – xPbTiO3 with L = Mg or Zn) show that the heterophase
states therein are of particular interest because of the presence of intermediate phases
and their considerable influence on the physical properties, phase coexistence and
stress relief near the morphotropic phase boundary. In comparison to the first edition
[1], the second edition contains the new chapter devoted to heterophase lead-free
ferroelectric solid solutions and features of domain states and phase contents in these
materials (see Chap. 6). Lead-free ferroelectric and piezoelectric materials are under
intensive studies and become attractive due to their physical properties [2, 3] that are
comparable to many lead-containing materials [4]. It is believed that such a ‘com-
petition of properties’ will influence the research subjects in the field of ferroelectrics
and related materials. The inclusion of new results on the domain states and phase
contents in Chap. 6 makes the second edition of the book many-sided in the research
sense and enables the readers to consider the well-known dependency triangle of
‘composition–structure–properties’ from a new viewpoint.

The present book has been written on the basis of the author’s research results
obtained mainly at the Rostov State University (Russia, until December 2006),
Southern Federal University (Russia, since December 2006) and Karlsruhe
Research Centre (Germany, 2003–04). The academic style of presentation of the
results and the discussion about them indicate that the book would be useful to
researchers, engineers, postgraduate students and lecturers working in the field of
ferroelectrics, ferroelastics, multiferroics and other modern functional materials.
The present book fills a gap in materials science, crystallography of ferroelectrics
and related materials and in physics of heterogeneous ferroelectrics and, therefore,
will be of benefit to all specialists looking to understand behaviour and physical
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properties of modern heterogeneous materials suitable for various applications.
Some chapters and sections of the book could serve as a basis for a university
course devoted to ferroelectric solid solutions.

Rostov-on-Don, Russia Prof. Dr. Vitaly Yu. Topolov
November 2017
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Chapter 1
Crystallographic Aspects of Interfaces
in Ferroelectrics and Related Materials

Abstract Analysis of results on the study and classification of various interfaces in
polydomain and heterophase ferroelectric single crystals and related materials is
carried out. Classification of domain boundaries in ferroelectric single crystals is
highlighted. An emphasis is placed on crystallographic methods that can be applied
to study complicated domain (twin) structures and their rearrangement, heterophase
states, features of the formation of the new phase, etc., in ferroelectric solid solu-
tions. Examples of complete stress relief and zero-net-strain planes at the interphase
boundaries in two-phase single crystals are discussed for many cases of first-order
phase transitions.

Experimental studies of single crystals (SCs) of polar dielectrics show that, in an
external electric field E, these materials can exhibit either linear or nonlinear
behaviour [1, 2]. A nonlinear dependence of the polarization P on E in a certain
range of E is observed, for instance, in ferroelectric (FE) and antiferroelectric SCs [1,
3, 4], poled ceramics, and SCs of FE solid solutions [3, 4] and composites based on
FE ceramics [5]. The presence of FE and ferroelastic domains (or mechanical twins),
heterophase regions and fluctuations of composition make the P(E) dependence
complicated and is caused by many physical and crystallographic factors that are
studied in the last decades [1, 3, 4]. Moreover, the dependence of physical properties
on domain structure (DS) in FE SCs and ceramic grains represents an independent
problem that is solved by means of experimental and theoretical methods [6–8]. An
interest in the aforementioned subjects stems from a necessity to study an important
link between the domain configurations and physical properties of FEs, to consider
the role of the domain-orientation processes in forming the physical properties, to
describe their anomalies in heterophase states on mesoscopic and macroscopic
levels, and to predict ways for the formation and rearrangement of DS at the
structural phase transitions. To solve these and related problems, it is important to
understand the physical phenomena that are concerned with the presence of both DS
and heterophase states in FEs. One of the main links in the interpretation of the
physical phenomena in polydomain and/or heterophase FE SCs is the interfaces [9]
that represent systems of boundaries between the domains (or domain regions) and
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boundaries between the phases (they can be split into domains). It should be added
that the polydomain SC as a model object plays the leading role in the hierarchy
of the physical properties ‘single-domain FE SC—polydomain FE SC—FE
polycrystal—poled FE ceramic—composite based on FE ceramic’, and an important
example of this hierarchy was first analysed for FEs of the PbTiO3 type [7, 8, 10].

This chapter is devoted to the analysis of some important results in the study and
classification of various interfaces that are observed in polydomain and heterophase
FE SCs and related materials. An emphasis is placed on crystallographic methods
[9] that are applied to study complicated DSs and their rearrangement, heterophase
states, features of the formation of the new phase, etc., in FE solid solutions.

1.1 Domain Structures and Interfaces Between
Polydomain Regions

1.1.1 Formation of Domain Structures in
Ferroelectric Single Crystals

Below the temperature of the FE phase transition many SCs are split into domains, or
regions with different orientations of the spontaneous polarization vector Ps [1–3].
The FE domains are also regarded as macroscopic regions wherein the unit cells
have parallel orientations of the spontaneous dipole moments at E = 0. An aggregate
of the domains divided by the interfaces (domain walls, boundaries between the
domain regions, etc.) constitutes DS observed and described in experimental works
(see, e.g. monographs [1–4, 11–13]). Analogous regions corresponding to certain
orientations of the spontaneous polarization vectors of the sublattices –Pa are
observed in antiferroelectric SCs [2, 3, 13]. The regions with different tensors of
spontaneous strains in an initial co-ordinate system form ferroelastic SCs that are
often regarded as mechanical analogues of FEs [12].

The first principal propositions on a correlation between the orientation of the FE
domains, domain walls and macrosymmetry of the physical properties of the SC
sample were formulated by Zheludev and Shuvalov [14–19]. In the absence of
external influences, such as electric or mechanical fields, the appearance of the FE
domains is equally probable along each of the crystallographically equivalent
directions that are regarded as polar axes. FE SCs are traditionally divided into two
groups in accordance with the number of polar axes [2, 3, 11, 13]. The first group
contains electrically uniaxial SCs that are divided only into the 180° domains with
antiparallel spontaneous polarization directions, +Ps and −Ps. The second group
represents electrically multiaxial SCs with non-180° domains oriented along the
crystallographically equivalent directions in the FE phase. In the second group, the
180° domains are present side by side with the non-180° domains. The number of
permissible orientations of the spontaneous polarization vectors is n = N1/N2, where
N1 and N2 are orders of the point symmetry group of the prototype phase and the
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domain (twin component), respectively. If all the possible domain types are present
in the SC sample in equal volume fractions, then this sample is characterized by the
same point symmetry group as in the prototype phase [2, 13, 18, 19]. However, not
all the domain types can be observed in real SCs [11, 13] because of an influence of
crystal-growth conditions, phase-transition kinetics, external fields, etc.

Changes in the energy of the system at the structural phase transition are main
reasons for the domain formation in FE SCs. According to results [1–3, 11], the
reason for 180°-domain formation is jump of the depolarizing field at the first-order
phase transition, and the reason for non-180° domain formation is the jump of the
spontaneous strains of the SC unit cell. Both the jumps are caused by a change in
the spontaneous polarization Ps at the phase transition. In a case of the
paraelectric-FE first-order phase transition, the jump of Ps (from 0 to a certain
value) takes place at Curie temperature TC. Various 180° domain patterns are
formed under the influence of an internal electric field and by a screening of the
spontaneous polarization by free charge carriers in the SC sample [11]. The
domain-formation processes lead to a minimization of an electric contribution to the
free energy of the SC sample [20]. The electric contribution comprises the volume
energy of the depolarizing field of the sample as a whole and the surface energy of
domain walls or domain boundaries therein.

Theoretical concepts on domain walls and the formation of DSs [21] at the
first-order phase transition are based on the determination of the effective free
energy as a function of the polarization field. This approach is useful, for example at
the description of the effect of the elastic strain on the non-180° DS that takes place,
for example, in the tetragonal phase of perovskite-type FEs (BaTiO3, PbTiO3,
KNbO3, etc.) and related solid solutions. The free energy of FE SC depends on
inhomogeneous regions, such as domain walls and modulated structures. Based on
the thermodynamic study of the free energy of FE, Cao [22] analysed inhomoge-
neous microstructures in the FE phase of solid solutions of (Pb1 − 3x/2Lax)TiO3. In a
certain x range, these inhomogeneous microstructures represent spatial amplitude
modulations inside domains of this system, and the development of the modulated
structure is caused by La dopants. A time evolution of the 90° DS in FE was
predicted in work [23]. As follows from results [23], the elastic long-range inter-
actions between the polarization fields lead to a lamellar 90° DS (mechanical twins)
and frozen domain patterns which are observed in a series of FE SCs. The model
proposed in paper [24] enables one to describe the lamellar or spiked morphology
of the 180° domains in FE SCs by taking into account the electrostatic interaction.
The model concept [24] is applied for a prediction of trends in the formation (or
subsequent rearrangement) of the DS in the presence of the external electric field.

Experimental results on the formation of 180° and 90° DSs in the tetragonal
phase of multiaxial FE SCs of the perovskite type at the first-order phase transition
were generalized by Fesenko et al. [11]. According to experimental data, the FE
phase in BaTiO3 SCs is split into both the 180° and 90° domains near the Curie
temperature TC = 393 K. The corresponding DS being formed in the BaTiO3 SC
sample, wherein a planar interphase boundary moves at the paraelectric–FE phase
transition, remains almost unchanged on cooling down to room temperature. Rules
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in the formation of the DS are formulated [11] with due regard for jumps of the
depolarizing field, spontaneous strains and entropy at the first-order phase transi-
tion. These jumps are caused by the jump of the spontaneous polarization Ps(TC).
Based on numerous experimental results, Fesenko et al. proposed a classification of
domain patterns [11] affected by the jumps of the physical parameters in multiaxial
FE SCs. In this classification, some interconnections between the jumps are taken
into account. In addition to the electric and elastic fields, that are directly concerned
with complex DSs in multiaxial FE SCs, the latent heat also influences [11]
phase-transition kinetics, the motion of the interphase boundary [25] over the SC
sample and the formation of the DS.

Taking into consideration numerous experimental results on polydomain
(twinned) FE SCs [1–4, 11, 25], one can mention the following factors that actively
influence the formation of the DS: electrostatic energy of the depolarizing field of
SC, electric conductivity of SC at the phase transition, elastic energy concerned
with the phase coexistence and defects, surface energy of domain wall (boundaries),
anisotropy of the physical properties, the simultaneous formation of a number of
nuclei of the new phase, external electric and/or elastic fields, temperature gradient
over the SC sample and cooling rate of this sample undergoing the FE phase
transition. Examples of the quantitative description of the influence of the separate
factors on the formation of the 180° and non-180° DSs are present in monographs
[1–3, 11].

1.1.2 Elastic-Matching Concept and Its Application
to Domain Boundaries

The elastic interaction between the phases in SCs [26] and between the domains in
the FE phase plays the important role in the formation of DS [11, 25] with various
planar, wedge-shaped, zigzag or diffused interfaces. The domains that are observed
near these interfaces are mainly non-180° and promote minimization of an elastic
contribution into the free energy of the SC sample. In contrast to the traditional
180° (FE) domains, these domains are often termed ‘elastic domains’ [26] or
‘twins’ [11]. Moreover, aggregates of the plane-parallel twins form a polysynthetic
twin (polytwin), and the polysynthetic twin can be a part of a more complicated
hierarchical structure (polysandwich structure) in SC samples. As noted by
Roytburd [26], the polysandwich structure is characteristic of many phase-transition
types in solids, for instance martensitic, ferroelastic, ordering, diffusion and
decomposition types. The polysandwich structure can be detected in SCs that
undergo both the first-order and second-order phase transitions. Decreasing the
elastic energy at the formation of the new phase in solids can be concerned with the
integration of DSs, or in other words, with the formation of hierarchical DSs.
Hereby the polytwins serve as individual domains and form DSs of the second
order, third order, etc. [26].
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The study of the formation of DS in FE SCs is often carried out in terms of
crystallographic [9, 27] and thermodynamic [26, 28, 29] theories. Lowering the
energy of the internal mechanical stress field associated with the phase coexistence
leads to the certain (preferable) orientation of the nucleus of the new phase or the
interphase boundary and to the formation of equilibrium DSs. Theoretical studies
[28] show that the plate-like shape of the nucleus of the new phase provides the
maximum localization of the elastic field at the structural phase transition. The
equilibrium DS is one of the milestones in the interpretation of experimental data on
phase transitions of the martensitic type [11, 25], i.e. the first-order phase transitions
going through a coherent heterophase state [29] at the jump in unit-cell strains.
According to the idea developed in work [30–32], the new polydomain phase
retains its contact with the parent phase, and consequently, the interphase boundary
must be undistorted (or unstrained) on average. This boundary, being one of the
interfaces studied in solids, is termed ‘zero-net-strain plane’ (ZNSP) [9, 27], ‘in-
variant plane’ [26], ‘plane of the zero averaged distortion’ [30, 31], or ‘stress-free
plane’. The zero-averaged distortion means that averaging the elements of distortion
matrices is carried out over a macroscopic volume that involves a large number of
domains within a specific phase.

The authors of papers [29–31] considered important examples of the martensitic
phase transitions in metals and alloys. A reconstruction of the crystal structure at
these phase transitions is associated with a strain field that give rise to changes in
the shape of the sample, and atomic displacements therein are less than the unit-cell
parameters. While this transformation does not need a diffusion of atoms at a large
distance, the martensitic phase transition is often regarded as diffusionless. The
twins appearing at the martensitic phase transition are regarded rather as elastic
domains [26] than as a result of deformation twinning of the martensitic phase. In
the last decades, the phase transitions of the martensitic type were studied not only
in metals and alloys, but also in molecular SCs, ferroelastics, FEs and antiferro-
electrics [11]. Examples of the application of the concepts of the martensitic phase
transition to the FE phase transition in perovskite-type SCs are given in monograph
[11]. The martensitic phase transitions that lead to polydomain structures with the
non-zero elastic energy (i.e. without the formation of ZNSPs) were studied in terms
of thermodynamics [29].

The presence of the interphase boundary, that obey conditions for ZNSPs at the
first-order phase transition means, that the excessive elastic energy concerned with
the jumps of the unit-cell parameters of SC vanishes in the heterophase state. It is
also assumed that the interphase boundary remains coherent at the phase trans-
formation [32, 33]. As noted by Larché [33], the concept of coherency is crystal-
lographic in nature. Lowering the elastic energy and, as a consequence, the
minimization of the free energy of the heterophase system undergoing the structural
phase transition may be concerned with the loss of coherency and twinning. In case
of loss of coherency, systems of dislocations and cracks [33] can arise in solids to
give rise to considerable stress relief at the phase transition.
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The crystallographic description of the interphase boundary at the first-order
phase transition was proposed in a series of papers (see, e.g. [30, 31]). According to
results [30, 31], the ZNSP with an optimal orientation arises from conditions for
complete stress relief in the two-phase SC sample. Vanishing the elastic energy
means that the new phase (with lower symmetry) is split into domains of two types,
and these domains are mechanical twin components. Optimal volume fractions of
the domain types are determined in terms of the unit-cell parameters of the coex-
isting phases [30, 31] or in terms of spontaneous strains [11, 27] of the
low-symmetry phase. The further mathematical modification of the crystallographic
method by means of transformation distortion matrices was made by many authors,
for example Bilby and Christian [32] and Boulesteix et al. [34]. The infinitesimal
deformation approach and simple analytical solutions for interphase boundaries
[35] make the crystallographic method more attractive for analysis of relationships
between the parent and product phases in solids.

The problem of the existence of a planar unstrained interphase boundary
between a prototype paraelastic phase and a ferroelastic phase was solved in work
[34]. Based on this solution, Boulesteix et al. determined all possible orientations of
the interphase boundaries in the analytical form. The general solution is realized
[34] for phase transitions without a change in the unit-cell volume. Among 30
variants of the symmetry changes at the ferroelastic phase transitions in SCs, one
can choose 8 variants that correspond to exact solutions suitable for determination
of the interphase-boundary orientations. In other cases, the planar interphase
boundary would appear at certain restrictions on the spontaneous strain tensor
components. Results of the theoretical study are experimentally corroborated for a
sequence of phase transitions in ferroelastic SCs [34, 36]. We note that the approach
developed in papers [34, 36] can be effectively applied for the crystallographic
interpretation of the interfaces in FE SCs.

The crystallographic method for the description of the two-phase SCs and for-
mation of domains was developed in a series of papers (see, e.g. [37–42]). The
allowable domain walls are determined to be walls that do not create long-range
electric and elastic fields in FE SCs [37]. The absence of elastic fields is also
required for domain walls that arise in the antiferroelectric and ferroelastic SCs
[40]. This general requirement will be one of the principal conditions at the con-
sideration of different interfaces in our monograph.

Permissible domain-wall orientations and possible types of corresponding walls
related to all FE species were first determined by Fousek and Janovec [37–39]. It is
assumed that in the FE species, the polarization is the order parameter of the phase
transition. In an infinite and perfect FE SC, the condition for elastic matching
between two domains with spontaneous polarization vectors Ps′ and Ps″ along the
domain wall requires that the length of an elementary vector ds(ds1, ds2, ds3)
remains unchanged when crossing the domain wall. It means that the components
of the vector ds obey condition [37].
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hds1 þ kds2 þ lds3 ¼ 0; ð1:1Þ

where (hkl) are Miller indices of the unstrained domain wall. Equation (1.1) can be
written in terms the physical properties of the adjacent domains with Ps′ and Ps″ as
follows:

X3
k;l¼1

Dkldskdsl ¼ 0; ð1:2Þ

where the coefficients Dkl from (1.2) are given by

Dkl ¼
X3
i¼1

giklðP0
i�P00

i Þþ
X3
i;j¼1

QijklðP00
i P

00
j �P0

iP
0
jÞ: ð1:3Þ

In (1.3), the piezoelectric coefficients gikl link the mechanical strain and electric
displacement [2, 3] in the single-domain state and Qijkl are electrostrictive coeffi-
cients that link the mechanical strain and squared polarization [2] of the
single-domain SC. Fousek and Janovec [37] described the FE domain walls of
W∞- and Wf -types with arbitrary (∞) and fixed (f) orientations, and a few kinds of
the S-type walls that can be observed in polydomain FE SCs. The S-type domain
walls have orientations [37] depending on directions of Ps′ and Ps″, values of gikl
and/or Qijkl from (1.3). Tables of allowed orientations for the domain walls in all
crystallographic species of SCs are given in paper [37].

The determination of the permissible domain walls and their orientations in
ferroelastic SCs is carried out using (1.1), (1.2) and condition [40]

det Dkl0k k ¼ 0; ð1:4Þ

where Dkl′ = Skl′ − Skl″ is the difference between the tensor components of the
spontaneous strains Skl′ and Skl″ in the unit cells that belong to the adjacent domains
(twin components). The tensor components Skl′ and Skl″ correspond to the co-ordinate
axes of the prototype phase of the SC sample. Taking into account (1.4) and sym-
metry features of the domains, Sapriel determined the following types of the per-
missible planar domain walls [40]:W-walls with invariable orientations andW′-walls
with orientations depending on the relative values of Skl′ and Skl″. It should be added
that the methods [37–40, 43] for determination of the domain-wall orientations were
successfully used to characterize the forbidden domain boundaries in ferroelastic SCs
[42] due to the significant influence of the elastic field therein.

Besides the domain-wall types described above, we mention the walls that are
sometimes termed ‘antiphase boundaries’ or ‘360° domain walls’. They arise as a
result of elastic matching of two domain pairs with the 180° orientation of the
spontaneous polarization vectors and with different tensors of spontaneous strains in
separate domains. Some examples of these domain walls were observed in SCs
exhibiting the FE and ferroelastic properties (see, e.g. papers [44–46]).
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The description of the domain walls and complex DS containing intersections of
the domain (twin) walls, triple junctions and irregular interfaces was carried out by
Salje [47] in terms of dislocation densities. According to this concept, a possible break
of the lattice planes in the domain (twin) walls is described as a continuous contri-
bution of dislocations in ferroelastic and co-elastic SCs. The intersecting domain
walls obey the condition for a minimum of the wall energy. Differences in the
domain-pattern formations were interpreted [48–52] at the study of elastic interac-
tions in SCs at the structural phase transitions. The atomically coherent domain
boundary obeys compatibility relations [40] (i.e. principles formulated by Sapriel) for
components of the spontaneous strain tensor or the distortion tensor. However, the
real domain conjunction in SCs spreads the anisotropic lattice distortion over some
region around the domain boundary [49] with a fine ‘tweed texture’ [40, 50] (or tweed
microstructure [51]) of lamellar domains, even in the case of the unstrained domain
boundary. The presence of the tweed texture is consistent with the concept [26] of
higher order DSs in solids. The results of experimental and theoretical studies of
tweed microstructures in ferroelastic and co-elastic SCs are discussed in papers [50,
51]. Systems of crosshatched tweed-like domains in FE phases were studied by
Viehland et al. [53] in SCs of solid solutions of (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3

(PMN − xPT) with compositions near the morphotropic phase boundary (MPB). The
PMN − xPT SCs are of great research interest due to the remarkable electrome-
chanical and FE properties and complicated DS in heterophase states [53–57]. As
follows from the experimental study [53], the domain self-organization is driven by
the elastic compatibility, and the change between theminiature crosshatched domains
and the fine well-aligned striation domains also satisfies conditions for the elastic
compatibility in the heterophase system.

1.1.3 Classification of Domain Boundaries in
Ferroelectric Single Crystals

Besides the domain boundaries considered in Sect. 1.1.2, one can find other
interesting examples of the domain boundaries described in experimental studies.
The domain boundaries observed in FE SCs are classified [9] using a series of
criteria (Fig. 1.1).

In the present review, we did not consider in detail some exotic situations
concerned, for instance with the formation of the non-coherent domain boundaries
or even single-domain states [58] at the FE phase transition. As follows from results
[58], the heterophase system comprising the single-domain FE phase also promotes
a decrease of the elastic contribution into the free energy of the system, but con-
ditions for complete stress relief [30, 31] at the interphase boundary cannot be
satisfied due to peculiarities of jumps of the unit-cell parameters at the phase
transition. This behaviour is observed in FE-ferroelastic Gd2(MoO4)3 SCs where
the single-domain phase appears [59] at the FE phase transition. An analysis of the
elastic-energy contribution caused by the phase coexistence enabled one to find the
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preferable orientation [58] of the crystallographic axes in the single-domain phase
of Gd2(MoO4)3. Finally, the effect of clamping the domain boundary in SCs leads
to the appearance of irregularly shaped domains whose sizes are generally larger
than those in the tweed microstructures [48].

1.1.4 Crystallographic Interpretation of Interfaces Between
Complicated Domain Structures

Metrat [60] developed the crystallographic theory [30–32] to describe the complex
DS and its transformation at the first-order phase transition in FE SCs. The solution

Fig. 1.1 Classification of domain boundaries observed in FE SCs (reprinted from paper by
Topolov [9], with permission from Taylor and Francis)
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[60] allows the determination of the mutual orientation of the interface and the DS
within one of the phases in case of elastic matching of two polydomain phases or
domain regions. It should be mentioned that ‘interface’ in this context means either
the interphase boundary separating the coexisting phases or the domain boundary
separating the domain regions of some polydomain (twinned) phase.
A mathematical description of elastic matching of the coexisting phases (or domain
regions) along the interface in FE or related SCs is based on the crystallographic
concept [60].

According to Metrat [60], the coexisting polydomain phases (or domain regions)
are characterized by the distortion matrices ||Mij|| and ||Nij|| that are expressed in
terms of distortions of several domain types, their volume fractions and angles of
mutual rotation [30, 31] of the crystallographic axes of the adjacent domains. In
contrast to the assumptions used in (1.2)–(1.4), conditions for complete stress relief
and the formation of the ZNSP along the interface are written in the more strict
form:

det Dij

�� �� ¼ 0 ð1:5Þ

and

ðD0
ijÞ2 � 0; ð1:6Þ

where elements of the ||Dij|| matrix (3 � 3) from (1.5) are given by

Dij ¼
X3
k¼1

NikNjk�MikMjk
� �

; ð1:7Þ

Nik and Mik are taken from the aforementioned distortion matrices, and
(Dij′)

2 = Dij
2 − DiiDjj (ij = 12 and 13). Metrat [60] takes into account the second

powers of the distortions of the adjacent phases or domain regions, see (1.7). This
leads to complicated nonlinear relationships between the volume fractions of the
domains in the coexisting phases. The necessary conditions for the existence of the
ZNSP [30, 31] are generalized and given by (1.6). Based on the matrix elements Dij

from (1.7), one can determine the Miller indices (hkl) of the planar unstrained
interfaces [60] as follows:

h1;2 ¼D11=D1;2; k1;2 ¼ ðD12 � D0
12Þ=D1;2 and

l1;2 ¼ðD13 � D0
13Þ=D1;2;

ð1:8Þ

where D1,2 = [D11
2 + (D12 ± D12′)

2 + (D13 ± D12′)
2]1/2 is written in terms of Dij

and Dij′ from (1.7) to (1.6), respectively. The possibility of application of conditions
(1.5)–(1.8) for description of the polydomain (twinned) and heterophase SCs
demonstrates obvious advantages of the Metrat’s algorithm [60] in comparison to
methods [30–32, 35, 37–40] proposed earlier. A comparative analysis of the
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crystallographic methods and some examples of calculations of characteristics of
heterophase SCs are considered in Appendix A.

The Metrat’s algorithm [60] and the matrix approach concerned with this
algorithm were applied to FEs and antiferroelectrics of different structural types for
interpretation of experimental data on heavily twinned SCs, structural phase tran-
sitions, formation and rearrangement of DS, and features of phase coexistence at
changes in temperature, molar concentration or external stress (see, e.g. papers [27,
58, 61–64]). The matrix approach is also helpful in studying a connection between
the elastic interaction of the phases and the behaviour of their unit-cell parameters
in wide temperature or molar-concentration ranges [61, 64]. Based on experimental
data and the Metrat’s algorithm, Balyunis et al. [65] first characterized four types of
the S-type boundaries in heavily twinned PbZrO3 SCs and generalized the concepts
by Fousek and Janovec [37] for a case of four twin components in the FE phase.
Analytical conditions determining the thermal stability of the orientation of the
S-type boundary studied in work [65] may be applied to various FE (antiferro-
electric) perovskite-type SCs with complex DS or systems of twin components.
Furthermore, it is possible to determine the unit-cell parameters more exactly using
data from optical studies and crystal-geometry of domain (twinned) regions with the
S-type domain boundary whose orientation remains stable in a certain temperature
range. This possibility was first demonstrated at the determination of the temper-
ature dependence of the shear angle x of the perovskite unit cell in the antiferro-
electric Pbam phase of PbZrO3 SC [66].

The crystallographic study of the S-type boundaries [65, 66] in perovskite-type
FE and antiferroelectric SCs revealed a difference between the orientation relations
from the Metrat’s algorithm [see (1.8)] and the formulae derived from work by
Fousek and Janovec [37]. In a case of elastic matching of the 60° domains
(Fig. 1.2) in the orthorhombic phase of such SCs as KNbO3, the distortion matrices
of domains 1 and 2 are

Mij

�� ���� �� ¼
ga 0 g

0 gb 0

g 0 ga

0
B@

1
CA and

Nij

�� ���� �� ¼
gb 0 0

0 ga g

0 g ga

0
B@

1
CA;

ð1:9Þ

respectively, where ηa, ηb and η are distortions of the perovskite unit cell along the
a-, b-directions and in the (ac)-plane, respectively. The distortions from (1.9) can be
written in terms of the spontaneous strains nsa, n

s
b and ns of the perovskite unit cell

as follows: ga ¼ 1þ nsa, gb ¼ 1þ nsb and g ¼ 1þ ns. Based on (1.5)–(1.9), we
conclude that the following orientations of normal vectors to the unstrained domain
wall are possible: n1(1 1 0) and n2(hhl). The normal vector n2 characterizes the
orientation of the S wall [27, 67]. In accordance with (1.8), components of the n2
vector are linked by the ratio
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l=hð ÞM¼ 4gga= ðg2a�g2b þ g2Þ: ð1:10Þ

The similar ratio of the Miller indices determined in terms of work [37] is
expressed as follows:

l=hð ÞFJ¼ 2g= ðga�gbÞ: ð1:11Þ

Comparing the l/h ratios from (1.10) to (1.11), one can state that j = (l/h)FJ/
(l/h)M 6¼ 1 in the general case. As follows from evaluations [67] based on experi-
mental values of the unit-cell parameters, j equals 0.996 (BaTiO3 SC at temperature
T = 277 K), 0.995 (PbHfO3 SC at T = 298 K) or 0.998 (KNbO3 SC at T = 298 K)
[67]. The difference 1 − j increases with increasing the difference ηa − ηb (i.e. as
the difference of the unit-cell parameters a − b increases) under the condition that
η2 � ηa − ηb. Data on the thermal stability of the orientation of the S wall in
PbZrO3 SC (see Appendix A) suggest that the inequality 0.99 < j < 1 is valid in the
wide temperature range. The reason for j 6¼ 1 lies in the choice of basic conditions
[38, 60] for elastic matching of the adjacent domains [see (1.3) and (1.7)]. It is
pertinent to add that (1.10) was applied for the more precise determination of the
temperature dependence of the shear angle x(T) of the perovskite unit cell in PbZrO3

SC [66].
The approach developed in papers [65, 66] was applied to the S-type domain

boundaries with various temperature dependences of the normal vector n2(hhl) in
orthorhombic Pb(Zr1 − xSnx)O3 SCs. In papers [65, 66] the S-type boundaries
play the role of interfaces separating the regions with 90° DS, and four non-180°
domain types are involved in the crystallographic description of elastic matching
of the domain regions. This crystallographic approach was also useful to interpret
the non-monotonic temperature dependence of the S-type boundary orientation in
two orthorhombic phases of Pb(Yb0.5Nb0.5)O3 SCs [68] and to show a link
between the n2(hhl) orientation and the unit-cell behaviour in a wide temperature
range.

Fig. 1.2 Schematic arrangement of domains in the orthorhombic phase of perovskite-type FE
SCs. Spontaneous polarization vectors of domains 1 and 2 are shown by arrows. (X1X2X3) is the
rectangular co-ordinate system with axes parallel to the perovskite unit-cell axes in the cubic
phase, n is the normal vector to the domain wall

12 1 Crystallographic Aspects of Interfaces in Ferroelectrics …



1.2 Phase Coexistence at First-Order Phase Transitions

1.2.1 Elastic Matching of Phases and Zero-Net-Strain
Planes

The overwhelming majority of structural phase transitions in FE materials belong to
the first-order transitions [1–4, 11]. They are accompanied by jumps of the unit-cell
parameters, formation and growth of new-phase nuclei, motions of interphase
boundaries, appearance or rearrangement of DS, and other physical phenomena. In
every case, the transition of the system into a new stable state proceeds through a
metastable state, and the system represents a heterogeneous (heterophase) medium
wherein two [11, 61, 62, 69] or even three [63, 70] phases can coexist. These phases
can be split into domains (mechanical twins) according to conditions [9, 27, 60] for
effective stress relief in the heterophase medium.

Below the Curie temperature, many FEs and related materials undergo structural
phase transitions or a series of phase transitions between phases with different sym-
metry andDS [1–4]. Some results of determination of characteristics of the interphase
boundaries and DS [71] within the framework of the Metrat’s algorithm [60] are
shown in Table 1.1. It is assumed that elastic matching of the coexisting phases and
the full screening of electric fields of bond charges at surfaces of nuclei of the new

Table 1.1 Interphase boundaries and DSs which obey conditions (1.5) and (1.6) for ZNSPs in
perovskite-type SCs

Point symmetry
groups of coexisting
phases

Domain types and
volume fractions

Optimal orientations (hkl)a (oruopt) of interphase
boundaries and optimal volume fractions of
domains [71]

m3m and 4mm Figure 1.3 BaTiO3: (506) (uopt = 40.15°) and mopt = 0.706
KNbO3: (405) (uopt = 37.95°) and mopt = 0.725
PbTiO3: (203) (uopt = 33.76°) and mopt = 0.764

m3m and 222 Figure 1.4 PbHfO3: (025) (uopt = 68.03°) and mopt = 0.877

4mm and mm2 Figure 1.5a BaTiO3: (010) and qopt = 0.548, xopt = 0.500,
and yopt = 0.259

4mm and 3m Figure 1.5b Pb(Zr1-xTix)O3 near the MPB: the optimal
orientationb is close to (010) at
topt = 0.294 − 0.554

4mm and 4mm Figure 1.5c PbTiO3: the orientation changes from (708) at
m ! 0 to (627) at m ! 1, the optimal volume
fraction is qopt = A2,3 + B2,3m, where
A2 = 0.0315 and B2 = 0.953, or A3 = 0.0143 and
B2 = 0.995

aMiller indices (hkl) are determined with respect to the perovskite unit-cell axes in the cubic phase
bThe spontaneous polarization vector in the single-domain 3m phase (Fig. 1.5b) can be oriented along
a body diagonal of the perovskite unit cell, i.e. directions [111], [111], [111], etc., are equivalent, and
conditions for ZNSPs hold at the phase coexistence. The orientation of the spontaneous polarization
vector in the 3m phase slightly influences the optimal volume fraction topt only
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phase takes place. This screening promotes a lowering of the energy of the depolar-
izing field in the SC sample [11]. The domains (twin components) shown in Figs. 1.3,
1.4 and 1.5 are separated by unstrained domain (twin) walls in accordance with the
concept [37, 38]. Table 1.1 comprises data on the interphase boundaries at the fol-
lowing first-order phase transitions: paraelectric–FE, paraelectric–antiferroelectric
and FE–FE. In Figs. 1.3, 1.4 and 1.5 each polydomain (twinned) phase contains the
minimum number of the FE domain types (or twin components in the antiferroelectric
state) at which complete stress relief can be achieved.

Fig. 1.3 Schematic arrangement of the lamellar nucleus (polydomain FE phase) in the
paraelectric matrix. Directions of the spontaneous polarization vectors of 90° domains in the
4mm phase are shown by arrows (volume fraction m) and crosses (volume fraction 1 − m). n is the
normal vector to the interphase boundary, u = (n,^ OX3) is the angle of the orientation of the
interphase boundary. Co-ordinate axes OXj are parallel to the perovskite unit-cell axes in the cubic
phase

Fig. 1.4 Schematic arrangement of 60° twin components in the antiferroelectric 222 phase at the
m3m—222 phase transition. Directions of the spontaneous antipolarization vectors are shown by
arrows, m and 1—m are volume fractions of the domains. n is the normal vector to the interphase
boundary, u = (n,^ OX2) is the angle of the orientation of the interphase boundary. Co-ordinate
axes OXj are parallel to the perovskite unit-cell axes in the cubic phase
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Fig. 1.5 Examples of the schematic arrangement of non-180° domains in the coexisting FE
phases: a 4mm—mm2, b 4mm—3m and c 4mm—4mm. Spontaneous polarization vectors are
shown by arrows. Co-ordinate axes OXj are parallel to the perovskite unit-cell axes in the cubic
phase. In schematic (a) q and 1 – q are volume fractions of the domains in the 4mm phase, o1, o2,
o3 and o4 are volume fractions of the domains in the mm2 phase. The volume fractions oi are
linked by parameters x and y as follows: x = o3 + o4 and y = o2 + o4. In schematic (b) t and
1 − t are volume fractions of the domains in the 4mm phase. In schematic (c) q and 1 − q are
volume fractions of the domains in the low-temperature 4mm phase, m and 1 − m are volume
fractions of the domains in the high-temperature 4mm phase
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The majority of quantitative results from Table 1.1 are in good agreement with
experimental data (see, e.g., [11, 69]). Metrat’s algorithm [60] and the matrix
approach for description of complex DSs promoted studying a connection between
the elastic interaction in heterophase (polydomain) states and the behaviour of the
unit-cell parameters in FE, antiferroelectric and ferroelastic SCs. This behaviour is
concerned with the necessary conditions [72] for the existence of the ZNSP at
elastic matching of two polydomain phases. The necessary conditions introduced
for the interphase boundaries at the cubic–tetragonal and cubic–orthorhombic phase
transitions [30, 31] were generalized for the phase transitions between two poly-
domain phases of either tetragonal or orthorhombic symmetry. Based on the gen-
eralized necessary conditions, Topolov [72] formulated a series of selection rules to
analyse experimental relations between the unit-cell distortions of the coexisting
polydomain phases in perovskite-type FEs. These relations show that possibilities
for the formation of the interphase boundary obeying conditions for ZNSP are more
favourable at the FE–FE, FE–antiferroelectric and antiferroelectric–antiferroelectric
phase transitions than at the transitions between the FE (or antiferroelectric) and
paraelectric phases. The polydomain phase with anisotropic spontaneous strains
that strongly depend on the volume fraction and orientation of the non-180°
domains provides additional ‘degrees of freedom’ for stress relief in the heterophase
structure wherein a few domain types (mechanical twin components) are present.
We write ‘degrees of freedom’ in a figurative sense to avoid an analogy with a
moving mechanical system.

A similar conclusion can be formulated on the basis of results [73] on the
crystallographic description of the DS rearrangement and ZNSPs at the sequence of
the first-order phase transitions m3m—4mm—mm2—3m in BaTiO3 SC. It should
be added that paper [73] is the first publication where the Metrat’s algorithm [60]
was applied to the whole sequence of the phase transitions in polydomain FE SCs.

An unexpected issue is brought up in the study of the FE phase transition m3m—
4mm in K(Ta0.65Nb0.35)O3 SC. Following the algorithm [60], one can obtain
uopt = 40.42° and mopt = 0.704 at the phase coexistence (Fig. 1.3), so that the
interphase boundary is oriented close to (506) in the perovskite axes. At the same
time, the experimental study of the phase transition in K(Ta0.65Nb0.35)O3 SC [11]
shows that the FE 4mm phase remains single domain, but its plate-like nucleus is
parallel to (506). To the best of our knowledge, such behaviour has no analogues
among FE SCs undergoing the first-order phase transition. The reason for the
single-domain FE phase [71] lies in a small elastic energy of the single-domain
nucleus in comparison with the energy that might be accumulated in the 90° domain
walls after splitting this nucleus into the domains with the optimal volume fraction
m = mopt (Fig. 1.3). Such a peculiarity takes place in the solid solution as the molar
concentration of KTaO3 approaches the value at which the first-order phase tran-
sition becomes the second-order one. According to data [11], the jump of the
spontaneous polarization in this SC at the first-order phase transition is
Ps(TC) = 0.05 C/m2, and this value is approximately four times smaller than that in
BaTiO3 SC at the FE m3m—4mm phase transition and 8.4 times smaller than
Ps(TC) in PbTiO3 SC at the FE m3m—4mm phase transition. Moreover,
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spontaneous strains of the perovskite unit cell of K(Ta0.65Nb0.35)O3 SC are one–two
orders-of-magnitude lower than in BaTiO3 SC and two orders-of-magnitude lower
than in PbTiO3 SC.

Peculiarities of the elastic interaction between the polydomain phases of the FE
nature have been studied in the last decades (see, for instance, papers [60, 67–72]).
As follows from this study, the crystallographic description of elastic matching of
the phases (or domain regions) in terms of the Metrat’s algorithm [60] is not
exhaustive and should be supplemented by the thermodynamic theory of FEs [3, 11,
71, 74] and by the elasticity theory of anisotropic media [75, 76].

1.2.2 Stress Relief and Conical Interphase Boundaries

In Sect. 1.2.1, we did not mention possibilities of stress relief at the cubic–rhom-
bohedral phase transition. The first-order phase transition between the paraelectric
cubic and FE rhombohedral phases is observed, for example in SCs of PbZrO3 [77],
Pb(Mg1/3Nb2/3)O3 (PMN) under the external electric field [62], PMN − xPT [78],
etc. The first attempt to provide a crystallographic interpretation of the interphase
boundaries at the cubic–rhombohedral phase transition was made in work on
PbZrO3 SC [77]. Its rhombohedral (R3m) phase remains stable in the narrow
temperature range (about 10 K) only. As is known from experimental data [77], the
interphase boundaries in PbZrO3 SCs have a complicated conical shape with a
variable curvature radius, and the more complicated configuration of the boundary
is observed near small domains of the rhombohedral phase. Moreover, virtually
straight parts of the interphase boundary are observed when moving away from the
domain wall. At the same time, changes in the non-180° DS of the rhombohedral
phase are insignificant and would not considerably influence the orientation and
shape of the moving interphase boundary.

In the crystallographic study [77] of the cubic–rhombohedral phase transition in
PbZrO3 SC, the shape of the interphase boundary is approximated by a
second-degree surface. This surface is described in the rectangular co-ordinate
system (X1X2X3) as follows:

X3
i;j¼1

Dijxixj ¼ 0; ð1:12Þ

where the elements Dij are expressed in terms of distortions of the coexisting
phases, see (1.7). The rhombohedral phase is assumed to be split into 71° (109°)
domains with the fixed orientations and variable volume fractions [77]. The surfaces
are classified taking into account signs of the following invariants of (1.12):

I ¼ D11 þD22 þD33;D ¼ det Di j

�� ���� �� and

J ¼ D11 D12

D21 D22

����
����þ

D22 D23

D32 D33

����
����þ

D33 D31

D13 D11

����
����:

ð1:13Þ
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Conical surfaces obey one of the following pairs of inequalities:

DI\0 and J\0; ð1:14Þ

DI\0 and J[ 0; ð1:15Þ

or

DI[ 0 and J\0: ð1:16Þ

Inequalities

DI[ 0 and J[ 0 ð1:17Þ

characterize an imaginary cone apex. Finally, conditions

DI ¼ 0 and J\0 ð1:18Þ

are related to a planar interphase boundary oriented parallel to the ZNSP.
Conditions (1.14)–(1.18) are written in terms of invariants I, D and J from (1.13).
The conical interphase boundaries, that obey conditions (1.14), (1.15) or (1.16), can
provide partial (incomplete) stress relief because of D 6¼ 0 while the planar
boundaries parallel to the ZNSPs provide complete stress relief in the heterophase
state. We note that conditions (1.18) are written in the more strict form as compared
to conditions (1.5) and (1.6) from the Metrat’s algorithm. In case of fulfilment of
conditions (1.17), some rearrangement of the DS in the FE phase can take place to
promote further stress relief in the SC sample.

It should be mentioned that conditions (1.14)–(1.18) were first applied [77] for a
description of various interphase boundaries observed in PbZrO3 at the FE phase
transition. A possible way of the evolution of the heterophase structure in PbZrO3

SCs can be concerned with the formation of a large number of nuclei in the form of
wedges or prisms and with the further interaction of these nuclei [77]. An inter-
action between the nuclei of the new phase, especially in a relatively narrow
temperature range (as observed in PbZrO3 SC below the Curie temperature TC),
represents an independent problem in the kinetics of structural phase transitions.
This interaction leads to the formation of the heavily twinned phases, and their
physical properties can be affected by this interaction.

Results of the crystallographic description of the interphase boundaries in
PbZrO3 SCs [77] are represented in the diagram that links volume fractions of the
71° (109°) domain types in the FE rhombohedral phase. The diagram contains a
curve that corresponds to ZNSPs in a restricted volume-fraction range, however
these ZNSPs were not predicted on the basis of the necessary conditions formulated
in papers [30, 31]. Generally speaking, the presence of the ZNSP at the cubic–
rhombohedral phase transition is caused by the commensurability [77] of the
diagonal and off-diagonal components of the spontaneous strains in the polydomain
phase of PbZrO3. This circumstance is to be taken into account when formulating
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the necessary conditions [30, 31] for the existence of ZNSPs in heterophase and
heavily twinned SCs. Hereby it is assumed that these SCs undergo the structural
phase transitions between low-symmetry phases wherein the unit-cell shear strain
may play the important role in the balance of the strains that influence elastic
matching of the phases or domain regions.

The crystallographic concept [77] was applied for description of a system of the
interphase boundaries at the electric-field-induced cubic–rhombohedral phase
transition in plate-like PMN SCs [62]. The role of the mechanical stress field at the
monoclinic–orthorhombic phase transition in Pb2CoWO6 SCs [61] was also studied
on the basis of the concept from work [77]. A correlation between the value of
invariant D from (1.13) and the volume density of elastic energy was first revealed
at the description of the heterophase Pb2CoWO6 SCs [61]. It should be added that
jumps in the unit-cell parameters at the monoclinic–orthorhombic phase transition
in Pb2CoWO6 SC [79] do not promote complete stress relief in the heterophase
system. As a consequence, the conical interphase boundaries in this SC would
appear in the presence of the internal stress. An additional possibility for stress
relief may be concerned with the formation of transition regions that are charac-
terized by variations of the unit-cell parameters of Pb2CoWO6 [61]. A detailed
crystallographic description of the transition region in FE solid solutions is pro-
posed in Sect. 5.3.

1.2.3 Three-Phase States

An important feature of FE solid solutions consists in a coexistence of three phases
at temperatures T near the Curie point TC and at compositions located close to the
MPB at phase diagrams [54, 56, 74, 80, 81]. The three-phase states appear at almost
equal volume densities of free energy of the coexisting phases, and this coexistence
is often affected by an internal stress field that influences the elastic energy in a
heterophase structure and, therefore, the total energy of the system. The three-phase
states can be also observed in SCs where relatively narrow temperature ranges of
stability of some phases are detected. Examples of such states are observed, for
instance in PbZrO3 SCs [70]. In multiferroic (1 − x)BiFeO3 − xPbTiO3 with
compositions close to the MPB, two different structural phase transition scenarios
on cooling from the cubic paraelectric phase are observed, and three FE phases
coexist at variations of T and x [82]. Such a phase coexistence is related to the
(1 − x)BiFeO3 − xPbTiO3 compositions that exhibit giant tetragonality that may be
an additional stimulus to find proper ways for stress relief. An important example of
the three-phase state is observed in (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramic samples
[83], and this ceramic in the poled state is characterized by largest piezoelectric
coefficient d33 among the lead-free (Ba, Ca)(Ti, Zr)O3 compositions. We note that
at room temperature, the d33 value of the poled (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3

ceramic is approximately 3.1 times larger [83] than d33 of the poled BaTiO3 ceramic
[80]).
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Thermodynamic and crystallographic studies on the three-phase states in
perovskite-type solid solutions [74, 84–86] show that the internal mechanical stress
associated with spontaneous strains at the first-order phase transition influences the
temperature and molar-concentration ranges, where two and three phases can
coexist. It is obvious that conditions (1.18) for the ZNSPs are to be examined for
different kinds of interphase boundaries in three-phase samples and by taking into
account volume fractions and orientations of specific domain types (or twins) in the
adjacent FE (antiferroelectric) phases. The problem of stress relief at the three-phase
coexistence [70, 71, 86] has no universal solutions, and at the moment one can
consider examples where complete stress relief at elastic matching of phases is
achieved and three phases coexist. We discuss some examples of the three-phase
states and related heterophase structures in Chap. 4.

1.3 Polydomain/Heterophase Ferroelectrics

In this chapter, we considered various examples of interfaces in SCs of FEs and
related materials. The interfaces, such as domain walls, domain boundaries, inter-
phase boundaries, etc., are one of the factors that actively influence physical
properties of heterogeneous FE and related materials. An influence of heterophase
structures on the piezoelectric effect and electromechanical coupling factors of FE
solid solutions with compositions close to the MPB is of interest in the context of
various piezotechnical applications [4, 10, 80, 83]. Knowledge of the interfaces,
their hierarchy and characteristics promote the successful study of the physical
properties, structural phase transitions, heterophase states and interrelations in the
fundamental triangle ‘composition–structure–properties’.

Among the problems concerning the interfaces in heterogeneous FEs (including
FE solid solutions), of particular interest are

(i) determination of the orientation of the domain and interphase boundaries in
heavily twinned FE SCs,

(ii) study of correlations between the DS and interphase boundary by taking into
account the unit-cell behaviour at the structural phase transition (polymor-
phic, morphotropic or field-induced),

(iii) analysis of conditions for complete (or partial) stress relief at elastic
matching of morphotropic phases in polydomain/heterophase FE SCs,

(iv) analysis of relations between the unit-cell parameters and phase contents in
polydomain/heterophase FE SCs (two- and three-phase states),

(v) application of crystallographic methods for interpretation of experimental
results on the rearrangement of the DS at the phase transitions,

(vi) role of heterophase states and alternative stress-relief ways in FE solid
solutions near the MPB, and
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(vii) specifics of heterophase states in lead-free FE solid solutions near the MPB.

The aforementioned and related problems are considered in Chaps. 2–6 of the
present book.
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Chapter 2
Two-Phase States

Abstract Two-phase states and related heterophase structures are considered in
ferroelectric solid solutions and some ferroelectric single crystals to highlight the
validity of conditions for complete stress relief at elastic matching of the adjacent
phases. The role of some non-90° domain types in achieving complete stress relief
for compositions chosen near the morphotropic phase boundary is discussed in
terms of unit-cell parameters, unit-cell spontaneous strains or unit-cell distortions.
The effect of intermediate monoclinic (or orthorhombic) phases on the phase
coexistence close to the morphotropic phase boundary is described in terms of the
crystallographic method. Diagrams put forward suggest that there are a few possible
scenarios of stress relief in the studied heterophase ferroelectric solid solutions.

Since the 1950s, the perovskite-type FE solid solutions are regarded as important
objects for the study of interconnections in the fundamental triangle ‘composition—
structure—properties’. The FE solid solutions, especially those based on such
well-known components as PbTiO3, BaTiO3 or KNbO3, have been of great interest
due to various electromechanical, FE and other properties [1–3]. In this chapter, we
focus attention on the following perovskite-type solid solutions: Pb(Zr1−xTix)O3

(PZT), PMN–xPT and (1 − x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 (PZN–xPT). The com-
positions are chosen near the MPB that represents a transition region [4] where the
crystal structure changes abruptly and extreme values of the physical properties [5]
are observed when changing the molar concentration x. The PZT, PMN–xPT, PZN–
xPT (SCs and ceramics) and related systems of solid solutions have been inten-
sively studied in the last decades [6–18], and it is caused by many reasons.

First, the phase diagrams (x − T diagrams) of the aforementioned solid solutions
are refined [11, 12, 15–18] after the discovery of the intermediate monoclinic
phases [6, 7] with a FE nature. Before the discovery of the intermediate monoclinic
phases, the distinguishing feature of the x − T diagrams of PZT [5, 6], PMN–xPT
[13] and PZN–xPT [14] near the MPB consisted in the neighbourhood of vast
regions of thermodynamic stability of the paraelectric cubic (Pm3m) phase and the
FE tetragonal (P4mm) and rhombohedral (R3m) phases (Fig. 2.1a). The phase
diagrams refined for these systems in the 2000s comprise the relatively narrow
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regions of stability of the intermediate phase(s) close to the MPB [7, 11, 12, 15, 16,
19], and symmetry of the intermediate phase is either monoclinic or orthorhombic.
Based on numerous experimental and theoretical results on PZT, PMN–xPT and
PZN–xPT near the MPB [7, 8, 11, 12, 15, 16], we schematically show the region of
stability of the intermediate phase(s) as a shaded area (Fig. 2.1b).

Second, the intermediate phases observed near the MPB often coexist with the
adjacent FE phase [8, 11, 15–22] and influence the physical properties of solid
solutions. The intricate DS [17, 24, 25] and coexistence of the FE phases from
different symmetry classes [17, 19, 23, 24] make the aforementioned solid solutions
attractive for the study of conditions for stress relief in the wide x and T ranges and
at the electric-field-induced phase transition. In this context, we mention the theory
of the adaptive FE phase [26]. This theory was put forward to predict the
microdomain-averaged crystal lattice parameters of the structurally inhomogeneous
state in PMN–xPT and PZN–xPT SCs. According to Jin et al. [26], the adaptive
phase is the particular (miniaturized) case of conventional martensite with
stress-accommodating domains, which can only be expected in situations where the
domain-wall energy is abnormally small.

Third, domain-engineered PMN–xPT and PZN–xPT SCs poled along the fixed
crystallographic directions exhibit extremely high piezoelectric activity [3, 25, 27,
28] that is important for sensor, actuator, energy-harvesting and other piezotech-
nical applications [29]. The considerable dependence of the physical properties on
the orientation of the main crystallographic axes and the effect of the relaxor
component (PMN or PZN) on the physical properties of the solid-solution system
[3, 25, 28] are of independent interest.

Fourth, the exact location of the MPB is not yet well defined in the aforemen-
tioned and other perovskite-type solid solutions. Problems of the heterophase states
close to the MPB and important results on this subject [10, 18, 23, 30–36] are
discussed in the last decades.

The above-formulated reasons give rise to questions on elastic matching of the
morphotropic phases, their domain contents, stability of the two-phase states and

Fig. 2.1 Schematic drawing of the fragment of the x − T diagram of the solid solutions of PZT in
the vicinity of the MPB before (a) and after discovery of the intermediate phases (b). C, cubic
phase, R, rhombohedral phase and T, tetragonal phase. The MPB was regarded as a vertical line
(a) between the regions of stability of the rhombohedral and tetragonal phases with the FE nature
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stress-relief conditions in the two-phase systems. To answer these and other
questions, in this chapter, we consider important examples of the two-phase states
and discuss stress-relief ways in the presence of complex DSs in the adjacent FE
phases.

2.1 Elastic Matching of Morphotropic Phases in
Pb(Zr1−xTix)O3

2.1.1 Tetragonal–Rhombohedral Phase Coexistence
and Crystallographic Interpretation

In Sect. 2.1.1, we discuss features of the phase coexistence of the FE tetragonal
(P4mm) and rhombohedral (R3m) phases near the MPB in PZT [1, 5]. It is assumed
that the stability regions of these phases are separated by the near vertical MPB [5]
(like that shown schematically in Fig. 2.1a), and no intermediate phase is observed.
Results on the coexistence of the tetragonal and rhombohedral phases in PZT or
related solid solutions are considered in numerous studies [4, 30–37] that were
carried out long before the discovery of the intermediate monoclinic phases. An
example of the detailed study of DSs in the rhombohedral phase of PZT SCs is
given in work [39].

As follows from analysis of the perovskite unit-cell parameters of various PZT
and related materials [30, 35, 36] near the MPB, these parameters at room tem-
perature obey the condition

aT\aR\cT; ð2:1Þ

where subscripts refer to the coexisting tetragonal (T) and rhombohedral
(R) phases. Inequality (2.1) has the form similar to that for the unit-cell parameters
of the tetragonal and cubic phases in FE SCs of BaTiO3, PbTiO3, etc. [1, 34]. The
cubic–tetragonal interfaces can be ZNSPs if the tetragonal phase is split into the 90°
domains of two types (see, for instance, Table 1.1). The validity of condition (2.1)
enables us to consider elastic matching of the single-domain rhombohedral and
polydomain tetragonal phases of PZT. In this case, the minimum number of domain
types in a heterophase SC is three.

In the course of the crystallographic description of the phase coexistence, we
assume that the rhombohedral phase is represented by one domain type (1, 2, 3 or 4
in Fig. 2.2a), and the tetragonal phase is characterized by the regular 90° DS with
the domain orientations shown in Fig. 2.2b, c. The 90° domains are separated,
according to Fousek and Janovec [38], by the unstrained domain walls that are
parallel to the {110} planes (Fig. 2.2b, c) of the perovskite unit cell. A formation of
the 180° DS in the coexisting phases does not influence their elastic matching, and
therefore, we do not consider the 180° domains or alternative antiparallel domain
orientations to those shown in Fig. 2.2.

2 Two-Phase States 27



Distortion matrices of the coexisting phases in PZT are written with respect to
the rectangular coordinate axes (OXj) shown in Fig. 2.2. The distortion matrices of
the domains 1, 2, 3 and 4 in the rhombohedral phase (see the domain orientations in
Fig. 2.2a) are

Mð1Þ
ij

���
��� ¼

la �l l

�l la �l

l �l la

0
B@

1
CA; Mð2Þ

ij

���
��� ¼

la l �l

l la �l

�l �l la

0
B@

1
CA;

Mð3Þ
ij

���
��� ¼

la �l �l

�l la l

�l l la

0
B@

1
CA; and Mð4Þ

ij

���
��� ¼

la l l

l la l

l l la

0
B@

1
CA

ð2:2Þ

respectively. The distortion matrices of the polydomain tetragonal phase are written
in the following form:

Nð5�6Þ
ij

���
��� ¼ nT

ea 0 0

0 ea 0

0 0 ea

0
B@

1
CA

þð1� nTÞ
cosuT � sinuT 0

sinuT cosuT 0

0 0 1

0
B@

1
CA

ea 0 0

0 ea 0

0 0 ea

0
B@

1
CA

ð2:3Þ

(domain types 5 and 6, see Fig. 2.2b) and

Fig. 2.2 Orientations of spontaneous polarization vectors in non-180° domains of the rhombo-
hedral (a) and tetragonal (b and c) phases of PZT. The coordinate axes OXj are parallel to the
perovskite unit-cell axes in the cubic phase. nT and 1 − nT are volume fractions of the 90° domain
types (twin components) in the tetragonal phase. The domains in the tetragonal phase are separated
by the 90° walls (shaded areas, b and c)
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Nð5�7Þ
ij
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(domain types 5 and 7, see Fig. 2.2c). Equations (2.2)–(2.4) are written in terms of
the perovskite unit-cell distortions la = aR cosxR/aC, l = aR sinxR/aC, ea = aT/aC
and ec = cT/aC. The angle uT = arccos [2eaec/(ea

2 + ec
2)] in (2.3) and (2.4) describes

a rotation of the crystallographic axes of the adjacent 90° domains [40] in the
tetragonal phase. The unit-cell distortions depend on the unit-cell parameters of the
rhombohedral (aR and xR), tetragonal (aT and cT) and cubic (aC) phases. The
unit-cell parameter aC of the unstrained paraelectric cubic phase is assumed to be
extrapolated to room temperature at which the coexistence of the morphotropic
phases in PZT is studied. The value of aC does not influence the results on the
ZNSPs that are described below.

To consider possibilities of complete stress relief in the heterophase system, we
examine the validity of conditions (1.5) and (1.6) using the distortion matrices from
(2.2) to (2.4) and the experimental unit-cell parameters of PZT + 2% Nd ceramics
[35] near the MPB. Wersing et al. [35] presented data on these ceramics prepared
by two methods, the mixed oxide method and the method of spray drying of salt
solutions. As seen from Table 2.1, the optimal volume fractions noptT of the 90°
domains in the tetragonal phase (see Fig. 2.2b, c) remain almost constant with the
change in the molar concentration x. The similar constancy (noptT � 0:3 or 0.7) takes
place if we use the room-temperature unit-cell parameters [35] of PZT compositions
prepared by spray drying of salt solutions. The interphase boundary separating the
polydomain tetragonal and single-domain rhombohedral phases is oriented close to

Table 2.1 Optimal volume fractionsa noptT that correspond to ZNSPs at elastic matching of the
tetragonal (P4mm) and rhombohedral (R3m) phases of PZT + 2% Nd ceramics

x noptT (domain 1 or 3 in the rhombohedral
phase)

noptT (domain 2 or 4 in the rhombohedral
phase)

0.42
0.44
0.46
0.48

0.293 or 0.704
0.292 or 0.705
0.291 or 0.706
0.286 or 0.711

0.299 or 0.703
0.298 or 0.704
0.298 or 0.705
0.293 or 0.710

aValues of noptT were calculated on assumption that the tetragonal phase is split into the 90°
domains of types 5 and 6 (Fig. 2.2b). The noptT values listed in the second column are also attained
at elastic matching of the tetragonal phase (domains 5 and 7, Fig. 2.2c) and the rhombohedral
phase (domain 1 or 4, Fig. 2.2a). The noptT values listed in the third column are also attained at
elastic matching of the tetragonal phase (domains 5 and 7, Fig. 2.2c) and the rhombohedral phase
(domain 2 or 3, Fig. 2.2a)
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the (010) plane of the perovskite unit cell. This orientation determined using (1.8) is
accounted for by fulfilment of the necessary conditions [41] N11 = M11 and
N33 = M33, where the matrix elements Nii are taken from (2.3) or (2.4), and the
matrix elements Mii are taken from (2.2). These conditions are simultaneously valid
with accuracy to 5% at the optimal volume fraction noptT in the tetragonal phase.

The results on the phase coexistence are in agreement with experimental data on
PZT near the MPB. The widespread of the 90° domains in comparison to the 71°
(109°) domains [7, 37] is concerned with the leading role of the 90° DS and the
anisotropy of the unit-cell distortions ea and ec in stress relief in the heterophase
system. A model of the MPB [37] is based on the experimental study of the DS in
grains of ceramic PZT. According to the model put forward in work [37], the
spontaneous polarization vectors of the domains in the morphotropic phases are
oriented along the following unit-cell directions: [001] ! [111] ! [010]
[111] ! [001] ! … This sequence suggests that the 90° domains of the tetrag-
onal phase coexist with the single-domain rhombohedral phase, and even an
internal stress field caused by the interaction between the ceramic grains of PZT
would not considerably affect elastic matching of the morphotropic phases.
Moreover, the interphase boundaries in the model put forward by Lucuţa et al. [37]
are parallel to the {100} planes of the perovskite unit cell, but reasons for these
orientations were not discussed from the energetic viewpoint.

It should be added that influence of the internal stress field on the tetragonal–
rhombohedral phase coexistence in the PZT grain was studied within the frame-
work of the thermodynamic method [41]. As follows from estimations in work [41],
the width of the molar-concentration x range, in which the morphotropic phases
may coexist at room temperature, varies from 0 (at complete stress relief) to about
0.074 (no stress relief is achieved). The latter value is comparable to that known for
PZT ceramics [7, 34] wherein the considerable internal stress field is present in
compositions around the MPB.

2.1.2 Elastic Matching and Stress Relief in the Presence
of the Intermediate Monoclinic Phase

Experimental results [7, 8] show that the intermediate FE monoclinic phase in PZT
(MA phase in terms of work [42]) exists near the MPB (see the shaded area in
Fig. 2.1b). The symmetry group of the MA phase Cm is a subgroup of both the
tetragonal (P4mm) and rhombohedral (R3m) groups. High-resolution synchrotron
X-ray powder diffraction measurements [7] on highly homogeneous PZT samples
suggest that the MA phase is stable over certain ranges of x and T, and the phase
coexistence is observed in various compositions (for example, at x = 0.45, 0.46 and
0.51) in the wide temperature range. The single-domain MA phase is characterized
by the spontaneous polarization vector Ps(Px; Py; Pz) with Px = Py < Pz. This vector
is confined to the mirror plane ð110Þ of the perovskite unit cell, and the spontaneous
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polarization vectors of the adjacent phases are assumed to be parallel to the unit-cell
directions [001] (tetragonal phase) and [111] (rhombohedral phase) [42]. In
Sect. 2.1.2, we analyse elastic matching of the phases in PZT to indicate the role of
the intermediate monoclinic phase in the heterophase states and stress relief. Our
analysis is based on experimental values of the unit-cell parameters [7] of the
phases coexisting in PZT.

In the course of the crystallographic description of the heterophase states, we
consider a two-phase SC (or a ceramic grain) that undergoes one of the following
first-order phase transitions: tetragonal–rhombohedral (P4mm − R3m), tetragonal–
MA (P4mm − Cm) or rhombohedral–MA (R3m − Cm). It is assumed that the
tetragonal phase is split into the 90° domains of types 5 and 7 (Fig. 2.2c). The
rhombohedral phase is single-domain (see type 4 in Fig. 2.2a). The non-180°
domains in the MA phase are characterized by the unit-cell vectors (aM, bM, cM)
with approximate orientations ([110], ½110�, [001]) and ([011], ½011�, [100]) and
volume fractions nM and 1 − nM, respectively. The aforementioned orientations of
the unit-cell vectors are given in the perovskite unit-cell axes.

The distortion matrices of the tetragonal and rhombohedral phases are Nð5�7Þ
ij

���
���

from (2.4) and Mð4Þ
ij

���
��� from (2.2), respectively. The distortion matrix of the MA

phase is written in terms of the unit-cell distortions ηa, ηb, … by analogy with (2.4):

NðMAÞ
ij
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0
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In (2.5), uM ¼ arccos ½2gagc=ðg2a þ g2cÞ� is the angle of the rotation of the crystal-
lographic axes of the adjacent domains. This angle is introduced by analogy with

uT from (2.4). Taking Nð5�7Þ
ij

���
��� from (2.4), Mð4Þ

ij

���
��� from (2.2) and NðMAÞ

ij

���
��� from

(2.5) in pairs, we examine the validity of conditions (1.5) and (1.6) for complete
stress relief in the two-phase states of PZT.

Results shown in Table 2.2 and Fig. 2.3 suggest that the temperature and
molar-concentration dependences of the unit-cell parameters of PZT [8] are
favourable for the formation of the ZNSP (see points 1–5 and 7 in Fig. 2.3) or
slightly strained interphase boundaries (see points 6 and 8 in Fig. 2.3). The strained
interphase boundaries can be in the form of planar or conic [43] surfaces with a
sufficiently small curvature. According to formulae from (1.8), the orientations of
the ZNSPs are approximated [43] by the Miller indices {0kl} in the perovskite
unit-cell axes, where the k/l ratio depends on T, x and volume fractions of the
non-180° domains in the coexisting phases.
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Table 2.2 Features of elastic matching of ferroelectric phases in Pb(Zr1−x–Tix)O3 solid solutions
(reprinted from paper by Tolpolov and Turik [43], with permission from IOP Publishing

Coexisting
phases

x T, K Optimal volume fractions
corresponding to elastic
matching along ZNSPs

Conditions for slightly
strained interphase
boundaries (if no
ZNSPs are determined)

Points
in
Fig. 2.3

P4mm and
R3m

0.45 550 nT;opt ¼ 0:691 or
n0T;opt ¼ 0:309

– 1

500 nT;opt ¼ 0:698 or
n0T;opt ¼ 0:302

– 2

R3m and
Cm

0.45–
0.46

300 nM;opt ¼ 0:700 or
n0M;opt ¼ 0:300

– 3

20 nM;opt ¼ 0:724 or
n0M;opt ¼ 0:276

– 4

P4mm and
Cm

0.46 400 nT;opt ¼ 1 and nM;opt ¼ 1 or
n0T;opt ¼ 0 and n0M;opt ¼ 0

– 5

0.47–
0.48

300 – nT ! 1 and nM ! 1 or
n0T ! 0 and n0M ! 0

6

0.51–
0.52

300 nT;opt ¼ 1 and nM;opt ¼ 1 or
n0T;opt ¼ 0 and n0M;opt ¼ 0

– 7

20 – nT ! 1 and nM ! 1 or
n0T ! 0 and n0M ! 0

8

Fig. 2.3 Fragment of the x − T diagram of PZT around the MPB. I, II, III, IV and V denote the
Pm3m, P4mm, Cm, R3m and R3c phases, respectively. The hatched area represents the region of
the coexistence of the P4mm and Cm phases. Points 1–8 correspond to different variants of elastic
matching of the adjacent single-domain or polydomain phases in accordance with results from
Table 2.2 (reprinted from paper by Topolov and Turik [43], with permission from IOP Publishing)
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The constancy of the optimal volume fractions nT,opt and nM,opt (or n0T;opt and
n0M;opt, respectively) and complete stress relief at the interphase boundaries, sepa-
rating the single-domain rhombohedral phase and polydomain tetragonal or MA

phase, take place over a narrow molar-concentration range (Dx � 0.01) and a very
wide temperature range (DT > 500 K, see Table 2.2). Complete stress relief is
attained due to the non-180° domains in the tetragonal and MA phases. It should be
noted that these polydomain phases are characterized by similar anisotropies of the
spontaneous strains [43]. Splitting the rhombohedral phase into the 71° (109°)
domains does not lead to considerable changes in Table 2.2: the optimal volume
fractions nT,opt, nM,opt, n0T;opt and n0M;opt would deviate by less than 1%. The values
of nT,opt and n0T;opt (Table 2.2), which correspond to the ZNSPs at rhombohedral–

tetragonal interphase boundaries, are almost equal to the noptT values from Table 2.1.
We mention that the noptT values listed in Table 2.1 were calculated using the
unit-cell parameters [35] measured on the PZT ceramic samples long before the
discovery of the intermediate monoclinic phases in these solid solutions.

As follows from work [44], the virtual constancy of the optimal volume fractions
of the non-180° domains (Table 2.2) is concerned with a relation between the
unit-cell parameters. For example, the angle of the monoclinic distortion b of the
perovskite unit cell obeys the inequality b − 90° < 0.5°, and spontaneous strains of
the perovskite unit cell in the tetragonal and MA phases obey the condition
ðns11ÞMA � ðns22ÞMA � ðnsrrÞT, where r = 1 and 2, and subscripts MA and T refer to
the MA and tetragonal phases, respectively. We see that the single-domain MA and
tetragonal phases in PZT can be elastically matched along the ZNSP or slightly
strained interphase boundary (see points 5–8 in Fig. 2.3) in the case when the x and
T values correspond to the new MPB [7] separating the stability regions of the
tetragonal and MA phases. The orientation of the interphase boundary (ZNSP) at the
coexistence of the single-domain MA and tetragonal phases is close to {001} of the
perovskite unit cell [44].

The linear segment, that connects points 5 and 7 in Fig. 2.3 and corresponds to
the ZNSPs, is parallel to the tetragonal–MA MPB [44]. We note that such a cor-
relation has no analogues among the FE solid solutions near the MPB. The mutual
location of segment 5–7 (Fig. 2.3) and the tetragonal–MA boundary in the
x − T diagram of PZT [8] means that the interphase boundaries between the
single-domain phases are slightly strained near this segment. In this case, the
internal mechanical stress would be insufficient to give rise to splitting one of the
phases into the non-180° domains. The results shown in Table 2.2 agree with
assumptions [8] on the active role of the non-180° domains in stress relief in
heterophase PZT. Elastic matching of the single-domain (untwined) phases along
the ZNSPs rarely occurs in FE and related SCs (see, for instance, work [45, 46])
and, most likely, is not realized in PZT ceramics because of the internal mechanical
stress field, composition fluctuations, etc.

It should be noted for comparison, that, according to the synchrotron X-ray
diffraction data [22], Pb(Zr0.525Ti0.475)O3 ceramic is characterized by nearly pure
monoclinic phase composition [47] with Cm symmetry at room temperature, and no
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essential phase coexistence is detected. We mention that this composition is located
just under point 7 in Fig. 2.3, and therefore, possibilities for the phase coexistence
in this region may be very restricted. Singh et al. [47] studied important features of
the electromechanical properties of PZT ceramics (x = 0.475, 0.480, 0.485, etc.) in
a wide temperature range. At room temperature, these compositions are located
under segment 6–7 in Fig. 2.3. The higher piezoelectric response of these ceramic
compositions is accounted for by softening of elastic moduli on approaching the
tetragonal–monoclinic phase transition [47]. The strong correlation between
phase-transition structural changes and corresponding changes in the electrome-
chanical properties is concerned with the elastic instability of the PZT ceramics
[47]. In our opinion, this elastic instability can be concerned with the features of
elastic matching of the tetragonal and MA phases in the near single-domain state
(see Table 2.2, points 6 and 7).

The results discussed in Sect. 2.1 illustrate different ways for stress relief at
elastic matching of the FE phases in PZT near the MPB. The intermediate MA

phase plays the important role in stress relief and can be really regarded as a
bridging phase (as termed in work [8]). The results presented in Table 2.2 were
obtained on assumption [43, 44] that the phase coexistence takes place in bulk SCs
or separate stress-free grains. It is clear that conditions for stress relief in the
ceramic grains surrounded by an aggregate of the similar grains differ from the
conditions considered above. Nevertheless, the features of the behaviour of the
unit-cell parameters, the spontaneous strains and distortions in PZT are the most
significant factor in effective stress relief in heterophase structures.

2.2 Phase Coexistence in (1 − x)Pb(Mg1/3Nb2/3)O3–

xPbTiO3 Near the Morphotropic Phase Boundary

2.2.1 Phase Coexistence Without the Monoclinic Phase

SCs of the PMN–xPT solid solutions are expected to synergetically combine the
properties of both relaxor PMN and regular FE PbTiO3. In domain-engineered
relaxor-FE PMN–xPT SCs with compositions close to the MPB, the extremely
large piezoelectric coefficients (e.g. the longitudinal piezoelectric coefficient
d33 > 2000 pC/N at x = 0.28, 0.30 [48] and 0.33 [49]) and the very high elec-
tromechanical coupling factor (k33 � 90% at x = 0.28 [48] and 0.33 [49]) are
achieved at room temperature. In the general case, PMN–xPT and other
relaxor-based FE SCs crystals are characterized by complex DS [25, 50], banded
and crossing domain patterns [51, 52], etc. The 90° and 180° domains are observed
in the tetragonal phase, the 71°, 109° and 180° domains are present in the rhom-
bohedral phase of PMN–xPT, etc. The DS and heterophase states in PMN–xPT SCs
near the MPB [53] considerably depend on the molar concentration x, temperature
T, electric field E and other factors.
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For example, the DS of PMN–0.20PT SCs is characterized by rhombohedral
symmetry (R3m) of the perovskite unit cell and by weak birefringence at room
temperature. PMN–0.50PT SCs are characterized by tetragonal symmetry (P4mm)
of the perovskite unit cell and by strong birefringence. PMN–0.35PT SCs with the
composition close to the MPB exhibit heterophase structures (R3m + P4mm) and
complex domain patterns (see examples in Fig. 2.4). As follows from the experi-
mental study, the DSs in PMN–0.35PT SCs are composed of regions of the
rhombohedral and tetragonal phases intimately mixed with multiple orientation
states [53]. The important feature of MPB behaviour of PMN–xPT SCs is the fact
that the sequence and temperatures of the phase transitions considerably depend on
the local DS and molar concentration x [24, 53].

The crystallographic interpretation of the various non-180° DSs and heterophase
structures observed in PMN–xPT SCs is carried out by using experimental data [24,
54–56] on the unit-cell parameters in a wide range of T and x. To analyse the
coexistence of the cubic paraelectric and tetragonal FE phases, we assume that the
tetragonal phase is split into the 90° domains of two types (Fig. 2.2b, c), and the
corresponding distortion matrices of the polydomain phase are given by (2.3) and
(2.4). Distortions of the unstrained cubic phase are described by the identity 3 � 3
matrix. The validity of conditions (1.5) and (1.6) suggests that the cubic–tetragonal
interphase boundaries are ZNSPs as the optimal volume fractions of the 90°
domains nT,opt and 1 − nT,opt are attained in the tetragonal phase [53]. The orien-
tation of these interphase boundaries is approximated by the Miller indices {h0l}
[53] in the perovskite unit-cell axes. The values of the h/l ratio are approximately
equal to 7/8, 4/5 and 1/1 at molar concentrations x = 0.40, 0.35 and 0.30, respec-
tively. The corresponding ratios of the optimal volume fractions of the 90° domains

Fig. 2.4 Morphotropic DS and phase transition in a (001)cub PMN–0.35PT platelet (thickness
3.4 � 10−5 m). a Coexistence of the tetragonal (T) and rhombohedral (R) phases at T = 25 °C.
b Rhombohedral–tetragonal phase transition at 70 °C. The tetragonal phase grows at the expense
of the rhombohedral phase (reprinted from paper by Ye and Topolov [53], with permission from
Taylor & Francis)
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nT,opt/(1 − nT,opt) undergo changes within the relatively narrow range. According to
data [53], nT,opt = 0.667 or 0.333 at x = 0.30 and nT,opt = 0.639 or 0.361 at
x = 0.40, and nT,opt/(1 − nT,opt) � 2 at 0.30 � x � 0.40. We add for comparison
that the interphase boundary in PbTiO3 SCs (x = 1) at the cubic–tetragonal phase
transition also obeys the conditions for ZNSP’s (see Table 1.1).

The cubic–rhombohedral interphase boundary in PMN–xPT SCs can be descri-
bed by means of the domain state–interface diagrams [53, 57]. It is assumed that
the rhombohedral phase is split into the 71° (109°) domains with the orientations
shown in Fig. 2.5. The volume fractions of these domains are expressed in terms of
the parameters xR and yR as follows: o1 = (1 − xR)(1 − yR), o2 = (1 − xR)yR,
o3 = xR(1 − yR) and o4 = xRyR. The distortion matrix of the polydomain rhombo-
hedral phase with the orientation of the non-180° domains shown in Fig. 2.5 is
written as

Nij

�� �� ¼
la lð2yR � 1Þ lð2xR � 1Þð2yR � 1Þ
lð2yR � 1Þ la lð2xR � 1Þ
lð2xR � 1Þð2yR � 1Þ lð2xR � 1Þ la

0
@

1
A; ð2:6Þ

where la = (aR cosxR)/aC and l = (aR sinxR)/aC are the unit-cell distortions, aR
and xR are the linear unit-cell parameter and shear angle of the perovskite unit cell
in the rhombohedral phase and aC is the unit-cell parameter in the cubic phase. The
domain state–interface diagrams shown in Fig. 2.6 were calculated by taking into
account (1.14)–(1.18) and using experimental values of the unit-cell parameters of
PMN–xPT [24]. All the curves on the diagrams shown in Fig. 2.6 are situated
symmetrically with respect to lines xR = 0.5 and yR = 0.5. Such an arrangement is
concerned with structure of the distortion matrix from (2.6). A remarkable feature
of the diagrams consists in the fact that their major areas correspond to the stressed
conical interphase boundaries (see, for instance, regions II and III in Fig. 2.6a, as

Fig. 2.5 Schematic arrangement of 71° (109°) domains (mechanical twins) in the polydomain
rhombohedral phase of PMN–xPT SCs. Directions of the spontaneous polarization vectors in the
domains 1–4 (see Fig. 2.2a) are shown by arrows. The domains are separated by the domain walls
(see shaded areas). Parameters xR and yR characterize the volume fractions of domains (twins) 3–4
and 2–4, respectively. The coordinate axes OXj are parallel to the perovskite unit-cell axes in the
cubic phase
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well as regions I and II in Fig. 2.6b). Conditions for the ZNSP hold [53] for lines
xR = 0.5 and yR = 0.5, except for the P point (i.e. at xR = yR = 0.5) in Fig. 2.6b.

It is important to compare the diagrams shown in Fig. 2.6 to the diagram cal-
culated for PMN SCs at the electric-field-induced transition (Fig. 2.7a). The ori-
entations of the domains in the rhombohedral phase are shown in Fig. 2.7b. An
analogy between the diagrams calculated for x = 0 (Fig. 2.7a) and x = 0.20
(Fig. 2.6a) is concerned [53] with the similar ratios of the unit-cell distortions la/l
for these compositions and with the considerable remoteness of the compositions
with x � 0.20 from the MPB. A composition located in the phase diagram closer
to the MPB (for instance, x = 0.25) considerably influences the la/l ratio and hence
the configuration and position of the curves on the diagram (see Fig. 2.6b). This
behaviour can be interpreted in terms of the local structure and related properties of
the PMN–xPT system [54, 55] that undergoes changes from a relaxor-FE regime
with lower Ti4+-concentration (x ! 0) to a long-range-ordered normal FE state.

Our analysis of conditions for complete stress relief [53] in heterophase struc-
tures suggests that the interphase boundaries separating the rhombohedral and
tetragonal phases in PMN–xPT SCs around the MPB are in general stressed and
have either conical or more complicated shapes. For example, no ZNSPs are present
at elastic matching of these phases with various non-180° DSs in PMN–xPT SCs of
MPB composition (x = 0.35) at room temperature, Examples of the DSs in the
coexisting phases are schematically shown in Figs. 2.2b, c and 2.5. One of the
possible reasons [53] for this stressed state is associated with a difference in the
ratios of unit-cell distortions

DT�R ¼ ðla=eaÞ�ðla=ecÞ ¼ aR cosxR a�1
T � c�1

T

� �
; ð2:7Þ

Fig. 2.6 Domain state–interface diagrams calculated for the cubic–rhombohedral
(Pm3m − R3m) phase transition in PMN–xPT SCs at x = 0.20 (a) and x = 0.25 (b). The
rhombohedral phase is assumed to be split into domains as shown in Fig. 2.5. Regions I, II and III
correspond to real cones that obey conditions (1.16), (1.14) and (1.15), respectively. Region IV
corresponds to the imaginary cone apex, see conditions (1.17). In diagram (b) region IV is
represented by the point P (reprinted from paper by Ye and Topolov [53], with permission from
Taylor & Francis)
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Fig. 2.7 Domain state–interface diagram (a) calculated for the cubic–rhombohedral
(Pm3m − R3m) phase transition induced by the electric field E || [001] in PMN SCs.
Orientations of vectors of the induced polarization Pind,j in domains of the rhombohedral phase
are shown in schematic (b). The coordinate axes OXj are parallel to the perovskite unit-cell axes in
the cubic phase. Volume fractions oj of the domains with Pind,j are expressed in terms of the
parameters xr and yr as follows: o0 = (1 − xr)(1 − yr), o1 = xr(1 − yr), o2 = (1 − xr)yr and
o3 = xryr. Regions II and III correspond to real cones that obey conditions (1.14) and (1.15),
respectively. Region IV corresponds to the imaginary cone apex that obey conditions (1.17)
(reprinted from paper by Topolov et al. [57], with permission from IOP Publishing)
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where ea, ec and la are the linear unit-cell distortions of the coexisting phases [see
(2.3), (2.4) and (2.6)], aT, cT, aR and xR are the unit-cell parameters of the phases.
As follows from the unit-cell behaviour [54, 55] at x = 0.35, the parameter from
(2.7) DT−R < 1%, and the corresponding unit-cell distortions of PMN–xPT do not
satisfy the necessary conditions [41] for the ZNSPs to exist.

Contrary to the compositions of PMN–xPT SCs, the unit-cell parameters of the
tetragonal and rhombohedral phases in PZT solid solutions provide complete stress
relief at room temperature within a wide range of x (see Sect. 2.1). Our calculations
performed using the room-temperature unit-cell parameters of PZT compositions
near the MPB [33, 35] show that the inequality DT−R > 2% is valid, where DT−R is
the parameter from (2.7). In our opinion, the discrepancy between the DT−R values
[53] calculated for the morphotropic compositions of PMN–xPT and PZT lies in the
difference of values of the perovskite unit-cell shear angle xR that considerably
influences the shear distortion of the rhombohedral phase [see (2.6)] and, therefore,
elastic matching of the phases around the MPB.

2.2.2 Phase Coexistence in the Presence of the Intermediate
Monoclinic Phases

Recent studies on the PMN–xPT system led to a series of important experimental
results on the physical nature and crystallographic features of the intermediate
phases near the MPB. The intermediate monoclinic phase in the MPB region at
room temperature was first reported by Singh and Pandey [58]. Based on X-ray
diffraction data for unpoled PMN–0.34PT ceramic samples, Singh and Pandey
ascertained [58] that this intermediate phase is of the MC type (in terms of the
theoretical description by Vanderbilt and Cohen [42]) with space group Pm. Kiat
et al. independently reported [59] the existence of the MC-type phase in PMN–xPT
at low temperatures on account of a phase transition from a room-temperature FE
tetragonal phase.

The further confirmation of the experimental results [58, 59] was given in work
[15] where synchrotron X-ray powder diffraction measurements were performed on
the unpoled PMN–xPT ceramic samples with 0.30 � x � 0.39. Noheda et al. [15]
studied temperature and molar-concentration dependences of the unit-cell param-
eters in the MPB region as well as two-phase mixtures, e.g. rhombohedral + MC or
MC + tetragonal phases. Based on the numerous structural data, Noheda et al. [15]
proposed the new phase diagram for the PMN–xPT system and showed the fol-
lowing stability regions of the MC phase around the MPB: 0.31 � x � 0.37 at
temperature T = 20 K and 0.31 � x � 0.35 at T = 300 K. The coexistence of the
MC and tetragonal phases was then confirmed [60] by rigorous Rietveld analysis of
the room-temperature X-ray diffraction data. Singh and Pandey [60] showed that
some of the PMN–xPT compositions (0.27 � x � 0.30), believed to be rhom-
bohedral in paper [15], are indeed characterized by monoclinic symmetry: the
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corresponding morphotropic phase with space group Cm was designated as the MB-
type phase following notations from work [42]. It should be mentioned that the
common feature of the intermediate MB and MC phases consists in the presence of
the spontaneous polarization vector confined to the (010) plane of the perovskite
unit cell.

The existence of the MB phase in highly homogeneous and stoichiometric
PMN–0.29PT samples was confirmed [61] in the powder neutron diffraction study.
On the basis of the Rietveld analysis and dielectric measurements on the ceramic
samples at room temperature, four composition ranges were determined [60] for the
following dominant phases: rhombohedral (R3m) at 0 � x � 0.26, MB (Cm) at
0.27 � x � 0.30, MC (Pm) at 0.31 � x � 0.34 and tetragonal (P4mm) at
0.35 � x � 1. The presence of the two FE monoclinic phases in between the
well-studied rhombohedral and tetragonal phases of PMN–xPT is consistent with
the theoretical results from work [42]. The coexistence of the MB and MC phases in
ceramic PMN–xPT (0.26 � x � 0.30) is observed in experimental work [62].
According to data [62], the MB phase (which follows the wide stability range of the
rhombohedral phase) is also observed in the molar-concentration range 0.23 �
x � 0.25 at room temperature.

Various heterophase structures [17, 23, 63] and DSs [64–69] are observed in
PMN–xPT SCs within certain ranges of temperatures T, molar concentrations x and
electric field E. The DSs and heterophase structures in PMN–xPT SCs depend on
the orientation of the crystal faces. In the range 0.30 � x � 0.39, the first-order
phase transitions often bring about the formation of different heterophase states, for
instance, the cubic–tetragonal [53, 70], cubic–rhombohedral [24, 53, 70], tetrago-
nal–rhombohedral [24, 53, 70], MB–MC [60] and MC–tetragonal phases [60]. The
coexistence of the tetragonal and MB phases was observed in unpoled PMN–xPT
ceramic samples in a very wide temperature range (*102 K) [20].

The physical properties of the monoclinic phases in PMN–xPT, PZN–xPT, PZT,
etc., are concerned with the consequence of adaptive phases [26] formed by stress-
and depolarization electric-field-accommodating microdomains in the tetragonal or
rhombohedral phase. The example of the phase coexistence in PMN–0.37PT over
the wide temperature range (0 < T < 200 K) suggests that the unit-cell parameters
in the tetragonal and MC phases are interrelated. Wang proposed three intrinsic
relationships of the unit-cell parameters [71] between the MC and tetragonal phases
in PMN–xPT and PZN–xPT near the MPB. Good agreement between the theo-
retical and experimental results on the unit-cell parameters is attained in wide
ranges of T, x and E. The largest difference between the parameters takes place
around the tetragonal–MC phase boundary [71], where the largest error in mea-
surements of the unit-cell parameters might arise around this boundary.

The phase coexistence in PMN–xPT and related solid solutions, according to Jin
et al. [26], may reflect the proximity of the composition to the MPB and the small
fluctuations in PT content within the SC sample. Experimental studies of the PMN–
xPT and PZN–xPT solid solutions and their unit-cell behaviour near the MPB
enabled one to conclude [26] that the monoclinic phases are adaptive phases with a
mixed nanoscale structure and the unit-cell parameters in the monoclinic phases can
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be predicted within the framework of the theory of the adaptive phase [72].
Bhattacharyya et al. [73] carried out the direct observation of tetragonal 90° nan-
odomains (nanotwins) within the MC phase of PMN–0.35PT SCs by means of the
high-resolution transmission electron microscopy. Experimental results [73] con-
firm concepts [74] on the adaptive phase that is characterized as a structurally
heterogeneous state with a high domain wall density. In this state, the stress
accommodation is achieved by a conformal miniaturization of twinning to near
atomic scales in PMN–xPT and PZN–xPT.

The hierarchical DS in monoclinic PMN–xPT SCs near the MPB was studied
[75] by means of the polarized light microscopy, transmission electron microscopy
and convergent-beam electron diffraction. The monophase (MC) region (from the
optical viewpoint) is represented by a number of lamellar 90° nanodomains (width
of about 10 nm) with the projection traces of the walls directed approximately
along [110] and ½110� of the perovskite unit cell. These nanodomains are assembled
into a submicrodomain with a width of 50–200 nm. Microdomains observed in
work [75] exhibit the monoclinic state (MC type) due to the average effect.

Shvartsman and Kholkin [66] studied the complex polar structure in PMN–
0.20PT SCs by means of high-resolution piezoresponse force microscopy. The
composition with x = 0.20 is located in the phase diagram of the PMN–xPT system
[15] aside from the MPB (by about 0.10–0.15 on the x axis), namely, in the region
of thermodynamic stability of the rhombohedral phase. However, in this case, the
hierarchy of the domains is also observed. According to experimental results [66],
relatively large FE domains with embedded nanodomains are visualized in
as-grown (001)cub-oriented PMN–0.20PT SC samples. The ribbon-shaped
antiparallel micron-sized domains are not continuous, irregular and can form
labyrinth structures. A large number of nanodomains of opposite orientation are
present in the microdomains studied. The formation of this polar structure on the
micro- and nanolevels is concerned with a certain distribution of random electric
fields in relaxor-FE SCs and with the existence of polar nanoscale regions in a wide
temperature range [66].

The phase coexistence in the presence of the monoclinic phase in the PMN–xPT
system was discussed in a series of papers (see, for instance, [12, 15, 17, 23, 27, 63,
67]). In Sects. 2.2.3 and 2.2.4, we analyse the role of the intermediate FE phases in
PMN–xPT by taking into account the complex non-180° DSs and possibilities of
stress relief at elastic matching of the phases with different symmetry around the
MPB.

2.2.3 Effect of Non-180° Domains on Phase Coexistence

Now, we consider examples of the phase coexistence in the PMN–xPT system with
0.23 � x � 0.30 at room temperature. Following the concept [42, 76] on the
polarization rotation path near the MPB, we assume that the spontaneous polar-
ization vector in a single-domain state changes the orientation from [111]
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(rhombohedral phase) to [001] (tetragonal phase), as shown for the perovskite unit
cell (Fig. 2.8, left part, bottom). The relationship between the orientations of the
spontaneous polarization vectors of the non-180° domains in the FE phases is
shown in Fig. 2.8. This means that the rhombohedral–MB and MB–MC phase
transitions, that occur with an increase in the molar concentration x at room tem-
perature, are associated with the rotation of the spontaneous polarization vectors of
four domain types in each FE phase.

Fig. 2.8 Relationship between the polarization path [111] ! [001] in the perovskite unit cell (left
part, bottom) and non-180° DSs in FE phases of the PMN–xPT system. 1, 2, 3 and 4 denote
domain types in the rhombohedral (R), MB and MC phases and spontaneous polarization vectors of
the adjacent domains in these phases are shown with arrows. Coordinate axes OXj are parallel to
the perovskite unit-cell axes in the cubic phase. Volume fractions of the non-180° domains are
determined in terms of uR and yR (rhombohedral phase), uB and yB (MB phase) and uC and yC (MC

phase)
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We assume that the non-180° domains being components of mechanical twins
(see Fig. 2.8) are located in a head-to-tail manner, form a regular structure and are
separated, according to work [38], by planar stress-free domain walls. The
crystal-geometric similarity of the laminar DSs (or twinned structures) in the
rhombohedral, MB and MC phases near the MPB indicates the possibility of their
description and the analysis of elastic matching in terms of analogous parameters
(uR and yR, uB and yB and uC and yC). These parameters characterize relative
thicknesses of twin bands that consist of two types of the non-180° domains in the
FE phases, as shown in Fig. 2.8.

The distortion matrices of the rhombohedral, MB and MC phases split into the
non-180° domains of types 1–4 are represented in the coordinate axes OXj

(Fig. 2.8) as
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respectively. In (2.8), la and l are unit-cell distortions in the rhombohedral phase,
ka, kc and k are unit-cell distortions in the MB phase, uB = arccos [2kakc/(ka

2 + kc
2)]

is the angle of rotation of the crystallographic axes of the adjacent domains in the
MB phase, ηa,ηb, ηc and η are unit-cell distortions in the MC phase, and uC = arccos
[2ηaηb/(ηa

2 + ηb
2)] is the angle of rotation of the crystallographic axes of the adjacent

domains in the MC phase. Comparing NðMBÞ
ij

���
��� and NðMCÞ

ij

���
��� from (2.8), one can

establish the following transformation [77] for the perovskite-cell distortions at the
MB–MC phase transition: ka ! ηc, kb = ka ! ηa and k ! ηb. This transformation
is in agreement with the experimental molar-concentration dependences [60] of the
linear parameters a, b and c of the perovskite unit cells in these phases, namely,
with an increase in x, transitions from aB(x) to cC(x), bB(x) to aC(x) and cB(x) to
bC(x) occur, where subscripts B and C denote the MB and MC phases, respectively.
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The dependence of elements of Dfg

�� �� from (1.7) on four parameters [for
example, at the coexistence of the rhombohedral and MB phases, Dfg = Dfg(uR, yR,
uB, yB)] hinders consideration of conditions (1.5) and (1.6) in a wide range of
volume fractions of individual types of domains shown in Fig. 2.8. However, the
crystal-geometric similarity of the DSs of the neighbouring phases (Fig. 2.8) sug-
gests a constancy [77] of the relative thickness of twins in the coexisting phases.
Corresponding conditions imposed on the parameters from Fig. 2.8 are written as
follows:

uB ¼ uR and yB�yRj j � 0:05 ð2:9Þ

(rhombohedral and MB phases),

uC ¼ uR and yC�yRj j � 0:05 ð2:10Þ

(rhombohedral and MC phases), and

uB ¼ uC and yB�yCj j � 0:05 ð2:11Þ

(MB and MC phases). The presence of the factor 0.05 in expressions (2.9)–(2.11)
means that the heterophase states in PMN–xPT allow weak (to 5%) changes in the
relative thickness of twins along the OX1 axis (Fig. 2.8) at a transition through the
interphase phase boundary.

In the further examination of conditions (2.9)–(2.11), experimental
molar-concentration (x) dependences of the unit-cell parameters of PMN–xPT at
room temperature [62] are used. Possible versions of the interphase boundaries are
considered in work [77]. These boundaries obey general conditions (1.5) and (1.6)
for ZNSPs and conditions for the almost constant relative thickness of twins [i.e.
conditions (2.9) and (2.10), or (2.9) and (2.11), or (2.10) and (2.11)].

Interconnections between the parameters from conditions (2.9)–(2.11) are shown
in Figs. 2.9, 2.10 and 2.11. The presence of the ZNSPs at the rhombohedral–MB

phase transition suggests a variation in yR in narrow ranges (Fig. 2.9). Both narrow
ranges of allowable values of yR and discontinuities of the ranges of allowable
values (uR, yR) at x � 0.26 (Fig. 2.9a, b) hinder the formation of the ZNSP along
the interphase boundary. It can be mentioned for comparison that the previous
experiments [60] did not reveal the coexistence of the rhombohedral and MB phases
in the wide molar-concentration range.

Diagrams in Fig. 2.10 show that conditions (1.5), (1.6) and (2.10) are satisfied at
variation in yR in wider (in comparison with those shown in Fig. 2.9) ranges. This
circumstance facilitates the formation of heterophase states at the rhombohedral–
MC phase transition (0.26 � x � 0.27).

We note that conditions (1.5), (1.6) and (2.11), which are related to the ZNSPs at
the coexistence of the MB and MC phases, are satisfied in wide ranges of yB and at
any uB (Fig. 2.11b–d). The validity of conditions (1.5), (1.6) and (2.11) is a
favourable factor for the coexistence of intermediate MB and MC phases at
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Fig. 2.9 Diagrams that link the parameters uR and yR of the polydomain rhombohedral phase at
the formation of ZNSPs at the interphase boundaries in PMN–xPT SCs with x = 0.23 (a), 0.26
(b) and 0.27 (c). The interphase boundaries separate the rhombohedral (R3m) and MB (Cm) phases
and satisfy conditions (1.5), (1.6) and (2.9). The phases are split into the non-180° domains as
shown in Fig. 2.8. The region 0.5 � uR � 1 is obtained by means of reflecting the region
0 � uR � 0.5 of the diagram in the plane of symmetry uR = 0.5 (reprinted from paper by
Topolov [77], with permission from Pleiades Publishing)

Fig. 2.10 Diagrams that link the parameters uR and yR of the polydomain rhombohedral phase at
the formation of ZNSPs at the interphase boundaries in PMN–xPT SCs with x = 0.26 (a) and 0.27
(b). The interphase boundaries separate the rhombohedral (R3m) and MC (Pm) phases and satisfy
conditions (1.5), (1.6) and (2.10). The phases are split into the non-180° domains as shown in
Fig. 2.8. The region 0.5 � uR � 1 is obtained by means of reflecting the region 0 � uR � 0.5
of the diagram in the plane of symmetry uR = 0.5 (reprinted from paper by Topolov [77], with
permission from Pleiades Publishing)
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0.26 < x � 0.30. This coexistence was experimentally observed in the PMN–xPT
system [60, 62] at room temperature.

The reason for such behaviour of the parameters in conditions (2.9)–(2.11) is
related to the particular role of the rhombohedral phase in the formation of het-
erophase states. As follows from (2.8), independent of the splitting of the rhom-
bohedral phase into the non-180° domains (see Fig. 2.8), all diagonal elements of

the NðRÞ
ij

���
��� matrix are equal to each other, similar to the diagonal distortions of the

cubic unit cell. In contrast, the diagonal elements of the NðMBÞ
ij

���
��� and NðMCÞ

ij

���
���

matrices from (2.8) strongly depend on the parameters yB and yC, which charac-
terize the DSs (Fig. 2.8). As a result, changes in yB and yC in wide ranges and the
corresponding accommodation rearrangement of twin structures in the monoclinic
phases lead to the validity of the inequality from conditions (2.11). Our analysis of
conditions (2.9)–(2.11) enables us to conclude that it would be more difficult to
satisfy the same inequality in the presence of the rhombohedral phase, i.e. at the
rhombohedral–MB or rhombohedral–MC phase coexistence. The probability of the

Fig. 2.11 Diagrams that link the parameters uB and yB of the polydomain MB phase at the
formation of ZNSPs at the interphase boundaries in PMN–xPT SCs with x = 0.26 (a), 0.27 (b),
0.29 (c) and 0.30 (d). The interphase boundaries separate the MB (Cm) and MC (Pm) phases and
satisfy conditions (1.5), (1.6) and (2.11). The phases are split into the non-180° domains as shown
in Fig. 2.8. The region 0.5 � uR � 1 is obtained by means of reflecting the region
0 � uR � 0.5 of the diagram in the plane of symmetry uR = 0.5 (reprinted from paper by
Topolov [77], with permission from Pleiades Publishing)
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formation of ZNSPs in the two-phase states [77] increases with an increase in the
area of the hatched ranges of allowable values of the parameters in Figs. 2.9, 2.10
and 2.11. Orientations of the interphase boundaries in the two-phase states in the
wide x range are determined on the basis of (1.8). According to data from work
[77], the interphase boundaries studied in the PMN–xPT system are oriented close
to {hk0} of the perovskite unit cell.

Comparison of the diagrams build for PMN–xPT at 0.26 � x � 0.27
(Figs. 2.9b, c, 2.10 and 2.11a, b) shows that the possibilities of the formation of
three-phase states with the simultaneous validity of conditions (2.9)–(2.11) are
fairly limited. Indeed, the ranges of allowable values of (uR, yR) (Figs. 2.9c and
2.10b) and (uB, yB) (Fig. 2.11b), which are related to the two-phase samples, can be
matched at the molar concentration x = 0.27 and only partially.

Thus, the studied two-phase states in the PMN–xPT system take place at the
almost constant relative thicknesses of twins (see Fig. 2.8) of the coexisting phases
near the MPB, i.e. without significant displacements of the twin walls at a transition
through the interphase boundary. The corresponding conditions for complete stress
relief at elastic matching of the heavily twinned MB and MC phases are most
favourable at 0.26 � x � 0.30.

2.2.4 Different Scenarios of Stress Relief

Examples of the phase coexistence in PMN–0.32PT ceramics on cooling were
considered in recent experimental studies [18, 20]. According to experimental data
[18], the tetragonal (P4mm) and MC (Pm symmetry) phases coexist in a wide
temperature range. At the same time, experimental studies [20] show that the
tetragonal and MB (Cm) phases coexist in unpoled PMN–0.32PT ceramic samples
in the temperature range *102 K. Such unusual behaviour is associated with the
effect of a local stress field and with the clampdown and blocking effect [20]. These
experimental results and the martensitic-like phase transitions [20] in the PMN–xPT
system stimulate an analysis of the heterophase states that would appear on cooling
or under different conditions for internal stress relief.

It is assumed that non-180° domains in the FE phases (tetragonal, MB and MC)
of PMN–0.32PT are located in a head-to-tail manner and form regular laminar
structures. Fragments of the polydomain MB and MC phases are schematically
represented in Fig. 2.8. In the tetragonal phase, the following domain patterns are
considered: the first domain pattern comprises the 90° domains with the sponta-
neous polarization vectors PT

(3) || [001] (volume fraction t3) and PT
(1) || [100] (volume

fraction 1 − t3), and the second domain pattern comprises the 90° domains with PT
(1)

|| [100] (volume fraction t1) and PT
(2) || [010] (volume fraction 1 – t1). The afore-

mentioned domains in the FE phases are separated, according to Fousek and
Janovec [38], by the unstrained domain walls.
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Distortion matrices of the MB and MC phases, NðMBÞ
ij

���
��� and NðMCÞ

ij

���
���, are given

in (2.8). The polydomain tetragonal phase is characterized by the distortion matrices

analogous to Nð5�6Þ
ij

���
��� from (2.3) and Nð5�7Þ

ij

���
��� from (2.4). To analyse elastic

matching of these phases in the two-phase states, we use different temperature
dependences of the unit-cell parameters of the PMN–0.32PT ceramic [18, 20].

According to experimental data [20], cooled ceramic samples of PMN–0.32PT
undergo a first-order cubic–tetragonal phase transition at temperature
TCT = (423 ± 5) K and exhibit the non-equilibrium coexistence of the tetragonal
and MB phases at 193 K � T � 408 K. The unit-cell behaviour of PMN–0.32PT
[20] obeys conditions (1.18) for ZNSPs at the cubic–tetragonal phase transition.
The optimal volume fraction of the 90° domains in the tetragonal phase (either with
PT
(3) and PT

(1) or PT
(2) and PT

(1)) [78] is toptj ¼ 0:313 or 0.687. It is assumed that a
further cooling of the sample in the stability region of the tetragonal phase will not
give rise to changes in the volume fraction of the 90° domains arising at the cubic–
tetragonal phase transition.

The domain state–interface diagrams calculated for the coexistence of the
tetragonal (at tj ¼ toptj ) and MB phases in the wide temperature range are shown in
Fig. 2.12. These diagrams illustrate interconnections between the parameters uB
and yB which characterize the relative thickness of twins (Fig. 2.8) in the MB phase.
The diagrams shown in Fig. 2.12, a, f and g correspond to the highest temperature
(T = 408 K) at which the unit-cell parameters of the coexisting T and MB phases
were measured in work [20]. These diagrams suggest that irrespective of the ori-
entation of PT

(j) in the tetragonal phase, the almost single-domain MB phase would
appear to satisfy conditions (1.18) for ZNSPs. The MB phase in the near
single-domain state is characterized by one of the following pairs of the parameters:
yB = 0 and uB ! 0, yB = 0 and uB ! 1, yB ! 0 and uB = 1, or yB = 0 and
uB ! 1. Moreover, the diagram shown in Fig. 2.12, a enables us to suppose an
interesting possibility of the formation of the polydomain MB phase with the
parameters yB ! t3 = 0.313 and uB = 1/2. In this case, the interphase boundary
that obeys conditions (1.18) would appear in a heterophase structure with the
almost constant relative thickness of twins along the OX1 axis [78].

Now we compare the diagrams (Fig. 2.12a–e) related to the fixed orientation of
the non-180° domains in the tetragonal and MB phases coexisting in the wide
temperature range. It turns out that each single-domain state of the MB phase at
T = 408 K can give rise to a stressed interphase boundary on cooling because of
violation of conditions (1.18) for ZNSPs. For example, the interphase boundaries
are conical (region I or II) at T = 373 K (Fig. 2.12b), 323 K (Fig. 2.12c), 273 K
(Fig. 2.12d), or 193 K (Fig. 2.12e). Such a scenario of stress relief [78] would need
additional changes in the volume fractions of the 90° domains in the tetragonal
phase being thermodynamically stable at higher temperatures.

The polydomain MB phase with the parameters yB ! t3 = 0.313 and uB = 1/2
would also promote the formation of the stressed conical interphase boundaries on
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Fig. 2.12 Domain state–interface diagrams for the coexistence of the tetragonal and MB phases in
PMN–0.32PT. Graphs (a–e) correspond to the transition from the tetragonal phase (domains with
PT
(1) and PT

(3)) at the optimal volume fraction t3 = 0.313, graph (f) corresponds to the transition
from the tetragonal phase (domains with PT

(1) and PT
(3)) at the optimal volume fraction t3 = 0.687,

and graph (g) corresponds to the transition from the tetragonal phase (domains with PT
(1) and PT

(2))
at the optimal volume fraction t1 = 0.313. Conditions (1.14), (1.15) and (1.16) are valid in regions
I, II and III, respectively. Calculations were made using experimental data on unit-cell parameters
[20] (reprinted from paper by Topolov [78], with permission from Taylor & Francis)

2.2 Phase Coexistence in (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 … 49



cooling. The curve that separates the regions I and III in the left part of the diagram
in Fig. 2.12a shifts towards the larger yB values (see Fig. 2.12b, c) and then
demonstrates small displacements (Fig. 2.12d, e). This scenario of stress relief [78]
means that an additional rearrangement of the DS in the MB phase can be appre-
ciable down to T � 320 K at the constant volume fraction tj ¼ toptj in the tetragonal
phase.

It seems to be probable that the ceramic PMN–0.32PT samples cooled below
T = 408 K are heterophase in the wide temperature range and no effective stress
relief takes place at the coexistence of the polydomain tetragonal and MB phases.
An additional reason for this phase coexistence in the wide temperature range [20]
may lie in compositional fluctuations [32, 34] that appear close to the MPB.

In work [18], the temperature dependence of the unit-cell parameters of PMN–
0.32PT was determined by means of the powder neutron diffraction. As follows from
this unit-cell behaviour, the interphase boundaries at the cubic–tetragonal phase
transitions obey conditions (1.18) for ZNSPs at the volume fraction toptj ¼ 0:405 or
0.595. The MC phase that appears on further cooling can coexist with the tetragonal
phase split into the 90° domains. The domain state–interface diagrams (Fig. 2.13)
calculated using the unit-cell parameters from work [18] suggest that conditions
(1.18) are valid in the presence of the MC phase being either e-domain or polydo-
main. For example, lines AB and CD (Fig. 2.13a) and AD (Fig. 2.13b) correspond to
the ZNSPs. The single-domain MC phase corresponds to the points A and D in
Fig. 2.13. A curve that separates regions I and III in Fig. 2.13b corresponds to the
ZNSPs in the presence of the MC phase split into either two (at yC = 0) or four (at
yC > 0) domain types. Undoubtedly, these variants of the T–MC phase coexistence
in PMN–0.32PT are related to similar scenarios of stress relief [78] in the presence of

Fig. 2.12 (continued)
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the tetragonal phase with the optimal volume fractions of the 90° domains with the
known PT

(j) orientations. The heterophase states corresponding to complete stress
relief in the above-considered versions of the phase coexistence in PMN–0.32PT
(Figs. 2.12 and 2.13) suggest that there is a correlation between the unit-cell
parameters of the adjacent phases (i.e. cubic, tetragonal, MB and MC) in some
temperature ranges. This correlation causes, for example, possibilities for the for-
mation of the single-domain monoclinic phase (either MB or MC) at the first-order
phase transition from the tetragonal phase split into the 90° domains in accordance
with conditions for ZNSPs at the high-temperature cubic–tetragonal phase transition.
To the best of our knowledge, such behaviour of the PMN–xPT system near the
MPB has no analogues among the studied FE solid solutions.

2.3 Model of Interpenetrating Phases: Application
to (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 Near
the Morphotropic Phase Boundary

In Sect. 2.3, we consider the model of interpenetrating phases that are elastically
matched along the ZNSP’s in PMN–xPT near the MPB. The first example of elastic
matching of two interpenetrating FE phases (tetragonal and orthorhombic) in PZN–
0.10PT SCs was discussed in work [79]. Hereby, the volume-fraction behaviour of
the coexisting FE phases was interpreted in terms of unit-cell parameters and ori-
entations of different domain (twin) types [79].

Fig. 2.13 Domain state–interface diagrams for the coexistence of the tetragonal and MC phases in
PMN–0.32PT. Graph (a) corresponds to the transition from the polydomain tetragonal phase
(domains with PT

(1) and PT
(3)) at the optimal volume fraction t3 = 0.595, graph (b) corresponds to

the transition from the polydomain tetragonal phase (domains with PT
(1) and PT

(2)) at the optimal
volume fraction t1 = 0.405. Conditions (1.14), (1.15), (1.16) and (1.17) are valid in regions I, II, III
and IV, respectively. Calculations were made using experimental data on unit-cell parameters [18]
(reprinted from paper by Topolov [78], with permission from Taylor & Francis)
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According to themodel of interpenetrating phases [79, 80], a SC sample consists of
two types of heterophase regions (Fig. 2.14a) with volume fractions v and v′ = 1 − v,
respectively, and each region (hereafter the v- or v′-region) represents the two-phase
state. This means that a phase inclusion in a given region becomes a phase matrix in
the adjacent region, and vice versa. The equality of the volume fractions v = v′ = 1/2
corresponds to a distribution of the v- and v′-regions without any preference of one
type over another. In the case of the coexistence of the rhombohedral and monoclinic
phases, we introduce volume fractions m and r to define a volume fraction of the
inclusion-phase in the v- and v′-regions, respectively. At the monoclinic–tetragonal
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Fig. 2.14 Schematic arrangement of interpenetrating phases (a) and examples of the r(m) (b) and
t(m) (c) dependences calculated for two-phase PMN–xPT solid solutions within the framework of
the model of interpenetrating phases by using the unit-cell parameters from work [15].
Heterophase regions in schematic (a) are characterized by volume fractions v and v′. I, the
inclusion-phase in the v-region and the matrix-phase in the v′-region; II, the inclusion-phase in the
v′-region and the matrix-phase in the v-region. Curves 1, 2 and 3 in graphs (b) and (c) correspond
to different volume-fraction dependences that satisfy conditions for ZNSPs. Calculations were
made at the following constant parameters: fM = gR = uR = 1/2 [MC + rhombohedral phases,
graph (b)] or fM = 1/2 [MC + tetragonal phases, graph (c)] (reprinted from paper by Topolov and
Ye [80], with permission from the American Physical Society)
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phase coexistence that arises from the rhombohedral–monoclinic phase coexistence
with increasing the molar concentration x, the volume fractions t and m of the
inclusion-phase are to be introduced in the v′- and v-regions, respectively.

The Kj

�� �� matrices related to the monoclinic–rhombohedral phase coexistence
are determined by taking into account a mutual influence of the internal stress fields
of the interpenetrating phases and can be derived from a series of equations [80]:

K1k k ¼ m K2k k � NMk kþ ð1� mÞ NRk kand
K2k k ¼ r K1k k � NRk kþ ð1� rÞ NMk k: ð2:12Þ

In (2.12), the items m K2k k � NMk k and r K1k k � NRk k reflect an influence of the
adjacent heterophase region on the phase inclusion. The distortion matrices NMk k
and NRk k of the monoclinic and rhombohedral phases, respectively, are written
with due regard for the domain orientations in the coexisting phases (Fig. 2.8). We
assume that the tetragonal phase is split into 90° domains with the unit-cell vectors
(aTj, bTj, cTj) lying along ([100], [010], [001]) (j = 1, volume fraction nT) and
([010], [001], [100]) (j = 2, volume fraction 1 − nT). The MC phase is represented
by four domain types with the unit-cell vectors (aMk, bMk, cMk), where cMk || [001]
and k = 1, 2, 3, 4 [80]. The crystallographic directions are given with respect to the
perovskite unit cell. The volume fractions of the domain types in the MC phase are
expressed in terms of two parameters, 0 � fM � 1 and 0 � wM � 1, as follows:
nM1 = fM wM, nM2 = (1 − fM)wM, nM3 = fM(1 − wM) and nM4 = (1 − fM)(1 − wM).
The rhombohedral phase is split into the 71° (109°) domains as shown in Fig. 2.5.

Elastic matching of the adjacent phases is studied in terms of matrix elements

Dij ¼
X3
t¼1

ðK2;itK2;jt � K1;itK1;jtÞ: ð2:13Þ

The matrix elements Dij from (2.13) are analogous to those from (1.7) and depend
on elements of K1k k and K2k k which are to be found from (2.12). In (2.13),
subscripts it and jt are used for listing the matrix elements, and i, j, t = 1, 2 and 3.
The matrix elements Dij from (2.13) are examined to satisfy conditions (1.18) for
ZNSPs.

Diagrams in Fig. 2.14b, c illustrate various possibilities of the formation of
ZNSPs in accordance with the model concepts put forward. However, only curve 1
(Fig. 2.14b, c) satisfies the physical meaning of the MPB, i.e. changing the molar
concentration x should lead to an increase in one of the volume fractions in (2.12),
for instance, the volume fraction m, and to a simultaneous decrease in another
volume fraction, for instance, r. Curve 2 in Fig. 2.14b and curves 2 and 3 in
Fig. 2.14c are related to the volume fractions that monotonously increase. Such
behaviour implies a simultaneous increase in the volume fractions of the coexisting
phases and, strictly speaking, does not refer to the two-phase states shown in
Fig. 2.14a. The stress-free interphase boundaries corresponding to curve 1 in
Fig. 2.14b, c are described by Miller indices {h0l} in the perovskite axes [80].
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As follows from Fig. 2.15a, b, conditions for ZNSPs within the framework of
our model of interpenetrating phases are well fulfilled within a fairly wide range of
molar concentrations x. Very slight changes (up to 3%) of the vi values appear as
the unit-cell parameters are taken from a narrower range, for example, at x = 0.31
(rhombohedral phase), x = 0.33 (MC phase) and x = 0.35 (tetragonal phase).

The changes of vi at 0.30 < x < 0.39 points out the stability of results [80] and
the good correlation between the calculated data (Fig. 2.15a, b) and experimental
data from [15, 80].

The model of interpenetrating phases was also applied [80] to interpret the
coexistence of the intermediate phases (MB and MC) in the PMN–xPT system.
Experimental results by Singh and Pandey [60] suggest that the following sequence
of the FE phases is observed at 0.20 � x � 0.40 on increasing x: rhombohedral
(R3m) ! MB (Cm) ! MC (Pm) ! tetragonal (P4mm). Changes in both symmetry
and unit-cell parameters strongly influence elastic matching of the coexisting phases

Fig. 2.15 vi(x) dependences calculated for two-phase PMN–xPT solid solutions within the
framework of the model of interpenetrating phases by using the unit-cell parameters from [15]
(a and b) and [60] (c). Diagram (a) was built for the rhombohedral–MC phase coexistence (taking
into account curve 1 in Fig. 2.14b), and diagram (b) was built for the MC–tetragonal phase
coexistence (taking into account curve 1 in Fig. 2.14c). Subscripts R, M and T in diagrams (a) and
(b) denote the rhombohedral, MC and tetragonal phases, respectively. Subscripts MB, MC and T
denote the MB, MC and tetragonal phases, respectively (reprinted from paper by Topolov and Ye
[80], with permission from the American Physical Society)
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and conditions for stress relief in heterophase samples. Calculations in work [80]
show that the unit-cell behaviour in PMN–xPT at x � 0.27 [60] favours the for-
mation of ZNSPs in heterophase states described in terms of the model of inter-
penetrating phases. The corresponding volume fractions vi(x) are shown in
Fig. 2.15c. Calculations were made using the room-temperature unit-cell parame-
ters [60] related to the following molar concentrations:

(i) x = 0.27 (MB) and x = 0.31 (MC) for the MB–MC phase coexistence at
0.27 � x � 0.30,

(ii) x = 0.31 (MC) and x = 0.35 (tetragonal) for the MC–tetragonal phase coex-
istence at 0.32 � x � 0.34, and

(iii) x = 0.34 (MC) and x = 0.40 (tetragonal) for the MC–tetragonal phase coex-
istence at 0.35 � x � 0.39.

A transition from the first set of the unit-cell parameters to the second set is
connected with changes in derivatives dvMC=dx and dvT=dx at x � 0.35, where the
largest jumps of the unit-cell parameters [60] aMC ! aT; cMC ! cT !
and xMC ! 0 take place at the MC–tetragonal phase transition.

The calculated vMB(x), vMC(x) and vT(x) dependences (Fig. 2.15c) are in good
agreement with experimental results [60] on the phase coexistence. This interesting
example of elastic matching of the morphotropic phases in PMN–xPT represents an
independent confirmation of the essential interconnection between changes in
unit-cell parameters and stress-relief possibilities in FE solid solutions.

2.4 Domain and Heterophase States in
(1 − x)Pb(Zn1/3Nb2/3)O3–xPbTiO3

Near the Morphotropic Phase Boundary

2.4.1 Phase Transitions and Intermediate Phases

Relaxor-FE PZN–xPT is the third important example of the heterogeneous system
wherein the intermediate phases of the FE nature were revealed [6, 16] in the 2000s.
Domain-engineered PZN–xPT SCs [81] with MPB compositions exhibit anoma-
lously high dielectric constant and excellent piezoelectric performance. For
example, the large piezoelectric coefficient d33 (approximately 2000–2900 pC/N),
the high electromechanical coupling factor k33 (91–94%) at molar concentrations
x = 0.045–0.080 [82] as well as large absolute values of the piezoelectric coefficient
d31 (−1700 pC/N) and electromechanical coupling factor k31 (80.8%) [83] promote
electromechanical transducer, sensor, actuator and other piezotechnical applications
of the domain-engineered SCs. The outstanding electromechanical properties are
closely related to an enhanced polarizability (or electric softness) due to the
coexistence of the FE phases near the MPB [28, 84, 85] and to engineered domain
reorientations by appropriate poling processes [86, 87]. Optical studies carried out
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on the heavily twinned PZN–xPT SC samples at the MPB (x � 0.090) before the
discovery of the intermediate phases show that the first-order FE Pm3m − P4mm,
Pm3m − R3m and P4mm − R3m phase transitions are observed [88, 89].

As an example, we consider PZN–0.09PT SCs that are characterized by various
non-180° DSs and heterophase states [90]. The micrograph in Fig. 2.16, a shows
the complex DS of the (001)cub PZN–0.09PT SC platelet at room temperature,
where subscript cub denotes that the Miller indexes are related to the perovskite unit
cell. Two distinct orientation states can be identified, one with extinction directions
along <110>cub (Domains R), the other with extinction directions parallel to
<100>cub (Domains T). The former indicates the rhombohedral symmetry, while
the latter corresponds to the tetragonal phase. It is seen that the rhombohedral
(R3m) and tetragonal (P4mm) phases coexist in PZN–0.09PT. Upon heating, the
rhombohedral phase transforms into the tetragonal phase, with an increase in the
volume of the domains in the tetragonal phase at the expense of the rhombohedral
phase (Fig. 2.16b), and this transformation is characterized as a first-order phase
transition. Upon further heating, the tetragonal phase transforms into the cubic
(Pm3m) phase with emergence and growth of the isotropic area (Fig. 2.16c). The
presence of the intimately mixed phases in PZN–0.09PT SCs [25, 90] reflects the
behaviour of this solid-solution system near the MPB. This behaviour is in
agreement with the phase diagram by Kuwata et al. [14] (see also Fig. 2.1b, just on
the left from the vertical MPB). We add that the rhombohedral–tetragonal phase
coexistence in PZN–xPT SCs near the MPB was also observed in different studies,
see, e.g. papers [88, 89, 91, 92].

The experimental study by Durbin et al. [93] shows that the coexistence of the
rhombohedral and tetragonal domains in PZN–0.08PT SCs poled in the [001]
perovskite-cell direction results in a monoclinic distortion of the rhombohedral
phase. An interpretation of this phenomenon and the electric-field-induced phase
transitions in PZN–xPT SCs was carried out [93] within the framework of the
phenomenological Devonshire theory [94] developed by Abe et al. [95]. Durbin
et al. [93] showed that the thermodynamically stable monoclinic phase would not
exist in PZN–0.08PT SCs. Their monoclinic distortion revealed in the X-ray
powder diffraction study can be accounted for by strains resulting from the domain
walls in the neighbouring tetragonal phase [93].

In the subsequent experimental study, the intermediate orthorhombic (Bmm2)
phase in PZN–0.08PT SCs was irreversibly induced by the electric field [96]. This
phase is regarded as a limiting case of the MC-type phase with space group Pm and
equality of the unit-cell parameters a = c. The polarization rotation path [76, 96]
shown in Fig. 2.8 (see the perovskite unit cell on the left bottom) provided for the
orthorhombic phase with the spontaneous polarization along the [101] direction.
Based on the experimental results, La-Orauttapong et al. [16] proposed the modified
phase diagram of the PZN–xPT system at 0 � x � 0.20. The x − T diagram from
work [16] includes the orthorhombic phase in a region similar to the hatched area in
Fig. 2.1b. Comparison of the x − T diagram [16] to the modified diagrams of PZT
[15] and PMN–xPT [17, 18] enables us to underline that the region of stability of
the orthorhombic phase in PZN–xPT takes the least area in the diagram.

56 2 Two-Phase States



2.4.2 Crystallographic Study of Elastic Matching
of Morphotropic Phases

In this section, we consider conditions for ZNSPs and stressed interphase bound-
aries in PZN–xPT SCs near the MPB. It is assumed that the rhombohedral phase
contains four types of the 71° (109°) domains shown in Fig. 2.5. The tetragonal
phase is characterized by three 90°-domain types with the spontaneous polarization
vectors PT

(1)(0; P; 0), PT
(2)(P; 0; 0) and PT

(3)(0; 0; P). The orientations of the PT
(j)

vectors are defined in the coordinate system (X1X2X3) shown in Fig. 2.5. The
coordinate axes OXj are parallel to the axes of the cubic perovskite unit cell as
follows: OX1 || [100], OX2 || [010] and OX3 || [001]. Because of the possibility of
elastic matching of the rhombohedral and tetragonal phases along the ZNSP in the

Fig. 2.16 DSs and phase sequences in a (001)cub PZN–0.09PT SC platelet (4.8 � 10−5 m thick):
a coexistence of the polydomain rhombohedral (R) and tetragonal (T) phases at T = 25 °C,
b phase transition from the rhombohedral (in extinction) to the tetragonal phase upon heating at
T = 70 °C with growing tetragonal domains and c tetragonal–cubic phase transition upon heating
at T = 175 °C (reprinted from paper by Topolov and Ye [90], with permission from Taylor &
Francis)
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presence of two 90°-domain types (see Sect. 2.1.1), one can consider two versions
of the tetragonal phase split into the 90° domains. We assume that in Version 1 the
tetragonal phase is characterized by the 90° domains with PT

(1) (volume fraction
m) and PT

(2) (volume fraction 1 − m). In Version 2, there are domains with PT
(2)

(volume fraction t) and PT
(3) (volume fraction 1 − t). Distortion matrices of the

polydomain rhombohedral and tetragonal phases are written on analogy with (2.3),
(2.4) and (2.6). Experimental values of the unit-cell parameters of PZN–xPT in the
vicinity of the MPB [14] are used in our analysis [90].

At equal volume fractions of the 71° (109°) domains in the rhombohedral phase
(i.e. at xR = yR = 1/2 in Fig. 2.5), there are no off-diagonal distortions in the matrix
from (2.6) that characterizes the rhombohedral phase. The unit-cell parameters of
PZN–0.09PT SC at room temperature does not satisfy the conditions for ZNSPs,
and conical interphase boundaries separating these polydomain phases are expected
within restricted volume-fraction ranges. According to data from work [90], these
ranges are 0 � m � 0.615 (Version 1) and 0 � t � 0.385 (Version 2). The
conical interfaces are also present at elastic matching of the single-domain rhom-
bohedral phase (one of the domain types shown in Fig. 2.5 is given) and the
polydomain tetragonal phase (Version 1 or 2).

At the coexistence of the single-domain rhombohedral and polydomain tetrag-
onal phases, one can compare the results concerned with Versions 1 and 2 of the
90° domain orientations. It is assumed that the domain 1 (Fig. 2.5) is present in the
rhombohedral phase only, i.e. xR = yR = 0. Results from work [90] show that
Version 1 becomes more favourable for elastic matching of the morphotropic
phases. The corresponding interphase boundaries are ZNSPs oriented along
(001) or (010) of the perovskite unit cell with accuracy up to 5%, and the volume
fractions of the 90° domains are listed in Table 2.3. A monotonic behaviour of the
optimal volume fraction mopt of the 90° domains with PT

(1) at molar concentrations

Table 2.3 Volume fractions of 90° domains in Version 1 at elastic matching of the single-domain
rhombohedral (xR = yR = 0) and polydomain tetragonal phases in PZN–xPT SCs at room
temperature (reprinted from paper by Topolov and Ye [90], with permission from Taylor &
Francis)

x,
rhombohedral
phase

x,
tetragonal
phase

Optimal volume fraction
mopt obeying conditions
for ZNSPs

Ranges of volume fractions
m corresponding to conical
interphase boundaries

0.080 0.090 – 0 � m � 0.145 and
0.855 � m � 1

0.090 0.090 0.620 0 � m � 0.443,
0.557 � m � 0.641 and
m 6¼ 0.620

0.090 0.095 0.707 0 � m � 0.793 and
m 6¼ 0.707

0.090 0.100 0.798 0 � m � 0.950 and
m 6¼ 0.798

0.090 0.105 0.878 0 � m � 1 and m 6¼ 0.878
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x � 0.090 in the coexisting phases, as well as the sufficiently wide m ranges
related to the conical interphase boundaries enable us to expect an appearance of the
analogous heterophase states with fluctuations of the molar concentration x or with
inhomogeneous distributions of Ti4+ ions in PZN–xPT SC samples. We also
mention that elastic matching of the single-domain rhombohedral phase
(xR = yR = 0) and the polydomain tetragonal phase, as described in Version 2, leads
to stressed conical interphase boundaries only. The corresponding volume fractions
t are varied within a wide range. For example, at x = 0.090 in the coexisting phases,
the conical interphase boundaries would appear at 0.359 � t � 1 [90].

It should be noted for comparison that the spontaneous strain nsa of the per-
ovskite unit cell at the tetragonal–rhombohedral phase transition in PZN–0.09PT
SC has an order of magnitude of 10−3 and 10−5; see experimental data from papers
[14] and [91], respectively. At the same time, the spontaneous strain nsa of the
perovskite unit cell is almost equal to 3 � 10−3 in accordance with results [14, 91].

The discrepancy in the nsa values at n
s
a = const leads to different optimal volume

fractions mopt and orientations (h0l) of the interphase boundaries that obey condi-
tions for ZNSPs. As a consequence, for the phase coexistence in Version 1, the
values

mopt ¼ 0:596 and h=l � 3=2 ð2:14Þ

are obtained using the unit-cell parameters from work [14], whereas the values

mopt ¼ 0:970 and h=l � 11=2 ð2:15Þ

are obtained using the unit-cell parameters from work [91]. It is seen that the mopt

value from (2.14) is in good agreement with mopt = 0.620 from Table 2.3. In this
context, the 90° DS favours elastic matching of the tetragonal and rhombohedral
phases without excessive internal stress. However the interphase boundary [88, 89],
that separates the tetragonal and rhombohedral phases, has an orientation close to
the (101) plane of the perovskite unit cell, and this orientation, undoubtedly, is close
to the h/l ratio from (2.15).

The results of crystallographic analysis [90] are testified by the various het-
erophase structures and DSs which were observed in plate-like PZN–xPT SCs [89].
Some single-domain rhombohedral regions are occasionally surrounded by the
polydomain tetragonal phase, but the interphase boundaries that separate these
phases have the analogous orientations despite the possible inhomogeneous dis-
tribution of the Ti4+-concentration [89].
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2.4.3 Interpenetrating Phases in 0.90Pb(Zn1/3Nb2/3)O3–

0.10PbTiO3 Single Crystals

In Sect. 2.4.3, we consider elastic matching of the polydomain (twinned) phases in
PZN–0.10PT SCs. This composition is characterized by following sequence of the
phases on zero-field cooling in accordance with the x − T diagram [16]: cubic
paraelectric–tetragonal FE–orthorhombic FE. Below the temperature of the
tetragonal–orthorhombic phase transition TT−O = 320 K, PZN–0.10PT SC remains
heterophase. Conditions for elastic matching of the polydomain tetragonal and
orthorhombic phases are studied [79] within the framework of the model of
interpenetrating phases. The SC sample is represented as a set of two types of
heterophase regions with phases I and II in each of them (see Fig. 2.14a). The
tetragonal phase is assumed to be divided into the 90° domains (Fig. 2.2c) with
volume fractions nT and 1 − nT. The orthorhombic phase is split into the domains
of four types with the unit-cell vectors cO || [001] (Fig. 2.17). Volume fractions of
these domains nO1 = xOyO, nO2 = (1 − xO)yO, nO3 = xO(1 − yO) and
nO4 = (1 − xO)(1 − yO) are expressed in terms of the parameters xO ¼ OA1j j= OA2j j
and yO ¼ A2B1j j= A2B2j j which characterize the volume fractions of mechanical
twins 1–3 and 1–2 (Fig. 2.17). Volume fractions of ‘inclusions’ in the v- and v′-type
regions shown in Fig. 2.14, a equal rT (tetragonal phase) and rO (orthorhombic
phase). Assuming that the v- and v′-type regions in the model are uniformly dis-
tributed over the SC sample and that their volume fractions v = v′ = 1/2 [79], one
can write a relation between rT and rO as follows: rT + rO = 1.

Taking into account (2.12), (2.13) and (2.15), one can obtain dependences of the
optimal volume fractions of the domains (twins) of various types in coexisting
phases (e.g. nT,opt, xO,opt and yO,opt) on the volume fraction rT of the tetragonal
phase. These optimal volume fractions correspond to the interphase boundary that
separates the v- and v′-type regions (Fig. 2.14a) and satisfies conditions (1.18) for
ZNSPs.

Fig. 2.17 Schematic arrangement of domains in the orthorhombic phase of PZN–0.10PT SC.
Domain types 1–4 are characterized by different orientations of the unit-cell vector aO. Domain
walls are shown as hatched areas. Coordinate axes OXj are parallel to the perovskite unit-cell axes
in the cubic phase. The unit-cell vectors aO and cO in domains are shown by arrows
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The most interesting case of elastic matching of the tetragonal and orthorhombic
phases along ZNSPs is actualized at fixed xO values. The corresponding optimal
fractions of the domains in the tetragonal phase (nT,opt) and twins in the
orthorhombic phase (yO,opt) are non-monotonic functions of rT (Fig. 2.18).

Inequalities nð1ÞT;optðrTÞ\nT;optðrTÞ\nð2ÞT;optðrTÞ and yð2ÞO;optðrTÞ\yO;optðrTÞ\yð1ÞO;optðrTÞ
are related to conic interphase boundaries that give rise to partial stress relief in
heterophase SC samples.

Extremum points in the nðgÞT;optðrTÞ and yðgÞO;optðrTÞ curves are observed at
rT � 0.1–0.2 (Fig. 2.18), and their positions and values considerably vary with the
parameter xO that describes the volume fractions of the twins 1–3 and 2–4
(Fig. 2.17). Changes in temperature T at xO = const lead to changes in the values of

extremum points of nðgÞT;optðrTÞ and yðgÞO;optðrTÞ without changing their positions on the
rT axis. Orientations of the interphase boundaries that satisfy conditions (1.18) for
ZNSPs are specified at xO = 0.5 and rT � 0.2 by the {h0l} planes of the perovskite
unit cell [79], where the Miller indices h and l depend on temperature. It is seen that

both max [nð2ÞT;optðrTÞ � nð1ÞT;optðrTÞ] and max [yð1ÞO;optðrTÞ � yð2ÞO;optðrTÞ] are located near

Fig. 2.18 Optimal volume
fractions ngT;opt(rT) and
ygO;opt(rT) which characterize
DSs of the coexisting
tetragonal and orthorhombic
phases in PZN–0.10PT SC at
T = 300 K (a) and 20 K (b):

nð1ÞT;opt(rT) (curves 1 and 5),

nð2ÞT;opt(rT) (curves 2 and 6),

yð1ÞO;opt(rT) (curves 3 and 7) and

yð2ÞO;opt(rT) (curves 4 and 8).
Curves 1–4 were calculated at
xO = 0.5, and curves 5–8
were calculated at xO = 0.1
(reprinted from paper by
Topolov [79], with
permission from Pleiades
Publishing)
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rT = 0.2 (see Fig. 2.18). It seems probable that this volume fraction of the tetrag-
onal phase and the parameter xO = 0.5 in the orthorhombic phase provide stress
relief in PZN–0.10PT SCs to the greater degree. We note for comparison that,
according to experimental data [16], the volume fraction of the tetragonal phase
coexisting with the thermodynamically stable orthorhombic phase in PZN–0.10PT
SCs at T = 20–300 K is about 20%. One of the reasons for the almost constant
volume fraction rT in the wide temperature range lies in the temperature depen-
dences of the unit-cell parameters aO(T) and cO(T) in the orthorhombic phase and
aT(T) and cT(T) in the tetragonal phase [16].

2.5 Two-Phase States and Stress Relief in Ferroelectric
Solid Solutions

In this chapter, we have analysed examples of the two-phase states, elastic matching
of the phases and stress relief in such solid solutions as PZT, PMN–xPT and PZN–
xPT. There systems are of interest because the MPB region between the FE phases
with different permissible directions of spontaneous polarization vectors of domains
is favourable to a high piezoelectric activity, strong electromechanical coupling,
large dielectric permittivity [1–5], etc. Examples of the phase coexistence in the
PbZrO3 and PMN SCs have been considered additionally. The phase diagrams of
PZT, PMN–xPT and PZN–xPT in the vicinity of the MPB [5–17] are characterized
by the presence of vast regions of thermodynamic stability of the FE tetragonal and
rhombohedral phases and by the presence of intermediate (almost monoclinic)
phases. As a rule, the structural phase transitions in the studied systems are the
first-order phase transitions, and therefore the role of spontaneous strains nspr of the
unit cell and the influence of these strains on the heterophase state are to be taken
into account. It has been shown that at changes in the molar concentration x and/or
temperature T, complete stress relief can be achieved in heterophase structures
either with the intermediate phase or without this phase. Hereby, the key role of
specific non-90° domain types in forming the heterophase structures at complete
stress relief in specific x and T ranges near the MPB has been emphasized. This role
is inseparably linked with the anisotropic spontaneous strains nspr at the phase
transition, and the anisotropy of nspr depends on the chemical composition, tem-
perature and symmetry of the FE phase. Moreover, permissible orientations of the
non-90° domains and their volume fractions in a monophasic region influence
elastic matching of the coexisting phases and can promote complete stress relief in a
heterophase sample.

The study on the domain states and heterophase structures is carried out within
the framework of the crystallographic method (see Sect. 1.2), and examples of
agreement between the experimental and calculated results are considered. The
crystallographic description of the heterophase states enables us to build the domain
state–interface diagrams that demonstrate important links between some domain
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types and characteristics of the interphase boundaries in the two-phase state. The
diagrams put forward in this chapter suggest that there are a few possible scenarios
of stress relief in the studied heterophase systems. It seems to be probable that such
scenarios may lead to different properties of heterophase solid solutions in the MPB
region. We add that some examples of the two-phase coexistence and phase con-
tents will be considered and compared in Chap. 6 on lead-free FE solid solutions.

The results discussed in this chapter are to be taken into account at the inter-
pretation of various domain and two-phase states, heterophase structures and their
evolution near the MPB, at changes of the molar concentration x and temperature T.
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Chapter 3
Phase Coexistence Under Electric Field

Abstract Features of the phase coexistence in relaxor-ferroelectric single crystals
under the electric field are discussed by taking into account results of the crystal-
lographic description. The electric field is applied along one of the perovskite-cell
directions, [001], [011] or [111]. Different scenarios of stress relief in the presence
of complex domain structures and morphotropic phases are proposed by taking into
account peculiarities of the unit-cell behaviour. The role of the intermediate poly-
domain monoclinic phase in forming the various heterophase states is described in
the context of effective stress relief in different variants of the phase coexistence.

Experimental studies of relaxor-FE PMN–xPT and PZN–xPT SCs in an external
direct-current electric field open up possibilities for observation of various hetero-
phase states and DSs. An appearance of new FE phases induced by the electric field
in SC cuts with fixed orientations of the main crystallographic axes gives rise to
questions on conditions for stress relief in the wide temperature range and in the
presence of the FE phases from different symmetry classes, on the preferable domain
and twin orientations, on ZNSPs in polydomain SCs, etc. In this chapter, we discuss
features of the phase coexistence in PMN–xPT and PZN–xPT SCs under the electric
field applied along one of the perovskite-cell directions, [001], [011] or [111].

3.1 Heterophase Pb(Mg1/3Nb2/3)O3 at the Induced
Phase Transition

PMN demonstrates the typical relaxor behaviour with the broad maximum of
dielectric permittivity e(T) [1, 2]. In the last decades, this material has been the
prototype for perovskite-structure relaxors [2]. The disordered cubic (Pm�3m)
structure of PMN SC remains stable at temperatures 5 K � T � 800 K without
significant evidence for a structural phase transition in the region of maxe(T).
Temperature Tm that corresponds to maxe(T), moves to higher temperature with
increasing measuring frequency, and this behaviour is typical of a dielectric
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relaxation [1, 2]. The dissipation factor tgd is also characterized by a maximum that
moves with changes in measuring frequency [1]. No macrodomains are observed in
PMN SCs, however chemically inhomogeneous polar nanodomains were revealed
by high-resolution electron microscopy [3] and diffuse scattering of the X-ray and
neutron diffraction lines [4] in the wide temperature range. Evidence for the
electric-field-induced transition from the disordered Pm�3m phase to the polar
rhombohedral (R3m) phase is obtained in experimental studies [4–6], and this phase
transition belongs to the first-order type. In addition to the change in the unit-cell
parameters and dielectric anomalies, current pulses and optical polar macrodomains
and interphase boundaries were observed at this induced phase transition [5, 6]. In
Sect. 3.1, we discuss crystallographic aspects of heterophase states in PMN SCs at
the electric-field-induced phase transition.

According to experimental data [5, 6], the nucleation of the polar phase is
observed inside the cubic phase and the propagation of the interphase boundaries is
registered at the field-induced phase transition. The birefringent macrodomains of
the rhombohedral phase appear in (100) and (110) SC platelets of PMN in the
electric field E || [100] and E || [110], respectively (the Miller indices are given in
the perovskite unit-cell axes). The formation of the single-domain rhombohedral
phase is observed in (111) SC platelets. On the (111) plane, the induced phase
transition is revealed by the onset of an interphase boundary between the cubic and
rhombohedral phases. For example, if E || [111] and E = 0.3 MV/m, then the
interphase boundary appears at T = 230 K [7]. During the establishment of the
polar phase, the interphase boundary travelled through the SC sample while the
polar phase gained the area of the disappearing disordered phase. As a result, the
single-domain state was registered in (111) SC platelets at the end of the induced
phase transition. The induced polar phase remains optically isotropic when
observing on the poling [111] direction. Some features of the induced phase
transition in PMN SCs are shown in Fig. 3.1. It should be noted that the poled state
of PMN remains metastable and can be switched by an electric field with the

Fig. 3.1 Schematic representation of the main stages of the electric-field-induced phase transition
in the (111) platelet of PMN SC: a the onset of the phase induction shown up by the appearance of
the interphase boundary that separates the initial cubic and induced rhombohedral phases, b the
propagation of the interphase boundary through the SC platelet with the growth of the induced
rhombohedral phase, and c the single-domain of the induced rhombohedral phase behaving
isotropically along the [111] perovskite-cell direction (reprinted from paper by Topolov et al. [7],
with permission from IOP Publishing)
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opposite E direction. At temperatures T = 175–200 K, the switching process pro-
ceeds at E = 0.3 MV/m. Optical domain observations show that the 180° switching
of the induced polarization takes place via an intermediate ferroelastic orientation
states of the rhombohedral phase, and these orientation states give rise to the
birefringent lamellar non-180° domains. These domains transform into an isotropic
section, but with the induced polarization Pind is reversed by 180°.

Our crystallographic analysis of elastic matching of the phases in an electric field
shows that the interphase boundaries in PMN SCs can be conical (see the domain
state–interface diagram in Fig. 2.7a), and no complete stress relief is attained. The
conical configuration of the interphase boundaries is confirmed in experimental
studies of PMN SCs [5–7] in the electric field. To consider the possible interphase
boundaries in the (111) platelet, we carry out a transformation of the co-ordinate axes
(X1X2X3)! (X1′X2′X3′) so that the OX1 andOX3 axes are rotated by 45° and the OX3′
axis coincides with the normal vector n0 || [111] (Fig. 2.7b). The conical surface in
the co-ordinate system (X1′X2′X3′) is described by the equation similar to (1.12):
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the co-ordinate system (X1X2X3) in terms of the unit-cell distortions of the coex-
isting phases [see (1.7) and Sect. 2.2.1].

We evaluated Dij and determinant D = det||Dij|| in wide ranges of the parameters
xr and yr that characterize the relative thickness of mechanical twins (Fig. 2.7a) in
the rhombohedral phase. The determinant D characterizes the level of strains at the
phase coexistence [8], and in the case of the electric-field-induced transition in
PMN SCs, we have |D| � 10−10 − 10−8, however on average, |Dij| � 10−3 [7]. The
considerable difference between |D| and |Dij| may be the reason [7] for a small
mechanical stress at the interphase boundary and for a certain unsteadiness that
leads to their ephemeral appearance at the induced phase transition, to the different
fragments of several conical surfaces and to the visible changes in the DS [5, 6]. In
general, one can emphasize that various heterophase states in PMN SCs are closely
connected with the formation of the conical interphase boundaries under conditions
for considerable stress relief.
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Analysis of invariants of (3.1) in the wide xr and yr ranges shows that the
possible interphase boundary sections on the (111) plane of the plate-like PMN
sample are ellipses [7]. The ellipse axes are rotated in the (X1′OX2′) plane by an
angle ael = arctg [2D12′/(D11′ − D22′)]/2 that strongly depends on xr and yr. The
diversity of orientations of the possible section on the (111) plane in connection
with the ael(xr, yr) dependence [7] testifies to the plurality of the interphase
boundaries and DSs at the electric-field-induced phase transition in PMN SCs.

As for the Pind,k vectors in the macrodomains of the rhombohedral phase with
respect to the normal-vector orientation n0 || [111] (Fig. 2.7b), we note that the
angle between Pind,1 and the (111) perovskite-cell plane approximately equals
35.26° [7]. This value is in good agreement with experimental data [7] on the
induced phase and its rhombohedral distortion.

In general, results on the crystallographic analysis of the phase coexistence in
PMN SCs [7] show that the elastic interaction between the macrodomains or phase
regions and the internal mechanical stress play the important role in the kinetics of
the electric-field-induced phase transition Pm3m − R3m that is accompanied by the
formation of various conical interphase boundaries.

3.2 Domain State–Interface Relationships at Electric
Field E || [001]

3.2.1 Heterophase (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3

The intermediate MA, MB and MC phases of the FE nature were revealed in PMN–
xPT SCs in some ranges of temperature T and electric field E [9–12]. The monoclinic
symmetry of these phases allows a rotation of the spontaneous polarization vector
[13, 14] between the fixed orientations related to the higher symmetry phases, such
as tetragonal and rhombohedral phases. The intermediate phases play the role of
bridging phases near the MPB [15] and make a lower free-energy path [13] of the
rotation of the spontaneous polarization vector in the perovskite unit cell between the
[111] direction (rhombohedral phase) and [001] direction (tetragonal phase).

Experimental results [10, 11, 16] on phase transitions in electric-field-cooled
PMN–xPT SCs near the MPB show that the electric field E * 0.1 MV/m induces
the intermediate phases, and the E orientation influences the phase sequence with
decreasing temperature. For example, in PMN–0.30PT SCs, the following phase
sequences are observed [10, 11]: cubic ! tetragonal ! rhombohedral at E = 0,
cubic ! tetragonal ! MC ! MA at E || [001] and cubic ! tetragonal !
orthorhombic!MB at E || [110], where the crystallographic directions are related to
the perovskite unit-cell axes. Moreover, the following phase sequences are observed
[16] in PMN–0.35PT SCs on cooling: cubic ! tetragonal ! MC at E || [001] and
cubic! tetragonal ! orthorhombic at E || [110]. As a rule, the electric-field-cooled
PMN–xPT SCs exhibit more simple DSs in comparison with those formed on
zero-field-cooling [10, 11, 16].
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Modified x–T diagrams were proposed by Cao et al. [12] for electric-field-cooled
PMN–xPT SCs (0.15 � x � 0.38) at E = 0.1 MV/m and two orientations of the
electric-field vector, E || [001] and E || [110]. In these diagrams, the rhombohedral
phase of the zero-field-cooled state is replaced by either the MA (at E || [001]) or MB

phase (at E || [110]). The intermediate MC phase observed on zero-field cooling at
E || [001] is replaced by the orthorhombic phase as electric-field cooling is carried
out at E || [110]. In the x–T diagram related to E || [001], the tetragonal–MA phase
boundary shifts towards the lower PT content, namely, to x = 0.25. At the same
time, the extended region in the diagram related to E || [110] is entirely replaced by
the orthorhombic phase. The experimental results [12] suggest that the phase sta-
bility of PMN–xPT SCs is fragile even at the visible distance from the MPB (over
0.1 on the x scale) and a strong dependence of the phase states on the direction of
the external electric field E is observed. Thus, the picture of heterophase states in
PMN–xPT SCs becomes complicated and depends on many physical and crystal-
lographic factors to be studied.

In Sect. 3.2.1, we discuss features of the phase coexistence and stress relief in
PMN–xPT SCs

(i) at E = 0 and E || [001] and
(ii) at E || [001] and various compositions around the MPB.

3.2.1.1 Phase Sequences and Diagrams at x � 0.30

The cubic–tetragonal phase transition in FE SCs can be accompanied by the for-
mation of interphase boundaries that obey conditions (1.18) for ZNSPs (see, for
instance, Table 1.1). In these SCs the tetragonal phase is separated into the 90°
domains 1–2, 2–3 or 1–3 (Fig. 3.2) with the optimal volume fractions noptT and
1 − noptT (see Sect. 2.2.1). Cooling in the electric field E || [001] (E = 0.1 MV/m)
leads, for example, to noptT = 0.547 or 0.508 [17] for PMN–0.30PT or PMN–0.32PT
SC, respectively. A tendency noptT ! 0.5 is accounted for by the unit-cell behaviour
of electric-field-cooled PMN–xPT SCs: according to experimental data [10, 18], the
unit-cell parameters aT and cT of the tetragonal phase and the unit-cell parameter aC
of the cubic phase are linked by a relation cT − aC � aC − aT. The ZNSPs are
parallel to the {hk0} planes of the perovskite unit cell, where the Miller indices
h and k depend on aT, cT and aC.

Among domains 1, 2 and 3 in the tetragonal phase (Fig. 3.2), only domain 1 is
characterized by the unit-cell vector cT and the spontaneous polarization vector Ps,1

which are parallel to the electric field E || [001]. We assume that the tetragonal
phase is split into domains 1–2 and the volume fractions of domains 1 and 2 equal
n1 and 1 − n1, respectively. The MC phase is assumed to be split into domains 4–7
(Fig. 3.2), and their volume fractions are defined in terms of parameters fM and vM
as follows:
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nC4 ¼ fMð1� vMÞ; nC5 ¼ 1� fMð Þð1� vMÞ; nC6 ¼ fMvM ; and nC7 ¼ 1� fMð ÞvM :
ð3:2Þ

The parameter fM characterizes the volume fraction of domain 4 in the twin 4–5
or the volume fraction of domain 6 in the twin 6–7 (Fig. 3.2). The parameter vM
characterizes the volume fraction of the twin 6–7 in the four-component twin 4–7.
In general, the orientations of the crystallographic axes of the aforementioned
domains (Fig. 3.2) are given taking into account that [001]-field cooling fixes the
prototype c axis [16].

Distortion matrices of the polydomain tetragonal and MC phases are written by

analogy with ||Nij
(5–7)|| from (2.4) and with NðMCÞ

ij

���
���

���
��� from (2.8), respectively.

Examples of the domain state–interface diagrams calculated for the tetragonal–MC

phase coexistence at E || [001] are shown in Fig. 3.3. Calculations were performed
using the experimental unit-cell parameters from work [19]. As follows from the
analysis of the heterophase states in electric-field-cooled PMN–xPT SCs, the
arrangement of the curves and their configurations in the diagrams (Fig. 3.3) highly
depend on the molar concentration x and parameter fM. The latter circumstance
suggests that distortions of the polydomain MC phase play a decisive role in the
formation of ZNSPs at the interphase boundaries.

The presence of the line vM = 1 in the range 0 � n1 � 1 (Fig. 3.3) is
accounted for by the equality of the unit-cell parameters aT = bM [19] at the
tetragonal–MC phase transition in the studied range of molar concentrations x. We
see that conditions (1.18) for ZNSPs are satisfied in various ranges of vM and n1,
where the boundaries between regions I and III (Fig. 3.3) are located. Moreover,
ZNSPs also correspond to segments of the line vM = 1 over regions I and III
because conditions (1.18) are valid in this volume-fraction range.

Differences in the diagrams at x � 0.33 (Fig. 3.3e–g) are mainly associated with
monotonic changes in the jumps of the unit-cell parameters [19] at the phase

Fig. 3.2 Schematic arrangement of non-180° domains (twin components) in PMN–xPT SCs near
the MPB. The perovskite unit cell of the paraelectric cubic phase is shown by dashed lines
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transition. An increase in the parameter fM results in a ‘straightening’ of the
boundaries between regions I and III (Fig. 3.3b–e). In the diagrams built for
fM = 0.5, there is a line n1 = const, along which the parameter vM can vary over a
wide range (Fig. 3.3a, e–g). As the shear distortions in the polydomain MC phase at
fM = 0.5 disappear, the area of region IV, where conditions (1.17) are valid, reaches
a maximum (compare Fig. 3.3d, e to Fig. 3.3f, g). We mention that conditions (1.17)
correspond to an imaginary cone apex, and no planar or conical interphase boundary
would appear hereby.

The important feature of the diagrams shown in Fig. 3.3 is that the mutual
arrangement of the line n1 = const and the point n1 = noptT on the abscissa (the noptT
value is found from conditions (1.18) for ZNSPs at the cubic–tetragonal phase
transition) changes with an increase in x. Assuming that the DS in the tetragonal phase
formed under the conditions for ZNSPs remains unchanged up to the tetragonal–MC

phase transition (i.e. condition n1 = noptT or n1 = 1 − noptT holds), one can consider
some variants of the formation of the interphase boundaries that also obey conditions
(1.18). For example, ZNSPs at x = 0.31 and fM = 0.5 (Fig. 3.3a) correspond to
n1 = noptT and vM = voptM , n1 = noptT and vM = 1, or n1 = 1 − noptT and vM = 1. We also
see that the vertical line n1 = noptT would lie close to the boundary between regions I
and III (Fig. 3.3a), i.e. almost complete stress relief would be achieved at various
volume fractions of the twin 6–7 in the MC phase (Fig. 3.2). At x = 0.33 and
0 < fM < 0.2, the boundary between regions I and III lies at n1 > noptT (cf. Fig. 3.3b, c)
and covers a relatively wide range of vM. Such a location means that in the immediate
vicinity of the MPB, different DSs can be formed under the conditions for ZNSPs.

Now we consider heterophase states in PMN–0.30PT SCs on
electric-field-cooling at E || [001] || OX3. Domain types 1–2 (tetragonal phase), 4–7
(MC phase) and 8–9 (MA phase) are shown in Fig. 3.2. Volume fractions of the
domains in the MA phase are n8 (see domain 8 in Fig. 3.2) and 1 − n8 (see domain 9
in Fig. 3.2). Diagrams shown in Fig. 3.4 were calculated using the unit-cell
parameters [10] measured at E = 0.1 MV/m. The diagram in Fig. 3.4a differs from
the diagrams calculated for x = 0.30 (Fig. 3.3a) and x = 0.33 (Fig. 3.3e) at E = 0
because of the change in the balance of the jumps of the unit-cell parameters during
the tetragonal–MC phase transition. If the DS of the tetragonal phase in the electric
field E remains unchanged up to the tetragonal–MC phase transition (i.e. n1 = noptT or
n1 = 1 − noptT ), the interphase boundary between the polydomain tetragonal and MC

phases obeys conditions (1.18) for ZNSPs at vM = voptM (see the horizontal boundary
between regions I and III in Fig. 3.4a). A relatively small increase (about 10%) in the
volume fraction n1, as compared to the noptT value, leads to the formation of the
interphase boundaries that obey conditions (1.18) at 0 � vM � voptM (see the vertical
boundary in Fig. 3.4a). The single-domain tetragonal phase (n1 = 0 or 1) can also
coexist with the polydomain MC phase at vM = voptM or vM = 1 − voptM (Fig. 3.4a), and
conditions (1.18) for ZNSPs hold. It should be noted that similar tendencies in the
elastic matching of the FE phases manifest themselves at the tetragonal–MC phase
transition [20] in electric-field-cooled PMN–0.32PT SCs at E || [001].
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The diagram that describes the MC–MA phase coexistence is shown in Fig. 3.4b.
It resembles a fragment of the diagram from Fig. 3.4a near the intersection of the
lines n1 = const and vM = const despite differences in symmetry and DSs of the
coexisting phases. The mutual arrangement of the boundaries between regions I and
III and the points vM = voptM determined in accordance with the diagram from

Fig. 3.3 Domain state–interface diagrams calculated for the tetragonal–MC phase transition in
zero-field-cooled PMN–xPT SCs with x = 0.31 (a), 0.33 (b–e), 0.35 (f), and 0.37 (g). In the MC

phase fM = 0.5 (a, e–g), 0 (b), 0.2 (c), and 0.4 (d). Conditions (1.14), (1.15), (1.16) and (1.17) are
valid in regions I, II, III and IV, respectively (reprinted from paper by Topolov [17], with per-
mission from Pleiades Publishing)
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Fig. 3.3 (continued)

Fig. 3.4 Domain state–interface diagrams calculated for PMN–0.30PT SCs cooled in the electric
field E || [001] (E = 0.1 MV/m): (a) the tetragonal–MC phase transition, domain types 1–2 and 4–7
(see Fig. 3.2) and (b) the MC–MA phase transition, domain types 4–7 and 8–9 (see Fig. 3.2). In the
MC phase fM = 0.5. Conditions (1.14), (1.15), (1.16) and (1.14) are valid in regions I, II, III and IV,
respectively (reprinted from paper by Topolov [17], with permission from Pleiades Publishing)
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Fig. 3.4a indicates that the formation of ZNSPs at the MC–MA phase transition is
characterized by specific features. If vM = 0.700 (see the line between regions I and
III in Fig. 3.4a) and the DS of the MC phase remains unchanged up to the MC–MA

phase transition, the interphase boundaries separating these phases are conical in
shape (see regions I and II in Fig. 3.4b). Only considerable changes in the vM value
would promote the formation of ZNSPs at the MC–MA phase transition: as seen
from Fig. 3.4b, the boundary between regions I and III corresponds to the volume
fractions 0.25 < vM < 0.30, and these vM values strongly differ from vM = 0.700 in
the diagram shown in Fig. 3.4a.

One of the boundaries between regions I and III undergoes a specific rear-
rangement: instead of the boundary at n1 = 0.641 in Fig. 3.4a, we obtain the
boundary at n8 = 0.628 in Fig. 3.4b. This means that the volume fractions of
domain types 1 and 8 (Fig. 3.2) with similar orientations of the unit-cell vectors
become almost equal after the tetragonal–MC and MC–MA phase transitions in the
electric field E || [001]. In this context, we mention an analogy with the constancy of
the volume fractions of the non-180° domains in the tetragonal and MA phases of
PZT (see Table 2.2) over the wide temperature range at E = 0.

3.2.1.2 Phase Sequences and Diagrams at x � 0.28

The further analysis of heterophase states in the electric field E || [001] is carried out
taking into account results [21] on PMN–xPT SCs with x = 0.28, 0.27 and 0.24. It
is assumed that the FE phases at E || [001] || OX3 are split into the non-180°
domains as shown in Fig. 3.5a, b. Jumps in the unit-cell parameters [22] at the
cubic–tetragonal phase transition in PMN–0.28PT SC (TC � 382 K, E || [001] and
E = 50 kV/m) promote the formation of ZNSPs along the interphase boundaries.
The corresponding optimal volume fractions of the 90° domains in the tetragonal
phase are noptT and 1 − noptT , where noptT = 0.545 at x = 0.28 [21].

On electric-field cooling (E = 50 kV/m), the tetragonal phase in the (001) cut of
PMN–0.28PT transforms to the MA phase [22] over a temperature transition window
of about 10 K. As a consequence of electric-field cooling in a range from 362 to
358 K, the unit-cell parameter aT of the tetragonal phase exhibits a jump in value of
|aT(358 K) − aT(362 K)|/aT(362 K) � 0.06% [22], whereas cT(T) exhibited only a
slight continuous decrease. However, under a lower field E = 25 kV/m, the
electric-field-cooled sample of PMN–0.28PT does not exhibit any anomaly in aT over
the same vicinity of the tetragonal–MA phase transition [12]. Changes in the unit-cell
parameter aT can influence the coexistence of the tetragonal and MA phases due to
lowering the elastic energy by achieving elastic compatibility. Accordingly, the
difference in the unit-cell parameters for PMN–0.28PT SC cooled under different
electric fields can affect the metastable tetragonal–MA phase equilibrium. In work
[21], two different scenarios of the phase coexistence and stress relief were discussed.

In the first scenario, conditions for stress relief were considered using the
experimental unit-cell parameters [22] of the tetragonal (at temperature TI = 358 K)
and MA (at temperature TII = 356 K) phases. An analysis of invariants [see (1.13)]
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Fig. 3.5 Schematic arrangement of domains in the tetragonal (a) and MA (b) phases and domain
state–interface diagrams (c–e) calculated for the tetragonal–MA phase transition in
electric-field-cooled PMN–0.28PT SCs at E || [001] (E = 50 kV/m). The co-ordinate axes OXj

in schematics (a) and (b) are parallel to the perovskite unit-cell axes in the cubic phase. Graphs (c),
(d) and (e) correspond to the volume fraction of the 90° domains nT = 0.65, 0.80 and 0.95,
respectively. Parameters vMA and fMA characterize the relative thickness of twins in the MA phase
(schematic b) on the OX1 and OX2 direction, respectively. Conditions (1.14) and (1.16) are
satisfied in regions I and III, respectively (reprinted from paper by Topolov et al. [21], with
permission from the American Institute of Physics)

3.2 Domain State–Interface Relationships at Electric Field E || [001] 79



for the interphase boundaries separating the phases split into the non-180° domains
(see Fig. 3.5a, b) shows that conditions for complete stress relief in heterophase
PMN–0.28PT SC are unfavourable. These interphase boundaries would be ZNSPs
at fairly small nT values (0 � nT � 0.260), however, cooling under E || [001]
promotes the volume fraction nT to be larger than 1/2 (see Fig. 3.5a). For nT > 1/2,
there are no fMA and vMA values that obey conditions (1.18) for ZNSPs, and
therefore, stress relief in such a heterophase state becomes problematic. Regions of
the polydomain tetragonal phase in the temperature range of 362–358 K cannot be
separated by ZNSPs, due to the aforementioned jump in the unit-cell parameter aT
that results in the inequality |aT(358 K) − aT(362 K)|/aT(362 K) � |cT(358 K) −
cT(362 K)|/cT(362 K) [21].

In the second scenario of the phase coexistence in PMN–0.28PT SCs, we used
the experimental unit-cell parameters at T = 362 and 356 K. These parameters are
accurate to within 2% of measured ones [12] for PMN–0.28PT SCs at the tetrag-
onal–MA phase transition under E = 25 kV/m and promote favourable conditions
for the formation of ZNSPs. According to results from work [21], the tetragonal–
MA interphase boundaries oriented along the ZNSPs would appear for 0.648 � nT
� 0.991, with 0.103 � nT − noptT � 0.446. This implies that slight changes in the
DS (Fig. 3.5a) caused by 90° domain-wall displacements under E || [001] would
promote effective stress relief that allows for stable heterophase states. The dia-
grams for heterophase states in PMN–0.28PT SCs (Fig. 3.5c–e) follow the second
scenario of changes in the unit-cell parameters and suggest that conditions (1.18)
for ZNSPs hold at the boundaries between regions I and III. The corresponding
non-180° DSs of the tetragonal and MA phases can coexist over wide ranges of nT,
fMA, and vMA. At nT ! 1, a considerable shift of the boundaries between regions
I and III (cf. Fig. 3.5d, e) favours the stability of an almost single-domain MA state
(fMA ! 1 or vMA ! 1).

Certain tendencies towards stress relief are also revealed [21] for the (001) cut
of PMN–0.27PT SC cooled in the electric field E || [001]. The optimal volume
fractions of the 90° domains (Fig. 3.5a) at the cubic–tetragonal phase transition are
noptT and 1 − noptT (noptT = 0.675 according to data [21]). The domain state–interface
diagrams for the tetragonal–MA phase transition in PMN–0.27PT SCs and related
heterophase domain states are similar to those shown in Fig. 3.5c–e. The inter-
phase boundaries obey conditions (1.18) for ZNSPs in the wide volume-fraction
range (0 � nT � 0.930) [21], therefore, no additional 90° domain-wall dis-
placements are required. The similarity between the diagrams for PMN–0.28PT
(Fig. 3.5c–e) and PMN–0.27PT is accounted for by analogous interrelations
between the unit-cell parameters of the tetragonal and MA phases as follows:

bMA � aT\cT � cMA\aMA � aT : ð3:3Þ

However, for PMN–0.28PT, the unit-cell behaviour from the first scenario does
not obey condition (3.3), owing to a decrease in the difference aMA − aT after taking
into account the jump in aT.
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Contrary to PMN–0.28PT, the unit-cell behaviour of PMN–0.24PT in the
vicinity of the cubic–MA phase transition [22] does not allow for the formation of
ZNSPs. For each pair of parameters (fMA, vMA) from ranges of 0 � fMA � 1 and 0
� vMA � 1, calculations [21] reveal that the interphase boundaries between the
cubic and polydomain MA phases are conical: all pairs (fMA, vMA) in the diagram are
related to region III only. These features associated with the unit-cell behaviour [22]
in PMN–0.24PT are not required to follow conditions (1.18) for ZNSPs. It is
possible that the distorted cubic phase that exists over a narrow temperature range
between the cubic and MA phases (as shown in the x–T diagram [22]) could
promote stress relief: either by changes in the balance of diagonal distortions or by
forming a metastable three-phase equilibrium that involves the unstrained cubic,
distorted cubic and MA phases.

In addition, the shear angle xMA of the perovskite unit cell in the MA phase was
varied [21] over the range of 0.04°–0.10°. Such a variation results in small changes
(less than 3%) in the (fMA, vMA) values related to the ZNSP curves in the diagrams
shown in Fig. 3.5c–e. This means that the shear distortions of the polydomain MA

phase do not give rise to a considerable stress field in a heterophase SC sample.
Thus, changes in the unit-cell parameters of the electric-field-cooled PMN–xPT

SCs at E || [001] open up various stress-relief possibilities in heterophase states and
enable us to conclude that the correlation between the unit-cell parameters in the
neighbouring phases remains on electric-field-cooling (at moderate E values) and
promotes effective lowering the elastic energy of heterophase SC samples.

3.2.2 Heterophase (1 − x)Pb(Zn1/3Nb2/3)O3−xPbTiO3

PZN–xPT SCs are interesting objects for the study of the intermediate phases and
phase coexistence in compositions near the MPB under the external electric field.
Durbin et al. [23] studied behaviour of rhombohedral PZN–0.08PT SCs poled in the
electric field E || [001]. Experimental results [23] show that the electric field induces
a new heterogeneous state. This state is interpreted as a metastable monoclinic
phase induced by the coexistence of the tetragonal and rhombohedral phases. The
presence of the metastable orthorhombic phase was discussed in work [24] that
comprises the electric-field-dependent polarization data on plate-like PZN–0.08PT
SCs oriented along the (001), (110) and (111) perovskite unit-cell plane. The
orthorhombic phase was also observed [25] in PZN–xPT SCs (x = 0.08–0.10) poled
in the electric field E || [001].

The field-induced phase states in rhombohedral PZN–xPT SCs at E || [001] were
studied and interpreted [26] within the framework of the polarization–rotation
concepts [13, 14]. Moreover, behaviour of the unit-cell parameters on dependence
of E can account for the ultrahigh piezoelectric strains in PZN–xPT SCs. We
mention that the problem of the ultrahigh piezoelectric strains (over 1%) in
rhombohedral PZN–xPT SCs (x < 0.09) with engineered DSs was earlier discussed
in paper [27] published before the discovery of the intermediate FE phases.
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The longitudinal strain behaviour at E || [001] is associated [27] with the
electric-field-induced rhombohedral–tetragonal phase transition that is accompanied
by the polarization-vector inclination in the rhombohedral phase towards [001].

According to experimental data on PZN–0.045PT SCs [26], the polarization
vector rotates from the [111] perovskite-cell direction (rhombohedral phase) to
[001] (tetragonal phase) via the intermediate MA phase, and this rotation is caused
by the electric field E || [001]. Contrary to PZN–0.045PT, the polarization-vector
rotation in PZN–0.08PT SC leads to the phase sequence [26] rhombohedral–MA–

MC–tetragonal, and this distinction is concerned with a closeness of the compo-
sition with x = 0.08 to the MPB. As seen from experimental results [26], the MC

and tetragonal phase coexist in PZN–0.08PT SCs under the electric field in the
range 0.7 MV/m < E < 2 MV/m.

Model concepts [28] on the rhombohedral–tetragonal interphase boundary in
domain-engineered PZN–xPT SCs near the MPB were developed to predict a
contribution Dd33 from the interphase-boundary displacement into the longitudinal
piezoelectric coefficient d33 = d33(E). Topolov and Turik [28] showed that the
Dd33/d33 ratio depends on E and can vary in a range 0.5–0.9. The very large d33
values in domain-engineered PZN–0.08PT SC are explained by the considerable
contribution Dd33/d33 � 0.8–0.9 [28] at the stage when the non-180° domains in the
rhombohedral phase are intensively replaced by the single-domain tetragonal phase
[27] induced in the field E || [001]. It should be added that the model concepts [28]
were applied [29] to describe the electric-field-induced rhombohedral–MC phase
transition in heavily twinned PZN–xPT SCs (x = 0.08–0.09) and to predict the
corresponding contribution Dd33 caused by the interphase-boundary displacement
in the field E || [001]. Evaluations [29] show that the Dd33/d33 ratio at the
coexistence of the rhombohedral and MC phases considerably depends on E and
takes values from about 0.5 to 0.9.

Below, we consider examples of the phase coexistence and stress relief in
PZN–xPT SCs under the electric field E || [001].

3.2.2.1 Elastic Matching of Phases at x = 0.08–0.09

To analyse the phase coexistence in PZN–xPT SCs near the MPB, we assume that a
stress-free sample is split into the non-180° domains. Possible orientations of these
domains are shown in Fig. 2.5 (rhombohedral phase, E = 0), Fig. 2.7 (rhombohe-
dral phase, E > 0) and Fig. 3.2 (tetragonal phase, domains 1–2 and MC phase,
domains 4–7). Volume fractions of the domains in the rhombohedral phase are
written in terms of the volume-fraction parameters xR and yR (see Sect. 2.2.1).
Domains 1 and 2 of the tetragonal phase are characterized by the volume fractions
nT and 1 − nT, respectively. Domains 4–7 of the MC phase are characterized by the
volume fractions defined in (3.2).

Interesting examples of elastic matching of the morphotropic phases along the
ZNSPs are given in Table 3.1. Calculations of the optimal volume fractions of the
domains were carried out [30] by using the room-temperature unit-cell parameters

82 3 Phase Coexistence Under Electric Field



of PZN–xPT from papers by Noheda et al. [14] (rhombohedral and monoclinic
phases, x = 0.08) and by Kuwata et al. [31] (tetragonal phase, x � 0.09).
Estimations of the unit-cell parameters in the tetragonal phase were made [30] by
using the experimental electric-field dependences [14] of the unit-cell parameters
aM(E), bM(E) and cM(E) in the MC phase. An extrapolation of the aM(E), bM(E) and
cM(E) curves to values obeying the condition aM(E′) = bM(E′) 6¼ cM(E′) corresponds
to the electric-field-induced phase transition to the tetragonal phase.

The calculated field dependences of the optimal domain volume fractions
(Table 3.1) are characterized by slight sensitivity to changes in the parameters xR
and yR (polydomain rhombohedral phase, see Fig. 2.5) and fM [polydomain MC

phase, see Fig. 3.2 and (3.2)]. Any variations of these parameters over a range [0, 1]
lead to negligible (less than 1%) changes in the optimal volume fractions listed in
Table 3.1. This constancy is caused by a weak influence of the shear unit-cell

Table 3.1 Elastic matching of FE phases in PZN–xPT SCs under the electric field E || [001]
(reprinted from paper by Topolov [30], with permission from the American Physical Society)

Coexisting phases x E (MV/m) Optimal volume fractions that correspond to
elastic matching along ZNSPs

Rhombohedral and
tetragonal

0.09 0 nT,opt = 0.620 or nT,opt′ = 0.380a

Rhombohedral and
MC

0.08 0 vM,opt = 0.775 or vM,opt′ = 0.225b

0.5 vM,opt = 0.801 or vM,opt′ = 0.199

1.0 vM,opt = 0.873 or vM,opt′ = 0.127

1.5 vM,opt = 0.980 or vM,opt′ = 0.020

2.0 vM,opt > 1 or vM,opt′ < 0, i.e., no ZNSPs are
possible

MC and tetragonal 0.08–
0.09

MC ! tetragonalc

0 nT,opt = 0.438 or nT,opt′ = 0.562

0.5 nT,opt = 0.461 or nT,opt′ = 0.539

1.0 nT,opt = 0.519 or nT,opt′ = 0.481

1.5 nT,opt = 0.588 or nT,opt′ = 0.412

2.0 nT,opt = 0.762 or nT,opt′ = 0.238

3.0–3.5 nT,opt � 1 or nT,opt′ � 0

Tetragonal ! MC
d

2.0 vM,opt = 0.429 or vM,opt′ = 0.571

1.5 vM,opt = 0.274 or vM,opt′ = 0.726

1.0 vM,opt = 0.245 or vM,opt′ = 0.755

0.5 vM,opt = 0.224 or vM,opt′ = 0.776

0 vM,opt = 0.217 or vM,opt′ = 0.783
aResults of calculations for xR = yR = 0 or xR = yR = 1 before the discovery of the
electric-field-induced MC phase, see also Table 2.3
bResults of calculations for xR = yR = 1/2 and fM = 1/2
cResults of calculations for vM = 1 and fM = 1/2
dResults of calculations for nT = 1 and fM = 1/2
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distortions of several domain types on elastic matching of the polydomain phases in
PZN–xPT SCs [30].

Table 3.1 contains two sets of values of the optimal volume fractions that range
from 0 to 1. These values were found without taking into account the energy of the
electrostatic interaction ‘FE domain—field’. However, this interaction becomes
very important in the tetragonal phase split into 90° domains with the spontaneous
polarization vectors Ps1 || OX3 (domain 1) and Ps2 || OX1 (domain 2). This implies
that increasing E at the electric-field-induced MC–tetragonal phase transition gives
rise to a wide propagation of the domains with Ps1 ||E|| OX3, and such behaviour
corresponds to the calculated nT,opt(E) dependence (Table 3.1) only. Contrary to
nT,opt(E), the nT,opt′(E) dependence in the section ‘MC ! tetragonal’ of Table 3.1 is
omitted because of nT,opt′ ! 0 with increasing E. The orientations of the interphase
boundaries, that separate the polydomain phases with the optimal volume fractions
from Table 3.1 and obey conditions (1.18) for ZNSPs, are close to {0kl} in the
perovskite unit cell.

The results on the rhombohedral–MC phase coexistence (Table 3.1) shed light on
peculiarities of behaviour of PZN–xPT SCs in the vicinity of E = E0 = 1.5 MV/m.
As shown in Table 3.1, values vM,opt � 1 and vM,opt′ � 0 correspond to a simplifi-
cation of the DS in the MC phase. Apparently, at E � 1.5 MV/m, SC samples
contain only two domain types in the MC phase, and no displacements of
(010) domain walls are expected [30]. Due to this simplification of the DS in the MC

phase, the unit-cell vectors of domains bMk are arranged to be parallel to either the
OX1 or OX2 axis all over the SC sample. The above-mentioned domain-wall dis-
placements at E < E0 are accompanied by strains nipq induced because aM 6¼ bM.
Estimations based on formulae from work [32] result in induced strains at absolute

values nipq

���
��� � (aM − bM)/bM. Taking into account the experimental electric-field

dependences [14] aM(E) and bM(E), we obtain nipqðE0Þ
���

���� 0:6%. This value is

comparable with the longitudinal piezoelectric strain n33 � 0.5% measured [33] on
PZN–0.08PT SC samples.

Specific jumps [34] in the piezoelectric coefficient d31(E) and elastic compliance
sE11(E) at E � E0 are also caused [30] by the simplification of the DS in the MC

phase. At the same time, no jump in the dielectric permittivity er33(E) takes place at
E � E0, and this constancy may be explained in terms of the unit-cell vectors of the
MC phase. The simplification of the DS does not affect the arrangement of the
unit-cell vectors cMk (see domains 4–7 in Fig. 3.2) because cMk || E || [001] in all the
domain types. The spontaneous polarization vector Psk of the domain of the kth type
rotates [13] from the [101] to [001] direction of the perovskite unit cell, and the
angle (Psk,^ E) remains constant for all the domain types at E = const. As a con-
sequence, dielectric response of each domain is equal along the OX3 axis at E � E0.
It should be added that appreciable changes in the strain-field loop n33(E) [33] and
the unit-cell parameter cM(E) [14] are also registered in a vicinity of E0. On
increasing the field strength (E � E0), the n33(E) dependence is characterized by a
considerable decrease in the slope and gives rise to a non-monotonic dependence of
the piezoelectric coefficient d33(E) [35].
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Finally, the optimal volume fractions of domains (Table 3.1) at small E values
obey conditions [29]

nT ;opt Rh�Tgð Þ � vM;opt Rh�Mcð Þ:v0M;opt Tg�Mcð Þ ð3:4Þ

and

n0T ;opt Rh�Tgð Þ � vM;opt Rh�Mcð Þ:nT ;opt Mc�Tgð Þ; ð3:5Þ

where abbreviations Rh, Tg and Mc denote the rhombohedral, tetragonal and MC

phases, respectively. So, according to data from Table 3.1, the left and right parts of
(3.4) at E = 0 equal 0.620 and 0.775�0.783 (i.e. about 0.607), respectively. On
increasing E, the right part of (3.5) would equal 0.622 (at E = 0.5 MV/m), 0.659 (at
E = 1.0 MV/m), etc. As follows from Table 3.1, the left and right parts of (3.5) at
E = 0 equal 0.380 and 0.339, respectively. At E = 0.5 MV/m and 1.0 MV/m, the
right part of (3.5) equals 0.369 and 0.459, respectively. An interpretation of (3.4)
and (3.5) is given in Appendix B by taking into account the mutual arrangement of
the spontaneous polarization vectors of individual domains of the phases coexisting
in PZN–xPT SCs under the electric field E || [001].

3.2.2.2 Diagrams at x = 0.045

In the present subsection we consider the phase coexistence of the tetragonal and
MA phases at the electric-field-induced phase transition. It is assumed that these
phases are split into the non-180° domains shown schematically in Fig. 3.5a, b and
E || [001] || OX3. According to experimental data [26], the tetragonal–MA phase
transition in PZN–0.045PT SC occurs with increasing field near E � 1.1 MV/m at
room temperature. It is reasonable to assume that the tetragonal phase being stable
at higher fields is either a single-domain state or splits into the 90° domains with a
significant prevalence for the domain type with the spontaneous polarization vec-
tors PT,1 ||E|| [001] (Fig. 3.5a), i.e. at the volume fraction nT ! 1. The diagrams
(Fig. 3.6) calculated for this phase coexistence show, that at nT ! 1, the ZNSPs
would appear only in narrow ranges of parameters (fMA, vMA). We remind that
conditions (1.18) for ZNSPs are valid at the boundaries between regions I and III in
the diagrams shown in Fig. 3.6. In the case of volume fractions nT < 0.9, the MA

phase is split into the domains shown in Fig. 3.5b, and with increasing nT, the
distinct prevalence of one domain type over others is expected (cf. Fig. 3.6b, c) so
that conditions fMA ! 0 and vMA ! 1, or fMA ! 1 and vMA ! 0 are valid. The
possibility of the coexistence of the two single-domain phases at the induced phase
transition is energetically close to the required conditions (1.18) for ZNSPs. Taking
into account the domain orientations shown in Fig. 3.5a, b, one can show that the
formation of the interphase boundaries at significant stress relief is caused by the
following relations between the unit-cell parameters at the tetragonal–MA phase
transition in PZN–0.045PT SC [21]:
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Fig. 3.6 Domain state–interface diagrams calculated for the electric-field-induced tetragonal–MA

phase transition in PZN–0.045PT SCs with E || [001]. Graphs (a), (b) and (c) correspond to the
volume fraction of the 90° domains nT = 0.90, 0.95 and 0.99, respectively. Conditions (1.14) and
(1.16) are valid in regions I and III, respectively (reprinted from paper by Topolov et al. [21], with
permission from the American Institute of Physics)
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aT\aMA; aT ¼ bMA and cT [ cMA: ð3:6Þ

Earlier we mentioned elastic matching of the untwined antiferroelectric P2221
and Pba2 phases in PbHfO3 SCs and elastic matching of the untwined FE P4mm
and Cm phases in PZT (see Sect. 2.1.2)—in both materials conditions (1.18) for
ZNSPs are valid at E = 0. An examination of experimental data [36] shows that the
unit-cell parameters of PZT with x = 0.46 (i.e. a composition just at the MPB
between the tetragonal and MA phases) obey conditions (3.6). However, contrary to
conditions (3.6), the perovskite unit-cell parameter b of PbHfO3 undergoes a jump
at the first-order phase transition P2221 ! Pba2 [37].

3.3 Domain State–Interface Relationships at Electric
Field E || [110]

Experimental results on heterophase PMN–xPT and PZN–xPT SCs in the electric field
E || [110] were published in a series of papers (see, e.g. [38–42]). Liu and Lynch studied
[40] the polarization switching and phase transition in PZN–0.045PT SCs under the
electric field E || [110]. The electric-field-induced rhombohedral–orthorhombic phase
transition is observed in PMN–0.30PT [38, 39] and PZN–0.045PT SCs at E || [110]
[40]. The rotation of the spontaneous polarization vector at this phase transition is
explained in terms of work [13].

Examples of DSs observed in the [110] poling direction of PZN–0.045PT SC are
given in papers [41, 42]. It is shown that cracks and domain walls may introduce
each other in an interactive way [41]. The phase sequences studied on cooling the SC
samples under the electric field E || [110] are represented as follows: cubic !
tetragonal! orthorhombic!MB (PMN–0.30PT [11] and PZN–0.045PT [43]) and
cubic ! tetragonal ! orthorhombic (PMN–0.35PT SC) [16]. Yao et al. underline
that experimental results [43] on the phase sequence in PZN–0.045PT SCs differ
from the phase sequence observed by Renault et al. [44]. As noted by Yao et al.,
PZN–0.045PT SC has an intermediate state that is different from the ground state
observed on cooling at E = 0. This intermediate state is concerned with the con-
straint imposed by the field E || [110] [43]. Yao et al. revealed the MB–orthorhombic
phase coexistence so that a certain volume fraction of the orthorhombic phase
transforms to the MB phase immediately. After the field removal of E, some volume
fraction persists as orthorhombic. Based on these and other experimental results, the
authors of work [43] concluded that the MB phase is the ground-state condition for
the studied (110) SCs.

Below we consider examples of the domain state–interface diagrams related to
the phase transitions at E || [110]. Orientations of the non-180° domains are intro-
duced with respect to the perovskite unit-cell axes. In the tetragonal phase, there are
two domain types shown in Fig. 3.5a. The orthorhombic phase is split into the
domains with the spontaneous polarization vectors PO

(1) || [110] (volume fraction nO)
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and PO
(2) || 011

� �
(volume fraction 1 − nO). Domains in the MB phase are charac-

terized by the spontaneous polarization vectors PMB
(1) || [11p] (volume fraction nMB)

and PMB
(2) || 1�1�p½ � (volume fraction 1 − nMB). Distortion matrices of the aforemen-

tioned polydomain phases can be written by analogy with (2.4) and (2.8). The
experimental unit-cell parameters of PMN–0.30PT and PMN–0.35PT SCs [11, 16]
are used to build the domain state–interface diagrams for the phase coexistence at
E || [110].

The tetragonal–orthorhombic phase transition in PMN–0.30PT SC cooled at
E || [110] can be accompanied by the formation of the interphase boundary that
obeys conditions (1.18) for ZNSPs at the volume fraction nO = 0.587, 0.709 or 1
(Fig. 3.7a). We note that the value nO = 1 is related to the single-domain
orthorhombic phase with the spontaneous polarization PO

(1) ||E|| [110]. At the
tetragonal–orthorhombic phase transition in PMN–0.35PT SC, the formation of the

Fig. 3.7 Domain state–interface diagrams of interfaces calculated for the electric-field-induced
phase transitions in PMN–xPT SCs with E || [110]. Graphs (a) and (b) correspond to the
tetragonal–orthorhombic phase transition at x = 0.30 and 0.35, respectively. Graph (c) corresponds
to the orthorhombic–MB phase transition at x = 0.30. Conditions (1.14), (1.15), (1.16) and (1.17)
are satisfied in regions I, II, III and IV, respectively (reprinted from paper by Topolov [45], with
permission from the American Institute of Physics)
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ZNSPs is possible at small changes in the volume fraction nT only. As seen from
Fig. 3.7b, the values nT = noptT almost correspond to joints of regions I, II and III, or
I, II and IV. In the diagrams (Fig. 3.7a, b), there are the long lines that separate
regions I and III and, therefore, obey conditions (1.18). It seems to be probable that
a minor change in the DS in the tetragonal phase would promote the appearance of
the single-domain orthorhombic phase with PO

(1) || E. Indeed, the single-domain
orthorhombic phase is observed in PMN–xPT SCs (x = 0.30 [11], 0.33 [9] and 0.35
[16]) cooled in the field E || [110].

The diagram calculated for the orthorhombic–MB phase transition (Fig. 3.7c)
allows two variants of ZNSPs. If the volume fraction nO = 1 (as found for the
tetragonal–orthorhombic phase transition, see Fig. 3.7a), then the interphase
boundary between the orthorhombic and MB phases becomes the ZNSP at the
volume fraction nB = 0.576 or 0.801 (see Fig. 3.7c, right side). At nO = 0.587 or
0.709 (that is concerned with the ZNSP at the tetragonal–orthorhombic phase
transition in PMN–0.30PT SC), the interphase boundary between the orthorhombic
and MB phases does not obey conditions (1.18) for ZNSPs, however, the ZNSPs
take place at nO < 0.55 (see lines between regions I and III in Fig. 3.7c, middle
part). This means that the coexistence of the orthorhombic and MB phases at
complete stress relief needs an additional minor DS rearrangement that may be
stimulated by the electric field applied to the SC sample.

3.4 Domain State–Interface Relationships at Electric
Field E || [111]

There is a restricted group of papers that report results on behaviour of PMN–xPT,
PZN–xPT and other FE solid solutions under the electric field E || [111]. Among the
publications on this subject we mention papers [46–49]. Phase transitions were
experimentally studied [47] in electric-field-cooled PMN–0.30PT SCs at E || [111].
The corresponding phase sequence observed at E = 0.2 MV/m is represented as
follows: cubic ! tetragonal ! orthorhombic ! MB. The unit-cell parameters of
electric-field-cooled PMN–0.30PT SCs were studied in the wide temperature range
[47]. An experimental study of the DS and phase transitions in PZN–0.08PT SCs
and strain-field loops measured on these SC samples at E || [111] was carried out in
work [48]. The most probable version of the phase sequence in PZN–0.08PT SCs is
orthorhombic!MB ! rhombohedral with the rotation of the polarization vector in
the 101

� �
plane of the perovskite unit cell [48], and this sequence is consistent with

the well-known concepts [13]. The rhombohedral phase arising in PZN–0.08PT
SCs under the electric field is characterized as quasi-monodomain [48]. The DS was
also studied [49] in PZN–0.05PT SCs under the electric field E || [111]. According
to Lee et al., the field applied along this perovskite unit-cell direction enhances the
rhombohedral distortion of the crystal structure and stabilizes domain boundaries
oriented normal to the [110] direction. Hereby the band-shaped domain pattern in
the rhombohedral phase is present after the [111]-field removal [49].
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In this section, we analyse heterophase states and DSs in PMN–0.30PT SCs
cooled under E || [111]. Domain orientations in the studied FE phases (Fig. 3.8a)
suggest that the electric field E || [111] would promote the formation of three
non-180° domain types having equivalent orientations relative to the E vector in the
tetragonal, orthorhombic or MB phase. Angles between the spontaneous polariza-
tion and electric-field vectors are determined [46] for the jth domain type in the
tetragonal, orthorhombic and MB phases as

wT ¼ ðPTj;
^ EÞ ¼ arccosð1=

ffiffiffi
3

p
Þ; wO ¼ ðPOj;

^ EÞ ¼ arccosð
ffiffiffiffiffiffiffiffi
2=3

p
Þ and

wMB ¼ ðPMBj;
^ EÞ ¼ arccos ðpþ 2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðp2 þ 2Þ

ph i
;

ð3:7Þ

respectively, where j = 1, 2 and 3, and 0 < p < 1. The angles from (3.7) do not
depend on the orientation of domains in their respective phase, and such an inde-
pendence violates at other orientations of the E vector, e.g. at E || [001] or E ||
[110]. It is assumed that the perovskite unit-cell vectors (aj, bj, cj) of the individual
domain types shown in Fig. 3.8, a are arranged approximately along the following
directions: ([100], [010], [001]) for j = 1, ([001], [100], [010]) for j = 2, and ([010],
[001], [100]) for j = 3.

Distortion matrices of the tetragonal, orthorhombic and MB phases are given by

NðTÞ
kl

���
���

���
��� ¼ mT

ea 0 0

0 ea 0

0 0 ec

0
B@

1
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1 0 0

0 cosuT sinuT

0 � sinuT cosuT

0
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1
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0 ea 0

0 0 ec

0
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1
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þ 1� mT � nTð Þ
cosuT 0 � sinuT

0 1 0

sinuT 0 cosuT

0
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0 0 ea

0
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ð3:8Þ

NðOÞ
kl

���
���

���
��� ¼ mO
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0 ga 0

0 0 gc

0
B@

1
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1 0 0

0 cosuO sinuO

0 � sinuO cosuO

0
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1
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ga 0 0

0 gc 0

0 0 ga

0
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1
CA

þ 1� mO � nOð Þ
cosuO 0 � sinuO

0 1 0

sinuO 0 cosuO

0
B@

1
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gc 0 0

0 ga 0

0 0 ga

0
B@

1
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ð3:9Þ

and
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Fig. 3.8 Schematic drawing of non-180° domain orientations in the perovskite unit cell (a) and
domain state–interface diagrams calculated for the cubic–tetragonal (b), tetragonal–orthorhombic
(c–e) and orthorhombic–MB (f–h) phase transitions in field-cooled PMN–0.30PT SCs with the
electric field E || [111]. Spontaneous polarization vectors PTj, POj, and PMBj (j = 1, 2 and 3) are
related to the domains in the tetragonal, orthorhombic and MB phases, respectively. Co-ordinate
axes OXk are parallel to the perovskite unit-cell axes in the cubic phase as follows: OX1 || [100],
OX2 || [010] and OX3 || [001]. Conditions (1.14), (1.15), (1.16) and (1.17) are valid in regions I, II,
III and IV, respectively (reprinted from paper by Topolov et al. [46], with permission from IOP
Publishing)
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NðMBÞ
kl
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���
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0 cosuMB sinuMB
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ð3:10Þ

respectively. In (3.8) mT and nT are the volume fractions of the first and second
domain types, and ea and ec are the unit-cell distortions expressed in terms of the
unit-cell parameters of the tetragonal phase. The angle uT = arccos[2eaec/(ea

2 + ec
2)]

from (3.8) is introduced to account for rotations of the crystallographic axes of the
adjacent domains (see Sect. 2.1). The volume fractions mT and nT from (3.8) obey
the inequality

Fig. 3.8 (continued)

92 3 Phase Coexistence Under Electric Field



0�mT þ nT � 1: ð3:11Þ

The similar inequalities,

0�mO þ nO � 1 ð3:12Þ

and

0�mMB þ nMB � 1; ð3:13Þ

are introduced for the volume fractions of the domains in the orthorhombic and MB

phases, respectively. The rotation angles uO = arccos [2ηaηc/(ηa
2 + ηc

2)] and
uMB = arccos [2kakc/(ka

2 + kc
2)] from (3.9) and (3.10), respectively, are defined by

analogy with uT.
The domain state–interface diagrams (Fig. 3.8b–h) were built using the unit-cell

parameters [47] of PMN–0.30PT SC cooled under the electric field E || [111]. Due
to a lack of experimental values of the monoclinic angle (bMB) or the shear angle
(xMB = 90° − bMB) as a function of temperature in the MB phase, the values of xMB

were taken from a range of 0.04°–0.10°. These values are consistent with the
experimental data known [16] for monoclinic PMN–xPT SCs near the MPB at
E = 0. The validity of conditions (3.11)–(3.13) means that all the regions and
boundaries in the diagrams are to be considered in the triangle OHF shown, for
example in Fig. 3.8b, f–h.

The cubic–tetragonal interphase boundaries can be determined from the diagram
in Fig. 3.8b. This diagram was calculated using the distortion matrix ||Nkl

(T)|| from
(3.8). Conditions (1.18) for ZNSPs are valid at the boundaries separating regions I
and III (see Fig. 3.8b), and the corresponding optimal volume fractions of the 90°
domains in the tetragonal phase are mopt

T = 0.384 or 0.616, and noptT = 0.384 or
0.616. These values are in full compliance with the predictions based on formulae
[50] for any two types of the 90° domains (see Fig. 3.8a) in the tetragonal phase.
The lines defined by conditions mT = mopt

T and 0 � nT � noptT , or nT = noptT and
0 � mT � mopt

T (see Fig. 3.8b) reflect the important role of the two 90° domain
types in stress relief. The third 90° domain type would slightly affect the balance of
distortions in the polydomain tetragonal phase because of the presence of two
independent linear unit-cell distortions in each domain type [see elements ea and ec
in matrices from (3.8)].

Before the consideration of the tetragonal–orthorhombic phase coexistence, we
assume that the volume fractions mT = mopt

T and nT = noptT of the domains in the
tetragonal phase occur at the boundaries between regions I and III in Fig. 3.8b, and
that these volume fractions remain unchanged prior to the tetragonal–orthorhombic
transition on cooling the SC sample. Distortion matrices of the coexisting phases
are taken from (3.8) and (3.9). The diagrams represented in the (mO, nO)
co-ordinate plane contains a few short lines that separate regions I and III
(Fig. 3.8c–e) and obey conditions (1.18) for ZNSPs. Independent of the values for
(mopt

T , noptT ) pairs at the boundary between regions I and III in Fig. 3.8b, conditions
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(1.18) are valid at the coexistence of the polydomain tetragonal and near
single-domain orthorhombic phases. As follows from paper [46], inequalities
|OA| < 0.01, |OB| < 0.01, |CE| < 0.01, |CF| < 0.01, |GH| < 0.10, and |GK| < 0.01
(see Fig. 3.8, c–e) hold for all (mopt

T , noptT ) points lying on boundaries between
regions I and III in Fig. 3.8b. This means that the formation of the single-domain
orthorhombic phase would result only in a slightly stressed state. Such favourable
conditions for stress relief in heterophase PMN–0.30PT SCs and the ‘fine’ struc-
ture of the diagrams in Fig. 3.8c–e for the near single-domain orthorhombic phase
states stems from the equality of the perovskite unit-cell parameters aT = cO [47] at
the phase transition. We also note that the like phase coexistence under the electric
field was not studied in SCs of related FE solid solutions.

Further cooling the PMN–0.30PT SC sample under the electric field E || [111]
results in the orthorhombic–MB phase transition. Taking into account data in
Fig. 3.8c–e, we assume that the orthorhombic phase becomes single-domain and is
characterized by one of the following distortion matrices:

NðO;IÞ
kl

���
���

���
��� ¼

ga 0 0
0 ga 0
0 0 gc

0
@

1
A; NðO;IIÞ

kl

���
���

���
��� ¼

ga 0 0
0 gc 0
0 0 gc

0
@

1
A or N O;IIIð Þ

kl

���
���

���
���

¼
gc 0 0
0 ga 0
0 0 ga

0
@

1
A: ð3:14Þ

While the orientations of the spontaneous polarization vectors POj of domains
provide wO = const for j = 1, 2 and 3 [see (3.7)], one can consider three possible
variants of elastic matching of the single-domain orthorhombic and polydomain MB

phases. The corresponding diagrams are shown in Fig. 3.8f–h. The single-domain
orthorhombic phase is described by one of the distortionmatrices from (3.14): ||Nkl

(O,I)||
(Fig. 3.8f), ||Nkl

(O,II)|| (Fig. 3.8g) or ||Nkl
(O,III)|| (Fig. 3.8f). The diagrams in Fig. 3.8f–h

are simplified, relative to those shown in Fig. 3.8c–e, because of equalities
aO = bO = aMB = bMB [47]. Irrespective of the orientation of the POj vectors [see
Fig. 3.8a and (3.14)], theMB phase promotes the formation of ZNSPs over the almost
entire range of the volume fractions nMB (Fig. 3.8f) or mMB (Fig. 3.8g, h). Of par-
ticular interest are the points (mMB = 0, nMB = 1) in Fig. 3.8f and (mMB = 1, nMB = 0)
in Fig. 3.8g. These points correspond to the single-domain MB phase coexisting with
the single-domain orthorhombic phase on [111] field cooling. Thus, the rotation of the
spontaneous polarization vector towards E || [111] (Fig. 3.8a) leads to the distinct
simplification of the DSs in the low-temperature phases of PMN–0.30PT SCs. In
other words, despite the equal angles between the spontaneous polarization and
electric-field vectors [see (3.7)] in each of the FE phases of PMN–0.30PT SC, changes
in its unit-cell parameters promote the simplification of the DSs in the coexisting
orthorhombic andMB phases. This simplification takes place as long as the angleswO

and wMB from (3.7) are considerably less than wT. These and other results [46]
undoubtedly suggest that there is an essential correlation between the domain states
and unit-cell behaviour in heterophase PMN–0.30PT SCs under the electric field
E || [111].
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3.5 Role of Intermediate Phases in Heterophase States

In Chap. 2 and this chapter we considered various two-phase states and stress-relief
ways in FE solid solutions near the MPB. These states are observed at the first-order
structural (polymorphic, morphotropic and electric-field-induced) phase transitions,
including those on cooling in the electric field. In conclusion, we focus attention on
the following items.

(i) Possibilities of stress relief at elastic matching of phases in PZT solid
solutions are concerned with the non-180° domains in the tetragonal or MA

phase. The intermediate MA phase promotes the effective stress relief in
heterophase states near the MPB in a wide temperature range. The line of
ZNSPs determined for heterophase PZT compositions (x � 0.46–0.48) is
parallel to the tetragonal–MA MPB at the x–T diagram.

(ii) Behaviour of the unit-cell parameters in the phase-transition region prede-
termines the outcome of the formation of various DSs and heterophase
structures. Information about these structures is important for the interpre-
tation of experimental results in wide ranges of temperature T, molar con-
centration x and electric field E.

(iii) Despite structural distinctions, the intermediate monoclinic phases appearing
in PMN–xPT and PZN–xPT SCs close to the MPB favour elastic matching of
FE phases from different symmetry classes either along ZNSPs or under
conditions for significant stress relief.

(iv) Different scenarios of stress relief in the heterophase PMN–xPT system with
complex DSs are proposed by taking into account peculiarities of the
unit-cell behaviour. The correlation between the non-180° DSs in different
heterophase states of studied SCs stems from the co-ordinated unit-cell
behaviour.

(v) The model of interpenetrating phases in the MPB region is well suited to
various two-phase states (rhombohedral + MC, MC + tetragonal and
MB + MC) that take place in the PMN–xPT system. Hereby, the intermediate
polydomain MC phase plays the important role in forming the various het-
erophase states and provides a unique link favouring effective stress relief in
different variants of the phase coexistence.

(vi) Different phase sequences observed in PMN–xPT SCs under the electric field
E || [001], E || [110] or E || [111] and the related domain state–interface
diagrams enable us to conclude that the simplification of the DS and even the
formation of the single-domain phase proceed under conditions for complete
stress relief, and these conditions are valid in the wide temperature range
covering a few phase transitions.

In general, the results on the phase coexistence and stress-relief conditions in FE
solid solutions at E = 0 (Chap. 2) and E 6¼ 0 (this chapter) supplement each other.
We believe that the crystallographic method developed in our recent research and
the domain state–interface diagrams put forward to describe various two-phase
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systems will stimulate new experimental and theoretical studies of FE solid solu-
tions, their crystal structure, DS, phase states and physical properties. This method
enables us to understand how a metastable state in a phase-transition region can be
stabilized by elastic interactions between phases and/or domains of several types,
and how this metastability can be altered by changes in domain patterns, temper-
ature T, molar concentration x and electric field E.
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Chapter 4
Three-Phase States

Abstract Examples of the three-phase states in ferroelectric solid solutions are
described in terms of the crystallographic and thermodynamic methods. Model
concepts concerned with a series of interphase boundaries that obey conditions for
complete stress relief in heterophase and heavily twinned single crystals are
developed to highlight the specifics of the three-phase state and the role of specific
domain types in stress relief. Conditions for complete stress relief are discussed for
sole solid-solution compositions near the morphotropic phase boundary. Diagrams
that describe volume fractions of the phases coexisting in ferroelectric solid solu-
tions at complete stress relief in three-phase samples are put forward.

Experimental studies on FEs and related materials show that they are characterized
by various heterophase states. Among the heterophase states that have been studied
in the last decades, the three-phase states are of particular interest for a number of
reasons. First, the three-phase states appear at almost equal volume densities of the
free energy of the coexisting phases. This phase coexistence is often affected by an
internal stress field [1–4] caused by jumps in the unit-cell parameters at the
first-order phase transition. Changes in temperature and molar concentration favour
the appearance of the three-phase states in perovskite-type solid solutions [5–9] near
the MPB. Second, the three-phase states in FEs and related materials are observed, as
a rule, in fairly narrow temperature and molar-concentration ranges [1, 5–10], under
electric or mechanical fields [1] on certain directions, etc. Third, effective stress relief
in the three-phase region promotes a decrease in the energy of the heterophase
system as a whole and, thereby, plays an important role in the kinetics of the
structural phase transitions. Fourth, the presence of the neighbouring phases with
different types of domains (including the intermediate FE phases in perovskite-type
PZT, PMN–xPT, PZN–xPT, and (1 − x)BiFeO3 − xPbTiO3) [5, 7–11] makes the
problem of the three-phase states more complicated. This circumstance stimulates
the study of possible variants of domain orientations and elastic matching to describe
the phase coexistence.

In this context, it becomes timely to study the three-phase states and conditions
for the stress relief in the FE solid solutions near the MPB, where the coexistence of
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phases from different symmetry classes is observed. In this chapter, we analyse
some examples of the three-phase states and develop model concepts concerned
with a presence of a series of interphase boundaries that obey conditions for ZNSPs
in heterophase and heavily twinned SCs.

4.1 Model of Three-Phase Single Crystal

The crystallographic description of the three-phase states and conditions for ZNSPs
in a SC sample was first proposed in paper [5] on the phase coexistence in PbZrO3

and PZT SCs at x � 0.22. The study of the three-phase states in these SCs was
carried out in the 1990s, i.e. before the discovery of the intermediate MA phase in
PZT (see Sect. 2.1.2). It is assumed that a phase I coexists with phases II and III
(Fig. 4.1a). These phases appear and grow in adjacent regions of the SC sample.
The distortion matrices of the phases I, II and III in the stress-free state are
Mij

�� ��; Nij

�� �� and Pij

�� ��, respectively. An influence of a mechanical stress field of
the phase I (the initial stress-free phase) on the phases II and III is allowed for in the
distortion matrices

Rij

�� �� ¼ Nig

�� �� � Mgj

�� �� ð4:1Þ

(phase II) and

Lij
�� �� ¼ Pig

�� �� � Mgj

�� �� ð4:2Þ

(phase III). The following two variables are introduced: m and 1 − m are volume
fractions of the phases I and II, respectively, on the left from the boundary CD
(Fig. 4.1a) and n and 1 − n are volume fractions of the phases I and III, respec-
tively, on the right from the boundary CD. The distortion matrix of the region I–II
on the left from the boundary CD is given by

K 1ð Þ
ij

��� ��� ¼ m Mij

�� ��þ 1�mð Þ Rij

�� ��; ð4:3Þ

where Rij

�� �� is taken from (4.1). The region I–III on the right from the boundary CD
is characterized by the distortion matrix

Kð2Þ
ij

��� ��� ¼ n Mij

�� ��þ 1�nð Þ Lij
�� ��; ð4:4Þ

where Lij
�� �� is defined in (4.2). Conditions for ZNSPs along the interphase

boundaries AB, CD and EF (Fig. 4.1a) are represented in the form similar to that in
conditions (1.5) and (1.6):
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det DðI�IIÞ
ij

��� ��� ¼ 0 and DðI�IIÞ
ij

h i2
�DðI�IIÞ

ii DðI�IIÞ
jj � 0; ð4:5Þ

det DðI�IIIÞ
ij

��� ��� ¼ 0 and DðI�IIIÞ
ij

h i2
�DðI�IIIÞ

ii DðI�IIIÞ
jj � 0; ð4:6Þ

det Dij

�� �� ¼ 0 and Dij
� �2�DijDjj � 0; ð4:7Þ

Fig. 4.1 Schematic arrangement of phases I–III that are separated by planar interphase boundaries
(a), three-phase state in PbZrO3 SC (b) and diagram that links the volume fractions m and n [see
(4.3) and (4.4)] at the coexistence of the cubic (1), rhombohedral (2) and orthorhombic (3) phases
in PbZrO3 SC (c). Volume fractions t and u take the following values: t = 0.1 and u = 0.116
(curve 1), t = 0.3 and u = 8.97 � 10−2 (curve 2), t = 0.3 and u = 0.884 (curve 3), and t = 0.3 and
u = 0.910 (curve 4) (b and c reprinted from paper by Topolov et al. [5], with permission from
Taylor & Francis)
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where DðI�IIÞ
ij ¼ P3

k¼1 RikRjk�MikMjk
� �

(phase coexistence I–II, interphase

boundary AB in Fig. 4.1a), DðI�IIIÞ
ij ¼ P3

k¼1 LikLjk�MikMjk
� �

(phase coexistence

III–I, interphase boundary EF in Fig. 4.1a) and Dij ¼
P3

k¼1 Kð2Þ
ik Kð2Þ

jk � Kð1Þ
ik Kð1Þ

jk

� �
(phase coexistence I–II and III–I, interphase boundary CD in Fig. 4.1a) are written
in terms of the matrix elements from (4.1) to (4.4) by analogy with (1.7). The
matrix elements from (4.7) are written in the general form [5] as
Dij = aij + bijn + cijn

2
– dijm – eijm

2, where aij, bij, cij, dij and eij are functions of
the unit-cell parameters of the phases I–III and depend on DSs in these phases.
Taking into account that determinant from (4.7) is a polynomial of degree 6 in
terms m and n, we note that no algebraic formulae for roots of (4.7) are available. In
this situation, one can vary the volume fractions m and n to obey conditions (4.5)–
(4.7) for complete stress relief in the three-phase SC sample.

4.2 Application of Model Concepts to PbZrO3 and Pb(Zr1
−xTix)O3 (x � 0.22)

4.2.1 Phase Coexistence in PbZrO3 Single Crystals

In PbZrO3 SCs, two first-order phase transitions are observed in the relatively
narrow temperature range (about 10 K [12]) below T = 500 K. On cooling the
paraelectric cubic (Pm3m) phase transforms into the FE rhombohedral (R3m) phase
at, and then the R3m phase transforms into the antiferroelectric orthorhombic
(Pbam) phase [12]. The three-phase state (see, for instance, Fig. 4.1b) occurs due
to some diffuseness and hysteresis of the phase transitions. As a rule, the
three-phase states in PbZrO3 SCs are characterized by instability as a result of its
considerable sensitivity to external and internal stress fields in the SC sample. The
internal stress field caused by jumps in the unit-cell parameters of the coexisting
phases influences the domain and interphase boundaries, the distribution of
domains over the sample and the temperature range of the phase coexistence.
According to experimental data [12], this temperature range can be from 0 to 10 K.
The internal stress field can also lead to the formation of metastable domain
patterns without distinct and stable domain boundaries therein. Such behaviour of
PbZrO3 SCs is accounted for by two main reasons as follows. First, there is a small
difference (about 6.3 J/mol [13]) between the free energies of the FE rhombohedral
and antiferroelectric orthorhombic phases. Second, high sensitivity of the tem-
perature range, where the FE phase is stable, to the mechanical load. For example,
a hydrostatic pressure of 0.5 kbar leads to a contraction of the 5 K-range of the
phase existence to 0 K [14].
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As is known from the crystallographic study of the two-phase states in PbZrO3

SCs, both the cubic–rhombohedral [15] and rhombohedral–orthorhombic inter-
phase boundaries obey conditions (1.5) and (1.6) for ZNSPs at fixed volume
fractions of the non-180° domains (twin components). The domains in the
rhombohedral phase are characterized by the spontaneous polarization vectors
PR1(Pr; −Pr; Pr) (volume fraction xR = 0.248) and PR2(−Pr; Pr; Pr) (volume
fraction 1 – xR = 0.752) in the rectangular coordinate system (X1X2X3) with the
axes parallel to the perovskite unit-cell axes. The orthorhombic phase is split into
the twins with the spontaneous antipolarization vectors ±PO1(0; P; P) (volume
fraction u = 0.868) and ±PO2(P; 0; P) (volume fraction 1 − u = 0.868). The
violation of conditions (4.7) at the aforementioned xR and u values, 0 < m < 1 and
0 < n < 1 does not lead to the formation of ZNSPs at the interphase boundary CD
shown in Fig. 4.1a. The presence of the excessive stress can be the essential
reason for the unstable three-phase states observed in PbZrO3 SCs [5].

One can assume that the relatively small stress is present in the SC sample at the
initial stage of the phase transition. This stress may be concerned with inclusions of
the metastable phase or with structural defects in the initial cubic phase. The
metastable phase can influence the balance of distortions and validity of conditions
(4.5)–(4.7) below the Curie temperature, and such a role is suitable for the
orthorhombic phase with the anisotropic spontaneous strains. The diagram shown
in Fig. 4.1c was calculated under conditions that the inclusion of the orthorhombic
phase with ±PO1(0; P; P) and the volume fraction t in the cubic-phase matrix
favours the validity of conditions (4.5)–(4.7) at the interphase boundaries AB, CD
and EF (Fig. 4.1a). It is seen that the twins with ±PO1 and ±PO2 in the
orthorhombic phase (volume fractions u and 1 − u, region II in Fig. 4.1a) con-
siderably influence the relationship between the volume fractions m and
n (Fig. 4.1c). In our opinion, this influence is again concerned with the anisotropic
spontaneous strains of the orthorhombic phase, including that split into the
non-180° domains (twins). Contrary to the orthorhombic phase, changes in the
volume fraction xR of domains in the rhombohedral phase (region III in Fig. 4.1c)
do not affect the n(m) dependence appreciably. It should be noted that the
approximation of the inclusion with the small volume fraction u enables us to treat
the n(m) dependence as a sufficiently correct one at m ! 1 and n ! 1. The dashed
curves in Fig. 4.1c exhibit the general tendency of the three-phase coexistence and
the possibility of the appearance of the metastable orthorhombic phase prior to the
formation of the intermediate rhombohedral phase.

As follows from experimental data [5] on phase transitions in plate-like PbZrO3

SCs, the planar interphase boundaries are not observed in the three-phase samples.
The formation of the interphase boundaries of the complicated configuration (see,
for instance, Fig. 4.1b) is concerned with the internal mechanical stress field, and
stress-relief possibilities remain restricted at various domain (twin) patterns in the
coexisting phases.
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4.2.2 Phase Coexistence in Pb(Zr1−xTix)O3 Single
Crystals (x � 0.22)

Conditions (4.5)–(4.7) were also examined by using the experimental data [16] on
the unit-cell parameters of PZT SCs with x � 0.22. This composition is located in
the x–T diagram of PZT SCs [17] close to the triple point (x = xtr and T = Ttr)
where the paraelectric cubic (Pm3m), FE rhombohedral (R3m) and FE tetragonal
(P4mm) phases coexist (see also Fig. 2.1a). The polydomain rhombohedral phase
cannot be elastically matched with the cubic phase along the ZNSP, while the cubic
and polydomain tetragonal phase are matched along the ZNSP. The corresponding
optimal volume fraction of the 90° domains in the tetragonal phase (see possible
orientations of the domains in Fig. 2.2b, c) equals either 0.273 or 0.727 [5].
Interrelations between the unit-cell parameters suggest that single-domain regions
of the tetragonal phase (region II in Fig. 4.1a) can be matched along the ZNSP with
the single-domain rhombohedral phase (region III in Fig. 4.1a) in the presence of
relatively small regions (about 7% in the volume) of the cubic phase (region I in
Fig. 4.1a).

The phase sequence (cubic + tetragonal) ! rhombohedral is consistent with the
presence of the beak-like bend of the rhombohedral–tetragonal (R3m − P4mm)
phase boundary near the triple point towards the rhombohedral phase (see [17] and
Fig. 2.1a). In PZT SC with x � 0.22, the tetragonal phase plays the role of the
intermediate phase between the vast regions of thermodynamic stability of the cubic
and rhombohedral phases and, therefore, promotes the effective stress relief in the
heterophase system.

4.3 Application of Model Concepts to
(1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3

Three-phase states were studied in PMN–xPT solid solutions near the MPB (see,
e.g. [7, 10, 18]). An analysis of elastic matching of the rhombohedral, MC and
tetragonal phases in PMN–xPT was carried out in terms of the model introduced in
Sect. 4.1 and by using the room-temperature unit-cell parameters measured around
the MPB [18]. Below, we consider some features of the three-phase coexistence and
stress relief in the PMN–xPT system at room temperature.

It is assumed that the tetragonal phase is split into domains 1–2 (see domain
orientations in Fig. 3.2) with the volume fractions nT and 1 − nT, respectively. The
MC phase is split into domains 4–7 (see domain orientations in Fig. 3.2), and their
volume fractions nCi are defined in terms of fM and wM as follows: nC4 = fM(1 – wM),
nC5 = (1 − fM)(1 − wM), nC6 = fMwM, and nC7 = (1 − fM)wM. The rhombohedral
phase is split into domains shown in Fig. 2.5, and the volume fractions oj of these
domains are written in terms of xR and yR by analogy with (3.2) (see also Sect. 2.2.1).
If we take into account the unit-cell parameters for molar concentrations x = 0.30
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(rhombohedral), 0.33 (MC phase) and 0.39 (tetragonal phase), then one can find a
great number of interphase boundaries that obey conditions (4.5)–(4.7) for ZNSPs.
These ZNSPs are achieved at the variation of the volume fraction vR of the rhom-
bohedral phase in the wide range. The calculated optimal volume fractions
vR = vR(x), vM = vM(x) (MC phase) and vT = vT(x) (tetragonal phase) at elastic
matching under conditions (4.5)–(4.7) are shown in Fig. 4.2. The corresponding
interphase boundaries are oriented along the ZNSPs that are approximated by the
Miller indices {h0l} in the perovskite cubic unit cell.

The optimal volume fractions vi(x) of the morphotropic phases (Fig. 4.2) do not
undergo considerable changes upon the variation of the unit-cell parameters of
these phases at 0.30 � x � 0.39. However, as the vR value approaches zero at
0.33 � x � 0.39, elastic matching of the MC and tetragonal phases does not obey
conditions for ZNSPs. Moreover, increasing the vT value from vT = 0.16 to
vT = 0.99 at x > 0.335 leads to violation of conditions (4.5)–(4.7) and to increasing
the internal stress at the MC–tetragonal interphase boundary.

Such unusual elastic matching, as three phases can bematched along ZNSPs at low
molar concentrations x, but two phases near the same MPB cannot be matched along
ZNSPs with increasing x, attests to the following points [10]. First, contrary to het-
erophase PZT solid solutions studied near the triple point (see Sect. 4.2.2), the phase
coexistence in PMN–xPT is to be analysed at variable unit-cell parameters, especially
in connectionwith the formation of a possibleminor intermediate orthorhombic phase
[18]. This means that it is necessary to increase the molar concentration x from 0.30 to
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Fig. 4.2 Volume fractions vi(x) of the phases coexisting in PMN–xPT solid solutions within the
framework of the model of three-phase SC. Subscripts R, M and T denote the rhombohedral, MC

and tetragonal phases, respectively. Calculations were made at xR = yR = 1/2, fM = 1/2,
0 < wM < 1, and 0 < nT < 1, and the vi(x) dependences satisfy conditions for ZNSPs at the
interphase boundaries AB, CD and EF in Fig. 4.1a (reprinted from paper by Topolov and Ye [10],
with permission from the American Physical Society)
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0.35 or higher (i.e. towards tetragonal PbTiO3) in order to satisfy conditions for
ZNSPs at the coexistence of theMC (or orthorhombic) and tetragonal phases. Second,
as far as dealing with the variable unit-cell parameters of the morphotropic phases,
their elastic matching and molar-concentration behaviour in PMN–xPT can be
described in terms of newmodels, inwhich the electromechanical interaction between
the coexisting domain regions is taken into consideration. In this context, it should be
noted that the study of the electromechanical interaction is to be based on the full sets
of elastic, piezoelectric and dielectric constants measured on single-domain SCs in
each separate phase. To the best of our knowledge, such the full sets measured at room
temperature are available for a restricted number of the FE phases of PMN–xPT and
PZN–xPT SCs (see, e.g. [19, 20]).

An example of the three-phase state studied within the framework of the mod-
ified model [11] is considered in Sect. 4.4.

4.4 Three-Phase Coexistence and Complete Stress Relief
in (1 − x)Pb(Zn1/3Nb2/3)O3–xPbTiO3

In this section, we discuss results on heterophase structures in PZN–xPT SCs
around the MPB (0.06 < x < 0.11). In the x–T diagram [21] of the PZN–xPT
system, the tetragonal, orthorhombic and rhombohedral phases (all with FE prop-
erties) are present near the MPB. As noted by Noheda [22], in orthorhombic PZN–
xPT SCs, the MC phase is extremely close in energy, and a very small electric field
E ∥ [001] is enough to induce the MC phase. As seen from the polarization path
[111] ! [001] in the perovskite unit cell (Fig. 2.8), the spontaneous polarization
vector of the MC phase is parallel to the [h01] unit-cell direction (0 < h < 1) while
the orthorhombic phase is characterized by the spontaneous polarization vector
being parallel to the [101] unit-cell direction. Neutron diffraction measurements
performed on PZN–0.09PT SC samples [23] testify to the presence of the inter-
mediate phase that is either orthorhombic or MC. Such a difference can be
accounted for by the fact that the free energies of the orthorhombic and MC are
nearly degenerated in the MPB region.

Experimental studies of PZN–xPT SCs [24] show that the intermediate MC

phase coexists with both the rhombohedral and tetragonal phases in the fairly wide
range of molar concentrations x (near the MPB) at room temperature. The depen-
dence of the volume fraction of the MC phase on x in the three-phase system is
non-monotonic contrary to the dependences found [24] for the rhombohedral and
tetragonal phases.

The study of the three-phase states in PZN–xPT SCs is carried out within the
framework of the model [11] that develops the concepts of interpenetrating phases
[25] and three-phase states [5, 10]. A stress-free SC sample is represented as a set of
two types of two-phase regions, ABCF and CDEF (Fig. 4.3). Each region consists
of a matrix (the intermediate MC phase) and a plate-like inclusion (either rhom-
bohedral or tetragonal phase as shown in Fig. 4.3). It is assumed that the regions
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ABCF and CDEF are uniformly distributed in the SC sample. Volume fractions of
the rhombohedral, MC and tetragonal phases in this sample are

mR ¼ 1�mð ÞvR;mM ¼ 1�mð Þ 1�vRð Þþm 1�vTð Þ and mT ¼ mvT ; ð4:8Þ

respectively. The orientations and volume fractions of the non-180° domains in the
coexisting FE phases coincide with those described in Sect. 4.3 (see Fig. 2.5 and
domains 1, 2 and 4–7 in Fig. 3.2). These domains are assumed to be separated by
planar unstrained domain walls (or domain boundaries) whose orientations are
determined in terms of work by Fousek and Janovec [26].

The rhombohedral and MC phases in the region ABCF as well as the tetragonal
and MC phases in the region CDEF region (Fig. 4.3) are separated by the interphase
boundaries that obey conditions (4.5) and (4.6) for ZNSPs. The SC sample is
regarded as a set of regions like the adjacent polydomain phases with permissible
domain walls therein. The distortion matrices of the two-phase regions ABCF and
CDEF are written as

Kð1Þ
ij

��� ��� ¼ vR Kð2Þ
ig

��� ��� � NðRÞ
gj

��� ���þ 1�vRð Þ NðMÞ
ij

��� ��� ð4:9Þ

and

Kð2Þ
ij

��� ��� ¼ vT Kð1Þ
ig

��� ��� � NðTÞ
gj

��� ���þ 1�vTð Þ NðMÞ
ij

��� ���; ð4:10Þ

respectively, where NðRÞ
gj

��� ���, NðMÞ
ij

��� ��� and NðTÞ
gj

��� ��� are the distortion matrices of the

rhombohedral, MC and tetragonal phases, respectively. We note that the distortion

Fig. 4.3 Cross section of the three-phase SC sample by the (X1OX2) plane. Coordinate axesOXj are
parallel to the perovskite unit-cell axes in the cubic phase. ni is the normal vector of the interphase
boundary CF between the two-phase regions ABCF and CDEF. Coexisting phases are MC, Rh
(rhombohedral) and T (tetragonal). vR is the volume fraction of the rhombohedral phase in the
two-phase region ABCF, vT is the volume fraction of the tetragonal phase in the two-phase region
CDEF, and m is the volume fraction of the two-phase region CDEF in the fragment ABDE of the
three-phase sample (reprinted from paper by Topolov [11], with permission from IOP Publishing)
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matrices Kð1Þ
ij

��� ��� and Kð2Þ
ij

��� ��� from (4.9) and (4.10) differ from those in (4.3) and

(4.4). Now the distortion matrices Kð1Þ
ij

��� ��� and Kð2Þ
ij

��� ��� are present in the right-hand

side of (4.9) and (4.10) [cf. them and (2.12)] so that the mutual influence of the
internal stress fields of the phases in the regions ABCF and CDEF is taken into
account by analogy with the model of interpenetrating phases (Sect. 2.3). Elastic
matching of the regions ABCF and CDEF leads to the formation of the ZNSP along
the boundary CF (Fig. 4.3), while conditions (4.7) are valid for matrix elements

Dij ¼
P3

k¼1 Kð2Þ
ik Kð2Þ

jk � Kð1Þ
ik Kð1Þ

jk

� �
expressed in terms of Kð1Þ

ij

��� ��� and Kð2Þ
ij

��� ��� from

(4.9) and (4.10).
Elastic matching of the two-phase regions ABCF and CDEF is studied [11] using

the unit-cell parameters measured [24] at room temperature. For this study, the
unit-cell parameters of the morphotropic phases are taken at the following molar
concentrations: xR = 0.06 (the rhombohedral phase, the left side of the x range),
xM = 0.08 (the MC phase, the middle part of the x range where no changes in the
unit-cell parameters are observed) and xT = 0.11 (the tetragonal phase, the right side
of the x range). Experimental work on PZN–xPT and related solid solutions do not
contain data on densities of the morphotropic phases as well as on interconnections
between the molar concentration x of heterophase SC and the volume fraction m of
the two-phase region shown in Fig. 4.3. In this context, it is assumed that the
effective molar concentration of the three-phase SC sample is

xeff ¼ mRxR þmMxM þmTxT ; ð4:11Þ

where the volume fractions mR, mM and mT have been introduced in (4.8). In
addition, it is assumed [11] that a linear approximation for m = m(x) is possible in
the range [xR, xT] and that the following boundary conditions for the volume
fraction m are valid at dm/dx = const > 0: m = 0 for xR = 0.06 and m = 1 for
xT = 0.11.

As follows from the analysis of the three-phase states in PZN–xPT SCs, any
variations in the xR, yR and fM values cannot strongly change the conditions for
ZNSPs. This peculiarity is accounted for by the negligible influence of the shear
unit-cell distortions of the domains in the rhombohedral and MC phases over the
whole x range. Among various orientations ni(hi ki li) of the boundary CF [see
Fig. 4.3 and (1.8)], that satisfies conditions (4.7) for ZNSPs in the three-phase SC
sample, we regard ni ∥ (100) or ni ∥ (010) as most probable orientations. They are
also parallel to the permissible domain (twin) walls [26] in the MC phase, and this
circumstance promotes complete stress relief.

Examples of the three-phase states in PZN–xPT SCs with a system of ZNSPs,
including those along the boundary CF with the normal vector ni ∥ (100) or ni ∥
(010) are illustrated by means of the molar-concentration dependences in Fig. 4.4.
A transition from the heavily twinned rhombohedral phase (case of xR = yR = 1/2,
see Fig. 2.5) to the single-domain one (case of xR = yR = 1) results in increasing the
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volume fractions mM and mT in some degree at xeff < 0.07, where xeff is taken from
(4.11). This effect is concerned with the active role of the non-180° domains in the
MC and tetragonal phases in stress relief over the heterophase sample. The afore-
mentioned changes in the 71° (109°) DS of the rhombohedral phase (Fig. 2.5)
slightly affect the location of max vM(xeff) (cf. curves 2 in Fig. 4.4a, b), and this fact
testifies to the passive role of the rhombohedral phase in the stress relief at the phase
coexistence. Indeed, the distortion matrix of the rhombohedral phase [see (2.6)]
comprises three equal diagonal elements that do not give rise to the anisotropy of
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Fig. 4.4 Calculated molar-concentration dependences of the volume fractions vi(xeff) (in percent)
of the morphotropic phases in PZN–xPT SCs. Calculations were made at uR = gR = 1/2 (a) and
uR = gR = 1 (b). Curves 1, 2 and 3 in each graph are related to vR(xeff), vM(xeff) and vT(xeff),
respectively (reprinted from paper by Topolov [11], with permission from IOP Publishing)
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spontaneous strains nsjj (j = 1, 2 and 3) at various volume fractions of the domains
shown in Fig. 2.5. As a consequence, the stress-relief possibilities caused by the
rhombohedral phase in the three-phase PZN–xPT SC sample are restricted. The
calculated vi(xeff) curves shown in Fig. 4.4 are in good agreement with the exper-
imental molar-concentration dependences of the volume fractions of the coexisting
phases [24]. It is important to underline that both the unit-cell parameters of the
coexisting phases and their volume fractions were determined on the same PZN–
xPT SC samples in work [24], and therefore, one can directly compare the calcu-
lated and experimental results on the three-phase states. Such combinations of the
FE phases around the MPB were not studied in other FE solid solutions and related
materials. Thus, one can characterize PZN–xPT SCs as a unique system in which
the three-phase states ‘… − (rhombohedral + MC) − (MC + tetragonal) − …’
(Fig. 4.3) provide complete stress relief and, therefore, promote a vanishing elastic
energy in a wide x range.

4.5 Thermodynamic Description of Three-Phase States
in Ferroelectric Solid Solutions

The nucleation of the new phase at the first-order phase transition in FE SCs was
considered in the thermodynamic study [27–29] of the coexistence of phases from
different symmetry classes. In this study the internal mechanical stress of the elec-
trostrictive nature is taken into account. The thermodynamic description of the
two-phase state was carried out for the paraelectric–FE [27, 28] and FE–FE [30]
phase transitions in perovskite-type SCs, including the morphotropic phase transi-
tion [29]. Thermodynamic criteria of the new-phase nucleation in the presence of the
internal stress field were put forward, and the validity of these criteria in FE SCs was
examined in papers [27–30]. The three-phase states in the presence of the internal
stress field were first described in terms of thermodynamics in work [6], where the
phase coexistence in PZT SCs was studied. In this section, we extend thermody-
namic formalism and introduce a system of thermodynamic and concentration cri-
teria of the new-phase nucleation in FE solid solutions near the triple point.

It is assumed that the paraelectric cubic (I in Fig. 4.1a), FE tetragonal (II in
Fig. 4.1a) and FE rhombohedral (III in Fig. 4.1a) phases coexist in PZT SC near the
triple point shown in Fig. 2.1a. The tetragonal and rhombohedral phases are split
into the non-180° domains (see Sect. 4.2.2). Moduli of the spontaneous polarization
vector in the domains equal PT (tetragonal phase) and PR (rhombohedral phase).
The depolarizing-field energy of the SC sample vanishes due to the formation of the
180° domains in the FE phases and due to the screening of electric fields of bound
charges by free charge carriers.

An analysis of the elastic interaction between the phases [28, 29] shows that the
induced strain of a nucleus of the rhombohedral phase is written in the form [6]
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ni;Rjk ¼ AjkP
2
R� BjkP

2
TyT þMjkP

2
0 1�yTð Þ� �

; ð4:12Þ

where Ajk, Bjk and Mjk are the renormalized electrostrictive coefficients of the
rhombohedral, tetragonal and cubic phases, respectively, P0 is the spontaneous
polarization of the matrix phase (in case of the cubic phase P0 = 0), and j, k = 1, 2
and 3. The coefficients Aj, Bj and Mj are renormalized because of the elastic
interaction of the phases. The volume fraction of the tetragonal phase is yT = vT/V,
where vT is the volume of the tetragonal phase and V is the volume of the SC
sample. The volume of the nucleus of the rhombohedral phase obeys condition
vR � V, and vR exceeds the critical volume at the new-phase nucleation. The free
energy of the system ‘rhombohedral phase (nucleus) – cubic + tetragonal phases
(two-phase medium)’ is written in the form

F ¼ f ðnÞR vR þ f ðnÞT vT þ f ðMÞ
C V�vR�vTð Þ; ð4:13Þ

where f ðnÞR , f ðnÞT and f ðMÞ
C are volume densities of the free energy of the rhombo-

hedral, tetragonal and cubic phases, respectively, superscripts (n) and (M) are
related to the nucleus and matrix, respectively. The volume densities of the free

energy f ðnÞR , f ðnÞT and f ðMÞ
C from (4.13) are represented in the form of the

Devonshire-type expansion [31–34] in terms of PR, PT and P0, respectively. For
instance, the volume density of the free energy of single-domain BaTiO3-type SC at
the uniform distribution of the spontaneous polarization Ps(P1; P2; P3) is repre-
sented [34] as follows:

f ¼a P2
1 þP2

2 þP2
3

� �þ 1
2
b01 P4

1 þP4
2 þP4

3

� �þ 1
3
c1 P6

1 þP6
2 þP6

3

� �
þ b02 P2

1P
2
2 þP2

2P
2
3 þP2

3P
2
2

� �þ c2 P4
1 P2

2 þP2
3

� �þP4
2 P2

3 þP2
1

� �þP4
3 P2

1 þP2
2

� �� �
þ c3P

2
1P

2
2P

2
3 þ

1
2
c11ðn211 þ n222 þ n233Þ þ c12ðn11n22 þ n22n33 þ n33n11Þ

þ 1
2
c44ðn212 þ n223 þ n231Þþ q11ðP2

1n11 þP2
2n22 þP2

3n33Þþ q12½P2
1ðn22 þ n33ÞþP2

2ðn33 þ n11Þ
þP2

3ðn11 þ n22Þ� þ 2q44ðP1P2n12 þP2P3n23 þP3P1n31Þ:
ð4:14Þ

In (4.14), a = a0 (T − T0), b1′, b2′, c1, c2 and c3 are thermodynamic coefficients of
the expansion, cab are elastic moduli, njk are strains, q11 = −(Q11c11 + 2Q12c12),
q12 = −[Q11c12 + Q12(c11 + c12)] and q44 = −Q44c44/2 are electrostriction con-
stants of SC, a0 = const, and T0 is Curie–Weiss temperature of the first-order phase
transition. The thermodynamic coefficients b1′ and b2′ are related to clamped SC,
and for the stress-free state, the thermodynamic coefficients b1 and b2 are intro-
duced as follows: b1 = b1′ + q11Q11 + 2q12Q12 and b2 = b2′ + q11Q12 + q12
(Q11 + Q12) + q44Q44. Equation (4.14) is valid in the vicinity of the first-order
phase transition, as a rule, in a temperature range from a few degrees to some tens
degrees [34, 35]. Taking into account the induced strain [see (4.12)], caused by
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jumps in the unit-cell parameters, and applying (4.14) to each phase in the het-
erophase sample, we represent (4.13) as

F ¼ðaP2
R þ

1
2
bRP

4
R þ

1
3
cRP

6
R þ f 	R ÞvR þ aP2

T þ
1
2
bTP

4
T þ

1
3
cTP

6
T þ f 	T

	 

vT

þ aP2
0 þ

1
2
b1P

4
0 þ

1
3
c1P

6
0

	 

V�vR�vTð Þ;

ð4:15Þ

where a, bR, cR, …, c1 are thermodynamic coefficients in the stress-free
single-domain phase, f 	R and f 	T are volume densities of the elastic and elec-
trostriction energy of the nucleus of the rhombohedral phase and of the inclusions
of the tetragonal phase, respectively. The thermodynamic coefficients bR and bT
from (4.15) are linear combinations of bj, and cR and cT from (4.15) are linear
combinations of cj [see (4.14)].

In the case of small induced strains from (4.12), the volume density of the elastic
and electrostriction energy of the nucleus of the rhombohedral phase
f 	R ¼ P6

j;k¼1 cjkn
i;R
j is written using the single-subscript notation [36] for the in-

duced strain, and this expression is represented in terms of PR, PT and P0 as follows:

f 	R ¼ 1
2
½dRP4

R þ dTP
4
Ty

2
T þ d0P

4
0 1�yTð Þ2�2dRTP2

RP
2
TyT

þ 2d0TP2
0P

2
T 1�y2T
� ��2d0RP2

0P
2
R 1�yTð Þ�:

ð4:16Þ

In (4.16), dR ¼ P6
j;k¼1 cjkAjAk, dT ¼ P6

j;k¼1 cjkBjBk and d0 ¼
P6

j;k¼1 cjkMjMk

are the electrostriction parameters that characterize elastic effects in the rhombo-
hedral, tetragonal and cubic phases, respectively, Aj, Bj and Mj are the renor-
malized electrostriction coefficients in the single-subscript notation,
dRT ¼ 1

2

P6
j;k¼1 cjkðAjBk þBjAkÞ, d0T ¼ 1

2

P6
j;k¼1 cjkðMjBk þBjMkÞ and d0R ¼

1
2

P6
j;k¼1 cjkðMjAk þAjMkÞ are the electrostriction parameters that describe elastic

effects at the rhombohedral–tetragonal, cubic–tetragonal and cubic–rhombohedral
phase transitions, respectively. The volume density of the elastic and electrostric-
tion energy of the inclusion of the tetragonal phase f 	T ¼ P6

j;k¼1 cjkn
i;T
j ni;Tk is

written by taking into account (4.12) and (4.16) as follows:

f 	T ¼ 1
2
½dTP4

T þ dRP4
Rz

2
R þ d0P4

0 1�zRð Þ2�2d0TP2
0P

2
T 1�zRð Þ

�2dRTP2
RP

2
TzR þ 2d0RP2

0P
2
R 1�z2R
� ��:

ð4:17Þ
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The thermodynamic equilibrium between the three phases coexisting in SC is

expressed by equalities f ðnÞR ¼ f ðMÞ
C 1�yTð Þþ f ðnÞT yT and f ðnÞT ¼ f ðMÞ

C 1�zRð Þþ f ðnÞR zR
which are represented, by taking into consideration (4.15), as

aP2
T þ

1
2
bTP

4
T þ

1
3
cTP

6
T þ f 	T ¼ aP2

0 þ
1
2
b1P

4
0 þ

1
3
c1P

6
0 ð4:18Þ

and

aP2
R þ

1
2
bRP

4
R þ

1
3
cRP

6
R þ f 	R ¼ aP2

0 þ
1
2
b1P

4
0 þ

1
3
c1P

6
0: ð4:19Þ

If phase I is paraelectric (see Fig. 4.1a) and, therefore, P0 = 0, then one can reduce
(4.16) and (4.17) to the following form:

f 	R ¼ 1
2
ðdRP4

R þ dTP
4
Ty

2
T�2dRTP2

RP
2
TyTÞ ¼ d	RP

4
R=2 ð4:20Þ

and

f 	T ¼ 1
2
ðdTP4

T þ dRP
4
Ry

2
R�2dRTP2

RP
2
TzRÞ ¼ d	TP

4
T=2; ð4:21Þ

where d	R and d	T are generalized electrostriction parameters [6]. The analysis of
(4.18) and (4.19) with due regard for (4.20) and (4.21) enables one to find tem-
peratures of the nucleation of phases III and I (at the molar concentration x � const)
or molar concentrations at which the nucleation of phases III and I starts (at
T � const). Taking into account conditions for thermodynamic stability of the
heterophase system, one can derive the following criteria of the nucleation and
steady-state growth of the new phase [6]:

bR þ d	R\0 ð4:22Þ

[nucleus (rhombohedral) − matrix (cubic + tetragonal)],

bR þ 3d	R\0 ð4:23Þ

[nucleus (cubic) − matrix (rhombohedral + tetragonal)],

bT þ d	T\0 ð4:24Þ

[nucleus (tetragonal) − matrix (cubic + rhombohedral)], and

bT þ 3d	T\0 ð4:25Þ
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[nucleus (cubic) − matrix (tetragonal + rhombohedral)]. It is assumed that the
steady-state growth of the phase occurs under condition that the volume of the
nucleus exceeds the critical volume and surface effects are to be neglected. In
the case of violation of criteria (4.22)–(4.25), three-phase states would not occur,
and as consequence, the phase transition would proceed on the stability-loss
boundaries of the initial phase. These boundaries are determined from (4.18) and
(4.19).

Additional thermodynamic limitations on the three-phase coexistence are
imposed by values of the electrostriction parameters from (4.16) and (4.17). In the
approximation of the weak dependence on T and x, for example, the parameter d	R
from (4.20) should obey conditions for min d	R(yT), where yT characterizes the
volume fraction of the tetragonal phase (i.e. II in Fig. 4.1a) in the two-phase (cubic–
rhombohedral, I–III) medium. Relationships yT,opt = (dRT/dT)(PR/PT)

2 and dT > 0
correspond to min d	R(yT) and have the physical meaning at 0 < yT,opt � 1, i.e. as
the inequality

0\dRT PR=PTð Þ2� dT ð4:26Þ

holds. Condition (4.26) is reduced to the inequality

0\
X6
j;k¼1

cjk AjBk þBjAkð Þ � 2
X6
j;k¼1

cjkBjBk PT=PRð Þ2 ð4:27Þ

written in terms of renormalized electrostrictive coefficients from (4.12). The lim-
itations similar to those in (4.26) and (4.27) can be introduced [6] for various
combinations of phases I–III in PZT SCs. By analogy with (4.26) and (4.27), the
following inequalities are introduced for the three-phase states:

0\dRT PT=PRð Þ2� dR ð4:28Þ

and

0\
X6
j;k¼1

cjkðAjBk þBjAkÞ � 2
X6
j;k¼1

cjkAjAk PR=PTð Þ2 ð4:29Þ

[nucleus (tetragonal) − matrix (cubic + rhombohedral), phase II is
rhombohedral],

0\2dRT PT=PRð Þ2� dR ð4:30Þ
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and

0\
X6
j;k¼1

cjkðAjBk þBjAkÞ � 1
2

X6
j;k¼1

cjkAjAk PR=PTð Þ2 ð4:31Þ

[nucleus (cubic) − matrix (tetragonal + rhombohedral), phase II is
rhombohedral],

0\2dRT PR=PTð Þ2� dT ð4:32Þ

and

0\
X6
j;k¼1

cjkðAjBk þBjAkÞ � 1
2

X6
j;k¼1

cjkBjBk PT=PRð Þ2 ð4:33Þ

[nucleus (cubic) − matrix (rhombohedral + tetragonal), phase II is tetragonal].
Thus, the following criteria are introduced for the three-phase system: the ther-
modynamic criteria 4.22–4.25 (nucleation of phase III) and the concentration cri-
teria 4.26, 4.28, 4.30 and 4.32 (existence of inclusions of phase II). The
aforementioned concentration criteria are also represented in terms of renormalized
electrostrictive coefficients [see (4.27), (4.29), (4.31), and (4.33)].

The validity of the criteria in the three-phase PZT system near the triple point
was discussed in paper [6]. As noted in Sect. 4.2.2, the interphase boundary that
obeys conditions for ZNSPs can appear at the cubic–tetragonal phase transition.
The conditions for ZNSPs are violated at elastic matching of the cubic and
rhombohedral phases at any volume fractions of the 71° (109°) domains. Due to the
formation of the ZNSP, the coefficients Bjk from (4.12) approach zero. As a con-
sequence, dT ! 0, and expressions for dRT, d0T, d

	
R, and d	T [see (4.16), (4.17),

(4.20) and (4.21)] are simplified.
Results on the thermodynamic study [6] show that the obvious difference between

values of jumps in the spontaneous polarization in single-domain PZT SCs near the
triple point (x � 0.22) influences the three-phase state to some extent. According to
data [37], the jump PR(TC′) = 0.05 C/m2 to the left of the triple point (i.e. in the
rhombohedral phase) is considerably less than the jump PT(TC″) = 0.25 C/m2 to the
right of the triple point (i.e. in the tetragonal phase), where TC′ and TC″ are Curie
temperatures at the cubic–rhombohedral and cubic–tetragonal phase transitions,
respectively. These jumps influence the thermodynamic coefficients from (4.15) and,
for example, give rise to the significant difference between bR and bT: according to
data at x � xtr [6], bR = −8.2 
 107 J m5 C−4 in the vicinity of T = TC′ and
bT = −1.0 
 109 J m5 C−4 in the vicinity of T = TC″. This difference provides more
favourable conditions for the formation of the tetragonal phase in the two-phase
(cubic–rhombohedral) SC sample and for the formation of the cubic phase in the
two-phase (tetragonal–rhombohedral) SC sample than for other variants.
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Considerable stress relief is required at the cubic–rhombohedral interphase
boundaries in cases where the nucleus of the rhombohedral phase appears in
two-phase (cubic–tetragonal) SC or the nucleus of the cubic phase appears in
two-phase (rhombohedral–tetragonal) SC. This requirement stems from a restricted
possibility to satisfy criteria (4.22) and (4.23) because of the relatively small |bR|
value. The problem of the stress relief is also concerned with peculiarities of the
spontaneous strain nsjk of the perovskite unit cell of PZT SC in the vicinity of x = xtr
and T = TC′. These peculiarities are inseparably linked with the behaviour of the
electrostrictive coefficients Qij due to the relation [38] between nsjk and the sponta-
neous polarization.As follows fromdata [37],Q11, |Q12 | andQ44 of PZTSC (x � xtr),
in comparison with the analogous properties of PbZrO3 SC, increase approximately
by factors of 1.6, 1.9 and 1.3, respectively. This behaviour leads to an increase in |Ajk|
from (4.12) and influences the validity range of the concentration criteria for phase II
[see (4.27), (4.29), (4.31), and (4.33)]. The violation of the criteria makes the
three-phase coexistence impossible and gives rise to the subsequent phase transitions,
for example, phase I ! phase II and then phase II ! phase III. This change in the
phase-transition kinetics is consistent with the possible occurrence of the
second-order phase transitions in PZT SCs at x > xtr, namely, close to the tricritical
point found [39] at the cubic–tetragonal phase boundary of the x–T diagram.

In general, the validity of the concentration and thermodynamic criteria in PZT
SCs is in agreement with experimental data [17, 39] on heterophase states observed
in the vicinity of the triple point. Moreover, the phase-transition directions being
parallel to the x and T axes of the diagram in Fig. 2.1a, are consistent with the
region that is characterized by the noticeable beak-like bending of the phase
boundaries in the x–T diagram of PZT SCs (see also [17, 39]). It should be added
that a similar bending is present in the x–T diagrams of many FE perovskite-type
solid solutions (see, for instance, the x–T diagrams of PMN–xPT [40], PZN–xPT
[41], Pb(Zr1−xSnx)O3 [42], and (Pb1-xSrx)ZrO3 [43]). Moreover, the refinement of
the x–T diagrams after the discovery of the intermediate FE phases in solid solu-
tions of PZT, PMN–xPT and PZN–xPT (see Chap. 2) did not lead to appreciable
changes in the bending of the phase boundaries [7, 18, 21, 44, 45] near the triple
point where the cubic, rhombohedral and tetragonal phases coexist. As in the x–
T diagram built for PZT SCs [17, 39], the beak in the x–T diagrams of the afore-
mentioned solid solutions (SCs or ceramics) has the similar orientation so that the
point of the beak is located at the cubic–rhombohedral phase boundary (see, for
instance, the curve between the C and R regions in Fig. 2.1a). As is known from
experimental data on the temperature dependence of the spontaneous polarization in
PZT, PMN–xPT, PZN–xPT, Pb(Zr1−xSnx)O3, (Pb1−xSrx)ZrO3, etc., the spontaneous
polarization jump PR(TC′) at the cubic–rhombohedral phase boundary is less than
the spontaneous polarization jump PT(TC″) at the cubic–tetragonal phase boundary
where the beak-like region in the x–T diagram (Fig. 2.1a) broadens to a consid-
erable extent. The assumption that the bending in the x–T diagram of the FE
solid-solution system depends on the ratio of the jumps PR(TC′)/PT(TC″) [6] finds
indirect confirmations.
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4.6 Crystallographic and Thermodynamic Studies
of Three-Phase States

In this chapter, we have analysed three-phase states in PbZrO3 SCs and PZT, PMN–
xPT and PZN–xPT solid solutions. To study the three-phase states in these mate-
rials, we developed the crystallographic and thermodynamic methods. The models
proposed at the crystallographic description of the three-phase states are applicable
in restricted ranges of temperature T and molar concentration x where polydomain/
heterophase states occur. The limits of application of these models are concerned
with peculiarities of the phase-transition kinetics and DSs, with fluctuations of the
new phase, etc. Very recently, a new example of the three-phase states was studied
in lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramic samples, and stress-relief con-
ditions were analysed for the non-poled and poled samples [46]. Some results on
this three-phase coexistence are highlighted in Sect. 6.3.

Features of the three-phase states considered in this chapter are formulated as
follows.

(i) The diagram that links the volume fractions of the phases coexisting in
PbZrO3 SC (Fig. 4.1c) enables one to predict some features of the three-phase
state affected by individual types of the non-180° domains (twin components)
in the FE rhombohedral and antiferroelectric orthorhombic phases.

(ii) Elastic matching of the polydomain morphotropic phases in the PMN–xPT
system shows that only in a restricted composition range (in the vicinity of
x = 0.30), complete stress relief is achieved in the three-phase state
(rhombohedral + MC + tetragonal). Such a restriction mainly stems from the
molar-concentration behaviour of the unit-cell parameters of the aforemen-
tioned phases in the range 0.30 � x � 0.39 at room temperature.

(iii) Elastic matching of the polydomain morphotropic phases in the PZN–xPT
system (0.06 < x < 0.11) is described in terms of the model wherein the
mutual influence of the internal stress fields of the phases in the adjacent
two-phase regions (Fig. 4.3) is taken into account. The comparison of the
modelling and experimental results enables us to conclude that the
three-phase states ‘… − (rhombohedral + MC) − (MC + tetragonal) − …’
provide complete stress relief over a wide molar-concentration x range at
room temperature and that the intermediate MC phase plays the decisive role
in the stress relief at elastic matching around the MPB.

(iv) Thermodynamic formalism of the new-phase nucleation at the first-order
phase transition was extended to describe the three-phase PZT system in the
presence of the internal stress field. The thermodynamic description of the
three-phase states is based on six electrostriction parameters [see (4.16)] that
are concerned with the induced strain at the interphase boundaries. Hereby,
the thermodynamic criteria [see (4.22)–(4.25)] and concentration criteria [see
(4.26), (4.28), (4.30) and (4.32)] are introduced to take into account the
internal stress field caused by the three-phase coexistence.
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(v) Substantially different jumps in the spontaneous polarization of the rhom-
bohedral [PR(TC′)] and tetragonal phases [PT(TC″)] of PZT SC in the vicinity
of the triple point influence the ratio of the thermodynamic coefficients bR/bT
and the phase coexistence for which the thermodynamic and concentration
criteria are valid. The thermodynamic study of the three-phase PZT system
suggests that there is a certain relation of the aforementioned jumps to the
noticeable beak-like bending of the phase boundaries in the x–T diagram
(Fig. 2.1a). The convexity of the rhombohedral–tetragonal boundary near the
triple point in the x–T diagram of PZT and related solid solutions is con-
cerned with the inequality PT(TC″) > PR(TC′).
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Chapter 5
Overlapping Structures and Transition
Regions

Abstract Examples of heterogeneous single crystals and conditions for stress relief
in them are discussed in terms of the crystallographic method. Heterogeneity is
associated with overlapping structures (i.e. the presence of two different crystal
structures) and transition regions, for instance narrow bands near domain or
interphase boundaries where unit-cell parameters undergo changes. These hetero-
geneous states differ from those observed in macroscopically large samples at the
phase coexistence or at the interaction between ferroelectric polydomain (twinned)
regions. Interpretation of experimental results is carried out by taking into account
possible versions of changes in the unit-cell parameters.

In this chapter, we consider examples of heterogeneous SCs of relaxor-FE SCs and
discuss conditions for stress relief in them. Heterogeneity is associated with over-
lapping structures (i.e. the presence of two different crystal structures) and transition
regions, for instance narrow bands near domain or interphase boundaries where
changes in unit-cell parameters take place. These heterogeneous states differ from
those observed in macroscopically large samples at the phase coexistence or at the
interaction between polydomain (twinned) regions. In this context, the study of
possible versions of the unit-cell variations becomes important for an interpretation
of experimental results and broadens knowledge in the field of heterogeneous FE
materials.

5.1 Overlapping Structures in Pb(Zn1/3Nb2/3)O3

Overlapping (dual) structures were revealed in PZN–xPT SCs [1, 2] with molar
concentrations 0 � x � 0.08 and rhombohedral symmetry (R3m) of bulk samples
at room temperature. Xu et al. [2] discovered a new phase in bulk PZN SCs by
means of high-energy X-ray diffraction. The X-ray beams from electrons acceler-
ated by a voltage of 67 keV [2] were used for a penetration into the inside phase of
the SC sample. This inside phase of PZN SC (phase X in terms of [2]) clearly differs
from the ground phase with the rhombohedral distortion. The phase X is
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characterized by a slight tetragonal distortion [1] (unit-cell parameters obey con-
ditions ain = bin 6¼ cin and ain = bin = cin = 90°, where cin/ain � 1.001) or by an
average cubic lattice [2] with ain = bin = cin and ain = bin = cin = 90°. Hereafter,
we use subscript to denote the inside phase, for instance the phase X in the over-
lapping structure. X-ray diffraction studies [3] show that the difference between the
linear unit-cell parameters ain, bin and cin in the phase X is less than 0.02%, and the
unit-cell parameters of the phase X remain almost constant in a temperature range
from 10 to 700 K.

The room-temperature unit-cell parameters measured on PZN SCs at different
X-ray penetration depths (i.e. in experiments at different accelerating voltages) are
ascribed to different phases (phase X, phase Y and phase Z) [1]. The unit-cell
parameters are related to the bulk (phase X) and surface (phases Y and Z) struc-
tures of the heterogeneous SC samples in which internal mechanical stress fields
can play an important role. X-ray diffraction measurements [1] performed on poled
PZN SC samples highlight the distinctions between the unit-cell parameters of the
inside and the outer layer, but both the bulk and surface structures at room tem-
perature have rhombohedral distortions. In other words, the unit-cell parameters of
the inside and outer (with subscript out) phases obey conditions ain = bin = cin,
ain = bin = cin < 90°, aout = bout = cout < ain and aout = bout = cout < ain. These
conditions also hold for the unit-cell parameters measured recently [2] on
PZN–0.045PT and PZN–0.08PT SCs.

As follows from high-energy X-ray diffraction studies [1, 2], the thickness of the
outer layer is about (1–5) � 10−5 m. The outer layer and the inside phase in PZN–
0.045PT and PZN–0.08PT SCs are rhombohedrally distorted so that the unit-cell
parameters [2] ain and ain of the inside phase and aout and aout of the outer layer are
interrelated by inequalities ain > aout and ain > aout.

The existence of two different unit-cell shapes and the average cubic lattice of
the phase X were also studied [4, 5] in PMN–xPT SCs with molar concentration
x = 0, 0.20 and 0.27. In the range 0 � x � 0.27 the ground state is rhombohedral
[6–8] at room temperature. The considerable dependence of the strain on the
penetration depth was studied [5] on PMN SCs over a distance of about
3 � 10−4 m. Such a distance undoubtedly exceeds the thickness of the outer layer
where the phase X is observed. At small molar concentrations x, the phase X in both
PZN–xPT and PMN–xPT SCs is characterized by a ferroelectric polar order without
the lattice distortion [2, 4]. This unusual decoupled state is regarded [4] as a special
confined form of the above-mentioned rhombohedral (R3m) phase.

X-ray diffuse scattering measurements [9] on PZN–xPT SCs with x = 0, 0.045
and 0.08 enabled one to conclude that the main contribution to the intensities comes
from static lattice distortions. These distortions stem from local polarized nanosized
regions that would appear in SC samples at Burns temperature Td, where
Td − TC * 102 K and TC is Curie temperature of the FE phase transition. It is
shown within the framework of the model of planar correlations [9] that the [111]-
type polarization is typical of the studied PZN–xPT SCs with x = 0, 0.045 and 0.08
at T < TC. This polarization is also typical of the polarized nanosized regions in a
wide temperature range. However, it remains unclear how the lattice distortions and
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polarization characteristics influence the outer and inside phases, their physical
properties, evolution, elastic-matching conditions, etc.

Despite the studied structural features of the inside and outer phases, distinctions
between the physical properties of these phases as well as links between the
crystallographic characteristics and physical properties were not considered in detail
in experimental studies. It seems probable that these distinctions influence the
physical properties and phase coexistence in SCs near the MPB. In Sect. 5.2, we
analyse examples of elastic matching in the overlapped structures in PZN SCs.

5.2 Sj—Interface Relationships in Pb(Zn1/3Nb2/3)O3

It is assumed that, in the rhombohedral phases of PZN–xPT SCs, there are dif-
ferent orientation states Sj in which the unit-cell vectors (a, b, c) are arranged
approximately along the following directions: ([100], [010], [001]) (j = 1), ([100],
0�10½ �, 00�1½ �) (j = 2), ( �100½ �, [010], 00�1½ �) (j = 3), ( �100½ �, 0�10½ �, [001]) (j = 4),
( �100½ �, 0�10½ �, 00�1½ �) (j = 5), ( �100½ �, [010], [001]) (j = 6), ([100], 0�10½ �, [001])
(j = 7), and ([100], [010], 00�1½ �) (j = 8). These directions are represented in the
perovskite axes. We note the term ‘approximately’ because of slight deviations
from the aforementioned directions that are caused by shear distortion of the
rhombohedral phase. The orientation states Sj can correspond to microdomains
[10]. Such microdomains with a size under 10−7 m and with the [111]-type
polarization are likely to exist in the outer layer [3] where the considerable
rhombohedral unit-cell distortion develops. The orientation states Sj are charac-
terized by the distortion matrices ||Rj|| as follows:

R1k k ¼ R5k k ¼
la l l

l la l

l l la

0
B@

1
CA;

R2k k ¼ R6k k ¼
la �l �l

�l la l

�l l la

0
B@

1
CA;

R3k k ¼ R7k k ¼
la �l l

�l la �l

l �l la

0
B@

1
CA; and

R4k k ¼ R8k k ¼
la l �l

l la �l

�l �l la

0
B@

1
CA;

ð5:1Þ

where the unit-cell distortions la = aR cos xR/aC and l = aR sin xR/aC are
expressed in terms of the unit-cell parameters aR and xR of the rhombohedral phase
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and aC of the cubic phase. The unit-cell parameter aC is assumed to be extrapolated
to a temperature at which the overlapped structure is studied.

The inside and outer phases are described by the distortion matrices written in
terms of the matrices from (5.1). For instance, the distortion matrix ||Nij|| of the
outer phase in PZN SC is written as

Nij

�� �� ¼
X
j

vj Rj

�� ��; ð5:2Þ

where vj is the volume fraction of the Sj region (Table 5.1). The volume fraction vj
can be expressed in terms of the parameters uR and gR by analogy with xR and yR in
Fig. 2.5. The distortion matrix of the inside phase (phase X) in PZN SC is

Mij

�� �� ¼
va 0 0
0 va 0
0 0 va

0
@

1
A; ð5:3Þ

where ma = aX/aC, and aX is the unit-cell parameter of the inside phase. The dis-
tortion matrices from (5.2) to (5.3) are used for the classification of the interphase
boundaries in the overlapping structures. This classification carried out by using the
unit-cell parameters of PZN SC [1–3] is illustrated by a series of Sj—interface
diagrams (Fig. 5.1). These diagrams are built by analogy with the domain state–
interface diagrams considered in Chaps. 2 and 3.

Table 5.1 Characteristics of orientation states Sj in phases that can form overlapping structures in
PZN SCs

Inside phase Sj vj Outer phase Sj vj Diagrams

Rhombohedral
poled

S1 or S5
S2 or S6
S1 or S5
S2 or S6

m
1 − m
m
1 − m

Rhombohedral
poled

S3 or S7
S4 or S8
S1 or S5
S2 or S6

n
1 − n
n
1 − n

Figure 5.1a
Figure 5.1b

X, cubic lattice – – Rhombohedral
unpoled

S1 or S5
S2 or S6
S3 or S7
S4 or S8

(1 − uR)(1 − gR)
(1 − uR)gR
uR(1 − gR)
uRgR

Figure 5.1c

X, tetragonal
lattice

– – Rhombohedral
unpoled

S1 or S5
S2 or S6
S3 or S7
S4 or S8

(1 − uR)(1 − gR)
(1 − uR)gR
uR(1 − gR)
uRgR

Region of the
imaginary
cone apex
[conditions
(1.17) are
valid] at
0 � uR � 1
and
0 � gR � 1
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Fig. 5.1 Sj—interface diagrams calculated for poled (a, b) and unpoled (c) PZN SCs at room
temperature. Variants of the phase coexistence and orientation states are listed in Table 5.1.
Conditions (1.14), (1.15), (1.16) and (1.17) are valid in regions I, II, III and IV, respectively
(reprinted from paper by Topolov [12], with permission from the American Physical Society)
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The important example of elastic matching of the phases is shown in Fig. 5.1a,
where short curves AB and EF represent the volume fractions that obey condi-
tions (1.18) for ZNSPs. The volume fractions n and m of the Sj regions
(Table 5.1), that promote complete stress relief, obey the condition n � 1 − m in
narrow ranges 0.03 � n � 0.09 and 0.91 � n � 0.97. At these volume frac-
tions, the elastic interaction between the orientation states in the adjacent phases
becomes like that between non-180° domains in PbZrO3 SC with the S-type
domain boundary [11] in the FE R3m phase. The corresponding orientations of
the ZNSPs in the poled PZN SC sample are characterized by normal vectors
n1(h1, k1, l1) ⊥ n2(1/

ffiffiffi
2

p
, −1/

ffiffiffi
2

p
, 0) with respect to the perovskite unit cell, where

h1 = k1 and |l1| � h1. It should be noted that no other possibility for the for-
mation of the ZNSP is found in the diagrams from Fig. 5.1. In this context, it is
assumed that the overlapped structures in PZN SCs undergo some change or
reconstruction for a further stress relief. This stress-relief way may differ, for
example in variants of elastic matching shown in Fig. 5.1b, c. This assumption
also concerns elastic matching of the untwinned tetragonally distorted phase X
and the outer rhombohedral phase with various Sj regions in the unpoled PZN SC
sample, because the related unit-cell parameters from papers [1, 2] obey condi-
tions (1.17) and no effective stress relief is achieved.

As follows from simple comparison of the diagrams shown in Fig. 5.1a, b the
orientation states of the inside phase of PZN SC play the key role in the stress relief
in the overlapping structure. Elastic matching of the analogous orientation states in
the rhombohedral phases (e.g. S1 and S2), as well as the presence of the untwinned
phase X result in restricted possibilities of stress relief. As a consequence, the
diagrams shown in Fig. 5.1b, c comprise the only real cone region II and the large
region IV of the imaginary cone apex. The aforementioned distinctions between the
diagrams in Fig. 5.1 take place at almost equal ratios ra = aout cos xout/(ain cos xin)
of the longitudinal distortions and at small differences Dx = xout − xin = ain − aout
between the unit-cell shear angles xout and xin in the coexisting phases [12].

The diagram that comprises regions II and IV, as shown in Fig. 5.1c is typical of
elastic matching in unpoled PZN SC at temperatures 250 K � T � 350 K and in
unpoled PZN–0.045PT and PZN–0.08PT SCs at room temperature. The corre-
sponding diagrams are calculated using the unit-cell parameters measured in work
[1, 2, 13]. As follows from the calculated data, the considerable internal stress in
PZN–xPT SCs are present at the coexistence of the inside and outer phases even if
various orientation states appear in these phases. The presence of the considerable
stress is in agreement with experimental results of work [3] where the elastic
interaction between the inside and outer layers is compared with the substrate
clamping effect on ferroelectric thin films. Xu et al. [3] emphasized the important
role of the clamping effect in the decoupling between the lattice distortion and the
ferroelectric polarization in PZN SC and noted possible inducing the additional
stress in PZN SCs at the phase transition. The stressed state and the strong dis-
tortion of the outer layer were noted [5] in the experimental study of the spatially
resolved neutron diffraction on unpoled PMN SC.

126 5 Overlapping Structures and Transition Regions



It should be added that one of the stress-relief mechanisms is associated [14, 15]
with misfit dislocations or misfit strains. Misfit dislocations caused by structural
phase transitions in solids can be arranged in configurations which lower the elastic
energy. As a rule, such dislocations are of the edge character with the Burgers vector
lying along the interface and an extra half-plane is related to the crystal part with the
smaller spacing. However, a dependence of the misfit energy [15, 16] related to these
configurations on a series of factors (e.g. orientation of the interface) remains
unknown for SCs of PZN–xPT, PMN–xPT and other FE solid solutions. The pos-
sible stress-relief way may be concerned with the misfit strain, i.e. a homogeneous
strain of a certain part of the SC sample can lead to the complete elimination of the
misfit. This effect takes place in the presence of transition regions [17–21] observed
in polydomain and/or heterophase SCs. In Sect. 5.3, we consider examples of the
transition regions and conditions for the stress relief in PZN–xPT SCs.

5.3 Transition Regions in (1 − x)Pb(Zn1/3Nb2/3)O3−
xPbTiO3

The transition regions were studied in a series of FE and ferroelastic SCs, for
instance, polydomain (twinned) BaTiO3 [17], KH2PO4 [18] and RBa2Cu3O7-d

(R = Y, Ho, etc.) [11, 22–25], and heterophase BaTiO3 [19, 20], Pb2CoWO6 [26]
and CH3NH3Al(SO4)2�12 H2O [21]. As is known from the X-ray and TEM studies
[17–21], the transition regions are characterized by continuous changes in the
unit-cell parameters. The changes in the unit-cell parameters are accompanied by
changes in the physical characteristics of SC parts arranged in different directions
from the transition regions. It concerns, for example the transition from one domain
type to another, from one twin component to another in polydomain (twinned) SCs,
or from phase 1 to 2 in heterophase SCs. Results of work [19, 20] show that the
interaction between the regions with the 90° domains at the FE phase transition in
BaTiO3 SC is associated with the transition regions and the mechanical stress field
caused by the phase coexistence. Diffused interfaces, caused by the presence of the
transition regions in SC samples, are an alternative to fringes between the coexisting
phases. The diffused interfaces are energetically more favourable than semicoherent
interfaces [14] that can appear in connection with interfacial misfit dislocations.

The crystallographic description of some transition regions in FE and ferroelastic
SCs was proposed in a series of papers [12, 25–28]. In this section, we apply the
ZNSP concepts to study possibilities of elastic matching of the inside and outer
phases of PZN–xPT SCs at the formation of the transition regions.

Experimental results [2] on the development of the rhombohedral distortion in
the inside and outer phases of PZN–xPT SCs with 0 < x < 0.1 testify to the anal-
ogous shape of the curves x = x(x) for the shear angle in the perovskite unit cell of
these phases. The analogy suggests that the shear distortions of the PZN–xPT unit
cell change monotonously from the inside to the outer layer at x = const.
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The modelling of the transition region is carried out in terms of the unit-cell
distortions that change to satisfy conditions for ZNSPs. It is supposed that the
transition region in unpoled PZN–xPT SCs represents as a set of layers (i = 1, 2, 3,
etc.) separated by the {100}-type planes of the perovskite unit cell (Fig. 5.2). Both
the linear unit-cell parameter ai = |ai| = |bi| = |ci| and the shear angle xi = 90° − ai
change from one layer to other. Each layer is divided into regions that are regarded
as orientation states with defined orientations of the unit-cell vectors or the spon-
taneous polarization vectors.

The distortion matrices of the ith and (i + 1)th layers shown in Fig. 5.2a are
given by

MðiÞ
ab

���
��� ¼ 1=aCð Þ

ai cosxi ai sinxi 2mi � 1ð Þ ai sinxi 2mi � 1ð Þ
ai sinxi 2mi � 1ð Þ ai cosxi ai sinxi

ai sinxi 2mi � 1ð Þ ai sinxi ai cosxi

0
@

1
A

Fig. 5.2 Two versions of the
arrangement of adjacent
layers in transition regions of
PZN–xPT SCs. Co-ordinate
axes OXj are parallel to the
perovskite unit-cell axes in
the cubic phase, and
directions of the spontaneous
polarization in the orientation
states Sj (j = 1, 2, 3, and 4)
are shown by arrows
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and

Mðiþ 1Þ
ab

���
��� ¼ 1=aCð Þ

�
aiþ 1 cosxiþ 1 aiþ 1 sinxiþ 1 2miþ 1 � 1ð Þ �aiþ 1 sinxiþ 1 2miþ 1 � 1ð Þ
aiþ 1 sinxiþ 1 2miþ 1 � 1ð Þ aiþ 1 cosxiþ 1 aiþ 1 sinxiþ 1

�aiþ 1 sinxiþ 1 2miþ 1 � 1ð Þ �aiþ 1 sinxiþ 1 aiþ 1 cosxiþ 1

0
B@

1
CA;

respectively. In accordance with the alternation of the layers (Fig. 5.2), the distortion
matrices of the (i + 2)th, (i + 4)th, …, (i + 2p)th layers are written like ||Mab

(i)|| in
terms of the unit-cell parameters with subscripts i + 2, i + 4, …, i + 2p, respec-
tively. The distortion matrices of the (i + 3)th, …, (i + 2p + 1)th layers are written
by analogy with ||Mab

(i+1)|| in terms of the unit-cell parameters with subscripts i + 3,
…, i + 2p + 1, respectively. The distortion matrix ||MX,ab|| of the phase X with the
cubic lattice is written in (5.3). The distortion matrices of the ith and (i + p)th layers
of the transition region shown in Fig. 5.2b are ||Mab

(i)|| and

M	ðiþ pÞ
ab

���
��� ¼ 1=aCð Þ

�
aiþ p cosxiþ p aiþ p sinxiþ p 2miþ p � 1

� �
aiþ p sinxiþ p 2miþ p � 1

� �

aiþ p sinxiþ p 2miþ p � 1
� �

aiþ p cosxiþ p aiþ p sinxiþ p

aiþ p sinxiþ p 2miþ p � 1
� �

aiþ p sinxiþ p aiþ p cosxiþ p

0
B@

1
CA;

respectively, where p = 1, 2, …
Elements of the ||Dab

(i, i+1)|| matrix are written in the form similar to that shown in
(1.7):

D i;iþ 1ð Þ
ab ¼

X3
f¼1

M iþ 1ð Þ
af M iþ 1ð Þ

bf �M ið Þ
af M

ið Þ
bf

� �
ð5:4Þ

for the layers shown in Fig. 5.2a or

D i;iþ 1ð Þ
ab ¼

X3
f¼1

M	 iþ 1ð Þ
af M	 iþ 1ð Þ

bf �M ið Þ
af M

ið Þ
bf

� �
ð5:5Þ

for the layers in Fig. 5.2b. These layers are matched along the ZNSPs as conditions
[12, 28]

det D i;iþ 1ð Þ
ab

���
��� ¼ 0 and J i;iþ 1ð Þ\0 ð5:6Þ

hold. We mention that conditions (5.6) are similar to conditions (1.18) formulated
for planar interphase boundaries, but now the matrix elements Dab

(i,i+1) are taken from
(5.4) [or from (5.5)], and J(i,i+1) is expressed in terms of Dab

(i,i+1) is as follows:
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J i;iþ 1ð Þ ¼
D i;iþ 1ð Þ

11 D i;iþ 1ð Þ
12

D i;iþ 1ð Þ
21 D i;iþ 1ð Þ

22

������

������
þ

D i;iþ 1ð Þ
22 D i;iþ 1ð Þ

23

D i;iþ 1ð Þ
32 D i;iþ 1ð Þ

33

������

������

þ
D i;iþ 1ð Þ

33 D i;iþ 1ð Þ
31

D i;iþ 1ð Þ
13 D i;iþ 1ð Þ

11

������

������

ð5:7Þ

The further simplification of conditions (5.4)–(5.7) is possible on assumption
that the volume fractions related to the orientation states in all the layers are equal,
i.e. mi = 1/2, where i = 1, 2, …, and N at the coexistence of the rhombohedral
(inside and outer) phases, i = 2, 3, …, and N or i = 1, 2, …, and N − 1 at the
coexistence of the rhombohedral (outer) and X phases, and N is the total number of
the layers in the transition region. Due to this simplification, the location of the
interfaces x1 = const in each layer (Fig. 5.2) remains almost unchanged over the
whole transition region. The structures ‘… − S4 − S1 − S4 − S1 −…’ or ‘…
− S3 − S2 − S3 − S2 − …’ (Fig. 5.2a) and ‘… − S1 − S1 − …’ or ‘…
− S2 − S2 − …’ (Fig. 5.2b) can be regarded as structures with the variable unit-cell
parameters over the transition region. As a consequence, for both the systems of the
layers shown in Fig. 5.2, determinant from conditions (5.6) is given by

det D i;iþ 1ð Þ
ab

���
��� ¼

D i;iþ 1ð Þ
11 0 0
0 D i;iþ 1ð Þ

22 D i;iþ 1ð Þ
23

0 D i;iþ 1ð Þ
23 D i;iþ 1ð Þ

22

�������

�������
:

The adjacent ith and (i + 1)th layers in the transition region are separated by the
ZNSP so that the unit-cell parameters of these layers obey conditions (5.6).
Relationships between the unit-cell parameters of the ith and (i + 1)th layers in this
case are written as follows:

aiþ 1 cosxiþ 1 ¼ ai cosxi ð5:8Þ

or

aiþ 1 cosxiþ 1 þ sinxiþ 1ð Þ ¼ ai cosxi � sinxið Þ ð5:9Þ

or

aiþ 1 cosxiþ 1 � sinxiþ 1ð Þ ¼ ai cosxi þ sinxið Þ ð5:10Þ

for the orientation states shown in Fig. 5.2a, and (5.8) and

aiþ 1 cosxiþ 1 þ sinxiþ 1ð Þ ¼ ai cosxi þ sinxið Þ ð5:11Þ
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or

a2iþ 1 cosxiþ 1 cosxiþ 1 þ 2 sinxiþ 1ð Þ ¼ a2i cosxi cosxi þ 2 sinxið Þ ð5:12Þ

for the orientation states shown in Fig. 5.2b. In the presence of the phase X, it is
additionally assumed that equalities ai = aX and xi = 0 hold for the layers with
i = 1 or i = N.

Examples of variations of the unit-cell parameters, for which one of (5.8)–(5.12)
holds, are considered in papers [12, 28]. These variations suggest that there are
different stress-relief ways in unpoled PZN–xPT SCs. The interfaces separating the
adjacent layers (Fig. 5.2) at these variations obey conditions (5.6) for ZNSPs and
are parallel to the perovskite-cell {100} planes with accuracy to 3%. This orien-
tation almost coincides with the orientation determined [29, 30] for the 71° (109°)
domain walls in rhombohedral phases of perovskite-type FEs.

The arrangement of the polydomain layers shown in Fig. 5.2b is of an inde-
pendent interest due to the simultaneous fulfilment of (5.11) and (5.12) over the
whole transition region in PZN SC, while in PZN–xPT SCs with x = 0.045 and
0.08, the number of the similar conditions is three and two, respectively. This
circumstance and the possibility of the formation of ZNSPs in the presence of four
orientation states (see Fig. 5.2a) suggest that the overlapped structure with two
rhombohedral phases and the related transition regions in PZN–xPT SCs with
x 
 0.045 arise from a stress field affected by the neighbouring FE tetragonal
(P4mm) phase [2, 31].

5.4 Stress Relief at Variable Unit-Cell Parameters

In this chapter, we have analysed examples of elastic matching of the related phases
in the overlapping structure and proposed the crystallographic description of the
transition region that can also be concerned with the overlapped structure. A system
of the Sj—interface diagrams is put forward to describe the role of the orientation
states in the formation of the overlapping structure in PZN SCs. Conditions for
complete stress relief in PZN–xPT SCs are examined at the formation of the
overlapped structure and in the transition region, and some versions of the unit-cell
behaviour are taken into consideration to describe specifics of elastic matching. It is
shown that the stress-relief mechanisms depend on the orientation states in the FE
rhombohedral phases (Table 5.1) or on variants of the unit-cell behaviour [see
(5.8)–(5.12)] over the transition region. The results discussed in this chapter
develop the elastic-matching concept (Sect. 1.1) and show potential applications of
the crystallographic method described in Chap. 1.
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Chapter 6
Relations Between Domain States
and Heterophase Structures in Lead-Free
Ferroelectric Solid Solutions

Abstract Examples of domain structures and elastic matching of phases in a few
systems of lead-free perovskite-type ferroelectric solid solutions are described by
taking into account the crystallographic method and model concepts on heterophase
samples. Features of heterophase (two- or three-phase) states and phase contents in
the lead-free systems near the morphotropic phase boundary are discussed, and
some variants of elastic matching of polydomain phases and heterophase regions
are considered. Diagrams that link volume fractions of specific domain types and
phase contents at complete stress relief in heterophase samples near the mor-
photropic phase boundary are analysed, and calculated results on the phase contents
are in agreement with experimental data.

Numerous examples of heterophase states analysed in Chaps. 2–5 are related to
lead-containing FE solid solutions, for instance, PZT, PMN–xPT and PZN–xPT.
These solid solutions with compositions near the MPB exhibit high piezoelectric
performance, considerable electromechanical coupling [1–3], various DSs and
heterophase structures [4–6]. However, the lead-containing FE materials are toxic
and volatile during processing and, therefore, can have a negative influence on the
environment and further applications. In the last decades, there is an increasing
need to use novel lead-free FE materials [7–10] instead of conventional
lead-containing FE ceramics and SCs from the viewpoint of the environmental
impact, technological problems, and predictable physical properties and related
parameters.

An important problem in modern materials science and physics of active
dielectrics is to develop new eco-friendly FE and piezoelectric materials whose
physical properties [10–12] can be comparable to the properties of conventional
lead-based FE materials [13–16]. The most widely studied lead-free FE solid
solutions are based on one of the following compounds with the perovskite-type
structure: (KxNa1–x)NbO3, (Na1/2Bi1/2)TiO3 (NBT) or BaTiO3 [7–12]. In the liter-
ature, there are full sets of room-temperature electromechanical constants measured
on domain-engineered lead-free FE SCs, see, for instance [11, 12]. These SCs poled
along [001] of the perovskite unit cell are of significant interest due to large values
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of the piezoelectric coefficients d3j, h3j and g3j, electromechanical coupling factors
k33, kt, and other parameters which exceed the similar parameters of many poled FE
ceramics of the PZT and PbTiO3 types [15, 16].

In this chapter, we discuss examples of the DSs and elastic matching of phases in
a few systems of lead-free perovskite-type FE solid solutions. We apply the crys-
tallographic method developed in Chaps. 2 and 4 to interpret features of hetero-
phase states and phase contents in the lead-free systems near the MPB.

6.1 Phase Coexistence in (1 − x)(Na1/2Bi1/2)TiO3– xBaTiO3

The (1 − x)(Na1/2Bi1/2)TiO3–xBaTiO3 (NBT–xBT) system [17] is of interest due to
the FE and piezoelectric properties that depend on the composition, temperature,
poling conditions and other factors. The NBT crystal structure has been under
discussion after high-resolution diffraction experiments. These experiments sug-
gested a monoclinic structure (Cc symmetry) of NBT instead of the conventional
rhombohedral structure (R3c symmetry) at room temperature [18]. However, as
follows from work [19], the monoclinic phase with the Cc symmetry does not
correspond to the ground state, but this phase is a manifestation of a local in-phase
tilt disorder. The important piezoelectric properties of NBT–xBT near the MPB
were reported by Takenaka et al. [20], and the composition at x = 0.06 is of specific
interest for piezotechnical applications. By analogy with PZT [13–16], Takenaka
et al. considered a coexistence of the FE rhombohedral and FE tetragonal phases in
NBT–xBT at the critical composition [20].

According to results [17], the following variants of the phase coexistence are
observed in NBT–xBT near the MPB at room temperature:

(i) FE monoclinic + FE rhombohedral phases in annealed samples at x = 0.05,
(ii) FE tetragonal + FE rhombohedral phases in poled samples at x = 0.06−0.065,

and
(iii) FE tetragonal and paraelectric cubic phases in annealed samples at x = 0.07.

6.1.1 Domain States and Elastic Matching of Phases

To interpret features of the phase coexistence in NBT–xBT [21], we consider an SC
sample (or a ceramic grain) that contains the aforementioned phases separated by
planar interphase boundaries, see the schematics in Fig. 6.1. The FE phases are split
into domains with unit-cell orientations shown in Fig. 6.1. The monoclinic phase
(Fig. 6.1a) and tetragonal phase (Fig. 6.1b, c) are represented by the following
regions: the main region (polydomain) and the interlayer (single domain). It is
assumed that the volume fraction of the interlayer is small in comparison to the
volume fraction of the adjacent region [21], i.e. conditions v�m! 0 (Fig. 6.1a) and
v�t! 0 (Fig. 6.1b, c) hold.
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Validity of conditions (1.18) for the ZNSPs and complete stress relief in the
heterophase structure shown in Fig. 6.1, a is examined using the distortion matrices
of the rhombohedral and monoclinic phases. We remind the reader that some
examples of the distortion matrices of the polydomain FE phase are given in
Sects. 2.1 and 2.2. After the examination of conditions (1.18), we find optimal
volume fractions of specific domain types (for instance, (xr; yr) pairs for the
rhombohedral phase, see Fig. 6.1a). Conditions (1.18) are then examined at the
boundary that separates the rhombohedral + monoclinic region at the optimal
volume fractions of the domains therein, and the interlayer monoclinic phase (see
the middle part of Fig. 6.1a). Based on these results, we study links between the
volume fractions of several domain types in the rhombohedral phase and the vol-
ume fraction of the coexisting monoclinic phase. The similar two-stage examination
is also applied to the heterophase structures shown in Fig. 6.1b and c.

In our analysis, we use experimental values of the room-temperature unit-cell
parameters of NBT–xBT [6, 21].

6.1.2 Phase Contents Near the Morphotropic Phase
Boundary

Our results on the heterophase structure shown in Fig. 6.1a are given in Table 6.1.
As follows from Table 6.1, the single-domain monoclinic phase (Mi region in
Fig. 6.1a) can coexist with the rhombohedral phase (Rh region in Fig. 6.1a) that is
split into domains of two types. The tendency ‘1 + 2 domain types’ is observed at
six various combinations of the domain types Mi–Mj of the monoclinic phase
including its interlayer. A boundary separating the Mi and Mj regions in Fig. 6.1, a
plays the role of the interphase boundary and domain wall simultaneously. As
follows from our analysis of elastic matching of the adjacent regions in NBT–
0.05BT, complete stress relief is achieved in the presence of the single-domain
monoclinic phase in the main two-phase region (see Fig. 6.1a, middle part).

An important feature of the phase coexistence in NBT–0.05BT consists in a
wide range of permissible volume fractions of the monoclinic phase vm (see the fifth
column in Table 6.1), and this coexistence leads to average <vm> values that are
also found in the wide range, see the sixth column in Table 6.1. In our opinion,
distortions of the single-domain monoclinic phase lead to the considerable varia-
tions of <vm> in heterophase samples. For NBT–0.05BT at room temperature, the
‘overall’ average volume fraction of the monoclinic phase is <vm> = 0.558 (see
footnote b in Table 6.1), and the <vm> value is in agreement with the experimental
value vm = 0.60 [17].

In the case of the tetragonal–rhombohedral phase coexistence, we assume that
the tetragonal phase is split into the T2 domain (volume fraction nt) and T3 domain
(volume fraction 1 − nt), and the interlayer domain is oriented as T2 (see
Fig. 6.1b). Elastic matching of the phases enables us to achieve complete stress
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Table 6.1 Calculated volume fractions of the M phase at the Rh–M phase coexistence in
annealed NBT–0.05BT samples. Notations of domain types are shown in Fig. 6.1 (reprinted from
paper by Topolov et al. [21], with permission from Taylor & Francis)

Domain type
in the
monoclinic
phase (Mi
region)

Domain type
in the
interlayer
monoclinic
phase

Volume-fraction
parameters in the
rhombohedral
phase

Calculated
volume fraction
of the
monoclinic
phase vm

Average
volume fraction
of the
monoclinic
phase <vm>xr yr

M1 M2 0 0.781 –
a

0 0.141 –
a

1 0.219 0.0807

1 0.859 0.907 0.517

0.152 0 0.562

0.765 0 –
a

0.236 1 –
a

0.848 1 –
a

M1 M3 0 0.781 0.937

0 0.141 0.569 or 0.952

1 0.219 0.0197 or 0.995

1 0.859 0.106 or 0.959 0.736

0.152 0 0.983

0.765 0 0.995

0.236 1 0.8423

0.848 1 –
a

M2 M1 0 0.0776 0.382 or 0.967

0 0.922 0.169 or 0.996

1 0.229 0.935

1 0.771 0.706 0.669

0.219 0 0.937

0.859 0 0.569 or 0.952

0.294 1 0.0197 or 0.995

0.859 1 0.106 or 0.959
(continued)

JFig. 6.1 Schematic arrangement of the rhombohedral (Rh) + monoclinic (M) a rhombohedral
(Rh) + tetragonal (T) b and cubic (C) + tetragonal (T) phases c Orientations of domains
(mechanical twins) in the FE monoclinic and tetragonal phases are shown on right sides of
schematics. Orientations of domains (mechanical twins) in the FE rhombohedral phase are shown
by means of spontaneous polarization vectors in left parts of a and b. am, bm and cm are linear
unit-cell parameters of the monoclinic phase, at, bt = at and ct are linear unit-cell parameters of the
tetragonal phase. vm is the volume fraction of the monoclinic phase in the two-phase state (a), and
vt is the volume fraction of the tetragonal phase in the two-phase states (b and c). Interlayer phases
with volume fractions vm* and vt* are shown as shaded areas. Co-ordinate axes OXj are parallel to
the unit-cell vectors in the paraelectric cubic phase (reprinted from paper by Topolov et al. [21],
with permission from Taylor & Francis)
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relief in the presence of the single-domain rhombohedral phase [21]. As follows
from work [21], the average volume fraction of the tetragonal phase is <vt> = 0.771
(at x = 0.060) or <vt> = 0.812 (at x = 0.065), i.e. minor changes are observed near
the MPB. It should be noted that the aforementioned <vt> values are consistent
with the experimental volume fraction of the tetragonal phase vt = 0.73 [17] in
poled NBT–0.065BT samples.

Table 6.1 (continued)

Domain type
in the
monoclinic
phase (Mi
region)

Domain type
in the
interlayer
monoclinic
phase

Volume-fraction
parameters in the
rhombohedral
phase

Calculated
volume fraction
of the
monoclinic
phase vm

Average
volume fraction
of the
monoclinic
phase <vm>xr yr

M2 M3 0 0.0776 0.166

0 0.922 0.321

1 0.229 0.190

1 0.771 –
a 0.333

0.219 0 –
a

0.859 0 –
a

0.294 1 0.0807

0.859 1 0.907

M3 M1 0 0.0776 0.236

0 0.922 0.678

1 0.229 –
a

1 0.779 –
a 0.318

0.0776 0 0.321

0.922 0 0.165

0.229 1 0.190

0.771 1 –
a

M3 M2 0 0.0776 0.996

0 0.922 0.976

1 0.229 0.848

1 0.779 –
a 0.774b

0.0776 0 0.162 or 0.996

0.922 0 0.382 or 0.967

0.229 1 0.935

0.771 1 0.706
aConditions (1.18) are violated in the presence of the polydomain rhombohedral phase with the
volume-fraction parameters (xr, yr) given in the same line
bBased on values of <vm> related to combinations of domain types M1–M2, M1–M3, …,
M3–M2, we obtain the ‘overall’ average volume fraction of the monoclinic phase <vm> = 0.558
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6.1.3 Anisotropy of Unit-Cell Distortions and
Heterophase Structures

The cubic–tetragonal phase coexistence in annealed NBT–0.070BT samples is
analysed using the schematic from Fig. 6.1c. It is assumed that the tetragonal phase
is split into the T2 (volume fraction nt) and T3 domains (volume fraction 1 − nt),
and the interlayer domain is oriented as T2. In the main heterophase region, the
optimal volume fraction nt, which obeys conditions (1.18) for ZNSPs, can be either
0.722 or 0.276. Then, the corresponding volume fractions of the tetragonal phase
are vt = 0.829 or 0.651, and the average value is <vt> = 0.740. It is seen that the
volume fractions vt are located in a narrower range in comparison to the volume
fractions of the monoclinic phase vm shown in Table 6.1. This can be concerned
with specifics of the spontaneous strains of the perovskite unit cells in the FE
phases of NBT–xBT near the MPB.

Our comparison of the volume fractions of the phases shown in Fig. 6.1 suggests
that replacing the FE rhombohedral phase with the paraelectric cubic phase and
poling the sample cannot give rise to considerable changes in the volume fraction of
the adjacent tetragonal phase vt. It looks probable that an appreciable anisotropy of
the unit-cell distortions in the tetragonal phase (i.e. ec/ea � 1.002 at x = 0.065 and
ec/ea � 1.001 at x = 0.070) [21] strongly influences relations between volume
fractions of specific domain types and coexisting phases in NBT–xBT irrespective
of the prehistory of the samples.

As follows from work [21], various possibilities of complete stress relief are
observed in different two-phase states (i.e. rhombohedral–monoclinic and tetrago-
nal–rhombohedral), and this feature is accounted for by the anisotropic unit-cell
distortions of the major phase, either monoclinic or tetragonal. It should be added
that the interlayer single-domain phase plays the passive role, and the volume
fraction of this phase can be neglected [21].

6.2 Phase Coexistence in Ba(Ti1−xCex)TiO3

Poled lead-free FE BaTiO3-based ceramic samples are of interest due to their
important piezoelectric properties [7–12]. A good example of the active influence of
the modifying ion on the piezoelectric response is concerned with FE solid solu-
tions of the Ba(Ti1−xCex)TiO3 system. Poled ceramics of this system with com-
positions near the MPB are of interest because the piezoelectric properties [12] are
comparable to the properties of the conventional lead-containing FE ceramics such
as PZT [13–16], ZTS and PCR [16]. A detailed structural characterization of the Ba
(Ti1−xCex)TiO3 system at various molar concentrations x and an analysis of het-
erophase states near the MPB are carried out in work [22]. In Sect. 6.2, we discuss
an influence of some non-180° domain types on heterophase structures and phase
contents in Ba(Ti1−xCex)TiO3.
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6.2.1 Relations Between Domain and Heterophase States
Near the Morphotropic Phase Boundary

An interesting example of the heterophase state in Ba(Ti1−xCex)TiO3 is related to
x = 0.02. As follows from experimental results [22] for = 0.02, the FE tetragonal
(P4mm symmetry) and FE orthorhombic (Amm2 symmetry) phases coexist at room
temperature. The schematic of a possible heterophase structure is shown in Fig. 6.2,
a. Hereafter, ‘I’ in Fig. 6.2a is the orthorhombic phase, ‘II’ is the tetragonal phase
and ‘I*’ is the single-domain interlayer (orthorhombic phase). It is assumed that the
coexisting phases I + II are split into non-180° domains whose orientations are
shown in Fig. 6.2b, c.

In a case of similar orientations of the crystallographic axes of domains in the
adjacent phases (as shown in Figs. 6.2b, c), conditions (1.18) for ZNSPs at the
coexistence of the tetragonal and orthorhombic phases are valid at volume fractions

Fig. 6.2 Schematic of heterophase regions a and orientations of domain (twins) in the tetragonal
b and orthorhombic c phases. vI and vII are volume fractions of phases I and II, respectively, in the
heterophase region I–II a. aT, bT and cT are perovskite unit-cell parameters in the tetragonal phase,
nT and 1 – nT are volume fractions of domains in the tetragonal phase b. aO, bO and cO are
perovskite unit-cell parameters in the orthorhombic phase, nO and 1 – nO are volume fractions of
domains in the orthorhombic phase. Axes of the rectangular co-ordinate system (X1X2X3) are
parallel to the perovskite unit-cell axes in the cubic paraelectric phase (reprinted from paper by
Topolov et al. [22], with permission from Elsevier)
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0.568 � nT � 0.871. These volume fractions are related to the first domain type in
the tetragonal phase. The corresponding optimal volume fractions of the first
domain type in the orthorhombic phase nO are given by curve 1 in Fig. 6.3a. The
heterophase region, which contains phases that are split into the non-180° domains
with optimal volume fractions (nT; nO), can be elastically matched with the

Fig. 6.3 Diagrams that link volume fractions of domains (either nT or uR) and volume fractions of
the orthorhombic phase vO in Ba(Ti1-xCex)TiO3 at x = 0.02 a, x = 0.07 b, x = 0.08 c, x = 0.09 d,
and x = 0.10 e (reprinted from paper by Topolov et al. [22], with permission from Elsevier)
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single-domain interlayer of the orthorhombic phase. An important feature of the
studied phase coexistence consists in two possible orientations of the crystallo-
graphic axes of domains in the orthorhombic phase. At these orientations, condi-
tions (1.18) are valid for the boundaries that separate the heterophase region and
interlayer, see Fig. 6.2a. The first version of the orientation is as in the second
domain type with the volume fraction 1 – nO (see Fig. 6.2c). The second version
means that perovskite unit-cell vectors aO, bO and cO in the interlayer are almost
parallel to the co-ordinate axes OX3, OX2 and OX1, respectively. The volume
fraction vO of the orthorhombic phase in the heterophase region is represented by
either curve 2 (at the first version of the interlayer) or curve 3 (at the second version
of the interlayer) in Fig. 6.3a. Based on these results, one can evaluate the volume
fraction of the orthorhombic phase vO. According to work [22], vO = 0.216 (first
version) or vO = 0.851 (second version). If these versions are characterized by
equal probabilities in a large heterophase sample, then we obtain the average
volume fraction of the orthorhombic phase <vO> = 0.534. This is in agreement
with the experimental value of the volume fraction vO,exp = 49.14% at x = 0.02 and
room temperature [22]. The difference between <vO> and vO,exp can be accounted
for by defects and internal mechanical stress fields in ceramic samples, by specifics
of DSs in several grains, etc.

The next example of the heterophase structure is concerned with the coexistence
of the FE rhombohedral and orthorhombic phases. Such a phase coexistence was
studied in work [22] for x = 0.07−0.10. The orthorhombic phase is split into the
non-180° domains as shown in Fig. 6.2c. As follows from the analysis of elastic
matching of the orthorhombic and rhombohedral phases of Ba(Ti1−xCex)TiO3 [22],
complete stress relief at the planar interphase boundary can be achieved by splitting
the rhombohedral phase into two domain types. It is assumed that their spontaneous
polarization vectors are oriented almost along the following perovskite unit-cell
directions: [111] (at the volume fraction uR) and [111] (at the volume fraction
1−uR). Some deviations of the orientations from the standard unit-cell directions are
concerned with the shear unit-cell distortion in the rhombohedral phase (see
Sect. 2.2).

Links between the volume fractions of the domains nO and uR in the coexisting
phases are shown in Fig. 6.3b−d. At x = 0.07, we find the very variant of the link,
and at x = 0.08–0.10 we find two variants of the link for each molar concentration
x. All of these variants obey conditions (1.18) for ZNSPs. Taking into account these
links, we obtain the volume fraction of the orthorhombic phase (see vO curves in
Fig. 6.3b−d). Conditions (1.18) are valid in the wide uR ranges just near the MPB
(see examples in Fig. 6.3b−d) and in the narrower uR ranges (see, for instance,
Fig. 6.3e) when we go away from the MPB. The following average volume frac-
tions of the orthorhombic phase are evaluated by taking into account graphs in
Fig. 6.3:

(i) <vO> = 0.630 (at x = 0.07),
(ii) <vO> = 0.333 for the version 1 or 0.356 for the version 2 (at x = 0.08),
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(iii) <vO> = 0.302 for the version 1 or 0.318 for the version 2 (at x = 0.09), and
(iv) <vO> = 0.297 for the version 1 or 0.311 for the version 2 (at x = 0.10).

The experimental value of the volume fraction of the orthorhombic phase is
vO,exp = 66.22% at x = 0.07 [23]. One can confirm agreement between the pre-
dicted and experimental [22] volume fractions of the orthorhombic phase at
x = 0.02–0.10, i.e. almost in the whole MPB region of Ba(Ti1−xCex)TiO3.

6.2.2 Anisotropic Spontaneous Strains and Stress-Relief
Conditions

In Sect. 6.2.1, we considered the interlayer I* (Fig. 6.2a) as a single-domain
orthorhombic phase with a fixed orientation of the crystallographic axes. In a case
of the interlayer I* represented by the single-domain tetragonal phase instead of the
single-domain orthorhombic phase, conditions (1.18) for ZNSPs are violated. This
means that the heterophase sample would contain excessive elastic energy because
of incomplete stress relief. It should be added that conditions (1.18) are violated
irrespective of the orientation of the crystallographic axes of the domains in the
single-domain tetragonal phase. It seems to be probable that three different spon-
taneous strains along the unit-cell perovskite axes in the single-domain
orthorhombic phase can promote stress relief in a heterophase region better than
in the presence of the single-domain tetragonal phase. As is known, the unit cell in
the tetragonal phase is characterized by the unit-cell parameters aT, bT = aT and
cT 6¼ aT, and therefore, two equal spontaneous strains concerned with aT and bT are
to be taken into account.

After replacing the single-domain orthorhombic interlayer I* with a
single-domain rhombohedral interlayer for molar concentrations x � 0.07, we also
state violation of conditions (1.18) and emphasize the important role of the ani-
sotropic spontaneous strains of the perovskite unit cell in the orthorhombic phase at
stress relief in heterophase samples. It is obvious that the spontaneous strains of the
perovskite unit cell of the adjacent rhombohedral phase do not exhibit the aniso-
tropy along the co-ordinate axes and, therefore, the rhombohedral phase would play
a passive role at stress relief in Ba(Ti1−xCex)TiO3 near the MPB.

6.3 Features of Heterophase States in Ba(Ti1−xZrx)O3

and Related Solid Solutions

It is known from experimental data on the Ba(Ti1−xZrx)O3 system of FE solid
solutions [24, 25] that an enhanced piezoelectric activity is observed in two-phase
samples with compositions close to the MPB. Of specific interest is the
(Ba−yCay)(Ti1−xZrx)O3 system: in its ceramic samples, unusual heterophase states
concerned with the coexistence of three FE phases are observed, and considerable
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piezoelectric activity is achieved [23, 26]. Despite the similarity of the phase
diagrams of (Ba1−yCay)(Ti1−xZrx)O3, Ba(Ti1−xZrx)O3, Ba(Ti1−xSnx)O3 and
Ba(Ti1−xHfx)O3 [27], the larger longitudinal piezoelectric coefficient d33� 600 pC/N
[23, 28] is achieved in poled (Ba1−yCay)(Ti1−xZrx)O3 ceramics. According to work
[28], typical values of the piezoelectric coefficient d33 of poled Zr, Sn andHf-modified
BaTiO3 ceramics are approximately 300–400 pC/N at room temperature. We remind
the reader that the piezoelectric coefficient d33 = 191 pC/N is achieved in poled
BaTiO3 ceramic samples at room temperature [13, 15]. According to experimental
data [24], Ba(Ti1−xZrx)O3 at room temperature is characterized by a coexistence of FE
phases in a narrow molar-concentration range. In (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3

ceramic samples with the largest piezoelectric coefficient d33 (that is larger than d33 of
the poled BaTiO3 ceramic [13, 15] by approximately 3.1 times), a three-phase state is
observed [26].

In Sect. 6.3, we discuss features of the phase coexistence in Ba(Ti1−xZrx)O3 and
related lead-free FE solid solutions [29]. Hereby, we apply a model of the SC
sample that contains the polydomain phases I and II, and a thin interlayer I* (see
Fig. 6.2a). It is assumed that the coexisting phases are separated by the planar
interfaces, and conditions for elastic matching of the phases hold.

At room temperature, Ba(Ti0.98Zr0.02)O3 is characterized by the coexistence of
two FE phases, namely, tetragonal (P4mm symmetry) and orthorhombic (Amm2
symmetry). Elastic matching of these phases can lead to complete stress relief in
different ways, in the presence of several domain types [29]. It is assumed that in the
heterophase sample shown in Fig. 6.2a, I is the orthorhombic phase, II is the
tetragonal phase, and I* is the interlayer of the orthorhombic phase. Our analysis of
conditions for ZNSPs at the interfaces enables us to conclude [29] that the
single-domain tetragonal phase can coexist with the polydomain orthorhombic phase
and the interlayer of the single-domain orthorhombic phase. Complete stress relief is
achieved in six cases listed in Table 6.2. Moreover, the optimal volume fraction of
the orthorhombic phase nO! 1 or nO′! 0 (see Table 6.2) suggests that this phase is
almost single domain irrespective of the variants of the domain arrangement. This is
due to a minor change in the unit-cell parameter a at the morphotropic phase tran-
sition, and this facilitates achieving complete stress relief by elastic matching of the
tetragonal and orthorhombic phases in Ba(Ti0.98Zr0.02)O3. As follows from experi-
mental data on the perovskite unit-cell parameters of Ba(Ti0.98Zr0.02)O3, the con-
dition aT = aO holds [29] with accuracy to 0.05%. The average volume fraction of
the orthorhombic phase <vO> is in agreement with the experimental value, see
Table 6.2. The <vO> value is calculated using the vO values from the fourth column
of Table 6.2 on assumption that a uniform distribution of the heterophase regions
with the aforementioned domain types is observed.

In Ba(Ti0.93Zr0.07)O3 at room temperature, the coexistence of the FE
orthorhombic (Amm2 symmetry) and rhombohedral (R3m symmetry) phases is
observed. At elastic matching of these phases, conditions for complete stress relief
hold [29]. Now, we assume that in the heterophase sample shown in Fig. 6.2a, I is
the orthorhombic phase, II is the rhombohedral phase, and I* is the single-domain
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interlayer of the orthorhombic phase. The orthorhombic phase in each region I
shown in Fig. 6.2a is split into two domain types, and orientations of the unit-cell
vectors of these domains are listed in the first column of Table 6.2. The rhombo-
hedral phase is represented by the domain types shown in Fig. 2.5. It should be
noted that complete stress relief at the interfaces in the heterophase sample
(Fig. 6.2a) is achieved in relatively wide ranges of volume fractions of the domains
in the orthorhombic and rhombohedral phases [29]. As follows from results [29] on
four versions of the elastic matching of these phases in Ba(Ti0.93Zr0.07)O3, the
average volume fraction of the orthorhombic phase <vO> is approximately equal to
the experimental value 58(5)% found in work [24]. Moreover, in the case of yR = 0
and xR = 0.5 (i.e. at equal volume fractions of two domain types in the rhombo-
hedral phase, see Fig. 2.5), the optimal volume fraction of the domains in the
orthorhombic phase would be nO′ = 0.583 [29], and this value is also close to the
calculated <vO> and experimental vO values. We remind the reader that the domain
arrangement and volume fraction nO′ in the polydomain orthorhombic phase are
shown in the first column of Table 6.2.

It is obvious that the difference between the volume fractions xR and nO′ is
relatively small. In other words, the coexisting phases are characterized by a sim-
ilarity of their DSs that promote complete stress relief. The role of the rhombohedral
phase in the heterophase Ba(Ti0.93Zr0.07)O3 sample has no analogs in related FE
solid solutions. Complete stress relief and similar systems of domains and domain
walls in the coexisting phases of Ba(Ti0.93Zr0.07)O3 would promote a relatively high

Table 6.2 Volume fraction vO of the orthorhombic phase that coexists with the single-domain
tetragonal phasea at complete stress relief in Ba(Ti0.98Zr0.02)O3

Domains in the orthorhombic phase Unit-cell vectors of the
single-domain interlayer

Volume
fractionb vO
[29]

Unit-cell vectors of the
domain types

Optimal
volume
fraction [29]

ao||OX1, bo||OX2 and
co||OX3 (volume fraction nO),
ao||OX3, bo||OX2 and co||OX1

(volume fraction 1 – nO)

nO = 0.898 aO||OX2, bO||OX3 and
cO||OX1

0.917

aO||OX1, bO||OX3 and
cO||OX2

0.628

aO||OX3, bO||OX1 and
cO||OX2

0.487

aO||OX2, bO||OX1 and
cO||OX3

0.487

aO|| OX1, bO||OX2 and
cO||OX3 (volume fraction nO′),
aO||OX2, bO||OX1 and cO||OX3

(volume fraction 1 – nO′)

nO′ = 0.066 aO||OX2, bO||OX3 and
cO||OX1

0.855

aO||OX2, bO||OX1 and
cO||OX3

0.855

aUnit-cell vectors in the domain of the tetragonal phase are oriented as follows: aT|| OX3, bT|| OX2

and cT|| OX1. The co-ordinate axes OXj are parallel to the unit-cell vectors in the cubic paraelectric
phase
bAverage value <vO> = 0.705, experimental value vO = 67(1)% [24]
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piezoelectric activity. The rhombohedral phase, that is split into domains of two
types, influences the heterophase structure with the ratio of the volume fractions of
the orthorhombic and rhombohedral phases is kO–R = vO/vR �1. This unique case
of the elastic matching is accounted for by specifics of the perovskite unit-cell
distortion in the rhombohedral phase (l11 = l22 = l33 along the perovskite axes) at
the relatively small shear angle xR < 0.1. The perovskite unit-cell parameter aR of
the rhombohedral phase obeys the equality aR = cO with accuracy to 0.06% and the
equality aR = bO with accuracy to 0.15% [29]. In general, the distortion of the
polydomain rhombohedral phase becomes similar to the distortion of the cubic unit
cell, and this facilitates complete stress relief in the heterophase structure.

Now we consider examples of three-phase states observed in FE solid solutions
of the (Ba1−yCay)(Ti1−xZrx)O3 system. This system is of interest due to heterophase
states and piezoelectric activity [14] in compositions near the MPB. For instance,
experimental results [29] show that in (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 at room
temperature, the following FE phases coexist: tetragonal (P4mm symmetry),
rhombohedral (R3m symmetry) and orthorhombic (Amm2 symmetry). Poling of
(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 leads to an increase in the fraction of the rhombo-
hedral and orthorhombic phases in the ceramic sample [29].

To analyse examples of the three-phase coexistence in the BaTiO3-based FE
solid solutions, we put forward the model (Fig. 6.3) where a heterophase sample is
regarded as a set of two types of two-phase regions, and each two-phase region is
separated by planar interfaces. Here, we do not consider the interlayer such as I* in
Fig. 6.2a. The volume fractions of coexisting phases vT (T, tetragonal phase), vO
(O, orthorhombic phase) and vR (Rh, rhombohedral phase) in the sample as a whole
(Fig. 6.3) obey the condition

vT þ vO þ vR ¼ 1: ð6:1Þ

The coexisting phases are split into non-180° domains that are components of
mechanical twins.

Conditions (1.18) for complete stress relief in the two-phase sample are now
applied to the interfaces in each two-phase region and between the two-phase
regions (see Fig. 6.3). Elements of distortion matrices related to the two-phase
regions are given by

Dab ¼
P3

f¼1 NðOÞ
af NðOÞ

bf �NðTÞ
af NðTÞ

bf

� �
(orthorhombic + tetragonal phases in

Fig. 6.3a or tetragonal + orthorhombic phases in Fig. 6.3b),

Dab ¼
P3

f¼1 NðOÞ
af NðOÞ

bf �NðRÞ
af NðRÞ

bf

� �
(orthorhombic + rhombohedral phases in

Fig. 6.3a or rhombohedral + orthorhombic phases in Fig. 6.3c), and

Dab ¼
P3

f¼1 NðTÞ
af NðTÞ

bf �NðRÞ
af NðRÞ

bf

� �
(tetragonal + rhombohedral phases in

Fig. 6.3b or rhombohedral + tetragonal phases in Fig. 6.3c). The two-phase regions
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with the ZNSPs at the interfaces are described by distortion matrices that are
represented in the general form as follows:
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Distortion matrices from (6.2), (6.3) and (6.4) are related to the two-phase
regions shown in Fig. 6.3a, b, c, respectively. These matrices also depend on
volume fraction of the non-180° domain types. The volume fractions vT, vO and vR
from (6.2)–(6.4) obey (6.1). Based on the matrix elements from (6.2)–(6.4), we
write Dab by analogy with (1.7) and then examine conditions (1.18) for stress-free
interfaces between different two-phase regions shown in Fig. 6.3.

A simple example of complete stress relief [29] is concerned with the presence
of the rhombohedral phase split into four domain types at equal volume fractions,
i.e. at xR = yR = 0.5 in Fig. 2.5. Such a polydomain region is characterized by
linear distortions l11 = l22 = l33 only, like a unit cell in the cubic phase. Unit-cell
vectors in the domains of the tetragonal phase are oriented as follows: aT||OX3, bT||
OX2 and cT||OX1 (volume fraction nT), and aT||OX1, bT||OX3 and cT||OX2 (volume
fraction 1 – nT). Two versions of the unit-cell orientation in the domains of the
orthorhombic phase are shown in the first column of Table 6.2.

As follows from the analysis of the three-phase state in (Ba0.85Ca0.15)
(Ti0.90Zr0.10)O3, conditions (1.18) for complete stress relief are violated at elastic
matching of the two-phase regions shown in Fig. 6.3. However, the polydomain
rhombohedral phase at xR = yR = 0.5 can be separated from the polydomain
tetragonal phase with the interface that also obeys (1.18). The similar rhombohedral–
orthorhombic interface obeys (1.18) at splitting the orthorhombic phase into the
domains on both the versions (see the unit-cell orientations in the first column of
Table 6.2). Hereby, the optimal volume fractions of the domain types in the
tetragonal phase in the tetragonal–rhombohedral region are nT = 0.523 and 0.472.
Optimal volume fractions of the domain types in the orthorhombic phase in the
rhombohedral–orthorhombic region are nO = 0.218 and 0.782, or nO′ = 0.362 and
0.638 [29].
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Changes in the unit-cell parameters at poling the (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3

sample lead to changes in conditions for elastic matching of the coexisting phases
and promote stress-relief opportunities. It should be noted that the unit-cell
parameters cT and cO undergo more appreciable changes at poling in comparison to
the remaining parameters of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 [26]. Hereafter, our
consideration of the three-phase states is carried out in two stages.

In the first stage, we assume that the rhombohedral phase becomes single
domain at poling. As is known for PZT and related FE ceramics [15] with com-
positions near the MPB, the non-180° domain structure in the rhombohedral phase
may undergo changes even in moderate electric fields. In the two-phase regions
shown in Fig. 6.3, the rhombohedral phase can be elastically matched with the
polydomain tetragonal or orthorhombic phase along the ZNSPs. The domain ori-
entation related to the volume fractions nO′ and 1 – nO′ in the orthorhombic phase
(see the first column in Fig. 6.2) does not lead to the ZNSP at the interface between
the rhombohedral and orthorhombic phases.

Figure 6.5, a suggests that stress relief in the presence of the single-domain
rhombohedral phase is restricted because of D 6¼ 0. We remind the reader that D is
one of the invariants (1.13) that are used to characterize the interfaces and stress
relief at the phase coexistence. Inequality D 6¼ 0 (see Fig. 6.5a) and violation
of conditions (1.18) are observed at various ratios of the volume fractions of
the coexisting phases kO-R (orthorhombic and tetragonal phases) and kT-R (tetrag-
onal and rhombohedral phases). As is known from experimental data on
(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 [26], ratios of the volume fractions of the coexisting
phases are kO-R = 1.18 and kT-R = 1.29. An influence of the polydomain tetragonal
phase on the D value and stress-relief conditions is minor because the optimal
volume fractions of the domains in the tetragonal phase are nT = 0.523 and 0.472,
i.e. approximately 1/2.

In the second stage, we assume that the rhombohedral phase remains polydomain
on poling, and the non-180° domain types are shown in Fig. 2.5. Taking into account
the DSs in the adjacent phases, we find the ZNSPs at the interfaces between the
adjacent phases and two-phase regions (see the schematics in Fig. 6.4). Figure 6.5b,
c suggests that complete stress relief (D = 0 or more exactly DI = 0) is achieved at
the equal volume fractions of the four domain types in the rhombohedral phase (see
Fig. 2.5) and at almost equal volume fractions of the domains in the tetragonal phase
(i.e. nT �0.5). In contrast to the aforementioned phases, the orthorhombic phase is
characterized by a considerable difference in the volume fractions of the domains.
The similarity of the DSs in the rhombohedral and tetragonal phases and the ‘in-
complete’ monodomenisation of the orthorhombic phase promote ZNSPs at the
interfaces in the poled three-phase (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 sample. The con-
dition D = 0 holds close to the aforementioned kO-R and kT-R ratios (see Fig. 6.5b, c).

The non-180° DSs in the rhombohedral and tetragonal phases with equal or
almost equal volume fractions of the domain types at the three-phase coexistence
can promote a large contribution from the domain-wall displacements into the
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piezoelectric properties of the poled ceramic sample. It should be added that just in
the poled (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramic samples, the largest piezoelectric
coefficient d33 is achieved [26] in the (Ba1−yCay)(Ti1−xZrx)O3 system. The large d33
value can be associated, for instance, with a significant fraction of the tetragonal
phase that undergoes a transformation into the rhombohedral phase at poling. The
volume fractions of domains at the condition xR = yR � nT (see Fig. 6.4b, c) favour
such a transformation without considerable stress fields. Hereby, we mention work
[30, 31] where a contribution from the 90° domain-wall displacements in elec-
tromechanical constants of poled ceramic BaTiO3 was evaluated under condition of
the equidistant arrangement of the domain walls in an equilibrium state. In work
[30, 31], the ceramic was considered as single phase, and two 90° domain types in
the tetragonal phase were taken into account. The 90° DS in every grain is laminar
and regular. Under weak electric or elastic fields, the contribution from the 90°
domain-wall displacements in the piezoelectric coefficients d3j of the poled ceramic

Fig. 6.4 Schematics of
three-phase regions wherein
the connecting phase is
orthorhombic (O, schematic
a), tetragonal (T, schematic
b) or rhombohedral (Rh,
schematic c). Volume
fractions of the coexisting
phases are vO, vT and vR
(reprinted from paper by
Topolov et al. [29], with
permission from IOP
Publishing)

6.3 Features of Heterophase States … 151



BaTiO3 can reach about 60% [30, 31] at a high mobility of the domain walls in
ceramic grains. In the three-phase (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 sample, the
mobility of the domain walls is high due to the MPB region, as is known, for
instance, from the study of numerous poled PZT ceramics [13–16]. It seems to be
very probable that the contribution from the non-180° domain-wall displacements
related to the rhombohedral and tetragonal phases can influence the piezoelectric
properties of poled (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramics in different ways.
However, to date, a detailed study on the domain-wall contributions from two
coexisting FE phases is not yet carried out.

Fig. 6.5 InvariantD a6C (in 10−60 m6) at the three-phase state in poled (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3

where aC is the cubic unit-cell parameter. For any kT-R and kO-R values shown in the graphs,
conditions J < 0 and I 6¼ 0 hold (reprinted from paper by Topolov et al. [29], with permission from
IOP Publishing)
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6.4 Domain States and Phase Contents in Ba(Ti1−xSnx)O3

and Ba(Ti1−xHfx)O3 Near the Morphotropic Phase
Boundary

Heterophase structures in Ba(Ti1−xSnx)O3 and Ba(Ti1−xHfx)O3 near the MPB were
studied recently [32]. These lead-free FE materials in the poled state are of interest
due to the piezoelectric properties. Values of the longitudinal piezoelectric coeffi-
cient d33 of poled Ba(Ti1−xSnx)O3 and Ba(Ti1−xHfx)O3 ceramics with compositions
close to the MPB are approximately 300–400 pC /N [24], i.e. comparable to d33 of
some PZT, ZTS and PCR ceramics based on Pb(Zr, Ti)O3 [13, 15, 16].

Important common features of the Ba(Ti1−xSnx)O3 and Ba(Ti1−xHfx)O3 systems
consist in the following. First, a small difference between the Sn andHf ionic radii [33]
may lead to similar heterophase states near the MPB. The Ba(Ti1−xSnx)O3 and
Ba(Ti1−xHfx)O3 systems are characterized by similar phase diagrams [27]. Second,
heterophase states are observed at themolar concentration x � 0.02 irrespective of the
modifying ion.We add for comparison that the related Ba(Ti1−xCex)O3 system is also
characterized by heterophase states at x � 0.02, see Sect. 6.2. In Sect. 6.4, we discuss
links between theDSs and phase contents inBa(Ti1−xSnx)O3 andBa(Ti1−xHfx)O3 near
the MPB at room temperature.

We consider an SC sample (ceramic grain) that contains the polydomain phases I
and II, and these phases are separated by the planar interfaces (Fig. 6.6). The
heterophase regions I–II are separated by thin interlayers I* of the phase I. Volume
fractions of the phases I and II in the sample are vI and vII, respectively, and
conditions for the volume fraction of the interlayers I* v* � vI and v* � vII are
valid. In a case of elastic matching of the phases I, II and interlayers I* (Fig. 6.6),
we examine conditions (1.18) for the I–II interface and then conditions (1.18) for
the interface that separates the heterophase region (I + II) and the interlayer I* (see
also Sect. 6.3).

Our analysis of elastic matching of the FE tetragonal and orthorhombic phases in
Ba(Ti1−xSnx)O3 and Ba(Ti1−xHfx)O3 shows that complete stress relief can be
achieved in different ways. One can consider two versions of heterophase structures
[32] as follows.

In version 1, the orientations of domains in the orthorhombic phase are shown in
inset 1 of Fig. 6.6a, and domains of the tetragonal phase are oriented as shown in
inset 3 of Fig. 6.6a. The crystallographic axes in the interlayer of the single-domain
orthorhombic phase are oriented as shown in inset 4 of Fig. 6.6a.

In version 2, the orthorhombic phase is split into domains whose orientations are
shown in inset 2 of Fig. 6.6a, and orientations of domains in the tetragonal phase
are shown in inset 3 of Fig. 6.6a. The interlayer of the orthorhombic phase is single
domain, and its perovskite unit-cell vectors aO, bO and cO are characterized by one
of the following orientations in the heterophase sample:

(i) aO||OX1, bO||OX3 and cO||OX2 (interlayer A),
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(ii) aO||OX3, bO||OX1 and cO||OX2 (interlayer B),
(iii) aO||OX2, bO||OX3 and cO||OX1 (interlayer C) and
(iv) or aO||OX3, bO||OX2 and cO||OX1 (interlayer D).

Figures 6.7 and 6.8 suggest that the volume fraction vO of the orthorhombic
phase strongly depends on the volume fraction nT of the 90° domains in the
tetragonal phase, and complete stress relief is achieved in heterophase samples
described in terms of version 1. The strong vO(nT) dependence is concerned with the
inequality cT/aT > cO/aO that holds for the unit-cell parameters of Ba(Ti1−xSnx)O3

and Ba(Ti1−xHfx)O3 in the morphotropic regions [32]. In our opinion, the consid-
erable unit-cell distortion in the tetragonal phases of both the solid-solution systems
plays the dominant role at elastic matching and phase contents of the phases.
Moreover, the cT/aT ratio passes the minimum point near x = 0.06 in
Ba(Ti1−xSnx)O3 or near x = 0.04 in Ba(Ti1−xHfx)O3, and the difference between cT/aT
and cO/aO becomes minimal.

The diagrams built for Ba(Ti0.94Sn0.06)O3 (Fig. 6.7d) and Ba(Ti0.96Sn0.04)O3

(Fig. 6.8c) are similar and suggest that the near single-domain state of the tetragonal
phase (at either nT ! 0 or nT ! 1) can lead to complete stress relief in heterophase
samples. For diagrams shown in Figs. 6.7c, d and 6.8c, d, we see two solutions (i.e.
two nO values at a fixed nT value) that correspond to complete stress relief in
heterophase samples. The corresponding changes in the volume fraction vO can be
described by taking into account the two solutions. As a rule, the first solution is
suitable to find vO at the volume fraction nT < 0.2, and the second solution plays the
key role at nT > 0.5. The diagrams shown in Figs. 6.7 and 6.8 enable us to state the
important role of the 90° domains of the tetragonal phase in achieving complete
stress relief. Due to these domains and related volume fractions nT, we find different
variants of the polydomain regions in the adjacent orthorhombic phase to satisfy
conditions (1.18) for complete stress relief in Ba(Ti1−xSnx)O3 and Ba(Ti1−xHfx)O3.

Diagrams in Figs. 6.7 and 6.8 suggest that the single-domain and polydomain
phases can be also elastically matched at complete stress relief, and in this case the
number of domain types in the heterophase structure shown in Fig. 6.6, a would
decrease. The single-domain tetragonal phase means that one of the equalities
nT = 0 or nT = 1 holds. For the single-domain orthorhombic phase, one of the
equalities nO = 0 or nO = 1 holds. Of specific interest is the diagram built for Ba

JFig. 6.6 Schematics of heterophase structures in morphotropic regions. Orientations of the
crystallographic axes in adjacent domains of the coexisting phases are shown in insets 1–4 a and
1–3 b. Insets 1, 2 and 4 of a are related to the orthorhombic phase, and inset 2 of Fig. 6.5a is
related to the tetragonal phase. Insets 1 and 3 of b are related to the orthorhombic phase, and inset
2 of b is related tot he rhombohedral phase. In inset 2 of b, the largest space diagonals of the
perovskite unit cells in the adjacent domains are shown. nO, 1 – nO, nT, 1 – nT, nO′ and 1 – nO′ are
volume fractions of domain types shown in insets 1–3 of a. uR and gR are parameters that
characterize volume fractions of domain types shown in inset 2 of b. mi and 1 – mi are volume
factions of domain types in the interlayer at the rhombohedral–orthorhombic phase coexistence,
see inset 3 in b (reprinted from paper by Topolov et al. [32], with permission from Wiley-VCH)
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(Ti0.93Hf0.07)O3, see Fig. 6.8e. As follows from experimental data on the unit-cell
parameters [32], the difference between the cT/aT and cO/aO ratios in Ba
(Ti0.93Hf0.07)O3 is approximately 1.9 � 10−3 and almost equals the difference
between cT/aT and cO/aO related to Ba(Ti0.92Sn0.08)O3. However, the mutual
arrangement of curves in Fig. 6.7, f differs from that in Fig. 6.8e. At the phase

Fig. 6.7 Domain volume fractions–phase contents diagrams related to the tetragonal–orthorhom-
bic phase coexistence in Ba(Ti1-xSnx)O3, version 1, at complete stress relief: a x = 0.02,
b x = 0.03, c x = 0.04, d x = 0.06, e x = 0.07, and f x = 0.08 (reprinted from paper by Topolov
et al. [32], with permission from Wiley-VCH)

156 6 Relations Between Domain States and Heterophase Structures …



coexistence in Ba(Ti0.93Hf0.07)O3, we see the very restricted range of the volume
fractions nT (approximately 0.1) which corresponds to vO at complete stress relief
(see curve 3 in Fig. 6.8e). At the same phase coexistence in Ba(Ti0.92Sn0.08)O3,
despite the periphery of the morphotropic region, the range of the volume fractions
nT corresponding to vO is wider by approximately three times (see curve 3 in
Fig. 6.7f) than in Ba(Ti0.93Hf0.07)O3. The reason consists in specifics of the unit-cell

Fig. 6.8 Domain volume fractions–phase contents diagrams related to the tetragonal–orthorhom-
bic phase coexistence in Ba(Ti1-xHfx)O3, version 1, at complete stress relief: a x = 0.02,
b x = 0.03, c x = 0.04, d x = 0.05, and e x = 0.07 (reprinted from paper by Topolov et al. [32],
with permission from Wiley-VCH)
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behaviour in the tetragonal phase of Ba(Ti1−xHfx)O3 [32] near the MPB.
At x > 0.05 and on increasing x, changes in the unit-cell parameters aT and cT of
Ba(Ti1−xHfx)O3 do not promote stress relief at the tetragonal–orthorhombic phase
coexistence.

Taking into account results on the volume fraction vO in Ba(Ti1−xSnx)O3 and
Ba(Ti1−xHfx)O3 (see Figs. 6.7 and 6.8) at complete stress relief, one can find the
average volume fraction <vO> of the orthorhombic phase. For Ba(Ti1−xSnx)O3, we
have <vO> = 0.422 at x = 0.02, <vO> = 0.623 at x = 0.03, <vO> = 0.743 at
x = 0.04, <vO> = 0.780 at x = 0.06, <vO> = 0.736 at x = 0.07 and <vO> = 0.678
at x = 0.08. For Ba(Ti1−xHfx)O3, the average volume fractions are <vO> = 0.789 at
x = 0.02, <vO> = 0.871 at x = 0.03, <vO> = 0.614 at x = 0.04, <vO> = 0.639 at
x = 0.05 and <vO> = 0.584 at x = 0.07 [32]. The aforementioned <vO> values are
in agreement with experimental values of the volume fraction of the orthorhombic
phase in both Ba(Ti1−xSnx)O3 and Ba(Ti1−xHfx)O3 near the MPB.

Version 2 of the tetragonal–orthorhombic phase coexistence is concerned with
one of the single-domain interlayers (A, B, C or D). Our analysis of stress relief
suggests that one the coexisting phases (see I or II in Fig. 6.6) can be single domain,
and this leads to the minimal number of domain types in the coexisting phases.
Based on the optimal volume fractions of domain types and taking into account the
orientation of the crystallographic axes in the interlayer of the orthorhombic phase,
one can find the volume fraction vO in the heterophase structure and then
the average value of <vO>. For Ba(Ti1−xSnx)O3, <vO> = 0.505 at
x = 0.03, <vO> = 0.610 at x = 0.04, <vO> = 0.694 at x = 0.06, and <vO> = 0.579
at x = 0.08. For Ba(Ti1−xHfx)O3, <vO> = 0.914 at x = 0.02, <vO> = 0.577 at
x = 0.05 and <vO> = 0.616 at x = 0.07 [32]. The aforementioned <vO> values are
consistent with experimental data on the volume fraction of the orthorhombic phase
in Ba(Ti1−xSnx)O3 and Ba(Ti1−xHfx)O3 near the MPB.

The model of the heterophase structure shown in Fig. 6.6b was applied to the
analysis of the rhombohedral–orthorhombic phase coexistence in Ba(Ti0.92Hf0.08)O3

[32]. Conditions (1.18) for complete stress relief in heterophase Ba(Ti0.92Hf0.08)O3

samples hold at the restricted number of domain types in the FE phases.
The non-180° DSs in the coexisting FE phases with equal or almost equal

volume fractions of the domain types (i.e. nO � 0.5, nO′ � 0.5 or nT � 0.5, see
Figs. 6.7 and 6.8) can lead to a considerable contribution from the domain-wall
displacements [30, 31] in the piezoelectric properties of the poled FE ceramic
sample. This important factor is to be taken into account when selecting lead-free
FE ceramics for piezotechnical applications.

6.5 Behaviour of Unit-Cell Parameters and Heterophase
Structures

In this chapter, we have analysed examples of DSs and heterophase structures
in lead-free FE solid solutions, such as NBT–xBT, Ba(Ti1−xMex)O3 and
(Ba1−yCay)(Ti1−xZrx)O3 with compositions near the MPB at room temperature,
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where Me = Ce, Zr, Sn and Hf. The important feature of the studied systems
consists in the presence of BaTiO3 as one of the regular FEs [13–16] with the
well-studied crystal structure and physical properties. In many cases, the phase
coexistence is observed at small molar concentrations (< 5%) of one of the FE
components. We state the validity of conditions (1.18) for complete stress relief in
two- and three-phase samples with various compositions. Heterophase structures in
these samples are considered in terms of models, see Figs. 6.1, 6.2a, 6.4 and 6.6.
Interfaces that separate the coexisting phases and/or phases and interlayers are
planar. Taking into account the unit-cell behaviour and domain orientations in the
morphotropic phases, we find different versions of heterophase structures at com-
plete stress relief, and this complicates the problem of the phase contents. We also
take into consideration the anisotropy of the unit-cell distortions (or spontaneous
strains), and this anisotropy influences stress relief to a certain degree. The average
volume fraction of the phase was often found at taking into account different
versions of heterophase structures and non-180° DSs therein. This points to the
complete character of the polydomain/morphotropic structures in the studied
solid-solution systems.

The diagrams in Figs. 6.3, 6.7 and 6.8 show links between volume fractions of
specific domain types and phase contents near the MPB, and changing the molar
concentration x in the related solid-solution systems [Ba(Ti1−xMx)O3] enables us to
consider common features of the phase coexistence and the role of specific domain
types. Hereby, we emphasize the decrease of the domain types at the phase coex-
istence: this is often concerned with the formation of a single-domain or near
single-domain phase in a heterophase sample. The predicted data on the phase
contents in the studied solid-solution systems near the MPB (Sects. 6.1–6.4) are in
agreement with experimental results.

In conclusion, we state the effective application of the crystallographic method to
analyse heterophase structures, domain states and stress relief, and to describe phase
contents in lead-free FE solid solutions when changing their compositions and
unit-cell parameters. Data on the studied heterophase structures can be taken into
account to find contributions from the non-180° domain-wall displacements and
coexisting phases in the piezoelectric properties of lead-free FE materials.
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Chapter 7
From a Unit Cell to Morphotropic
Polydomain/Heterophase Structures

Different as are the kinds of properties investigated in the old
and the new sciences, the methods followed differ in a still
greater degree… The whole tendency is towards generalization.

A. Cayley, Geometry
Physics is a form of insight and as such it’s a form of art.

D. Bohm

7.1 Study on Domain and Heterophase Structures

The present monograph is devoted to the problem of heterogeneous states in FE
solid solutions of the perovskite type. These materials undergo the first-order phase
transitions in some ranges of temperature T (polymorphic phase transitions), molar
concentration x (morphotropic phase transitions), electric field strength E
(electric-field-induced phase transitions) and mechanical stress rij (stress-induced
phase transitions). At the first-order phase transitions, jumps in the unit-cell
parameters give rise to the internal stress field and heterophase states. In these states
two or three phases (FE, antiferroelectric, paraelectric, etc.) coexist, and then these
states are replaced by the new stable phase. The new phase is often split into
domains (mechanical twins) to promote a decrease of the excessive elastic energy of
the heterophase system as a whole. The complexity of DS and conditions for
complete stress relief at the phase coexistence is concerned with the unit-cell
behaviour, changes in symmetry at the phase transition, fluctuations of the molar
concentration near the MPB, and so on.

Progress has been achieved at the crystallographic description of the heterophase
systems wherein the domain and interphase boundaries obey conditions (1.18) for
complete stress relief (i.e. planar boundaries being parallel to ZNSPs) [1, 2] on
different levels [3–5], for instance between the adjacent domains, in domain or
twinned regions and between the neighbouring polydomain phases. The validity of
conditions (1.18) and different variants of the formation of the interphase
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boundaries along ZNSPs have been discussed for the systems wherein two or three
phases coexist near the MPB. Recent studies of the representative perovskite-type
FE solid solutions (PZT, PMN–xPT and PZN–xPT) show that transformations of
the crystal structure therein are concerned with the formation of the intermediate
(bridging) FE phase [6, 7] near the MPB, and this intermediate phase promotes
complete stress relief in the system where complicated polydomain/heterophase
structures are observed and/or undergo changes in external fields.

The crystallographic method put forward to analyse the heterophase states (see
the schematic in Fig. 7.1) is applicable to various heterophase FE solid solutions
and heterophase FE SCs, and agreement between the predicted and experimental
data can be regarded as an indicator of the effectiveness of this method. Following
the schematic shown in Fig. 7.1, we analysed the two- and three-phase states, the
role of the internal stress field and the examples of the DS rearrangement in the FE
solid solutions undergoing the first-order phase transitions caused by changes in T,
x or E. The complete analysis of interconnections ‘DSs—unit-cell parameters
changes—heterophase structures—stress relief’ is of value to predict an evolution
of the heterogeneous states and characteristics of interphase boundaries in poly-
domain (often heavily twinned) SCs.

Numerous domain state–interface diagrams (Chaps. 2, 3 and 4), built for the
interpretation of the heterophase states at changing T, x or E, enable us to generalize
the stress-relief conditions in the presence of the polydomain phases from different
symmetry classes and at different directions of the electric field vector E. The
crystallographic description of elastic matching of the related phases (transition
regions) in overlapping structures and the system of the Sj–interface diagrams
enable us to characterize the role of the orientation states in the formation of the
overlapping structure (Chap. 5). The elastic-matching concept is also useful to
analyse features of the heterophase structures and phase contents in lead-free FE
solid solutions (Chap. 6). Hereby the influence of specific domain types on the
phase contents near the MPB is studied by taking into account stress relief, changes
in the unit-cell parameters, etc. It should be added that for lead-free FE solid
solutions based on BaTiO3, the comparative study on two-phase and three-phase
states, their DSs and heterophase structures has been carried out very recently [8].
Examples of heterophase structures in related FE solid solutions based on BaTiO3

have been compared for a few compositions near the MPB [9].
It is believed that the methods for the description of various heterophase states

and complicated DSs in FE and related materials will be of importance in further
studies on multicomponent solid solutions, their domain states and phase contents.
Such studies can shed light on relations between DSs and physical properties in
heterophase structures observed near the MPB, on dependences of the properties on
specific domain types and phase contents.
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Fig. 7.1 Schematic of the crystallographic study of heterophase states in FE solid solutions
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Appendix A
Methods for Description of Heterophase
and Polydomain Single Crystals

A.1 Concepts on the Zero-Net-Strain Plane

In this section, we consider some trends in the development of the crystallographic
methods that are applied to describe heterophase structures and non-180° DSs in
FEs and related materials. In the last decades, this subject has been of interest
because of experimental studies of heterogeneous FE and antiferroelectric SCs
[1, 2]. These SCs undergo the first-order structural phase transitions and are split
into domains (twins) below the Curie temperature TC [1–3], and various examples
of the DS formation and rearrangement are known [3–5]. Along with the symmetry
and thermodynamic [1, 2, 6] aspects of the structural phase transitions in FEs and
related materials, the crystallographic aspect of the heterophase structures and
complex DSs [3] is also important, especially in the presence of multicomponent
mechanical twins and at a sequence of the phase transitions in polydomain
(twinned) SCs.

A way to the crystallographic description of the FE SCs at the first-order phase
transition originates from the phenomenological theory of martensitic transforma-
tions. This theory put forward by Wechsler et al. [7] was first applied to the phase
transition between the austenite (cubic symmetry) and martensite (tetragonal
symmetry) phases in alloys. The modified theory was applied by Lieberman et al.
[8] to the martensitic phase transition between the cubic and orthorhombic phases
of the alloy. Wechsler et al. [7] also described the mechanism of the formation of
the martensite phase. The plane separating the parent (high-temperature) and
martensite phases in alloys is often termed ‘the habit plane’. The habit plane is
regarded [7] as a plane of zero mean distortion. At the crystallographic description
of such a plane, the term ‘ZNSP’ is often used [2, 3]. There are a few crystallo-
graphically equivalent lattice correspondences at the formation of the ZNSP at the
martensitic phase transition. In work [7, 8], the method was developed to calculate
the orientation of the interphase boundary (or habit-plane indices) and optimal
volume fractions of domain types (twin components) in the coexisting phase with
lower symmetry. To calculate these characteristics, knowledge of crystal structures
of the coexisting phases (unit-cell parameters and orientations of the unit-cell
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vectors) is required. The important advantage of the theory [7, 8] is that no
adjustable parameters are taken into consideration.

The main element in the theoretical treatment [7] is the distortion. It is shown
that the pure distortion (or Bain distortion) is related to a small region that trans-
forms homogeneously from the austenite phase to the martensite phase. Such a
region represents the separate elastic domain or the twin component with the fixed
orientation of the crystallographic axes. A matrix ||T|| is introduced to describe
changes in a vector ri built in the single-domain region at the structural phase
transition: r0i ¼ Tk kri. Taking into account that the martensite phase is split into the
elastic domains with the known distortion matrices ||M1|| (first domain type) and
||M2|| (second domain type), one can represent the total (average) distortion matrix
in the martensite phase as follows:

Ej jj j ¼ 1�xð Þ M1j jj j þ x M2j jj j; ðA:1Þ

where x is the volume fraction of the second domain type. The matrices ||Mi|| from
(A.1) are represented in the general form as

Mij jj j ¼ Uik k: Tij jj j; ðA:2Þ

where ||Ui|| is the relative rotation matrix and ||Ti|| is the matrix of the pure distortion
of the ith domain type. It should be noted that

det Mij jj j ¼ det Tij jj j ¼ Vi=Vo ðA:3Þ

because of det||Ui|| = 1 at any rotation of the crystallographic axes of the domain. In
(A.3), Vi is the transformed volume of the domain and Vo is the original volume of
the same domain in the austenite phase. From (A.1)–(A.3), one can derive that det||
E|| = (1 − x)(V1/Vo) + x(V2/Vo). If the domains are from the same martensite phase,
then

det Ej jj j ¼ det Tij jj j ¼ Vi=Vo ðA:4Þ

independently of the volume fraction x. A planar interphase boundary becomes the
zero distortion plane (ZNSP) as the length of the vector r built in the austenite phase
suffers no change at the phase transition:

rj j ¼ Ek krj j; ðA:5Þ

where ||E|| is taken from (A.1), and the vector ||E||r crosses a series of adjacent
domains in the martensite phase and, therefore, suffers a rotation with respect to the
austenite unit-cell basis. Equation (A.5) is used to find the possible orientations of
the planar interphase boundary and optimal volume fractions of the domain types in
the martensite phase. Equation (A.5) is also represented as follows:
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rj j2¼ r Ej jj jT Ej jj jr; ðA:6Þ

where superscript T is related to the transposed matrix. Equation (A.6) can be written
in terms of eigenvalues ki of ||E||

T||E|| and components of the vector r(r1, r2, r3) in the
austenite unit-cell basis as follows:

ð1�k21Þr21 þð1�k22Þr22 þð1�k23Þr23 ¼ 0: ðA:7Þ

In (A.7), ki is the stretch along the ith crystallographic axis of the austenite unit cell,
and this axis is parallel to the co-ordinate axis OXi.

A relationship between the phenomenological theory [7, 8], the
invariant-plane-strain theory put forward by Bowles and Mackenzie [9] and the
Eshelby’s inclusion theory [10] extended to martensite was discussed in the liter-
ature. Mura et al. [11] showed that the three aforementioned theories become
identical in case of the infinitesimal principal strains (or spontaneous strains of the
unit cell) at the structural phase transition. Kato et al. [12] showed that the theories
developed by Wechsler et al. [7] and Bowles and Mackenzie [9] are essentially
identical to the approach based on the minimization of the elastic energy of the
heterophase SC. Horikawa et al. [13] studied the stress-induced martensitic phase
transition in alloys at quasi-static tensile loading. Results calculated on the basis of
the phenomenological theory [7] agree to four digits with the values obtained by
Horikawa et al. [13]. Agreement between the calculated and experimental results on
the planar interphase boundaries at complete stress relief (ZNSPs) and the poly-
domain martensite phase suggests that the phenomenological theory [7, 8] can be
applied to systems undergoing the diffusionless phase transitions with martensitic
kinetics [2]. Among these systems, of particular interest are FE and related
materials.

The crystallographic description of the non-180° domain (twin) walls in FEs and
related materials is often carried out, following results from work [14–16]. The
approach is based on the condition for the elastic compatibility of the adjacent
domains or components of the mechanical twin [see (1.4)]. An examination of this
condition is carried out in terms of spontaneous strains of the adjacent domains. It is
obvious that in the presence of the planar wall separating two domains with dif-
ferent matrices of the spontaneous strains S0kl and S00kl, the condition for the constant
length of the elementary vector ds can be valid on crossing the domain wall. In this
case, the excessive elastic and electrostriction energy vanishes. However, it is
unclear, whether the method developed in [14–16] is correct to consider the elastic
interaction between two polydomain regions or phases. Following the theoretical
concept [7, 8], the corresponding vector ds introduced in papers [14, 15] would be
built in a medium split into the domains, and the length of such a vector could not
be as small as possible because of crossing at least a few domains. The further
approximation made by studying the cubic–tetragonal phase transition [2, 16, 17] of
the martensitic type is concerned with neglecting the rotation of the crystallographic
axes of the adjacent domains [7, 8] to obey the conditions for their elastic
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compatibility. The relative rotation matrix is shown, for instance, in (2.1), and
elements of this matrix are expressed [3, 4, 7, 8] in terms of either the unit-cell
distortions or the unit-cell parameters of the polydomain phase. Following
expression (5.3.3) from monograph [16], the matrix of the spontaneous strains of
the polydomain tetragonal phase is written as

S0kl ¼ ð1�aÞ ns1
�� ��þ a ns2

�� ��; ðA:8Þ

where ||ns1|| and ||ns2|| are matrices of spontaneous strains of the first and second
domain types, respectively, and a is the volume fraction of the second domain type.
The domain orientations [16] are those shown for domains 7 (volume fraction
1 − a) and 6 (volume fraction a) in Fig. 2.2. The matrices ||ns1|| and ||ns2|| are
written in the crystallographic axes of the paraelectric cubic phase. It is assumed
that the matrix of spontaneous strains of the cubic phase is unity.

Taking experimental values of the jumps in the unit-cell spontaneous strains of
PbTiO3 SC at the cubic–tetragonal phase transition [2], we calculate the Miller
indices (hkl) of the interphase boundary and the optimal volume fraction aopt of the
second domain type. Based on the phenomenological theory [7], we obtain
h = 0.5552, k = 0.8317, l = 0.0045 and aopt = 0.7629. Based on (1.4) and (A.8),
we calculate h = 0.5552, k = 0.8317, l = 0 and aopt = 0.7643. In both cases, we
have k=h � 1:5, and the interphase boundary is oriented close to the (230) per-
ovskite unit cell. This orientation is confirmed in experimental studies [2] of the
planar interphase boundary in PbTiO3 SCs.

The generalization of the phenomenological theory from papers [7, 8] is carried
out in work [18, 19] where the elastic matching of two polydomain FE phases is
studied. This study is carried out in terms of distortion matrices ||M|| and ||N|| or the
coexisting phases that may be separated by a planar stress-free boundary (ZNSP).
The distortion matrices ||M|| and ||N|| are expressed in terms of the unit-cell dis-
tortions of the domain types (or twin components), their volume fractions and
angles of mutual rotation of the crystallographic axes of the adjacent domains (see
Sect. 1.1.4). The unit-cell distortions are given with respect to the crystallographic
axes of the cubic (paraelectric, prototype) phase. As shown by Kuhn [19], the
vector x in the cubic phase is transformed into the vectors ||M||x (low-temperature
phase) and ||N||x (high-temperature phase). The stress-free interphase boundary (i.e.
ZNSP), which separates the phases with the distortion matrices ||M|| and ||N|| at the
first-order phase transition, obeys the following condition for the constant length of
the transformed vector:

Mk kxj j ¼ Nk kxj j ðA:9Þ

Equation (A.9) represents the generalized expression in comparison to (A.5) that
is applicable to the paraelectric–FE phase transition. The determination of the
orientation of the interphase boundary and the optimal volume fractions of the
domain types in the coexisting FE (antiferroelectric or ferroelastic) phases is carried
out on the basis of the Metrat’s algorithm, see (1.5)–(1.8). It is also shown [17] that
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each combination of the volume fractions of the domains in the coexisting phases
corresponds to at least one interphase boundary that obeys conditions (1.5) and
(1.6) for ZNSPs. Numerous examples of the determination of the stress-free
phase-boundary (ZNSP) orientations at various volume fractions in FE phases are
shown for polydomain/heterophase KNbO3 [16] and BaTiO3 [17] SCs. It should be
added that (A.9) represents the condition from (A.5) generalized for the elastic
matching of the two polydomain phases. Like the vector r from (A.5), the vector
x in (A.9) is built to cross a sequence of domains of different types. In this case, the
phase is characterized as a region with distortions averaged over a macroscopic
volume that contains all of the domain types, into which the phase has been split.

The Metrat’s algorithm was modified in papers [3, 5] where the classification of
the phase boundaries in PbZrO3 SCs was put forward (see Sect. 1.2.2). This
algorithm was applied to describe domain boundaries in heavily twinned SCs, the
S-type boundaries in FE and antiferroelectric SCs (see Sect. 1.1.4), to refine
the temperature dependence of the shear angle of the unit cell of PbZrO3 SC in the
orthorhombic phase [20] and to predict a behaviour of the interphase boundary in
ferroelastic–FE Gd2(MoO4)3 SC [21].

Changes in the unit-cell parameters of Gd2(MoO4)3 SC do not obey conditions
(1.5) and (1.6) for ZNSPs at the tetragonal–orthorhombic phase transition [21]. We
note that the volume-fraction dependence of the volume density of elastic energy
felas concerned with the phase coexistence in Gd2(MoO4)3 SC is consistent with the
volume-fraction dependence of det Dij

�� ���� ���� �� that characterizes the elastic compati-
bility of the coexisting tetragonal and orthorhombic phases. The volume density of
elastic energy felas and det||Dij|| written in terms of matrix elements from (1.7)
depend on the volume fraction t of one of two domain types in the ferroelastic–FE
orthorhombic phase of Gd2(MoO4)3 SC. As shown in work [21], conditions
felas(topt) = 0 and det Dij topt

� ��� ���� �� ¼ 0 are achieved at equal values of the optimal
volume fraction topt that is out of the range [0, 1]. Moreover, the preferable ori-
entation of the crystallographic axes in the single-domain orthorhombic phase was
predicted in work [21] and confirmed in experimental studies [22] of the interphase
boundary in Gd2(MoO4)3 SCs. The correlation between the volume-fraction
dependences of felas and det Dij

�� ���� ���� �� was also shown for the tetragonal–
orthorhombic phase transition in BaTiO3 SC [23] wherein two domain types of the
tetragonal phase and four domain types of the orthorhombic phase are present. The
further modification of the Metrat’s algorithm was described in Chaps. 2, 4 and 5 of
the present book, and agreement between the calculated and experimental data was
shown for different solid solutions and in the presence of phases from different
symmetry classes.

Authors of the recent monograph [16] noted that the approach applied to the
tetragonal–orthorhombic phase transition in KNbO3 (Metrat 1980) is conceptually
close to that presented above (i.e. the approach developed in work [14, 15]). And
then they write: ‘However, the validity of the results obtained is questionable since
a nonjustified criterion of the mechanical compatibility (see the first footnote in
Sect. 2.2.4) was used in the calculations’ ([16], p. 224). In the mentioned footnote
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([16], footnote 14 in p. 62) we read: ‘One comes across in the literature the use of
the condition (2.2.10) with matrix Dij defined as the difference between the squares
of the spontaneous strain tensors in the domains. This condition is not justified
unless it leads to results identical to those derived with the use of Dij defined by
(2.2.11)’. The paper denoted as Metrat, 1980 is [18] in the current list of references.
We add that the condition (2.2.10) and (2.2.11) from [16] are represented [16] as
Dij.dsidsj = 0 (the analogue of (1.2) in Chap. 1) and

Dij ¼ eSij Að Þ�eSij Bð Þ ðA:10Þ

(the analogue of D0
kl from (1.4) in Chap. 1 of the present monograph), respectively.

The difference Dij from (A.10) is ‘a symmetric tensor with up to six independent
components, and eSij(A) and eSij(B) are spontaneous strains in the domains’ ([16],
p. 62).

Below, we express an opinion on the aforementioned sentences from work [16].
First, paper [19], where the Metrat’s algorithm has been analysed and justified, was
not mentioned in work [16]. Second, our paper [21], where the volume density of
elastic energy and the condition felas(topt) = 0 have been considered in the context of
the interphase boundary studied on the basis of the Metrat’s algorithm [18], was not
mentioned in work [16]. Third, words ‘across in the literature’ ([16], p. 62) without
due references become senseless to compare results from different algorithms,
papers, calculations, etc. Many results in research are recognized and improved in
the process of comparison with some results from earlier studies. Fourth, in our
papers (see, e.g. [3–5, 20, 21] and Sect. 1.1.4 of the present monograph), Dij from
(A.10) was not defined ‘as the difference between the squares of the spontaneous
strain tensors in the domains’ ([16], p. 62). The spontaneous strain tensor of an
individual domain differs from the distortion matrix that is usually used in our
crystallographic description [3–5]. Instead of the aforementioned difference
between the squares of the spontaneous strain tensors, we operate with elements of
Dij

�� �� from (1.7) that is written in terms of unit-cell distortions of domains. Fourth,
the condition that is not justified stems from the incorrect definition of Dij in the
footnote (see [16], p. 62). Fifth, authors of work [16] did not mentioned a difference
between the results on the orientation of the simple S wall separating two domains
in the orthorhombic phase of FE and antiferroelectric SCs (Sect. 1.1.4). This dif-
ference discussed in our papers [3, 24] stems from different approaches to describe
the elastic matching between the adjacent domains (or domain regions). It is
obvious that different criteria concerned with the aforementioned vectors ds and
x near the interface would lead to different orientation relationships for the S wall,
see, for instance, (1.10) and (1.11). Sixth, the fact that elements Dij from (A.10)
form the symmetric tensor points out the area of applications of the approach
developed in work [14–16]. Any matrices of spontaneous strains or distortions of
phases, wherein the mutual rotation of the crystallographic axes [7, 8] of the
adjacent domains is taken into account, may be studied using other algorithms and
approaches than those developed in work [14–16]. As is known from work [7, 8],
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no requirement concerning symmetry of the distortion matrix of the polydomain
(twinned) phase is introduced at the crystallographic description of elastic matching
in terms of unit-cell distortions. Even in the simple case of two domain types at the
martensitic phase transition [7], the distortion matrix from (A.1) is asymmetric
because of the mutual rotation of the crystallographic axes of the adjacent domains.

An interesting example of the crystallographic description of the interphase
boundary is considered in work [25]. Dudnik and Nepochatenko have put forward a
method to determine possible orientations of the interphase boundaries in ferroe-
lastic SCs. Among these SCs of particular interest is Pb3(PO4)2 wherein six types of
the interphase boundaries are observed at the first-order phase transition
R3m�C2=c. Elements of the coherent interphase boundary are regarded as common
elements belonging to the coexisting phases. The interphase boundary that separates
the paraelastic and single-domain ferroelastic phases in Pb3(PO4)2 SC is approxi-
mated by a second-degree surface [see (1.12)] with coefficients Dij expressed in
terms of the unit-cell parameters a, b, c and b (R3m phase) and a′, b′, c′ and b′ = b
(C2/c phase) as follows [25]:

D11 ¼ c0=cð Þ2�1;D22 ¼ b0=bð Þ2�1;

D33 ¼ a0=að Þ2 þ tg2u½c0a0= cað Þ�1�2�1;

D13 ¼ c0a0= cað Þð Þtgu½c0a0= cað Þ�1�; and D12 ¼ D23 ¼ 0:

ðA:11Þ

In (A.11), u is the angle between the crystallographic axis a and the co-ordinate
axis OX3. The coefficients Dij from (A.11) are consistent with those determined in
terms of the Metrat’s algorithm [18] [see also (1.7)] and cannot be represented as
the difference between the squares of the spontaneous strain tensors of the coex-
isting phases. It is important to note that work [25] has been published at a similar
time to Metrat’s paper [18].

A.2 Comparison of Data

In this section, we consider examples of characteristics of interfaces and polydomain
(twinned) phases in FE and antiferroelectric SCs. For comparison, these character-
istics are calculated using different formulae, for instance, from papers [7, 14, 15, 18].

Experimental values of the jumps in spontaneous strains in BaTiO3 SC [2] at the
cubic–tetragonal phase transition are nsa ¼ �3:7� 10�3 (measured perpendicular to
the spontaneous polarization vector in the P4mm phase) and nsc ¼ 1:2� 10�2

(measured parallel to the spontaneous polarization vector). Using these values, we
find the following optimal volume fractions of the domain types 6 and 7 (Fig. 2.2)
in the tetragonal phase: mopt = 0.2941 or 0.7059 (from the phenomenological
theory [7]), mopt = 0.2941 or 0.7059 (from the Metrat’s algorithm, [18]), and
mopt = 0.2936 or 0.7064 [from the Sapriel’s theory [15] and by taking into account
the spontaneous strains S0kl from (A.8)].
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In the twinned antiferroelectric Pbam phase of PbZrO3 SC, the thermal stability
of the planar S walls [20, 26] is of particular interest. Now we consider the ori-
entations of the twin components similar to those shown in Fig. 1.2. The distortion
matrices of the twin components are given in (1.9). The orientation of the normal
vector n2(hhl) to the S wall [20] is characterized by the l/h ratio that can be
calculated in terms of either work [14] or work [18] [see (1.10) and (1.11)].
Table A.1 contains the l/h values calculated in different ways. The calculations
were performed using the unit-cell parameters of PbZrO3 from work [20]. It is seen
that the (l/h)M and (l/h)FJ ratios from Table A.1 are almost constant in the wide
temperature range, and the difference between these ratios does not exceed 1%.
Thus, the data obtained using concepts [18] are in good agreement with the data
calculated on the basis of formulae [14].

Various interphase boundaries observed at the cubic–rhombohedral
(Pm3m − R3m) phase transition in PbZrO3 SCs can be described in terms ofwork [5].
Crystallographic characteristics of these boundaries strongly depend on the volume
fractions of the 71° (109°) domains in the rhombohedral phase. The distortion matrix
||Nij|| of the rhombohedral phase split into the 71° (109°) domains (Fig. 2.5) is given by
(2.6). The matrix of average spontaneous strains in the same polydomain phase is
represented as

S0kl
�� �� ¼

ns;Ra ns;Rð2yR � 1Þ ns;Rð2xR � 1Þð2yR � 1Þ
ns;Rð2yR � 1Þ ns;Ra ns;Rð2xR � 1Þ

ns;Rð2xR � 1Þð2yR � 1Þ ns;Rð2xR � 1Þ ns;Ra

0
@

1
A;

ðA:12Þ

Table A.1 Temperature dependence of perovskite unit-cell parameters bO and xO of PbZrO3 SC
a

and the ratio l/h that characterizes the orientation of the S wall in the twinned antiferroelectric
Pbam phase

T (K) bO, 10
−10 m xO (min) (l/h)M from (1.10) (l/h)FJ from (1.11)

295 4.1104 5.50 0.2652 0.2668

300 4.1110 5.45 0.2660 0.2676

340 4.1138 5.10 0.2638 0.2653

365 4.1169 4.95 0.2742 0.2756

390 4.1184 4.70 0.2696 0.2710

410 4.1214 4.35 0.2686 0.2699

430 4.1235 4.10 0.2675 0.2687

450 4.1264 3.85 0.2725 0.2736

470 4.1293 3.60 0.2784 0.2795

480 4.1310 3.35 0.2740 0.2749

490 4.1329 3.05 0.2665 0.2674

493 4.1334 3.00 0.2670 0.2678
aAccording to experimental data [20], the unit-cell parameter a = 4.1606 � 10−10 m at
295 K � T � 493 K
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where ns;Ra is the longitudinal unit-cell spontaneous strain, and ns;R is the shear
unit-cell spontaneous strain. While no spontaneous strain would appear in the cubic
phase, its matrix of spontaneous strains S00kl

�� �� contains zero elements only. Taking
experimental values of the unit-cell parameters of PbZrO3 [27]
aR = 4.1596 � 10−10 m, xR = 6′ in the rhombohedral phase and
aC = 4.1570 � 10−10 m in the cubic phase, we calculate ||Dij(xR, yR)|| and
D0
kl xR; yRð Þ�� �� in accordance with (1.7) and (1.4). The values of xR and yR, which

obey conditions (1.18), are, for instance, xR = 0 and yR = 0.2538 or xR = 0 and
yR = 0.7462 (two domain types), xR = 0.10 and yR = 0.2432 or xR = 0.10 and
yR = 0.7568 (four domain types), and so on. In general, the values of xR and yR,
which obey conditions (1.18), equal to the values obtained by using (1.4) and
(A.12) with accuracy to 0.5%. Such a consistency is accounted for by the structural
analogy between ||Dij(xR, yR)|| and D0

kl xR; yRð Þ�� �� at elastic matching of the cubic
and rhombohedral phases. It is seen that ||Nij|| and S0kl

�� �� from (2.6) and (A.12),
respectively, are symmetric at 0 � xR � 1 and 0 � yR � 1, and, as a conse-
quence, ||Dij(xR, yR)|| and D0

kl xR; yRð Þ�� �� are also symmetric.
An example of elastic matching of the single-domain tetragonal (P4mm) and

single-domain orthorhombic (C2mm) phases in BaTiO3 suggests that even in a case
of two symmetric matrices, there is a difference between results obtained in terms
of papers by Sapriel [15] and Metrat [18]. Spontaneous strains of the coexisting
phases are given by matrices

S0kl
�� �� ¼

ns;Ta 0 0
0 ns;Ta 0
0 0 ns;Tc

0
@

1
A and S00kl

�� �� ¼
ns;Oa 0 ns;O

0 ns;Ob 0
ns;O 0 ns;Oc

0
@

1
A; ðA:13Þ

where ns;Ta and ns;Tc are spontaneous strains of the perovskite unit cell in the
tetragonal phase, ns;Oa , ns;Ob , ns;Oc and ns;O are spontaneous strains of the perovskite
unit cell in the orthorhombic phase. Distortion matrices of the tetragonal and
orthorhombic phases are written in terms of the spontaneous strains as

Mklj jj j ¼
1þ ns;Ta 0 0

0 1þ ns;Ta 0

0 0 1þ ns;Tc

0
B@

1
CA and

j Nklj jj ¼
1þ ns;Oa 0 ns;O

0 1þ ns;Ob 0

ns;O 0 1þ ns;Oc

0
B@

1
CA;

ðA:14Þ

respectively. Equations (A.13) and (A.14) describe the single-domain states with
similar orientations of the perovskite unit-cell vectors: in the tetragonal phase there
are aT||[100], bT||[010] and cT||[001], and in the orthorhombic phase there are
bO||[010] and aO and cO that are close to [100] and [001], respectively. Taking



experimental values of the perovskite unit-cell parameters of BaTiO3 SC [28]
aT = 3.992 � 10−10 m and cT = 4.035 � 10−10 m (tetragonal phase),
aO = 4.013 � 10−10 m, bO = 3.989 � 10−10 m and xO = 0.13° (orthorhombic
phase), and aC = 4.002 � 10−10 m (extrapolated value of the unit-cell parameter of
the cubic phase), we calculate matrices from (A.13) and (A.14) and then D0

kl

�� �� and
||Dij|| from (1.4) and (1.7). The interphase boundary obeys conditions (1.14) and is
characterized as a fragment of a conical surface. A transition from ||Dij|| calculated
using matrices from (A.14) to D0

kl

�� �� calculated using matrices from (A.13) is
possible in a limiting case, when the condition

2ðns;Oa �ns;Ta Þ � ðns;OÞ2 ðA:15Þ

is valid. Hereby, we omit conditions like ns;Oa þ ns;Ta � 2 and ns;Oa � 1 while these
conditions are valid [1, 2, 6] at various structural phase transitions in FEs and
related materials. We mention that the similar limiting case was considered at the
determination of the orientation of the S wall in terms of the Metrat’s algorithm [18]
and the approach developed by Fousek and Janovec [14] [see (1.10) and (1.11) and
the transition from (l/h)M to (l/h)FJ in Sect. 1.1].

Taking into account (A.15), we represent the matrix elements of ||Dij|| as
Dij � 2D0

ij, and therefore,

det Dij

�� ���� �� � 8 det D0
ij

���
���: ðA:16Þ

For the tetragonal–orthorhombic interphase boundary in BaTiO3 SC, we obtain

det D0
ij

���
��� ¼ 2:550� 10�8 and det Dij

�� ���� ��=8 ¼ 2:557� 10�8, i.e. condition (A.16) is

valid. The relatively small value of det||Dij|| is caused by a small difference aT − bO.
As a consequence, considerable stress relief would be achieved at elastic matching
of the single-domain phases.

For comparison, we analyse elastic matching at the orthorhombic–rhombohedral
phase transition in BaTiO3 SC. Matrices of spontaneous strains of the
single-domain phases are written as

S0kl
�� �� ¼

ns;Oa 0 ns;O

0 ns;Ob 0
ns;O 0 ns;Oc

0
@

1
A and S00kl

�� �� ¼
ns;Ra ns;R ns;R

ns;R ns;Ra ns;R

ns;R ns;R ns;Ra

0
@

1
A; ðA:17Þ

where ns;Oa , ns;Ob , ns;Oc and ns;O are spontaneous strains of the perovskite unit cell in
the orthorhombic phase, ns;Ra and ns;R are spontaneous strains of the perovskite unit
cell in the rhombohedral phase. Distortion matrices of the coexisting single-domain
phases are represented as
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Mklj jj j ¼
1þ ns;Oa 0 ns;O

0 1þ ns;Ob 0

ns;O 0 1þ ns;Oc

0
B@

1
CA and

j Nklj jj ¼
1þ ns;Ra ns;R ns;R

ns;R 1þ ns;Ra ns;R

ns;R ns;R 1þ ns;Ra

0
B@

1
CA:

ðA:18Þ

We use the following experimental values of the perovskite unit-cell parameters
of BaTiO3 SC [19, 28]: aO = 4.013 � 10−10 m, bO = 3.976 � 10−10 m and
xO = 0.13° (orthorhombic phase), aR = 3.998 � 10−10 m and xR = 0.15° (rhom-
bohedral phase), and aC = 3.998 � 10−10 m (cubic phase, extrapolated value). Like
the boundary between the single-domain tetragonal and orthorhombic phases, the
orthorhombic–rhombohedral interphase boundary obeys conditions (1.14). A link

between det||Dij||, calculated using matrices from (A.18), and det D0
ij

���
���, calculated

using matrices from (A.17), is also consistent with (A.16): we obtain det D0
ij

���
��� ¼

1:329� 10�7 and det Dij

�� ���� ��=8 ¼ 1:331� 10�7. In this case, det||Dij|| is about 5.2
times more than det||Dij|| at elastic matching of the single-domain tetragonal and
orthorhombic phases in BaTiO3 SC. Such an increase in det||Dij|| is concerned with
the more appreciable changes in the unit-cell parameters of BaTiO3 SC [19, 28] at
the orthorhombic–rhombohedral phase transition in comparison to the changes at
the tetragonal––orthorhombic phase transition.

To consider elastic matching of the single-domain FE rhombohedral (R3m) and
untwined antiferroelectric orthorhombic (Pbam) phases in PbZrO3 SC, we use
unit-cell parameters [20] as follows:aO = 4.1606 � 10−10m,bO = 4.1334 � 10−10m
and xO = 2.5′ (orthorhombic phase), aR = 4.1606 � 10−10 m and xR = 6.0′
(rhombohedral phase), and aC = 4.1565 � 10−10 m (cubic phase, extrapolated
value). Orientations of the crystallographic axes of the perovskite unit cell in the
coexisting phases are described taking into account (A.17) and (A.18). Our evalua-

tions show that det D0
ij

���
��� ¼ �5:620� 10�10 and det Dij

�� ���� ��=8 ¼ �5:617� 10�10, i.e.

(A.16) holds, and almost complete stress relief is achieved. This is accounted for by
the equality aR = aO at the rhombohedral–orthorhombic phase transition in PbZrO3

SC [20]; however, the shear distortion of the unit cell influences elastic matching and

leads to det D0
ij

���
��� 6¼ 0 and det Dij

�� ���� �� 6¼ 0.

Now, we assume that the rhombohedral and orthorhombic phases in PbZrO3 SC
are split into the non-180° domains (twins). Small values of det Dij

�� ���� ��	 10�10 at
the coexistence of the same single-domain phases suggest that complete stress relief
can be achieved at least in the presence of 90° twin components in the antiferro-
electric orthorhombic phase. The FE rhombohedral phase is split into the 71° (109°)
domains with the orientations shown in Fig. 2.5. The spontaneous antipolarization
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vectors ±Pai in the twin components of the orthorhombic phase are parallel to [101]
(volume fraction t) and [10�1] (volume fraction 1 − t) of the perovskite unit cell, and
the twin components are separated by the planar stress-free walls in accordance
with concepts [14, 15]. Average spontaneous strains are represented by S0kl

�� �� from
(A.12) (rhombohedral phase) and by

S00kl
�� �� ¼

ns;Oa 0 ns;Oð2t � 1Þ
0 ns;Ob 0

ns;Oð2t � 1Þ 0 ns;Oc

0
@

1
A; ðA:19Þ

(orthorhombic phase). Distortion matrices of the rhombohedral and orthorhombic
phases are given by (2.6) and

Nklj jj j ¼
1þ ns;Oa 0 ns;Oð2t � 1Þ

0 1þ ns;Ob 0
ns;Oð2t � 1Þ 0 1þ ns;Oc

0
@

1
A; ðA:20Þ

respectively. It is seen that, as in previous cases of the coexistence of the
single-domain phases, the distortion matrices from (2.6) and (A.20) are symmetric.
Hereafter, it is assumed that parameters xR and yR (Fig. 2.5) obey conditions (1.18)
for ZNSPs at the cubic–rhombohedral phase transition. This means that no changes
in the volume fractions of the 71° (109°) domains are expected in the relatively
narrow (about 10 K [20]) range of the thermodynamic stability of the rhombohedral
phase on cooling the SC sample.

Taking into account (A.12), (A.19) and (A.20) and values of the aforementioned
unit-cell parameters aO, bO, xO, aR, xR and aC of PbZrO3 SC, we find the optimal
volume fractions (topt)M and (topt)S. These volume fractions are related to the 90°
twin components with ±Pa1||[101] and obey conditions (1.18) or those for ZNSPs
in terms of spontaneous strains [15, 16]. We added subscript M (Metrat’s approach)
or S (Sapriel’s approach) to distinguish the calculated values. Table A.2 contains
(xR, yR) calculated for the cubic–rhombohedral phase transition [5] on the basis of
the Metrat’s algorithm. It should be mentioned that the difference between (xR, yR)
calculated using the Metrat’s approach and (xR, yR) obtained using the Sapriel’s
approach is less than 0.5%. Data from Table A.2 show that small differences
(topt)M − (topt)S are observed at variations of xR and yR in wide ranges. In general,
changes in the unit-cell parameters promote complete stress relief in PbZrO3 SC at a
restricted number domain types (twin components) of the coexisting phases. In our
opinion, such elastic matching may be an indirect reason for the three-phase states
observed in PbZrO3 SCs (Sect. 4.2.1).

The above-given examples of elastic matching of phases in PbZrO3 and BaTiO3

SCs show that the correlation between D0
ij

���
��� and Dij

�� ���� �� is observed in systems that

are characterized by complete or considerable stress relief at the first-order phase
transition.
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The application of the approach developed in work [14–16] to heterophase
structures in solid solutions near the MPB may be problematic, as the unit-cell
parameters of the two morphotropic FE (or antiferroelectric) phases are known;
however, an extrapolated unit-cell parameter of the high-temperature paraelectric
phase was not measured [6, 29–31]. In this case, a direct comparison of the unit-cell
parameters of the morphotropic phases is needed, as shown for solid solutions of PZT
(Sect. 2.1), PMN–xPT (Sect. 2.2), etc. It should be added that the Metrat’s algorithm
[18] was successfully applied to describe elastic matching of phases in antiferro-
electric PbHfO3 SC at the first-order phase transitions Pm3m − P2221 − Pba2 [4].
The planar interphase boundaries and their orientations observed in PbHfO3 SCswere
described on the basis of the Metrat’s algorithm. An ‘exotic’ effect of the 60° triple
twin component on the interphase boundary between the antiferroelectric P2221 and
Pba2 phases was first predicted on the basis of the Metrat’s algorithm and then
confirmed in the experimental study [4].

Table A.2 Optimal volume fractions (topt)M and (topt)S of 90° twin components with the
spontaneous antipolarization vector±Pa1||[101] at the phase transition R3m − Pbam in PbZrO3 SC

xR yR (topt)M (topt)S
0 0.2538 0.4552 0.4542

0 0.7462 –
a

–
a

0.05 0.2498 0.4638 0.4627

0.05 0.7502 –
a

–
a

0.10 0.2432 0.4735 or 0.9934 0.4726 or 0.9934

0.10 0.7568 0.0230 0.0218

0.15 0.2311 0.4861 or 0.9522 0.4854 or 0.9522

0.15 0.7689 0.0443 or 0.0706 0.0453 or 0.0689

0.20 0.2023 0.5072 or 0.9293 0.5066 or 0.9292

0.20 0.7977 0.0698 or 0.1108 0.0708 or 0.1092

0.2538 0 0.6166 0.6161

0.2538 1 0,0685 0,0677

0.7462 0 0.3834 0.3839

0.7462 1 0.9315 0.9323

0.80 0.2023 0.0707 or 0.4928 0.0708 or 0.4934

0.80 0.7977 0.8892 or 0.9302 0.8908 or 0.9292

0.85 0.2311 0.0478 or 0.5139 0.0478 or 0.5146

0.85 0.7689 0.9294 or 0.9557 0.9311 or 0.9547

0.90 0.2432 0.0066 or 0.5265 0.0066 or 0.5274

0.90 0.7568 0.9770 0.9782

0.95 0.2498 0.5364 0.5373

0.95 0.7502 –
a

–
a

1 0.2538 0.5448 0.5458

1 0.7462 –
a

–
a

aNo value of (topt)M or (topt)S is found in the volume fraction range [0, 1], and the boundary
separating the R3m and Pbam phases does not obey conditions (1.18) for ZNSPs
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In conclusion, we underline that the Metrat’s algorithm [18] and its further
modifications (see, for instance, [3, 5, 20, 24, 32, 33]) are suitable to calculate the
crystallographic characteristics of the polydomain (twinned) phases and interfaces
separating the domain regions in heavily twinned SCs or polydomain phases in
heterophase SCs. According to Scopus database (www.scopus.com, November
2017), Metrat’s work [18] has been cited 37 times, and no comments on this paper
have been published in Ferroelectrics and/or related periodicals since 1980.
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Appendix B
Optimal Volume Fractions in Terms
of Angles Between Spontaneous
Polarization Vectors Near
the Morphotropic Phase Boundary

B.1 Optimal Volume Fractions and Polarization Rotations

In this section, we propose a crystallographic interpretation for relationships between
the optimal volume fractions of the non-180° domains in the morphotropic phases.
These relations were put forward for PZN–xPT SCs under E||[001] [see (3.4) and
(3.5)] and for PZT at E = 0 [1]. Before the crystallographic description, we draw
attention to Table 3.1 where dependences of the optimal volume fractions
nT;optðEÞ; n0T;optðEÞ; vM;optðEÞ; and v0M;opt Eð Þ are given. We note, for example, that at
the electric-field-induced phase transition, nT(E), characterizes the volume fraction of
the 90° domains with the spontaneous polarization Ps1 || E || [001] in the tetragonal
phase, and the spontaneous polarization vector PT = nTPs1 + (1 − nT)Ps2 of a
polydomain region would rotate towards the E vector with increasing E. Taking into
account the orientations of Psk (see domains 1–2 in Fig. 3.2), one can show that
PTE = nTPs1E; therefore, PTEcos(PT, ^E) = nTPs1E and nT * cos(PT, ^E). The
optimal volume fraction nT, opt is achieved at elastic matching of the coexisting
phases along ZNSPs (see Sect. 3.2.2), and in this case one can expect a correlation
between nT, opt and cosine of an angle between the spontaneous polarization vectors
of individual domains in the coexisting phases. Based on this assumption and results
of work [1], we represent interrelations between the optimal volume fractions of the
non-180° domains [see (3.4) and (3.5)] as follows:

cos aRh�Tg � cos aRh�Mc cos aTg�Mc; ðB:1Þ

where aRh−Tg, aRh−Mc and aTg−Mc are the angles between the spontaneous polar-
izations of the non-180° domains (one type in each phase, see Fig.B.1a) in the
neighbouring phases. Below, we examine the validity of (B.1) at possible domain
orientations of the domains in the coexisting phases (Table B.1).

The orientation of the PMc vector (Table B.1) strongly depends on the mutual
arrangement of the PRh and PT vectors in the adjacent phases. It can be accounted
for by the relation between the orientations of these vectors, as is known from the
polarization rotation concepts [2, 3], see also the domain orientation and the
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polarization path [111] ! [001] in Fig. 2.8). Any intermediate orientations of the
PMc vector (0 < g < 1) can be predicted if we take into account a field dependence
of the angle aRh − Tg between the domains in the rhombohedral and tetragonal
phase. The coexistence of the rhombohedral and tetragonal phases in PZN–0.08PT
SCs was observed in a certain range of E [4]; however, reliable experimental values
of the unit-cell parameters measured under the electric field E || [001] are
unavailable for this and other compositions near the MPB. As a consequence,
Table 3.1 does not contain the field dependence of the optimal volume fractions
nT;opt and n0T;opt at the rhombohedral–tetragonal phase transition.

It should be added that conditions for the optimal volume fractions of the
non-180° domains were also found [1] for PZT at E = 0. In Sect. 2.1.2, we high-
lighted the virtual constancy of the optimal volume fractions of the non-180°
domains (Table 2.2) at elastic matching of the morphotropic phases along ZNSPs.
A comparison with (3.4)–(3.5) shows that the optimal volume fractions of the
domains in the coexisting phases of the PZT system near the MPB are interrelated
as follows:

Fig. B.1 Angles between the spontaneous polarization vectors in the perovskite unit cell at phase
transitions in PZN–xPT (a) and PZT (b). The spontaneous polarization vectors are oriented as
follows: PRh || [111] (rhombohedral phase), PTg || [001] (tetragonal phase), PMc || [g01]
(MC phase) and PMa || [hh1] (MC phase), where 0 < g < 1 and 0 < h < 1
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nT;opt Rh�Tgð Þ � nM;opt Rh�Mað Þ 
 nM;opt Tg�Mað Þ ðB:2Þ

and

n0T;opt Rh�Tgð Þ � n0M;opt Rh�Mað Þ 
 nT;opt Ma�Tgð Þ: ðB:3Þ

In (B.2) and (B.3), nT;opt; nM;opt; n0T;opt and n0M;opt are the optimal volume frac-
tions defined in Sect. 2.1.2, and abbreviations Rh, Tg and Ma denote the rhom-
bohedral, tetragonal and MA phases, respectively. Equations (B.2)–(B.3) differ from
(3.4)–(3.5) that were formulated for PZN–xPT SCs with the intermediate MC phase
arising under the electric field E||[001]. In our opinion, the main reason for such a
difference is a result of the different polarization rotation paths in PZT and PZN–
xPT [2, 3]. However, despite this difference, interrelations between the angles in the
polarization rotation path (Fig. B.1b) can be represented by analogy with (B.1):

cos aRh�Tg � cos aRh�Ma cos aTg�Ma: ðB:4Þ

In (B.4), aRh�Tg; aRh�Ma and aTg�Ma are the angles between the spontaneous
polarization vectors of the non-180° domains (see Fig. B.1b), and subscripts denote
the phase coexistence for which the angle is introduced: rhombohedral–tetragonal
(Rh−Tg), rhombohedral–MA (Rh−Ma) or tetragonal–MA (Tg−Ma).

Table B.2 contains data on mutual orientations of the PRh, PTg and PMa vectors
in the morphotropic phases of the PZT system. The possible orientations of the

Table B.1 Validity of (B.1) at various orientations of spontaneous polarization vectors in the
coexisting phases

Orientation of the
spontaneous polarization
vector PRh in the
rhombohedral phase

Orientation of the
spontaneous polarization
vector PTg in the tetragonal
phase

Miller index g and orientation of
the spontaneous polarization
vector PMc in the MC phasea

jj 111½ � ∥ [001] 0 < g �1, PMc close to [001]

∥ [100] g � 1, PMc close to [101]

∥ [010] —b

jj½1�11� ∥ [001] —b

∥ [100] g � −1, PMc close to ½�101�
∥ [010] —b

jj½�1�11� ∥ [001] —b

∥ [100] g � −1, PMc close to ½�101�
∥ [010] —b

jj½1�11� ∥ [001] 0 < g � 1, PMc close to [001]

∥ [100] g � 1, PMc close to [101]

∥ [010] —b

aPMc || [g01] with respect to the perovskite unit cell
bCondition (B.1) does not hold at the chosen domain orientations in the rhombohedral and
tetragonal phases
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spontaneous polarization vector PMa in domains of the intermediate MA phase are
inseparably linked with the chosen orientations of PRh and PTg in the neighbouring
phases (see Fig. B.1b), and this important link again points to the MA phase as a
bridging phase [5] in the MPB region of PZT. A more detailed analysis of (B.4)
and the determination of limits of its validity (at possible changes in the DS, molar
concentration x, temperature T, etc.) needs additional reliable experimental data on
the unit-cell behaviour of PZT both just at the MPB and small deviations away
from it.

We hope that the conditions similar to those represented in (B.1) and (B.4) may
be formulated for various systems of FE solid solutions wherein the intermediate
phases are detected close to the MPB.
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