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PREFACE

Second Edition

“This book fills a much needed gap,” or so Moses Hadas (1900-1966, Columbia Uni-
versity Professor of Classical Literature) is reputed to have cynically said of another
author’s efforts. The gap that pertains to the present work is that between traditional
biology subject matter and applied mathematics. The twenty-first century is touted
as the century of mathematical biology, by which we mean that many of the impor-
tant practical as well as theoretically interesting problems involve biological systems
of such complexity that traditional experimental analysis must be coupled with math-
ematical synthesis. Other authors have noted the need to expose biology students
to greater quantitative training and have provided biologist-friendly introductions to
computer simulation focused on a variety of biological subdisciplines. I continue to
think we need a general textbook, applicable to a wide range of biological systems, but
with enough rigor that some of the depth of the underlying mathematical and compu-
tational substance can be appreciated by biology students. This necessarily removes
biologists from their intellectual comfort zone, but my goal is to perturb the mind, and
my hope is that a student’s current knowledge base is an unstable equilibrium.

In providing a revision to the first edition, I have attempted to provide some of
this rigor, but certainly not enough for this book to be considered mathematical biol-
ogy. As with the first edition, I note there are several texts of the latter from which
to choose. This book continues to lie in the possibly unattainable middle ground be-
tween mathematics and introductory computer simulation. To help the student, and
the teacher, I have put new material on a CDROM disk that provides modeling tools
in C and Mat1ab® and its open source GNU analog octave. The proper choice of
computer tools has long been and will continue to be debated; each of us has our
preferences. For myself, I think students can and should learn a general purpose pro-
gramming language, and I think C is the simplest of these that also has a rich set of
open source libraries needed for non-trivial modeling. However, C does require atten-
tion to detail, both in conceptual analysis and precision of code composition. While
I would not dream of suggesting that this is something we biology educators have let
slip in our need to provide to students the ever increasing body of biological facts,
nevertheless, perhaps learning to deal with details is a good thing. Other instructors
will place greater emphasis on the conceptual bases of biological modeling with as
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little class time devoted to programming as possible. It is for these I have provided as
much octave/Matlab code as possible. Those facile with these high-level scripting
languages will easily discover that I am not one of their society. However, I am always
happy to learn new things and so look forward to receiving better code fragments from
students and instructors.

To the maximum extent possible, the octave code has been verified to run in
Matlab Version 5.3, which is available on many platforms. The C package of simula-
tion modules is combined with an excellent, free graphics library (Dislin)for plotting
that rivals those of Matlab. Each package has its advantages and disadvantages, and
I leave it to the instructor to choose which (if either) he or she wishes to use.

This new edition also fixes numerous typographic errors and other problems of
presentation, particularly in Part I (Principles). I have also added in Part T and Part
II (Applications) new examples that reflect new modeling approaches or particularly
relevant systems. Because of recent interest in AIDS and bioterrorism, Part IT contains
a new chapter on epidemiological models and immunology. A second new area of in-
terest is the use of Bayesian, likelihood, and information-based techniques for model
validation and discrimination. These were covered in the first edition, but new devel-
opments warrant more detailed treatment with worked examples. Finally, individual-
based models (IBMs) in which individuals in populations are tracked in physical and
phenotypic space continue to be an important approach used in many disciplines of
biological modeling. The new edition gives greater attention to these models.

With the expansion of the text material, some topics have been reduced or re-
moved. Chapter 5 (Simulation Techniques) is now on the CDROM, with only super-
ficial consideration in the text chapter on numerical techniques. Chapter 4 has been
expanded and split into two chapters to ease the pain of this crucial aspect of modeling.

Other, smaller changes include an improved subject index and back-referencing
author citations in the bibliography to the page numbers on which they are cited. New
exercises in many of the chapters, including class project possibilities, are included.

The overall philosophy of the text remains as that of the first edition. I describe a
few core principles around which most modeling projects are based in Part I. These
principles are exemplified in the case studies of Part II.

First Edition

This book is intended as a text for a first course on creating and analyzing computer
simulation models of biological systems. The expected audience for this book are stu-
dents wishing to use dynamic models to interpret real data much as they would use
standard statistical techniques. It is meant to provide both the essential principles as
well as the details and equations applicable to a few particular systems and subdis-
ciplines. Biological systems, however, encompass a vast, diverse array of topics and
problems. This book discusses only a select number of these that I have found to
be useful and interesting to biologists just beginning their appreciation of computer
simulation. The examples chosen span classical mathematical models of well-studied
systems to state-of-the-art topics such as cellular automata and artificial life. I have
stressed the relationship between the models and the biology over mathematical anal-
ysis in order to give the reader a sense that mathematical models really are useful
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to biologists. In this light, I have sought examples that address fundamental and, I
think, interesting biological questions. Almost all of the models are directly compared
to quantitative data to provide at least a partial demonstration that some biological
models can accurately predict.

As aresult, I have generally kept the mathematical manipulations and requirements
to a minimum. This is not a text in theoretical or mathematical biology; several of
these already exist, and, being written by bonafide mathematicians, they have much
to recommend them. The minimum mathematics needed for this book are statistics to
the point of simple, single-variable linear regression, a small knowledge of probability
distributions, and one semester of calculus.

The book is divided into two parts. The first, Principles, gives the basic steps that
take a modeler from a biological question to a conceptual model to a quantitative spec-
ification of the system. The conversion of vague questions and ambiguous information
into precise and quantitative mathematical forms is one with which biology students
have the greatest difficulty. I have found that a set of heuristic “rules-of-thumb” ap-
plied to hypothetical situations is an effective teaching approach. Once these skills
are mastered, the text describes techniques for constructing computer programs to
solve the equations. Following this, methods to analyze computer output to answer
the initial question are presented. These include equilibrium and stability analysis,
sensitivity analysis, error analysis, and validation. The concepts developed in Prin-
ciples apply to virtually any subject or question that can be addressed or formulated
such that the answer can be gleaned from the dynamics of variables that describe the
system (e.g., population size). Since the majority of biological theory is formulated in
terms of differential equations, I stress techniques appropriate to “continuous systems”
simulation.

The second part, Applications, is a series of chapters in which fundamental equa-
tions and problems from various biological disciplines are presented. Here I have
tried to provide students and instructors with tools that will permit them to design
their own course in biological modeling. By separating the details of subdisciplines
from modeling fundamentals, I hope to provide a format in which a coherent portrait
of the modeling enterprise can be obtained as well as background in modeling partic-
ular biological systems. Space, interest, and expertise have limited the suite of topics
considered. Since my area of interest is ecology, I have perhaps stressed this field,
but as most ecologists would admit, physiology and biochemistry are relevant fields.
I include some fundamental equations and examples from these areas. The intent is
not to give a comprehensive review of each topic; this is well beyond my expertise.
Rather, I want to whet the students’ appetites, providing enough background so that
the references can be used in an intelligent manner and so that meaningful exercises
can be attempted.

The process of modeling biological systems is certainly not a science, but neither
is it as unconstrained as the creation of a work of pure art that is evaluated solely on its
esthetic content. I prefer to analogize modeling with crafting a tool useful for human
problem solving. To aid in the acquisition of this craft, I have provided problems and
exercises for most of the chapters. Some of these require computer programming, and
I have given an example using the C programming language. I believe C is rapidly be-
coming required for literacy in scientific computing. The very small amount presented
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in this book will give the reader a taste. A discussion of simulation languages and en-
vironments also provides access to other, relatively painless methods of implementing
simulation models.

For the Instructors: There seem to be two methods for teaching quantitative and
mathematical methods in biology: present a large number of models from many bi-
ological disciplines and expect the commonalities and principles to emerge on their
own; or, present a set of modeling fundamentals extracted from general principles
with relatively few examples and hope that students learn to apply the principles to
new situations. Both methods have advantages and disadvantages; I like the latter ap-
proach, as the structure of the book suggests. Nevertheless, I have tried to accomodate
both and I hope those of you favoring the former teaching style will find the book
useable.

For the Students: At my university, I use this book in a course for seniors and
new graduate students. It really is an introduction to the subject insofar as someone,
somewhere, has already written an entire book on the subject of each chapter. If
you are in a considerably earlier stage in your academic career and find the book
approachable, consider yourself fortunate to be smart and to have had good teachers.

While the author cannot claim to be smart, he has been fortunate to have had
good teachers over the years. It seems appropriate to mention three of them here not
so much as to afix blame, but to recognize their contributions. Thanks to Charles
Warren, Scot Overton, and George Innis. Finally, this book in whole and in part has
been examined by a number of my friends, notable among them being Linda Abbott,
Susan Durham, Laura Hartt, Upmanu Lall, Alice Lindahl, Keith Mott, Darcie Neff,
Jim Powell, Kirk Steinhorst, and former students in my graduate classes. While their
efforts were valiant, unintentional errors remain. Remember: Never attribute to malice
anything that can be attributed to stupidity.
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|Chap’ter 1

Models of Systems

1.1 Systems, Models, and Modeling

‘I want to understand everything,’ said Miro. ‘I want to know everything and put
it all together to see what it means.’
‘Excellent project,” she said. ‘It will look very good on your resumé.’

— Card (1982)

WHEN THINKING ABOUT systems, models, and understanding everything, it is good
to begin with the famous parable of six blind men inspecting an elephant. They
are asked to identify the object before them which they cannot see. One man, feeling
the elephant’s leg, thinks he is touching a tree trunk. Another, grasping the elephant’s
trunk, thinks he is holding a snake. A third, standing near the moving ear, thinks it is a
large, feathered fan. And so it goes for the other men touching the tusk, the side, and
the tail of the elephant. Each man gave a different description of the same object, but
none was correct.

Three fundamental lessons can be gleaned from this simple parable. First, in the
real world, we don’t know it’s an elephant: there is no omniscient observer with special
access to the truth. Imagine you are one of the blind men; now imagine yourself pro-
pounding the new “tree-trunk” theory to your fellow observers. Very likely, they are
not amused. Second, all of the men collected basic data and generated an hypothesis
consistent with the data. This activity, which is distinct from deduction or induction,
is called abduction (attributed to Charles Peirce, see (Hanson 1972)). It is easy and
natural for humans to practice abduction; as the parable suggests, it is an activity that
occurs frequently in daily life. Third, abduction is not infallible. However it is ac-
complished, abduction is not a fail-safe method for discovering truth, beauty, or the
meaning of life. Descriptions and hypotheses may vary in their quality or value. We
must, therefore, go beyond the simple description, if we are to gain confidence that our
initial perceptions were valuable. This book describes some tools by which we may
formally and quantitatively extend to specific predictions the qualitative descriptions
abduced from observations on biological subjects

In essence, each blind man created a model (the description) of a system (the ele-
phant). By these concepts we mean the following. A model is a description of a
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system. A system is any collection of interrelated objects. An object is some ele-
mental unit upon which observations can be made, but whose internal structure either
does not exist or is ignored. Finally, for completeness, a description is a signal that
can be decoded or interpreted by humans. In short, systems are anything humans wish
to discuss and models are one tool that facilitates the discussion.

Before discussing these definitions, consider an example. Suppose the system of
interest is the set of students and the professor in a typical classroom situation. There
are many potentially interesting relations between these objects, but let us focus on
their spatial position at a moment in time. We could model this system by drawing
a map of the objects based on some arbitrary coordinate system (e.g., Cartesian co-
ordinates with origin in one corner of the room). This map then counts as a model
because the objects and their relations (the system) are combined in a form that can
be interpreted by humans. The relations between objects identified in this example are
the spatial relations. Other relations could be used, for example, the relation knows
more than. Thus, we could describe the system in the classroom by drawing arrows
between objects to indicate that the object at the tail of the arrow knows more than
the object to which the arrow points. One failure of the blind men was to ignore the
relations between objects. A seventh man, one sensitive to the importance of testing
alternative models, might have said: “Hmmm, ‘tree’, ‘snake’, ‘fan’, ‘spear’, ‘wall’,
‘rope’: It’s a single, big thing with columnar supports and appendages at the ends.”
The blind men, especially, need a systems approach, and with respect to the scientific
unknown, we are all blind.

Although we can give particular examples, the definitions stated above are so gen-
eral that they are nearly useless in normal discourse. Superficially, they imply that
virtually everything is a system and that models are used and defined in every facet of
human activity. For example, the simple declarative sentence “It is raining outside”
counts as a model of a system composed of the atmosphere outside the walls of the
building. Consequently, the definitions do not aid in defining and delineating our sub-
ject of interest. Nevertheless, the definitions make several points. First, modeling is
a fundamental activity between humans: we use models to communicate a view of
the world. (Indeed, this book is a model of modeling.) Second, any particular system
with its specific objects and relations is defined, if not arbitrarily, then at least by some
convention that may in the end be a matter of convenience.

Because of the generality in the definitions, we must narrow the class of models.
We do this by identifying the uses to which models may be put. There are many
possibilities: we use them to convince (e.g., use of analogy in a court room), delight
(e.g., a painting or sculpture), inform (e.g., a map), and so on. However, it is the class
of scientific uses that concerns us here and that will give us a framework for restricting
the class of models.

1.2 Uses of Scientific Models

Model [er]: a device for turning assumptions into conclusions.— Schimel (2002)

There are three primary, technical uses of models in science:
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E

S L

Type of Problem Given To Find Uses of Models
Synthesis Eand R S Understand
Analysis Eand S R Predict
Instrumentation SandR E Control

Figure 1.1: Systems and the uses of models. Top: A general system represented as an
input (E), a system object (S), and the output (R). Bottom: Knowledge needed for models
of different uses. (From Karplus 1977, Fig. 1. © 1977 Simulation Councils, Inc. Reprinted
withOUT permission Simulation Councils, Inc., publisher.)

o Understanding — of either a real, physical system or of a system of logic such
as another scientific theory.

e Prediction — of the future or of some state that is currently unknown.

o Control — to constrain or manipulate a system to produce a desirable condition.

Karplus (1983) provides a simple conceptual framework of systems that defines
these three uses of models. A system (Fig. 1.1) can be thought of as a black box
(system object, S) with a single input (excitation, E), and a single output (response, R).
Additional structure in the form of objects and relations could be provided within the
box, but the idea is general, considering only a single object. The output is produced
by the object’s action on the input. For example, suppose S is a whole plant (not
differentiated into parts), E is the amount of fertilizer added to the soil, and R is the
amount of new growth.

This scheme permits a definition of the three uses of models (Fig. 1.1). Three
general problems that humans face with respect to any discipline or body of knowledge
are:

o Synthesis — use knowledge of inputs and outputs to infer system characteristics.

o Analysis — use knowledge of the parts and their stimuli to account for the ob-
served responses.

o Instrumentation — design a system such that a specified output is the result of an
input.

Models can be used in each of these problem areas and when they are, they allow us
to understand, predict, and control systems.

There are also important secondary uses of scientific models that derive from the
social characteristics of science:

1. Use as a conceptual framework for organizing or coordinating empirical re-
search (e.g., designing experiments or sampling studies, allocating limited re-
search dollars).

2. Use as a mechanism to summarize or synthesize large quantities of data (e.g.,
a simple linear regression equation y = mx + b to reduce all of the x-y pairs of
data to two parameters m and b).

3. Identify areas of ignorance, especially when defining relations between objects
(e.g., Does species A eat species B?, Does Professor X know more than Student
A?).
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Figure 1.2: Numbers of insect species on a small mangrove island following defaunation.

(From Simberloff and Wilson 1970, Fig. 1. © 1970 Ecological Society of America. Reprinted
with permission of the publisher.)

4. Provide “insight” to managers or planners (or others) by performing “what-if”
simulations (“‘gaming”).

1.3 Example: Island Biogeography

A biological example will help clarify some of these concepts. Biogeography is a
discipline that combines elements of ecology and geography; its primary objective is
to describe and explain the spatial distribution of plants and animals on the Earth’s
surface. The spatial scale for this field is broad: landmasses on the order of conti-
nents and large islands. Mapping the geographical distributions of species is a major
component of biogeography, but it also examines patterns of numbers of species over
geographical space. Island biogeography is a subdiscipline which restricts itself to
islands.

1.3.1 Physical Setting

Ecologically, an island can be a true, oceanic island, or it can be a habitat island such as
a patch of forest in a fragmented landscape. Biogeographers are interested in the final
number of species that will occur on the island as well as the dynamics of the build-up
of species on new islands or the extinction of species as island conditions change. An
impressive field experiment performed by D. Simberloff and E. O. Wilson (Simberloff
and Wilson 1970) tracked the number of insects on small mangrove islands following
complete defaunation. The dynamics of numbers of species is shown in Fig. 1.2; the
number of species after two years was nearly identical to the pre-defaunation level.

The physical framework is shown in Fig. 1.3. Organisms from the mainland
species disperse randomly. If an individual of a species not currently on the island
intersects the island, that constitutes a colonization of a new species. If all of the indi-
viduals of a species on the island die, then the species has gone extinct. Consequently,
the number of species on an island is the result of two processes: colonization and
extinction.
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Figure 1.3: Physical picture of island biogeography theory. Organisms colonize randomly
(arrows). Islands can vary by their distance to the mainland (near or far} and their size (large
or small).

1.3.2 Theory

There are many approaches to the problem of describing the numbers of species on
islands. For example, we could take Fig. 1.3 literally by mathematically creating a
two-dimensional picture of a particular mainland and set of islands. We could then
mathematically describe the movement of individuals of all species as they attempt to
colonize the islands with random flight paths. This approach could incorporate exten-
sive ecological and behavioral realism. Alternatively, we could simplify the figure by
ignoring individual organisms, writing equations for the populations of each species
on each island. MacArthur and Wilson (1967), however, took an even simpler ap-
proach. They simplified the problem by abstracting away populations of species and
considered the system (S in Fig. 1.1} to be the number of species on an island, with-
out regard to the numbers of organisms in the species. Thus, they describe a dynamic
theory of biogeography in which the numbers of species is a balance of two processes:
immigration and extinction. The rates of both processes depend on the number of
species currently on the island. The net rate of change of species is the sum of these
two “forces.” When immigration is greater than extinction, the number of species
increases; the number decreases if the opposite is true.
‘We make two very simple biological hypotheses concerning these processes:
¢ Individuals of each species have a constant probability of arriving at the island
and this probability is identical for all individuals and all species. The rate of
immigration (/) of new species only occurs upon the arrival of an individual of
a species not currently on the island.

o The probability of extinction of any single species is constant. Consequently,
as the number of species on the island increases, the probability that any one
species goes extinct increases. Thus, the total rate of extinction (E) increases
with R (number of species on the island).

Figure 1.4 graphically illustrates these hypotheses. In this figure, R is the number
of species on the island, P is the number of species on the mainland (in the “pool”). We
use the equations for a straight line to represent the rate of colonization and extinction.
Immigration of new species decreases because as species accumulate there are fewer
species that can be new. In the limit, if an island has as many species as the mainland,
the rate of colonization must be 0. Extinction increases because on islands with many
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L, I=L-W/PR

E = (E,/P)R

Immigration (I)
Extinction (E)

P P

R (# species) R (# species)

Figure 1.4: Quantitative relationships between number of species on an island (R) and
rates of immigration (I) and extinction (E). P is the number of species in the mainland pool
of species.

species, the total number of species going extinct will increase if there is a constant
probability that any one species goes extinct.

These hypotheses (which might be based on data and prior knowledge) have sim-
ple mathematical expressions. The simplest model is a straight line in both cases.

I=1,-U:/P)R
E = (E./P)R.

where I, is the maximum colonization rate, and E, is the maximum extinction rate.

We assemble these hypotheses into a single equation that describes the number of
species on the island. For simplicity, we will consider time to be discrete, but later we
will use continuous time.

Ry =R+ - E
=Ry + I, — (Iy/P)R; — (Ex/ P)R;. (1.1)

Equation 1.1 mathematically represents our hypothesis that species dynamics are based
on the relative strength of two processes: I; (causing numbers to increase) and E,
(causing numbers to decrease). These types of data are difficult to collect in natural,
field situations, but are possible in laboratory settings. Figure 1.5 is one such data set
obtained from a classroom physical simulation of the colonization process (Haefner
et al. 2002). In that exercise, organisms are the labeled lids of petrie plates. Using a
mainland pool containing 20 different “species,” students throw the lids at islands on
the ground in front of them and measure the immigration and extinction rates during
the “colonization” process. The linear regression lines for immigration and extinction
rates are shown in Fig. 1.5a. Substituting these into Eq. 1.1 yields:

Riy1 = R + (8.963 — 0.395R,) — (—0.011 + (0.0656)R,). (1.2)

The use of the regression equations, which are strongly influenced by the considerable
statistical variation of the data, has some interesting implications for this model that
are to be explored in the exercises.

Several interesting results can be obtained from Eq. 1.2. First, we can iterate the
equation by assuming an initial value of R, (e.g., Ry = 0). Then, use the equation to
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Figure 1.5: Data and results from a simulated biogeographical experiment. (a) Immigra-
tion rate (I, numbers/time, solid diamonds) and its best fit regression line (solid line). Also
shown are Extinction rate (E, numbers/time, open circles) and its regression line (dashed
line). (b) Observed and predicted number of species by iterating Eq. 1.2 using two estimates
of parameters.

obtain R;; insert this value on the right-hand-side of Eq. 1.2 and again use the equation
to obtain R,. Repeat this process indefinitely. For this simple equation, a calculator or
spreadsheet is adequate. Once iterated, we can compare predictions with observations
to test the adequacy of the model. Alternative models can be compared to the same
data. For two sets of parameter values (i.e., the numerical constants in Eq. 1.2), Fig.
1.5b shows the performance of the model to observed data. See Exercise 7 to think
about the reasons for different parameters.

( MBS-CD contains SimIslandBiogeog_FD code implementing this model.] .n,

The second calculation we can make with Eq. 1.1 is to compute the equilibrium
number of species on the island. This process is an important part of model analysis
that we will discuss in later chapters, but for now the equilibrium number of species
is that number at which the number of species is not changing. It is the number of
species (R) at which R,y = R,. We can compute this number by subtracting R, from
both sides of Eq. 1.1 and solving for the R, that remains on the right-hand-side, which
we refer to as R:

0=1I, - (/PR - (E./P)R.

This example illustrates the basic concepts to be developed in this book. First
and foremost, the example shows the relation between the underlying biological hy-
potheses about mechanisms (Fig. 1.5a) and the immediately observable dynamics (Fig.
1.5b). When the purpose of the model is understanding (as it is in this example), then
the central modeling problem is to develop quantitative hypotheses (representing the
system S in Fig. 1.1) that explain the dynamics (response R in Fig. 1.1). An ac-
tual, alternative control use of the model is to address the question: What island-like
conservation preserve design produces more species: a Single Large one, or Several
Small, inter-connected ones? This problem is known as SLOSS (Simberloff 1988).
Using the model for prediction we might want to predict how long it will take an is-
land to recover if a disturbance at ¢ = 10 (Fig. 1.5) reduces R by 50%. Second, the



10 Chapter 1 ¢ Models of Systems

example illustrates the mechanics of translating verbal hypotheses into mathematics
and quantitative predictions using specific numerical values of parameters. And third,
it demonstrates that models can be wrong when compared to data and that we must
choose between alternatives (e.g., different parameters in Fig. 1.5b).

1.4 Classifications of Models

1.4.1 Forms of Models

Not all scientific models are precise, numerical, or quantitative. There are four forms:

1. Conceptual or Verbal — descriptions in a natural language.

2. Diagrammatic — graphical representations of the objects and relations (e.g., eco-
logical “box-and-arrow” diagrams of energy flow, physiological diagrams of
metabolic pathways such as the Krebs cycle).

3. Physical - a real, physical mock-up of a real system or object (either larger or
smaller: a “tinker-toy” model of DNA or a scale model of an airplane for a wind
tunnel).

4. Formal — mathematical (usually using algebraic or differential equations).

Our primary interest here will be in (2) and (4).

1.4.2 Mathematical Classification

The mathematical equation used to describe island species dynamics (Eq. 1.1) is
known as a recursive finite-difference equation. It is only one form that a model could
take. To show the scope of the range of mathematical models that are potentially
applicable to biological systems, we construct a simple classification of mathemati-
cal models. The basis of the classification is whether the mathematics incorporates
(or not) a particular mathematical structure. In some cases, it is a matter of opinion
whether the mathematics displays the character or not.
1. Does the mathematics have an explicit representation of mechanistic pro-
cesses?
YES: Process-oriented or mechanistic models (e.g., hydrology models using
Newtonian physics and chemistry, or population dynamics models with details
of reproductive physiology).
NO: Descriptive or phenomenological models (e.g., the island biogeography
model, Boyle’s law relating temperature, pressure, and volume, or a density-
independent population dynamics model with reproduction represented as a sin-
gle parameter).
2. Does the mathematics have an explicit representation of future system states
or conditions?
YES: Dynamic models (e.g., island biogeography model).
NO: Static models (e.g., linear regression equation relating variables x and y).
3. Does the mathematics represent time continuously?
YES: Continuous models, time may take on any values (e.g., 3.3 sec).
NO: Discrete models, time is an integer only. '
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4. Does the mathematics have an explicit representation of space?
YES: Spatially heterogeneous models (e.g., objects have a position in space, or
occupy a finite region of space).
a) Discrete: space is represented as cells or blocks, and each cell is repre-
sented as spatially homogeneous.
b) Continuous: every point in space is different (e.g., diffusion equations in
physics).
NO: Spatially homogeneous models (e.g., simple equations of population dy-
namics or enzyme kinetics).
5. Does the model allow random events?
YES: Stochastic models (e.g., random temperature values may produce ran-
dom changes in the intrinsic rate of increase in population dynamics models:
X, = Xpexp(r(N(0, 1)), where X is population size and r is rate of increase,
which varies in time and is drawn from a normal distribution with mean 0.0 and
variance 1.0 [N(0, 1)].
NO: Deterministic models (i.e., all parameters constant).

1.4.3 System Concept Classification

Based on the above classification, the model of island biogeography (Eq. 1.1) is a de-
terministic, spatially homogeneous, discrete time, descriptive, dynamic model. This
model is also an example of compartment models, i.e., models that describe the flow
of a measurable quantity (e.g., blood) between physical or biological storage compart-
ments (e.g., mammalian organs). While this is a very general conceptualization that
applies to many biological modeling problems, there are many other biological appli-
cations for which differential or finite difference equations and compartment models
are not the best representation.

There are three other broad classes of models that are appropriate to biological
systems and to which the above mathematical classification also applies reasonably
well. Transport models are those that transport material, energy, or momentum from
point to point in continuous physical space. They are similar to compartment mod-
els but use special mathematical structures (partial differential equations) and mass
conservation principles. Particle models are those that follow the fate of individual
particles moving in space (e.g., individual blood cells flowing through veins) or they
may be individual organisms changing their condition (e.g., body size). Finite state
automata are models that represent an object as being in only a few, finite number of
states or conditions. For example, we might model weather dynamics as a system that
has only good, bad, or intermediate weather quality. This is different from compart-
ment models of physical variables such as the flow of water from a container, where
the container could have any volume of fluid.

So, compartment models and differential or finite difference equations are not al-
ways appropriate, depending on our conceptualization of the system. Conversely, in
other biological systems, differential equations may be a felicitous description, but the
system should not be thought of as flows between compartments (e.g., movement of
individual organisms over continuous two-dimensional space). The system conceptu-
alizations mentioned are not mutually exclusive; a given model can contain elements
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of several or all of them. For example, a transport model of a pollutant in a river can
contain a compartment model of the effects of the substance on the biota in the river.
These distinctions will be made clearer when we present models based on alternative
representations in later chapters.

1.5 Constraints on Model Structure

Models are used for many purposes, and the purpose influences the degree of system
detail that is represented by the mathematics. For example, it may not be necessary
for our purposes to provide an explicit spatial component in the model. In this case,
a spatially homogeneous model suffices. Moreover, as we provide greater detail, the
number of systems to which our model applies will decrease. For example, in a physi-
ological model of blood flow, if we include a “gizzard” as one of the objects (compart-
ments), then we have restricted the model to birds and it will not apply to mammals.

Levins (1966) has synthesized these trade-offs by identifying three properties of all
models. No model can maximize all three simultaneously (but see Orzack and Sober
1993).

1. Realism: the degree to which model structure mimics the real world. In formal
models that are realistic, the equations are correct, not just the model output. In
physical models (e.g., a scale airplane) maximal physical detail is present (i.e.,
every rivet).

2. Precision: the accuracy of the model predictions (output). In precise models,
the air flow around the scale model is exactly the same as that around the full-
size plane, Precision is not used here in the statistical sense, which refers to the
degree of variability of a set of measurements.

3. Generality: the number of systems and situations to which the model cor-
rectly applies. In physical models, a general scale airplane model applies to
both a Piper Cub (small, single-engine aircraft) as well as a Boeing 747 (large,
multiple-jet engine aircraft).

Each of these properties trades off against the other two. If a model contains
great realism, it cannot also possess great generality, except at a level of description
that is very imprecise. Since no model can simultaneously maximize all three, the
uses to which the model is to be put will influence which is sacrificed to increase
the other two. Prediction needs little generality, but great precision and (to a lesser
extent) reality. Understanding implies the need for great generality and (to a lesser
extent) reality, but precision is not necessarily important. Control needs great reality,
but lesser amounts of precision (corrections can be made frequently) and even less
generality. This conceptualization of models has recently been challenged; see the
Exercises.

1.6 Some Terminology

In the chapters to follow, we will use a number of terms that need definition here
(Table 1.1). Not all modelers will agree with these definitions, but they will help you
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read this book. Some of these terms will not be understandable as you read through
the first time, but I hope their meaning will become clear as you learn more.

1.7 Misuses of Models: The Dark Side

When you have a hammer, you look for a nail.
When you have a good hammer, everything looks like a nail. — Anonymous

A model, like a hammer, is a tool to solve a problem. It is possible to use a good
hammer to insert a screw, but it isn’t a pretty sight. In the same way, a model may be
inappropriately applied to a given system. Unfortunately, as the parable of the blind
men illustrated, we often do not know if our system is a nail or a screw. Inappropriate
application of a model is pernicious in any form of model, but is especially misleading
in quantitative models such as we will discuss, since the output of the models are
numbers which often acquire a reality of their own. It is difficult to identify the source
of the errors in these models.

There are many ways that models may be misapplied, but an important one is the
application of quantitative models to areas of study in which there is great uncertainty
in the data or to the degree that the underlying mechanisms are understood. Both
Holling (1978b) and Karplus (1977) have discussed this problem, and we synthesize
their insights in Fig. 1.6. Holling noted that different scientific disciplines could be
generally characterized by two numbers: the precision and accuracy of the data upon
which the discipline is based and the degree of mechanistic understanding. No doubt,
these axes are not completely independent. There are not many sciences in which
we have great understanding of the mechanisms, but very poor data, since usually we
require good data in order to elucidate mechanisms. This scheme should not be pushed
too far for it is only intended to be a qualitative model.

Karplus (1977) viewed disciplines similarly but positioned them along a contin-
uum from “black boxes” (poor data and shallow understanding) to “white boxes”
(good data and deep understanding). This corresponds to a line in Holling’s space
from the origin to the upper right corner. Karplus went further and identified spe-
cific disciplines along this continuum. We can subjectively position some of these
according to whether their place in the continuum is due to data quality or degree
of understanding. Those disciplines that are black boxes should not use models for
detailed, quantitative predictions, while white box disciplines can use models to de-
sign salable products (e.g., electronic components, airplanes). Complete black box
sciences should, at best, use models only to arouse public opinion. A notorious exam-
ple is Jay Forrester’s World Dynamics model which simulated the world’s economic,
social, political, and environmental systems in rather general terms and predicted a
major population crash at about 2050 (Forrester 1971). This model was intended not
to make accurate predictions, but to bring to the public’s attention the need for better
planning, particularly in the area of birth control. I have represented this qualitative
assessment of model use in Fig. 1.6 by contour lines. The labels for model use do not
apply to all disciplines. For example, it is hard to imagine what actions astrophysicists
might recommend, much less the products they might design — but, then, one never
knows when the next asteroid will strike.
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Table 1.1: A few more terms.

analytical model (n) a mathematical model whose solution is not obtained
by simulation or numerical approximation, but by purely
mathematical argument or a model where mathematical
properties (e.g., stability of equilibria) are achieved by
mathematical argument

dynamic model (n) a mathematical model that describes the changes over
time of quantities representing the system objects (e.g.,
population sizes)

mathematical model (n) a set of mathematical equations that describe a system

mathematical modeling (v) the human activity of creating a set of mathematical
equations that describe a system

model (a) (n) a description of a system, (b) (v) the human activity
of creating a description of a system

objective (n) (a) the purpose for doing something, a goal, (b) a ver-
bal statement that guides and constrains modeling, (c)
a list including at least some of the following: objects
and relations modeled, environment of the system mod-
eled (influencing variables, objects not modeled), length
of time that the model applies to the system, spatial and
temporal scales of resolution, questions addressed of the

model

simulate (v) (a) to produce a solution to a simulation model, (b) to
model

simulation (n) (a) a set of one or more numbers that together consti-

tute a numerical solution to a simulation model, (b) one
run of a computer program that numerically solves a sim-
ulation model

simulation model (n) a mathematical model whose solution is obtained by
numerical approximation, usually involving computers;
not an analytical model

solution (n) (a) an answer to a problem, (b) a set of numbers
whose values satisfy a mathematical equation (e.g., the
roots to a polynomial equation)

system (n) a collection of objects and relations between objects

system state (n) the set of particular, numerical values of all system
objects at a given time (e.g., grams carbon in all species
in an ecosystem)

well-defined system (n) the smallest set of objects and relations whose states
(values) cannot be proved to be unnecessary to achieve
the objectives of the model
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Data Quality

Degree of Understanding

Figure 1.6: Appropriate uses of models related to degree of uncertainty in systems. Con-
tour lines represent combinations of data quality and degree of understanding in disciplines
for which models may be used as indicated on the lines. The dotted line is a continuum of
uncertainty (lower left: much, upper right: little).

The point of Fig. 1.6 is that discipline maturity dictates appropriate uses of the
models. To use a model for a more rigorous purpose than appropriate for a discipline
can be misleading, at best, or dangerous, at worst.

1.8

L.

Exercises

Using your own discipline (e.g., ecology, biochemistry, natural resources, agroe-
cosystem), draw a figure analogous to Fig. 1.6. Discuss cases where and how
mathematical models may be misused.

Suppose a model attempted to integrate concepts and information from political,
social, economic, and ecological systems. Would this model be more, or less,
accurate as a single model in any one of the separate disciplines?

Based on the definition of a well-defined system in Table 1.1, what is an ill-
defined system and why might it be undesirable?

. In Fig. 1.6, the contours of model uses are straight. What does it mean if they

are concave (~— shaped) or convex (—~ shaped)? Do these different shapes cor-
respond to different philosophical attitudes toward scientific activities (e.g., data
collection vs theory)?

. Recently, S.H. Orzack and E. Sober have challenged Levins’ trichotomy be-

tween model realism, precision, and generality. Read and discuss the original
articles by Levins (1966), Orzack and Sober (1993), and the reply by Levins
(1993). Specifically, do you agree with Orzack and Sober that the distinctions



16

Chapter 1 e Models of Systems

10.

have no merit and that model robustness bears no relationship to model validity?
Is Levins’ reply that models are “relativistic” and must be evaluated in terms of
their context relevant? Does this imply models can not describe truth?

Which of the Levins’ triad does the MacArthur-Wilson theory of island bio-
geography emphasize more: realism, precision, or generality?

The regression equations for immigration and extinction rates (Fig. 1.5 and
Eq. 1.2) violate some of the assumptions of the basic island biogeography model.
What are they and how would you correct them in the parameter estimates?
[Think about the maximum number of species that can be on the island and
about extinction rates when no species are present.]

Derive an equation for the equilibrium number of species on an island.

The net rate of change in a person’s knowledge is a balance of learning and
forgetting. Suppose in humans the rate of learning increases as a fraction of
the square root of age and the rate of forgetting increases as a fraction of the
square of age. Write a finite difference equation that describes the amount of
knowledge a person has as he ages and solve for the age at which his knowledge
level starts to decline. Choose values for the two parameters so that knowledge
peaks at 64 years. For your values, what is the maximum amount of knowledge
the person achieves in any one year?

Rakata is a small island between the islands of Sumatra and Java in the South
Pacific. It is famous for being the largest remnant of Krakatau Island after the
notorious 1883 eruption. Whittaker et al. (1989) and Thornton et al. (1993)
compiled historical plant and animal surveys of Rakata from 1886 to 1992; the
approximate data for vascular plants species numbers (R), immigration rate (/)
and extinction rate (E) are:

R| O 36 80 | 155 | 210 | 240
I 180]| 30| 50 | 65| 40 | 25
E|100|005]|010]| 05| 175|175

a) Use linear regression to estimate the immigration and emigration rates.

b) Re-write Eq. 1.2 using these Rakata data.

c¢) Estimate the equilibrium number of vascular plant species on Rakata.

d) How many species are in the mainland pool?

e) Use the code supplied on the MBS-CD, simulate the species dynamics
using the parameters you estimated and starting with no plants. Also sim-
ulate a scenario representing the pre-explosion condition in which the ini-
tial number of plant species is 500. Assuming only that the island size
changed, how long would it take to achieve the current projected equilib-
rium level of about 250 species?
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The Modeling Process

2.1 Models Are Problems

We are faced with insurmountable opportunities. — Walt Kelly (doubtful)

‘ N 7 HEN WE EMBARK on a modeling project, we immediately have a problem. We

want something that we don’t have: a model. The modeling process is a semi-
formal set of rules that guides us through a solution to this problem. The rules are not
mechanical instructions, not like a set of computer instructions we can step through
one at a time and be guaranteed of arriving at the correct answer at the end. Modeling
is real-world problem solving; it’s hard and fraught with many opportunities for failure
(or, if you’re an optimist, opportunities for new insights). So, it is useful to begin
by noting George Polya’s four steps to solving mathematical problems (Polya 1973).
Associated with each step is a question that we must answer. (1) Understand the
problem (i.e., What is the question?) (2) Devise a plan for solving the problem (i.e.,
How do we solve it?) (3) Execute the plan (i.e., What is an answer?) (4) Check the
correctness of the answer (i.e., Was it right?).

Certainly, these instructions are very general, perhaps only heuristically plausible,
but they work on all problems, including the problem of producing a model. In this and
the remaining chapters, we will see some more specific rules and tools that work in the
more restricted domain of mathematical and computer models of biological systems.
Ford (2000) elaborates in wonderful detail these four steps in the context of practical
scientific activities taking examples from, but not limited to, ecological research.

As a problem to solve, then, the modeling process consists of the steps we take to
produce a model, implement it in some formal language, derive consequences (predic-
tions) from the model, and evaluate these based on the desired uses of the model. Since
the statement of the model inevitably requires making assumptions, comparing model
consequences with observations is a major test of the adequacy of the assumptions to
“explain” the observations. In its broadest form, then, modeling is the hypothetico-de-
ductive approach to science and vice versa (Nagel 1961; Romesburg 1981). Here, we
will describe this process in a way that emphasizes several important quantitative and
computational procedures that are relevant to computer simulation.
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2.2 Two Alternative Approaches

The classical description of the modeling process is shown in Fig. 2.1. This basic
approach is presented in many texts (Shannon 1975; Spriet and Vansteenkiste 1982;
Grant 1986). Its essential feature is that models should be constructed one at a time,
and the quality of each is evaluated sequentiaily. Another model is not constructed
until the current model is shown to be inadequate. For many biological systems, this is
an appropriate methodology, but for others, a slightly modified view of this modeling
process will be effective.

2.2.1 The Classical View

Objectives 'The beginning of the process is a statement of the objectives or purposes
of the model. At this stage, we demonstrate our understanding of the problem (Green
1979). If we cannot give a clear statement of the reasons for building a model, then
we do not understand the problem. If we do not understand the problem, then we are
unlikely to discover the solution. Consequently, substantial detail should be provided
in the statement of the objectives to answer the following questions:

e What is the system to be modeled?

o What are the major questions to be addressed by the model? (How will the

model be applied?)

o What is the stopping rule for the modeling activity? (How good must the model

be? To what will it be compared?)

o How will the model output be analyzed, summarized, and used?

Because of the importance of a clear statement of objectives, we will discuss this
aspect of modeling in more detail later in this chapter. Here we note that the objective
statement is a document that defines the reasons for producing the model in the first
place. In cases of large, complicated modeling projects, it can ensure that the goal
is well defined and achievable. Even when exploring theoretical concepts with small
models, by answering the four questions above, the theoretician is forced to evaluate
the scope and importance of the original questions.

Hypotheses The second stage is to translate the objectives and current knowledge of
the system into a list of specific hypotheses. These are usually verbal statements. For
example, a simple idea in population ecology is that crowding increases as numbers
of individuals in the population increase and this, in turn, reduces the reproductive
capacity of females. This can be qualitatively stated as: “increasing density decreases
per capita growth rates.” Hypotheses may also use more quantitative relationships.
For example, in simple models of blood circulation, the heart chambers expand as
they fill with blood, but the rate of expansion decreases at large volumes because
heart wall elasticity is limited. More quantitatively, we can say that the degree that
chamber volume increases with a unit increase in blood volume decreases linearly
as total volume increases. At this stage, we can also describe the complete model
qualitatively with a graphical formalism that pictorially shows the objects modeled
and their relations (e.g., flow of blood between organs). However it is accomplished,
the function of this stage of modeling is to identify more fully the set of objects in
the system and to bound the set of relations that connect the objects. At this stage,
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Figure 2.1: The classical approach to the modeling process, showing the four basic
stages. In this approach, alternative models are developed sequentially, conditional on
the failure of a previous model.
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the modeler must be cognizant of the fundamental uses of the model articulated in the
objectives: understanding, prediction, or control. These have a crucial affect on the
nature of the hypotheses.

Mathematical Formulation Qualitative hypotheses must be converted into specific,
quantitative relations that can be formulated with mathematical equations. In the third
stage, the actual equations are defined. This corresponds to Polya’s stage to devise a
plan for solving the problem. This step uses the initial physical, chemical, and biologi-
cal information available for model construction to derive and check the correctness of
the equations we hope will describe the dynamic behavior of system objects. For many
beginners, this is the most difficult and frustrating stage. It requires a certain level of
mathematical sophistication, but more importantly, it requires that vague concepts and
loose relations be made definite in the cold light of mathematics.

Verification Many mathematical models cannot be solved analytically, but can only
be solved approximately using numerical techniques. Today, this means solving the
equations using a digital computer. The fourth stage is a set of activities in which the
equations are translated into computer code. At this stage, it is necessary to verify
that the computer algorithms and code are correct for the mathematical relationships
defined. Modeling projects that do not require numerical solution of the equations will
replace this step with mathematical verification activities performed during the formu-
lation stage. For example, in Chapter 1 we solved the island biogeography model by a
recursive equation. As we will see in Chapter 4, we could (and possibly should) have
written the model as a differential equation. There are numerous numerical techniques
for solving these equations (e.g., Runge-Kutta), and, depending on the nature of the
equation, some methods are inappropriate. Thus, the choice of algorithm is important
and can influence the predictions of the model. Similarly, for any algorithm, there are
many different ways to write the computer code; some of these will be wrong. Models
of biological systems can easily involve scores of dynamic variables and hundreds of
parameters. This is especially common in models with explicit spatial processes. In
writing a computer program to solve the equations, it is a nontrivial exercise to demon-
strate that the computer output is correct. This is a concern of software engineering,
and there are some basic programming procedures that can help in this regard (e.g.,
object-oriented programming).

Calibration After the model is correctly implemented on a computer, output can be
produced. But before simulations can be performed, numerical values for the initial
conditions (e.g., the starting number of species on an island) and constants in the equa-
tions must be specified. Calibration is the set of activities by which this is done; the
basic problem involved is parameter estimation. Usually, this involves defining rela-
tions between observed quantities and the parameters so that statistical methods (e.g.,
linear regression) can be applied to produce the best estimates for the parameters (e.g.,
the slope and intercept of a straight line). These relations may require that specific
laboratory experiments be performed. For example, in physiological models, one may
wish to estimate the parameters for the quantitative effects of temperature on oxygen
production in leaves. Laboratory measurements of oxygen at defined, controlled tem-
peratures provide the necessary data. Often experiments cannot be performed, but
uncontrolled observations over time are available (e.g., in ecological succession: plant



§2.2: Two Alternative Approaches 21

biomass over several years). If this variable is an output of the model, some parameters
can be estimated by curve fitting wherein the model is run repeatedly using different
parameter values and compared to the same dynamic data set until a satisfactory fit is
obtained. This stage is discussed in more detail in Chapter 7.

Analysis and Evaluation Once the model is calibrated, we can use it to produce the
answer that our objectives specified. This corresponds to Polya’s execution of the plan.
For numerical models, this involves running a computer program and recording the
numbers produced. This is primarily a mechanical exercise that can be automated to
a great extent. For analytical models, execution may range from simple computations
to complicated mathematical argument and theorem proving. This latter activity can
require substantial creativity and may be the most difficult step in the process.

For both numerical and analytical models, the answer should be evaluated for its
quality according to the objectives. It should be checked (Polya 1973) in some way.
Often in purely theoretical studies where the primary objective is to “understand” the
system, this involves, at most, only a qualitative comparison of model output and data.
For example, in a theoretical plant succession model we may be satisfied if the model
shows an initial increase in plant biomass followed by a decline, if this were the ob-
served pattern. Ideally, however, we also desire models that are quantitatively correct
as well. To establish this for a particular model, we need to validate (or corroborate)
the model against independent data sets. (For a broader perspective see Hilborn and
Mangel 1997, Chap. 2.)

We have already noted the similarities between modeling and the hypothetico-de-
ductive approach to scientific investigation. A component of this method is the doc-
trine of falsificationism (Popper 1968), which states that hypotheses cannot be proved,
but only disproved (i.e., falsified). The same framework applies to models, since they
are basically collections of hypotheses. Many modelers (e.g., Holling 1978a; Hall and
DeAngelis 1985 have adopted this view to the point of stating that the objective is to
invalidate the model, that is, discover evidence that contradicts it, not evidence that
supports it. There is much philosophical and logical weight behind this view; never-
theless, there is also a real psychological need to be able to point to a model, theory,
or body of experiments and say: “We believe this is the way it is.” On the one hand,
logic permits only falsification; on the other, we desire positive statements that sum-
marize our beliefs, if only at a moment in time. We need an approach that synthesizes
these two different approaches. A candidate is proposed below that develops and tests
multiple working hypotheses as well as the resultant alternative models.

If the model passes the validation criteria specified in the objectives, the project,
as defined by the objectives, is complete. If it fails, then errors were made earlier
in the modeling process and the hypotheses and/or mathematical formulations need
to be revised. The entire process is repeated. Finally, depending on the objectives,
further analyses of the model through computer simulation or mathematical analyses
are performed. These topics are discussed in Chapters 8 and 9.

2.2.2 Problems with the Classical View

Many statisticians believe that for statistically rigorous hypothesis testing to occur,
prior knowledge should not influence the test. (But the Bayesian school of statistical
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analysis disagrees, and this will be discussed in Chapter 8.) Therefore, sequential
passes through the modeling process must use new data for validation. If only one
independent data set is available, subsequent comparisons are only exercises in curve
fitting, since the modeler has become familiar with the validation data during the de-
velopment of the second and subsequent models. Thus, the major problem with the
classical approach is that independent data sets necessary for validation are often diffi-
cult or expensive to obtain. A modification of the classical approach, based on multiple
hypotheses and models, avoids this problem.

Multiple or alternative models are valuable for another reason. When we are un-
certain about the correct equations to use (which we usually are), there is a danger that
when we derive a model that we cannot reject, we will believe that this is a correct de-
scription. In fact, there may be many other models that would be equally likely to be
validated as the one we chose. If we never create these models and their predictions,
then we will never know if the original model was unique in its accuracy. If we do cre-
ate them in the sequential method illustrated by the classical view, we risk overfitting
the model to the data (Burnham and Anderson 1998). That is, we continue the cycle
of model refinement to a high degree of precision on a particular dataset using many
variables, but with little applicability or accuracy on another system or dataset.

2.2.3 Multiple Working Hypotheses

A man who does not know one answer from another is as ignorant about the
question as he can possibly be. The only state of greater ignorance is not to know
the question. — Tribus and Mclrvine (1970)

An alternative to the sequential approach is a parallel approach that involves imple-
menting and evaluating several different competing hypotheses and models simulta-
neously (Goodall 1972; Caswell 1976b). This approach is diagrammed in Fig. 2.2.
It is based on the ideas of statistical alternative hypotheses. Platt (1964) refers to
these multiple working hypotheses as a component of strong inference and emphasizes
the latter’s value to incisive scientific analysis in all its forms (not just to modeling).
Holling (1978a) and his colleagues (e.g., Walters 1986) have also shown the practical
wisdom of using this approach in developing models to assist the management of re-
newable resources. Some of the philosophical foundations of this view of science as it
contrasts with Popperian falsificationism are explored in Hilborn and Mangel (1997,
Chap. 2). Among these are scientists’ attitudes toward the rejection of a hypothesis.
One interpretation of the views of Karl Popper (Popper 1968) holds that scientists will
(or should) adhere to the results of an objective hypothesis test (e.g., statistics), regard-
less of the intellectual context of the test. For example, if an objective test instructs
us to reject the only viable explanation for a phenomenon, then we will (should) be
able to function in an intellectual milieu in which there is, simply, no explanation for
the data. In contrast, the alternative, multiple-hypothesis philosophy of Imre Lakatos
would not require, in this situation, that we accept the objective test, if there were no
other reasonable alternative hypothesis that replaces the current one. There are many
situations in which we might continue to entertain a hypothesis that fails a test, even
a stringent one: the data might be flawed, the other situations in which the hypothe-
sis was not rejected carry significant intellectual weight, the hypothesis is useful for
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Figure 2.2: Another view of the modeling process, in which alternative hypotheses and
models are developed and tested independently.

reasons other than scientific understanding, etc.

Using this approach, we formulate several hypotheses and models each with sep-
arate computer implementation, verification, and calibration stages. Every model is
compared simultaneously (in parallel) to all of the validation data that are indepen-
dent of data used to construct the model. The resulting comparisons are then inde-
pendent and any models that survive the comparisons can be evaluated further with
other quality criteria. A common auxiliary criterion is simplicity, which is the basis
for the Principle of Parsimony or Occam’s Razor. This approach presupposes that we
can uniquely rank models from simplest to most complex, and this is not always so.
Another criterion is the likelihood that one of the models is true (regardless of their
relative complexity); we will discuss this possibility in Chapter 8. Finally, the model
selected suggests new questions or applications. Assuming we are not near retirement
age, we pursue these with new objectives and new sets of models.

An example may make this clearer. Many species of seed-harvesting ants will ex-
hibit mass recruitment of large numbers of foragers to rich resources (e.g., large insects
or patches of seeds). Under other circumstances, ants forage individually, ignoring
other ants and responding only to their local environment. The precise mechanisms
required for these ants to perform these actions have not been determined, although ex-
perimental evidence indicates that they lay chemical trails and can remember previous
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Foraging Behavior

Random Walk Memory Only Pheromone Trail Memory Omniscient
+

Pheromones

Figure 2.3: A family of competing hypotheses on the mechanisms used by ants to find
seeds and recruit nest mates.

successful foraging areas.

Suppose we wish to use a simulation model to explore the consequences of the for-
aging behavior of individual ants for seed consumption rates over the entire ant colony
in order to evaluate the relative importance of different mechanisms. We can identify
a number of possible candidates (Fig. 2.3; Haefner and Crist (1994)): Random Walk
(individual ants walk randomly and independently of other ants), Memory Only (indi-
vidual ants remember previous successes but do not lay a pheromone trail), Pheromone
Trail (ants lay a pheromone trail from the resource but do not use memory), Memory
+ Pheromone (ants use memory and pheromone trails), Omniscient (ants know the
location of all the seeds). The first model serves as a null or random hypothesis in
which no significant biological or social behavior is present. The last model repre-
sents a “super” ant and (presumably) defines the maximum rate of seed return to the
nest. Together these models constitute a continuum of “ant intelligence.” Since we
can easily measure the colony’s seed return rate in the field, the purpose of examining
such a range of models is to determine where, along the continuum of models, the
truth (i.e., real ants) lies. This addresses the question: “How smart does an ant have
to be to forage in the way we observe?” We cannot definitively answer such questions
with simulation models, but we can identify classes of models and hypotheses that are
inadequate.

An important feature of this example, and one that should be used whenever pos-
sible, is the construction of a base model that incorporates as little of the biology as
possible and yet still produces output that can be compared to observations. In this
example, the base model eliminated all forms of communication between ants, but
moved ants randomly so that they had the possibility of discovering seeds. Thus, the
two extreme models, random and omniscient, bound the range of possible explana-
tions.

The base model concept is similar to a null or neutral model (Caswell 1976a):
models that exclude biological mechanisms pertinent to a particular hypothesis. The
value of including these models is that they are simple explanations. However, we
should not stop with these; as Albert Einstein is credited with saying: “a theory should
be as simple as necessary, but no simpler.” Or, to put it another way, simple models are
good, but getting the right answer for the right reason is also good. Chapter 8 presents
methods for choosing the better of alternative models.

2.3 An Example: Population Doubling Time

We now summarize the idea of the modeling process applied to alternative models
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with a quantitative example. Suppose we wish to answer the question: When will the
world’s population double its current numbers? We identify the following objective
statement.
Objective: Construct a description of the dynamics of the
world’s population such that the time when
the population size is twice its starting value
can be computed.

The above statement has the following desirable properties of an objective state-
ment: (1) It defines the system of interest as the world’s population without mention of
spatial heterogeneity. (2) It defines the purpose of the model: determine the doubling
time. (3) It indirectly identifies the analysis of the output to be used: a computation of
the time at which the population is twice the initial condition. A major deficiency of
the objective statement is that it does not mention validation criteria. We cannot tell
from this statement when we should stop developing models.

To illustrate the idea of multiple working hypotheses, we will develop two mod-
els. One model assumes that per capita growth rate does not vary with increasing
population size (density-independent growth) and the other assumes that the growth
rate decreases linearly with population size (density-dependent growth). In addition to
these assumptions, the two models share the following incomplete set of hypotheses.

1. Per capita growth rate is not influenced by any extrinsic variable (e.g., ozone,
UV radiation, temperature).

2. The sex ratio is 1:1 (or we assume there is only a single sex).

3. There are no age differences among individuals (no age classes).

4. There are no geographical differences in growth rates (all countries and regions
of the world are the same).

Our objective statement says that we intend to determine the doubling time by
following the dynamics of the population. This suggests each of our mathematical
models will implement the two hypotheses using equations that project population
numbers forward in time. Recalling the Karplus (1977) ESR model of systems from
Chapter I (Fig. 1.1), our problem is to write an equation for S that transforms the
population numbers at time # into the population numbers at ¢ + 1. There are several
kinds of mathematical equations we could use here, but for simplicity, we will use
recursive finite difference equations (FDE), the same form of equation we used in the
island biogeography example of Chapter 1. One way to define a set of alternative
models is to define a base model in general functional form:

Nit = Ne+ N f(NY). (2.1

The unspecified function, f(N;), is next defined in two or more forms: the alternative
models. It is very helpful if these forms can be shown to be a sequence of increasing
complexity. For example, from the most complex model, each remaining member of
the sequence can be derived by setting parameters to zero. We now illustrate this for
the population models.

Our two hypotheses make two different assumptions: (1) the number of offspring
produced per female (per capita rate of increase) is independent of (i.e., does not
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change with) the current numbers in the population, and (2) the per capita rate of
increase decreases linearly with increasing numbers. It would appear that (2) is the
more complex of the alternatives,so we begin with it.

Niy = Ni + N f(N)) 2.2)
= N, + N;(a - bN,) 2.3)
= N;+ N, [r - (r/K)N/] 24

Equation 2.3 clearly satisfies hypothesis (2), above. When we let the general param-
eters a = r and b = r/K (Equation 2.4), we get the more typical form in ecological
contexts: r is the intrinsic (or maximum) per capita growth rate of the population; K
is carrying capacity of the environment.
If we set b = 0 in equation 2.3, we have the FDE for the density-independent
model (hypothesis 1):
N1 =N+ rN,, 2.5)

Note that while the per capita rate of population growth is independent of N, the
absolute rate of increase (rN,) does change. The per capita rate is constant and equals
r, and the model asserts that the population increases each time step by a constant
proportion () of the current population.

With these two alternatives defined, we can analyze both for their properties, va-
lidity, and relative suitability to our objectives. To calibrate the simpler of two models
(Eq. 2.5), we can solve the model for r:

r= Nt+l - Nt
N;
and use population estimates over successive periods of time (Ny, Ny, Na,...,Ny) to

compute r. These data would probably be taken from a historical data set, but could
be obtained from a field or laboratory experiment. To solve the equation and to predict
numbers over time, we specify the numbers at time ¢ = 0 (the initial conditions) and
iterate Eq. 2.5 for¢ = 0, 1,2,...,n time steps. This model produces the familiar expo-
nential population increase over time (Fig. 2.4). Since the model output is population
numbers over time, computing the doubling time is simply a matter of observing the
time interval at which the predicted numbers are twice the initial numbers.

The alternative model is handled in a similar way. The key aspect of Eq. 2.4 is
that the expression in brackets depends on the current population numbers (N,). This
causes the numbers of offspring produced by each female to be reduced as population
numbers increase. Although the mechanisms for this phenomenon are not described,
they may be due to competition among females for food or child rearing costs. Notice
that the relationship between population growth rate and this algebraic expression is
similar to that between numbers of species on an island and immigration and extinction
rates in Chapter 1 (Eq. 1.1).

Equation 2.4 has two parameters that we calibrate by finding an expression involv-
ing r, K, and measurable quantities. Rearranging Eq. 2.4 to again form the realized
per capita growth rate on the left-hand side yields:
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(a) (b)
N, f( ) = rN, Ny,
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Figure 2.4: (a) The ESR scheme and (b) a typical dynamic trajectory for density-
independent population growth using Eg. 2.5.

N1 = N; _ r
N, =r KN,.

This is a linear equation in which the left-hand side is the y-axis, or dependent variable,
and N, is the x-axis, or independent variable. We can use linear regression to obtain
estimates of the intercept (r) and the slope (—r/K) from which we can calculate K.
The dynamics produced by this model are the classical sigmoidal or S-shaped curve
of the logistic equation (Fig. 2.5). We will use the same approach to calculating the
doubling time for this model as for the first model.

To this point, we have developed alternative hypotheses, their respective mathe-
matical and computational formulations, and a strategy to answer the original ques-
tion. The next step is to validate the models. Since the model describes the world, we
cannot realistically hope to find a similar, alternative system to study (not in this solar
system, anyway). We might, however, validate the models by comparing each to an
earlier historical record, one not used in the formulation of the model (e.g., from the
period 1800-1850). This approach to validation makes some important assumptions
about the nature of the system in the past and the present, but it is perhaps as good as
we can expect when we cannot replicate the system.

After constructing both models and subjecting them to independent comparisons
against the same data set, we may reach the conclusion that either none, one, or both of
the models are inadequate to explain the data. Based on the results, we would choose
between the two models, if possible (Walters 1986 and Chapter 8). Given that one or
more of the models passed our validation test, we could then proceed to analyze the
model by calculating the expected doubling time.

(a) (b)
Nt Nt+1
el O =IN(IENKY | N,
E R
S

Time

Figure 2.5: (a) The ESR scheme and (b) a typical dynamic trajectory for density-
dependent population growth using Eq. 2.4.



28 Chapter 2 ¢ The Modeling Process

It is natural to ask: “Which alternative hypotheses should a modeling problem
compare?” There is no general answer since it depends on the sub-discipline and
the objectives of the model. Nevertheless, the two examples given (ants and popu-
lations) have something in common among their alternatives. Both examples have a
null model: a model that hypothesizes that the observed dynamics are not caused by
complicated biological processes. In the ant example, the simplest model was one
in which seeds were returned to the nest as a result of random movement of individ-
ual ants: no interactions between ants were modeled. In the population model, the
density-independent model assumed there were no interactions (e.g., competition) be-
tween individuals. In my usage here, a null model need not be completely random
(e.g., density-independence), although we could have constructed such an alternative.
So, it is a matter of degree how far removed from biology one wishes the alternatives
to be, but at least one of the models should be as simple as possible; removing biolog-
ical processes is one method of constructing simple models. As Richard Levins once
said: “In order to understand complex systems, it is necessary to study something else
instead” (Levins 1970). By this he meant not only models of the system, but also sim-
ple models. In the case of biological systems, this may mean models with little or no
biological processes in them. The objectives statement should indicate the degree to
which biological processes are to be removed from one of the alternatives.

The alternative modeling approach is not useful in all applications. There is an
obvious negative correlation between the number of alternative models that can be
examined and the effort needed to construct any one model. Even in cases of sim-
ple models, in relatively mature disciplines such as physiology, in which either data
quality is high or understanding is deep (Fig. 1.2), there will be less debate over the
correct form of equations. At some point where a science matures from using models
for “what-if gaming” to “recommending action,” the equations become less debatable.
In these systems, alternative models are less important. However, in the less mature
disciplines such as ecology, especially where mechanisms are not understood, there
is greater uncertainty, and the effects of using a particular set of equations need to be
investigated with alternative models.

2.4 Model Objectives

Never weed your garden in the dark. — JWH

We have repeatedly referred to the objective statement and its role in constraining
model structure. It is worthwhile to delve a little deeper into this concept and discuss
the attributes of a good objective statement. A careful statement of the objectives of a
model is important because it defines the problem to be solved and can, therefore, be
used to devise the implementation and analysis of the model. The objective statement
can also define the domain of applicability of the model. This latter use is important
since it can reduce possible misuse of the model and help identify certain kinds of
criticism as being directed not to the substance of the model, but to its objectives.
These are two different types of criticism. So, while model objectives do not always
appear in print, they should be explicitly stated at some point.

Modelers do not agree on the content of a good statement of objectives, but Over-
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ton (1977) contains the most explicit rendition. He emphasizes that effective objectives
are those that are stated as goals with purposes. For example, “Construct a model of
photosynthesis [goal] to determine the effects of elevated UV light [purpose].” But
beyond the purpose, an objective statement must provide the following information.
1. The objective question(s).
. The perturbations and stimuli accommodated in the model.
. The exact system and environment which the model addresses.
. The temporal and spatial scales over which the system is to be described.
. The temporal and spatial scales of extrapolation and prediction.
. The factual information and theoretical concepts used in model construction
(data, assumptions, sources, etc.).
7. The criteria of validation (empirical and theoretical).
To illustrate one of the best and most complete statements of model objectives, I
give an extended quote from Innis (1978). The objective applies to a large, complex
model, so this perhaps justifies the lengthy statement.

()RR, T SRS B\

The objective of this modeling activity was to develop a total-system model
of the biomass dynamics for a grassland that, via parameter change, could be
representative of the sites in the US/IBP [United States/International Biological
Program] Grassland Biome network and with which there could be relatively easy
interaction.

There are several key points in this objective that deserve elaboration. First,
the term total-system model refers to the inclusion of abiotic, producer, consumer,
decomposer, and nutrient subsystems. This requirement was imposed to assure
that the modeling effort played the integrative role delegated to it ...

Second, biomass dynamics identifies our principal concern with carbon or
energy flow through the system. Focus on biomass facilitated the comparison
of model and data but turned out to be unfortunate because it is not conserved.
The model, therefore, tracks carbon and converts it to biomass (and vice versa)
in a number of places. We are concerned with dynamics as part of the general
objective of the International Biological Program (IBP).

Third, representative expresses our desire to have the model apply, with min-
imal effort, to sites in the US/IBP Grassland Biome study. Changes of parameters
are certainly necessary as these describe site characteristics (among other things).
The representation was to depict “normal” dynamics as well as the response of
the system to a variety of perturbations.

Finally, relatively easy interaction was a desideratum because of the role the
effort was to play in program direction ...

This objective provides only the broadest guidelines to the modelers as to
their respective functions. The purpose of the objective is to found the decision
making processes that accompany model building. This involves clarification as
to how many producers and consumers should be included, the amount of detail
required in a representation of a producer, and whether a phosphorus, calcium, or
lead model is required [i.e., resource management and research design]. ..In 1970
it was agreed that this objective would stand, with the first model addressing four
specific questions:

1. What is the effect on net or gross primary production as the result of the
following perturbations: (a) variations in the level and type of herbivory,
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(b) variations in temperature and precipitation or applied water, and (c) the
addition of nitrogen or phosphorus?

2. How is the carrying capacity of a grassland affected by these perturbations?

3. Are the results of an appropriately driven model run consistent with field
data taken in the Grassland Biome Program, and if not, why?

4. What are the changes in the composition of the producers as a result of these
perturbations?

These questions were further specified with definitions of terms such as “varia-
tions,” “level,” and “type”; acceptance criteria were chosen.

This is a description of a whole ecosystem-level model, and it is quite possible that the
reader will not appreciate the motives for or value of building these types of models.
Nevertheless, it provides a reasonably clear statement of what the model is intended to
do. Other disciplines may not require for publication such a self-conscious and direct
statement, but, at some point, the modelers probably do.

25

1.

Exercises

Write an objective statement for the island biogeography problem of Chapter 1.

2. Design an alternative model for the island biogeography situation that uses

curvilinear immigration and extinction functions. Consider a negative expo-
nential and simple quadratic, respectively.

a) Graph the new rates of change against R and qualitatively sketch the dy-
namics of colonization from an empty island. Contrast these dynamics
with those of the original model.

b) Write a new finite-difference equation and show that the equilibrium num-

ber of species satisfies

Ix 2
Z = R%eR,
E

¢) Speculate on a biological mechanism that might support this alternative.

. To what extent has Innis incorporated Overton’s criteria for objectives state-

ments?

. How good was the objective statement of the “doubling time” model?
. Using Innis’ statement and Overton’s criteria as guides, write an objective state-

ment for the following problem: “How many cases of AIDS will occur in Utah
in 20157” Would the objectives change if the location had been San Francisco?
Why or why not? What role does spatial scale of extrapolation play in this
problem?

. Write an objective statement for this problem: “What should be the best grazing

pressure on the XYZ National Forest to simultaneously maximize cattle produc-
tion and forest quality?”

. We noted in the discussion of the model of the world’s population that our abil-

ities to validate the model were limited by our inability to replicate the system.
Under what circumstances, if any, is it worth while to model systems that cannot
be replicated or tested using rigorous statistical methods?
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8. Read pages 10-13 in Reckhow and Chapra (1983b) and decide if there is a need
to distinguish validation and corroboration.
9. Read an article in a current journal describing a model and critique the objective

statement. In the models described in the chosen journal, how many discuss
validation?
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Qualitative Model Formulation

3.1 How to Eat an Elephant

B UILDING A MODEL is like eating an elephant: it’s hard to know where to begin. As

with almost all problems, it is helpful to break a big problem into smaller, more
manageable pieces. We do this with model formulation (Fig. 2.1) by first creating a
qualitative model and then converting this to a quantitative model (Chapters 4 and 5).
Qualitative model formulation, then, is the conversion of an objective statement and a
set of hypotheses and assumptions into an informal, conceptual model. This form does
not contain explicit equations, but its purpose is to provide enough detail and structure
so that a consistent set of equations can be written. The qualitative model does not
uniquely determine the equations, but does indicate the minimal mathematical com-
ponents needed. The purpose of a qualitative model is to provide a conceptual frame-
work for the attainment of the objectives. The framework summarizes the modeler’s
current thinking concerning the number and identity of necessary system components
(objects) and the relationships among them.

Qualitative model formulation is not always explicitly performed. If a modeling
project is simple enough, elaborate plans for writing the equations are not necessary.
Most of us do not need detailed instructions for getting out of bed in the morning.
But with large models having many variables that interact in complicated ways among
themselves and with the environment, it is easy to become confused. By providing
an overview of the system, a qualitative version of the model can help reduce this
confusion.

Qualitative models can take any form (except mathematical), but diagrams are the
usual representation. Given our emphasis on differential equations and compartment
models, three important diagrammatic schemes are: block structure diagrams (having
origins in electrical engineering and analog computers), Odum energy flow diagrams
(similar to block structure diagrams but based on energy flow within ecosystems), and
Forrester diagrams (having origins in systems analysis and operations research). All
three share the ability to represent systems as a set of objects and their interrelations.
We will stress the latter here, but the interested reader can learn more of block structure
diagrams in (Shannon 1975) and Odum energy diagrams in (Odum 1971).
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Figure 3.1: A simple ecosystem in which carbon moves among the labeled components.

3.2 Forrester Diagrams

Forrester diagrams (Forrester 1961) were invented by Jay Forrester, an MIT profes-
sor famous for work on early digital computer hardware and the simulation of social
systems. Forrester diagrams are designed to represent any dynamic system in which a
measurable quantity flows between system components.

Consider a simple ecosystem in which carbon flows between a population of grass
and a population of deer (Fig. 3.1). Suppose that our objectives suggest that only deer
and grass are interesting and that the grams of carbon in these two components are
the relevant measures. Because of our simplification, we will not explicitly consider
other components that may have large quantities of C (e.g., atmospheric CO; and ex-
cretion by deer). Consequently, two numbers (grams of carbon in grass and grams of
carbon in deer) completely specify the condition of the system at a moment in time.
By accepting this simple view of the ecosystem, we are stating that other variables or
quantities are irrelevant and do not add to our knowledge of the system. For example,
other consumers (e.g., insects), producers (e.g., the tree), or other variables (e.g., ni-
trogen) are not important. Moreover, these two numbers may change in time so that
the condition of the system is dynamic. The exact nature of the temporal changes de-
pends on the rates of flow of carbon into the grass component (growth) and into the
deer population (grass consumption).

Figure 3.1 is a crude qualitative model in diagram form of the system, but since it
makes specific reference to deer and grass, it has limited application to other systems.
We want an abstraction of the basic concepts of system components and material flows
to obtain a general tool for qualitative modeling of systems. Forrester diagrams are
such an abstraction.

To understand the basis of the diagramming scheme, recall the general definition
of a system: a collection of objects and relations among them. There are two kinds of
objects: (1) those that are inside the system and are explicitly modeled and (2) those
that are outside the system and are not modeled. The internal objects are called state
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Figure 3.2: The basic components of a Forrester diagram.

variables and are those that, taken all together, characterize the condition or state
of the system. In the example above, the state variables are grass and deer. These
variables are dynamic and change their state over time. (See Caswell et al. 1972 for a
more rigorous definition of state variable.)

The outside or external variables are either sources or sinks and are not modeled
explicitly (i.e., no equations are written for these). For example, atmospheric CO; is
both a source and a sink. It is a source because it represents an unmodeled pool of
C that is an input to a state variable (grass). It is also a sink since gaseous CO, is a
product of deer respiration.

Each state variable is described by its current level of the quantity of interest:
the quantity in which units we measure the state of the variable (e.g., numbers of
individuals, grams of carbon, temperature, etc). Relations between system objects
have two forms: (1) the direction and rates of flow between the quantity of interest
and the objects and (2) the influences of a variable (e.g., the quantity of interest) on
the rates of flow.

Forrester diagrams are direct graphical representations of these concepts that per-
mit easy translation to mathematical equations. They can be thought of as a graphical
“language” with phrases that can be connected in certain prescribed ways. The graph-
ical vocabulary items of the language are listed in Fig. 3.2 and are described below.

Objects System objects are the state variables of the system (called levels by For-
rester). They are the primary system components whose values over time we wish to
predict. They are dynamic quantities and are represented by a rectangular box (Fig.
3.2a). The box should contain a mnemonic name for the object and its unit of measure-
ment. Many descriptions of models of this type refer to levels as compartments, and
the type of models being represented by Forrester diagrams as compartment models.
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Material Flows Flows are one manifestation of relations between system objects,
which we will call a flow relation. A flow is represented as a solid arrow (Fig. 3.2b)
and identifies the pathway over which the quantity of interest (e.g., grams of carbon)
flows. In most models, the rate of flow is a dynamic quantity that is influenced by
system components, and this rate is symbolized by a control valve (the “bow-tie””) on
the flow relation.

Information Flow or Influences The second manifestation of relations between ob-
jects are the effects that the quantity of one object has on the rates of inputs to or
outputs from another object (e.g., effects on growth rates). These are control relations.
State variables affect the control valves of material flows of other state variables (in-
cluding themselves). These influences are represented as information transfers (dotted
arrows in Fig. 3.2¢) connecting state variables and control valves. The tail of the arrow
indicates the influencing component and the head of the arrow indicates the affected
rate. Possible sources of information transfer are state variables, parameters, driving
variables, and auxiliary variables or equations.

Sources and Sinks Objects that are defined to be outside the system of interest, but
which are inputs to state variables or outputs from state variables, are represented as
“clouds” (Fig. 3.2d). They are not state variables since they are not modeled explic-
itly and are not represented by dynamic equations. (Hence, they are nebulous and
vague — traits well represented by clouds.) Sources or sinks cannot be involved in
an information transfer. That is, they cannot alter a rate, nor can their condition be
altered.

Parameters Constants in equations are noted in the diagrams by small circles with
lines (Fig. 3.2¢). They invariably are used as the tail of an information transfer, since
their values influence flow rates and other equations within the model. Since they are
constants, their values are not changed by an information transfer.

Rate Equations Total (or absolute) rates of input to, or output from, a state variable
are described mathematically with rate equations. 1t is useful to identify and label
these explicitly by modifying the control valve symbol (Fig. 3.2f). The equations
usually describe information transfers from state variables and parameters.

Auxiliary Variables and Equations Auxiliary variables (large circles, Fig. 3.2g) are
variables that are computed from an auxiliary equation. The auxiliary equation can
be a function of other auxiliary variables, state variables, driving variables, and pa-
rameters. Auxiliary variables change over time because they depend on either (a) a
state variable, (b) a driving variable that depends on time, or (c) an auxiliary variable
that depends on a state variable or driving variable. Auxiliary variables are never con-
stants, nor are they state variables: they do not have an associated rate equation. They
are algebraic equations and we may think of their values as changing instantaneously,
as new values are substituted for their variables.

Auxiliary variables are primarily used to simplify the writing of rate equations.
In this use, they may be substituted into the equation, but they are isolated for clarity
or computing efficiency (they may be used by several state variables). Consequently,
they are often shown influencing rate equations. A secondary use is to convert, for
output purposes, a state variable or another auxiliary variable into different units.
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Figure 3.3: Forrester diagram for the grass—deer ecosystem. Solid arrows are pathways
for C flow; dotted arrows represent relations between levels and input or output rates as
hypothesized. (Numbered ellipses on information flows are not part of Forrester diagrams,
but are used for explanatory purposes only.)

Driving Variables Dynamic events that relate to variables that are not state variables
(e.g., season or temperature in some models) are often used as forcing functions. These
driving variables are represented as large diamonds (Fig. 3.2h). Usually, driving vari-
ables have no inputs and time is assumed to be a component of the variable (e.g., tem-
perature values on different days). Here are two examples when one driving variable
may influence another: (1) A driving variable of time could influence a driving variable
that specifies temperature over space. The temperature at depth (space) in a water col-
umn could be influenced by season (time): different temperatures at depth at different
seasons. (2) A driving variable of time at one scale (slow) could be used to determine
a variable that occurs at a faster time scale [e.g., season (a slow time-dependent driv-
ing variable)] can influence hourly temperature values (a fast time-dependent driving
variable). The units of the driving variable (e.g., time, space) should be specified in
the diagram,

3.3 Examples

As illustrations of this diagramming technique, we consider some simple examples.

3.3.1 Grass—Deer “Ecosystem”

Consider a system composed of grass and some deer that eat the grass (Fig. 3.1). For
the sake of definiteness, we will make the following biological assumptions.

1. The per capita rate of growth of grass (g C produced per g C of existing grass)
is constant. Therefore, the total growth will be the per capita rate times the total
amount of C present.

2. The only loss to the quantity of C in the grass population is by deer consumption.

3. Deer compete with one another for grass so that, as the quantity of deer in-
creases, each deer receives less C.

4. Deer excrete or respire a fixed proportion of their existing C as either atmo-
spheric C or solid/liquid waste.

None of these hypotheses are detailed enough to allow us to uniquely define the equa-
tions, but they do permit us to draw the Forrester diagram in Fig. 3.3.
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Death

Figure 3.4: Forrester diagram for one form of the density-independent population growth
model.

The assumptions indicated only two state variables: grass and deer. Therefore,
there are only two boxes (levels) in the Forrester diagram. Also from our assumptions,
there are only three flow relations: source to grass, grass to deer, and deer to sink. The
diagram implies that any other flows are assumed to be unimportant to the objectives
of the model. For example, we explicitly precluded C from flowing directly from grass
back to the atmosphere or another sink (assumption 2). Information transfer 1 is a di-
agram of the concept that total grass growth depends on the amount of grass present
(assumption 1). Information transfer 2 is similar, but we know from our verbal state-
ment that deer are competing with one another, and grass is not competing (per capita
rates are constant, assumption 3). Therefore, given the similarity of information trans-
fers 1 and 2 (Fig. 3.3), it is clear that different hypothesized control relations can have
the same Forrester diagram presentation. This implies that a single Forrester diagram
can represent many different sets of hypotheses. Forrester diagrams do not uniquely
determine the model equations. Information transfer 3 represents the effect of deer on
the loss rate of C from the deer population (assumption 4). The verbal statement of
this control relation is similar to that for grass growth rate, so the information transfer
arrow is similar.

3.3.2 Population Growth with Explicit Birth and Death

To demonstrate the relation between diagrams and equations, the next example will
start with an equation and produce a consistent diagram.

The classic, density-independent population model written as a finite difference
equation (FDE) is N;+1 = N, + rN,, where r is the net per capita growth rate. Suppose
we reparameterize it using the identity r = b — d, where b is the per capita birth rate,
d is the per capita death rate, and both are positive quantities:

Nt+1 =Nt+bNt_dNt. (3.1)

Note first that there is a single state variable (N); therefore there will be a single
box in the Forrester diagram. In general, there will be exactly as many boxes (levels)
and FDEs as there are state variables. Second, note that Eq. 3.1 has two components
of change: a positive value (bN,) and a negative value (—dN,). These correspond in
Forrester diagrams as inputs to and outputs from a single state variable. Thus, for this
form of the model, we have a Forrester diagram as shown in Fig. 3.4, Note the use
of clouds (sinks and sources) to represent the origin of newborn individuals and the
destination of dead individuals.
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Figure 3.5: Forrester diagram for one form of density-dependent population growth model.

To illustrate the use of auxiliary variables and equations, consider the case where
birth rates decrease linearly as numbers of individuals increase, but total death is a
simple proportion of the population:

Nui = N, + bN, (1 - %) —dN,. 3.2)

———
R

The second (middle) term of the right-hand side is the absolute rate of births in the pop-
ulation. The third term is the absolute rate of death. Birth rate is determined by a “re-
duction factor” that approaches zero as N approaches a constant K [i.e., (1-N/K) — 0
as N — K]. Our modeling objectives might suggest that this is a particularly important
quantity (e.g., we want to examine a range of functional forms, not just the linear one
above). Consequently, we isolate that subexpression with a special symbol (R) and we
treat it as an auxiliary variable. Figure 3.5 shows the Forrester diagram for this model.
Note that it is similar in form to Fig. 3.4, but that we have used an auxiliary variable to
represent the effect of density on the reduction factor. The “effective” per capita birth
rate is bR, where b is the maximum per capita birth rate. Note that R is a function of
N (state variable) and K (a parameter), so information transfer arrows connect these
entities with R.

It is somewhat a matter of taste to separate R and b. Alternatively, we could draw
the diagram using a different auxiliary variable, perhaps called “effective per capita
birth rate,” corresponding to the variable b(1 - N/K). This would require a minor mod-
ification of the control relations (information transfer arrows). Finally, it is possible to
draw the Forrester diagram for Eq. 3.2 without any auxiliary variables; it depends on
the emphases the diagrammer wishes to achieve.

3.3.3 Net Population Growth

The above models used explicit birth and death to show the relations between the
parameters governing increases and decreases, and the input and output arrows in
the diagrams. The typical presentation of these models subsumes birth and death
into a net rate parameter r, which may be positive or negative. For these forms, the
corresponding diagrams for the two models (Fig. 3.4 and Fig. 3.5) are shown in Fig.
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Figure 3.6: Forrester diagrams for density-dependent (a) and density-independent (b)
growth using the normal parameterization.

3.6. Note the double-headed material flow arrows used to indicate that the parameter r
controls both the inflow (away from source) as well as outflow (toward the sink). The
single cloud serves a double purpose here as both sink and source.

3.3.4 Multiple State Variables

It is often clearer to isolate different inputs and outputs to a state variable, even though
they may be additive and could be lumped. This may be important if the controls
on the different rates vary significantly, usually due to different parameters. This is
diagrammed by multiple material flows into or out of a level.

When a model has more than one state variable (e.g., an ecosystem model with
equations for plants, herbivores, and carnivores), then each object is represented by
a box (level) that connects with the others according to the flow of material (energy)
defined by the relations (i.e., foraging relationships). Figure 3.7 illustrates this for
a simple case. The critical point for models of this type is that the units of state
variables and the units of flow must agree. Some models have state variables that
possess identical inputs and outputs (e.g., discrete soil layers in a water flow model);
to simplify the diagram, these are shown as offset boxes (Fig. 3.7). A similar scheme
can be used for auxiliary variables.

A more complicated case is illustrated in Fig. 3.8 for a simple agroecosystem
model in which there are fertilization regimes, pests, and crop harvesting schedules. In
this model, suppose the broad objective is to determine the effects on profits of different
schedules of fertilizer and pesticide applications to fields of alfalfa. By “schedule,” we

E -
\
v

Figure 3.7: Forrester diagram showing multiple state variables. The set of three offset
boxes represents three state variables all of which have the same relations (inputs and
outputs) to other state variables in the system.
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Figure 3.8: Forrester diagram for a hypothetical agroecosystem model showing multiple
state variables of an agricultural system.

mean the timing and amounts of applications. The major pests of alfalfa are weevils
and aphids, but these are dynamic since pesticides will kill some of them. So, at least
one state variable must represent the pests. We are also interested in the effects of
fertilizer applications, but this also will be dynamic (it is applied at certain times and
in variable amounts). Consequently, another state variable should be the soil nutrient
pool. As we are primarily interested in the profits of farmers, we will need to know
both the amounts of crops in the field and the amounts harvested.

Thus, the state variables are: nutrients, insect pests, field alfalfa, and harvested
alfalfa. All of these must have common units, so for the sake of the example, we
will assume that nitrogen is the limiting nutrient to be added and that all other state
variables will be quantified in units of g N/hectare. These are not the most natural
units by which to measure alfalfa and insect pests, but we can always use a conversion
factor (auxiliary variable) to create other units.

The scheduling of management events such as pesticide application and fertil-
ization is represented by driving variables, as are natural events such as season and
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temperature (Fig. 3.8). The objectives state that one of our primary interests is farmer
Profit. Because we have chosen the dynamics to be stated in units of g N/ha and the
units of profit are dollars, we need to convert from g N/ha harvested to dollars. To ac-
complish this, we use auxiliary variables such as Fertilization Cost ($/ha), Field Size
(ha), Alfalfa Price ($/g N), and so on (Fig. 3.8). Note that Profit, while changing in
time, is not a state variable. Profit is a simple algebraic identity, not a FDE.

The diagram is not complete because we have omitted the parameters, but without
more specific hypotheses on the dynamics of the components it is difficult and not
useful to add this facet of Forrester diagrams. The reader should study Fig. 3.8 so that
the components (levels) and flows (material and information) are clear. In particular,
it should be evident how a mathematical model based on this diagram will address the
original objectives.

3.3.5 Multiple Flow Variables and Units

When different units on flow variables are modeled (e.g., g N and g C or blood pres-
sure and blood oxygen in a physiological model), parallel models (or multiple models,
Rideout 1991) must be used to avoid having “apples” flow into “oranges.” The dynam-
ics of many biological processes depend on several interacting variables. There are
two broad applications of this concept in modeling: (1) the variables are at the same
level of biological organization but may interact in their influence on the dynamics, or
(2) the variables are at different levels of organization, but both are needed to address
the model objectives.

Two variables (A and B) are on the same level of biological organization if all
of the measurements that can logically be made on A can also be made on B, and
there are no measurements that can be made on B that cannot be made on A. So, for
example, two chemical molecules (CO, and H,O) are on the same level because we
can measure on both such things as molarity, boiling point, molecular weight, and so
on. In contrast, an individual organism and a population of organisms are on different
levels of organization since we can measure population growth rate on the population,
but not on a single organism.

Variables that are on the same level of organization may interact to affect some
biological process negatively (negative feedback), positively (synergism), or indepen-
dently (substitutable). For example, the electrical potential across the membrane of a
nerve cell is determined by the difference between the net charge inside the cell and the
net charge outside the cell. Therefore, two variables that might be modeled and that
interact negatively are positive ions exemplified by potassium (K*) and negative ions
such as chloride (CI7), since the net charge is the sum of positive and negative ions. In
other situations, two different variables might complement each other and enhance the
rates of change of biological processes [e.g., nerve cell activity and electrical potential
and the different forms of positive ions: K* and sodium (Na*)]. In still other systems,
the two variables may influence dynamics independently, for example, grass species
A and B may each increase deer growth rates by an equal amount.

In all of the above examples, it is conceivable (but not necessary) that a model
would portray the dynamics of both quantities (K* and Na*, or species A and B). In
all three possibilities, if we wish to describe the dynamics of the affected process as
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Figure 3.9: Forrester diagram when multiple flow variables are used. Unlabeled material
transfers are assumed to be losses or gains caused by ion pumping.

influenced by the variables, then we must describe the dynamics of the individual vari-
ables and their effect on the process. Therefore, since the physical quantities cannot
flow among themselves (i.e., g K cannot flow from a compartment containing g Na),
we represent the separate dynamics as parallel models.

An example of variables at different levels of organization is variables describing
the size of individuals and population size. In models in which the growth rate of
the population is influenced not only by the current numbers of individuals in the
population, but also by the average body size (e.g., through the feeding rate), both
quantities must be modeled. Obviously, these are two very different kinds of quantities
and it is absurd to suppose that they can be related by a material transfer (solid arrow
in a Forrester diagram). It makes no sense to say that average body size “flows” into
numbers of individuals. Consequently, in a model, these two variables must be kept
separate.

To illustrate this concept graphically, consider a very simple model of nerve cell
activity. The activity level is measured as the electrical potential across the nerve cell
membrane. This is determined by the relative concentration of K* and Na* on the
inside. Tons of K and Na flow into the cell through ion-specific channels at rates that
depend on the current electrical potential of the cell. Figure 3.9 shows one implemen-
tation of the integration of the dynamics of K and Na to determine electrical potential.
Since K and Na are different quantities, they are not interchangeable and therefore
must have different inputs, outputs, and level representation.

Care must be exercised when diagramming to recognize differences in units be-
tween state variables. Units that are superficially the same can in some circumstances
be completely different. Often these differences are hidden by the mathematical equa-
tions. For example, if our interest is in the flow of carbon between components of a
plant (e.g., leaves and roots) in a plant growth model, then an atom of carbon in the
leaves can actually become incorporated into the roots. In contrast, suppose our in-
terest is in a model of the population dynamics of a species of plant and its herbivore
and the “flow” variable of interest is numbers of individuals in each population. It
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Figure 3.10: Simplified Forrester diagram for linked population models based on numbers
of individuals.

does not make sense to say that individual plants flow into individual consumers. The
biomass of the plant in fact does become incorporated into the biomass of individual
herbivores, but the numbers in the population are created by processes of birth and
death. The basic concept here is one of “conserved” and “nonconserved” flow quanti-
ties. Grams of carbon is a conserved quantity; it is the mass of a physical object. And,
except under unusual physical circumstances, an atom of carbon is never created or
destroyed. Numbers of individuals are not conserved in the same way. Prior to birth
the individual did not exist, although all of its atoms were present in other forms. At
its death, the individual is destroyed, but its constituent atoms persist.

This distinction influences the way Forrester diagrams are drawn for some types of
models. In predator—prey models, when numbers of individuals are modeled, the units
are actually numbers of prey individuals and numbers of predator individuals. These
units are as incompatible with each other as were the units in Fig. 3.9 and the diagram
should use parallel models. Consequently, we should use a Forrester diagram similar
to the simplified form shown in Fig. 3.10.

A similar situation arises in modeling and diagramming chemical dynamics. A
common unit in these systems is moles (the amount of a substance which contains
Avogadro’s number (6.022 x10?%) of atoms or molecules). When one mole of H and
one mole of O are combined, the result is not two moles of water, but 0.5 mole of
H,O. Similarly, 1 gm of H and 1 gm O combine to form approximately 1.125 g H,O,
not 2 or 1 or 1.5. The reason is that the chemical reaction to form a molecule of H,O
involves numbers of individual atoms of H and O in certain proportion. If modeled
as a compartment model with numbers of atoms, there is a conserved flow of atoms
of H and O: atoms of H leave the H, compartment and enter the HyO compartment;
similarly for O. The situation holds for some population models based on individuals.
If the compartments are age classes, then individuals are conserved as they flow from
one age to another. Also, in models of infectious diseases, healthy individuals are con-
served as they flow from the “susceptible” compartment to the “infected” box. Thus,
some models based on flows of individuals (organisms or atoms) can be diagrammed
as a conserved quantity (i.e., levels connected by material flow arrows).
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Figure 3.11: Examples of incorrect Forrester diagram fragments.

Errors in Forrester Diagrams

Below is a short list of some of the errors that can be made in drawing Forrester
diagrams (see Fig. 3.11).

1.

10.

3.5

Using any symbols other than those defined in Fig. 3.2. For example, there is
no symbol like a solid line with no arrowhead attached (Fig. 3.11a).

Failing to label all boxes, variables (auxiliary and driving), and parameters with
names and units (where appropriate, Fig. 3.11a).

Showing sources or sinks influencing rates (Fig. 3.11b).

Showing rates influencing state variables (Fig. 3.11c).

Showing information flows directly into state variables (Fig. 3.11a). State vari-
ables only change by a change in rates.

. Showing material flows (solid arrows) between objects other than state variables

and sources and sinks (Fig. 3.11d).

. Showing an influence on a quantity that cannot change (e.g., a parameter, Fig.

3.11d).
Showing information flows between state variables (Fig. 3.11e).
Using incompatible units of flows or state variables (Fig. 3.11f).

Using state variables that are not in the model (objectives or equations) or not
including state variables that are in the model.

Advantages and Disadvantages of Forrester Diagrams

Many modelers and theoreticians do not use Forrester diagrams and believe they only
get in the way. There is an important element of truth in this view. The equations are
the primary objects of interest. Their solutions, not the diagram, produce the output
used to address the model objectives. Moreover, the diagrams are not always a com-
pact representation of the model. As the number of state variables, parameters, and
relations between objects become large, the size of the diagram increases. Complex
diagrams can span several pages, in which case much of the heuristic value is lost.
There are, however, three situations in which Forrester diagrams are useful. First,
in learning the rudiments of the modeling process, it is helpful to separate the trauma of
mathematical equations from the conceptual issues of the nature of system objects, the
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characteristics of the material flows between them, and the controls on the dynamics
by internal influences. A graphical language has this potential.

Second, many people who are not mathematicians and to whom a model must
be explained react favorably to the graphical representation. For most variables and
flows, there is a natural correspondence between a material flow and a physical or bi-
ological process (e.g., consumption in a foodweb), or between a state variable (boxes)
and a compartment (e.g., population). These are concepts with which most people
have some experience. As a consequence, understanding is more quickly attained,
and constructive criticism (or, even, agreement) is more readily achieved. Moreover,
although mathematics offers opportunities for an extremely compact representation
of complex relationships, models attempting to achieve a high degree of precision or
realism will often require complicated equations. The mathematical expressions for
driving variables are often an example of this since they can represent seasonal effects
on physical variables such as temperature. Forrester diagrams can reduce some of this
complexity by subsuming the mathematical details in a simple symbol.

Finally, Forrester diagrams can be a valuable aid in organizing the computer sim-
ulation program. Each level effectively becomes a program module; the set of input
and output arrows are components that increase and decrease the finite difference equa-
tions. The parameters are the data on which program module operates. Input infor-
mation flows and parameters indicate arguments to the subroutine; output information
flows indicate subroutine side effects (changed variables).

Clearly, there is a point at which diagram complexity obfuscates the basic struc-
ture of the model and frustrates attempts to effectively communicate. Just as we must
provide objectives for models, we must also recognize our objectives in presenting
a model in one form or another. The choice will depend on whether we are com-
municating with politicians, managers, mathematicians, computers, or our biologist
colleagues.

3.6 Principles of Qualitative Formulation

The first rule of discovery is to have brains and good luck. The second rule of
discovery is to sit tight and wait for a bright idea. — Polya (1973)

Qualitative model formulation is one of the sub-problems in the modeling activity. We
wish to discover the simplest description of a system that will satisfy the objectives.
This section describes a few basic principles that apply to all attempts to formulate a
qualitative compartment model using Forrester diagrams. Many of the principles will
also apply to other modeling approaches. Based on the Forrester diagrams shown thus
far, it should be clear that the purpose of the principles is to help you

o Identify the state variables (levels)

e Identify the flows among the state variables

¢ Identify the controls on the flow rates

¢ Identify the auxiliary and driving variables.

To accomplish the above, answer the following questions.

1. What are the questions to be answered? Write down all the questions for which
the objective requires answers. If you cannot do this, then you do not understand
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the problem. For example, in the population doubling model, the question was:
“When (at what time) will the population be twice its current value?”

. What quantities are needed to answer the questions? In compartment models

(and almost all others), objective questions are answered with specific numbers
or series of numbers. Write down the required quantities and their units.

In the population doubling problem, it is the “year” when the population
has doubled. The size of the population at doubling is of minor concern in this
problem (indeed, given the initial condition, it is trivial to compute).

. What equations will answer the questions? Can you write an explicit dynamic

equation (e.g., finite difference equation) whose value at some time will consti-
tute an answer? In the population doubling problem, the answer is “no.” We
did not solve the problem by writing an equation describing the doubling time.
We wrote an equation for population growth and from this determined doubling
time. If the question had been, “What will the population size be in 2019?” then
a dynamic equation would answer it (e.g., Eq. 3.1).

If you can, in principle, answer the question directly with a dynamic equa-
tion, then this is at least one of the state variables in the model and it becomes
a level in a Forrester diagram. (You do not write the equation at this stage, but
simply recognize that such an equation, when written, will answer the ques-
tion.) If a dynamic equation will not immediately answer the question, then (a)
you need an auxiliary equation to compute the answer from another variable,
and (b) you need another quantity and state variable that will serve as input
to the auxiliary equation. An information flow (dotted line) will connect these
two objects. Figure 3.8 illustrates the concept in the relation between Harvest
(g N) and Profit ($). The units of the state variable and the auxiliary variable
will almost certainly be different, for otherwise a dynamic equation would have
answered the question.

. What other primary flow quantities are needed? From the objectives and prior

knowledge or data, write down the quantities that will flow into and out of the
state variables that contribute to the question. These flows determine the dynam-
ics of the level. The flows will connect to additional levels by material-transfer
arrows in the Forrester diagram. For descriptive purposes only, we will call
these the primary state variables. In the simple population doubling problem, a
single state variable suffices, so there are no others. In Fig. 3.8, a single state
variable influences the primary quantity needed for the objectives (Profit). But
the objectives refer to pesticide and fertilization effects, and we know (or pre-
sume) from prior information that the harvest dynamics will be influenced by
the size of the crop in the field (Field Crop), and this will be influenced by in-
sect consumption (Pests). Prior knowledge also tells us that fertilizer is applied
to the soil and is subsequently removed from a pool of N contained in the soil.
Thus, we hypothesize that a sufficient model would be one that contained the
state variables (levels) shown in Fig. 3.8 (i.e., Soil Nutrient Pool, Field Crop,
Pests, and Harvest).

5. Is an explicit spatial representation required? Do the objectives refer to or
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require knowledge of events at different places? If so, then a transport model
(Section 1.4.3) may be appropriate or the primary state variables should be repli-
cated at each discrete spatial location. Typically, the state variables at the dif-
ferent spatial locations will be connected by material transfers (immigration or
advection).

6. What are the controls on the flow rates between the state variables? The con-
trols become influences or information transfers in Forrester diagrams. For each
state variable, list the factors influencing the rates of flow into the level and in-
fluencing the rates of flow out of the level. In general, there will be four sources
of influences: (1) parameters, (2) auxiliary variables whose inputs are from the
primary state variables, (3) driving variables, and (4) inputs (possibly via auxil-
iary variables) from state variables other than the primary state variables. Type
(1) is illustrated in Fig. 3.10 by the influence of parameter “c” on “birth rate.”
Type (2) is illustrated in Fig. 3.9 by the loop between “K,” “Electrical Poten-
tial,” and flow rate into “K.” Type (3) is illustrated in Fig. 3.8 by the influence
of “Fertilization” on the flow rate into “Soil Nutrient Pool.” Type (4) occurs, for
example, when the primary state variables are defined on one level of biological
organization (e.g., population), but secondary state variables at another level of
organization (e.g., individual body size) are required to implement hypothesized
flow rate controls at the population level. For example, populations with large
average body size consume resources faster than populations with small body
sizes. If type (4) controls are present, then the secondary state variables must be
implemented as levels in a parallel model (Fig. 3.9).

7. Do you know any parameter names? If the objectives or prior knowledge sug-
gests important parameters, these should be included in the Forrester diagram.
Most of these do not become known until explicit equations are suggested for
flow rates and auxiliary variables.

3.7 Model Simplification

Thus far, we have emphasized the mechanics of qualitative model formulation. For
a number of practical and aesthetic reasons, we wish our models and explanations of
biological phenomena to be as simple as possible. On the other hand, biological sys-
tems are complex, having many processes and variables that interact in complicated,
non-linear ways. It is, therefore, natural when creating a model from a general ob-
jective statement, such as we used in our example of pesticide effects on farm profit,
to create a model that is more complicated than needed or desirable. There is some
evidence that models of intermediate complexity are best (Costanza and Sklar 1985;
Hakanson 1995). Being able to simplify a model is almost as important as the abil-
ity to formulate it in the first place. Think of it as editing the first draft of an essay.
Moreover, in Chapter 2 we stressed the importance of evaluating alternative models in
parallel. An excellent approach to creating a family of alternative models is to create
a gradient from simple to complex. So, the process of model simplification and its
converse, model elaboration, are valuable tools for hypothesis testing. Logan (1994)
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has formalized this philosophy in what he calls the composite-modeling approach. In
this approach, one designs an initially large model that contains most of the relevant
processes and relations. Afterwords, one reduces the large model into progressively
simpler, mathematically more tractable versions that, although simple, maintain links
and similarities with the more complete model. The end result is a family of models
and tools each of which have uses and applications. A related idea that will become
important for model validation in Chapter 8 is nested models: a hierarchy of mod-
els each simpler than the next by the removal of one parameter (Hilborn and Mangel
1997). Because model simplification is central to these ideas, we now present a few
principles for simplifying models (see also Shannon 1975).

Eliminate State Variables Every state variable must have a dynamic equation (differ-
ential equation or finite difference equation) as well as parameters and initial condi-
tions. There are two ways to reduce model complexity arising from state variables.

1. Convert a state variable into a constant (e.g., a parameter) or an auxiliary vari-
able. For example, in Fig. 3.8 we represented Profit as being influenced by
harvested crop nitrogen, whose dynamics were determined by the size of the
field crop. However, given that alfalfa is harvested by mowing and collecting a
fraction of the field crop, a simpler model would be one in which profit is deter-
mined from the current field crop and a parameter representing the simple frac-
tion harvested. If we wished to retain the concept that harvesting occurs at fixed
time intervals, we could replace the Harvest state variable with an auxiliary
variable that is influenced by Season, Field Crop, and a parameter representing
the fraction of the field crop harvested. Profit, then, would be determined by
season and the harvestable fraction of field crop.

2. Aggregate state variables. In Fig. 3.8, we separated soil nitrogen and crop ni-
trogen to examine the potential interaction between the timing of applications
of fertilizer and pesticide. If we would be willing to drop this aspect of the ob-
jectives, then we could lump plant and soil nutrients into a single state variable.

Make “Stronger” Assumptions Complexity also enters models in the form of the
equations and functional relationships. For example, we compared the models of pop-
ulation growth with and without density effects on reproduction. The former is more
complex than the latter. There are several approaches for simplifying functional re-
lationships, and while we will explore the quantitative relationships in more depth in
Chapters 4 and 5, we can list two possibilities here.

1. Convert functions of state variables into constants. Equation 3.2 hypothesizes
that effective birth rate decreases with increasing density. If we assume that this
function does not exist, then we have simply a constant (r) that describes birth
rate (Eq. 3.1).

2. Convert nonlinear relationships into linear relationships. Equation 3.2 is a lin-
ear relationship between current population density and birth rate. It is not diffi-
cult to imagine a more complex relationship that is a curvilinear function. Thus,
Eq. 3.2 is already a relatively simple model.
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Remove Temporal Complexity Models with temporal variability have a layer of com-
plexity that can be eliminated as follows.

1. Convert random models into deterministic models. As discussed briefly in Chap-
ter 1 and in more detail in Chapter 10, random effects on dynamics can be
achieved by allowing parameters to vary randomly in time. These types of mod-
els have more parameters than their deterministic counterparts and can produce
significantly more complicated dynamics that require greater effort to analyze
and understand. Removing randomness simplifies the model.

2. Convert driving variables to constants. Driving variables or other time-varying
perturbations are another means of allowing parameters and processes to vary in
time, due to causes not modeled by internal system dynamics. Removing these
variables will simplify the model by reducing the number of parameters and
amount of data used as well as simplifying dynamics. The simple population
models we have discussed so far have no driving variables.

Remove Spatial Complexity As with time, removing spatial complexity is an impor-
tant simplification tool. The usual method is to convert a model that explicitly models
spatial events to one that ignores spatial differences. In Fig. 3.8, we made this simpli-
fication initially, because we did not attempt to model spatial differences within our
alfalfa field. If we had incorporated spatial effects, then (in one possibility) we would
have had additional state variables. This would require, essentially, duplicating the
four state variables shown for each of the spatial areas we wished to discriminate. For
example, we might distinguish the effects of pesticides and fertilizers on the border of
the field from those in the interior of the field. If so, then we would need state vari-
ables for Pests_Inside, Pests_Border, Field_Crop.Inside, Field_Crop_Border, and so
on. Adding space to a model usually greatly increases its complexity, so assuming
spatial homogeneity is a simplifying assumption.

3.8 Other Modeling Problems

In Chapter 1, we introduced four broad classes of models: compartment, transport,
particle, and finite state. Forrester diagrams were designed for and are especially use-
ful in describing compartment models. This modeling approach is an extremely pow-
erful and general framework that has many applications in biology, from ecosystems
to enzyme kinetics. It is most useful when the system can be decomposed into flows
of material or energy among a finite, but possibly large, number of discrete “pools”
or compartments. It can also be used when we are interested in quantities that su-
perficially do not “flow,” for example, blood or water pressure in animal and plant
physiological systems. By linking many compartments together in complicated ways,
compartment models can address complex interconnection networks (e.g., foodwebs
of many species, or cellular enzyme networks). Compartment models can also incor-
porate elaborate control relationships between variables (e.g., the relationship between
fertilization schedules and profit). Nevertheless, the remaining three model classes are
conceptualizations of systems for which this approach is not optimal or useful.
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Figure 3.12: (a) Flow between imaginary compartments in a continuous one-dimensional
system. (b) Discrete grid system used in two-dimensional transport models. (b) A close-up
of five grid points showing the similarity to compartment models.

3.8.1 Transport Models

Of the remaining three classes of models, transport models are closest to compartment
models. In transport models, we have a substance {energy (heat) or a quantity of mat-
ter] that flows from spatial point to point. A simple example is the flow of a pollutant
along a stretch of river after it is emitted from a point source (e.g., a sewage outfall). A
central concept shared with compartment models is a quantity that flows, but a major
difference is that there is no clear concept of a finite number of compartments in which
the substance resides. Instead, there are, in the continuous formulation, infinitely many
points along the river at which some quantity of the substance exists. When we model
spatial flows across space in this way, we are using an Eulerian frame of reference:
the origin of the spatial coordinate system is fixed and the substance moves over this
coordinate system.

There are many forces that could influence the flow of the pollutant, but the fol-
lowing simplified view uses two that will illustrate the qualitative model formulation.
Advection moves the substance with a physical flow of water from point to point (river
flow). Diffusion moves a substance in any direction according to the concentration of
the substance around each point. Consider an infinitely short segment of the river
along its x direction (Ax — 0). Figure 3.12a illustrates water and pollutant flows be-
tween these infinitely thin segments of river. Since we have rate functions dependent
on two variables (space and time), we use partial differential equations based on partial
derivatives. For functions of two or more variables [e.g., f(x,?), where x is a spatial
dimension and ¢ is time], 8 f/0t is the partial derivative of f with respect to # when the
spatial variable is held constant. Similarly, 8f/dx is the derivative of f with respect
to x when ¢ is fixed. Using this notation, we can write a conceptual rate equation for
each segment as:

ap(x, 1) _ ( Advection ) 3 ( Advection ) + ( Diffusion ) _ ( Diffusion )

ot In Out In Out

Pollutant _ Pollutant
Creation Destruction |’
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where p(x, t) represents the concentration of the pollutant in the water at a point x in
space and ¢ in time. Because of the continuous nature of space in this conceptualiza-
tion, compartment models do not do well here. [There may, of course, be compart-
ments within the river (e.g., fish tissue) wherein the pollutant is stored which we may
wish to model and for which compartment submodels will be appropriate.]

However, it happens that many of these models require numerical computations to
obtain a solution. This typically requires that we discretize space by imagining it com-
posed of many very closely spaced grid points at which we have obtained a numerical
solution and know the pollutant concentration. Figure 3.12b illustrates this for a two-
dimensional transport model where we assume the advective flow is unidirectional
from left to right and diffusive flow can occur in both directions.

By discretizing space, we have introduced the element that previously distinguished
the transport model from the compartment model: a finite number of storage com-
partments. Figure 3.12¢ shows a simplified Forrester diagram that illustrates how a
compartment model framework could describe the system at one grid point. However,
even though we can, after spatial discretization, force the system into the compartment
model mode, this does not mean that a Forrester diagram is a felicitous description of
the modeled system. It illustrates the forces and processes at a point, but it would be
foolish to attempt to represent the spatial scale of Fig. 3.12b with a series of drawings
like Fig. 3.12c iterated at each grid point. Since all discrete points are identical, no
new information about the structure of the model is revealed by Forrester diagrams at
different points.

A second kind of transport model uses a much coarser spatial resolution than that
implied by the discretized continuous system above. In ecosystem models, we are of-
ten interested in flows of energy or material through a complex foodweb. The foodweb
and other processes affecting dynamics, however, are frequently different in space.
For example, an ecosystem model of a lake would describe nutrient flow from the
physical compartments to plants to herbivores and up through several levels of fish
species. Such a model might describe several species at each of these trophic levels,
each having complex equations describing nutrient uptake. However, the set of species
inhabiting the edges of lakes (littoral zone) differs from those in the open water habi-
tat (pelagic zone), and nutrient inputs from the land obviously will enter the littoral
zone. A modeling approach to this framework is to divide the lake ecosystem into two
spatial compartments and to divide each of these into the trophic compartments of the
biotic part of the system. When such a coarse level of spatial resolution is used, the
compartment modeling approach is applicable and a Forrester diagram could be used
by separating each biotic compartment in each spatial compartment.

In summary, a compartment model paradigm, in general, and the Forrester diagram
approach, in particular, are not always appropriate. This is particularly true when the
system is modeled as spatially continuous with small spatial resolution. Nevertheless,
at least in early model formulation stages, the compartment model concept can be
useful for transport models.

3.8.2 Particle Models

Particle models describe systems in which the variables are physical objects (e.g., bil-
liard balls, or individual organisms) that change in some way according to dynamic
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equations. This is called the Lagrangian frame of reference, as opposed to the Eu-
lerian approach of transport models. In general, there can be any finite number of
these objects. The objects are characterized as having essential properties that are
appropriate to the system being modeled and that change according to the dynamic
equations. Most often, especially in physics, the equations define how objects move
through space (e.g., planets in a gravitational force field). In this case, the essential
properties of objects are their physical position in a coordinate systems [e.g., (x,y,z)
in a three-dimensional Cartesian space]. But biological (and physical) models can
use a generalization of this framework to include not only spatial position, but other
essential properties (e.g., physical properties: mass, momentum, velocity; biological
properties: biomass, water content, hunger level). Recently, considerable interest has
developed in this class of models in ecology using the name individual-based model-
ing (Huston et al. 1988; DeAngelis and Gross 1992a) and human population sciences
using the name micropopulation modeling (Dyke and MacCluer 1973; Ackerman et al.
1993) or microsimulation (Van der Ploeg et al. 1998).

Particle-based models that alter physical position do not fit the compartment model
paradigm well, although it is possible. Figure 3.13 shows the physical system and a
Forrester diagram for a single prey individual and a single predator individual moving
in a 2D space that possesses a refuge for the prey. The state of the prey and predator
is defined by their position in space [i.e., their (x,y) coordinates]. It is meaningless
to speak of a substance flowing into or out of the “x” or “y” “levels” of the prey or
predator, so here the arrow pointing into the position level indicates a small increase
in the position (e.g., Ax > 0) and an arrow pointing to the cloud indicates a small
decrease in the position (e.g., Ax < 0).

In addition to the artificiality of interpreting position change as a “flow,” the com-
partment model paradigm fails for the same reasons as the discretized transport model.
Typically, particle models simulate hundreds or thousands of objects. For complete ac-
curacy, the diagram should be iterated for each of these objects just as it should have
been iterated at each spatial point in the discrete transport model. This would add little
new information and, in the case of Fig. 3.13, would require a huge number of dotted
information transfer lines to indicate the effects of distances between many individu-
als. So, as with the transport model, Forrester diagrams can be useful for initial model
formulation and detailing a subset of the objects and interactions. But it is not useful
to describe all of the objects this way.

3.8.3 Finite State Models

Of the four classes of models, finite state models are the furthest from compartment
models. As described in Chapter 1, finite state models have no explicit representation
of a quantity that flows among pools. In the formulation of the model, we articulate the
important states a priori and these are the only possibilities allowed. A useful qual-
itative tool is the state transition graph, which serves a role analogous to that of the
Forrester diagram of a compartment model. Each node represents a state and an arrow
between nodes represents possible alteration of the system from the state at the end
of the arrow to the state at its terminus. Simple finite state models (e.g., Markov pro-
cesses) are stochastic where the arrow is the probability of transition from one state



§3.9: Exercises

53
Predator
Y
Ax IR . _Prey
A%
Y Y 3 ;
vl
Prey-to-Refuge ‘\
Distance '
' ’ - 1
O
Refuge
Prey X Predator
X ay X
m i @ Th N m % @
. R N

Predator-
to-Prey
Distance

to-Refuge
Distance

N

Figure 3.13: Diagram of physical system and Forrester diagram for a particle movement
model showing a single predator chasing a prey. The Forrester diagram attempts to repre-

sent change in position (Ax, Ay) as a flow to a sink (decrease Ax) or to a level (increase
Ax).

to another; only the current state and the probabilities can affect the outcome. Fig-
ure 3.14 shows the transition graph and one stochastic realization for the finite state
weather model (Chapter 1). Weather can take one of three states: Good, Intermediate,
and Bad. A simulation of weather using the transitions probabilities shown on the ar-
rows (Fig. 3.14a) produces a sequence of the three states (Fig. 3.14b). More complex
models are possible where, for example, the state of previous time steps can affect
the transition probabilities, or other events and conditions in the system can affect the
probabilities. These models can be written as finite difference equations with appro-
priate discretization of the states. Similarly, the model can also be represented as a
Forrester diagram (Fig. 3.14c), but it is a clumsy approximation of the transition graph
and the implied flow does not correspond to a physical flow.

3.9 Exercises
1. Discuss the relation between Levins’ concept of model structure based on gener-

ality, precision, and realism and each of the strategies for model simplification.
Which strategies generate which type of model structure?
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Figure 3.14: A finite state weather model represented as a state transition graph (a),
where the numbers represent the probabilities of the transitions denoted by arrows. (b) One
stochastic realization of the graph showing the resulting dynamics of states. {(c) A Forrester
diagram of the model.

2. Draw a Forrester Diagram for the following physical situation. A regularly
shaped container (e.g., a cylinder with radius b) is filled with water and has
a hole of radius # at the bottom. The rate of a fluid flowing out of an opening
can be modeled by Torricelli’s Law. This relationship states that the velocity
(v) of the fluid at the opening is proportional to the square root of the pressure
head, or the height of the water column above the opening: v = \/zg—h The
volumetric flow rate depends on the fluid velocity and the area of the opening.

The Forrester diagram should represent a model that describes the dynamics
of water volume in the container from its initial volume to empty. The container
has three separate inputs and two holes. Assume that for one of the inputs, as
the amount of water in the bucket increases, the rate of input decreases. The
other two input rates are independent of the bucket water level, but vary in time
as a sine function. The exit holes are both at the same height above the bottom
of the bucket. Use an auxiliary variable called “Torricelli’s Law” to influence
flow rates.

3. Assume a substance enters and exits the cell only by passive diffusion. The rate
at which passive diffusion transports a substance across a membrane is directly
proportional to the difference between the external and internal concentrations.
Draw the Forrester diagram for a model in which the ambient concentration is a
constant using one state variable, one auxiliary variable, and one rate equation.

4. Consider a substance (“A”, units: moles of A) that diffuses as above but also is
transformed into another substance (“B”, units: moils of B). The rate of trans-
formation depends on both the quantities of A and B. Both A and B leave the
cell by passive diffusion. Draw a Forrester diagram.

5. Simplify the model represented in Fig. 3.8 to contain two state variables.

6. Elaborate the model in Fig. 3.8 to include the use of a biological control agent to
reduce insect pests on alfalfa. Assume the control agent is a wasp that lays eggs
on pest larvae. Re-draw only that part of Fig. 3.8 needed to show your changes.
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7.

10.

The classical Lotka—Volterra predator—prey model is:
Prey: Vt+l = V, + th - thPt
Predator: Pt+1 = Pt + athPt - dPt

Assuming the units are a conserved quantity (e.g., g C), draw the Forrester dia-
gram. The parameters are defined as: r = prey per capita rate of increase, a =
rate of consumption of prey by predator, b = conversion of prey consumed to
new predators, and d = predator death rate.

. Draw a Forrester diagram of a model that describes the dynamics of the vertical

position of an aquatic algae cell over the course of a 24 hour period using a time
step of one minute based on the following description of flotation in prokaryotic
aquatic plankton.

Blue-green algae use gas vacuoles to manipulate their position in the water
column. A single gas vacuole consists of closely packed cylinders each of which
is enclosed in a pseudo-membrane of pure protein. The vacuoles are continually
produced at a relatively constant rate. The vacuoles collapse when their external
pressure exceeds a critical threshold. Their gaseous contents are in equilibrium
with the surrounding water. The position of the algal cell is regulated by the
number of vacuoles. At high light intensities, cytoplasmic turgor pressure (ex-
ternal to vacuoles) increases beyond the critical threshold for vacuole collapse.
This both increases the density of the cell medium and causes the cell to sink.
Turgor pressure increases because the light stimulates the uptake of K* ions
and by-products of photosynthesis (e.g., sugars). At low light levels, the turgor
pressure is reduced, the gas vacuoles increase in number, and the cell is more
buoyant.

. Draw a Forrester diagram for the dynamics of blood glucose concentration

based on the following simple description of the mammalian blood sugar reg-
ulation system. The time step of interest is one minute and the duration is 24
hours.

Ingestion of glucose at irregular times during the day raises stomach levels
of glucose, which in turn raises blood glucose levels. This causes 8 cells in
the pancreas (attached to the small intestine) to secrete insulin, which increases
the rate of transport of glucose into the interior of cells. There, glucose is ei-
ther used as a source of respiratory energy or is stored. In liver cells, glucose
is stored as glycogen, which is a form that can be easily released to the blood-
stream if blood glucose levels fall below a threshold. The liver acts as buffer
to maintain blood glucose levels within acceptable limits between bouts of in-
gestion. When blood sugar concentration falls below the proper level, « cells
in the islets of Langerhans (also in the pancreas) are stimulated to increase the
production rate of glucagon. When glucagon arrives at the liver, it increases the
rate of conversion of glycogen to glucose, which is then released to the blood.
Draw a Forrester diagram for the regulation of Ca** ion concentration in hu-
man blood. The concentration of blood calcium ions (Ca?*) is essential for
the proper functioning of signal propagation in nerves and muscle contrac-
tions. Inappropriate levels of Ca®* (too high or too low) rapidly results in
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death. Consequently, blood Ca** concentrations are regulated within narrow
limits (9 — 11mg Ca®*/100ml blood). The mechanism is as follows.

The rate of production of calcitonin in the thyroid gland (located in the neck
region) increases as blood Ca?* increases above the mentioned normal operating
limit. A high concentration of calcitonin increases the rate of Ca®* deposition in
bones. On the other hand, low levels of blood Ca?* cause the rate of production
of parathyroid hormone (PTH) in the parathyroid glands (located adjacent to
the thyroid gland) to increase. PTH affects two different processes that increase
Ca®*: blood reabsorption from the kidneys and the stimulation of osteoclast
cells in bones to decompose the bone matrix (releasing Ca?* into the blood).

Your diagram should represent the dynamics of Ca** concentration as it is
maintained in homeostasis as described above and use three state variables.

In the SW deserts of North America, ants, birds, small mammals, and plants
interact to create a complex foodweb. The primary interactions are as follows.
Ants and small mammals compete for seeds produced by two kinds of plants:
small-seeded and large-seeded plants. Within limits, both granivores can con-
sume both sizes of seeds, but, understandably, ants favor small seeds and mam-
mals prefer large seeds. Consumption of seeds reduces the population growth
rates of the plants. Birds also consume large seeds, but are more effective at
times when the amount of bare ground is high (or, the amount of plants is low).
Neither birds nor small mammals eat ants. The two types of plants compete for
space.

Draw a Forrester diagram for the population dynamics of these five groups
for a model that simulates a period of 20 years at one-month intervals. Assume
that both plant types produce seeds in the fall, but that there is a seed pool
available to granivores during other months.

Draw a Forrester diagram of carbon and water dynamics in a tree over a four
month growing season, when the time step is one hour. The geographical setting
is in the mid-latitudes, so that basic atmospheric conditions (e.g., photoperiod,
light intensity, precipitation) change significantly during the growing season..
The basic relationships are as follows.

In the roots, water and oxygen are taken-up, sugars manufactured in the
leaves are used for cellular respiration, and CO; is released as a by-product.
Water is transported upwards to leaves within the xylem where it increases the
rate of uptake of atmospheric CO; (via stomata). CO,, H,O, and light combine
to produce, among other essential molecules, sugars that are used in the leaves
and transported downward within the phloem for use by the roots. When water
level in the leaves decreases to a low level, the stomata close to reduce water
loss (transpiration), little CO; enters the leaves and photosynthesis and the rate
of sugar production decreases. When leaf water level is high, the water loss
rate is high, but the rate of CO, entering the leaves is also high, consequently
increasing photosynthesis rate.

Draw a Forrester diagram for the dynamics of the Sahel Desert (Roberts et al.
1994). The Sahel is a region of north Africa at about 15°N latitude which his-
torically was a scrub ecosystem, but in recent years has become desertified.
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15.

The predominant social system was nomadic, but is becoming more agricultural
due droughts. As humans congregated in agricultural communities, they cut
existing vegetation for crops and firewood. This increased wind erosion and ex-
acerbated desertification. To improve conditions, various world agencies have
introduced medicine, animal vaccinations, and wells for human and livestock
drinking water. As a result, cattle and human numbers increased, further reduc-
ing vegetation and accelerating desertification. Eventually, cattle and human
mortality increased. In your diagram, include an auxiliary variable for human
“Quality of Life.” Describe how you will quantify quality of life. Choose your
state variables so that the model will produce values of quality of life over time.
You wish to model the effect of alcohol consumption on the internal processes
of temperature regulation in humans. Use the description of temperature reg-
ulation in homeotherms contained in an introductory biology textbook to draw
a Forrester diagram showing the dynamics of body temperature, blood vessel
diameter, and skin moisture (sweating) and their interaction to maintain body
temperature. The model should describe the processes over a 24 hour period
(1 minute time steps), and incorporate time varying alcohol consumption as it
influences the different components of thermal regulation.
Consider the following description of Operation Cat Drop, quoted from Hawken
et al. (1999):

[In Borneo, in the 1950s, m]any Dayak villagers had malaria, and the World

Health Organization had a solution that was simple and direct. Spraying

DDT seemed to work: mosquitoes died, and malaria declined. But then an

expanding web of side effects ... started to appear. The roofs of people’s

houses began to collapse, because the DDT had killed tiny parasitic wasps

that had previously controlled thatch-eating caterpillars. The colonial gov-

ernment issued sheet-metal replacement roofs, but people could not sleep

when tropical rains turned the tin roofs into drums. Meanwhile, the DDT-

poisoned bugs were being eaten by geckoes, which were eaten by cats. The

DDT invisibly built up in the food chain and began to kill the cats. Without

the cats, the rats multiplied. The World Health Organization, threatened by

potential outbreaks of typhus and sylvatic plague, which it had itself created,

was obliged to parachute fourteen thousand live cats into Borneo. Thus oc-

curred Operation Cat Drop, one of the odder missions of the British Royal

Air Force.
Draw a Forrester diagram of this system. Include as state variables the biomass
of the main ecological components (e.g., malaria, mosquitoes, wasps, geckoes,
cats, etc) and levels of DDT; use driving variables for WHO interventions; and
an auxiliary variable representing Dayakan Happiness.
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4.1 From Qualitative to Quantitative

ONE wAy To understand a complex, mathematical model is to stare at it until it is

obvious. This advice can be less than helpful if you do not know what you are
looking for. The approach we follow here exploits the fact that biological models are
composed of a relatively few, recurring algebraic constructs. Once these patterns are
assimilated, building and reading models becomes a matter of knowing when to use
the appropriate component.

We cannot begin, however, until we have a qualitative model for a system that
specifies the objects; their basic, qualitative interrelationships; and the underlying hy-
potheses. The next step is to translate these ideas into mathematical equations. One of
the major strengths of Forrester diagrams is the relative ease with which the equations
can be generated from the diagram. We can now state a few elements of the method
to introduce the material that follows.

The boxes of Forrester diagrams represent the objects of interest: the variables
whose dynamic quantities we wish to determine over time. For each of these, we must
supply a state (dynamic) equation that relates the value of the variable at the next point
in the future with the current value and all of the inputs to and outputs from the vari-
able’s box. Inputs represent absolute rates of gain, and outputs represent absolute rates
of loss. Each of the rates are, in general, calculated by complex, nonlinear equations
that combine the flow relations and control relations among system components. The
rate equations will therefore involve the parameters, auxiliary equations, and driving
variables as specified by the Forrester diagram. Summing all of the rate equations
for a given state variable yields the net rate of change for that variable at the current
point in time. After incrementing time, this calculation is repeated using the state
variable values from the previous iteration until the necessary number of solutions is
obtained. In the remainder of this chapter, we will provide some general rules for the
specification of the rate equations. While I will use specific examples to illustrate the
general principles, the equations will vary among disciplines (e.g., enzyme kinetics vs
ecosystem dynamics). Additional examples are contained in Part II: Applications.
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Figure 4.1: Forrester diagram for density-independent population growth.
4.2 Finite Difference Equations and Differential Equations

4.2.1 Finite Difference Equations

Previously, we have used what I called finite difference equations or recursive finite
difference equations. These have the general form:

N1 = f(Ny). 4.1)

The function f() can be arbitrarily complicated, incorporating nonlinear equations
(e.g., state variables raised to powers), and positive and negative terms. For some f(),
we can isolate N, as a separate element on the right-hand side:

Ny = N, + f(state variables, parameters, f). 4.2)

Other f() have nonlinear terms that prevent us from writing Eq. 4.1 as 4.2. For a
special form of f() in Eq. 4.2, the equation can be simplified and solved analytically,
without computer simulation. We do this now to illustrate why these equations are
termed “recursive.”

Suppose f() = rN, which is the classical ecological model for density-independent
population growth. This has the Forrester diagram shown in Fig. 4.1 and the following
difference equation:

Nt+1 = Nt + rNt. (4*3)

Notice that the figure and the equation match up in a nice way. The label in the box
is the state variable that is being projected in time. The parameter r and variable N,
both influence the total rate of change (Eq. 4.3, second term on right-hand side), as
indicated by the information flows in the Forrester diagram. The only item missing
from the equation is the cloud, but this is precisely what the cloud means: a source or
sink that is not modeled.

This equation projects one discrete time step into the future. For additional times,
we repeat the process by substituting the left-hand side into the appropriate locations
in the right-hand side.

This procedure is a solution to our problem to determine the future values of N.
It is possible, however, to also solve the basic equation (Eq. 4.3) analytically, without
having to compute intermediate times, by exploiting the recursive nature of the equa-
tions. By repeatedly (i.e., recursively) substituting previously computed values of N;_;
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we have:
N1 = Ny +rNy=Ny(1+ r)
Ny = Ny +rNy = Ni(1+ 1) = No(1 + (L + ) = No(1 + r)?
N3 = Ny +rNy = No(1 + 1)? 4.4)
Nui = N(1+7) = No(l +r)*!

The terminus of the sequence in Eq. 4.4 is the classical analytical solution to the
density-independent growth model in discrete time. Not all recursive equations of
the general form of Eq. 4.2 can be reduced to the form of Eq. 4.3. Moreover, many
of the equations used in population ecology do not have analytical solutions; so, this
technique is not generally useful. For other analytical solution techniques, see a math-
ematics text in difference equations such as Grossman and Turner (1974).

When we use difference equations, we must be clear as to the assumptions we are
making about the underlying biology. Recursive finite difference equations assume
time is discrete. Indeed, time, in one sense, does not appear in the equations. We have
only an arbitrary index which here we have symbolized by ¢ and interpreted as time.
This implies that no events or processes occur between increments of time. Although
it is true that we can interpret these time steps to be physical time units as small as
we wish (e.g., year, day, second, etc.), the conceptualization is still one of discrete
increments. Many biological systems match this situation to a satisfactory degree. An
example is the life cycle of an insect that breeds synchronously in the fall, after which
all adults die, and the eggs or larvae overwinter to become adults in the spring. Birth
and death in this case defines the discrete nature of time. Other systems cannot easily
be represented this way, for example, the continuous, unsynchronized reproduction of
humans.

In short, when we use finite difference equations we are asserting that time and
biological processes are discontinuous and that the equations are exact representations.
In the next section, we discuss the case when time is assumed to be continuous, but
we discretize time with small time steps to approximate the true situation.

4.2.2 Differential Equations

Differential equations are the continuous time version of finite difference equations
written in the form of Eq. 4.2. They have analogous analytical solutions, and as we
will see later by discretizing time, their true solutions can be approximated to arbitrary
exactness with numerical (computer) methods. But first we will review a bit of basic
calculus to better see that the use and solution of differential equations is not a large
step beyond the mathematics we may have learned earlier in our careers (or so the
author fervently hopes).

Aside on Derivatives and Integrals

Consider a function such as y = x? + C, shown as one of the curves in Fig. 4.2a. The
derivative of the function at a point x* is related to the slope at x*. “Slope” has the
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Figure 4.2: (a) The parabola y = x? + C, where C is an arbitrary constant. (b) The
derivative of y = x> + C, dy/dx = 2x (solid line) and a discretization of the derivative.

usual meaning: “change in y (Ay) divided by change in x (Ax).” Of course, we can
numerically compute the slope only for finite values of Ay and Ax. Technically, if
we want the slope at a point x*, then there is no interval over x or y to use. But we
recognize that if we take very small intervals around x* and the corresponding y*, then
we will have a good approximation to the slope. The smaller the interval, the better
the estimate of the slope, and if the intervals decrease to zero, the slope estimates will
converge to the derivative at the point. The derivative of a function y with respect to a
single variable x is

dy = lim Yx+Ax _yx’

2= 45
dx Ax—0 Ax ( )

where /sl;icTo means “let Ax go to 0” or “let the interval around x* get arbitrarily small.”

Figure 4.2a shows that the numerical value of the slope is different at different
values of x*. The derivative of a function tells us how the slope changes with different
values of the independent variable. In this case, the derivative of y = x? + C is

dy

i 2x.
This is plotted as the heavy line in Fig. 4.2b. Remember from elementary calculus that
the original function y = x? + C is the anti-derivative (the integral) of the derivative.
For the purposes of the discussion to follow, we will describe two general approaches
to obtaining the integral.

The first method treats the integral as a summation: the total area under the deriva-
tive curve (Fig. 4.2b) from 0 to 8 (in this case). We approximate the area using discrete
increments of the x-axis (Ax = 1). From Fig. 4.2b, note that the total area of the dis-
cretized curve is the sum of the columns. Note also that, by definition, the height of
each column is dy/dx. This fact gives us a simple recursive formula for summing the
columns if they are indexed from left to right. Column i + Ax is the sum of column i
plus the derivative times the size of Ax:

Yirax =Y+ (2x) Ax. (4.6)
S——
derivative

If we begin with i = 0 and yo = 0, then recursively applying Eq. 4.6 N times (using
xo = 0, x; = 1, etc.) will yield the sum of N columns. The expression 2x; is the
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derivative whose integral we desire at point x;. The formula will work for any deriva-
tive, if we substitute the appropriate equation for the derivative. The accuracy of the
approximation increases as Ax decreases.

The second method to calculate the integral is to simply apply the rules of integra-
tion that we all memorized in elementary calculus and remember to this day. The sim-
ple derivatives of elementary calculus have a common property that makes this method
easy to use. The derivatives have a right-hand side that does not involve the dependent
variable. The parabola and its derivative is an example. Consequently, when we apply
the rules of integration we are applying a technique known as separation of variables.
Below, we apply it to the derivative of the parabola.

d
;1% =2x
dy =2xdx <« separate variables
f dy = f 2xdx
f dy=y+C « integrate left side
f 2xdx = x* + Cs. « integrate right side

Equating these integrals gives
y= 2 +C.

The final step is to determine C for a particular value of x, which is most conveniently
done at x = 0. In this case, as Fig. 4.2a indicates, C can be any value.

This problem is trivial because the integral of the separated left-hand side does not
involve the dependent variable. Most differential equations applied to biology relax
this restriction, and their solutions are more difficult.

Integrating ODEs

An ordinary differential equation (ODE) is any equation involving a derivative of a
dependent variable with respect to its independent variable. We are interested in the
special case when the independent variable (x, in the above), is time. Unlike the easy
derivatives in the previous section, the equation can contain the dependent variable
explicitly. The previous section discussed a special case of differential equations. It
is significant that ODEs allow the derivative to depend on the value of the dependent
variable. This is fundamental to almost all physical and biological systems.

To connect the previous discussion with differential equations of interest to biol-
ogists, consider the continuous form of the familiar density-independent population
model in ecology:

dN
7

The independent variable (¢) is time and we interpret the derivative as being a rate
of change. In its basic form, this is similar to the derivative of the parabola: it has
a derivative on the left-hand side and a function on the right-hand side. Unlike the

rN. 4.7)
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earlier derivative, this function depends on the dependent variable (N) and not on the
independent variable. The integral of dy/dx = 2x gave us the parabolay = x> + C.
This latter equation has a property important to us now: given any value of x, we can
compute the value of y. In the current case, if we could find the integral of Eq. 4.7,
then given any ¢, we could compute the value of N. In other words, if we have the
integral, we can predict future values.

There are here, as before, two general strategies for finding the integral: apply the
rules of integration, or approximate the area under a curve by summing. To show that
this differential equation is a simple extension of the calculus we have already learned,
we will employ both strategies. We begin with the use of integration rules.

Earlier, we separated the independent and dependent variables and integrated each
part separately. In this simple differential equation, we can do the same.

dN

=N

ar "

dN )

N = rdt « separate variables
1

fﬁ dN =In N+ (C « integrate left side
f rdt=r f dt=rt+Cy « integrate right side
InN=rt+Cs

Nt = ert+C3 = ngert = Noe".

After setting ¢ = 0, we interpret the constant €% to be the initial number of individuals
in the population (Np). The last equation in the above series is the solution of the
differential equation.

Not all differential equations have the simple structure that allows their variables
to be separated in this way. Some of these others can be solved with substitutions or
other tricks. But if none of the tricks work, then we must use the summation technique
to get the integral. It works the same as in the previous derivative, except we discretize
t instead of x. This gives

Near = Ne + (PN At 4.8)
——

derivative

This equation is clearly similar to a FDE except that we have At equal to some
number other than 1. Beyond this, however, is the fact that Eq. 4.8 is viewed to be an
approximation to the true integral and the FDE was viewed to be an exact representa-
tion. The general form of Eq. 4.8 is known as the Euler approximation.

4.3 Biological Feedback in Quantitative Models

The previous section demonstrated that (a) the solutions of differential equations are
not fundamentally different from the integrals of derivatives as we learned them in
elementary calculus, and (b) the form of the numerical solutions can be similar to
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the discrete, finite difference equations we used to solve dynamic problems (e.g., is-
land biogeography). In the future, we will stress the use of differential equations to
represent biological models.

One of the main points to be made in this book is that the differential equations
used in the various subdisciplines of biology are similar. The models are composed
of algebraic components [e.g., (#N)] that recur in many different fields, sometimes
in slightly different guises, but still representing fundamentally similar processes. In
this section, we describe some mathematical formulations that occur frequently in
biological models. Before proceeding, we will need a few basic rules pertaining to
translating Forrester diagrams to equations. [See Section 5.2 for a more complete
list.] The first rule is that every level in a Forrester diagram is a state variable that
requires a differential (or difference) equation. The left-hand side of the differential
equation represents the rates of change as they are altered by the objects of the system.
The right-hand side describes how these changes occur. The second rule is that, at
a minimum, every material flow into and out of a state variable requires an explicit
algebraic expression. The sum of these expressions associated with the inflow and
outflow arrows is the right-hand side of the differential equation. Grouping all the
inflows together and all the outflows together, a general differential equation for a
single state variable is

% = Z inflows — Z outflows.

Although the expressions for the inflow and the outflow can be quite complex, take
heart in the fact that they will all reduce to the above simple form. Therefore, our
problem in quantitative model formulation is “simply” to find the appropriate set of
expressions for the inflows and the outflows.

The third rule is that although biological systems are complex, many of them share
a few basic processes that have similar mathematical expressions. When viewed across
the many relevant hierarchical levels (biochemical, cellular, physiological, ecological),
the diversity of living systems is, indeed, immense. It would seem there would be
little similarity in the mathematical representations used by the different disciplines to
model the variables and processes specific to their domains. This is true to a certain
extent, but, nevertheless, there are recurrent mathematical forms that appear in many
systems. In this section, we discuss these general forms both for their own value in all
biological modeling as well as to illustrate the basic method of creating quantitative
models. In later chapters, we discuss specific models and concepts and equations
germane to different subdisciplines of biology.

The approach we take here is a tool-kit approach to model construction. We will
identify a relatively small set of biological processes and their mathematical represen-
tations (the tools) and link these together according to the biological hypotheses to
form the complete model. In the sections that follow, we present some of these ba-
sic processes and their corresponding mathematical implementation. The description
proceeds from simple to more complex biological processes and relations.
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Figure 4.3: Constant rate of flow into a state variable.
4.3.1 Constant and Bulk Flow Rates

The simplest process of interest occurs when there is only material flow and no infor-
mation transfer between a state variable and the inflow or outflow rates. The rate is,
therefore, constant and determined by a parameter. An example of this type of flow is
shown in Fig. 4.3, which illustrates the Forrester diagram, the differential equation, the
relation of the rates to the affected state variable, and the resulting dynamics. The plot
of the rates against the quantity of S is interesting for its contrast to later examples that
illustrate feedback. For now, simply note that the hypothesis that the absolute rates are
constant implies that the dynamic values of the state variable can have no effect on the
rates.

The hypothesis that flows are independent of state variables can be extended to
multiple compartments (Fig. 4.4). The model, in this case, is a system of three differ-
ential equations:

das

&l py-Fu-F

= on—Fio—Fi3

das

th =Fip+ Fyp—Foy 4.9
dSs

—= = F3 — F3y — Fa4.

p 13— Fap—Fy

Notice the pattern of the arrows and the right-hand side of each equation. Also note
that for flows between two compartments, an inflow arrow to one compartment (e.g.,
F3; into S5) is an outflow arrow from another compartment (e.g., S3). This relation-
ship is reflected in the signs attached to the flows in Eq. 4.9. Finally, it should be
obvious that, since each F;; is a constant number, we could collapse the equations so
that the right-hand side of each is a single number. These numbers will be positive or
negative depending on the relative magnitudes of the F;;. This simple model is fre-
quently used in models of large complex systems (e.g., whole, terrestrial ecosystems)
where it is difficult to perform experiments that reveal the internal system controls
that influence the flows. There are very few dynamical systems that satisfy the basic
assumption that rates are constant.
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Figure 4.4: Modified Forrester diagram for constant rates of flow among three state vari-
ables.

4.3.2 Dynamic Relative Rates

A more common model is one in which it is hypothesized that the rates are influenced
by one or more state variables. A fragment of such a model is shown in Fig. 4.5,
where A is the effect of S on the rate and B is the effect of §». A and B can be simple
or complicated algebraic expressions, but a common method of incorporating these
effects into the differential equation is to multiply the auxiliary variable by the current
quantity of the state variable. For example, several different possibilities might be

s, N

_Z-t— - ...—(A)S] “ee (410)
ds

71?1' = ...—(B)S,—... 4.11)
ds

7tl = ...—(A)S{(B)S,—... (4.12)

The quantities A and B are relative or per capita rates. They are the contribution of
one unit of the state variable to the flow. When multiplied by the current quantity of
the state variable, we compute the absolute rate for that particular flow.

An example of this is the island biogeography model of Chapter 1. The differential
equation version of Eq. 1.1 is:

dR
dt
where in this very simple example A is (I, + E,)/P.

This concept of relative or per capita rates is extremely important in biological
modeling. Very often our experiments or field observations are performed at a lower

_ s y

=1, — (I,/P)R - (Ex/P)R = I, - (I + E)/ P)R (4.13)

S,

_—
Lot

Figure 4.5: Simple information transfer illustrating the influences of state variables on
rates.



§4.3: Biological Feedback in Quantitative Models 67

level or smaller scale than the system we wish to model. For example, experiments
using populations are difficult, but those using individuals are often much easier. Using
per capita rates, parameters estimated on individuals can be scaled to the population
if we assume all individuals are identical. Similarly, experiments at very large spatial
scales are difficult, but estimating parameters for use in relative rates again allows us
to scale up, if we assume all spatial regions are identical. This assumption and that of
identical individuals may be wrong, but it is a useful first step to take.

When influence B is absent (in Fig. 4.5 and Eq. 4.10), we say the flow is donor
controlled, since the “donating” variable (S ) determines the rate. When A is absent
(Eq. 4.11), the flow is recipient controlled. This jargon is not particularly enlightening
since it is common for flow rates to be determined by both donor and recipient vari-
ables (Eq. 4.12). The key point, however, is that an extremely common mathematical
form is the multiplication of the controlling vatiable (S ;) by the auxiliary variable that
represents the mechanism by which the control occurs. This mechanism is frequently
cast as a relative rate (Eq. 4.7). You will have come a long way when you are able to
perceive this form in unfamiliar models.

4.3.3 Feedback

Feedback is pervasive in biological systems and is one of the fundamental processes
that is contained in almost all interesting models. It refers to the relationship in which
increases or decreases of the value of one or more controlling variables affect the
rate at which a process occurs. The action on the rate can be direct or indirect and
either positive or negative. The action is direct when only the single variable affected
is involved. The value of the state variable influences its own rate of change. If the
mechanism affecting the state variable involves other state variables, then the feedback
is indirect. Positive and negative feedback are endpoints on a continuum of dynamical
relationships. The degree to which a feedback relation is positive or negative depends
on the function and parameters. Any given relation can be either strongly or weakly
negative or positive. The balance between the two produces the possibility of sustained
oscillations (i.e., dynamics that neither blow up nor return to an equilibrium),

The qualitative nature of these relationships is revealed by loop analysis (Levins
1974). Some very simple examples are shown in Fig. 4.6. The “+” or “~” symbols at-
tached to the arrows indicate the direction of the effect on the future values of the state
variable (i.e., positive or negative, respectively). The basic test of feedback direction
on a state variable (e.g., A) is to determine whether A, if it is increased in quantity,
will decrease or increase as determined by following the effects around a loop. For
example, the upper left indirect loop in Fig. 4.6 is negative because an increase in A
will increase B which will then decrease A.

Positive Feedback

The simplest form of positive feedback is direct, and occurs when the absolute rate
of change of a state variable is an unbounded, increasing function of the state vari-
able. (Recall that absolute rate of change is the rate associated with a flow into or
out of a state variable.) In other words, the more there is of the state variable, the
greater the positive rate of change of the state variable. The traditional example of
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Figure 4.6: Qualitative analysis of direct and indirect effects of system influences produc-
ing either positive or negative feedback. The sign on each arc represents the effect of the
influencing variable on the variable that terminates the arc.

this is unrestricted, or exponential population growth (Eq. 4.7), as shown in Fig. 4.7.
However, positive feedback can also cause a variable to become more negative. A
simple example is the spatial position of a frictionless ball that is confined to rolling in
one dimension down a slope that falls away in the negative x direction. As the object
moves further in the negative direction, the rate of increase in the negative direction
increases. The value of the state variable (position along the x-axis) becomes more
negative.

Any number of equations can produce this behavior and it can result from both
direct and indirect causes. The critical feature is that the rate increases without bound.

Negative Feedback

Negative feedback is any feedback that is not positive. In other words, the rate of
the process is bounded for positive values of the controlling variable. The rate of
change does not increase to infinity as the variable increases. There are three primary
mathematical methods by which this condition can be implemented: feedback by self-
inhibition, limitation by extrinsic factors, and process saturation.

Self-Inhibition When a system shows direct negative feedback based on per capita
mechanisms, there is a negative relation between the value of the controlling variable

1.0 251
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Figure 4.7: Direct positive feedback. (a) Relation of absolute rate of change in a state
variable to the value of the variable and a differential equation that behaves in this way. (b)
The resulting dynamics.
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Figure 4.8: (a) Per capita rate of change in density-dependent model as a function of
population size. (b) Absolute rate of change in density-dependent model as a function of
population size.

and the per capita rate. The variable inhibits its own further growth. The most familiar
example is density-dependent, logistic population growth. In this model, the relevant
rates of change are

% - b=

dt K
o
= - — 1
rN KN 4.14)
dN 1 rN
anN TR *.15)

where r is the maximum per capita rate of change, and KX is the carrying capacity
of the population. Since this model has a single state variable, N is the controlling
state variable. Equation 4.15 represents the per capita rate and is shown in Fig. 4.8a.
Equation 4.14 represents the absolute rate of the process (population growth) and is
plotted in Fig. 4.8b. These plots show that negative relations between per capita rates
of change and the variable N, produce bounded rates of increase.

Ratios As the previous discussion suggested, negative feedback via self-inhibition
can be achieved using an expression that is additive in the sense that the equation has
the form:

a _ 2

it Al

In other words, we subtract a rate amount from dy/dt. This expression has the desired
effect of decreasing dy/dt as y increases. Another formulation of the same verbal
hypothesis is multiplicative, where dy/dt depends on the inverse of y:

dy
—= =b/y.
o /y

This expression also satisfies the hypothesis that the rate decreases as y increases,
but care must be exercised since the feedback effect is reversed when y < 1.0. This
reversal becomes positively diabolical as y — 0 and dy/dt — oco. A safer formulation
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is:
dy _

1
b__9
dt L+y
which limits dy/dt to basy — 0.

Extrinsic An extrinsic factor may limit a process. Consider a beaker of cold water
that is warming up to ambient temperature. We note the following facts:

1. The water temperature is initially below ambient and does not surpass it.

2. The rate of temperature change is initially large and decreases over time.

These facts are consistent with the hypothesis that the rate of temperature rise is a
function of the difference between the current temperature and the ambient tempera-
ture. A simple model (Newton’s Law of Cooling) is based on a linear equation

dar

P kKT, -T),
where T, is constant ambient temperature and & is a constant of proportionality that is
determined by the physical characteristics of the fluid.

This model simply hypothesizes that the rate of warming is proportional to the
difference (i.e., the gradient) between the container temperature and the ambient tem-
perature. This differential equation has a solution whose time course looks like a
hyperbola: T asymptotically approaches T,, and the absolute rate of change goes to
zero. Clearly, the derivative is bounded, and the bound is determined by the ambient
temperature.

The basic concept here is that a rate of flow into or out of a state variable (T') is
controlled by the difference between a quantity associated with T (e.g., the tempera-
ture of the container) and a similar quantity associated with the environment of T or
another state variable. By an extrinsic factor, we mean any quantity “outside” of the
state variable to which the differential equation applies. This other quantity may be in
the nebulous “unmodeled” environment (e.g., ambient temperature) or it may be the
current state or associated auxiliary variable of another, modeled state variable.

Extrinsic factors are particularly important when we model a flow of materials or
energy over a physical distance. In the warming beaker example, this was exemplified
by the flow of heat energy from the beaker to the environment. It is also applicable
to diffusion of molecules across a barrier, where the relevant gradient is the difference
in concentrations on both sides of the permeable barrier (Fickian diffusion). In organ-
level physiological models, substance concentration can be modeled as moving by
bulk transport along with a carrying medium (e.g., O; in blood). The rate of flow
of blood between organs (e.g., liver and kidney) is proportional to the difference in
blood pressure at the two sites. In ecological systems, the migration of a population of
animals between habitats (e.g., forest and grassland) may be modeled in analogy with
diffusion, i.e., proportional to the difference in densities of animals at the two sites.
All of the above examples use the differences between quantities to calculate the rates
of flow.

In cases where a process is determined by several gradients, we must combine the
effects in some way. For example, nerve cell voltage potential across the membrane is
determined by the ionic gradients associated with Na, K, and Cl. A standard approach



§4.3. Biological Feedback in Quantitative Models 71

(a) " y (€) 20
1 3
E+S ::f C ?E+ P :
(b) i ' 15 |
E el [
sz K kae [_j vV 1.0
RN [ \ i
@ ék,, } :
s e LI 05 |
ks@w« 0 |||
P o b s 10 15 20
K, s

Figure 4.9: Michaelis—Menten saturation feedback control of chemical dynamics: (a) the
chemical diagram, (b) the Forrester diagram assuming conserved units, and (c) the rate of
formation (V) of the product (P). E represents enzyme concentration, S is the concentration
of the substrate, C is the complex formed by the chemical binding of E and §, and P is the
product. k; are the rates of conversion.

is to model the net potential as being proportional to the sum of the gradients of each
ion (Deutsch and Deutsch 1993). A similar approach would be appropriate in models
of animal dispersal among neighboring, discrete patches of habitat. The rate of flow
from a given patch to any of its neighbors would be proportional to the sum of the
differences between the pairs of patches.

Saturation Negative feedback frequently emerges in systems through an interaction
between the quantity of the donor variable and the ability of the recipient to convert the
donor substance. By analogy with chemical dynamics where this is common, negative
feedback puts bounds on rates by saturating the recipient. Basically, this is nothing
more than a bottleneck effect. Saturation is a case where the relation has elements of
both positive and negative feedback: the rate neither decreases to 0 nor does it increase
indefinitely. The overall dynamical effect is feedback intermediate between positive
and negative which permits persistent oscillations to occur.

The Michaelis—Menten model of enzyme kinetics is an excellent example. This
model describes the dynamics of the formation of a product (P), in which we may
be interested for its own sake or because its concentration is an important component
of a larger system (e.g., a step in the Krebs Cycle). Figure 4.9a shows a pictorial
representation of the chemical reactions involved in the interaction between an enzyme
(E) and a substrate (S) that combine (C) to form the product. A plausible Forrester
diagram is shown in Fig. 4.9b. The differential equations are

dE

i —k1ES + kC + kyC — i3EP (4.16)
D = hiES +hC @.17)
dac

— =k ES —kC - k4C + I3EP (4.18)

dt
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i = k4C — k3EP, 4.19)
dt
where the k; are rate constants.

Note the relation among the equations, the chemical diagram, and the Forrester di-
agram. This is a perfectly good model of the system, but usually the rates of formation
and breakdown of C are very fast compared to the rates of formation of the product.
Since we are primarily interested in P and not C, we want to simplify the model by
eliminating the need to track C. We do this by assuming that (a) the experiments are
performed when P; is present only at negligible concentrations (i.e., initially absent)
and (b) the rate of formation of C equals its breakdown rate. After suitable algebraic
manipulation, the rate of P formation is described by the Michaelis—Menten equation

S
K,+S

V = Vyax , (4.20)

where V is the rate of P formation. (See Rubinow 1975 or Murray 1989 for detailed
derivations.)

Note that Eq. 4.20 describes an increasing, nonlinear curve (Fig. 4.9¢). The in-
dependent axis is S and the expression in brackets is a curve that asymptotically ap-
proaches 1.0. This basic curve is scaled (parameterized) by two parameters: Vi,
(the maximum reaction velocity) scales the velocity to which the curve is asymptotic
at large S; K, scales how “fast” the curve rises toward the asymptote. The shape of
the curve is scaled so that V = 0.5V,,,x when S = K, and is, therefore, called the
half-saturation constant. Low K,, describes a rapidly rising curve; large K, describes
a slowly rising curve.

This equation is significant for two reasons. First, the Michaelis—Menten equation
defines a limit to the rate of the reaction (V.). Properties of the enzyme (e.g., the time
required to join with S, alter the substrate’s molecular configuration, and disassociate
from the complex leaving P) and quantities of E limit the rate of the reaction. Thus,
the saturation of the enzyme has produced negative feedback. Second, we represented
a control on a rate by a basic nonlinear relation [S /(K,, + §)] multiplied by a constant
(Vimax). This is a very common strategy in quantitative model formulation: hypothesize
a basic relation, then multiply it by a constant to scale it multiplicatively for a particular
process.

Besides chemical reactions, this basic relation is also used to model the effects
of the concentrations of dissolved nutrients on phytoplankton growth and the foraging
rates of predators. In the latter case, the equation is re-written using different parameter
definitions. The new form is also based on the general equation for a hyperbolic
relation: y = (Tsf‘Tx;i (see Section 5.3, Useful Functions). With suitable rearrangement,
this is also the form for the Holling disc equation (Holling 1959) which relates the
numbers of prey (y) consumed by a predator in a fixed period of time (e.g., 1 day or 1
experiment duration) to the density of the prey available. The typical parameterization
is

4.21
1+ ahx]’ @.21)

where a is successful search rate (units: prey/time) times the probability of detection,
T is the total time available for foraging (units: time), # is the handling time per prey

y:aTT[
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(units: time/prey), and x is the concentration of prey. The Holling disc equation is
one form for the Type 2 functional response of predators. Analogous to the rate of
product formation in chemical reactions, the rate of prey consumption is saturated by
properties of the predator (handling time and hours in the day available for foraging).
Other such asymptotic functional forms are shown in Section 5.3. But again, note
the similar form for representing saturation feedback: a basic asymptotic relationship
times a variable (i.e., aT'r) to scale the rate to the process.

Combined Feedback Interactions In some systems, saturation or positive feedback
can combine with inhibition to produce more complicated relations between variables
and rates. In this case, at low values of the variable the response is positive to the
addition of a unit of the variable (e.g., during a saturation process). But at high lev-
els of the variable, adding a unit of the variable produces a decrease in the rate. For
example, at low light levels, the rate of photosynthesis of a leaf increases until satu-
ration occurs; further increases in light cause a decrease in photosynthesis because of
photoinhibition (usually caused by the degradation (denaturation) of photosynthesis
enzymes). An example from population ecology is the effect of population density on
per capita births. At low densities, females have difficulty in finding mates; per capita
births will increase as the number of males (and females) in the population increases.
Eventually, however, birth rates will decline at high densities due to competition. This
combination of processes is known as the Allee effect.

Usually, this general phenomenon of combined feedback is produced by the action
of two or more biological mechanisms (e.g., light saturation of photoreceptors and
degradation of enzyme systems at high light intensities, or mate location and competi-
tion). Consequently, this situation is frequently modeled as the product of two separate
factors. For example, photoinhibition can be modeled as follows (Steele 1962):

P = Pyoy| (al) ()], 4.22)
N N —
increase decrease

where P is the photosynthesis rate, Py, is the maximum photosynthetic rate, I is light
intensity, and a is a shape parameter. Again, note the use of a relative rate (Eq. 4.22 in
brackets) scaled by a third parameter, Pg,y.

4.3.4 Mass Action

A biological process that recurs in many models is mass action. The chemical dynam-
ics just presented (Egs. 4.16—4.19) used the concept extensively by modeling some
rates as proportional to the product of the concentrations of two molecules. The Law
of Mass Action states that the rate of a reaction is proportional to an integral power of
the concentrations of all substances taking part in the reaction (Carson et al. 1983).

If P and Q are the concentrations of two substances and R is a rate of transforma-
tion of substance Q, then a general model of R is

R =aQ"P?,

where a is a constant of proportionality, and « and S are integer powers. The order
of the reaction relative to P or Q is 8 and ¢, respectively. The order of the overall
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reaction is the sum of the powers. In zero-order reactions, the rate of change is a
constant, independent of the dependent variable (¢ = 8 = 0). In first-order reactions,
the rate is proportional to the concentration of only one of the substances. Second-
order reactions may be caused by an interaction of two substances (¢ = 1,8 =1)ora
second-order function of one substance (e.g., @ or 8 equal to 2).

The values of the orders of the relations are often determined by the stoichiometric
or weight relations of the compounds involved in the reaction. For example, suppose
we have this chemical reaction:

The corresponding differential equation using mass action for C is

dc
== = i AB? - khC,
dt 1 2

where B is raised to the power of 2 because two molecules of B are required.

The mechanistic hypothesis underlying this functional form is analogous to that
of the probability of encounter among randomly moving particles. For example, in a
reaction in which ¢ = 1 and 8 = 1, we hypothesize that a reaction will occur whenever
two molecules of the two substances are brought together to the same place at the same
time. Since we are dealing with the concentrations of the substances, this is similar
to saying that the rate of the reaction is proportional to the probability that the two
molecules will collide. Q and P are not true probabilities, of course, since they can
have values greater than 1.0. In Eq. 4.17, both first- and second-order reactions were
hypothesized.

While these relations are fundamental in chemical dynamics, they have also been
applied in ecology. The classical Lotka—Volterra predator—prey equations are a good
example:

Vv
d— = rv - aVP (4.23)
dt S—— S——

positive feedback  mass action
P
P _ e - ap (4.24)
dt S—— S——

conversion  death

where the victim (V) grows in a density-independent fashion with rate ». Predators (P)
die at a constant per capita rate d. The term aVP (Eq. 4.23) quantifies the rate at which
prey (V) are consumed by predators (P), so a is the search rate. Predators convert the
food consumed into new predators with an energetic efficiency . Since we generally
apply these equations to densities of prey and predators, we assume that the prey are
removed according to the probability that individuals of the two species will coincide
in time and space.

4.3.5 Multiple Controlling Factors

We have seen how negative feedback can arise because of a single limiting factor (ei-
ther extrinsic or by saturation). Another important feature of interconnected systems
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Figure 4.10: Plant growth in which three nutrients interact. On the right is shown Monod
growth curves as determined by single-variable experiments that hold the other two nutri-
ents constant.

(e.g., biochemical cycles, physiological systems, ecological foodwebs) is that multiple
factors can control a single process rate. There are two different, common situations.
First, the equation for the rate is a univariate function of a primary influencing variable
(i.e., the x-axis, such as available light intensity), and one or more of the parameters
of this equation is modeled as a function of a second controlling factor (e.g., g C).
Second, the rate is the outcome of several interacting factors that combine to create a
function having multiple independent variables.

An example of the first case is a simple model of net photosynthesis rate in plants
when it is controlled by both light intensity (/) and carbon availability (C). The pri-
mary variable of the rate equation is 7 and we assume an asymptotic relationship anal-
ogous to the Michaelis—Menten relation

_ al Py
T al + Py’

where P is the net photosynthesis rate, Ppax is the maximum rate, and « is an empir-
ically determined constant. The effect of carbon is to increase linearly the maximum
rate

Prax = bC,

where b is the effect of carbon (C) on Ppax. Substituting, the new equation for net
photosynthesis is
_ablC
"ol +bC’
The second case concerns multiple factors affecting a process that requires all of
the factors. Consider the biological case of plant growth in the presence of three nu-
trients (carbon, nitrogen, and phosphorus). All resources are required for growth (i.e.,
one cannot be substituted for another). Since the resources have different units, we
use parallel, or multiple models, but here we focus our discussion on the N component
(Fig. 4.10). The rate of uptake of N is determined by the total growth of the plant,
but this is affected by the supplies of the other two nutrients. If one of these is in very
low supply, total growth will be small and N uptake will also be small, even though N

(4.25)
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is plentiful. The modeling problem is to portray mathematically this basic biological
fact.

With a single controlling variable N, we could measure growth at experimentally
controlled levels of N and fit an equation to the resulting responses. With two con-
trolling variables (e.g., N and C), we could use the same procedure, but using a more
complicated experimental design that varies N and C in combination. We could again
fit an equation to this two-dimensional response surface and thereby predict growth
from simulated values for N and C.

With three (or more) variables (e.g., N, C, and P) the cost of the experiments and
the complexity of the equation needed to fit the results often becomes prohibitive.
Instead, we seek an intermediate solution in which a series of single-variable experi-
ments are performed (i.e., vary N alone, C alone, and P alone), each response is fit by
an equation, and then the three equations are mathematically combined to incorporate
the interactions between the variables. These interactions are not measured or exactly
known, of course, but we hope that our clever tricks to combine the equations will ac-
curately reflect the interactions. Below, we discuss four general methods to combine
the controlling variables: Liebig’s Law of the Minimum, Multiplication, Arithmetic
Averaging, Mean Resistance. We also introduce a fifth candidate specifically designed
for combining Michaelis—Menten relations.

To begin, consider the simple case with just a single limiting resource (N). Nutri-
ent uptake across cell walls is mediated by ATP and enzymes, so we use Michaelis-
Menten kinetics to relate biomass increase to nutrient concentration. When applied to
growth rates, we have the Monod equation

dBy N
=N =t | ———— | By,
dt :uN( ) Ny

where i3, is the maximum rate of incorporation of N into plant material per g N of plant
material (i.e., a relative or per capita rate). The product of u}, and the expression in
parentheses is u (the actual relative rate). Now we turn to the situation where multiple
factors affect y. Below, u* (no subscript) refers to the maximum of all u}

Leibig’s Law of the Minimum

If we assume that a process (biomass growth) proceeds at the rate of the slowest sub-
process (uptake of individual nutrients), then we use

= u* {min ¢ N P
H=H Kme +C )’ \Ku, + N\ Ky, + P

where min[...] is a function that returns the smallest of the three numbers. This is
Leibig’s Law of the Minimum, and it assumes that the limiting effects are independent.

Multiplicative Rates

Alternatively, we could assume that the limiting processes interact. This means that
as the growth declines because of limitation due to one nutrient, the ability to grow
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at the current concentrations of the other nutrients also declines. One method for
combining concentrations of the nutrients to implement this hypothesis is to multiply

the concentrations:
. C N P
“ = # K - .
me T C Kny + N K, + P

Since the expressions in parentheses are all less than 1.0, as we increase the number
of limiting nutrients, the growth rate decreases dramatically. Empirically, this form
sometimes predicts slower growth rates than observed.

Arithmetic Average Rate

The arithmetic average of the limiting effects is

_eL[( e NN (P
FEE3\K+C) " \Kny +N) " \K + P)|

This expression has the advantage that it models an interaction between the limiting
nutrients, but does not allow the overall growth rate to have extremely low values. Its
disadvantage is that the largest value will greatly influence the overall average. This
approach may predict an unrealistically high growth rate.

Mean Resistance (Harmonic Mean)

The fourth method analogizes the effect of multiple limitation to the flow of current
through an electrical circuit that has resistors in parallel. To illustrate this for our plant
growth model, we define an auxiliary variable, substrate effect, as the fraction of the
maximum growth rate possible:

S
- B+s’
where S represents the concentrations of the limiting nutrients (e.g., C, N, P). So, we

have a C., a N, and a P Using the resistance analogy, the integrated effect (Lg) is
computed from

S (4.26)

1 ( 1 1 1 )
= = — =],
Lg Cf Negg Pog

or, in general

1 o1
Ly (; s ejf,i].
To use resistance, u = u*l,g.

If 1/1,5 is multiplied by 1/n (r = number of factors) and inverted, we have the har-
monic mean:
n

[ot5z)
i=1 Seﬁr,i

Hy =
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The harmonic mean has the advantages of the arithmetic mean, but gives relatively
more weight to the smallest growth rate (i.e., the most limiting of the nutrients). Its
use is analogous to previous examples:

H=p Hep

For comparison, suppose Cg = 0.5, Noy = 0.9, and P, = 0.1. The above methods
of combining these values are shown in the following table.

Minimum | Multiplicative | Average Ly Harmonic
0.1 0.045 0.5 0.076 0.248

The multiplicative and resistance methods produce the smallest values and these are
smaller than any of the individual values. The arithmetic average is the largest, while
the minimum and harmonic mean are closer.

Additive Rates

O’Neill et al. (1989) extensively compared eight families of methods for combining
Michaelis-Menten relations. Although this is a specialized function, since it is so
common a relation between substrate and process, especially in ecological and bio-
chemical models, it is germane to a large number of models. They developed a theory
of combining two processes based on arrival times of “molecules” necessary for a “re-
action” to occur. One is not restricted to chemical reactions here; their results apply to
arrival times of prey and predators as well. They developed a new method called the
additive method (translated to the notation above):

CN

Ply=P—
4= 1N+ CN + k,C

where N and C are the concentrations of two substrates, and k; are constants to be
estimated. This approach is similar to the parameter substitution approach of Eq. 4.25.

O’Neill et al. (1989) compared the ability of the eight methods to fit 11 different
data sets. Overall, in their opinion, the additive and another based on the harmonic
mean models performed best and virtually identically in terms of accuracy to the data.
The methods differed in the value of one of the parameters fitted. However, for the
data sets on which the Law of the Minimum produced meaningful values, it often had
the overall best fit. Unfortunately, there were data sets in which it failed altogether
to provide biologically interpretable values. This property disqualified it in the eyes
of O’Neill et al. (1989). They concluded that the additive method had an edge over
harmonic mean because the former reduced exactly to the Michaelis-Menten equation
when only one substrate was present. An advantage of the harmonic mean is that it
can apply to functional forms other than Michaelis—Menten.

Summary of Multiple Controls

To summarize this discussion, we can make the following recommendations. Either
replace a constant with a function of the secondary controlling variables (case 1), or
use a form of competing factors (case 2). In the latter case, the harmonic mean and the
Law of the Minimum seem to be the most reasonable forms to use, but this can depend
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on the system. If the individual functional forms are Michaelis—Menten, then consider
using the additive method.

4.4 Example Model

We can bring together several of these ideas in a single model of a chemostat. A
chemostat is a piece of laboratory equipment that grows microbes in a flow-through
system of constant volume, V, that continuously delivers a constant concentration of
nutrients to the population. Chapter 14 gives more background, but for now envision a
large beaker with volume V (units: L) containing a growing population of bacteria or
algae (numbers/L), into which a pump delivers nutrients from a reservoir at constant
rate P (units: I/min) and from which another pump removes the contents of the beaker
at the same pumping rate. The input reservoir contains two required nutrients: Ry, Ra,
at fixed concentrations Rjo and Ry, respectively. A population of bacteria density (N)
requires both nutrients, but the rate of population growth is set by that resource that is
taken up at the lowest rate.

de IJ* . Rl R2
~—— = (P/VY}Rio—R))—N— ,

@ =PIV R =Ry = N min | e Ko
dRz /-l* . R, R,
—= = (P/V)(Ry —Ry) —N— , 4.27
7 = P/V) R — R) T, mm[R2+Km2 R2+sz] 4.27)
dN . . Ry Ry

— =N, , - (P/V)N,

dt pom Ry + Kml Ry + sz} PV

where p* is max[uy, 115], ¥; is a constant to convert cell numbers to appropriate nutrient
units, and K,,, are the half-saturation constants (Chapter 14). Other definitions of u*
are possible (e.g., use the y; corresponding to the limiting resource). This example
illustrates these principles: conservation of mass, saturation feedback, conversion of
units in parallel models, simple spatial transport (Chapter 5), relative (per capita) rates,
mass action, process control by donor and recipient, and multiple controlling factors.

4.5 Exercises

1. Draw the Forrester diagram and sketch the dynamics of a system containing a
single state variable with a constant input rate (Fig. 4.3).

2. In model Eq. 4.27, identify the mathematical expression that pertains to each of
the modeling principles that this model uses.

3. Re-write Eq. 4.27 using the harmonic mean in place of the minimum.

4. Solve analytically the island biogeography model (Eq. 4.13). You may need to
consult a table of integrals (e.g., Spiegel (1968)).

a) As a check, show that the constant of integration is

P I+E
. 1(1—" "Ro)]
¢ Ix+Ex[n x~—p RO
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b) As a further check, use the analytic solution to obtain an expression for
the equilibrium number of species and compare this with the expression
based on the differential equation (or difference equation in Chapter 1, see
exercise 8).

5. A simple foodweb (1 prey, 2 predators) is modeled in units of grams of carbon.

A prey species (x) grows according to density-dependent growth in the absence
of either predator. The consumption of x per unit of predator 1 (y) is a saturation
feedback function and the consumption of x by predator 2 (z) is a fixed fraction
of x. The per capita death rate of y is constant. The per capita death rate of zis a
negative exponential. Draw a Forrester diagram and write differential equations
with the above hypotheses. (Consult Fig. 5.4 if you need help with some of the
functional forms alluded to.)

. Write four differential equations for this scenario. In an animal’s immune sys-

tem, suppose there is a population of cancerous cells (C) that kill healthy (H)
cells. The kill rate is proportional to the mass action between C and H. Without
cancer, the healthy cells grow according to self-inhibition to reach a constant
value T. C cells are killed by two forms of white blood cells: M And K. These
kill C cells by a mass action process, but both M and X are required for a suc-
cessful kill. Assume, the two white blood cells move randomly and that they
divide at a rate that is proportional to the number of cancer cells in the system..
In the absence of cancer, the white blood cells decline exponentially to a small,
non-zero level and remain at that level until more C cells are present.
Verity that the units of your model are correct.

. Write and solve numerically the differential equations that compare the effects

of two algorithms for multiple controls. The system is a plant population that
consumes two resources C and N having the following assumptions.
a) Without plants to consume them, C and N increase according to the pro-
cess of self-inhibition (logistic growth).
b) The plants consume each element according to a Michaelis-Menten rela-
tionship.
¢) Compare Liebig’s Law of the Minimum with multiplicative rates.

h ( MBS-CD contains SimTemplate-Empty to help with this exercise. ]
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5.1 Physical Processes

IN THIS CHAPTER, we continue the description of some common quantitative formula-

tions of biological and relevant physical processes. Biological systems are physi-
cal systems that exist in three dimensional space and are subject to fundamental phys-
ical laws and process. As a result, we need methods to model the interactions between
biological structures and physical forces. Finally, often we begin a modeling project
based on little quantitative data and only qualitative graphs of the relevant relationships
among the variables. If we can draw these graphs, then it is often a relatively simple
matter to identify a functional form that matches the qualitatively pictures. Graphi-
cal depictions of some mathematical functions frequently encountered in biological
modeling are provided.

5.1.1 Conservation of Mass and Energy

The concept of conservation of mass is important to almost all biological disciplines.
It plays a role in biochemical dynamics, nutrient and pollutant flows in ecosystems,
and transport of material in space. The central idea is that material or energy that flows
from one place to another is lost from the first and an equal amount is gained by the
second place. If this is not the case, then there must exist one or more additional sinks
for the outflow material. If the mass or energy is to be conserved, then all sources
and sinks must be accounted for. We will discuss two situations in which the concept
occurs. The first treats a system that has no spatial extent and the “places” for flow are
biological compartments (e.g., a state variable constituted by a set of herbivores). The
second assumes the system has spatial extent and part of the equation to conserve mass
involves its movement from one geographical location to another (e.g., a pollutant
moving along a river).

The biochemical system described by Eqs. 4.16-4.19 is a good example of a ma-
terial flow that leaves one compartment and arrives, in equal amount, in another com-
partment. For example, compartment C loses mass to one sink at the rate —k,C (the
minus sign indicates loss), and compartment E gains mass, through this pathway, at a
positive rate of +k2C.
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Figure 5.1: Carbon flow in a simple terrestrial ecosystem. A=atmosphere, G=grass,
D=deer, L=lumped excretion

Ecosystem Example

To gain more experience with the equations and to see the application of these ideas to
another area of biology, we will examine a simple model of carbon flowing through an
ecosystem. Figure 5.1 shows the Forrester diagram for the system. A possible model
that is consistent with Fig. 5.1 is the following set of equations.

dD _ aTTG

= - (l+abG)D rD - D(e + d) (5.1)
dG _ aTTG

ar (1+abG) (5:2)
% = D(e+d)-cL 5.3)
‘fl—‘? = —uG+rD+cL. (5.4)

The verbal definitions of the parameters are contained in Table 5.1. The details are
given below.

In Eq. 5.1, we assume that deer (D) are limited by their resource (i.e., G = 0 im-
plies no growth of D) and by restrictions on foraging behavior (e.g., foraging time,
handling time). The Holling disc equation is used and describes the rate of consump-
tion of g C by a single deer. We multiply this by the number of deer present to obtain

Table 5.1: Parameter definitions for a carbon flow model.

Deer successful search rate for grass

Deer handling time while eating grass

Rate of decomposition of feces and dead deer by bacteria
Rate of feces production by deer

Fraction of deer carbon becoming rotting corpses

Rate of deer production of gaseous carbon (respiration)
Total time for foraging

Rate of atmospheric carbon uptake by grass

s3snan s
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the total amount of grass (G) removed by deer. We further assume that a fixed rate
(proportion) of the carbon in D is respired away to the atmosphere: —rD. This is
a simple, linear equation; it assumes that if the deer population gets very large, the
amount of carbon respired also gets very large: it is not bounded by a saturation feed-
back. We also use linear relationships to describe the loss of carbon from deer to a
lumped compartment (L) of all decaying by-products of deer (dead carcasses, feces,
urine, etc.). Here, we describe just two of them: the rate that deer die (e), and the rate
of feces production (d). These are all the inputs and outputs to the deer compartment
that we hypothesize as important.

Equation 5.2 shows only two flows: a single input and output. The input is the
removal of CO; from the atmosphere (+uG). This expression assumes that grass (G)
growth rate is not limited by atmospheric carbon. This flow is a recipient-controlled
flow and it assumes that grass can consume as much CO; as necessary at a rate that
is proportional to the amount of G present. It does not depend on the amount of
A present, and this is an important biological assumption. The output from G is the
expression for the Holling disc equation just as it appears in Eq. 5.2. This is an instance
of conservation of mass: the amount that left G entered D.

The equation for decaying deer by-products (L, Eq. 5.3) also shows conservation
of mass. These losses from D are the inputs to L. In addition, we assume that bacte-
rial decomposition of these by-products (expressed as the amount of carbon entering
the atmosphere) occurs at a rate that is proportional to the amount of decaying mat-
ter present (—cL). This assumes that there are no other variables (e.g., moisture or
temperature) that control or influence this flow.

Finally, Eq. 5.4 assumes that the atmosphere (A) is essentially a passive compart-
ment whose rate of change is determined by the requirement to conserve carbon in the
system. Grass removes as much carbon as needed (—uG), independent of the amount
of carbon in A, and A is replenished by losses of gaseous CO; due to deer respira-
tion (+rD) and bacterial decomposition (+cL). Once we have made what we hope are
reasonable assumptions for the biological compartments, the equation for A simply
contains the same flows but with reversed sign.

Spatial Flows

We next discuss the case where the flows are physical flows between spatially separate
compartments. We have already introduced these ideas in Chapter 3. When the spatial
resolution is such that only a few, large regions are modeled (such as broad areas in a
lake), then the problem can be treated just as we treated the carbon flow problem. We
write ordinary differential equations (analogous to Egs. 5.1-5.4) for each spatial area
with appropriate flows between the various spatial regions. The important distinction
here is not the size of the region, but rather the extent to which the region is an isolated
and discrete entity. In situations where we can not reasonably assume homogeneous
regions (i.e., where there is a continuous gradation of the spatial structure), we must
use a different conceptual framework.

In these cases, the framework we use is based on partial differential equations
(PDEs). These equations form a very important and difficult part of applied math-
ematics. Formulating and solving models using PDEs is not easy, and it is recom-
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Figure 5.2: Flows and processes in one-dimensional fluid flow. Advection flow is from left
to right. Solid dots represent particles of the substance of interest. The vertical dotted lines
represent arbitrary, imaginary boundaries located at x and x + Ax.

mended that interacting with an applied mathematician will be helpful. Here, we only
give some background and a brief introduction to some of the solution strategies as a
means of facilitating a future interaction with a mathematician. We emphasize fluid
dynamics, especially flows of solutes (C) in water.

Envision a medium that flows in one dimension in which a solute (C) is dissolved.
This might be a very simple model of a pollutant in a river. We wish to model the
concentration of C at all points along the one dimension and over time. Thus, we now
have two independent variables (time and space) over which the state variable (C)
varies. Four fundamental processes affecting fluids and solutes recur in these models:
(1) advection, (2) molecular diffusion, (3) turbulent diffusion, and (4) reaction. We
discuss each in turn.

Figure 5.2 shows the basic physical flow system with the four components pic-
tured. The continuous spatial dimension is arbitrarily divided into discrete segments
bounded by x at the left and x + Ax on the right. Fluid, containing the substance of in-
terest at concentration C;,, enters the segment of interest at x with velocity F;,. While
the molecules of the substance are in the segment, they may move randomly because
of diffusion caused by thermal energy. The molecules may also be caught in eddies
generated by turbulence. Molecules of the substance may be created or destroyed
within the segment as a result of chemical or biological processes. Finally, molecules
may be carried out of the segment along with the fluid, which leaves x + Ax at velocity
F out.

In earlier examples, when we were concerned only with ordinary differential equa-
tions having a single independent variable, time, we thought of the system as mov-
ing forward through time in discrete steps (Af) according to the currently computed
NetChange in time:

Yeear = yr + At[NetChange(t)]. (5.5)

In considering spatial changes, we use an analogous concept. First, assume the system
is in temporal equilibrium in order to ignore changes in time for the moment. In a
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segment of the spatial dimension (Ax) we have an inflow (F;,) and an outflow (F,,).
By conservation of mass and analogy with time, we have a finite difference equation
based on discretized space:

Cout = Cin — Ax[NetChange(x))],

where C;, is the concentration at x and C,,, is the concentration at x + Ax.
More conventionally, we write

Cy = Cyyax + Ax[NetChange(x)]. 5.6)

NetChange(z) in Eq. 5.5 is the right-hand side of a differential equation (e.g.,
dy/dt). Analogously, NetChange(x) in Eq. 5.6 is also the right-hand side of a dif-
ferential equation:

Ax T dx

When we add time and require conservation of mass, we must insure that the
temporal changes in C equal the spatial changes in C. Since C is being changed by
processes both in time and space, we use the partial derivatives to represent the two
modes

AI;TO Cx B Cx+Ax _ _dC

ac oF
it 6.7

where F represents a complex function of several physical processes. This simply says
that the rate of change of the concentration in a segment must equal the inflow minus
the outflow. To see this, imagine a stream of fluid having a cross-sectional area of A
and flowing in one dimension from left to right. The velocity of fluid coming into a
segment of length Ax will be F, and the velocity out of the segment will be

oF
FoutzFx+Ax=Fx+a_Ax-
X

The change in mass M of the solute in the segment over a time interval Az is

F
AM = A[ F, —(Fx N 6—Ax) ]At.
Ox
Fin Foul

This is a statement of the principle of conservation of mass. Dividing both sides by
AAx converts mass to concentration (C,). Dividing by At and taking limits gives
Eq. 5.7. This basic equation will change slightly when we add reaction processes
below. But for now we will keep this one and expand it with equations for advection
and diffusion by writing expressions for F.

Advection Advection is the flow of media and the solute from point to point. If the
velocity is a constant U over a small spatial interval, then the flux of C is simply

F=UC,
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and by conservation of mass

oc _ _OF
o~ ox
_ _6(UC). 5.8)
Ox

Diffusion Molecular diffusion is the movement of mass due to random motion of
individual molecules. Figure 5.2 shows two hypothetical paths. Based on Fick’s Laws
(Berg 1983), the flux F through a plane is proportional to the spatial gradient of the
concentration over a small Ax. Or, after letting Ax — 0

F=p%. (5.9)
ox

For diffusion alone and substituting Eq. 5.9 into Eq. 5.7, the conservation equation is

oc _ _or
ot Ox
oc

Do
9 Ox

Ox

#C

= D—,
0x2

where D is a constant called diffusivity and is assumed here to be constant over x.
Putting advection and diffusion together to find changes in C, we have

ac 8PC  AUC)

EzDW_ P (5.10)

This is an extremely common form for biological PDEs called a conservation equa-
tion. You will see it often, especially in spatial chemical dynamics and morphological
development (Edelstein-Keshet 1988; Murray 1989). We develop a model of insect
movement in Chapter 15 that uses an equation of this form.

The second manifestation of diffusion is turbulent diffusion, which is too hard for
us to describe here. Turbulent diffusion is hard because it is scale dependent: the
fluxes due to turbulence depend on the size of Ax one chooses. The larger the Ax, the
larger the eddies and fluxes involved (Fig. 5.2). Simulation of turbulence is an active
research topic in theoretical physics and involves some very subtle programming and
physical details that we cannot address here. Consequently, we will sweep this big
problem under the rug by assuming that our time scale is long enough that the average
effect of turbulent diffusion can be treated as a component of the advection term (U in
Eq. 5.8). Smaller scale phenomena will be lumped in the empirical measurement of
molecular diffusivity.



§5.1: Physical Processes 87

Reactions Reaction processes are any processes other than advection and diffusion
that change the concentration of a solute inside the spatial interval Ax. These may be
chemical interactions (e.g., the substance going in or out of solution), or biological up-
take and excretion (e.g., the uptake of nitrogen by plants). These processes are treated
mathematically as an ordinary differential equation. For example, suppose nitrogen
is removed from solution by plants (P) according to a Michaelis—-Menten relation and
excreted by fish (S') in proportion to the amount of fish present. In addition, advection
and molecular diffusion occurs. Then the conservation equation is

o~ P "ax MmR,aN T G0

diffusion  advection uptake excretion

In this equation, uptake and excretion are the two biological processes constituting
the reaction. Models with these processes are commonly called reaction-diffusion
equations.

In general, we must describe material transport in three spatial dimensions. For
the processes described above, we add the spatial fluxes. For example, advection in
three dimensions is

ON OUN  OUN  9UN
o " ox oy oz

Obviously, we must have estimates for each of the average flux rates in the x, y, and z
directions (i.e., the U; above). Diffusion is treated similarly.

Like simple ODEs, some simple PDEs have analytical solutions that describe the
value of the variable for any ¢ and any x. Often, however, the equations are too complex
for a complete analytical solution, and we must use numerical methods. This is a
complex subject, but in Chapter 6 we will discuss one numerical method that has
intuitive appeal, is simple to code, but is not particularly fast.

5.1.2 Discontinuous Functions

All of the equations we have discussed so far to describe dynamics and auxiliary vari-
ables have been continuous; there were no sharp jumps in the value on the dependent
variable with small changes in the independent variable. We can argue whether any
phenomena at the space and time scales of biological systems (i.e., non-quantum me-
chanical systems) can be truly discontinuous. Some would say that examining suf-
ficiently small steps on the independent variable would reveal a continuous, albeit
extremely steep, change in the dependent variable. In any case, for reasons of simplic-
ity and convenience if nothing else, we often choose to represent the phenomena as
discontinuous. A hypothetical example is

2x if0<x<0.5
R={10 if0.5<x<1.0
1.0 - bx if 1.0 < x.

where R is some quantity used in a differential or difference equation. This example
describes a function that (1) increases linearly from 0.0 to 1.0 as x goes from 0.0 to
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Figure 5.3: (a) An untranslated cosine function. (b) General cosine function with parame-
ters fitting a hypothetical time series of seasonal temperature values.

0.5, (2) is exactly 1.0 for x from 0.5 to 1.0, and (3) decreases linearly for x greater
than 1.0. This kind of equation is used when biological morphology interacts with
continuous functions. For example, water transpiration from a leaf is determined by
the opening of the stomata on the leaf surface. The amount that the stomata are opened
is determined by an interaction between the pressure of the guard cells and that of the
surrounding epidermal tissue. It is possible to choose reasonable parameters of this
interaction such that at sufficiently high epidermal pressure, the calculated stomatal
aperture would be less than zero. Since negative aperture opening is nonsensical, we
use a discontinuous function such as the following:

[ bPy-b,P,  ifbPg > b,P,
4=100 otherwise,

where P, is guard cell pressure, P, is epidermal cell pressure, and b, and b, are propor-
tionality constants. While perfectly legal, this kind of equation can make mathematical
analysis difficult. Computers, however, have no difficulty with this type of equation,
and practical computer simulation models commonly use it.

5.1.3 Time and Driving Variables

Time can be an explicit component of differential equations simply by appearing di-
rectly in an equation that varies with time (e.g., “season” in Fig. 3.8). These equations
typically describe driving variables. As an illustration, a cosine function is a reason-
able function to fit to the yearly cycle of temperature in the northern latitudes. To
fit a cosine function to a time series of temperature values, we translate the function
vertically and horizontally and adjust its frequency until it matches the oscillations of
the data.

Figure 5.3a shows a simple cosine function that completes one cycle in 27 radi-
ans and oscillates between 1. Real driving variable data (e.g., temperature) are not
constrained to these values, so we use the general equation for a cosine function that
permits us to vary these properties

y=M+Acos(w(t - 1,)), (5.12)
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where M is the mean value of the function (e.g., temperature). A is the amplitude of
the peak above the mean. (¢ — fp) shifts the peak by # physical units. w is the angular
frequency per physical unit; it scales the frequency of oscillations of the function to
the physical frequency. Angular frequency has units of radians per physical unit, e.g.,
radians/time, where time is the period of one cycle in physical units (e.g., 365 days,
24 hours, etc.). We need to choose these four variables appropriately to fit a cosine
function to the data.

As an example, suppose a time series of mean daily air temperatures has a mean
of 40° F, an amplitude of 25° F, a period of 365 days, and the position of the first peak
is on July 30 or calendar day 211 (Fig. 5.3b). This temperature time series is modeled
as:

2n
T = 40+ 25 cos(%(t - 211)).

A second approach to incorporate time in functions used in computer simulations
is a look-up table. This method uses the actual data during a simulation and does not
attempt to fit a function. A look-up table of daily temperatures requires two sets of
numbers. One set is calendar days 1...365. The second set is the temperature on that
day. The look-up method is computer code that finds the temperature that corresponds
to a given simulation day. If a simulation time-step other than daily is used, one must
adjust the tables accordingly.

[ MBS-CD contains code SimDriving that illustrate these methods.] h

5.2 Using the Toolbox of Biological Processes

There are three simple rules for creating a model. Unfortunately, nobody knows
what they are. — JWH and W. Somerset Maughan

We have identified and described some mathematical formulations for eight basic bi-
ological processes that occur frequently in models: (1) constant rates, (2) relative
rates, (3) feedback, (4) mass action, (5) conservation of mass, (6) limitation by mul-
tiple controls, (7) discontinuous functions, and (8) time dependence. These are the
basic tools in our toolbox for reading and constructing models. These eight do not
describe all processes, and within each there are many mathematical variants we have
not discussed. Nevertheless, an approach to successfully reading and constructing
quantitative models is to combine these basic formulations in ways that represent the
biological hypotheses. This is a skill that is achieved only with practice and attention
to published models of similar systems. However, we can provide some simple veri-
fication and simplification techniques as well as list a few rules of thumb that will aid
you in thinking about the equations.

5.2.1 Checking Units

The physical units of the derivative must match the units of the equation on the right-
hand side. This will check for two types of errors: (a) inappropriate expressions (e.g.,
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dividing when you should subtract) and (b) bad logic that requires parameter values
with incorrect units. The procedure is simply to replace every variable and parameter
with its units and to cancel units until no further reduction is possible. If the final
expressions of the units of the two sides of the equation are not equal, there is an error.
For example, consider the logistic equation (Eq. 4.14). The units on the left are
numbers/time. The units of K are numbers, and r are 1/time. So the units are

numbers 1 . numbers
- = -————numbers{unitless - ——
time time numbers
numbers
time

This is a simple idea, taught to most students in high school, but it is one of the first
things a modeler should do as preliminary verification of the equations.

5.2.2 Conversion to Dimensionless Format

Often in deriving differential equations, the resulting expressions will contain many
parameters that occur in combinations. A useful procedure reduces the number of
parameters by converting the differential equation to a dimensionless form, thereby
creating new variables and parameters, but also eliminating many old variables and
parameters. The net gain is fewer parameters. We implement this procedure by writing
each state variable and the time variable as the product of two components: one with
units denoted as ¥ and one without units denoted as . For example, the numbers in a
population will be written N = NN. The objective, then, is to manipulate the equation
to replace all parameters and variables with dimensionless quantities (e.g., N).

Example

First, we will give a simple example using a familiar equation, then we describe
more general methods that work on most equations. Below, N and K have units of
[numbers] and r has units of 1/time. Applying the non-dimensionalization proce-
dure to the familiar logistic equation gives

dN N
—_ = 1- —) 5.13
dt rN( K G.13)
d(A{N) = rNN (l - M) « create unitless variables
dQr) K
d(N\N) = erIV(l - —IY—-]!) «— multiply by ¥
di
% = “rN(l - %A—’) « divide by N (5.14)
aN _ N1 -N), « define fand N (5.15)
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where the new quantities are f = 1/r and N = K so that when applied to Eq. 5.14 yields
fr = 1 unitless and N/K = 1 (unitless). We have reduced the number of parameters
from 2 to 0, and we have essentially scaled time by 1/r and population size by K. We
will discuss the implications of doing this in a later section. The mathematical clarity
and savings in parameters can be even greater when we apply this technique to models
with several state variables (below).

Mechanical Steps

Here are the basic steps:

1. Make a table of the state variables and parameters and their units.

2. Re-write the differential equations, substituting for each state variable a product
of a dimensionless scaling variable (X) and a variable representing 1 unit of that
variable (%). E.g., if x is measured in gmC/liter, then for every occurrence of x
in the original equations, write:

X = XX

E.g., a single, linear ODE would be:

dx =
dr
yields:
‘2—’;‘ = ax¥ (5.16)

3. Make the left-hand-side of the ODEs unitless by multiplying both sides by #/%.
Do this for all differential equations before proceeding. Cancel any % possible.
For example, Eq. 5.16 becomes:

Creative Steps

The next bit requires some insight and possibly some trial-and-error. You must define
all of the variables with units (i.e., # and all the ¥) as a combination of the parameters
such that the combination has the same units as 7 or ¥, with the goal that when the def-
initions are substituted into the modified equations we have dimensionless equations
with fewer parameters. There are no definite rules for doing this, but here are some
things to consider.

4. Collect the terms with units together in the equations.

5. ¥ will generally be easier to define than the %, so try to define the latter first.

6. If ¥ appears as the only variable in one of the components of the equation, then

use that component to define X. For example, if

N

D

ay v
— = [KX¥Xx + Q%X .
pr XX +1QX°yxy
from the first component on the right define

.1
X=—

K
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f will be defined in terms of other parameters later and then substituted into
the above definition to eliminate . ¥ does not appear by itself in the second
component of the equation, so basing the definition of y on that might not be
helpful. Substitute the new definition of ¥ in to the second component so that
now stands alone. Use the same logic to define it as you did ¥ earlier.

7. Complicated algebraic expressions involving % should be simplified as much as
possible before trying definitions. For example, simplify the Michaelis-Menten
component of the chemostat model to

.

N
Vmax Y

K, N

—+N

N
before defining N.

8. Itis not a good idea to define one variable (¥) in terms of another (¥): use only
constants and 7.

An Example Without a Biological Interpretation

This method will work even if there is no obvious physical or biological interpretation
or units given for the variables and parameters. Consider,

% = ax’ + by?
(5.17)

d}’_ 2
i fxy.

With no knowledge of physical units, we know that the units of the right side must
match the units on the left side, so we have the following table:

Variable | Units

a | 1/@ x»
b | x/(ty)
c| 1/¢-y
f| U@ x)

x | Unspecified
y | Unspecified

Making the left side non-dimensional yields:
dx _ . 5.3 blog
— —=¥3 5.18a
di %07 ©.182)
d\ w2

2 =iy

4 — %), 5.18b
7 SEXxy ( )
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Notice that in Eq. 5.18b, ¥ and y appear in their respective components as the only
variable with units, so these are good candidates to define:

1 1
= — d y==, 5.19
¥ 7 and y =~ (5.19)
with each having balanced units, producing after substitution:

B

4T
for which the right side is unitless and has no parameters. Substituting the definitions
(Eq. 5.19) into Eq. 5.18a gives
di a4, bf,
TN A

The second component on the right has no variables or time units to define, so we
are left with that combination of constants. The first component on the right side,
however, still has # which needs to be defined in terms of constants and chosen to
eliminate parameters. Defining 7 as:

iz 2
12
achieves both goals. The final non-dimensional equations are:
% =¥ —ap flyi = - 3, (5.20)
where f P bf
X= 2 y= o a =7 5.21)

which reduces the number of parameters from 4 to 1, and substituting the units from
the above table, shows a; to be unitless.

What This Means

Scaling Dimensionless Quantities Once the non-dimensional equations are derived,
we need to provide some interpretations of the constants. Often these provide insight
into the processes of interest. Without knowledge of the units in our previous exam-
ple, we can not go further, but we can interpret the constants in the non-dimensional
logistic equation.

In examining Eq. 5.15, it would seem that we have reduced the model to a single,
spectacularly uninteresting special case: » = 1 and K = 1. How could such an equation
represent all the parameter cases that the original (Eq. 5.13) could? If we solve this
equation, we will obtain the classical, sigmoidal shaped curve that asymptotes at 1.0.
Suppose we wished that result to represent a population of deer that has a carrying
capacity of 500? Since we defined N = K, we have from our original definition
N = NN = NK. So, to convert numerical results in the unitless N space, we simply
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multiply N by K to recover the original variable with biological units of [numbers
deer]. In other words, N is interpreted as the fraction of the carrying capacity. But
since deer have a certain rate at which they reproduce, we need to be able to convert the
time at which the deer population reaches a certain value. We use the same logic. We
defined 7 = 1/r, so t = if = i/r. So, if the deer population has r = 0.1/year, to recover
time in physical units (years), we scale 7 by multiplying by 1/r = 10. This stretches
1. If the population growth was faster (r = 3/year), we shrink # by multiplying by
1/3. At the end of the day, non-dimensionalization has revealed to us that there is only
one logistic equation! We can recover all the others that might apply to a particular
population by stretching or shrinking our dimensionless time and state variable. This
type of analysis has extensive application in fluid dynamics, where a veritable bestiary
of dimensionless quantities help engineers design everything from hydroelectric dams
to space shuttles to the decorative fins on American sedans.

Buckingham Pi In 1914, Edgar Buckingham proved a theorem that says: Given a
physical relationship with P parameters and D dimensional units, the number of in-
dependent dimensionless groups is P — D. In other words, if the original model has P
parameters, it can be reduced, without changing the mathematical behavior, to a model
with P — D parameters. Our analyses demonstrated this Buckingham Pi Theorem. The
logistic model has 2 parameters (r and K) and 2 types of units (time and numbers).
We non-dimensionalized the model to have 2 — 2 = 0 dimensionless parameters. The
non-biological, hypothetical example had (table on page 92) 4 parameters and 3 types
of units: ¢, x, and y. We reduced the equation to 4 — 3 = 1 dimensionless parameter
(a1).

The above analyses converted a specified model with biological units and param-
eters into one without units and a reduced number of dimensionless parameters. We
can run the logic in the reverse direction. Suppose we don’t know the exact form of
the model, but only that certain quantities (e.g., numbers of deer, maximum numbers
of deer) are required. Knowing the number of variables in the problem and the number
of fundamental units (clearer in physical problems than biological ones), the Bucking-
ham Pi Theorem states we can write the model using P — D independent parameters.
We also know that the left-hand side of the differential equation must have identical
units as the right-hand side. This condition places constraints on how we can combine
our fundamental variables: they are expressed as powers of the units and they must
combine to be unitless. Thus, for example, if (to preserve consistent units) we must
eliminate a dimension, then the variables and parameters must interact as a quotient
and not as a subtraction. While not a magic wand for automated model formulation,
this procedure does allow us to eliminate a large number of possibilities (e.g., subtrac-
tion) and certainly is a good starting point for making the transition from a qualitative
model to quantitative models. If nothing else, it forces us to actually compute the units
in the model, thereby taking an important verification check.

The Downside It all sounds wonderful, and it is, until one wants to use the model to
address the effects of a specific biological parameter, independently of the other model
parameters with which it is complexly co-mingled in a dimensionless constant or vari-
able. For example, in the hypothetical model (Eq. 5.17), we might be particularly
interested in the system response to changes in parameter a, but in the dimensionless
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version, this parameter is subsumed in complex relationships with the variables ¥ and
¥ (e.g.,y =y [d*/ac]). So, without knowledge of the underlying biological parameter
dimensions, we can not do these separate analyses.

5.2.3 Conservation Principle

If a model uses a conserved quantity (e.g., g C) all of whose sources and sinks are
accounted for, then a state variable can be eliminated from the system of equations,
Suppose a fixed amount K of carbon flows among three state variables (x;), each de-
scribed by an ODE. Since K = x; + x; + x3, and X is a constant, we can rewrite any
one of the x; in terms of the other state variables and total C: x3 = K — x1 — x2. x3
effectively becomes an auxiliary variable and we can substitute K — x; — x, anywhere
x3 is used.

5.2.4 Rules of Thumb

In addition to the above approaches which help us understand and verify the cor-
rectness of the equations, there are several maxims of model formulation that can be
generally applied.

1. Know the purpose. Is the model meant to understand, predict, or control? Or is
it some combination of these? What trade-offs in design are necessary?

2. Know the question. Study and understand the objectives, model question, hy-
potheses, and available data. These give hints to answers of the basic questions
to address in model formulation: How is feedback present in the system? Neg-
ative feedback implies that the rate is a declining function of a state variable.
Are the flow variables conserved? 1f yes, then all pathways must be expressed
in the state equation and flows between compartments will be expressed in both
state equations (gains in one, losses in the other). Do multiple factors control
the process? If so, then we must write state equations that incorporate all the
factors.

3. Understand the objects. Every state variable (level or box in a Forrester dia-
gram) must have an explicit ODE or FDE. Auxiliary and driving variables are
not described with differential or difference equations.

4. Reconcile the diagram with the rate equation. Out-bound material flow arrows
are subtractions from the rate equation; in-bound flows are additions.

5. Check the units. The units of every state equation (ODE or FDE) will be identi-
cal on the left and right sides of the equality.

6. Extrapolate the functions. The rate equations must make sense for all legitimate
values of their parameters and variables. Check that the function produces valid
biological quantities (e.g., yields only positive concentrations) by examining
extreme values (e.g., 0 and x — o) of the independent variables of the rate
equations.

7. Simplify the model. All things being equal, simple models are better than com-
plex models, but understand when and why it is not always desirable to simplify.
If it is possible, try these techniques:

e Reduce the equations to dimensionless variables.
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Aggregate state variables,

Exploit conservation principles.

Use linear functions initially.

Use descriptive, phenomenological representations before detailed, mech-
anistic processes. When objectives or model failure require it, increase the
level of details.

¢ Assume homogeneous space.

5.3 Useful Functions

7t = Yes. I need a drink, alcoholic, of course, after the heavy sessions in-
volving quantum mechanics. — Miller (1981)

Many of the biological processes can be represented by a variety of equations (e.g.,
hyperbolic saturation as either Michaelis—Menten or Holling disc equation). Some are
nearly identical in shape, but use different parameters. Choosing among these, unless
there are theoretical reasons, is largely a matter of taste and the appropriateness of
the normal interpretation of the parameters. For example, the half-saturation constant
in Michaelis-Menten can be applied to either enzyme kinetics or animal foraging.
However, the handling time parameter in the Holling disc foraging equation may not
be a natural concept in enzyme kinetics.

Figure 5.4 lists the equations and demonstrates the shapes of common nonlinear
functions. In all curves and equations shown, y is the dependent variable and x is the
independent variable. The plots do not show the behavior of the function for all x
values. Beware of potentially undesirable y values for some values of x. For example,
a straight line with a negative slope will have negative values if x is allowed to be
sufficiently large. To avoid this, you must truncate (using a discontinuous function)
the function to restrict y to desirable values. Most of the equations can be generalized
by translating the curve along either the x-axis or the y-axis. To translate along the
x~-axis, add or subtract a value from the variable x. (This is illustrated in a few cases
below.) To translate along the y-axis, add or subtract a value from the variable y (i.e.,
subtract or add from the left-hand side of the equations). Some equations range from 0
to 1.0; their shape can be complemented by subtracting the value from [.0. In the list
that follows, the boxed letter refers to the letter in the graph in Fig. 5.4. Items without
boxed letters are not graphed.

Linear:
y= ki + kyx

If k, is negative, then the y-axis intercept (k1) and the slope (K3) define the line,
but note that the x-axis intercept may also have a biological interpretation (e.g.,
K in the density-dependent per capita function for growth rate). Note, if k, < 0,
be certain that negative values of y are acceptable, if not, truncate toy > 0.

Exponential: Shown in Fig. 5.4A, the equation is

kzx

y = k1",
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Figure 5.4: Plots of common nonlinear functions at different parameter values. Refer to
the text for the meaning of the parameters.
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Parameter k; scales the y-axis intercept; k, determines the shape: large values
produce steep curves.

Power: Shown in Fig. 5.4B, the equation is
y= ki + kz)ckf’.

As with the exponential function, k; scales the y-axis intercept, and k, deter-
mines the steepness of the slope. If k; < 0, the curve decreases. If k; > 1, the
curve is concave upward with an increasing slope. If 0 < k < 1, the curve is
convex upward with a decreasing slope. k3 scales the height of the curve. This
function is frequently used to represent allometric growth relationships.

Saturation: Hyperbolic and Exponential: Shown in Fig. 5.4C, the equation for
hyperbolic saturation is

y=k( (x — k3)
Ne+G-k))

Parameter k3 determines a threshold on the x-axis below which the function has
a negative value. This is useful when the function is used to model microbial
growth to describe a threshold nutrient concentration below which no growth
occurs. This is a case when a truncation is necessary to prevent nonsensical
negative values. When k3 = 0, this function produces the classical Michaelis—
Menten equation. k; scales the maximum value to which the function is asymp-
totic. k, is the half-saturation constant.

Also shown in Fig. 5.4C is one example of the exponential saturation function

y=ki(l - %),

where k; scales the maximum value and k; determines the steepness of the curve
(large values produce steep curves). When k;, is negative, the curve approaches
ky from below. When k, > 0 and x > 0, the function declines from 0. Notice
that the exponential and hyperbolic functions produce similar shapes, but that
the slope of the latter increases more rapidly at low x values.

Both functions can be used for foraging functions or chemical dynamics. The
exponential function is frequently used to model the growth of individual ani-
mals. Note that neither function has an inflection point (where the slope changes
from accelerating to decelerating).

Another function that resembles the saturation functions is the hyperbolic tan-
gent: tanh(x) = (¢* — e™*)/(e* + ¢7*) (see Chapter 12). This function has the
property that when x > 0, tanh(x) rises asymptotically to 1.0 and when x < 0,
tanh(x) decreases asymptotically to —1.0. Therefore, it is useful for functions
whose domain can take positive or negative values. This function is used widely
in mammalian physiology as an empirical description of laboratory relation-
ships.



§5.3. Useful Functions 99

@ Hill: Shown in Fig. 5.4D, the equation is

xh
y=k (k';z gyl

This is a generalization of the hyperbolic saturation function (Rubinow and
Segel 1991). k; scales the maximum value to which the function is asymp-
totic; k; is a shape parameter; k3 is analogous to the half-saturation constant.
If k&, = 1, the Michaelis—-Menten function is produced. If k; < 1, a steeper
version of the hyperbolic results. For k, > 1, an “S-shaped” function results.
With &, = 2, this function can be used for Type 3 functional responses of preda-
tors. For other integer values of k, > 1, the Hill function is used extensively
in enzyme kinetics for systems in which there exist several reactive sites on the
enzyme (e.g., cooperative dimers; see Rubinow 1975).

@ Richards Absolute: The standard Richards equation (Richards 1959) is a gen-
eralization of the logistic growth equation (Fig. 5.4E)

k1

(1 + (ﬁ - )e‘k3k4x)1/k4 ,
ko

y:

where x is normally interpreted as time, &; is the maximum to which the function
is asymptotic, &, is the value at x = 0, k3 describes the steepness of the curve,
and k4 scales the location of the inflection point along the x-axis. The logistic
curve is obtained when k4 = 1.

Richards Relative: The Richards equation, as written above, describes the ab-
solute values of a process (e.g., population size). A relative rate version exists
that, when applied to population growth, describes the per capita rate of change
of the population. The relative curve is shown in Fig. 5.4F and has equation:

_ k] 1 X ke

"kt (k3)
where k) scales the process on the vertical axis and k3 corresponds to the maxi-
mum value (e.g., population size). k&, = 1 gives the classical logistic relative rate
of a linear decrease in the rate as x increases. k; < 1 gives a concave curve that
shows a rapid decline at small x; k; > 1 produces a convex curve and has a slow

decline at small x, but a rapid decline at large x. Note that k3 is the intercept of
the x-axis.

Blumberg: Blumberg’s equation (Blumberg 1968; Buis 1991), also known as
the hyperlogistic, generalizes the Richards relative-rate equation by adding a
fourth parameter. The curve for the relative rate is shown in Fig. 5.4G and its

equation is
x|
= 4 —-|—
y =kt [1 (kz) ]

’
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where k; scales the curve on the y-axis, k3 is the maximum value, and k; and
k4 are shape parameters. Be aware that when k; > 1 and k4 < 1, the function
is 0 when x = 0. This is illustrated in Fig. 5.4G (curve D) where the relevant
curve decreases sharply to O when x < 1. Used as a relative rate, this function is
useful in a wide range of models.

@ Complemented Weibull: Shown in Fig. 5.4H, the equation is

x 16
y=k eXP(—[E] J

where k; scales the maximum value, k, controls the point along the x-axis at
which the function is approximately 0, and k5 is a shape parameter that specifies
whether the function is concave or convex. It is a very powerful function that
is useful in many situations including the probability of surviving from one age
to another. It is related to the Richards equation. When k; = 1, the function
ranges from 1 to 0. Consequently, a common form is the Weibull cumulative
distribution function: 1 — y, which produces a positive relation between the x
and y. This form behaves very much like the Hill equation (Fig. 5.4D); it has
been generalized by Bradley and Price (1992).

|I| Triangular: Linear functions can be combined to represent processes with max-

ima. Their use require truncation using discontinuous functions. The general

formula is
_ ki + kox ifx<k3
Y= kg — ksx ifx>k3.

Three examples are shown in Fig. 5.41.

Maxima: Shown in Fig. 5.4J, the equation is

y= klxj‘Zek”.

This produces a maximum by using the product of two functions: one increas-
ing, the other decreasing with increasing x. To produce a function with a maxi-
mum, we must have k3 < 0. For most purposes, using k, = 1 fits a wide range of
phenomena. Its primary attraction is its simplicity, but it cannot produce curves
skewed toward large x. To skew curves to the right, use

y = ky* (1 - k3ek“"),

as shown in Fig. 5.4J, curve E.

Temperature Optimum: Many biological processes have a maximum that is

skewed toward large values of x. Logan (1988) described the relation of tem-
perature on a process as

ki(x — k) ks—(—kz)
Ul (552)

K+ (x = k)b ks ks
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(Fig. 5.4K). The first expression on the right-hand side is similar to the Hill
equation. k; scales the overall curve on the y-axis, k; is the lower temperature
at which the process is 0, k3 is a shape parameter for the rising part of the
curve, k4 is roughly analogous to the half-saturation constant, ks is the maximum
temperature at which the process is positive, and kg is the temperature at which
the value of the process is maximal. Note that there are complex interactions
among the parameters in this complicated function and that choices can be made
such that some actual quantities (e.g., largest temperature for positive values) do
not match the corresponding parameter definitions.

Double Weibull: This function is the product of the Weibull distribution and its

complement. It is shown in Fig. 5.4L and has the form
y=k (1 _ e—(x/kz)k3) e—(x/kA)k5

The parameters have the same meaning as described above for the Weibull func-
tion. This is one of the most flexible functions used in biological modeling.

Trigonometric: (No graph). Extremely complex series of data over either time
or space can be represented by the sum of general sine and cosine functions by
choosing different values for mean, amplitude, phase, and angular frequency:

N
y= M; + A; cos(w;i(x — xp,)).
i=1
Cubic Splines: (No graph). Another method for modeling complex data series
is to fit adjacent subsets of the data (e.g., sets of four datum points) to separate
polynomial equations:

y=ko+kix+kox® + ...+ k"

Cubic splines is such a method that uses a third order polynomial for each
subset of the data and smoothly joins the separate cubic equations together.
This method is used widely in microcomputer graphics applications and is be-
ing more frequently used in dynamic simulation (Jgrgensen 1986; Coleman and
Gay 1990). While good fits to data are possible, this method uses a relatively
large number of parameters that do not have empirical meaning.

Polynomials: (No graph). Sums of integer powers of the independent variable
can produce complex forms:

Y=+ a1x+ axt + -+ apx”

Rational Functions: (No graph). Even more complex forms are possible using
rational functions of the form:

_ aptaix+@mx + -+ apx”
y 14 by +b1x+byx2+ -+ +byx™

[

MBS-CD contains the code SimCurveDisplay that makes it relative easy to

generate families of curves like those in Fig. 5.4. j l y
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Figure 5.5: Flows with different units.
5.4 Examples

Below are four examples to illustrate the procedures of quantitative model formulation.
The difficult problem is to go from a verbal or diagrammatic statement of the system
(which may include data or functional forms for some processes) to the equations.

5.4.1 Flows with Different Units

This is a hypothetical example that does not apply to any particular biological system.
Suppose we are modeling the dynamics of a compartment of phosphorus () and a
compartment of carbon (Q). Phosphorus increases by a constant fraction at each time
step and decreases as a third-order mass action effect between P and the square of Q.
Carbon increases by a constant fraction each time step and decreases by a constant
fraction each time-step. The conversion of C to P is a constant ratio (k). Normally,
the expression bk would be represented as a single parameter. Figure 5.5 shows the
Forrester diagram and equations.

Since the state variables have different units, we must use a paraliel model, with
information flows between state variables and rates to indicate the interactions. The
problem states that both variables increase by a constant fraction of their values. This
implies a relative or per capita rate that does not change with the value of the state
variable (i.e., it is not density-dependent). The equation is the product of a constant
(the fraction) and the variable. The loss from P depends on the value of Q, and we use
an auxiliary variable to represent that relation. The loss from Q is another constant
fraction equation.

5.4.2 Driving Variable

Suppose a state variable has three inputs; two are constant rates and one is a fixed
per capita rate. There are three outputs; one is a constant rate, one a fixed per capita
rate, and one is a hyperbolic function of temperature that varies with time. Figure 5.6
shows the Forrester diagram and equations.

“Constant rate” implies a rate that is simply constant and does not involve any state
variables. The absence of an information flow from a state variable to the rate illus-
trates this assumption. We could have used any one of several functions to represent
the hyperbolic relation noted in the problem. However, the implication of this rela-
tionship is that temperature is the independent variable, which occurs in the exponent
of e as shown in the equation.
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d—X=bX+a+c——d—hX
dt

-f - e~gT(t))
T = M + A cos(wt)

Figure 5.6: Driving variable and multiple input and outputs.

5.4.3 Riding a Bike

This example illustrates feedback control when there is not an obvious physical unit
that flows between compartments. The problem is to describe the dynamics of the
front wheel of a two-wheeled bicycle when it is driven (a) with hands in the normal
position (left hand on the left handlebar, right hand on the right handlebar) and (b)
with hands reversed.

When people learn to ride a bicycle using the normal hand position, they have
learned how to implement a negative feedback control system. We will hypothesize
that when the front wheel deviates from a fixed direction (assumed to be 0 degrees)
toward the left, we put greater pressure on the left hand than on the right hand and
thereby cause the wheel to move to the right. We do the opposite if the wheel deviates
to the right. So, the problem and our hypothesis calls for a model that describes the
dynamics of the wheel position and the pressure applied to each hand.

Figure 5.7 shows a Forrester diagram and equations when the hands are in the
normal position. It is assumed that a deviation of the wheel to the left is a negative de-
viation and that to the right is positive.  and [ are the pressure applied to the right and
left hands, respectively. D is the deviation of the wheel from the desired orientation of
0 degrees. a, b, and c are positive constants of proportionality.

If the hands are reversed, it is not clear how the brain is confused, but there is no
doubt that it is difficult to keep the bicycle upright. Apparently, if the wheel devi-
ates to the right, the eye-brain system tells the body to increase pressure on the right
hand regardless of its position (i.e., not the hand on the right handle bar). With hands
reversed, this is a positive feedback system because deviations to the right are accen-
tuated by increased pressure on the left handlebar (via pressure on the right hand). We
can model this by multiplying dD/dt by —1.

5.4.4 Brewing Beer

In its simplest form, brewing beer involves putting sugar and yeast together in a vessel
so that alcohol is produced as a by-product of the metabolism of sugar by yeast. Actual
beer fermentation is much more complicated than this, but this will serve as an initial
conceptual model. Two important facts associated with this situation are: (1) there
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Figure 5.7: Feedback control for riding a bicycle.

is only a finite amount of sugar at the beginning and it is depleted over time, and (2)
excessive alcohol will kill yeast cells.

To model this, we analogize the relation of yeast and sugar to a predator—prey or an
enzyme—substrate interaction. We can also think of the effects of alcohol molecules
on yeast cells in a similar way: alcohol “preys” on yeast. For the purposes of this
example, we assume that we measure yeast in terms of cell counts, sugar in mg-C-
sugar/liter, and alcohol as mg-C-alcohol/liter. Therefore, to account for incommensu-
rate units, the Forrester diagram (Fig. 5.8) shows parallel models. To keep the mathe-
matics simple, we assume that the rates of sugar consumption and yeast mortality due
to alcohol follow mass action laws. We also assume that the rate of alcohol production
is proportional to the rate of sugar consumption.

In Fig. 5.8, S is sugar content in mg/liter, A is alcohol content in mg/liter, and ¥
is yeast cells per liter. The auxiliary variable S:Y Mass Action is the equation aSY.
Since this expression occurs three times in the model, assigning it to an auxiliary
variable simplifies model presentation. The parameters are defined as: a = rate of
sugar breakdown, b = fraction of sugar breakdown that yields alcohol, f = fraction of
sugar breakdown that yields CO;, ¢ = rate of yeast cell formation per unit breakdown
of sugar, and d = death rate of yeast cells per unit of alcohol.

5.5 Exercises

1. Verify that the recursive algorithm for integrating the area under a derivative
curve of the parabola gives correct results (up to the size of Ax). Compare

B s ds

Sugar i —-abSY —afSY
gC
dy
RN ey — = Y -dYA
RS PERS i acSY ~d
Alcohol _‘ﬂ =abSY

Figure 5.8: Alcohol production by yeast in beer fermentation.
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10.

11.

integrals calculated according to the methods of Section 4.2.2 with Ax = 1.0
and Ax = 0.5.

. Repeat the above with dy/dx = 0.1x.
. Write three ODEs describing the dynamics of water molecule formation (units:

number of H,O molecules) from a compartment of Oxygen (units: number of
O atoms) and a compartment of H (units: number of H molecules). Define any
parameters you need (including units) and verify that the overall equation units
are correct. Draw the corresponding Forrester diagram.

. Rearrange Eq. 4.21 into the standard form of a hyperbolic relation and verify

that the units are correct.

. Add a time-varying temperature effect to the decomposition component of the

ecosystem carbon flow model (Eq. 5.3). Let daily temperature vary sinusoidally
over the year according to the specifics of exercise 10. The effect of tempera-
ture on decomposition rate, for simplicity, follows the right-skewed maximum
function.

. An alternative model for riding a bike is

ﬂ —-ar if D <0
dt 0.0 otherwise

d {bl ifD>0

dt ~ 1 0.0 otherwise
%17) = c(l-r).

This model also causes the deviation (D) to stay near 0. What other dynamical
behavior does it have that suggests that it is a poor alternative? Simulate this
model and compare with the original model.

. The simple bike riding model may not capture basic biological and psycholog-

ical mechanisms. Specifically, will humans react the same way to large devia-
tions as to small deviations? What does the model assume? Make a simple x—y
plot that depicts the model assumption and a more realistic alternative. Write a
new model (possibly using the functional forms in Section 4.5) that incorporates
the new hypotheses. Does the new model produce more realistic dynamics?

. Modify and simulate the beer equations so that yeast growth uses the equation

for Temperature Optimum shown in Fig. 5.4, curve A. Let temperature oscillate
around 20° C with an amplitude of 8°and a period of 1 day with a peak at 12:00
noon. Choose other parameters so that sugar is exhausted in about 5 days.

. Modify the beer equations and Forrester diagram so that a conserved quantity

(e.g., g C) flows among the three compartments.
Write the cosine function for daily temperature data that cycles over one year
with a maximum of 55°F at March 15, and minimum of 5°F.
Use the MBS-CD code SimCurveDisplay to generate families of curves for
the following functions.

a) Maximum with peaks near x = 30, 50,70, and 90.
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12.

13.
14.
15.

b) The Weibull similar to curve C in Fig. 5.4 with maxima aty = 2.0, 1.0, and 0.5.

¢) Triangular for the 3 curves as shown in Fig. 5.4.
d) The rational function:

_ ap+ayx
Y 1+b0+b1x+b2x2

(Only 1 curve to display.)

e) A sum of two cosine functions, one of which corresponds to the curve in
Exercise 10, the second that wiggles around the first according to a weekly
cycle with mean equal to the daily value and an amplitude of 8 °F. L.e., a
high amplitude, low frequency curve plus a low amplitude, high frequency
curve. (Only 1 curve to display.)

f) On asingle graph, compare

- _a
yr=ex »n= P
Try several values of a to closely approximate y;
We often wish to use functions with specific properties. It is useful to be able
to prove that a given function has a particular property (e.g., minima, maxima,
inflections).

a) The second-order Hill equation has the form: y = x2/(a + x2). Show that
this equation is “sigmoidal”, i.e., that there is an inflection at x such that
Qax* +3x*) = d?

b) Without resorting to numerical approximations, sketch the graph of the
first and second derivative of the Hill equation.

Non-dimensionalize the Lotka-Volterra equations (Eq. 4.23).
Non-dimensionalize the chemostat equations (Eq. 4.27).
Non-dimensionalize the model you created in Exercise 6.
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Numerical Techniques

The computing scientist’s main challenge is not to get confused by the complexi-
ties of his own making. — Dijkstra (1988)

6.1 Mistakes Computers Make

S OME PEOPLE THINK computers make mistakes whenever their behavior departs from

human expectations. In this sense, their mistakes can be disturbingly frequent,
especially when they program in C. Often, the correct solution is to alter our expecta-
tions, but this does not always work because inherent hardware limitations can prevent
computers from being correct. In this chapter, we discuss what these limitations are
and how to work around them.

Recall that we interpret a finite difference equation as an exact representation of
the biological system. Therefore, the numerical solution is also exact and not an ap-
proximation. Differential equations are different and their numerical solutions are
only approximate and are, therefore, error prone. In the remainder of this chapter we
examine various problems, considerations, and techniques related to the numerical so-
lutions of differential equations. We will emphasize solutions to ordinary differential
equations: those that do not describe spatial processes. However, we will also de-
scribe one method for solving partial differential equations by converting them to a
set of ordinary differential equations. We begin with a general discussion of errors
in numerical techniques, but to understand and appreciate these, we must realize how
different kinds of numbers are represented and stored in computers.

6.1.1 Representations of Numbers

For our purposes, a bit is the logical representation of the electrical state of a computer
component called a logic gate. A bit cannot be decomposed into a set of lower-level
states or machine components. All other data types (e.g., integers, real numbers, etc.)
are defined in terms of bits. In most scientific programming, we are interested in three
data types: characters, integers, and real numbers. All data types must be stored using
a finite number of bits, and this fact produces the opportunity for error.
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In most programming languages, a character is a set of eight bits, also known as a
byte. Bit O is called the least significant bit, and bit 7 is called the most significant bit.
Characters are distinguished by the patterns of Os and 1s in the eight positions. Since
each of the eight positions can be in one of two states (0, 1), a byte or character can
represent 28 = 256 different numbers (0-255). Depending on the context, the value of
a character can be interpreted as a number (an 8-bit integer) or as a printable character.
If it is interpreted as a character, then a code is required to convert the bit pattern into
alphanumeric symbols (e.g., “A”). The most common code is the ASCII (American
Standard Code for Information Interchange) code.

Most programming languages also define an integer data type. The number of
bits used for integers depends on the hardware to which the programming language
compiler is targeted. Most current (2004) personal computers use 32 bits for inte-
gers; minicomputers and supercomputers use 64 or 128 bits. These values are shifted
upwards as technology advances. The values are determined by the word size of the
computer, which in turn is determined by the size of the databus on the motherboard
(i.e., the number of “wires” that carry data from the CPU to other components such as
memory chips). More powerful computers have wider databuses. However, compilers
and programs have to be written in such a way that they can be ported to different
hardware platforms. For this reason, the sizes of standard data types (e.g., signed and
unsigned integers and characters) are defined by the compiler, and in the end, it is the
programmer’s responsibility to write portable code.

A 16-bit integer can represent 2'6 = 65536 different numbers; a 32-bit integer has
2147483647. Basic integer arithmetic operations such as addition and multiplication
use standard binary arithmetic rules. For example, 1+1=0, and carry a 1 to the next
higher position. Since there are only 16 bits, a problem occurs when we attempt to
describe a number larger than 65535. To see this, consider a simpler, hypothetical case
where we use only three bits to represent integers. Such a number might be: 001 +
101 = 110 (in decimal: 1+ 5 = 6). Since only a finite number of bits can be reserved
to hold the result of an arithmetic operation, it is possible for overflow to occur (e.g.,
111 + 1 = ??7?). A compiler can resolve this dilemma by wrap around (result equals
000), or truncation (result equals 111). In either case, we cannot represent numbers
larger or smaller than those that can be represented in the number of bits reserved for
the data type.

Similar problems occur in floating point numbers. A floating point number is a
real number (i.e., not an integer) represented in such a way that the decimal point can
float so that a fixed number of significant digits is always represented, no matter how
large or small the absolute value of the number. This is simply the scientific notation
using powers of base 10 (e.g., 1.234 X 1072). A floating point number is composed
of a mantissa (e.g., 1.234) and an exponent (e.g., —2), either one of which may be
positive or negative. Exponents are integers, while the mantissa is interpreted as a
real number scaled by the exponent. Both of the components must be represented
as a bit pattern. Consequently, not all decimal numbers can be represented. The
number of bits used to represent the exponent determines the size of the number that
can be represented. The number of bits used for the mantissa represents the precision
(number of significant digits) of the number. The standard method of coding is the
IEEE Standard 754. A single-precision floating point number (i.e., float in C) is one
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Table 6.1: Format parameters for single and double precision numbers in the IEEE 754
standard for floating point numbers. Shown are the number of bits used for mantissa and
exponents; the approximate number of decimal significant digits, and the maximum and
minimum numbers.

Mantissa Exponent Sig. Digits Max Min
Single 23 8 9 3.403x10%  1.175x 10738
Double 52 11 15 1.798 x 10398 2225 x 107308

that uses a total of 32 bits (1 for the mantissa sign, 23 for the mantissa, and 8 for
the exponent). (The exponent does not have an explicit sign bit; the upper half of the
possible range is assumed to be positive, the lower half assumed to be negative.) A
double-precision number (double in C) uses a total of 64 bits (52 for the mantissa,
11 for the exponent, plus the sign bit). While twice the computer memory is required
to store a double-precision number, we gain considerably in the size and precision of
the numbers we can use. Table 6.1 shows the basic parameters for single- and double-
precision numbers.

Since a mantissa and an exponent are simply a series of bits like integers, oper-
ations on these components have the same possibility of overflow. If the exponent
is negative and the operation on the exponent causes an overflow in the exponent bit
pattern, the condition is called floating point underflow, since the operation attempted
to create a number smaller than that which could be represented. If the exponent is
positive and the exponent bit pattern becomes too large, then the floating point number
overflows. When either of these conditions occurs, the results are disastrous and the
wise programmer will arrange to stop execution. Mantissa errors are more subtle, but
the results can be more insidious.

6.1.2 Round-Off, Truncation, and Propagation Errors

Errors arise in numerical calculations because of the limited computer memory avail-
able to store floating point numbers and the nature of the algorithms. Storage lim-
itations in the mantissa produce overflow or underflow and these become round-off
errors. Floating point storage round-off occurs because the number of significant dig-
its in floating point numbers are limited by the number of bits in the mantissa. This
error occurs most frequently when we add a very small number to a large number. For
example, suppose we wish to add 1 x 1072 + 1.0 x 10*, To accomplish this we first
align the exponent by rewriting the smaller number so that it has the same exponent
as the larger number. This is 0.000001 x 10*, so the number has been changed from
using one significant digit to six significant digits. In most computers, this is a mi-
nor increase in digits. However, if the smaller number is many times smaller than the
larger (e.g., 1071° + 101%), then we can come to the point where aligning the exponents
will require more bits in the mantissa than are available. Since we cannot use more
bits than defined for the data type, the computer hardware must resolve the dilemma.
Modern floating point chips that implement the IEEE 754 provide the programmer the
ability to determine what method to use. The choices include always round up, always
round down, or round to nearest. The most accurate (and default) method is to round
to nearest.
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Round-off issues can have important implications for basic scientific program-
ming. Below is pseudo-code for computing the mean of N numbers stored in array
A[i]. On the left, is the standard method, and on the right is a method (from GSL)
that minimizes the effects of adding possibly small numbers (A[1]) to large numbers
(cumulative mean in “Bad”).

Bad [Good]

mean=0.0; gmean=0.0;
for (i: 1 - M { for (i: 1 - N) {
mean = mean + A[i] gmean = gmean + (A[i]-gmean)/i

} )

mean = mean/N

Two other kinds of errors occur depending on the operations used in the algorithm.
These errors occur regardless of the storage constraints. Numerical algorithms often
have to calculate the value of an unknown function. An important mathematical tool
for representing an unknown function with some arbitrarily close approximation is an
infinite series (e.g., the Taylor series). Truncation errors occur because the algorithm
approximates a function as an infinite series truncated after the first # terms. These
kinds of approximations occur in many algorithms, but the value of n is specified by
programmetr/analyst so the error is easily controlled. Nevertheless, it may be costly in
computer time to reduce the error. Other occurrences of truncation error is approxi-
mating the rate of change of a differential equation. As we see below in discussing the
solution of ODEs, minimizing truncation error in this problem is not simply a matter
of increasing the terms in a sum (although that is involved) and considerable effort has
gone to develop alternative approaches. Propagation errors are errors made at every
stage of an iterative algorithm and that accumulate over the entire solution. For ex-
ample, even with sophisticated methods to reduce truncation error at each time step in
the solution of a differential equation, some error remains and these errors compound
over many time steps.

In an iterative procedure, these sources produce two types of error: local error (at
every solution step) and global error (deviation from the true solution). Local error
due to truncation can be estimated by increasing the number of terms used in the
approximation (e.g., the solution step size A7) and calculating the relative change (or
improvement) in the answer. Global error usually cannot be measured since in general
we do not know the true solution, but it can be estimated using additional terms in the
approximation (Sec. 6.4).

6.2 Numerical Integration

In Chapter 4, we noted that a differential equation and its solution are different mani-
festations of the same model. The former portrays the functional dependencies of the
rates of change; the latter form gives the values over time. The integral is the anti-
derivative, and it is possible to go back and forth between the two forms. This concept
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Figure 6.1: Slope field and two true solutions of a differential equation.

is central to understanding the approximations used to obtain numerical solutions to
equations that cannot be solved analytically. A slope field is a concept that unites the
two forms.

6.2.1 Slope Fields

We restrict attention to ordinary differential equations in which we have simple deriva-
tives with respect to time. The solutions of these types of equations can be plotted in
a two-dimensional space in which the y-axis is the dependent variable and the x-axis
is time (#). One point in this space [i.e., a (y,?) pair] satisfies the solution equation.
Furthermore, taking the derivative of the solution function (generally unknown) at a
point on the time axis will give the numerical values of the original differential equa-
tion for the particular (y, f) pair. If we calculate the derivative at many of these pairs,
we will produce a field of slopes (i.e., the slope field). There are multiple slopes at
each ¢ because each different initial condition produces its own trajectory of slopes.
Figure 6.1 shows the slope field for one differential equation.

Also shown in Fig. 6.1 are the true solutions for this equation (solid lines). Usu-
ally we do not know the true solution, but we can compute the slope field from the
differential equation. The problem in numerical approximation of the true solution is
to find the subset of slopes in the slope field that corresponds to the true solution. The
subset of particular interest is the sequence of slopes that begins at the known initial
condition. There are an infinite number of true solutions (one for each initial condi-
tion) and, therefore, there are infinitely many incorrect sequences. Our problem is to
stay as close as possible to the correct sequence that lies on the solution curve. Below,
we discuss two different methods.

6.2.2 Euler’s Method

All the methods to solve the differential equation are similar to the simulation models
discussed thus far. Given that we are starting at a solution point (the initial condition),
the strategy is to move from the initially correct slope in the slope field to the next
correct slope, from there to the next correct slope, and so on.

The Euler method is the simplest, most straightforward approximation. This for-
mula was derived in Chapter 4:

Yirar = Yo+ At f(ys,t). 6.1)
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Figure 6.2: A series of Euler approximations (straight lines) to a true solution (curved line)
over At solution intervals.

where we specify ¢ explicitly in f(y;,?) for those models that use driving variables
(e.g., daily temperature) and need to refer to the current time.

Figure 6.2 shows the relation between the correct solution and the Euler approxi-
mation. The solid line is the true solution; the straight-line segments are the approxi-
mations. The dotted lines show why the approximations of this function underestimate
the true solution. The slope at ¢ = O is exactly correct since the solution at that time
is simply the initial condition. Since the true slope is continuously increasing (in this
function), but our approximation over At is not, the approximation is too small. The
approximation continues to get worse (error propagation), because the new slope at
¢ + At uses the approximated value of y, not the true y at that time. This yields a slope
calculation from the differential equation below that of the true solution at ¢ + Az.

Typically, we must solve several differential equations simultaneously and these
equations are a system in the sense that their derivatives are functions of the other
state variables. For example, a model of predator and prey populations is

dv dpP
_—= - —_—= P - . .
pr rV —-bvpP T bcVP —dP 6.2)

In the Euler method, these continuous equations are replaced by the approximations:

Viear = Vi + [rV, — bV, P]At
(6.3)
Pt+Al = Pt + [bCVtPt - dPt]At

Because both derivatives in Eq. 6.2 depend on the current values of both state vari-
ables, the expressions in brackets on the right-hand sides of Eq. 6.3 must be computed
before variables are updated so that the order of the equations does not influence the
calculations. Hence, we should always first calculate the rates (derivatives), then up-
date the states.

‘ MBS-CD contains SimTemplate-Euler that provides a basic template
for this method.

6.2.3 Runge—Kutta Basics

The primary advantage of the Euler method is its simplicity. But it has many disad-
vantages; the foremost among them is that it is inefficient: very small A¢ and many
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Figure 6.3: Second-order Runge—Kutta integration. A%y is the second estimate of the rate
of change based on the midpoint value y?; y.., is obtained by weighting A%y and adding to
Vi

iterations are required to obtain acceptable accuracy. Acceptable accuracy is a relative
term, of course, and depends on the objectives of the model. Nevertheless, there are
many other, better methods. As a general method with wide applicability, the Runge—
Kutta (RK) method has many advantages. It is easy to code; its numerical behavior
is less sensitive to the size of At than the Euler method. In addition, it is remarkably
efficient: a large At provides accurate solutions.

In contrast to the Euler method, which uses a single evaluation of the derivative
to extrapolate into the future, the Runge-Kutta method uses several estimates of the
slope of the function. As aresult, the Runge—Kutta is actually a family of algorithms in
which the members are distinguished by the number of slope (derivatives) calculations
performed and weights given to those slopes. The more derivatives calculated, the
more accurate the method by reducing truncation error, but at the expense of comput-
ing time. When the number of derivatives computed is two, we have the second-order
Runge-Kutta (RK-2, also known as the mid-point method).

RK-2 is diagrammed in Fig. 6.3. Symbolically, the algorithm is as follows. Ay
refers to one of several derivatives.

1. Calculate derivative 1 using current solution and then first tentative solution
o Aly = f(y,, )AL
oy =y, +Aly2 (Tentative step based on 1/2 time step.)

2. Calculate derivative 2 using tentative solution 1.
o A%y = fOy!, 1+ At/2)At
o (No further tentative steps needed.)

3. Calculate new value for y by combining the previous A'y with different weights.
Yerar = 3+ (0 Aly) + (1- A%)

RK-2 does not use the first derivative calculated (i.e., it has a weight of 0). The nu-
merical calculations for one time step of the RK-2 on the equation dy/dt = ay, with
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Table 6.2: Comparison of Runge—Kutta and Euler methods solving dy/dt = ay, a = 0.5,
At =1.0,0.5,0.25.

Euler Euler Euler RK-2 RK-4
Time Ar=10 Ar=05 Ar=025 At=10 At=1.0 True
0.0 10.0 10.0 10.0 10.0 10.0 10.0
1.0 15.0 15.625 16.0181 16,2500 16.4844  16.4872
2.0 225 24.400 25.6579 25.3900 27.1735  27.1828

¥(0) = 10.0,a = 0.5, At = 1.0 are:
Aly, = (0.5)(10)(1.0) = 5.0
y2=10+5.0/2=125
Ay, = (0.5)(12.5)(1.0) = 6.25
A'y, =50-0+625-1=625 «— Weighted A’y
Yeear = 10.0 + 6.25 = 16.25

Compare this estimate with the true solution: y; = 16.4872.

The fourth-order Runge-Kutta uses 4 calculations of the derivatives (RK-4). The
basic steps in this method are listed below .

1. Calculate derivative 1 using current solution and then first tentative solution
o Aly = f(y;, DAz

oyl =y, +Aly/2 (Tentative step based on 1/2 time step.)
2. Calculate derivative 2 using tentative solution 1 and then second tentative
solution.
o A%y = f(yl,t + At/2)At
o V2 =y, +A%y/2 (Tentative step based on 1/2 time step.)
3. Calculate derivative 3 using tentative solution 2 and then the third tentative
solution.
e Ady = f(3%,t + At/2)At
e V¥ =y +AYy (Tentative step based on 1 whole time step.)

4. Calculate derivative 4 using tentative solution 3.
o Aty = f(y*,t+ AD)At
e |ast tentative solution not needed.
5. Calculate new value for y by combining the previous A’y with different weights.
o Ay, = H(Aly +2(A% + A3y) + Aty)
® Verar =Y+ 4Af

h MBS-CD contains SimTemplate-RK4.c with code that uses the GNU Scientific
Library (GSL) functions for solving ODESs using Runge-Kutta

Table 6.2 compares the accuracy of the Euler method with second- and fourth-
order Runge—Kutta and the true solution. This illustrates that (1) all methods become
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less accurate over time, (2) the Euler method becomes more accurate as Az decreases,
(3) the Euler method is less accurate than the Runge—Kutta method even when the
methods use the same number of derivative calculations [e.g., Euler (At = 0.5) versus
RK-2, and Euler (At = 0.25) vs RK-4], and (4) RK-4 is remarkably accurate for this
simple ODE.

6.3 Numerical Instability and Stiff Equations

Some numerical methods applied to specific equations may produce answers in which
errors due to round-off interact with algorithm truncation to produce large errors that
increase as the solution unfolds. Such methods are “unstable” and are obviously unde-
sirable: one obtains “interesting” dynamics (i.e., oscillations) that have nothing to do
with the true behavior of the model. One may envision instability arising because the
solution jumps around in the slope field, possibly alternating on either side of the true
solution with increasing deviation. In most cases, decreasing the step size will reduce
the rate of increase of these errors. Desirable integration methods are those that reduce
the errors more effectively at large step sizes. RK is generally more effective for many
more problems than Euler, but RK fails for certain equations.

A prime example of these are stiff equations. Stiffness can arise when the equa-
tions use several, very different time scales. Different time scales in equations often
cause the solution algorithm to add very large numbers to very small numbers. This
is a situation that produces large round-off and truncation errors. Some examples of
systems whose differential equations may be stiff are:

1. Algal Nutrient Uptake and Cellular Division: Nutrient uptake is a rapid pro-
cess that occurs over microseconds; cell division requires several hours (Abbott
1990).

2. Photosynthesis and Enzymatic Reactions: Oscillating light levels will produce
a rapid change in enzyme kinetic parameters but a relatively slow change in
photosynthesis at the leaf level (Gross 1982).

3. Rotating Rocket Orbiting Earth: The rocket rotation is fast compared to the
orbiting time (Rice 1983).

4. Refinery Control: Chemical reactions occur rapidly compared to the tempera-
ture response of the large vats (Rice 1983).

Additional examples from the physical sciences can be found in Brackbill and
Cohen (1985). There are two broad approaches to solving this problem of multiple
time scales. The first method is most applicable to computer simulation in which
we create submodels that correspond to the subsystems having different time scales.
For example, we could build a model of nutrient uptake and a separate model of cell
division. Integrating the dynamics of the submodels is a problem. The usual approach
is to build a simulation program that has a global clock controlling all processes. At
fixed, large intervals of the clock, a subroutine to update the slow time scale submodel
is executed. At smaller intervals, the subroutine for the fast time scale submodel is
executed. Effectively, this approach assumes that between the large intervals, the slow
process does not occur. However, as exemplified by the cell division problem, the
two processes depend on each other. Since the fast submodel generates many values
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between executions of the slow submodel, the modeler must decide which value(s)
will be used to influence the slow process. Should it be the average value, the final
value before execution of the slow submodel, the mid-interval value, or the integral of
all values over the time interval? While there are, as indicated, problems arising from
this approach, it has the benefit of forcing the modeler to propose specific hypotheses
for each of the subsystems. In essence, this approach forces us to explain the origin of
the time scales by modeling the subsystems explicitly.

The second approach comes from physics and does not attempt to identify and
model specific subprocesses that account for the existence of the time scales. An
example of this is a rotating rocket that orbits the earth. From a physical perspective,
the complex motion is a result of continuous forces acting on the rocket: angular
momentum, gravity, and so on. Rather than modeling these as separate subsystems,
a numerical approach is to find a better method of integrating the equations. The
problem of stiff equations in this context arises simply because the parameters in the
system of ODEs vary over several magnitudes. Press et al. (1992) give a concrete
example. Suppose we have the following differential equations:

du dv
i 998u + 1998v i —999u — 1999v. (6.4)

Mathematically, stiff equations are a practical problem in linear systems such as this
when all the eigenvalues are negative and the largest eigenvalue is very much larger
(at least 10 times) than the smallest eigenvalue. (See Chapter 9 for an explanation of
these terms and how to approximate nonlinear systems by linear equations.) For the
above equations, the ratio of smallest to largest eigenvalues is 1000, well above the
signature for stiffness. Without going into details, these equations produce solutions
for u and v that are the sum of negative exponentials, one of which is ¢~190 This
term requires a very small Af to accurately approximate the solution (too large a At
will miss the dynamics caused by this term by “stepping over” the changes). There are
two possible solutions: (1) decrease the step size appropriate to the fastest time scale,
and (2) use a different numerical method. Solution (1) is inefficient, but for many
biological simulations this is not an important issue, especially as desktop computers
become faster. Option (2) is feasible since many good algorithms are available (e.g.,
implicit methods), but one must choose the proper method for the problem at hand,
and the methods are more complex and difficult to program than RK or Euler. The
programming problem is not critical as libraries of numerical functions in all common
languages become available (Rice 1983; Press et al. 1992; Galassi et al. 2001).

In conclusion, time scales and stiff equations are a potential problem because bio-
logical dynamics occur over many different time scales. It is advisable, when studying
equations with which one does not have much previous experience, to monitor the net
rates of changes of each state variable. The relative net rates of change should stay
within reasonable bounds. As a very crude check, if (1/x;)(dx;/dt) > 0.2 in any time
step, then you should consider reducing the time step or using methods developed for
stiff equations. At the least, during preliminary modeling stages, the modeler should
vary the simulation time step over a wide range to determine the presence of spurious
behavior.
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6.4 Integrating ODEs with Variable Time Steps

Using small time steps to deal with stiff or nearly stiff equations can be inefficient
because small steps are not always needed. At times, all state variables are changing
slowly and large time steps are appropriate and desirable. A way to accommodate this
situation is to allow the time steps for integration to vary according to the most rapidly
changing variable. Coleman and Gay (1990) advocate this for physiological systems
using Euler integration. Given the dramatic efficiency of RK-4, a better solution is to
allow RK time steps to be variable (Press et al. 1992). In this section, we describe how
to do this.

The simplest approach to optimizing the time step for any integration method is
to calculate, at every iteration, the estimate for the next value using the current time
step and an estimate using a smaller time step. If these differ by an unacceptable
amount, then the truncation error is too great and a smaller step size is needed. This
test is repeated as many times as necessary within the current time step until the error
criterion is satisfied. Of course, the penalty for choosing a smaller but more accurate
time step is that we must perform additional calculations of the derivative.

For the Euler method, the calculations are

Yestr = Ve + Atf(yr, 1) «— full step
Yeeayz = Vi + (At/2)f (1, 1) «— midpoint value
Yienr = Yy + B/ 2D f Gy anot + A/2)  «— two half steps
The absolute (global) error estimate is
Enr = [Yrene =~ Y:‘.,.A,'
and the error relative to the current magnitude of the state variable is

By

Yt

€ar =

Instead of one derivative calculation, the above scheme requires two. While this for-
mula is useful, we can take it one step further. Given this calculated ey, we can
calculate another A’t which is the time step needed to exactly produce the target or
desired error. This permits us to both reduce the time step when the error is too large
and increase it when the error is smaller than needed. To do this, we need to compute
the largest step possible that does not produce error larger than desired. For reasons
we will leave as an exercise, the error estimates are proportional to (Af)?. But we use
this fact to note that if es, oc (At)?, then there is a target error proportional to some
other time step: e}, o« (A’t)?. Using these two proportionalities, we have

e 1/2
A't = At(ﬁ) ,
€At

where ¢, is the acceptable error specified by the modeler and A’z is the appropriate
time step to use.
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This approach also applies to RK-4, but each of the four steps must be performed
for both the full time step and the two half time steps. As with the Euler method, we
must also apply the two calculations to each state variable at each stage. Therefore,
in the step-doubling method for RK-4, we must calculate the derivative 11 times, as
compared to 4 for the nonvariable method.

Rather than discuss this approach further, we briefly mention the Runge—Kutta—
Fehlberg (RKF) method which is an alternative that is described in detail in Press et al.
(1992). The RKF method also uses an estimate of the truncation error to determine the
best time step. This method is a fifth-order RK method that requires six calculations
of the derivatives. When these calculations are recombined in a different way, they
produce a fourth-order estimate of the new y..»,. The difference in the fourth-order
and fifth-order estimates is the error, and this, once known, is used in the same manner
as above to determine the best time step. The major feature of this algorithm is that
it gives an error estimate using only six evaluations of the derivatives, rather than the
11 needed for the time step varying method described above. We will not discuss the
details here, since Press et al. (1992) do an admirable job, and, conceptually, it differs
from RK-4 only in the procedure for combining the trial solutions.

.o, (MBS-CD contains examples of using adaptive time steps in SimVariableTime. )

6.5 PDEs and the Method of Lines

Whereas the RK-4 and RKF methods are good, general methods for ordinary differ-
ential equations, partial differential equations are more difficult and, if optimal perfor-
mance is necessary, require more specialized numerical methods. We will not attempt
a discussion of these in this introductory text, but only illustrate one solution method
that reduces the problem to solving a large number of ordinary differential equations.

6.5.1 Discretization

In a spatially explicit system distributed over continuous physical space, the dynami-
cal processes described by the differential equations operate at all points in the space
(except perhaps at the boundary of the space). Obviously, these processes will also
operate at some finite subset of points in the space. To obtain an approximate, nu-
merical solution to the continuous equations, we discretize continuous space into a
large, but finite, number of grid points. Since the dynamical processes operate at each
point, we must translate continuous mathematical representations (e.g., second-order
partial derivatives to represent diffusion) into finite differences. This is analogous to
the problem of solving ODE:s at a finite number of time values.

Imagine a one-dimensional spatial axis represented as a line with nodes at fixed
intervals. The nodes are points where we will obtain solutions. Each node is given
an index number, and we will focus on one of these nodes i. To the left of i is i — 1;
to the right of i is i + 1. The first process that we translate is advection. A common
approximation for advection at node i is the midpoint of the slope defined by the
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neighboring nodes :

dq qi+1 — gi-1
Us ((')x)i ~ Ux( 2Ax )i’ ©5)
where Ax is the finite space interval in physical units, g; is the quantity of the state
variable at node i, and we assume that the flux rate (i.e., velocity) in the x direction
(Uy) is independent of position (i). This expression simply states that the change at
node i is the inflow (from i + 1) minus the outflow (to i — 1). Of course, the direction
of flow could be in the opposite direction, but this is accounted for by the sign of the
coeflicient.
Likewise, a reasonable approximation for the second-order diffusion process is

& q (Gi1 — q) — (qi — gi-1)
D(a:zf),- o ¥ )i

N D(4i+1 - 2¢q; +Qi—1) _ ©66)

Ax?

As the first equation above indicates, Eq. 6.6 is simply the differences of the gradients
on either side of node i divided by the distance between nodes. This is the basic
diffusion concept we developed in Chapter 5.

In typical mass transport models (Chapter 5), the processes that move mass (or
energy and momentum) are additive in two or three dimensions. This means that the
above discretizations can be rewritten for other dimensions by changing the spatial
index (e.g., x to y). Mass transport models also have a term describing the rate of
change of the variable (i.e., dy/0r). This term can also be discretized with a finite
difference scheme so that all dimensions (space and time) are discrete.

The above method of discretization is called central differencing because the scheme
is centered around the node currently being evaluated (i in Egs. 6.5 and 6.6). Once the
PDEs have been discretized, they must be solved. There are two broad families of
methods (Kahaner et al. 1992). If time and space are both discretized, the classical fi-
nite difference or finite element methods based on solving a set of algebraic equations
are used (Press et al. 1992). If time is not discretized, but space is, we use the method
of lines. Since this builds on our previous discussions, we present this method here as
one that is generally useful and understandable.

6.5.2 Method of Lines and ODEs

Consider the flow of a contaminant in a river (p) with advection, molecular diffusion,
and bioaccumulation in biotic components (b). A plausible model might be

dp . bp  _&p b
o = “Usze + D55 ~kb(1- 2
6.7)
% _iwf1-28)-,,2
ot B *ox’

where the velocity in the x direction is Uy, D is diffusivity, and contaminant uptake
(k) by biota decreases as the amount of the biota (b) increases to a maximum biomass
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Figure 6.4: Method of lines representation for a one-dimensional advection-diffusion-
reaction model of contaminant flow and bioaccumulation. (a) Three discrete spatial lines
moving forward in continuous time. (b) Forrester diagram of ODEs solved at each space
node.

level (B). This relationship resembles the logistic equation of population growth. The
differential equation for the biota describes the uptake and bioaccumulation as well as
an advective flow away from the node at the rate v,. A physical, chemical, or biological
process such as chemical uptake is called a reaction. Consequently, equations such as
Eqgs. 6.7 are called reaction-diffusion equations.

In the method of lines, we discretize space but not time. Figure 6.4 shows this
relationship and a simplified Forrester diagram for three of the nodes. Note that we
basically replace each node with a set of compartments (p and b) that interact with
each other and the relevant compartments at neighboring spatial nodes.

Using i to index the nodes, the ODEs that must be solved at each node are

dpi _ Pl = Pi-t | pPint = 2Pit Pict kb(l _ _13)

dt 2Ax Ax?

(6.8)
db; b 1__1_7_ _ bii — by
ar B) VT 2ax

All of the dp;/dt and db;/dt must be solved simultaneously using an ODE method
such as RKF. The spatial scale (Ax) must be chosen to adequately represent the rates
of mass movement. Thus, the time step and the spatial grid size are interrelated. If the
grid size is too large, we may not correctly represent the dynamics at any node. If the
grid size is too small, we will perform unnecessary calculations. This is an important
issue with the method of lines, because the number of calculations can become large.
For example, if the stretch of river to be modeled is 1000 m, and we wish to describe
changes every meter, then, in the above model, we must solve 2000 ODEs at each
time step. If the problem is two-dimensional, then the number of equations to solve
increases with the square of the number of nodes along one linear dimension. To
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double the spatial area modeled or halve the gird resolution requires four times as
many equations to solve. In three dimensions, the number of equations increases as
the cube of the number of nodes. For a three-dimensional grid 100 m on a side at a
resolution of 1 m between nodes, the number of equations to be solved is 10 nodes
times the number of ODEs per node. To decrease the spatial resolution to 10 cm
requires 10° nodes. Even if it takes only one microsecond to compute all the ODEs
associated with a single node, 1 minute of simulated time will require over 15 minutes
of computer time. (No wonder we can’t predict the weather!) More specialized and
sophisticated methods for solving PDEs can improve this considerably, but the basic
problem remains. Be prepared for long runs if your model is spatially explicit and
requires high resolution. This is not a hypothetical problem; one spatially explicit
model of a wetland ecosystem solves 19,832 equations with a time step of 1 week to
simulate a period of 22 years (Maxwell and Costanza 1993).

6.5.3 Boundary Conditions

One final detail is unresolved. Equations 6.8 will work well for grid nodes that are
on the interior of the space being simulated. We must treat the boundary nodes dif-
ferently because they do not have all the neighbors required by the equations. The
first issue to resolve is the topology of the nodes: to which nodes (if any) are the
boundary nodes connected? There are three possibilities. (1) If the boundary is a true
boundary, then the grid ends at the boundary and the programmer must deal with the
special cases of the edges and corners. (2) The grid may be embedded in a larger
grid in order to maintain a close connection with physical space but at the same time
to avoid edge effects that arise from (1). In this case, the behavior of the boundary
must still be programmed. (3) The grid may be embedded in a virtual grid in which
the boundary nodes are “fictitious” and determined during the solution by extrapola-
tion from adjacent nodes in the interior of the grid. And (4), the topology need not
conform to physical space (at least, not physical space as we know it). One common
re-assignment of neighborhoods that eliminates the boundary condition problem is to
map neighbors onto a torus: the neighbors of the top edge are nodes at the bottom; the
neighbors of the left edge are the nodes at the right edge. To see this generates a torus:
roll a piece of paper length-wise into a tube and then bend the tube ends together. This
is also known as periodic boundary conditions.

Topologies (1) and (2) require that the dynamics on the edge nodes are defined
properly. Two basic approaches are commonly used: (1) force the values of the bound-
ary nodes to specific values (e.g., 0.0, but which may vary in time), (2) set the fluxes
into or out of the boundary nodes to some specific magnitude (which may also vary
in time). Whatever the condition chosen, in the method of lines, special equations are
solved that apply to the boundary points.

MBS-CD contains SimMOL which implements simple 1D diffusion and movement .n,
using the method of lines.

6.6 Exercises

1. Graph all of the slopes (Ay’) used in the fourth-order Runge-Kutta method.



122

Chapter 6 o Numerical Techniques

. If dy/dt = ay, expand the Euler approximation for both Az and At/2 for 1 full

time step to show that Ey, = (ay/4)(A1)?.

. Create a table analogous to Table 6.2 using finite difference equations. In other

words, let a = 0.5 and solve for two time steps, then let a = 0.25 and solve for
four time steps.

. Investigate the effect of RK-4 time steps on Eq. 6.4. Try At = (1.0,0.5,0.1,0.01).

Continue to approximate the time step needed for the dynamics to converge.

. Torricelli’s law can be used to model fluid flow from a small hole at the bottom

of a cylindrical container:

av \4
P

where V is the volume of water in the container, r is the the hole radius (meters),
g is gravitational acceleration constant, and R is the container radius.

This model will produce negative volumes when At is only moderately large.
Solve this model using both Euler and Runge-Kutta and investigate the approx-
imate maximum time step in both methods larger than which will produce neg-
ative volumes. How small must At be to prevent this in the Euler method? How
small in the RK method?

Solve the Torricelli model using a variable time step Euler method. Plot the step
size over time.

h (MBS-CD contains SimVariableEuler to help with this exercise. J

Modity MBS-CD code SimMOL to simulate Egs. 6.7. Base the parameters on a
contaminant of your choice (e.g., mercury, DDT).
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Parameter Estimation

7.1 The Problem

The universe does not seem to have been designed by an information retrieval
specialist. — Anderson (1974)

EVERY MODEL THAT is used to make quantitative predictions contains parameters
whose values must be specified. Even very simple models can easily contain
a dozen parameters needing estimation: the Lotka—Volterra predation model with only
two equations and simple, linear relations has four parameters. It is to be hoped that
all of the parameters can be estimated in principle (i.e., have operational definitions),
but even if this is true, performing the necessary experiments to estimate these values
is often difficult in practice.

The following example illustrates the concept. Suppose we wish to model the pop-
ulation dynamics of a single population of an animal in which reproduction is limited
at high densities. Basic ecological considerations lead us to perform a series of labora-
tory experiments in which we control the population density, run the experiment long
enough to allow most females to produce offspring, then calculate the average number
of offspring each female produced. We assume we are careful in our procedures and
design to ensure that the number of adult females does not change significantly during
the experiment.

From these experiments, we obtain a set of paired numbers and a graphical (func-
tional) relation (Fig. 7.1). We wish to use this functional relation as the basis for our
population dynamics model, so we must translate it into an equation. Using functions
from Section 5.3, we might choose the power function: y = k; + kpx®, where y is the
offspring per female and x is the number of females. This equation has three parame-
ters whose values must be determined. This is the parameter estimation problem.

In general, the basic problem is that given a functional form with a dependent
variable and one or more independent variables, and given data such that the observed
dependent variable can be plotted against the observed independent variable(s), we
wish to know the estimates of the parameters of our function that provide the best fit
to the data. There are several difficult words in that statement, particularly “estimate”
and “best.” Good introductions to these topics are Richter and Séndgerath (1990) and
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Figure 7.1: Experimental results for number of offspring per female at different densities
of females.

McCallum (2000). Most concepts of best involve minimizing the distance between
the data and the function, summed over all data points. But this leaves open how to
measure distance. Some plausible candidate measures of distance are (a) euclidean
distance between function and data points, (b) square of vertical distance of data from
the function, (c) the chi-square: square of vertical distance divided by the variance of
the data, (d) absolute value of vertical distance, (¢) maximum distance of any one data
point from the function as measured by one of the previous methods. By far the most
common is (b), the least squares criterion; (c) is the basis for maximum likelihood
estimates (see Chapter 8).

In the following discussion, we assume that we have a mathematical function to
fit (e.g., ¥y = ax + b), a set of parameters used in the function (e.g., @,b ), and a set
of observations [i.e., a matched set of x; (independent observations) and y; (dependent
observations)]. We wish to find the parameter values that provide the “best” fit to a
particular data set. That is, for functions (y) of a single independent variable, x, we
have data pairs of the form (x;, y;;), where we may have more than one y observation
at a given x value. The statistical model we use is

yij = [, pi) + &,

where py are k parameters for which we wish the best estimates and ¢ is the error
associated with the ith value of the independent variable. But this depends on what we
mean by “best,” that is, how we will measure €. The standard definition of best is the
least-squared difference, which attempts to minimize the error term:

min Z €’ = min [Z(yij - f(xi, Pk))z] .

This criterion has many nice features (e.g., unbiased, identical to maximum likelihood
estimator for some conditions). We will emphasize this approach in the following
sections. This method does not, however, tell us which function to use. If we wish
only to obtain a good fit with a function that passes through as many points as possible,
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then a cubic spline fit would be a good choice (Chapter 5). Usually, however, we wish
to use functions with few parameters or to use a particular function, one perhaps that
was derived from first principles. In this case, we can use some of the techniques
described below.

7.2 Simple Linear Regression

One of the simplest functions we can attempt to fit to data is the linear function (y =
mx + b), where m is the slope and b is the intercept. Simple linear regression, which
involves only a single independent variable, should be familiar to the reader from
introductory statistics. However, using regression to estimate model parameters often
requires careful thought about the structure of the data and the model being fit. By
being clever, one can often obtain the estimates from data which on the surface may
appear to be nonlinear.

7.2.1 Static Applications

The easiest case to which linear regression applies is a simple experiment with a single
independent variable. This is a classical application of linear regression in which the
slope and intercept are the parameters of interest. For example, we might perform a
feeding experiment in which the density of prey is controlled (varied) and feeding rate
(numbers eaten in a trial period) observed. Assuming the data were approximately
linear, we could model this as f = mp (where, f is feeding rate, p is prey density) and
estimate m using linear regression. This approach to parameter estimation is covered
in many introductory statistics books, and is not discussed further here.

7.2.2 Dynamic Applications

The models and systems discussed here have all been dynamic. Data taken from dy-
namic sequences of observations can often be used directly for parameter estimation
by linear regression. For example, the density-independent model

dN
dt
is itself a linear equation with the slope equal to ». Therefore, to estimate » we have
only to make observations of a population growing according to the equation at dis-
crete times. From these data, we can calculate absolute population change (AN/At)
and regress these values against the corresponding N,. So, although this is not an ex-
periment in the classical sense, we can use dynamic data in linear regression to obtain
the parameter r.
It is sometimes necessary to perform simple transformations on these data to obtain
estimates for more complex models. For example, the density-dependent model is
51—1! =rN (1 - -]!)
dt K

rN

We note that this is a nonlinear equation (it has an N? term), and, therefore, we can-
not obtain estimates from simple linear regression of the absolute population change
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Figure 7.2: Relation of per capita growth rate to the parameters r and X in the density-
dependent model.

against N. However, by dividing both sides by N we produce a new dependent vari-
able 1/N -dN/dt that is a linear function of N and has a negative slope (Fig. 7.2). Both
of these examples illustrate that careful reflection on the structure of the equations and
the types of information that can be obtained from observations is necessary to effec-
tively estimate parameters. A problem with these applications is that the independent
variable () is not usually known exactly. Sokal and Rohlf (1981) discuss this issue.

7.2.3 Linear Regression on Transformed Equations

Regardless of the source of the data for regression (i.e., from static experiments or
dynamic data), often the relations are nonlinear. In these cases, we may be able to
transform the equation to a linear form. This is commonly taught in introductory
statistics courses. We give only a few examples to make the point and then give some
cautions on the use of this technique when better methods are available.

Division by a Variable This method was shown above when we created the per capita
growth rate by dividing both sides of the differential equation by N. The idea is to
reduce a squared term to a linear one.

Logarithms Power functions are expressions in which the parameter to be estimated
is part of the power of a constant or independent variable. These equations can be
made linear by a log transform. For example,

Axb

log A + blog(x). .1

y
logy

This transform creates a new variable (log y); by regressing this against log(x) we can
estimate A as the anti-log of the intercept. The slope is b.

Inverses Hyperbolic functions can be linearized by inverting the function. A famous
example is the Michaelis—Menten relation for enzyme kinetics:

Ax
= 72
Y B+x 7.2
=§l+—1-. (7.3)

>

;Ax
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Figure 7.3: Lineweaver—Burk plot to obtain the Michaelis-Menten parameters.

This relationship and Fig. 7.3 are known as the Lineweaver—Burk plot. The maximum
rate of the reaction (V,,,, in Fig. 7.3 and A in Eq. 7.3) is the inverse of the intercept
with the y-axis. The half-saturation constant (K, in Fig. 7.3 and B in Eq. 7.3) is the
slope multiplied by V... This equation is still commonly used in biochemical and
physiological studies. However, a transformation that performs better is the Eadie-
Hofstee equation. See Exercise S.

7.2.4 Problems with Transformations

All things considered, use of linear regression for parameter estimation of nonlinear
equations is a poor method. There are several reasons for this.

1. One rationale for transforming data is to cause the errors between data and the
functions to better fit the assumptions of linear regression. This does not al-
ways occur and depends on the data and transforming function. In particular,
the important linear regression assumptions to satisfy are error normality and
homoscedasticity. Merely straightening a curved line does not ensure that these
assumptions are satisfied (Seber and Wild 1989; Zar 1999).

2. More advanced and better methods are commonly available in easy-to-use desk-
top computer statistical packages.

3. Linear regression can estimate only two parameters. Many nonlinear equations
use more than two parameters; using linear regression requires that other meth-
ods be used to estimate the remaining parameters. For example, the sigmoid
curve (Sec. 5.3, Equation E), and its linear transformation is

A

Y = 1T BeCr

A (7.4)
ln(—; - 1) = In(B) + Cx.

There are three parameters (A, B, and C), and one of these must be assumed in
order to estimate the other two.
4. Inversion transformations can produce clustering of the resulting transformed
data; this can produce spurious statistical correlations between the variables.
Consider a set of values evenly placed every 0.5 units between 0.5 and 3.0.
The inverse transformation converts this to the sequence: 2.0, 1.0, 0.67, 0.5, 0.4,
and 0.33. Most of the numbers are clustered near 0 and there is now an isolated
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point at 2.0. In extreme cases, this condition can produce isolated groups of
datum points that can incorrectly inflate the degree of association between the
dependent and independent variables.

5. Inverse transformations turn small numbers into large numbers. Often, the mea-
surement of small quantities has large relative errors. These errors will be mag-
nified after transformation.

6. Since the log of a number less than or equal to 0.0 is undefined, logarithms can
require that data be discarded or transformed prior to taking the logarithm.

7. In parameter estimation for modeling purposes, we almost always are inter-
ested in the parameter values stated in their original (untransformed) units. This
requires that we “detransform” the numbers (e.g., take the anti-log of the inter-
cept). Sometimes this detransformation will produce biased results (Seber and
Wild 1989).

7.3 Nonlinear Equations Linear in the Parameters

There are powerful analytical techniques for estimating parameters in a special class of
nonlinear functions. The class is characterized by being linear in the parameters. This
means that although the equation is nonlinear with respect to the independent variable
(i.e., x), the parameter (@) is not involved in a nonlinear expression. The polynomial
equation y = ax? is linear with respect to a. Some examples of equations that are
nonlinear in the parameters are

ax b

y=b+x y = aexp(bx) y=ax".

If the equations are linear in the parameters, we can use several analytical tech-
niques (nonlinear or polynomial regression). If they are nonlinear, we must use itera-
tive techniques. Below we discuss the polynomial regression and in Sec. 7.4 a few of
the iterative techniques.

7.3.1 Multiple Linear Regression

If the equation can be represented as a sum of terms, each of which is linear in the
parameters (such as a polynomial equation), then multiple linear regression can be
used to estimate the parameters. For example, if the equation is

y=a+bx+cx,

we notice that if we consider x> to be a separate variable (call it w, for example), then
the equation is linear, and any of several software packages that can perform multiple
linear regression will estimate c.

7.3.2 Polynomial Regression

A more general approach is to use nonlinear least-squares regression. I will describe
this technique for the special case of a polynomial, but it will work with any equation



§7.3: Nonlinear Equations Linear in the Parameters 129

that is linear in the parameters. The discussion below develops the theory only to the
point of estimating the parameters.

The general model for the relation of an observed dependent variable to a function
evaluated at various observed independent variable points is

yij = [ pi) — &, (7.5)

where y;; are multiple observations of the dependent variable at the x; observations,
and ¢ is the error between the predicted [f()] and observed values of the dependent
variable. The x; are assumed to be known exactly.

To implement the least-squares criterion, we wish to choose the p; in order to
minimize the sum of squared errors (¢; in Eq. 7.5) over all the x; observations. That is,
we want the py such that

. . 2
min Z € = min Z (f(x,-, Di) — yij) . (7.6)
i i
We illustrate the method for the particular function

fGxi, pr) = A+ Bx; + CxZ,

where the problem is to find A, B, and C that satisfy our minimization criterion. So,
we have (dropping the j subscript on the multiple y; observations)

€=(A+Bx;+Cx) -y

2
g= Ze,z = Z((A+Bxi+Cx,-2)—y,-) .
i i
After expanding,
g= Z [ (A? + 2ABx; + 2ACx? — 2Ay;) + (B*x? + 2BCx; — 2Bx;y;)
i
+ (C?x} - 202y, + y%)] .

Recall from calculus that the minima and maxima of functions relative to a variable

can be found by setting the derivative of the function to 0. We wish to minimize g with

respect to three “variables” (A, B, and C) simultaneously. To do this, we form three

derivatives: dg/0A, dg/0B, and dg/AC. This yields

g_i = Z(ZA +2Bx; + 2Cx? - 2y))
=24 142B) x+2C Y -2y
i i i i
g—; = 2Ain+2BZi:xf+2CZx?—ZinYi
g% :2AZx§+2BZi:x?+2C2x?—22x?yi.
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(The reader should verify these equations.) The error function g will be minimized at
those A, B, C that cause each of the above partial derivatives to be 0. Therefore, we
set the partials to zero to get three equations in three unknowns:

An+BZx,~+CZx%=Zy,~ (0g/0A = 0)
i i i
Ain+BZx,.2+CZx? = Zx,-yi (0g/0B =0)
AY 2+BY 2 +CY ="ty (8g/0C = 0)
i i 7 ;

Equations such as these can be easily solved once they are re-written in matrix nota-

tion:
2 i no XX Zix,'z A
i XiYi Tk Xixk Tix B
Zix,?yi Zix,? Zix? Zix? C
D = S P.

P is the vector of unknown parameters whose values will be known if we can isolate P
on one side of the equation (“solve” for the elements of P). Using matrix operations,
we do this by pre-multiplying both sides of the equation by the inverse of S (denoted
SH

S 'D=S"'SP=1P =P,

where I is the identity matrix (1 along the main diagonal and O everywhere else). So,
voild: plug in data for D and S, determine S™!, and Bob’s your uncle. Matrix inver-
sion can be done by hand for small matrices or by using a general-purpose statistics
package.

7.4 Equations with Nonlinear Parameters

Some equations are not linear in the parameters and cannot or should not be trans-
formed. Iterative methods must be used to estimate their parameters. We discuss two
different methods: curvature-based and derivative-free. But we set the stage with the
following geometric picture of the problem.

We again use the least-squares as the error function (Eq. 7.6) to minimize. This
function depends on both the fitting function (f) and the data (y;). For fixed f and ob-
served y;, the error function takes a different value for each combination of parameters.
This produces a surface in parameter space such as that shown in Fig. 7.4.

The general problem in parameter estimation is to find the minimum point (i.e.,
the combination of parameters that corresponds to minimum error). Iterative methods
start at some arbitrary point in the space [(p], p;) in Fig. 7.4b)] and move from a
parameter combination corresponding to large error to a combination with small error.
That is, these algorithms move down the slope of the surface stopping only when
the current parameter set is sufficiently close to the minimum. The problem is to
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Figure 7.4: Error surface (a) and contour plot (b) for hypothetical fitting function in param-
eter space. Point p{, p; is a particular set of parameters. This figure shows a single global
minimum, but more complex error “landscapes” will have multiple local minima.

create an algorithm that does this efficiently. There are two broad classes of methods:
those that use the slope of the error function in parameter space and those that do not.
For comparison, Fig. 7.5 shows some of the extreme differences among the methods.
At the most brutishly unthoughtful is the brute force method of Fig. 7.5a. Here we
simply define a wide range of values over all the parameters and an increment between
successive positions. For each of these points (filled dots), we compute the error
function. We then either use visual inspection by plotting the error surface if there
are only two parameters, or do a systematic search among the calculated points to find
the smallest error. This approach is easy to program, but horribly inefficient since we
compute many points that are poor parameter choices. A slightly less brutish method
is Fig. 7.5b in which one chooses a starting point (e.g., random), computes the error
in four points surrounding that point, choosing the point with the smallest error as the
best choice for the next iteration. This is repeated until a stopping criterion is met.

We must not desire all to begin by perfection. It matters little how we begin,
provided we be resolved to go on well and end well.

— Memorial Church at Stanford University: West Arcade Wall

In Fig. 7.5¢, in addition to a starting point, we also choose an initial direction
parallel to one of the axes and move downhill in that direction until the surface slope
increases. This will be the minimum of the gradient along that line of travel. We then
choose a new direction parallel with the second axis and move to the minimum of the
slope along that line of travel. This second direction will not necessarily be along the
direction of steepest descent since it is parallel to the axes, not oriented to the shape
of the topography. This method does not use characteristics of the slope to choose the
next direction. As a consequence, this method, while able to take long steps in the
correct direction, can frequently get trapped zig-zagging down a long narrow valley.

7.4.1 Gradient Methods

Figure 7.5d illustrates the simplest of the gradient methods that combine line mini-
mization with gradient information. The direction of travel is based on the gradient of
the slope, which is orthogonal to the previous direction that brought the current itera-
tion to the line minimum., This can be more efficient than the method of Fig. 7.5¢, but
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Figure 7.5: Four methods of many for finding the minimum of an error function. The
ellipses represent the unknown error surface. (a) Brute Force: evaluate the error function
for many points; choose the point with smallest error. (b) Local Points: begin at arbitrary

- starting point, iteratively evaluate the error function for four points (in NSEW directions),
choosing the smallest for the next cycle. (c) Line Minimization Parallel to Axes: from a
starting point, move in a direction parallel to one of the axes until the gradient increases
(the minimum along the line of travel); repeat with new direction parallel to the second axis.
{d) Line Minimization - Steepest Descent: from a starting point, travel along any direction
until surface slope increases; choose new direction orthogonal to surface slope (i.e, the
steepest gradient possible).

will still get trapped in narrow valleys. (The reader should verify this by tracing the
vectors for steepest descent on error contours for a strongly curved “banana-shaped”
surface with a minimum at one end.)

By far the most efficient methods involve assuming a particular function for the
error surface in the neighborhood of the current best set of parameters. Since we
do not know what this function is, we approximate it with the Taylor series. See
section 9.2.2 for a description of this function, but it is the sum of progressively higher
order derivatives of the function: first derivatives (gradient) plus second derivatives
(curvature) plus third derivatives, and so on. Gradient iterative methods, as a class,
calculate the slope and curvature of the surface at the current set of parameters using a
Taylor approximation and base the direction to change parameters on the direction of
greatest change in the error surface. This can be a powerful method, but since the shape
of the error surface is not known, the derivatives must be numerically calculated. This
can be computationally expensive. Although there are many methods and variants,
four are of fundamental importance (Sorenson 1980). All of the following require
either that the modeler provide the derivative of the function to be fit, or that the
derivatives be numerically approximated.
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Gauss This method truncates the Taylor series at the first-order terms. (In actuality,
Gauss’ method does not expand the error surface function, but a function related to it.)
In other words, it approximates the surface at the current solution point to a flat surface
(e.g., plane). This method requires that a matrix composed of first-order derivatives
be computed and inverted. An explicit step-size parameter in the algorithm controls
the error associated with the linearization.

Newton—Raphson This method is similar to Gauss’ method, but approximates the
surface to a quadratic function by truncating the Taylor series after the second-order
terms. This requires that a complex matrix of first- and second-order derivatives be
computed and inverted. It has an explicit step-size parameter.

Steepest Descent This is a simplification of the Newton—Raphson method. It elim-
inates the second-order derivatives and the matrix inversion, but retains the step-size
parameter (see Fig. 7.5).

Levenberg-Marquardt (LM) This method combines steepest descent with second-
order derivatives. It is one of the most popular methods.

MBS-CD contains SimFit_LM_Power that uses functions for '
Levenberg-Marquardt parameter estimation in the SimPlot package.

To give the reader some sense of what is involved with this method, we will discuss
a few of the details in the context of two-dimensions (two parameters to fit). The basic
idea is to iteratively change both parameters simultaneously:

pl,i+1) _ (Pl,i+1) + (Apl,i)
P2,ixl P2+l Apz,; (7.7)
Pi1 = P+ Ap

where i indexes the iteration number.

The problem is to compute a good value for Ap;. The LM method tries to use both
the gradient (slope) of the error surface as well as its curvature to estimate Ap;. By
using the latter information, we will be able to reduce the zig-zagging along valleys to
which steepest descent is prone. The slope has the usual interpretation: de/dp;, where
€ represents the error between data and the predicted value for the function to fit based
on the current parameter values (p;). So, in this two-dimensional case, the gradient is
a vector with two elements, one for each parameter. The curvature is the slope of the
slopes in all the directions. This Hessian, or curvature, matrix is

& e &€
Op10p) Op10p,
C= 7.8
& e o%e 7%

Op20p1 Op20p2

The units of one of the elements is [error units] divided by [(parameter units)Z?].

The most desirable approach is to use the Hessian, but it is simpler to first describe
how steepest descent works. Equation 7.7 is simple in this case, assuming the solution
is currently at the line minimum of the last traverse across the surface:

Pir1 =Pi — A Ve 79
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where A is a constant that determines the size of the step to take and has units [ (param-
eter units)?]+[error units]. Ve is a vector with elements like de/dp, and € can
be any legitimate measure of error (e.g., x?, squared errors, absolute value of the
difference, etc). So, only the first derivative is needed by steepest descent.

Steepest descent is performed if the following use of second derivatives fails to
reduce the error. This aspect of LM is based on the Taylor series approximation to the
error function that includes terms up through second order. We assume that we are at
a point in parameter space which is a minimum for the direction used by the imme-
diately previous iteration. The problem is as before: choose the Ap; to move toward
on a straight line, but in this case we want to use both the first and second deriva-
tives to inform our choice. We need an equation that relates these 3 components. An
analogy with macroscopic (Newtonian) motion will help. Velocity is the derivative
of distance with respect to time (i.e., the “gradient” of position over time). Similarly,
acceleration is the derivative of velocity with respect to time, or the second derivative
of position with respect to time. Its units are [position]+[time?]. If we multiply
velocity (dx/dt) by a finite time (Af), we get the distance traveled over the interval. If
we multiply acceleration (d?x/df*) by At, we get average velocity over the time inter-
val (dx/dt, the gradient). Analogizing motion and time with error minimization and
parameter distance, the relation we seek among the 3 components is: the product of
the second derivative of errors and a finite unit of parameter distance will be approxi-
mately the first derivative of errors. This latter quantity is the gradient of errors with
respect to parameter distance. In other words:

CAp = Ve.
We can compute C and Ve from our data and function, so we can solve for Ap:
Ap = C'Ve.
After skipping many of the fine points:
pis1 =pi — C ™' Ve. (7.10)

For the fine points, see Press et al. (1992), but this is the general idea. Comparing
Eq. 7.9 (using steepest descent) and Eq. 7.10 (using curvature and gradient) shows
how the next direction of travel will be modified by the curvature matrix. In contrast,
steepest descent uses a fixed (or at least, arbitrary) coefficient to scale all directions
by the same amount that does not vary with the shape or steepness of the surface (4,).
LM, in long valleys, instead of using the gradient only, the direction of travel is angled
in the direction of the valley axis through the dependency of the error surface on both
pi1 and p; as expressed in the elements of the curvature matrix (Eq. 7.8).

The difference can even be seen in one dimensional searches in terms of the size
of step to take, but where it is easy to compute the inverse of the Hessian (a scalar in
that case). Suppose the error surface was exactly a quadratic function:

€=0.1p? - 2p; + 10
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The derivatives needed are:

de

_dp1 =-2+ 0.2p1 (7.11)
de
— =" =02, 7.12
&py ( )

where €” is the second derivative of €. If we use only steepest descent, arbitrarily
choose A = 1, and start with initial guess p; o = 20, Eq. 7.9 gives the parameter value
in next iteration as:

p11 = 20 - (1)[-2.0 + (0.2)20] = 18
whereas using curvature as defined in Eq. 7.10 gives:

p11=20- (1/0.2)[—2.0 +(0.2)20]1 =10

Using Eq. 7.11, we see that the minimum is exactly at p; = 10. The LM method using
curvature information goes directly to the minimum in one iteration. Steepest descent
would take many more interactions, primarily because we have chosen A poorly. With
quadratic functions, it happens that €” is a constant, so steepest descent using that
constant value (e.g., 2 = 5 in the above example) would also jump to the minimum,
but C~1, the inverse Hessian, calculates that value directly and dynamically, as needed
during the iteration. The second derivative becomes important when we have more
than one parameter and a non-quadratic error function (particularly those for which
€’ depends on p;). A small price to pay for this method is that we must provide
the derivative of the function to fit. Sometimes this can be a challenge, but there are
numerical methods for this step as well. The complete LM method refines this basic
idea expressed in Eqs. 7.9 and 7.10 by nicely integrating steepest descent and curvature
and by computing the step sizes in an intelligent way so as to increase the method’s
stability and efficiency.

7.4.2 Direct Methods

Because of the computational cost of numerically approximating derivatives and per-
forming matrix inversion, direct methods are an attractive alternative. They do not
require derivatives and choose the direction for the next move by directly evaluat-
ing the error surface in the neighborhood of the current point (Fig. 7.5b). The main
disadvantages of the method of Fig. 7.5b are that it examines values in a fixed neigh-
borhood and it will zig-zag. Direct methods that adapt to the local topography will be
more efficient.

Simplex

A graphically appealing adaptive direct method is the Nelder-Mead simplex method
(Nelder and Mead 1965; Caceci and Cacheris 1984). [This method should not be con-
fused with a method of the same name used in the optimization of linear equations
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Figure 7.6: A simplex in (a) two- and (b) three-dimensional parameter space.

(linear programming).] This parameter estimation method is based on moving a geo-
metric object (the simplex) through parameter space until the object encloses the best
estimate.

A simplex is a polygonal figure with one vertex more than the dimensions of
the space in which it is embedded. For example, if the space has two dimensions
(Fig. 7.6a), then the simplex has three vertices (i.e., a triangle). If the space is three-
dimensional, the simplex is a tetrahedron (Fig. 7.6b). The vertices of the figure corre-
spond to points in parameter space so that each vertex is a combination of parameters
that may satisfy our stopping criterion for the approach to the true parameters. The
simplex method is an algorithm that alters the location of the simplex in parameter
space so that when the stopping criterion is satisfied, the “best” values of the parame-
ters are contained within the edges of the simplex.

An overview of the process is as follows. In a space of n — 1 parameters, the
simplex algorithm begins with n known starting points; these are the vertices of the
first simplex. Each vertex corresponds to a parameter set for the function. At each of
these vertices, we calculate the error. Typically, the error is the square of the difference
between the function and all of the datum points, but it could be another criterion. Of
the n vertices, one will be best in the sense that its error will be smallest (vertex B),
one will have the next smallest error (vertex O), and one will be the worst with the
largest error (vertex W). Using these results, we transform the simplex into one that is
closer to a point that minimizes the error function using four fundamental operations
(Table 7.1).

These operations are designed so that the magnitude of the transformation is dy-
namic during the search. When the current solution is far away from the minimum, we

Table 7.1: Fundamental operations on a simplex (see Fig. 7.7).

Reflection Extend a line d units long from W to the midpoint of the B~O edge and
d units beyond. The end of the line 24 units long is the trial vertex (W’).

Expansion If W’ is an improvement, continue the extension of the line another d
units in the same direction to W”’.

Contraction If reflection shows no improvement, extend a line d/2 units long from W
to the midpoint of the B-O edge. Create a new vertex (W’) at this point.

Shrinkage If none of the above, create two new vertices, one at the midpoint of the
B-O edge and the other at the midpoint of the B-W edge.
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Figure 7.7: The four operations on the vertices of a two-dimensional simplex. W, O, B
= worst, intermediate, and best vertex; m = midpoint of an edge. See Table 7.1 for other
definitions.

Figure 7.8: An example of simplex convergence on a minimum error function. The axes
are the parameters of an equation. The ellipses are the contours of the error between the
function and a fixed data set (high values at edges). The triangles are the simplexes as they
move over the surface from simplex “012” to converge on the minimum in the center of the
contours.

wish the algorithm to take big steps (make large transformations). When it is close to
the minimum we want the algorithm to take small steps. Further, when the slope of the
error surface is shallow, the algorithm takes big steps; the converse occurs when the
slope is steep. We illustrate the approach for functions with two unknown parameters
(i.e., the parameter space is two-dimensional). Refer to Fig. 7.7 for notation.

Figure 7.8 shows an example of the movement of a simplex. The curved lines
are contour lines representing the error function. The initial three guesses for the two
parameters are in the upper right corner; the minimum error is in the center of the
figure. From the initial simplex (vertices 012), we reflect and then expand to simplex
123. From this, we again reflect and expand to get 134. We then reflect 134 to
simplex 345, but expanding in the direction of vertex 5 makes the estimate worse, so
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we stop searching in this direction. We then reflect 345 to get 456, but expansion
fails. We reflect and expand 456 to 467, then reflect only to get 478. Reflection,
but no expansion, gets us 789, then 79 10. Reflection of the latter simplex fails, so
we contract to 7 10 11. This process continues until the differences in the error of
the three estimates (one estimate at each vertex) is less than a threshold. The final
parameter estimate is the average of the parameter sets at each of the vertices.

Marsili-Libelli (1992) generalized the simplex method to incorporate dynamically
varying amounts of expansion and contraction.

' MBS-CD contains SimFit_Simplex Power that use functions for Nelder-Mead
simplex parameter estimation.

7.5 Calibration to Dynamic Data

Above we were concerned with data sets in which the independent variable was not
time. These data are typical of situations in which we can find functional relations
between variables (e.g., between per capita growth rate and population size). Another
approach to fitting parameters in a dynamic model is to find a set of parameters that
minimize the sum of errors between the dynamic model output (e.g., numbers vs time)
and similar observed dynamic trajectories over the entire time period simulated. There
are two cases to consider: (1) the function to fit is an analytical solution to a differential
equation and (2) the function to fit is the results of a simulation model.

The first case requires no new concepts. For example, a dynamic model based
on density-dependent growth is sufficiently simple that we can solve the differential

equation
(7.13)
NO= T

where r is maximum per capita growth rate, K is carrying capacity, and 8 is related to
the starting population size [N(0)]. We can estimate all three parameters by fitting the
function N(¢) to experimental data consisting of population size over time. Obviously,
N(2) is nonlinear in the parameters so we must use one of the techniques for nonlinear
regression (transformation, gradient or direct methods).

If the model consists of a set of interrelated linear differential equations, then gen-
eral analytical solutions to the dynamics can be stated. For example, if the model is
the linear system:

dy

%=ax+by E:cx+dy,

then the dynamics [x(7) and y(#)] can be written as a sum of exponentials (see Section
9.3.4). In other words, we can find an analytical solution whose parameters can be
estimated using the methods described above. In this special case of systems of linear
differential equations, the parameter estimation problem is known as system identifi-
cation. Spriet and Vansteenkiste (1982) give a lengthy review of methods applicable
to linear systems and some simple nonlinear systems. Carson et al. (1983) apply these
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methods to models of physiological systems. Several monographs give a compendium
of nonlinear dynamic models with analytical solutions commonly used in biological
modeling as well as the estimation equations necessary (e.g., Seber and Wild 1989;
Richter and Sondgerath 1990.

A more complicated case arises when we wish to use dynamic data to estimate pa-
rameters in a differential model that we cannot solve analytically. From an estimation
perspective, this problem is no different than other applications. We wish to compare
data to a function f(x, ) that is the numerical solution of the differential equations.
We do not know f(x,t) until we simulate the model. So, this estimation problem is
complicated by the fact that the model must be run with the current parameters over
the entire time period in order to calculate the total error. A new set of parameters
requires another run to determine the error. Consequently, a large number of runs may
be required to converge on the best parameters. This dynamic aspect to the error func-
tion complicates the calculation of derivatives needed by some methods. Therefore,
the direct methods are effective on this problem. Marsili-Libelli (1992) applied the
simplex method to this problem. Since the discrepancy between model output and ob-
servations is dynamic, this approach to calibration can incorporate decisions to permit
large errors at certain times (e.g., early in the simulation) and to achieve very small
errors at other times. Whether this is something to consider depends on the objectives
of the model. Accurate prediction of the final state of a system may be more important
than prediction of the model trajectories by which it occurred.

MBS-CD contains files SimCalibrate that do this
using Nelder-Mead simplex. l y

7.6 Evolutionary Techniques

Parameter estimation is an optimization problem, and radically new approaches have
been introduced recently. These methods are based on analogies with the evolution
of biological systems, since one naive view of the evolutionary process is that it will
produce organisms that are optimized to their environment by having maximum bio-
logical fitness. Many biologists would disagree with this caricature of evolution, but
the analogy has been extremely productive in computer science. The new methods
are members of a loose family of algorithms called evolutionary computation. The
basic idea applied to parameter estimation is that the parameter space is searched by
a large set of “organisms” that are defined by their position in the space. Their fitness
is the value of the error function at that point in parameter space. Organisms with low
fitness (large error) are discarded. Surviving organisms mate and produce slightly dif-
ferent offspring by combining the positions of the two parents to form a new location
in parameter space. This process is repeated until organisms do not show further im-
provement. These methods are proving to be very effective on error surfaces that are
complex with many hills and valleys. We discuss these methods more fully in Chapter
20, but for now recall Fig. 7.5a. One evolutionary computational modification of this
method would be to iterate the brute force method by defining a smaller rectangle en-
compassing 20% of the best points (filled circles), populating this smaller rectangle at
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finer resolution with the same number of original points. We repeat this process until
we have obtained a sufficiently small and highly resolved rectangle. If the original
rectangle is sufficiently large, this method may find not just a local, but also the global
minimum.

7.7

Parameter Estimation Cautions

7.7.1 All Methods

1.

Beware of transformations. Nonlinear regression or iterative methods are pre-
ferred.

. Examine your data for obvious outliers. You may need to filter the data (e.g.,

compute running averages) or apply some other method for eliminating extreme
data points.

Beware of extrapolating beyond your data. Brown (1990) shows a fifth-order
rational function (i.e., a quotient of polynomials) that fits one cycle of a peri-
odic function with 2 > 0.99, that goes to positive and negative infinity outside
this range. (This is quite unlike the sine function being fit, of course.) Some
situations in some methods can also make interpolating between datum points
dangerous. A quotient of two fifth-degree polynomials fits a data set with mul-
tiple observations at each x value with r?* = 0.973. The curve, however, is not
continuous between sets of observations so that the function predicts correctly if
given the original x values, but not if given any others between these. Rational
functions should not be used for data sets with multiple observations.

Beware of using a simple statistical index (e.g., 7*) to determine the function
to use. An equation with sufficiently large numbers of parameters can be fit to
match every little jog in a noisy data set with high 2, but may fail to reveal a
simpler representation.

Use a graphics package to view your data and fitted curve. Be suspicious of
any obvious departures. In general, use common sense and remember why we
fit parameters in models: we wish to obtain a simple and general description
of the observations. Simplicity in the form of equations with small numbers of
parameters is usually preferable to complicated equations with a good fit to a
particular dataset. The equation is the object of interest, not the 2. (The model
objectives may influence this; models that must achieve accurate predictions
may require particular, specific functions.)

7.7.2 Problems with lterative Methods

1.

Non-evolutionary, iterative methods find only local minima. Use several starting
points to search for the global minimum. Initial guesses can be obtained from
previous knowledge or linear regression on transformed data. You should also
repeat the search at a random point. This will help verify that numerical condi-
tions (e.g., round-off) have not caused the algorithm to stop prematurely. The
newer methods using evolutionary computation appear to be better at finding
the global minima (or maxima).
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2.

7.8

Methods requiring derivatives can be slow and sensitive to the “roughness” of
the error surface. Steep gradients and sudden reversals can cause numerical
approximation of derivatives to go astray. Methods such as simplex that do not
use derivatives are less sensitive to this. Test the results with several step sizes.

. Most iterative methods do not give exact r* values. Approximate values can

be obtained by boot-strapping or by fitting a polynomial to the error function
after a good fit is found. Bootstrapping (Efron and Tibshirani 1993; Manly
1997) is a computational method in which statistics are calculated based on
randomly chosen subsets of the original data. In parameter estimation, a series
of subsets is chosen, an estimate obtained for each, and the mean and variance
of the estimates calculated from these. If a polynomial is fit to the error function,
it is wise to verify that the conditions over which the methods are known to be
valid hold in your application. An important condition is the curvature of the
surface; see Seber and Wild (1989) and Ratkowsky (1983).

If the error surface around the minimum is flat, then convergence to the stop-
ping criterion may be slow. Most iterative methods use two stopping criteria:
one based on the relative change in the residuals and the other a ceiling on the
number of iterations performed. After the algorithm has stopped, verify that
sufficient iterations were allowed to ensure that the first criterion (not number of
iterations) was used to stop the search.

Exercises

. The equations for the parameters of a simple linear regression are:

o

Intercept: A =3 — Bx

Yxy-FyXx)/n
L=

Slope: B =

where % and § are the means of the independent and dependent variables, re-
spectively.

Using logic analogous to the derivation of equations for polynomial regres-
sion (Sec. 7.3.2), derive these equations starting with y = ax + b. (In so doing,
you will prove that standard linear regression does, indeed, minimize the sum
of squared error.)

Construct the S matrix for a third-order polynomial.

As required by the LM method, write the Jacobian for the following useful

functions from Sec. 5.3: B, C, D, E, G, H, J, trigonometric (Eq. 5.12).

Analyze the LM method in one dimension, where we assume the error function

(or just the function to minimize) is € = 10p? — 0.1p> — 200p, where p is the

parameter to find. Graph e as a function of p and graphically display the results

as you step through 3 iterations of minimization algorithms as described below.
a) Initial p = 0, use only steepest descent. Assume A = 1.0. Show your

calculations for dy/dp, (i.e., V).
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b) Repeat the above using both gradient and curvature information. Display
both V£ and 6%¢/0p?.

5. Derive the following Eadie-Hofstee transformation from the Michaelis-Menten

equation Eq. 7.2:

Y
X

ol B
SIS

Compare the estimates for the following data fitted to the Michaelis-Menten
equation using (a) Lineweaver-Burke transform, (b) Eadie-Hofstee transform,
(c) Levenberg-Marquardt (untransformed), and (d) Nelder-Mead simplex (un-
transformed).

Prey Density 4 10 30 90 173 256
Prey Eaten 25 95 125 195 215 19

h (MBS-CD contains file SimFit files that help with this exercise. J

Torricelli’s Law for the velocity of fluid leaving an orifice in a container can be
tested empirically by filling a rectangular container with water and creating a
hole at the bottom. For the following data from an actual leaky bucket experi-
ment (see Torricelli’s Law), fit the data (Height versus Time) to the alternative
(non-Torricelli) model:

H = Ae”

using two methods: linear regression after transforming the equation and data;
and non-linear Levenberg-Marquardt regression.

t(sec) | O 10| 20| 30| 40| 50| 601 70 | 80| 90
H(m) | 14 | 106 | 85 | 6.7 |49 | 35|22 | 10|05 0.1

h [MBS-CD contains files SimFit files that can be modified for this exercise. J

SimPlot plots of the fitted curve and superimposed data points (transformed
and back-transformed), the values and errors for the estimated parameters, and
the number of iterations required for the LM fit. Start the LM at two (or more)
initial parameter guesses, which include B positive and B negative. Write a
short paragraph summarizing the two methods for their respective accuracy and
sensitivity to initial guess (LM).

Below are data from Gause (1934) for density-dependent population growth of
Paramecium. See Eq. 7.13. Assume N(0) = 2. Estimate r and K using

a) linear regression on the transformed solution (N versus ¢, see Eq. 7.4, you

will need to expand S using the initial conditions),

b) the simplex method on the untransformed solution,

c¢) linear regression on per capita growth rates,

d) polynomial regression on absolute growth rates,

e) the simplex method on absolute growth rates.
Discuss the differences among the methods and determine which is best.
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9.

10.

1.

Day | 0 2 3 4 5 6
Pop | 2 17 29 39 63 185
Day | 7 8 9 10 11 12
Pop | 258 267 392 510 570 650

Often we want a function to go through a set of points we specify, so it is good
practice to be able to find the coefficients of functions that have particular so-
lutions we provide. For example, for a single linear equation, we are given
the points (5,5) and (1,-3) and we find the slope () and intercept (b) by row
manipulation and substitution.

mS + b= 35 2 equations

ml + b =-3 2 unknowns

-1(mS) + -1(b) = -5 multiply -1
ml + b = -3

-(m4) + 0=-8 add

m = 2 solve for m

b = -5 solve for b

Find the coefficients for the following functions and data.

a) y=ap+ aix+apx? given the (x, y) pairs of points: (0,2), (-1,0), and (14,0).

b) y = ag exp(—a;x) given the points (0,5) and (5,0.05).

¢) Triangular (see Fig. 5.41) given the points (2,0), (10,0) and apex (5,10).

d) y = apx/(a; + x) given (2,0.6667) and (8,1.333).

e) y = ap + a;x® given (0,2), (1,1.5) and (2,1.29).

) y = ap + arx + ax* given (1,5.9), (10,14), and (20,4).
Use the computed coefficients to check your work by verifying that the original
point pairs satisfy the equation.
The MBS-CD contains a file PredPreyData.txt with a sample of simulated
predator-prey Lotka-Volterra dynamics (Eq. 6.2). Use the simplex method to
dynamically calibrate the parameters (7, b, ¢, d) to these data.

[ MBS-CD contains SimCalibrate_Logistic to help with this exercise.j o

(Advanced) Approximate an integral function that tabulated in a handbook of
mathematical and physical functions with a suitably complex function such as a
high-order polynomial or rational function. Two good examples are the comple-
mentary error function erfc and the gamma function. Do this for your function
using nonlinear regression and the simplex method. Try several polynomial
orders and tabulate the errors. Try several error functions (e.g., least-squares,
absolute value of difference, chi-square, minimum of the maximum deviation).
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Model Validation

Statistics is the science of learning from experience, especially experience that
arrives a little bit at a time. .. Most people are not natural-born statisticians.

— Efron and Tibshirani (1993)

8.1 Insight and lllumination

ODELING, LIKE COMPUTING and statistics, should produce insight, not merely num-

bers (Hamming 1962). Up to this point, we have stressed numbers and meth-

ods for generating them. Now we discuss tools that help evaluate the meaning of the
numbers. We will focus on three general areas.

o Validity: Validation concerns the degree of our faith in the quality of the model
with respect to the external world. Below we discuss statistical methods and
problems in evaluating model adequacy and usefulness.

e Uncertainty: Ignorance and uncertainty occur at many points in the modeling
process: in the equations, the parameters, and in the definition of the system
itself. We will discuss tools for evaluating the contribution of this uncertainty to
model output.

e Behavior: The change of state variables over time is the lowest level of system
understanding. To grasp fundamental interactions, we need to visualize the co-
variation between coupled variables, and identify system conditions in which
the dynamics of the variables are qualitatively similar.

In this chapter, we discuss validation and model quality. The following chapter covers
uncertainty analysis, especially sensitivity analysis, and behavior with emphasis on
stability analysis.

8.2 Validation: When Models Go Bad

When we consider model validation, we are interested in the quality of the model.
This is a more difficult problem that one might suppose. Indeed, there is significant
disagreement over the word to use. Most authors agree that model quality is not truth
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or veracity (Caswell 1976b). In line with this, we previously used verification to mean
establishing the correctness of an algorithm or computer code. Therefore, the system
scientists who use the word validation use it to mean model quality with respect to
the objectives of the modeling project (Shannon 1975; Sargent 1984). More recently,
however, several authors have argued for using corroboration or confirmation for
validation (Reckhow and Chapra 1983a; Swartzman and Kaluzny 1987). They favor
this usage because (1) they feel that “valid model” refers to “correct model” and does
not permit degrees of quality, and (2) there is a precedent set by certain philosophers
of science for “corroborate” and “confirm.” [For my part, in light of the rather small
number of well-tested models in biology and the generally low rigor of the tests, [
think the adjective plausible more accurately reflects the nature of tested biological
models and the skeptical attitude we should adopt (Carson et al. 1983). To a more
cynical observer, the dictionary definition of “specious” might also come to mind.]

In any event, two points emerge from all the discussions and definitions: (1) model
quality, if it is quantifiable at all, is a continuous variable and perfection is probably
not achievable, and (2) the process of model evaluation is unending. In the following,
I do not take sides in the semantic debate, but acquiesce to the weight of common
opinion and use “validate.”

There are many components to quality and these depend on the uses to which the
model will be put. Earlier, we discussed three main uses: control, understanding, and
prediction. These provide important criteria for quality, but a more complete list is:

o usefulness for system control or management
understanding or insight provided
accuracy of predictions
simplicity or elegance
generality (number of systems subsumed by the model)
robustness (insensitivity to assumptions)

o low cost of running or constructing the model.

All of these concepts are, to varying degrees, legitimate components of quality; none
are mutually exclusive. The model objectives will determine the weighting to be given
to the different components. Generality, simplicity, increasing understanding, and
qualitative correctness of model behavior are concepts that are more relevant to purely
theoretical studies, where the quantitative behavior of the real world is relatively unim-
portant. Usefulness, accuracy, and cost are more important to applied problems such
as control and management. Here, we will emphasize accuracy of predictions.

Ideally, we would like to treat our dynamic mathematical models and our data
in the same way we treat a statistical null hypothesis and the data. We would like
to perform an objective, rigorous hypothesis test in which we can ascribe a definite
quantity of faith (i.e., the probability level) that the model is correct. Before describing
the very serious difficulties that may prevent our achieving this goal, it is useful to
recognize the logical bases of validation.

8.2.1 The Logic of Falsifying Complex Simulation Models

The validity of an argument does not guarantee the truth of its conclusion.
— Copi (1957)
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An Aristotelian syllogism is a sequence of logical steps that in totality is true regardless
of the truth or falsity of the component steps. The basis of the modern concept of
scientific falsification (Popper 1968) is a syllogism called modus tollens:

Form: Example:

A=B if Spock is human, then he will act illogically. @.1)
-B Spock does not act illogically. )
-A Therefore: Spock is not human.

where — means “NOT” or logical negation.

In applications of this argument in science, “A” is the general hypothesis (law)
and “B” is the implication or prediction that follows from the law in a particular
instance. Popper proposed this as the basic logical construct for the hypothetico-
deductive method. He distinguished this logically correct argument from the fallacy
that he claimed underlies the approach of the logical positivists (Nagel 1961). The
fallacy is that of affirming the consequent:

Form: Example:

A= B if Frodo loses the ring, then he will be ill.
B Frodo is ill.

A Therefore: Frodo has lost the ring.

Although the above is, indeed, a logical fallacy (not a syllogism), it summarizes the
central problem of the confirmationist philosophy. Even though one observes many
instances of the major premise (Frodo losing the ring and becoming ill), this neither
establishes it as a law nor permits one to infer the conditional (A) based solely on the
observation of the prediction (B).

Modus tollens is difficult to implement in mathematical models because the law
(“A” in Eq. 8.1) is actually a conjunction of a large number of separate assumptions.
For example, in a mathematical model there are several equations that constitute a
conglomeration of hypotheses and generalizations; there are also parameters and ini-
tial conditions that must be specified. So in reality the argument form is

amAhNayhNas... Na,) = B
B
-{laiNay ANas ... \ay,),

where A means “AND.” The last line above is a negation of a conjunction and is de-
fined as —a; V-ay V... V-a, (i.e., “nota; ORnota; . .. OR not a,”). In general, we do
not know which one or more of the g; are false. This problem has prompted some to as-
sert that mathematical (simulation) models cannot be used as a tool of the hypothetico-
deductive method (Romesburg 1981). The situation is not completely hopeless. We
can perform independent experiments to estimate parameters, perform parameter sen-
sitivity analysis to evaluate their effects on model response, or create and investigate
alternative models. Other issues arise from alternative philosophical positions that
challenge the relevance of Popperian falsificationism and the hypothetico-deductive
approach. An accessible introduction to some of these alternatives in the context of
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Figure 8.1: Relations of sets of observations on the system (S) and model (M) for val-
idation. Q is the set of correct predictions. (From Mankin et al. (1977), Fig. 1.© 1977
Simulation Councils, Inc. Reprinted with permission Simulation Councils, Inc., publisher.)

mathematical modeling can be found in Hilborn and Mangel (1997). Although the
philosophical and logical problems are real, we will not discuss them further here, but
rather proceed to discuss practical problems associated with testing models.

8.2.2 The Geometry of Validation

Truth is the intersection of independent lies. — Levins (1966)

Mankin et al. (1977) provide a useful conceptual framework that encompasses dif-
ferent validation problems and situations. They considered validation in terms of the
relation of sets of measurements that can be made on systems and models (Fig. 8.1).
P is the set of all possible observations on the class of systems studied (e.g., ecosys-
tems). S is the set of all observations actually made on the study system. M is the set
of model outputs, and Q is the intersection of M and S (i.e., the overlap of data and
model predictions). Also imagine, since we advocate the use of alternative models,
that there may be several M;, each with different Q; that may themselves overlap.
There are several qualitative relations between these sets that help us understand
different validation situations and ways that models can fail (Fig. 8.2). If Q is empty
(Fig. 8.2a), there is no intersection between model and observation, and the model is
useless. If Q is nonempty, we say the model is useful. At the other extreme (Fig.

e
Q &

Figure 8.2: Relations of model predictions and system observations.
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8.2¢), the model may predict all of the system observations and make no predictions
that are not observed (i.e., M and S are exactly the same set: only in your dreams).
The more typical situation is intermediate (Fig. 8.2b): the model predicts a subset
of the observations and makes some predictions that are not observed. Two other
special cases can be imagined: (1) the model never makes a mistake (Fig. 8.2d), but is
incomplete; and (2) the model is complete, but makes mistakes (Fig. 8.2¢). In actuality,
because of uncertainties in the data and in the model, the determination that a model
prediction or an observation is in Q is not binary (yes or no). The points of S are better
thought of as a surface of probabilities that the model predicts the observation.

Mankin et al. (1977) also suggested that model reliability is the ratio of the size of
Q to the size of M. Model adequacy is the ratio of the size of Q to the size of S. For
example, in Fig. 8.2d the model is relatively inadequate but reliable because it makes
no incorrect predictions. In Fig. 8.2e, the model is relatively unreliable, but very ad-
equate (it predicts all of the observations). Certainly, there are problems in defining
a measure of the sizes of the sets, but this conceptualization emphasizes that many
and varied comparisons, both quantitative and qualitative, can be made between data
and predictions. We must investigate both reliability and adequacy. Most published
validation exercises focus on the size of Q or, at best, on model adequacy. A reliable
model makes few predictions that are not observed, or to use the words of Ginzburg
and Jensen (2004), “theoretical prohibitions are absent from existing data.” Practi-
cally, we can only compare model predictions to observations we have made. Most
observational data sets consist of a relatively small number of observations separated
by relatively large time or space distances. A model might match each of those points
exactly, but without the intervening observations, we will not know if the interven-
ing model predictions are correct. So, model reliability is inherently more difficult to
evaluate. In Sec. 9.2.2 we present Error Analysis which has the goal exploring the
probabilities of model predictions given parameter uncertainties. This technique, in
addition to Sensitivity Analysis (Sec. 9.2.1), can provide insight into the true range
of model predictions and, consequently, the size of M (Ginzburg and Jensen 2004).
When coupled with Below, we will stress quantitative comparisons and model ade-
quacy, but the broader picture (Fig. 8.2) should be kept in mind. To address model
reliability, the model must be tested in imaginative ways. For example, it should be
tested against (1) different systems [e.g., different organisms, or habitats (aquatic vs
terrestrial)]; (2) different geographical areas; or (3) using different parameter values
and environmental driving variables and perturbations.

8.2.3 Variables and Levels for Validation

While the logic of validation may be clear enough, in practice it is not obvious exactly
what comparisons should be made. Usually, the model objectives will dictate which
quantities should be compared between model and data. The most common are the
dynamics of the state variables and derived measures in the form of Forrester auxiliary
variables. The latter may be (1) functions of individual state variables [e.g., a state
variable scaled to other units (concentration computed from an absolute quantity)],
(2) the time or spatial averages or frequency distributions of a state variable, (3) the
maximum of a state variable, or (4) the time that a state variable achieves a particular
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time

Figure 8.3: Comparisons between data (solid line) and the predictions of three hypotheti-
cal models.

value (e.g., its maximum). We can also use auxiliary variables that are computed from
two or more state variables (e.g., species diversity in ecological foodweb models), or
ratios of state variables (e.g., root/shoot ratios in plant growth models).

In addition to choices of variables, there are degrees of comparisons. At one ex-
treme are theoretical models whose object is understanding with only vague reference
to qualitative similarity between model predictions and common knowledge about the
system. The other extreme is rigorous statistical testing of model predictions with
replicated field or laboratory experiments. The intermediate ground is broad and in-
volves a wide range of techniques and problems.

To illustrate this point, consider Fig. 8.3, which shows three comparisons of model
output (broken lines) and data (solid line). Each model output fails in different but im-
portant ways. Model 1 generally captures the long-term trends of the data by passing
through the mean of the cycles at the end of the time series. It misses, however, the
strong peak in the middle of the data. Model 2 hits the peak, but misses the cycles.
Finally, model 3 has both the peak and the cycles, but the size of the peak and the
timing are wrong.

Are any of these models satisfactory, and, if so, which is the best? Ask three
different modelers these questions, and you will get three different answers (especially
if the models are their own creations). Unfortunately, there are no definitive answers
to the questions. It depends not only on the objectives, but also on what one thinks the
defining pattern of the data to be. Is it the peak, the cycles, or the long-term trends?
There are rational arguments for all of these features. Familiarity with the system can
help in these cases, but there is danger that an expert’s preconceived notions and pet
hypotheses may influence which patterns are emphasized. Because of this, we seek
objective, statistical criteria to compare models and data. This satisfies our urge to be
rigorous, but we should not lose sight of the fact that models can have large statistical
errors, but still capture the essence of the data (e.g., model 3 in Fig. 8.3). By doing
this, they maintain their utility even if they fail statistical validation.

8.2.4 Conditions for Validation

In dynamic models, validation is usually concerned with the comparison of two time
series: observations and model output. These comparisons have four attributes that
will influence the kind of validation that is possible: data independence, number of
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system responses, number of time points, and degree of replication. Below, we discuss
some of the issues and methods that are appropriate depending on the attributes.

Data Independence

An essential condition that must be met in any rigorous comparison of data and pre-
dictions is data independence. The data used for model validation must be separate
from and independent of any data used to formulate model hypotheses and estimate
parameters. This condition motivated the revision of the standard view of the model-
ing process to include multiple working hypotheses and alternative models tested in
parallel (Chapter 2). When independent data are difficult to obtain, we must be care-
ful to avoid a circular comparison of model output with data used at some point in
model formulation as part of validation. If the comparison data are not independent
of those used to construct the model, then we are only doing calibration and not true
validation. This applies to a broad class of re-sampling techniques (Manly 1997), in
which one repetitively compares model predictions to a random subset or subsample
of a single data set. Cross-validation, jackknifing, and bootstrapping are examples to
this approach to pseudo-validation. While not true validation as defined here, these
techniques can provide valid estimates of relevant statistics (e.g., confidence intervals
of residual sums of squares).

Single and Multiple Responses

In almost every system and model, we can measure or compute a number of differ-
ent quantities that could be compared. For example, in all but the simplest systems,
there is more than one state variable. Each of these can be measured or computed,
and, therefore, each of these is a response that we can use to evaluate model predic-
tions. Our validation test procedure must decide how many and which of all possible
responses will be used. If we choose to validate using more than one response, then
we must decide if we will compare system and model for each response separately or
produce a synthetic validation that incorporates all responses simultaneously. If we
analyze the responses separately, then we have the problem of deciding overall model
quality if model predictions are acceptable for some, but not others. Multivariate sta-
tistical techniques (discussed below) can perform comparisons simultaneously. If we
do not use these methods, then we can either report each individual comparison sepa-
rately and make a subjective evaluation, or we can combine errors of all responses in
an index (Shannon 1975). This latter approach, although it is quantitative, has only the
aura of objectivity, because typically there will be no statistical test to determine if the
index is large or small. So, if rigorous statistical evaluation of overall model quality
for many response variables is our goal, we should use multivariate techniques.

Single and Multiple Comparison Points

We can choose to validate the model either at a single point in time or at several points
in time over the series. If we choose to evaluate the model at a particular point in time,
then we must have a criterion for determining what the point will be (e.g., at the end of
the growing season, or when a particular condition has occurred). If only a single time
is used, then the problem of statistical bias due to serial correlation in the time series
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does not arise. If multiple time points are used, then we must use care in applying
standard statistical tests.

Unreplicated Systems and Models

Model validation using statistical tests requires some form of variability in either
model predictions or observations. In real systems, variability is usually produced
from replicated observations. It can be produced in stochastic models from repeated
runs that differ in the sequence of random numbers used to generate the modeled ran-
domness (Chapter 10). Regression techniques are one approach to validation that does
not require statistical replication. We will discuss this situation in more detail below.

8.3 The Techniques of Validation

A large variety of validation methods, tests, and indices have been used in biological
modeling. Table 8.1 lists the major methods available. These are described with more
detail on the pages indicated in the table.

8.3.1 Unreplicated Systems

A proof is an argument that convinces someone who knows the subject.
— Davis and Hersh (1981)

Turing Tests

If there is variability neither in the model nor in the data, and we wish to compare
model and system time series, then many classical statistical tests are not possible.
Consequently, we are restricted to a qualitative assessment that the model behavior is
“reasonable.” Often this assessment is done informally by presenting the reader with
a plot of dynamic model output and system measurement on the same graph. Usually,
this is accompanied by the statement that the model behavior is “reasonable.” A more
formal method is the Turing test.

Alan Turing was a British mathematician instrumental in the design of early British
computers and interested in theoretical biology and artificial intelligence. He proposed
to validate computer models simulating human verbal behavior by putting one human
(the interrogator) in a room with a computer terminal connected to two other rooms
containing a human test subject and a computer, respectively. The interrogator asks
questions of both the computer and the human to determine which room contains the
computer. If the computer’s program is successful, its verbal responses will fool the
interrogator, and he will fail to guess the location of the machine. Thus, a computer
model passes a Turing test if it fools the expert. Or, to put it in a semiquantitative way:
* A good model is one that fools 80% of the experts 80% of the time.

This approach can be used for biological models by asking experts to distinguish
similarly prepared figures or reports of genuine and simulated system dynamics. The
format of the simulated output must be similar to the norm for the genuine system.
In most cases, this could be x—y plots of time traces of key variables (e.g., net plant
productivity during a growing season). Other systems may require specialized docu-
ments.
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Table 8.1: Summary of quantitative validation techniques. RSS = residual sum of squares;
ClI = confidence interval.

Method Definition

Regresses data values against model predictions. Simultaneously tests
1:1 Regression slope = 1.0 and intercept = 0.0. Can be used with or without system
replication; ignores temporal sequences. Page 153

Data-model correlation and coefficient of determination. Tests for no

';2 correlation. Ignores temporal sequences; does not require replication.
Page 153
Tests if the data-model relationship is linear. Requires replicate
Lack-of-Fit system observations at each model prediction point. Ignores temporal

sequences. Page 154

Tests that data-model pairs are equal. Ignores temporal sequence;

aired r-test . .
P does not require system replication. Page 154

Tests multiple model variables simultaneously for parallelness with

Profile data over time; requires system replication. Page 159

Semi-quantitative; identifies time values when model or data 95% CI
95% CI do not overlap with data or model predictions. Requires either system
replication or stochastic model predictions. Page 163

Qualitative test using a human expert. May use any system trait or
Turing variable; often uses temporal sequences; does not require system
replication. Page 151

LRT = Likelihood Ratio Test: Compares a set of models by testing
LRT that the ratio of likelihoods of a simple model to the best model equals
1.0. Requires nested models. Page 164

Index of model quality based on log-likelihood of model in which

AIC quality decreases with model complexity. Not a statistical test. Page
169
Combines likelihood measures of model error with model prior
Bayes probability to compute the posterior probability that the model is true

relative to a set of models. Not a statistical test. Page 172

Index of model quality: MSEP = mean squared error of predictions

MSEP [(observed-predicted)/n, units as square of variable units, e.g.
RMSEP [gm CJ?]. RMSEP = square root of MSEP (same units as variable).
Error partitioned among: bias, slope, and random. Page 157
MAE Index of model quality. Absolute value of difference between data and
MA%E model, same units as data variable. Page 157
Index of model quality. EF (Model Efficiency)
EF =1 = (RSS/ %.(y; — 9)?). Model error scaled to data variability;

unitless. Page 158

Index of model quality. Model error scaled to variability in model and
data. Page 156

Index of model quality. Ratio of error using independent data to error
using calibration data: J> = MSEP,,/MSEP,,. Page 158

Theil’s U

Janus (J?)
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Figure 8.4: Three possible scenarios in which a model with poor fit to data resuits in a
high correlation. Solid circles are data-model pairs and the dashed line is the regression
of observations on model predictions. The solid line is the 1:1 line for a perfect fit between
data and model. Left: slope (variance) error; Middle: bias error; Right: bias and slope error.

Schruben (1980) used this approach to evaluate a model of the flow of patients
among a set of operating rooms. The model was validated by testing the ability of the
facility director to discriminate between simulated and genuine reports of room use.
On the first test, the director easily distinguished the simulated and actual reports. (In
part, this was due to the fact that the modelers forgot to remove from the computer
output excessive significant digits in reporting minutes of room use!) On the second
try, the director’s suggestions on model hypotheses were incorporated, but she was still
able to identify the simulated reports. The third model incorporated more suggestions
by the director, and eventually she failed to discriminate the two sets of reports.

Opverall, itis difficult to interpret this type of test. One can apply rigorous statistical
analyses (e.g., the kappa statistic of agreement, Fleiss 1973), but in the above exam-
ple there is a disturbing repetitive loop between model structure and test. Moreover,
as Schruben (1980) admitted, the expert became better at noticing small differences
between genuine and simulated reports, so that achieving a high quality model be-
came more difficult with each additional test. Too much of this sort of thing would
discourage even the Red Queen of Wonderland.

Observed vs Predicted Regression

Even without randomized replication, linear regression is sometimes used to test that a
model is statistically indistinguishable from the data. While there are situations when
this approach is legitimate, after describing the method, we discuss some problems.

Consider the case when the deterministic model output and unreplicated system
trajectory are paired such that we can associate a prediction for every time ¢ at which
we have an observation. Simply examining the scatter plot of the data-model pairs
(Fig. 8.4) is a powerful visual tool to bolster belief in the model. The next, more
quantitative, step is to perform a correlation analysis (see Zar 1999, Chap. 19) be-
tween model output and the observations. The correlation coefficient, », measures the
strength of the straight-line relation between model and data. While statistical anal-
yses exist to test p = 0 (no correlation), there are no a priori non-zero values of p
against which to test. For example, there is no reason to test for p > 0.6, unless this
value was an element of the model objectives.
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The next statistical approach regresses the observations (y axis) onto the predic-
tions (x axis). If the model is perfect, all of the points will fall on the 1:1 (45°) line,
and both the regression slope would be 1.0 and its intercept would be 0.0. Model
predictions that fall near this line will also be highly correlated with the data, but Fig.
8.4 illustrates 3 possible outcomes in which a model does not match the data well, but
nevertheless is highly correlated with the data.

The correct approach is to test for these two values (slope = 1.0 and intercept =
0.0) simultaneously (unlike the tests in standard statistics texts). Dent and Blackie
(1979), and later clarified by Mayer et al. (1994), provide the required formula as an
F statistic: ) -

P na® +2a(b - DNYX; + (b - 1)*3X;

2
257

) (8.2)

where a is the estimated intercept, b is the estimated slope, X; are the individual model
predictions, and » is the number of system—model pairs. s%,_x is the residual mean

squared error (RMSE) and is computed as

)

Svx T T Ty
where _ _
Yi=Y+bX; - X) = a+bX;,

where Y; are the individual system observations (i.e., validation data) and Y is the
mean system value. In standard statistical packages, the residual sum of squares is
usually computed as SS¢otar — SSregression; RMSE is obtained by dividing residual sum
of squares by n — 2 degrees of freedom.

Many of the standard linear regression computer packages will compute s%,,x,
% X,.Z, and X, so it is an easy task to compute Eq. 8.2. Some packages will calcu-
late Eq. 8.2 directly. This statistic follows the F distribution with 2 and n — 2 degrees
of freedom. If the original model has merit, we will fail to reject the null hypothesis
that the slope is 1.0 and the intercept is the 0.0. Consequently, small values of F mean
our model is a good fit.

MBS-CD contains the SimPlot package with the function SimValidation() that
l y computes these values. See the example simulation program ValidationTest.

In addition to testing the parameters, an overall test for lack-of-fit can be made
(Kleinbaum and Kupper 1978). As its name suggests, this statistic measures the degree
that the model does not fit the observations. The model is validated if we do not reject
the null hypothesis. Note that this method requires replicated observations at every
model prediction used in the test.

An alternative to 1:1 regression testing, is to treat model and data as paired samples
and use a paired t-test to test Hy : ux — uy = 0. For details of the t-test, see Zar (1999,
Chap. 9). In a comparative analysis, Mayer and Butler (1993) found that 1:1 regression
was more discriminating than a paired t-test; that is, models were rejected using 1:1
regression, but were accepted in the t-test.

Regression, like all statistical methods, is not fool-proof. Care must be taken,
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True: y = 1.0 + 0.8x
Estimated: y = 0.692 + 0.884x
Regression: F = 1.52 P > 0.50
Paired # = 0.222 P > 0.50
Correlation: r = 0.978
U =0.052
MSEP= 0.412
MC = 0.008 SC = 0.268
RC = 0.725

True: y = 0.0 + 1.0x
Estimated: y = —0.0435 + 0.766x
Regression: F = 6.571 P <0.05
Paired t = -1.832 P > 0.10
Correlation: r = 0..884
U=0171
MSEP= 3.578
MC=0.495 SC=0.126
RC=0.378

True: y = 1.0 + 0.8x

Estimated: y = 1.029 + 0.804x
Regression: F = 12.52 P < 0.01
Paired ¢ = -0.2021 P > 0.50

Correlation: r = 0.991

U =0.054

MSEP= 0.4239
MC = 0.006 SC=0.752
RC = 0.242

Figure 8.5: Statistical results of regressing observations on model predictions for three
cases with high correlations. Solid circles are model-data pairs; solid line is the 1:1 line;
dashed line is the least squares regression line. A: Visually, the model looks good, but in
reality the mode! does not match the data. It underpredicts small values and overpredicts
large values, yet both the 1:1 regression test and the paired t test fail to detect this. B:
Visually, the model appears poor. In fact, the model matches the data, but statistical sam-
pling error causes the regression results to indicate a poor model. The paired sample t-test
correctly fails to reject the null hypothesis. C: A case when the null hypothesis is correctly
rejected by F but not 1.

particularly when relying on visual inspection of the 1:1 scatter plots. Figure 8.5 shows
three outcomes of model-data comparisons using regression based on simulated data.
Figure 8.5A is an example of a Type Il error: failure to reject a false null hypothesis.
In this case, the null hypothesis is that the regression of data on the model has slope
1.0 and intercept 0.0. The data in Fig. 8.5A were generated by adding noise with
standard deviation 0.4 to the line y = 1.0 + 0.8y, i.e., a system that was known not
to fall on the 1:1 line. Random sampling, however, has produced data that appears
close to 1:1. The statistical results below the figure show that some of the methods can
mislead us: both the F and ¢ tests lead to the wrong conclusion. The opposite mistake
can happen; a Type I error occurs when we reject a true null hypothesis. In Fig. 8.5B,
the model is correct, but the observations are very variable (o = 0.8); the ¢ test accepts
the null hypothesis, but F implies a Type I error. Finally, the F statistic based on Fig.
8.5C correctly rejects the false null hypothesis, but the ¢ test does not. The indices
associated with these examples

Obviously, we can err if we rely on a single test or index. Visual inspection and
correlation coefficients can mislead (Fig. 8.5). The ¢ test is less discriminating than
regression (the former accepts more models than the latter). In large part, choosing
which measure to rely on depends on the relative importance one gives to Type I or
Type II errors.

A shortcoming of either regression or correlation is that the temporal aspects of
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the deviations between data and model are lost in the scatter plot, but this can be made
explicit with plots of the deviations over time. More serious problems occur when the
method is applied to situations in which the assumptions of linear regression are not
satisfied (Mayer et al. 1994). Those assumptions that are especially important are: (1)
the X; must be known exactly, (2) the variance of the errors must be constant for all
values of X;, and (3) the Y; are independent. Although we are always uncertain that
a model and its parameters are correct, assumption (1) is normally satisfied, given a
particular deterministic model, with particular parameter values. However, we must
recognize that the statistical inference applies only to that complete set of conditions;
specifically, we cannot extrapolate the inference to the same model using different
parameter values. If the X; are not assumed to be exact (e.g., in stochastic models),
then the regression procedure is more complicated and problematical (Ricker 1973;
Sokal and Rohlf 1981) and Eq. 8.2 is not appropriate.

Assumption (2) is probably not true because (a) we often have greater errors in
measuring small numbers than large numbers, and (b) if the dynamics are monoton-
ically increasing, then differences between the data and the model may diverge over
time (as the X; grow). However, linear regression is relatively robust to violations of
(2), although it should always be verified.

Assumption (3) is particularly important because linear regression is sensitive to it
and it is often difficult to determine when it is violated. It will be violated when obser-
vations are made repeatedly over time on the same experimental unit (e.g., growth of
an individual organism or dynamics of a variable measured at a particular location in
a lake).

In addition to the assumptions of linear regression, the equation for F (Eq. 8.2) has
properties that increase its Type 1 error rate. As a ratio, it balances the deviation of
regression parameters from expected (b = 0.0,m = 1.0) in the numerator against the
residual error in the denominator. This creates a paradox for extremely good models.
These are models that fit a copious data set (large n) extremely well (small S%'-x)
To use 1:1 regression for validation on accurate models we would like F to be small
(fail to reject the model). But with extremely good models, the value of F will be
large (reject the model): the numerator will be large (large # and large ), x) and at the
same time the denominator will be small. Collecting and testing with more data only
makes matters worse by increasing the numerator without significantly increasing the
denominator. The second property of F that increases Type 1 errors is the fact that the
second sum in the numerator has (b — 1), which, if negative, reduces F. This fact will
tend to increase the probability of accepting models with regression slopes less than
1.0 relative to those with slopes greater than 1.0,

Indices

In addition to regression, a variety of indices have been developed as diagnostic tools
to assess the nature of the deviations. Theil (1961) defined an inequality coefficient as

U~ Vi S - v ’
SRR PIE

where X;, Y; are the model output and observations at the ith time point, respectively,
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and n is the number of paired points. The numerator is the root mean square error
(RMSEP, square root of the mean square error of predictions, MSEP), with the de-
nominator scaling U to range between 0 and 1. Accurate models have small U.

Mincer and Zarnowitz (1969) simplified Theil’s calculations and based the index
of model quality on the MSEP.

MSEP = %Z(X" —YY =X -V +(Sx—rSy) + 1 -r)S2, 8.3)

where r is the correlation of X and Y, and Sy and S x are the standard deviations of the
X and Y variables.

This index is composed of three components associated with (1) differences be-
tween the model and system means (i.e., a nonzero intercept or bias error); MC, (2)
differences between the variance of model output and the variance of observations
(i.e., slope-not-unity error): SC, and (3) the deviation of the correlation of model and
observation values from 1.0 (i.e., random error): RC. Dividing the right-hand side of
Eq. 8.3 by MSEP normalizes the three components so that each represents the propor-
tion of total error due to its respective cause:

1 =MC+SC +RC

_ &=V Sx-rSy? (A-8G
~ MSEP MSEP MSEP

Rice and Cochran (1984) analyzed a fish bioenergetic model using these formulae to
identify the bias error (MC) as the most important component. Figure 8.5 illustrates
the behavior of these indices in three scenarios. U is relatively small in all cases,
consistent with the large » values. In Fig. 8.5A, MC and SC are less important than
RC, which is reflected in the failure of F and ¢ to reject the null hypothesis. But in Fig.
8.5C, SC is most important and F correctly rejects

A number of additional indices can be defined to further quantify model error
(Power 1993; Mayer and Butler 1993). To a certain extent, these indices can be
thought of as measures of model adequacy (Mankin et al. 1977). For example, in-
stead of quantifying model error using the conventional squared error, MAE uses the
absolute value of the difference between data and model:

n

MAE =

and a related quantity scaled by the magnitude of the data is

MA%BE = 100 <~ Y — Xi|
n |Yil

(Beware of datasets that have zero values.)
Two indices that scale the model error to the variability of the observed data are
model efficiency (EF, Mayer and Butler 1993) and the Janus coefficient (J?, Power
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1993):
"= X))
RF= - 20X
2 -Y)?
2o (i = X Im

i1 (Y] = X))*/n

where Y and X! are the data and model predictions, respectively, for the dataset used
to create and parameterize the model, and where m and n are the sample sizes of the
two comparisons. Power (1993) defined model accuracy as n(1 — EF) and suggests
an F test of the hypothesis that accuracy equals O (m and n — g degrees of freedom
(g=number of parameters). Power also calls the numerator of J? the model’s predictive
error and the denominator the model’s replicative error. Elliot et al. (2000) compares
many of these indices using a freshwater phytoplankton model and data.

With a few exceptions, these indices do not have inferential capabilities, but can
be used to measure the degree of departure of model output from observations. Halfon
(1989), however, used bootstrapping (a statistical randomized re-sampling technique)
to compute the probability that calculated validation statistics were within acceptable
limits.

MBS-CD contains the SimPlot package with the function
.n, SimValidate_Jackknife() that computes these values. To use it, see the
example simulation program ValidationTest

Multiple Responses

All previous methods presume a single response variable, but models with several
state variables are typical. One solution is to repeat the analyses for each response
independently (Elliot et al. 2000). Alternatively, one can analyze indices as the sum
over all response variables:

K K
1
Ue= % D Uc  or  MSEP, = ) MSEP, (8.4)
k=1 k=1

where K is the number of response variables, n; the number of data-model pairs for
the kth response. See Harrison (1995) for an ecological example. If the system has
replicated data, multiple responses are addressed using multivariate techniques as de-
scribed below

8.3.2 Replicated Systems or Models

Replication in the system observations means that we have multiple, independent ob-
servations at points in time. Model replication means we have a stochastic model that
has been run several times or a deterministic model that is run several times with ran-
domly selected parameter values. Naturally, it is possible for both the data and the
model to be variable. Whether we can legitimately use this variability to test statisti-
cally for differences between model output and the data depends on whether we are
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comparing a single value or a time series of values. An excellent tool for visualizing
model or data variability, especially stochastic model output, is the box plot. This is a
graphical representation of a set of numbers in which the sample size, mean, median,
the range, and other measures are all represented. A thorough description of this tech-
nique in stochastic modeling is given by Reckhow and Chapra (1983b). Regression,
paired ¢ test, and indices can also be applied to systems with replicates. Below, we
discuss some techniques that require replication.

Single Value

If only a single value (e.g., the maximum of a state variable) is being tested, then
standard statistical testing can be done (e.g., #-tests or ANOVA). If variability exists
in only one component (e.g., the data) then we use a single-sample #-test (Hy: uy =
u#p). This compares the mean of the replicated data with the single number of the
unreplicated number (model prediction). If both model and data are variable, the
two-sample z-test is used. Standard statistics texts (Zar 1999) give the appropriate
formulae.

Time Series

As with unreplicated situations, time series introduce autocorrelations. Certainly,
model values are correlated over time, since we use previous states to calculate cur-
rent states, according to the equations. Measured values in real systems also tend to
be correlated. These correlations can violate basic assumptions of standard statistical
analyses so that extreme care must be exercised in their applications. More appro-
priate techniques use single-factor repeated measures analyses and split-plot designs
(Mayer and Butler 1993) or the multivariate profile analysis (Steinhorst 1979; Balci
and Sargent 1982).

Repeated Measures  Single-factor repeated measures and split-plot designs are types
of analysis of variance (ANOVA, see Winer 1971). Single-factor repeated measures
designs use a single set of treatments applied sequentially to all of a single group of
individuals (e.g., a sequence of drugs applied to patients). A split-plot design applied
to repeated measures situations generalizes this approach to include multiple factors
so that not all individuals receive all treatments (e.g., drugs partitioned by chemical
properties). A split-plot design partitions the error among a main effect (e.g., system
or location) and subdivides or splits each of these error components into effects asso-
ciated with the treatments. Both approaches assume that the correlation of responses
among treatments is known and is constant over time. This is usually not true, and
caution and additional tests of statistical assumptions are needed if this approach is
used. Because of this problem plus the fact that the method is discussed in standard
texts (e.g., Winer 1971, Chapters 4 and 7), we will not give further details.

Profile Analysis Profile analysis is a multivariate method that tests the hypothesis
that the trajectories of data and model output are parallel. There are two major ad-
vantages to this method over other possible approaches. First, the approach does not
make assumptions about the nature of the variance or covariance relationships of the
variables, so it is a more general approach to repeated measures problems. Second, it
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Table 8.2: Hypothetical data and model response for six replicates and three points in
time for phytoplankton (ug chl-a/liter) and zooplankton biomass (ug/liter). Columns are time
(1,2,3); rows are the replicates and the model prediction.

Phytoplankton Zooplankton

Sample 1 2 3 1 2 3

25 40 10|10 50 20
20 39 13 ]15 60 18
23 38 09| 12 55 22
1.9 41 12 9 48 19
.5 32 07 ] 18 60 18
22 38 11|16 64 21

Model | 21 38 10| 13 56 20

[ R N O

permits us to examine the relation of the data and the model for several output vari-
ables (i.e., several state variables) simultaneously.

The null hypothesis tested is that the difference between model and data is 0.0
for each and all time values of comparison. This is analogous to the paired ¢ test
discussed earlier. Profile analysis calculates Hotelling’s T2 statistic, for which prob-
ability tables are available. See Timm (1975) for an introduction, Steinhorst (1979)
for an application to ecosystem models, and Balci and Sargent (1982) for a queuing
system example.

Here, we only illustrate the method with a numerical example. First, some terms
and assumptions are necessary. We assume that we have k time points at which we
measure each of g biological responses. We also have k model predictions for the ¢
model variables (usually state variables). So, we have a total of gk values to compare.
Each system is replicated n times; a replicate might be a controlled experimental field
plot, one of several sampling stations in a lake, and so on.

The null hypothesis is

Hp:d(1)-m(1) =d(2) —-m(2) = .- -d(k) - m(k) = 0,

for all system responses measured. d(i) is a vector of observations of all response
variables at time i, and m(J) is the model output of all response variables at time i. For
example, suppose that the first response is phytoplankton biomass (P, g chlorophyll
a/liter) and the second is zooplankton biomass (Z, ug weight/liter). We have sam-
ples from six independent systems (e.g., lakes) or locations (e.g., stations or transects
within a lake) that constitute the replicates made at three different times. Thus, in this
example g = 2, k = 3, and n = 6. The model is deterministic, so all samples are
compared to the same model output. Some hypothetical data are shown in Table 8.2.

From the data in Table 8.2, we subtract the model prediction from each entry
(Table 8.3) to create prediction deviations. We call the table entries for phytoplankton
(P) deviations dpj, where j indexes the sample number and k indexes the time of
the sample. Zooplankton (Z) deviations are Jz. Next, we subtract the data-model
deviation at one time from the deviation at the next time Apj = Spjx — Spjr+1), and
Azjiw = 6zjk — 0zjx+1y. These values will be the data on which we will perform the test
for parallelism, since parallel lines will have equal slopes.
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Table 8.3: Deviations of data and model response for six replicates and three points in
time for phytoplankton and zooplankton biomass. Columns are time, rows are replicates.

Phytoplankton Zooplankton

Sample 1 2 3 1 2 3

0.4 0.2 00| -3 -6 0
0.1 0.1 0.3 2 4 2
0.2 00 -01 (-1 -1 2
-0.2 0.3 02| 4 -8 -1
06 -06 03 5 4 2
0.1 0.0 0.1 3 8 1

AN R W -

Table 8.4: Time differences of model-data deviations for 6 replicates of phytoplankton
and zooplankton responses. Columns are differences, rows are replicates. The dot in the
column label (e.g., Ap;-) denotes all of the replicates in a given column. Column means are
shown in the last row.

Apy Apy Azy Az
Sample Op1—6p2 Op2—6p3  6z1—0z2 Oz2-90z3

1 0.2 0.2 3 -6

2 -0.2 -0.2 -2 6

3 0.2 0.1 0 -3

4 -0.5 0.1 4 -7

5 -0.0 0.3 1 6

6 0.1 0.1 =5 7
Means — -0.03 -0.03 0.17 0.50

Finally, we arrange these time differences in a matrix (Table 8.4), so that the
columns represent all of the replicate time differences (in temporal order) for all of
the responses being tested. Thus, columns are arranged in groups first by response
variables (e.g., P or Z) and then by time differences within response variable (e.g.,
response at time 1 minus response at time 2 and response at time 2 minus response
at time 3). For example, column 1, row 1 will be Apj;r = 6pji— dpjp, which is the
deviation of the model prediction of phytoplankton from the data () at time 1 minus
the same deviation at time 2 for sample (replicate) 1. Column 1, row 2 is the same
quantity computed for the second sample (Ap;)-), and so on for the remaining rows
(Apj1v). Column 3, row 1 (Az11) is the difference between time 1 and 2 using the pre-
diction deviation for zooplankton biomass for sample 1. Using this convention on our
example, the 2D matrix has six rows which are the replicates and four columns [two
responses (P and Z) and two time differences (time 1 minus time 2, time 2 minus time
3.

This is a one-sample multivariate test of the equality of means, and so is a gener-
alization of the one-sample univariate test based on Student’s ¢. The test in the general
case is based on Hotelling’s T? for which the general formula for data of this type is
(Timm 1975):

T2 = ()Y - YoY S N(Y - Yo),
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where r is the number of replicates; Y—Yj is a column vector of the average differences
between observed (Y) and expected (Yy) means; (Y — Yp) is the transpose of (Y — Yp),
and so is a row vector of the average differences, and S~! is the inverse of the variance—
covariance matrix (or, simply, the covariance matrix) for the test variables (columns
in Table 8.4). S7! has size g(k — 1) X g(k — 1). The variance—covariance matrix is a
square matrix whose diagonal is the variance (of the samples) of a given response and
time difference (e.g., Apy-). Thus, each diagonal element is the sum of the squared
deviations of replicates from the mean [i.e., 3(x; — X)?] divided by n — 1. The off-
diagonal elements are the covariances. The covariances are the sum of the deviations
of replicates of variable x from the mean of variable x times the deviations of replicates
of variable y from the mean of variable y. Symbolically, the covariance is: }[(x; —
)i — ¥)1/(n — 1). The covariance between two variables is closely related to the
degree of correlation of the variables. See Searle (1982) for a formal definition.

In this case, we are using the deviation of the model from the data; thus, the ex-
pected mean is 0, so Hotelling’s 7% for model validation is (Steinhorst 1979):

T = WY'S’'Y. (8.5)
The variance—covariance matrix computed from Table 8.4 is

0.0747 0.0067 -0.2933  0.2600

S= 0.0067 0.0387 0.3267 -1.1600
1 -0.2933 0.3267 10.9667 —17.5000
0.2600 -1.1600 -17.5000 42.7000

Provided that sufficient replicates are available, the inverse of S can be obtained from
standard software packages as the matrix in:

30.44 -147.43 -4.28 -5.94 11 -0.03
-147.43 1469.80 5036 61.47 || -0.03
-4.28 5036 203 222 0.17
=594 6147 222 264 0.50

T? = 6|[-0.03,-0.03,0.17,0.50]

0.0463.

To determine the significance level of T2, we use a table (Timm 1975) of Upper
Percentage Points of Hotelling’s T2 for T%(p, v), where pis g(k—1) [i.e., 2(3—1) = 4],
« is the probability level for the test, and v is n — 1 (i.e., 5). The values for our case
corresponding to @ = 0.01, 0.05, and 0.10 are

1l

T00(4,5) = 992.494
T095(4,5) = 192.468
TO10(4,5) = 92434

Therefore, since 0.0463 < 992.494, we cannot reject the null hypothesis that the pro-
file of data minus model predictions is zero at P = 0.01. Thus, this test result validates
(or confirms) the model.
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The approach described above works for any number of response variables and
time intervals, and makes no assumptions concerning the structure of the variance—
covariance matrix. T2 is easy to compute using software that can manipulate matrices.
A major disadvantage is that it requires moderately large numbers of replicates. To ap-
ply the method, we must have n replicates such that n > g(k— 1), where ¢ is the number
of system response variables and & is the number of times at which comparisons are
made. This amount of replication is required in order to estimate the elements of the
covariance matrix. If the model can predict these values, then an approach to vali-
dation related to profile analysis is possible with far fewer replicates (Feldman et al.
1984).

A second approach to time-series validation is to treat the model and the data as
two time series and to measure the correlation between them using cross-correlation
techniques. Qualitatively, this procedure attempts to quantify the correlation between
two autocorrelated time series for a given lag. The lag accounts for the autocorrelation.
This is a well-studied problem and Steinhorst (1979) summarizes the basic formulae
to test the hypothesis that for a given lag interval there is zero correlation between the
two time series. Use of this lagging procedure has the potential to identify situations
like that illustrated in Fig. 8.3. This method has the reputation of requiring large data
sets. This requirement may limit its application in the ecological and environmental
disciplines, but may not be a problem in biochemical and physiological systems.

A third approach to comparing time series is commonly published, but is not a
rigorous test. One can simply plot model output and the data on the same graph and
count the number of times the model output (or mean model output) falls within the
data’s 95% confidence intervals. These intervals are

X+ [t0.05.n-1)] 5%

where X is the observed mean, %0.05,1~1) is the theoretical Student’s ¢ distribution value
for @ = 0.05 and n — 1 degrees of freedom (n = number of observations), and sx is the
standard deviation of the sample.

One can further state an objective rule for judging model quality such as: “A model
will be valid if model output falls within data 95% confidence limits for 80% of the
model-data comparisons.” Using the hypothetical data and model responses of Table
8.2, the 95% confidence intervals for the data are

Phytoplankton ~ Zooplankton

1 :1.17-297 1 :4.18-2248
$:299-597 1,:40.04 -72.30
13:048 159 13:15.47 - 23.87.

From these values, we see that all of the model predictions fall within the 95% con-
fidence intervals, and we would conclude that we have validated the model. See
Van Henten (1994) for a real validation of a plant growth model using this technique.
This criterion is a possible measure of model adequacy.
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8.4 Model Discrimination

If there is something wrong with every alternative, one tends to try a succession
of wrong things in the hope that one of them will turn out, which it never does.

— Boulding (1972)

The previous approaches assessed the degree to which a particular model deviated
from a data set. This is important, but it does not address the method of multiple
working hypotheses that we advocated in Chapter 2. We are, in principle, interested
in the absolute difference between the observed system and model predictions, but
as we have seen above, this is often difficult to achieve in practice. An alternative
approach is to content ourselves with deciding among a set of models based on their
relative adequacy. The process of discriminating between alternatives is basically a
decision problem. Most decisions (e.g., Should I finish reading this book?, Should
I change professions?) involve evaluating the probabilities of a set of events (e.g.,
the probability that I will get a raise, or that I will be happy, etc.). As we will see,
calculating probabilities is central to model discrimination.

Model discrimination is fundamental to all statistical inference, so the problem
is quite general, although we will discuss only a specific application. There are two
broad types of model discrimination: parametric and structural. In parametric model
discrimination, the form of the model is fixed (e.g., a straight line), the parameters
are unknown, and the object is to find the optimal parameter set. We covered this
problem when we discussed parameter estimation, and so we will not address it here.
Structural model discrimination is more closely allied with model validation. There
are three major, related approaches: ratios of likelihood functions, information-based
optimization criteria, and Bayesian inference. In the following, I have used exten-
sively Reilly (1970), Blau and Neely (1975), Reckhow and Chapra (1983a), Carpenter
(1990), Reckhow (1990), Hilborn and Mangel (1997), Burnham and Anderson (1998).

8.4.1 Likelihood Functions

As motivation, consider linear regression. The problem is to find the best set of pa-
rameters that minimizes the sum over all datum points of the square of the vertical
distance between the model line and the data. Some parameter values will produce
large sums, others will produce smaller sums. Likelihood functions are a similar idea.

The likelihood of a sample is the probability that the sample would be drawn from
a specified probability distribution with known parameters (e.g., the mean and variance
of the distribution). A likelihood function that calculates the likelihood of a sample
is a mathematical function that results from applying a probability distribution to a
particular sample in which one or more of the distribution parameters are allowed to
vary as the function’s independent variable. The dependent variable of the likelihood
function is the a posteriori probability of the sample given the underlying probability
distribution (Meyer 1975; Borowski and Borwein 1991).

Is the Die True? To see the utility and application of this concept, consider the prob-
lem of determining if a die (i.e., one half of a pair of dice) is true (Reilly 1970). A
reasonable approach to this problem is to roll the die n times and observe the number
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Figure 8.6: The likelihood function for the binomial probability distribution with » = 5 and
x = 2. The maximum likelihood estimator is the ¢ associated with maximum of the function.

(x) of occurrences of a particular face. If the observations deviate significantly from
that expected from a true die, then we can conclude that the die in question is not true.
For example, suppose we roll the die five times and observe two occurrences of the
number 3. How likely is this outcome if the die is true? The underlying probability
distribution for this kind of problem is the binomial distribution

b(x;n,6) = — " g%(1 - oy,

x!(n - x)!

This formula allows us to compute the probability that a particular event will occur, if
we specify the unknowns. In the die problem, 8 is a parameter of the distribution and
is the probability that a given face will appear; in a true die, § = 1/6. n is the number
of trials (five rolls of the die) and x is the observed occurrences of a face (two). We
consider x and n to be data that are specific to a particular test. Inserting the data
and parameters for an assumed true die, we find: 5(2;5,0.1667) = 0.16075. In the
problem, however, we do not know the true 6, so we form the likelihood function

L@|[x,n]) = ieﬂ(l -9? (8.6)
’ 213!
that pertains to (or given) the observed data (x) and the constrained data () of this
particular experiment.

The graph of this function is shown in Fig. 8.6. From this we see that the probabil-
ity of a face appearing that is associated with the maximum likelihood of the sample
is 0.4, not 0.1667, which we would expect if the die were true. So this discrepancy
between expected and most likely 6 suggests that the die is not true. We quantify the
amount of discrepancy by forming the likelihood ratio (R): L(6y4)/L(6p.17). In this
case, the ratio is 2.15. So we say that the observed sample is 2.15 times as likely if
6 = 0.4 than if 6 = 0.167. We would, however, expect two 3s from a true die due to
random chance, so is the discrepancy large enough to reject the hypothesis that the die
is true? Since we have but a single estimate of the most likely @ (i.e., 0.4), we cannot
say anything rigorously quantitative. A rule of thumb (Reilly 1970 states that if R is
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greater than 10, then we have a real difference. Under certain conditions, the log of
the likelihood ratio (log R) is distributed approximately as a y? distribution, so that a
probability can be associated with an observed R to assess if it is large enough to be
due to factors other than chance (Sokal and Rohlf 1981). Below, we apply this test
to some hypothetical and real examples. Dennis and Taper (1994) give further exam-
ples of tests and a cogent introduction to the problem of ascertaining the ratio value at
which to reject models.

Aside on Terminology In informal presentations, one often sees the likelihood func-
tion portrayed as:

L(data | hypothesis) or L(data | model)

accompanied by the text “L is the likelihood of the data given the hypothesis.” This
portrayal unfortunately confounds two different meanings of ‘data’ and causes confu-
sion when one encounters formally correct presentations. In the die example, there are
two instances of ‘data’: (1) the number of occurrences of a face and (2) the number of
rolls. The first datum is the experimental result the likelihood of which we wish the
function L to compute. The second datum is also an observed quantity, but one that
happens to be under direct human control in the die example. As in normal mathe-
matical functional notation, the function’s arguments are listed inside the parentheses
and the quantity that the function computes is denoted by the function name and the
argument list. To compute L, we need not only the data » and x (Eq. 8.6), but also
the value of 8, another argument of the function. But because 8 is the variable of the
function and the value we are interested in determining for the maximum of the like-
lihood, we write L as a function of 8 given that we have constrained (or observed)
another function argument to have a particular value (» = 5). So, the more correct
presentation would be:
L(6|[model,datal]),

where ‘model’ refers to the binomial distribution, and data refers to independent data
we must supply (n) as well as dependent data (x) that we observe. An appropriate
verbal statement is: “L is the likelihood of observing dependent data as determined by
variable parameters (#) and independently observed data.”” This, of course, is terribly
cumbersome and it’s easy to see why the informal, but misleading, shorthand persists.

Empirical Model Likelihood

The above example is fine, if one manufactures dice, but it is not very useful in model
discrimination. A better example is to choose among four structurally different models
relative to a data set. To compute the maximum likelihood for all four models, we
need: (1) parameters to maximize, (2) some data, and (3) a probability distribution that
depends on the model parameters. Figure 8.7 shows the parameters as the a; and the
data we need. We also need a probability distribution that will compute the probability
of observing the data, given a model. (This is what the binomial distribution did for
us in the die problem.)

For an intuitive grasp of the appropriate distribution, recall that in least-squares
regression we think of each observed y value as being equal to a function plus an error
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Figure 8.7: Four models fit to hypothetical data as a basis for discriminating among them.
Model 1 is nested in Model 2 which is nested in Model 3.

term:
yi = f(xi,0)) + €, 8.7

where f is the function and ¢;; is the error associated with the ith x-y data pair and
0; is a set of parameters. Regression chooses the 6; parameters of f to make the
error as small as possible. The error term, therefore, is related to the probability of
obsetrving a particular y;, given f(x;,8;). If, for a particular function and parameter
set, the error is large, then the probability of observing y; will be small, and vice
versa. But in regression, as in Fig. 8.7, there are several y;. They are incorporated
into the computation of the probability of observing the total error around all of the
¥i by multiplying the probabilities for individual datum points (the joint probability
distribution). For example, if py is the probability of observing yo [given f(xo,6))],
and p, is the probability of observing y; given the same function and parameters, then
pop1 is the probability of observing both y; given the function and parameters. The
probability of the total error is just what we mean by the probability of observing the
v;. This, then, is the probability distribution we need for the likelihood of all the y. So,
a general likelihood function is ’

L(9| modeldata) = | [ p: (8.8)

i=1

(i.e., the product of the probabilities of obtaining each independent observation). To
produce a particular likelihood function, we need an expression for p; as a function of
the error term in Eq. 8.7. We use one of the assumptions of linear regression: the errors
are normally distributed and independent. The probability density function (pdf) for a

single-variate normal distribution is
— 2
exp(—((x A )) 8.9)

n(x; 1, o) = 752

1
V202

where x is the independent variable, 4 is the mean, and o is the variance. The latter
two variables are the parameters of the distribution; x is the data. In our case of fitting
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a particular datum y; to a model (Eq. 8.7), y; is x and f(x;,6)) is p in Eq. 8.9. For
a particular x and model as in Eq. 8.7, the difference between the observed y and
the predicted y is a number drawn from n(y;; f(x;,6;), o) (Eq. 8.9). Therefore, it is
the probability of observing that particular y;, given the model and independent data.
Equation 8.9, therefore, is a single p; in Eq. 8.8. Using the general likelihood function
(Eq. 8.8), the particular likelihood function assuming normally distributed errors for
all datum points (all y;), a particular model j, and the independent data x needed by
the model is

n

a2 T £0Y w1 1 _()’i"f(xi,ej))z)
Ly |[y,,f,(>,x,1>—];[ = exp( 507

_ [ 1 }" ox (_ 20— [, 9j))2)
- \2ro2 P 202 ’

where n is the sample size. This equation has the following important properties. (1)

i - f(x;,6 j))2 = RSS (residual sum of squares) is the least-squared error between
data and model. (2) Models and parameter sets (Oj,a-z) that have large errors (poor
fits) have small likelihood values. (3) There is a single maximum, the maximum like-
lihood, which corresponds to the minimum of }(y; — f(x;, 6 j))z. (4) The set of (6, o?)
associated with the maximum is the best set of model parameters for model i. These
©;, 02) are the maximum likelihood estimators of the parameters.

Equation 8.10 has two unknowns: the model parameters 6; and o?. Both must
be estimated for each model. To fairly compare and discriminate among a set of
models, we want to use, for each model, the model’s parameters that make the data
the most likely, i.e., the maximum likelihood estimates of 8; and o for each model,
When we have these estimates, we will also have the maximum likelihood estimate
62, = RSS/n = MSEP. When 62, is estimated, and substituted for o in Eq. 8.10,
the maximum likelihood function for model j is:

(8.10)

17 n
Li(0a* | yi, £, x]) = [%‘5] exp(——z-). (8.11)
Finally, taking log, of both sides of Eq. 8.11:

In(L ;80 | [y £50), 1)) = —g In(62) - gln(Zn) - g (8.12)

The last two additive components on the right of Eq. 8.12 are constants and only
the first component determines the values of the 6 that maximize In(L;). (The reader
should verify Egs. 8.11 and 8.12.)

However impressive the manipulations have been to this point, a maximum log-
likelihood is just a single number. To discriminate among models, we need tools to
determine statistically if one model is better than another. In the special case that the
models are nested we can use the likelihood ratio test (LRT). Model A is nested in
(simpler than) Model B if the former can be obtained from the latter by setting one or
more parameters to zero. For example, in Fig. 8.7, Model 1 is nested in Model 2 by
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Table 8.5: Likelihood comparisons of four models on data in Fig. 8.7

Model RSS 6 In(Ly) In(L)-In(Lpa=3) x*  df P
I 28465 7.116 -3.925 -1.603 3206 2 0201
2 22473 5.618 -3.452 -1.130 2260 1 0.133
3 12773 3193 -2.322 0.000 - - =
4 11.854 2964 -2.173 — - - =

setting ag = 0. The likelihood ratio test is based on the ratio of likelihoods or, equiva-
lently, the difference between the log-likelihood of the simpler model (In(L,)) and the
more complex model (In(L.)). This quantity is y? distributed with the null hypothesis
that In(L;) = In(L.) and tested with degrees of freedom equal to the difference in the
number of parameters between the two models:

X? = =2[In(Ly) - In(L,)].

The maximum likelihoods for the four models in Fig. 8.7 and the ratio of likeli-
hoods (differences in log(L)) to the best model in Reilly (1970) are shown in Table
8.5. Since Models 1-3 are not nested with respect to Model 4, it is excluded from the
likelihood ratio test. Based on this table, the exponential model (4) is a better fit to
the data than the 3 polynomial models. Among the latter nested models, Model 3 was
more complex (more parameters) and a better fit to the data. However, none of the x?
values of the ratio test were significant at @ = 0.05, so we conclude that Model 3 was
not a significant improvement over either Model 1 or 2.

Mechanistic Model Discrimination

A final application computes L, for seven differential equation models of the dy-
namics of a radioactively labeled pesticide in an aquatic microcosm (Blau and Neely
1975). An aquatic laboratory microcosm containing Water, Soil, Plants, and Fish was
perturbed with *C-labeled Dursban to determine how much of the pesticide accumu-
lated in the above microcosm components over time. Seven models based on donor-
controlled, linear differential equations were formulated as predictive tools. The rela-
tive merit of each as measured by maximum likelihood was assessed to discriminate
among them. The models varied according to the number and relations of ecosystem
components that each incorporated. The models differed from each other according to
the number of flows and compartments in a series from simple to more complex. Two
of these are illustrated in Fig. 8.8.

Blau and Neely (1975) fit each model to a single time series of results to obtain the
best parameters (k;). They applied Eq. 8.10 to each model and obtained the maximum
likelihoods (relative to model parameters) in Table 8.6. They concluded that Model 4a
was the best of the seven (largest In(L;), column 4). The likelihood ratio test applied
to the models that were nested in the best model (4a) indicates a significantly better fit
by the more complicated model.

8.4.2 Information-based Discrimination

The likelihood ratio method described above is a procedure for rational choice among
competing models based on their discrepancy with a dataset. A problem is that the ap-
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MODEL 1 b ok

MODEL 4a

Figure 8.8: Two of the seven models of Dursban movement in an aquatic microcosm (Blau
and Neely 1975). In model 4a, Fishp, Water,, and Soil/Plant, represent additional storage
compartments for '4C.

proach does not consider the complexity of the model. We have previously noted that
increasing model complexity in the form of additional parameters has an ambiguous
relationship to the error between the model and the data (Costanza and Sklar 1985).
More parameters often produce functions with more complicated structure (e.g., curvi-
linearity, or many maxima and minima), which might be better able to match compli-
cated, non-smooth data. However, all parameters are estimated with errors, and it
often happens that the total error of the function is positively related to the number of
parameters as they each contribute their individual errors. This is error propagation
and is discussed in Chapter 9.

A number of schemes have been proposed to incorporate the number of parameters
into the model discrimination process (Spriet and Vansteenkiste 1982). All of these
decrease model “quality” as the number of parameters increase. This process allows

Table 8.6: Maximum likelihood values, ratios, and chi-square values for the seven models
of Dursban movement. n = 36. Not all models are nested in the best model (4a). df =
degrees of freedom for the chi-square test = difference in number of parameters. P is the
probability that a y* value as large or larger than observed would occur by random sam-
pling. AIC is the Akaike Information Criterion for each model; A; is the difference between a
model’'s AlIC and the smallest AIC in the set of models.

Model  RSS &2 In(L) | In(Li/Lwax=4a)  X* df P AIC A

1 5374 1493 -90.11 “81.34 1627 4 <0001 | 18822 154.7
2a 1964 5456 -71.99 -63.22 S — 153.98  120.44
2b 848  23.56 -56.87 —48.10 9620 3 <« 0001 | 123.74  90.20
3a 2083 5786 -31.60 -22.83 4566 2 «0.001 | 7520  41.66
3b 2079 5775 -31.56 -22.79 S — — 7712 43.56
4a 586 1.628 -8.772 0.00 000 — —_ 33.54  0.000
4b 794 2206 -1424 ~5.468 U — — 4248  8.940
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us to implement the principle of parsimony that we invoked in Chapter 2. One scheme
for balancing accuracy and complexity now being used extensively is due to Hirotugu
Akaike, and admirably explicated for biologists by Burnham and Anderson (1998).

The problem is that we know how to estimate the “distance” between a dataset
and the predictions of a particular model. More difficult is to estimate the “distance”
between two or more competing models or functions. As Burnham and Anderson
describe, if one model is considered the focal or “true” model, then a second model
is viewed as approximating the first. The distance between the two is the information
that is lost, if we use the second model in lieu of the true model. The formula for this
distance is closely related to Claude Shannon’s measure of the information content
of a binary communication signal (Shannon 1948). We leave the reader to consult
Burnham and Anderson (1998) for an approachable introduction to this theory, but the
basic idea is deceptively simple.

Information theory provides a formula for the distance (the Kullback-Liebler dis-
tance) from a candidate model to a focal model based on particular values of the pa-
rameters required by the two models. In this model distance context, the focal model
is assumed to be fixed or given and any other candidate model is related to it. In the
practical or empirical context, we have a candidate model which we wish to relate to
a dataset. In this context, the data play the role of the focal model, but, alas, we do
not know the parameters of the “true” model that corresponds to the data. (If we knew
that, we wouldn’t need modelers.) As a result, the Kullback-Liebler distance formula,
as written, is not practically useful. Akaike’s contribution was to provide an unbiased
approximation that can be applied to empirical data based on the log-likelihood func-
tion. This approximation is known as the Akaike Information Criterion (AIC) and is
computed for each model j:

AIC; = ~2In(L(887 | [y, £;( ), x])) + 2K, (8.13)

where L( ) is the maximum likelihood estimate of the model parameters given the data
¥, x, and model equation, and where K is the number of parameters estimated in fitting
the model to the data. K equals all the unknown coefficients in the model itself plus
parameters of the error distribution that must be specified. In our earlier work with
normally distributed errors in a linear regression (e.g., Fig. 8.7), K = 3, two for the
slope and intercept of the line and one for 6. The first component on the right of 8.13
usually decreases as the number of parameters increases, but the second component
increases. From a collection of models M, j = (1,...,m) and a particular dataset, the
best model is that which possesses the smallest AIC;. Thus, K represents a penalty we
incur by using complicated models to represent the data.

AIC by itself does not provide a statistical basis to infer the best model with an
associated probability of a Type I error. AIC is an optimization criterion. It differs
from the likelihood ratio test (LRT) in this regard. However, when the models analyzed
by AIC are nested, there is a relationship between AIC and LRT:

LRT = AIC, - AIC; + 2k (8.14)

where k is the number of parameters that differ between model / and model j. Anal-
ogous to reporting LRT values, it is standard (Burnham and Anderson 1998) to report
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the difference between the AIC of a candidate model and that of the model with small-
est AIC as: A; = AIC; — AIC,. Since this is just an indexing method, and not a
statistic for inference, A; can be reported for all pairs of models, regardless of nest-
edness. Table 8.6 reports the AIC and A values for the Dursban models. Both the
likelihood values and the AIC indicate that model 4a is the best. Incorporating the
number of parameters (2K) as a penalty did not affect the conclusion since the best
model was quite accurate using a small number of parameters. Burnham and Ander-
son (1998) suggest, as a rough rule of thumb, that if A; < 2, model / performs similarly
to the best model and should not be eliminated; if A; > 10, model ! is not close in qual-
ity to the best model and can be eliminated. Using these criteria on Table 8.6, none of
the competitors is close to 4a, but perhaps 4b should not be rejected.

There are many modifications and elaborations to this basic idea of penalizing
complex, but accurate models in order to achieve a balance between simplicity and
errors. One major failing of this approach is the absence of a hypothesis test. AIC is
defined for a particular model and dataset. A different data set might (and often will)
suggest a different model as being best. One obvious solution to this sampling distri-
bution problem is to collect many datasets and calculate an AIC for each dataset and
model. If this is not possible, Burnham and Anderson (1998) recommend bootstrap-
ping. This is a Monte Carlo re-sampling technique (cf. Section 9.2.2,Efron and Tib-
shirani 1993; Manly 1997) whereby one samples with replacement from the original
data to obtain a sampled dataset. Using these data one computes AIC (and any other
index of choice). By repeating this process many times (e.g., 10,000), one creates a
sampling distribution of the AIC for each model from which one can perform standard
hypothesis tests (e.g., ANOVA) that pairs of models differ in their AIC. An alternative
method is jackknifing where one seqentially removes one of N datum points (or, in the
case, a data-model pair), computes statistics of the remaining data (e.g., MSE, AIC),
and estimates variances and standard errors from the N estimates.

MBS-CD contains SimValidation_Jackknife () that does simple jackknifing for
h many of the validation variables discussed. See SimValidate.c in the SimPlot
package for the algorithm.

8.4.3 Bayesian Inference

Complete objectivity about one’s own work is a little much to expect from a human
being, even a scientist, but it is not too much to expect from one’s colleagues.
— Efron (1986)

Bayesianism means never having to say you're wrong. — Dennis (1996)

The likelihood method quantitatively ranks the adequacy of a set of competing models
by their ability to fit the data, but it does not actually compute the probability that the
models are correct. One method of calculating this probability uses Bayes’ Theorem.
This area of statistics is complicated and controversial; consequently, we will provide
only a heuristic introduction to its applications and strengths and weaknesses. Before
defining this theorem, we relate the problem to more classical approaches.

Bayesian inference and statistical analysis based on Bayes’ Theorem provide an
important alternative to the classical or frequentist statistics familiar to most biolo-
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gists (e.g., t-tests, ANOVA, regression). In a nutshell, classical statistics uses data to
calculate a sample estimate of a test statistic (e.g., Hotelling’s T?). This estimate is
compared with a frequency distribution of hypothetical samples of the same size (i.e.,
the probability tables for Hotelling’s 7?). Thus, we compute the probability of observ-
ing a particular value of the test statistic, given that the null hypothesis is true. Based
on this probability and a threshold for Type I error (usually & = 0.05), the original pre-
sumption of that the null hypothesis is true is either rejected or accepted. Advocates
of the Bayesian approach argue that this is not the central focus of scientific questions.
They claim that scientists are primarily interested in the probability that the null hy-
pothesis is true (Reckhow 1990). Bayesian statistics were developed to address this
question,

Bayesian statistics are based on a different set of probabilities, and, in particular,
include estimates of the truth of the null hypothesis prior to the test being made. Thus,
they permit the inclusion of prior knowledge (e.g., data from other similar systems,
historical data, expert opinion, etc.) in the test of the hypothesis for the given data set.
Bayesian inference is still controversial among statisticians, but it is being applied to
unreplicated data sets and to comparison of competing, alternative simulation models
(Carpenter 1990).

The basis for this approach to inference is Bayes’ Theorem which in the present
context is a recipe for calculating the probability that model i is true, given the ob-
served data and a finite set of m alternative models. The Bayesian probability is

P(M) P(Y | M)

P(M;|Y) = = ,
MY = s b ty) POY 1 )

(8.15)

where m is the number of alternative models, P(M;) is the prior probability that model
i is true, and P(Y | M;) is the probability of observing Y values given that M; is true.
This latter quantity is typically estimated as the maximum likelihood estimator of Y.
The denominator is a scaling factor that normalizes the likelihood of a particular model
to the total likelihood of all the models.

There are two problems in computing Eq. 8.15: (1) specifying the prior probabili-
ties and (2) computing the likelihood of observing the data, given a particular model.
The solution to (1) is easy to state, but difficult to implement. The prior probability
is simply our belief in model i before we collect the validation data. But this begs
the question of how we quantify this belief. Some say we may use any subjective
evidence we have at hand: expert opinion, studies reported in the scientific literature,
previous experiments, etc. When the prior probabilities are quantified from previous
experience, they provide a solution to the major problem with the classical view of
the modeling process (Chapter 2). Bayesian probabilities generated in earlier passes
through the process can be used as the prior probabilities in later passes. Other users
of Bayesian inference, however, recommend not using any previous experience. They
suggest assigning the prior of each model an equal probability: 1/m, where m is the
number of models. Such priors are termed noninformative. The problem of the priors
is the source of much of the controversy surrounding the use of Bayesian inference. It
raises the issue of the role of subjective judgment in statistical inference.

The solution to (2) is difficult to describe, but the usual solution results in a rel-
atively easy computation. The probability of observing a particular data set, given a
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Table 8.7: Bayesian posterior probabilities of seven Dursban models. Column 2 = prior
probability of model i, column 3 = Likelihood of model, column 4 = posterior probability of
model i. (Recalculated from Blau and Neely (1975) and Carpenter (1990).)

Model P(M)) L; P(M;|Y)

1 0.1429 1.049 x 1074 4716 x 107
2a 0.1429 7.763 x 1075 3.491 x 10728
2b 0.1429 2.861 x 1072 1.287 x 1072
3a 0.1429 2700 x 1075 1214 x 1070
3b 0.1429 2.809 x 10715 1.263 x 10710

0.1429 2214 107 0.9958
4b 0.1429 9.344 x 107 4202 x 107
Denominator = 2,224 x 1073

model, is related to the error associated with fitting the model to the data. We saw how
to do this in calculating the likelihood ratios of the four hypothetical empirical models
(Fig. 8.7). So, the likelihood functions computed using the optimal fit of parameters
to the data can be used as the P(Y | M;) in Bayes’ Theorem.

Writing Eq. 8.15 with our previous notation for likelihoods, we have:

P(M;) L(6:6* | Ty, M;, x])

PM,' Y) = :
M= S Pt L6 . My )

(8.16)

This analysis has been applied extensively by Reckhow and Chapra (1983a) and
Reckhow (1990) to a variety of management models. See also these authors for eco-
logical applications: Ellison (1996), Toivonen et al. (2001), and Clark et al. (2001).
Dennis (1996) provides an opposing view.

As an example, Carpenter (1990) performed Bayesian analysis on the seven com-
peting models for pesticide transport developed by Blau and Neely (1975). Since
Carpenter chose not to incorporate other information about the prior probabilities of
the seven models, he assigned each to have P(M;) = 1/7 = 0.1429. Using a normal
distribution of errors for the P(Y | M), he calculated the probabilities that each model
was true (Table 8.7, column 4; recalculated using our likelihood estimates). The pos-
terior probabilities of five models were essentially zero. Model 4b had a probability of
0.004 of being true, while the remaining model’s probability was 0.996. Thus, model
4a was clearly superior, given that all models were equally probable to be correct be-
fore the test was made. This agrees with our previous analyses based on the LRT
and AIC. This is not terribly surprising, since all the methods are based on the same
residual sum of squares, and the Bayesian priors were noninformative.

8.5 Meta-Models

A recent alternative to classical model validation is the construction and validation of
meta-models (Kleijnen and van Groenendaal 1992). This should not be confused with
meta-analysis, which is the statistical analysis of the statistical analyses reported by
other researchers. A meta-model is a nonlinear regression model of the output of a
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dynamic model. We like to think that the original dynamic model provides an under-
standing of the system, but too often, complex simulation models provide complex and
confusing results that are themselves difficult to understand. Mathematical concepts
such as nullclines and stability, which are described in Chapter 9, are one approach
to understanding a model. Reducing complex model output to relatively simple re-
gressions between model variables is another. The method developed by Kleijnen is
as follows. (1) Use a series of original model runs to generate a data set. (2) Identify
a set of potentially interesting relationships (meta-relationships, e.g., the relation of
phytoplankton biomass to zooplankton biomass). Then, fit linear or nonlinear func-
tions to the model data set. (3) Validate the meta-model by running the original model
a second set of times with different input values (e.g., different driving temperatures).
If valid, the meta-model should correctly predict the quantitative meta-relationships of
the new runs. A valid meta-model will characterize the important dynamic relation-
ships that are produced by the mechanistic relationships used in the original model.
The meta-model can then be further validated agai