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Second Edition 

"This book fills a much needed gap," or so Moses Hadas (1900-1966, Columbia Uni- 
versity Professor of Classical Literature) is reputed to have cynically said of another 
author's efforts. The gap that pertains to the present work is that between traditional 
biology subject matter and applied mathematics. The twenty-first century is touted 
as the century of mathematical biology, by which we mean that many of the impor- 
tant practical as well as theoretically interesting problems involve biological systems 
of such complexity that traditional experimental analysis must be coupled with math- 
ematical synthesis. Other authors have noted the need to expose biology students 
to greater quantitative training and have provided biologist-friendly introductions to 
computer simulation focused on a variety of biological subdisciplines. I continue to 
think we need a general textbook, applicable to a wide range of biological systems, but 
with enough rigor that some of the depth of the underlying mathematical and compu- 
tational substance can be appreciated by biology students. This necessarily removes 
biologists from their intellectual comfort zone, but my goal is to perturb the mind, and 
my hope is that a student's current knowledge base is an unstable equilibrium. 

In providing a revision to the first edition, I have attempted to provide some of 
this rigor, but certainly not enough for this book to be considered mathematical biol- 
ogy. As with the first edition, I note there are several texts of the latter from which 
to choose. This book continues to lie in the possibly unattainable middle ground be- 
tween mathematics and introductory computer simulation. To help the student, and 
the teacher, I have put new material on a CDROM disk that provides modeling tools 
in C and  atl lab@ and its open source GNU analog octave. The proper choice of 
computer tools has long been and will continue to be debated; each of us has our 
preferences. For myself, I think students can and should learn a general purpose pro- 
gramming language, and I think C is the simplest of these that also has a rich set of 
open source libraries needed for non-trivial modeling. However, C does require atten- 
tion to detail, both in conceptual analysis and precision of code composition. While 
I would not dream of suggesting that this is something we biology educators have let 
slip in our need to provide to students the ever increasing body of biological facts, 
nevertheless, perhaps learning to deal with details is a good thing. Other instructors 
will place greater emphasis on the conceptual bases of biological modeling with as 



xiv Preface 

little class time devoted to programming as possible. It is for these I have provided as 
much octave/Matlab code as possible. Those facile with these high-level scripting 
languages will easily discover that I am not one of their society. However, I am always 
happy to learn new things and so look forward to receiving better code fragments from 
students and instructors. 

To the maximum extent possible, the octave code has been verified to run in 
Matlab Version 5.3, which is available on many platforms. The C package of simula- 
tion modules is combined with an excellent, free graphics library (Dislin) for plotting 
that rivals those of Matlab. Each package has its advantages and disadvantages, and 
I leave it to the instructor to choose which (if either) he or she wishes to use. 

This new edition also fixes numerous typographic errors and other problems of 
presentation, particularly in Part I (Principles). I have also added in Part I and Part 
I1 (Applications) new examples that reflect new modeling approaches or particularly 
relevant systems. Because of recent interest in AIDS and bioterrorism, Part I1 contains 
a new chapter on epidemiological models and immunology. A second new area of in- 
terest is the use of Bayesian, likelihood, and information-based techniques for model 
validation and discrimination. These were covered in the first edition, but new devel- 
opments warrant more detailed treatment with worked examples. Finally, individual- 
based models (IBMs) in which individuals in populations are tracked in physical and 
phenotypic space continue to be an important approach used in many disciplines of 
biological modeling. The new edition gives greater attention to these models. 

With the expansion of the text material, some topics have been reduced or re- 
moved. Chapter 5 (Simulation Techniques) is now on the CDROM, with only super- 
ficial consideration in the text chapter on numerical techniques. Chapter 4 has been 
expanded and split into two chapters to ease the pain of this crucial aspect of modeling. 

Other, smaller changes include an improved subject index and back-referencing 
author citations in the bibliography to the page numbers on which they are cited. New 
exercises in many of the chapters, including class project possibilities, are included. 

The overall philosophy of the text remains as that of the first edition. I describe a 
few core principles around which most modeling projects are based in Part I. These 
principles are exemplified in the case studies of Part 11. 

First Edition 

This book is intended as a text for a first course on creating and analyzing computer 
simulation models of biological systems. The expected audience for this book are stu- 
dents wishing to use dynamic models to interpret real data much as they would use 
standard statistical techniques. It is meant to provide both the essential principles as 
well as the details and equations applicable to a few particular systems and subdis- 
ciplines. Biological systems, however, encompass a vast, diverse array of topics and 
problems. This book discusses only a select number of these that I have found to 
be useful and interesting to biologists just beginning their appreciation of computer 
simulation. The examples chosen span classical mathematical models of well-studied 
systems to state-of-the-art topics such as cellular automata and artificial life. I have 
stressed the relationship between the models and the biology over mathematical anal- 
ysis in order to give the reader a sense that mathematical models really are useful 
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to biologists. In this light, I have sought examples that address fundamental and, I 
think, interesting biological questions. Almost all of the models are directly compared 
to quantitative data to provide at least a partial demonstration that some biological 
models can accurately predict. 

As a result, I have generally kept the mathematical manipulations and requirements 
to a minimum. This is not a text in theoretical or mathematical biology; several of 
these already exist, and, being written by bonafide mathematicians, they have much 
to recommend them. The minimum mathematics needed for this book are statistics to 
the point of simple, single-variable linear regression, a small knowledge of probability 
distributions, and one semester of calculus. 

The book is divided into two parts. The first, Principles, gives the basic steps that 
take a modeler from a biological question to a conceptual model to a quantitative spec- 
ification of the system. The conversion of vague questions and ambiguous information 
into precise and quantitative mathematical forms is one with which biology students 
have the greatest difficulty. I have found that a set of heuristic "rules-of-thumb" ap- 
plied to hypothetical situations is an effective teaching approach. Once these skills 
are mastered, the text describes techniques for constructing computer programs to 
solve the equations. Following this, methods to analyze computer output to answer 
the initial question are presented. These include equilibrium and stability analysis, 
sensitivity analysis, error analysis, and validation. The concepts developed in Prin- 
ciples apply to virtually any subject or question that can be addressed or formulated 
such that the answer can be gleaned from the dynamics of variables that describe the 
system (e.g., population size). Since the majority of biological theory is formulated in 
terms of differential equations, I stress techniques appropriate to "continuous systems" 
simulation. 

The second part, Applications, is a series of chapters in which fundamental equa- 
tions and problems from various biological disciplines are presented. Here I have 
tried to provide students and instructors with tools that will permit them to design 
their own course in biological modeling. By separating the details of subdisciplines 
from modeling fundamentals, I hope to provide a format in which a coherent portrait 
of the modeling enterprise can be obtained as well as background in modeling partic- 
ular biological systems. Space, interest, and expertise have limited the suite of topics 
considered. Since my area of interest is ecology, I have perhaps stressed this field, 
but as most ecologists would admit, physiology and biochemistry are relevant fields. 
I include some fundamental equations and examples from these areas. The intent is 
not to give a comprehensive review of each topic; this is well beyond my expertise. 
Rather, I want to whet the students' appetites, providing enough background so that 
the references can be used in an intelligent manner and so that meaningful exercises 
can be attempted. 

The process of modeling biological systems is certainly not a science, but neither 
is it as unconstrained as the creation of a work of pure art that is evaluated solely on its 
esthetic content. I prefer to analogize modeling with crafting a tool useful for human 
problem solving. To aid in the acquisition of this craft, I have provided problems and 
exercises for most of the chapters. Some of these require computer programming, and 
I have given an example using the C programming language. I believe C is rapidly be- 
coming required for literacy in scientific computing. The very small amount presented 
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in this book will give the reader a taste. A discussion of simulation languages and en- 
vironments also provides access to other, relatively painless methods of implementing 
simulation models. 

For the Instructors: There seem to be two methods for teaching quantitative and 
mathematical methods in biology: present a large number of models from many bi- 
ological disciplines and expect the commonalities and principles to emerge on their 
own; or, present a set of modeling fundamentals extracted from general principles 
with relatively few examples and hope that students learn to apply the principles to 
new situations. Both methods have advantages and disadvantages; I like the latter ap- 
proach, as the structure of the book suggests. Nevertheless, I have tried to accomodate 
both and I hope those of you favoring the former teaching style will find the book 
useable. 

For the Students: At my university, I use this book in a course for seniors and 
new graduate students. It really is an introduction to the subject insofar as someone, 
somewhere, has already written an entire book on the subject of each chapter. If 
you are in a considerably earlier stage in your academic career and find the book 
approachable, consider yourself fortunate to be smart and to have had good teachers. 

While the author cannot claim to be smart, he has been fortunate to have had 
good teachers over the years. It seems appropriate to mention three of them here not 
so much as to afix blame, but to recognize their contributions. Thanks to Charles 
Warren, Scot Overton, and George Innis. Finally, this book in whole and in part has 
been examined by a number of my friends, notable among them being Linda Abbott, 
Susan Durham, Laura Hartt, Upmanu Lall, Alice Lindahl, Keith Mott, Darcie Neff, 
Jim Powell, Kirk Steinhorst, and former students in my graduate classes. While their 
efforts were valiant, unintentional errors remain. Remember: Never attribute to malice 
anything that can be attributed to stupidity. 





Chapter 11 

Models of Systems 

1.1 Systems, Models, and Modeling 

' I  want to understand everything,' said Miro. 'I want to know everything and put 
it all together to see what it means.' 
'Excellent project,' she said. 'It will look very good on your resumd' 

- Card (1982) 

HEN THINKING ABOUT systems, models, and understanding everything, it is good 
to begin with the famous parable of six blind men inspecting an elephant. They W 

are asked to identify the object before them which they cannot see. One man, feeling 
the elephant's leg, thinks he is touching a tree trunk. Another, grasping the elephant's 
trunk, thinks he is holding a snake. A third, standing near the moving ear, thinks it is a 
large, feathered fan. And so it goes for the other men touching the tusk, the side, and 
the tail of the elephant. Each man gave a different description of the same object, but 
none was correct. 

Three fundamental lessons can be gleaned from this simple parable. First, in the 
real world, we don't know it's an elephant: there is no omniscient observer with special 
access to the truth. Imagine you are one of the blind men; now imagine yourself pro- 
pounding the new "tree-trunk" theory to your fellow observers. Very likely, they are 
not amused. Second, all of the men collected basic data and generated an hypothesis 
consistent with the data. This activity, which is distinct from deduction or induction, 
is called abduction (attributed to Charles Peirce, see (Hanson 1972)). It is easy and 
natural for humans to practice abduction; as the parable suggests, it is an activity that 
occurs frequently in daily life. Third, abduction is not infallible. However it is ac- 
complished, abduction is not a fail-safe method for discovering truth, beauty, or the 
meaning of life. Descriptions and hypotheses may vary in their quality or value. We 
must, therefore, go beyond the simple description, if we are to gain confidence that our 
initial perceptions were valuable. This book describes some tools by which we may 
formally and quantitatively extend to specific predictions the qualitative descriptions 
abduced from observations on biological subjects 

In essence, each blind man created a model (the description) of a system (the ele- 
phant). By these concepts we mean the following. A model is a description of a 
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system. A system is any collection of interrelated objects. An object is some ele- 
mental unit upon which observations can be made, but whose internal structure either 
does not exist or is ignored. Finally, for completeness, a description is a signal that 
can be decoded or interpreted by humans. In short, systems are anything humans wish 
to discuss and models are one tool that facilitates the discussion. 

Before discussing these definitions, consider an example. Suppose the system of 
interest is the set of students and the professor in a typical classroom situation. There 
are many potentially interesting relations between these objects, but let us focus on 
their spatial position at a moment in time. We could model this system by drawing 
a map of the objects based on some arbitrary coordinate system (e.g., Cartesian co- 
ordinates with origin in one corner of the room). This map then counts as a model 
because the objects and their relations (the system) are combined in a form that can 
be interpreted by humans. The relations between objects identified in this example are 
the spatial relations. Other relations could be used, for example, the relation knows 
more than. Thus, we could describe the system in the classroom by drawing arrows 
between objects to indicate that the object at the tail of the arrow knows more than 
the object to which the arrow points. One failure of the blind men was to ignore the 
relations between objects. A seventh man, one sensitive to the importance of testing 
alternative models, might have said: "Hmmm, 'tree', 'snake', 'fan', 'spear', 'wall', 
'rope': It's a single, big thing with columnar supports and appendages at the ends." 
The blind men, especially, need a systems approach, and with respect to the scientific 
unknown, we are all blind. 

Although we can give particular examples, the definitions stated above are so gen- 
eral that they are nearly useless in normal discourse. Superficially, they imply that 
virtually everything is a system and that models are used and defined in every facet of 
human activity. For example, the simple declarative sentence "It is raining outside" 
counts as a model of a system composed of the atmosphere outside the walls of the 
building. Consequently, the definitions do not aid in defining and delineating our sub- 
ject of interest. Nevertheless, the definitions make several points. First, modeling is 
a fundamental activity between humans: we use models to communicate a view of 
the world. (Indeed, this book is a model of modeling.) Second, any particular system 
with its specific objects and relations is defined, if not arbitrarily, then at least by some 
convention that may in the end be a matter of convenience. 

Because of the generality in the definitions, we must narrow the class of models. 
We do this by identifying the uses to which models may be put. There are many 
possibilities: we use them to convince (e.g., use of analogy in a court room), delight 
(e.g., a painting or sculpture), inform (e.g., a map), and so on. However, it is the class 
of scientijic uses that concerns us here and that will give us a framework for restricting 
the class of models. 

1.2 Uses of Scientific Models 

Model [er]: a device for turning assumptions into conclusions.- Schimel(2002) 

There are three primary, technical uses of models in science: 
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Figure 1.1 : Systems and the uses of models. Top: A general system represented as an 
input (E), a system object (S), and the output (R). Bottom: Knowledge needed for models 
of different uses. (From Karplus 1977, Fig. 1. @ 1977 Simulation Councils, Inc. Reprinted 
withOUT permission Simulation Councils, Inc., publisher.) 

Type of Problem 
Synthesis 
Analysis 
Instrumentation 

0 Understanding - of either a real, physical system or of a system of logic such 
as another scientific theory. 
Prediction - of the future or of some state that is currently unknown. 

0 Control - to constrain or manipulate a system to produce a desirable condition. 

Karplus (1983) provides a simple conceptual framework of systems that defines 
these three uses of models. A system (Fig. 1.1) can be thought of as a black box 
(system object, S )  with a single input (excitation, E), and a single output (response, R). 
Additional structure in the form of objects and relations could be provided within the 
box, but the idea is general, considering only a single object. The output is produced 
by the object's action on the input. For example, suppose S is a whole plant (not 
differentiated into parts), E is the amount of fertilizer added to the soil, and R is the 
amount of new growth. 

This scheme permits a definition of the three uses of models (Fig. 1.1). Three 
general problems that humans face with respect to any discipline or body of knowledge 
are: 

Synthesis -use knowledge of inputs and outputs to infer system characteristics. 
Analysis - use knowledge of the parts and their stimuli to account for the ob- 
served responses. 

0 Instrumentation - design a system such that a specified output is the result of an 
input. 

Models can be used in each of these problem areas and when they are, they allow us 
to understand, predict, and control systems. 

There are also important secondary uses of scientific models that derive from the 
social characteristics of science: 

Given 
E and R 
E and S 
S and R 

Use as a conceptual framework for organizing or coordinating empirical re- 
search (e.g., designing experiments or sampling studies, allocating limited re- 
search dollars). 
Use as a mechanism to summarize or synthesize large quantities of data (e.g., 
a simple linear regression equation y = mx + b to reduce all of the x-y pairs of 
data to two parameters m and b). 
Identify areas of ignorance, especially when defining relations between objects 
(e.g., Does species A eat species B?, Does Professor X know more than Student 
A?). 

To Find 
S 
R 
E 

Uses of Models 
Understand 
Predict 
Control 
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Figure 1.2: Numbers of insect species on a small mangrove island following defaunation. 
(From Simberloff and Wilson 1970, Fig. 1. @ 1970 Ecological Society of America. Reprinted 
with permission of the publisher.) 

4. Provide "insight" to managers or planners (or others) by performing "what-if" 
simulations ("gaming"). 

1.3 Example: Island Biogeography 

A biological example will help clarify some of these concepts. Biogeography is a 
discipline that combines elements of ecology and geography; its primary objective is 
to describe and explain the spatial distribution of plants and animals on the Earth's 
surface. The spatial scale for this field is broad: landmasses on the order of conti- 
nents and large islands. Mapping the geographical distributions of species is a major 
component of biogeography, but it also examines patterns of numbers of species over 
geographical space. Island biogeography is a subdiscipline which restricts itself to 
islands. 

1.3.1 Physical Setting 

Ecologically, an island can be a true, oceanic island, or it can be a habitat island such as 
a patch of forest in a fragmented landscape. Biogeographers are interested in the final 
number of species that will occur on the island as well as the dynamics of the build-up 
of species on new islands or the extinction of species as island conditions change. An 
impressive field experiment performed by D. Simberloff and E. 0. Wilson (Simberloff 
and Wilson 1970) tracked the number of insects on small mangrove islands following 
complete defaunation. The dynamics of numbers of species is shown in Fig. 1.2; the 
number of species after two years was nearly identical to the pre-defaunation level. 

The physical framework is shown in Fig. 1.3. Organisms from the mainland 
species disperse randomly. If an individual of a species not currently on the island 
intersects the island, that constitutes a colonization of a new species. If all of the indi- 
viduals of a species on the island die, then the species has gone extinct. Consequently, 
the number of species on an island is the result of two processes: colonization and 
extinction. 
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Figure 1.3: Physical picture of island biogeography theory. Organisms colonize randomly 
(arrows). Islands can vary by their distance to the mainland (near or far) and their size (large 
or small). 

1.3.2 Theory 

There are many approaches to the problem of describing the numbers of species on 
islands. For example, we could take Fig. 1.3 literally by mathematically creating a 
two-dimensional picture of a particular mainland and set of islands. We could then 
mathematically describe the movement of individuals of all species as they attempt to 
colonize the islands with random flight paths. This approach could incorporate exten- 
sive ecological and behavioral realism. Alternatively, we could simplify the figure by 
ignoring individual organisms, writing equations for the populations of each species 
on each island. MacArthur and Wilson (1967), however, took an even simpler ap- 
proach. They simplified the problem by abstracting away populations of species and 
considered the system (S in Fig. 1.1) to be the number of species on an island, with- 
out regard to the numbers of organisms in the species. Thus, they describe a dynamic 
theory of biogeography in which the numbers of species is a balance of two processes: 
immigration and extinction. The rates of both processes depend on the number of 
species currently on the island. The net rate of change of species is the sum of these 
two "forces." When immigration is greater than extinction, the number of species 
increases; the number decreases if the opposite is true. 

We make two very simple biological hypotheses concerning these processes: 
Individuals of each species have a constant probability of arriving at the island 
and this probability is identical for all individuals and all species. The rate of 
immigration ( I )  of new species only occurs upon the arrival of an individual of 
a species not currently on the island. 

The probability of extinction of any single species is constant. Consequently, 
as the number of species on the island increases, the probability that any one 
species goes extinct increases. Thus, the total rate of extinction (E) increases 
with R (number of species on the island). 

Figure 1.4 graphically illustrates these hypotheses. In this figure, R is the number 
of species on the island, P is the number of species on the mainland (in the "pool"). We 
use the equations for a straight line to represent the rate of colonization and extinction. 
Immigration of new species decreases because as species accumulate there are fewer 
species that can be new. In the limit, if an island has as many species as the mainland, 
the rate of colonization must be 0. Extinction increases because on islands with many 
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R (# speci es) 
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Figure 1.4: Quantitative relationships between number of species on an island (R) and 
rates of immigration ( I )  and extinction (E) .  P is the number of species in the mainland pool 
of species. 

species, the total number of species going extinct will increase if there is a constant 
probability that any one species goes extinct. 

These hypotheses (which might be based on data and prior knowledge) have sim- 
ple mathematical expressions. The simplest model is a straight line in both cases. 

where I, is the maximum colonization rate, and Ex is the maximum extinction rate. 
We assemble these hypotheses into a single equation that describes the number of 

species on the island. For simplicity, we will consider time to be discrete, but later we 
will use continuous time. 

Equation 1.1 mathematically represents our hypothesis that species dynamics are based 
on the relative strength of two processes: I, (causing numbers to increase) and E, 
(causing numbers to decrease). These types of data are difficult to collect in natural, 
field situations, but are possible in laboratory settings. Figure 1.5 is one such data set 
obtained from a classroom physical simulation of the colonization process (Haefner 
et al. 2002). In that exercise, organisms are the labeled lids of petrie plates. Using a 
mainland pool containing 20 different "species," students throw the lids at islands on 
the ground in front of them and measure the immigration and extinction rates during 
the "colonization" process. The linear regression lines for immigration and extinction 
rates are shown in Fig. 1.5a. Substituting these into Eq. 1.1 yields: 

The use of the regression equations, which are strongly influenced by the considerable 
statistical variation of the data, has some interesting implications for this model that 
are to be explored in the exercises. 

Several interesting results can be obtained from Eq. 1.2. First, we can iterate the 
equation by assuming an initial value of R, (e.g., Ro = 0). Then, use the equation to 
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Figure 1.5: Data and results from a simulated biogeographical experiment. (a) Immigra- 
tion rate ( I ,  numbersttime, solid diamonds) and its best fit regression line (solid line). Also 
shown are Extinction rate ( E ,  numbersttime, open circles) and its regression line (dashed 
line). (b) Observed and predicted number of species by iterating Eq. 1.2 using two estimates 
of parameters. 

obtain R1; insert this value on the right-hand-side of Eq. 1.2 and again use the equation 
to obtain R2. Repeat this process indefinitely. For this simple equation, a calculator or 
spreadsheet is adequate. Once iterated, we can compare predictions with observations 
to test the adequacy of the model. Alternative models can be compared to the same 
data. For two sets of parameter values (i.e., the numerical constants in Eq. 1.2), Fig. 
1.5b shows the performance of the model to observed data. See Exercise 7 to think 
about the reasons for different parameters. 

c MBSCD contains SimIslandBiogeogJD code implementing this model.) 

The second calculation we can make with Eq. 1.1 is to compute the equilibrium 
number of species on the island. This process is an important part of model analysis 
that we will discuss in later chapters, but for now the equilibrium number of species 
is that number at which the number of species is not changing. It is the number of 
species (R) at which R,+, = R,. We can compute this number by subtracting R, from 
both sides of Eq. 1.1 and solving for the R, that remains on the right-hand-side, which 
we refer to as A: 

0 = I, - (I,/P)~ - ( E , / P ) ~  

This example illustrates the basic concepts to be developed in this book. First 
and foremost, the example shows the relation between the underlying biological hy- 
potheses about mechanisms (Fig. 1.5a) and the immediately observable dynamics (Fig. 
1.5b). When the purpose of the model is understanding (as it is in this example), then 
the central modeling problem is to develop quantitative hypotheses (representing the 
system S in Fig. 1.1) that explain the dynamics (response R in Fig. 1.1). An ac- 
tual, alternative control use of the model is to address the question: What island-like 
conservation preserve design produces more species: a Single Large one, or Several 
Small, inter-connected ones? This problem is known as SLOSS (Simberloff 1988). 
Using the model for prediction we might want to predict how long it will take an is- 
land to recover if a disturbance at t = 10 (Fig. 1.5) reduces R by 50%. Second, the 
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example illustrates the mechanics of translating verbal hypotheses into mathematics 
and quantitative predictions using specific numerical values of parameters. And third, 
it demonstrates that models can be wrong when compared to data and that we must 
choose between alternatives (e.g., different parameters in Fig. 1.5b). 

1.4 Classifications of Models 

1.4.1 Forms of Models 

Not all scientific models are precise, numerical, or quantitative. There are four forms: 
1. Conceptual or Verbal - descriptions in a natural language. 
2. Diagrammatic - graphical representations of the objects and relations (e.g., eco- 

logical "box-and-arrow" diagrams of energy flow, physiological diagrams of 
metabolic pathways such as the Krebs cycle). 

3.  Physical - a real, physical mock-up of a real system or object (either larger or 
smaller: a "tinker-toy'' model of DNA or a scale model of an airplane for a wind 
tunnel). 

4. Formal - mathematical (usually using algebraic or differential equations). 
Our primary interest here will be in (2) and (4). 

1.4.2 Mathematical Classification 

The mathematical equation used to describe island species dynamics (Eq. 1.1) is 
known as a recursive finite-difference equation. It is only one form that a model could 
take. To show the scope of the range of mathematical models that are potentially 
applicable to biological systems, we construct a simple classification of mathemati- 
cal models. The basis of the classification is whether the mathematics incorporates 
(or not) a particular mathematical structure. In some cases, it is a matter of opinion 
whether the mathematics displays the character or not. 

1.  Does the mathematics have an explicit representation of mechanistic pro- 
cesses? 
YES: Process-oriented or mechanistic models (e.g., hydrology models using 
Newtonian physics and chemistry, or population dynamics models with details 
of reproductive physiology). 
NO: Descriptive or phenomenological models (e.g., the island biogeography 
model, Boyle's law relating temperature, pressure, and volume, or a density- 
independent population dynamics model with reproduction represented as a sin- 
gle parameter). 

2. Does the mathematics have an explicit representation of future system states 
or conditions? 
YES: Dynamic models (e.g., island biogeography model). 
NO: Static models (e.g., linear regression equation relating variables x and y). 

3. Does the mathematics represent time continuously? 
YES: Continuous models, time may take on any values (e.g., 3.3 sec). 
NO: Discrete models, time is an integer only. 
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4. Does the mathematics have an explicit representation of space? 
YES: Spatially heterogeneous models (e.g., objects have a position in space, or 
occupy a finite region of space). 

a) Discrete: space is represented as cells or blocks, and each cell is repre- 
sented as spatially homogeneous. 

b) Continuous: every point in space is different (e.g., diffusion equations in 
physics). 

NO: Spatially homogeneous models (e.g., simple equations of population dy- 
namics or enzyme kinetics). 

5. Does the model allow random events? 
YES: Stochastic models (e.g., random temperature values may produce ran- 
dom changes in the intrinsic rate of increase in population dynamics models: 
X, = Xo exp(r(N(0, l))t), where X is population size and r is rate of increase, 
which varies in time and is drawn from a normal distribution with mean 0.0 and 
variance 1.0 [N(O, I)]. 
NO: Deterministic models (i.e., all parameters constant). 

1.4.3 System Concept Classification 

Based on the above classification, the model of island biogeography (Eq. 1.1) is a de- 
terministic, spatially homogeneous, discrete time, descriptive, dynamic model. This 
model is also an example of compartment models, i.e., models that describe the flow 
of a measurable quantity (e.g., blood) between physical or biological storage compart- 
ments (e.g., mammalian organs). While this is a very general conceptualization that 
applies to many biological modeling problems, there are many other biological appli- 
cations for which differential or finite difference equations and compartment models 
are not the best representation. 

There are three other broad classes of models that are appropriate to biological 
systems and to which the above mathematical classification also applies reasonably 
well. Transport models are those that transport material, energy, or momentum from 
point to point in continuous physical space. They are similar to compartment mod- 
els but use special mathematical structures (partial differential equations) and mass 
conservation principles. Particle models are those that follow the fate of individual 
particles moving in space (e.g., individual blood cells flowing through veins) or they 
may be individual organisms changing their condition (e.g., body size). Finite state 
automata are models that represent an object as being in only a few, finite number of 
states or conditions. For example, we might model weather dynamics as a system that 
has only good, bad, or intermediate weather quality. This is different from compart- 
ment models of physical variables such as the flow of water from a container, where 
the container could have any volume of fluid. 

So, compartment models and differential or finite difference equations are not al- 
ways appropriate, depending on our conceptualization of the system. Conversely, in 
other biological systems, differential equations may be a felicitous description, but the 
system should not be thought of as flows between compartments (e.g., movement of 
individual organisms over continuous two-dimensional space). The system conceptu- 
alizations mentioned are not mutually exclusive; a given model can contain elements 
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of several or all of them. For example, a transport model of a pollutant in a river can 
contain a compartment model of the effects of the substance on the biota in the river. 
These distinctions will be made clearer when we present models based on alternative 
representations in later chapters. 

1.5 Constraints on Model Structure 

Models are used for many purposes, and the purpose influences the degree of system 
detail that is represented by the mathematics. For example, it may not be necessary 
for our purposes to provide an explicit spatial component in the model. In this case, 
a spatially homogeneous model suffices. Moreover, as we provide greater detail, the 
number of systems to which our model applies will decrease. For example, in a physi- 
ological model of blood flow, if we include a "gizzard" as one of the objects (compart- 
ments), then we have restricted the model to birds and it will not apply to mammals. 

Levins (1966) has synthesized these trade-offs by identifying three properties of all 
models. No model can maximize all three simultaneously (but see Orzack and Sober 
1993). 

1. Realism: the degree to which model structure mimics the real world. In formal 
models that are realistic, the equations are correct, not just the model output. In 
physical models (e.g., a scale airplane) maximal physical detail is present (i.e., 
every rivet). 

2. Precision: the accuracy of the model predictions (output). In precise models, 
the air flow around the scale model is exactly the same as that around the full- 
size plane. Precision is not used here in the statistical sense, which refers to the 
degree of variability of a set of measurements. 

3. Generality: the number of systems and situations to which the model cor- 
rectly applies. In physical models, a general scale airplane model applies to 
both a Piper Cub (small, single-engine aircraft) as well as a Boeing 747 (large, 
multiple-jet engine aircraft). 

Each of these properties trades off against the other two. If a model contains 
great realism, it cannot also possess great generality, except at a level of description 
that is very imprecise. Since no model can simultaneously maximize all three, the 
uses to which the model is to be put will influence which is sacrificed to increase 
the other two. Prediction needs little generality, but great precision and (to a lesser 
extent) reality. Understanding implies the need for great generality and (to a lesser 
extent) reality, but precision is not necessarily important. Control needs great reality, 
but lesser amounts of precision (corrections can be made frequently) and even less 
generality. This conceptualization of models has recently been challenged; see the 
Exercises. 

1.6 Some Terminology 

In the chapters to follow, we will use a number of terms that need definition here 
(Table 1.1). Not all modelers will agree with these definitions, but they will help you 
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read this book. Some of these terms will not be understandable as you read through 
the first time, but I hope their meaning will become clear as you learn more. 

1.7 Misuses of Models: The Dark Side 

When you have a hammer; you look for a nail. 
When you have a good hammer, everything looks like a nail. -Anonymous 

A model, like a hammer, is a tool to solve a problem. It is possible to use a good 
hammer to insert a screw, but it isn't a pretty sight. In the same way, a model may be 
inappropriately applied to a given system. Unfortunately, as the parable of the blind 
men illustrated, we often do not know if our system is a nail or a screw. Inappropriate 
application of a model is pernicious in any form of model, but is especially misleading 
in quantitative models such as we will discuss, since the output of the models are 
numbers which often acquire a reality of their own. It is difficult to identify the source 
of the errors in these models. 

There are many ways that models may be misapplied, but an important one is the 
application of quantitative models to areas of study in which there is great uncertainty 
in the data or to the degree that the underlying mechanisms are understood. Both 
Holling (1978b) and Karplus (1977) have discussed this problem, and we synthesize 
their insights in Fig. 1.6. Holling noted that different scientific disciplines could be 
generally characterized by two numbers: the precision and accuracy of the data upon 
which the discipline is based and the degree of mechanistic understanding. No doubt, 
these axes are not completely independent. There are not many sciences in which 
we have great understanding of the mechanisms, but very poor data, since usually we 
require good data in order to elucidate mechanisms. This scheme should not be pushed 
too far for it is only intended to be a qualitative model. 

Karplus (1977) viewed disciplines similarly but positioned them along a contin- 
uum from "black boxes" (poor data and shallow understanding) to "white boxes" 
(good data and deep understanding). This corresponds to a line in Holling's space 
from the origin to the upper right corner. Karplus went further and identified spe- 
cific disciplines along this continuum. We can subjectively position some of these 
according to whether their place in the continuum is due to data quality or degree 
of understanding. Those disciplines that are black boxes should not use models for 
detailed, quantitative predictions, while white box disciplines can use models to de- 
sign salable products (e.g., electronic components, airplanes). Complete black box 
sciences should, at best, use models only to arouse public opinion. A notorious exam- 
ple is Jay Forrester's World Dynamics model which simulated the world's economic, 
social, political, and environmental systems in rather general terms and predicted a 
major population crash at about 2050 (Forrester 1971). This model was intended not 
to make accurate predictions, but to bring to the public's attention the need for better 
planning, particularly in the area of birth control. I have represented this qualitative 
assessment of model use in Fig. 1.6 by contour lines. The labels for model use do not 
apply to all disciplines. For example, it is hard to imagine what actions astrophysicists 
might recommend, much less the products they might design - but, then, one never 
knows when the next asteroid will strike. 
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Table 1.1 : A few more terms. 

analytical model 

dynamic model 

mathematical model 

mathematical modeling 

model 

objective 

simulate 

simulation 

simulation model 

solution 

system 

system state 

well-defined system 

(n)  a mathematical model whose solution is not obtained 
by simulation or numerical approximation, but by purely 
mathematical argument or a model where mathematical 
properties (e.g., stability of equilibria) are achieved by 
mathematical argument 

(n)  a mathematical model that describes the changes over 
time of quantities representing the system objects (e.g., 
population sizes) 

(n)  a set of mathematical equations that describe a system 

(v) the human activity of creating a set of mathematical 
equations that describe a system 

(a) (n)  a description of a system, (b) ( v )  the human activity 
of creating a description of a system 

(n)  (a) the purpose for doing something, a goal, (b) a ver- 
bal statement that guides and constrains modeling, (c) 
a list including at least some of the following: objects 
and relations modeled, environment of the system mod- 
eled (influencing variables, objects not modeled), length 
of time that the model applies to the system, spatial and 
temporal scales of resolution, questions addressed of the 
model 
(v) (a) to produce a solution to a simulation model, (b) to 
model 
(n)  (a) a set of one or more numbers that together consti- 
tute a numerical solution to a simulation model, (b) one 
run of a computer program that numerically solves a sim- 
ulation model 
(n) a mathematical model whose solution is obtained by 
numerical approximation, usually involving computers; 
not an analytical model 

(n)  (a) an answer to a problem, (b) a set of numbers 
whose values satisfy a mathematical equation (e.g., the 
roots to a polynomial equation) 

(n)  a collection of objects and relations between objects 

(n)  the set of particular, numerical values of all system 
objects at a given time (e.g., grams carbon in all species 
in an ecosystem) 

(n)  the smallest set of objects and relations whose states 
(values) cannot be proved to be unnecessary to achieve 
the objectives of the model 
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Degree of Understanding 

Figure 1.6: Appropriate uses of models related to degree of uncertainty in systems. Con- 
tour lines represent combinations of data quality and degree of understanding in disciplines 
for which models may be used as indicated on the lines. The dotted line is a continuum of 
uncertainty (lower left: much, upper right: little). 

The point of Fig. 1.6 is that discipline maturity dictates appropriate uses of the 
models. To use a model for a more rigorous purpose than appropriate for a discipline 
can be misleading, at best, or dangerous, at worst. 

1.8 Exercises 

1. Using your own discipline (e.g., ecology, biochemistry, natural resources, agroe- 
cosystem), draw a figure analogous to Fig. 1.6. Discuss cases where and how 
mathematical models may be misused. 

2. Suppose a model attempted to integrate concepts and information from political, 
social, economic, and ecological systems. Would this model be more, or less, 
accurate as a single model in any one of the separate disciplines? 

3. Based on the definition of a well-defned system in Table 1.1, what is an ill- 
defined system and why might it be undesirable? 

4. In Fig. 1.6, the contours of model uses are straight. What does it mean if they 
are concave (v shaped) or convex (A shaped)? Do these different shapes cor- 
respond to different philosophical attitudes toward scientific activities (e.g., data 
collection vs theory)? 

5. Recently, S.H. Orzack and E. Sober have challenged Levins' trichotomy be- 
tween model realism, precision, and generality. Read and discuss the original 
articles by Levins (1966), Orzack and Sober (1993), and the reply by Levins 
(1993). Specifically, do you agree with Orzack and Sober that the distinctions 



16 Chapter 1 Models of Systems 

have no merit and that model robustness bears no relationship to model validity? 
Is Levins' reply that models are "relativistic" and must be evaluated in terms of 
their context relevant? Does this imply models can not describe truth? 

6. Which of the Levins' triad does the MacArthur-Wilson theory of island bio- 
geography emphasize more: realism, precision, or generality? 

7. The regression equations for immigration and extinction rates (Fig. 1.5 and 
Eq. 1.2) violate some of the assumptions of the basic island biogeography model. 
What are they and how would you correct them in the parameter estimates? 
[Think about the maximum number of species that can be on the island and 
about extinction rates when no species are present.] 

8. Derive an equation for the equilibrium number of species on an island. 
9. The net rate of change in a person's knowledge is a balance of learning and 

forgetting. Suppose in humans the rate of learning increases as a fraction of 
the square root of age and the rate of forgetting increases as a fraction of the 
square of age. Write a finite difference equation that describes the amount of 
knowledge a person has as he ages and solve for the age at which his knowledge 
level starts to decline. Choose values for the two parameters so that knowledge 
peaks at 64 years. For your values, what is the maximum amount of knowledge 
the person achieves in any one year? 

10. Rakata is a small island between the islands of Sumatra and Java in the South 
Pacific. It is famous for being the largest remnant of Krakatau Island after the 
notorious 1883 eruption. Whittaker et al. (1989) and Thornton et al. (1993) 
compiled historical plant and animal surveys of Rakata from 1886 to 1992; the 
approximate data for vascular plants species numbers (R), immigration rate (I) 
and extinction rate (E) are: 

a) Use linear regression to estimate the immigration and emigration rates. 
b) Re-write Eq. 1.2 using these Rakata data. 
c) Estimate the equilibrium number of vascular plant species on Rakata. 
d) How many species are in the mainland pool? 
e) Use the code supplied on the MBS-CD, simulate the species dynamics 

using the parameters you estimated and starting with no plants. Also sim- 
ulate a scenario representing the pre-explosion condition in which the ini- 
tial number of plant species is 500. Assuming only that the island size 
changed, how long would it take to achieve the current projected equilib- 
rium level of about 250 species? 
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The Modeling Process 

2.1 Models Are Problems 

We are faced with insurmountable opportunities. - Walt Kelly (doubtful) 

HEN WE EMBARK on a modeling project, we immediately have a problem. We 
want something that we don't have: a model. The modeling process is a semi- W 

formal set of rules that guides us through a solution to this problem. The rules are not 
mechanical instructions, not like a set of computer instructions we can step through 
one at a time and be guaranteed of arriving at the correct answer at the end. Modeling 
is real-world problem solving; it's hard and fraught with many opportunities for failure 
(or, if you're an optimist, opportunities for new insights). So, it is useful to begin 
by noting George Polya's four steps to solving mathematical problems (Polya 1973). 
Associated with each step is a question that we must answer. (1) Understand the 
problem (i.e., What is the question?) (2) Devise a plan for solving the problem (i.e., 
How do we solve it?) (3) Execute the plan (i.e., What is an answer?) (4) Check the 
correctness of the answer (i.e., Was it right?). 

Certainly, these instructions are very general, perhaps only heuristically plausible, 
but they work on all problems, including the problem of producing a model. In this and 
the remaining chapters, we will see some more specific rules and tools that work in the 
more restricted domain of mathematical and computer models of biological systems. 
Ford (2000) elaborates in wonderful detail these four steps in the context of practical 
scientific activities taking examples from, but not limited to, ecological research. 

As a problem to solve, then, the modeling process consists of the steps we take to 
produce a model, implement it in some formal language, derive consequences (predic- 
tions) from the model, and evaluate these based on the desired uses of the model. Since 
the statement of the model inevitably requires making assumptions, comparing model 
consequences with observations is a major test of the adequacy of the assumptions to 
"explain" the observations. In its broadest form, then, modeling is the hypothetico-de- 
ductive approach to science and vice versa (Nagel 1961; Romesburg 1981). Here, we 
will describe this process in a way that emphasizes several important quantitative and 
computational procedures that are relevant to computer simulation. 
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2.2 Two Alternative Approaches 

The classical description of the modeling process is shown in Fig. 2.1. This basic 
approach is presented in many texts (Shannon 1975; Spriet and Vansteenkiste 1982; 
Grant 1986). Its essential feature is that models should be constructed one at a time, 
and the quality of each is evaluated sequentially. Another model is not constructed 
until the current model is shown to be inadequate. For many biological systems, this is 
an appropriate methodology, but for others, a slightly modified view of this modeling 
process will be effective. 

2.2.1 The Classical View 

Objectives The beginning of the process is a statement of the objectives or purposes 
of the model. At this stage, we demonstrate our understanding of the problem (Green 
1979). If we cannot give a clear statement of the reasons for building a model, then 
we do not understand the problem. If we do not understand the problem, then we are 
unlikely to discover the solution. Consequently, substantial detail should be provided 
in the statement of the objectives to answer the following questions: 

What is the system to be modeled? 
What are the major questions to be addressed by the model? (How will the 
model be applied?) 
What is the stopping rule for the modeling activity? (How good must the model 
be? To what will it be compared?) 
How will the model output be analyzed, summarized, and used? 

Because of the importance of a clear statement of objectives, we will discuss this 
aspect of modeling in more detail later in this chapter. Here we note that the objective 
statement is a document that defines the reasons for producing the model in the first 
place. In cases of large, complicated modeling projects, it can ensure that the goal 
is well defined and achievable. Even when exploring theoretical concepts with small 
models, by answering the four questions above, the theoretician is forced to evaluate 
the scope and importance of the original questions. 

Hypotheses The second stage is to translate the objectives and current knowledge of 
the system into a list of specific hypotheses. These are usually verbal statements. For 
example, a simple idea in population ecology is that crowding increases as numbers 
of individuals in the population increase and this, in turn, reduces the reproductive 
capacity of females. This can be qualitatively stated as: "increasing density decreases 
per capita growth rates." Hypotheses may also use more quantitative relationships. 
For example, in simple models of blood circulation, the heart chambers expand as 
they fill with blood, but the rate of expansion decreases at large volumes because 
heart wall elasticity is limited. More quantitatively, we can say that the degree that 
chamber volume increases with a unit increase in blood volume decreases linearly 
as total volume increases. At this stage, we can also describe the complete model 
qualitatively with a graphical formalism that pictorially shows the objects modeled 
and their relations (e.g., flow of blood between organs). However it is accomplished, 
the function of this stage of modeling is to identify more fully the set of objects in 
the system and to bound the set of relations that connect the objects. At this stage, 
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Figure 2.1: The classical approach to the modeling process, showing the four basic 
stages. In this approach, alternative models are developed sequentially, conditional on 
the failure of a previous model. 
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the modeler must be cognizant of the fundamental uses of the model articulated in the 
objectives: understanding, prediction, or control. These have a crucial affect on the 
nature of the hypotheses. 

Mathematical Formulation Qualitative hypotheses must be converted into specific, 
quantitative relations that can be formulated with mathematical equations. In the third 
stage, the actual equations are defined. This corresponds to Polya's stage to devise a 
plan for solving the problem. This step uses the initial physical, chemical, and biologi- 
cal information available for model construction to derive and check the correctness of 
the equations we hope will describe the dynamic behavior of system objects. For many 
beginners, this is the most difficult and frustrating stage. It requires a certain level of 
mathematical sophistication, but more importantly, it requires that vague concepts and 
loose relations be made definite in the cold light of mathematics. 

Verification Many mathematical models cannot be solved analytically, but can only 
be solved approximately using numerical techniques. Today, this means solving the 
equations using a digital computer. The fourth stage is a set of activities in which the 
equations are translated into computer code. At this stage, it is necessary to verify 
that the computer algorithms and code are correct for the mathematical relationships 
defined. Modeling projects that do not require numerical solution of the equations will 
replace this step with mathematical verification activities performed during the formu- 
lation stage. For example, in Chapter 1 we solved the island biogeography model by a 
recursive equation. As we will see in Chapter 4, we could (and possibly should) have 
written the model as a differential equation. There are numerous numerical techniques 
for solving these equations (e.g., Runge-Kutta), and, depending on the nature of the 
equation, some methods are inappropriate. Thus, the choice of algorithm is important 
and can influence the predictions of the model. Similarly, for any algorithm, there are 
many different ways to write the computer code; some of these will be wrong. Models 
of biological systems can easily involve scores of dynamic variables and hundreds of 
parameters. This is especially common in models with explicit spatial processes. In 
writing a computer program to solve the equations, it is a nontrivial exercise to demon- 
strate that the computer output is correct. This is a concern of software engineering, 
and there are some basic programming procedures that can help in this regard (e.g., 
object-oriented programming). 

Calibration After the model is correctly implemented on a computer, output can be 
produced. But before simulations can be performed, numerical values for the initial 
conditions (e.g., the starting number of species on an island) and constants in the equa- 
tions must be specified. Calibration is the set of activities by which this is done; the 
basic problem involved is parameter estimation. Usually, this involves defining rela- 
tions between observed quantities and the parameters so that statistical methods (e.g., 
linear regression) can be applied to produce the best estimates for the parameters (e.g., 
the slope and intercept of a straight line). These relations may require that specific 
laboratory experiments be performed. For example, in physiological models, one may 
wish to estimate the parameters for the quantitative effects of temperature on oxygen 
production in leaves. Laboratory measurements of oxygen at defined, controlled tem- 
peratures provide the necessary data. Often experiments cannot be performed, but 
uncontrolled observations over time are available (e.g., in ecological succession: plant 
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biomass over several years). If this variable is an output of the model, some parameters 
can be estimated by curve fitting wherein the model is run repeatedly using different 
parameter values and compared to the same dynamic data set until a satisfactory fit is 
obtained. This stage is discussed in more detail in Chapter 7. 

Analysls and Evaluation Once the model is calibrated, we can use it to produce the 
answer that our objectives specified. This corresponds to Polya's execution of the plan. 
For numerical models, this involves running a computer program and recording the 
numbers produced. This is primarily a mechanical exercise that can be automated to 
a great extent. For analytical models, execution may range from simple computations 
to complicated mathematical argument and theorem proving. This latter activity can 
require substantial creativity and may be the most difficult step in the process. 

For both numerical and analytical models, the answer should be evaluated for its 
quality according to the objectives. It should be checked (Polya 1973) in some way. 
Often in purely theoretical studies where the primary objective is to "understand" the 
system, this involves, at most, only a qualitative comparison of model output and data. 
For example, in a theoretical plant succession model we may be satisfied if the model 
shows an initial increase in plant biomass followed by a decline, if this were the ob- 
served pattern. Ideally, however, we also desire models that are quantitatively correct 
as well. To establish this for a particular model, we need to validate (or corroborate) 
the model against independent data sets. (For a broader perspective see Hilborn and 
Mange1 1997, Chap. 2.) 

We have already noted the similarities between modeling and the hypothetico-de- 
ductive approach to scientific investigation. A component of this method is the doc- 
trine of falsiJicationism (Popper 1968), which states that hypotheses cannot be proved, 
but only disproved (i.e., falsified). The same framework applies to models, since they 
are basically collections of hypotheses. Many modelers (e.g., Holling 1978a; Hall and 
DeAngelis 1985 have adopted this view to the point of stating that the objective is to 
invalidate the model, that is, discover evidence that contradicts it, not evidence that 
supports it. There is much philosophical and logical weight behind this view; never- 
theless, there is also a real psychological need to be able to point to a model, theory, 
or body of experiments and say: "We believe this is the way it is." On the one hand, 
logic permits only falsification; on the other, we desire positive statements that sum- 
marize our beliefs, if only at a moment in time. We need an approach that synthesizes 
these two different approaches. A candidate is proposed below that develops and tests 
multiple working hypotheses as well as the resultant alternative models. 

If the model passes the validation criteria specified in the objectives, the project, 
as defined by the objectives, is complete. If it fails, then errors were made earlier 
in the modeling process and the hypotheses and/or mathematical formulations need 
to be revised. The entire process is repeated. Finally, depending on the objectives, 
further analyses of the model through computer simulation or mathematical analyses 
are performed. These topics are discussed in Chapters 8 and 9. 

2.2.2 Problems with the Classical View 

Many statisticians believe that for statistically rigorous hypothesis testing to occur, 
prior knowledge should not influence the test. (But the Bayesian school of statistical 
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analysis disagrees, and this will be discussed in Chapter 8.) Therefore, sequential 
passes through the modeling process must use new data for validation. If only one 
independent data set is available, subsequent comparisons are only exercises in curve 
fitting, since the modeler has become familiar with the validation data during the de- 
velopment of the second and subsequent models. Thus, the major problem with the 
classical approach is that independent data sets necessary for validation are often diffi- 
cult or expensive to obtain. A modification of the classical approach, based on multiple 
hypotheses and models, avoids this problem. 

Multiple or alternative models are valuable for another reason. When we are un- 
certain about the correct equations to use (which we usually are), there is a danger that 
when we derive a model that we cannot reject, we will believe that this is a correct de- 
scription. In fact, there may be many other models that would be equally likely to be 
validated as the one we chose. If we never create these models and their predictions, 
then we will never know if the original model was unique in its accuracy. If we do cre- 
ate them in the sequential method illustrated by the classical view, we risk ovetfitting 
the model to the data (Burnham and Anderson 1998). That is, we continue the cycle 
of model refinement to a high degree of precision on a particular dataset using many 
variables, but with little applicability or accuracy on another system or dataset. 

2.2.3 Multiple Working Hypotheses 

A man who does not know one answer from another is as ignorant about the 
question as he can possibly be. The only state of greater ignorance is not to know 
the question. - Tribus and McIrvine (1970) 

An alternative to the sequential approach is a parallel approach that involves imple- 
menting and evaluating several different competing hypotheses and models simulta- 
neously (Goodall 1972; Caswell 1976b). This approach is diagrammed in Fig. 2.2. 
It is based on the ideas of statistical alternative hypotheses. Platt (1964) refers to 
these multiple working hypotheses as a component of strong inference and emphasizes 
the latter's value to incisive scientific analysis in all its forms (not just to modeling). 
Holling (1978a) and his colleagues (e.g., Walters 1986) have also shown the practical 
wisdom of using this approach in developing models to assist the management of re- 
newable resources. Some of the philosophical foundations of this view of science as it 
contrasts with Popperian falsificationism are explored in Hilborn and Mangel (1997, 
Chap. 2). Among these are scientists' attitudes toward the rejection of a hypothesis. 
One interpretation of the views of Karl Popper (Popper 1968) holds that scientists will 
(or should) adhere to the results of an objective hypothesis test (e.g., statistics), regard- 
less of the intellectual context of the test. For example, if an objective test instructs 
us to reject the only viable explanation for a phenomenon, then we will (should) be 
able to function in an intellectual milieu in which there is, simply, no explanation for 
the data. In contrast, the alternative, multiple-hypothesis philosophy of Imre Lakatos 
would not require, in this situation, that we accept the objective test, if there were no 
other reasonable alternative hypothesis that replaces the current one. There are many 
situations in which we might continue to entertain a hypothesis that fails a test, even 
a stringent one: the data might be flawed, the other situations in which the hypothe- 
sis was not rejected carry significant intellectual weight, the hypothesis is useful for 
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Hypotheses 1 Hypotheses 2 ... Hypotheses n 

Model 1 Model 2 ... Model n 

Discard 
Hypothesis i 

Evaluate Surviving Hypotheses 

(Choose Best, e.g, simplest) I-- 
Figure 2.2: Another view of the modeling process, in which alternative hypotheses and 
models are developed and tested independently. 

reasons other than scientific understanding, etc. 
Using this approach, we formulate several hypotheses and models each with sep- 

arate computer implementation, verification, and calibration stages. Every model is 
compared simultaneously (in parallel) to all of the validation data that are indepen- 
dent of data used to construct the model. The resulting comparisons are then inde- 
pendent and any models that survive the comparisons can be evaluated further with 
other quality criteria. A common auxiliary criterion is simplicity, which is the basis 
for the Principle of Parsimony or Occam's Razor. This approach presupposes that we 
can uniquely rank models from simplest to most complex, and this is not always so. 
Another criterion is the likelihood that one of the models is true (regardless of their 
relative complexity); we will discuss this possibility in Chapter 8. Finally, the model 
selected suggests new questions or applications. Assuming we are not near retirement 
age, we pursue these with new objectives and new sets of models. 

An example may make this clearer. Many species of seed-harvesting ants will ex- 
hibit mass recruitment of large numbers of foragers to rich resources (e.g., large insects 
or patches of seeds). Under other circumstances, ants forage individually, ignoring 
other ants and responding only to their local environment. The precise mechanisms 
required for these ants to perform these actions have not been determined, although ex- 
perimental evidence indicates that they lay chemical trails and can remember previous 
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Foraging Behavior 

Random Walk Memoly Only Pheromone Trail Memoly Omniscient 
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Pheromones 

Figure 2.3: A family of competing hypotheses on the mechanisms used by ants to find 
seeds and recruit nest mates. 

successful foraging areas. 
Suppose we wish to use a simulation model to explore the consequences of the for- 

aging behavior of individual ants for seed consumption rates over the entire ant colony 
in order to evaluate the relative importance of different mechanisms. We can identify 
a number of possible candidates (Fig. 2.3; Haefner and Crist (1994)): Random Walk 
(individual ants walk randomly and independently of other ants), Memory Only (indi- 
vidual ants remember previous successes but do not lay a pheromone trail), Pheromone 
Trail (ants lay a pheromone trail from the resource but do not use memory), Memory 
+ Pheromone (ants use memory and pheromone trails), Omniscient (ants know the 
location of all the seeds). The first model serves as a null or random hypothesis in 
which no significant biological or social behavior is present. The last model repre- 
sents a "super" ant and (presumably) defines the maximum rate of seed return to the 
nest. Together these models constitute a continuum of "ant intelligence." Since we 
can easily measure the colony's seed return rate in the field, the purpose of examining 
such a range of models is to determine where, along the continuum of models, the 
truth (i.e., real ants) lies. This addresses the question: "How smart does an ant have 
to be to forage in the way we observe?" We cannot definitively answer such questions 
with simulation models, but we can identify classes of models and hypotheses that are 
inadequate. 

An important feature of this example, and one that should be used whenever pos- 
sible, is the construction of a base model that incorporates as little of the biology as 
possible and yet still produces output that can be compared to observations. In this 
example, the base model eliminated all forms of communication between ants, but 
moved ants randomly so that they had the possibility of discovering seeds. Thus, the 
two extreme models, random and omniscient, bound the range of possible explana- 
tions. 

The base model concept is similar to a null or neutral model (Caswell 1976a): 
models that exclude biological mechanisms pertinent to a particular hypothesis. The 
value of including these models is that they are simple explanations. However, we 
should not stop with these; as Albert Einstein is credited with saying: "a theory should 
be as simple as necessary, but no simpler." Or, to put it another way, simple models are 
good, but getting the right answer for the right reason is also good. Chapter 8 presents 
methods for choosing the better of alternative models. 

2.3 An Example: Population Doubling Time 

We now summarize the idea of the modeling process applied to alternative models 
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with a quantitative example. Suppose we wish to answer the question: When will the 
world's population double its current numbers? We identify the following objective 
statement. 

Objective: Construct a description of the dynamics of the 
world's population such that the time when 
the population size is twice its starting value 
can be computed. 

The above statement has the following desirable properties of an objective state- 
ment: (1) It defines the system of interest as the world's population without mention of 
spatial heterogeneity. (2) It defines the purpose of the model: determine the doubling 
time. (3) It indirectly identifies the analysis of the output to be used: a computation of 
the time at which the population is twice the initial condition. A major deficiency of 
the objective statement is that it does not mention validation criteria. We cannot tell 
from this statement when we should stop developing models. 

To illustrate the idea of multiple working hypotheses, we will develop two mod- 
els. One model assumes that per capita growth rate does not vary with increasing 
population size (density-independent growth) and the other assumes that the growth 
rate decreases linearly with population size (density-dependent growth). In addition to 
these assumptions, the two models share the following incomplete set of hypotheses. 

1. Per capita growth rate is not influenced by any extrinsic variable (e.g., ozone, 
UV radiation, temperature). 

2. The sex ratio is 1: 1 (or we assume there is only a single sex). 
3. There are no age differences among individuals (no age classes). 
4. There are no geographical differences in growth rates (all countries and regions 

of the world are the same). 

Our objective statement says that we intend to determine the doubling time by 
following the dynamics of the population. This suggests each of our mathematical 
models will implement the two hypotheses using equations that project population 
numbers forward in time. Recalling the Karplus (1977) ESR model of systems from 
Chapter 1 (Fig. 1.1), our problem is to write an equation for S that transforms the 
population numbers at time t into the population numbers at t + 1. There are several 
kinds of mathematical equations we could use here, but for simplicity, we will use 
recursive finite difference equations (FDE), the same form of equation we used in the 
island biogeography example of Chapter 1. One way to define a set of alternative 
models is to define a base model in general functional form: 

The unspecified function, f (NO, is next defined in two or more forms: the alternative 
models. It is very helpful if these forms can be shown to be a sequence of increasing 
complexity. For example, from the most complex model, each remaining member of 
the sequence can be derived by setting parameters to zero. We now illustrate this for 
the population models. 

Our two hypotheses make two different assumptions: (1) the number of offspring 
produced per female (per capita rate of increase) is independent of (i.e., does not 
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change with) the current numbers in the population, and (2) the per capita rate of 
increase decreases linearly with increasing numbers. It would appear that (2) is the 
more complex of the alternatives,~~ we begin with it. 

Equation 2.3 clearly satisfies hypothesis (2), above. When we let the general param- 
eters a = r and b = r/K (Equation 2.4), we get the more typical form in ecological 
contexts: r is the intrinsic (or maximum) per capita growth rate of the population; K 
is carrying capacity of the environment. 

If we set b = 0 in equation 2.3, we have the FDE for the density-independent 
model (hypothesis 1): 

Nt+ 1 = Nt + rNt, (2.5) 

Note that while the per capita rate of population growth is independent of N, the 
absolute rate of increase (rNt) does change. The per capita rate is constant and equals 
r, and the model asserts that the population increases each time step by a constant 
proportion (r)  of the current population. 

With these two alternatives defined, we can analyze both for their properties, va- 
lidity, and relative suitability to our objectives. To calibrate the simpler of two models 
(Eq. 2.5), we can solve the model for r: 

and use population estimates over successive periods of time (No, NI, N2,. . . , Nt) to 
compute r. These data would probably be taken from a historical data set, but could 
be obtained from a field or laboratory experiment. To solve the equation and to predict 
numbers over time, we specify the numbers at time t = 0 (the initial conditions) and 
iterate Eq. 2.5 for t = 0,1,2, . . . , n time steps. This model produces the familiar expo- 
nential population increase over time (Fig. 2.4). Since the model output is population 
numbers over time, computing the doubling time is simply a matter of observing the 
time interval at which the predicted numbers are twice the initial numbers. 

The alternative model is handled in a similar way. The key aspect of Eq. 2.4 is 
that the expression in brackets depends on the current population numbers (NO. This 
causes the numbers of offspring produced by each female to be reduced as population 
numbers increase. Although the mechanisms for this phenomenon are not described, 
they may be due to competition among females for food or child rearing costs. Notice 
that the relationship between population growth rate and this algebraic expression is 
similar to that between numbers of species on an island and immigration and extinction 
rates in Chapter 1 (Eq. 1.1). 

Equation 2.4 has two parameters that we calibrate by finding an expression involv- 
ing r, K, and measurable quantities. Rearranging Eq. 2.4 to again form the realized 
per capita growth rate on the left-hand side yields: 
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Figure 2.4: (a) The ESR scheme and (b) a typical dynamic trajectory for density- 
independent population growth using Eq. 2.5. 

This is a linear equation in which the left-hand side is the y-axis, or dependent variable, 
and N, is the x-axis, or independent variable. We can use linear regression to obtain 
estimates of the intercept (r) and the slope (-r/K) from which we can calculate K. 
The dynamics produced by this model are the classical sigmoidal or S-shaped curve 
of the logistic equation (Fig. 2.5). We will use the same approach to calculating the 
doubling time for this model as for the first model. 

To this point, we have developed alternative hypotheses, their respective mathe- 
matical and computational formulations, and a strategy to answer the original ques- 
tion. The next step is to validate the models. Since the model describes the world, we 
cannot realistically hope to find a similar, alternative system to study (not in this solar 
system, anyway). We might, however, validate the models by comparing each to an 
earlier historical record, one not used in the formulation of the model (e.g., from the 
period 1800-1850). This approach to validation makes some important assumptions 
about the nature of the system in the past and the present, but it is perhaps as good as 
we can expect when we cannot replicate the system. 

After constructing both models and subjecting them to independent comparisons 
against the same data set, we may reach the conclusion that either none, one, or both of 
the models are inadequate to explain the data. Based on the results, we would choose 
between the two models, if possible (Walters 1986 and Chapter 8). Given that one or 
more of the models passed our validation test, we could then proceed to analyze the 
model by calculating the expected doubling time. 

f() = rN, (1 -N,/K) 

+Q+ NtE Time 

Figure 2.5: (a) The ESR scheme and (b) a typical dynamic trajectory for density- 
dependent population growth using Eq. 2.4. 
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It is natural to ask: "Which alternative hypotheses should a modeling problem 
compare?'There is no general answer since it depends on the sub-discipline and 
the objectives of the model. Nevertheless, the two examples given (ants and popu- 
lations) have something in common among their alternatives. Both examples have a 
null model: a model that hypothesizes that the observed dynamics are not caused by 
complicated biological processes. In the ant example, the simplest model was one 
in which seeds were returned to the nest as a result of random movement of individ- 
ual ants: no interactions between ants were modeled. In the population model, the 
density-independent model assumed there were no interactions (e.g., competition) be- 
tween individuals. In my usage here, a null model need not be completely random 
(e.g., density-independence), although we could have constructed such an alternative. 
So, it is a matter of degree how far removed from biology one wishes the alternatives 
to be, but at least one of the models should be as simple as possible; removing biolog- 
ical processes is one method of constructing simple models. As Richard Levins once 
said: "In order to understand complex systems, it is necessary to study something else 
instead" (Levins 1970). By this he meant not only models of the system, but also sim- 
ple models. In the case of biological systems, this may mean models with little or no 
biological processes in them. The objectives statement should indicate the degree to 
which biological processes are to be removed from one of the alternatives. 

The alternative modeling approach is not useful in all applications. There is an 
obvious negative correlation between the number of alternative models that can be 
examined and the effort needed to construct any one model. Even in cases of sim- 
ple models, in relatively mature disciplines such as physiology, in which either data 
quality is high or understanding is deep (Fig. 1.2), there will be less debate over the 
correct form of equations. At some point where a science matures from using models 
for "what-if gaming" to "recommending action," the equations become less debatable. 
In these systems, alternative models are less important. However, in the less mature 
disciplines such as ecology, especially where mechanisms are not understood, there 
is greater uncertainty, and the effects of using a particular set of equations need to be 
investigated with alternative models. 

2.4 Model Objectives 

Never weed your garden in the dark. - JWH 

We have repeatedly referred to the objective statement and its role in constraining 
model structure. It is worthwhile to delve a little deeper into this concept and discuss 
the attributes of a good objective statement. A careful statement of the objectives of a 
model is important because it defines the problem to be solved and can, therefore, be 
used to devise the implementation and analysis of the model. The objective statement 
can also define the domain of applicability of the model. This latter use is important 
since it can reduce possible misuse of the model and help identify certain kinds of 
criticism as being directed not to the substance of the model, but to its objectives. 
These are two different types of criticism. So, while model objectives do not always 
appear in print, they should be explicitly stated at some point. 

Modelers do not agree on the content of a good statement of objectives, but Over- 
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ton (1977) contains the most explicit rendition. He emphasizes that effective objectives 
are those that are stated as goals with purposes. For example, "Construct a model of 
photosynthesis [goal] to determine the effects of elevated UV light [purpose]." But 
beyond the purpose, an objective statement must provide the following information. 

1. The objective questionfs). 
2. The perturbations and stimuli accommodated in the model. 
3. The exact system and environment which the model addresses. 
4. The temporal and spatial scales over which the system is to be described. 
5. The temporal and spatial scales of extrapolation andprediction. 
6 .  The factual information and theoretical concepts used in model construction 

(data, assumptions, sources, etc.). 
7. The criteria of validation (empirical and theoretical). 
To illustrate one of the best and most complete statements of model objectives, I 

give an extended quote from Innis (1978). The objective applies to a large, complex 
model, so this perhaps justifies the lengthy statement. 

The objective of this modeling activity was to develop a total-system model 
of the biomass dynamics for a grassland that, via parameter change, could be 
representative of the sites in the US/IBP [United Statesnnternational Biological 
Program] Grassland Biome network and with which there could be relatively easy 
interaction. 

There are several key points in this objective that deserve elaboration. First, 
the term total-system model refers to the inclusion of abiotic, producer, consumer, 
decomposer, and nutrient subsystems. This requirement was imposed to assure 
that the modeling effort played the integrative role delegated to it . . . 

Second, biomass dynamics identifies our principal concern with carbon or 
energy flow through the system. Focus on biomass facilitated the comparison 
of model and data but turned out to be unfortunate because it is not conserved. 
The model, therefore, tracks carbon and converts it to biomass (and vice versa) 
in a number of places. We are concerned with dynamics as part of the general 
objective of the International Biological Program (IBP). 

Third, representative expresses our desire to have the model apply, with min- 
imal effort, to sites in the US/IBP Grassland Biome study. Changes of parameters 
are certainly necessary as these describe site characteristics (among other things). 
The representation was to depict "normal" dynamics as well as the response of 
the system to a variety of perturbations. 

Finally, relatively easy interaction was a desideratum because of the role the 
effort was to play in program direction . . . 

This objective provides only the broadest guidelines to the modelers as to 
their respective functions. The purpose of the objective is to found the decision 
making processes that accompany model building. This involves clarification as 
to how many producers and consumers should be included, the amount of detail 
required in a representation of a producer, and whether a phosphorus, calcium, or 
lead model is required [i.e., resource management and research design]. . . In 1970 
it was agreed that this objective would stand, with the first model addressing four 
specific questions: 

1. What is the effect on net or gross primary production as the result of the 
following perturbations: (a) variations in the level and type of herbivory, 
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(b) variations in temperature and precipitation or applied water, and (c) the 
addition of nitrogen or phosphorus? 

2. How is the carrying capacity of a grassland affected by these perturbations? 

3. Are the results of an appropriately driven model run consistent with field 
data taken in the Grassland Biome Program, and if not, why? 

4. What are the changes in the composition of the producers as a result of these 
perturbations? 

These questions were further specified with definitions of terms such as "varia- 
tions," "level," and "type"; acceptance criteria were chosen. 

This is a description of a whole ecosystem-level model, and it is quite possible that the 
reader will not appreciate the motives for or value of building these types of models. 
Nevertheless, it provides a reasonably clear statement of what the model is intended to 
do. Other disciplines may not require for publication such a self-conscious and direct 
statement, but, at some point, the modelers probably do. 

2.5 Exercises 

1. Write an objective statement for the island biogeography problem of Chapter 1. 
2. Design an alternative model for the island biogeography situation that uses 

curvilinear immigration and extinction functions. Consider a negative expo- 
nential and simple quadratic, respectively. 

a) Graph the new rates of change against R and qualitatively sketch the dy- 
namics of colonization from an empty island. Contrast these dynamics 
with those of the original model. 

b) Write a new finite-difference equation and show that the equilibrium num- 
ber of species satisfies 

c) Speculate on a biological mechanism that might support this alternative. 
3. To what extent has Innis incorporated Overton's criteria for objectives state- 

ments? 
4. How good was the objective statement of the "doubling time" model? 
5. Using Innis' statement and Overton's criteria as guides, write an objective state- 

ment for the following problem: "How many cases of AIDS will occur in Utah 
in 2Ol5?' Would the objectives change if the location had been San Francisco? 
Why or why not? What role does spatial scale of extrapolation play in this 
problem? 

6. Write an objective statement for this problem: "What should be the best grazing 
pressure on the XYZ National Forest to simultaneously maximize cattle produc- 
tion and forest quality?' 

7. We noted in the discussion of the model of the world's population that our abil- 
ities to validate the model were limited by our inability to replicate the system. 
Under what circumstances, if any, is it worth while to model systems that cannot 
be replicated or tested using rigorous statistical methods? 
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8. Read pages 10-13 in Reckhow and Chapra (1983b) and decide if there is a need 
to distinguish validation and corroboration. 

9. Read an article in a current journal describing a model and critique the objective 
statement. In the models described in the chosen journal, how many discuss 
validation? 
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Qualitative Model Formulation 

3.1 How to Eat an Elephant 

B UILDING A MODEL is like eating an elephant: it's hard to know where to begin. As 
with almost all problems, it is helpful to break a big problem into smaller, more 

manageable pieces. We do this with model formulation (Fig. 2.1) by first creating a 
qualitative model and then converting this to a quantitative model (Chapters 4 and 5). 
Qualitative model formulation, then, is the conversion of an objective statement and a 
set of hypotheses and assumptions into an informal, conceptual model. This form does 
not contain explicit equations, but its purpose is to provide enough detail and structure 
so that a consistent set of equations can be written. The qualitative model does not 
uniquely determine the equations, but does indicate the minimal mathematical com- 
ponents needed. The purpose of a qualitative model is to provide a conceptual frame- 
work for the attainment of the objectives. The framework summarizes the modeler's 
current thinking concerning the number and identity of necessary system components 
(objects) and the relationships among them. 

Qualitative model formulation is not always explicitly performed. If a modeling 
project is simple enough, elaborate plans for writing the equations are not necessary. 
Most of us do not need detailed instructions for getting out of bed in the morning. 
But with large models having many variables that interact in complicated ways among 
themselves and with the environment, it is easy to become confused. By providing 
an overview of the system, a qualitative version of the model can help reduce this 
confusion. 

Qualitative models can take any form (except mathematical), but diagrams are the 
usual representation. Given our emphasis on differential equations and compartment 
models, three important diagrammatic schemes are: block structure diagrams (having 
origins in electrical engineering and analog computers), Odum energy $ow diagrams 
(similar to block structure diagrams but based on energy flow within ecosystems), and 
Forrester diagrams (having origins in systems analysis and operations research). All 
three share the ability to represent systems as a set of objects and their interrelations. 
We will stress the latter here, but the interested reader can learn more of block structure 
diagrams in (Shannon 1975) and Odum energy diagrams in (Odum 1971). 
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Figure 3.1 : A simple ecosystem in which carbon moves among the labeled components. 

3.2 Forrester Diagrams 

Forrester diagrams (Forrester 1961) were invented by Jay Forrester, an MIT profes- 
sor famous for work on early digital computer hardware and the simulation of social 
systems. Forrester diagrams are designed to represent any dynamic system in which a 
measurable quantity flows between system components. 

Consider a simple ecosystem in which carbon flows between a population of grass 
and a population of deer (Fig. 3.1). Suppose that our objectives suggest that only deer 
and grass are interesting and that the grams of carbon in these two components are 
the relevant measures. Because of our simplification, we will not explicitly consider 
other components that may have large quantities of C (e.g., atmospheric COz and ex- 
cretion by deer). Consequently, two numbers (grams of carbon in grass and grams of 
carbon in deer) completely specify the condition of the system at a moment in time. 
By accepting this simple view of the ecosystem, we are stating that other variables or 
quantities are irrelevant and do not add to our knowledge of the system. For example, 
other consumers (e.g., insects), producers (e.g., the tree), or other variables (e.g., ni- 
trogen) are not important. Moreover, these two numbers may change in time so that 
the condition of the system is dynamic. The exact nature of the temporal changes de- 
pends on the rates of flow of carbon into the grass component (growth) and into the 
deer population (grass consumption). 

Figure 3.1 is a crude qualitative model in diagram form of the system, but since it 
makes specific reference to deer and grass, it has limited application to other systems. 
We want an abstraction of the basic concepts of system components and materialJEows 
to obtain a general tool for qualitative modeling of systems. Forrester diagrams are 
such an abstraction. 

To understand the basis of the diagramming scheme, recall the general definition 
of a system: a collection of objects and relations among them. There are two kinds of 
objects: (1) those that are inside the system and are explicitly modeled and (2) those 
that are outside the system and are not modeled. The internal objects are called state 
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flow information flow 
units l-.--J (material, energy) (influence) 

state variable 
(object, level) 

source, 
sink 

parameter I 
rate equations 

auxiliary variable driving variable 

Figure 3.2: The basic components of a Forrester diagram. 

variables and are those that, taken all together, characterize the condition or state 
of the system. In the example above, the state variables are grass and deer. These 
variables are dynamic and change their state over time. (See Caswell et al. 1972 for a 
more rigorous definition of state variable.) 

The outside or external variables are either sources or sinks and are not modeled 
explicitly (i.e., no equations are written for these). For example, atmospheric C02 is 
both a source and a sink. It is a source because it represents an unmodeled pool of 
C that is an input to a state variable (grass). It is also a sink since gaseous C02 is a 
product of deer respiration. 

Each state variable is described by its current level of the quantity of interest: 
the quantity in which units we measure the state of the variable (e.g., numbers of 
individuals, grams of carbon, temperature, etc). Relations between system objects 
have two forms: (1) the direction and rates of flow between the quantity of interest 
and the objects and (2) the influences of a variable (e.g., the quantity of interest) on 
the rates of flow. 

Forrester diagrams are direct graphical representations of these concepts that per- 
mit easy translation to mathematical equations. They can be thought of as a graphical 
"language" with phrases that can be connected in certain prescribed ways. The graph- 
ical vocabulary items of the language are listed in Fig. 3.2 and are described below. 

Objects System objects are the state variables of the system (called levels by For- 
rester). They are the primary system components whose values over time we wish to 
predict. They are dynamic quantities and are represented by a rectangular box (Fig. 
3.2a). The box should contain a mnemonic name for the object and its unit of measure- 
ment. Many descriptions of models of this type refer to levels as compartments, and 
the type of models being represented by Forrester diagrams as compartment models. 
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Material Flows Flows are one manifestation of relations between system objects, 
which we will call a j o w  relation. A flow is represented as a solid arrow (Fig. 3.2b) 
and identifies the pathway over which the quantity of interest (e.g., grams of carbon) 
flows. In most models, the rate of flow is a dynamic quantity that is influenced by 
system components, and this rate is symbolized by a control valve (the "bow-tie") on 
the flow relation. 

Information Flow or Influences The second manifestation of relations between ob- 
jects are the effects that the quantity of one object has on the rates of inputs to or 
outputs from another object (e.g., effects on growth rates). These are control relations. 
State variables affect the control valves of material flows of other state variables (in- 
cluding themselves). These influences are represented as information transfers (dotted 
arrows in Fig. 3 .2~)  connecting state variables and control valves. The tail of the arrow 
indicates the influencing component and the head of the arrow indicates the affected 
rate. Possible sources of information transfer are state variables, parameters, driving 
variables, and auxiliary variables or equations. 

Sources and Sinks Objects that are defined to be outside the system of interest, but 
which are inputs to state variables or outputs from state variables, are represented as 
"clouds" (Fig. 3.2d). They are not state variables since they are not modeled explic- 
itly and are not represented by dynamic equations. (Hence, they are nebulous and 
vague - traits well represented by clouds.) Sources or sinks cannot be involved in 
an information transfer. That is, they cannot alter a rate, nor can their condition be 
altered. 

Parameters Constants in equations are noted in the diagrams by small circles with 
lines (Fig. 3.2e). They invariably are used as the tail of an information transfer, since 
their values influence flow rates and other equations within the model. Since they are 
constants, their values are not changed by an information transfer. 

Rate Equations Total (or absolute) rates of input to, or output from, a state variable 
are described mathematically with rate equations. It is useful to identify and label 
these explicitly by modifying the control valve symbol (Fig. 3.2f). The equations 
usually describe information transfers from state variables and parameters. 

Auxiliary Variables and Equations Auxiliary variables (large circles, Fig. 3.2g) are 
variables that are computed from an auxiliary equation. The auxiliary equation can 
be a function of other auxiliary variables, state variables, driving variables, and pa- 
rameters. Auxiliary variables change over time because they depend on either (a) a 
state variable, (b) a driving variable that depends on time, or (c) an auxiliary variable 
that depends on a state variable or driving variable. Auxiliary variables are never con- 
stants, nor are they state variables: they do not have an associated rate equation. They 
are algebraic equations and we may think of their values as changing instantaneously, 
as new values are substituted for their variables. 

Auxiliary variables are primarily used to simplify the writing of rate equations. 
In this use, they may be substituted into the equation, but they are isolated for clarity 
or computing efficiency (they may be used by several state variables). Consequently, 
they are often shown influencing rate equations. A secondary use is to convert, for 
output purposes, a state variable or another auxiliary variable into different units. 
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atmospheric 

co2 

.. , -...- . , .... 
solid and liquid waste 

Figure 3.3: Forrester diagram for the grass-deer ecosystem. Solid arrows are pathways 
for C flow; dotted arrows represent relations between levels and input or output rates as 
hypothesized. (Numbered ellipses on information flows are not part of Forrester diagrams, 
but are used for explanatory purposes only.) 

Driving Variables Dynamic events that relate to variables that are not state variables 
(e.g., season or temperature in some models) are often used as forcingfunctions. These 
driving variables are represented as large diamonds (Fig. 3.2h). Usually, driving vari- 
ables have no inputs and time is assumed to be a component of the variable (e.g., tem- 
perature values on different days). Here are two examples when one driving variable 
may influence another: (1) A driving variable of time could influence a driving variable 
that specifies temperature over space. The temperature at depth (space) in a water col- 
umn could be influenced by season (time): different temperatures at depth at different 
seasons. (2) A driving variable of time at one scale (slow) could be used to determine 
a variable that occurs at a faster time scale [e.g., season (a slow time-dependent driv- 
ing variable)] can influence hourly temperature values (a fast time-dependent driving 
variable). The units of the driving variable (e.g., time, space) should be specified in 
the diagram. 

3.3 Examples 

As illustrations of this diagramming technique, we consider some simple examples. 

3.3.1 Grass-Deer "Ecosystem" 

Consider a system composed of grass and some deer that eat the grass (Fig. 3.1). For 
the sake of definiteness, we will make the following biological assumptions. 

1. The per capita rate of growth of grass (g C produced per g C of existing grass) 
is constant. Therefore, the total growth will be the per capita rate times the total 
amount of C present. 

2. The only loss to the quantity of C in the grass population is by deer consumption. 
3. Deer compete with one another for grass so that, as the quantity of deer in- 

creases, each deer receives less C. 
4. Deer excrete or respire a fixed proportion of their existing C as either atmo- 

spheric C or solid/liquid waste. 
None of these hypotheses are detailed enough to allow us to uniquely define the equa- 
tions, but they do permit us to draw the Forrester diagram in Fig. 3.3. 
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Figure 3.4: Forrester diagram for one form of the density-independent population growth 
model. 

The assumptions indicated only two state variables: grass and deer. Therefore, 
there are only two boxes (levels) in the Forrester diagram. Also from our assumptions, 
there are only three flow relations: source to grass, grass to deer, and deer to sink. The 
diagram implies that any other flows are assumed to be unimportant to the objectives 
of the model. For example, we explicitly precluded C from flowing directly from grass 
back to the atmosphere or another sink (assumption 2). Information transfer 1 is a di- 
agram of the concept that total grass growth depends on the amount of grass present 
(assumption 1). Information transfer 2 is similar, but we know from our verbal state- 
ment that deer are competing with one another, and grass is not competing (per capita 
rates are constant, assumption 3). Therefore, given the similarity of information trans- 
fers 1 and 2 (Fig. 3.3), it is clear that different hypothesized control relations can have 
the same Forrester diagram presentation. This implies that a single Forrester diagram 
can represent many different sets of hypotheses. Forrester diagrams do not uniquely 
determine the model equations. Information transfer 3 represents the effect of deer on 
the loss rate of C from the deer population (assumption 4). The verbal statement of 
this control relation is similar to that for grass growth rate, so the information transfer 
arrow is similar. 

3.3.2 Population Growth with Explicit Birth and Death 

To demonstrate the relation between diagrams and equations, the next example will 
start with an equation and produce a consistent diagram. 

The classic, density-independent population model written as a finite difference 
equation (FDE) is Nt+l = N, + rN,, where r is the net per capita growth rate. Suppose 
we reparameterize it using the identity r = b - d, where b is the per capita birth rate, 
d is the per capita death rate, and both are positive quantities: 

Note first that there is a single state variable (N); therefore there will be a single 
box in the Forrester diagram. In general, there will be exactly as many boxes (levels) 
and FDEs as there are state variables. Second, note that Eq. 3.1 has two components 
of change: a positive value (bN,) and a negative value (-dN,). These correspond in 
Forrester diagrams as inputs to and outputs from a single state variable. Thus, for this 
form of the model, we have a Forrester diagram as shown in Fig. 3.4. Note the use 
of clouds (sinks and sources) to represent the origin of newborn individuals and the 
destination of dead individuals. 
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Figure 3.5: Forrester diagram for one form of density-dependent population growth model. 

To illustrate the use of auxiliary variables and equations, consider the case where 
birth rates decrease linearly as numbers of individuals increase, but total death is a 
simple proportion of the population: 

The second (middle) term of the right-hand side is the absolute rate of births in the pop- 
ulation. The third term is the absolute rate of death. Birth rate is determined by a "re- 
duction factor" that approaches zero as N approaches a constant K [i.e., (1 - NIK) + 0 
as N + K]. Our modeling objectives might suggest that this is a particularly important 
quantity (e.g., we want to examine a range of functional forms, not just the linear one 
above). Consequently, we isolate that subexpression with a special symbol (R) and we 
treat it as an auxiliary variable. Figure 3.5 shows the Forrester diagram for this model. 
Note that it is similar in form to Fig. 3.4, but that we have used an auxiliary variable to 
represent the effect of density on the reduction factor. The "effective" per capita birth 
rate is bR, where b is the maximum per capita birth rate. Note that R is a function of 
N (state variable) and K (a parameter), so information transfer arrows connect these 
entities with R. 

It is somewhat a matter of taste to separate R and b. Alternatively, we could draw 
the diagram using a different auxiliary variable, perhaps called "effective per capita 
birth rate," corresponding to the variable b(1- NIK). This would require a minor mod- 
ification of the control relations (information transfer arrows). Finally, it is possible to 
draw the Forrester diagram for Eq. 3.2 without any auxiliary variables; it depends on 
the emphases the diagrammer wishes to achieve. 

3.3.3 Net Population Growth 

The above models used explicit birth and death to show the relations between the 
parameters governing increases and decreases, and the input and output arrows in 
the diagrams. The typical presentation of these models subsumes birth and death 
into a net rate parameter r, which may be positive or negative. For these forms, the 
corresponding diagrams for the two models (Fig. 3.4 and Fig. 3.5) are shown in Fig. 
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Figure 3.6: Forrester diagrams for density-dependent (a) and density-independent (b) 
growth using the normal parameterization. 

3.6. Note the double-headed material flow arrows used to indicate that the parameter r 
controls both the inflow (away from source) as well as outflow (toward the sink). The 
single cloud serves a double purpose here as both sink and source. 

3.3.4 Multiple State Variables 

It is often clearer to isolate different inputs and outputs to a state variable, even though 
they may be additive and could be lumped. This may be important if the controls 
on the different rates vary significantly, usually due to different parameters. This is 
diagrammed by multiple material flows into or out of a level. 

When a model has more than one state variable (e.g., an ecosystem model with 
equations for plants, herbivores, and carnivores), then each object is represented by 
a box (level) that connects with the others according to the flow of material (energy) 
defined by the relations (i.e., foraging relationships). Figure 3.7 illustrates this for 
a simple case. The critical point for models of this type is that the units of state 
variables and the units of flow must agree. Some models have state variables that 
possess identical inputs and outputs (e.g., discrete soil layers in a water flow model); 
to simplify the diagram, these are shown as offset boxes (Fig. 3.7). A similar scheme 
can be used for auxiliary variables. 

A more complicated case is illustrated in Fig. 3.8 for a simple agroecosystem 
model in which there are fertilization regimes, pests, and crop harvesting schedules. In 
this model, suppose the broad objective is to determine the effects onprojts of different 
schedules of fertilizer andpesticide applications tojelds of alfalfa. By "schedule," we 

Figure 3.7: Forrester diagram showing multiple state variables. The set of three offset 
boxes represents three state variables all of which have the same relations (inputs and 
outputs) to other state variables in the system. 
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Figure 3.8: Forrester diagram for a hypothetical agroecosystem model showing multiple 
state variables of an agricultural system. 

mean the timing and amounts of applications. The major pests of alfalfa are weevils 
and aphids, but these are dynamic since pesticides will kill some of them. So, at least 
one state variable must represent the pests. We are also interested in the effects of 
fertilizer applications, but this also will be dynamic (it is applied at certain times and 
in variable amounts). Consequently, another state variable should be the soil nutrient 
pool. As we are primarily interested in the profits of farmers, we will need to know 
both the amounts of crops in the field and the amounts harvested. 

Thus, the state variables are: nutrients, insect pests, field alfalfa, and harvested 
alfalfa. All of these must have common units, so for the sake of the example, we 
will assume that nitrogen is the limiting nutrient to be added and that all other state 
variables will be quantified in units of g Npectare. These are not the most natural 
units by which to measure alfalfa and insect pests, but we can always use a conversion 
factor (auxiliary variable) to create other units. 

The scheduling of management events such as pesticide application and fertil- 
ization is represented by driving variables, as are natural events such as season and 
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temperature (Fig. 3.8). The objectives state that one of our primary interests is farmer 
Profit. Because we have chosen the dynamics to be stated in units of g N/ha and the 
units of profit are dollars, we need to convert from g N/ha harvested to dollars. To ac- 
complish this, we use auxiliary variables such as Fertilization Cost ($/ha), Field Size 
(ha), Alfalfa Price ($/g N), and so on (Fig. 3.8). Note that Profit, while changing in 
time, is not a state variable. Profit is a simple algebraic identity, not a FDE. 

The diagram is not complete because we have omitted the parameters, but without 
more specific hypotheses on the dynamics of the components it is difficult and not 
useful to add this facet of Forrester diagrams. The reader should study Fig. 3.8 so that 
the components (levels) and flows (material and information) are clear. In particular, 
it should be evident how a mathematical model based on this diagram will address the 
original objectives. 

3.3.5 Multiple Flow Variables and Units 

When different units on flow variables are modeled (e.g., g N and g C or blood pres- 
sure and blood oxygen in a physiological model), parallel models (or multiple models, 
Rideout 1991) must be used to avoid having "apples" flow into "oranges." The dynam- 
ics of many biological processes depend on several interacting variables. There are 
two broad applications of this concept in modeling: (1) the variables are at the same 
level of biological organization but may interact in their influence on the dynamics, or 
(2) the variables are at different levels of organization, but both are needed to address 
the model objectives. 

l h o  variables (A and B) are on the same level of biological organization if all 
of the measurements that can logically be made on A can also be made on B, and 
there are no measurements that can be made on B that cannot be made on A. So, for 
example, two chemical molecules (COz and H20) are on the same level because we 
can measure on both such things as molarity, boiling point, molecular weight, and so 
on. In contrast, an individual organism and a population of organisms are on different 
levels of organization since we can measure population growth rate on the population, 
but not on a single organism. 

Variables that are on the same level of organization may interact to affect some 
biological process negatively (negative feedback), positively (synergism), or indepen- 
dently (substitutable). For example, the electrical potential across the membrane of a 
nerve cell is determined by the difference between the net charge inside the cell and the 
net charge outside the cell. Therefore, two variables that might be modeled and that 
interact negatively are positive ions exemplified by potassium (K+) and negative ions 
such as chloride (Cl-), since the net charge is the sum of positive and negative ions. In 
other situations, two different variables might complement each other and enhance the 
rates of change of biological processes [e.g., nerve cell activity and electrical potential 
and the different forms of positive ions: K+ and sodium (Na+)]. In still other systems, 
the two variables may influence dynamics independently, for example, grass species 
A and B may each increase deer growth rates by an equal amount. 

In all of the above examples, it is conceivable (but not necessary) that a model 
would portray the dynamics of both quantities (K+ and Na', or species A and B). In 
all three possibilities, if we wish to describe the dynamics of the affected process as 
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Figure 3.9: Forrester diagram when multiple flow variables are used. Unlabeled material 
transfers are assumed to be losses or gains caused by ion pumping. 

influenced by the variables, then we must describe the dynamics of the individual vari- 
ables and their effect on the process. Therefore, since the physical quantities cannot 
flow among themselves (i.e., g K cannot flow from a compartment containing g Na), 
we represent the separate dynamics as parallel models. 

An example of variables at different levels of organization is variables describing 
the size of individuals and population size. In models in which the growth rate of 
the population is influenced not only by the current numbers of individuals in the 
population, but also by the average body size (e.g., through the feeding rate), both 
quantities must be modeled. Obviously, these are two very different kinds of quantities 
and it is absurd to suppose that they can be related by a material transfer (solid arrow 
in a Forrester diagram). It makes no sense to say that average body size "flows" into 
numbers of individuals. Consequently, in a model, these two variables must be kept 
separate. 

To illustrate this concept graphically, consider a very simple model of nerve cell 
activity. The activity level is measured as the electrical potential across the nerve cell 
membrane. This is determined by the relative concentration of K+ and Na+ on the 
inside. Ions of K and Na flow into the cell through ion-specific channels at rates that 
depend on the current electrical potential of the cell. Figure 3.9 shows one implemen- 
tation of the integration of the dynamics of K and Na to determine electrical potential. 
Since K and Na are different quantities, they are not interchangeable and therefore 
must have different inputs, outputs, and level representation. 

Care must be exercised when diagramming to recognize differences in units be- 
tween state variables. Units that are superficially the same can in some circumstances 
be completely different. Often these differences are hidden by the mathematical equa- 
tions. For example, if our interest is in the flow of carbon between components of a 
plant (e.g., leaves and roots) in a plant growth model, then an atom of carbon in the 
leaves can actually become incorporated into the roots. In contrast, suppose our in- 
terest is in a model of the population dynamics of a species of plant and its herbivore 
and the "flow" variable of interest is numbers of individuals in each population. It 
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Figure 3.10: Simplified Forrester diagram for linked population models based on numbers 
of individuals. 

does not make sense to say that individual plants flow into individual consumers. The 
biomass of the plant in fact does become incorporated into the biomass of individual 
herbivores, but the numbers in the population are created by processes of birth and 
death. The basic concept here is one of "conserved" and "nonconserved" flow quanti- 
ties. Grams of carbon is a conserved quantity; it is the mass of a physical object. And, 
except under unusual physical circumstances, an atom of carbon is never created or 
destroyed. Numbers of individuals are not conserved in the same way. Prior to birth 
the individual did not exist, although all of its atoms were present in other forms. At 
its death, the individual is destroyed, but its constituent atoms persist. 

This distinction influences the way Forrester diagrams are drawn for some types of 
models. In predator-prey models, when numbers of individuals are modeled, the units 
are actually numbers of prey individuals and numbers of predator individuals. These 
units are as incompatible with each other as were the units in Fig. 3.9 and the diagram 
should use parallel models. Consequently, we should use a Forrester diagram similar 
to the simplified form shown in Fig. 3.10. 

A similar situation arises in modeling and diagramming chemical dynamics. A 
common unit in these systems is moles (the amount of a substance which contains 
Avogadro's number (6.022 ~ 1 0 ~ ~ )  of atoms or molecules). When one mole of H and 
one mole of 0 are combined, the result is not two moles of water, but 0.5 mole of 
H20. Similarly, 1 gm of H and 1 gm 0 combine to form approximately 1.125 g H20, 
not 2 or 1 or 1.5. The reason is that the chemical reaction to form a molecule of H20 
involves numbers of individual atoms of H and 0 in certain proportion. If modeled 
as a compartment model with numbers of atoms, there is a conserved flow of atoms 
of H and 0 :  atoms of H leave the Hz compartment and enter the H20  compartment; 
similarly for 0. The situation holds for some population models based on individuals. 
If the compartments are age classes, then individuals are conserved as they flow from 
one age to another. Also, in models of infectious diseases, healthy individuals are con- 
served as they flow from the "susceptible" compartment to the "infected" box. Thus, 
some models based on flows of individuals (organisms or atoms) can be diagrammed 
as a conserved quantity (i.e., levels connected by material flow arrows). 
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Figure 3.1 1 : Examples of incorrect Forrester diagram fragments. 

3.4 Errors in Forrester Diagrams 

Below is a short list of some of the errors that can be made in drawing Forrester 
diagrams (see Fig. 3.1 1). 

1. Using any symbols other than those defined in Fig. 3.2. For example, there is 
no symbol like a solid line with no arrowhead attached (Fig. 3.1 la). 

2. Failing to label all boxes, variables (auxiliary and driving), and parameters with 
names and units (where appropriate, Fig. 3.1 la). 

3. Showing sources or sinks influencing rates (Fig. 3.1 lb). 
4. Showing rates influencing state variables (Fig. 3.1 lc). 
5. Showing information flows directly into state variables (Fig. 3.1 la). State vari- 

ables only change by a change in rates. 
6. Showing material flows (solid arrows) between objects other than state variables 

and sources and sinks (Fig. 3.1 Id). 
7. Showing an influence on a quantity that cannot change (e.g., a parameter, Fig. 

3.1 Id). 
8. Showing information flows between state variables (Fig. 3.1 le). 
9. Using incompatible units of flows or state variables (Fig. 3.1 If). 

10. Using state variables that are not in the model (objectives or equations) or not 
including state variables that are in the model. 

3.5 Advantages and Disadvantages of Forrester Diagrams 

Many modelers and theoreticians do not use Forrester diagrams and believe they only 
get in the way. There is an important element of truth in this view. The equations are 
the primary objects of interest. Their solutions, not the diagram, produce the output 
used to address the model objectives. Moreover, the diagrams are not always a com- 
pact representation of the model. As the number of state variables, parameters, and 
relations between objects become large, the size of the diagram increases. Complex 
diagrams can span several pages, in which case much of the heuristic value is lost. 

There are, however, three situations in which Forrester diagrams are useful. First, 
in learning the rudiments of the modeling process, it is helpful to separate the trauma of 
mathematical equations from the conceptual issues of the nature of system objects, the 
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characteristics of the material flows between them, and the controls on the dynamics 
by internal influences. A graphical language has this potential. 

Second, many people who are not mathematicians and to whom a model must 
be explained react favorably to the graphical representation. For most variables and 
flows, there is a natural correspondence between a material flow and a physical or bi- 
ological process (e.g., consumption in a foodweb), or between a state variable (boxes) 
and a compartment (e.g., population). These are concepts with which most people 
have some experience. As a consequence, understanding is more quickly attained, 
and constructive criticism (or, even, agreement) is more readily achieved. Moreover, 
although mathematics offers opportunities for an extremely compact representation 
of complex relationships, models attempting to achieve a high degree of precision or 
realism will often require complicated equations. The mathematical expressions for 
driving variables are often an example of this since they can represent seasonal effects 
on physical variables such as temperature. Forrester diagrams can reduce some of this 
complexity by subsuming the mathematical details in a simple symbol. 

Finally, Forrester diagrams can be a valuable aid in organizing the computer sim- 
ulation program. Each level effectively becomes a program module; the set of input 
and output arrows are components that increase and decrease the finite difference equa- 
tions. The parameters are the data on which program module operates. Input infor- 
mation flows and parameters indicate arguments to the subroutine; output information 
flows indicate subroutine side effects (changed variables). 

Clearly, there is a point at which diagram complexity obfuscates the basic struc- 
ture of the model and frustrates attempts to effectively communicate. Just as we must 
provide objectives for models, we must also recognize our objectives in presenting 
a model in one form or another. The choice will depend on whether we are com- 
municating with politicians, managers, mathematicians, computers, or our biologist 
colleagues. 

3.6 Principles of Qualitative Formulation 

Thejrst rule of discovery is to have brains and good luck. The second rule of 
discovery is to sit tight and wait for a bright idea. - Polya (1973) 

Qualitative model formulation is one of the sub-problems in the modeling activity. We 
wish to discover the simplest description of a system that will satisfy the objectives. 
This section describes a few basic principles that apply to all attempts to formulate a 
qualitative compartment model using Forrester diagrams. Many of the principles will 
also apply to other modeling approaches. Based on the Forrester diagrams shown thus 
far, it should be clear that the purpose of the principles is to help you 

0 Identify the state variables (levels) 
0 Identify the flows among the state variables 
0 Identify the controls on the flow rates 
0 Identify the auxiliary and driving variables. 
To accomplish the above, answer the following questions. 

1 .  What are the questions to be answered? Write down all the questions for which 
the objective requires answers. If you cannot do this, then you do not understand 
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the problem. For example, in the population doubling model, the question was: 
"When (at what time) will the population be twice its current value?' 

2. What quantities are needed to answer the questions? In compartment models 
(and almost all others), objective questions are answered with specific numbers 
or series of numbers. Write down the required quantities and their units. 

In the population doubling problem, it is the "year" when the population 
has doubled. The size of the population at doubling is of minor concern in this 
problem (indeed, given the initial condition, it is trivial to compute). 

3. What equations will answer the questions? Can you write an explicit dynamic 
equation (e.g., finite difference equation) whose value at some time will consti- 
tute an answer? In the population doubling problem, the answer is "no." We 
did not solve the problem by writing an equation describing the doubling time. 
We wrote an equation for population growth and from this determined doubling 
time. If the question had been, "What will the population size be in 2Ol9?' then 
a dynamic equation would answer it (e.g., Eq. 3.1). 

If you can, in principle, answer the question directly with a dynamic equa- 
tion, then this is at least one of the state variables in the model and it becomes 
a level in a Forrester diagram. (You do not write the equation at this stage, but 
simply recognize that such an equation, when written, will answer the ques- 
tion.) If a dynamic equation will not immediately answer the question, then (a) 
you need an auxiliary equation to compute the answer from another variable, 
and (b) you need another quantity and state variable that will serve as input 
to the auxiliary equation. An information flow (dotted line) will connect these 
two objects. Figure 3.8 illustrates the concept in the relation between Harvest 
(g N) and Profit ($). The units of the state variable and the auxiliary variable 
will almost certainly be different, for otherwise a dynamic equation would have 
answered the question. 

4. What other primaryflow quantities are needed? From the objectives and prior 
knowledge or data, write down the quantities that will flow into and out of the 
state variables that contribute to the question. These flows determine the dynam- 
ics of the level. The flows will connect to additional levels by material-transfer 
arrows in the Forrester diagram. For descriptive purposes only, we will call 
these the primary state variables. In the simple population doubling problem, a 
single state variable suffices, so there are no others. In Fig. 3.8, a single state 
variable influences the primary quantity needed for the objectives (Profit). But 
the objectives refer to pesticide and fertilization effects, and we know (or pre- 
sume) from prior information that the harvest dynamics will be influenced by 
the size of the crop in the field (Field Crop), and this will be influenced by in- 
sect consumption (Pests). Prior knowledge also tells us that fertilizer is applied 
to the soil and is subsequently removed from a pool of N contained in the soil. 
Thus, we hypothesize that a sufficient model would be one that contained the 
state variables (levels) shown in Fig. 3.8 (i.e., Soil Nutrient Pool, Field Crop, 
Pests, and Harvest). 

5 .  Is an explicit spatial representation required? Do the objectives refer to or 
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require knowledge of events at different places? If so, then a transport model 
(Section 1.4.3) may be appropriate or the primary state variables should be repli- 
cated at each discrete spatial location. Typically, the state variables at the dif- 
ferent spatial locations will be connected by material transfers (immigration or 
advection). 

6.  What are the controls on thejow rates between the state variables? The con- 
trols become influences or information transfers in Forrester diagrams. For each 
state variable, list the factors influencing the rates of flow into the level and in- 
fluencing the rates of flow out of the level. In general, there will be four sources 
of influences: (1) parameters, (2) auxiliary variables whose inputs are from the 
primary state variables, (3) driving variables, and (4) inputs (possibly via auxil- 
iary variables) from state variables other than the primary state variables. Type 
(1) is illustrated in Fig. 3.10 by the influence of parameter "c" on "birth rate." 
Type (2) is illustrated in Fig. 3.9 by the loop between "K," bbElectrical Poten- 
tial,'' and flow rate into "K." Type (3) is illustrated in Fig. 3.8 by the influence 
of "Fertilization" on the flow rate into "Soil Nutrient Pool." Type (4) occurs, for 
example, when the primary state variables are defined on one level of biological 
organization (e.g., population), but secondary state variables at another level of 
organization (e.g., individual body size) are required to implement hypothesized 
flow rate controls at the population level. For example, populations with large 
average body size consume resources faster than populations with small body 
sizes. If type (4) controls are present, then the secondary state variables must be 
implemented as levels in a parallel model (Fig. 3.9). 

7 .  Do you know any parameter names? If the objectives or prior knowledge sug- 
gests important parameters, these should be included in the Forrester diagram. 
Most of these do not become known until explicit equations are suggested for 
flow rates and auxiliary variables. 

3.7 Model Simplification 

Thus far, we have emphasized the mechanics of qualitative model formulation. For 
a number of practical and aesthetic reasons, we wish our models and explanations of 
biological phenomena to be as simple as possible. On the other hand, biological sys- 
tems are complex, having many processes and variables that interact in complicated, 
non-linear ways. It is, therefore, natural when creating a model from a general ob- 
jective statement, such as we used in our example of pesticide effects on farm profit, 
to create a model that is more complicated than needed or desirable. There is some 
evidence that models of intermediate complexity are best (Costanza and Sklar 1985; 
Hiikanson 1995). Being able to simplify a model is almost as important as the abil- 
ity to formulate it in the first place. Think of it as editing the first draft of an essay. 
Moreover, in Chapter 2 we stressed the importance of evaluating alternative models in 
parallel. An excellent approach to creating a family of alternative models is to create 
a gradient from simple to complex. So, the process of model simplification and its 
converse, model elaboration, are valuable tools for hypothesis testing. Logan (1994) 
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has formalized this philosophy in what he calls the composite-modeling approach. In 
this approach, one designs an initially large model that contains most of the relevant 
processes and relations. Afterwords, one reduces the large model into progressively 
simpler, mathematically more tractable versions that, although simple, maintain links 
and similarities with the more complete model. The end result is a family of models 
and tools each of which have uses and applications. A related idea that will become 
important for model validation in Chapter 8 is nested models: a hierarchy of mod- 
els each simpler than the next by the removal of one parameter (Hilborn and Mange1 
1997). Because model simplification is central to these ideas, we now present a few 
principles for simplifying models (see also Shannon 1975). 

Eliminate State Variables Every state variable must have a dynamic equation (differ- 
ential equation or finite difference equation) as well as parameters and initial condi- 
tions. There are two ways to reduce model complexity arising from state variables. 

1. Convert a state variable into a constant (e.g., a parameter) or an auxiliary vari- 
able. For example, in Fig. 3.8 we represented Profit as being influenced by 
harvested crop nitrogen, whose dynamics were determined by the size of the 
field crop. However, given that alfalfa is harvested by mowing and collecting a 
fraction of the field crop, a simpler model would be one in which profit is deter- 
mined from the current field crop and a parameter representing the simple frac- 
tion harvested. If we wished to retain the concept that harvesting occurs at fixed 
time intervals, we could replace the Harvest state variable with an auxiliary 
variable that is influenced by Season, Field Crop, and a parameter representing 
the fraction of the field crop harvested. Profit, then, would be determined by 
season and the harvestable fraction of field crop. 

2. Aggregate state variables. In Fig. 3.8, we separated soil nitrogen and crop ni- 
trogen to examine the potential interaction between the timing of applications 
of fertilizer and pesticide. If we would be willing to drop this aspect of the ob- 
jectives, then we could lump plant and soil nutrients into a single state variable. 

Make "Stronger" Assumptions Complexity also enters models in the form of the 
equations and functional relationships. For example, we compared the models of pop- 
ulation growth with and without density effects on reproduction. The former is more 
complex than the latter. There are several approaches for simplifying functional re- 
lationships, and while we will explore the quantitative relationships in more depth in 
Chapters 4 and 5, we can list two possibilities here. 

1. Convertfunctions of state variables into constants. Equation 3.2 hypothesizes 
that effective birth rate decreases with increasing density. If we assume that this 
function does not exist, then we have simply a constant (r)  that describes birth 
rate (Eq. 3.1). 

2. Convert nonlinear relationships into linear relationships. Equation 3.2 is a lin- 
ear relationship between current population density and birth rate. It is not diffi- 
cult to imagine a more complex relationship that is a curvilinear function. Thus, 
Eq. 3.2 is already a relatively simple model. 
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Remove Temporal Complexity Models with temporal variability have a layer of com- 
plexity that can be eliminated as follows. 

1. Convert random models into deterministic models. As discussed briefly in Chap- 
ter 1 and in more detail in Chapter 10, random effects on dynamics can be 
achieved by allowing parameters to vary randomly in time. These types of mod- 
els have more parameters than their deterministic counterparts and can produce 
significantly more complicated dynamics that require greater effort to analyze 
and understand. Removing randomness simplifies the model. 

2. Convert driving variables to constants. Driving variables or other time-varying 
perturbations are another means of allowing parameters and processes to vary in 
time, due to causes not modeled by internal system dynamics. Removing these 
variables will simplify the model by reducing the number of parameters and 
amount of data used as well as simplifying dynamics. The simple population 
models we have discussed so far have no driving variables. 

Remove Spatial Complexity As with time, removing spatial complexity is an impor- 
tant simplification tool. The usual method is to convert a model that explicitly models 
spatial events to one that ignores spatial differences. In Fig. 3.8, we made this simpli- 
fication initially, because we did not attempt to model spatial differences within our 
alfalfa field. If we had incorporated spatial effects, then (in one possibility) we would 
have had additional state variables. This would require, essentially, duplicating the 
four state variables shown for each of the spatial areas we wished to discriminate. For 
example, we might distinguish the effects of pesticides and fertilizers on the border of 
the field from those in the interior of the field. If so, then we would need state vari- 
ables for Pests-Inside, Pests-Border, Field-Crop-Inside, Field-Crop-Border, and so 
on. Adding space to a model usually greatly increases its complexity, so assuming 
spatial homogeneity is a simplifying assumption. 

3.8 Other Modeling Problems 

In Chapter 1, we introduced four broad classes of models: compartment, transport, 
particle, and finite state. Forrester diagrams were designed for and are especially use- 
ful in describing compartment models. This modeling approach is an extremely pow- 
erful and general framework that has many applications in biology, from ecosystems 
to enzyme kinetics. It is most useful when the system can be decomposed into flows 
of material or energy among a finite, but possibly large, number of discrete "pools" 
or compartments. It can also be used when we are interested in quantities that su- 
perficially do not "flow," for example, blood or water pressure in animal and plant 
physiological systems. By linking many compartments together in complicated ways, 
compartment models can address complex interconnection networks (e.g., foodwebs 
of many species, or cellular enzyme networks). Compartment models can also incor- 
porate elaborate control relationships between variables (e.g., the relationship between 
fertilization schedules and profit). Nevertheless, the remaining three model classes are 
conceptualizations of systems for which this approach is not optimal or useful. 
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Figure 3.12: (a) Flow between imaginary compartments in a continuous one-dimensional 
system. (b) Discrete grid system used in two-dimensional transport models. (b) A close-up 
of five grid points showing the similarity to compartment models. 

3.8.1 Transport Models 

Of the remaining three classes of models, transport models are closest to compartment 
models. In transport models, we have a substance [energy (heat) or a quantity of mat- 
ter] that flows from spatial point to point. A simple example is the flow of a pollutant 
along a stretch of river after it is emitted from a point source (e.g., a sewage outfall). A 
central concept shared with compartment models is a quantity that flows, but a major 
difference is that there is no clear concept of a finite number of compartments in which 
the substance resides. Instead, there are, in the continuous formulation, infinitely many 
points along the river at which some quantity of the substance exists. When we model 
spatial flows across space in this way, we are using an Eulerian frame of reference: 
the origin of the spatial coordinate system is fixed and the substance moves over this 
coordinate system. 

There are many forces that could influence the flow of the pollutant, but the fol- 
lowing simplified view uses two that will illustrate the qualitative model formulation. 
Advection moves the substance with a physical flow of water from point to point (river 
flow). Diffusion moves a substance in any direction according to the concentration of 
the substance around each point. Consider an infinitely short segment of the river 
along its x direction (Ax 4 0). Figure 3.12a illustrates water and pollutant flows be- 
tween these infinitely thin segments of river. Since we have rate functions dependent 
on two variables (space and time), we use partial differential equations based on partial 
derivatives. For functions of two or more variables [e.g., f (x, t), where x is a spatial 
dimension and t is time], d f /dt is the partial derivative off with respect to t when the 
spatial variable is held constant. Similarly, 8 f /dx is the derivative of f  with respect 
to x when t is fixed. Using this notation, we can write a conceptual rate equation for 
each segment as: 

Diffusion Diffusion 
dt 

( Pollutant ) - ( Pollutant ) 
Creation Destruction ' 
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where p(x, t) represents the concentration of the pollutant in the water at a point x in 
space and t in time. Because of the continuous nature of space in this conceptualiza- 
tion, compartment models do not do well here. [There may, of course, be compart- 
ments within the river (e.g., fish tissue) wherein the pollutant is stored which we may 
wish to model and for which compartment submodels will be appropriate.] 

However, it happens that many of these models require numerical computations to 
obtain a solution. This typically requires that we discretize space by imagining it com- 
posed of many very closely spaced grid points at which we have obtained a numerical 
solution and know the pollutant concentration. Figure 3.12b illustrates this for a two- 
dimensional transport model where we assume the advective flow is unidirectional 
from left to right and diffusive flow can occur in both directions. 

By discretizing space, we have introduced the element that previously distinguished 
the transport model from the compartment model: a finite number of storage com- 
partments. Figure 3 . 1 2 ~  shows a simplified Forrester diagram that illustrates how a 
compartment model framework could describe the system at one grid point. However, 
even though we can, after spatial discretization, force the system into the compartment 
model mode, this does not mean that a Forrester diagram is a felicitous description of 
the modeled system. It illustrates the forces and processes at a point, but it would be 
foolish to attempt to represent the spatial scale of Fig. 3.12b with a series of drawings 
like Fig. 3 .12~ iterated at each grid point. Since all discrete points are identical, no 
new information about the structure of the model is revealed by Forrester diagrams at 
different points. 

A second kind of transport model uses a much coarser spatial resolution than that 
implied by the discretized continuous system above. In ecosystem models, we are of- 
ten interested in flows of energy or material through a complex foodweb. The foodweb 
and other processes affecting dynamics, however, are frequently different in space. 
For example, an ecosystem model of a lake would describe nutrient flow from the 
physical compartments to plants to herbivores and up through several levels of fish 
species. Such a model might describe several species at each of these trophic levels, 
each having complex equations describing nutrient uptake. However, the set of species 
inhabiting the edges of lakes (littoral zone) differs from those in the open water habi- 
tat (pelagic zone), and nutrient inputs from the land obviously will enter the littoral 
zone. A modeling approach to this framework is to divide the lake ecosystem into two 
spatial compartments and to divide each of these into the trophic compartments of the 
biotic part of the system. When such a coarse level of spatial resolution is used, the 
compartment modeling approach is applicable and a Forrester diagram could be used 
by separating each biotic compartment in each spatial compartment. 

In summary, a compartment model paradigm, in general, and the Forrester diagram 
approach, in particular, are not always appropriate. This is particularly true when the 
system is modeled as spatially continuous with small spatial resolution. Nevertheless, 
at least in early model formulation stages, the compartment model concept can be 
useful for transport models. 

3.8.2 Particle Models 

Particle models describe systems in which the variables are physical objects (e.g., bil- 
liard balls, or individual organisms) that change in some way according to dynamic 
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equations. This is called the Lagrangian frame of reference, as opposed to the Eu- 
lerian approach of transport models. In general, there can be any finite number of 
these objects. The objects are characterized as having essential properties that are 
appropriate to the system being modeled and that change according to the dynamic 
equations. Most often, especially in physics, the equations define how objects move 
through space (e.g., planets in a gravitational force field). In this case, the essential 
properties of objects are their physical position in a coordinate systems [e.g., (x, y, z)  
in a three-dimensional Cartesian space]. But biological (and physical) models can 
use a generalization of this framework to include not only spatial position, but other 
essential properties (e.g., physical properties: mass, momentum, velocity; biological 
properties: biomass, water content, hunger level). Recently, considerable interest has 
developed in this class of models in ecology using the name individual-based model- 
ing (Huston et al. 1988; DeAngelis and Gross 1992a) and human population sciences 
using the name micropopulation modeling (Dyke and MacCluer 1973; Ackerman et al. 
1993) or microsimulation (Van der Ploeg et al. 1998). 

Particle-based models that alter physical position do not fit the compartment model 
paradigm well, although it is possible. Figure 3.13 shows the physical system and a 
Forrester diagram for a single prey individual and a single predator individual moving 
in a 2D space that possesses a refuge for the prey. The state of the prey and predator 
is defined by their position in space [i.e., their (x, y) coordinates]. It is meaningless 
to speak of a substance flowing into or out of the "x" or "y" "levels" of the prey or 
predator, so here the arrow pointing into the position level indicates a small increase 
in the position (e.g., Ax > 0) and an arrow pointing to the cloud indicates a small 
decrease in the position (e.g., Ax < 0). 

In addition to the artificiality of interpreting position change as a "flow," the com- 
partment model paradigm fails for the same reasons as the discretized transport model. 
Qpically, particle models simulate hundreds or thousands of objects. For complete ac- 
curacy, the diagram should be iterated for each of these objects just as it should have 
been iterated at each spatial point in the discrete transport model. This would add little 
new information and, in the case of Fig. 3.13, would require a huge number of dotted 
information transfer lines to indicate the effects of distances between many individu- 
als. So, as with the transport model, Forrester diagrams can be useful for initial model 
formulation and detailing a subset of the objects and interactions. But it is not useful 
to describe all of the objects this way. 

3.8.3 Finite State Models 

Of the four classes of models, finite state models are the furthest from compartment 
models. As described in Chapter 1, finite state models have no explicit representation 
of a quantity that flows among pools. In the formulation of the model, we articulate the 
important states a priori and these are the only possibilities allowed. A useful qual- 
itative tool is the state transition graph, which serves a role analogous to that of the 
Forrester diagram of a compartment model. Each node represents a state and an arrow 
between nodes represents possible alteration of the system from the state at the end 
of the arrow to the state at its terminus. Simple finite state models (e.g., Markov pro- 
cesses) are stochastic where the arrow is the probability of transition from one state 
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Figure 3.13: Diagram of physical system and Forrester diagram for a particle movement 
model showing a single predator chasing a prey. The Forrester diagram attempts to repre- 
sent change in position (Ax, Ay) as a flow to a sink (decrease Ax) or to a level (increase 
Ax). 

to another; only the current state and the probabilities can affect the outcome. Fig- 
ure 3.14 shows the transition graph and one stochastic realization for the finite state 
weather model (Chapter 1). Weather can take one of three states: Good, Intermediate, 
and Bad. A simulation of weather using the transitions probabilities shown on the ar- 
rows (Fig. 3.14a) produces a sequence of the three states (Fig. 3.14b). More complex 
models are possible where, for example, the state of previous time steps can affect 
the transition probabilities, or other events and conditions in the system can affect the 
probabilities. These models can be written as finite difference equations with appro- 
priate discretization of the states. Similarly, the model can also be represented as a 
Forrester diagram (Fig. 3.14c), but it is a clumsy approximation of the transition graph 
and the implied flow does not correspond to a physical flow. 

3.9 Exercises 

1. Discuss the relation between Levins' concept of model structure based on gener- 
ality, precision, and realism and each of the strategies for model simplification. 
Which strategies generate which type of model structure? 
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Figure 3.14: A finite state weather model represented as  a state transition graph (a), 
where the numbers represent the probabilities of the transitions denoted by arrows. (b) One 
stochastic realization of the graph showing the resulting dynamics of states. (c) A Forrester 
diagram of the model. 

2. Draw a Forrester Diagram for the following physical situation. A regularly 
shaped container (e.g., a cylinder with radius b) is filled with water and has 
a hole of radius r at the bottom. The rate of a fluid flowing out of an opening 
can be modeled by Torricelli's LAW. This relationship states that the velocity 
(v) of the fluid at the opening is proportional to the square root of the pressure 
head, or the height of the water column above the opening: v = a. The 
volumetric flow rate depends on the fluid velocity and the area of the opening. 

The Forrester diagram should represent a model that describes the dynamics 
of water volume in the container from its initial volume to empty. The container 
has three separate inputs and two holes. Assume that for one of the inputs, as 
the amount of water in the bucket increases, the rate of input decreases. The 
other two input rates are independent of the bucket water level, but vary in time 
as a sine function. The exit holes are both at the same height above the bottom 
of the bucket. Use an auxiliary variable called "Torricelli's Law" to influence 
flow rates. 

3. Assume a substance enters and exits the cell only by passive diffusion. The rate 
at which passive diffusion transports a substance across a membrane is directly 
proportional to the difference between the external and internal concentrations. 
Draw the Forrester diagram for a model in which the ambient concentration is a 
constant using one state variable, one auxiliary variable, and one rate equation. 

4. Consider a substance ("A", units: moles of A) that diffuses as above but also is 
transformed into another substance ("B", units: moils of B). The rate of trans- 
formation depends on both the quantities of A and B. Both A and B leave the 
cell by passive diffusion. Draw a Forrester diagram. 

5. Simplify the model represented in Fig. 3.8 to contain two state variables. 

6. Elaborate the model in Fig. 3.8 to include the use of a biological control agent to 
reduce insect pests on alfalfa. Assume the control agent is a wasp that lays eggs 
on pest larvae. Re-draw only that part of Fig. 3.8 needed to show your changes. 
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7. The classical Lotka-Volterra predator-prey model is: 

Prey: Vt+1 = Vt + rVt -aVtPt 

Predator: Pt+1 = Pt + abVtPt - dPt 

Assuming the units are a conserved quantity (e.g., g C), draw the Forrester dia- 
gram. The parameters are defined as: r = prey per capita rate of increase, a = 
rate of consumption of prey by predator, b = conversion of prey consumed to 
new predators, and d = predator death rate. 

8. Draw a Forrester diagram of a model that describes the dynamics of the vertical 
position of an aquatic algae cell over the course of a 24 hour period using a time 
step of one minute based on the following description of flotation in prokaryotic 
aquatic plankton. 

Blue-green algae use gas vacuoles to manipulate their position in the water 
column. A single gas vacuole consists of closely packed cylinders each of which 
is enclosed in a pseudo-membrane of pure protein. The vacuoles are continually 
produced at a relatively constant rate. The vacuoles collapse when their external 
pressure exceeds a critical threshold. Their gaseous contents are in equilibrium 
with the surrounding water. The position of the algal cell is regulated by the 
number of vacuoles. At high light intensities, cytoplasmic turgor pressure (ex- 
ternal to vacuoles) increases beyond the critical threshold for vacuole collapse. 
This both increases the density of the cell medium and causes the cell to sink. 
Turgor pressure increases because the light stimulates the uptake of K+ ions 
and by-products of photosynthesis (e.g., sugars). At low light levels, the turgor 
pressure is reduced, the gas vacuoles increase in number, and the cell is more 
buoyant. 

9. Draw a Forrester diagram for the dynamics of blood glucose concentration 
based on the following simple description of the mammalian blood sugar reg- 
ulation system. The time step of interest is one minute and the duration is 24 
hours. 

Ingestion of glucose at irregular times during the day raises stomach levels 
of glucose, which in turn raises blood glucose levels. This causes P cells in 
the pancreas (attached to the small intestine) to secrete insulin, which increases 
the rate of transport of glucose into the interior of cells. There, glucose is ei- 
ther used as a source of respiratory energy or is stored. In liver cells, glucose 
is stored as glycogen, which is a form that can be easily released to the blood- 
stream if blood glucose levels fall below a threshold. The liver acts as buffer 
to maintain blood glucose levels within acceptable limits between bouts of in- 
gestion. When blood sugar concentration falls below the proper level, a cells 
in the islets of Langerhans (also in the pancreas) are stimulated to increase the 
production rate of glucagon. When glucagon arrives at the liver, it increases the 
rate of conversion of glycogen to glucose, which is then released to the blood. 

10. Draw a Forrester diagram for the regulation of ca2+ ion concentration in hu- 
man blood. The concentration of blood calcium ions (ca2+) is essential for 
the proper functioning of signal propagation in nerves and muscle contrac- 
tions. Inappropriate levels of ca2+ (too high or too low) rapidly results in 



56 Chapter 3 Qualitative Model Formulation 

death. Consequently, blood ca2+ concentrations are regulated within narrow 
limits (9 - 1 Img ~ a ~ + / 1 0 0 m l  blood). The mechanism is as follows. 

The rate of production of calcitonin in the thyroid gland (located in the neck 
region) increases as blood ca2+ increases above the mentioned normal operating 
limit. A high concentration of calcitonin increases the rate of Ca2+ deposition in 
bones. On the other hand, low levels of blood ca2+ cause the rate of production 
of parathyroid hormone (PTH) in the parathyroid glands (located adjacent to 
the thyroid gland) to increase. PTH affects two different processes that increase 
ca2+: blood reabsorption from the kidneys and the stimulation of osteoclast 
cells in bones to decompose the bone matrix (releasing ca2+ into the blood). 

Your diagram should represent the dynamics of Ca2+ concentration as it is 
maintained in homeostasis as described above and use three state variables. 

11. In the SW deserts of North America, ants, birds, small mammals, and plants 
interact to create a complex foodweb. The primary interactions are as follows. 
Ants and small mammals compete for seeds produced by two kinds of plants: 
small-seeded and large-seeded plants. Within limits, both granivores can con- 
sume both sizes of seeds, but, understandably, ants favor small seeds and mam- 
mals prefer large seeds. Consumption of seeds reduces the population growth 
rates of the plants. Birds also consume large seeds, but are more effective at 
times when the amount of bare ground is high (or, the amount of plants is low). 
Neither birds nor small mammals eat ants. The two types of plants compete for 
space. 

Draw a Forrester diagram for the population dynamics of these five groups 
for a model that simulates a period of 20 years at one-month intervals. Assume 
that both plant types produce seeds in the fall, but that there is a seed pool 
available to granivores during other months. 

12. Draw a Forrester diagram of carbon and water dynamics in a tree over a four 
month growing season, when the time step is one hour. The geographical setting 
is in the mid-latitudes, so that basic atmospheric conditions (e.g., photoperiod, 
light intensity, precipitation) change significantly during the growing season.. 
The basic relationships are as follows. 

In the roots, water and oxygen are taken-up, sugars manufactured in the 
leaves are used for cellular respiration, and C02 is released as a by-product. 
Water is transported upwards to leaves within the xylem where it increases the 
rate of uptake of atmospheric C02 (via stomata). C02, H20, and light combine 
to produce, among other essential molecules, sugars that are used in the leaves 
and transported downward within the phloem for use by the roots. When water 
level in the leaves decreases to a low level, the stomata close to reduce water 
loss (transpiration), little C02 enters the leaves and photosynthesis and the rate 
of sugar production decreases. When leaf water level is high, the water loss 
rate is high, but the rate of C02 entering the leaves is also high, consequently 
increasing photosynthesis rate. 

13. Draw a Forrester diagram for the dynamics of the Sahel Desert (Roberts et al. 
1994). The Sahel is a region of north Africa at about 15"N latitude which his- 
torically was a scrub ecosystem, but in recent years has become desertified. 
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The predominant social system was nomadic, but is becoming more agricultural 
due droughts. As humans congregated in agricultural communities, they cut 
existing vegetation for crops and firewood. This increased wind erosion and ex- 
acerbated desertification. To improve conditions, various world agencies have 
introduced medicine, animal vaccinations, and wells for human and livestock 
drinking water. As a result, cattle and human numbers increased, further reduc- 
ing vegetation and accelerating desertification. Eventually, cattle and human 
mortality increased. In your diagram, include an auxiliary variable for human 
"Quality of Life." Describe how you will quantify quality of life. Choose your 
state variables so that the model will produce values of quality of life over time. 

14. You wish to model the effect of alcohol consumption on the internal processes 
of temperature regulation in humans. Use the description of temperature reg- 
ulation in homeotherms contained in an introductory biology textbook to draw 
a Forrester diagram showing the dynamics of body temperature, blood vessel 
diameter, and skin moisture (sweating) and their interaction to maintain body 
temperature. The model should describe the processes over a 24 hour period 
(1 minute time steps), and incorporate time varying alcohol consumption as it 
influences the different components of thermal regulation. 

15. Consider the following description of Operation Cat Drop, quoted from Hawken 
et al. (1999): 

[In Borneo, in the 1950s, mlany Dayak villagers had malaria, and the World 
Health Organization had a solution that was simple and direct. Spraying 
DDT seemed to work: mosquitoes died, and malaria declined. But then an 
expanding web of side effects . . .started to appear. The roofs of people's 
houses began to collapse, because the DDT had killed tiny parasitic wasps 
that had previously controlled thatch-eating caterpillars. The colonial gov- 
ernment issued sheet-metal replacement roofs, but people could not sleep 
when tropical rains turned the tin roofs into drums. Meanwhile, the DDT- 
poisoned bugs were being eaten by geckoes, which were eaten by cats. The 
DDT invisibly built up in the food chain and began to kill the cats. Without 
the cats, the rats multiplied. The World Health Organization, threatened by 
potential outbreaks of typhus and sylvatic plague, which it had itselfcreated, 
was obliged to parachute fourteen thousand live cats into Borneo. Thus oc- 
curred Operation Cat Drop, one of the odder missions of the British Royal 
Air Force. 

Draw a Forrester diagram of this system. Include as state variables the biomass 
of the main ecological components (e.g., malaria, mosquitoes, wasps, geckoes, 
cats, etc) and levels of DDT; use driving variables for WHO interventions; and 
an auxiliary variable representing Dayakan Happiness. 
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Quantitative Model Formulation: I 

4.1 From Qualitative to Quantitative 

0 NE WAY TO understand a complex, mathematical model is to stare at it until it is 
obvious. This advice can be less than helpful if you do not know what you are 

looking for. The approach we follow here exploits the fact that biological models are 
composed of a relatively few, recurring algebraic constructs. Once these patterns are 
assimilated, building and reading models becomes a matter of knowing when to use 
the appropriate component. 

We cannot begin, however, until we have a qualitative model for a system that 
specifies the objects; their basic, qualitative interrelationships; and the underlying hy- 
potheses. The next step is to translate these ideas into mathematical equations. One of 
the major strengths of Forrester diagrams is the relative ease with which the equations 
can be generated from the diagram. We can now state a few elements of the method 
to introduce the material that follows. 

The boxes of Forrester diagrams represent the objects of interest: the variables 
whose dynamic quantities we wish to determine over time. For each of these, we must 
supply a state (dynamic) equation that relates the value of the variable at the next point 
in the future with the current value and all of the inputs to and outputs from the vari- 
able's box. Inputs represent absolute rates of gain, and outputs represent absolute rates 
of loss. Each of the rates are, in general, calculated by complex, nonlinear equations 
that combine the flow relations and control relations among system components. The 
rate equations will therefore involve the parameters, auxiliary equations, and driving 
variables as specified by the Forrester diagram. Summing all of the rate equations 
for a given state variable yields the net rate of change for that variable at the current 
point in time. After incrementing time, this calculation is repeated using the state 
variable values from the previous iteration until the necessary number of solutions is 
obtained. In the remainder of this chapter, we will provide some general rules for the 
specification of the rate equations. While I will use specific examples to illustrate the 
general principles, the equations will vary among disciplines (e.g., enzyme kinetics vs 
ecosystem dynamics). Additional examples are contained in Part 11: Applications. 
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Figure 4.1 : Forrester diagram for density-independent population growth. 

4.2 Finite Difference Equations and Differential Equations 

4.2.1 Finite Difference Equations 

Previously, we have used what I called Jinite difference equations or recursive Jinite 
difference equations. These have the general form: 

The function f () can be arbitrarily complicated, incorporating nonlinear equations 
(e.g., state variables raised to powers), and positive and negative terms. For some f (), 
we can isolate Nt as a separate element on the right-hand side: 

Nt+, = Nt + f (state variables, parameters, t). (4.2) 

Other f() have nonlinear terms that prevent us from writing Eq. 4.1 as 4.2. For a 
special form of f () in Eq. 4.2, the equation can be simplified and solved analytically, 
without computer simulation. We do this now to illustrate why these equations are 
termed "recursive." 

Suppose f () = rN, which is the classical ecological model for density-independent 
population growth. This has the Forrester diagram shown in Fig. 4.1 and the following 
difference equation: 

Nt+l = Nt + rNt. (4.3) 

Notice that the figure and the equation match up in a nice way. The label in the box 
is the state variable that is being projected in time. The parameter r and variable Nt 
both influence the total rate of change (Eq. 4.3, second term on right-hand side), as 
indicated by the information flows in the Forrester diagram. The only item missing 
from the equation is the cloud, but this is precisely what the cloud means: a source or 
sink that is not modeled. 

This equation projects one discrete time step into the future. For additional times, 
we repeat the process by substituting the left-hand side into the appropriate locations 
in the right-hand side. 

This procedure is a solution to our problem to determine the future values of N. 
It is possible, however, to also solve the basic equation (Eq. 4.3) analytically, without 
having to compute intermediate times, by exploiting the recursive nature of the equa- 
tions. By repeatedly (i.e., recursively) substituting previously computed values of Ni-l 
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we have: 

The terminus of the sequence in Eq. 4.4 is the classical analytical solution to the 
density-independent growth model in discrete time. Not all recursive equations of 
the general form of Eq. 4.2 can be reduced to the form of Eq. 4.3. Moreover, many 
of the equations used in population ecology do not have analytical solutions; so, this 
technique is not generally useful. For other analytical solution techniques, see a math- 
ematics text in difference equations such as Grossman and Turner (1974). 

When we use difference equations, we must be clear as to the assumptions we are 
making about the underlying biology. Recursive finite difference equations assume 
time is discrete. Indeed, time, in one sense, does not appear in the equations. We have 
only an arbitrary index which here we have symbolized by t and interpreted as time. 
This implies that no events or processes occur between increments of time. Although 
it is true that we can interpret these time steps to be physical time units as small as 
we wish (e.g., year, day, second, etc.), the conceptualization is still one of discrete 
increments. Many biological systems match this situation to a satisfactory degree. An 
example is the life cycle of an insect that breeds synchronously in the fall, after which 
all adults die, and the eggs or larvae overwinter to become adults in the spring. Birth 
and death in this case defines the discrete nature of time. Other systems cannot easily 
be represented this way, for example, the continuous, unsynchronized reproduction of 
humans. 

In short, when we use finite difference equations we are asserting that time and 
biological processes are discontinuous and that the equations are exact representations. 
In the next section, we discuss the case when time is assumed to be continuous, but 
we discretize time with small time steps to approximate the true situation. 

4.2.2 Differential Equations 

Differential equations are the continuous time version of finite difference equations 
written in the form of Eq. 4.2. They have analogous analytical solutions, and as we 
will see later by discretizing time, their true solutions can be approximated to arbitrary 
exactness with numerical (computer) methods. But first we will review a bit of basic 
calculus to better see that the use and solution of differential equations is not a large 
step beyond the mathematics we may have learned earlier in our careers (or so the 
author fervently hopes). 

Aside on Derivatives and Integrals 

Consider a function such as y = x2 + C ,  shown as one of the curves in Fig. 4.2a. The 
derivative of the function at a point x* is related to the slope at x*. "Slope" has the 
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Figure 4.2: (a) The parabola y = x2 + C, where C is an arbitrary constant. (b) The 
derivative of y = x2 + C, dyldx = 2x (solid line) and a discretization of the derivative. 

usual meaning: "change in y (Ay) divided by change in x (Ax)." Of course, we can 
numerically compute the slope only for finite values of Ay and Ax. Technically, if 
we want the slope at a point x*, then there is no interval over x or y to use. But we 
recognize that if we take very small intervals around x* and the corresponding y*, then 
we will have a good approximation to the slope. The smaller the interval, the better 
the estimate of the slope, and if the intervals decrease to zero, the slope estimates will 
converge to the derivative at the point. The derivative of a function y with respect to a 
single variable x is 

d~ YX+AX - Yx - = lim 
dx Ax+O AX ' 

where ii% means "let Ax go to 0" or ''let the interval around x* get arbitrarily small." 
Figure 4.2a shows that the numerical value of the slope is different at different 

values of x*. The derivative of a function tells us how the slope changes with different 
values of the independent variable. In this case, the derivative of y = x2 + C is 

This is plotted as the heavy line in Fig. 4.2b. Remember from elementary calculus that 
the original function y = x2 + C is the anti-derivative (the integral) of the derivative. 
For the purposes of the discussion to follow, we will describe two general approaches 
to obtaining the integral. 

The first method treats the integral as a summation: the total area under the deriva- 
tive curve (Fig. 4.2b) from 0 to 8 (in this case). We approximate the area using discrete 
increments of the x-axis (Ax = 1). From Fig. 4.2b, note that the total area of the dis- 
cretized curve is the sum of the columns. Note also that, by definition, the height of 
each column is dyldx. This fact gives us a simple recursive formula for summing the 
columns if they are indexed from left to right. Column i + Ax is the sum of column i 
plus the derivative times the size of Ax: 

derivative 

If we begin with i = 0 and yo = 0, then recursively applying Eq. 4.6 N times (using 
xo = 0, xl = 1, etc.) will yield the sum of N columns. The expression 2xi is the 
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derivative whose integral we desire at point xi. The formula will work for any deriva- 
tive, if we substitute the appropriate equation for the derivative. The accuracy of the 
approximation increases as Ax decreases. 

The second method to calculate the integral is to simply apply the rules of integra- 
tion that we all memorized in elementary calculus and remember to this day. The sim- 
ple derivatives of elementary calculus have a common property that makes this method 
easy to use. The derivatives have a right-hand side that does not involve the dependent 
variable. The parabola and its derivative is an example. Consequently, when we apply 
the rules of integration we are applying a technique known as separation of variables. 
Below, we apply it to the derivative of the parabola. 

dy - = 2x 
dx 
dy = 2xdx t separate variables 

s d y  = S 2 . d ~  

S dy = y + CI t integrate left side 

S 2xdx = x2 + C2. t integrate right side 

Equating these integrals gives 
y = 2 + c .  

The final step is to determine C for a particular value of x, which is most conveniently 
done at x = 0. In this case, as Fig. 4.2a indicates, C can be any value. 

This problem is trivial because the integral of the separated left-hand side does not 
involve the dependent variable. Most differential equations applied to biology relax 
this restriction, and their solutions are more difficult. 

Integrating ODEs 

An ordinary differential equation (ODE) is any equation involving a derivative of a 
dependent variable with respect to its independent variable. We are interested in the 
special case when the independent variable (x, in the above), is time. Unlike the easy 
derivatives in the previous section, the equation can contain the dependent variable 
explicitly. The previous section discussed a special case of differential equations. It 
is significant that ODEs allow the derivative to depend on the value of the dependent 
variable. This is fundamental to almost all physical and biological systems. 

To connect the previous discussion with differential equations of interest to biol- 
ogists, consider the continuous form of the familiar density-independent population 
model in ecology: 

The independent variable (t) is time and we interpret the derivative as being a rate 
of change. In its basic form, this is similar to the derivative of the parabola: it has 
a derivative on the left-hand side and a function on the right-hand side. Unlike the 
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earlier derivative, this function depends on the dependent variable ( N )  and not on the 
independent variable. The integral of dyldx = 2x gave us the parabola y = x2 + C. 
This latter equation has a property important to us now: given any value of x, we can 
compute the value of y. In the current case, if we could find the integral of Eq. 4.7, 
then given any t ,  we could compute the value of N. In other words, if we have the 
integral, we can predict future values. 

There are here, as before, two general strategies for finding the integral: apply the 
rules of integration, or approximate the area under a curve by summing. To show that 
this differential equation is a simple extension of the calculus we have already learned, 
we will employ both strategies. We begin with the use of integration rules. 

Earlier, we separated the independent and dependent variables and integrated each 
part separately. In this simple differential equation, we can do the same. 

dN - -  
N 

- rdt t separate variables 

t integrate left side 

rdt = r dt = rt + C2 S S t integrate right side 

After setting t = 0, we interpret the constant eC3 to be the initial number of individuals 
in the population (No). The last equation in the above series is the solution of the 
differential equation. 

Not all differential equations have the simple structure that allows their variables 
to be separated in this way. Some of these others can be solved with substitutions or 
other tricks. But if none of the tricks work, then we must use the summation technique 
to get the integral. It works the same as in the previous derivative, except we discretize 
t instead of x. This gives 

N t + ~ t  5 Nt + (rNt) At. * (4.8) 
derivative 

This equation is clearly similar to a FDE except that we have At equal to some 
number other than 1. Beyond this, however, is the fact that Eq. 4.8 is viewed to be an 
approximation to the true integral and the FDE was viewed to be an exact representa- 
tion. The general form of Eq. 4.8 is known as the Euler approximation. 

4.3 Biological Feedback in Quantitative Models 

The previous section demonstrated that (a) the solutions of differential equations are 
not fundamentally different from the integrals of derivatives as we learned them in 
elementary calculus, and (b) the form of the numerical solutions can be similar to 
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the discrete, finite difference equations we used to solve dynamic problems (e.g., is- 
land biogeography). In the future, we will stress the use of differential equations to 
represent biological models. 

One of the main points to be made in this book is that the differential equations 
used in the various subdisciplines of biology are similar. The models are composed 
of algebraic components [e.g., ( rN)]  that recur in many different fields, sometimes 
in slightly different guises, but still representing fundamentally similar processes. In 
this section, we describe some mathematical formulations that occur frequently in 
biological models. Before proceeding, we will need a few basic rules pertaining to 
translating Forrester diagrams to equations. [See Section 5.2 for a more complete 
list.] The first rule is that every level in a Forrester diagram is a state variable that 
requires a differential (or difference) equation. The left-hand side of the differential 
equation represents the rates of change as they are altered by the objects of the system. 
The right-hand side describes how these changes occur. The second rule is that, at 
a minimum, every material flow into and out of a state variable requires an explicit 
algebraic expression. The sum of these expressions associated with the inflow and 
outflow arrows is the right-hand side of the differential equation. Grouping all the 
inflows together and all the outflows together, a general differential equation for a 
single state variable is 

dx 
- = C inflows - C outflows. 
dt 

Although the expressions for the inflow and the outflow can be quite complex, take 
heart in the fact that they will all reduce to the above simple form. Therefore, our 
problem in quantitative model formulation is "simply" to find the appropriate set of 
expressions for the inflows and the outflows. 

The third rule is that although biological systems are complex, many of them share 
a few basic processes that have similar mathematical expressions. When viewed across 
the many relevant hierarchical levels (biochemical, cellular, physiological, ecological), 
the diversity of living systems is, indeed, immense. It would seem there would be 
little similarity in the mathematical representations used by the different disciplines to 
model the variables and processes specific to their domains. This is true to a certain 
extent, but, nevertheless, there are recurrent mathematical forms that appear in many 
systems. In this section, we discuss these general forms both for their own value in all 
biological modeling as well as to illustrate the basic method of creating quantitative 
models. In later chapters, we discuss specific models and concepts and equations 
germane to different subdisciplines of biology. 

The approach we take here is a tool-kit approach to model construction. We will 
identify a relatively small set of biological processes and their mathematical represen- 
tations (the tools) and link these together according to the biological hypotheses to 
form the complete model. In the sections that follow, we present some of these ba- 
sic processes and their corresponding mathematical implementation. The description 
proceeds from simple to more complex biological processes and relations. 
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Figure 4.3: Constant rate of flow into a state variable. 

4.3.1 Constant and Bulk Flow Rates 

The simplest process of interest occurs when there is only material flow and no infor- 
mation transfer between a state variable and the inflow or outflow rates. The rate is, 
therefore, constant and determined by a parameter. An example of this type of flow is 
shown in Fig. 4.3, which illustrates the Forrester diagram, the differential equation, the 
relation of the rates to the affected state variable, and the resulting dynamics. The plot 
of the rates against the quantity of S is interesting for its contrast to later examples that 
illustrate feedback. For now, simply note that the hypothesis that the absolute rates are 
constant implies that the dynamic values of the state variable can have no effect on the 
rates. 

The hypothesis that flows are independent of state variables can be extended to 
multiple compartments (Fig. 4.4). The model, in this case, is a system of three differ- 
ential equations: 

Notice the pattern of the arrows and the right-hand side of each equation. Also note 
that for flows between two compartments, an inflow arrow to one compartment (e.g., 
F32 into S2) is an outflow arrow from another compartment (e.g., S3). This relation- 
ship is reflected in the signs attached to the flows in Eq. 4.9. Finally, it should be 
obvious that, since each Fij is a constant number, we could collapse the equations so 
that the right-hand side of each is a single number. These numbers will be positive or 
negative depending on the relative magnitudes of the Fij. This simple model is fre- 
quently used in models of large complex systems (e.g., whole, terrestrial ecosystems) 
where it is difficult to perform experiments that reveal the internal system controls 
that influence the flows. There are very few dynamical systems that satisfy the basic 
assumption that rates are constant. 
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Figure 4.4: Modified Forrester diagram for constant rates of flow among three state vari- 
ables. 

4.3.2 Dynamic Relative Rates 

A more common model is one in which it is hypothesized that the rates are influenced 
by one or more state variables. A fragment of such a model is shown in Fig. 4.5, 
where A is the effect of S  1 on the rate and B is the effect of S 2 .  A and B can be simple 
or complicated algebraic expressions, but a common method of incorporating these 
effects into the differential equation is to multiply the auxiliary variable by the current 
quantity of the state variable. For example, several different possibilities might be 

The quantities A and B are relative or per capita rates. They are the contribution of 
one unit of the state variable to the flow. When multiplied by the current quantity of 
the state variable, we compute the absolute rate for that particular flow. 

An example of this is the island biogeography model of Chapter 1. The differential 
equation version of Eq. 1.1 is: 

where in this very simple example A is (Ix + Ex) /P .  
This concept of relative or per capita rates is extremely important in biological 

modeling. Very often our experiments or field observations are performed at a lower 

Figure 4.5: Simple information transfer illustrating the influences of state variables on 
rates. 
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level or smaller scale than the system we wish to model. For example, experiments 
using populations are difficult, but those using individuals are often much easier. Using 
per capita rates, parameters estimated on individuals can be scaled to the population 
if we assume all individuals are identical. Similarly, experiments at very large spatial 
scales are difficult, but estimating parameters for use in relative rates again allows us 
to scale up, if we assume all spatial regions are identical. This assumption and that of 
identical individuals may be wrong, but it is a useful first step to take. 

When influence B is absent (in Fig. 4.5 and Eq. 4.10), we say the flow is donor 
controlled, since the "donating" variable (S 1) determines the rate. When A is absent 
(Eq. 4.1 I), the flow is recipient controlled. This jargon is not particularly enlightening 
since it is common for flow rates to be determined by both donor and recipient vari- 
ables (Eq. 4.12). The key point, however, is that an extremely common mathematical 
form is the multiplication of the controlling variable (Si) by the auxiliary variable that 
represents the mechanism by which the control occurs. This mechanism is frequently 
cast as a relative rate (Eq. 4.7). You will have come a long way when you are able to 
perceive this form in unfamiliar models. 

4.3.3 Feedback 

Feedback is pervasive in biological systems and is one of the fundamental processes 
that is contained in almost all interesting models. It refers to the relationship in which 
increases or decreases of the value of one or more controlling variables affect the 
rate at which a process occurs. The action on the rate can be direct or indirect and 
either positive or negative. The action is direct when only the single variable affected 
is involved. The value of the state variable influences its own rate of change. If the 
mechanism affecting the state variable involves other state variables, then the feedback 
is indirect. Positive and negative feedback are endpoints on a continuum of dynamical 
relationships. The degree to which a feedback relation is positive or negative depends 
on the function and parameters. Any given relation can be either strongly or weakly 
negative or positive. The balance between the two produces the possibility of sustained 
oscillations (i.e., dynamics that neither blow up nor return to an equilibrium). 

The qualitative nature of these relationships is revealed by loop analysis (Levins 
1974). Some very simple examples are shown in Fig. 4.6. The "+" or "-" symbols at- 
tached to the arrows indicate the direction of the effect on the future values of the state 
variable (i.e., positive or negative, respectively). The basic test of feedback direction 
on a state variable (e.g., A) is to determine whether A, if it is increased in quantity, 
will decrease or increase as determined by following the effects around a loop. For 
example, the upper left indirect loop in Fig. 4.6 is negative because an increase in A 
will increase B which will then decrease A. 

Positive Feedback 

The simplest form of positive feedback is direct, and occurs when the absolute rate 
of change of a state variable is an unbounded, increasing function of the state vari- 
able. (Recall that absolute rate of change is the rate associated with a flow into or 
out of a state variable.) In other words, the more there is of the state variable, the 
greater the positive rate of change of the state variable. The traditional example of 
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DIRECT 

negative 

+a positive QB 
+ - 

Figure 4.6: Qualitative analysis of direct and indirect effects of system influences produc- 
ing either positive or negative feedback. The sign on each arc represents the effect of the 
influencing variable on the variable that terminates the arc. 

this is unrestricted, or exponential population growth (Eq. 4.7), as shown in Fig. 4.7. 
However, positive feedback can also cause a variable to become more negative. A 
simple example is the spatial position of a frictionless ball that is confined to rolling in 
one dimension down a slope that falls away in the negative x direction. As the object 
moves further in the negative direction, the rate of increase in the negative direction 
increases. The value of the state variable (position along the x-axis) becomes more 
negative. 

Any number of equations can produce this behavior and it can result from both 
direct and indirect causes. The critical feature is that the rate increases without bound. 

Negative Feedback 

Negative feedback is any feedback that is not positive. In other words, the rate of 
the process is bounded for positive values of the controlling variable. The rate of 
change does not increase to infinity as the variable increases. There are three primary 
mathematical methods by which this condition can be implemented: feedback by self- 
inhibition, limitation by extrinsic factors, and process saturation. 

Self-Inhibition When a system shows direct negative feedback based on per capita 
mechanisms, there is a negative relation between the value of the controlling variable 

s Time 

Figure 4.7: Direct positive feedback. (a) Relation of absolute rate of change in a state 
variable to the value of the variable and a differential equation that behaves in this way. (b) 
The resulting dynamics. 
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Figure 4.8: (a) Per capita rate of change in density-dependent model as a function of 
population size. (b) Absolute rate of change in density-dependent model as a function of 
population size. 

and the per capita rate. The variable inhibits its own further growth. The most familiar 
example is density-dependent, logistic population growth. In this model, the relevant 
rates of change are 

where r is the maximum per capita rate of change, and K is the carrying capacity 
of the population. Since this model has a single state variable, N is the controlling 
state variable. Equation 4.15 represents the per capita rate and is shown in Fig. 4.8a. 
Equation 4.14 represents the absolute rate of the process (population growth) and is 
plotted in Fig. 4.8b. These plots show that negative relations between per capita rates 
of change and the variable N, produce bounded rates of increase. 

Ratios As the previous discussion suggested, negative feedback via self-inhibition 
can be achieved using an expression that is additive in the sense that the equation has 
the form: 

In other words, we subtract a rate amount from dyldt. This expression has the desired 
effect of decreasing dyldt as y increases. Another formulation of the same verbal 
hypothesis is multiplicative, where dyldt depends on the inverse of y: 

This expression also satisfies the hypothesis that the rate decreases as y increases, 
but care must be exercised since the feedback effect is reversed when y < 1.0. This 
reversal becomes positively diabolical as y + 0 and dyldt -t oo. A safer formulation 
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is: 

which limits dyldt to b as y --t 0. 

Extrinsic An extrinsic factor may limit a process. Consider a beaker of cold water 
that is warming up to ambient temperature. We note the following facts: 

1. The water temperature is initially below ambient and does not surpass it. 
2. The rate of temperature change is initially large and decreases over time. 
These facts are consistent with the hypothesis that the rate of temperature rise is a 

function of the difference between the current temperature and the ambient tempera- 
ture. A simple model (Newton's Law of Cooling) is based on a linear equation 

dT - = k(T, - T), 
dt 

where T, is constant ambient temperature and k is a constant of proportionality that is 
determined by the physical characteristics of the fluid. 

This model simply hypothesizes that the rate of warming is proportional to the 
difference (i.e., the gradient) between the container temperature and the ambient tem- 
perature. This differential equation has a solution whose time course looks like a 
hyperbola: T asymptotically approaches T,, and the absolute rate of change goes to 
zero. Clearly, the derivative is bounded, and the bound is determined by the ambient 
temperature. 

The basic concept here is that a rate of flow into or out of a state variable (T) is 
controlled by the difference between a quantity associated with T (e.g., the tempera- 
ture of the container) and a similar quantity associated with the environment of T or 
another state variable. By an extrinsic factor, we mean any quantity "outside" of the 
state variable to which the differential equation applies. This other quantity may be in 
the nebulous "unmodeled" environment (e.g., ambient temperature) or it may be the 
current state or associated auxiliary variable of another, modeled state variable. 

Extrinsic factors are particularly important when we model a flow of materials or 
energy over a physical distance. In the warming beaker example, this was exemplified 
by the flow of heat energy from the beaker to the environment. It is also applicable 
to diffusion of molecules across a barrier, where the relevant gradient is the difference 
in concentrations on both sides of the permeable barrier (Fickian diffusion). In organ- 
level physiological models, substance concentration can be modeled as moving by 
bulk transport along with a carrying medium (e.g., O2 in blood). The rate of flow 
of blood between organs (e.g., liver and kidney) is proportional to the difference in 
blood pressure at the two sites. In ecological systems, the migration of a population of 
animals between habitats (e.g., forest and grassland) may be modeled in analogy with 
diffusion, i.e., proportional to the difference in densities of animals at the two sites. 
All of the above examples use the differences between quantities to calculate the rates 
of flow. 

In cases where a process is determined by several gradients, we must combine the 
effects in some way. For example, nerve cell voltage potential across the membrane is 
determined by the ionic gradients associated with Na, K, and C1. A standard approach 
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Figure 4.9: Michaelis-Menten saturation feedback control of chemical dynamics: (a) the 
chemical diagram, (b) the Forrester diagram assuming conserved units, and (c) the rate of 
formation (V) of the product (P). E represents enzyme concentration, S is the concentration 
of the substrate, C is the complex formed by the chemical binding of E and S, and P is the 
product. ki are the rates of conversion. 

is to model the net potential as being proportional to the sum of the gradients of each 
ion (Deutsch and Deutsch 1993). A similar approach would be appropriate in models 
of animal dispersal among neighboring, discrete patches of habitat. The rate of flow 
from a given patch to any of its neighbors would be proportional to the sum of the 
differences between the pairs of patches. 

Saturation Negative feedback frequently emerges in systems through an interaction 
between the quantity of the donor variable and the ability of the recipient to convert the 
donor substance. By analogy with chemical dynamics where this is common, negative 
feedback puts bounds on rates by saturating the recipient. Basically, this is nothing 
more than a bottleneck effect. Saturation is a case where the relation has elements of 
both positive and negative feedback: the rate neither decreases to 0 nor does it increase 
indefinitely. The overall dynamical effect is feedback intermediate between positive 
and negative which permits persistent oscillations to occur. 

The Michaelis-Menten model of enzyme kinetics is an excellent example. This 
model describes the dynamics of the formation of a product (P), in which we may 
be interested for its own sake or because its concentration is an important component 
of a larger system (e.g., a step in the Krebs Cycle). Figure 4.9a shows a pictorial 
representation of the chemical reactions involved in the interaction between an enzyme 
(E) and a substrate (S) that combine (C) to form the product. A plausible Forrester 
diagram is shown in Fig. 4.9b. The differential equations are 
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where the ki are rate constants. 
Note the relation among the equations, the chemical diagram, and the Forrester di- 

agram. This is a perfectly good model of the system, but usually the rates of formation 
and breakdown of C are very fast compared to the rates of formation of the product. 
Since we are primarily interested in P and not C, we want to simplify the model by 
eliminating the need to track C.  We do this by assuming that (a) the experiments are 
performed when P, is present only at negligible concentrations (i.e., initially absent) 
and (b) the rate of formation of C equals its breakdown rate. After suitable algebraic 
manipulation, the rate of P formation is described by the Michaelis-Menten equation 

where V is the rate of P formation. (See Rubinow 1975 or Murray 1989 for detailed 
derivations.) 

Note that Eq. 4.20 describes an increasing, nonlinear curve (Fig. 4 .9~).  The in- 
dependent axis is S and the expression in brackets is a curve that asymptotically ap- 
proaches 1.0. This basic curve is scaled (parameterized) by two parameters: Vmax 
(the maximum reaction velocity) scales the velocity to which the curve is asymptotic 
at large S ;  Km scales how "fast" the curve rises toward the asymptote. The shape of 
the curve is scaled so that V = 0.5Vmax when S = Km and is, therefore, called the 
half-saturation constant. Low Km describes a rapidly rising curve; large Km describes 
a slowly rising curve. 

This equation is significant for two reasons. First, the Michaelis-Menten equation 
defines a limit to the rate of the reaction (Vmx). Properties of the enzyme (e.g., the time 
required to join with S , alter the substrate's molecular configuration, and disassociate 
from the complex leaving P) and quantities of E limit the rate of the reaction. Thus, 
the saturation of the enzyme has produced negative feedback. Second, we represented 
a control on a rate by a basic nonlinear relation [S/(Km + S)] multiplied by a constant 
(Vmax). This is a very common strategy in quantitative model formulation: hypothesize 
a basic relation, then multiply it by a constant to scale it multiplicatively for a particular 
process. 

Besides chemical reactions, this basic relation is also used to model the effects 
of the concentrations of dissolved nutrients on phytoplankton growth and the foraging 
rates of predators. In the latter case, the equation is re-written using different parameter 
definitions. The new form is also based on the general equation for a hyperbolic 
relation: y = & (see Section 5.3, Useful Functions). With suitable rearrangement, 
this is also the form for the Holling disc equation (Holling 1959) which relates the 
numbers of prey (y) consumed by a predator in a fixed period of time (e.g., 1 day or 1 
experiment duration) to the density of the prey available. The typical parameterization 

where a is successful search rate (units: preyltime) times the probability of detection, 
TT is the total time available for foraging (units: time), h is the handling time per prey 
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(units: timetprey), and x is the concentration of prey. The Holling disc equation is 
one form for the Type 2 functional response of predators. Analogous to the rate of 
product formation in chemical reactions, the rate of prey consumption is saturated by 
properties of the predator (handling time and hours in the day available for foraging). 
Other such asymptotic functional forms are shown in Section 5.3. But again, note 
the similar form for representing saturation feedback: a basic asymptotic relationship 
times a variable (i.e., aTT) to scale the rate to the process. 

Combined Feedback Interactions In some systems, saturation or positive feedback 
can combine with inhibition to produce more complicated relations between variables 
and rates. In this case, at low values of the variable the response is positive to the 
addition of a unit of the variable (e.g., during a saturation process). But at high lev- 
els of the variable, adding a unit of the variable produces a decrease in the rate. For 
example, at low light levels, the rate of photosynthesis of a leaf increases until satu- 
ration occurs; further increases in light cause a decrease in photosynthesis because of 
photoinhibition (usually caused by the degradation (denaturation) of photosynthesis 
enzymes). An example from population ecology is the effect of population density on 
per capita births. At low densities, females have difficulty in finding mates; per capita 
births will increase as the number of males (and females) in the population increases. 
Eventually, however, birth rates will decline at high densities due to competition. This 
combination of processes is known as the Allee effect. 

Usually, this general phenomenon of combined feedback is produced by the action 
of two or more biological mechanisms (e.g., light saturation of photoreceptors and 
degradation of enzyme systems at high light intensities, or mate location and competi- 
tion). Consequently, this situation is frequently modeled as the product of two separate 
factors. For example, photoinhibition can be modeled as follows (Steele 1962): 

increase decrease 

where P i s  the photosynthesis rate, Pm, is the maximum photosynthetic rate, I is light 
intensity, and a is a shape parameter. Again, note the use of a relative rate (Eq. 4.22 in 
brackets) scaled by a third parameter, Pmax. 

4.3.4 Mass Action 

A biological process that recurs in many models is mass action. The chemical dynam- 
ics just presented (Eqs. 4.16-4.19) used the concept extensively by modeling some 
rates as proportional to the product of the concentrations of two molecules. The Law 
of Mass Action states that the rate of a reaction is proportional to an integral power of 
the concentrations of all substances taking part in the reaction (Carson et al. 1983). 

If P and Q are the concentrations of two substances and R is a rate of transforma- 
tion of substance Q, then a general model of R is 

where a is a constant of proportionality, and a and P are integer powers. The order 
of the reaction relative to P or Q is p and a ,  respectively. The order of the overall 
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reaction is the sum of the powers. In zero-order reactions, the rate of change is a 
constant, independent of the dependent variable (a  = p = 0). In first-order reactions, 
the rate is proportional to the concentration of only one of the substances. Second- 
order reactions may be caused by an interaction of two substances (a  = 1, /3 = 1) or a 
second-order function of one substance (e.g., a o r p  equal to 2). 

The values of the orders of the relations are often determined by the stoichiometric 
or weight relations of the compounds involved in the reaction. For example, suppose 
we have this chemical reaction: 

kl 
A + 2B 2 C. 

k2 

The corresponding differential equation using mass action for C is 

where B is raised to the power of 2 because two molecules of B are required. 
The mechanistic hypothesis underlying this functional form is analogous to that 

of the probability of encounter among randomly moving particles. For example, in a 
reaction in which a = 1 andp = 1, we hypothesize that a reaction will occur whenever 
two molecules of the two substances are brought together to the same place at the same 
time. Since we are dealing with the concentrations of the substances, this is similar 
to saying that the rate of the reaction is proportional to the probability that the two 
molecules will collide. Q and P are not true probabilities, of course, since they can 
have values greater than 1.0. In Eq. 4.17, both first- and second-order reactions were 
hypothesized. 

While these relations are fundamental in chemical dynamics, they have also been 
applied in ecology. The classical Lotka-Volterra predator-prey equations are a good 
example: 

dV - - -  
dt 

rV - aVP + + (4.23) 
positive feedback mass action 

conversion death 

where the victim (V) grows in a density-independent fashion with rate r. Predators (P) 
die at a constant per capita rate d. The term aVP (Eq. 4.23) quantifies the rate at which 
prey (V) are consumed by predators (P), so a is the search rate. Predators convert the 
food consumed into new predators with an energetic efficiency b. Since we generally 
apply these equations to densities of prey and predators, we assume that the prey are 
removed according to the probability that individuals of the two species will coincide 
in time and space. 

4.3.5 Multiple Controlling Factors 

We have seen how negative feedback can arise because of a single limiting factor (ei- 
ther extrinsic or by saturation). Another important feature of interconnected systems 
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Environment 

a 

Figure 4.10: Plant growth in which three nutrients interact. On the right is shown Monod 
growth curves as determined by single-variable experiments that hold the other two nutri- 
ents constant. 

(e.g., biochemical cycles, physiological systems, ecological foodwebs) is that multiple 
factors can control a single process rate. There are two different, common situations. 
First, the equation for the rate is a univariate function of a primary influencing variable 
(i.e., the x-axis, such as available light intensity), and one or more of the parameters 
of this equation is modeled as a function of a second controlling factor (e.g., g C). 
Second, the rate is the outcome of several interacting factors that combine to create a 
function having multiple independent variables. 

An example of the first case is a simple model of net photosynthesis rate in plants 
when it is controlled by both light intensity (I) and carbon availability (C). The pri- 
mary variable of the rate equation is I and we assume an asymptotic relationship anal- 
ogous to the Michaelis-Menten relation 

where P is the net photosynthesis rate, Pmax is the maximum rate, and a is an empir- 
ically determined constant. The effect of carbon is to increase linearly the maximum 
rate 

pmax = bC, 

where b is the effect of carbon (C) on Pmax. Substituting, the new equation for net 
photosynthesis is 

The second case concerns multiple factors affecting a process that requires all of 
the factors. Consider the biological case of plant growth in the presence of three nu- 
trients (carbon, nitrogen, and phosphorus). All resources are required for growth (i.e., 
one cannot be substituted for another). Since the resources have different units, we 
use parallel, or multiple models, but here we focus our discussion on the N component 
(Fig. 4.10). The rate of uptake of N is determined by the total growth of the plant, 
but this is affected by the supplies of the other two nutrients. If one of these is in very 
low supply, total growth will be small and N uptake will also be small, even though N 
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is plentiful. The modeling problem is to portray mathematically this basic biological 
fact. 

With a single controlling variable N, we could measure growth at experimentally 
controlled levels of N and fit an equation to the resulting responses. With two con- 
trolling variables (e.g., N and C), we could use the same procedure, but using a more 
complicated experimental design that varies N and C in combination. We could again 
fit an equation to this two-dimensional response surface and thereby predict growth 
from simulated values for N and C. 

With three (or more) variables (e.g., N, C, and P) the cost of the experiments and 
the complexity of the equation needed to fit the results often becomes prohibitive. 
Instead, we seek an intermediate solution in which a series of single-variable experi- 
ments are performed (i.e., vary N alone, C alone, and P alone), each response is fit by 
an equation, and then the three equations are mathematically combined to incorporate 
the interactions between the variables. These interactions are not measured or exactly 
known, of course, but we hope that our clever tricks to combine the equations will ac- 
curately reflect the interactions. Below, we discuss four general methods to combine 
the controlling variables: Liebig's Law of the Minimum, Multiplication, Arithmetic 
Averaging, Mean Resistance. We also introduce a fifth candidate specifically designed 
for combining Michaelis-Menten relations. 

To begin, consider the simple case with just a single limiting resource (N). Nutri- 
ent uptake across cell walls is mediated by ATP and enzymes, so we use Michaelis- 
Menten kinetics to relate biomass increase to nutrient concentration. When applied to 
growth rates, we have the Monod equation 

where p i  is the maximum rate of incorporation of N into plant material per g N of plant 
material (i.e., a relative or per capita rate). The product of p i  and the expression in 
parentheses is p  (the actual relative rate). Now we turn to the situation where multiple 
factors affect p. Below, p* (no subscript) refers to the maximum of all p; 

Leibig's Law of the Minimum 

If we assume that a process (biomass growth) proceeds at the rate of the slowest sub- 
process (uptake of individual nutrients), then we use 

where min[. . .] is a function that returns the smallest of the three numbers. This is 
Leibig's Law of the Minimum, and it assumes that the limiting effects are independent. 

Multiplicative Rates 

Alternatively, we could assume that the limiting processes interact. This means that 
as the growth declines because of limitation due to one nutrient, the ability to grow 



94.3: Biological Feedback in Quantitative Models 77 

at the current concentrations of the other nutrients also declines. One method for 
combining concentrations of the nutrients to implement this hypothesis is to multiply 
the concentrations: 

Since the expressions in parentheses are all less than 1.0, as we increase the number 
of limiting nutrients, the growth rate decreases dramatically. Empirically, this form 
sometimes predicts slower growth rates than observed. 

Arithmetic Average Rate 

The arithmetic average of the limiting effects is 

This expression has the advantage that it models an interaction between the limiting 
nutrients, but does not allow the overall growth rate to have extremely low values. Its 
disadvantage is that the largest value will greatly influence the overall average. This 
approach may predict an unrealistically high growth rate. 

Mean Resistance (Harmonic Mean) 

The fourth method analogizes the effect of multiple limitation to the flow of current 
through an electrical circuit that has resistors in parallel. To illustrate this for our plant 
growth model, we define an auxiliary variable, substrate effect, as the fraction of the 
maximum growth rate possible: 

where S represents the concentrations of the limiting nutrients (e.g., C, N, P). So, we 
have a Ceff, a Neff, and a Peff. Using the resistance analogy, the integrated effect (I,$) is 
computed from 

or, in general 

To use resistance, p = p*Ieff. 
If l / Ief f  is multiplied by l l n  (n = number of factors) and inverted, we have the har- 
monic mean: 
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The harmonic mean has the advantages of the arithmetic mean, but gives relatively 
more weight to the smallest growth rate (i.e., the most limiting of the nutrients). Its 
use is analogous to previous examples: 

For comparison, suppose Ceff = 0.5, Neff = 0.9, and Peff = 0.1. The above methods 
of combining these values are shown in the following table. 

The multiplicative and resistance methods produce the smallest values and these are 
smaller than any of the individual values. The arithmetic average is the largest, while 
the minimum and harmonic mean are closer. 

Minimum I Multiplicative I Average I I@ I Harmonic 

Additive Rates 

0.1 

O'Neill et al. (1989) extensively compared eight families of methods for combining 
Michaelis-Menten relations. Although this is a specialized function, since it is so 
common a relation between substrate and process, especially in ecological and bio- 
chemical models, it is germane to a large number of models. They developed a theory 
of combining two processes based on arrival times of "molecules" necessary for a "re- 
action" to occur. One is not restricted to chemical reactions here; their results apply to 
arrival times of prey and predators as well. They developed a new method called the 
additive method (translated to the notation above): 

0.045 1 0.5 1 0.076 1 0.248 

where N and C are the concentrations of two substrates, and ki are constants to be 
estimated. This approach is similar to the parameter substitution approach of Eq. 4.25. 

O'Neill et al. (1989) compared the ability of the eight methods to fit 11 different 
data sets. Overall, in their opinion, the additive and another based on the harmonic 
mean models performed best and virtually identically in terms of accuracy to the data. 
The methods differed in the value of one of the parameters fitted. However, for the 
data sets on which the Law of the Minimum produced meaningful values, it often had 
the overall best fit. Unfortunately, there were data sets in which it failed altogether 
to provide biologically interpretable values. This property disqualified it in the eyes 
of O'Neill et al. (1989). They concluded that the additive method had an edge over 
harmonic mean because the former reduced exactly to the Michaelis-Menten equation 
when only one substrate was present. An advantage of the harmonic mean is that it 
can apply to functional forms other than Michaelis-Menten. 

Summary of Multiple Controls 

To summarize this discussion, we can make the following recommendations. Either 
replace a constant with a function of the secondary controlling variables (case l), or 
use a form of competing factors (case 2). In the latter case, the harmonic mean and the 
Law of the Minimum seem to be the most reasonable forms to use, but this can depend 
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on the system. If the individual functional forms are Michaelis-Menten, then consider 
using the additive method. 

4.4 Example Model 

We can bring together several of these ideas in a single model of a chemostat. A 
chemostat is a piece of laboratory equipment that grows microbes in a flow-through 
system of constant volume, V, that continuously delivers a constant concentration of 
nutrients to the population. Chapter 14 gives more background, but for now envision a 
large beaker with volume V (units: L) containing a growing population of bacteria or 
algae (numbersb), into which a pump delivers nutrients from a reservoir at constant 
rate P (units: L/min) and from which another pump removes the contents of the beaker 
at the same pumping rate. The input reservoir contains two required nutrients: R1, R2, 
at fixed concentrations Rlo and R20, respectively. A population of bacteria density (N) 
requires both nutrients, but the rate of population growth is set by that resource that is 
taken up at the lowest rate. 

- -  dR1 - (P /v ) (R~~  - RI) - N- min 
dt [Rl :&, ' Rz + R2 Km2 1 

dR2 - = (P/V)(Rm - R2) - N- min dt [R2 FKm2 ' R2 R2 + Kmz ] (4.27) 

dN - = Np* min 
dt 

R2 ] - (P/V)N, 
[Rl +R;c,, ' R2 + Km2 

where p* is maxbl,  p2], Yi is a constant to convert cell numbers to appropriate nutrient 
units, and Kmi are the half-saturation constants (Chapter 14). Other definitions of p* 
are possible (e.g., use the pi corresponding to the limiting resource). This example 
illustrates these principles: conservation of mass, saturation feedback, conversion of 
units in parallel models, simple spatial transport (Chapter 3, relative (per capita) rates, 
mass action, process control by donor and recipient, and multiple controlling factors. 

4.5 Exercises 

1. Draw the Forrester diagram and sketch the dynamics of a system containing a 
single state variable with a constant input rate (Fig. 4.3). 

2. In model Eq. 4.27, identify the mathematical expression that pertains to each of 
the modeling principles that this model uses. 

3. Re-write Eq. 4.27 using the harmonic mean in place of the minimum. 
4. Solve analytically the island biogeography model (Eq. 4.13). You may need to 

consult a table of integrals (e.g., Spiegel(1968)). 
a) As a check, show that the constant of integration is 
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b) As a further check, use the analytic solution to obtain an expression for 
the equilibrium number of species and compare this with the expression 
based on the differential equation (or difference equation in Chapter 1, see 
exercise 8). 

5. A simple foodweb (1 prey, 2 predators) is modeled in units of grams of carbon. 
A prey species (x) grows according to density-dependent growth in the absence 
of either predator. The consumption of x per unit of predator 1 (y)  is a saturation 
feedback function and the consumption of x by predator 2 (z) is a fixed fraction 
of x. The per capita death rate of y is constant. The per capita death rate of z is a 
negative exponential. Draw a Forrester diagram and write differential equations 
with the above hypotheses. (Consult Fig. 5.4 if you need help with some of the 
functional forms alluded to.) 

6. Write four differential equations for this scenario. In an animal's immune sys- 
tem, suppose there is a population of cancerous cells (C) that kill healthy (H) 
cells. The kill rate is proportional to the mass action between C and H. Without 
cancer, the healthy cells grow according to self-inhibition to reach a constant 
value T. C cells are killed by two forms of white blood cells: M And K. These 
kill C cells by a mass action process, but both M and K are required for a suc- 
cessful kill. Assume, the two white blood cells move randomly and that they 
divide at a rate that is proportional to the number of cancer cells in the system.. 
In the absence of cancer, the white blood cells decline exponentially to a small, 
non-zero level and remain at that level until more C cells are present. 

Verify that the units of your model are correct. 
7. Write and solve numerically the differential equations that compare the effects 

of two algorithms for multiple controls. The system is a plant population that 
consumes two resources C and N having the following assumptions. 

a) Without plants to consume them, C and N increase according to the pro- 
cess of self-inhibition (logistic growth). 

b) The plants consume each element according to a Michaelis-Menten rela- 
tionship. 

c) Compare Liebig's Law of the Minimum with multiplicative rates. 

F°) [ MBS-CD contains SimTemplate-Empty to help with this exercise. 1 
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Quantitative Model Formulation: 

5.1 Physical Processes 

I N THIS CHAPTER, we continue the description of some common quantitative formula- 
tions of biological and relevant physical processes. Biological systems are physi- 

cal systems that exist in three dimensional space and are subject to fundamental phys- 
ical laws and process. As a result, we need methods to model the interactions between 
biological structures and physical forces. Finally, often we begin a modeling project 
based on little quantitative data and only qualitative graphs of the relevant relationships 
among the variables. If we can draw these graphs, then it is often a relatively simple 
matter to identify a functional form that matches the qualitatively pictures. Graphi- 
cal depictions of some mathematical functions frequently encountered in biological 
modeling are provided. 

5.1.1 Conservation of Mass and Energy 

The concept of conservation of mass is important to almost all biological disciplines. 
It plays a role in biochemical dynamics, nutrient and pollutant flows in ecosystems, 
and transport of material in space. The central idea is that material or energy that flows 
from one place to another is lost from the first and an equal amount is gained by the 
second place. If this is not the case, then there must exist one or more additional sinks 
for the outflow material. If the mass or energy is to be conserved, then all sources 
and sinks must be accounted for. We will discuss two situations in which the concept 
occurs. The first treats a system that has no spatial extent and the "places" for flow are 
biological compartments (e.g., a state variable constituted by a set of herbivores). The 
second assumes the system has spatial extent and part of the equation to conserve mass 
involves its movement from one geographical location to another (e.g., a pollutant 
moving along a river). 

The biochemical system described by Eqs. 4.16-4.19 is a good example of a ma- 
terial flow that leaves one compartment and arrives, in equal amount, in another com- 
partment. For example, compartment C loses mass to one sink at the rate -k2C (the 
minus sign indicates loss), and compartment E gains mass, through this pathway, at a 
positive rate of +k2C. 
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Figure 5.1: Carbon flow in a simple terrestrial ecosystem. A=atmosphere, G=grass, 
D=deer, L=lumped excretion 

Ecosystem Example 

To gain more experience with the equations and to see the application of these ideas to 
another area of biology, we will examine a simple model of carbon flowing through an 
ecosystem. Figure 5.1 shows the Forrester diagram for the system. A possible model 
that is consistent with Fig. 5.1 is the following set of equations. 

The verbal definitions of the parameters are contained in Table 5.1. The details are 
given below. 

In Eq. 5.1, we assume that deer (D) are limited by their resource (i.e., G = 0 im- 
plies no growth of D) and by restrictions on foraging behavior (e.g., foraging time, 
handling time). The Holling disc equation is used and describes the rate of consump- 
tion of g C by a single deer. We multiply this by the number of deer present to obtain 

Table 5.1 : Parameter definitions for a carbon flow model. 

a Deer successful search rate for grass 
b Deer handling time while eating grass 
c Rate of decomposition of feces and dead deer by bacteria 
d Rate of feces production by deer 
e Fraction of deer carbon becoming rotting corpses 
r Rate of deer production of gaseous carbon (respiration) 
TT Total time for foraging 
u Rate of atmospheric carbon uptake by grass 
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the total amount of grass (G) removed by deer. We further assume that a fixed rate 
(proportion) of the carbon in D is respired away to the atmosphere: -rD. This is 
a simple, linear equation; it assumes that if the deer population gets very large, the 
amount of carbon respired also gets very large: it is not bounded by a saturation feed- 
back. We also use linear relationships to describe the loss of carbon from deer to a 
lumped compartment (L) of all decaying by-products of deer (dead carcasses, feces, 
urine, etc.). Here, we describe just two of them: the rate that deer die (e), and the rate 
of feces production (d). These are all the inputs and outputs to the deer compartment 
that we hypothesize as important. 

Equation 5.2 shows only two flows: a single input and output. The input is the 
removal of C02 from the atmosphere (+uG). This expression assumes that grass (G) 
growth rate is not limited by atmospheric carbon. This flow is a recipient-controlled 
flow and it assumes that grass can consume as much C02 as necessary at a rate that 
is proportional to the amount of G present. It does not depend on the amount of 
A present, and this is an important biological assumption. The output from G is the 
expression for the Holling disc equation just as it appears in Eq. 5.2. This is an instance 
of conservation of mass: the amount that left G entered D. 

The equation for decaying deer by-products (L, Eq. 5.3) also shows conservation 
of mass. These losses from D are the inputs to L. In addition, we assume that bacte- 
rial decomposition of these by-products (expressed as the amount of carbon entering 
the atmosphere) occurs at a rate that is proportional to the amount of decaying mat- 
ter present (-cL). This assumes that there are no other variables (e.g., moisture or 
temperature) that control or influence this flow. 

Finally, Eq. 5.4 assumes that the atmosphere (A) is essentially a passive compart- 
ment whose rate of change is determined by the requirement to conserve carbon in the 
system. Grass removes as much carbon as needed (-uG), independent of the amount 
of carbon in A, and A is replenished by losses of gaseous C02 due to deer respira- 
tion (+rD) and bacterial decomposition (+cL). Once we have made what we hope are 
reasonable assumptions for the biological compartments, the equation for A simply 
contains the same flows but with reversed sign. 

Spatial Flows 

We next discuss the case where the flows are physical flows between spatially separate 
compartments. We have already introduced these ideas in Chapter 3. When the spatial 
resolution is such that only a few, large regions are modeled (such as broad areas in a 
lake), then the problem can be treated just as we treated the carbon flow problem. We 
write ordinary differential equations (analogous to Eqs. 5.1-5.4) for each spatial area 
with appropriate flows between the various spatial regions. The important distinction 
here is not the size of the region, but rather the extent to which the region is an isolated 
and discrete entity. In situations where we can not reasonably assume homogeneous 
regions (i.e., where there is a continuous gradation of the spatial structure), we must 
use a different conceptual framework. 

In these cases, the framework we use is based on partial differential equations 
(PDEs). These equations form a very important and difficult part of applied math- 
ematics. Formulating and solving models using PDEs is not easy, and it is recom- 
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Figure 5.2: Flows and processes in one-dimensional fluid flow. Advection flow is from left 
to right. Solid dots represent particles of the substance of interest. The vertical dotted lines 
represent arbitrary, imaginary boundaries located at x and x + Ax. 

mended that interacting with an applied mathematician will be helpful. Here, we only 
give some background and a brief introduction to some of the solution strategies as a 
means of facilitating a future interaction with a mathematician. We emphasize fluid 
dynamics, especially flows of solutes (C) in water. 

Envision a medium that flows in one dimension in which a solute (C) is dissolved. 
This might be a very simple model of a pollutant in a river. We wish to model the 
concentration of C at all points along the one dimension and over time. Thus, we now 
have two independent variables (time and space) over which the state variable (C) 
varies. Four fundamental processes affecting fluids and solutes recur in these models: 
(1) advection, (2) molecular diffusion, (3) turbulent diffusion, and (4) reaction. We 
discuss each in turn. 

Figure 5.2 shows the basic physical flow system with the four components pic- 
tured. The continuous spatial dimension is arbitrarily divided into discrete segments 
bounded by x at the left and x + Ax on the right. Fluid, containing the substance of in- 
terest at concentration Cia, enters the segment of interest at x with velocity Fin. While 
the molecules of the substance are in the segment, they may move randomly because 
of diffusion caused by thermal energy. The molecules may also be caught in eddies 
generated by turbulence. Molecules of the substance may be created or destroyed 
within the segment as a result of chemical or biological processes. Finally, molecules 
may be carried out of the segment along with the fluid, which leaves x +  Ax at velocity 
Fout. 

In earlier examples, when we were concerned only with ordinary differential equa- 
tions having a single independent variable, time, we thought of the system as mov- 
ing forward through time in discrete steps (At) according to the currently computed 
Netchange in time: 

y t + ~ !  = yt + At[NetChange(t)]. (5.5) 

In considering spatial changes, we use an analogous concept. First, assume the system 
is in temporal equilibrium in order to ignore changes in time for the moment. In a 
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segment of the spatial dimension (Ax) we have an inflow (Fin) and an outflow (F,,,). 
By conservation of mass and analogy with time, we have a finite difference equation 
based on discretized space: 

where Cin is the concentration at x and C,,, is the concentration at x + Ax. 
More conventionally, we write 

NetChange(t) in Eq. 5.5 is the right-hand side of a differential equation (e.g., 
dyldt). Analogously, NetChange(x) in Eq. 5.6 is also the right-hand side of a dif- 
ferential equation: 

1 C - + A  dC 
Ax+O - - -- 

Ax dx '  

When we add time and require conservation of mass, we must insure that the 
temporal changes in C equal the spatial changes in C. Since C is being changed by 
processes both in time and space, we use the partial derivatives to represent the two 
modes 

where F represents a complex function of several physical processes. This simply says 
that the rate of change of the concentration in a segment must equal the inflow minus 
the outflow. To see this, imagine a stream of fluid having a cross-sectional area of A 
and flowing in one dimension from left to right. The velocity of fluid coming into a 
segment of length Ax will be Fx, and the velocity out of the segment will be 

The change in mass M of the solute in the segment over a time interval At is 

This is a statement of the principle of conservation of mass. Dividing both sides by 
AAx converts mass to concentration (C,). Dividing by At and taking limits gives 
Eq. 5.7. This basic equation will change slightly when we add reaction processes 
below. But for now we will keep this one and expand it with equations for advection 
and diffusion by writing expressions for F. 

Advection Advection is the flow of media and the solute from point to point. If the 
velocity is a constant U over a small spatial interval, then the flux of C is simply 

F = UC, 



86 Chapter 5 Quantitative Model Formulation: II 

and by conservation of mass 

Diffusion Molecular diffusion is the movement of mass due to random motion of 
individual molecules. Figure 5.2 shows two hypothetical paths. Based on Fick's Laws 
(Berg 1983), the flux F through a plane is proportional to the spatial gradient of the 
concentration over a small Ax. Or, after letting Ax -t 0 

For diffusion alone and substituting Eq. 5.9 into Eq. 5.7, the conservation equation is 

where D is a constant called diffusivity and is assumed here to be constant over x. 
Putting advection and diffusion together to find changes in C, we have 

This is an extremely common form for biological PDEs called a conservation equa- 
tion. You will see it often, especially in spatial chemical dynamics and morphological 
development (Edelstein-Keshet 1988; Murray 1989). We develop a model of insect 
movement in Chapter 15 that uses an equation of this form. 

The second manifestation of diffusion is turbulent diffusion, which is too hard for 
us to describe here. Turbulent diffusion is hard because it is scale dependent: the 
fluxes due to turbulence depend on the size of Ax one chooses. The larger the Ax, the 
larger the eddies and fluxes involved (Fig. 5.2). Simulation of turbulence is an active 
research topic in theoretical physics and involves some very subtle programming and 
physical details that we cannot address here. Consequently, we will sweep this big 
problem under the rug by assuming that our time scale is long enough that the average 
effect of turbulent diffusion can be treated as a component of the advection term (U in 
Eq. 5.8). Smaller scale phenomena will be lumped in the empirical measurement of 
molecular diffusivity. 



$5.1 : Physical Processes 87 

Reactions Reaction processes are any processes other than advection and diffusion 
that change the concentration of a solute inside the spatial interval Ax. These may be 
chemical interactions (e.g., the substance going in or out of solution), or biological up- 
take and excretion (e.g., the uptake of nitrogen by plants). These processes are treated 
mathematically as an ordinary differential equation. For example, suppose nitrogen 
is removed from solution by plants (P) according to a Michaelis-Menten relation and 
excreted by fish (S) in proportion to the amount of fish present. In addition, advection 
and molecular diffusion occurs. Then the conservation equation is 

diffusion advection uptake excretion 

In this equation, uptake and excretion are the two biological processes constituting 
the reaction. Models with these processes are commonly called reaction-diffusion 
equations. 

In general, we must describe material transport in three spatial dimensions. For 
the processes described above, we add the spatial fluxes. For example, advection in 
three dimensions is 

dN dUxN dUyN dU,N - +-+-. 
dt dx dy dz 

Obviously, we must have estimates for each of the average flux rates in the x, y, and z 
directions (i.e., the Ui above). Diffusion is treated similarly. 

Like simple ODES, some simple PDEs have analytical solutions that describe the 
value of the variable for any t and any x.  Often, however, the equations are too complex 
for a complete analytical solution, and we must use numerical methods. This is a 
complex subject, but in Chapter 6 we will discuss one numerical method that has 
intuitive appeal, is simple to code, but is not particularly fast. 

5.1.2 Discontinuous Functions 

All of the equations we have discussed so far to describe dynamics and auxiliary vari- 
ables have been continuous; there were no sharp jumps in the value on the dependent 
variable with small changes in the independent variable. We can argue whether any 
phenomena at the space and time scales of biological systems (i.e., non-quantum me- 
chanical systems) can be truly discontinuous. Some would say that examining suf- 
ficiently small steps on the independent variable would reveal a continuous, albeit 
extremely steep, change in the dependent variable. In any case, for reasons of simplic- 
ity and convenience if nothing else, we often choose to represent the phenomena as 
discontinuous. A hypothetical example is 

where R is some quantity used in a differential or difference equation. This example 
describes a function that (1) increases linearly from 0.0 to 1.0 as x goes from 0.0 to 
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Figure 5.3: (a) An untranslated cosine function. (b) General cosine function with parame- 
ters fitting a hypothetical time series of seasonal temperature values. 

0.5, (2) is exactly 1.0 for x from 0.5 to 1.0, and (3) decreases linearly for x greater 
than 1.0. This kind of equation is used when biological morphology interacts with 
continuous functions. For example, water transpiration from a leaf is determined by 
the opening of the stomata on the leaf surface. The amount that the stomata are opened 
is determined by an interaction between the pressure of the guard cells and that of the 
surrounding epidermal tissue. It is possible to choose reasonable parameters of this 
interaction such that at sufficiently high epidermal pressure, the calculated stomata1 
aperture would be less than zero. Since negative aperture opening is nonsensical, we 
use a discontinuous function such as the following: 

b,  P, - bePe if b,P, > be Pe 
" = { 0.0 otherwise, 

where P, is guard cell pressure, Pe is epidermal cell pressure, and b,  and be are propor- 
tionality constants. While perfectly legal, this kind of equation can make mathematical 
analysis difficult. Computers, however, have no difficulty with this type of equation, 
and practical computer simulation models commonly use it. 

5.1.3 Time and Driving Variables 

Time can be an explicit component of differential equations simply by appearing di- 
rectly in an equation that varies with time (e.g., "season" in Fig. 3.8). These equations 
typically describe driving variables. As an illustration, a cosine function is a reason- 
able function to fit to the yearly cycle of temperature in the northern latitudes. To 
fit a cosine function to a time series of temperature values, we translate the function 
vertically and horizontally and adjust its frequency until it matches the oscillations of 
the data. 

Figure 5.3a shows a simple cosine function that completes one cycle in 2n radi- 
ans and oscillates between *1. Real driving variable data (e.g., temperature) are not 
constrained to these values, so we use the general equation for a cosine function that 
permits us to vary these properties 



$5.2: Using the Toolbox of Biological Processes 89 

where M is the mean value of the function (e.g., temperature). A is the amplitude of 
the peak above the mean. (t - to) shifts the peak by to physical units. w is the angular 
frequency per physical unit; it scales the frequency of oscillations of the function to 
the physical frequency. Angular frequency has units of radians per physical unit, e.g., 
radiansltime, where time is the period of one cycle in physical units (e.g., 365 days, 
24 hours, etc.). We need to choose these four variables appropriately to fit a cosine 
function to the data. 

As an example, suppose a time series of mean daily air temperatures has a mean 
of 40" F, an amplitude of 25" F, a period of 365 days, and the position of the first peak 
is on July 30 or calendar day 21 1 (Fig. 5.3b). This temperature time series is modeled 
as: 

A second approach to incorporate time in functions used in computer simulations 
is a look-up table. This method uses the actual data during a simulation and does not 
attempt to fit a function. A look-up table of daily temperatures requires two sets of 
numbers. One set is calendar days 1 . . .365. The second set is the temperature on that 
day. The look-up method is computer code that finds the temperature that corresponds 
to a given simulation day. If a simulation time-step other than daily is used, one must 
adjust the tables accordingly. 

( M B S C D  contains code SimDriving that illustrate these methods.) & 

5.2 Using the Toolbox of Biological Processes 

There are three simple rules for creating a model. Unfortunately, nobody knows 
what they are. - JWH and W. Somerset Maughan 

We have identified and described some mathematical formulations for eight basic bi- 
ological processes that occur frequently in models: (1) constant rates, (2) relative 
rates, (3) feedback, (4) mass action, (5) conservation of mass, (6) limitation by mul- 
tiple controls, (7) discontinuous functions, and (8) time dependence. These are the 
basic tools in our toolbox for reading and constructing models. These eight do not 
describe all processes, and within each there are many mathematical variants we have 
not discussed. Nevertheless, an approach to successfully reading and constructing 
quantitative models is to combine these basic formulations in ways that represent the 
biological hypotheses. This is a skill that is achieved only with practice and attention 
to published models of similar systems. However, we can provide some simple veri- 
fication and simplification techniques as well as list a few rules of thumb that will aid 
you in thinking about the equations. 

5.2.1 Checking Units 

The physical units of the derivative must match the units of the equation on the right- 
hand side. This will check for two types of errors: (a) inappropriate expressions (e.g., 
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dividing when you should subtract) and (b) bad logic that requires parameter values 
with incorrect units. The procedure is simply to replace every variable and parameter 
with its units and to cancel units until no further reduction is possible. If the final 
expressions of the units of the two sides of the equation are not equal, there is an error. 

For example, consider the logistic equation (Eq. 4.14). The units on the left are 
numbers/time. The units of K are numbers, and r are l/time. So the units are 

numbers 1 - = -  numbers 
unitless - - 

time time numbers 

- numbers - -  
time ' 

This is a simple idea, taught to most students in high school, but it is one of the first 
things a modeler should do as preliminary verification of the equations. 

5.2.2 Conversion to Dimensionless Format 

Often in deriving differential equations, the resulting expressions will contain many 
parameters that occur in combinations. A useful procedure reduces the number of 
parameters by converting the differential equation to a dimensionless form, thereby 
creating new variables and parameters, but also eliminating many old variables and 
parameters. The net gain is fewer parameters. We implement this procedure by writing 
each state variable and the time variable as the product of two components: one with 
units denoted as R and one without units denoted as R. For example, the numbers in a 
population will be written N = NR. The objective, then, is to manipulate the equation 
to replace all parameters and variables with dimensionless quantities (e.g., N). 

Example 

First, we will give a simple example using a familiar equation, then we describe 
more general methods that work on most equations. Below, N and K have units of 
[numbers] and r has units of l/time. Applying the non-dimensionalization proce- 
dure to the familiar logistic equation gives 

-- d(NR) 
. " ( y) - rNN 1 - - t create unitless variables 

d(t0 

t multiply by f 
dt 

t divide by fl 

t define land fi 
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where the new quantities are f = l l r  and f i  = K so that when applied to Eq. 5.14 yields 
ti. = 1 unitless and f i l ~  = 1 (unitless). We have reduced the number of parameters 
from 2 to 0, and we have essentially scaled time by l l r  and population size by K. We 
will discuss the implications of doing this in a later section. The mathematical clarity 
and savings in parameters can be even greater when we apply this technique to models 
with several state variables (below). 

Mechanical Steps 

Here are the basic steps: 
1 .  Make a table of the state variables and parameters and their units. 
2. Re-write the differential equations, substituting for each state variable a product 

of a dimensionless scaling variable ( i )  and a variable representing 1 unit of that 
variable (k). E.g., if x is measured in gmC/liter, then for every occurrence of x 
in the original equations, write: 

x = i X  

E.g., a single, linear ODE would be: 

yields: 

3. Make the left-hand-side of the ODES unitless by multiplying both sides by f l l  
Do this for all differential equations before proceeding. Cancel any X possible. 
For example, Eq. 5.16 becomes: 

Creative Steps 

The next bit requires some insight and possibly some trial-and-error. You must define 
all of the variables with units (i.e., f and all the 2) as a combination of the parameters 
such that the combination has the same units as for  X, with the goal that when the def- 
initions are substituted into the modified equations we have dimensionless equations 
with fewer parameters. There are no definite rules for doing this, but here are some 
things to consider. 

4. Collect the terms with units together in the equations. 
5. f will generally be easier to define than the 3, so try to define the latter first. 
6.  If X appears as the only variable in one of the components of the equation, then 

use that component to define 2. For example, if 

from the first component on the right define 



92 Chapter 5 Quantitative Model Formulation: II 

t' will be defined in terms of other parameters later and then substituted into 
the above definition to eliminate f. j j  does not appear by itself in the second 
component of the equation, so basing the definition of jl on that might not be 
helpful. Substitute the new definition of k in to the second component so that j, 
now stands alone. Use the same logic to define it as you did k earlier. 

7. Complicated algebraic expressions involving k should be simplified as much as 
possible before trying definitions. For example, simplify the Michaelis-Menten 
component of the chemostat model to 

before defining fi. 
8. It is not a good idea to define one variable (jj) in terms of another (2): use only 

constants and t'. 

An Example Without a Biological Interpretation 

This method will work even if there is no obvious physical or biological interpretation 
or units given for the variables and parameters. Consider, 

With no knowledge of physical units, we know that the units of the right side must 
match the units on the left side, so we have the following table: 

Making the left side non-dimensional yields: 

Variable 

a 
b 

c 

f 
x 

y 

Units 

l/(t .x2) 

xl(t .y2) 
l l ( t . ~ >  

l l ( t . 4  

Unspecified 
Unspecified 



$5.2: Using the Toolbox of Biological Processes 93 

Notice that in Eq. 5.18b, R and j j  appear in their respective components as the only 
variable with units, so these are good candidates to define: 

with each having balanced units, producing after substitution: 

for which the right side is unitless and has no parameters. Substituting the definitions 
(Eq. 5.19) into Eq. 5.18a gives 

The second component on the right has no variables or time units to define, so we 
are left with that combination of constants. The first component on the right side, 
however, still has t' which needs to be defined in terms of constants and chosen to 
eliminate parameters. Defining t' as: 

achieves both goals. The final non-dimensional equations are: 

where 

which reduces the number of parameters from 4 to 1, and substituting the units from 
the above table, shows a1 to be unitless. 

What This Means 

Scaling Dimensionless Quantities Once the non-dimensional equations are derived, 
we need to provide some interpretations of the constants. Often these provide insight 
into the processes of interest. Without knowledge of the units in our previous exam- 
ple, we can not go further, but we can interpret the constants in the non-dimensional 
logistic equation. 

In examining Eq. 5.15, it would seem that we have reduced the model to a single, 
spectacularly uninteresting special case: r = 1 and K = 1. How could such an equation 
represent all the parameter cases that the original (Eq. 5.13) could? If we solve this 
equation, we will obtain the classical, sigmoidal shaped curve that asymptotes at 1.0. 
Suppose we wished that result to represent a population of deer that has a carrying 
capacity of 500? Since we defined fi = K, we have from our original definition 
N = fifi = NK. So, to convert numerical results in the unitless N space, we simply 



94 Cha~ter 5 Quantitative Model Formulation: II 

multiply N by K to recover the original variable with biological units of [numbers 
deer]. In other words, N is interpreted as the fraction of the carrying capacity. But 
since deer have a certain rate at which they reproduce, we need to be able to convert the 
time at which the deer population reaches a certain value. We use the same logic. We 
defined t' = l / r ,  so t = it'= i/r. So, if the deer population has r = O.l/year, to recover 
time in physical units (years), we scale 2 by multiplying by l / r  = 10. This stretches 
i. If the population growth was faster (r  = 3/year), we shrink ? by multiplying by 
113. At the end of the day, non-dimensionalization has revealed to us that there is only 
one logistic equation! We can recover all the others that might apply to a particular 
population by stretching or shrinking our dimensionless time and state variable. This 
type of analysis has extensive application in fluid dynamics, where a veritable bestiary 
of dimensionless quantities help engineers design everything from hydroelectric dams 
to space shuttles to the decorative fins on American sedans. 

Buckingham Pi In 1914, Edgar Buckingham proved a theorem that says: Given a 
physical relationship with P parameters and D dimensional units, the number of in- 
dependent dimensionless groups is P - D. In other words, if the original model has P 
parameters, it can be reduced, without changing the mathematical behavior, to a model 
with P- D parameters. Our analyses demonstrated this Buckingham Pi Theorem. The 
logistic model has 2 parameters (r and K) and 2 types of units (time and numbers). 
We non-dimensionalized the model to have 2 - 2 = 0 dimensionless parameters. The 
non-biological, hypothetical example had (table on page 92) 4 parameters and 3 types 
of units: t, x, and y. We reduced the equation to 4 - 3 = 1 dimensionless parameter 
(all. 

The above analyses converted a specified model with biological units and param- 
eters into one without units and a reduced number of dimensionless parameters. We 
can run the logic in the reverse direction. Suppose we don't know the exact form of 
the model, but only that certain quantities (e.g., numbers of deer, maximum numbers 
of deer) are required. Knowing the number of variables in the problem and the number 
of fundamental units (clearer in physical problems than biological ones), the Bucking- 
ham Pi Theorem states we can write the model using P - D independent parameters. 
We also know that the left-hand side of the differential equation must have identical 
units as the right-hand side. This condition places constraints on how we can combine 
our fundamental variables: they are expressed as powers of the units and they must 
combine to be unitless. Thus, for example, if (to preserve consistent units) we must 
eliminate a dimension, then the variables and parameters must interact as a quotient 
and not as a subtraction. While not a magic wand for automated model formulation, 
this procedure does allow us to eliminate a large number of possibilities (e.g., subtrac- 
tion) and certainly is a good starting point for making the transition from a qualitative 
model to quantitative models. If nothing else, it forces us to actually compute the units 
in the model, thereby taking an important verification check. 

The Downside It all sounds wonderful, and it is, until one wants to use the model to 
address the effects of a specific biological parameter, independently of the other model 
parameters with which it is complexly co-mingled in a dimensionless constant or vari- 
able. For example, in the hypothetical model (Eq. 5.17), we might be particularly 
interested in the system response to changes in parameter a, but in the dimensionless 
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version, this parameter is subsumed in complex relationships with the variables k and 
j (e.g., y = j, [&/ac]). So, without knowledge of the underlying biological parameter 
dimensions, we can not do these separate analyses. 

5.2.3 Conservation Principle 

If a model uses a conserved quantity (e.g., g C) all of whose sources and sinks are 
accounted for, then a state variable can be eliminated from the system of equations. 
Suppose a fixed amount K of carbon flows among three state variables (xi) ,  each de- 
scribed by an ODE. Since K = xl + x2 + x3, and K is a constant, we can rewrite any 
one of the xi in terms of the other state variables and total C: x3 = K - xl - x2. x3 
effectively becomes an auxiliary variable and we can substitute K - xl - q anywhere 
x3 is used. 

5.2.4 Rules of Thumb 

In addition to the above approaches which help us understand and verify the cor- 
rectness of the equations, there are several maxims of model formulation that can be 
generally applied. 

1 .  Know the purpose. Is the model meant to understand, predict, or control? Or is 
it some combination of these? What trade-offs in design are necessary? 

2. Know the question. Study and understand the objectives, model question, hy- 
potheses, and available data. These give hints to answers of the basic questions 
to address in model formulation: How is feedback present in the system? Neg- 
ative feedback implies that the rate is a declining function of a state variable. 
Are thejow variables conserved? If yes, then all pathways must be expressed 
in the state equation and flows between compartments will be expressed in both 
state equations (gains in one, losses in the other). Do multiple factors control 
the process? If so, then we must write state equations that incorporate all the 
factors. 

3. Understand the objects. Every state variable (level or box in a Forrester dia- 
gram) must have an explicit ODE or FDE. Auxiliary and driving variables are 
not described with differential or difference equations. 

4. Reconcile the diagram with the rate equation. Out-bound material flow arrows 
are subtractions from the rate equation; in-bound flows are additions. 

5. Check the units. The units of every state equation (ODE or FDE) will be identi- 
cal on the left and right sides of the equality. 

6.  Extrapolate the functions. The rate equations must make sense for all legitimate 
values of their parameters and variables. Check that the function produces valid 
biological quantities (e.g., yields only positive concentrations) by examining 
extreme values (e.g., 0 and x -t oo) of the independent variables of the rate 
equations. 

7. Simplify the model. All things being equal, simple models are better than com- 
plex models, but understand when and why it is not always desirable to simplify. 
If it is possible, try these techniques: 

0 Reduce the equations to dimensionless variables. 
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0 Aggregate state variables. 
Exploit conservation principles. 

0 Use linear functions initially. 
0 Use descriptive, phenomenological representations before detailed, mech- 

anistic processes. When objectives or model failure require it, increase the 
level of details. 

0 Assume homogeneous space. 

5.3 Useful Functions 

~r = Yes. I need a drink, alcoholic, of course, afier the heavy sessions in- 
volving quantum mechanics. - Miller (1981) 

Many of the biological processes can be represented by a variety of equations (e.g., 
hyperbolic saturation as either Michaelis-Menten or Holling disc equation). Some are 
nearly identical in shape, but use different parameters. Choosing among these, unless 
there are theoretical reasons, is largely a matter of taste and the appropriateness of 
the normal interpretation of the parameters. For example, the half-saturation constant 
in Michaelis-Menten can be applied to either enzyme kinetics or animal foraging. 
However, the handling time parameter in the Holling disc foraging equation may not 
be a natural concept in enzyme kinetics. 

Figure 5.4 lists the equations and demonstrates the shapes of common nonlinear 
functions. In all curves and equations shown, y is the dependent variable and x is the 
independent variable. The plots do not show the behavior of the function for all x 
values. Beware of potentially undesirable y values for some values of x. For example, 
a straight line with a negative slope will have negative values if x is allowed to be 
sufficiently large. To avoid this, you must truncate (using a discontinuous function) 
the function to restrict y to desirable values. Most of the equations can be generalized 
by translating the curve along either the x-axis or the y-axis. To translate along the 
x-axis, add or subtract a value from the variable x. (This is illustrated in a few cases 
below.) To translate along the y-axis, add or subtract a value from the variable y (i.e., 
subtract or add from the left-hand side of the equations). Some equations range from 0 
to 1 .O; their shape can be complemented by subtracting the value from 1 .O. In the list 
that follows, the boxed letter refers to the letter in the graph in Fig. 5.4. Items without 
boxed letters are not graphed. 

Linear: 
y = kl + k2x 

If k2 is negative, then the y-axis intercept (kl) and the slope (K2) define the line, 
but note that the x-axis intercept may also have a biological interpretation (e.g., 
K in the density-dependent per capita function for growth rate). Note, if k2 < 0, 
be certain that negative values of y are acceptable, if not, truncate toy 2 0. 

Exponential: Shown in Fig. 5.4A, the equation is 

y = klekzx. 
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Figure 5.4: Plots of common nonlinear functions at different parameter values. Refer to 
the text for the meaning of the parameters. 
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Parameter kl  scales the y-axis intercept; k2 determines the shape: large values 
produce steep curves. 

Power: Shown in Fig. 5.4B, the equation is 

As with the exponential function, kl scales the y-axis intercept, and k2 deter- 
mines the steepness of the slope. If k2 < 0, the curve decreases. If k2 > 1, the 
curve is concave upward with an increasing slope. If 0 < k2 < 1, the curve is 
convex upward with a decreasing slope. k3 scales the height of the curve. This 
function is frequently used to represent allometric growth relationships. 

Saturation: Hyperbolic and Exponential: Shown in Fig. 5.4C, the equation for 
hyperbolic saturation is 

Parameter k3 determines a threshold on the x-axis below which the function has 
a negative value. This is useful when the function is used to model microbial 
growth to describe a threshold nutrient concentration below which no growth 
occurs. This is a case when a truncation is necessary to prevent nonsensical 
negative values. When k3 = 0, this function produces the classical Michaelis- 
Menten equation. kl scales the maximum value to which the function is asymp- 
totic. k2 is the half-saturation constant. 
Also shown in Fig. 5.4C is one example of the exponential saturation function 

where kl scales the maximum value and k2 determines the steepness of the curve 
(large values produce steep curves). When k2 is negative, the curve approaches 
kl from below. When k2 > 0 and x > 0, the function declines from 0. Notice 
that the exponential and hyperbolic functions produce similar shapes, but that 
the slope of the latter increases more rapidly at low x values. 
Both functions can be used for foraging functions or chemical dynamics. The 
exponential function is frequently used to model the growth of individual ani- 
mals. Note that neither function has an inflection point (where the slope changes 
from accelerating to decelerating). 
Another function that resembles the saturation functions is the hyperbolic tan- 
gent: tanh(x) = (ex - e-x)/(ex + e-X) (see Chapter 12). This function has the 
property that when x > 0, tanh(x) rises asymptotically to 1.0 and when x < 0, 
tanh(x) decreases asymptotically to -1.0. Therefore, it is useful for functions 
whose domain can take positive or negative values. This function is used widely 
in mammalian physiology as an empirical description of laboratory relation- 
ships. 
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Hill: Shown in Fig. 5.4D, the equation is 

This is a generalization of the hyperbolic saturation function (Rubinow and 
Segel 1991). kl scales the maximum value to which the function is asymp- 
totic; k2 is a shape parameter; k3 is analogous to the half-saturation constant. 
If k2 = 1, the Michaelis-Menten function is produced. If k2 < 1, a steeper 
version of the hyperbolic results. For k;? > 1, an "S-shaped" function results. 
With k2 = 2, this function can be used for Type 3 functional responses of preda- 
tors. For other integer values of k2 2 1, the Hill function is used extensively 
in enzyme kinetics for systems in which there exist several reactive sites on the 
enzyme (e.g., cooperative dimers; see Rubinow 1975). 

Richards Absolute: The standard Richards equation (Richards 1959) is a gen- 
eralization of the logistic growth equation (Fig. 5.4E) 

where xis normally interpreted as time, kl is the maximum to which the function 
is asymptotic, k2 is the value at x = 0, k3 describes the steepness of the curve, 
and k4 scales the location of the inflection point along the x-axis. The logistic 
curve is obtained when k4 = 1. 

Richards Relative: The Richards equation, as written above, describes the ab- 
solute values of a process (e.g., population size). A relative rate version exists 
that, when applied to population growth, describes the per capita rate of change 
of the population. The relative curve is shown in Fig. 5.4F and has equation: 

where kl scales the process on the vertical axis and k3 corresponds to the maxi- 
mum value (e.g., population size). k2 = 1 gives the classical logistic relative rate 
of a linear decrease in the rate as x increases. k2 < 1 gives a concave curve that 
shows a rapid decline at small x; k2 > 1 produces a convex curve and has a slow 
decline at small x, but a rapid decline at large x. Note that k3 is the intercept of 
the x-axis. 

Blumberg: Blumberg's equation (Blumberg 1968; Buis 1991), also known as 
the hyperlogistic, generalizes the Richards relative-rate equation by adding a 
fourth parameter. The curve for the relative rate is shown in Fig. 5.4G and its 
equation is 
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where kl scales the curve on the y-axis, k3 is the maximum value, and k2 and 
k4 are shape parameters. Be aware that when k2 > 1 and k4 < 1, the function 
is 0 when x = 0. This is illustrated in Fig. 5.4G (curve D) where the relevant 
curve decreases sharply to 0 when x < 1. Used as a relative rate, this function is 
useful in a wide range of models. 

Complemented Weibull: Shown in Fig. 5.4H, the equation is 

where kl scales the maximum value, k2 controls the point along the x-axis at 
which the function is approximately 0, and k3 is a shape parameter that specifies 
whether the function is concave or convex. It is a very powerful function that 
is useful in many situations including the probability of surviving from one age 
to another. It is related to the Richards equation. When kl = 1, the function 
ranges from 1 to 0. Consequently, a common form is the Weibull cumulative 
distribution function: 1 - y, which produces a positive relation between the x 
and y. This form behaves very much like the Hill equation (Fig. 5.4D); it has 
been generalized by Bradley and Price (1992). 

Triangular: Linear functions can be combined to represent processes with max- 
ima. Their use require truncation using discontinuous functions. The general 
formula is 

y = {  
kl + k2x if x c k3 
k4 - k5x if x > k3. 

Three examples are shown in Fig. 5.41. 

Maxima: Shown in Fig. 5.41, the equation is 

This produces a maximum by using the product of two functions: one increas- 
ing, the other decreasing with increasing x. To produce a function with a maxi- 
mum, we must have k3 < 0. For most purposes, using k2 = 1 fits a wide range of 
phenomena. Its primary attraction is its simplicity, but it cannot produce curves 
skewed toward large x. To skew curves to the right, use 

as shown in Fig. 5.45, curve E. 

Temperature Optimum: Many biological processes have a maximum that is 
skewed toward large values of x. Logan (1988) described the relation of tem- 
perature on a process as 

kl (X - k2)k3 ks-(x-kz) 
Y =  - exp k7 - - 

kf;3 + (X - k2)k3 ( ( k 5 +  1) 
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(Fig. 5.4K). The first expression on the right-hand side is similar to the Hill 
equation. kl scales the overall curve on the y-axis, k2 is the lower temperature 
at which the process is 0, k3 is a shape parameter for the rising part of the 
curve, k4 is roughly analogous to the half-saturation constant, k5 is the maximum 
temperature at which the process is positive, and k6 is the temperature at which 
the value of the process is maximal. Note that there are complex interactions 
among the parameters in this complicated function and that choices can be made 
such that some actual quantities (e.g., largest temperature for positive values) do 
not match the corresponding parameter definitions. 

Double Weibull: This function is the product of the Weibull distribution and its 
complement. It is shown in Fig. 5.4L and has the form 

The parameters have the same meaning as described above for the Weibull func- 
tion. This is one of the most flexible functions used in biological modeling. 

Trigonometric: (No graph). Extremely complex series of data over either time 
or space can be represented by the sum of general sine and cosine functions by 
choosing different values for mean, amplitude, phase, and angular frequency: 

Cubic Splines: (No graph). Another method for modeling complex data series 
is to fit adjacent subsets of the data (e.g., sets of four datum points) to separate 
polynomial equations: 

Cubic splines is such a method that uses a third order polynomial for each 
subset of the data and smoothly joins the separate cubic equations together. 
This method is used widely in microcomputer graphics applications and is be- 
ing more frequently used in dynamic simulation (Jprrgensen 1986; Coleman and 
Gay 1990). While good fits to data are possible, this method uses a relatively 
large number of parameters that do not have empirical meaning. 

Polynomials: (No graph). Sums of integer powers of the independent variable 
can produce complex forms: 

Rational Functions: (No graph). Even more complex forms are possible using 
rational functions of the form: 

MBS-CD contains the code SimCurveDisplay that makes it relative easy to 
generate families of curves like those in Fig. 5.4. )k 
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Figure 5.5: Flows with different units. 

5.4 Examples 

Below are four examples to illustrate the procedures of quantitative model formulation. 
The difficult problem is to go from a verbal or diagrammatic statement of the system 
(which may include data or functional forms for some processes) to the equations. 

5.4.1 Flows with Different Units 

This is a hypothetical example that does not apply to any particular biological system. 
Suppose we are modeling the dynamics of a compartment of phosphorus (P) and a 
compartment of carbon (Q). Phosphorus increases by a constant fraction at each time 
step and decreases as a third-order mass action effect between P and the square of Q. 
Carbon increases by a constant fraction each time step and decreases by a constant 
fraction each time-step. The conversion of C to P is a constant ratio (k). Normally, 
the expression bk would be represented as a single parameter. Figure 5.5 shows the 
Forrester diagram and equations. 

Since the state variables have different units, we must use a parallel model, with 
information flows between state variables and rates to indicate the interactions. The 
problem states that both variables increase by a constant fraction of their values. This 
implies a relative or per capita rate that does not change with the value of the state 
variable (i.e., it is not density-dependent). The equation is the product of a constant 
(the fraction) and the variable. The loss from P depends on the value of Q, and we use 
an auxiliary variable to represent that relation. The loss from Q is another constant 
fraction equation. 

5.4.2 Driving Variable 

Suppose a state variable has three inputs; two are constant rates and one is a fixed 
per capita rate. There are three outputs; one is a constant rate, one a fixed per capita 
rate, and one is a hyperbolic function of temperature that varies with time. Figure 5.6 
shows the Forrester diagram and equations. 

"Constant rate" implies a rate that is simply constant and does not involve any state 
variables. The absence of an information flow from a state variable to the rate illus- 
trates this assumption. We could have used any one of several functions to represent 
the hyperbolic relation noted in the problem. However, the implication of this rela- 
tionship is that temperature is the independent variable, which occurs in the exponent 
of e as shown in the equation. 
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Figure 5.6: Driving variable and multiple input and outputs. 

5.4.3 Riding a Bike 

This example illustrates feedback control when there is not an obvious physical unit 
that flows between compartments. The problem is to describe the dynamics of the 
front wheel of a two-wheeled bicycle when it is driven (a) with hands in the normal 
position (left hand on the left handlebar, right hand on the right handlebar) and (b) 
with hands reversed. 

When people learn to ride a bicycle using the normal hand position, they have 
learned how to implement a negative feedback control system. We will hypothesize 
that when the front wheel deviates from a fixed direction (assumed to be 0 degrees) 
toward the left, we put greater pressure on the left hand than on the right hand and 
thereby cause the wheel to move to the right. We do the opposite if the wheel deviates 
to the right. So, the problem and our hypothesis calls for a model that describes the 
dynamics of the wheel position and the pressure applied to each hand. 

Figure 5.7 shows a Forrester diagram and equations when the hands are in the 
normal position. It is assumed that a deviation of the wheel to the left is a negative de- 
viation and that to the right is positive. r and 1 are the pressure applied to the right and 
left hands, respectively. D is the deviation of the wheel from the desired orientation of 
0 degrees. a, b, and c are positive constants of proportionality. 

If the hands are reversed, it is not clear how the brain is confused, but there is no 
doubt that it is difficult to keep the bicycle upright. Apparently, if the wheel devi- 
ates to the right, the eye-brain system tells the body to increase pressure on the right 
hand regardless of its position (i.e., not the hand on the right handle bar). With hands 
reversed, this is a positive feedback system because deviations to the right are accen- 
tuated by increased pressure on the left handlebar (via pressure on the right hand). We 
can model this by multiplying dD/dt by -1. 

5.4.4 Brewing Beer 

In its simplest form, brewing beer involves putting sugar and yeast together in a vessel 
so that alcohol is produced as a by-product of the metabolism of sugar by yeast. Actual 
beer fermentation is much more complicated than this, but this will serve as an initial 
conceptual model. Two important facts associated with this situation are: (1) there 
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Pressure 

Figure 5.7: Feedback control for riding a bicycle. 

is only a finite amount of sugar at the beginning and it is depleted over time, and (2) 
excessive alcohol will kill yeast cells. 

To model this, we analogize the relation of yeast and sugar to a predator-prey or an 
enzyme-substrate interaction. We can also think of the effects of alcohol molecules 
on yeast cells in a similar way: alcohol "preys" on yeast. For the purposes of this 
example, we assume that we measure yeast in terms of cell counts, sugar in mg-C- 
sugarlliter, and alcohol as mg-C-alcohol/liter. Therefore, to account for incommensu- 
rate units, the Forrester diagram (Fig. 5.8) shows parallel models. To keep the mathe- 
matics simple, we assume that the rates of sugar consumption and yeast mortality due 
to alcohol follow mass action laws. We also assume that the rate of alcohol production 
is proportional to the rate of sugar consumption. 

In Fig. 5.8, S is sugar content in mglliter, A is alcohol content in mglliter, and Y 
is yeast cells per liter. The auxiliary variable S:Y Mass Action is the equation US Y. 
Since this expression occurs three times in the model, assigning it to an auxiliary 
variable simplifies model presentation. The parameters are defined as: a = rate of 
sugar breakdown, b = fraction of sugar breakdown that yields alcohol, f = fraction of 
sugar breakdown that yields C02, c = rate of yeast cell formation per unit breakdown 
of sugar, and d = death rate of yeast cells per unit of alcohol. 

5.5 Exercises 
1. Verify that the recursive algorithm for integrating the area under a derivative 

curve of the parabola gives correct results (up to the size of Ax). Compare 

. ' , ~ " " . . . t  - 
dt 

uvu r W J  u r 

s Y Sugar I 

..................... 

Alcohol dA - = abS Y 

Figure 5.8: Alcohol production by yeast in beer fermentation. 
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integrals calculated according to the methods of Section 4.2.2 with Ax = 1.0 
and Ax = 0.5. 
Repeat the above with dyfdx = 0 . 1 ~ .  
Write three ODES describing the dynamics of water molecule formation (units: 
number of H20 molecules) from a compartment of Oxygen (units: number of 
0 atoms) and a compartment of H (units: number of H molecules). Define any 
parameters you need (including units) and verify that the overall equation units 
are correct. Draw the corresponding Forrester diagram. 
Rearrange Eq. 4.21 into the standard form of a hyperbolic relation and verify 
that the units are correct. 
Add a time-varying temperature effect to the decomposition component of the 
ecosystem carbon flow model (Eq. 5.3). Let daily temperature vary sinusoidally 
over the year according to the specifics of exercise 10. The effect of tempera- 
ture on decomposition rate, for simplicity, follows the right-skewed maximum 
function. 
An alternative model for riding a bike is 

d r  -ar i f D < O  
dt 0.0 otherwise 

dl bl i f D > O  
dt 0.0 otherwise 

dD 
- = c(1- r). 
dt 

This model also causes the deviation (D) to stay near 0. What other dynamical 
behavior does it have that suggests that it is a poor alternative? Simulate this 
model and compare with the original model. 
The simple bike riding model may not capture basic biological and psycholog- 
ical mechanisms. Specifically, will humans react the same way to large devia- 
tions as to small deviations? What does the model assume? Make a simple x-y 
plot that depicts the model assumption and a more realistic alternative. Write a 
new model (possibly using the functional forms in Section 4.5) that incorporates 
the new hypotheses. Does the new model produce more realistic dynamics? 
Modify and simulate the beer equations so that yeast growth uses the equation 
for Temperature Optimum shown in Fig. 5.4, curve A. Let temperature oscillate 
around 20" C with an amplitude of 8"and a period of 1 day with a peak at 12:OO 
noon. Choose other parameters so that sugar is exhausted in about 5 days. 
Modify the beer equations and Forrester diagram so that a conserved quantity 
(e.g., g C) flows among the three compartments. 
Write the cosine function for daily temperature data that cycles over one year 
with a maximum of 55°F at March 15, and minimum of 5°F. 
Use the MBS-CD code SimCurveDisplay to generate families of curves for 
the following functions. 

a) Maximum with peaks near x = 30,50,70, and 90. 
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The Weibull similar to curve C in Fig. 5.4 with maxima at y = 2.0,1.0, and 0.5. 
Triangular for the 3 curves as shown in Fig. 5.4. 
The rational function: 

(Only 1 curve to display.) 
A sum of two cosine functions, one of which corresponds to the curve in 
Exercise 10, the second that wiggles around the first according to a weekly 
cycle with mean equal to the daily value and an amplitude of 8 OF. I.e., a 
high amplitude, low frequency curve plus a low amplitude, high frequency 
curve. (Only 1 curve to display.) 
On a single graph, compare 

Try several values of a to closely approximate y 1 

12. We often wish to use functions with specific properties. It is useful to be able 
to prove that a given function has a particular property (e.g., minima, maxima, 
inflections). 

a) The second-order Hill equation has the form: y = x2/(a + x2). Show that 
this equation is "sigmoidal", i.e., that there is an inflection at x such that 
(2ax2 + 3x4) = a2 

b) Without resorting to numerical approximations, sketch the graph of the 
first and second derivative of the Hill equation. 

13. Non-dimensionalize the Lotka-Volterra equations (Eq. 4.23). 
14. Non-dimensionalize the chemostat equations (Eq. 4.27). 
15. Non-dimensionalize the model you created in Exercise 6. 
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Numerical Techniques 

The computing scientist's main challenge is not to get confused by the complexi- 
ties of his own making. - Dijkstra (1988) 

6.1 Mistakes Computers Make 

S OME PEOPLE THINK computers make mistakes whenever their behavior departs from 
human expectations. In this sense, their mistakes can be disturbingly frequent, 

especially when they program in C. Often, the correct solution is to alter our expecta- 
tions, but this does not always work because inherent hardware limitations can prevent 
computers from being correct. In this chapter, we discuss what these limitations are 
and how to work around them. 

Recall that we interpret a finite difference equation as an exact representation of 
the biological system. Therefore, the numerical solution is also exact and not an ap- 
proximation. Differential equations are different and their numerical solutions are 
only approximate and are, therefore, error prone. In the remainder of this chapter we 
examine various problems, considerations, and techniques related to the numerical so- 
lutions of differential equations. We will emphasize solutions to ordinary differential 
equations: those that do not describe spatial processes. However, we will also de- 
scribe one method for solving partial differential equations by converting them to a 
set of ordinary differential equations. We begin with a general discussion of errors 
in numerical techniques, but to understand and appreciate these, we must realize how 
different kinds of numbers are represented and stored in computers. 

6.1.1 Representations of Numbers 

For our purposes, a bit is the logical representation of the electrical state of a computer 
component called a logic gate. A bit cannot be decomposed into a set of lower-level 
states or machine components. All other data types (e.g., integers, real numbers, etc.) 
are defined in terms of bits. In most scientific programming, we are interested in three 
data types: characters, integers, and real numbers. All data types must be stored using 
a finite number of bits, and this fact produces the opportunity for error. 
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In most programming languages, a character is a set of eight bits, also known as a 
byte. Bit 0 is called the least sign$cant bit, and bit 7 is called the most sign$cant bit. 
Characters are distinguished by the patterns of 0s and 1s in the eight positions. Since 
each of the eight positions can be in one of two states (0, I), a byte or character can 
represent 28 = 256 different numbers (0-255). Depending on the context, the value of 
a character can be interpreted as a number (an 8-bit integer) or as a printable character. 
If it is interpreted as a character, then a code is required to convert the bit pattern into 
alphanumeric symbols (e.g., "A"). The most common code is the ASCII (American 
Standard Code for Information Interchange) code. 

Most programming languages also define an integer data type. The number of 
bits used for integers depends on the hardware to which the programming language 
compiler is targeted. Most current (2004) personal computers use 32 bits for inte- 
gers; minicomputers and supercomputers use 64 or 128 bits. These values are shifted 
upwards as technology advances. The values are determined by the word size of the 
computer, which in turn is determined by the size of the databus on the motherboard 
(i.e., the number of "wires" that carry data from the CPU to other components such as 
memory chips). More powerful computers have wider databuses. However, compilers 
and programs have to be written in such a way that they can be ported to different 
hardware platforms. For this reason, the sizes of standard data types (e.g., signed and 
unsigned integers and characters) are defined by the compiler, and in the end, it is the 
programmer's responsibility to write portable code. 

A 16-bit integer can represent 216 = 65536 different numbers; a 32-bit integer has 
2147483647. Basic integer arithmetic operations such as addition and multiplication 
use standard binary arithmetic rules. For example, 1+1=8, and carry a 1 to the next 
higher position. Since there are only 16 bits, a problem occurs when we attempt to 
describe a number larger than 65535. To see this, consider a simpler, hypothetical case 
where we use only three bits to represent integers. Such a number might be: 881 + 
181 = 118 (in decimal: 1 + 5 = 6). Since only a finite number of bits can be reserved 
to hold the result of an arithmetic operation, it is possible for overflow to occur (e.g., 
11 1 + 1 = ???). A compiler can resolve this dilemma by wrap around (result equals 
888), or truncation (result equals 11 1). In either case, we cannot represent numbers 
larger or smaller than those that can be represented in the number of bits reserved for 
the data type. 

Similar problems occur in floating point numbers. A floating point number is a 
real number (i.e., not an integer) represented in such a way that the decimal point can 
float so that a fixed number of significant digits is always represented, no matter how 
large or small the absolute value of the number. This is simply the scientific notation 
using powers of base 10 (e.g., 1.234 x A floating point number is composed 
of a mantissa (e.g., 1.234) and an exponent (e.g., -2), either one of which may be 
positive or negative. Exponents are integers, while the mantissa is interpreted as a 
real number scaled by the exponent. Both of the components must be represented 
as a bit pattern. Consequently, not all decimal numbers can be represented. The 
number of bits used to represent the exponent determines the size of the number that 
can be represented. The number of bits used for the mantissa represents the precision 
(number of significant digits) of the number. The standard method of coding is the 
IEEE Standard 754. A single-precision floating point number (i.e., float in C) is one 
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Table 6.1: Format parameters for single and double precision numbers in the IEEE 754 
standard for floating point numbers. Shown are the number of bits used for mantissa and 
exponents; the approximate number of decimal significant digits, and the maximum and 
minimum numbers. 

I Mantissa Exponent Sin. Digits Max Min 
Single 1 23 8 9 3 . 4 0 3 ~ 1 0 ~ ~  1 . 1 7 5 ~ 1 0 - ~ ~  

Double I 52 11 15 1.798 x lo308 2.225 x 

that uses a total of 32 bits (1 for the mantissa sign, 23 for the mantissa, and 8 for 
the exponent). (The exponent does not have an explicit sign bit; the upper half of the 
possible range is assumed to be positive, the lower half assumed to be negative.) A 
double-precision number (double in C) uses a total of 64 bits (52 for the mantissa, 
11 for the exponent, plus the sign bit). While twice the computer memory is required 
to store a double-precision number, we gain considerably in the size and precision of 
the numbers we can use. Table 6.1 shows the basic parameters for single- and double- 
precision numbers. 

Since a mantissa and an exponent are simply a series of bits like integers, oper- 
ations on these components have the same possibility of overflow. If the exponent 
is negative and the operation on the exponent causes an overflow in the exponent bit 
pattern, the condition is calledfloating point underjlow, since the operation attempted 
to create a number smaller than that which could be represented. If the exponent is 
positive and the exponent bit pattern becomes too large, then the floating point number 
overjlows. When either of these conditions occurs, the results are disastrous and the 
wise programmer will arrange to stop execution. Mantissa errors are more subtle, but 
the results can be more insidious. 

6.1.2 Round-Off, Truncation, and Propagation Errors 

Errors arise in numerical calculations because of the limited computer memory avail- 
able to store floating point numbers and the nature of the algorithms. Storage lim- 
itations in the mantissa produce overflow or underflow and these become round-off 
errors. floating point storage round-off occurs because the number of significant dig- 
its in floating point numbers are limited by the number of bits in the mantissa. This 
error occurs most frequently when we add a very small number to a large number. For 
example, suppose we wish to add 1 x + 1.0 x lo4. To accomplish this we first 
align the exponent by rewriting the smaller number so that it has the same exponent 
as the larger number. This is 0.000001 x lo4, so the number has been changed from 
using one significant digit to six significant digits. In most computers, this is a mi- 
nor increase in digits. However, if the smaller number is many times smaller than the 
larger (e.g., lo-" + 10l0), then we can come to the point where aligning the exponents 
will require more bits in the mantissa than are available. Since we cannot use more 
bits than defined for the data type, the computer hardware must resolve the dilemma. 
Modern floating point chips that implement the IEEE 754 provide the programmer the 
ability to determine what method to use. The choices include always round up, always 
round down, or round to nearest. The most accurate (and default) method is to round 
to nearest. 
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Round-off issues can have important implications for basic scientific program- 
ming. Below is pseudo-code for computing the mean of N numbers stored in array 
A [ i ] .  On the left, is the standard method, and on the right is a method (from GSL) 
that minimizes the effects of adding possibly small numbers (ACil) to large numbers 
(cumulative mean in "Bad"). 

mean=@. 8 ; gmean=@.@; 
for (i: 1 -1 N) ( for (i: 1 -1 N) { 

mean = mean + A[i] gmean = gmean + (ACi] -gmean)/i 
1 I 
mean = mean/N 

Two other kinds of errors occur depending on the operations used in the algorithm. 
These errors occur regardless of the storage constraints. Numerical algorithms often 
have to calculate the value of an unknown function. An important mathematical tool 
for representing an unknown function with some arbitrarily close approximation is an 
infinite series (e.g., the Taylor series). Truncation errors occur because the algorithm 
approximates a function as an infinite series truncated after the first n terms. These 
kinds of approximations occur in many algorithms, but the value of n is specified by 
programmer/analyst so the error is easily controlled. Nevertheless, it may be costly in 
computer time to reduce the error. Other occurrences of truncation error is approxi- 
mating the rate of change of a differential equation. As we see below in discussing the 
solution of ODES, minimizing truncation error in this problem is not simply a matter 
of increasing the terms in a sum (although that is involved) and considerable effort has 
gone to develop alternative approaches. Propagation errors are errors made at every 
stage of an iterative algorithm and that accumulate over the entire solution. For ex- 
ample, even with sophisticated methods to reduce truncation error at each time step in 
the solution of a differential equation, some error remains and these errors compound 
over many time steps. 

In an iterative procedure, these sources produce two types of error: local error (at 
every solution step) and global error (deviation from the true solution). Local error 
due to truncation can be estimated by increasing the number of terms used in the 
approximation (e.g., the solution step size At) and calculating the relative change (or 
improvement) in the answer. Global error usually cannot be measured since in general 
we do not know the true solution, but it can be estimated using additional terms in the 
approximation (Sec. 6.4). 

6.2 Numerical Integration 

In Chapter 4, we noted that a differential equation and its solution are different mani- 
festations of the same model. The former portrays the functional dependencies of the 
rates of change; the latter form gives the values over time. The integral is the anti- 
derivative, and it is possible to go back and forth between the two forms. This concept 
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Figure 6.1 : Slope field and two true solutions of a differential equation. 

is central to understanding the approximations used to obtain numerical solutions to 
equations that cannot be solved analytically. A slopeJield is a concept that unites the 
two forms. 

6.2.1 Slope Fields 

We restrict attention to ordinary differential equations in which we have simple deriva- 
tives with respect to time. The solutions of these types of equations can be plotted in 
a two-dimensional space in which the y-axis is the dependent variable and the x-axis 
is time (t). One point in this space [i.e., a (y,t) pair] satisfies the solution equation. 
Furthermore, taking the derivative of the solution function (generally unknown) at a 
point on the time axis will give the numerical values of the original differential equa- 
tion for the particular (y, t) pair. If we calculate the derivative at many of these pairs, 
we will produce a field of slopes (i.e., the slope field). There are multiple slopes at 
each t because each different initial condition produces its own trajectory of slopes. 
Figure 6.1 shows the slope field for one differential equation. 

Also shown in Fig. 6.1 are the true solutions for this equation (solid lines). Usu- 
ally we do not know the true solution, but we can compute the slope field from the 
differential equation. The problem in numerical approximation of the true solution is 
to find the subset of slopes in the slope field that corresponds to the true solution. The 
subset of particular interest is the sequence of slopes that begins at the known initial 
condition. There are an infinite number of true solutions (one for each initial condi- 
tion) and, therefore, there are infinitely many incorrect sequences. Our problem is to 
stay as close as possible to the correct sequence that lies on the solution curve. Below, 
we discuss two different methods. 

6.2.2 Euler's Method 

All the methods to solve the differential equation are similar to the simulation models 
discussed thus far. Given that we are starting at a solution point (the initial condition), 
the strategy is to move from the initially correct slope in the slope field to the next 
correct slope, from there to the next correct slope, and so on. 

The Euler method is the simplest, most straightforward approximation. This for- 
mula was derived in Chapter 4: 

YI+AI yt + At f (Yr, t). (6.1) 
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Time 

Figure 6.2: A series of Euler approximations (straight lines) to a true solution (curved line) 
over At solution intervals. 

where we specify t explicitly in f(yt ,  t) for those models that use driving variables 
(e.g., daily temperature) and need to refer to the current time. 

Figure 6.2 shows the relation between the correct solution and the Euler approxi- 
mation. The solid line is the true solution; the straight-line segments are the approxi- 
mations. The dotted lines show why the approximations of this function underestimate 
the true solution. The slope at t = 0 is exactly correct since the solution at that time 
is simply the initial condition. Since the true slope is continuously increasing (in this 
function), but our approximation over At is not, the approximation is too small. The 
approximation continues to get worse (error propagation), because the new slope at 
t + At uses the approximated value of y, not the true y at that time. This yields a slope 
calculation from the differential equation below that of the true solution at t + At. 

Typically, we must solve several differential equations simultaneously and these 
equations are a system in the sense that their derivatives are functions of the other 
state variables. For example, a model of predator and prey populations is 

In the Euler method, these continuous equations are replaced by the approximations: 

Because both derivatives in Eq. 6.2 depend on the current values of both state vari- 
ables, the expressions in brackets on the right-hand sides of Eq. 6.3 must be computed 
before variables are updated so that the order of the equations does not influence the 
calculations. Hence, we should always first calculate the rates (derivatives), then up- 
date the states. 

MBS-CD contains SimTemplate-Euler that provides a basic template 
for this method. 

6.2.3 Runge-Kutta Basics 

The primary advantage of the Euler method is its simplicity. But it has many disad- 
vantages; the foremost among them is that it is inefficient: very small At and many 
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Figure 6.3: Second-order Runge-Kutta integration. AZy is the second estimate of the rate 
of change based on the midpoint value y:; y , , ~ ,  is obtained by weighting A2y and adding to 
Yt- 

iterations are required to obtain acceptable accuracy. Acceptable accuracy is a relative 
term, of course, and depends on the objectives of the model. Nevertheless, there are 
many other, better methods. As a general method with wide applicability, the Runge- 
Kutta (RK) method has many advantages. It is easy to code; its numerical behavior 
is less sensitive to the size of At than the Euler method. In addition, it is remarkably 
efficient: a large At provides accurate solutions. 

In contrast to the Euler method, which uses a single evaluation of the derivative 
to extrapolate into the future, the Runge-Kutta method uses several estimates of the 
slope of the function. As a result, the Runge-Kutta is actually a family of algorithms in 
which the members are distinguished by the number of slope (derivatives) calculations 
performed and weights given to those slopes. The more derivatives calculated, the 
more accurate the method by reducing truncation error, but at the expense of comput- 
ing time. When the number of derivatives computed is two, we have the second-order 
Runge-Kutta (RK-2, also known as the mid-point method). 

RK-2 is diagrammed in Fig. 6.3. Symbolically, the algorithm is as follows. Aiy 
refers to one of several derivatives. 

1. Calculate derivative 1 using current solution and then first tentative solution 

A1y = f (yt, t)At 

0 y1 = yt + A1y/2 (Tentative step based on 112 time step.) 

2. Calculate derivative 2 using tentative solution 1. 
A2y = f(yl, t + At/2)At 

(No further tentative steps needed.) 

3. Calculate new value for y by combining the previous Aiy with different weights. 

RK-2 does not use the first derivative calculated (i.e., it has a weight of 0). The nu- 
merical calculations for one time step of the RK-2 on the equation dyldt = ay, with 
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Table 6.2: Comparison of Runge-Kutta and Euler methods solving dyldt = ay, a = 0.5, 
At = l .O,OS,  0.25. 

Euler Euler Euler RK-2 RK-4 1 
Time At = 1.0 At = 0.5 At = 0.25 At = 1.0 At = 1.0 True 
0.0 10.0 10.0 10.0 10.0 10.0 10.0 
1.0 15.0 15.625 16.0181 16.2500 16.4844 16.4872 
2.0 22.5 24.400 25.6579 25.3900 27.1735 27.1828 

y(0) = 10.0, a = 0.5, At = 1.0 are: 

A1yt = (0.5)(10)(1.0) = 5.0 

y: = 10 + 5.012 = 12.5 

A2yt = (0.5)(12.5)(1.0) = 6.25 

A*yt = 5.0 0 + 6.25 . 1 = 6.25 c Weighted ~ ' y  

yt+~t = 10.0 + 6.25 = 16.25 

Compare this estimate with the true solution: yl.0 = 16.4872. 
The fourth-order Runge-Kutta uses 4 calculations of the derivatives (RK-4). The 

basic steps in this method are listed below . 
calculate derivative 1 using current solution and then first tentative solution 

A1y = f(yt, t)At 
y1 = yt + A1y/2 (Tentative step based on 112 time step.) 

Calculate derivative 2 using tentative solution 1 and then second tentative 
solution. 

A2y = f (yl, t + At12)At 
y2 = yt + b2y/2 (Tentative step based on 112 time step.) 

Calculate derivative 3 using tentative solution 2 and then the third tentative 
solution. 

A3y = f (y2, t + Atl2)At 
y3 = yt + A3y (Tentative step based on 1 whole time step.) 

Calculate derivative 4 using tentative solution 3. 
= f (y3, t + At)At 

Last tentative solution not needed. 
Calculate new value for y by combining the previous Aiy with different weights. 

A*yt = $(A1y + 2(A2y + A3y) + A4y) 
Y t + ~ t  = Yt + A: 

MBS-CD contains SimTemplate-RK4. c with code that uses the GNU Scientific 
Library (GSL) functions for solving ODES using Runge-Kutta 1 

Table 6.2 compares the accuracy of the Euler method with second- and fourth- 
order Runge-Kutta and the true solution. This illustrates that (1) all methods become 
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less accurate over time, (2) the Euler method becomes more accurate as At decreases, 
(3) the Euler method is less accurate than the Runge-Kutta method even when the 
methods use the same number of derivative calculations [e.g., Euler (At = 0.5) versus 
RK-2, and Euler (At = 0.25) vs RK-41, and (4) RK-4 is remarkably accurate for this 
simple ODE. 

6.3 Numerical Instability and Stiff Equations 

Some numerical methods applied to specific equations may produce answers in which 
errors due to round-off interact with algorithm truncation to produce large errors that 
increase as the solution unfolds. Such methods are "unstable" and are obviously unde- 
sirable: one obtains "interesting" dynamics (i.e., oscillations) that have nothing to do 
with the true behavior of the model. One may envision instability arising because the 
solution jumps around in the slope field, possibly alternating on either side of the true 
solution with increasing deviation. In most cases, decreasing the step size will reduce 
the rate of increase of these errors. Desirable integration methods are those that reduce 
the errors more effectively at large step sizes. RK is generally more effective for many 
more problems than Euler, but RK fails for certain equations. 

A prime example of these are stif equations. Stiffness can arise when the equa- 
tions use several, very different time scales. Different time scales in equations often 
cause the solution algorithm to add very large numbers to very small numbers. This 
is a situation that produces large round-off and truncation errors. Some examples of 
systems whose differential equations may be stiff are: 

1. Algal Nutrient Uptake and Cellular Division: Nutrient uptake is a rapid pro- 
cess that occurs over microseconds; cell division requires several hours (Abbott 
1990). 

2. Photosynthesis and Enzymatic Reactions: Oscillating light levels will produce 
a rapid change in enzyme kinetic parameters but a relatively slow change in 
photosynthesis at the leaf level (Gross 1982). 

3. Rotating Rocket Orbiting Earth: The rocket rotation is fast compared to the 
orbiting time (Rice 1983). 

4. Refinery Control: Chemical reactions occur rapidly compared to the tempera- 
ture response of the large vats (Rice 1983). 

Additional examples from the physical sciences can be found in Brackbill and 
Cohen (1985). There are two broad approaches to solving this problem of multiple 
time scales. The first method is most applicable to computer simulation in which 
we create submodels that correspond to the subsystems having different time scales. 
For example, we could build a model of nutrient uptake and a separate model of cell 
division. Integrating the dynamics of the submodels is a problem. The usual approach 
is to build a simulation program that has a global clock controlling all processes. At 
fixed, large intervals of the clock, a subroutine to update the slow time scale submodel 
is executed. At smaller intervals, the subroutine for the fast time scale submodel is 
executed. Effectively, this approach assumes that between the large intervals, the slow 
process does not occur. However, as exemplified by the cell division problem, the 
two processes depend on each other. Since the fast submodel generates many values 
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between executions of the slow submodel, the modeler must decide which value(s) 
will be used to influence the slow process. Should it be the average value, the final 
value before execution of the slow submodel, the mid-interval value, or the integral of 
all values over the time interval? While there are, as indicated, problems arising from 
this approach, it has the benefit of forcing the modeler to propose specific hypotheses 
for each of the subsystems. In essence, this approach forces us to explain the origin of 
the time scales by modeling the subsystems explicitly. 

The second approach comes from physics and does not attempt to identify and 
model specific subprocesses that account for the existence of the time scales. An 
example of this is a rotating rocket that orbits the earth. From a physical perspective, 
the complex motion is a result of continuous forces acting on the rocket: angular 
momentum, gravity, and so on. Rather than modeling these as separate subsystems, 
a numerical approach is to find a better method of integrating the equations. The 
problem of stiff equations in this context arises simply because the parameters in the 
system of ODES vary over several magnitudes. Press et al. (1992) give a concrete 
example. Suppose we have the following differential equations: 

Mathematically, stiff equations are a practical problem in linear systems such as this 
when all the eigenvalues are negative and the largest eigenvalue is very much larger 
(at least 10 times) than the smallest eigenvalue. (See Chapter 9 for an explanation of 
these terms and how to approximate nonlinear systems by linear equations.) For the 
above equations, the ratio of smallest to largest eigenvalues is 1000, well above the 
signature for stiffness. Without going into details, these equations produce solutions 
for u and v that are the sum of negative exponentials, one of which is e-looO'. This 
term requires a very small At to accurately approximate the solution (too large a At 
will miss the dynamics caused by this term by "stepping over" the changes). There are 
two possible solutions: (1) decrease the step size appropriate to the fastest time scale, 
and (2) use a different numerical method. Solution (1) is inefficient, but for many 
biological simulations this is not an important issue, especially as desktop computers 
become faster. Option (2) is feasible since many good algorithms are available (e.g., 
implicit methods), but one must choose the proper method for the problem at hand, 
and the methods are more complex and difficult to program than RK or Euler. The 
programming problem is not critical as libraries of numerical functions in all common 
languages become available (Rice 1983; Press et al. 1992; Galassi et al. 2001). 

In conclusion, time scales and stiff equations are a potential problem because bio- 
logical dynamics occur over many different time scales. It is advisable, when studying 
equations with which one does not have much previous experience, to monitor the net 
rates of changes of each state variable. The relative net rates of change should stay 
within reasonable bounds. As a very crude check, if (l/xi)(dxi/dt) > 0.2 in any time 
step, then you should consider reducing the time step or using methods developed for 
stiff equations. At the least, during preliminary modeling stages, the modeler should 
vary the simulation time step over a wide range to determine the presence of spurious 
behavior. 
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6.4 lntegrating ODEs with Variable Time Steps 

Using small time steps to deal with stiff or nearly stiff equations can be inefficient 
because small steps are not always needed. At times, all state variables are changing 
slowly and large time steps are appropriate and desirable. A way to accommodate this 
situation is to allow the time steps for integration to vary according to the most rapidly 
changing variable. Coleman and Gay (1990) advocate this for physiological systems 
using Euler integration. Given the dramatic efficiency of RK-4, a better solution is to 
allow RK time steps to be variable (Press et al. 1992). In this section, we describe how 
to do this. 

The simplest approach to optimizing the time step for any integration method is 
to calculate, at every iteration, the estimate for the next value using the current time 
step and an estimate using a smaller time step. If these differ by an unacceptable 
amount, then the truncation error is too great and a smaller step size is needed. This 
test is repeated as many times as necessary within the current time step until the error 
criterion is satisfied. Of course, the penalty for choosing a smaller but more accurate 
time step is that we must perform additional calculations of the derivative. 

For the Euler method, the calculations are 

Y t + ~ t  = Yt + Atf (yr, t) c full step 

The absolute (global) error estimate is 

and the error relative to the current magnitude of the state variable is 

Instead of one derivative calculation, the above scheme requires two. While this for- 
mula is useful, we can take it one step further. Given this calculated e ~ ~ ,  we can 
calculate another A't which is the time step needed to exactly produce the target or 
desired error. This permits us to both reduce the time step when the error is too large 
and increase it when the error is smaller than needed. To do this, we need to compute 
the largest step possible that does not produce error larger than desired. For reasons 
we will leave as an exercise, the error estimates are proportional to ( ~ t ) ~ .  But we use 
this fact to note that if eAt K ( ~ t ) ~ ,  then there is a target error proportional to some 
other time step: ei, K (~'t)'. Using these two proportionalities, we have 

where ei, is the acceptable error specified by the modeler and A't is the appropriate 
time step to use. 
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This approach also applies to RK-4, but each of the four steps must be performed 
for both the full time step and the two half time steps. As with the Euler method, we 
must also apply the two calculations to each state variable at each stage. Therefore, 
in the step-doubling method for RK-4, we must calculate the derivative 11 times, as 
compared to 4 for the nonvariable method. 

Rather than discuss this approach further, we briefly mention the Runge-Kutta- 
Fehlberg (RKF) method which is an alternative that is described in detail in Press et al. 
(1992). The RKF method also uses an estimate of the truncation error to determine the 
best time step. This method is a fifth-order RK method that requires six calculations 
of the derivatives. When these calculations are recombined in a different way, they 
produce a fourth-order estimate of the new y t + ~ ~ .  The difference in the fourth-order 
and fifth-order estimates is the error, and this, once known, is used in the same manner 
as above to determine the best time step. The major feature of this algorithm is that 
it gives an error estimate using only six evaluations of the derivatives, rather than the 
11 needed for the time step varying method described above. We will not discuss the 
details here, since Press et al. (1992) do an admirable job, and, conceptually, it differs 
from RK-4 only in the procedure for combining the trial solutions. 

k [MBS-CD contains examples of using adaptive time steps in SimVaariableTime. ) 

6.5 PDEs and the Method of Lines 

Whereas the RK-4 and RKF methods are good, general methods for ordinary differ- 
ential equations, partial differential equations are more difficult and, if optimal perfor- 
mance is necessary, require more specialized numerical methods. We will not attempt 
a discussion of these in this introductory text, but only illustrate one solution method 
that reduces the problem to solving a large number of ordinary differential equations. 

6.5.1 Discretization 

In a spatially explicit system distributed over continuous physical space, the dynami- 
cal processes described by the differential equations operate at all points in the space 
(except perhaps at the boundary of the space). Obviously, these processes will also 
operate at some finite subset of points in the space. To obtain an approximate, nu- 
merical solution to the continuous equations, we discretize continuous space into a 
large, but finite, number of grid points. Since the dynamical processes operate at each 
point, we must translate continuous mathematical representations (e.g., second-order 
partial derivatives to represent diffusion) into finite differences. This is analogous to 
the problem of solving ODES at a finite number of time values. 

Imagine a one-dimensional spatial axis represented as a line with nodes at fixed 
intervals. The nodes are points where we will obtain solutions. Each node is given 
an index number, and we will focus on one of these nodes i. To the left of i is i - 1; 
to the right of i is i + 1. The first process that we translate is advection. A common 
approximation for advection at node i is the midpoint of the slope defined by the 
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neighboring nodes : 

where Ax is the finite space interval in physical units, qi is the quantity of the state 
variable at node i, and we assume that the flux rate (i.e., velocity) in the x direction 
(U,) is independent of position (i). This expression simply states that the change at 
node i is the inflow (from i + 1) minus the outflow (to i - 1). Of course, the direction 
of flow could be in the opposite direction, but this is accounted for by the sign of the 
coefficient. 

Likewise, a reasonable approximation for the second-order diffusion process is 

As the first equation above indicates, Eq. 6.6 is simply the differences of the gradients 
on either side of node i divided by the distance between nodes. This is the basic 
diffusion concept we developed in Chapter 5. 

In typical mass transport models (Chapter 5), the processes that move mass (or 
energy and momentum) are additive in two or three dimensions. This means that the 
above discretizations can be rewritten for other dimensions by changing the spatial 
index (e.g., x to y). Mass transport models also have a term describing the rate of 
change of the variable (i.e., ayldt). This term can also be discretized with a finite 
difference scheme so that all dimensions (space and time) are discrete. 

The above method of discretization is called central differencing because the scheme 
is centered around the node currently being evaluated (i in Eqs. 6.5 and 6.6). Once the 
PDEs have been discretized, they must be solved. There are two broad families of 
methods (Kahaner et al. 1992). If time and space are both discretized, the classical fi- 
nite difference or finite element methods based on solving a set of algebraic equations 
are used (Press et al. 1992). If time is not discretized, but space is, we use the method 
of lines. Since this builds on our previous discussions, we present this method here as 
one that is generally useful and understandable. 

6.5.2 Method of Lines and ODES 

Consider the flow of a contaminant in a river (p) with advection, molecular diffusion, 
and bioaccumulation in biotic components (b). A plausible model might be 

where the velocity in the x direction is U,, D is diffusivity, and contaminant uptake 
(k) by biota decreases as the amount of the biota (b) increases to a maximum biomass 
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Figure 6.4: Method of lines representation for a one-dimensional advection-diffusion- 
reaction model of contaminant flow and bioaccumulation. (a) Three discrete spatial lines 
moving forward in continuous time. (b) Forrester diagram of ODEs solved at each space 
node. 

level (B). This relationship resembles the logistic equation of population growth. The 
differential equation for the biota describes the uptake and bioaccumulation as well as 
an advective flow away from the node at the rate v,. A physical, chemical, or biological 
process such as chemical uptake is called a reaction. Consequently, equations such as 
Eqs. 6.7 are called reaction-difision equations. 

In the method of lines, we discretize space but not time. Figure 6.4 shows this 
relationship and a simplified Forrester diagram for three of the nodes. Note that we 
basically replace each node with a set of compartments ( p  and b) that interact with 
each other and the relevant compartments at neighboring spatial nodes. 

Using i to index the nodes, the ODEs that must be solved at each node are 

All of the dpi/dt and dbi/dt must be solved simultaneously using an ODE method 
such as RKE The spatial scale (Ax) must be chosen to adequately represent the rates 
of mass movement. Thus, the time step and the spatial grid size are interrelated. If the 
grid size is too large, we may not correctly represent the dynamics at any node. If the 
grid size is too small, we will perform unnecessary calculations. This is an important 
issue with the method of lines, because the number of calculations can become large. 
For example, if the stretch of river to be modeled is 1000 m, and we wish to describe 
changes every meter, then, in the above model, we must solve 2000 ODEs at each 
time step. If the problem is two-dimensional, then the number of equations to solve 
increases with the square of the number of nodes along one linear dimension. To 
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double the spatial area modeled or halve the gird resolution requires four times as 
many equations to solve. In three dimensions, the number of equations increases as 
the cube of the number of nodes. For a three-dimensional grid 100 m on a side at a 
resolution of 1 m between nodes, the number of equations to be solved is lo6 nodes 
times the number of ODEs per node. To decrease the spatial resolution to 10 cm 
requires lo9 nodes. Even if it takes only one microsecond to compute all the ODEs 
associated with a single node, 1 minute of simulated time will require over 15 minutes 
of computer time. (No wonder we can't predict the weather!) More specialized and 
sophisticated methods for solving PDEs can improve this considerably, but the basic 
problem remains. Be prepared for long runs if your model is spatially explicit and 
requires high resolution. This is not a hypothetical problem; one spatially explicit 
model of a wetland ecosystem solves 19,832 equations with a time step of 1 week to 
simulate a period of 22 years (Maxwell and Costanza 1993). 

6.5.3 Boundary Conditions 

One final detail is unresolved. Equations 6.8 will work well for grid nodes that are 
on the interior of the space being simulated. We must treat the boundary nodes dif- 
ferently because they do not have all the neighbors required by the equations. The 
first issue to resolve is the topology of the nodes: to which nodes (if any) are the 
boundary nodes connected? There are three possibilities. (1) If the boundary is a true 
boundary, then the grid ends at the boundary and the programmer must deal with the 
special cases of the edges and corners. (2) The grid may be embedded in a larger 
grid in order to maintain a close connection with physical space but at the same time 
to avoid edge effects that arise from (1). In this case, the behavior of the boundary 
must still be programmed. (3) The grid may be embedded in a virtual grid in which 
the boundary nodes are "fictitious" and determined during the solution by extrapola- 
tion from adjacent nodes in the interior of the grid. And (4), the topology need not 
conform to physical space (at least, not physical space as we know it). One common 
re-assignment of neighborhoods that eliminates the boundary condition problem is to 
map neighbors onto a torus: the neighbors of the top edge are nodes at the bottom; the 
neighbors of the left edge are the nodes at the right edge. To see this generates a torus: 
roll a piece of paper length-wise into a tube and then bend the tube ends together. This 
is also known as periodic boundary conditions. 

Topologies (1) and (2) require that the dynamics on the edge nodes are defined 
properly. Two basic approaches are commonly used: (1) force the values of the bound- 
ary nodes to specific values (e.g., 0.0, but which may vary in time), (2) set the fluxes 
into or out of the boundary nodes to some specific magnitude (which may also vary 
in time). Whatever the condition chosen, in the method of lines, special equations are 
solved that apply to the boundary points. 

MBS-CD contains SimMOL which implements simple 1 D diffusion and movement 
using the method of lines. 

6.6 Exercises 

1. Graph all of the slopes ( A ~ ' )  used in the fourth-order Runge-Kutta method. 
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If dyldt = ay, expand the Euler approximation for both At and At12 for 1 full 
time step to show that EAt = ( ~ ~ ~ / 4 ) ( ~ t ) ~ .  
Create a table analogous to Table 6.2 using finite difference equations. In other 
words, let a = 0.5 and solve for two time steps, then let a = 0.25 and solve for 
four time steps. 
Investigate the effect of RK-4 time steps on Eq. 6.4. Try At = (1 .O, 0.5,O. 1,0.01). 
Continue to approximate the time step needed for the dynamics to converge. 
Torricelli's law can be used to model fluid flow from a small hole at the bottom 
of a cylindrical container: 

where V is the volume of water in the container, r is the the hole radius (meters), 
g is gravitational acceleration constant, and R is the container radius. 

This model will produce negative volumes when At is only moderately large. 
Solve this model using both Euler and Runge-Kutta and investigate the approx- 
imate maximum time step in both methods larger than which will produce neg- 
ative volumes. How small must At be to prevent this in the Euler method? How 
small in the RK method? 
Solve the Torricelli model using a variable time step Euler method. Plot the step 
size over time. 

6 [MBSCD contains SimVariableEuler to help with this exercise. 1 
Modify MBS-CD code SimMOL to simulate Eqs. 6.7. Base the parameters on a 
contaminant of your choice (e.g., mercury, DDT). 
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Parameter Estimation 

7.1 The Problem 

The universe does not seem to have been designed by an information retrieval 
specialist. - Anderson (1974) 

E VERY MODEL THAT is used to make quantitative predictions contains parameters 
whose values must be specified. Even very simple models can easily contain 

a dozen parameters needing estimation: the Lotka-Volterra predation model with only 
two equations and simple, linear relations has four parameters. It is to be hoped that 
all of the parameters can be estimated in principle (i.e., have operational definitions), 
but even if this is true, performing the necessary experiments to estimate these values 
is often difficult in practice. 

The following example illustrates the concept. Suppose we wish to model the pop- 
ulation dynamics of a single population of an animal in which reproduction is limited 
at high densities. Basic ecological considerations lead us to perform a series of labora- 
tory experiments in which we control the population density, run the experiment long 
enough to allow most females to produce offspring, then calculate the average number 
of offspring each female produced. We assume we are careful in our procedures and 
design to ensure that the number of adult females does not change significantly during 
the experiment. 

From these experiments, we obtain a set of paired numbers and a graphical (func- 
tional) relation (Fig. 7.1). We wish to use this functional relation as the basis for our 
population dynamics model, so we must translate it into an equation. Using functions 
from Section 5.3, we might choose the power function: y = kl + k2Xk3, where y is the 
offspring per female and x is the number of females. This equation has three parame- 
ters whose values must be determined. This is the parameter estimation problem. 

In general, the basic problem is that given a functional form with a dependent 
variable and one or more independent variables, and given data such that the observed 
dependent variable can be plotted against the observed independent variable(s), we 
wish to know the estimates of the parameters of our function that provide the best fit 
to the data. There are several difficult words in that statement, particularly "estimate" 
and "best." Good introductions to these topics are Richter and Sondgerath (1990) and 
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Figure 7.1 : Experimental results for number of offspring per female at different densities 
of females. 

McCallum (2000). Most concepts of best involve minimizing the distance between 
the data and the function, summed over all data points. But this leaves open how to 
measure distance. Some plausible candidate measures of distance are (a) euclidean 
distance between function and data points, (b) square of vertical distance of data from 
the function, (c) the chi-square: square of vertical distance divided by the variance of 
the data, (d) absolute value of vertical distance, (e) maximum distance of any one data 
point from the function as measured by one of the previous methods. By far the most 
common is (b), the least squares criterion; (c) is the basis for maximum likelihood 
estimates (see Chapter 8). 

In the following discussion, we assume that we have a mathematical function to 
fit (e.g., y = ax + b), a set of parameters used in the function (e.g., a, b ), and a set 
of observations [i.e., a matched set of xi (independent observations) and yi (dependent 
observations)]. We wish to find the parameter values that provide the "best" fit to a 
particular data set. That is, for functions (y) of a single independent variable, x, we 
have data pairs of the form (xi, yij), where we may have more than one y observation 
at a given x value. The statistical model we use is 

where pk are k parameters for which we wish the best estimates and ~i is the error 
associated with the ith value of the independent variable. But this depends on what we 
mean by "best," that is, how we will measure E. The standard definition of best is the 
least-squared difference, which attempts to minimize the error term: 

min C 2 = min ( ? y i j  - f(xi, p , ~ ) ~ ) .  
i 

This criterion has many nice features (e.g., unbiased, identical to maximum likelihood 
estimator for some conditions). We will emphasize this approach in the following 
sections. This method does not, however, tell us which function to use. If we wish 
only to obtain a good fit with a function that passes through as many points as possible, 
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then a cubic spline fit would be a good choice (Chapter 5). Usually, however, we wish 
to use functions with few parameters or to use a particular function, one perhaps that 
was derived from first principles. In this case, we can use some of the techniques 
described below. 

7.2 Simple Linear Regression 

One of the simplest functions we can attempt to fit to data is the linear function O, = 
mx + b), where m is the slope and b is the intercept. Simple linear regression, which 
involves only a single independent variable, should be familiar to the reader from 
introductory statistics. However, using regression to estimate model parameters often 
requires careful thought about the structure of the data and the model being fit. By 
being clever, one can often obtain the estimates from data which on the surface may 
appear to be nonlinear. 

7.2.1 Static Applications 

The easiest case to which linear regression applies is a simple experiment with a single 
independent variable. This is a classical application of linear regression in which the 
slope and intercept are the parameters of interest. For example, we might perform a 
feeding experiment in which the density of prey is controlled (varied) and feeding rate 
(numbers eaten in a trial period) observed. Assuming the data were approximately 
linear, we could model this as f = mp (where, f is feeding rate, p is prey density) and 
estimate m using linear regression. This approach to parameter estimation is covered 
in many introductory statistics books, and is not discussed further here. 

7.2.2 Dynamic Applications 

The models and systems discussed here have all been dynamic. Data taken from dy- 
namic sequences of observations can often be used directly for parameter estimation 
by linear regression. For example, the density-independent model 

is itself a linear equation with the slope equal to r. Therefore, to estimate r we have 
only to make observations of a population growing according to the equation at dis- 
crete times. From these data, we can calculate absolute population change (ANJAt) 
and regress these values against the corresponding N,. So, although this is not an ex- 
periment in the classical sense, we can use dynamic data in linear regression to obtain 
the parameter r. 

It is sometimes necessary to perform simple transformations on these data to obtain 
estimates for more complex models. For example, the density-dependent model is 

We note that this is a nonlinear equation (it has an N~ term), and, therefore, we can- 
not obtain estimates from simple linear regression of the absolute population change 
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Figure 7.2: Relation of per capita growth rate to the parameters r and K in the density- 
dependent model. 

against N. However, by dividing both sides by N we produce a new dependent vari- 
able 1 /N .dN/dt that is a linear function of N and has a negative slope (Fig. 7.2). Both 
of these examples illustrate that careful reflection on the structure of the equations and 
the types of information that can be obtained from observations is necessary to effec- 
tively estimate parameters. A problem with these applications is that the independent 
variable (N) is not usually known exactly. Sokal and Rohlf (1981) discuss this issue. 

7.2.3 Linear Regression on Transformed Equations 

Regardless of the source of the data for regression (i.e., from static experiments or 
dynamic data), often the relations are nonlinear. In these cases, we may be able to 
transform the equation to a linear form. This is commonly taught in introductory 
statistics courses. We give only a few examples to make the point and then give some 
cautions on the use of this technique when better methods are available. 

Division by a Variable This method was shown above when we created the per capita 
growth rate by dividing both sides of the differential equation by N. The idea is to 
reduce a squared term to a linear one. 

Logarithms Power functions are expressions in which the parameter to be estimated 
is part of the power of a constant or independent variable. These equations can be 
made linear by a log transform. For example, 

logy = log A + b log(x). (7.1) 

This transform creates a new variable (logy); by regressing this against log(x) we can 
estimate A as the anti-log of the intercept. The slope is b. 

Inverses Hyperbolic functions can be linearized by inverting the function. A famous 
example is the Michaelis-Menten relation for enzyme kinetics: 
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Figure 7.3: Lineweaver-Burk plot to obtain the Michaelis-Menten parameters. 

This relationship and Fig. 7.3 are known as the Lineweaver-Burkplot, The maximum 
rate of the reaction (V,, in Fig. 7.3 and A in Eq. 7.3) is the inverse of the intercept 
with the y-axis. The half-saturation constant (K, in Fig. 7.3 and B in Eq. 7.3) is the 
slope multiplied by V,,,. This equation is still commonly used in biochemical and 
physiological studies. However, a transformation that performs better is the Eadie- 
Hofstee equation. See Exercise 5. 

7.2.4 Problems with Transformations 

All things considered, use of linear regression for parameter estimation of nonlinear 
equations is a poor method. There are several reasons for this. 

1. One rationale for transforming data is to cause the errors between data and the 
functions to better fit the assumptions of linear regression. This does not al- 
ways occur and depends on the data and transforming function. In particular, 
the important linear regression assumptions to satisfy are error normality and 
homoscedasticity. Merely straightening a curved line does not ensure that these 
assumptions are satisfied (Seber and Wild 1989; Zar 1999). 

2. More advanced and better methods are commonly available in easy-to-use desk- 
top computer statistical packages. 

3. Linear regression can estimate only two parameters. Many nonlinear equations 
use more than two parameters; using linear regression requires that other meth- 
ods be used to estimate the remaining parameters. For example, the sigmoid 
curve (Sec. 5.3, Equation E), and its linear transformation is 

There are three parameters (A, B, and C), and one of these must be assumed in 
order to estimate the other two. 

4. Inversion transformations can produce clustering of the resulting transformed 
data; this can produce spurious statistical correlations between the variables. 

Consider a set of values evenly placed every 0.5 units between 0.5 and 3.0. 
The inverse transformation converts this to the sequence: 2.0, 1 .O, 0.67,0.5,0.4, 
and 0.33. Most of the numbers are clustered near 0 and there is now an isolated 
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point at 2.0. In extreme cases, this condition can produce isolated groups of 
datum points that can incorrectly inflate the degree of association between the 
dependent and independent variables. 

5. Inverse transformations turn small numbers into large numbers. Often, the mea- 
surement of small quantities has large relative errors. These errors will be mag- 
nified after transformation. 

6. Since the log of a number less than or equal to 0.0 is undefined, logarithms can 
require that data be discarded or transformed prior to taking the logarithm. 

7. In parameter estimation for modeling purposes, we almost always are inter- 
ested in the parameter values stated in their original (untransformed) units. This 
requires that we "detransform" the numbers (e.g., take the anti-log of the inter- 
cept). Sometimes this detransformation will produce biased results (Seber and 
Wild 1989). 

7.3 Nonlinear Equations Linear in the Parameters 

There are powerful analytical techniques for estimating parameters in a special class of 
nonlinear functions. The class is characterized by being linear in the parameters. This 
means that although the equation is nonlinear with respect to the independent variable 
(i.e., x), the parameter (a) is not involved in a nonlinear expression. The polynomial 
equation y = ax2 is linear with respect to a. Some examples of equations that are 
nonlinear in the parameters are 

If the equations are linear in the parameters, we can use several analytical tech- 
niques (nonlinear or polynomial regression). If they are nonlinear, we must use itera- 
tive techniques. Below we discuss the polynomial regression and in Sec. 7.4 a few of 
the iterative techniques. 

7.3.1 Multiple Linear Regression 

If the equation can be represented as a sum of terms, each of which is linear in the 
parameters (such as a polynomial equation), then multiple linear regression can be 
used to estimate the parameters. For example, if the equation is 

we notice that if we consider x3 to be a separate variable (call it w, for example), then 
the equation is linear, and any of several software packages that can perform multiple 
linear regression will estimate c. 

7.3.2 Polynomial Regression 

A more general approach is to use nonlinear least-squares regression. I will describe 
this technique for the special case of a polynomial, but it will work with any equation 
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that is linear in the parameters. The discussion below develops the theory only to the 
point of estimating the parameters. 

The general model for the relation of an observed dependent variable to a function 
evaluated at various observed independent variable points is 

where yij are multiple observations of the dependent variable at the xi observations, 
and ei is the error between the predicted [f()] and observed values of the dependent 
variable. The xi are assumed to be known exactly. 

To implement the least-squares criterion, we wish to choose the pk in order to 
minimize the sum of squared errors (ei in Eq. 7.5) over all the xi observations. That is, 
we want the pk such that 

2 
min z e2 = min z (f(xi, pk) - yij) . 

i i 

We illustrate the method for the particular function 

where the problem is to find A, B, and C that satisfy our minimization criterion. So, 
we have (dropping the j subscript on the multiple yi observations) 

After expanding, 

Recall from calculus that the minima and maxima of functions relative to a variable 
can be found by setting the derivative of the function to 0. We wish to minimize g with 
respect to three "variables" (A, B, and C) simultaneously. To do this, we form three 
derivatives: dg/dA, &/dB, and dg/dC. This yields 
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(The reader should verify these equations.) The error function g will be minimized at 
those A, B, C that cause each of the above partial derivatives to be 0. Therefore, we 
set the partials to zero to get three equations in three unknowns: 

Equations such as these can be easily solved once they are re-written in matrix nota- 
tion: 

P is the vector of unknown parameters whose values will be known if we can isolate P 
on one side of the equation ("solve" for the elements of P). Using matrix operations, 
we do this by pre-multiplying both sides of the equation by the inverse of S (denoted 
s-') 

S-'D = S-'SP = I P  = P, 

where I is the identity matrix (1 along the main diagonal and 0 everywhere else). So, 
voil8: plug in data for D and S, determine S-', and Bob's your uncle. Matrix inver- 
sion can be done by hand for small matrices or by using a general-purpose statistics 
package. 

7.4 Equations with Nonlinear Parameters 

Some equations are not linear in the parameters and cannot or should not be trans- 
formed. Iterative methods must be used to estimate their parameters. We discuss two 
different methods: curvature-based and derivative-free. But we set the stage with the 
following geometric picture of the problem. 

We again use the least-squares as the error function (Eq. 7.6) to minimize. This 
function depends on both the fitting function Cf) and the data Cyi). For fixed f and ob- 
served yi, the error function takes a different value for each combination of parameters. 
This produces a surface in parameter space such as that shown in Fig. 7.4. 

The general problem in parameter estimation is to find the minimum point (i.e., 
the combination of parameters that corresponds to minimum error). Iterative methods 
start at some arbitrary point in the space [(p;,p;) in Fig. 7.4b)l and move from a 
parameter combination corresponding to large error to a combination with small error. 
That is, these algorithms move down the slope of the surface stopping only when 
the current parameter set is sufficiently close to the minimum. The problem is to 
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Figure 7.4: Error surface (a) and contour plot (b) for hypothetical fitting function in param- 
eter space. Point p;, p; is a particular set of parameters. This figure shows a single global 
minimum, but more complex error "landscapes" will have multiple local minima. 

create an algorithm that does this efficiently. There are two broad classes of methods: 
those that use the slope of the error function in parameter space and those that do not. 
For comparison, Fig. 7.5 shows some of the extreme differences among the methods. 
At the most brutishly unthoughtful is the brute force method of Fig. 7.5a. Here we 
simply define a wide range of values over all the parameters and an increment between 
successive positions. For each of these points (filled dots), we compute the error 
function. We then either use visual inspection by plotting the error surface if there 
are only two parameters, or do a systematic search among the calculated points to find 
the smallest error. This approach is easy to program, but horribly inefficient since we 
compute many points that are poor parameter choices. A slightly less brutish method 
is Fig. 7.5b in which one chooses a starting point (e.g., random), computes the error 
in four points surrounding that point, choosing the point with the smallest error as the 
best choice for the next iteration. This is repeated until a stopping criterion is met. 

We must not desire all to begin by pegection. It matters little how we begin, 
provided we be resolved to go on well and end well. 

- Memorial Church at Stanford University: West Arcade Wall 

In Fig. 7 5 ,  in addition to a starting point, we also choose an initial direction 
parallel to one of the axes and move downhill in that direction until the surface slope 
increases. This will be the minimum of the gradient along that line of travel. We then 
choose a new direction parallel with the second axis and move to the minimum of the 
slope along that line of travel. This second direction will not necessarily be along the 
direction of steepest descent since it is parallel to the axes, not oriented to the shape 
of the topography. This method does not use characteristics of the slope to choose the 
next direction. As a consequence, this method, while able to take long steps in the 
correct direction, can frequently get trapped zig-zagging down a long narrow valley. 

7.4.1 Gradient Methods 

Figure 7.5d illustrates the simplest of the gradient methods that combine line mini- 
mization with gradient information. The direction of travel is based on the gradient of 
the slope, which is orthogonal to the previous direction that brought the current itera- 
tion to the line minimum. This can be more efficient than the method of Fig. 7Sc, but 
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(a) Brute Force (b) Iterative Local Points 

P1 

(c) Line Min - Along Axes (d) Line Min - Steepest 

Figure 7.5: Four methods of many for finding the minimum of an error function. The 
ellipses represent the unknown error surface. (a) Brute Force: evaluate the error function 
for many points; choose the point with smallest error. (b) Local Points: begin at arbitrary 
starting point, iteratively evaluate the error function for four points (in NSEW directions), 
choosing the smallest for the next cycle. (c) Line Minimization Parallel to Axes: from a 
starting point, move in a direction parallel to one of the axes until the gradient increases 
(the minimum along the line of travel); repeat with new direction parallel to the second axis. 
(d) Line Minimization - Steepest Descent: from a starting point, travel along any direction 
until surface slope increases; choose new direction orthogonal to surface slope (i.e, the 
steepest gradient possible). 

will still get trapped in narrow valleys. (The reader should verify this by tracing the 
vectors for steepest descent on error contours for a strongly curved "banana-shaped" 
surface with a minimum at one end.) 

By far the most efficient methods involve assuming a particular function for the 
error surface in the neighborhood of the current best set of parameters. Since we 
do not know what this function is, we approximate it with the Taylor series. See 
section 9.2.2 for a description of this function, but it is the sum of progressively higher 
order derivatives of the function: first derivatives (gradient) plus second derivatives 
(curvature) plus third derivatives, and so on. Gradient iterative methods, as a class, 
calculate the slope and curvature of the surface at the current set of parameters using a 
Taylor approximation and base the direction to change parameters on the direction of 
greatest change in the error surface. This can be a powerful method, but since the shape 
of the error surface is not known, the derivatives must be numerically calculated. This 
can be computationally expensive. Although there are many methods and variants, 
four are of fundamental importance (Sorenson 1980). All of the following require 
either that the modeler provide the derivative of the function to be fit, or that the 
derivatives be numerically approximated. 
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Gauss This method truncates the Taylor series at the first-order terms. (In actuality, 
Gauss' method does not expand the error surface function, but a function related to it.) 
In other words, it approximates the surface at the current solution point to a flat surface 
(e.g., plane). This method requires that a matrix composed of first-order derivatives 
be computed and inverted. An explicit step-size parameter in the algorithm controls 
the error associated with the linearization. 

Newton-Raphson This method is similar to Gauss' method, but approximates the 
surface to a quadratic function by truncating the Taylor series after the second-order 
terms. This requires that a complex matrix of first- and second-order derivatives be 
computed and inverted. It has an explicit step-size parameter. 

Steepest Descent This is a simplification of the Newton-Raphson method. It elim- 
inates the second-order derivatives and the matrix inversion, but retains the step-size 
parameter (see Fig. 7.5). 

Levenberg-Marquardt (LM) This method combines steepest descent with second- 
order derivatives. It is one of the most popular methods. 

MBS-CD contains SimFit-LMPower that uses functions for 
Levenberg-Marquardt parameter estimation in the SimPlot package. 

To give the reader some sense of what is involved with this method, we will discuss 
a few of the details in the context of two-dimensions (two parameters to fit). The basic 
idea is to iteratively change both parameters simultaneously: 

where i indexes the iteration number. 
The problem is to compute a good value for Ap,. The LM method tries to use both 

the gradient (slope) of the error surface as well as its curvature to estimate Api. By 
using the latter information, we will be able to reduce the zig-zagging along valleys to 
which steepest descent is prone. The slope has the usual interpretation: de/dpi ,  where 
E represents the error between data and the predicted value for the function to fit based 
on the current parameter values (pi). So, in this two-dimensional case, the gradient is 
a vector with two elements, one for each parameter. The curvature is the slope of the 
slopes in all the directions. This Hessian, or curvature, matrix is 

The units of one of the elements is [error units] divided by [(parameter  unit^)^]. 
The most desirable approach is to use the Hessian, but it is simpler to first describe 

how steepest descent works. Equation 7.7 is simple in this case, assuming the solution 
is currently at the line minimum of the last traverse across the surface: 
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where R is a constant that determines the size of the step to take and has units [ (param- 
eter [error units]. VE is a vector with elements like de/dpl and E can 
be any legitimate measure of error (e.g., x2, squared errors, absolute value of the 
difference, etc). So, only the first derivative is needed by steepest descent. 

Steepest descent is performed if the following use of second derivatives fails to 
reduce the error. This aspect of LM is based on the Taylor series approximation to the 
error function that includes terms up through second order. We assume that we are at 
a point in parameter space which is a minimum for the direction used by the imme- 
diately previous iteration. The problem is as before: choose the Api to move toward 
on a straight line, but in this case we want to use both the first and second deriva- 
tives to inform our choice. We need an equation that relates these 3 components. An 
analogy with macroscopic (Newtonian) motion will help. Velocity is the derivative 
of distance with respect to time (i.e., the "gradient" of position over time). Similarly, 
acceleration is the derivative of velocity with respect to time, or the second derivative 
of position with respect to time. Its units are [posi t ion]  + [time2]. If we multiply 
velocity (dxldt) by a finite time (At), we get the distance traveled over the interval. If 
we multiply acceleration (d2xldt2) by At, we get average velocity over the time inter- 
val (dxldt, the gradient). Analogizing motion and time with error minimization and 
parameter distance, the relation we seek among the 3 components is: the product of 
the second derivative of errors and a finite unit of parameter distance will be approxi- 
mately the first derivative of errors. This latter quantity is the gradient of errors with 
respect to parameter distance. In other words: 

CAp = VE. 

We can compute C and VE from our data and function, so we can solve for Ap: 

After skipping many of the fine points: 

For the fine points, see Press et al. (1992), but this is the general idea. Comparing 
Eq. 7.9 (using steepest descent) and Eq. 7.10 (using curvature and gradient) shows 
how the next direction of travel will be modified by the curvature matrix. In contrast, 
steepest descent uses a fixed (or at least, arbitrary) coefficient to scale all directions 
by the same amount that does not vary with the shape or steepness of the surface (Ai). 
LM, in long valleys, instead of using the gradient only, the direction of travel is angled 
in the direction of the valley axis through the dependency of the error surface on both 
pl and pz as expressed in the elements of the curvature matrix (Eq. 7.8). 

The difference can even be seen in one dimensional searches in terms of the size 
of step to take, but where it is easy to compute the inverse of the Hessian (a scalar in 
that case). Suppose the error surface was exactly a quadratic function: 



97.4: Equations with Nonlinear Parameters 135 

The derivatives needed are: 

where E" is the second derivative of E.  If we use only steepest descent, arbitrarily 
choose R = 1, and start with initial guess pl.0 = 20, Eq. 7.9 gives the parameter value 
in next iteration as: 

whereas using curvature as defined in Eq. 7.10 gives: 

Using Eq. 7.1 1, we see that the minimum is exactly at pl = 10. The LM method using 
curvature information goes directly to the minimum in one iteration. Steepest descent 
would take many more interactions, primarily because we have chosen R poorly. With 
quadratic functions, it happens that E" is a constant, so steepest descent using that 
constant value (e.g., R = 5 in the above example) would also jump to the minimum, 
but C-', the inverse Hessian, calculates that value directly and dynamically, as needed 
during the iteration. The second derivative becomes important when we have more 
than one parameter and a non-quadratic error function (particularly those for which 
E" depends on pi). A small price to pay for this method is that we must provide 
the derivative of the function to fit. Sometimes this can be a challenge, but there are 
numerical methods for this step as well. The complete LM method refines this basic 
idea expressed in Eqs. 7.9 and 7.10 by nicely integrating steepest descent and curvature 
and by computing the step sizes in an intelligent way so as to increase the method's 
stability and efficiency. 

7.4.2 Direct Methods 

Because of the computational cost of numerically approximating derivatives and per- 
forming matrix inversion, direct methods are an attractive alternative. They do not 
require derivatives and choose the direction for the next move by directly evaluat- 
ing the error surface in the neighborhood of the current point (Fig. 7.5b). The main 
disadvantages of the method of Fig. 7.5b are that it examines values in a fixed neigh- 
borhood and it will zigzag. Direct methods that adapt to the local topography will be 
more efficient. 

Simplex 

A graphically appealing adaptive direct method is the Nelder-Mead simplex method 
(Nelder and Mead 1965; Caceci and Cacheris 1984). [This method should not be con- 
fused with a method of the same name used in the optimization of linear equations 
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Figure 7.6: A simplex in (a) two- and (b) three-dimensional parameter space. 

(linear programming).] This parameter estimation method is based on moving a geo- 
metric object (the simplex) through parameter space until the object encloses the best 
estimate. 

A simplex is a polygonal figure with one vertex more than the dimensions of 
the space in which it is embedded. For example, if the space has two dimensions 
(Fig. 7.6a), then the simplex has three vertices (i.e., a triangle). If the space is three- 
dimensional, the simplex is a tetrahedron (Fig. 7.6b). The vertices of the figure corre- 
spond to points in parameter space so that each vertex is a combination of parameters 
that may satisfy our stopping criterion for the approach to the true parameters. The 
simplex method is an algorithm that alters the location of the simplex in parameter 
space so that when the stopping criterion is satisfied, the "best" values of the parame- 
ters are contained within the edges of the simplex. 

An overview of the process is as follows. In a space of n - 1 parameters, the 
simplex algorithm begins with n known starting points; these are the vertices of the 
first simplex. Each vertex corresponds to a parameter set for the function. At each of 
these vertices, we calculate the error. Typically, the error is the square of the difference 
between the function and all of the datum points, but it could be another criterion. Of 
the n vertices, one will be best in the sense that its error will be smallest (vertex B), 
one will have the next smallest error (vertex O), and one will be the worst with the 
largest error (vertex W). Using these results, we transform the simplex into one that is 
closer to a point that minimizes the error function using four fundamental operations 
(Table 7.1). 

These operations are designed so that the magnitude of the transformation is dy- 
namic during the search. When the current solution is far away from the minimum, we 

Table 7.1 : Fundamental operations on a simplex (see Fig. 7.7). 

Reflection Extend a line d units long from W to the midpoint of the B-0 edge and 
d units beyond. The end of the line 2d units long is the trial vertex (W'). 

Expansion If W' is an improvement, continue the extension of the line another d 
units in the same direction to W". 

Contraction If reflection shows no improvement, extend a line d / 2  units long from W 
to the midpoint of the B-0 edge. Create a new vertex (W') at this point. 

Shrinkage If none of the above, create two new vertices, one at the midpoint of the 
B-O edge and the other at the midpoint of the B-W edge. 
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CONTRACTION 

rn: 
: d W 

REFLECTION + 
EXPANSION B 

Figure 7.7: The four operations on the vertices of a two-dimensional simplex. W, 0, B 
= worst, intermediate, and best vertex; m = midpoint of an edge. See Table 7.1 for other 
definitions. 

Figure 7.8: An example of simplex convergence on a minimum error function. The axes 
are the parameters of an equation. The ellipses are the contours of the error between the 
function and a fixed data set (high values at edges). The triangles are the simplexes as they 
move over the surface from simplex "012 to converge on the minimum in the center of the 
contours. 

wish the algorithm to take big steps (make large transformations). When it is close to 
the minimum we want the algorithm to take small steps. Further, when the slope of the 
error surface is shallow, the algorithm takes big steps; the converse occurs when the 
slope is steep. We illustrate the approach for functions with two unknown parameters 
(i.e., the parameter space is two-dimensional). Refer to Fig. 7.7 for notation. 

Figure 7.8 shows an example of the movement of a simplex. The curved lines 
are contour lines representing the error function. The initial three guesses for the two 
parameters are in the upper right corner; the minimum error is in the center of the 
figure. From the initial simplex (vertices 012), we reflect and then expand to simplex 
123. From this, we again reflect and expand to get 134. We then reflect 134 to 
simplex 345, but expanding in the direction of vertex 5 makes the estimate worse, so 
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we stop searching in this direction. We then reflect 345 to get 456, but expansion 
fails. We reflect and expand 456 to 467, then reflect only to get 478. Reflection, 
but no expansion, gets us 789, then 79 10. Reflection of the latter simplex fails, so 
we contract to 7 10 1 1. This process continues until the differences in the error of 
the three estimates (one estimate at each vertex) is less than a threshold. The final 
parameter estimate is the average of the parameter sets at each of the vertices. 

Marsili-Libelli (1992) generalized the simplex method to incorporate dynamically 
varying amounts of expansion and contraction. 

MBS-CD contains SimFit-SimplexPower that use functions for Nelder-Mead 6 Gimplex parameter estimation. 

7.5 Calibration to Dynamic Data 

Above we were concerned with data sets in which the independent variable was not 
time. These data are typical of situations in which we can find functional relations 
between variables (e.g., between per capita growth rate and population size). Another 
approach to fitting parameters in a dynamic model is to find a set of parameters that 
minimize the sum of errors between the dynamic model output (e.g., numbers vs time) 
and similar observed dynamic trajectories over the entire time period simulated. There 
are two cases to consider: (1) the function to fit is an analytical solution to a differential 
equation and (2) the function to fit is the results of a simulation model. 

The first case requires no new concepts. For example, a dynamic model based 
on density-dependent growth is sufficiently simple that we can solve the differential 
equation 

where r is maximum per capita growth rate, K is carrying capacity, andp is related to 
the starting population size [N(O)]. We can estimate all three parameters by fitting the 
function N(t) to experimental data consisting of population size over time. Obviously, 
N(t) is nonlinear in the parameters so we must use one of the techniques for nonlinear 
regression (transformation, gradient or direct methods). 

If the model consists of a set of interrelated linear differential equations, then gen- 
eral analytical solutions to the dynamics can be stated. For example, if the model is 
the linear system: 

then the dynamics [x(t) and y(t)] can be written as a sum of exponentials (see Section 
9.3.4). In other words, we can find an analytical solution whose parameters can be 
estimated using the methods described above. In this special case of systems of linear 
differential equations, the parameter estimation problem is known as system identiJi- 
cation. Spriet and Vansteenkiste (1982) give a lengthy review of methods applicable 
to linear systems and some simple nonlinear systems. Carson et al. (1983) apply these 
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methods to models of physiological systems. Several monographs give a compendium 
of nonlinear dynamic models with analytical solutions commonly used in biological 
modeling as well as the estimation equations necessary (e.g., Seber and Wild 1989; 
Richter and Sondgerath 1990. 

A more complicated case arises when we wish to use dynamic data to estimate pa- 
rameters in a differential model that we cannot solve analytically. From an estimation 
perspective, this problem is no different than other applications. We wish to compare 
data to a function f(x, t) that is the numerical solution of the differential equations. 
We do not know f(x, t) until we simulate the model. So, this estimation problem is 
complicated by the fact that the model must be run with the current parameters over 
the entire time period in order to calculate the total error. A new set of parameters 
requires another run to determine the error. Consequently, a large number of runs may 
be required to converge on the best parameters. This dynamic aspect to the error func- 
tion complicates the calculation of derivatives needed by some methods. Therefore, 
the direct methods are effective on this problem. Marsili-Libelli (1992) applied the 
simplex method to this problem. Since the discrepancy between model output and ob- 
servations is dynamic, this approach to calibration can incorporate decisions to permit 
large errors at certain times (e.g., early in the simulation) and to achieve very small 
errors at other times. Whether this is something to consider depends on the objectives 
of the model. Accurate prediction of the final state of a system may be more important 
than prediction of the model trajectories by which it occurred. 

MBS-CD contains files SimCalibrate that do this 
using Nelder-Mead simplex. 

7.6 Evolutionary Techniques 

Parameter estimation is an optimization problem, and radically new approaches have 
been introduced recently. These methods are based on analogies with the evolution 
of biological systems, since one naive view of the evolutionary process is that it will 
produce organisms that are optimized to their environment by having maximum bio- 
logical~tness. Many biologists would disagree with this caricature of evolution, but 
the analogy has been extremely productive in computer science. The new methods 
are members of a loose family of algorithms called evolutionary computation. The 
basic idea applied to parameter estimation is that the parameter space is searched by 
a large set of "organisms" that are defined by their position in the space. Their fitness 
is the value of the error function at that point in parameter space. Organisms with low 
fitness (large error) are discarded. Surviving organisms mate and produce slightly dif- 
ferent offspring by combining the positions of the two parents to form a new location 
in parameter space. This process is repeated until organisms do not show further im- 
provement. These methods are proving to be very effective on error surfaces that are 
complex with many hills and valleys. We discuss these methods more fully in Chapter 
20, but for now recall Fig. 7.5a. One evolutionary computational modification of this 
method would be to iterate the brute force method by defining a smaller rectangle en- 
compassing 20% of the best points (filled circles), populating this smaller rectangle at 
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finer resolution with the same number of original points. We repeat this process until 
we have obtained a sufficiently small and highly resolved rectangle. If the original 
rectangle is sufficiently large, this method may find not just a local, but also the global 
minimum. 

7.7 Parameter Estimation Cautions 

7.7.1 All Methods 

1. Beware of transformations. Nonlinear regression or iterative methods are pre- 
ferred. 

2. Examine your data for obvious outliers. You may need to filter the data ( e g ,  
compute running averages) or apply some other method for eliminating extreme 
data points. 

3. Beware of extrapolating beyond your data. Brown (1990) shows a fifth-order 
rational function (i.e., a quotient of polynomials) that fits one cycle of a peri- 
odic function with r2 > 0.99, that goes to positive and negative infinity outside 
this range. (This is quite unlike the sine function being fit, of course.) Some 
situations in some methods can also make interpolating between datum points 
dangerous. A quotient of two fifth-degree polynomials fits a data set with mul- 
tiple observations at each x value with ? = 0.973. The curve, however, is not 
continuous between sets of observations so that the function predicts correctly if 
given the original x values, but not if given any others between these. Rational 
functions should not be used for data sets with multiple observations. 

4. Beware of using a simple statistical index (e.g., ?) to determine the function 
to use. An equation with sufficiently large numbers of parameters can be fit to 
match every little jog in a noisy data set with high ?, but may fail to reveal a 
simpler representation. 

5. Use a graphics package to view your data and fitted curve. Be suspicious of 
any obvious departures. In general, use common sense and remember why we 
fit parameters in models: we wish to obtain a simple and general description 
of the observations. Simplicity in the form of equations with small numbers of 
parameters is usually preferable to complicated equations with a good fit to a 
particular dataset. The equation is the object of interest, not the ?. (The model 
objectives may influence this; models that must achieve accurate predictions 
may require particular, specific functions.) 

7.7.2 Problems with Iterative Methods 

1. Non-evolutionary, iterative methods find only local minima. Use several starting 
points to search for the global minimum. Initial guesses can be obtained from 
previous knowledge or linear regression on transformed data. You should also 
repeat the search at a random point. This will help verify that numerical condi- 
tions (e.g., round-off) have not caused the algorithm to stop prematurely. The 
newer methods using evolutionary computation appear to be better at finding 
the global minima (or maxima). 
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2. Methods requiring derivatives can be slow and sensitive to the "roughness" of 
the error surface. Steep gradients and sudden reversals can cause numerical 
approximation of derivatives to go astray. Methods such as simplex that do not 
use derivatives are less sensitive to this. Test the results with several step sizes. 

3. Most iterative methods do not give exact 1.2 values. Approximate values can 
be obtained by boot-strapping or by fitting a polynomial to the error function 
after a good fit is found. Bootstrapping (Efron and Tibshirani 1993; Manly 
1997) is a computational method in which statistics are calculated based on 
randomly chosen subsets of the original data. In parameter estimation, a series 
of subsets is chosen, an estimate obtained for each, and the mean and variance 
of the estimates calculated from these. If a polynomial is fit to the error function, 
it is wise to verify that the conditions over which the methods are known to be 
valid hold in your application. An important condition is the curvature of the 
surface; see Seber and Wild (1989) and Ratkowsky (1983). 

4. If the error surface around the minimum is flat, then convergence to the stop- 
ping criterion may be slow. Most iterative methods use two stopping criteria: 
one based on the relative change in the residuals and the other a ceiling on the 
number of iterations performed. After the algorithm has stopped, verify that 
sufficient iterations were allowed to ensure that the first criterion (not number of 
iterations) was used to stop the search. 

7.8 Exercises 

1. The equations for the parameters of a simple linear regression are: 

Intercept : A = j, - BR 

Slope: B = 
C x ~ - ( C y C x ) l n  

C x 2 -  ( ~ x ) ~ / n  ' 

where 2 and j, are the means of the independent and dependent variables, re- 
spectively. 

Using logic analogous to the derivation of equations for polynomial regres- 
sion (Sec. 7.3.2), derive these equations starting with y = ax + b. (In so doing, 
you will prove that standard linear regression does, indeed, minimize the sum 
of squared error.) 

2. Construct the S matrix for a third-order polynomial. 
3. As required by the LM method, write the Jacobian for the following useful 

functions from Sec. 5.3: B, C, D, E, G, H, J, trigonometric (Eq. 5.12). 
4. Analyze the LM method in one dimension, where we assume the error function 

(or just the function to minimize) is E = lop2 - 0.1p3 - 200p, where p is the 
parameter to find. Graph E as a function of p and graphically display the results 
as you step through 3 iterations of minimization algorithms as described below. 

a) Initial p = 0, use only steepest descent. Assume R = 1.0. Show your 
calculations for dyldp, (i.e., V f). 
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b) Repeat the above using both gradient and curvature information. Display 
both V f and d2e/dp2. 

Derive the following Eadie-Hofstee transformation from the Michaelis-Menten 
equation Eq. 7.2: 

Y A Y  - = - - -  
x B B  

Compare the estimates for the following data fitted to the Michaelis-Menten 
equation using (a) Lineweaver-Burke transform, (b) Eadie-Hofstee transform, 
(c) Levenberg-Marquardt (untransformed), and (d) Nelder-Mead simplex (un- 
transformed). 

Prey Density 4 10 30 90 173 256 
Prey Eaten 2.5 9.5 12.5 19.5 21.5 19 

k (MBS-CD contains file SimFit files that help with this exercise. 1 
Torricelli's Law for the velocity of fluid leaving an orifice in a container can be 
tested empirically by filling a rectangular container with water and creating a 
hole at the bottom. For the following data from an actual leaky bucket experi- 
ment (see Torricelli's Law), fit the data (Height versus Time) to the alternative 
(non-Torricelli) model: 

H = 

using two methods: linear regression after transforming the equation and data; 
and non-linear Levenberg-Marauardt regression. 

& [MBSCD contains files SinFit files that can be modified for this exercise. ] 

SimPlot plots of the fitted curve and superimposed data points (transformed 
and back-transformed), the values and errors for the estimated parameters, and 
the number of iterations required for the LM fit. Start the LM at two (or more) 
initial parameter guesses, which include B positive and B negative. Write a 
short paragraph summarizing the two methods for their respective accuracy and 
sensitivity to initial guess (LM). 
Below are data from Gause (1934) for density-dependent population growth of 
Paramecium. See Eq. 7.13. Assume N(0) = 2. Estimate r and K using 

a) linear regression on the transformed solution (N versus t, see Eq. 7.4, you 
will need to expand P using the initial conditions), 

b) the simplex method on the untransformed solution, 
c) linear regression on per capita growth rates, 
d) polynomial regression on absolute growth rates, 
e) the simplex method on absolute growth rates. 

Discuss the differences among the methods and determine which is best. 
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9. Often we want a function to go through a set of points we specify, so it is good 
practice to be able to find the coefficients of functions that have particular so- 
lutions we provide. For example, for a single linear equation, we are given 
the points (53) and (1,-3) and we find the slope (m) and intercept (b) by row 
manipulation and substitution. 

m 5 +  b =  5 2 equations 
ml + b = -3 2 unknowns 

-l(m5) + -l(b) = -5 multiply -1 
ml + b = -3 

- (m4)+ 0 = - 8  add 
m = 2 solve form 

b = -5 solve for b 

Find the coefficients for the following functions and data. 
a) y = a. + a l  x + a2x2 given the (x, y) pairs of points: (0,2), (- 1,0), and (14,O). 
b) y = a0 exp(-alx) given the points (0,5) and (5,0.05). 
c) Triangular (see Fig. 5.41) given the points (2,0), (10,O) and apex (5,lO). 
d) y = aox/(al + x) given (2,0.6667) and (8,1.333). 
e) y = a0 + alx@ given (0,2), (1,1.5) and (2,1.29). 
f) y = a0 + alx + a2x2 given (1,5.9), (10,14), and (20,4). 

Use the computed coefficients to check your work by verifying that the original 
point pairs satisfy the equation. 

10. The MBS-CD contains a file PredPreyData. txt with a sample of simulated 
predator-prey Lotka-Volterra dynamics (Eq. 6.2). Use the simplex method to 
dynamically calibrate the parameters (r, b, c, d) to these data. 

( MBS-CD contains SimCalibrateLogistic to help with this exercise.) k 
11. (Advanced) Approximate an integral function that tabulated in a handbook of 

mathematical and physical functions with a suitably complex function such as a 
high-order polynomial or rational function. Two good examples are the comple- 
mentary error function er$c and the gamma function. Do this for your function 
using nonlinear regression and the simplex method. Try several polynomial 
orders and tabulate the errors. Try several error functions (e.g., least-squares, 
absolute value of difference, chi-square, minimum of the maximum deviation). 



Chapter 8 7  
Model Validation 

Statistics is the science of learning from experience, especially experience that 
arrives a little bit at a time.. . Most people are not natural-born statisticians. 

- Efron and Tibshirani (1993) 

8.1 Insight and Illumination 

M ODELING, LIKE COMPUTING and statistics, should produce insight, not merely num- 
bers (Hamming 1962). Up to this point, we have stressed numbers and meth- 

ods for generating them. Now we discuss tools that help evaluate the meaning of the 
numbers. We will focus on three general areas. 

Validity: Validation concerns the degree of our faith in the quality of the model 
with respect to the external world. Below we discuss statistical methods and 
problems in evaluating model adequacy and usefulness. 

0 Uncertainty: Ignorance and uncertainty occur at many points in the modeling 
process: in the equations, the parameters, and in the definition of the system 
itself. We will discuss tools for evaluating the contribution of this uncertainty to 
model output. 

0 Behavior: The change of state variables over time is the lowest level of system 
understanding. To grasp fundamental interactions, we need to visualize the co- 
variation between coupled variables, and identify system conditions in which 
the dynamics of the variables are qualitatively similar. 

In this chapter, we discuss validation and model quality. The following chapter covers 
uncertainty analysis, especially sensitivity analysis, and behavior with emphasis on 
stability analysis. 

8.2 Validation: When Models Go Bad 

When we consider model validation, we are interested in the quality of the model. 
This is a more difficult problem that one might suppose. Indeed, there is significant 
disagreement over the word to use. Most authors agree that model quality is not truth 
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or veracity (Caswell 1976b). In line with this, we previously used veriJication to mean 
establishing the correctness of an algorithm or computer code. Therefore, the system 
scientists who use the word validation use it to mean model quality with respect to 
the objectives of the modeling project (Shannon 1975; Sargent 1984). More recently, 
however, several authors have argued for using corroboration or confirnation for 
validation (Reckhow and Chapra 1983a; Swartzman and Kaluzny 1987). They favor 
this usage because (1) they feel that "valid model" refers to "correct model" and does 
not permit degrees of quality, and (2) there is a precedent set by certain philosophers 
of science for "corroborate" and "confirm." [For my part, in light of the rather small 
number of well-tested models in biology and the generally low rigor of the tests, I 
think the adjective plausible more accurately reflects the nature of tested biological 
models and the skeptical attitude we should adopt (Carson et al. 1983). To a more 
cynical observer, the dictionary definition of "specious" might also come to mind.] 

In any event, two points emerge from all the discussions and definitions: (1) model 
quality, if it is quantifiable at all, is a continuous variable and perfection is probably 
not achievable, and (2) the process of model evaluation is unending. In the following, 
I do not take sides in the semantic debate, but acquiesce to the weight of common 
opinion and use "validate." 

There are many components to quality and these depend on the uses to which the 
model will be put. Earlier, we discussed three main uses: control, understanding, and 
prediction. These provide important criteria for quality, but a more complete list is: 

usefulness for system control or management 
0 understanding or insight provided 

accuracy of predictions 
0 simplicity or elegance 

generality (number of systems subsumed by the model) 
0 robustness (insensitivity to assumptions) 

low cost of running or constructing the model. 
All of these concepts are, to varying degrees, legitimate components of quality; none 
are mutually exclusive. The model objectives will determine the weighting to be given 
to the different components. Generality, simplicity, increasing understanding, and 
qualitative correctness of model behavior are concepts that are more relevant to purely 
theoretical studies, where the quantitative behavior of the real world is relatively unim- 
portant. Usefulness, accuracy, and cost are more important to applied problems such 
as control and management. Here, we will emphasize accuracy of predictions. 

Ideally, we would like to treat our dynamic mathematical models and our data 
in the same way we treat a statistical null hypothesis and the data. We would like 
to perform an objective, rigorous hypothesis test in which we can ascribe a definite 
quantity of faith (i.e., the probability level) that the model is correct. Before describing 
the very serious difficulties that may prevent our achieving this goal, it is useful to 
recognize the logical bases of validation. 

8.2.1 The Logic of Falsifying Complex Simulation Models 

The validity of an argument does not guarantee the truth of its conclusion. 
- Copi (1957) 
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An Aristotelian syllogism is a sequence of logical steps that in totality is true regardless 
of the truth or falsity of the component steps. The basis of the modem concept of 
scientific falsification (Popper 1968) is a syllogism called modus tollens: 

Form: Example: 
A * B  ifSpock is human, then he will act illogically. 
-I B Spock does not act illogically. (8.1) 
-A Therefore: Spock is not human. 

where 1 means "NOT" or logical negation. 
In applications of this argument in science, "A" is the general hypothesis (law) 

and "B" is the implication or prediction that follows from the law in a particular 
instance. Popper proposed this as the basic logical construct for the hypothetico- 
deductive method. He distinguished this logically correct argument from the fallacy 
that he claimed underlies the approach of the logical positivists (Nagel 1961). The 
fallacy is that of aflrming the consequent: 

Form: Example: 
A * B  ifFrodo loses the ring, then he will be ill. 
B Fmdo is ill. 
A Therefore: Frodo has lost the ring. 

Although the above is, indeed, a logical fallacy (not a syllogism), it summarizes the 
central problem of the conjirmationist philosophy. Even though one observes many 
instances of the major premise (Frodo losing the ring and becoming ill), this neither 
establishes it as a law nor permits one to infer the conditional (A) based solely on the 
observation of the prediction (B). 

Modus tollens is difficult to implement in mathematical models because the law 
("A'' in Eq. 8.1) is actually a conjunction of a large number of separate assumptions. 
For example, in a mathematical model there are several equations that constitute a 
conglomeration of hypotheses and generalizations; there are also parameters and ini- 
tial conditions that must be specified. So in reality the argument form is 

(at A a2 A a3 . . . A a,) + B 
1 R  
 at A a2 A a3. .  . A a,), 

where A means "AND." The last line above is a negation of a conjunction and is de- 
fined as -at v la2 v.. . v Ta, (i.e., "not al OR not a2 . . . OR not a,"). In general, we do 
not know which one or more of the ai are false. This problem has prompted some to as- 
sert that mathematical (simulation) models cannot be used as a tool of the hypothetico- 
deductive method (Romesburg 1981). The situation is not completely hopeless. We 
can perform independent experiments to estimate parameters, perform parameter sen- 
sitivity analysis to evaluate their effects on model response, or create and investigate 
alternative models. Other issues arise from alternative philosophical positions that 
challenge the relevance of Popperian falsificationism and the hypothetico-deductive 
approach. An accessible introduction to some of these alternatives in the context of 
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Figure 8.1 : Relations of sets of observations on the system (S) and model (M) for val- 
idation. Q is the set of correct predictions. (From Mankin et al. (1977), Fig. 1.0 1977 
Simulation Councils, Inc. Reprinted with permission Simulation Councils, Inc., publisher.) 

mathematical modeling can be found in Hilborn and Mange1 (1997). Although the 
philosophical and logical problems are real, we will not discuss them further here, but 
rather proceed to discuss practical problems associated with testing models. 

8.2.2 The Geometry of Validation 

Truth is the intersection of independent lies. - Levins (1966) 

Mankin et al. (1977) provide a useful conceptual framework that encompasses dif- 
ferent validation problems and situations. They considered validation in terms of the 
relation of sets of measurements that can be made on systems and models (Fig. 8.1). 
P is the set of all possible observations on the class of systems studied (e.g., ecosys- 
tems). S is the set of all observations actually made on the study system. M is the set 
of model outputs, and Q is the intersection of M and S (i.e., the overlap of data and 
model predictions). Also imagine, since we advocate the use of alternative models, 
that there may be several Mi, each with different Qi that may themselves overlap. 

There are several qualitative relations between these sets that help us understand 
different validation situations and ways that models can fail (Fig. 8.2). If Q is empty 
(Fig. 8.2a), there is no intersection between model and observation, and the model is 
useless. If Q is nonempty, we say the model is useful. At the other extreme (Fig. 

Figure 8.2: Relations of model predictions and system observations. 
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8.2c), the model may predict all of the system observations and make no predictions 
that are not observed (i.e., M and S are exactly the same set: only in your dreams). 
The more typical situation is intermediate (Fig. 8.2b): the model predicts a subset 
of the observations and makes some predictions that are not observed. Two other 
special cases can be imagined: (1) the model never makes a mistake (Fig. 8.2d), but is 
incomplete; and (2) the model is complete, but makes mistakes (Fig. 8.2e). In actuality, 
because of uncertainties in the data and in the model, the determination that a model 
prediction or an observation is in Q is not binary (yes or no). The points of S are better 
thought of as a surface of probabilities that the model predicts the observation. 

Mankin et al. (1977) also suggested that model reliability is the ratio of the size of 
Q to the size of M. Model adequacy is the ratio of the size of Q to the size of S. For 
example, in Fig. 8.2d the model is relatively inadequate but reliable because it makes 
no incorrect predictions. In Fig. 8.2e, the model is relatively unreliable, but very ad- 
equate (it predicts all of the observations). Certainly, there are problems in defining 
a measure of the sizes of the sets, but this conceptualization emphasizes that many 
and varied comparisons, both quantitative and qualitative, can be made between data 
and predictions. We must investigate both reliability and adequacy. Most published 
validation exercises focus on the size of Q or, at best, on model adequacy. A reliable 
model makes few predictions that are not observed, or to use the words of Ginzburg 
and Jensen (2004), "theoretical prohibitions are absent from existing data." Practi- 
cally, we can only compare model predictions to observations we have made. Most 
observational data sets consist of a relatively small number of observations separated 
by relatively large time or space distances. A model might match each of those points 
exactly, but without the intervening observations, we will not know if the interven- 
ing model predictions are correct. So, model reliability is inherently more difficult to 
evaluate. In Sec. 9.2.2 we present Error Analysis which has the goal exploring the 
probabilities of model predictions given parameter uncertainties. This technique, in 
addition to Sensitivity Analysis (Sec. 9.2.1), can provide insight into the true range 
of model predictions and, consequently, the size of M (Ginzburg and Jensen 2004). 
When coupled with Below, we will stress quantitative comparisons and model ade- 
quacy, but the broader picture (Fig. 8.2) should be kept in mind. To address model 
reliability, the model must be tested in imaginative ways. For example, it should be 
tested against (1) different systems [e.g., different organisms, or habitats (aquatic vs 
terrestrial)]; (2) different geographical areas; or (3) using different parameter values 
and environmental driving variables and perturbations. 

8.2.3 Variables and Levels for Validation 

While the logic of validation may be clear enough, in practice it is not obvious exactly 
what comparisons should be made. Usually, the model objectives will dictate which 
quantities should be compared between model and data. The most common are the 
dynamics of the state variables and derived measures in the form of Forrester auxiliary 
variables. The latter may be (1) functions of individual state variables [e.g., a state 
variable scaled to other units (concentration computed from an absolute quantity)], 
(2) the time or spatial averages or frequency distributions of a state variable, (3) the 
maximum of a state variable, or (4) the time that a state variable achieves a particular 
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Figure 8.3: Comparisons between data (solid line) and the predictions of three hypotheti- 
cal models. 

value (e.g., its maximum). We can also use auxiliary variables that are computed from 
two or more state variables (e.g., species diversity in ecological foodweb models), or 
ratios of state variables (e.g., root/shoot ratios in plant growth models). 

In addition to choices of variables, there are degrees of comparisons. At one ex- 
treme are theoretical models whose object is understanding with only vague reference 
to qualitative similarity between model predictions and common knowledge about the 
system. The other extreme is rigorous statistical testing of model predictions with 
replicated field or laboratory experiments. The intermediate ground is broad and in- 
volves a wide range of techniques and problems. 

To illustrate this point, consider Fig. 8.3, which shows three comparisons of model 
output (broken lines) and data (solid line). Each model output fails in different but im- 
portant ways. Model 1 generally captures the long-term trends of the data by passing 
through the mean of the cycles at the end of the time series. It misses, however, the 
strong peak in the middle of the data. Model 2 hits the peak, but misses the cycles. 
Finally, model 3 has both the peak and the cycles, but the size of the peak and the 
timing are wrong. 

Are any of these models satisfactory, and, if so, which is the best? Ask three 
different modelers these questions, and you will get three different answers (especially 
if the models are their own creations). Unfortunately, there are no definitive answers 
to the questions. It depends not only on the objectives, but also on what one thinks the 
dejining pattern of the data to be. Is it the peak, the cycles, or the long-term trends? 
There are rational arguments for all of these features. Familiarity with the system can 
help in these cases, but there is danger that an expert's preconceived notions and pet 
hypotheses may influence which patterns are emphasized. Because of this, we seek 
objective, statistical criteria to compare models and data. This satisfies our urge to be 
rigorous, but we should not lose sight of the fact that models can have large statistical 
errors, but still capture the essence of the data (e.g., model 3 in Fig. 8.3). By doing 
this, they maintain their utility even if they fail statistical validation. 

8.2.4 Conditions for Validation 

In dynamic models, validation is usually concerned with the comparison of two time 
series: observations and model output. These comparisons have four attributes that 
will influence the kind of validation that is possible: data independence, number of 
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system responses, number of time points, and degree of replication. Below, we discuss 
some of the issues and methods that are appropriate depending on the attributes. 

Data Independence 

An essential condition that must be met in any rigorous comparison of data and pre- 
dictions is data independence. The data used for model validation must be separate 
from and independent of any data used to formulate model hypotheses and estimate 
parameters. This condition motivated the revision of the standard view of the model- 
ing process to include multiple working hypotheses and alternative models tested in 
parallel (Chapter 2). When independent data are difficult to obtain, we must be care- 
ful to avoid a circular comparison of model output with data used at some point in 
model formulation as part of validation. If the comparison data are not independent 
of those used to construct the model, then we are only doing calibration and not true 
validation. This applies to a broad class of re-sampling techniques (Manly 1997), in 
which one repetitively compares model predictions to a random subset or subsample 
of a single data set. Cross-validation, jackkniJing, and bootstrapping are examples to 
this approach to pseudo-validation. While not true validation as defined here, these 
techniques can provide valid estimates of relevant statistics (e.g., confidence intervals 
of residual sums of squares). 

Single and Multiple Responses 

In almost every system and model, we can measure or compute a number of differ- 
ent quantities that could be compared. For example, in all but the simplest systems, 
there is more than one state variable. Each of these can be measured or computed, 
and, therefore, each of these is a response that we can use to evaluate model predic- 
tions. Our validation test procedure must decide how many and which of all possible 
responses will be used. If we choose to validate using more than one response, then 
we must decide if we will compare system and model for each response separately or 
produce a synthetic validation that incorporates all responses simultaneously. If we 
analyze the responses separately, then we have the problem of deciding overall model 
quality if model predictions are acceptable for some, but not others. Multivariate sta- 
tistical techniques (discussed below) can perform comparisons simultaneously. If we 
do not use these methods, then we can either report each individual comparison sepa- 
rately and make a subjective evaluation, or we can combine errors of all responses in 
an index (Shannon 1975). This latter approach, although it is quantitative, has only the 
aura of objectivity, because typically there will be no statistical test to determine if the 
index is large or small. So, if rigorous statistical evaluation of overall model quality 
for many response variables is our goal, we should use multivariate techniques. 

Single and Multiple Comparison Points 

We can choose to validate the model either at a single point in time or at several points 
in time over the series. If we choose to evaluate the model at a particular point in time, 
then we must have a criterion for determining what the point will be (e.g., at the end of 
the growing season, or when a particular condition has occurred). If only a single time 
is used, then the problem of statistical bias due to serial correlation in the time series 
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does not arise. If multiple time points are used, then we must use care in applying 
standard statistical tests. 

Unreplicated Systems and Models 

Model validation using statistical tests requires some form of variability in either 
model predictions or observations. In real systems, variability is usually produced 
from replicated observations. It can be produced in stochastic models from repeated 
runs that differ in the sequence of random numbers used to generate the modeled ran- 
domness (Chapter 10). Regression techniques are one approach to validation that does 
not require statistical replication. We will discuss this situation in more detail below. 

8.3 The Techniques of Validation 

A large variety of validation methods, tests, and indices have been used in biological 
modeling. Table 8.1 lists the major methods available. These are described with more 
detail on the pages indicated in the table. 

8.3.1 Unreplicated Systems 

A proof is an argument that convinces someone who knows the subject. 
- Davis and Hersh (1981) 

Turing Tests 

If there is variability neither in the model nor in the data, and we wish to compare 
model and system time series, then many classical statistical tests are not possible. 
Consequently, we are restricted to a qualitative assessment that the model behavior is 
"reasonable." Often this assessment is done informally by presenting the reader with 
a plot of dynamic model output and system measurement on the same graph. Usually, 
this is accompanied by the statement that the model behavior is "reasonable." A more 
formal method is the Turing test. 

Alan Turing was a British mathematician instrumental in the design of early British 
computers and interested in theoretical biology and artificial intelligence. He proposed 
to validate computer models simulating human verbal behavior by putting one human 
(the interrogator) in a room with a computer terminal connected to two other rooms 
containing a human test subject and a computer, respectively. The interrogator asks 
questions of both the computer and the human to determine which room contains the 
computer. If the computer's program is successful, its verbal responses will fool the 
interrogator, and he will fail to guess the location of the machine. Thus, a computer 
model passes a Turing test if it fools the expert. Or, to put it in a semiquantitative way: 
A good model is one that fools 80% of the experts 80% of the time. 

This approach can be used for biological models by asking experts to distinguish 
similarly prepared figures or reports of genuine and simulated system dynamics. The 
format of the simulated output must be similar to the norm for the genuine system. 
In most cases, this could be x-y plots of time traces of key variables (e.g., net plant 
productivity during a growing season). Other systems may require specialized docu- 
ments. 
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Table 8.1 : Summary of quantitative validation techniques. RSS = residual sum of squares; 
CI = confidence interval. 

Method 

1 : 1 Regression 

paired t-test 

Profile 

95% CI 

Turing 

LRT 

AIC 

Bayes 

MSEP 
RMSEP 

MAE 
MA%E 

Theil's U 

Janus (J2) 

Definition 

Regresses data values against model predictions. Simultaneously tests 
slope = 1.0 and intercept = 0.0. Can be used with or without system 
replication; ignores temporal sequences. Page 153 

Data-model correlation and coefficient of determination. Tests for no 
correlation. Ignores temporal sequences; does not require replication. 
Page 153 

Tests if the data-model relationship is linear. Requires replicate 
system observations at each model prediction point. Ignores temporal 
sequences. Page 154 

Tests that data-model pairs are equal. Ignores temporal sequence; 
does not require system replication. Page 154 

Tests multiple model variables simultaneously for parallelness with 
data over time; requires system replication. Page 159 

Semi-quantitative; identifies time values when model or data 95% CI 
do not overlap with data or model predictions. Requires either system 
re~lication or stochastic model vredictions. Pane 163 

Qualitative test using a human expert. May use any system trait or 
variable; often uses temporal sequences; does not require system 
replication. Page 151 

LRT = Likelihood Ratio Test: Compares a set of models by testing 
that the ratio of likelihoods of a simple model to the best model equals 
1.0. Requires nested models. Page 164 

Index of model quality based on log-likelihood of model in which 
quality decreases with model complexity. Not a statistical test. Page 
169 

Combines likelihood measures of model error with model prior 
probability to compute the posterior probability that the model is true 
relative to a set of models. Not a statistical test. Page 172 

Index of model quality: MSEP = mean squared error of predictions 
[(observed-predicted)/n, units as square of variable units, e.g. 
[gm c12]. RMSEP = square root of MSEP (same units as variable). 
Error partitioned among: bias, slope, and random. Page 157 

Index of model quality. Absolute value of difference between data and 
model, same units as data variable. Pane 157 

Index of model quality. EF (Model Efficiency) 
= 1 - (RSS/ C(yi  - y)2). Model error scaled to data variability; 
unitless. Page 158 

Index of model quality. Model error scaled to variability in model and 
data. Page 156 

Index of model quality. Ratio of error using independent data to error 
using calibration data: J2 = MSEPVaI/MSEPcaI. Page 158 
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Model Model Model 

Figure 8.4: Three possible scenarios in which a model with poor fit to data results in a 
high correlation. Solid circles are data-model pairs and the dashed line is the regression 
of observations on model predictions. The solid line is the 1 :I line for a perfect fit between 
data and model. Left: slope (variance) error; Middle: bias error; Right: bias and slope error. 

Schruben (1980) used this approach to evaluate a model of the flow of patients 
among a set of operating rooms. The model was validated by testing the ability of the 
facility director to discriminate between simulated and genuine reports of room use. 
On the first test, the director easily distinguished the simulated and actual reports. (In 
part, this was due to the fact that the modelers forgot to remove from the computer 
output excessive significant digits in reporting minutes of room use!) On the second 
try, the director's suggestions on model hypotheses were incorporated, but she was still 
able to identify the simulated reports. The third model incorporated more suggestions 
by the director, and eventually she failed to discriminate the two sets of reports. 

Overall, it is difficult to interpret this type of test. One can apply rigorous statistical 
analyses (e.g., the kappa statistic of agreement, Fleiss 1973), but in the above exam- 
ple there is a disturbing repetitive loop between model structure and test. Moreover, 
as Schruben (1980) admitted, the expert became better at noticing small differences 
between genuine and simulated reports, so that achieving a high quality model be- 
came more difficult with each additional test. Too much of this sort of thing would 
discourage even the Red Queen of Wonderland. 

Observed vs Predicted Regression 

Even without randomized replication, linear regression is sometimes used to test that a 
model is statistically indistinguishable from the data. While there are situations when 
this approach is legitimate, after describing the method, we discuss some problems. 

Consider the case when the deterministic model output and unreplicated system 
trajectory are paired such that we can associate a prediction for every time t at which 
we have an observation. Simply examining the scatter plot of the data-model pairs 
(Fig. 8.4) is a powerful visual tool to bolster belief in the model. The next, more 
quantitative, step is to perform a correlation analysis (see Zar 1999, Chap. 19) be- 
tween model output and the observations. The correlation coefficient, r, measures the 
strength of the straight-line relation between model and data. While statistical anal- 
yses exist to test p = 0 (no correlation), there are no a priori non-zero values of p 
against which to test. For example, there is no reason to test for p > 0.6, unless this 
value was an element of the model objectives. 
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The next statistical approach regresses the observations (y axis) onto the predic- 
tions (x axis). If the model is perfect, all of the points will fall on the 1: 1 (45") line, 
and both the regression slope would be 1.0 and its intercept would be 0.0. Model 
predictions that fall near this line will also be highly correlated with the data, but Fig. 
8.4 illustrates 3 possible outcomes in which a model does not match the data well, but 
nevertheless is highly correlated with the data. 

The correct approach is to test for these two values (slope = 1.0 and intercept = 
0.0) simultaneously (unlike the tests in standard statistics texts). Dent and Blackie 
(1979), and later clarified by Mayer et al. (1994), provide the required formula as an 
F statistic: 

nu2 + 2a(b - l)CXi + (b - I ) ~ X X ~ !  
F =  

2s:, 
7 (8.2) 

where a is the estimated intercept, b is the estimated slope, Xi are the individual model 
predictions, and n is the number of system-model pairs. s ix is the residual mean 
squared error (RMSE) and is computed as 

where 
Pi = ? T +  b(xi -X) = a +  bxi, 

where Yi are the individual system observations (i.e., validation data) and ?T is the 
mean system value. In standard statistical packages, the residual sum of squares is 
usually computed as SStotal - SSreg,,,io,; RMSE is obtained by dividing residual sum 
of squares by n - 2 degrees of freedom. 

Many of the standard linear regression computer packages will compute s:,, 
C x?, and X, so it is an easy task to compute Eq. 8.2. Some packages will calcu- 
late Eq. 8.2 directly. This statistic follows the F distribution with 2 and n - 2 degrees 
of freedom. If the original model has merit, we will fail to reject the null hypothesis 
that the slope is 1.0 and the intercept is the 0.0. Consequently, small values of F mean 
our model is a good fit. 

MBS-CD contains the SimPlot package with the function SimValidationO that 6 Lomputes these values. See the example simulation program ValidationTert. 1 
In addition to testing the parameters, an overall test for lack-of-fit can be made 

(Kleinbaum and Kupper 1978). As its name suggests, this statistic measures the degree 
that the model does not fit the observations. The model is validated if we do not reject 
the null hypothesis. Note that this method requires replicated observations at every 
model prediction used in the test. 

An alternative to 1: 1 regression testing, is to treat model and data as paired samples 
and use a paired t-test to test Ho : px - py = 0. For details of the t-test, see Zar (1999, 
Chap. 9). In a comparative analysis, Mayer and Butler (1993) found that 1: 1 regression 
was more discriminating than a paired t-test; that is, models were rejected using 1: 1 
regression, but were accepted in the t-test. 

Regression, like all statistical methods, is not fool-proof. Care must be taken, 



58.3: The Techniques of Validation 155 

Type II Error Type I Error Reject False 

Model Model Model 
True: y = 1.0 + 0 . 8 ~  
Estimated: y = 0.692 + 0.884~ 
Regression: F = 1.52 P > 0.50 
Paired r = 0.222 P > 0.50 
Correlation: r = 0.978 
U = 0.052 
MSEP= 0.412 
MC = 0.008 SC = 0.268 
RC = 0.725 

T N ~ :  y = 0.0 + 1 .ox 
Estimated: y = -0.0435 + 0.766~ 
Regression: F = 6.571 P < 0.05 
Paired t = -1.832 P > 0.10 
Correlation: r = 0..884 
U = 0.171 
MSEP= 3.578 
MC= 0.495 SC = 0.126 
RC= 0.378 

True: y = 1.0 + 0 . 8 ~  
Estimated: y = 1.029 + 0.804~ 
Regression: F = 12.52 P < 0.01 
Paired t = -0.2021 P > 0.50 
Correlation: r = 0.991 
U = 0.054 
MSEP= 0.4239 

MC = 0.006 SC = 0.752 
RC = 0.242 

Figure 8.5: Statistical results of regressing observations on model predictions for three 
cases with high correlations. Solid circles are model-data pairs; solid line is the 1:l line; 
dashed line is the least squares regression line. A: Visually, the model looks good, but in 
reality the model does not match the data. It underpredicts small values and overpredicts 
large values, yet both the 1:l regression test and the paired t test fail to detect this. B: 
Visually, the model appears poor. In fact, the model matches the data, but statistical sam- 
pling error causes the regression results to indicate a poor model. The paired sample t-test 
correctly fails to reject the null hypothesis. C: A case when the null hypothesis is correctly 
rejected by F but not t. 

particularly when relying on visual inspection of the 1 : 1 scatter plots. Figure 8.5 shows 
three outcomes of model-data comparisons using regression based on simulated data. 
Figure 8.5A is an example of a Type I1 error: failure to reject a false null hypothesis. 
In this case, the null hypothesis is that the regression of data on the model has slope 
1.0 and intercept 0.0. The data in Fig. 8.5A were generated by adding noise with 
standard deviation 0.4 to the line y = 1.0 + 0.8x, i.e., a system that was known not 
to fall on the 1:l line. Random sampling, however, has produced data that appears 
close to 1: 1. The statistical results below the figure show that some of the methods can 
mislead us: both the F and t tests lead to the wrong conclusion. The opposite mistake 
can happen; a Type I error occurs when we reject a true null hypothesis. In Fig. 8SB, 
the model is correct, but the observations are very variable ((T = 0.8); the t test accepts 
the null hypothesis, but F implies a q p e  I error. Finally, the F statistic based on Fig. 
8.5C correctly rejects the false null hypothesis, but the t test does not. The indices 
associated with these examples 

Obviously, we can err if we rely on a single test or index. Visual inspection and 
correlation coefficients can mislead (Fig. 8.5). The t test is less discriminating than 
regression (the former accepts more models than the latter). In large part, choosing 
which measure to rely on depends on the relative importance one gives to Type I or 
Type I1 errors. 

A shortcoming of either regression or correlation is that the temporal aspects of 
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the deviations between data and model are lost in the scatter plot, but this can be made 
explicit with plots of the deviations over time. More serious problems occur when the 
method is applied to situations in which the assumptions of linear regression are not 
satisfied (Mayer et al. 1994). Those assumptions that are especially important are: (1) 
the Xi must be known exactly, (2) the variance of the errors must be constant for all 
values of Xi, and (3) the Yi are independent. Although we are always uncertain that 
a model and its parameters are correct, assumption (1) is normally satisfied, given a 
particular deterministic model, with particular parameter values. However, we must 
recognize that the statistical inference applies only to that complete set of conditions; 
specifically, we cannot extrapolate the inference to the same model using different 
parameter values. If the Xi are not assumed to be exact (e.g., in stochastic models), 
then the regression procedure is more complicated and problematical (Ricker 1973; 
Sokal and Rohlf 1981) and Eq. 8.2 is not appropriate. 

Assumption (2) is probably not true because (a) we often have greater errors in 
measuring small numbers than large numbers, and (b) if the dynamics are monoton- 
ically increasing, then differences between the data and the model may diverge over 
time (as the Xi grow). However, linear regression is relatively robust to violations of 
(2), although it should always be verified. 

Assumption (3) is particularly important because linear regression is sensitive to it 
and it is often difficult to determine when it is violated. It will be violated when obser- 
vations are made repeatedly over time on the same experimental unit (e.g., growth of 
an individual organism or dynamics of a variable measured at a particular location in 
a lake). 

In addition to the assumptions of linear regression, the equation for F (Eq. 8.2) has 
properties that increase its Type 1 error rate. As a ratio, it balances the deviation of 
regression parameters from expected (b = 0.0, m = 1.0) in the numerator against the 
residual error in the denominator. This creates a paradox for extremely good models. 
These are models that fit a copious data set (large n) extremely well (small s ; . ~ ) .  
To use 1:l regression for validation on accurate models we would like F to be small 
(fail to reject the model). But with extremely good models, the value of F will be 
large (reject the model): the numerator will be large (large n and large C x) and at the 
same time the denominator will be small. Collecting and testing with more data only 
makes matters worse by increasing the numerator without significantly increasing the 
denominator. The second property of F that increases Type 1 errors is the fact that the 
second sum in the numerator has (b - l), which, if negative, reduces F. This fact will 
tend to increase the probability of accepting models with regression slopes less than 
1.0 relative to those with slopes greater than 1 .O. 
Indices 
In addition to regression, a variety of indices have been developed as diagnostic tools 
to assess the nature of the deviations. Theil(1961) defined an inequality coeficient as 

where Xi, Yi are the model output and observations at the ith time point, respectively, 
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and n is the number of paired points. The numerator is the mot mean square error 
(RMSEP, square root of the mean square error of predictions, MSEP), with the de- 
nominator scaling U to range between 0 and 1. Accurate models have small U. 

Mincer and Zarnowitz (1969) simplified Theil's calculations and based the index 
of model quality on the MSEP. 

where r is the correlation of X and Y, and S y and Sx are the standard deviations of the 
X and Y variables. 

This index is composed of three components associated with (1) differences be- 
tween the model and system means (i.e., a nonzero intercept or bias error): MC, (2) 
differences between the variance of model output and the variance of observations 
(i.e., slope-not-unity error): SC, and (3) the deviation of the correlation of model and 
observation values from 1.0 (i.e., random error): RC. Dividing the right-hand side of 
Eq. 8.3 by MSEP normalizes the three components so that each represents the propor- 
tion of total error due to its respective cause: 

( F  - h2 + ( sx  - r ~ u ) ~  + (1 - =- 
MSEP MSEP MSEP ' 

Rice and Cochran (1984) analyzed a fish bioenergetic model using these formulae to 
identify the bias error (MC) as the most important component. Figure 8.5 illustrates 
the behavior of these indices in three scenarios. U is relatively small in all cases, 
consistent with the large r values. In Fig. 8.5A, MC and SC are less important than 
RC, which is reflected in the failure of F and t to reject the null hypothesis. But in Fig. 
8SC, SC is most important and F correctly rejects 

A number of additional indices can be defined to further quantify model error 
(Power 1993; Mayer and Butler 1993). To a certain extent, these indices can be 
thought of as measures of model adequacy (Mankin et al. 1977). For example, in- 
stead of quantifying model error using the conventional squared error, MAE uses the 
absolute value of the difference between data and model: 

MAE = C lyi -Xi1 

and a related quantity scaled by the magnitude of the data is 

(Beware of datasets that have zero values.) 
Two indices that scale the model error to the variability of the observed data are 

model efficiency (EF, Mayer and Butler 1993) and the Janus coefficient ( J ~ ,  Power 
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1993): 

where Y,' and X: are the data and model predictions, respectively, for the dataset used 
to create and parameterize the model, and where m and n are the sample sizes of the 
two comparisons. Power (1993) defined model accuracy as n(l - EF) and suggests 
an F test of the hypothesis that accuracy equals 0 (m and n - g degrees of freedom 
(g=number of parameters). Power also calls the numerator of J~ the model'spredictive 
error and the denominator the model's replicative error. Elliot et al. (2000) compares 
many of these indices using a freshwater phytoplankton model and data. 

With a few exceptions, these indices do not have inferential capabilities, but can 
be used to measure the degree of departure of model output from observations. Halfon 
(1989), however, used bootstrapping (a statistical randomized re-sampling technique) 
to compute the probability that calculated validation statistics were within acceptable 
limits. 

S-CD contains the SimPlot package with the function 
mvalidate-Jackknife0 that computes these values. To use it, see the 
mple simulation program ValidationTest 

Multiple Responses 

All previous methods presume a single response variable, but models with several 
state variables are typical. One solution is to repeat the analyses for each response 
independently (Elliot et al. 2000). Alternatively, one can analyze indices as the sum 
over all response variables: 

where K is the number of response variables, nk the number of data-model pairs for 
the kth response. See Harrison (1995) for an ecological example. If the system has 
replicated data, multiple responses are addressed using multivariate techniques as de- 
scribed below 

8.3.2 Replicated Systems or Models 

Replication in the system observations means that we have multiple, independent ob- 
servations at points in time. Model replication means we have a stochastic model that 
has been run several times or a deterministic model that is run several times with ran- 
domly selected parameter values. Naturally, it is possible for both the data and the 
model to be variable. Whether we can legitimately use this variability to test statisti- 
cally for differences between model output and the data depends on whether we are 
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comparing a single value or a time series of values. An excellent tool for visualizing 
model or data variability, especially stochastic model output, is the boxplot. This is a 
graphical representation of a set of numbers in which the sample size, mean, median, 
the range, and other measures are all represented. A thorough description of this tech- 
nique in stochastic modeling is given by Reckhow and Chapra (1983b). Regression, 
paired t test, and indices can also be applied to systems with replicates. Below, we 
discuss some techniques that require replication. 

Single Value 

If only a single value (e.g., the maximum of a state variable) is being tested, then 
standard statistical testing can be done (e.g., t-tests or ANOVA). If variability exists 
in only one component (e.g., the data) then we use a single-sample t-test (Ho: p~ = 
p ~ ) .  This compares the mean of the replicated data with the single number of the 
unreplicated number (model prediction). If both model and data are variable, the 
two-sample t-test is used. Standard statistics texts (Zar 1999) give the appropriate 
formulae. 

Time Series 

As with unreplicated situations, time series introduce autocorrelations. Certainly, 
model values are correlated over time, since we use previous states to calculate cur- 
rent states, according to the equations. Measured values in real systems also tend to 
be correlated. These correlations can violate basic assumptions of standard statistical 
analyses so that extreme care must be exercised in their applications. More appro- 
priate techniques use single-factor repeated measures analyses and split-plot designs 
(Mayer and Butler 1993) or the multivariate profile analysis (Steinhorst 1979; Balci 
and Sargent 1982). 

Repeated Measures Single-factor repeated measures and split-plot designs are types 
of analysis of variance (ANOVA, see Winer 1971). Single-factor repeated measures 
designs use a single set of treatments applied sequentially to all of a single group of 
individuals (e.g., a sequence of drugs applied to patients). A split-plot design applied 
to repeated measures situations generalizes this approach to include multiple factors 
so that not all individuals receive all treatments (e.g., drugs partitioned by chemical 
properties). A split-plot design partitions the error among a main effect (e.g., system 
or location) and subdivides or splits each of these error components into effects asso- 
ciated with the treatments. Both approaches assume that the correlation of responses 
among treatments is known and is constant over time. This is usually not true, and 
caution and additional tests of statistical assumptions are needed if this approach is 
used. Because of this problem plus the fact that the method is discussed in standard 
texts ( e g ,  Winer 1971, Chapters 4 and 7), we will not give further details. 

Profile Analysis ProJile analysis is a multivariate method that tests the hypothesis 
that the trajectories of data and model output are parallel. There are two major ad- 
vantages to this method over other possible approaches. First, the approach does not 
make assumptions about the nature of the variance or covariance relationships of the 
variables, so it is a more general approach to repeated measures problems. Second, it 
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Table 8.2: Hypothetical data and model response for six replicates and three points in 
time for phytoplankton (pg chl-alliter) and zooplankton biomass (pglliter). Columns are time 
(1,2,3); rows are the replicates and the model prediction. 

I Model 1 2.1 3.8 1.0 1 13 56 20 

permits us to examine the relation of the data and the model for several output vari- 
ables (i.e., several state variables) simultaneously. 

The null hypothesis tested is that the difference between model and data is 0.0 
for each and all time values of comparison. This is analogous to the paired t test 
discussed earlier. Profile analysis calculates Hotelling's T' statistic, for which prob- 
ability tables are available. See Timm (1975) for an introduction, Steinhorst (1979) 
for an application to ecosystem models, and Balci and Sargent (1982) for a queuing 
system example. 

Here, we only illustrate the method with a numerical example. First, some terms 
and assumptions are necessary. We assume that we have k time points at which we 
measure each of q biological responses. We also have k model predictions for the q 
model variables (usually state variables). So, we have a total of qk values to compare. 
Each system is replicated n times; a replicate might be a controlled experimental field 
plot, one of several sampling stations in a lake, and so on. 

The null hypothesis is 

Zooplankton 

1 2 3 
10 50 20 
15 60 18 
12 55 22 
9 48 19 

18 60 18 
16 64 21 

Phytoplankton 

for all system responses measured. d(i) is a vector of observations of all response 
variables at time i, and m(i) is the model output of all response variables at time i. For 
example, suppose that the first response is phytoplankton biomass (P, pg chlorophyll 
a/liter) and the second is zooplankton biomass (Z, pg weightlliter). We have sam- 
ples from six independent systems (e.g., lakes) or locations (e.g., stations or transects 
within a lake) that constitute the replicates made at three different times. Thus, in this 
example q = 2, k = 3, and n = 6. The model is deterministic, so all samples are 
compared to the same model output. Some hypothetical data are shown in Table 8.2. 

From the data in Table 8.2, we subtract the model prediction from each entry 
(Table 8.3) to create prediction deviations. We call the table entries for phytoplankton 
(P) deviations bPjk, where j indexes the sample number and k indexes the time of 
the sample. Zooplankton (Z) deviations are Szjk. Next, we subtract the data-model 
deviation at one time from the deviation at the next time APjkj = 6Pjk - 6Pj(k+l)r and 
AZjk' = &jk - 6zj(k+l). These values will be the data on which we will perform the test 
for parallelism, since parallel lines will have equal slopes. 

Sample 
1 
2 
3 
4 
5 
6 

1 2 3 
2.5 4.0 1.0 
2.0 3.9 1.3 
2.3 3.8 0.9 
1.9 4.1 1.2 
1.5 3.2 0.7 
2.2 3.8 1.1 
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Table 8.3: Deviations of data and model response for six replicates and three points in 
time for phytoplankton and zooplankton biomass. Columns are time, rows are replicates. 

Table 8.4: Time differences of model-data deviations for 6 replicates of phytoplankton 
and zooplankton responses. Columns are differences, rows are replicates. The dot in the 
column label (e.g., Ap.,,) denotes all of the replicates in a given column. Column means are 
shown in the last row. 

Zooplankton 

1 2 3 
-3 -6 0 
2 4 -2 

-1 -1 2 
-4 -8 -1 

5 4 -2 
3 8 1 

Phytoplankton 

Sample 

1 
2 
3 
4 
5 
6 

Means -, 

Sample 
1 
2 
3 
4 
5 
6 

Finally, we arrange these time differences in a matrix (Table 8.4), so that the 
columns represent all of the replicate time differences (in temporal order) for all of 
the responses being tested. Thus, columns are arranged in groups first by response 
variables (e.g., P or Z) and then by time differences within response variable (e.g., 
response at time 1 minus response at time 2 and response at time 2 minus response 
at time 3). For example, column 1, row 1 will be APlll = 6pjl- 6 ~ ~ 2 ,  which is the 
deviation of the model prediction of phytoplankton from the data (6) at time 1 minus 
the same deviation at time 2 for sample (replicate) 1. Column 1, row 2 is the same 
quantity computed for the second sample (AP21l), and so on for the remaining rows 
(APjlr). Column 3, row 1 (Azllt) is the difference between time 1 and 2 using the pre- 
diction deviation for zooplankton biomass for sample 1. Using this convention on our 
example, the 2D matrix has six rows which are the replicates and four columns [two 
responses (P and Z) and two time differences (time 1 minus time 2, time 2 minus time 
31. 

This is a one-sample multivariate test of the equality of means, and so is a gener- 
alization of the one-sample univariate test based on Student's t .  The test in the general 
case is based on Hotelling's T~ for which the general formula for data of this type is 
(Timm 1975): 

1 2 3 
0.4 0.2 0.0 

-0.1 0.1 0.3 
0.2 0.0 -0.1 

-0.2 0.3 0.2 
-0.6 -0.6 -0.3 
0.1 0.0 0.1 
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where n is the number of replicates; Y-Yo is a column vector of the average differences 
between observed (Y) and expected (Yo) means; (Y - Yo)' is the transpose of (Y - Yo), 
and so is a row vector of the average differences, and S-' is the inverse of the variance- 
covariance matrix (or, simply, the covariance matrix) for the test variables (columns 
in Table 8.4). S-' has size q(k - 1) x q(k - 1). The variance-covariance matrix is a 
square matrix whose diagonal is the variance (of the samples) of a given response and 
time difference (e.g., Ap.11). Thus, each diagonal element is the sum of the squared 
deviations of replicates from the mean [i.e., C(xi - Z12] divided by n - 1. The off- 
diagonal elements are the covariances. The covariances are the sum of the deviations 
of replicates of variable x from the mean of variable x times the deviations of replicates 
of variable y from the mean of variable y. Symbolically, the covariance is: C[(xi - - 
x)(yi - y)]/(n - 1). The covariance between two variables is closely related to the 
degree of correlation of the variables. See Searle (1982) for a formal definition. 

In this case, we are using the deviation of the model from the data; thus, the ex- 
pected mean is 0, so Hotelling's T2 for model validation is (Steinhorst 1979): 

The variance-covariance matrix computed from Table 8.4 is 

Provided that sufficient replicates are available, the inverse of S can be obtained from 
standard software packages as the matrix in: 

To determine the significance level of T2, we use a table (Timm 1975) of Upper 
Percentage Points of Hotelling's T2 for Ta(p, v), where p is q(k- 1) [i.e., 2(3 - 1) = 41, 
(I. is the probability level for the test, and v is n - 1 (i.e., 5). The values for our case 
corresponding to a = 0.01,0.05, and 0.10 are 

Therefore, since 0.0463 < 992.494, we cannot reject the null hypothesis that the pro- 
file of data minus model predictions is zero at P = 0.01. Thus, this test result validates 
(or confirms) the model. 
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The approach described above works for any number of response variables and 
time intervals, and makes no assumptions concerning the structure of the variance- 
covariance matrix. T~ is easy to compute using software that can manipulate matrices. 
A major disadvantage is that it requires moderately large numbers of replicates. To ap- 
ply the method, we must have n replicates such that n > q(k- 1), where q is the number 
of system response variables and k is the number of times at which comparisons are 
made. This amount of replication is required in order to estimate the elements of the 
covariance matrix. If the model can predict these values, then an approach to vali- 
dation related to profile analysis is possible with far fewer replicates (Feldman et al. 
1984). 

A second approach to time-series validation is to treat the model and the data as 
two time series and to measure the correlation between them using cross-correlation 
techniques. Qualitatively, this procedure attempts to quantify the correlation between 
two autocorrelated time series for a given lag. The lag accounts for the autocorrelation. 
This is a well-studied problem and Steinhorst (1979) summarizes the basic formulae 
to test the hypothesis that for a given lag interval there is zero correlation between the 
two time series. Use of this lagging procedure has the potential to identify situations 
like that illustrated in Fig. 8.3. This method has the reputation of requiring large data 
sets. This requirement may limit its application in the ecological and environmental 
disciplines, but may not be a problem in biochemical and physiological systems. 

A third approach to comparing time series is commonly published, but is not a 
rigorous test. One can simply plot model output and the data on the same graph and 
count the number of times the model output (or mean model output) falls within the 
data's 95% confidence intervals. These intervals are 

where 57 is the observed mean, t(0.05,~-1) is the theoretical Student's t distribution value 
for a = 0.05 and n - 1 degrees of freedom (n = number of observations), and sj7 is the 
standard deviation of the sample. 

One can further state an objective rule for judging model quality such as: "A model 
will be valid if model output falls within data 95% confidence limits for 80% of the 
model-data comparisons." Using the hypothetical data and model responses of Table 
8.2, the 95% confidence intervals for the data are 

Phytoplankton Zooplankton 

From these values, we see that all of the model predictions fall within the 95% con- 
fidence intervals, and we would conclude that we have validated the model. See 
Van Henten (1994) for a real validation of a plant growth model using this technique. 
This criterion is a possible measure of model adequacy. 
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8.4 Model Discrimination 

Ifthere is something wrong with every alternative, one tends to try a succession 
of wrong things in the hope that one of them will turn out, which it never does. 

- Boulding (1972) 

The previous approaches assessed the degree to which a particular model deviated 
from a data set. This is important, but it does not address the method of multiple 
working hypotheses that we advocated in Chapter 2. We are, in principle, interested 
in the absolute difference between the observed system and model predictions, but 
as we have seen above, this is often difficult to achieve in practice. An alternative 
approach is to content ourselves with deciding among a set of models based on their 
relative adequacy. The process of discriminating between alternatives is basically a 
decision problem. Most decisions (e.g., Should I finish reading this book?, Should 
I change professions?) involve evaluating the probabilities of a set of events (e.g., 
the probability that I will get a raise, or that I will be happy, etc.). As we will see, 
calculating probabilities is central to model discrimination. 

Model discrimination is fundamental to all statistical inference, so the problem 
is quite general, although we will discuss only a specific application. There are two 
broad types of model discrimination: parametric and structural. In parametric model 
discrimination, the form of the model is fixed (e.g., a straight line), the parameters 
are unknown, and the object is to find the optimal parameter set. We covered this 
problem when we discussed parameter estimation, and so we will not address it here. 
Structural model discrimination is more closely allied with model validation. There 
are three major, related approaches: ratios of likelihoodfunctions, information-based 
optimization criteria, and Bayesian inference. In the following, I have used exten- 
sively Reilly (1970), Blau and Neely (1975), Reckhow and Chapra (1983a), Carpenter 
(1990), Reckhow (1990), Hilborn and Mange1 (1997), Burnham and Anderson (1998). 

8.4.1 Likelihood Functions 

As motivation, consider linear regression. The problem is to find the best set of pa- 
rameters that minimizes the sum over all datum points of the square of the vertical 
distance between the model line and the data. Some parameter values will produce 
large sums, others will produce smaller sums. Likelihood functions are a similar idea. 

The likelihood of a sample is the probability that the sample would be drawn from 
a specified probability distribution with known parameters (e.g., the mean and variance 
of the distribution). A likelihood function that calculates the likelihood of a sample 
is a mathematical function that results from applying a probability distribution to a 
particular sample in which one or more of the distribution parameters are allowed to 
vary as the function's independent variable. The dependent variable of the likelihood 
function is the a posteriori probability of the sample given the underlying probability 
distribution (Meyer 1975; Borowski and Borwein 1991). 

Is the Die True? To see the utility and application of this concept, consider the prob- 
lem of determining if a die (i.e., one half of a pair of dice) is true (Reilly 1970). A 
reasonable approach to this problem is to roll the die n times and observe the number 
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0 0.2 0.4 0.6 0.8 1.0 

Theta (8) 

Figure 8.6: The likelihood function for the binomial probability distribution with n = 5 and 
x = 2. The maximum likelihood estimator is the 8 associated with maximum of the function. 

(x) of occurrences of a particular face. If the observations deviate significantly from 
that expected from a true die, then we can conclude that the die in question is not true. 
For example, suppose we roll the die five times and observe two occurrences of the 
number 3. How likely is this outcome if the die is true? The underlying probability 
distribution for this kind of problem is the binomial distribution 

n! 
b(x; n, 8) = @(1 - 

x!(n - x)! 

This formula allows us to compute the probability that a particular event will occur, if 
we specify the unknowns. In the die problem, 8 is a parameter of the distribution and 
is the probability that a given face will appear; in a true die, 8 = 116. n is the number 
of trials (five rolls of the die) and x is the observed occurrences of a face (two). We 
consider x and n to be data that are specific to a particular test. Inserting the data 
and parameters for an assumed true die, we find: b(2; 5,0.1667) = 0.16075. In the 
problem, however, we do not know the true 8, so we form the likelihood function 

that pertains to (or given) the observed data (x) and the constrained data (n) of this 
particular experiment. 

The graph of this function is shown in Fig. 8.6. From this we see that the probabil- 
ity of a face appearing that is associated with the maximum likelihood of the sample 
is 0.4, not 0.1667, which we would expect if the die were true. So this discrepancy 
between expected and most likely 8 suggests that the die is not true. We quantify the 
amount of discrepancy by forming the likelihood ratio (R): L ( I ~ ~ . ~ ) / L ( ~ ~ . ~ ~ ) .  In this 
case, the ratio is 2.15. So we say that the observed sample is 2.15 times as likely if 
8 = 0.4 than if 8 = 0.167. We would, however, expect two 3s from a true die due to 
random chance, so is the discrepancy large enough to reject the hypothesis that the die 
is true? Since we have but a single estimate of the most likely 8 (i.e., 0.4), we cannot 
say anything rigorously quantitative. A rule of thumb (Reilly 1970 states that if R is 
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greater than 10, then we have a real difference. Under certain conditions, the log of 
the likelihood ratio (log R) is distributed approximately as a x 2  distribution, so that a 
probability can be associated with an observed R to assess if it is large enough to be 
due to factors other than chance (Sokal and Rohlf 1981). Below, we apply this test 
to some hypothetical and real examples. Dennis and Taper (1994) give further exam- 
ples of tests and a cogent introduction to the problem of ascertaining the ratio value at 
which to reject models. 

Aside on Terminology In informal presentations, one often sees the likelihood func- 
tion portrayed as: 

L(data I hypothesis) or L(data I model) 

accompanied by the text "L is the likelihood of the data given the hypothesis." This 
portrayal unfortunately confounds two different meanings of 'data' and causes confu- 
sion when one encounters formally correct presentations. In the die example, there are 
two instances of 'data': (1) the number of occurrences of a face and (2) the number of 
rolls. The first datum is the experimental result the likelihood of which we wish the 
function L to compute. The second datum is also an observed quantity, but one that 
happens to be under direct human control in the die example. As in normal mathe- 
matical functional notation, the function's arguments are listed inside the parentheses 
and the quantity that the function computes is denoted by the function name and the 
argument list. To compute L, we need not only the data n and x (Eq. 8.6), but also 
the value of 8, another argument of the function. But because 8 is the variable of the 
function and the value we are interested in determining for the maximum of the like- 
lihood, we write L as a function of 13 given that we have constrained (or observed) 
another function argument to have a particular value (n = 5). So, the more correct 
presentation would be: 

L(8 I [model,data]), 

where 'model' refers to the binomial distribution, and data refers to independent data 
we must supply (n) as well as dependent data ( x )  that we observe. An appropriate 
verbal statement is: "L is the likelihood of observing dependent data as determined by 
variable parameters (8) and independently observed data." This, of course, is terribly 
cumbersome and it's easy to see why the informal, but misleading, shorthand persists. 

Empirical Model Likelihood 

The above example is fine, if one manufactures dice, but it is not very useful in model 
discrimination. A better example is to choose among four structurally different models 
relative to a data set. To compute the maximum likelihood for all four models, we 
need: (1) parameters to maximize, (2) some data, and (3) a probability distribution that 
depends on the model parameters. Figure 8.7 shows the parameters as the ai and the 
data we need. We also need a probability distribution that will compute the probability 
of observing the data, given a model. (This is what the binomial distribution did for 
us in the die problem.) 

For an intuitive grasp of the appropriate distribution, recall that in least-squares 
regression we think of each observed y value as being equal to a function plus an error 
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Figure 8.7: Four models fit to hypothetical data as a basis for discriminating among them. 
Model 1 is nested in Model 2 which is nested in Model 3. 
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where f is the function and eij is the error associated with the ith x-y data pair and 
tIj is a set of parameters. Regression chooses the Oj parameters of f to make the 
error as small as possible. The error term, therefore, is related to the probability of 
observing a particular yi, given f (xi, Oj). If, for a particular function and parameter 
set, the error is large, then the probability of observing yi will be small, and vice 
versa. But in regression, as in Fig. 8.7, there are several yi. They are incorporated 
into the computation of the probability of observing the total error around all of the 
yi by multiplying the probabilities for individual datum points (the joint probability 
distribution). For example, if po is the probability of observing yo [given f(xo, Oj)], 
and pl is the probability of observing yl given the same function and parameters, then 
pop1 is the probability of observing both yi given the function and parameters. The 
probability of the total error is just what we mean by the probability of observing the 
yi. This, then, is the probability distribution we need for the likelihood of all they. So, 
a general likelihood function is 

- Model 1 
- - Model 2 I 

Model 3 
4 .  

- Model 4 ,' 3 /' 
Data 

1 I // 
' /  2 

0 1 2 3 
-1.290 5.318 7.049 19.886 

(i.e., the product of the probabilities of obtaining each independent observation). To 
produce a particular likelihood function, we need an expression for pi as a function of 
the error term in Eq. 8.7. We use one of the assumptions of linear regression: the errors 
are normally distributed and independent. The probability density function (pdf) for a 
single-variate normal distribution is 

1 1 1 1 1 1 1 1 1 1  

0 1 2 3 4 

Modell: y = a l x  

Model2: y = a o + a l x  

Model 3: y = a0 + alx + a2x 2 

Model 4: y = a3ea4x 

where x is the independent variable, ,u is the mean, and u2 is the variance. The latter 
two variables are the parameters of the distribution; x is the data. In our case of fitting 
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a particular datum yi to a model (Eq. 8.7), yi is x and f (xi, Oj) is p in Eq. 8.9. For 
a particular x and model as in Eq. 8.7, the difference between the observed y and 
the predicted y is a number drawn from n(yi; f (xi, Oj), a )  (Eq. 8.9). Therefore, it is 
the probability of observing that particular yi, given the model and independent data. 
Equation 8.9, therefore, is a single pi in Eq. 8.8. Using the general likelihood function 
(Eq. 8.8), the particular likelihood function assuming normally distributed errors for 
all datum points (all yi), a particular model j, and the independent data x needed by 
the model is 

where n is the sample size. This equation has the following important properties. (1) 
C(yi - f(xi, ~ j ) ) ~  = RSS (residual sum of squares) is the least-squared error between 
data and model. (2) Models and parameter sets (ej, a 2 )  that have large errors (poor 
fits) have small likelihood values. (3) There is a single maximum, the maximum like- 
lihood, which corresponds to the minimum of C(yi - f (xi, (4) The set of (Oj, a 2 )  
associated with the maximum is the best set of model parameters for model i. These 
(Oj, a 2 )  are the mmimum likelihood estimators of the parameters. 

Equation 8.10 has two unknowns: the model parameters ej and d. Both must 
be estimated for each model. To fairly compare and discriminate among a set of 
models, we want to use, for each model, the model's parameters that make the data 
the most likely, i.e., the maximum likelihood estimates of Oj and a2 for each model. 
When we have these estimates, we will also have the maximum likelihood estimate 
&&, = RSSIn = MS EP. When &&, is estimated, and substituted for a2 in Eq. 8.10, 
the maximum likelihood function for model j is: 

Finally, taking log, of both sides of Eq. 8.1 1 : 

The last two additive components on the right of Eq. 8.12 are constants and only 
the first component determines the values of the O that maximize ln(Lj). (The reader 
should verify Eqs. 8.1 1 and 8.12.) 

However impressive the manipulations have been to this point, a maximum log- 
likelihood is just a single number. To discriminate among models, we need tools to 
determine statistically if one model is better than another. In the special case that the 
models are nested we can use the likelihood ratio test (LRT). Model A is nested in 
(simpler than) Model B if the former can be obtained from the latter by setting one or 
more parameters to zero. For example, in Fig. 8.7, Model 1 is nested in Model 2 by 
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Table 8.5: Likelihood comparisons of four models on data in Fig. 8.7 

Model RSS c2 ln(Lj) I )  - l n ( )  ,y2 df P I 

setting a0 = 0. The likelihood ratio test is based on the ratio of likelihoods or, equiva- 
lently, the difference between the log-likelihood of the simpler model (In(Ls)) and the 
more complex model (ln(Lc)). This quantity isx2 distributed with the null hypothesis 
that ln(L,) = In(Lc) and tested with degrees of freedom equal to the difference in the 
number of parameters between the two models: 

The maximum likelihoods for the four models in Fig. 8.7 and the ratio of likeli- 
hoods (differences in log(L)) to the best model in Reilly (1970) are shown in Table 
8.5. Since Models 1-3 are not nested with respect to Model 4, it is excluded from the 
likelihood ratio test. Based on this table, the exponential model (4) is a better fit to 
the data than the 3 polynomial models. Among the latter nested models, Model 3 was 
more complex (more parameters) and a better fit to the data. However, none of theX2 
values of the ratio test were significant at a = 0.05, so we conclude that Model 3 was 
not a significant improvement over either Model 1 or 2. 

Mechanistic Model Discrimination 

A final application computes L,, for seven differential equation models of the dy- 
namics of a radioactively labeled pesticide in an aquatic microcosm (Blau and Neely 
1975). An aquatic laboratory microcosm containing Water, Soil, Plants, and Fish was 
perturbed with I4C-labeled Dursban to determine how much of the pesticide accumu- 
lated in the above microcosm components over time. Seven models based on donor- 
controlled, linear differential equations were formulated as predictive tools. The rela- 
tive merit of each as measured by maximum likelihood was assessed to discriminate 
among them. The models varied according to the number and relations of ecosystem 
components that each incorporated. The models differed from each other according to 
the number of flows and compartments in a series from simple to more complex. Two 
of these are illustrated in Fig. 8.8. 

Blau and Neely (1975) fit each model to a single time series of results to obtain the 
best parameters (ki) .  They applied Eq. 8.10 to each model and obtained the maximum 
likelihoods (relative to model parameters) in Table 8.6. They concluded that Model 4a 
was the best of the seven (largest ln(Lj), column 4). The likelihood ratio test applied 
to the models that were nested in the best model (4a) indicates a significantly better fit 
by the more complicated model. 

8.4.2 Information-based Discrimination 

The likelihood ratio method described above is a procedure for rational choice among 
competing models based on their discrepancy with a dataset. A problem is that the ap- 
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MODEL 1 

MODEL 

Figure 8.8: Two of the seven models of Dursban movement in an aquatic microcosm (Blau 
and Neely 1975). In model 4a, Fish2, Water2, and Soil/Plant2 represent additional storage 
compartments for 14C. 

proach does not consider the complexity of the model. We have previously noted that 
increasing model complexity in the form of additional parameters has an ambiguous 
relationship to the error between the model and the data (Costanza and Sklar 1985). 
More parameters often produce functions with more complicated structure (e.g., curvi- 
linearity, or many maxima and minima), which might be better able to match compli- 
cated, non-smooth data. However, all parameters are estimated with errors, and it 
often happens that the total error of the function is positively related to the number of 
parameters as they each contribute their individual errors. This is error propagation 
and is discussed in Chapter 9. 

A number of schemes have been proposed to incorporate the number of parameters 
into the model discrimination process (Spriet and Vansteenkiste 1982). All of these 
decrease model "quality" as the number of parameters increase. This process allows 

Table 8.6: Maximum likelihood values, ratios, and chi-square values for the seven models 
of Dursban movement. n = 36. Not all models are nested in the best model (4a). df = 
degrees of freedom for the chi-square test = difference in number of parameters. P is the 
probability that a ,y2 value as large or larger than observed would occur by random sam- 
pling. AIC is the Akaike Information Criterion for each model; Ai is the difference between a 
model's AIC and the smallest AIC in the set of models. 

Model RSS k2 In(Lj) I ln (Li lkax=c)  x2 df P 
1 5374 149.3 -90.11 1 -81.34 162.7 4 << 0.001 
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us to implement the principle of parsimony that we invoked in Chapter 2 .  One scheme 
for balancing accuracy and complexity now being used extensively is due to Hirotugu 
Akaike, and admirably explicated for biologists by Bumham and Anderson (1998). 

The problem is that we know how to estimate the "distance" between a dataset 
and the predictions of a particular model. More difficult is to estimate the "distance" 
between two or more competing models or functions. As Burnham and Anderson 
describe, if one model is considered the focal or "true" model, then a second model 
is viewed as approximating the first. The distance between the two is the information 
that is lost, if we use the second model in lieu of the true model. The formula for this 
distance is closely related to Claude Shannon's measure of the information content 
of a binary communication signal (Shannon 1948). We leave the reader to consult 
Bumham and Anderson (1998) for an approachable introduction to this theory, but the 
basic idea is deceptively simple. 

Information theory provides a formula for the distance (the Kullback-Liebler dis- 
tance) from a candidate model to a focal model based on particular values of the pa- 
rameters required by the two models. In this model distance context, the focal model 
is assumed to be fixed or given and any other candidate model is related to it. In the 
practical or empirical context, we have a candidate model which we wish to relate to 
a dataset. In this context, the data play the role of the focal model, but, alas, we do 
not know the parameters of the "true" model that corresponds to the data. (If we knew 
that, we wouldn't need modelers.) As a result, the Kullback-Liebler distance formula, 
as written, is not practically useful. Akaike's contribution was to provide an unbiased 
approximation that can be applied to empirical data based on the log-likelihood func- 
tion. This approximation is known as the Akaike Information Criterion (AIC) and is 
computed for each model j: 

AIC j = -2 l n ( ~ ( e & ~  I Ly, fj( ), x])) + 2K, (8.13) 

where L( ) is the maximum likelihood estimate of the model parameters given the data 
y, x, and model equation, and where K is the number of parameters estimated in fitting 
the model to the data. K equals all the unknown coefficients in the model itself plus 
parameters of the error distribution that must be specified. In our earlier work with 
normally distributed errors in a linear regression (e.g., Fig. 8.7), K = 3, two for the 
slope and intercept of the line and one for b2, The first component on the right of 8.13 
usually decreases as the number of parameters increases, but the second component 
increases. From a collection of models Mj, j = (1,. . . , m) and a particular dataset, the 
best model is that which possesses the smallest AICj. Thus, K represents a penalty we 
incur by using complicated models to represent the data. 

AIC by itself does not provide a statistical basis to infer the best model with an 
associated probability of a Type I error. AIC is an optimization criterion. It differs 
from the likelihood ratio test (LRT) in this regard. However, when the models analyzed 
by AIC are nested, there is a relationship between AIC and LRT: 

LRT = AICl - AICj + 2k (8.14) 

where k is the number of parameters that differ between model 1 and model j. Anal- 
ogous to reporting LRT values, it is standard (Bumham and Anderson 1998) to report 
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the difference between the AIC of a candidate model and that of the model with small- 
est AIC as: A1 = AICl - AIC,i,. Since this is just an indexing method, and not a 
statistic for inference, A1 can be reported for all pairs of models, regardless of nest- 
edness. Table 8.6 reports the AIC and A values for the Dursban models. Both the 
likelihood values and the AIC indicate that model 4a is the best. Incorporating the 
number of parameters (2K) as a penalty did not affect the conclusion since the best 
model was quite accurate using a small number of parameters. Burnham and Ander- 
son (1998) suggest, as a rough rule of thumb, that if Al 5 2, model I performs similarly 
to the best model and should not be eliminated; if Al > 10, model I is not close in qual- 
ity to the best model and can be eliminated. Using these criteria on Table 8.6, none of 
the competitors is close to 4a, but perhaps 4b should not be rejected. 

There are many modifications and elaborations to this basic idea of penalizing 
complex, but accurate models in order to achieve a balance between simplicity and 
errors. One major failing of this approach is the absence of a hypothesis test. AIC is 
defined for a particular model and dataset. A different data set might (and often will) 
suggest a different model as being best. One obvious solution to this sampling distri- 
bution problem is to collect many datasets and calculate an AIC for each dataset and 
model. If this is not possible, Burnham and Anderson (1998) recommend bootstrap- 
ping. This is a Monte Carlo re-sampling technique (cf. Section 9.2.2,Efron and Tib- 
shirani 1993; Manly 1997) whereby one samples with replacement from the original 
data to obtain a sampled dataset. Using these data one computes AIC (and any other 
index of choice). By repeating this process many times (e.g., 10,000), one creates a 
sampling distribution of the AIC for each model from which one can perform standard 
hypothesis tests (e.g., ANOVA) that pairs of models differ in their AIC. An alternative 
method is jackknijng where one seqentially removes one of N datum points (or, in the 
case, a data-model pair), computes statistics of the remaining data (e.g., MSE, AIC), 
and estimates variances and standard errors from the N estimates. 

idation-Jackknife0 that does simple jackknifing 
any of the validation variables discussed. See SimValidate . c in the SimPlot 

8.4.3 Bayesian Inference 

Complete objectivity about one's own work is a little much to expect from a human 
being, even a scientist, but it is not too much to expect from one's colleagues. 

- Efron (1986) 

Bayesianism means never having to say you're wrong. - Dennis (1996) 

The likelihood method quantitatively ranks the adequacy of a set of competing models 
by their ability to fit the data, but it does not actually compute the probability that the 
models are correct. One method of calculating this probability uses Bayes' Theorem. 
This area of statistics is complicated and controversial; consequently, we will provide 
only a heuristic introduction to its applications and strengths and weaknesses. Before 
defining this theorem, we relate the problem to more classical approaches. 

Bayesian inference and statistical analysis based on Bayes' Theorem provide an 
important alternative to the classical or frequentist statistics familiar to most biolo- 
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gists (e.g., t-tests, ANOVA, regression). In a nutshell, classical statistics uses data to 
calculate a sample estimate of a test statistic (e.g., Hotelling's T ~ ) .  This estimate is 
compared with a frequency distribution of hypothetical samples of the same size (i.e., 
the probability tables for Hotelling's T~). Thus, we compute the probability of observ- 
ing a particular value of the test statistic, given that the null hypothesis is true. Based 
on this probability and a threshold for Type I error (usually a = 0.05), the original pre- 
sumption of that the null hypothesis is true is either rejected or accepted. Advocates 
of the Bayesian approach argue that this is not the central focus of scientific questions. 
They claim that scientists are primarily interested in the probability that the null hy- 
pothesis is true (Reckhow 1990). Bayesian statistics were developed to address this 
question. 

Bayesian statistics are based on a different set of probabilities, and, in particular, 
include estimates of the truth of the null hypothesis prior to the test being made. Thus, 
they permit the inclusion of prior knowledge (e.g., data from other similar systems, 
historical data, expert opinion, etc.) in the test of the hypothesis for the given data set. 
Bayesian inference is still controversial among statisticians, but it is being applied to 
unreplicated data sets and to comparison of competing, alternative simulation models 
(Carpenter 1990). 

The basis for this approach to inference is Bayes' Theorem which in the present 
context is a recipe for calculating the probability that model i is true, given the ob- 
served data and a finite set of m alternative models. The Bayesian probability is 

where m is the number of alternative models, P(Mi) is the prior probability that model 
i is true, and P(Y I Mi) is the probability of observing Y values given that Mi is true. 
This latter quantity is typically estimated as the maximum likelihood estimator of Y .  
The denominator is a scaling factor that normalizes the likelihood of a particular model 
to the total likelihood of all the models. 

There are two problems in computing Eq. 8.15: (1) specifying the prior probabili- 
ties and (2) computing the likelihood of observing the data, given a particular model. 
The solution to (1) is easy to state, but difficult to implement. The prior probability 
is simply our belief in model i before we collect the validation data. But this begs 
the question of how we quantify this belief. Some say we may use any subjective 
evidence we have at hand: expert opinion, studies reported in the scientific literature, 
previous experiments, etc. When the prior probabilities are quantified from previous 
experience, they provide a solution to the major problem with the classical view of 
the modeling process (Chapter 2). Bayesian probabilities generated in earlier passes 
through the process can be used as the prior probabilities in later passes. Other users 
of Bayesian inference, however, recommend not using any previous experience. They 
suggest assigning the prior of each model an equal probability: l lm,  where m is the 
number of models. Such priors are termed noninformative. The problem of the priors 
is the source of much of the controversy surrounding the use of Bayesian inference. It 
raises the issue of the role of subjective judgment in statistical inference. 

The solution to (2) is difficult to describe, but the usual solution results in a rel- 
atively easy computation. The probability of observing a particular data set, given a 
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Table 8.7: Bayesian posterior probabilities of seven Dursban models. Column 2 = prior 
probability of model i ,  column 3 = Likelihood of model, column 4 = posterior probability of 
model i. (Recalculated from Blau and Neely (1975) and Carpenter (1990).) 

Model P(Mi) Li P(Mi I Y) 
1 0.1429 1.049 x 4.716 x 

2a 0.1429 7.763 x 3.491 x 
2b 0.1429 2.861 x 1.287 x 
3a 0.1429 2.700 x 10-Is 1.214 x lo-'' 
3b 0.1429 2.809 x 10-l5 1.263 x 10-lo 

0.1429 2.214 x pz%q 
4b 0.1429 9.344 x lo-S 4.202 x 

Denominator = 2.224 x 

model, is related to the error associated with fitting the model to the data. We saw how 
to do this in calculating the likelihood ratios of the four hypothetical empirical models 
(Fig. 8.7). So, the likelihood functions computed using the optimal fit of parameters 
to the data can be used as the P(Y I Mi) in Bayes' Theorem. 

Writing Eq. 8.15 with our previous notation for likelihoods, we have: 

This analysis has been applied extensively by Reckhow and Chapra (1983a) and 
Reckhow (1990) to a variety of management models. See also these authors for eco- 
logical applications: Ellison (1996), Toivonen et al. (2001), and Clark et al. (2001). 
Dennis (1996) provides an opposing view. 

As an example, Carpenter (1990) performed Bayesian analysis on the seven com- 
peting models for pesticide transport developed by Blau and Neely (1975). Since 
Carpenter chose not to incorporate other information about the prior probabilities of 
the seven models, he assigned each to have P(Mi) = 117 = 0.1429. Using a normal 
distribution of errors for the P(Y I M), he calculated the probabilities that each model 
was true (Table 8.7, column 4; recalculated using our likelihood estimates). The pos- 
terior probabilities of five models were essentially zero. Model 4b had a probability of 
0.004 of being true, while the remaining model's probability was 0.996. Thus, model 
4a was clearly superior, given that all models were equally probable to be correct be- 
fore the test was made. This agrees with our previous analyses based on the LRT 
and AIC. This is not terribly surprising, since all the methods are based on the same 
residual sum of squares, and the Bayesian priors were noninformative. 

8.5 Meta-Models 

A recent alternative to classical model validation is the construction and validation of 
meta-models (Kleijnen and van Groenendaal 1992). This should not be confused with 
meta-analysis, which is the statistical analysis of the statistical analyses reported by 
other researchers. A meta-model is a nonlinear regression model of the output of a 
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dynamic model. We like to think that the original dynamic model provides an under- 
standing of the system, but too often, complex simulation models provide complex and 
confusing results that are themselves difficult to understand. Mathematical concepts 
such as nullclines and stability, which are described in Chapter 9, are one approach 
to understanding a model. Reducing complex model output to relatively simple re- 
gressions between model variables is another. The method developed by Kleijnen is 
as follows. (1) Use a series of original model runs to generate a data set. (2) Identify 
a set of potentially interesting relationships (meta-relationships, e.g., the relation of 
phytoplankton biomass to zooplankton biomass). Then, fit linear or nonlinear func- 
tions to the model data set. (3) Validate the meta-model by running the original model 
a second set of times with different input values (e.g., different driving temperatures). 
If valid, the meta-model should correctly predict the quantitative meta-relationships of 
the new runs. A valid meta-model will characterize the important dynamic relation- 
ships that are produced by the mechanistic relationships used in the original model. 
The meta-model can then be further validated against empirical data. 

8.6 Precis on Validation 

The relation of model validation and model discrimination has yet to be firmly estab- 
lished. They share important statistical similarities, and combined with carefully de- 
signed independent experiments, they have potential to address the logical problems 
associated with the use of complex simulation models in the hypothetico-deductive 
method of science (Romesburg 198 1). Nevertheless, they represent different philoso- 
phies toward model evaluation (Dennis 1996). Likelihood ratios, AIC values, and 
Bayesian posteriori probabilities are, by themselves, not hypothesis tests. Using time 
series data and model output as the basis of likelihood functions is questionable be- 
cause of the potential violation of the independence assumptions. On the other hand, 
statistical validation, as discussed here, has emphasized hypothesis tests for individual 
models without concern for the universe of alternative models. The issue of subjec- 
tivity in all aspects of model evaluation, whether it comes from model choice or prior 
probabilities, will continue to be hotly debated for many years. In practice, statistical 
validation emphasizes model adequacy; incorporating model complexity into our ul- 
timate assessments of model performance may be one approach to measuring model 
reliability (Mankin et al. 1977). 

Designing and evaluating multiple, competing models is an attractive approach 
with many philosophical advantages. But it becomes less tractable as the complexity 
of the model increases. One component of our dogged commitment to cherished mod- 
els is the amount of time invested in their construction. The probability that a modeler 
will evaluate alternative models is inversely proportional to the effort needed to create 
them. It is one thing to glibly reject 5 of 6 models based on nested polynomials (Fig. 
8.7) or linear ODES (Fig. 8.8). It is altogether another thing to create equations and 
estimate parameters for 6 complex, nonlinear ecosystem-level models each with 10's 
of state variables and scores of parameters that overall requires a year of one's life to 
complete. 

In the end, we are left with the evocative imagery of Swartzman (1980), who 
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analogized modeling with shooting arrows through a mist toward a target that lies 
behind a brick wall. The archer becomes "distracted from the target by the shimmering 
colors of the mists." But, once loosed toward the target, the final resting place of the 
arrows cannot be ascertained because of the mists and wall. And, as if this were not 
enough, recalling the blind men and the elephant: "somewhere, way off behind the 
target, is the real system." 

8.7 Exercises 

1. Read Romesburg (1981) and discuss his claim that simulation models cannot be 
used in the hypothetico-deductive method. 

2. What is the relationship between model adequacy and model reliability (Chapter 
2) and Type I and I1 errors? Can you express the probability of a Type I (11) error 
in terms of adequacy and reliability? 

3. If five rolls of a die produced five Is, is the die true? Why? 
4. Write the equations for the Dursban models illustrated in Fig. 8.8. 
5. Examine published models from your discipline and rank them by the rigor and 

completeness of their validation efforts. Has your field, as a whole, produced 
well-validated models? 

6. Do an AIC analysis on the models and data in Fig. 8.7. Use the Ar rule of thumb 
to determine if the models differ. Does the analysis agree with your intuition? 

7. The data of Reilly (1970) (Fig. 8.7) were analyzed using the likelihood ratio 
test (p. 169). Modify the MBS-CD program SimValidat ion-Templat e . c to 
evaluate the 4 models using 1: 1 regression, paired t tests, and Theil's U. Using 
these criteria, which is the better model? 

8. Harrison (1995), using data of Luckinbill (1973), created and tested a series of 
models. Below are Harrison's equations and approximations to Luckinbill's mi- 
crocosm predator-prey observations for the simplest model Harrison examined. 
(See Harrison's Fig. 5.) Decide if this is a good model. Define 'good.' Produce 
graphs and statistical analyses as described in this chapter. 

dx x d~ x - = p(1- x/K) - wy- 
dt 

- = ay- - yy, 
$ + x  dt 9 + x  

where x is the prey and y is the predator, and the parameter values to use are as 
follows. 

MBS-CD contains the files SimValidation-Template and 
Luckinbill 18. . . . dat to help with this exercise 

9. Below are the number of parameters (p) and RSS values for 11 models studied 
by Harrison (1995). Number of observations is 35. Use as many metrics as 
possible, but at least use MSEP, AIC, and noninformative priors to assess the 
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relative quality of each model. Assume none of the models are nested. Consult 
the original paper to determine if your judgement agrees with Harrison's. 

10. Use the data files on the MBS-CD to simulate and test the models described in 
Harrison's Figs. 6,7,8, and 9. Note, Harrison's equation 12 has a typographical 
error; the correct form is: g(y) = y/(l +fly). Use x(0) = 15.0 and y(0) = 5.833, 
and the parameters listed in the figures. 

Model 
P 

RSS 

Model 
P 

RSS 

[ MBS-CD contains the files Luckinbill18 .... dat and Luckinbill33 .... dat ] 6 
1 1. Run a validation of the models in exercise 10 using Luckinbill's 36 day experi- 

ment. 
12. a) Test the biogeography model of Chapter 1 using the parameter estimates 

and data of Fig. 1.5. Do a jackknife analysis on the validation results. 

1 
5 

236,137 
7 
7 

72,436 

MBS-CD contains SimValidation-Template to 

b) Repeat with a new model with extinction E = f(~~). 
c) Apply the validation tools to the island Rakata described in Chapter 1, 

Exercise 10. 
13. Assume the following Bayesian priors for the Dursban models. Compute the set 

of model posterior probabilities. Make a determination which model is best. 

1 2a 2b 3a 3b 4a 4b 
0.005 0.01 0.005 0.05 0.02 0.01 0.9 

2 
5 

374,295 
8 
8 

51,717 

14. Repeat the above exercise using the posterior probabilities as new priors. Re- 
peat this process twice more. Report the sets of priors and posteriors for each 
iteration. Have the posterior probabilities converged? Does the result agree with 
the analysis using noninformative priors? 

3 
6 

129,788 
9 
8 

30,084 

4 
6 

l2O,3 13 

10 
9 

29,231 

5 
6 

94,563 
11 
10 

25,439 

6 
7 

93,546 
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Model Analysis: Uncertainty and 
Behavior 

9.1 Analyzing Model Responses 

v ALIDATION IS MODEL analysis concerned with evaluating model quality relative to 
the real world using comparisons with empirical data. We now turn our atten- 

tion to analyzing model performance by actively manipulating various components of 
the model. We will discuss two types of manipulations of the model structure. The 
first type manipulates the equations and parameters of the model to ascertain the extent 
and effect of modeler uncertainty. The second manipulation alters the values of state 
variables to determine if the system will return to the premanipulation levels. 

9.2 Uncertainty Analysis 

Among the many sources of uncertainty in biological modeling are (O'Neill and Gard- 
ner 1979): 

Biological hypotheses and mathematical formulation. We may be ignorant of 
the correct biological processes involved. 
Parameter values. We may be ignorant of the mean and variance of the popula- 
tion from which our parameter estimates are drawn. 
Natural variation. The system may have components that must be treated as 
stochastic (e.g., temperature). We will, therefore, be able to make only proba- 
bilistic predictions. 

The first source is the most difficult to correct; this kind of uncertainty implies 
that we are ignorant of the underlying biology. There is little we can do about this 
other than to learn more, design better experiments, and be more clever in our math- 
ematical formulation. Alternative models are one approach to formally investigating 
structure effects (Secs. 2.2.2 and 8.4). The effect on our predictions of our uncertainty 
in parameter values (the second source) can be investigated using a combination of 
parameter sensitivity analysis and error analysis. To address the problem of natural 
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variation (the third source), we use stochastic models: models with output influenced 
by random effects on model variables or parameters (Chapter 10). 

9.2.1 Parameter Sensitivity 

The typical interpretation of a parameter estimate is the mean or expected value from 
a distribution. Parameter sensitivity analysis involves analyzing differences in model 
response to small differences in parameter values. I interpret parameter sensitivity to 
be addressing the question: "What are the dynamical effects of modeler uncertainty 
about the true mean value of the parameters?' (This interpretation differs from that of 
other authors, e.g., Swartzman and Kaluzny 1987.) Strictly speaking, we can ask this 
question of several model components: parameters, initial conditions, or driving vari- 
ables. Typically, however, the analysis is applied to the parameters of the difference or 
differential equations. 

Uses of Sensitivity Analysis 

There are four major uses of parameter sensitivity analysis. 

Validation Two different interpretations of sensitivity results pertain to our general 
judgments of model quality. First, we have an intuitive belief that most real systems 
will not respond violently to small changes in the values of the operating parameters 
or variables. That is, if we throw a pebble onto the quadrangle lawn, we do not expect 
to see mass hysteria, hurricanes, species extinctions, or the eruption of clouds of vile 
gases. If our model were to behave in this way after a similarly small change in 
parameter values, it would be evidence that we had not used correct mathematical 
formulations or solution techniques. Second, if we are relatively unconfident of the 
accuracy with which we have estimated a particular parameter and if the model is 
sensitive to a small change in that parameter, then we should not be confident in the 
accuracy of the model output. Alternatively, if the model is not sensitive to a change 
in the parameter, then we may conclude that our lack of confidence in the accuracy of 
the parameter estimate should not influence our faith in the model. 

Research Design As we will see below, model response will be sensitive to some 
parameters and not to others. The sensitive parameters are those to which we should 
devote the greatest research effort so as to obtain the best estimates, given budget and 
time constraints. 

An alternative interpretation, however, is not that one needs more imprecise param- 
eter estimation, but rather greater precision (mechanistic detail) in the model formu- 
lation. We should place greater effort on formulating models with different biological 
processes or finer resolution in the state variables (e.g., additional compartments in 
physiological models or age-structure in population models, etc.). 

System Control Managing a system requires that we can control the system. To 
control a system means that by altering parameters and variables we can produce de- 
sirable output. If varying a parameter does not alter system output (i.e., the system 
is insensitive to the parameter), then that parameter is not useful for control. There- 
fore, sensitivity analysis can be used to identify which parameters have potential as 
controllers. 
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Model Response 
or Sensitivity 

(b) 

Figure 9.1: Model response to two parameters displayed as a surface (a) and contour 
lines (b). The point ( p ; , p ; )  is a particular set of parameters that shows moderately high 
sensitivity. 

Theory Often the model objective is to investigate a theoretical concept (e.g., con- 
ditions for system stability). The response of model output to different parameters 
may become the central question. For example, as we will discuss in Part 11: Chapter 
18, complex dynamics in difference equations can emerge as a critical parameter is 
increased. At small values of the parameter, we might have steady-state dynamics; as 
the parameter is increased the dynamics may change to oscillations, until, as the pa- 
rameter is increased more, the dynamics can become extremely complex to the point 
of being chaotic. Interesting theoretical questions are to determine which equations 
can show this behavior and which parameters are responsible for it. 

Sensitivity Variables 

Model sensitivity can be assessed by examining the responses of model state variables, 
quantities calculated by the model, or quantities that can be calculated from model 
output. Commonly used quantities are: the state variables at one or more fixed times, 
time averages of state variables, extreme values (e.g., maximum or minimum) of state 
variables over a run, and times within a run at which significant events (e.g., extreme 
values) occur. Simple combinations of state variables are also used, for example, sums, 
ratios. Which quantity to use should be obvious from the model objectives or question 
being asked. 

Methods 

When we perform sensitivity analysis we want to answer two questions: (1) How vari- 
able is the response? and (2) What are the ranges of model responses to the parameter 
changes? While we will treat these questions differently, they both share a common 
geometric interpretation as illustrated in Fig. 9.1. 

The vertical axis is some measure of model response and may be presented in 
the units of variables calculated by the model (to answer question 2) or may be in 
sensitivity units (to address question 1). The other axes are the parameters manipulated 
in the sensitivity analysis. Regardless of the interpretation of the dependent axis in Fig. 
9.1, we do not know what this surface looks like. Sensitivity analyses provide us some 
clues. 
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Figure 9.2: Two strategies for parameter sensitivity analyses. (a) Vary single parameters 
over a large domain and (b) vary multiple parameters over a small range. Contour lines are 
isoclines of model sensitivity. " N  represents nominal or best parameter values. 

To determine the nature of the surface, sensitivity analysis involves performing 
numerical experiments in which parameters are systematically changed and resultant 
model response analyzed. Normally, a set of parameters are identified as being the 
reference or nominal values. Usually, these are chosen because they are the arithmetic 
means of estimation experiments or are "typical" values from the literature or common 
knowledge. Ideally, we would like to examine a large region of parameter space, but 
in reality there are practical limits. If we wish to examine a large area (volume) of the 
parameters, then each parameter must be run at several values. The number of values 
per parameter used depends on the desired resolution of the surface. Moreover, the 
number of runs required increases in proportion to the number of values per parameter 
raised to the power of the number of parameters. (This assumes we wish to examine 
all combinations of parameter values.) For example, if we wish to examine four levels 
for each parameter and use all combinations of levels for six parameters, we would 
need 46 = 4096 runs. In practice, we do not attempt all possible runs. 

In light of these practical limits, there are two major strategies for varying the pa- 
rameters relative to the nominal values (Fig. 9.2). First, we can vary only a single 
parameter at a time (Fig. 9.2a). The number of runs required is greatly reduced since 
we do not do all combinations. Thus, we can examine long transects across the space. 
The disadvantage is that we ignore interactions between parameters: model response 
when pl and p2 are simultaneously increased by 20% may be much greater than the 
response when pl or pz is increased by the same amount separately. In nonlinear equa- 
tions, these interactions may be important to our ultimate use of sensitivity analysis. 
The second strategy (Fig. 9.2b) recognizes this fact and explicitly performs analysis 
using combinations of parameters. This approach avoids huge numbers of runs by re- 
stricting the range of values per parameter and by restricting the set of combinations. 

Single Parameter Sensitivity We characterize the sensitivity of a model with a simple 
index S that compares the change in model output relative to model response for a 
nominal set of parameters. In words, S is the ratio of the standardized change in 
model response (output) to the standardized change in parameter values (input) 
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Table 9.1 : Sensitivity of density-independent growth to r. 

Nominal Nominal Altered Altered 

r- 0.1 5.4 0.08 4.5 0.88 

where Ra and Rn are model responses for altered and nominal parameters, respectively, 
and Pa and Pn are the altered and nominal parameters, respectively. S is negative if the 
direction of model response (e.g., increase) opposes the direction of parameter change 
(e.g., decrease). 

The question of which parameters and the degree of alteration to study is depen- 
dent on the objectives and the purposes of the sensitivity analysis. There are two 
strategies for determining the amount by which parameters are altered. In the uniform 
approach, all parameters are altered by the same percentage of the nominal values. 
Often, this is *lo%, but values ranging from 2% and 20% are also used. The variable 
approach weights the altered interval by the variance of the parameter estimates, if this 
is known. This produces a more complex analysis since parameters will be altered by 
different amounts. It may, however, give a more accurate portrayal of real parameter 
variability. 

As an example, suppose we are interested in the sensitivity of the density-indepen- 
dent growth equation at time t = 10 and No = 2.0 and that the nominal parameter set is 
r = 0.1 and is altered by 20%. After running the model with both sets of parameters, 
we construct Table 9.1. 

This table indicates that the model responds in the same direction as the parameter 
changes. Numerically, the response is not linear: we do not observe a 20% change 
in the output. Also, parameter increases have a slightly greater effect on output than 
do identical decreases in the parameter: parameter increases increased output by 15% 
and parameter decreases decreased output by 12%. 

Normally, we are interested in more than a single parameter, so this table would 
have additional entries. Also, we are typically interested in more than one response 
variable, so sensitivities for these must also be computed. A useful technique for com- 
paring these separate sensitivity analyses for different variables in the same model is 
the rank order of parameters from large to small sensitivity (Bartell et al. 1988). In ad- 
dition, since we are performing only a single-parameter sensitivity analysis, we could 
examine a greater range in parameters (Fig. 9.2). A graphical presentation showing 
actual model response (not sensitivity, Fig. 9.3) can be more informative than Table 
9.1. 

Multiple Parameter Sensitivity Equation 9.1 works well for single-parameter changes, 
but it has problems when more than one parameter is altered from its nominal value. 
The numerator of Eq. 9.1 does not change, but we must replace the denominator by 
a distance measure that works in multiple dimensions. A reasonable choice would be 
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1 .o 
Parameter Ratio (p:/pl) 

Figure 9.3: Model responses to relative changes in single parameters. The abscissa is 
the ratio of the altered parameter value (pp) to the nominal parameter value (p;). 

the Euclidean distance: 

where p1(p2) are the nominal values and p;(pi) are the altered values. Since d is 
always positive, we lose the ability to distinguish between positive and negative pa- 
rameter changes in Eq. 9.1. This generalizes to more than two parameters. 

An alternative that summarizes the responses of multiple variables over time is: 

where i indexes time and j indexes the variable on which the sensitivity index Si j  from 
Eq. 9.1 is based. 

An alternative approach is based on a fractional factorial design (Shannon 1975; 
Steinhorst 1979; Swartzman and Kaluzny 1987). This approach treats parameter sensi- 
tivity analysis as if it were an experimental design for a statistical analysis of empirical 
data (ANOVA). The primary sensitivity index is not S, but the F statistic that is com- 
puted for analyses of variance. This is used only as a convenient index, and not as a 
variable for formal hypothesis testing, as it is in true ANOVA. Here, we only briefly 
sketch the approach and refer the reader to the literature. 

A full factorial design is one in which experiments are performed for all possible 
combinations of levels and variables. We must be careful about what we mean by 
levels and variables in the context of parameter sensitivity. We are interested in the 
effects of increasing and decreasing parameters, so we treat the alterations of the pa- 
rameters from the nominal values as the levels. Thus, with two parameters (variables) 
we would need four runs (experiments) corresponding to the circles in Fig. 9.2b. We 
do not need to perform the runs using parameters denoted by +, because we can calcu- 
late these knowing the responses at the comers. (We assume the surface is flat around 
the point "N.)  We can also determine, from these experiments, interactions between 
the variables (e.g., response to pl is high at low pz and low when pz is high). 

Thus, with this approach, we can gain much information based on relatively few 
experiments (simulation runs). Nevertheless, with many parameters it can require a 
large number of runs. For example, if there were three parameters ( e g ,  a, b, c) we 
would need 23 = 8 runs. We can, however, distinguish the three main effects (due to 
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Time Time 

Figure 9.4: Dynamic sensitivity effects for combinations of parameters. Heavy lines are 
nominal model outputs, light lines represent model responses with altered parameters. pt 
and pf are parameters that are increased and decreased (respectively) from the nominal 
parameters. 

the effects of a, b, and c), the three two-way interactions (ax  b, a x  c, and b x c) and the 
single three-way interaction (axbxc). For example, suppose we are investigating the 
effects of 02, temperature, and relative humidity on plant photosynthesis. Suppose, 
further, that we wish to test Oz at three levels, temperature at three levels, and relative 
humidity at two levels. The complete, full factorial design is a 3 x 3 x 2 matrix of 
experiments. There would be 18 different experiments. This design permits us to 
test for significant heterogeneity among all of the main effects, all of the pairwise 
interactions, and the three-way interaction. The price we pay for this fine resolution 
is the number of experiments. We can eliminate some of the experiments, if we are 
willing to confound some of the effects with others. For example, we may be willing 
to assume that the three-way interaction is not significant. If so, we can perform a 
fractional factorial design in which we do not perform all of experiments, but we must 
be willing to make some assumptions about the statistical importance of some effects 
or interactions. 

Steinhorst (1979) and Swartzman and Kaluzny (1987) suggest we use the same 
logic in order to reduce the number of sensitivity runs. In a large plankton (phyto- 
plankton and zooplankton) simulation model, Swartzman and Kaluzny (1987) were 
interested in the sensitivity of five parameters varied at three levels. A full factorial 
would have required 25 = 64 runs. Instead, they purposefully confounded main ef- 
fects with high-order interactions. This allowed them to distinguish main effects and 
all painvise interactions using just 16 runs, but they confounded three-way and four- 
way interactions with the main effects. They accepted this on the assumption that 
these high-order interactions were unlikely to be important. The interested reader is 
referred to the original work for more details. 

Dynamics of Sensitivity Regardless of the methods used to alter parameter values, it 
is important to remember that they produce dynamic changes in model responses. It 
is, therefore, useful to display the altered model behavior over time (Fig. 9.4). Sim- 
ilarly, we can plot the differences of nominal and perturbed parameters over time. 
Tomovic (1963) described an analytical approach to dynamic sensitivity in which new 
differential equations for sensitivity of state variables to parameters are defined and 
solved in conjunction with the usual state variable equations. Such a graph can easily 
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Figure 9.5: Error propagation in simple functions when there is error (u2) around the 
mean of the independent variable (X). Depending on the function and the mean of the 
independent variable (X), the error may be amplified (a) or compensated (b). 

become too complicated to communicate important results, but one can limit the dis- 
play to those combinations of parameters that produce large sensitivity. One can also 
graph the dynamics of the sensitivity index (e.g., Eq. 9.1) rather than the actual model 
response. 

9.2.2 Error Analysis 

Error analysis is similar to sensitivity analysis (many authors treat them as synony- 
mous), but we distinguish them here. Whereas sensitivity analysis is concerned with 
the effects of model response to small changes in the mean parameter values, I inter- 
pret error analysis to be concerned with changes of model response due to the variance 
of the parameter values. Before discussing practical methods for error analysis in sim- 
ulation models, we must address the concept of errorpropagation. 

Suppose we have a simple function z = xy or z = x/y in which there is uncertainty 
or error around the values of x and y. What is the resulting error around z? Before 
giving the answer, consider some general cases. In Fig. 9.5a, the errors around the 
mean E are ampliJied. That is, there is greater error around 2 than around E. Error 
compensation (error reduction) is also possible (e.g., at E in Fig. 9.5b). 

These examples illustrate that the propagation of error through a function evaluated 
at a point in the domain depends on the function and the evaluation point. A simple 
and elegant theory exists for calculating the errors around functions (Meyer 1975). The 
approach is based on the Taylor series expansion of a function in the neighborhood of a 
point. The Taylor series is an infinite sum whose terms are progressively higher orders 
of derivatives of the function evaluated at the point. The Taylor series expansion of a 
single-valued function of x about the point a is 

d2 f (x) (X - a)2 af(x)(x-a) + -- f ( 4  = f (a) + 8x2 2! 

where x lies within a small interval of a, and the partial derivatives are evaluated at the 
point a.  There is also a multivariable form of the Taylor series for functions of more 
than one independent variable (see below). 
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It is impossible in practical calculations, of course, to use an infinite number of 
terms; so, the series is invariably truncated to relatively low orders of derivatives. The 
finite approximation of the series can be made exact by the inclusion of a remainder. 
These issues are typically dealt with in introductory calculus texts. In many applica- 
tions, the series is truncated to include only the first-order derivatives and the remain- 
der is ignored. For example, a function of three variables f (x, y, z) has the first-order 
approximation: 

The first-order Taylor series is the approach we take for developing error propaga- 
tion equations, the use of which we will call analytical error analysis. Suppose z is a 
function of two variables: f (x, y) and we wish to approximate the variance of z given 
variance around x and y. The means of x and y are P and 7, respectively. By definition, 
var(z) = a: = ((z - (z)))~, where "(. . .)" denotes "expectation." (z) is estimated by Z, 
the mean of z. The function is approximately 

where the partials are evaluated at the mean point (P, 7). The expected value of (x - P) 
and 0, - 7) is 0. So, the expected value of the function is 

The variance of z is the expected difference of z and Z, squared: 

2 

= ( g ( c x  - P)) + af((Y - 3)) 
ay 

In general, for n variables 

Note that the variance of xi is ((xi - Pi))2 = < and that the covariance of xi with xj 
is ((xi - Pi)(xj - Pj)) = uij (i f 13. If the two independent variables are uncorrelated, 
then aij = 0. 
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Table 9.2: Variance formulae for simple functions with correlated and uncorrelated vari- 
ables. 

z = x + y  

z = x - y  

z = xy 

z  = x l y  

Uncorrelated 

4=u:+u;  
Correlated 

Using this general formula (Eq. 9.3), we can construct Table 9.2 when x and y 
are correlated and uncorrelated. This shows the variance in the dependent variable, 
given the variances and covariances in the independent variables. (Since we have 
based the analysis on Taylor series approximations, the formulae are not exact. See 
Goodman (1960) for a correction to the variance of a product.) We apply the same 
logic in evaluating the errors of prediction when we are uncertain about one or more 
components of the predictive equation. 

Analytical Error Analysis 

Analytical error analysis uses the error propagation of functions, given that the model 
can be reduced to a single equation that predicts some quantity of interest. This is not 
possible for most biological models because the differential equations require numeri- 
cal solution, but in some special cases these analytical solutions can be found and used 
with error analysis. A good example is by Reckhow (1979) who developed the fol- 
lowing empirical model for phosphorus (P) loading in lakes given an input (L), mean 
depth (z), and mean residence time (r, time required for 50% of lake volume to be 
removed) 

By applying the first-order Taylor series, he calculated the variance of the predic- 
tion, given uncertainties in the parameters. Using this value, he calculated the total 
model error, s;. This quantity permits us to make some very important and practical 
statements about the management of lake pollution. For instance, we can compute the 
95% confidence interval around P. From this, we can compute the probability that a 
given target phosphorus level (e.g., minimum water quality standards) is acceptably 
close to our estimates of existing phosphorus levels. This allows us to couch pollution 
regulations and statements of violations in terms of probabilities. 

To illustrate the role of the Taylor series approximation in performing this analy- 
sis, we will use a simpler problem. Suppose we wish to know the probability that a 
given population will go extinct. Certainly, if the population growth rate is negative, 
the population is doomed. But, one would think that if the environment is constant and 
the population is growing exponentially (unlimited resources), then the population has 
no chance of going extinct. Unfortunately, this is not the case because of demographic 
stochasticity. This is a form of random population growth that arises because pop- 
ulations are composed of individuals that have, in any given time interval, a certain 
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probability of dying and of reproducing. These probabilities arise because of chance 
events conspiring to permit (or prohibit) individuals finding a mate, or to avoid (or not 
avoid) fatal interactions with predators. A small population with a positive growth rate 
can still go extinct if its individuals experience a sufficiently long string of bad luck in 
which no birth occurs and individuals die. The smaller the population, the more likely 
will extinction occur. 

One simple model of the probability of exinction due to demographic stochasticity 
(Pielou 1977) is: 

where d is death rate, b is birth rate, and n is the initial population size. For example, 
if d = 0.8, b = 0.9, and n = 10, then P = 0.31. This very simple model assumes 
that the probability is not affected by density-dependent population growth nor by 
environmental stochasticity (e.g., catastrophic bad winters). For extinction models of 
the former situation, see Goodman (1987) and for the latter situation, see Mangel and 
Tier (1993,1994). Nevertheless, this simple model permits us to address the important 
question: How certain are we that the calculated P is correct? Uncertainties of the 
true values of the parameters will propagate to create uncertainties of the predicted 
probability. We can apply Eq. 9.3 to Eq. 9.4 to estimate this prediction uncertainty. If 
the parameters are independent of each other, 

where the three terms on the right-hand side are af  lad, a f lab, and a f /an, respec- 
tively. 

As illustration, suppose we have these values for means and standard deviations: 

pd+k, 
std. dev. 0.157 0.174 0.69 

Then, the expected P = 0.308; the variance is var(P) = 0.72; and the standard devi- 
ation is 0.849. Assuming the error is normally distributed around the expected value, 
the 95% confidence intervals around the mean is 

Obviously, the confidence intervals encompass the maximum and minimum values 
that P can have. With the uncertainties in the parameters indicated, we can not really 
say anything definitive about the expected probability of extinction of this population. 
All we can say is that the probability lies between 0 and 1.0, which is not terribly in- 
formative. Recall, however, that the formula used to calculate var(P) assumed that the 
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parameters were uncorrelated. From Table 9.2 we note that the variances of quotients 
of correlated variables have the covariance subtracted. This effect could reduce the 
overall variance, if d and b are positively correlated. 

Monte Carlo Error Analysis 

Analytical approaches such as the above require a simple model in order to be per- 
formed: one that can be expanded by the Taylor series. Error analysis using Monte 
Carlo techniques (Chapter 10) can be applied to complex dynamic models and do not 
require extensive mathematical analysis. The method is to simulate repeatedly a sys- 
tem of equations using randomly selected parameter values. The output of each run 
is collected and statistically analyzed after all runs have been performed. The typical 
analysis is to display the frequency distributions of output (state) variables. Individual 
parameter values are selected from frequency distributions appropriate for each param- 
eter; these may be theoretical distributions (e.g., the normal distribution) or empirical 
distributions obtained from replicated experiments. 

We illustrate the method here using, not a dynamic simulation model, but the sim- 
ple extinction model used above. For applications to dynamic ecological models, the 
reader should consult Gardner et al. (1980), O'Neill et al. (1980), Reckhow and Chapra 
(1983a), Bartell et al. (1986, 1988), or Summers et al. (1993). 

Two important practical problems arise when implementing a Monte Carlo analy- 
sis of error. First, we must decide what probability distribution from which to choose 
the parameters. If adequate data are available in the form of a distribution of values, 
then the empirical distribution can be used directly or the data can be fit to a theoretical 
distribution. If little data are available, analysis is more difficult. A variety of infor- 
mation might be available: the minima and maxima of the parameters, a statement 
of the mean and standard deviation, or estimates of the parameters of a probability 
distribution (e.g., dispersion and central tendency) that describe the distributions of 
the model parameters. Not all parameters in a model will be described with the same 
resolution. If the parameter distribution is unknown, another problem is to choose a 
distribution that is consistent with basic biological knowledge. In our example applied 
to the extinction model, all the parameters are positive, suggesting that a bounded dis- 
tribution should be used. Further, we must calculate a ratio of parameters (dlb) which 
is restricted to be less than 1 .O. So, not all combinations of values are appropriate, and 
this must be treated correctly in the simulation. 

The second practical concern is to ensure that our scheme for sampling from the 
probability distribution(s) adequately represents the tails of the distributions. This 
is especially important if we do not wish to use a large sample size. The preferred 
method is a form of stratified sampling called Latin hypercube sampling (McKay et al. 
1979). This is described in Section 10.3. Rose (1983) and Reed et al. (1984) apply 
this method to error analysis in complex ecological models. 

For the extinction model, the parameters can only be positive, so they were drawn 
from a log-normal distribution. The values listed in the above table describe the distri- 
butions. Parameter choices in which d > b were rejected and new random parameters 
were drawn until d < b. The frequency and cumulative distributions are shown in Fig. 
9.6. Note the discrepancy between the deterministic expectation and the mean of the 
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Figure 9.6: Distributions of extinction probabilities based on 1000 Monte Carlo replicates. 
(a) Frequency distribution and cumulative distribution of the probability of extinction for a 
population subject to demographic stochasticity and initial population size n = 10. Invalid 
parameter combinations were discarded. Monte Carlo descriptive statistics are indicated; 
the deterministic value is the probability computed using the mean parameter values. (b) 
The effect of changing initial population size: n = 5,20. Arrows indicate Monte Carlo mean 
probabilities; filled and open circles are the deterministic means if n = 20 and n = 5, 
respectively. 

simulated distribution. Also notice that the distribution is far from normal, contrary 
to the assumption of the above analytical error analysis. In Monte Carlo analysis, 
the 95% confidence intervals are determined directly from the cumulative distribution 
(Fig. 9.6) to be the range of values between 2.5% and 97.5% of the simulations. As 
a result, unlike the analytical analysis, the 95% confidence interval of the simulation 
lies between 0 and 1.0, but the interval is still very wide for these parameter values 
(approximately, 0.01 - 0.90). 

Figure 9.6b illustrates the effect of initial population size on the expected probabil- 
ity of extinction and the degree of uncertainty. Note that both the mean and uncertainty 
increases when population size is small. These analyses are significant for all types of 
models because they force us to recognize the fallibility of deterministic models and 
to couch our predictions in terms of probabilities. From a philosophical perspective, 
error analysis is related to the Bayesian approach to validation (Section 8.2.5). By 
recognizing parameter uncertainty, we must address the issue of the probability distri- 
butions, and these, in effect, are one form of the prior probabilities needed in Bayesian 
analysis. See Bernillon and Bois (2000) for an application to toxicokinetic models. 

k [MBSCD contains SinErrorAnalysis that illustrates Monte Carlo error analysis.) 

9.2.3 Aggregation Analysis 

We mentioned earlier that model structure (i.e., the equations) was a source of uncer- 
tainty about which, basically, nothing could be done. That is not entirely true (O'Neill 
and Gardner 1979). One aspect of this problem is the number and nature of the state 
variables used in the model. We wish our models to be as simple as possible. One 
approach is to maintain a high degree of biological detail but curtail the extent of the 
system. For example, in ecosystem models, if our interest is the flow of energy, we 
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are faced with a huge array of individual species that consume and process energy. 
We could reduce the complexity of the model by considering only one species (e.g., a 
species of tree). We might then be able to model energy flow through the individuals 
and population with great detail (e.g., differences between ages or sexes). But this sac- 
rifices our ability to model interactions of the chosen species with other species in the 
system. So, another approach to simplification is to lump system variables together, 
for example, lump all trees together, as well as lump all herbivores and carnivores to- 
gether. This strategy of lumping variables is known as "aggregation," and we want to 
estimate the errors that aggregation introduces into model output. Aggregating state 
variables is also one approach to scaling a model and is discussed in that context in 
Chapter 17. 

In practice, all models are aggregated at some level of biological organization. 
Many models of human physiology at the level of the whole organism do not model 
individual cells. These are lumped into broad groups such as "tissues" or "organs." 
Similarly, models of cellular physiology do not model all biochemical pathways, but 
only those of interest. Other reactions are typically represented as loss or gain terms, 
that is, are aggregated into a single relationship. At the other extreme, ecosystem mod- 
els do not represent each individual or even each species, but rather aggregate these 
into "functional" groups such as feeding guilds or trophic levels. Thus, an aggregated 
model is one in which the state variables of a more detailed model are lumped to form 
a subset. 

Normally, in simplifying a model, we want the resulting dynamics of the simple 
model to be "similar", in some sense, to those of the original, complex model (Zeigler 
1976). It is difficult, however, to adequately define the concept of dynamic similar- 
ity among structurally different models. Iwasa et al. (1987) developed an aggregation 
theory based on a restrictive definition. Petfect aggregation, by their definition, is an 
aggregation that produces identical dynamics at each point of time considered. Obvi- 
ously, the two models have different state variables, so cannot be directly compared. 
However, they assumed a definite function that aggregated the values of the state vari- 
ables of the detailed model to form quantities similar to those of the aggregated model. 
With this, we can solve or simulate the detailed model, apply the aggregation function 
to the results, and produce dynamics of the aggregated variables. We compare these 
dynamics with those produced directly by the aggregated model. 

Using this concept, Iwasa et al. (1987) applied techniques from system control 
theory to a variety of ecological models to derive modeling conditions that must be 
satisfied in order for an aggregated model to reproduce the dynamics of the detailed 
model. While well-grounded mathematically, the results for many interesting ecolog- 
ical models are unfortunately restrictive. For example, suppose we have a density- 
dependent stage-structured model (see Chapter 13) in which there are n state variables 
that represent the numbers of individuals in different ages. To aggregate this model 
perfectly, we must combine variables. It is convenient to form a new model that uses 
two state variables that represent the juveniles and all of the remaining stages. Iwasa 
et al. (1987) proved that this aggregation was perfect if and only if fertility is pro- 
portional to body weight and net biomass increase is identical for each stage. Other 
relationships between these variables will not produce identical dynamics between the 
detailed and aggregated models. It is unlikely that these special relations will exactly 
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occur in nature, and the concept of perfect aggregation will not be generally applica- 
ble. Nevertheless, it is mathematically rigorous and provides valuable bounds on the 
amount of error we can expect when aggregating models. 

Additional progress has been made with a more relaxed attitude toward dynamic 
similarity. One such relaxation is that the equilibrium of the sum of the state variables 
of the detailed model should equal the equilibrium of the aggregated model. Applying 
this definition to linear models of two compartments, O'Neill and Rust (1979) showed 
that aggregated dynamics will be similar to detailed dynamics if the turnover rates 
of the two detailed state variables are equal. In particular, this latter condition will 
occur if the two output rates of the detailed compartments are equal. Cale et al. (1983) 
generalized this basic result to include any number of state variables in the detailed 
model and nonlinear growth terms exclusive of inputs and outputs. 

While this set of models includes a large class of mass-balance models applicable 
to any level of biological organization, the final conclusion of these and other studies is 
that there will be few analytical tools to assess the amount of error that is made by our 
choice of state variables. This leaves us with Monte Carlo simulation of particular 
cases as the main tool to unravel errors that arise from lumping state variables. In 
a comprehensive study of 40 different models with varying arrangements of flows 
between compartments, Gardner et al. (1982) found that aggregation could produce 
errors of less than 10% even when turnover rates varied by more than three times. 
This suggests that within the set of ecological models considered, general patterns of 
dynamics are robust to errors in aggregation. 

9.2.4 Uncertainty Analysis and Validation 

In Chapter 8, we argued that model reliability was a useful measure of model quality. 
An unreliable model is one that predicts phenomena that can not be observed. This 
concerns not mispredicting a particular datum point, but rather predicting broad qual- 
itative system patterns (e.g., the peaks and cycles in Fig. 8.3) that the system never 
manifests. Unless we look for these mistakes, but instead base our evaluation solely 
on model performance in the vicinity of the tuned and fitted parameters, we can not as- 
sess model reliability (Ginzburg and Jensen 2004). Sensitivity analysis, error analysis, 
and aggregation analysis, are all methods that allow us to explore model behavior in 
different regions of "prediction space" (Fig. 8.1). Combining these comparisons with 
empirical studies of a wide range of real systems, so that we can assess both model re- 
liability and model adequacy, will go a long way towards increasing our confidence (or 
lack of confidence) in the myriad models now being produced of extremely complex 
systems. 

9.3 Analysis of Model Behavior 

The model behavior that we have emphasized thus far is the dynamics that unfold 
from the initial conditions. These dynamics are often called the transient behavior. 
Many simple models, however, also have one or more equilibria in state space (points 
where rates of change are zero). It is useful to locate mathematically these points and 
explore their dependency on parameter values. In addition, it is interesting to know 
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if the equilibrium dynamics will persist (i.e., will be stable) in the presence of small 
perturbations. We discuss both these topics in the next two sections. 

9.3.1 Equilibria 

A system of differential or difference equations is in equilibrium if the values of the 
state variables are not changing in time. Equilibrium analysis seeks to identify the 
values of all the equilibria. Here we do not distinguish, as do thermodynamicists and 
chemical engineers, between steady state and equilibrium. 

Knowing the equilibria of a model is useful for several reasons. First, it charac- 
terizes the long-term behavior of the model by providing a set of algebraic equations 
that depend on the parameters and state variables. Second, knowing the location and 
number of equilibria for a model can help us interpret the transient dynamics that we 
observe from simulation. Third, the equilibria are the points at which we discuss the 
stability properties of the model (see below). 

There are some difficulties and weaknesses of this analysis. First, we lose the 
dynamics that lead up to equilibria. Second, solving for equilibria in complex models 
may be difficult or impossible, except numerically. Third, there may be more than 
one equilibrium for any given model and if this number becomes large or dependent 
on many parameters, then our insight into system behavior is diminished. Last, not 
all models have simple equilibria as defined. Models with time-dependent driving 
variables (e.g., periodic changes in temperature) will likely not reach an equilibrium. 
Models with persistent cycles or complex, aperiodic behavior (e.g., chaos, Chapter 17) 
also do not reach constant dynamics. 

Equilibrium analysis can be applied to both finite difference and differential equa- 
tions. For simplicity, we discuss only the latter application. As a warm-up, consider 
the single state variable population model with density-dependent reproduction (the 
logistic equation): 

dx 
- = rx(1 - x/K). 
dt 

We wish to find the values of x at which the derivative is zero, which we will denote 
x*. We proceed by setting the derivative to zero and solving for x* 

Ignoring the uninteresting case r = 0, Eq. 9.6 shows that there are two equilibria which 
are the solutions to the second-order polynomial. There are several ways to determine 
the value of x*. First, notice that Eq. 9.6 is a special case of a quadratic equation: 
0 = C + Bx +  AX^ with A = -1/K, B = 1, and C = 0. Using the quadratic formula 
[x , ,~  = (-B rt -)/2~] gives two roots: xf = 0 and xg = K (the carrying 
capacity). This result accords nicely with the elementary textbooks. It says that if the 
population begins at 0 or K, it will remain at either of those two values forever. This 
analysis by itself does not assert that the long-term dynamics of the population will 
either be 0 when x(0) = 0 or K for any positive initial population size. For this, we 
need stability analysis (see below). 
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Equilibrium analysis is more interesting in cases with more than one state variable. 
The Lotka-Volterra predator-prey equations 

are an easy example. Solving for the equilibria gives 

From Eqs. 9.7 and 9.8 we note that there are two equilibria: (1) both populations 
have zero values, and (2) both populations have nonzero values determined by the 
parameter values. Solving for V* and P*, the equilibria are: 

and 
v* = 0 P* = 0. 

Notice that P* and V* depend only on parameter values: each is independent of its 
own value or of the other state variable. Note also that the relation between the value 
of the equilibria and the parameters are somewhat counterintuitive. For example, as 
b increases (the predators are more efficient at finding prey), the predator equilibrium 
numbers decrease. A bit of reflection should make it clear that as the predators be- 
come more efficient relative to the growth rate of the prey (a), they will drive down the 
prey population. This means there will be fewer prey to support the predator popula- 
tion, and its absolute growth rate (cbVP) will be reduced, producing lower predator 
numbers. 

9.3.2 Stability: The Concept 

We must recall, howeves that the existence of an unstable model for the solar 
system does not preclude the possibility that the Sun will rise every morning. 

- Abraham and Marsden (1967) 

While equilibria provide information about the long-term behavior of the model, they 
do not give insight into a system's response to perturbation. For that we must know 
something of the dynamical solutions. Unfortunately, most systems of nonlinear dif- 
ferential equations cannot be solved analytically, so we must rely on numerical solu- 
tions or a much restricted kind of analysis. Stability analysis is the analysis of a system 
of differential equations to determine the dynamics over short times of the system in 
response to small perturbations. The concept is subject to many interpretations (Innis 
1975; Grimm et al. 1992). To some, it means no or little change in the rates of change 
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(what we called equilibrium above). To others, it means persistent motion within a 
restricted region of state space. We will adopt the view common in most mathemati- 
cal treatments. Intuitively, a system is stable following a perturbation of one or more 
of the state variables if the system returns to the specific point in state space or to a 
specific orbit (trajectory) in state space. The state space point of interest to stability 
analysis is invariably one of the equilibria, although, technically, it can be discussed 
relative to any point in the solution space. 

In general, we are interested in the global response of the system to perturbations 
(i.e., where in state space the system will eventually be located). This is difficult 
for many nonlinear systems, and we usually are able to complete only a local (or 
neighborhood) analysis. Local stability analysis is a mathematical technique whereby, 
for a particular system of equations, a particular equilibrium is determined to be or not 
to be stable relative to very small perturbations. The analysis does not permit us to 
extrapolate to large perturbations. In particular, a system may be locally unstable 
but globally stable, but local analysis will not determine this. Before developing the 
techniques, we will briefly review possible dynamical responses to perturbations for a 
selected set of models. 

A Menagerie of System Responses 

Figure 9.7 illustrates eight different responses to a perturbation. A single linear differ- 
ential equation can only increase or decrease exponentially (Fig. 9.7a). The equation 
has an equilibrium only when the rate of increase is zero, and a perturbation will 
simply increase or decrease the state variable. Otherwise, if the rate of increase is 
nonzero, then a perturbation will produce continued growth or decline. If the equation 
is nonlinear, then the system may have a stable equilibrium (Fig. 9.7b) in which it 
returns to the equilibrium following perturbation. Conversely, the equilibrium of the 
nonlinear system may be unstable (Fig. 9.7~). Multiple stable points (or domains of 
attraction, Fig. 9.7d) are those in which small perturbations cause the system to return 
to the original equilibrium, but large perturbations may cause it to move far away, and 
become "trapped" in another domain of attraction. A stable equilibrium may show 
an oscillatory return (Fig. 9.7e). A nonlinear equation may show a neutral limit cy- 
cle (Fig. 9.70: oscillations about an average that respond to a perturbation by simply 
moving further away from (perturbed away) or toward (perturbed toward) the average. 
A stable limit cycle (Fig. 9.7g) is a cycle in which the system returns to the cyclic tra- 
jectory following a perturbation. Finally, an unstable limit cycle (Fig. 9.7h) responds 
to a perturbation by moving far away from the cyclic trajectory. 

Some of these behaviors will occur only when the system comprises more than one 
differential equation. In that case, the dynamics illustrated in Fig. 9.7 are best illus- 
trated in the state space. Figure 9.8 shows some of the behaviors for systems with two 
state variables. Notice that in systems with saddle points (Fig. 9.80, the "direction" of 
perturbation matters. This brief tour of system dynamics is not comprehensive; non- 
linear systems can exhibit much stranger behavior than shown here, as discussed in 
Chapter 18. 
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Figure 9.7: Possible responses of a single state variable to perturbations. Arrows indi- 
cate perturbations. (a) A single linear equation: neutrally stable if rate of increase is zero, 
unstable otherwise, (b) stable, nonlinear: system returns without oscillations, (c) unstable, 
nonlinear: system does not return, (d) two equilibria, nonlinear: system moves from unsta- 
ble equilibrium to stable equilibrium, (e) stable, nonlinear: system returns with oscillations, 
(f) neutral, nonlinear limit cycle: system moves to another orbit, (g) stable, nonlinear limit 
cycle: system returns to original orbit, (h) unstable, nonlinear limit cycle: system no longer 
on a closed orbit. 

Mathematical Analysis of Perturbations 

We will proceed in two steps. First, we will examine the system behavior in the 
vicinity of a nullcline and illustrate how qualitative system dynamics will depend on 
parameter values and the position of the nullclines. Second, we will illustrate mathe- 
matical analyses that quantitatively address stability. Since the mathematical analysis 
is based on linear equations, we will first develop the technique for linear models, then 
we will show how to convert a nonlinear model to a linear one so that our tools can be 
applied. 

9.3.3 Nullclines and Graphical Stability 

In Sec. 9.3.1, we solved for the equilibria for the Loka-Volterra predator-prey model. 
The equilibria told us where in state space the system will not be changing, but they do 
not tell how the system will behave near the equilibria. We can learn more about these 
dynamics by plotting the nullclines (or zero isoclines) of the differential equations. 
The nullclines of a system of differential equations are the set of points in state space 
that satisfy the equilibria equations for each of the state variables. For the Lotka- 
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Figure 9.8: Possible responses of two state variables to perturbations. See Fig. 9.7. (a) 
Neutral limit cycle, (b) stable limit cycle, (c) unstable limit cycle, (d) asymptotically stable 
equilibrium, (e) unstable equilibrium, (f) saddle point, (g) stable equilibrium, (h) unstable 
equilibrium, and (i) multiple stable equilibria. 

Volterra model (Eqs. 9.7 and 9.8), there are two nullclines for each state variable. By 
setting each equation to 0 

O=aV-bVP t Victim equilibria (9.11) 

0 = cbVP - dP  t Predator equilibria, (9.12) 

we note that Eq. 9.1 1 produces two nullclines for the Victims: V = 0 and P = alb. 
Similarly, Eq. 9.1 1 produces two nullclines for the Predators: P = 0 and V = dlcb. 
The system equilibria occur wherever the nullclines for all state variables intersect. 
Thus, there are two equilibria at (0,O) and (dlbc, alb), as we noted earlier. (The reader 
should be clear why (O,a/b) and (d/cb, 0) are not nullclines.) The nullclines and equi- 
libria are graphed in Fig. 9.9. These nullclines for this particular model are especially 
simple: the equations do not depend on either of the state variables. This is unusual 
and we will shortly examine a more complex example. 

Furthermore, although nullclines give important information about the locations 

Figure 9.9: Lotka-Volterra predator-prey nullclines. Two equilibria are located at * and w. 
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of a model's equilibria, we also wish to know whether a system near an equilibrium 
will move toward or further away from it when perturbed. Below, we discuss some 
tools that help us answer this question. 

Nullclines can give us a graphical and intuitive picture of stability analysis. The 
two-species Gause competition equations provides an example of this method while 
also illustrating more complicated nullclines. The basic differential equations and the 
resulting equilibrium equations are as follows: 

unrestricted intra-specific inter-specific 
growth competition competition 

where i is the species index, ri are the maximum intrinsic rates of increase, Ki are 
the capacities of the environment to support the species when growing alone, a is the 
effect of species 2 on species 1 (a conversion factor), andp is the effect of species 1 on 
species 2. If a = p = 0, we have logistic (density-dependent) population growth for 
each species. The interaction terms (a,/?) are a non-mechanistic method of decreasing 
population growth rate due to the presence of n2 and nl, respectively. 

To determine the nullclines, we set both Eq. 9.13 and Eq. 9.14 to zero. We note 
that nl = 0 satisfies Eq. 9.13 and n2 = O  satisfies Eq. 9.14, so these are each nullclines 
for nl and n2, respectively. Continuing for other solutions, we eliminate rlnl and r2n2 
and simplify to get two more (non-zero) nullclines for a total of four: 

nl = K1 - an:! and nl = 0 c nl nullclines (9.15) 

n2 = K2 -pnl and n2= 0. t n2 nullclines (9.16) 

Notice that the non-zero nullclines on the left of Eqs. 9.15-9.16 differ from those we 
have seen previously (Eq. 9.9) in that the right-hand sides depend on the equilibrium 
values of the state variables. We must think a bit about what these equations mean. 
Equations 9.15 and 9.16 are the set of points in phase space at which nl and n2 (re- 
spectively) are not changing. In this model, each is a straight line in phase space. 
Therefore, for all the points on the line, the associated state variable (species) is not 
changing, although the other variable may be changing. Another way to think of the 
nullcline is that for each point on the line (e.g., n2 = K2 - fin1), n1 is the number of 
species 1 needed to just balance the growth that species 2 would have at n2, if species 
1 were not present. Thus, at n2 = K2, species 2 is at its equilibrium (in the absence of 
species I), and therefore nl = 0 individuals are required to balance 0 growth. When 
n2 < K2, species 2 would have positive growth and the further n2 was from K2, the 
greater that growth would be; therefore, the greater nl must be to balance species 2's 
growth. 

The point at which the pairs of nullclines intersect is the equilibrium for both 
species (Fig. 9.10b). Thus, the lines nl = 0 (a nullcline for nl) and n2 = 0 (a null- 
cline for n2) intersect at (O,O), so that is one equilibrium. The other nullcline for nl 
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Figure 9.10: (a) One of the nl nullclines from the Gause competition equations. At point 
Al, dnlldt = 0, at point B1, dn~ldt > 0. I.e., below the nullcline, population 1 increases; 
above the nullcline, it decreases. (b) All of the nullclines and equilibria for both species with 
the vectors of change for each and the resultant vector. The four equilibria are cicled. Note 
that n, = 0 is a nullcline for nl , and n2 = 0 is a nullcline for n2. On those nullclines, the other 
population moves as the arrows indicate (towards their carrying capacity. 

(Eq. 9.15) intersects with n;! = 0 (a nullcline for n2), so that is another equilibrium. 
Its value is obtained by substituting n;! = 0 into the left equation of Eq. 9.15 to give 
nf = K1 (the asterisk indicating the equilibrium). So, a second equilibrium is (K1, 0). 
By similar reasoning, a third equilibrium is (0, K2). A fourth equilibrium arises when 
the two left equations of Eqs. 9.15 and 9.16 intersect and is determined by solving 
those equations for nl and n2. Since this is a problem to solve two equations for two 
unknowns, we can use the variable substitution method: 

n; = K2 -/3(KI - an;) c Substitute Eq. 9.15 into Eq. 9.16 

And, finally, back substitute for ni 

t Factor 

c Substitute n; into Eq. 9.15 

(It is left to the reader to state why (0, Kl l a )  and (K2/P, 0) are not equilibria.) Finally, 
we substitute values for the parameters to obtain a particular, numerical solution. 

To understand the role of nullclines in stability analysis it is necessary to know the 
dynamics of points not on either line. We will develop the argument for nl only and 
leave the analysis of n2 to the reader. Figure 9.10a shows the nullcline for nl. At point 
A1, the population is not changing in size. Point B1 is directly below A1 by an amount 
An2. For clarity, let point A1 be (nlA, n2A) and point B1 be ( n l ~ ,  nzB). So, the rate of 
change of the population at Al is 
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The rate of change of nl at B1 is 

Rearranging Eq. 9.19 as 

Thus, 

In other words, if population nl is below its nullcline, the population will increase. 
If they are above their nullclines, they will decrease. Note that Eq. 9.20 is the rate 
of change of the population and that its magnitude depends on An2: the larger the 
displacement from the nullcline, the larger the rate of change. (It is left as an exercise 
to show that the same relation holds for the n2 nullcline.) Once the qualitative direction 
of change is known for all state variables in state space, we can describe each point as 
vertical and horizontal vectors, the sum of which describe the system dynamics at that 
point. Figure 9.10b shows the complete nullcline analysis for the Gause competition 
model for one of four possible relations among the parameters (see Fig. 9.11 for three 
others). Note that all the nullclines and equilibria (circles) are shown as well as the 
dynamic vectors in all of the relevant regions of phase space. It is customary to identify 
nullcline intersections using their symbolic representation. (Some authors represent 
the dynamic vectors as single arrows showing the dynamics of one state variable as it 
crosses the nullcline of the other state variable. It is left to the reader to re-draw Fig. 
9.10b in that format.) 

Once we know how the system behaves in state space, we can qualitatively deter- 
mine the stability of the equilibria. As Eqs. 9.15 and 9.16 indicate, the values of n; and 
n; depend on the parameters that determine the position of the nullclines. There are 
four possible orientations of the lines in space; these are illustrated in Fig. 9.1 1.The 
dotted line in (d) is the separatrix: a line that separates two domains of stable attrac- 
tion. The outcome of competition depends on the relationships of the parameters (i.e., 
which of the four cases holds) and on the initial numbers of the species. The arrows in 
Fig. 9.1 1 indicate direction and the approximate magnitude of subsequent time steps 
of change. Verify for yourself that the directions of the arrows are correctly drawn. 
This analysis shows that Case I11 is a stable equilibrium: after perturbations of the 
system away from the equilibrium value, the system returns. Case IV is an unstable 
equilibrium. Several chapters in Part I1 provide more examples of nullclines. 
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(b) K, Case II: n, excludes nl 

"2 

"1 
K21P K1 K, KdP 

Figure 9.1 1 : Four possible relationships between the two non-zero nullclines of the com- 
petition equations. Arrows indicate dynamics. 

9.3.4 Linear Stability Analysis 

It's a one-line proof.. . ifwe begin suficiently far to the left. - Anonymous 

Although visually compelling, the above analysis is only qualitative. A more rigorous 
approach is to examine the quantitative dynamics in the vicinity of the equilibria. For 
most nonlinear models, we cannot do this exactly, but we can for linear models. To 
address stability in nonlinear models, we must linearize the equations at the equilibria, 
then use the techniques that apply for linear equations. The linear approximation is 
valid only for small regions around the equilibrium. 

To motivate the discussion, consider the standard linear model in population ecol- 
ogy, the density-independent growth equation: 

Equation 9.22 is the solution to the differential equation of Eq. 9.21. From it, we can 
compute the future value of N for any t ,  once the initial condition and parameter are 
specified. We have discussed how the qualitative dynamics are controlled by the sign 
of r: r < 0 implies that the population decreases, r > 0 implies that the population 
increases. r = 0 is a special case where the population remains at its initial size (Fig. 
9.7a). 

To relate these facts to stability, suppose we have a population with N = 0 individ- 
uals (agreed: this is not terribly interesting from a biological point of view). Of course, 
this is an equilibrium point (dN/dt = 0). Now, suppose we perturb the equilibrium 
by adding one individual: Will the population return to the equilibrium or continue to 
move away? It depends on the value of r. If r > 0, the system will move away from 
the equilibrium and will be unstable. Otherwise, the system will be stable. If r < 0, 



202 Cha~ter 9 0 Model Analvsis 

the system will approach the equilibrium smoothly without oscillations. If r = 0, the 
system will not return to the equilibrium, nor will it move further away than the initial 
perturbation. This special case is called neutral stability. The important point is that 
the classification of this system as stable or not depends on the value of r, a single 
parameter that characterizes the overall dynamics. 

In biological systems, we are rarely interested in a single state variable. Character- 
izing the dynamics of linear models with two or more state variables is more complex, 
but conceptually identical to the logic just described for one state variable. We will 
find a solution to the differential equations and a quantity analogous to r from which 
we will determine stability. 

A linear, two-state variable model is 

To solve this system, we use a technique that may appear suspect: we assume the 
answer is of a certain form. To biologists, this may seem as useful as rearranging the 
deck chairs on the Titanic. However, we can vindicate the approach if we show that 
differentiating the assumed solution gives us back the original differential equations. 
This is what we mean by a solution to a differential equation: iff() is the integral, 
then d[f()]/dx is the derivative. Proving this in our current special case is left as an 
exercise. In any case, based on the form of Eq. 9.22, we assume 

where the ci are constants of integration that will be expanded later. The variable R is 
incredibly important here: like the exponent r in Eq. 9.22, it tells us what the dynamics 
will be. If positive, the system Eq. 9.24 grows exponentially (i.e., a perturbation will 
be unstable); if negative, the system decreases exponentially. So, just knowing the 
sign of R tells us what we want to know. Unfortunately, this system has two equations 
and three unknowns, so we need to use some additional information to get a solution. 
We will begin by determining R; the strategy will be to obtain another equation from 
Eqs. 9.24. We derive this new equation by taking two separate tracks, then putting the 
pieces together. 

Track 1 : Derivative of the Proposed Solution 

If Eqs. 9.24 is the solution, we can write an expression for the corresponding differen- 
tial equation by taking the derivative of both sides: 

from the derivative rules of introductory calculus. 
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Track 2: Insert Proposed Solution into Differential Equations 

If Eqs. 9.24 are solutions for the xi, then we can substitute them into the original 
differential equations: 

Similarly for x2: 

Combining Tracks 1 and 2 

We now have two equations for f and two for f2;  equating the respective pairs gives: 

Rel = allcl + alzc:! (from Eqs. 9.25 and 9.27) 

Rez = a2lcl + ~ 2 2 ~ 2  (from Eqs. 9.26 and 9.28) 

In matrix notation: 

Equation 9.29 can be re-arranged: 

where I is the 2 x 2 identity matrix: (A ). This is required in order to factor the vector 
c. (Check that Eqs. 9.30 and 9.3 1 are equivalent.) 

There are two conditions whereby Eq. 9.31 is satisfied: (1) c = 0 and (2) (A-21) = 
0. If (1) is true, then we have a trivial system in Eq. 9.29, analogous to stating 0 = 0: 
not terribly interesting. So, assuming c # 0, condition (2) must hold. It will be true if 

where det(- . ) (alternative notation: 1. . I) is the determinant of its argument. (To see 
why Eq. 9.32 must be true, read Section 9.4.1.) The determinant is a very special 
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function of matrices, the properties of which we can not explore here. But we do need 
to calculate the determinant of simple (2 x 2) matrices: 

Equation 9.32 expands to: 

which is called the characteristic equation. Re-arranging gives: 

This is a second-order polynomial that can be solved using the quadratic formula: 

where, in this problem, P = 1, Q = -(all + a221 and R = al1a22 - a12a21. 

Interpreting R 

We assumed that the solutions to the linear differential equations had this form: 

We now know R, but in a model of two state variables, there are two A; with three 
state variables there are three R, and so on. Which is the correct A? The answer 
is: both. Since both Ri are roots to the characteristic equation, both cle"lt and c2eAzt 
are particular solutions to xl. (Reversing the logic, if z = a x  + py is the general 
solution, then a x  is a particular (special case, y = 0) solution, as is py (x = O).) When 
expanded thus, the constants of integration (cl, c2) are eventually factored into ai (the 
intial conditions) and the elements of a special vector: the eigenvector. Consequently, 
we have the final solution form: 

The vector cl = [cl 1, c2ll and c2 = [clz, c22] are the eigenvectors associated with R1 
and R2, respectively. These are important to the quantitative nature of the solutions, but 
do not affect our decision concerning stability. (Read Section 9.4.2 for more details.) 
The ai are the initial conditions, determined by setting t = 0 in the solution. 

Because the Ri are computed from the quadratic formula, they can be either real 
or complex. To understand the qualitative dynamics, we need to consider the cases 
where R is a real number and a complex number. 
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R Real Based on the solution (Eq. 9.34: if the largest Ri is positive, the time solutions 
increase; that is, the system dynamics take the perturbation further from the equilib- 
rium point and the system is unstable. If the largest R is negative, the perturbation 
decreases with time and the system is stable. If the largest R is positive and at least 
one is negative, we have a saddle (or mountain pass): the system is stable along a fi- 
nite number of paths (the mountain ridge), but unstable for all other perturbations (see 
Fig. 9.8). If R = 0, the perturbation neither increases or decreases, and the system has 
neutral stability. 

R Imaginary Things get interesting if the eigenvalues are complex numbers and are 
written as z = p + i ~ ,  where p is the real number component, K is the imaginary 
(complex) component, and i is the square root of -1. We must interpret the meaning 
of Eq. 9.34 when this is the case. It turns out that for the two state variable case, if 
the eigenvalues are distinct (not numerically identical) and if one of the eigenvalues is 
complex, then they both are complex and are complex conjugates of each other. That 
is, R1 = p + ~i and R2 = p - ~ i .  This means that Eq. 9.34 is 

Furthermore, another result from linear algebra is that if the eigenvalues are complex 
conjugates of each other, then so are the eigenvectors. In particular, c2 is the complex 
conjugate of cl. See Sec. 9.4.2 for more details. 

At first glance, Eq. 9.35 appears bizarre, producing imaginary dynamics (eiKt), but 
an amazing result (called Euler's formula) from the analysis of infinite series states 

And because the eigenvectors are complex conjugates, the solution for x(t) and y(t) 
becomes, after some (okay, alot) more algebra, 

This is a remarkable result since it tells us that the long-term dynamics of a system 
of linear differential equations without a forcing function will be a sum of sines and 
cosines. Cycles can be produced by these simple models in two or more dimensions, 
whereas they could not be produced in systems with a single state variable. 

Several special cases of the other constants have important consequences for sta- 
bility. If p = 0 and K # 0, the solution is a sum of a cosine and sine function with 
constant amplitude. Therefore, a perturbation of the equilibrium will cause undamped 
oscillations (neutral stability, Fig. 9.8a). If p > 0, the amplitudes of oscillations grow 
exponentially and the solution is unstable (Fig. 9.8h). If p < 0, the oscillations are 
damped and the solution is stable (Fig. 9.8g). The frequency of the oscillations are 
determined by the ~ i .  Thus, by calculating the eigenvalues we can decide the stability 
of a set of linear equations in a manner analogous to the single-variable case. 



206 Chapter 9 Model Analysis 

Nonlinear Equations 

The above analysis is wonderful if we have linear differential equations, which we 
almost never do in biology. Consequently, the final problem is to convert a nonlinear 
equation to a linear equation so that the above neighborhood stability analysis can 
be performed. Basically, we wish to define a new function of the deviations of the 
system following perturbation from the equilibrium. Suppose we have a system of 
differential equations in variables yl, y2, y3, and so on. We further assume the system is 
at equilibrium y;, y;, y;; by definition dylldt = 0. Let Xi = yi - yr, the deviation of the 
system from its equilibrium; Xi* is the origin when yi = y,*. To show the linearization 
method for XI, we begin by perturbing the equilibrium point by an amount XI : 

where f () is the model differential equation for yl. Our problem is that we already 
know we cannot usually solve equations such as these when f() is nonlinear, so we 
approximate the function with afirst-order Taylor series (Section 9.2.2). To linearize 
a differential equation of a single variable, the Taylor series approximation at the equi- 
librium is 

d(X* + x) af 
dt 

= f(X*) + x- . 
ax  + u 

zero-order first-order 

It is also true that 
d(X* + x )  dX* dx 

Moreover, at the equilibrium both the rate of change of X* and function f (X*) are zero 
(they are equivalent), so we have the first-order approximation 

For a system of two ODES [dxldt = f (x, y) and dyldt = g(x, y)] the two functions 
have two arguments x and y, the Taylor approximations are: 

Since the derivatives are evaluated at X*, they have a definite, single numerical value 
which is constant. As a result, all of the elements of the J are constants and we have 
approximated the original equations with a system of linear differential equations. 

We can now apply the eigenvalue method to evaluate stability characteristics in 
the local neighborhood of the equilibrium. Since we have transformed the problem 
from studying dynamics of the state variables to studying dynamics of deviations from 
the equilibrium, the eigenvalue will tell us only about system behavior relative to the 
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equilibrium. Bearing in mind that our approximation is valid only for small neighbor- 
hoods, if the deviations decrease, the system is locally stable; otherwise, the system is 
not locally stable. 

To illustrate this for a typical model, suppose we have three differential equations 
from which we form the linear approximations to the deviations from equilibrium 

We can write this set of equations as a matrix 

The 3 x 3 matrix (J) is called the Jacobian and represents the linear system which we 
will analyze for stability using the tools described above. This is the matrix A we used 
earlier (Eq. 9.23). In particular, we must calculate the roots of the characteristic equa- 
tion which is obtained by substituting specific values for parameters and equilibria. 
Evaluating 

det (J - 11) = 0 

produces, in this case, a third-degree polynomial. This is analogous to Eq. 9.32. 
An example will bring all of this together. Every introductory ecology text claims 

that one of the possible dynamics associated with the Gause competition equations 
(Eqs. 9.13-9.14) is indeterminant exclusion, or unstable coexistence. This condition 
depends on a particular choice of parameters and was illustrated in Fig. 9.1 Id. Be- 
low, we demonstrate that a particular parameter set which graphical, qualitative theory 
claims will be unstable is, indeed, quantitatively unstable according to neighborhood 
stability analysis. The Gause Eqs. 9.13 and 9.14 have the following Jacobian for devi- 
ations from the equilibrium defined by ni and nl: 
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Notice that the above Jacobian depends not only on the parameters but also on the 
equilibrium values of the state variables. To complete the analysis, we must evalu- 
ate the determinant of the Jacobian assuming a specific set of parameter values, for 
example, 

Using these parameters and Eqs. 9.17 and 9.18, there are four equilibria for species 
1 and 2 (respectively): (0.0, 0.0), (200.0,0.0), (0.0, 1100.0), and (100.0, 500.0) The 
latter point represents the interesting equilibrium where both species are present. Al- 
though all equilibria should be evaluated, we will focus on the latter point. 

Using the equations for the elements of the Jacobian matrix (Eq. 9.39), we substi- 
tute the parameters and equilibrium values 

Next, we construct the characteristic equation by evaluating 

to get 
R2 + 0.047727272 - 0.0001 13636 = 0, 

The roots of this polynomial are 

Since the largest eigenvalue is positive, we conclude the system is not stable. This ac- 
cords with the classical, graphical interpretation of the parameter values and nullclines 
(Fig. 9.1 Id). Moreover, since R2 is negative, we have a saddle point (Fig. 9.80, that is, 
a ridge along which the system will converge to the equilibrium. This ridge is some- 
times called a separatrix, since it separates two domains of attraction with equilibria 
at K1 and K2. 

Finally, for simple systems (i.e., five or fewer state variables) there is a short cut to 
stability analysis. As shown above, the sign of the largest R determines the character 
of stability, and the sign depends on the roots of a polynomial (Eq. 9.41). The roots 
are determined completely from the coefficients of the polynomial contained in the 
elements of the Jacobian matrix. It is possible, therefore, to ascertain the sign of the 
eigenvalue simply by inspecting the constants of the matrix. These relationships have 
been codified in several stability criteria. Two of the more important of these are the 
criteria of Routh and Hurwitz. A complete description of these methods with solved 



09.3: Analysis of Model Behavior 209 

problems is in DiStefano et al. (1967), but the clearest, most useful summary is in 
May (1973, p. 196). As an example of the method, consider a general characteristic 
equation for a system of m state variables 

where ai are the coefficients of the polynomial and are based on model parameters 
and state variable equilibrium values. A system of two state variables (m = 2) will be 
stable if and only if a1 > 0 and a2 > 0. If m = 3, then the system will be stable if and 
only if a1 > 0, ag > 0, and ala2 > as. With these rules, stability can be determined 
without actually having to find the roots of a polynomial. May (1973) lists the rules 
form = I , . . .  ,5. 

9.3.5 Displaying Stability Analyses 

The above analysis determines the stability property of a single equilibrium. Stability 
is determined by the Jacobian, but as we saw for the Gause example (Eq. 9.40), the 
Jacobian depends on the particular values of the parameters. Often we wish to ana- 
lyze a model for several equilibria, which means analyzing several Jacobians. There 
are two types of display that summarizes such results. Stability diagrams are (usu- 
ally) two dimensional graphs each axis of which is a parameter (or combination of 
parameters) that are chosen because they are important in controlling the system's sta- 
bility properties. In the graph, lines are drawn demarcating regions of this parameter 
space that have different stability properties (e.g., "stable-equilibrium," "limit-cycle", 
etc). Examples of these can be seen in Figs. 14.7, 18.5, 18.20. The second method 
of displaying system stability behavior is by graphing multiple nullclines on a single 
plot. To creat these plots, a few parameter values are chosen, the nullclines for each 
are graphed in the phase space and either the vectors of change or the phase-space 
dynamics are plotted on a single graph. This display becomes visually busy so only a 
few parameter values can be shown. Examples of this technique can be found in Figs. 
11.5, 11.6, and 13.10. 

9.3.6 Precis on Stability Analysis 

A garden is not a stable equilibrium. - JWH 

Here are the steps in doing a neighborhood (local, linear) stability analysis: 
1. Determine equilibria for particular parameters. 
2. If nonlinear, compute the Jacobian matrix. 
3. Create the characteristic equation and compute eigenvalues. 
4. Inspect the real part of Ri: max(ReRi) < 0 implies stability. 
5. Or, use the Routh-Hurwitz criteria. 

Stability analysis is an elegant, but limited, tool. For most equations, we must 
settle for a local analysis, and it is often difficult to determine the relationship between 
the mathematical analysis and real-world disturbances. The analysis holds only for 
small neighborhoods around the equilibrium, so that the linear approximation of a 
system may indicate instability in a nonlinear system that has a stable limit cycle (Fig. 
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9.8b). If the analysis indicates local stability, then the system is generally "globally" 
stable for large regions of state space, but a locally unstable approximation may not 
be globally stable. Moreover, it is not always possible to find a closed form solution 
for the equilibria (even if it does exist in the model). Nullcline analysis addresses the 
same questions, but graphically. It has great heuristic power, but is difficult to perform 
for more than three state variables. Recent study of nonlinear equations with more 
complex behavior (e.g., chaotic) has developed alternative methods [e.g., bifurcation 
analysis, graphics, and Lyapunov exponents (analogous to A)]. The interested reader 
should consult Chapter 18 and more advanced texts (e.g., Baker and Gollub 1990). 
Overall, stability analysis is one of several tools available for understanding model 
behavior to be used where appropriate. 

9.4 Mathematical Details 

9.4.1 Why Equation 9.32 Must Be True 

It is not obvious why Eq. 9.32 has to be true in order to solve for A. The answer is 
illustrated in the calculations for solving 2 equations with 2 unknowns: 

We wish to solve for xi. We could re-phrase the above in matrix notation 

and use matrix inversion to eliminate the dij on the left side, but it is clearer if we recall 
the variable elimination method. The method is: (1) choose one of the equations (e.g., 
Eq. 9.42a) and multiply both sides by a value which when the equation is added to 
the other equation (Eq. 9.42b) eliminates one of the variables (e.g., xl), (2) solve for 
the second variable (x2) in the resulting equation, and (3) substitute the value of the 
second variable into the first equation and solve for the other variable (XI). Here are 
most of the steps. 

Starting with Eq. 9.42a, multiply both sides by -d211dll: 

add to Eq. 9.42b to get: 
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collect terms and simplify 

Substitute Eq. 9.43 into Eq. 9.42b and solve for XI: 

Do you recognize the denominator in Eqs. 9.43 and 9.44? It is the determinant of 
the original matrix dij! The numerators of Eqs. 9.43 and 9.44 can also be written as 
the determinants of two new matrices. (Exercise for the reader: Write the matrices 
whose determinants produce the numerators. Note the presence of the bi.) 

So, the bottom line is: The solution of n equations and n unknowns is the ratio of 
determinants, the denominator of which is the determinant of the original matrix of 
coe8cients. This is a very deep result; it is known as Cramer's Rule. 

To answer the question in the section heading: Why must Eq. 9.32 be true? Recall 
that we have 

(A - RI)c = 0 (9.45) 

where c # 0. This is a system of linear equations formally identical to Eqs. 9.42a and 
9.42b letting d (A - RI), except it's simpler: the vector b = 0 (righthand side of 
Eq. 9.45). The solutions for the xi are ratios of determinants: 

Defining the matrix d for the stability problem and re-arranging: 

The problem was to find the solution to a system of n equations with n unknowns, 
which yields Eq. 9.46. Either all the xi in that equation are 0 (trivial solution), or, in 
the non-trivial case of interest, det(A - RI) = 0. 

9.4.2 Eigenvectors 

Our assumption of the form of the solution to the system of two linear differential 
equations (Eq. 9.24) led us to Eq. 9.29. The solution of that equation assumed that 
c # 0. Now we can determine the value of A. 

An eigenvector is an n-valued vector, where n is the dimension, or number of state 
variables. There is one eigenvector associated with each eigenvalue. The elements of 
the eigenvector c satisfy 
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where i indexes the eigenvalue and its corresponding eigenvector. Since there are two 
Ri in a two state variable system, and between the two eigenvectors there are four 
unknown elements, there are not enough equations to fully determine the values of the 
eigenvectors. As a result, there are an infinite number of eigenvectors, related by a 
multiplication factor. 

There are two methods for obtaining the eigenvectors for a 2 x 2 matrix: the long, 
laborious way and the quick and elegant way. Laboriously, we must solve Eq. 9.47 for 
ci, after we have determined the eigenvalues as follows. 

A = (i I!!) then = (-3,l) 

Showing that the R are correct and finding the eigenvectors for R1 = -3 are left for the 
reader, but the eigenvectors for R2 = 1 are as follows. 

From Eq. 9.47, we must have 

and so must solve this system of equations: 

2c2i - 6c22 = 0 

2c2i - 6c22 = 0. 

These are redundant equations, so we are free to set either one of the c2j to be any 
value; the convenient choice is to let c2l = 1, which implies 

1 
c u = -  or, c2=(1, 113). 

3 

(The reader should verify that c2 satisfies Eq. 9.48.) Since the equations were redun- 
dant, c2 is not unique, implying that pc2, (p a scalar) is also an eigenvector for 22. In 
particular, had we chosen to specify c7.2 = 1 and solved for c21, we would have found 
c i  = (3,l). This is equivalent to 3c2. The reader should check this by using ci in 
Eq. 9.48. 

For the two dimensional problems we are considering here there is also a quick 
and elegant method that does not involve performing the above calculations. The two 
eigenvectors have the form 

1 1 

[R1;;il] 

and [22;;11] 

where aij are elements of A in Eq. 9.47 and we remember that multiplying by any 
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scalar will also produce a consistent eigenvector. (Verifying these formulae are left as 
an exercise.) 

At this point, a natural question is: "But, what do eigenvalues really mean?'The 
answer lies in Eqs. 9.34. From those equations, we can see that 21, the first eigenvalue, 
determines how steeply its exponential increases or decreases in t timesteps. The 
elements of the eigenvector (e.g., cll,c21 determine the relative distribution of that 
change over the two state variables. In one time step, ell is an amount of eRl that 
goes to xl and c21 is an amount that goes to x2. I.e., the cil scale eR1 in the respective 
directions of xl and x2. The same holds for c,z and eR2. 

Exercises 

Verify the variance formulae (correlated and uncorrelated) in Table 9.2 for z = 
x - y a n d z =  xly. 
If the coefficient of variation for variable x is 0.2 and that for variable y is 0.35 
and x and y are uncorrelated, calculate the mean and variance of the function 
z = xy for the following pairs of x and y: (0,0), (3,3), (3,l). 
Which of the functions in Table 9.2 show error compensation or error amplifi- 
cation? Does it depend on the values of x and y? 
Verify Eq. 9.5. 
Calculate the expected variances for the following functions. For functions of 
two variables (x, y), calculate both correlated and uncorrelated forms. 

a) z = eklx 
b) z = eklx + e k 2 ~  

C) z = kl&ek3X 
d) z = kl cos(k2x) + k3 sin(k4 ) 
e) z = kl(1 - exp(-(x/kdk3 )fexp ( - (~ /k4 )~~)  
f) z = ~ ~ ~ - 3  

g) z = x'J2 + Y2 

Compare the results from both analytical and Monte Carlo simulation error anal- 
ysis using the following situations. Evaluate the functions at mean x = X, as- 
sume the x are normally distributed and analyze 3 variances as implied by these 
CVs (coefficients of variation): CV = (0.1,0.5,0.8). 

a) z = 0.2x, X = 1.0 
b) z = x - g , X = 0 . 5  
c) z = xl(O.2 + x), X = 1.8 

Produce graphs and tables depicting the expected distribution of z. 

( MBS-CD contains SinErrorAnalysis to help with this exercise.) 6 
Consider the disease model: 

where a is the rate of disease infection and b is the rate constant of cures. Write 
an equation for the equilibrium. Is the equilibrium stable? 
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8. Solve for the equilibria and nullclines for the yeast model of Chapter 4. Are the 
equilibria stable? Suppose sugar is continuously dripped into the system at a 
rate I. Find the equilibria of this system and determine if they are stable. 

9. Draw the vectors of change in the four sectors of Fig. 9.9 as we did in Fig. 9.11. 
Prove algebraically that the directions are as you drew them. 

10. Perform a local stability analysis on the population logistic equation: dNldt = 
rN(1- NIK). 

11. Show that nl decreases above the nl isocline as was done for n2 in Fig. 9.10. 
12. Use local stability analysis to show that Case I11 (Fig. 9.11) of the Gause com- 

petition model is stable. Use the parameters given in the text (page 208), except 
let K2 = 800 andp = 3. 

13. Is the linearized system of Exercise 12 stif? Why? 
14. Write the error propagation equation for the extinction model (Eq. 9.4) assuming 

the parameters are correlated. 
15. Given the algorithm for the Monte Carlo error analysis of the extinction model 

described in the text, is it legitimate to compare the simulated confidence inter- 
val with that of the analytical approach? 

16. Perform an individual parameter perturbation sensitivity analysis on the extinc- 
tion model (Eq. 9.4). For each parameter, repeat the analysis using three per- 
turbation levels: 2%, lo%, and 20% of the mean. Rank the parameters by 
sensitivity. Compare your conclusions to the Monte Carlo error analysis. 

17. Calculate the eigenvalues of Eq. 6.4 and verify that it is a stiff system. 
18. Consider the following system: 

dx - = a1x2 - a2x3 - bxy 
dt 

with: a1 = 1 a2 = 0.05 b = 5 d = 1 f = 10 

a) Write equations for and graph the nullclines of the above equations (i.e., 
do not non-dimensionalize) for x 2 0 and y 2 0. Show all the vectors 
associated with all the nullclines. Assume all the parameters are positive. 
Show the algebra that proves the directions of the vectors. 

b) On the graph, identify all the equilibria. Without considering the particular 
numerical values, write the coordinates of the equilibria in terms of the 
symbolic form of the parameters. 

c) Using the parameters supplied above, perform a local stability analysis for 
all the equilibria. 
Explain why your assessment of stability or instability is correct. 
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Stochastic Models 

10.1 There's Nothing Like a Random World 

Random errors could be assigned.. . to the basic behavior of the system, but the 
value of doing so is questionable. . . . [they] are likely to produce only additional 
confusion. It is not the purpose of [computer simulation] to remind us of the 
normal state of affairs. - Walters and Bunnell(1971) 

One man's mean is another man's Poisson. - JWH 

I N BIOLOGY, it is always difficult to predict, especially the future. This difficulty in- 
creases as one moves outside the realm of tightly controlled biochemical and phys- 

iological systems to the behavior of whole organisms or to the dynamics of popula- 
tions, ecosystems, or the global environmental system. One reason for this difficulty 
is that biological systems (like many other systems) are subject to apparently random 
fluctuations. That is, either the state variables themselves or the parameters are per- 
turbed at random times and by random amounts. We will not discuss the philosophical 
problem of whether this is an inherent characteristic of biological systems or whether 
if we had complete information, the apparent randomness would disappear. The fact 
remains that our degree of certainty will only in special cases be sufficient to eliminate 
what appears to us as random changes. For all the other systems, we must acknowl- 
edge that predictions can be wrong simply because the real system (not the modeled 
one) is subject to unknown perturbations. 

Repeatedly simulating random models allows us to estimate characteristics of the 
probabilistic model response (e.g., the distribution's dispersion and central tendency). 
This process is called Monte Carlo simulation. There are three broad areas in which 
probabilistic models and Monte Carlo simulation are useful in biological simulation: 

1 .  Statistical Hypotheses: Sometimes we wish to test a null hypothesis for which 
there is no easy equation to compute the test statistic. One example is the use of 
"null" models in biogeography. This field is frequently plagued by small sam- 
ple sizes (sometimes n = 1 !). For example, many biogeographers are interested 
in knowing if the occurrence of species on a set of islands in an archipelago 
is caused by competitive interactions between the species. The data consist of 



21 6 Chapter 10 Stochastic Models 

a single matrix of zeros and ones in which species are rows and islands are 
columns. If element aij is 1, then species i was found on island j .  One ap- 
proach to estimate the probability of this matrix is to generate a large number 
of random matrices. The frequency of occurrence of the matrix in question in 
this sample of random matrices estimates the probability. This can then be used 
in statistical tests. This type of application is known as resampling, and two 
popular methods for performing this test are bootstrapping and jackknijing. We 
encountered bootstrapping in our discussion of validation (Section 8.3.1). Fur- 
ther introductions can be found in Noreen (1989) and Crowley (1992), where 
the basic methods applied to ecology and evolution are reviewed. More general 
treatments are Efron and Tibshirani (1993) and Manly (1997). 

2. Differential and Difference Equations: The dynamics of continuous and dis- 
crete time systems can be made stochastic by randomly varying the parameters 
or state variables of the system. Monte Carlo simulation of these equations pro- 
duces statistical distributions at different times in the solution. There are many 
situations where random effects can be important. For example, we may be 
primarily interested in a biological process such as individual growth which is 
affected by an abiotic factor such as temperature. We could construct a detailed 
and elaborate meteorological model that predicts temperature fluctuations from 
first principles. Or, we could simply assume that these fluctuations are drawn 
randomly from some probability distribution the defining parameters of which 
can be estimated from observations. In population dynamics models, we can 
adopt an even more abstract approach. To account for random changes in pop- 
ulations, we could build a model of population growth in which the birth and 
death of individuals in a small interval of time is a random process from some 
assumed probability distribution. In such an abstract model, we would not even 
have to represent probabilistically an external factor such as temperature. Fi- 
nally, in models of animal movement, choice of direction for the next step could 
be the result of complex decisions based on the internal states of the individual. 
These may result in apparently random movements. However, we usually do not 
have access to the internal states, and so have no recourse but to approximate 
the movement process as a series of random choices. 

3. Markov Processes: The dynamics of systems that can occur in only a finite 
number of states (e.g., the letter grades students receive at the end of the term) 
can be modeled by assigning probabilities to transitions between the states. In 
this way, the system randomly walks through the states. Monte Carlo simulation 
is one method of estimating the probability that a system will, at some moment 
in time, be in a particular state. 

When faced with random variation in systems, modelers have two fundamental 
choices to make. They can either ignore these random changes and model mean be- 
havior, or they can incorporate randomness by constructing stochastic models and 
couching predictions in terms of probable outcomes. In this chapter, we will discuss 
the following topics: (1) the mechanics of generating and using computer-generated 
random numbers in simulation, (2) simulating stochastic differential equations, and 
(3) Markov chains. 
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10.2 Random Numbers 

When casino croupiers spin a roulette wheel and roll the ball, they are using a physical 
device to draw a random number from a probability distribution. Gamblers have an 
interest not only in the particular number selected, but also in the underlying probabil- 
ity distribution. The distribution influences the average slot in which the ball comes 
to rest. Factors that influence the distribution of values include the number of slots, 
the distribution of value indicators (e.g., red or black, even or odd) in the slots, the 
balance of the wheel, the qualities of the axle and stopping mechanisms (e.g., age, 
rigidity, smoothness, etc.), gravity, and a host of other physical phenomena. Choice 
of a particular final resting slot at a particular time is influenced by the underlying 
distribution, of course, but also by the force exerted by the croupier on the wheel and 
the ball, the slot at which the ball is released, and the current physical conditions (e.g., 
atmospheric conditions) of the room. 

The particular slot at which the ball finally comes to rest is essentially impossible 
to predict. This does not mean that roulette wheels violate physical laws of mechanics 
or thermodynamics or are somehow being dominated by the influences of quantum 
mechanical effects. The reason for unpredictability is that a large number of unknown 
physical events are interacting in complex ways. The combinations of events and 
interactions are so large that from the human perspective of limited knowledge, the 
outcome is unpredictable. 

When we incorporate random numbers into computer programs, we are faced with 
the problem of using a digital device to mimic the outcome of physical phenomena. 
This is a real conundrum, since one of the most cherished characteristics of computers 
is that they are able to repeat calculations faithfully, that is, they are deterministic. We 
must, therefore, design algorithms that, although based on nonrandom mathematics, 
give the appearance of being random. 

In roulette, we want the wheel to be fair in the sense that the ball has an equal 
chance to land in any slot. That is, if we had numbered the slots 1 to 72 (or whatever) 
and spun the wheel and ball many times, the frequency of trials in which the ball 
stopped in any particular slot would be 1/72 for all slots. Such a frequency distribution 
would be uniform: all slots have an equal probability of being chosen. In biological 
models, we do not always want to sample from such a simple distribution. At times, 
we want to select numbers (also called deviates) from normal, exponential, gamma, or 
other distributions. Or, we may wish to choose numbers from empirical distributions: 
those that are obtained from empirical observations and that may not be possible to 
describe using simple mathematical equations. Thus, our algorithms must work with 
any distribution. It turns out that for a large class of distributions, if we can generate 
random numbers from a uniform distribution, then it is a rather simple matter to use 
these numbers to obtain a deviate from the desired distribution. 

10.2.1 Generating Uniform Random Numbers 

When we use random numbers, we tend to need a lot of them, and so we are interested 
in generating sequences of numbers, all of which can be said to come from the same 
population (i.e., the same probability distribution with identical characteristics: mean, 
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variance, etc.). This suggests methods that use recursive equations, so that the last 
number produced is used to calculate the next. To emphasize the deterministic origins 
of the numbers, we call them pseudo-random numbers. 

Because these sequences need to be long, we put a premium on speedy algorithms. 
This means that the methods must use operations that are easy for the computer to per- 
form. The methods, then, must rely as much as possible on integer arithmetic, and not 
on floating point operations. One such operation that lies at the heart of many algo- 
rithms is the mod or modulus arithmetic operation. (y mod x) produces the integer 
remainder obtained by dividing y by x. 

To see how this operation can produce sequences that appear random, consider the 
following recursive function: 

xn+, = x: mod 31417. 

If we begin with xo = 123, we generate the following sequence of numbers: 123, 
15129, 13796, 5430, 15754, 25633, 26968, 891, 8456, 30261, 16822. This set illus- 
trates several attributes of pseudo-random sequences. First, there is clearly no apparent 
pattern to this sequence; it is not obvious what number follows 16822. So, the remain- 
der of a division (mod) of one moderately large number by another moderately large 
number does produce a sequence with little pattern. Second, although without pattern, 
the sequence is deterministic. If the starting point had been not 123 but 13796, the 
next number generated by this new sequence would be 5430. Also, if we repeated 
the sequence on a different occasion, the sequence would be the same. But equally 
significant, if we had started the sequence at 124, the sequence would have been quite 
different. Third, the sequence will eventually repeat: at some point we will again pro- 
duce the number 123. All subsequent numbers will then be the same as those produced 
when we started from 123. Fourth, were we to continue the calculations until we had 
many thousands of numbers, we could apply statistical tests (e.g., goodness-of-fit) to 
determine if the population from which this sequence was drawn was indeed a uniform 
distribution. Statistical verification of the adequacy of a particular generating function 
is a surprisingly difficult task (Kleijnen and van Groenendaal 1992). 

There are several critical characteristics of good algorithms. (1) They should pro- 
duce long sequences before repeating. (2) They should be fast. (3) They should 
reproduce the major components of the desired distribution (mean, variance, skew, 
distribution at the tails, etc.). 

Almost all modern compilers provide a built-in function that returns a random 
number from a uniform distribution. Although it varies among compiler manufac- 
turers, the linear congruential method is most commonly used. It is the recursive 
function: 

Ui+l = (aUi + c) mod m, (10.1) 

where a ,  c, and m are machine-dependent constants chosen to produce a good fit to a 
uniform distribution. For example, on an IBM mainframe computer, a = 3 14,159,269; 
c = 453,806,245; and m = 231. If c = 0, it is a multiplicative congruential method. 
Modern implementations now frequently use m = 232 - 1. For most compilers in 
which the longest integer is 32 bits, the period is close to 232 = 4 x lo9. AS Press 
et al. (1992) point out, this is not the best method, and they define some alternatives 
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that do not depend on machine-specific parameter values. One of these is a shufling 
method that gives a period of about 2 x lo1', which is a number even larger than the 
national debt in pennies. They also provide, in a passage (p. 276 f f )  notable for its 
entertainment value, many cautions and much good advice on using vendor-supplied 
pseudo-random generators. 

Most pseudo-random methods produce a sequence of integers between 0 and the 
largest long integer defined by the compiler. To generate uniform real numbers be- 
tween 0 and 1.0, divide the random integer by the largest integer available (after con- 
verting the integers to real numbers). Also, since the pseudo-random method is a 
recursive algorithm, the initial random seed (Uo in Eq. 10.1) must be supplied before 
a sequence can be produced. All random generator libraries supply a function for 
initializing the sequence. It is good practice to treat the seed as any other simulation 
parameter and read and write it along with other data needed to initialize a simulation 
run. This will be crucial for debugging code when it is necessary to duplicate exactly 
the conditions of a run, including the sequence of pseudo-random numbers. 

MBS-CD contains SimRandomNum that exercises and graphs built-in Uniform 
random number generators. ] k  

10.2.2 Generating Normal Deviates 

Once we have a method for generating random numbers from the uniform distribution, 
we have the basic tool for obtaining numbers from virtually any other distribution we 
wish. As we will see below, there are some standard methods for generating equa- 
tions that sample from nonuniform distributions. One that is especially effective is 
the inverse function of the cumulative distribution. Unfortunately, this method does 
not work on one of the most important distributions: the normal. Consequently, many 
other algorithms have been developed for this special distribution. One of the best 
of these is the Box-Muller method. This approach involves combining two uniform 
random numbers (U1, U2, obtained from 2 separate calls to the uniform generator) to 
produce two random numbers from a normal distribution (zl, z2) having a mean of 0 
and a standard deviation of 1.0 [i.e., N(0, I)]: 

Bratley et al. (1987) caution that the Box-Muller method in combination with a linear 
congruential uniform generator produces correlated pairs of normal deviates; so, they 
too, recommend using a more complicated uniform generator. 

To convert a standardized random deviate (zi, above) to a deviate from another 
normal distribution with standard deviation s and mean m, use y = sz + m. 

10.2.3 Inverse Cumulative Methods 

A very powerful and general procedure for generating formulae for sampling from 
distributions is to use the inverse of the cumulative distribution. The conceptual basis 
of this approach can be illustrated by applying it to the problem of sampling from an 
empirical distribution. 
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Figure 10.1: Frequency distributions of observed temperatures: (a) raw frequencies, 
(b) relative frequencies, and (c) cumulative distribution. The arrow indicates the random 
temperature generated after selecting a random uniform number 0.65. 

Suppose we wish to use as a random driving variable the set of temperature val- 
ues measured at some place. Our data might appear as in Fig. 10.la: number of days 
(although any time period could be used) at which a given category of temperatures 
occurred. From this we can create the relative frequency distribution or the probabil- 
ity density (Fig. 10. lb, the fraction of all days in the sample at the given temperature). 
This is the distribution of temperatures from which we wish to sample. To put it 
another way: if we used some particular algorithm to generate many different temper- 
atures, we would like the final distribution of those simulated temperatures to resemble 
this distribution. To accomplish this, we form the cumulative distribution (Fig. lO.lc), 
which is the sum of the relative frequencies from the lowest temperature category to 
the highest temperature category. 

The y-axis of the cumulative distribution ranges from 0.0 to 1 .O, and the difference 
in height between two adjacent bars is equal to the height of the relative frequency 
distribution at that category (Fig. 10.lb). Missing categories (0 relative frequency) 
become a bar of the same height as the category to the left (e.g., 50" F in Fig. 10.1~). 

To sample from the distribution, we use table look-up. First, obtain a random 
number between 0.0 and 1.0 from a uniform random number generator. Interpret 
this as a point on the y-axis, and follow a line to the right until a histogram bin is 
encountered. The random deviate is the mid-point of the bin. The arrow in Fig. 10. lc  
shows the sequence. Categories that were very frequent in the original data have tall 
histogram bars in the cumulative distribution, and relatively many uniform random 
points will intersect this bar. Categories for which there were no observations in the 
original data are never sampled by this method. The only random number generator we 
need is the uniform generator supplied with the compiler. Notice that the initial width 
of the categories determines the resolution of the deviate generated. In the temperature 
example shown, we can generate temperatures only at 10" intervals. 

MBS-CD contains SimRandomTemp that implements table look-up 
of random numbers. 

The same method can be applied to standard probability functions if their cumu- 
lative distributions can be algebraically inverted. We illustrate the method by deriving 
an equation to sample random turning angles for moving insects using the wrapped 
Cauchy distribution. This distribution is roughly shaped like the normal distribution, 
but has a thicker distribution at the tails and is constrained to values between *n (since 
these are the bounds on movement angles). The probability density function (pdf) of 



$1 0.2: Random Numbers 221 

the wrapped Cauchy distribution is (Batschelet 1979) 

where q5 is the angle in radians, p is the measure of the distribution concentration 
(analogous to the distribution's variance), and 8 is the mean angle in radians. p and 8 
are the parameters of the distribution. Note that when p = 0, f (@) = 1/2n: a uniform 
distribution over f n. 

The cumulative distribution function (cdf) is the integral of the pdf (Hodgman et al. 
1955) 

1 
= - n arctan (- tan [;I) + C, 

1 - P  

where w is (4 - 8) (the deviation from the mean) and C is the constant of integration. 
Since f (4) is symmetric and unimodal, F(0) = C = 0.5. 

To obtain a formula to sample from f (4) (Eq. 10.2), note that F(w) varies from 0.0 
to 1.0. Replace this value with a uniform deviate [U(O, I)] and solve for the desired 
Cauchy deviate (@) by inverting Eq. 10.3 and solving for @: 

To summarize, the method to sample a deviate x is: 
1. Determine the pdf of x [ f (x)]. 
2. Integrate to get the cdf [F(x)]. 
3. Determine the constant of integration at F(x) = 1 and/or F(x) = 0. 
4. Set F(x) to be a value from the uniform distribution [U(O, I)]. 
5. Invert F(x) and solve for x. 
We do not use this approach for the normal distribution because it does not have 

an equation for the cumulative distribution that can be inverted. However, even if the 
distribution does not have an inverse that we can write as a single equation (Eq. 10.4), 
we can still use the inverse method on theoretical (nonempirical) distributions. Simply 
create a discrete form of the pdf by discretizing the categories (as was done with 
the temperature categories), then form the discretized cumulative distribution (as if it 
were an empirical distribution) and apply the table look-up method for determining 
the histogram bin that corresponds to the random point on the y-axis. This approach 
works for the normal distribution, but since there are better approximate methods such 
as Box-Muller, it is not used. 

10.2.4 Methods for Other Distributions 

The inverse cumulative method (and other algorithms such as the rejection method; 
see Press et al. 1992) is a general approach that applies to many common distribu- 
tions. However, efficient specialized algorithms for most of the standard distributions 
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have already been designed. Some can be found in numerical software packages [e.g., 
the Gnu Scientific Library (GSL), International Mathematical and Statistical Library 
(IMSL), Numerical Algorithm Group (NAG), Mathematica, etc.] or in more advanced 
texts (e.g., Hastings and Peacock 1975; Bratley et al. 1987; Kleijnen and van Groenen- 
daal 1992). These include, for example, the Cauchy, log-normal, exponential, gamma, 
F, and Weibull continuous distributions, and the binomial, Poisson, hypergeometric, 
and negative binomial discrete distributions. 

MBS-CD provides SimRandomGen that illustrates the use of the GSL and k [ Octave/MatLab routines for generating deviates from a variety of distributions. ) 
10.2.5 Multivariate Distributions 

Often we wish to use deviates for several random variables (e.g., population birth and 
death rates to calculate the probability of extinction, Chapter 9). If the variables are 
uncorrelated (i.e., do not covary), then we can simply generate them independently 
and use them separately as described above. If they are correlated, then the distribu- 
tion is multivariate and we can not draw the deviates independently. The method to 
use depends on the underlying distribution. Here, we illustrate the approach for the 
multivariate normal distribution. Other distributions will require different methods. 

When variables covary, it means that not all possible combinations of the variables 
are equally likely. If x and y are negatively correlated, then pairs in which x is large 
and y is large will be relatively uncommon. The degree of correlation between the 
variables is measured by the covariance of x with y. Moreover, in a sense, the degree 
that x is correlated with itself is measured by the variance of x. Consequently, the 
sampling distribution of a function is portrayed by its variance-covariance matrix. 
This square matrix must be considered when drawing deviates from a multivariate 
distribution. 

If the distribution of n variates is normal, then the following algorithm returns a 
deviate for each of the variables. (1) Select n deviates (z) from the standard normal 
distribution using the Box-Mueller method (or equivalent). (2) Convert the n standard 
deviates into physical deviates with the relation y = m + Sz, where m is the vector of 
variable means and S is a square matrix derived from the variance-covariance matrix 
(V). S plays a role analogous to the standard deviation when using univariate normal 
distributions, but includes factors for the covariance of the variables. The following 
relationship holds: 

v = SS' 

When n > 2, we use software to generate the Cholesky decomposition to obtain S. 
When n = 2, we can easily do it by hand as follows. From the defining relation, we 
have 

V = SS' 
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where the S matrix on the right is the transpose of the S matrix on the left. From these 
we can derive, using the rules of matrix multiplication: 

where r: is the variance of the ith variable and c q j  = a j i  is the covariance of i with j.  
With S defined as above, we can convert the n standard normal deviates into deviates 
of each of the needed variables y. See Meyer (1975, p. 290) for the theory of the 
n-dimensional multivariate normal distribution. 

10.3 Sampling Strategies 

Once one has an algorithm of obtaining a single deviate from a distribution, the prob- 
lem of how to obtain many samples from the distribution arises. McKay et al. (1979) 
identified three approaches. 

Random Sampling The simplest strategy is to select probability values from the uni- 
form distribution, then use the inverse cumulative probability distribution to obtain a 
deviate from the desired distribution. With sufficient number of draws, this method 
will produce a sample of selected values whose distribution resembles that of the orig- 
inal. For typical, mono-modal distributions such as the normal distribution, the major- 
ity of selected deviates will be centered on the mean of the distribution. As a result, 
many samples (tens of thousands) are required to reproduce accurately the tails of the 
distribution. If one's objective is to represent the distribution of deviates that result 
from samples of finite size, this is a reasonable approach. However, we sometimes 
wish to determine the response of the system to choices of deviates from the tails of 
the distribution. Such a situation arises in error analysis (see Chapter 9). Random 
sampling is an inefficient method for this purpose. 

Stratified Sampling When we sample from actual populations in the real world, we 
often want to ensure that certain elements of the population are represented. For ex- 
ample, in a social science survey, we might not sample randomly from a telephone 
book because this would not guarantee individuals from all cultural/racial, economic, 
educational, etc, groups would be represented. A strategy to protect against potential 
small-sample bias would be to classify the population by the relevant groups or cate- 
gories and then select randomly from each of these sub-populations. This is known as 
stratified random sampling. The same concerns apply to sampling spatially extended 
populations, where stratified sampling is performed by ensuring that all relevant geo- 
graphic regions are included in the sample in proportion to the area of the population 
region they occupy. 

To contrast with the Latin hypercube sampling strategy described below, suppose 
we wish to sample from two distributions (XI, X2). See Fig. 10.2a. McKay et al. 
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Figure 10.2: Strategies for sampling from distributions. (a) Stratified Random Sampling: 
partition the range of distributions into two or more regions with any lines A and B; pick four 
points randomly from within the rectangles (similar markers). Repeat as needed (dissimilar 
markers). (b) Latin Hypercube Sampling: partition individual distribution ranges into equal 
probability segments; pick values randomly from each segment; randomly combine values 
from both distributions 

(1979) describe stratified sampling as the following algorithm. Break the range of 
each distribution at some point x r  which may (but need not) correspond to the median 
of each distribution. (One could break at more than one point.) As a result, the entire 
sample space composed of the two distributions is partitioned into four regions. A 
single stratified sample is a uniform random selection from each of the four regions. 
That is, the joint probability distribution within each of the regions is not considered 
when choosing the four points. Each point is a pair [(xli, x2i)] from a rectangle chosen 
at random. For higher dimensional probability spaces (XI,. . . , XN), we choose a set of 
tuples [(xli, ~ 2 ~ ,  . . . xNi)] from a multi-dimensional rectangle (a hypercube). To analyze 
a system for its output given the randomly sampled Xi, repeat the above selection of 
four pairs many times. McKay et al. (1979) show that the resulting description of the 
system is better using stratified sampling than random sampling. 

Latin Hypercube Sampling (LHS) LHS is similar to stratified sampling, but is based 
more explicitly on the underlying probability distributions. The algorithm is as follows 
(Fig. 10.2b). Divide the range of X1 and X2 into four (or more), equally probable 
regions. Randomly (uniformly) select one value from each region of each variable. 
This produces two arrays of length 4 (e.g., S 1 and $2). TO provide input to the system 
for four analyses, select one value from each Si  [e.g., (sll, sz3)]. Without replacing the 
chosen si, repeat this random pairing from the remaining values in the Si. 

To state this another way, each of the component distributions is partitioned into 
M segments such that, based on the probability distribution for each component, the 
segments contain the same proportion of the total. This is easily accomplished be- 
cause one knows the cumulative probability distributions. The bounds of the segments 
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with equal probability are those that correspond to equal probability intervals of the 
cumulative distribution (e.g., 0.0-0.2499, 0.25-0.499, 0.50-0.7499, and 0.75-1.00). 
Choose a random value from each segment for each distribution, and use one of these 
values (segments) from each distribution for a single model run. Do not re-use a value 
(segment) in any of the remaining runs. 

To assess the range of system responses, repeat this selection process multiple 
times. This approach generalizes to multi-dimensional distributions (XI, . . . , XN). The 
same study by McKay et al. (1979) showed that LHS resulted in lower variability in 
estimates of system response than random or stratified random sampling. 

10.4 Applications to Differential Equations 

Stochastic differential equations (SDEs), like partial differential equations, use mathe- 
matics that is very difficult for most biologists. There are enough counterintuitive and 
just plain confusing aspects associated with modeling and simulating these equations 
that it is best to seek the advice and consent of a bona fide mathematician who special- 
izes in this area. Nevertheless, having issued this caveat, we will now naively proceed 
to discuss how to do it! 

Randomness may be implemented in differential equation models in the initial 
conditions, driving variables, parameters, or on the state variables directly. Making 
state variables random is not common, as it is always possible to achieve the same 
effect by randomizing the rates (e.g., through the parameters). The most common 
application is to randomize driving variables and parameters. 

There are two different concepts of biological stochasticity: environmental and 
demographic stochasticity. These concepts have been discussed under these names 
primarily in ecology, but they apply to other areas of biology as well. Environmental 
stochasticity refers to random variation in systems modeled as populations or com- 
partments. For example, we may have random variation in the per capita growth rate 
of a population or in the rate constants of a chemical reaction. The dynamic variables 
(e.g., populations, chemical concentration) are continuous quantities, and environmen- 
tal stochasticity alters these continuous variables randomly. 

Demographic stochasticity refers to random variation in the occurrence of events 
affecting the state of an individual. For example, an ecological population can be 
viewed as being composed of an integer number of individuals that undergo at least 
two important processes: birth and death. We can model random variation in an indi- 
vidual's state by assuming there are probabilities associated with an individual giving 
birth or dying within some small, finite time interval. For example, if the organisms 
in question give birth to only one offspring at a time, we might assume that the prob- 
ability of having one offspring in At is r, and that the probability of no offspring is 
1 - r. We take a similar approach to mortality. These probabilities may ultimately be 
caused by chance encounters with a fertile mate or a predator. The important point 
is that the biological process affecting individuals either occurs, or not, according to 
random events. The concept of demographic stochasticity can be generalized to any 
particle-based system where the interest is in the discrete states of individual particles. 
For example, cancer cells are known to reverse their evolved resistance to chemother- 
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apeutic drugs. This phenomenon was modeled by Kimmel and Stivers (1994) as a 
branching random walk in which the life span of cells and the numbers of gene copies 
in the progeny were demographically stochastic in our terminology. 

To incorporate stochastic events in parameter values, we use a differential equation 
in which the parameters at time t are affected by random deviates from some distribu- 
tion (e.g., normal). For example, a stochastic density-independent population model 
might be 

dX - = rt[NO1, C?)IX, dt 
(10.5) 

where r , [ ~ @ ,  u2)] means that r is a random deviate from a normal distribution with 
mean p and variance r2. Thus, rt is no longer a constant, but changes randomly in 
time. Ludwig (1974) surveys other simple stochastic population models. 

The first thing we notice is that Eq. 10.5 incorporates randomness additively. rt can 
be written as the mean of r plus a random deviate with mean 0 [i.e., rt = T: + N(0, &)I. 
Alternatively, we can incorporate randomness multiplicatively: rt = 7[l + N(0, u2)]. 
In this model, we are adding a random fraction of 7 to itself. In at least one application 
to questions in community ecology, the results depend on which formulation is used 
(Turelli 1981). The two models make different assumptions about how randomness 
affects the system, but in the absence of discriminating experiments, it is not clear 
which form to favor in any given case. 

Problems of analytical solutions aside, repeated simulation of these equations in- 
volves the following steps. 

1. Determine the probability distribution to use for the parameter and estimate the 
descriptive statistics (mean and variance). 

2. Inside the simulation loop, sample the distribution and use the resulting random 
deviate as the parameter value (e.g., rt) in the differential equation. 

3. Save the resulting dynamics in an array for post-simulation statistical analysis. 
4. Repeat steps 2 and 3 a large number of times to obtain a set of Monte Carlo 

replicates on which to do statistics. The size of "large" depends on the question 
being addressed, the underlying variability of the biological process, and the 
amount of time and money available to answer the question, but 10,000 repli- 
cates is not uncommon. (Monte Carlo simulations can require a great deal of 
computer and modeler time.) 

5. Perform statistical analysis on the resulting random dynamics. 
Figure 10.3 shows two sets of three random sequences of random population num- 

bers based on the density-independent model where the standard deviation of the 
intrinsic rate of increase r is 0.1 (Fig. 10.3a) and 0.3 (Fig. 10.3b). To standardize 
the comparison, the two sets of sequences of random numbers used identical random 
seeds. 

In analyzing random system dynamics, we can ask several different questions. 
First, we might ask: What is the nature of the state variable values of a single system 
subject to environmental stochasticity? To address this using computer simulation, we 
would simulate a single system and collect the variable values over a long period of 
time, and then statistically analyze these values for their mean, median, variance, and 
distribution. Second, we could ask: What is the nature of the statistical distribution of 
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Figure 10.3: Two sets of three random sequences of density-independent population 
growth using additive normal variation of r. (a) Standard deviation of r = 0.1, (b) standard 
deviation of r = 0.3. 

an ensemble of systems, where each is subject to similar environmental stochasticity? 
To address this, we would make multiple simulations each with random dynamics and 
collect the ensemble averages at a sequence of points in time. The above two questions 
are quite different. A third type of question is: What are the stability properties of the 
random dynamics? The mathematical analysis of this question is much more difficult 
and problematical than the analogous question for deterministic systems (Chapter 9). 

To illustrate these concepts, we consider an example analyzed by May (1973). We 
make the logistic equation stochastic as follows. The deterministic form is 

For simplicity, we eliminate r by dividing both sides by r/K: 

Defining a new time variable r = t(r/K) and an additive model of stochastic variation 
in K, the final equation is 

dV 
- = V(K + N(0, a 2 )  - V). 
d r  

(10.6) 

For this analysis, May (1973) was interested in the statistical properties of a single 
population. Three examples with different degrees of variation are shown in Fig. 10.4. 
When a = 1.44, the variation is so great that the population is driven to extinction. In 
the cases when the populations persist (e.g., a = 0.44,0.1), the frequency of popula- 
tion sizes fits a gamma distribution (Fig. 10.4, top). This is useful information since it 
allowed May to describe the conditions for the population to have a non-zero equilib- 
rium: K > 1/2u2. This information allows us to place bounds on the probability that 
a population will go extinct (but see Goodman 1987). 

MBS-CD contains SimRandomPop that implements the model of 
Eq. 10.6 and Fig. 10.4. 
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Figure 10.4: Three realizations of Eq. 10.6 using three different standard deviations of 
variation around K. The histograms of population size for 100 time steps are shown for (a) 
u = 0.44 and (b) u = 0.1. K = 1.0. Superimposed are curves for the gamma distribution 
with parameters fitted by eye. In (c) are shown the dynamics corresponding to the above 
and u = 1.44, which causes early population extinction. 

However, as mentioned, the derivation and analysis of stochastic differential equa- 
tions are problematical, and May's example is no exception. Some of the problems 
and assumptions of May's formulation have been discussed by Turelli (1977) and 
Feldman and Roughgarden (1975). A few of the problems identified were: (1) scal- 
ing time by r / K  and letting K  be random implies that r  and K  are correlated with 
respect to environmental stochasticity, and (2) assuming an additive stochastic model 
suggests a greater effect of randomness on per capita change than on K  per se. Al- 
tering these assumptions gave different calculations of species extinction probabilities 
and the maximum amount of resource overlap between species that permits compet- 
ing species to coexist (Turelli 1977). The take-home message is that equally likely 
assumptions will give different results, so care is required when working with these 
equations. 

10.5 Markov Processes 

A Markov process is a probabilistic model of system dynamics when the system vari- 
ables possess only a finite number of possible states. Assume that a system is de- 
scribed as being in one of a finite number of states at each time t. System dynamics 
are a sequence of these states (as they are in differential equation models). The rules 
that describe the changes can be either deterministic or probabilistic; normally, we 
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are interested in the latter form. In addition, there are two possible ways of view- 
ing the system. First, we may think of the system as an individual object, in which 
case the system visits the various states sequentially. For example, suppose a person 
is described as "walking on the sidewalk", "talking with a friend," or "withdrawing 
money from a bank." The dynamics of this individual can be generated by hypothesiz- 
ing that there is a certain probability that the person will change state from "walking" 
to "talking" and another probability from "talking" to "banking," and so on for other 
combinations of transitions. Depending on random events, the person might have this 
sequence of states: "walking," "talking," "walking," "banking," "talking," "banking," 
"walking," etc. In this interpretation, we are interested in the particular state dynamics 
as well as the long-term frequency distribution of an individual's states. 

In a second interpretation, we may envision the system to be an ensemble of indi- 
viduals that are not explicitly modeled, but each of which is viewed as changing state 
randomly. We interpret the system dynamics as occurring when a fraction of the indi- 
viduals moves between states. In this case, our concern is with the relative proportion 
of individuals in all of the states, not with the sequences of the individuals. For ex- 
ample, we have a set of field plots characterized by their dominant plant species and 
a set of rules that predict which species will next dominate the plot given the current 
dominant species. Since we have a set of plots currently dominated by species A, a set 
dominated by species B, and so on, our model will predict what fraction will go from 
being dominated by A to being dominated by another species. 

Both approaches can be described with the same mathematics. The central concept 
is the transition matrix. A transition matrix is a special case of a probability matrix 
which is an n x n matrix in which all elements are non-negative, and the elements in 
the rows sum to 1 .O. For example, 

Two important facts of these matrices are: (1) If P and Q are probability matrices, then 
PQ is a probability matrix. (2) If P is a probability matrix, then there is a row vector t 
such that 

t = tP. (10.8) 

In other words, multiplying the vector and the matrix returns the vector unchanged. 
Obviously, if P is the identity matrix, the statement is true, but it is also true for other, 
more interesting values of P. This is not true for all t. If t = [0.2,0.40.4], the multipli- 
cation shown in Eq. 10.8 is not the input vector, but rather t = [O. 183,0.583,0.233]. 

10.5.1 Biological Applications of Markov Processes 

We will define a transition matrix P to be a probability matrix such that the rows and 
columns are the states of the system. If the system is viewed as an individual, then the 
element pij is the probability that the system will change from state i to state j. If the 
system is viewed as an ensemble of individuals, then the elements are the fractions of 
individuals changing from state i to j. Below, we list, without proof, some basic facts 
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Table 10.1 : The Markov transition probability matrix for a deer moving among water, grass, 
and sleeping areas. The powers of the matrices are indicated by the superscripts: 1, 2, 4, 
16, 32, 64. 

about these matrices. Excellent elementary discussions can be found in Grossman and 
Turner (1974) and Hillier and Lieberman (1980). 

Since P is the probability of moving from the current state to the next state, it is 
convenient to call this the one-step transition probability matrix (Hillier and Lieber- 
man 1980). P multiplied by itself (P(~)) is the two-step transition probability matrix 
and represents the probabilities of moving from state i to state j in two steps. P(") is 
defined similarly for n steps. 

Let p be a row vector of probabilities that an individual is in state i. In the ensemble 
interpretation, it is the fraction of individuals in state i. Then, we can form a recursive 
equation to generate the probability distribution in the next time step as 

If P is composed entirely of elements that are constant and independent of pi and if 
p,+l depends only on p, (i.e., not on previous p,-,, where m is a positive integer), then 
P is a Markov transition matrix. In this case, Eq. 10.9 describes a Markov process. 
Sometimes this is referred to as a lineal; jirst-order Markov process to allow for the 
existence of more complicated models of the same general type. 

As stated above, for a given P, there is a p such that in Eq. 10.9, pH, = p,. This is, 
basically, an equilibrium of the probability distribution of the system, and p, is called 
theJixed probability distribution. The fixed p can be computed from 

where n is large. This states that a system will eventually reach an equilibrium proba- 
bility distribution if sufficient iterations are run. 

As a simple example, suppose an organism such as a deer, in its daily movement, 
probabilistically visits three habitats: water, grass, and a sleeping area. The locations 
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of the deer in the three habitats are the three states of the deer. Table 10.1 shows the P(n) 
Markov transition matrix for n = 1,2,4, 16,32,64. Notice that the matrix converges. 
The rows of the P(@) matrix are the fixed probability distribution. To verify that this 
is so, multiply the initial probability vector [OS, 0.5,0.0] times P(@) to determine the 
long-term trajectory of the probability distribution. 

10.5.2 Simulating Markov and Transition Matrix Models 

The assumptions of a Markov process are biologically unrealistic. In particular, the 
current state of the system will often influence the transition probabilities, so that P 
will not be constant. Further, many biological systems have a "history" in the sense 
that events in the past influence current processes, so the assumption that pt+l de- 
pends only on pt is often false. One approach to relaxing these assumptions is to use 
semi-Markov processes applied to compartments (e.g., spatial position) in which the 
probability of leaving increases the longer an object has been in the compartment. 
Matis et al. (1992) give some analytical results when the probability distribution is a 
gamma function. 

In other cases of relaxing the original Markov assumptions, the simple analytical 
results discussed above may not be possible, and computer simulation will be neces- 
sary. Simulating a Markov chain is not difficult. The process can be simplified if the 
rows of the original transition matrix are converted to cumulative distributions. Then 
we can use table look-up on an empirical distribution, as described earlier.The rows 
denote the current state; the columns denote the new states. Given the transformed 
transition matrix (P'), the algorithm is: 

1. Assign an initial state to the system (si,J. 
2. Obtain a uniform random deviate (U,). 
3. For row si/, determine the column (s~, ,+~) such that pij < Ut 5 pi(j+l), where pij 

is the upper bound of the cumulative distribution for the transition from state i 
to state j. 

4. j is the new s ~ ~ + l .  
Once this basic structure is in place, it is possible to relax the assumptions of linear, 

first-order Markov chains. One relaxation is to constrain state visitation by the current 
state or previous transitions. For example, if the deer has visited the sleeping area 
(S) three times consecutively, then the probability of a transition from S to S can be 
dynamically reduced to 0. This hypothesis relaxes both the assumption of no historical 
effects and the independence of transition probabilities and current state. 

10.6 Exercises 

1. If at time to the deer is equally likely to be found in all places, in which place is 
the deer most likely to be found after one time step? 

2. Verify that the fixed probability distribution for the deer movement model is 
obtained regardless of the initial probability distribution. 

3. If matrix 10.7 is a transition matrix, interpret the meaning of the second row 
([O, 1,0]). What is the equilibrium vector of probabilities for this matrix? 
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4. Simulate random temperature by drawing 100 samples from the empirical dis- 
tribution of temperatures shown in Fig. 10.1. 

6 [MBSCD SimRandomTemp can help with this exercise. 1 
5. Simulate the density-dependent population model with r a normal deviate. Is 

there a long-term average? Does the distribution of these averages fit any simple 
probability distribution? 

6. The pdf of the exponential distribution is f (x; A) = R exp(-Ax). Derive the 
inverse cdf and devise an algorithm to sample from the pdf. 

7. Construct and run a computer program to randomly place points (x-y pairs) 
uniformly in a circular region with radius a. Your algorithm should not have 
to throw away any tentative x-y pairs. Test the correctness (i.e., the spatial 
uniformity) of the results. 

8. Below are modified tree replacement data from Horn (1975). The rows are 
current dominant canopy species in a stand and the columns are the percent 
sapling species under the canopy. Assuming that the sapling species of today 
become the canopy species of tomorrow, what is the equilibrium composition 
of the forest? 

9. Write a program to simulate weather as random temperature values. Assume 
the cosine function for temperature (Chapter 4) is the mean, and add a random 
component from a normal distribution with constant variance. How reasonable 
is the assumption of constant variance? Apply to an insect growth model in 
which the Richard's relative rate parameter kl in curve A of Fig. 5.4F is affected 
by temperature according to Logan's temperature optimum equation using curve 
A in Fig. 5.4K. 

CANOPY 
Red Oak 
Hickory 
Tuliptree 
Red Maple 
Beech 

10. One of the four possible outcomes to the classical Gause competition equations 
described in Chapter 4 is an unstable equilibrium. This is sometimes referred to 
as "indeterminant" competition because it is difficult to predict the outcome of 
a laboratory system with normal stochastic fluctuations started near the separa- 
trix. In other words, if a stochastic system is started at the unstable equilibrium, 
it could drop into either of the two basins of attraction. Can sufficiently large 
random fluctuations prevent either species from excluding the other, resulting 
in a system that remains near an unstable equilibrium? Test this idea by simu- 
lating the competition equations with parameters aij and Ki chosen so that an 
unstable equilibrium exists. In separate simulation analyses, introduce random- 
ness in these two ways: (1) random fluctuations in population numbers (e.g., 
disturbances) and (2) random fluctuations in all the parameters. For each of the 

PERCENT SAPLINGS 
RO HI TU RM BE 
12 12 12 42 22 
14 5 10 53 18 
12 8 10 32 38 
11  25 4 17 31 
13 27 8 19 33 
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two analyses above, examine several levels of randomness. Use a probability 
distribution of your own choosing, but consider using a log-normal. 

11. Sampling from a Uniform (Rectangular) Distribution. Use the inverse cumula- 
tive distribution function method and derive formulae to sample from a rectan- 
gular distribution with minimum at -XI, maximum at xl, centered about 0, and 
with height y. Show the following. 

a) Y = 1 /(2x1). 
b) The cdf is F(x) = x/(2x1) + 112. 
c) A random deviate is obtained by: x = 2x1 [U(O, 1) - 1/21, where U(0,l) is 

a deviate from a uniform distribution. 
Graph the cdf. Check that if U(0,l) = 0, x = -XI and if U(0,l) = 1, x = +XI. 
Show how to use the random deviate x to sample from a distribution of width 
2x1 that is not centered on 0. 

(Note: Since the above method assumes we can sample from U(0, I), in 
practice there is no need to implement the results of this exercise. It serves as a 
warm-up to the following exercise.) 

12. Sampling from a Triangular Distribution. In the real world, we often do not have 
sufficient data to estimate the means and variances of parameters. When we have 
only 2-3 estimates (e.g., from a few publications), the triangular distribution is 
useful. 

As the name suggests, this distribu- 
tion is defined by two endpoints (xo, xl) 
linearly connected to a single peak Ql), 
with xo < 0. We wish to sample from 
this distribution and displace the location 
of the peak to any value of x. A xo o X I  

Show the following. 
a) Y1 = 2/(x1 - xo). 
b) The pdf is: 

c) The cdf is: 

d) A random deviate (x) from the triangular distribution is obtained using a 
random deviate (u) from the uniform distribution (U(0,l)): 

Graph F(x). Check that the correct value of x is obtained if u = 0, u = 
(-xo/(xl - xo)), and u = 1. 
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Photosynthesis and 
Plant Growth 

11.1 Introduction 

P LANTS REPRESENT SOME of the most difficult biological systems to model. There are 
major problems with choosing the appropriate spatial, temporal, and biological 

scales. In addition, in terrestrial vascular plants, a major component of the organism, 
the root system, is not easily available for study or inspection. In this chapter, we 
will not provide a complete overview of models of photosynthesis and plant-water 
relations, but rather choose a few examples from these fields to illustrate some of the 
problems and progress that has been made. In examining these systems, we will illus- 
trate several important principles developed in Part I. These include (1) the effect of 
scale and biological levels of organization on model structure, (2) nullcline analysis 
and bifurcations, (3) the control of processes by multiple factors in biochemical net- 
works, (4) the use of mean resistance for multiple control in hydraulic models, and (5) 
multiple flow variables in plant growth models. 

11.2 Cellular-Level Photosynthesis 

Although the biochemical pathways involved in photosynthesis are relatively well 
known, there is still wide variation in the set of models for this process. Some of 
the discrepancy is due to different objectives and scales used to describe plants. In 
the first model we will examine, a model of steady-state levels of carbon assimilation 
was desired. The central biological question addressed by this model is: What effects 
do light intensity and the concentrations of CO:! and O2 have on the net rate of plant 
C02 uptake? Another approach focuses on the dynamics of stomata, but ignores most 
of the biochemical details. This model addresses the question: Can the mechanisms 
of water flow within leaves explain cycles in transpiration? A third model, describ- 
ing plant growth, uses a high-level of description with few mechanistic details. The 
question this model addresses is: How does atmospheric CO:! concentration affect the 
distribution of plant resources to shoots and roots? 
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co, 
RUBP$ 6 + H,O 

3 ATP 
(PCO, PCR) 

sugars 
\ NADPH 

Figure 11.1 : Two important biochemical cycles involved in photosynthesis are the pro- 
duction of ATP and NADPH using light energy and photosystems I and I1 and the Calvin 
cycle wherein RuBP is produced and the pathway to the ultimate production of sucrose is 
initiated. RuBP may be either carboxylated with C02 (PCR) or oxidized with Oz (PCO). 

11.2.1 Photosynthesis Biochemistry 

An extremely simplified view of the important biochemical reactions associated with 
photosynthesis is shown in Fig. 11.1. In brief, light energy as photons interacts with 
two photosystems to produce ATP and NADPH. These compounds are required to 
convert (ultimately) phosphoglycerate (PGA) to sucrose and ribulose 1,5-biphosphate 
(RuBP). RuBP and CO2 are used to create more PGA, completing the cycle. Many 
other details are omitted, but for the purposes of the leaf-scale photosynthesis model 
described below, the diagram shows components relevant to two important biochem- 
ical conditions that determine the rate at which carbon is fixed. First, the production 
of PGA from RuBP may be limiting. Second, the regeneration of RuBP from PGA 
using NADPH produced in the Calvin cycle may be limiting. In the former case, the 
amount of extracellular 0 2  and COz will influence carbon fixation rates, while in the 
latter case, light levels will determine fixation rates. 

A key step in the formation of PGA from RuBP is the carboxylation of RuBP: pho- 
tosynthetic carbon reduction (PCR). Carboxylation is facilitated by the enzyme RuBP 
carboxylase-oxygenase (Rubisco) whose active site accepts one molecule of C02 and 
uses the carbon atom to form two molecules of PGA. The active site, however, also ac- 
cepts 0 2  in a reaction that oxidizes RuBP and starts a pathway called photorespiratory 
carbon oxidation (PCO) or photorespiration that releases C02 and thereby defeats the 
carbon fixation cycle. C02 and 02, therefore, compete for the active site on Rubisco. 
When 0 2  is successful, two molecules of RuBP result in the release of one carbon 
atom from the system. In addition (Farquhar et al. 1980), oxidation directly produces 
one molecule of PGA and one molecule of PGIA (phosphoglucolate). One mole of 
PGIA results in 0.5 mole of PGA, requiring the use of 0.5 mole of ATP. So, oxidation 
of RuBP results in 1.5 mole of PGA. Carboxylation produces 3 mole of PGA. 

11.2.2 Carbon Assimilation 

Based on differential equations of the rate kinetics of the biochemical constituents 
contained in a more complex version of Fig. 11.1, Farquhar and Caemmerer (1982) 
derived a general, steady-state model of carbon metabolism for plants that use the bio- 
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chemical pathways described above. Their derivation had two purposes: understand 
the mechanisms of carbon assimilation, and simplify the relationships to allow exper- 
imental test with quantitative data. Needless to say, photosynthesis is a very complex 
system to model, requiring details of biochemistry we do not have space to introduce. 
However, to give a flavor for biochemical modeling, we will give a partial derivation 
of some of the results more fully covered in Farquhar and Caemmerer (1982). 

In very simplified terms, the rate of C02 assimilation is the difference between 
input (carboxylation) and output (respiration): 

where A is the assimilation rate, and Rd is respiration, the rate at which C is used by 
the plant's photosynthesizing machinery. Rd is the rate at which C02 is lost from cells 
inside the leaf due to cellular metabolism; the plant cells behave as do animal cells in 
this regard. The function f (Vc) is the rate of C02 uptake and incorporation into stored 
products such as sugar. Rd is an important modeling problem in its own right, but we 
will focus on f(Vc) in the following and assume that Rd is a measurable constant. 

To begin, we sketch the general plan of attack by noticing that Fig. 11.1 shows 
two cycles affecting C assimilation and sugar production. In biochemical pathways 
such as this, the rate of a reaction (e.g., sugar production) is often limited by the 
slowest step in the pathway. This suggests that a suitable modeling approach is to 
write equations for the rates of all of the major biochemical steps, then invoke the Law 
of the Minimum to determine the overall reaction rate. This is basically the strategy 
that Farquhar and Caemmerer (1982) used. In their development, they dealt with most 
of the known facts of all of the major steps; here, we will focus on only a subset, being 
guided by Farquhar and von Caemmerer's insights about those which are especially 
important. The two most important steps are the conversion of RuBP to PGA and the 
regeneration of NADPH and RuBP from the photosystems. So, our simplified problem 
really comes down to analyzing the case when RuBP is plentiful and the case when it 
is in short supply. 

When RuBP is plentiful, the rate of PGA formation depends on the supply of C02 
and competing 0 2 .  That is, the rate of RuBP carboxylation is 

where C is the partial pressure of C02, 0 is the partial pressure of 0 2 ,  Vcmax is the 
maximum rate of C02 carboxylation, Kc is the half-saturation constant for carboxyla- 
tion in the absence of 02, and KO is the half-saturation constant for oxygenation. We 
use Wc in this context to denote the rate of carboxylation when RuBP is saturating. 
This equation should be familiar as having the general form of the Michaelis-Menten 
equation. In addition, it is an example of the modeling tool wherein a primary rate 
equation (the Michaelis-Menten effects of C02 on carboxylation) is modified to in- 
corporate a second influencing factor (02) by transforming a constant (half-saturation, 
Kc) into a function of the second factor. As a result, the equation is not exactly a 
Michaelis-Menten relation. 
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The rate at which 0 2  competes with CO2 to oxidize RuBP is also similar to a 
Michaelis-Menten relation: 

where KO is the half-saturation constant for oxidation in the absence of C02,  and 
Vomax is the maximum rate of C02 oxidation. The ratio of these two rates will be a 
useful variable later: 

vo = - = VomaxOKc 
VC VcmaxCKo' 

Once we have Vc and Vo, we can complete Eq. 11.1 as 

where the factor 0.5 is due to the stoichiometry of the reaction: oxidation of 1 mole of 
RuBP releases 0.5 moil of C02 Farquhar and Caemmerer (1982). 

Bearing in mind that this is a steady-state model, the next step is to relate the 
parameters to quantities that can be estimated in the laboratory. The first of several 
simplifications involves the concept of compensation points. The compensation point 
of an environmental variable that influences photosynthesis is that level at which the 
rate of respiration and photorespiration equals photosynthesis rate so that net carbon 
fiation is zero (the steady-state condition). Since the rate of photosynthesis depends 
on both C02 and light levels, there are compensation points for both environmen- 
tal variables. While recognizing that light effects are important, the Farquhar-von 
Caemmerer model focused on C02 as the limiting variable. Consequently, the C02 
compensation point is the one of primary interest. Since the rate of photosynthesis is 
determined by the competition of C02 and 0 2  for Rubisco active sites, there is a C02 
compensation point (r,) even when Rd = 0: 

where r, is the value of C at which Eq. 11.3 is 0. This follows from the fact that in 
Eq. 11.3, when Rd and A are 0, 4 = 2 = 2T,/C. The equation for F, also implies that 
r, is a linear function of 0. From Eqs. 11.2 and 11.3 it follows that 

When Rd > 0, the compensation point is derived from the same operations as 
above to give 

r =  r* + (RdlVcmax)Kc(l+ OIKo) 
1 - Rdl Vcmax 

In this case, as above, the compensation point is a linear function of 0. 
When RuBP is not saturating, carbon fixation rate depends on the rate at which 

RuBP is regenerated by interactions of the Calvin cycle and the photosystems (Fig. 
11.1). The rate of RuBP regeneration can be limited by the rate of ATP formation in 
the PCR cycle. For each mole of RuBP and sugar that is formed, the PCR cycle uses 
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2 mole of NADPH and 3 mole of ATP. From this stoichiometry, ATP is consumed to 
form RuBP at the rate 

a = 3Vc + 3.5V0, 

where a is the consumption rate of ATP and equals the sum of the rates of carboxy- 
lation and oxidation, respectively, weighted by their use of RuBP. Oxidation uses an 
additional 0.5 mole of ATP in converting PGIA to PGA. We assume that ATP is in 
steady state so that production in PCR equals consumption to regenerate RuBP. For 
each molecule of ATP produced, three protons are liberated, so 

where a' is the proton liberation rate. Recall that when carbon fixation is in steady 
state and Rd = 0, Vo = 2r,Vc/C. Finally, two protons in a water molecule cause one 
electron to move through photosystems I and 11, so that 

where J is the rate of electron transport. 
Now, Vc is unknown and J can be estimated empirically, so rearranging 

because we assume here that the rate is not limited by sites for ADP phosphorylation. 
Farquhar and Caemmerer (1982) relax this assumption. 

We can now put all of this together. The net rate of COz assimilation is 

from Eq. 11.5, where Vc is the rate of carbon fixation when either RuBP is satu- 
rated (Wc) or when irradiance and electron transport limits RuBP regeneration (J' ,  
Eq. 11.6). To determine the ultimate rate, we use Liebig's Law of the Minimum 
(Chapter 4): 

Vc = min(Wc, J'). 

So, to summarize, if RuBP is saturating 

If RuBP regeneration is limited by irradiance 
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The only step left is to give an empirical equation for J ,  the potential electron 
transport rate for the formation of ATP. This electron production rate depends on light 
levels. There are several alternative formulations of this rate, but a recent one (Evans 
and Farquhar 1991) is 

12 + Jmax - &2 + JmaxI2 - 4012 Jmax 
J = 

2 0  9 

where 
I0 

12 = T(l  - f)(l - r), 

and where lo is incident radiation, J is potential electron transport rate, I2 is irradiance 
absorbed by Photosystem 11, f is a factor to correct for spectral imbalance of light, r is 
reflectance and transmittance from the leaf to photosynthetically active radiation, and 
the factor 2 accounts for the effect of Photosystem I on electron flow. Jmax and 0 are 
empirically estimated, with the former being the maximum electron transport rate and 
the latter being a shape parameter. 

A in Eqs. 11.7 and 1 1.8 represents the instantaneous rate of C02 assimilation and 
can be used in a differential equation of carbon flux in a plant. Moreover, A will vary 
with fluctuating light levels and internal carbon concentration. It will also be influ- 
enced by temperature, for which the reader should consult Farquhar and Caemmerer 
(1982). Since A is experimentally measurable, the model can be validated directly. 
Figure 11.2 shows comparisons of Eqs. 11.9 and 11.10 with data from two species 
of wheat. See Evans and Farquhar (1991) for more details. Clearly, this model gives 
a good fit to the data, but more importantly, it has a solid theoretical foundation in 
the biochemical pathways and likely limiting factors that influence electron flow and 
biochemical kinetics. 

11.3 Leaf-Level Photosynthesis 

The Farquhar-von Caemmerer model is a model of C02 assimilation based on intra- 
cellular C02 and light levels. A key process is the production of PGA from RuBP in 
the presence of C02 and water (Fig. 11.1). Therefore, understanding the processes 
affecting the levels of C02 and H20  in a leaf is crucial for a complete mechanistic 
description of photosynthesis. One of the critical processes involved is the magnitude 
and duration that stomata (i.e., leaf surface pores) are open for the interchange of wa- 
ter and C02. In this section, we construct a model of the dynamics of stomata in order 
to better understand the hydraulic mechanisms of photosynthesis. 

11.3.1 Basics of Plant-Water Relations 

Before diving into the model description, we very briefly describe the central con- 
cepts needed to think about water movement in plants. The basic physical system to 
consider is a series of water compartments connected by semipermeable membranes. 
Figure 11.3 shows two such compartments under two different conditions. On the left 
is a case where the solutions (cross-hatching) are isotonic (all solutes in the same con- 
centration), but at the moment in time shown a higher pressure head exists on the right 
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Figure 11.2: Empirical tests of the Farquhar-von Caemmerer-Evans model of photo- 
synthesis for Tn'ticum aestivum and Tn'ticum monococcum. (a) Effects of C 0 2  at three light 
intensities on C 0 2  assimilation and (b) effects of light level on C 0 2  assimilation. Symbols 
are observations; solid lines are model output for Eq. 11 .lo, and broken lines are Eq. 11.9. 
The intersection point of the model lines is the shift from C 0 2  limitation to light limitation. 
(From Evans and Farquhar 1991, Figs. 1-2A and 1-3. @ 1991 Crop Science Society of 
America, Inc. Reprinted with permission Crop Science Society of America, Inc., publisher.) 

compartment than on the left. In the system to the right, the pressure head between the 
two chambers is equal, but the solution is more concentrated on the left than on the 
right. The left chamber is hypertonic with respect to the right; it has a higher osmotic 
pressure than the chamber on the right, and water flows from right to left to eliminate 
the pressure difference. 

Osmotic pressure is the amount of hydrostatic pressure that must be applied to the 
hypertonic chamber to offset the water flow that would occur because of differences in 
ionic concentration between two chambers. It is estimated using van't Hoff's Law: 

where R is the ideal gas constant (0.08314 atm.liter/g-mole. K), T is degrees Kelvin, i 

resistance resistance 

Figure 11.3: Two causes of water movement between chambers separated by a semi- 
permeable membrane. (a) Hydrostatic pressure differences, (b) osmotic potential differ- 
ences. In both cases, A receives water from B. 
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is the number of ions formed when a single solute molecule dissociates in the solution 
medium [e.g., NaCl (table salt) has i = 21, and c is the molar concentration of the 
solute (moles of solute per liter of solution). In differential equations, as a matter of 
convenience, n is given a positive sign. 

Both hydrostatic and osmotic pressure play major roles in determining the flow of 
water in the living tissue of both plants and animals. When the concept of hydrostatic 
pressure is applied to plant cells, we use the term turgor pressure, denoted P. Turgor 
pressure is measured relative to a particular cell; it is the pressure exerted on the cell 
by its wall. Due to the fact that cell walls can only stretch to a limit, we will refer to 
cell characteristics defined when the cell is atfull turgor. This condition occurs when 
the cell contains its maximum amount of water. Under constant conditions, cellular n 
and P combine to produce a net "proclivity" of water to move into or out of the cell. 
This proclivity is called water potential and denoted Y and is defined as Y = P - n (n 
is positive). If n is large relative to P, water will tend to move in. If P is greater than 
K, water will leave the cell. 

In addition, most living tissue is elastic, so that as water flows into a cell, the 
pressure increases as the cell wall or membrane expands. Thus, there can be nonlinear 
relationships between the flow of water due to osmotic pressure and the subsequent 
changes in hydrostatic pressures. 

In addition to these two forms of pressure determining the rate of water flow, the 
membrane itself will slow down molecular movement. This can be thought of as a 
resistance (as in electrical resistance) similar to friction. The resistance of a pathway to 
water flow is usually an empirically determined constant that depends on the properties 
of the medium or membrane through which the water flows. Resistance suggests the 
measure of a force that prevents a flow from occurring. Consequently, it is often more 
convenient to use conductance, the mathematical inverse of resistance. This quantity 
is commonly used in models in a multiplicative expression to portray the quantity of 
fluid that flows from point A to point B. 

Resistance used in this context of a physical flow means that compartments or 
chambers arranged in series or parallel permit simple rules for calculating overall re- 
sistance in the network. If the compartments are in series (e.g., soil, roots, stem, 
leaves, atmosphere), the overall network resistance (soil to atmosphere) is the sum of 
the resistances: 

R , = R , + R , + R l + R a ,  

where the subscript denotes the terminal compartment of the component flow. 
Alternatively, the compartments could be in parallel, for example, water flowing 

along a branch to an apical cluster of leaves. In this case, the pathways (i.e., the 
leaves) are "competing" for the flowing material, and the overall network resistance 
can be computed using the fact that the inverse of the network resistance is the sum of 
the inverses of each component flow: 

where the indices indicate compartments (e.g., individual leaves). This formulation 
should be familiar from Chapter 4, where we presented it in the context of multiple 
limiting factors. 
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Figure 11.4: (a) Idealized view of water flow in a plant showing compartments for roots, 
stem, and leaf. (b) Idealized view of a stoma showing flows among xylem, epidermis, guard 
cells, and the atmosphere. 

With these two concepts of water potential and resistance, we can understand the 
basics of quite a few models in plant physiology. 

11.3.2 Stomata Dynamics 

As indicated, a knowledge of the rate at which water evaporates (i.e., transpires) from 
a leaf is essential to understanding photosynthesis. Transpiration (E) is defined as 

where w is the difference in water vapor potentials inside and outside the leaf, and g, is 
the conductance of the stomatal aperture (i.e., the ability of water to flow through the 
pore). Conductance is the key variable to model and one important modeling approach 
is to assume that the stoma is in steady state so that simple empirical relations can be 
derived. Ball et al. (1987) produced one notable model: 

where g, is conductance, h is relative humidity, A is net photosynthesis, C is partial 
pressure of C 0 2  and k is an empirical constant. This simple, but useful equation, 
however, ignores recent developments in the short-time-scale dynamics of stomatal 
aperture and conductance. In this section, we derive a non-steady-state model of sin- 
gle stoma dynamics. The model contains both hydraulic and biochemical controls of 
stoma opening and closing. 

We use here a simplified view of a leaf shown in Fig. 11.4a. Stoma dynamics 
are determined by the relative pressures of the guard and epidermis cells (Fig. 11.4b). 
These pressures are determined by the volumes of the two cell types, and these, in 
turn, are determined by flows of water between the cell types and a source of xylem 
water (Fig. 1 1.4b). 

Thus, three flows of water (J1, J2, and J3) determine the volumes of two cell types: 
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guard (V,) and epidermal (V,) 

where V, and V, are constrained to non-negative values. 
J1 is the flow of water from xylem to epidermal cells 

where Yx is the water potential of the xylem (i.e., plant roots and stem), Y, is the 
water potential of the epidermis tissue, P, is the turgor pressure of the epidermal cells, 
and & is the osmotic pressure of the epidermal cells. This flow has the simple form 
of water flow models described above: conductance of a pathway for water multiplied 
by the difference in water potential between two sites. Notice that Eq. 11.11 is an 
example of negative feedback by an extrinsic limit (Y,, see Section 4.3.3). 

Cell pressure is a linear function of the ratio of current volume to the volume at full 
turgor, scaled by the cell wall modulus and pressure at full turgor. Cell wall modulus 
is the inverse of wall elasticity, and in reality varies with turgor pressure, which we 
ignore for simplicity. Thus, we have 

where E, is epidermal cell wall modulus, Va, f t  is the volume at full turgor of epidermal 
cells in a finite leaf area, and Pe,ft is the pressure of the epidermal cells at full turgor. 
P, is constrained to non-negative values. Cell wall modulus is the inverse of wall 
elasticity, and in reality varies with turgor pressure, but we ignore this for simplicity. 

Epidermal cell osmotic pressure (n,) is determined by the concentration of solutes 
from van7 Hoff's Law as 

- 

N,RT 
n, = -, v, 

where Ne is moles of solutes, R is the gas constant, and T is temperature in degrees 
Kelvin. 

J2 represents evaporation from epidermal cells and is proportional to the difference 
of internal (c,) and atmospheric (ca) water vapor pressure: 

where J2 is transpiration and was denoted as E above. This equation is another exam- 
ple of negative feedback by an extrinsic limit (C,, see Section 4.3.3). 

Total conductance, gt (a Forrester diagram auxiliary variable), is a combination 
of two conductances, one from the epidermal cell surfaces to the guard cell (g,) and 
the other from the guard cell to the atmosphere (the boundary layer conductance, gb). 
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The latter quantity is assumed, for our purposes, to be a constant for a given leaf and 
environmental conditions. ge, however, is a function of the current guard cell aperture 
opening: 

where a is the guard cell aperture and constrained to be greater than zero; bo, b,, be are 
empirically determined constants, and kl is a proportionality constant relating aperture 
to conductance. The inverse of conductance is analogous to electrical resistance, and 
we combine stomata1 conductance and boundary layer conductance by adding this 
series of two resistances: 

The last flow, J3,  represents the flow between guard and epidermal cells. This is 
determined by the differences between the water potentials of guard and epidermal 
cells: 

53 = C3(-Pa + ng + Pe - ne), (11.12) 

where C3 is conductance between guard and epidermal cells, and the Pi and ni are 
hydrostatic pressures and osmotic pressures for guard (i = g) and epidermal ( i  = e) 
cells, respectively. 

Guard cell pressure is defined analogously to epidermal cell pressure: 

where the variables for guard cells are similar to those for the epidermal cells. 
Guard cell osmotic pressure is similar to that for the epidermal cells, with the 

exception that solute concentration may be a direct function of time (to simulate 
metabolism) and is biochemically controlled by pressure of the epidermal cells and 
diffusion of water from guard cells: 

To describe the effects of ion diffusion and epidermal pressures on N,, we need another 
differential equation that is a function of N, and Pe. For simplicity, we assume the 
following linear relationship: 

where s and r are empirical constants, and Nami, is the minimum concentration of so- 
lutes maintained by normal cell metabolism. This equation hypothesizes that guard 
cell ion production is stimulated by high epidermal pressure (P,) and that ions decay 
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from the guard cell in proportion to the excess ion concentration above normal (neg- 
ative feedback by extrinsic control). Biochemical control of stoma opening can be 
eliminated by setting s and r to zero. This permits the study of the relative impor- 
tance of hydraulic compared to biochemical controls, and is an example of the use of 
alternative models and hypotheses. 

Combining these equations for the Ji, we have 

As described in Chapter 9, nullcline analysis can yield insight into qualitative dy- 
namics and stability properties of a model. We now give the nullcline equations and 
graphs for a particular set of parameters. Asterisks denote equilibria of the variable. 
After setting all three differential equations to 0 and simplifying, we have the nullcline 
equation for N, 

N* = s(mvev,* + ie) 
8 r + Ngmin, (11.17) 

where 

mve = ~e/Vae,ft 

i, = P,J~ - ee. 

The nullcline for V, is 

0 = ~,*~(-rn, v,*) + v,*(mVe v,*~ + i, V,* - i, V,* - B) 

where 
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Figure 11.5: Nullclines for V, and V, for three water vapor deficits (w =lo, 18, and 25 
bars). 

And the nullcline for V, is 

where 

and where w = (c, - c,) and B = N,RT. 
Equation 11.18 is solved for V, as a function of V, using the quadratic formula. 

The positive root produces negative V, and is ignored. The qualitative dynamics and 
stability properties of the equations can be visualized by plotting the nullclines for V, 
and V, in the state space. Figure 11.5 shows the shape of the V, and V, nullclines 
for three levels of water vapor deficits. For clarity, the N, nullcline is not shown. 
Equilibria exist at the intersection of the curves. Note that if only vapor pressure 
deficit (w) is altered (as shown here), the equilibria fall along the approximately linear 
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Figure 11.6: Nonlinear dynamics and nullclines for V, and V, for two water vapor deficits 
[lo (a) and 25 (b) bars]. 

V, nullcline. Thus, steady-state epidermal volume (and pressure) is linearly related 
to steady-state guard cell volume. For the cases presented here, the nullclines with 
w = 10 bars indicate a stable equilibrium and those with w = 25 bars indicate a stable 
limit cycle. 

Figure 11.6 illustrates this by superimposing the nonlinear dynamics for the three 
cases using parameters listed in Table 1 1.1. This shows that relatively small changes 
in the position of the equilibrium (Fig. 11.5) can produce dramatically different dy- 
namics. Rand et al. (1981) proved that the similar model by Delwiche and Cooke 
(1977) exhibits a Hopf bifurcation from a fixed point to a limit cycle. This cycle in 
their model can be stable or unstable, depending on parameters. The numerical results 
of Fig. 11.5 are consistent with this mathematical analysis. 

The existence of oscillations in stomata1 conductance is well established. For ex- 
ample, Cardon et al. (1994) showed whole-leaf oscillations with a period of approx- 
imately 30 minutes and an amplitude of approximately 60 mmo~e.m-~.sec-'. These 
are approximately equal to the values produced by the model using the parameters in 
Table 11.1 when w = 25 bars (Fig. 11.7). 

11.4 Plant Growth 

As we will discuss in more detail in Chapter 17, models and observational studies 
have a particular scale of space, time, and biological organization. The above models 
of photosynthesis apply to low levels of organization: biochemical and tissue or leaf. 
While it may very well be possible in principle to apply the detailed photosynthesis 
models over long enough time periods to model the growth of complete plants, this 
is not a useful endeavor. We therefore also need models at the level of the whole 
organism that describe how plant biomass changes with plant maturity. Such models 
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Table 11.1 : Parameter values used in the model of stomata dynamics. 

INITIAL CONDITIONS 
ve 1 x 1 0 ~  Epidermis volume/m2 leaf 
V, 1 x 1 0 ~  Guard cell volume/m2 leaf 
N, 1.017 x lo3 Guard cell ion content/m2 leaf 

PARAMETERS 
I bo 0.0 Stoma aperture when cell pressure is 0.0 

V,J~ 4.2 x 
V,,ft 4.2 x Volume of a cell at full turgor - 

NULLCLINE VARIABLES 

Effect of Pe on stoma aperture 
Effect of P, on stoma aperture 
Xylem conductance 
Epidermis-guard cell conductance 
Atmospheric water vapor pressure 
Leaf internal water vapor pressure 
Epidermis wall modulus 
Guard cell wall modulus 
Atmospheric boundary layer conductance 
Stoma aperture effect on conductance 
Epidermis ion concentration 
Guard cell minimum ion concentration 
Xylem water potential 
Epidermis pressure at full turgor 
Guard cell pressure at full turgor 
Gas constant 
Decay rate of ions in the guard cell 
Effect of Pe on guard cell ion production 
Temperature in degrees Kelvin 
Volume of an epidermis cell at full turgor 

ie -40.0 Epidermis full turgor pressure - ee 
i, -35.0 Guard cell full turgor pressure - E, 
m, 0.002976 e l  ve,ft 

m,,, 0.02976 ~ g / v g , f t  
w 10.0, 18.0.25.0 Difference in external and internal humidities 

would have important applications to agriculture as a means of predicting plant size 
as a function of soil moisture, fertilizer, or weather. In the following sections, we 
describe a few of the more widely used approaches. 

11.4.1 Growth of Total Plant Biomass 

One class of models treats the individual as a homogeneous black box in terms of 
weight of biological material. Three such empirical approaches to growth are de- 
scribed here. 

Logistic If we think of an organism as being composed of a population of cells of 
fixed size, then the density-dependent model of population growth will describe an 
organism. This theory states that as the number of cells increases, the amount of 
resources for cell division decreases, reducing organism growth rate. The differential 
equation for this is the familiar logistic: 
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Figure 11.7: Oscillatory stomatal dynamics in experiments and models. (a) Model re- 
sults using Eqs. 11.14-1 1.16 and parameters listed in Table 1 1  .I. (b) Whole leaf stomatal 
conductance in Helianthus annuus measured in a gas exchange chamber. (From Cardon 
et al. 1994, Fig. la. @ 1994 Blackwell Science, Ltd. Reprinted with permission Blackwell 
Science, Ltd, publisher.) 

where ,u is the growth rate constant and Wf is the final weight. This simple equation 
has an analytic solution (France and Thornley 1984): 

where Wo is the initial weight. This is the classical sigmoid curve where the maximum 
rate of growth occurs when the plant is one-half Wf. 

Gompertz Instead of hypothesizing that the cell division rate declines with increas- 
ing numbers of cells, we can assume that the rate simply declines with time. This 
produces the Gompertz equations: 
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Figure 11.8: Forrester diagram for growth of a winter lettuce plant. 

where D is a decay constant. The latter equation does not depend on W, so it can be 
integrated directly: p = poe-Dt. Substituting (France and Thornley 1984), 

Chanter The Chanter model assumes both the time dependence of p used in the 
Gompertz equation and the resource limitation of the logistic (France and Thornley 
1984): 

W =  WoB 
Wo + (B - Wo) exp (-p(l - e-Dt)) ID' 

Several other phenomenological models are described in France and Thornley 
(1984). Models of the above type are often used as components in more complex 
models. 

11.4.2 Whole-Plant Model 

A simple example of the use of the Gompertz model is a model of winter lettuce 
growth dynamics by Sweeney et al. (1981). The Forrester diagram of this problem is 
shown in Fig. 11.8. In this simple model, there are two state variables for a pool of 
storage material (e.g., g C: Ws) and a pool representing the structure of the plant (WG). 
The latter is typically interpreted as leaf area: 

where YG is a conversion factor relating grams of substrate to grams of structural com- 
ponent, 8 is another conversion factor relating grams of COa fixed by photosynthesis 
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to grams of growth substrate (Ws), and D is an empirically determined parameter that 
describes the effect of time on the reduction of growth rates. p, F,, and E are functions 
described below. F, is the amount of C02 fixed during photosynthesis; it depends on 
the amount of light available, the amount of leaf area present to intercept the light, and 
a time decay to describe environmental and plant morphological changes over time: 

where A, is the effective leaf area and P,(t) is the gross photosynthetic rate of a leaf. 
Leaf area is a hyperbolic function of current plant size: 

where h is the planting distance between plants and FG is a proportionality constant 
that relates the current size of the plant to actual leaf area. A, is asymptotic to the 
maximum area that the plant can expose to the sun without overlapping other plants. 

Following the relation originally proposed in Monsi and Saeki (1953), and later 
discussed in Monsi et al. (1973), gross photosynthetic rate depends on light intensity 
and time: 

where a is the light utilization efficiency, I is instantaneous rate at which light strikes a 
unit area of the earth's surface, C is atmospheric COz concentration, r is C02 conduc- 
tance from the atmosphere to the plant, and /3 is a constant loss of CO2 to respiration 
during photosynthesis. Time (t) is measured in days. The maximal rate of photo- 
synthesis decays exponentially over time by an amount Dp per day. Sweeney et al. 
(1981) further assumed that light levels are sufficiently low that the photosynthetic 
rate is restricted to the nearly linear portion of the low light portion of the curve, so 
that, approximately, 

P, = a '~e-~p' .  

This formulation is an example of the modeling principle to elaborate a process 
by converting a constant (maximum photosynthesis rate,: a') into a variable, which, 
in this case, depends on time [exp(-Dpt)]. Combining these two limiting processes 
(light and carbon fixation), the control of photosynthetic rate by leaf area exposed to 
light and the biochemical rates of photosynthesis is 

Notice that this equation employs the multiplicative method of determining overall 
process rate as the product of two separate controlling mechanisms (leaf area and 
biochemical rates). 

Sweeney et al. (1981) incorporated environmental effects into the growth equations 
by allowing temperature to influence the parameters p, D, and Dp (hence, they are 
not truly constants). The authors used the Qlo method of incorporating temperature 
effects. The Qlo of a biochemical process is the amount that the rate of the process 
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Figure 11.9: Comparison of predicted (line) and observed (filled circles) above-ground 
plant parts in winter lettuce. (From Sweeney et al. 1981, Fig. 2. @I 1981 Academic Press, 
Ltd. Reprinted with permission Academic Press, publisher.) 

is increased when temperature is raised 10°C above a reference level (usually 20°C). 
The model of the temperature (T) effect on the rate (R) is: 

Q is experimentally estimated by performing the appropriate experiments at a series 
of temperatures and solving for Q in the above equation. Both the decay parameters 
(D and D,) and the metabolic rates @) possess their own Qlo parameters. 

If the basic time scale of the model is 1 d, then the complete model is 

where Tt is a time series of environmental temperatures, and Jt is the daily rate of light 
flux. With appropriate adjustment of some of the empirical parameters, this model fits 
typical field data well (Fig. 11.9). 

Because of its empirical accuracy, such a model can be used to design planting 
regimes of lettuce. For example, the effects of planting distances (h) and planting 
timing on final biomass can be investigated. Both variables can be chosen to maximize 
lettuce size using evolutionary optimization techniques (Chapter 19). 

11.4.3 Partitioning Resources to Organs 

While the above model of plant growth does well for a particular crop and planting 
environment, it relies heavily on empirical data. It incorporates relatively few mecha- 
nistic details. In particular, it fails to distinguish growth dynamics in two major types 
of plant structures: roots and shoots. 

The partitioning of nutrients and photosynthetic by-products is an important direc- 
tion of plant growth modeling. This model problem also illustrates the use of submod- 
els when a system comprises flows of several conserved quantities. Thornley (1972) 
described an early model that is still widely used today. Here we describe an extension 
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of Thornley's model by Dewar (1993) that incorporates another important mechanism 
of nutrient translocation between roots and shoots: Miinch flow. 

The plant is described as having two substrate compartments in both roots (r) and 
shoots (s, aboveground plant material). The two compartments are pools of labile 
carbon and nitrogen, denoted as Wc,, and for root compartments and Wc,, and 

for shoot compartments. The model plant also has two structural compartments 
representing the amounts of C and N contained in anatomical structures in roots (e.g., 
roots and root hairs) and shoots (e.g., stems and leaves) (Wr and W,). There are a total 
of six state variables and differential equations: 

5 dt = ws ( ~ . C ~ N ~  max b, (1 - $)I) 
7 

relative growth 

dWc,s -- cav(Cs - Cr) d Ws 
dt - [ ~ c w s ]  - [ 1- [fcX] ( - -- 

photosynthesis Munch flow C uptake 
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The parameters are defined in Table 11.2. Ci and Ni ( i  = s, r)  are the relative con- 
centrations of C and N in roots and shoots. C,, and N,, are weighted average con- 
centrations of substrate C and N in the plant. E (Eq. 11.30 in Eqs. 11.28 and 11.29) 
is transpiration and is based on the assumption that water movement is fast relative 
to plant growth so that water balance between roots and shoots is in instantaneous 
equilibrium. A (Eq. 11.27) is the sum of two resistances in series. Y, is the xylem 
water potential between the soil and the root; Y, is the water potential between the 
root and the shoot. Water uptake by roots (= transpiration, E, Eq. 11.29) follows the 
water movement rules we developed earlier (Eq. 11.11); i.e., flux is proportional (by 
conductance = l/resistance) to the gradient of water potentials between two points 
(soil-to-root, or root-to-shoot). Equations 11.28 and 11.29 require the assumption that 
water movement is instantaneous, relative to the time scales of other processes. The 
quantity in brackets in Eq. 11.28 is xylem water flow resistance between root and 
shoot, and the quantity within brackets in Eq. 11.29 is the resistance between soil and 
root. 'Ibo important auxiliary variables are the fraction of structural dry matter in the 
roots [f, = Wr/(Ws + W,)] and shoots [f, = W,/(W, + W,)]. The shoot:root ratio 
(f,/f,) is a third auxiliary variable used to summarize the overall state of the plant. 

The relative growth rates of structural C and N are contained within brackets in 
Eqs. 11.21 and 11.22. They are based on the mass action principle in which both C 
and N are required for a chemical reaction. 

Equation 11.23 describes the dynamics of shoot substrate carbon using one input 
and two outputs. Shoot C increases by the first term on the right in brackets, which 
represents the amount of C derived from photosynthesis. All of this C contributes 
to the substrate C stored in the shoot. The second term on the right is Munch flow 
whereby shoot C is transported via diffusion to the roots according to the concentration 
gradient of C between the shoots and roots and modified by flow resistance in the 
denominator. The third term represents the amount of C uptake needed to produce 
the C used in plant structure. Similar output components exist in the flow of substrate 
N (Eq. 11.24). Since all N is taken up in the roots, the input of substrate N to shoot 
storage is that fraction, A, of the N absorbed that is subsequently transported in xylem 
to the shoots via transpiration. 

Substrate C is added to roots by Munch flow in the phloem (first bracket pair in 
Eq. 11.25) and so depends on the gradient of C. A fraction (fc) of the increase of 
structural C in the roots is taken from the substrate C (second bracket pair). Similar 
processes add and remove substrate N from the roots. In addition, root substrate N has 
a source directly from root N absorption (first bracket pair in Eq. 11.26). 

While the model needs many more validation efforts, a change in one of the pa- 
rameters indicates that the model is qualitatively accurate. The mass-specific rate of 
carbon fixation by the shoot component (uc) measures the efficiency by which atmo- 
spheric C is assimilated per unit of photosynthetic material. This efficiency is depen- 
dent upon many factors, for example, the concentration of C 0 2  in the atmosphere. 
Whatever the mechanism, does the model respond correctly when this parameter is 
doubled? The answer appears to be yes. Dewar (1993) allowed the model to reach 
an equilibrium in its root and shoot C substrate, then doubled uc (Fig. 11.10 arrow). 
Immediately, C, increased rapidly, and a short time later a smaller increase in root sub- 
strate C (C,) occurred due to Munch flow. As this process removed C from the shoots, 
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Table 11.2: Parameters and initial conditions in the lettuce model. DM = kg of dry matter. 

INITIAL CONDITIONS 

Root structural DM 1.0 D M . ~ - ~  
Shoot C substrate DM 0.15 D M . ~ - ~  
Root C substrate DM 0.05 D M . ~ - ~  

WN,, Shoot N substrate DM 0.03 D M . ~ - ~  
WN,~ Root N substrate DM 0.03 D M . ~ - ~  

PARAMETERS 
C shoot fixation 0.15 kg (DM.dd') 
N shoot uptake 0.05 kg (DM.d-') 
Shoot transpiration 15.0 kg (DM.~-I) 
Phloem resistance 0.5 (d-') 
Xylem resistance 10.0 (m2 . d-') 
Soil-root resistance 1.0 (m2 . d-') 
Soil water potential -100 (J . kg-') 
Shoot(root) growth 500 (d-I) 
Critical water potential -1500 (.I. kg-') 
C content 0.45 (unitless) 
N content 0.03 (unitless) 

C, decreased to a new equilibrium but higher than the previous one (Fig. 11.10a). 
Since the new equilibrium of shoot C substrate was relatively higher than the new 
equilibrium for root C substrate, C, is larger than C,. By Eqs. 11.23 and 11.25, Wc,, 
will decrease relative to Wc,,. This resulted in smaller equilibrium values of W, rela- 
tive to W,; hence, root structure will increase relative to shoot structure (Fig. 11.10b). 
This is qualitatively similar to experimental manipulations of ambient C levels (Dewar 
1993). 

Figure 11.1 0: Response of a carbon-nitrogen allocation model of plant growth to in- 
creased C fixation efficiency. The model was allowed to equilibrate, then photosynthetic 
efficiency was doubled on day 10 (arrows). (a) Rapid increase in shoot C (C,) is followed 
by an increase in root C (C,) via Munch flow. (b) Rapid decrease in proportion of structure 
in shoots relative to roots Cf,/fr). (From Dewar 1993, Figs. 4a and 4c. @ 1993 Blackwell 
Science, Ltd. Reprinted with permission Blackwell Science, Ltd., publishers.) 
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11.5 Summary 

This chapter has illustrated a variety of modeling techniques and scales that occur 
in theoretical plant physiology. These examples were chosen to describe a variety 
of solutions and approaches. The steady-state assumptions used in the biochemical 
model of photosynthesis is characteristic of many models of biochemical mechanisms 
in plants and animals. In contrast, the dynamic model of stomata is an application of 
standard dynamical analysis tools (e.g., flows of conserved quantities, nullclines) that 
are not commonly applied to this scale in plants. As illustrated here, models at higher 
levels of biological organization (see Chapter 16) can achieve accurate descriptions of 
whole plant growth, but lose mechanistic detail. These models gain, however, potential 
practical applications as aids to optimizing agricultural practice. 

MBS-CD contains simulation code for several of the models discussed in this 
chapter. On the CD, see the directory . . ./BPhotosyn. 

11.6 Exercises 

1. Study each of the models in this chapter and identify principles that were dis- 
cussed in Part I. Are there other general principles contained in these models 
that were not mentioned earlier? 

2. Write and solve a model that adds pests to the whole crop model. Assume that 
insects prefer young leaf material to old leaf material. 

3. Write a computer program that simulates the model of stomata1 dynamics. Use 
it to address the question: How does the value of epidermis cell wall modulus 
affect the dynamics? Does this quantity interact with guard cell wall modulus? 

4. Do the equilibrium results of the Dewar model agree with the model of Farquhar 
and Caemmerer (1982) and data of Evans and Farquhar (1991)? 

5. Simulate the Dewar plant model and find parameters that will cause oscillations. 
6. Derive the nullcline equations for the stoma model Eqs. 1 1.17 - 1 1.18. 
7. Draw a Forrester diagram for Dewer's model Eqs. 1 1.21 - 1 1.26. 
8. Draw a Forrester diagram of the stoma model. As there are many parameters, 

use auxiliary variables to simplify. 
9. Perform a first-order (analytical) error analysis of photosynthesis rate when 

RuBP is saturating based on Eq. 11.9 for all the parameters and C and 0. Cal- 
culate the 95% confidence interval. 

10. Using numbers you extract from Fig. 11.9, perform a validation of the lettuce 
model using tools from Chapter 8. 
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Hormonal Control in Mammals 

12.1 Hormonal Regulation 

T HE HALLMARK OF vertebrate physiology is the fine control of physiological states by 
negative feedback systems. For this to be effective, there must be mechanisms 

to turn off operating processes and to turn on dormant processes. This requires that 
there be body-wide communication among system components that signals the state 
of operating processes. The coordinated interaction of the central nervous system and 
hormones is one of the most important mechanisms by which negative feedback is 
achieved. Hormones are chemicals that are transported long distances via the blood 
and that are capable of turning on and off processes occurring at the site of hormone 
action. This chapter describes a mathematical model of one of these feedback systems 
that causes the level of glucose in the blood to be regulated within relatively narrow 
bounds. 

The model illustrates a number of principles developed in Part I. First, it demon- 
strates the trade-offs required in model construction to balance mechanistic realism 
against mathematical simplicity and the need to minimize data requirements. Because 
the model is relatively complex, this chapter also illustrates the utility of Forrester 
diagrams for model exposition. As the model structure is explicated, principles of 
quantitative model formulation are revisited when we introduce a new, flexible math- 
ematical function for representing nonlinear biological processes. Finally, the use of 
models to address interesting, practical questions is illustrated here by investigating 
the effects of eating on the blood sugar levels of diabetic and obese medical patients. 
These simulations demonstrate the potential practical value of mathematical models 
for patient diagnosis and treatment. 

12.2 Glucose and Insulin Regulation 

It's inconvenient to have to eat continuously, Superbowl Sunday not withstanding. 
Eating, while generally an enjoyable experience, can interfere with other worthwhile 
activities, such as changing channels or escaping from predators. Moreover, with the 
exception of a few ungulates and laboratory mice in feeding experiments, a predator's 
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Figure 12.1 : Blood plasma glucose is regulated by insulin and glucagon. When glucose 
concentration in the bloodstream is high, insulin production is stimulated, which results 
in the storage of glucose as glycogen in the liver. When blood glucose is low, glucagon 
converts liver glycogen to glucose, which is then added to the bloodstream. 

prey rarely cooperates by being continuously available for consumption. But the cells 
of most mammals, require a continual supply of energy, although a few organisms, 
such as hummingbirds, are capable of entering a physiological state called torpor in 
which their metabolic demand is reduced to extremely low levels during the night. 
In particular, maintaining functioning of the central nervous system and the ability 
to perform rapid, energy intensive muscular reactions require carbohydrates (Berne 
and Levy 1993). From the stomach's point of view, then, it is necessary to have a 
storage capacity into which glucose can be sequestered immediately following eating 
and that can later be resupplied to the body as needed between meals. The plasma 
glucose control system is an intricate and elegant mechanism for storing and releasing 
carbohydrates. 

As Fig. 12.1 diagrams, a negative feedback system for regulating the concentration 
of glucose in the blood plasma has evolved. This system involves the coordinated 
activity of blood chemistry, the pancreas, and the liver. Although the details of glucose 
regulation are replete with biochemical and genetic details, the basic story is simple to 
tell (Guyton 1986; Raven and Johnson 1992; Berne and Levy 1993). 

After a meal, sugars and other complex carbohydrates are broken down into glu- 
cose which crosses the stomach wall and enters the bloodstream. As the blood perfuses 
tissues and cells in its circuit through the circulatory system, plasma glucose is passed 
to the cells according to the cell's internal demands at the moment. Glucose cannot be 
stored in the blood for long periods because of the effects it has on other physiological 
systems. So, if the momentary supply of plasma glucose exceeds the demand, special 
glucose "detectors" stimulate cells in the pancreas called the islets of Langerhans to 
produce insulin. This is a hormone that attaches to the surface of cells and stimulates 
the cells to absorb glucose, that is, remove it from the bloodstream. Muscle and liver 
cells are especially sensitive to insulin and much of the glucose is stored there. Once 
inside the storage cells, glucose is transformed to glycogen, a relatively inert starch- 
like molecule similar to glucose. When the glucose detectors are switched off after the 
concentration of blood glucose falls, another set of cells in the islets of Langerhans se- 
cretes glucagon into the blood. This hormone is carried to the glycogen-storing cells 
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of the liver or muscles and reconverts glycogen to glucose. 
In a normal human, there is enough glycogen in the liver to maintain appropriate 

blood glucose concentrations for 10 hours without eating. After that, other noncarbo- 
hydrate molecules are converted to glucose to keep up with the demand of the nervous 
and muscular systems. A normal individual weighing 70 kg has about 91.5 mg of glu- 
cose per 100 ml of blood plasma, 11 pmole insulin Units per 1 ml @U/ml) of plasma, 
and 75 pico-grams of glucagon per 1 ml (pglml) of plasma. [International Units (U) 
of a substance is the amount that produces a specific quantitative result in a bioassay. 
The physical amount depends on the substance and the nature of the bioassay.)] 

The regulation of these normal levels can fail for two main reasons. If the body 
cannot secrete sufficient levels of insulin, then glucose is not removed from the blood 
and increases to dangerous levels. As a result, a cascade of chemical and physiological 
reactions occur that decrease blood pH to 6.8 or less. Among the many physiological 
reactions that are impeded by low pH is the affinity of hemoglobin for 0 2 .  Low blood 
pH means that less O2 is carried to vital organs, and death can result. This is a disease 
known as Type I diabetes mellitus. Alternatively, there may be sufficient insulin, but 
too few insulin receptors on the glycogen-storing cells (in the liver and muscle). With- 
out receptors, these cells cannot detect the presence of insulin and the consequent need 
to stimulate the absorption of glucose for storage. This is known as Type 11 diabetes 
mellitus and also results in dangerously high levels of glucose in the blood. There are 
other clinical conditions that are correlated with abnormal insulin dynamics. For ex- 
ample, obese individuals have high rates of insulin production. Also, intense physical 
exertion reduces the rate of insulin secretion. 

Mathematical models of the glucose-insulin system are valuable both for provid- 
ing theoretical insight into the mechanisms of diabetes and as a diagnostic tool. In the 
latter case, a model is constructed that is based on easily measured patient quantities 
(e.g., body weight and normal plasma glucose concentration) and that can be driven 
by perturbations that correspond to standard medical diagnostic procedures (e.g., oral 
ingestion of a known amount of glucose). Depending on the subsequent dynamics of 
blood glucose for a patient with a given baseline concentration, irregularities in insulin 
secretion or cell-wall reception can be detected. 

12.3 Glucose Model of Intermediate Complexity 

Cobelli et al. (1982) developed a model of glucose regulation that has an intermedi- 
ate level of complexity. As such, it incorporates many feedback loops missing from 
simpler models (improving its utility in diagnosis), but is simple enough to pass val- 
idation tests. A slightly simplified Forrester diagram for the model is shown in Fig. 
12.2. The three submodels are shown as three parallel models in the Forrester sense 
(g = glucose submodel, c = glucagon sub-model, and other levels belonging to the 
insulin submodel: s, r, 1, p, and i). 

The model is semi-phenomenological since many of the important mechanisms 
are incorporated, but it is intended to be tailored to a particular patient. As a result, the 
model is parameterized so that it can be scaled around the "normal" operating condi- 
tions of the patient. This is achieved through the clever use of the hyperbolic tangent 
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Figure 12.2: Model of the glucose-insulin regulation system based on three major sub- 
systems: INSULIN, GLUCOSE, and GLUCAGON. For clarity, lines from parameters to rates 
have been omitted, and other parameters are subsumed in auxiliary functions (Fi ) .  See Ta- 
ble 12.1 for variable definitions. 

function (tanh in Fig. 12.3), which has a domain of *co and range *I. In many of its 
applications in this model, the domain of the function is the basal (baseline) plasma 
concentrations of the state variables (e.g., glucose). The range of the function is the 
rate of production of one of the state variables (e.g., liver glucose production rate). 
Empirical and theoretical constants scale the maximum of tanh to appropriate biolog- 
ical values. In addition to being an asymptotic function, tanh is symmetric about the 
x = 0 line. In the glucose model, this fact is used so that a negative departure from 
normal substance levels produces a negative response. Also, by subtracting the func- 
tion from 1.0 (i.e., 1 - tanh), we can describe a monotonically decreasing function that 
corresponds to a negative feedback relation between the dependent and independent 
variable. 

Figure 12.3: The hyperbolic tangent function (tanh) used in the glucose model. 
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Table 12.1: Variables used in the glucose-insulin model. Functional relationships are 
diagrammed in 12.2. U = international units. 

STATE VARIABLES 
c glucagon in plasma and interstitial fluids (nu) 
g glucose in plasma and extracellular fluid (mg) 
i interstitial fluid insulin @U) 
1 liver insulin @U) 
P plasma insulin (pU) 
r releasable pancreatic insulin (pU) 
s stored pancreatic insulin @U) 

AUXILIARY VARIABLES 
NHGB Net Hepatic (liver) Glucose Balance (Fl - F2) 
F I  Liver glucose production rate 
F2 Liver glucose uptake rate 
F3 Renal (kidney) glucose excretion rate 
F4 Peripheral system (muscles) glucose use rate 
FS Non-peripheral system (central nervous system and red blood 

cells) glucose uptake rate 
F6 Insulin secretion rate 
F7 Glucagon secretion rate 
I g ,  lp Glucose, insulin ingestion rate 
W Insulin synthesis rate 

12.3.1 Basic Equations 

The state variables and important auxiliary variables are defined in Table 12.1. They 
are related by the following differential equations: 

dg - = NHGB - F3 - F4 - F5 + Ig(t) 
dt 

Many of the physiological processes depend on the concentrations of the primary 
variables in the model. As a consequence, the following concentrations are defined 
based on the absolute quantities of the state variables and the volumes of tissues in 
which they are confined. Associated with each state variable, we define: g = g/Vb, 
p = p/Vp, i= l/Vl, 7 = i/Vi, E = c/Vb, where Vb is the volume of blood and extracellu- 
lar or interstitial fluids (0.2 of body weight divided by blood density), V,, is the volume 
of plasma (0.045 of body weight divided by plasma density), Vl is the volume of liver 
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(0.03 of body weight divided by liver density), and Vi is the volume of interstitial fluid 
(0.10 of body weight divided by interstitial fluid density). Each of these concentra- 
tions will be standardized by subtracting a patient's basal (or normal) concentration 
of the substance from the dynamic concentration. For example, the standardized glu- 
cose concentration is Ag = g - gbasal; the standardized concentrations of the other 
substances are defined similarly. Also in the following, doubly or triply subscripted 
letters are constants. The notation for parameters is taken from Cobelli et al. (1982). 
The details of the model for each subsystem follow. 

12.3.2 Glucose Subsystem 

The glucose subsystem is described by Eq. 12.1. Glucose in the plasma and extra- 
cellular fluid is produced by the liver and the stomach. Net glucose production by 
the liver is NHGB (net hepatic glucose balance) and is the difference between liver 
glucose production and uptake. Glucose production rate (F1) is limited by three fac- 
tors: the standardized concentrations of glucose, liver insulin, and plasma glucagon. 
Glucagon stimulates the formation of glucose from glycogen (GI); both liver insulin 
(HI) and plasma glucose (MI) reduce glucose levels. These effects are combined mul- 
tiplicatively (see Section 4.3.6 on multiple limiting factors). Similarly, liver glucose 
uptake rate (F2) is a multiplicative combination of the negative effects of liver insulin 
(Hz) and the positive effects of glucose concentrations (M2). These hypotheses are 
combined as 

NHGB = F1 - F2 

FI = ~ I I G I H ~ M I  
G1 = 0.5[1 + tanh(bll(AZ. + ell))] 

H1 = 0.5[1 - tanh(b12(~i+ clz))] 

M1 = 0.5[1 - tanh(b13(Ag + c13))] 

F2 = H2M2 

Hz = 0.5[1 - tanh(bzl(bi+ czl))] 

M2 = a221 + a2220.5[1 + tanh(b22(Ag + cz2))]. 

GI is the positive effect of standardized glucagon concentration on glucose production, 
HI is the negative effect of liver insulin, and MI is the negative effect of glucose. H2 
is the negative effect of liver insulin on glucose uptake and M2 is the positive effect of 
glucose on glucose uptake. 

There are three other major losses of plasma glucose: kidney excretion, uptake by 
fatty tissue and muscles, and uptake by the blood cells and nerves. F3 is the renal 
(kidney) excretion rate of glucose: 
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where M31 is the negative feedback effect of deviations of glucose from the basal 
value, and M32 is the linear flow rate from the plasma glucose compartment to urine 
and eventual excretion. 

Glucose is removed from blood plasma by being used in adipose and muscular 
tissue (F4) and in the central nervous system and red blood cells (F5): 

where H4 and M4 are positive effects of interstitial insulin and glucose, respectively, 
on adipose and muscle use, and M51 and M52 are the effects of positive effects of 
glucose on central nervous system use. 

Finally, glucose and insulin are added to the plasma by means of ingestion, either 
intravenously or orally. Z,(t) is glucose ingestion, and I,(t) is insulin ingestion. These 
functions of time are used for diagnostic tests. Here we will focus on IVGTT, the 
intravenous glucose tolerance test, which is a standard medical diagnostic test. 

12.3.3 Glucagon Subsystem 

In the glucagon submodel (Eq. 12.2), control of glucagon production (F7) depends 
on plasma glucose and insulin concentrations. Large values of either of these two 
quantities result in lowered amounts of glucagon production: 

where H7 is the negative effect of interstitial insulin on glucagon production and M7 
is the negative effect of glucose. 

12.3.4 Insulin Subsystem 

Finally, the insulin submodel is the most complex, having five compartments described 
in Eqs. 12.3-12.7. Most of the rate dynamics, however, are linear, donor-controlled 
relationships. Parameters of these relationships (e.g., mij, kij, and aij) are not verbally 
defined, but have values shown in Table 12.2. The only exceptions are the rates of 
insulin production and secretion in the pancreas. As Fig. 12.1 indicates, insulin is 
formed in the pancreas and is transported to the liver, where it stimulates the conver- 
sion of glucose to glycogen. Pancreatic insulin is assumed to occur in two forms: a 
nonlabile, stored form produced by the pancreas at rate W: 
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Table 12.2: Nominal parameters for the glucose-insulin model. (From Cobelli et al. 1982). 
GLUCOSE 

all = 1.51 a221 = 1.95 x a321 = 1.43 x lo4 
bl l  = 2.14 a222 = 5.21 x a322 = -1.31 x 
b 1 2 = 7 . 8 4 ~ 1 0 - ~  b21=1.11~10-2  b31=20 
b13 = 2.75 X b22 = 1.45 x c31 = -180 
ell = -0.85 cl2 = 7 c21 = 51.3 
c22 = -108.5 c13 = 20 a41 = 2.87 x 
as1 = 1.01 x a52 = 4.6 x b41 = 3.1 x 
b42 = 1.44 x bS1 = 2.78 x bS2 = 4.13 x 10-4 

q l  = -50.9 c42 = -20.2 C S L  = 1.002~ 

INSULIN 
[ k12 = 0.01 k ~ l  = 4.34 x ~ O I  = 0.125 .- -. - - 

m02 = 0.185 ml2 = 0.209 ml3 = 0.02 
m2l = 0.268 m3l = 0.042 a, = 0.287 
a6 = 1.3 b, = 1.51 x bs = 9.23 x 
C, = -92.3 cg = -19.68 

GLUCAGON 

t~stimated. Value missing from Cobelli et al. (1982) 

and a form that Cobelli et al. (1982) called a "promptly releasable" form which is 
secreted from the pancreas at rate F6, 

12.3.5 Normal Simulations 

Table 12.2 lists the nominal parameters for a normal patient. The time courses for glu- 
cose and insulin, following the diagnostic glucose tolerance test (IVGTT), are shown 
in Fig. 12.4. Note that both plasma glucose and plasma insulin (solid lines) return to 
normal levels in about 90 minutes following the pulse of glucose. In Fig. 12.4b, note 
that liver and plasma insulin increase almost immediately with the glucose pulse. 

A second kind of test applies repeated pulses of glucose at intervals less than that 
needed to clear the previous pulse from the system. Think of this as a way of simu- 
lating glucose injection during TV commercials. If repeated and increasing pulses are 
administered, glucose levels do not simply decay exponentially as they did following a 
single IVGTT (Fig. 12.5). A "hump" following pulse 6 develops which greatly delays 
the recovery of the system. 

12.3.6 Diabetic Simulations 

Parameters for diabetic individuals are listed in Table 12.3; functions F2 and Hz are 
replaced with constants. The response of a diabetic to the IVGTT is shown in Fig. 12.6. 
The basal level of glucose concentration is much higher than in a normal individual, 
and insulin levels are much lower. Consequently, the recovery period is much longer 
than in a normal individual. The system requires almost twice as long to return to 
basal conditions. 
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Figure 12.4: Simulated and average observed glucose (a) and insulin (b) responses 
of a normal individual following an intravenous pulse of glucose (IVGTT). Error bars are 
rtl standard error, n = 5 patients. In (b), the solid line is plasma insulin ( p ) ,  the dashed 
line is liver insulin ( I ) ,  and the dotted line is interstitial insulin (i). Points are observations. 
(Reprinted by permission of the publisher from Cobelli et al. 1982, Figs. 6 and 7. @ 1982 
by Elsevier Science, Inc.) 

12.3.7 Obesity Simulations 

The parameters appropriate to an obese subject are given in Table 12.3. Insulin and 
glucose responses to the IVGTT are shown in Fig. 12.7. Note the nearly normal re- 
sponse of glucose but the abnormal hump in the insulin decay curve. 

12.4 Summary 

This model epitomizes a broad class of biomedical models that have quite good suc- 
cess. Part of this success is due to the fact that some (not all) model parameters are 
fitted to the patient being simulated. But part of the success is that we have a good un- 
derstanding of these systems. This may be one class of biological models that can and 
have been used for diagnosis and prescription (i.e., product design). Other mammalian 
regulatory subsystems (e.g., cardiovascular) have been similarly studied. 

MBS-CD contains simulation code for the glucose model. On the CD, 
see the directory . . ./@Glucose. 

Exercises 

Code the Cobelli model of glucose regulation and attempt to reproduce Figs. 
12.4a and b. Also plot glucagon concentrations and rates of liver uptake of 
glucose. Discuss the results in light of the Forrester diagram. Where does the 
majority of glucose go? 
Why does the "hump" in insulin concentration develop in Fig. 12.5? Why is 
there a similar hump for obese persons in Fig. 12.7? 
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Time (min) 

Figure 12.5: Simulated response of glucose (above) and insulin (below) from a subject 
given increasingly larger doses of intravenous glucose. At intervals of 0, 30, 70, 110, 180, 
270, and 400 minutes, a 70-kg subject was administered 0.5, 1 .O, 2.5, 5, 10, 20, and 40 
grams of glucose. (Reprinted by permission of the publisher from Cobelli et a!. 1982, Fig. 
15. @ I982 by Elsevier Science, Inc.) 

Table 12.3: Parameters for diabetic and obese subjects. All other parameters as  in Table 
12.2. (After Cobelli et al. 1982). 

Diabetes Obesity 
Fz = 0.037 

3. Using the parameters for the diabetic subject, administer the sequence of glu- 
cose pulses described in Fig. 12.5. Compare to a normal subject. 

4. Simulate the glucose infusion diagnostic test by adding glucose not as a pulse 
(as in the IVGTT), but as constant input spread out over 60 minutes, to simulate 
a meal. In your model, administer 25 g to a 70-kg subject over a 60-minute 
period. Plot plasma glucose and insulin. How do these dynamics compare to the 
IVGTT? Explain the dynamics in terms of mechanisms included in the model. 

5. Another disease of glucose regulation is hyperinsulinism (Guyton 1986). This is 
the opposite of diabetes mellitus in that overproduction of insulin drives down 
the plasma glucose concentrations (hypoglycemia). Since the central nervous 
depends almost exclusively on plasma glucose for energy, low concentrations 
of glucose (about 70 mg/100 ml) will begin to produce erratic behavior and 
loss of motor control. In severe cases of hypoglycemia, when plasma glucose 
falls below 20 - 50 mg/100 ml, the patient becomes convulsive and eventually 
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Time (min) Time (min) 

Figure 12.6: The response of a diabetic subject to the IVGTT test. Points are a single 
patient; the line is model predictions. Parameters as in Table 12.3. Note the slow recovery 
period. (Reprinted by permission of the publisher from Cobelli et at. 1982, Fig. 21. @ 1982 
by Elsevier Science, Inc.) 
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Figure 12.7: Average response of four obese subjects (points) to the IVGTT test. Param- 
eters as in Table 12.3. Error bars are *I standard error, n = 4. The solid line is the model 
prediction. (Reprinted by permission of the publisher from Cobelli et al. 1982, Fig. 23. @ 
1982 by Elsevier Science, Inc.) 

falls into a coma. This suite of symptoms is called "insulin shock." A short- 
term treatment is to supply the patient with large concentrations of intravenous 
glucose. 

a) Simulate hyperinsulinism by adjusting the appropriate parameters in Table 
12.2. As a first guess, try increasing a6 in F6, but other adjustments may 
be necessary. Your new model should terminate the patient when plasma 
glucose falls below 20 mg/100 ml. 

b) Attempt to resuscitate your dying patient by administering glucose intra- 
venously. How much do you have to add in order to prevent death? 

6. A normal patient should be able to recover from insulin shock. Simulate rapid 
ingestion of insulin administered as 0.10 U/kg body weight over 2 minutes. Ob- 
serve the momentary hypoglycemia that resulted. Did your subject die? Repeat 
with an obese subject. 

7. Simulate the glucose, insulin, and glucagon dynamics resulting from a normal, 
diabetic, and obese subject consuming an average bowl of vanilla ice cream. 

8. Review Chapter 2 and write an objective statement for the glucose model. 
9. Design a validation study using profile analysis of the glucose model applied to 

obese patients. Since we do not have the values for the individual patients, we 
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can not use Fig. 12.7 directly. As an exercise, simulate the patient's values by 
estimating the variance of patient response at each time as graphically portrayed 
in Fig. 12.7. Knowing this, draw random values from a normal distribution 
for each time value with a mean as indicated in the figure. You will need to 
determine from the requirements of profile analysis the number of "patients" to 
use in your simulated study. 

10. How much total insulin is produced by all of the viewers of a typical Super 
Bowl game? Assume there are 50 million viewers worldwide, and each viewer 
consumes 0.25 bags of chips ("crisps," if you're from the UK) during each com- 
mercial and after each touchdown scored by either team. Using your favorite 
brand of chip, calculate the glucose content, assuming that 100% of the carbo- 
hydrates are in the form of glucose. How much more insulin would there be if 
the viewers also ate guacamole and sour cream dip and a six-pack of beer? 
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Populations and Individuals 

13.1 Populations 

A POPULATION IS a set of organisms of the same species living in a particular place 
and time. This simple definition begs the question of how to define "species," 

since the traditional criterion that it be composed of "interbreeding" organisms is diffi- 
cult or impossible to apply in many cases. Nevertheless, the definition works for most 
purposes. The key idea, to which we will return below, is that populations are com- 
posed of interacting individuals. An operational definition of the concept of ecological 
community is more elusive, however. One anonymous, but cynical, wag defined it as a 
set of populations about which it is interesting to speak. There is a frighteningly impor- 
tant element of truth in this definition. And we could accept it, provided community 
ecologists were never boring. This not always being the case, we content ourselves 
with the more typical definition: the set of co-occurring and interacting populations in 
a place. In practice, the set of populations and relations studied is often confined to 
specific taxa and ecological processes. 

In this chapter, we describe some of the elementary models of populations and 
communities. In so doing, we will again return to the principles developed in Part I. 
In particular, we examine more complex nullcline analysis using mechanistic models 
of competing species. We introduce the concept of individual-based models and re- 
visit stochastic models in the form of demographic stochasticity and time to extinction. 
Finally, we encounter again the problem of model validation in testing simple, alterna- 
tive predator-prey models with laboratory experiments; we will also use bioenergetic 
models to predict and test size distributions of fish in lakes. 

The central questions that these models address include: (1) Can population dy- 
namics be predicted from the bioenergetics of individuals? (2) What is the simplest 
model needed to describe accurately predator-prey dynamics in simple aquatic micro- 
cosms? (3) How does predator learning affect predator-prey cycles? (4) Can pesticides 
effectively control insect pest outbreaks? 
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13.1.1 Populations Without Age Structure 

We have already introduced, through examples in Part I, density-independent and 
density-dependent population growth. We will not repeat that now, but rather will 
give a simple, phenomenological generalization of the models. We wish to formu- 
late an hypothesis of population growth based on the effects that the entire population 
has on the reproduction of an average individual. (By average, we mean average in 
all respects: sex, weight, age, and so on.) In density-independent models, the rela- 
tion is a straight line with zero slope; in the density-dependent logistic model, it is a 
straight line with negative slope (Sec. 2.3). To generalize the biological hypothesis 
that increased population size always decreases per capita birth rate, we could use a 
nonlinear relation such as Richard's equation as illustrated in Chapter 5. 

A more dramatic departure is a phenomenon called the Allee effect in which two 
processes are operating: decreases in per capita birth rate due to competition, and 
increases in per capita birth rate with increases in population numbers due to increased 
chances of encountering mates at low population density. If our aim is simply to 
describe this relation, we can use any functional form that possesses a maximum and 
that can be scaled to biologically realistic numbers. Two candidates from Chapter 4 
are the maximum function and the Blumberg function. The former, being a product of 
two separate subfunctions, has the advantage that each subfunction and its parameters 
can be associated with the two biological processes (mate location and competition). 

Here is one possible phenomenological model of population growth using the 
Allee effect (Wilson and Bossert 1971): 

dN K - N  N - M  - = r~ (+, 
dt 

where M is a lower threshold below which the per capita rate is negative. Above the 
threshold the per capita rate increases to a maximum then decreases to 0 at N = K. 
The importance of the Allee effect will become apparent in Section 17.8.6, where we 
discuss chaos. 

13.1.2 Populations with Discrete Age Structure 

These models, because of their nonlinear structure, can fit many data sets (Berryman 
1991), but being general, they do not satisfy our desire for more mechanistic expla- 
nations. One point in which they fail to capture basic biological mechanisms is their 
assumption that all individuals are equal. All individuals, of course, are not equal 
and everyone eventually grows old and dies. Individuals differ because of their age 
and other physiological and ecological variables often correlated with age (e.g., the 
effect of age or size on energy demands, foraging efficiency, running speed, etc.). 
The simplest model of an age structured population is one analogous to the density- 
independent finite difference model. As a simple example, assume the population has 
four age classes, only the oldest reproduces, and at each time step the fate of an indi- 
vidual is either to die or to live and become one time step older (i.e., advance to the 
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next age class). So, the fate of age class i is 

where d is the fraction dying, and s is the fraction surviving and aging 1 time interval 
(so that d = 1 - s). In addition to survival, the youngest age class increases by the 
addition of individuals through reproduction. This is modeled as h, the average birth 
rate per female of age i. Since all individuals within an age class are considered 
equivalent, the net number of newborn individuals from females of age i is h N i .  The 
total number of newborn individuals is the sum of the contributions of all reproductive 
age classes. With this, the complete set of equations for all age classes is 

assuming only age class 3 reproduces. 
We can extend this idea to distinguish between sexes as well. In that case, we use 

separate equations for males and females, but must handle male and female reproduc- 
tion differently since the numbers of male and female babies are not independent of 
the numbers of adult females and males. One possibility is to assume that reproduc- 
tion is limited by females (i.e., there is always an overabundance of interested males) 
and that the sex ratio ( r )  of babies is constant (e.g., 1:l in many populations, r = 0.5). 
This leads to 

No.f,r+l = rf3N3,f.t 

No,m,t+l = (1 - r)f3N,f,t 
Nl,f,t+l = soNo.f,t 

Nl,m,t+l = soNo,m,t 

N2,f,t+l = slN1,f.t 

N2,m,t+l = slNl,m,t 

N3,f,t+l = ~2Nl . f . t  

N3,m,t+l = ~2Nl,m,tl 

where r is the fraction of females in the population. In this simple model, we assume 
that the survival rates are the same for males and females. 

& [MBS-CD contains SimAgeStructure with a template for these models. 1 
13.1.3 Matrix Approach 

Equations 13.2 are a system of linear equations. As we have seen in earlier chapters, 
such a system can be written in matrix notation (Leslie 1945): 



where fi are the net fecundities of older age classes and si are survivorships. The 
matrix L is known as the Leslie matrix. 

This matrix model is a multidimensional version of density-independent popula- 
tion growth, where each age class becomes an axis of the state space. It has its special 
form with zeros in most positions of the matrix L because aging is a unidirectional 
process. However, a set of FDE equations analogous to Eq. 13.2 and matrix equations 
analogous to Eq. 13.3 can be constructed using size classes as the property defining 
the axes of state space. In this case, since it is possible to lose body mass or to make 
large weight gains, there may be nonzero values in those positions that were zero in 
the age class model. For example, a nonzero fraction of the individuals in each size 
class can lose weight and become an input to smaller size classes. (See the exercises 
for an example that uses real data for a stage structured plant population model.) This 
cannot occur in age structured models, providing that dormant ages are not modeled 
(see Werner and Caswell 1977). 

Since the Leslie matrix describes a set of simultaneous linear equations, the math- 
ematical properties of the Jacobian matrix used in linear stability analysis (Section 
9.3) also apply here. In particular, there is an eigenvalue (A) such that 
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'No\ If0 f i  f i . . fm\ (No' 

This states that the numbers of individuals in each age class at t + 1 are a simple 
proportion, A, of the numbers at t, because LNt = Nt+l .  The proportion is the finite 
rate of increase of the population, and R = er, where r is the instantaneous rate of 
increase of the population. When Eq. 13.5 is true, the proportions of individuals in 
each age class are constant and the vector of proportions of each age class is called 
the stable age distribution. We solve for R using the same techniques employed when 
determining stability of a set of linear differential equations: solve the characteristic 
equation that results from evaluating the following determinant: 

N1 
N2 

Although this is a linear model, it has more than one state variable, and therefore 
exhibits more complicated behavior than the age independent, density-independent 

+ (0  0 0 0 / \Nm/, 

Nt+1 = LNt (13.4) 

= 
so 0 0 ... 0 
O S ~  O . . .  0 

... 0 

N1 
Nz 

: 
(13.3) 
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time time 

Figure 13.1 : Dynamics of an age structured population model. (a) Values for age classes, 
(b) dynamics of the proportion of age class 3 to the total population. 

model. In particular, the age dependent model can show transient or sustained oscil- 
lations. To illustrate the former behavior, we simulate a population with the following 
L matrix (Eq. 13.7): 

Figure 13. l a  shows the time evolution of ages 0-3. Note the distribution of individuals 
over the age classes: younger ages are more abundant than older ages. Figure 13.lb 
demonstrates the development of the stable age distribution. The ratio of numbers in 
age 3 relative to the total numbers in the population is initially variable, but rapidly 
approaches a constant. The other age classes behave similarly. Caswell (1989) gives 
a more complete and rigorous treatment of this class of population model. 

13.1.4 Individual-Based Population Models 

While the age or stage specific models illustrated above are an improvement in realism 
for populations, we can make the models even more realistic by modeling individual 
organisms explicitly. We introduced these models in Chapter 3 in the context of par- 
ticle models. The terminology for this class of models is still unsettled; they are 
variously called individual-based or individual-oriented models (Metz and de Roos 
1992). Here, we will refer to them as individual-based models (IBMs) and keep the 
name age specific or stage specific for models that lump individuals into discrete ages 
or size categories. 

Individual-based population models in one form or another have existed for some 
time. At their core is the stochastic birth-death process which ultimately is based on 
random walks or Markov chains using probability theory developed in the 19th century 
(Ludwig 1974). Prior to computer simulation, the major mathematical results were 
limited to rather special biological cases. With the advent of computer simulation, 
however, these models produced results for more interesting biological systems. In 
the early computer era, Gatewood (197 1) was a pioneer using individual-based models 
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Figure 13.2: An individual's spatial location can dramatically affect the ultimate plant 
population size distribution. Concentric circles represent a series of growth events of four 
plants whose sizes are represented by the circle areas. (a) Plants are uniformly distributed, 
all grow at the same rate, and all achieve the same size before growth stops. (b) Plants 
are randomly placed; those far from others (plant 4) achieve large sizes; those with close 
neighbors (2 and 3) are stunted; the population size distribution is uneven. 

of human demography and epidemiology. The National Micropopulation Simulation 
Resource at the University of Minnesota continues to develop models and simula- 
tion environments for IBMs (e.g., Ackerman et al. 1993). Many theoretical ecologists 
have also adopted this approach based on the early applications of D. DeAngelis, H. 
Shugart, and M. Huston at the Oak Ridge National Laboratory (Huston et al. 1988). 
This is now an exciting field with applications to both theoretical and applied prob- 
lems in population and community ecology of plants and animals (e.g., DeAngelis and 
Gross 1992b; Judson 1994; Grimm 1999; Grimm and Railsback 2005). 

The essence of this method is to follow the fates of all the individuals in the pop- 
ulation as they proceed through their lives, however small and insignificant they may 
be. A population is composed of all these little events, and if the condition and state 
of each individual is known, then the state of the population can be generated simply 
by summing the set of individuals with similar states (e.g., all those alive, or of simi- 
lar size, or of the same sex, etc.) The motivation for this is the hypothesis that small 
variations among individuals can have dramatic effects on the ultimate state of the 
population. To simply illustrate the impact that individual properties can have on pop- 
ulation structure consider the case of plants growing and occupying the soil surface. 
The individual property of interest is distance to the nearest neighbor (Huston et al. 
1988). Assume that growth rate is inversely proportional to the proximity of neighbors 
and that growth stops when two individuals touch. Figure 13.2 shows two scenarios 
of initial plant spatial location: uniform and random. A random dispersion results in 
an unequal final size distribution of individuals because isolated individuals have little 
competition and become large. A uniform initial dispersion produces uniform final 
sizes. 

In animal populations, the events that determine an individual's fate are essentially 
those also faced by humans as they daily live out their lives. As with humans, animals 
in individual-based models are born, seek food usually in the form of individual parti- 
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cles, avoid predators and other forms of death, find mates, have babies, and ultimately 
succumb to old age or a violent end. Again like humans, what happens on a day to 
day basis to an individual animal is largely a stochastic process. Perhaps we failed to 
find a mate today, but tomorrow is always another day, and hope springs eternal in the 
hearts of those whose fate is in the hands of a random number generator. 

Although this picture brings forth a rather grim picture of an individual's fate, its 
connection with our own observations of human lives is part of the appeal. Model 
structure and parameters are based on observations of individuals, and the natural 
variation among individuals and the stochastic nature of their fates can be incorpo- 
rated directly and easily using this modeling approach. But there is a downside as 
well. In most applications, the equations of the processes are too complex for analyti- 
cal solution, and computer simulation is necessary. This is nothing new for this book, 
but in IBMs this can mean following the fates of hundreds or thousands of individuals, 
each capable of being in many different states. Further, when IBMs are applied to 
questions in population ecology, the models describe birth and death processes. As a 
result, the numbers of individuals that must be simulated increase over time, possibly 
exponentially. This can create a huge computational burden, but Rose et al. (1993) 
have developed an algorithm using a fixed number of individuals that closely approx- 
imates a model that allows the numbers tracked to increase. Moreover, because IBMs 
are stochastic, we must simulate the system many times to determine the expected out- 
come. Consequently, the use of IBMs involves a trade off between analytic tractability 
and realism. 

The main utility of IBMs is that they do not use population averages of parameters 
to generate population dynamics. IBMs will, therefore, be especially useful in systems 
in which individuals interact and behave so that a simple average does not represent 
the overall behavior of the population. There are three classes of circumstances in 
which this can occur (DeAngelis and Rose 1992). (1) When populations are small, 
such as founder populations on islands, there is a good chance that random sampling 
will select a nonrepresentative sample from the larger population. This will affect 
population dynamics by biasing parameters of growth, predator avoidance, and so on. 
It also exacerbates demographic stochasticity and increases extinction probability. (2) 
When populations exist in temporally variable environments, the fates of individuals 
will be altered by random events that may dominate the behavior of the population. (3) 
When individuals are not randomly mixed within the population, chance encounters 
(e.g., mating) can alter population dynamics. Populations will not be randomly mixed 
if there is spatial heterogeneity that affects movement or if social structure (e.g., social 
hierarchies) prevents some individuals from freely mating with others. 

One system where IBMs have been especially useful is the simulation of the size 
distributions of fish populations. IBMs are useful here because fish consumption of 
prey and avoidance of predation are very sensitive to the size of the individual, and 
random encounters of fish with their prey dominate daily rates of food intake. The ba- 
sic computational flow of one fish population IBM (Madenjian and Carpenter 1991b) 
is shown in Fig. 13.3. Many other population IBMs are similar, but details of move- 
ment or the effects of predation on the target population will change with the system 
studied (e.g., Folse et al. 1989; Hyman et al. 1991). The target fish population in 
this example is young-of-the-year (YOY) walleye (Stizostedion vitreum virtreum) in 
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Figure 13.3: Flow chart of a fish population IBM. (From Madenjian and Carpenter 1991 b, 
Fig. 1. O 1991 Ecological Society of America. Reprinted with permission of the publisher.) 

Wisconsin lakes. Population characteristics are generated by the sizes of individuals 
(bottom of Fig. 13.3) which are determined by individual daily growth rates. 

Growth rates of individual walleye are computed by the number and sizes of prey 
consumed each day. The time scale of this model is one season, so reproduction is 
ignored. Walleye death occurs when energetic intake is so low that starvation occurs. 
The daily number of prey (e.g., bluegill or perch) encountered by an individual fish 
is a random deviate from a Poisson distribution. Each prey fish encountered is given 
a size from a normal distribution. If the ratio of prey length to walleye length is less 
than a threshold (y), the prey is consumed, otherwise the prey item escapes. In this 
way, a fraction of the prey's energetic content based on walleye energetic conversion 
efficiency is added to the walleye biomass. New walleye size is calculated after all 
prey are consumed and is a power function of the walleye length. So, based on the 
above, the finite difference equation for the biomass of walleye individual i is 

where Wi, is the current weight of individual i, g is the efficiency of converting prey 
biomass into walleye biomass, and Mi, is the number of fish prey encountered on 
day t and is drawn from a Poisson distribution (P) with mean A. Lk is the length 
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Table 13.1 : Parameter values for the Walleye fish growth model. 

0.54 
0.30 
-0.40 
6.14 x 
3.14 
1.751 x 
0.25 
0.46 
4.1 
var: 
var: 
3.321 

daily ration coefficient (unitless) 
proportion daily ration from other species (unitless) 
daily ration coefficient (unitless) 
yellow perch weight-length allometry coefficient (gm/mm) 
yellow perch weight allometry-length exponent (unitless) 
walleye weight-length allometry coefficient (grnJmm) 
growth efficiency (unitless) 
prey length escape threshold (unitless) 
Poisson mean prey encounter rate (num preyld) 
yellow perch daily size mean (mrn) 
yellow perch daily size std. deviation (mm) 
walleve weight-length allometrv exvonent (unitless) 

of the kth prey and is drawn from a normal distribution [N@,IT)~] with mean and 
standard deviation determined from lake samples on or near simulation time t. and 
6 are constants that convert prey length to prey biomass. Li is the length of predator 
individual i. Ci,,,, is the maximum specific consumption rate for individual i and is 
computed as 

ci,max = ~ w ~ ~ F ( T ) ,  

where a and b are empirical constants and F(T) is a temperature (T) response function. 
Walleye cannot consume more than Ci,,,,, even if Mit were so large as to permit 
greater consumption. If Mi, is by chance zero, then it is assumed that walleye can 
obtain a small fraction (a) of their maximum consumption rate from alternative prey 
species. Since walleye length plays an important role in determining the threshold 
size at which large prey escape predation, walleye biomass is converted to length by 
inverting the empirical relation 

See Table 13.1 for parameter definitions and values. 
It should be apparent that this model is essentially a single equation, (albeit one 

only a programmer could love) which is based on a few simple facts of walleye behav- 
ior and energetics. The model fits empirical size distributions quite well (Fig. 13.4). 
The accuracy of the fit to the 1975 data (Fig. 13.4a) was obtained by fitting a parameter 
to these data. Encounter rate (A, the mean of the Poisson distribution) was adjusted un- 
til the predicted walleye size distribution fit the data in 1975. The model run for 1977 
was not, however, adjusted in this way, but was corrected only for differences in mean 
prey availability between the two years. This is legitimate since the prey populations 
were not explicitly modeled. Notice also that this validation effort did not attempt to 
compare two time series, as is common. Instead, validation was based on a derived 
measure (Chapter 8): the frequency distribution of the states (i.e., sizes) of individuals 
at a point in time. 

This model is an example of a particularly simple IBM that, nevertheless, performs 
quite well. A slightly modified version was used for management purposes to predict 
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Length (cm) Length (cm) 

Figure 13.4: Comparison of an IBM model and observations of a YOY walleye population 
in Lake Oneida, Wisconsin in 1975 and 1977. Bars indicate predicted and observed fish 
numbers in discrete length categories. (From Madenjian and Carpenter 1991b, Fig. 2. @ 
1991 Ecological Society of America. Reprinted with permission of the publisher.) 

body loads of PCBs (polychlorinated biphenyls) in Lake Trout (Madenjian et al. 1993). 
Other fish IBM models (e.g., Adams and DeAngelis 1987; DeAngelis et al. 1991) have 
used more complex behavioral and physiological bases to determine the sizes of prey 
encountered. These models are based on fish size, reactive distances of individual fish 
to prey of a given size, distance, and turbidity conditions. The theoretical implications 
for population dynamics of these models have also been investigated. In one example, 
Adams and DeAngelis (1987) found that in an IBM of bass feeding on shad, if both 
spawned at their normal times, over the season bass consumed 19% of the shad. If, 
however, bass were delayed for some reason, they consumed only 6% of the shad. 
The reason for this is due to the fact that the delay permitted shad to grow relative to 
bass and escape predation by exceeding the size threshold for successful bass attack 
(Fig. 13.3). We would expect, based on this significant reduction in shad mortality, 
strong natural selection for shad to emerge early and grow quickly. This has perhaps 
occurred to some extent, but because of the natural limitations to this process by the 
timing of winter thaws, shad are not able to push emergence very far back into early 
spring. Nevertheless, the IBM with its basis in individual variation gives us another 
approach to investigate evolutionary questions. Among others, Johnson (1994) and 
Toquenaga et al. (1994, see Chap. 20) have done interesting work in this area. 

In summary, IBMs, as with all the modeling approaches described in this book, are 
not a panacea to apply without thoughtful consideration. Their analytical intractability 
can sometimes prevent our seeing the broad patterns of population dynamics because 
of the complex details of the fluctuations of individuals. Nevertheless, if the system 
has small numbers, is temporally stochastic, or is nonuniformly mixed, then IBMs are 
another tool for our toolbox. 

13.2 lnteractions in Simple Communities 

13.2.1 Mechanistic Models of Competition 

In previous chapters, we have seen several applications of the simple two-species com- 
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Table 13.2: Parameters for Schoener's mechanistic competition model. 

ci 

I E ~  

10i 

Ni 

R i  

P 
Y i j  

PE i  

Ci 

gii 

Density-independent maintenance and replacement cost of an individual 
of the ith species 
Rate of net energy input into the ith species of resources exclusive to that 
species 
Rate of net energy input into the system that is useable by both species in 
terms of energy to ith population 
Numbers of individuals of species i 
Efficiency to convert 1 unit of energy consumed by species i into new 
individuals of species i 
Ability of species 2 to obtain energy relative to species 1 
Energetic cost to species i of interference interactions with species j, j = i 
is intraspecific interference costs and j f i is interspecific costs 

petition models. In particular, the simple equations based on the Lotka-Volterra mod- 
els are especially amenable to analysis and study (e.g., nullclines and neighborhood 
stability). The major problem with these equations is the absence of a mechanis- 
tic basis. They do not distinguish interference competition (i.e., one organism ac- 
tively inhibiting another organism from using a resource) from exploitative competi- 
tion (i.e., no active inhibition, but consumption of a single resource by two organisms). 
Schoener (1976) provided a better mechanistic basis for these two basic ecological 
interactions. Population growth of a species in the presence of a competitor is deter- 
mined by two components that correspond to the two types of competition. For two 
competing species, 

where the parameters are defined in Table 13.2. The right-hand side of each equation 
has two terms in square brackets. The first bracketed expression represents exploita- 
tive competition; the second represents interference competition. Both terms describe 
the amount of energy available to an individual for reproduction. Ri converts available 
energy to numbers of offspring per capita. Available energy after exploitative com- 
petition occurs is described by uniformly apportioning energy among all individuals 
weighted by their competitive ability. Individuals of the same species (i) have equal 
weight; individuals of the other species are weighted by j3. If j3 < 1, an individual of 
species 2 is not as efficient at harvesting resources as individuals of species 1. The 
effect of interference competition is to subtract the energetic costs of behavioral in- 
teraction (yij) and maintenance costs (Ci) from the energy input (IEi) per individual 
(Nil- 

Using the basic approach of nullcline analysis developed in Section 9.3.3, Schoener 
(1976) found the following nullclines for species 1 and 2, respectively: 
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stable equilibrium 

stable equilibrium 
dN.Jdt=O stable 

equilibrium 
dNl/dt=O 

Figure 13.5: Nullclines for energy-based two-species competition model for (a) g12 < p; 
g21 < l l p  and (b) g12 > p; g2, > 1/p. (From Schoener 1976, Figs. 5 and 6A. @ 1976 
Academic Press, Inc. Reprinted with permission of the publisher and author.) 

where the asterisks indicate equilibrium population values and the parameters are de- 
fined in Table 13.2. These equations are clearly nonlinear and more complex than the 
nullclines developed for the Lotka-Volterra-Gause equations in Section 8.4.2. Nev- 
ertheless, they can be plotted in the phase space. Figure 13.5 shows the nullclines, 
the multiple equilibria, and their stability properties for two relations between cost of 
interference (gij) and energy gained by interference w). Case (a) has a single stable 
equilibrium and corresponds with Case I11 of the Gause model (Section 9.3.3). Case 
(b) is analogous to Case IV, but the nonlinear nature of the nullclines permits addi- 
tional stable equilibria. Appropriate choices of other parameters (e.g., Ki) permit the 
Schoener model to produce other nullcline relationships analogous to Gause Cases I 
and 11. This example makes two main points: (1) the apparently simple idea to put 
competition on an energetic basis has resulted in nullclines that are algebraically com- 
plex; other energetic assumptions might have resulted in nullcline equations that could 
not be solved as these were; and (2) these more realistic mechanistic equations result 
in much more complex and interesting dynamics that we can now explore experimen- 
tally. 

13.2.2 Predation in Simple Communities 

One system where simple theory has been experimentally tested is predator-prey dy- 
namics. Here we develop some extensions to the classical theory and examine some 
tests. The classical Lotka-Volterra equations and their nullclines were presented in 
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long handling time 

Figure 13.6: (a) Nullclines for a predator-prey model with density dependence and Type I1 
functional response. The hump is created by intraspecific competition reducing prey growth 
rates at large prey numbers [point 2 in panel (a)]. At point (I), individual Type II predators 
with long handling times are more efficient at low prey numbers compared to predators with 
short handling times or Type I predators [panel (b)]. At both points 1 and 2, fewer predators 
are required to balance prey growth. 

Section 9.3.3. This model hypothesizes that predators are never satiated and that prey 
growth rate is density-independent. To relax these strong assumptions, we use a Type 
2 functional response analogous to the Michaelis-Menten relation for biochemical 
reactions and a linear density-dependent function: 

density-dependent 'Qpe 11 
growth predation 

predator death 
growth 

where a is the encounter rate, h is the handling time, TT is total time available for for- 
aging, c is a conversion factor between victims consumed and new predators created, 
and d is predator per capita death rate. 

The nullcline equations are left as an exercise, but depending on parameters they 
produce curves such as those in Fig. 13.6. The prey nullcline curve is "humped- 
shaped"; the predator nullcline is a vertical line. Besides the equilibria that occur 
when either V or P or both are zero, two interior equilibria are also shown in the 
figure. Equilibrium 1 is a locally unstable point, but globally stable to a limit cycle; 
equilibrium 2 is stable. 

It is important to understand the biological reasons for the shape of the prey null- 
cline. By definition, the prey nullcline is the set of points (V, P) such that the prey's 
absolute growth rate is zero. Based on Eq. 13.10, this rate is a combination of both 
Type I1 predation and intraspecific competition. Therefore, at a given V, the nullcline 
defines the number of P needed to keep V in equilibrium. In the absence of predation, 
the density-dependent function for victim growth is an inverted parabola and therefore 
has a maximum at intermediate V. As a result, if the nullcline is near the V axis, then 
the absolute growth rate of V is small and only a few P are needed to consume the 
added V. This situation occurs, for example, when V is near K, the carrying capacity. 
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As V increases from small V, the growth rate decreases due to intra-specific compe- 
tition, but individual predator foraging efficiency also decreases due to the predator's 
handling time (Fig. 13.6b); therefore, more predators are needed to balance victim 
growth. At intermediate to high V numbers, density-dependence limits victim growth 
and fewer predators are needed to balance a reduced victim growth. 

When more complex predator behavior is incorporated, more complex system dy- . 
namical behavior arises. A good example is the analysis of the plant-herbivore inter- 
action between spruce trees and the spruce budworm (Choristoneura fumiferana). The 
budworm is a major pest in the eastern North American forests. Since about 1750, the 
budworm has shown fairly regular episodic outbreaks about every 40 years. At their 
peak, budworm densities can be as high as 150 insects per m2 (Royama 1984). 

May (1977) provides a nice synthesis of work originally done by C.S. Holling, 
D.D. Jones, D. Ludwig, and others (Ludwig et al. 1978; Jones 1979). The key to the 
dynamics in their models is the fact that the predation rate of a single predator responds 
to prey density by a Type 3 functional response, which is sometimes indicative of a 
predator that has some form of learning (but see Taylor 1984). The shape of this 
relation is sigmoidal, so that at very low prey density, the predator consumes very few 
prey. The predator does not increase its consumption rate in proportion to increases in 
prey density until moderately high prey density is present. The biological mechanism 
might be that the predator is not efficient until it forms a speciJic search image, which 
does not occur until it has encountered sufficient numbers of prey. At very high prey 
density, the predator's predation rate is flat, and a further increase in prey density does 
not increase predation rate. 

The equations of this model are, following May (1977), 

where P is the number of predators attacking budworm larvae (assumed fixed), N is 
the number of spruce budworm, S is the amount of spruce leaf area available to at- 
tack. r is the maximum per capita rate of increase of budworm, and P is the rate at 
which budworm larvae encounter spruce leaves. K(S) is the budworm carrying ca- 
pacity and depends on amount of spruce biomass; it is assumed that K = KS, where 
K is the efficiency at which budworm convert spruce leaves into new budworm larvae. 
No(S) is a variable that defines the shape of the predator's (P) functional predation re- 
sponse to budworm density and is defined as the density at which the predator saturates 
May (1977). It is analogous to the half-saturation constant of the Michaelis-Menten 
relation. This shape variable is proportional to the amount of budworm resource avail- 
able: No = $, where q is the fraction of N that consumes S .  A plausible biological 
mechanism for this hypothesis is that spruce trees inhibit the predator's ability to find 
and attack budworm by allowing budworms to be more uniformly dispersed in space. 
Since budworms must live on trees, the budworm population will be more highly ag- 
gregated on individual trees when fewer trees are present than when trees are dense. 
For many predators, aggregation increases attack rates Taylor (1984). For the spruce 
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Figure 13.7: Graphical derivation of the spruce tree nullcline. (a) Density-dependent 
growth of spruce (parabola, positive growth on left vertical axis) plotted with budworm con- 
sumption (horizontal lines, negative growth on right vertical axis). Four levels of the bud- 
worm population are shown (arbitrary numerical scale). The intersection points are equi- 
libria. (b) The set of equilibria, plotted at their respective values of N and S,  result in a 
"hump-shaped" parabola in the phase space. Below the curve, S increases; above the 
curve, S decreases. 

leaf area (Eq. 13.13), p and Smax are the intrinsic rate of increase and carrying capac- 
ity, respectively. The amount of spruce leaves being consumed is proportional to the 
number of budworms (17). 

Solving for the nullclines explicitly is difficult in this case. Instead of doing this, 
we will use a graphical method. We begin with the easy case of S by referring to 
Fig. 13.7. Equation 13.13 has two components: a factor producing positive density- 
dependent growth and a factor describing population decrease (consumption by N). 
The net rate will be zero where these two terms are equal. To find these points, we 
plot the two functions together (Fig. 13.7a). Equilibria exist where population increase 
(parabola) equals population decrease (horizontal lines). Since consumption rate de- 
pends on the level of N, we plot several budworm population levels. It is assumed that 
the budworm population changes continuously, so that equilibria exist between the 
levels shown (e.g., between N2 and N3). The spruce nullcline is obtained by plotting 
the equilibria points in the N-S phase space (Fig. 13.7b). This is a parabola, since the 
consumption function intersects the growth function at two points. 

The budworm nullcline is obtained using the same method, but the equations are 
more complex, so we first describe how the components of the dynamics change with 
S.  Figure 13.8a shows the logistic growth rate at four levels of S that determine four 
different carrying capacities for N (Eq. 13.12, left component in parentheses). Figure 
13.8b depicts the predation rate on the budworm population as a function of spruce 
numbers. Note that the two processes (growth and predation) respond in opposite di- 
rections to increasing S.  When the two sets of curves are superimposed, the equilibria 
can be determined as a function of N and S. This is done for three levels of S in Fig. 
13.9a. These curves illustrate the effects of the nonlinearities and the fact that increas- 
ing S increases N growth but decreases predation on N. These properties cause the 
number of equilibria to change from one intersection at low S to three at intermediate 
levels, and back to one again at high S .  At two special values of S (not shown), there 
are just two intersection points. 

When both nullclines are superimposed (Fig. 13.10), the resulting dynamics can 
be a stable limit cycle, depending on parameters. The oscillations have large ampli- 
tude, and therefore the system alternates between budworm dormancy and epidemic 
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Figure 13.8: Graphical depiction of budworm growth rates as affected by spruce tree 
numbers. (a) Budworm density-dependent growth rate when carrying capacity is propor- 
tional to spruce tree numbers (Eq. 13.12). The arrow indicates increasing numbers of 
spruce trees. (b) Rate of budworm consumption by a predator population fixed at level 
P (Eq. 13.12), where the predator's functional response depends on spruce tree numbers 
(increasing in the direction of the arrow). Note the vertical scales of (a) and (b) are different. 

outbreaks. Other choices of parameters can show stable equilibria at high values of N. 
This graphical analysis of low dimensional mathematical models has the advantage 

that alternative parameters and functional forms can be applied without defining the 
specifics of a particular mathematical equation. Thus, we would expect the same 
qualitative results as long as the functional forms were roughly similar to those shown 
in Figs. 13.7 and 13.8. An example of this is the incorporation of additional budworm 
mortality due to applications of pesticides. As May (1977), Ludwig et al. (1978), and 
Yodzis (1989) argue, if such an additional source of density-independent mortality is 
added to the budworm equation, its S-shaped nullcline is "straightened out." This 
alters the dynamics from a limit cycle to a stable equilibrium. Consequently, this 
analysis suggests that while pesticides cannot eliminate budworms, they can remove 
the outbreaks and produce a system that always has budworms at moderately high 
levels. It is a social decision whether permanently moderate levels are better than 
short periods of devastatingly high levels. Of course, this is an extremely simple 
model of complex biology upon which to base such a system design decision. [See 
Royama (1984) for a dissenting view.] Nevertheless, this elegant example of model 
simplification and generalization has captured, in the form of stable limit cycles, one 
of the main qualitative dynamical features of episodic insect outbreaks. However, as 
we have argued in earlier chapters, alternative models must also be evaluated. 

13.2.3 Testing Predation Models 

We have advocated in Chapters 2 and 8 the comparison of alternative models as an 
important component of the validation process. A recent rigorous example of this is 
by Harrison (1995), who modeled the elegant laboratory experiments of Luckinbill 
(1973). Laboratory experiments in small, homogeneous containers are notorious for 
being unstable: either the predator is too efficient and drives the prey to extinction and 
then goes extinct itself, or the predator is not able to find sufficient prey to survive and 
the prey grows to its carrying capacity in the absence of the predator. In nature, there 
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Figure 13.9: Nullcline for budworms based on three spruce tree densities. (a) Growth and 
predation rates superimposed for three spruce levels. At low S, there is a single intersection 
at low N. At intermediate S, the two curves intersect at three levels of N. At large S, there is 
again a single intersection point. (b) The resultant N nullcline when a continuum of S levels 
are considered. The intersections in (a) become the points on the nullcline curve. To the 
left of the nullcline, N decreases; to the right, N increases. 

are several mechanisms by which this instability is circumvented but that are absent 
in the simple containers of laboratory experiments: the prey has a refuge in which the 
predator cannot forage, the predator numbers are limited by other predators, or subtle 
prey niche requirements exist that enhance or reduce prey growth. 

The conceptual framework of Luckinbill's experiments was to use the nullclines 
of simple predation models to predict the experimental conditions in which the prey 
and the predator could survive together for long periods. The nullclines are derived 
from Eqs. 13.10-13.11. 

Figure 13.1 1 illustrates how changes in the parameters of the equations affect the 
stability of the dynamics. Figure 13.1 la  is meant to represent parameters and null- 
clines for a typically unstable laboratory experiment. In Fig. 13.1 lb, the predator 
nullcline is shifted to the right, for example, by decreasing the searching rate. In Fig. 

Figure 13.10: Nullclines for the spruce-budworm model. (From May 1977, Fig. 7. 
Reprinted with permission from Nature, @ 1977 Macmillan Magazines Limited.) 
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Victim Victim Victim 

Figure 13.1 1: Nullclines that enhance stability in predator-prey models. (a) Simple 
predator-prey models predict instable dynamics if the predator nullcline intersects the prey 
nullcline to the left of its maximum. (b) The dynamics are stabilized if the predator is less 
efficient (e.g., decreased search rate) so the intersection is to the right of the peak. (c) The 
dynamics can also be stabilized if prey nullcline is moved relative to the predator's nullcline 
(e.g., decreased prey carrying capacity K). 

13.1 lc, the carrying capacity of the system for the prey is decreased while the preda- 
tor's parameters are unaffected. This stabilizes the system since it produces a reduced 
prey growth rate that is available to support predators. Consequently, the predators 
consume less, grow more slowly, and are relatively unimportant to prey dynamics 
compared to the intraspecific competition. This latter relation is also significant if 
looked at from the other side of the coin. If a system such as shown in Fig. 13.1 1c is at 
a stable equilibrium (small K), then increasing the carrying capacity, such as by adding 
nutrients, will destabilize the system. Since this may cause the prey to go extinct, it 
appears that adding nutrient, usually considered to be beneficial to the prey, will, in 
the long run, be bad for the prey. Rosenzweig (1971) first brought this possibility to 
our attention and called it the paradox of enrichment. 

Luckinbill attempted to exploit these nullcline relationships by experimentally ma- 
nipulating the foraging and growth parameters so as to shift the nullclines to the stable 
configuration. He used as prey the microorganism Paramecium aurelia and as preda- 
tor the voracious ciliate Didinium nasutum. The two species were grown together in 
6 ml of medium in which supplies of bacteria were introduced as food for f! aurelia. 
The medium was replenished approximately every 2 days so that in the absence of 
predators, I? aurelia grew as predicted by the logistic equation. In the setup just de- 
scribed, D. nasutum quickly consumed all of its prey and itself went extinct, usually 
within a matter of hours. 

To stabilize the system, Luckinbill attempted to manipulate the searching effi- 
ciency of D. nasutum by forcing it to swim more slowly. He cleverly accomplished this 
by adding water-soluble methyl cellulose to the medium which greatly increased the 
viscosity of water, but did not harm the organisms. Naturally, this slowed down both 
the predator and the victim, but in this case, it slowed down the predator more than the 
prey. This manipulation did increase the time to extinction, but was not sufficient to 
permit long term coexistence. This was a step in the right direction, but apparently the 
prey growth rates needed to be manipulated (Fig. 13.1 lc). To do this, he reduced the 
amount of bacteria in the medium. By itself, this also increased persistence time, but 
not indefinitely. It was only when he simultaneously slowed the predator foraging rate 
and slowed the prey's growth rate that he was able to achieve indefinite coexistence 
(Fig. 13.12). 

These experimental results qualitatively agree with the basic predictions of simple 
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Figure 13.12: Graphical comparison of model predictions and laboratory data for prey 
(top: Paramecium aurelia) and predator (bottom: Didinium nasutum). The experimental 
conditions used one-half strength food concentration for the prey and slowed foraging rates 
of predators using methyl cellulose. The model predictions were based on Eqs. 13.14. 
(Data redrawn from Luckinbill 1973, Fig. 5; model results redrawn from Harrison 1995, Fig. 
9e. @ 1973 and 1995 Ecological Society of America. Reprinted with permission of the 
publisher.) 

predator-prey theory and many would interpret the results as validation of the model. 
Harrison (1995), however, was skeptical and attempted a more quantitative validation 
of the model. He did this by statistically comparing the data to a family of models. 
He examined a continuum of 11 models that ranged from the "standard" model (Eqs. 
13.10-13.1 1) at one extreme, to models with complicated functional responses and 
time lags. Harrison used two of Luckinbill's data sets. Harrison used a short 18-day 
experiment to adjust the model parameters for minimum error. He also compared 
the model to the longest 33-day experiment. In this comparison, no parameters were 
adjusted except those associated with the controlled experimental conditions (e.g., car- 
rying capacity controlled by food levels). Figure 13.12 graphically shows the degree 
of fit of one of the best models that Harrison compared to the long data set. 

The model shown in Fig. 13.12 was: 

- 
intra-competition 5 p e  1 asymmetry scaling 

nutrient storage 

d~ - - - RZ - yy , 
dt u + 

birth death 

where the symbols are defined in Table 13.3. xis  prey numbers, y is predator numbers, 
and Z is an energy storage compartment. Energy consumed by predators is stored in 
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Table 13.3: Variables and parameters in best model to fit Paramecium-Didinium predator- 
prey dynamics. 

VARIABLES 
x 15 (#/mi) Prey density (initial conditions) 
Y 6 (#/ml) Predator density (initial conditions) 
Z 90.45 (kc) Total energy in all predators 

PARAMETERS 

3.02 (t-') 
898 (numbers) 
9.74 (prey1pred.t) 
54.3 (shape) 
0.0983 (shape) 
9.15 (unitless) 
1.78 ( f ' )  
- 
1.78 ( t- ')  

Prey net reproduction 
Prey carrying capacity 
Maximum predation rate 
5 p e  3 shape 
Type 3 shape 
Proportion prey consumed that is stored 
Energy expenditure rate 
Reproduction rate relative to energy 
Predator death rate 

Z until it is used for reproduction. This creates a cascade of energy that introduces 
natural time lags in the predator population dynamics. Small 6 corresponds to short 
lags, large 6 to long lags. To simplify and eliminate the parameter R, Harrison (1995) 
rescaled Z to z = RZ, so R was not estimated. 

The overall index of model fit was the sum of squared differences between the 18- 
day data and model at each datum sampling point. For Eqs. 13.14, the sum of squares 
was 29,23 1. The sum of squared deviations for the standard model (Eqs. 13.10-13.1 1) 
was 236,137; for the best model (not shown), it was 25,439. The best model was 
similar to Eqs. 13.14, but added a time lag in prey growth. The two improved models 
show nearly an order of magnitude improvement in accuracy over the standard model, 
but the price we pay for this is more parameters to estimate: the standard model has 
five, the model of Eqs. 13.14 has nine, and the best model has ten. (While R did not 
need estimating, the initial condition for z was required.) Assessing the trade off of 
accuracy against model complexity is usually subjective. Harrison (1995) clearly felt 
that the cost of four parameters needed to gain an order of magnitude improvement 
over the standard model was worthwhile. However, he concluded that adding one 
more parameter to reduce the sum of squares by only an additional 4000 was a high 
price to pay. This is a situation where we could usefully incorporate measures of 
model complexity in our evaluations (Sec. 8.4.2, Spriet and Vansteenkiste 1982. 

Harrison (1995) did not really follow our protocol for validation of multiple mod- 
els outlined in Chapter 8 to the letter. As he emphasized, his was an exercise in curve 
fitting using a family of models. Nor did he attempt to test formally the hypothesis that 
one model (e.g., Eq. 13.14) was statistically better than the simpler ones. Problems 
of repeated measures and other statistical assumptions probably would have made this 
effort problematical. Nevertheless, this is an excellent illustration of the power of the 
approach of multiple working hypotheses that can lead to new insights into the role 
of different biological processes (e.g., time delays). It is also an example of reason- 
ably accurate predictions of simple laboratory predator-prey experiments by relatively 
simple equations. We will see another example of an important test of laboratory pop- 
ulation dynamics in Chapter 18 when we examine chaos and nonlinear dynamics. 
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MBS-CD contains simulation code for several of the models discussed in this 
chapter. On the CD, see the directory . . ./@Populations. 

13.3 Exercises 

1. Werner and Caswell(1977) developed a stage-structured model for teasel (Dip- 
sacus sylvestris) with the following stage definitions 

x(1) seeds 
x(2) dormant seeds (yr 1) 
x(3) dormant seeds (yr 2) 
x(4) rosettes (< 2.5 cm) 
x(5) rosettes (2.5 - 18.9 cm) 
4 6 )  rosettes (> 19.0 cm) 
4 7 )  flowering plants 

The matrix was 

where the upper row corresponds to seed production by flowering plants (503 
seeds.plant-'ayr-I), and the remaining elements (Lij)  are the fractions of stage j 
that become stage i in the next year. 

a) Starting with an initial distribution of 100 seeds (only), simulate this pop- 
ulation for 40 years. Plot the numbers of seeds, flowering plants, and all 
rosettes over time. Plot the proportion of flowering plants to all stages over 
time. Does a stable distribution for this stage develop? Explain what you 
observe. 

b) Use matrix manipulation software (octave, Matlab) to estimate R and 
r from Eq. 13.6. Does this agree with your simulations? Compare your 
calculations with the values reported in Werner and Caswell (1977) for 
population "L." 

2. Write a computer program to simulate density-dependent population dynamics 
with and without the Allee effect. Summarize the differences. Add a predator 
with a Q p e  I1 functional response and where a constant fraction of the predators 
die by natural mortality. Graph the nullclines and qualitatively evaluate the sta- 
bility of the equilibria. Simulate the system to check your stability assessment. 
Compare the dynamics of this system to those of a system without the Allee 
effect. 
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Write finite difference equations and the matrix form for the following situation. 
A plant population has three size classes (0, 1,2). Sizes 1 and 2 can reproduce: 
each individual of 1 produces three offspring and each of 2 produces 4 offspring. 
Each individual of size 0 can either grow to size 1 or 2, or stay the same size. 
The average fraction doing each of these is 0.8,O. 1, and 0.1, respectively. Frac- 
tions of size 1 can shrink, grow, or stay the same size, i.e., 0.1, 0.7, and 0.2, 
respectively. Size 2 can shrink to size 1 or stay the same size: 0.05,0.95. 

For the following age-based projection matrix, compute the eigenvalues and r 
using Eq. 13.6: 

Describe the dynamics that would result. 
Using Eq. 13.5, derive a simple equation that computes R, assuming the popula- 
tion has achieved a stable age distribution. Calculate R for the matrix in exercise 
4 using as the stable age distribution: No = 10, N1 = 20, Nz = 40. 

Write a program to simulate the IBM of Madenjian and Carpenter (1991a). Use 
parameters that they provide. Investigate the effects of stochastic variation on 
population dynamics by plotting the population size over time for multiple runs 
with different starting random number generator seeds. 

( MBS-CD contains SirnlBMPap that can help with this exercise.) & 
Write differential equations and derive the nullclines for the following scenario. 
In the absence of any predators, a prey population grows in a logistic manner. 
When present, the predator consumes prey according to a Type 1 functional 
response, converts prey to new predators at a rate c, and a constant fraction of 
predators die at each moment of time. How many equilibria are there, which 
are stable, and which are unstable? Perform a local stability analysis according 
to the methods described in Chapter 9. Simulate the equations using a wide 
variety of parameters and starting conditions. Do the simulations agree with the 
stability analysis? 

DeAngelis (1992) hypothesized a simple predator-prey-nutrient recycling model 
in which detritus was assumed to decompose instantaneously. In the equations 
below, N is the prey and X is a consumer 

dN/dt = I,, - r,N - rlNX/(kl + N) + dlX 

dX/dt = rl NX/(kl + N) - (dl + el)X. 

a) Give a verbal description of each of the components and parameters in the 
above equations. 

b) Derive and plot the nullcline equations. 
c) Qualitatively evaluate the stability properties of the possible equilibria. 
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Using the parameters below, simulate and compare the standard Luckinbill model 
with Harrison's model Eq. 13.14 against Luckinbill's 32-day data set. In Harri- 
son's parameterization, the standard model is: 

The parameter values used were: 
P K U  4 0- Y 

1.85 898 25.5 284.1 12.40 2.07 
Based on the curves in Fig. 13.9, for most values of S there are either one or 
three equilibria. n o  values of S have two equilibria. Draw the two sets of 
curves that produce exactly two equilibria at the two special values of S. 
Incorporate pesticide applications into the spruce-budworm model (Eqs. 13.12- 
13.13) by adding another mortality term to the budworm: -pN.  Based on the 
graphical argument shown in Fig. 13.9, show why pesticides applied to bud- 
worms are likely to straighten out the budworm nullcline. Use linear stability 
theory (Sec. 9.3.2) to assess the effect of this change on system stability. 
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Chemostats 

14.1 Chemostats and Simple Population Dynamics 

A CHEMOSTAT IS an experimental chamber (Fig. 14.1) in which the dynamics of 
small, usually asexually reproducing organisms are studied under controlled 

laboratory conditions. While it is not a requirement, chemostats are typically main- 
tained in a steady-state condition. A steady-state chemostat consists of a growth cham- 
ber into which a constant concentration of nutrients are pumped at a constant rate. 
Organisms are introduced into the chamber and allowed to take up nutrients and grow. 
Both the growth medium and the microorganisms are removed from the chamber at 
a constant rate in order to maintain a constant volume. The purpose of this arrange- 
ment is to permit the microorganisms to grow in constant abiotic (nutrient) conditions. 
These systems have applications in research laboratories for physiological studies, in 
industry as a method to produce large quantities of chemical by-products useful in 
research and medicine (e.g., enzymes), and in sewage treatment plants. Chemostats 
are not common in nature, but they are sometimes closely approximated in aquatic 
upwelling systems such as those located off the western coast of South America. The 
biological questions that models of chemostats can address include: (1) What is the 
effect of temporal variability on the outcome of competition? Is it likely that high 
species diversity in ecological communities is maintained by temporal variability? (2) 
Can chaos arise in simple predator-prey models? 

Because of this constancy in the physical conditions and their practical impor- 
tance, chemostats have been extensively and successfully modeled. Recently, these 
models have been reviewed (Smith and Waltman 1995; Grover 1997). Here, we use 
the models as good examples of several principles developed in Part I. (1) We will 
apply the basic techniques of quantitative model formulation to compartment models 
with time-varying parameters. This model will be used to examine the effects of tem- 
poral variability on competitive interactions. (2) Model simplification (Section 3.7) 
is illustrated by converting the model to a dimensionless form (Section 5.2.2) and by 
using a conservation equation. (3) In Chapter 8, we advocated the importance of in- 
vestigating model reliability as well as model adequacy. In this chapter, we describe 
a chemostat model that is tested in an experimental setting (i.e., pulsed nutrients) for 
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Figure 14.1 : Diagram of a typical chemostat. Nutrients are pumped (P) at a rate D from 
a reservoir with concentration of Ri into the growth chamber containing organisms. The 
contents of the chamber are pumped out at the same rate. 

which it was not designed. (4) Finally, we also explore more advanced forms of model 
analysis using techniques developed for general nonlinear dynamical systems. We will 
see that simple models of predator-prey interactions in chemostat can produce very 
complicated dynamics. 

14.1.1 Monod Model 

A model of the chemostat is a system with two components: a nutrient (resource or 
substrate) measured in grams or moles and a population whose growth is limited by 
the substrate measured in numbers. 

The classical model for the population in this system is the Monod equation, 

dN 
- = N@ - D), 
dt 

where N is the number of cells in the chamber, D is the death or dilution rate. p 
is the steady-state growth rate assuming that growth follows the Michaelis-Menten 
saturation curve, 

where R is the nutrient concentration, pmax is the maximum growth rate, and KR is the 
half-saturation constant. It is evident from Eq. 14.1 that the population size will be in 
steady state only if p = D, which depends on the nutrient concentration. 

The substrate flows into the chemostat at rate D with concentration Ri and is re- 
moved at rate D with a concentration equal to the current concentration R in the vessel. 
Dilution rate has units lltime, and equals P/V, where P is the pumping rate (units: 
m3/time) and V is the volume of the chemostat. The substrate is taken up at a rate pro- 
portional to the growth rate of the population. The complete system of two coupled 
differential equations is 
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where D is dilution rate of the chemostat, Ri is the concentration of substrate in 
the input reservoir, pmax is the maximum per capita growth rate of the consumer 
(cells.cells-'.time-'), and KR is the Michaelis-Menten half-saturation constant. Y 
(yield) is the amount of substrate required to produce one consumer individual; it 
converts growth of consumer to amount of substrate removed. This basic model has 
simple expressions for the equilibria and nullclines for N and R, and their determina- 
tion is left as an exercise. 

14.1.2 Droop Equation 

The greatest limitation of the Monod model is that the amount of nutrient supplied in 
the growth medium does not accurately reflect the amount of nutrients available for 
growth. The latter is better viewed as being dependent on an internal storage pool 
of the limiting nutrient (recall Harrison 1995 in Section 13.2.3). The Droop equation 
describes population dynamics when such a mechanism is incorporated (Rhee 1980). 
The population model is as in Eq. 14.1, but p is a function of the internal pool: 

where Q is the internal concentration of the resource also known as the cell quota. kg 
is the subsistence (or minimal) cell quota and p;Oax is the maximum growth rate at 
infinite cell quota. The cell quota is the external nutrient uptake rate (v) divided by the 
growth rate (p): 

or, 
pQ = v and pk, = VQ=O, 

Since in Q = 1/ Y in Eq. 14.2, nutrient uptake is pQ and from Eq. 14.3, pQ  increases 
linearly with Q and is 0 at the subsistence cell quota (kg). 

Nutrient uptake rates can be measured directly and many studies have shown that 
the rate follows the Michaelis-Menten equation: 

where R is the external nutrient pool concentration (in the chemostat), Kv is the half- 
saturation constant for nutrient uptake, and vmax is the maximum rate of nutrient up- 
take. By combining the above equations and assuming the system is in equilibrium, it 
is possible to derive a simple equation for the half-saturation constant for cell growth 
(Rhee 1980): 

KR = ~&axkqKv/vmax. (14.6) 

Thus, the empirically measured half-saturation parameter of the Monod growth model 
can be derived from mechanisms of nutrient uptake. 

The above form of the Droop model assumes that the internal store is in steady- 
state (reacts immediately to changes in R and growth). Grover (1991) relaxed this 
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Table 14.1 : Values used in Burmaster's model. Nominal values and ranges are shown in 
brackets. M = molarity. 

INITIAL CONDITIONS I N 0.8[0.5 - 1.5]cell. L-I Number of cells 
R 1 . 0 [ 0 ~ 2 . 0 ] ~ 1 0 - ~ M  Inflow nutrient concentration I 

PARAMETERS 

pbax 1.03 . day-' Maximum growth rate 
k, 7.02 x 1 0 - l ~ ~  . cell-' Minimal cell quota 

v,,, 4.68 x 1 0 - l ~ ~  . cell-' . min-' Maximum rate of nutrient uptake 
K, 0.51 x M Nutrient uptake half-saturation 
D 0.5[0 4 l.O]day-' Dilution rate 
Ri 1.0[0 4 2.01 x M Inflow nutrient concentration 

- ppppp 

assumption by allowing the store (Q) to be a dynamic state variable: 

where p is defined in Eq. 14.3, v in Eq. 14.5, p;,, = vmaX/(Qmax - Q,i,), where em,, 
= maximum cell quota, and the other parameters defined as before. 

14.1.3 Success of the Models 

Both the Monod and Droop models use a Michaelis-Menten relationship which is 
based on a quasi-steady-state assumption (Chapter 4). This means that the models 
were not designed to accurately portray short-time-scale, transient dynamics. The 
models have been shown in many experiments to successfully predict the equilibrium 
conditions, and Burmaster (1979a) has shown that the Monod and Droop models are 
equivalent at steady state. 

A natural question to ask is: How good are the models in predicting variable con- 
ditions? (Burmaster 1979b) constructed a Droop model for the growth of a single-cell 
algal (Monochrysis lutheri) in a chemostat into which he could experimentally inject 
nutrients to produce rapid changes in the operating conditions of the chemostat. From 
independent experiments, he estimated the model parameters (Table 14.1). 

Burmaster performed three different kinds of perturbations: stepped changes and 
pulses in the influent nutrient concentration, and stepped changes in the dilution rate. 
A step perturbation is one in which a variable is jumped to a new value and held 
there; a pulse is an instantaneous, one-time addition of nutrients. His main interest 
was to predict cell numbers in the growth chamber. He found good agreement when 
the system was subjected to a step up or down in Ri (Eq. 14.2, Fig. 14.2). The model 
predicted a step-down in dilution rate, but not a step-up (Fig. 14.3). The response 
to a pulse in Ri was not predicted by the model (Fig. 14.4). Since a step function 
produces alterations that persist, the cells have an extended period to adapt to the new 
conditions, and the steady-state model does reasonably well. In a pulse, the cells 
experience the new conditions only briefly, but the model does not contain detailed 
biochemical mechanisms to mimic the transient dynamics of the real cells. Burmaster 
(1979b) proposed that a desirable modification to the basic equations to better describe 
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Figure 14.2: Chemostat model response to stepped changes in nutrient concentrations 
in the inflow (Ri). (a) Constant dilution rate (D) and experimental step-up and step-down 
of nutrient concentration in the influent of a chemostat. (b) Number of cells predicted (line) 
and observed (points) following the step perturbations. (From Burmaster 1979b, Figs. 5, 6. 
@ 1979 Elsevier Science, B.V. Reprinted with permission of the publisher.) 

the transient conditions was to add a time delay in the cell division equation so that 
cell dynamics are described as 

We leave it as an exercise for the student to examine the consequences of this proposal. 

14.2 Competitors in Chemostats 

14.2.1 Steady-state Models 

Classical chemostat theory makes a very elegant and clear prediction of the outcome 
of competition between two consumers of a nutrient in a chemostat. The Monod 

. - . -. -.  - .5. - .  - .  - . A .  
0.5 l o  D (step UP) 1:. 

D (step down) 

0.0 u 0.0 
-40 0 40 80 160 220 300 380 

Time (hours) 

0.0 u 
-40 0 4080 160 220 300 380 

Time (hours) 

Figure 14.3: Chemostat model response to stepped changes in dilution rates. (a) Con- 
stant influent concentration (Ri) and experimental step-up and step-down of dilution rate 
(D). (b) Number of cells predicted (line) and observed (points) following the step pertur- 
bations. (From Burmaster 197913, Figs. 7, 8.0 1979 Elsevier Science, B.V. Reprinted with 
permission of the publisher.) 
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equations for the two competitors are 

where D is dilution rate, Ro is inflow nutrient concentration, and Yi is the yield in units 
of number of cells of species Ni produced for each grams of R consumed. pi is the 
maximum growth rate of species i, and Ki is the half-saturation constant for growth. 
From the perspective of organisms growing in the vessel, the dilution rate is equivalent 
to a form of mortality, so that D can also be considered the per capita death rate. The 
net per capita growth rate of both species, in terms of the Michaelis-Menten growth 
relationship and death rate (D), is plotted in Fig. 14.5. R; is the value of the resource 
at which species i is at equilibrium and has the value 

If the resource falls below R*, the population numbers will decline. R* depends on 
species-specific parameters as well as the dilution rate of the chemostat (D). If two 
species compete in a chemostat, that species which has the lowest R* will win. It is 
possible for two species to have different Ki and pi, but have identical RT and therefore 
be able to coexist. The crucial attribute of this prediction is that it is based on mech- 
anisms operating on the individual population level: the prediction uses data obtained 
from individual species growing in isolation. In the Lotka-Volterra-Cause competi- 
tion model, to predict the outcome one must estimate the interaction parameters (ct. 
and p) by observing the two species together. This is also true of "energy-based" 
mechanistic competition models that do not model resources explicitly (see Section 
13.2). 

0.5 D (step up) 0.75 

. 

0.0 0.0 0.0 
-40 0 40 80 160 220 300 380 -40 0 40 80 160 220 300 380 

Time (hours) Time (hours) 

Figure 14.4: Chemostat model response to pulsed nutrient concentration in the inflow.(a) 
Dilution rate (D) and pulsed influent concentration (Ri).  (b) Number of cells predicted (line) 
and observed (points) following the pulse. (From Burmaster 1979b, Fig. 9.0 1979 Elsevier 
Science, B.V. Reprinted with permission of the publisher.) 
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Figure 14.5: Equilibrium resource levels for one dilution rate and two growth functions. 
Left axis (G) is the positive per capita growth rates, and the right axis (D) is the dilution 
or death rate. Each growth curve represents a competing species. Equilibrium population 
numbers for species i occur at the resource level at which the growth curves intersect the 
dilution curve at R;. The superior competitor is that which possesses the lowest R;. 

The smallest R* rule is well established in steady-state chemostats (e.g., Tilman 
1977). A complete test, however, must also show that if two species have different 
Michaelis-Menten parameters that produce identical values of R,*, the two species 
will coexist. Hansen and Hubbell (1980) demonstrated this in a system using bacterial 
strains competing for the amino acid tryptophan. Table 14.2 lists the parameters of 
Eq. 14.9 measured by Hansen and Hubbell (1980). Experiment 1 used Ro = 1.0 x 
10-~g . liter-', and D = 6.0 x 1oe2h-'. Experiments 2 and 3 used Ro = 5.0 x 1oW4g . 
liter-', and D = 7.5 x 10-~h-'. Their results are consistent with predictions: Strain 
A won in Experiment 1, strain D won in Experiment 2, and neither species dominated 
the system in Experiment 3. These results are not surprising given that the Michaelis- 
Menten relationship is based on a quasi-steady-state assumption. Nevertheless, this is 
a good example of a validated model in population ecology. 

14.2.2 Time Varying Inputs 

In light of Burmaster's results (Burmaster 1979b) and the rarity of constant condi- 
tions in nature, it is important to know if similar simple rules will predict competitive 
outcomes in non-steady-state chemostats. Grover (1990) performed simulations of 
periodically perturbed chemostats with two competing algae species. For comparison, 
he defined an opportunist species as one with relatively large maximum growth rate 
(high Michaelis-Menten asymptote) and large half-saturation constant and a gleaner 

Table 14.2: Measured parameters corresponding to the basic equations for two compet- 
ing species of bacteria in a chemostat. Units are g/L and hour. 

Exp Strain Yi Ki ri(= pi) R' D Winner 

1 A 2.5 x 101° 3.0 x 0.81 2.40 x lov7 6.0 x 
B 3.8 x 101° 3.1 x 0.91 2.19 x lo-' A 

2 C 6.3 x 10l0 1.6 x 0.68 1.98 x 7.5 x 
D 6.2 x 101° 1.6 x 0.96 1.35 x D 

I 
3 C 6.3 x lolo 1.6 x 1 0 - ~  0.68 1.98 x 7.5 x 

E 6.2 x 101° 0.9 x 0.41 1.99 x - 
I 
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Figure 14.6: Predicted outcome of competition between a gleaner and opportunist in 
a chemostat under periodically pulsed resource inputs. G = the gleaner dominates the 
system, X = coexistence, and 0 = the opportunist dominates the system. (From Grover 
1990, Fig. 5. Reprinted with permission of the University of Chicago, publisher. @ 1990 by 
the University of Chicago.) The table on the right shows the parameters used in Eqs. 14.9. 

as a species with a small maximum growth rate and a small half-saturation constant. 
In steady-state systems, gleaners have a lower R* and therefore should out-compete 
opportunists. Using Eqs. 14.9, Grover (1990) modeled the input concentration as a 
sine function: Ro = R + bsin(wt). Since total algal growth will depend on the total 
amount of resource supplied to the system, it is important to choose parameters so 
that a constant amount of resource is used for all simulations. To control this, Grover 
chose the amplitude of the sine function according to the formula 

where T is the period between pulses. 
His models predicted (Fig. 14.6) that gleaners would dominate the chemostat for 

all periods if the amplitude is less than 0.10 pmolefliter. This is consistent with the 
definition of a gleaner. When the amplitude is relatively small, the system acts like a 
steady-state chemostat and the lowest R* (a gleaner) will dominate. Above an ampli- 
tude of 0.1, a narrow region of coexistence is predicted. Further increases in amplitude 
produce conditions that favor the opportunist. Interestingly, coexistence also appears 
at very high amplitudes, if the period is short. Grover reviewed the few empirical stud- 
ies that relate to this theory, but could not find conclusive support or falsification. The 
relatively narrow band of conditions that permit coexistence casts doubt on the hypoth- 
esis that high species diversity in natural phytoplankton communities is maintained by 
temporal variability. It may be that other candidates such as spatial heterogeneity or 
niche partitioning are more important. The results shown here do not give a definitive 
answer but are an interesting step in the right direction. 

14.3 Predators in Chemostats 

Chemostats, in addition to aiding our understanding of competition, are also useful for 
the analysis of predation. Fussmann et al. (2000) combined laboratory experiments 
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Table 14.3: Variables and parameters in the NAR predator-prey chemostat model. 

Variable Value Description Units 
B - Nitrogen in total B. calyciflorus pmole . L-I 

m 0.055 
N - 1 Ni vai 
R - 

calycijlorus 

maximum per capita consumption of 
algae by herbivore 
maximum per capita consumption of 
nitrogen by algae 
Nitrogen in C. vulgaris 
Dilution rate 
Assimilation efficiency of herbivore 
eating algae 
Michaelis-Menten half-saturation for 
herbivore consumption of algae 
Michaelis-Menten half-saturation for 
algae consumption of nitrogen 
Senescence rate of herbivore 
reproductives 
Natural mortality of herbivores 
Nitrogen concentration in chemostat 
Nitrogen concentration of inflow 
Nitrogen content of reproductive B. 

day-I 

day-' 

pmole . L-I 
day-' 
unitless 

pmole . L-I 

pmole . L-' 

day-' 

day-' 
pmole L-I 
pmole . L-I 
pmole - L-I 

and models to demonstrate that simple foodwebs show nonlinear dynamics. They 
used a system of nutrients (Nitrogen), a green alga (Chlorella vulgaris) as the primary 
producer, and the rotifer (Brachionus calyciJEorus) for the herbivore. Because rotifers 
are complex organisms, it was necessary to distinguish two types of rotifers: those 
capable of asexual reproduction and those not reproducing. As a result, the model has 
four state variables: 

where N is the nitrogen resource, C is the nitrogen content of the primary producer,R 
is the nitrogen content of the reproductive herbivores, and B is the nitrogen content of 
all (including non-reproductive) herbivores. The other parameters are defined in Table 
14.3. Note that unlike the classical chemostat equations, living rotifers are removed 
both by dilution as well as natural mortality (m). Reproducing rotifers (R) experience 
an additional loss wherein a constant fraction are senescent or become infertile. 

Fussmann et al. (2000) used their own and published data to estimate model pa- 
rameters. Once these were known, they numerically analyzed the qualitative dynam- 
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ical response of the model to changes in two key control parameters: the nitrogen 
concentration of inflow (Ni) and the dilution (pumping) rate (6). These results are 
summarized in the right panel of Fig. 14.7. In that panel, the predator is driven to 
extinction either because of high growth rates of the algae in region (d) (followed by 
high consumption by the predator) or because of high dilution rates [region (a)]. Inter- 
mediate levels of inflow concentration or dilution rates permit coexistence of predator 
and prey either at constant numbers [region (b)] or as a stable limit cycle [region (c)]. 
Because a single control parameter causes a major qualitative change in the dynamics 
in which the maximum and minimum of the populations shift from being equal (i.e., 
an equilibrium point) to being different (oscillations), the system undergoes a Hopf 
bifurcation (see Section 18.1.3). 

Since the control parameters are physical variables, they are easily manipulated 
and Fussmann et al. (2000) were able to emulate their numerical experiments with real 
chemostat experiments (Fig. 14.7, diamond markers in the right panel). The results 
(Fig. 14.7, left panel) indicate close qualitative agreement with model predictions. 
Experiments performed in the regions with distinctive qualitative dynamics show the 
same dynamics (panels A, B, C, E). Moreover, the Hopf bifurcation is manifested 
when a chemostat operated in the parameter region of equilibrium is perturbed to a 
region predicted to be oscillating (panel D). 

MBS-CD contains simulation code for several of the models discussed in this 
(chapter. On the CD, see the directory . . ./BChemortats. 

14.4 Exercises 

1. Discuss the strengths and weaknesses of Burmaster's experimental evaluation 
of the Monod model. 

2. For the model Eq. 14.2, write equations for the nullclines for both the substrate 
and the consumer. Plot the nullclines in the N vs S plane. Are the equations 
stable for all parameter values? 

3. Perform a formal, local stability analysis for the model Eq. 14.2. Use the param- 
eters in Table 14.2 for experiment 1, strain A. Does it agree with the qualitative 
assessment using nullclines? 

4. Do the following using the parameters for Burmaster's model in Table 14.1. 
a) Simulate the model so that Burmaster's experiments can be reproduced. 
b) Explore more drastic changes in stepped changes So ,  and pulses. 
c) Explore Burmaster's suggestion that a time lag would improve the fit with 

pulses. (Read how Harrison (1995) addressed this problem in Sec. 13.2.3.) 
5. Simulate the Hansen-Hubbell system using the parameters of experiment 3. Ad- 

dress these questions: (1) How is the outcome affected by low amplitude oscil- 
lations in D? (2) Assume that the Ki is Table 14.2 

6. Derive Eq. 14.10. 
7. Write a simulation model of single population growth in a chemostat in which 

the input nutrient concentration is pulsed using Burmaster's proposed model of 
Eq. 14.8. How well does it match the data presented in Fig. 14.4? 
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Figure 14.7: (Right) Regions of qualitative dynamics in the Nitrogen (N), algae (A), rotifer 
(R) model as a function of dilution rate (6) and inflow nitrogen concentration (Ni). Symbols 
(diamonds) are conditions for experiments. (Left) Results of five experiments. A: High 
Ni = 514 in region d showing extinction. B: Low 6 = 0.04 in region b showing equilibrium 
coexistence. C: Intermediate 6 = 0.64 in region c showing coexistence in a limit cycle. 
D: Perturbed 6 at arrow from 1.15 (region b) to 0.95 (region c). (From Fussmann et al. 
2000, Figs. 1 A and 2 @ 2000 The American Association for the Advancement of Science. 
Reprinted with permission of the publisher.) 

8. Write a simulation model of Grover's oscillating chemostat with two competi- 
tors (Eq. 14.9). Investigate in greater detail his result that at low period and high 
amplitude the two species coexist (Fig. 14.6). 

9. Grenny et al. (1973) studied a chemostat model for a microbe whose growth is 
based on the amount of intracellular protein. They allowed chemostat flow rate 
to be a periodic pulse function, as did Grover, but they found a broader set of 
conditions over which coexistence occurred. Read both the Grover (1990) and 
Grenny et al. (1973) articles and discuss possible reasons for this discrepancy. 

10. Grover (1991) compared the performance of the Monod (Eq. 14.2) and Droop 
models (Eq. 14.7) in a pulsed environment. Read this paper and implement a 
model to produce a figure like Fig. 14.6 using Eq. 14.7 and these parameters for 
two algae (Scenedesmus and Chlorella): 

Scenedesmus 
Chorella 

Kv Qmax kq vmax /-&ax 

1.88 276 5.16 8.52 0.755 
0.593 65.8 0.352 2.30 0.842 
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Grover (1991) compared the two models using 1: 1 plots of an auxiliary variable 
rate of competitive exclusion whose precise definition is not important here. He 
made the comparisons for two parameter sets of the Droop model. Using ob- 
served and predicted rates of exclusion in four experiments (below, from Grover 
1991, his figure 2), use the appropriate techniques from Chapter 8 to test which, 

Convert the NAR model (Eqs. 14.11-14.14) to dimensionless units. Interpret 
the resulting dimensionless coefficients. 
While a Hopf bifurcation indicates complex and interesting dynamics from rel- 
atively simple equations, as Chapter 18 discusses, more complex dynamics are 
possible. These complexities may arise either from internal positive and nega- 
tive feedbacks or from external forcing functions. 

a) With Ni = 80pmole . L-', the NAR model shows the algae and rotifer 
dynamics bifurcating at 6 x 0.125 and collapsing back to equilibrium at 
6 - 1.00. Create a simulation program to duplicate this result (see Fuss- 
mann et al. 2000, Fig. 1B). 

if any, model (parameter set) is valid. 
Parameter Set 1 

& (MBS-CD contains SimBifurcate to help with this exercise. 1 

Predicted 
Observed 

b) Use your code from Exercise 13a and attempt to find more complex dy- 
namics by varying other parameters. Consider increasing positive feed- 
back by increasing bc and strengthening negative feedback by increasing 
R or m. Using several values of these parameters and Ni = 80, do sim- 
ulations over a wide range of 6 and graph and report on the bifurcation 
structure. 

c) The unforced chemostat equations like Eqs. 14.1 1-14.14 and 14.7 do not 
have a rich dynamical repertoire, but when an external forcing function 
is added, more complex dynamics result. Kot et al. (1992) and Pavlov 
and Kevrekidis (1992) forced the inflow concentration by a sine function 
similar to Grover (1990). Do the same for variable Ni in Eqs. 14.1 1-14.14. 
Compare with dynamics of the unforced version. Read Kot et al. (1992) 
or Pavlov and Kevrekidis (1992) for ideas. 

0.17 0.19 0.22 0.32 
0.09 0.13 0.14 0.28 

Parameter Set 2 
Predicted 
Observed 

0.16 0.17 0.20 0.30 
0.09 0.12 0.15 0.28 
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Diseases 

W E LIVE IN dangerous, deadly times. More than 25% of all deaths world-wide are 
caused by infectious diseases (Morens et al. 2004): HIVIAIDS, SARS, HPS 

(Hanta), Lyme, Ebola, BSE/vCJD (Mad Cow), STDs, West Nile, Plague, to mention 
only a few to which humans are susceptible. The list lengthens dramatically if we 
include diseases attacking cherished and economically important plants and animals. 
It would seem that humans are not the ultimate predator, even though we can be ex- 
tremely efficient when we set our minds to decimating populations. As the human 
population increases with the associated increase in crowding and dispersal rates, the 
dynamics of diseases is well-worth careful study. These dynamics are made all the 
more complicated by the rapid evolution of many of the causative agents. 

This chapter illustrates concepts from Part I, such as mass action, age structured 
population models, validation, parameter sensitivity, conservation equations, and null- 
clines. 

15.1 Simple Models 

A large number of simple models of epidemics have been studied, many yielding 
valuable analytical results. Here, we survey a few of these. 

Constant Infection 

Perhaps the simplest model is one that assumes the number of diseased persons (D) 
increases with a constant rate of infection (a), and that each diseased person has a 
constant probability of being cured (b): 

As a result, the absolute rate of cure increases as the number of cases increases. This 
simple model has an analytic solution: 



308 Chapter 15 a Diseases 

where the constant of integration is C = - ln(a - bD(0))lb. Using either graphical or 
analytical methods, it is clear that this model has a single (non-trivial) stable equilib- 
rium at D* = alb. In other words, the disease is never lost from the population. 

15.1.1 SIR and Derivatives 

The disease modeled by Eq. 15.1 is unrealistic since it attributes no biological prop- 
erties to the disease; infection is independent of the number of cases. It is a better 
descriptor of a physical or chemical agent such as radiation or toxic chemicals than of 
a biological disease or epidemic. The next level of realism comes by relating the rate 
of infection to the number of cases, i.e., an infectious disease. A much-studied family 
of such models is the SIR models of three compartments in a diseased population: 
Susceptible, Infected, and Removed individuals. This model was originally derived 
from a probabilistic argument by Kermack and McKendrick (1927), but the derivation 
is clearly and concisely restated in Hoppensteadt and Peskin (1992, Chap. 3). The 
Kermack-McKendrick model is: 

where S ,  I, and R are the numbers of susceptible, infected, and removed individuals 
in a population of fixed size N = S + I + R. Removed individuals are those that have 
acquired the disease, but are not able to infect susceptibles. This situation may arise 
because the removed individuals have died, been quarantined, or have survived and 
acquired immunity. a is the infection rate for a mass action process between suscepti- 
b l e ~  and infectious subpopulations. P is the "cure" rate by which infected individuals 
become resistant to further infection by future contact with infected individuals. Since 
we are assuming that the time scale of the epidemic dynamics is very small compared 
to the birth and death rates of individuals, we assume a constant population size. From 
the conservation equation above, we can define R = N - (S + I)  and can therefore 
eliminate Eq. 15.4. 

The nullclines of the model are I = 0, S = 0, and I = Pla. Thus, there is only one 
equilibrium: (0,O, N); i.e., all individuals are "removed" (dead or cured, depending on 
the disease). However, the fact that dlldt = 0 has a nullcline at Pla implies that for 
S > PIE, dI/dt > 0, and dI/dt < 0 when S < Pla. This means there is a threshold 
in S above which the disease will increase (become an epidemic). This is reflected in 
the phase-space dynamics for various initial conditions. Figure 15.1 shows trajectories 
(time increases from right to left) of three starting values, the dlldt = 0 nullcline, and 
constraints on the initial conditions for N = 800. 

k (MBS-CD contains SinSIR-theory for Fig. 15.1. 1 
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Susceptibles 

Figure 15.1 : Phase space portrait of the SIR model. Marked lines are three initial condi- 
tions, vertical line is the dlldt = 0 nullcline, and the diagonal line N = I + S = 800 line. 

This model works well for several epidemics. Murray (1989), using data for a 
flu outbreak in an English boys boarding school in 1978 that lasted 14 days, fit the 
parameters of Eqs. 15.2-15.4. The model is remarkably accurate for this short-term, 
controlled set of observations (Fig. 15.2). In this case, boys showing symptoms were 
quarantined, so, effectively, I represents the number of new cases arising from a di- 
minishing pool of susceptibles. 

[ MBS-CD contains SimSIR-valid that produced Fig. 15.2.) 6 

15.2 AlDS 

Almost exactly twenty years before 911 1/01, another terrorist struck the United States. 
Although it does not act in isolated, spectacular events, the death and welfare toll 

Time (days) 

Figure 15.2: Model and data for a 1978 flu epidemic in an English boarding school for 
boys. Parameters are: S(0) = 762,1(0) = 1 ,  ct. = 0.00218,P = 0.4404, N = 763. 
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from this agent of destruction far exceeds the devastation of the New York World 
Trade Center. In June 1981, a report in the Center for Disease Control's publication 
Morbidity and Mortality Weekly Report (Gottlieb et al. 1981; Fannin et al. 1982) first 
announced this new threat. As with human terrorists, the human immunodejiciency 
virus (HIV) respects no political borders, uses stealth to achieve its ends, and seeks 
to conquer by destroying the system's infrastructure. Because of the huge impact on 
human misery and economic development, many mathematical models of HIVIAIDS 
have been developed. In this section, we explore some of these models and the biology 
on which they are based. 

15.2.1 Biology of HIVIAIDS 

HIV is the causative agent of AIDS (acquired immune dejiciency syndrome). AIDS, 
itself, is clinically defined to be the condition of a patient having fewer than 200 CD4+ 
white blood cells per milliliter of blood and testing positive for HIV antibodies. HIV 
has some unique properties that explain not only the devastating affect it has on in- 
dividuals, but also the virus' ability to become pandemic. See Table 15.1 for basic 
definitions. 

In addition to mechanical barriers such as skin and mucous, an organism relies 
on its immune system to identify and destroy foreign material (antigens). Much of 
this action is accomplished by a system of white blood cells, particularly leukocytes. 
A class of these (lymphocytes), has the ability to adapt to and interact with specific 
antigens. Lymphocytes are white blood cells that secrete antibodies to specific anti- 
gens. B cells are a subclass that defeat antigens circulating in the blood stream, while 
T cells form antibodies for antigens inside or associated with normal cells. There are 
many kinds of T cells. Some of them (Tc, cytotoxic cells) bind to infected cells and 
secrete enzymes that lyse the foreign or infected cell. Another class (Ts, suppressor 
T cells) has the important role to suppress the specific response of the immune sys- 
tem after the population of antigens has been reduced to tolerable levels. But for the 
HIVIAIDS story, the most important class of T cells is the helper T cells (TH). These 
T cells play the pivotal role of enhancing and stimulating the destructive lymphocytes 
(Tc and B cells). TH cells interact with macrophages adapted to recognize specific 
antigens and when all three are present, TH cells proliferate and secrete cytokines, a 
class of signaling molecules that target the corresponding B or Tc cells. 

Viruses can attack many different kinds of cells, including T cells. If a virus attacks 
and decimates a particular destructive lymphocyte only the ability to attack a specific 
antigen is lost. However, to lose TH cells means that the entire immune system is 
imperiled. HIV attacks the TH cells, which is why it is so debilitating. The particular 
TH cells targeted by HIV are those which have on their surface binding molecules 
called CD4+. Thus, the levels of CD4+ TH cells in the blood are an indicator of 
the health of the immune system. While this attack strategy makes HIV particularly 
deadly, it is, none the less, just another antigen, so you might expect that other TH 
cells would evolve to stop HIV. Unfortunately, another aspect of the life cycle of HIV 
makes this difficult. 

In order for HIV to be a successful virus it must reproduce. But as with all 
parasitic-like organisms that rely on a host, too much reproduction and too rapidly 
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B cell Y 
CD4+ cell 

cytokines I 
Helper T cell 

Killer T cell F 
I leukocyte 

retrovirus 

I reverse transcriptase 
Suppressor T cell 

T cell I 
Tc cell 

I TH cell 

I Ts cell 

Table 15.1: Definitions for HIVIAIDS. 

Definition 
Acquired Immune Deficiency Syndrome 

agents that act in antagonism to harmful foreign bodies 

a harmful foreign body that stimulates the production of 
antibodies 

leukocytes attacking antigens circulating in the blood; origi- 
nate in the bone marrow 

T cell with CD4+ receptor that recognizes antigens on the 
surface of a virus-infected cell and secretes lymphokines that 
stimulate B cells and killer T cells 

chemicals from TH cells signaling the presence of antigens 
and stimulating B and Tc cells 

killer cells specific to particular antigens 

cells specific to antigens and secreting stimulating cytokines; 
targeted by the HIV 

Human Immunodeficiencv Virus 

cytotoxic T cell 

white blood cells that engulf and digest bacteria and fungi 

leukocytes reacting to specific antigens 

a white blood cell that engulfs foreign bodies and displays 
antigens on their cell surface 

a virus having only RNA 

an enzyme that converts RNA to DNA 

A T cell that reduces or suppresses the immune response of 
B and T cells to an antigen. 

a leukocyte attacking antigens inside or attached to specific 
cells; originates in the thymus 

cytotoxic T cell 

helper T cell 

suppressor T cell 

killing the host will prevent the virus from spreading. Too little viral reproduction will 
also reduce the spread of the virus, so an intermediate level must evolve. HIV's life 
cycle mechanism is unusual in that it both prevents rapid destruction of the host and 
prevents the host from establishing an immunity. 

HIV enters the host in fluids that get past the non-specific mechanical barriers 
(skin, mucous). These pathways are'well known: sexual transmission, blood transfu- 
sions, shared intervenous needles. (Fortunately, HIV is not airborne and is not viable 
after dehydration.) Once inside, HIV enters the blood stream and from there attacks TH 
cells. HIV is a retrovirus, which means it contains only RNA, no DNA. Recall that in 
normal eukaryotic cells, segments of DNA transcribe themselves into single stranded 
forms called messenger RNA, which leaves the nucleus and interacts with ribosomes 
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to form proteins. During mitosis, double stranded DNA makes two copies of itself by 
the process of transcription. So, in this mode, DNA (not RNA) is required for cellular 
reproduction. HIV, having only RNA, requires the host cell to provide the DNA ma- 
chinery for its replication. HIV accomplishes this by binding to the cell, injecting its 
RNA into the cytoplasm, and subsequently using a viral enzyme called reverse tran- 
scriptase to form double stranded DNA. This viral DNA is ultimately incorporated 
into the host cell DNA and is replicated along with host DNA during normal mitosis. 
This process does not, itself, produce new HIV cells, only more copies of the DNA 
required for new virus cells. Over time (many months to years), poorly understood 
events in the infected host cells cause the viral DNA to produce viruses that bud out 
through the membranes of the infected host cells and enter the blood stream where it 
can infect new cells. This can happen repeatedly for each infected cell. 

This basic life history provides a mechanism for two important properties of HIV. 
The processes of reverse transcribing viral RNA and subsequent incorporation into 
host DNA is error-prone. Viral DNAIRNA is mutated during the process; therefore, 
HIV is very variable within a given host organism. This makes it difficult for the host 
immune system to adapt to the antigen (invader). Second, HIV does not immediately 
kill the host. By residing inside cells, the viral DNA is preserved (and replicated at low 
rates) without running out of control and killing the host. As a result, the dynamics 
of HIV and its effect on the immune system is as follows. After the initial infection, 
blood HIV increases rapidly and the population of CD4+ T cells decreases. The host 
immune system, if healthy, responds to this invasion, forms HIV antibodies, and the 
blood HIV concentration is greatly reduced while CD4+ TH cells increase almost to 
previous levels. However, the viral RNAfDNA is not eradicated but hides in the CD4+ 
TH cell DNA and is therefore not further attacked by the immune system. Over time, 
the viral DNA gradually produces buds and new HIV cells that reinfect new host cells. 
This continues over 1-10 years, resulting in the gradual diminution of the CD4+ TH 
cell population from a healthy level of about 1200 cells per milliliter of blood to the 
stage of clinical AIDS: 200 CD4+ TH cells per ml of blood. Once the immune system 
has been degraded to this level, the host organism is susceptible to attacks from other 
antigens and usually dies from these extraneous attacks. 

15.2.2 Epidemiology of HIVIAIDS 

The epidemiological history of HIVIAIDS since its first clinical report in 1981 is grim 
indeed. Rventy-five years later, a total of 37.8 million humans are estimated to be 
infected. Of these 2.1 million are children below the age of 15 (UNAIDS 2004). In 
2003, there were 4.8 million new cases of HIV. Almost 3 million died from AIDS in 
2003, and nearly one-half million of these were children (UNAIDS 2004). 

Spatially, the epidemic is not randomly distributed. Ninety percent of infections 
occur in developing countries (Way and Gibbs 2002). Sub-Sahara Africa is the most 
severely affected: seventy percent of current infections occur there. Over all of Sub- 
Sahara Africa nine percent of all adults are infected, but this average hides high infec- 
tion rates in the most heavily impacted countries. Seven countries in southern Africa 
have infection rates above 20%, including Botswana, Namibia, South Africa, and 
Zimbabwe. Another high infection zone occurs in a belt across central Africa from 
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Figure 15.3: Prevalence of HIV as percent in three cities of southern Africa countries: 
Kampala, Uganda; Francistown, Botswana; and Kwazulu/Natal, South Africa. Source: U.S. 
Census Bureau, International Programs Center, HIVIAIDS Surveillance Data Base (2002 
Release). 

Cameroon to Kenya. 

Developing countries on other continents have not yet seen these high prevalence 
values. In southeast Asia, the highest prevalence is in Cambodia with about 5% in- 
fections among pregnant females. But in recent years, these values are declining, as 
they are in Thailand that has much lower prevalence. Values for Latin America preg- 
nant females, while not as high as the highest in Africa, are 10% in Haiti, and 5% in 
Honduras and Guyana (Way and Gibbs 2002). 

The disease progression in many countries follows the classic dynamics of epi- 
demics (Fig. 15.3). Uganda is now a model of HIVIAIDS control as that country was 
able to reduce its HIV incidence from a high of 30% to the current 10-1 1%. Senegal, 
also has undertaken control measures to keep its epidemic below 2%. Other countries, 
however, are not so fortunate. Botswana values are apparently leveling at 45% for the 
total population, and South Africa appears to be approaching the same point. 

Women have higher occurrences of HIV than men, which is expected from the 
primary sexual transmission mode of virus infection. In Sub-Saharan Africa, this 
phenomenon is dramatic for ages 15-40: as many as 20% of women are infected 
compared to about 15% of men. 

HIVIAIDS has a direct effect on population demography. Extrapolated popula- 
tion growth rates in the presence and absence of AIDS shows significant reduction 
in population growth due to AIDS. Botswana, for example, currently has a negative 
growth rate, but is estimated to have, were AIDS not present, a positive growth rate 
of 2.3%/year (Way and Gibbs 2002). Many other countries show a growth reduction 
of 30-50% due to increased mortality rates caused by AIDS. Projecting these growth 
rates to 2010 predicts even greater negative effects. These dry statistics become more 
real when couched in terms of life expectancy. The average Botswanan, without AIDS, 
would be expected to live to 72, but currently, with AIDS, the average time of death is 
39 years (Way and Gibbs 2002). 
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15.2.3 Modeling Approaches 

There are 3 main approaches to modeling and forecasting AIDS. First, a single, time- 
dependent equation is statistically fit to extrapolate a historical dataset into the future. 
This approach may simply use the historical data and find any best-fitting equation 
(Kramer 1992), and, thus, requires a long time series for accurate fitting. Alternatively, 
a suitably flexible function (e.g., a gamma distribution) that fits a large number of 
historical data sets is used (Chinn and Lwanga 1991). This method requires less data 
than the previous method, but is restricted to the properties of the gamma distribution. 
Both of these approaches suffer from the fact that the extrapolations are usually valid 
for a short time horizon and, by ignoring mechanisms, can not be used to analyze 
possible disease prevention strategies. 

A second general model structure is individual-based (Sec. 13.1.4). As mentioned 
there, this class of model when applied to human demographic problems is called by 
its practitioners micro-simulation. Examples of this approach is SimulAIDS (Auvert 
et al. 1990; Robinson et al. 1995), and STDSIM (Van der Ploeg et al. 1998). This 
approach, as do most IBMs, allows detailed, mechanistic description of the relevant 
processes. STDSIM incorporates individual behavior on disease propagation mecha- 
nisms (e.g., demography, sexual behavior, and transmission methods) as well as inter- 
vention strategies (e.g., condoms, clean needles, and health care facilities). As with 
many IBMs, this model, being stochastic, requires detailed data to estimate probability 
distributions and relies exclusively on computer simulation for analysis. 

The third class of models are compartment models, generally based on the SIR 
models. Applied to HIVIAIDS, these models are made significantly more complex 
than the simple SIR model to incorporate the effects of age, gender, sexual behavior, 
and disease stage (Hethcote and Van Ark 1992). A complex example of this approach 
is the iwgAIDS model: the Interagency Working Group AIDS model (Seitz 2002). 
This model was produced as a broadly applicable tool for computer simulation by 
the World Health Organization, CDC, and the World Bank. This model has produced 
good fits to historical data, but has a complex description that is difficult to encapsulate 
for expository purposes. 

A similar model, that is easier to describe is that produced by a group at the Im- 
perial College (London) (Garnett and Anderson 1993; Garnett et al. 2002). We will 
approach the description of this model (the "IC" model) in two steps: a preliminary 
simplified version, and then a fuller version that includes greater demographic struc- 
ture and human sexual behavior complexity. 

15.3 Simple lC Model (SIC) 

Most models of sexually transmitted diseases, including the IC model of HIVIAIDS, 
have parameters that are age-specific. Since compartment models of epidemics are 
basically population models, the basic structure of age-based models as presented in 
Chapter 13 is applicable. 

To simplify the IC model, assume we have 2 sexes (male, female), and these are 
similar in their sexual behavior and drug usage. We will also assume that there is a 
only a single stage to the development of AIDS from HIV. Figure 15.4 shows the basic 
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Figure 15.4: Forrester diagram for the simplified IC AIDS model. For clarity, Forrester 
diagram parameter symbols are not shown. 

structure of the model with two age classes and two sexes (M and F). Age 1 comprises 
newborns to age 15. Age 2 comprises ages 16 6 death. New born susceptibles are 
created from susceptible females (SF) having a birth rate per female of 8 and prob- 
ability 5 of being sexually active as well as infected females (IF), but which have a 
probability 1 - 6 of not transmitting HIV to their fetuses. Note that there is no infor- 
mation flow from males to reproduction; we assume the number of males do not limit 
female reproduction: there are always enough males to impregnate females. Members 
of the youngest age class considered (Age 1)  progress to Age 2 (the next age class) 
according to the basic time step of the model, the intervals of the age groupings, and 
mortality rate. I.e., if the interval is 5 years, the time step is 1 year, and mortality is 
0.4, then the proportion of individuals aging in 1 time step is (0.2)(1-0.4)=0.12 per 
year. Production of infected new borns follows the same pattern, except susceptible 
(uninfected) females can not infect their offspring. 

New cases of HIV are produced by the interaction of infected and susceptible 
individuals. The per capita force of infection is the rate of spread of HIV for an average 
susceptible individual engaging in sex or other activities that transmit HIV (e.g., shared 
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needle use by injecting drug users). Conceptually, it is the product of the rate of having 
sex (or sharing needles) with different types of individuals and the proportion of the 
population that has HIV but not AIDS. We assume persons with AIDS (as opposed to 
those without the clinical symptoms) do not engage in sex or transmit HIV. We also 
assume in this simple version that homosexual activity and shared needle use are not 
important. A central problem in calculating the rate of having sex is the rates and 
rules by which individuals choose new partners. If there is very little mixing between 
susceptible and infected individuals, then the force of infection should be small. Large 
mixing will increase the spread of HIV. Finally, infected individuals acquire AIDS at 
rate y and accrue added mortality (a) in addition to natural mortality p. 

SIC Equations 

Based on the above, we need 12 differential equations to describe the flow individuals 
among the compartments. The female equations are as follows. The definitions and 
values of the parameters are given in Table 15.2. 

fertility non-infecting females mortality ageing 

ageing infectionldeath 

infected birth death & ageing to AIDS 

f.2 - 01 + Y)%Z + 5%1 
d t - - -  

infection death & AIDS ageing 

to ~ D s  death & ageing 

The force of infection for susceptible females (Asf.2) is a function based on current 
infected levels: 

Pm.fIm.2 
2s 1.2 = 1.2 WPS f.2 

rn.2 + Im.2 ' 

where cs ,,(t) is the current rate of choosing a new male partner by a sexually active, 
susceptible female. ps, is the probability that the new male partner will come from 
a particular age and sexual activity class. p is a measure of the degree that females 
choose different types of partners; it is a social mixing function. Since in the current, 
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simplified model that has only 1 age class and 1 activity class, p = 1.0. Prn,f is the 
probability of an infected male transmitting the disease to a female. The expression 
I/(S + I) in Eq. 15.6 represents the probability of encountering an infected individual 
from the population of possible partners. 

The six equations for males are similar. 

where 

SIC Results 

The basic behavior of the SIC model is shown in Fig. 15.5a. Since these parameter 
values were chosen to represent a developing country where birth rates are high, the 
population as a whole is increasing. An auxiliary variable (sensu Forrester Diagram) 
of particular interest is the proportion of the population that has the virus. Results from 
SIC show that, unlike a disease that terminates in resistance (e.g., the flu Fig. 15.2), 
HIVIAIDS does not go away. 

In the recent past, efforts to halt the epidemic have focused on education and re- 
ducing the avenues for transmission. The use of condoms is one method, since sexual 
contact is one of the most important mechanisms by which HIV is spread. SIC can 
be used to determine the effects of condom use by altering the parameters Pf,rn and 
Pm, from 0.1 and 0.2, respectively, to 0.05 and 0.1. Figure 15.5b illustrates that con- 
doms can have a significant effect on HIV prevalence. The equilibrium prevalence 
for females and males reduced from 0.9 and 0.75 to 0.7 and 0.45, respectively (note 
axis scale differences). In addition, the time lag for the disease to exceed 10% of the 
population increases from about 20 years to 50 years. By slowing the disease spread 
to this extent, the society might be able to save many lives by being provided time to 
develop cures and put in place social infrastructures to provide even greater reductions 
in prevalence. 

Another important variable controlling HIV dynamics is the rate of acquiring new 
sexual partners and the degree of mixing among sexual activity groups (Garnett and 
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Table 15.2: Parameters for the Simple IC AIDS Model. Values based on Garnett and 
Anderson (1993). Values for variables are initial conditions used in simulations. 

I Symbol Meaning Value 
Variables 

Susceptible females, age class 1 
Susceptible females, age class 2 
Susceptible males, age class 1 
Susceptible males, age class 2 
Infected females, age class 1 
Infected females, age class 2 
Infected males, age class 1 
Infected males, age class 2 
Aids females, age class 1 
Aids females, age class 2 
Aids males, age class 1 

3000 Numbers 
1000 Numbers 
3000 Numbers 
1000 Numbers 
0 Numbers 
0 Numbers 
0 Numbers 
0 Numbers 
0 Numbers 
0 Numbers 
0 Numbers 

I A m , 2  Aids males, age class 2 5 Numbers 
Parameters 
a AIDS death rate 1 .O/year 

Pfm female to male transmission probability 0.075 
Pm.f  male to female transmission probability 0.2 
cs,,,,2 rate of new partners at t = 0 2.35/year 
77 proportion females of newborns 0.5 unitless 
Y transition rate from infected to AIDS l.l6/year 
P natural death rate 0.0227/year1 
P social mixing probabilities 1 .O 
e female fecundity 0.2088/year 
6 probability perinatal transmission 0.35 unitless 

6 proportion moving to age class 2 0.0667 
5 proportion individuals in sexual activity class 1.0 

Anderson 1993). Figure 15.6 illustrates the rapid rise of HIV as infected individuals 
increase the number of new sexual partners with which they interact. This confirms 
the common sense view that monogamy reduces the spread of sexually transmitted 
diseases. It also illustrates that adding just one partner per year (c = 1.0 6 2.0) 
dramatically increases the spread of HIV. 

15.4 Full lC Model 

As complicated as the above SIC model is, the complete IC model (Garnett and Ander- 
son 1993) is considerably more complex. The full IC model has effectively 18 distinct 
age classes, three stages of HIV infection, and four classes of sexual activity. As a 
result, single parameters in the SIC model for the important processes have multiple 
values in the full model that vary over the 133 classes. For example, persons with HIV 
are not all equally infectious depending on the time since they contracted the disease. 
As a result, the constant y in the SIC model is decomposed into three levels according 
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Time Time 

Figure 15.5: Results for SIC using nominal parameter values in Table 15.2 [panel (a)] 
and when improved condom use is simulated by halving parameters pLm = 0.0375 and 
jlm,r = 0.1 [panel (b)]. Note the differences in the x-axis scale. 

to disease stage. Infectiousness is initially high, drops significantly in stage 2, and 
rises to a moderate level for the transition from HIV to AIDS. Further, some individu- 
als are more sexually active than others of the same age. This property is reflected in 
the rate at which new partners are acquired. Typical values used in the IC model are 
1-4 new partners per year, depending on sexual activity class. 

However, the largest complication, by far, in the IC model is implementation of 
partner mixing. This is the phenomenon that when a person switches partners he 
or she does not necessarily interact only with members of the same age and activity 
group. The SIC model conveniently side-steps this issue by assuming a single sexu- 
ally mature age and a single activity group. Garnett and Anderson (1993) implement 
mixing based on three types of social interchange: among ages, among sexual activity 
groups, and the propensity for old males to switch to younger females. The result of 
the Garnett and Anderson (1993) algorithm is a mixing matrix that defines the prob- 
ability that a male or female individual of a given age (or activity group) will mate 
with an individual of the opposite gender and some other age (or activity group). The 
amount of mixing may vary from perfectly assortative (stay within your group) to per- 
fectly dissortative (always mate outside your group). Real mixing is a continuum with 

. .0 .  Fem Age 2 C.2.0 
-b Fern Ape 2 C-3.0 

0.0 20.0 40.0 80.0 80.0 100.0 
Time 

-8-  ales Ago 2 C!I.O I I I . .O. Males Age 2 C-1.0 
-b Males Age 2 C-3.0 

Time 

Figure 15.6: Effects of increasing numbers of new partners per year (c = 1.0,2.0,3.0). (a) 
Proportion of infected females. (b) Proportion of infected males. 
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Figure 15.7: Comparison of the full AIDS model with observed infection prevalence for 
females of reproductive age in three African populations. * = Uganda; = Malawi; A = 
Zaire. Continuous lines are IC model predictions for early (1975) and late (1980) initiations 
of the HIV epidemic. (Redrawn from Garnett and Anderson 1993, Fig. 13 01993 The Royal 
Society. Reprinted with permission of the publisher.) 

these two as extremes; intermediate to these is proportionate mixing in which individ- 
uals choose mates randomly, or equivalently, in proportion to each group's presence 
in the population. Without elaborating the details (the interested reader should consult 
Garnett and Anderson 1993, and the references cited there), p for the target group (age 
class or activity group) is computed based on three free parameters (q) which define 
the degree of assortivity for the three types of mixing. Once the p are known, the rate 
of sexual partner change is computed. This latter quantity is subject to two constraints. 
First, the number of pairings in males and females must be equal. That is, if p males 
of age i and activity group I pair with q females of age j and activity group m, then 
the females of age j and activity group m must pair with p males of age i and group I .  
Second, the mixing matrix is a matrix of probabilities, so the rows must sum to 1.0. 

A final adjustment to c, the rate of partner change for a given age and activity 
group, is required because that class of persons might wish to acquire more partners 
from another class than there are individuals in the second class. That is, the number 
of males of age i and activity group I wishing to pair with females of age j and activity 
group m must not exceed the number of females in j and m. I.e., demand for partners 
must not exceed the supply of partners. Of several possible approaches, Garnett and 
Anderson (1993) choose to modify the demands (the c) of one class of persons for 
another class of persons so that the ratio of demand to supply equals the original ratio 
of the two classes at t = 0. This approach is not perfect (and may be false), but it has 
the merit of being a simple assumption that individuals within a class will not change 
their behavior from that which they did at the beginning of the simulation. 

15.4.1 Full Model Results 

The dynamics of HIV prevalence is shown in Fig. 15.7 where we see that the simple 



$1 5.5: AIDS Modeling Prognosis 321 

version of the theory (SIC) produces results similar to the full model. Although vali- 
dating these models are difficult due to inadequate reporting and surveys in developing 
countries, the basic pattern of the infection is captured by the IC model. Figure 15.7 
shows data for pregnant females in three African countries plotted with model predic- 
tions using parameters similar to those in Table 15.2 and hypothesized early and late 
epidemic starting times. Given the large number of parameters in the model and the 
great uncertainty in their values, further parameter tuning would produce a better fit to 
the data. 

The age-distribution of HIV is also of great concern, and the IC model, being age- 
structured, allows us to examine this question. Data reported in Garnett and Anderson 
(1993) indicate 18 distinct age classes, but the model formulation considers age to be 
a continuous variable. This is formulated using partial differential equations in a man- 
ner analogous to the advection of a substance in flowing water as described in Chapter 
5. For aging, "advection" of individuals (s) over age (a) is represented as dslda which 
represents the net flow of individuals into and out of a small segment (age class) of a 
continuous variable age. In addition to this flow, the number of individuals within an 
age class can increase or decrease depending on biological processes such as repro- 
duction and death. To conserve the number of individuals, analogous to conservation 
of mass in physical transport, all the possible dispositions of individuals must be ac- 
counted for. That is, the rate of change in time of s is the sum of fluxes occurring 
within an age class plus the flux of individuals into and out of the age class due to 
ageing: 

-- dZkl@, t) azkl(a' - f(infection, death, disease progression, etc.) - - 
at da 

where Z represents the number of individuals that are either susceptible, infected, 
or AIDS cases. The subscripts k and I represent gender and sexual activity group. 
Thus, this simple notation hides a great deal of complexity. But once all the equations 
are written explicitly (somewhat like SIC Eqs. 15.5 and 15.7), the solution produces 
predicted HIV prevalence as a function of time since epidemic initiation and age of 
individual. 

Figure 15.8 shows one scenario using the nominal parameters for females. Epi- 
demic (simulated) time increases toward the back of the graph; individual age in- 
creases from left to right. Note the high fraction of very young children with HIV 
(25%) due to transmission in the womb. Once females reach sexual maturity (age 15), 
HIV prevalence increases dramatically after the initial outbreak. After 100 years, the 
age distribution of HIV infection is constant with about 80% of females between the 
ages of 25 and 50 having the virus. The proportion of infected females drops steeply 
after age 50 due to the progression of HIV infection to clinical AIDS and due to high 
mortality once this occurs. Male HIV infection proportion shows a similar pattern. 

15.5 AlDS Modeling Prognosis 

Many models and modeling approaches exist for infectious diseases in general and 
HIVIAIDS in particular. Current work focuses on new applications in HIV hotspots 



322 Cha~ter 15 Diseases 

Ane 

Figure 15.8: Prevalence of HIV positive females as proportion of population by age in 
the full IC model. (From Garnett and Anderson 1993, Fig. 14b 01993 The Royal Society. 
Reprinted with permission of the publisher.) 

(Asia, Brown and Peerapatanapokin (2004), and South America). There is also a 
growing concern that forecasts of HIV prevalence are strongly model-dependent. This 
concern has been addressed by recent comparisons of models (Bernstein et al. 1998; 
Stover et al. 2002). These have found broad agreement, but also significant differ- 
ences in quantitative predictions, particularly on the effects of the demographic effects 
of immunization programs (e.g., Stover et al. 2002). A third development is addressing 
various intervention strategies (condoms, clean needle programs, vaccinations). Over- 
all, there is great progress in HIVIAIDS treatment to reduce mortality and prolong 
life expectancy in developed countries (Jaffe 2004). But exporting these successes 
to developing countries is a political and logistic challenge. Not all possible strate- 
gies are acceptable or economically feasible. Mathematical models can help identify 
ineffective policies. 

15.6 Exercises 

1. For Eq. 15.1: 
a) Derive the equation and the expression for the initial condition. 
b) Use local stability analysis (Sec. 9.3.2) to explore the stability of the equi- 

librium. 

2. Draw a Forrester diagram for the SIR model. 

3. Show algebraically for the SIR model that dlldt < 0 if S < Pla ,  and that 
dlldt > 0 if S > Pla. 
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4. Below are the data for the English flu epidemic. Use validation techniques 
(Chapter 8) to access the value of the model. (Note: these data were used to 
estimate the parameters, so this is not a valid validation test, but rather an as- 
sessment of the calibration quality.) 

I Dav No. Infected I I Dav No. Infected 

5. Examine the effects of a HIV vaccination on the SIC AIDS model (loosely based 
on Garnett et al. (2002)). Assume that the vaccine is applied to Sf,:! and Sm,2 at 
rate u = 0.65fyear per individual. Vaccinated individuals become protected (i.e, 
move into variables Pf,:! and Pm,2). Further assume that a fraction of vaccinated 
individuals lose protection at rate I = 0. lfyear. 
Address the following questions. Will vaccination cause the epidemic to peak 
and, if so, when will the decline occur? How much will it cost (assume one 
vaccination costs $lo)? Which intervention strategy is better: vaccination or 
safe-sex education and the use of condoms? 

MBS-CD contains SICAIDS to model Eqs. 15.5 and 15.7 that will help 
this exercise. 

6. The original data fit by Kermack and McKendrick (1927) was the 1905 Bombay 
plague data for number of deaths per week. 

[ MBS-CD contains the Bombay plague data and SimSIR-Bombay ) k 
a) Use the parameter hints contained in SimSIR-Bombay . c t r l  as a starting 

point to closely approximate the data with the model. 
b) Modify SimValidate-Template . c to determine the accuracy of this curve 

fitting. 
7. One proposal for reducing HIV that has significant political and social impli- 

cations is abstinence. Although the SIC model has only coarsely defined age- 
structure (just two age classes), it is possible to examine the effect of abstinence 
on the development of the HIV epidemic with this model. Propose changes to 
one or more parameters in SIC that will approximate the effects of abstinence 
and then alter the parameter(s) to determine if promoting what is for many pop- 
ulations a radical behavioral modification. 

[ MBS-CD has SICAIDS to help with this problem. ) k 
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Spatial Patterns and Processes 

16.1 Dynamics in Space: New Complications 

D YNAMICS IN NONLINEAR SYSTEMS can be immensely complex, as we discuss in Chap- 
ter 18. Unfortunately for simple theories, time is only one dimension relevant 

to physical and biological systems. At every level of biological organization, from bio- 
chemistry to ecosystems, dynamics are embedded in the three physical dimensions of 
space. In principle, our models should account for this fact by explicitly incorporating 
spatial effects in the mathematics. Naturally, we can sometimes avoid these problems 
by appropriately defining our objectives, but for many biological phenomena this is 
not an option. Examples abound: flows of chemicals (toxic, nutrients, or signals) in 
fluids (air or water); movements of organisms (in continuous space or among discrete 
patches); population growth of sessile individuals; and development of morphological 
structure (coat color patterns in animals, microtubules within cells). 

Worse yet, it may be that physical space is not enough. In some systems, just as it 
is necessary to know how a state variable is distributed over space to make predictions, 
it may be necessary to know how a state variable is distributed over a physiological 
condition. If so, the physiological condition forms the basis of a "spatial" dimension 
that significantly affects biological interactions. For example, the age of an individual 
affects its death and birth probabilities. To be maximally accurate, then, age-specific 
population models must sometimes describe the "flow" of individuals from age to 
age, just as individuals in a river would flow from point to point. In these models, it is 
necessary to understand the distribution of individuals over the age dimension, just as 
in spatial models we must understand the distribution over the spatial dimension. Age 
becomes a variable analogous to physical space. 

These observations lead one to conclude that the spatial distribution (physical or 
physiological) of variables is of fundamental importance. Further, as we saw in Chap- 
ter 13, mechanistic models of populations produce dynamics and insights not present 
in simple phenomenological models. In this chapter, we connect pattern with process. 

Accepted usage takes "pattern" to be a quantity distributed nonrandomly and (usu- 
ally) nonuniformly in space. An example is the patchy distribution of color in an 
animal's coat. In general, a pattern is simply the spatial dispersion of the observed 
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quantity. By "process" we mean a mechanistic explanation. Models of pattern involve 
static descriptions of the distribution or mechanistic dynamic models that explain the 
pattern's existence. In addition, biologists, especially ecologists, have recently be- 
come aware of the fact that a quantity's dispersion depends on the scale with which it 
is observed. This affects both the time and space dimensions, and we will discuss this 
problem in the next chapter. 

Among the principles developed in Part I that we illustrate in this chapter are (1) 
the use of partial differential equations, (2) reaction-diffusion equations, (3) the effects 
of parameters on stability properties, and (4) an individual-based, spatially explicit 
population model. The examples to follow use these principles to address several 
biological questions: (1) Is the aggregation of microorganisms into organized spatial 
structures a random process caused by simple diffusion in which individuals react only 
to their local environment? (2) Are spatial patches of insect pests and their predators 
caused by random movement or by the inclination of individual predators to rationally 
hunt in areas where they have had previous success? (3) To save the Spotted Owl from 
extinction, is it better to provide many small habitat reserves or a few large tracts of 
habitat? 

16.2 Pattern and Process 

Spatial pattern is the distribution of the quantity of a variable in the three dimensions 
of physical space. To model these patterns, we must mathematically describe how the 
quantity flows from point to point in space. We have already introduced the concepts 
and basic mathematics for flows in continuous space in Section 5.1.1. Here we ap- 
ply this formulation to movements of animals. In the first example, the organism is 
relatively simple, and the model serves to introduce the basic equations. The second 
example shows how more complex organisms and behavior can be embedded in the 
same formalism. 

16.2.1 Slime Mold Aggregation 

Dictyostelium discoideum, a slime mold, has achieved fame because it is an extremely 
useful biological system for the experimental study of intercellular chemical signaling. 
D. discoideum is valuable because individual cells of this species have the ability to 
live much of their life in isolation, but when food resources become scarce, the cells 
move and aggregate to form a multicellular organism that produces a fruiting body 
that emits propagules. The cells accomplish this remarkable feat by moving toward 
high concentrations of the chemical signal 3', 5'-cyclic AMP. Keller and Segel(1970) 
wrote a classic paper that describes a partial differential equation (PDE) model of 
aggregation. We describe a simplified version here (Lin and Segel 1988). 

We assume that we can arrange a laboratory experiment so that slime mold cells 
are constrained to move in one dimension only. In Section 5.1.1, we developed the 
basic reaction-diffusion PDE in one dimension. Amoeba population dynamics at a 
spatial point x are a function of diffusion, population growth, and aggregation. We 
assume straight off that the population is not reproducing because food has been ex- 
hausted. We will also assume linear diffusion rates as a function of amoeba concentra- 
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tion [a(x, t)]. The flux rate due to aggregation is a linear function of the concentration 
gradient of a chemical signal [p(x, t)] and the current amoeba concentration at the 
point. Thus, amoeba dynamics are: 

diffusion aggregation 

where D2 is a constant describing the "diffusivity" or random motion of individual 
amoeba cells. Dl measures the strength of the chemical signal on cellular aggregation. 
The signs are specified as they are because (1) we use the convention of calculating 
gradients as xo - xo+~, and (2) diffusion causes repulsion from "positive" amoeba 
gradients [a(xo) < a(xo+~,)], while aggregation causes movement toward "positive" 
signal gradients Ip(x0) < p(xo+~,)]; The negative sign for aggregation in Eq. 16.1 
forces its value to be positive. Empirical data suggest that 

where 6 is a scaling constant. 
The chemical signal dynamics are ultimately based on biochemical reaction kinet- 

ics, but we assume quasi-steady-state conditions to simplify: 

* -  
decay secretion diffusion 

where a, b and K are constants, D, is the diffusivity of the signal, and f @) is the per 
capita rate at which the signal is produced by amoebae. The expression bp/(l + Kp) 
should be recognized as a form of the Michaelis-Menten-type saturation relation. As 
a result, b is the maximum rate of p decay and K is a shape parameter for the saturation 
curve. 

With the exception of the reaction terms (signal production and degradation), these 
are linear equations. Spatial and temporal equilibrium, here, is a constant, uniform dis- 
tribution of cells over space (Fig. 16.la). Instability in this context is the effect of a 
perturbation on disrupting the spatial equilibrium (thereby creating an aggregation). 
Keller and Segel(1970) performed a stability analysis in which they derived the char- 
acteristic equation (Section 9.3.2) to be 

where R are the eigenvalues, q is a constant, po is the signal concentration at equilib- 
rium, and F = f'Qo)ao - z - q 2 ~ p  (where a0 is the amoeba density at equilibrium, 
and H is a function of the signal degradation rate evaluated at the signal equilibrium). 
As shown earlier, if the equilibrium is to be stable, then the largest R must be less than 
0. This occurs, after expanding F, if 
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Figure 16.1 : Spatial dynamics of amoebae and the aggregation signal. Four hypothetical 
snapshots in time of the concentration over space ( x )  of the amoebae population (a) and 
the aggregation signal @). Panel (a) is the equilibrium condition. In (b), a small amount of 
amoeba is added in a small area. The amoeba diffusion parameter (D2) acts to spread out 
the amoeba and return the system to the equilibrium. In panel (c), some short time later, the 
local patch of amoeba have excreted some aggregation signal which causes more amoeba 
to flow toward the patch according to the stimulus strength parameter 6. This produces a 
positive feedback which is amplified in panel (d). 

After more algebra and using Eq. 16.2, the system will be unstable if 

The two terms of the sum on the left represent two different sets of processes. On the 
left, 6/D2 is, basically, the ratio of the ability of the amoebae to detect and respond 
to a gradient of p (as measured by 6) to the rate of random amoebae movement (02). 
The term on the right is, roughly, the ratio of the rate of signal production to the rate of 
signal degradation. If the term on the right is much less than 1 (low signal production), 
then the parameters of diffusion processes determine stability. Instability will occur 
if 6 is large or if D2 is small. That is, instability will occur when elevated signal 
and amoeba concentrations in space cannot rapidly become smoothed out by random 
motion of the signal or amoeba. 

This smoothing process will be slowed if amoebae can react strongly to the pres- 
ence of a signal gradient (large 6). This condition creates positive feedback as illus- 
trated in Fig. 16.1. A patch of high amoeba density (Fig. 16.lb) will cause increased 
production of the signal, which will create a spatial signal gradient. This will attract 
more amoebae (due to large 6) and create even more signal in that region, which will 
attract even more amoebae to the area, and so on. The size of the peak of elevated 
amoebae and signal concentration in space will depend on the balance of the two 
forces represented by D2 and 6. If 6 is relatively large, the peak will grow. If D2 is 
relatively large, the equilibrium will be stable (Eq. 16.3 not satisfied), and the peak 
will dissipate due to random motion of the amoebae. In conclusion, diffusion forces 
can cause spatial inhomogeneities to grow and become more pronounced over time. 
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16.2.2 Ladybugs and Aphids 

The above model of organism movement is a good first approximation, but in essence 
it is a phenomenological model because it relies on empirical estimation of the diffu- 
sivity. At extremely microscopic levels, treating organisms like physical particles is 
an adequate approximation. In such cases, treating organism movement as a statisti- 
cal process suffices. But, when we consider larger organisms with a richer behavioral 
repertoire, it becomes important to relate the mechanisms of individual behavior to 
global movement parameters at the population level, such as diffusivity. One area 
where this is possible is the spatial movement of insect predators relative to their prey. 
Kareiva and Odell(1987) developed a mechanistic PDE model of a ladybug predator 
(Coccinella septempunctata) and its aphid prey (Uroleucon nigrotuberculatum). The 
derivation of the model is involved, so we will give a simplified version here and refer 
the curious reader to the original paper. 

The model is composed of two coupled PDEs. The basic population equations are 
very similar to those used by Keller and Segel (1970), with the role of the aggrega- 
tion signal played by the aphid prey and the role of amoebae played by the searching 
predator. The equation for the aphid (victims) is 

diffusion birth death 

where V is victim numbers, and P is predator numbers. The first term on the right is 
passive diffusion [random movement, Dv is victim (aphid) diffusivity]. The second 
term is a function for net births, and the third term is a function for numbers of prey 
killed by predators. All of the state variables mentioned in Eq. 16.4 apply to a local 
point in continuous space and not to the total population sizes integrated over the entire 
space. 

Field observations of aphid population growth dynamics in the absence of preda- 
tors support the logistic, density-dependent birth model, 

where V,,, is the maximum aphid density and was estimated from field observations; 
b is a growth parameter that incorporates V,,, (equivalent to r/K in classical parame- 
ters) and was estimated from short-term field population growth experiments in which 
predators were excluded (Table 16.1). 

avK(K P) in Eq. 16.4 is the rate at which predators consume prey at a particular 
spatial point. Kareiva and Odell (1987) derived an expression that is related to the 
Holling Type 2 disc equation (Eq. 4.21, page 72): 

where a, R, q, v, and y are parameters estimated from short-term predation experi- 
ments. The parameters are defined in Table 16.1. This equation comes about because 
of the effect of victim numbers (V) on predator satiation (S). Satiation is a dynamic 
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balance between the rate of increase of S (i.e., eating) and the rate at which S de- 
creases (i.e., digestion). 

In general, the number of prey consumed in unit time by a single predator is the 
number of prey captured and killed (predation rate) times the fraction of each indi- 
vidual prey consumed times the degree that a single prey increases the level of satiety 
(i.e., decreases hunger). As a special case in their general theory, Kareiva and Odell 
hypothesize that two processes affect the rate of consumption: the current level of 
hunger and a hyperbolic saturation of the rate of predation as prey numbers increase. 
The latter is basically the Holling disc equation and is represented as V/(1+ Vlv). The 
former, hunger, is simply 1 - S . Both processes may limit the overall consumption 
rate, but how to combine them? We discussed this problem in Sec. 4.3.5, and Kareiva 
and Odell use the multiplicative approach so that net consumption rate is 

where y is a conversion factor. 
The fraction of an individual prey that is consumed declines with satiation: 1 - $3. 

And, lastly, each completely consumed prey increases satiation (decreases hunger) by 
a constant, a. If we assume that digestion decreases satiation by a constant proportion 
in unit time (A), the dynamics of satiation is 

If we assume that the acts of predation and digestion occur much more quickly than 
population growth and migration, then we can assume that S will achieve equilibrium 
rapidly for a given level of V. In other words, 

(Note that this is a good example of model simplification by eliminating variables in 
Sec. 3.7). 

Knowing the steady state satiation level, we can solve for the predation rate per 
predator at constant V as the consumption rate divided by the fraction of individuals 
consumed times the effect of consumption on satiation. This reduces to 

This equation is a modified Holling disc equation in which the overall rate is the com- 
bination of two processes hypothesized to influence consumption rate. First, consump- 
tion rate will decline in proportion to the satiation level or degree to which the gut is 
filled [y(l - q) /R)] .  Second, as with most predators, there are behavioral or physiolog- 
ical limits to consumption rates resulting in a Type 2 saturation curve. In this model, 
this phenomenon is parameterized by a maximum encounter frequency (v). Since this 
is the rate per predator, multiplying by the number of predators gives the total death 
rate of victims, shown in Eq. 16.5. 
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Predator dynamics are more complex because both diffusion and aggregation pro- 
cesses are important, as are immigration and emigration. The flux equation for preda- 
tors is 

a~ a a~ a av 
- = -Dp(V)- - -x(V)PZ + upa(V. P) -~pd(V. P). 

ax 
(16.6) 

axG-L.+ at - 
diffusion aggregation immigration emigration 

The loss term on the extreme right represents emigration only, but in another model 
could also include death processes. This function depends on both V and P in that 
ladybugs will stay in a patch unless aphid density is below a minimum threshold de- 
scribed as 

uPd(K P) = min(0, A1 P(V - A2)), 

where A1 and A2 are empirical constants with A2 being the threshold. The middle 
term in Eq. 16.6 is immigration, but could also represent birth processes. Birth is 
ignored here because the time scale of the Kareiva-Odell model is short relative to 
the generation time of the ladybugs. Consequently, victim death rate is not involved 
in predator dynamics. Given this, field experiments demonstrated that immigration 
occurred at a constant rate, independent of local aphid densities. 

The remaining terms in Eq. 16.6 are the now-familiar summation of diffusion and 
aggregation. The important feature of this model, which distinguishes it from others 
(e.g., Keller and Segel 1970), is that diffusivity and aggregation are mechanistically 
defined and estimated by individual movements. The reader should consult Kareiva 
and Odell (1987) for the detailed derivation, but here we repeat the intuitive descrip- 
tion contained in their Fig. 2. Remember that the central hypothesis of the model is 
that area-restricted search, an individual-level phenomenon, will produce bulk pop- 
ulation flows that concentrate predators in regions of high prey density. The critical 
assumption needed to achieve this is that individuals will have a greater tendency to 
reverse their direction of travel when they are more satiated than when they are less 
satiated. In other words, hungry bugs will tend to walk straight ahead; full bugs will 
be indecisive, moving first this way, then that way. This is a reasonable hypothesis and 
a plausibly adaptive strategy: "if you're hungry, you're not finding food, and if you're 
not finding food, you should look elsewhere." 

Will this reversal hypothesis cause a net flow of predators in the direction of in- 
creasing prey density? To see that this is the case, imagine a prey population whose 
1-dimensional spatial distribution increases monotonically from left to right. Preda- 
tors on the right will have relatively high reversal rates, because, according to the 
hypothesis, they are finding lots of prey and are relatively satiated. Predators on the 
left will have relatively low reversal rates because they are hungry and finding rela- 
tively few prey. Suppose that, at some given point along the prey spatial gradient, five 
satiated predators happen to be moving to the left and five hungry predators happen 
to be moving to the right. In the next time interval, most of the hungry predators will 
continue moving right because they have a low reversal probability. Assume four of 
the five predators continue moving right. Conversely, many of the satiated predators 
will reverse direction, by the reversal hypothesis. For instance, two of the five reverse 
and move right. As a result, in the next time interval, four predators are moving left 
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toward lower prey density and six predators are moving right toward higher prey den- 
sity. Thus, the individual mechanism produces net flow toward the higher prey density. 
To complete the intuitive argument and to test your understanding, suppose the prey 
population is low at both the right and left ends of the spatial interval. This means 
that the prey population has a maximum somewhere along the interval. Will the net 
flow be toward the right all along the interval, or will it be toward the left over some 
sub-interval and toward the right over a different sub-interval? 

Based on algebra underlying the above intuitive argument, Kareiva and Odell de- 
rived the predator diffusivity function as 

where u is the ladybug travel speed, and R(So) is an empirically fit relation between 
equilibrium satiation (So) and the number of reversals per day. To avoid a complicated 
derivation of the psychology of satiation in ladybugs, the authors simply fit experimen- 
tal observations of individual reversal rates performed at different prey densities to an 
empirically posited third-degree polynomial with parameters pi, i = 0 .  . .3. The result 
is the required monotonic increase in reversal probability with increasing densities of 
prey and, consequently, increasing levels of satiation. 

The last term is the aggregation function. The critical term to define is the prey 
tactic sensitivity coefficient k(V)] which represents the degree that the prey gradient 
induces area-restricted searching behavior in ladybugs. Based again on the intuitive 
argument, Kareiva and Odell (1987) derived 

where R is the reversal function (Eq. 16.7), S is satiation level, So  is equilibrium 
satiation level, and S, is the rate of change of satiation. Equation 16.8 is not easy to 
interpret; parts of it are "...intuitively obscure, at least to us." (Kareiva and Odell 1987, 
p. 246). Basically, the numerator causes aggregation to increase as the speed of the 
predator (u) increases or as the reversal rate (R) increases with changes in victim den- 
sity (acting through satiation level). The mechanism of this relation is area-restricted 
search: the ability of the ladybug to detect aphids and reverse direction. The denomi- 
nator describes how the ladybugs will become more sensitive to aphid gradients as the 
local density of aphids becomes small.  overall,^ declines with increasing V. 

The complete set of parameters and their values are shown in Table 16.1. Using a 
combination of short-term laboratory and field experiments, all of the parameters were 
estimated. The model was solved numerically using a standard method for PDEs. The 
model as a whole was tested in an independent field experiment in which 10-m strips 
of goldenrod were maintained in an isolated field (Fig. 16.2). At 1-m intervals, nonuni- 
form densities of aphids were deposited. The test distribution used were two patches, 
at 3 m and 7 m, using two different concentrations of aphids. Uniform densities of 
ladybugs were deposited at each of the 1-m positions. The resulting spatial distribu- 
tions of aphids and ladybugs were followed for several subsequent days. This test was 



332 Chapter 16 Spatial Patterns and Processes 

Table 16.1 : Parameter values and units for the Aphid-Ladybug model. 

VARIABLES 
S Unitless (0 + 1) Satiety: fraction of gut filled 
V aphidslm Victim (aphid) density 
P ladybudm Predator (ladybug) density 

PARAMETERS 
a 8.00 Aphids killed at predator consumption rate 

A l  0.0095 m/d Ladybug emigration scaling 
A2 107.0 m/d Ladybug emigration threshold 

1.71 15 reversals/d Empirical parameter for reversals 
45.3098 d-I Empirical parameter for reversals 

/3z -180.172d-I Empirical parameter for reversals 
/33 272.991 d-I Empirical parameter for reversals 
b 3.76 x m/d Aphid population growth rate 
D, 0.02 m2/d Aphid diffusivity 
17 0.9866 Fraction aphid not consumed at satiety level 
y 0.018632 m/d Maximum predator consumption rate due to empty gut 
R 2.3384 d-' Ladybug excretion rate 
v 711.2m-' Maximum ladybug encounter frequency 

u p a  0.5 m/d Ladybug immigration at low aphid density 
u 5.87 m/d Ladybug movement speed 

Vmax 50,000 aphidslm Maximum aphid population 

repeated at several times during the season. The results of one such test replicated 
three times are shown in Fig. 16.2. 

Although not a quantitatively rigorous validation (Chapter 8), the model results 
are in good qualitative agreement with the data. In particular, two ladybug patches, 
centered on the aphid peaks, developed as predicted. Victim numbers on day 2 are 
overpredicted at 3 m, suggesting that either predation rates are higher than predicted 
or that aphids have movement processes (e.g., escape behavior) that were not modeled. 
These results demonstrate that area-restricted searching behavior at the individual level 
translates into patchy population distributions. This may be one mechanism by which 
spatial heterogeneity is maintained in opposition to the homogenizing effects of pure 
diffusion. This model has become a classical example of the ability of PDE models 
to represent individual behavioral processes that produce spatial pattern. Moreover, 
models of this kind can also be used to investigate practical questions of predator 
control of prey pests. 

16.2.3 Other Continuous Applications 

Many spatial models concern the development and persistence of patterns in space 
(e.g., patchy dispersion of prey and predator). Kareiva and Odell (1987) give a useful 
synthesis of the fundamental processes necessary for pattern to arise in space. They 
observe that spatial pattern requires and will almost always develop when there exists 
(1) the short-range, fast activation of a signal that can increase in the absence of other 
forces (e.g., aphid populations that can increase independently of predators), (2) a 
long-range, slow inhibition of the signal (e.g., ladybug predation), and (3) a positive 
relation between the strength of the signal and growth rate of the inhibition (in effect a 
negative feedback). Patterns arise because the relatively slow movement (aggregation) 
of inhibitory effects (ladybugs) and its tendency to diffuse away permits the relatively 
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Figure 16.2: Time and space dynamics of the Kareiva-Odell ladybug-aphid movement 
model. Predator (P:  top) and victim (V: bottom) population densities across 10 spatial 
positions at I-m intervals for three time periods, averaged over three replicate experiments. 
(a) Initial conditions (day 0): victim patches at 3 m and 7 m and homogeneous predator 
population. (b) One day later; no victim data recorded. (c) Two days later. (Redrawn 
after Kareiva and Odell 1987, Fig. 5. @ 1987 by the University of Chicago. Reprinted by 
permission of the University of Chicago, publisher.) 

fast autocatalytic growth of the signal to reach levels that can be sustained against the 
inhibition. 

Many biological systems satisfy these conditions, although in some cases "signals" 
and "inhibitors" are not physically distinct objects such as attractant chemicals and 
slime molds. In some cases, they are simply different rate processes acting on a single 
system. For example, spatial pattern in chemical toxicant flowing in fluid (e.g., a river) 
can arise given the proper balance between chemical production, diffusion, advection, 
and biotic breakdown. Other examples of systems to which continuous spatial models 
have been applied include water and nutrient flows in soils. Similar but less obvious 
examples are "flows" of pulsating blood pressure in blood vessels or of voltages in 
nerve cells. A great many problems in morphological development (e.g., striping or 
spotting patterns in animal coats) can be formulated as the production and inhibition 
of a chemical substance that affects coat pigment (Murray 1989). 

16.3 Patches and Metapopulations 

Another broad class of spatial models represents space as discrete patches. These 
models come in two flavors: (1) the patches are contiguous with each other, and (2) 
the patches may be separated by an undefined distance. In (I), the patches represent 
a coarse-grained discretization of continuous space, similar to the fine-grained repre- 
sentation used in solving PDE models of spatial flows (Kareiva and Odell 1987). This 
approach to spatial structure is frequently used in large-scale ecosystem models where 
the number of components and the complexity of their interactions require a relatively 
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Figure 16.3: Equilibria for two patch models. (a) The original Levins model plotting the 
gain rate and loss rate against the fraction of occupied patches. The point of intersection 
is the stable equilibrium. (b) A modified model in which the rate of extinction declines with 
fraction of patches occupied. p; is an unstable equilibrium; p; is a stable equilibrium. 

simple spatial structure in order to reduce the computational load or to match model 
structure with a low resolution sampling schedule. Models in class (2) are intended 
to describe patches of habitats or islands. Qpically, the populations have two dy- 
namical phases: within patch growth and between patch migration. When migration 
between patches is possible, the set of patches constitutes a metapopulation. Two cen- 
tral questions associated with metapopulations are: What factors influence the fraction 
of patches with nonzero population sizes?, and What factors influence the probability 
that the species will become globally extinct over all patches? The latter question is 
obviously of great concern to conservation biology and is a major factor in population 
viability analysis (Boyce 1992). We discuss models addressing these two questions 
below. 

16.3.1 Populations of Patches 

The simplest model of patch occupancy is due to Levins (1969), who viewed the occu- 
pied patches in a metapopulation as a population itself (separate from the populations 
that inhabited the individual patches). The variable of interest is the fraction of occu- 
pied patches (p) and since this variable must decline to 0 as patches become occupied, 
Levins chose a logistic-like relationship 

dp  - -  
dt - mp(l - p) - ep, 

where m is the migration or dispersal rate and e is the extinction rate. 
This equation is formally equivalent to the density-dependent population growth 

model and has one stable equilibrium. If we divide the left-hand side by p and plot 
the extinction (e) and migration (m(1- p)) against p, we see how the equilibrium (p*) 
is altered by the parameters (Fig. 16.3a). Setting Eq. 16.9 to 0 and solving for the 
equilibrium in terms of the parameters is left as an exercise. 

This model basically predicts that either no patches will be occupied if e > m or 
there will be an intermediate equilibrium that is stable. These results arise because 
the model assumes that extinction is independent of the fraction of occupied patches. 
Hanski (1991), however, reviewed a large number of studies that showed a positive 
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correlation between the average population size (N) and the fraction occupied (p). 
Hanski and Gilpin (1991) extrapolated this fact to single-species dynamics and as- 
sumed that extinction rate declines as the fraction of occupied patches increases. The 
modified model is 

where m is migration rate, eo is the extinction rate when no patches are occupied, and a 
is a shape parameter that describes the extinction rate decrease as a function of p. The 
exponential term is one possible implementation of the Allee effect. This addition dra- 
matically changes the nature of the model (Fig. 16.3b). If eo > m, there are now three 
equilibria; two are stable and the third lying between these two is unstable. As a con- 
sequence of this simple change in the assumptions, the model now predicts that there 
will be a threshold fraction of occupied patches, p f ,  below which the population will 
go extinct globally (across the entire metapopulation). If p > pf ,  the metapopulation 
will converge on p; patches occupied. 

16.3.2 Population Processes Within Patches 

Levins' model of patch occupancy was phenomenological in that it did not contain 
any mechanisms to explain the fraction of patches occupied. Lande (1987, 1988) and 
Lamberson et al. (1992) have generalized Levins' model by writing explicit equations 
for the number of occupied sites in terms of demography and population dynamics. 
The results of the two sets of models are similar, but the mathematical analyses are 
quite different. Here, we describe the approach of Lamberson et al. (1992). 

The system being modeled is the extremely controversial case of the endangered 
Northern Spotted Owl (Strix occidentalis caurina). References to the biology of the 
owl can be found in Dawson et al. (1987) and Lande (1988). In brief, this predator 
feeds high on the foodchain and is long-lived, territorial, and apparently requires large 
tracts of mature coniferous trees ("old-growth" forests). Single males establish terri- 
tories that attract females. The males are monogamous, so that males are either single 
or paired with females. Juveniles must find new territories beginning in their second 
year. The controversy arises because the forests that the Spotted Owl inhabit are ex- 
tremely valuable as lumber. Timber harvesting fragments the forest, producing small 
patches of habitat. Territorial birds occupying the patches create a metapopulation. 

The Forrester diagram for the modeled system is shown in Fig. 16.4; there are 
four state variables that interact in the standard structured population age class form 
(see Section 13.1.2). The effects of the patch structure on global population dynamics 
occur through the effect of available nesting sites on dispersal mortality and mating 
success. This is also the mechanism by which population density affects dynamics. 
The driving variable (U) allows the effects of timber harvesting to be included. Notice 
that there is no explicit representation of the spatial positions of owls. The equations 
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time 0 
Figure 16.4: Forrester diagram of the Spotted Owl Model. See Table 16.2 for definitions. 

for the state variables are 

Jt = Ptf (16.1 la) 

The auxiliary equations are 

The definitions and parameter values pertinent to the model are shown in Table 16.2. 
The nominal time step is 1 year. The model assumes a 1: 1 sex ratio, hence the factor 
0.5 in Eq. 16.1 1c. Two important assumptions of the model should be noted. First, Dt 
is the probability that a juvenile will find an unoccupied patch before dying. (1 -At/T) 
is the probability of not finding a patch in one "search attempt." This value raised to the 
number of attempts made before dying (i.e., the search efficiency, m) is the probability 
of dying before finding a patch. One minus the probability of dying is the probability 
of surviving and finding an unoccupied territory in m attempts. Second, Mt is the 
probability of an unmated female finding a male occupying a territory on a patch. 
The probability calculation uses the same logic as juvenile dispersal: (1 - St/T) is 
the probability of not finding a mate in a single search attempt. n attempts are made 
before the female dies or leaves the area. The finite rate of increase of Pt is 
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Table 16.2: Parameters and definitions for the Spotted Owl model. 

STATE VARIABLES 
J Juvenile numbers 
S Total single (unpaired) adult numbers 
P Paired adult numbers 

S, Numbers of single males 
S F Numbers of single females 

AUXILIARY VARIABLES 
0 Number of occupied sites 
A Number available unoccupied sites 

U(t)  Time varying number of suitable sites 
D Probability of juveniles surviving dispersal 
M Probability of female finding male 

PARAMETERS 
ss Fraction of single owls surviving 0.71 
SJ Fraction of juveniles surviving to single adults 0.60 
p, Probability both individuals of a pair survive 0.88 
pf Probability only female of a pair dies 0.056 
f Number of offspring per breeding pair 0.66 
m Unoccupied site search efficiency var: 
n Unmated male search efficiency var: 
T Total sites in system 1000 

The terms MD and M(l - M) approach 0 when S t  is small or large. This produces 
a "hump-shaped" curve: the Allee effect. To test the significance of this assumption, 
Lamberson et al. (1992) also analyzed an alternative, simpler model that modeled only 
females and used a fixed probability of mating success. 

These equations were simulated and analyzed analytically for equilibrium condi- 
tions (Lamberson et al. 1992). Simulations (Fig. 16.5) revealed three equilibria: one 
at zero pairs, a stable 150 pairs, and an unstable 25 pairs. An unstable equilibrium was 
also present in Hanski's modification of Levins' model. The same phenomenon is op- 
erating here through the effects of density on available territorial sites, dispersal, and 
mating success. This is shown in Fig. 16.6, where the solid lines indicate the single 
equilibrium present when density does not affect mating success, and the broken lines 
indicate stable and unstable equilibria resulting from the mating effects. The unstable 
equilibrium is pernicious in this case because it constitutes a threshold below which 
the population will inevitably go extinct (Fig. 16.5). Notice (Fig. 16.6) that for fixed 
searching efficiency the line of unstable equilibria is essentially flat for much of the 
abscissa. This implies that increasing the proportion of suitable habitat will not signif- 
icantly reduce the extinction threshold. Other management strategies will need to be 
explored. 

Lamberson et al. (1992) also investigated the effects of timber harvesting on owl 
population dynamics through the effects it has on suitable breeding sites (driving vari- 
able U in Fig. 16.4). They assumed suitable breeding sites were reduced from 40% of 
the landscape to 20% at a rate of 4% per year. Numbers of pairs declined, as expected, 
but did not equilibrate at about 100 pairs until 15 years following harvesting cessation. 
They also found that if harvesting was continued until only 13% of the landscape was 
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Figure 16.5: Simulation results for Spotted Owl breeding pairs. Top line is the number 
of suitable sites (U) in the system (25% of total). Trajectories below are scenarios with 
different initial conditions. Populations started with fewer than 25 pairs go extinct; those 
above 25 reach a stable equilibrium of 150 pairs. (From Lamberson et al. 1992, Fig. 3. @ 
1992 Blackwell Science, Inc. Reprinted by permission of Blackwell Science, Inc.) 

suitable habitat, the owl population went extinct. This is a slightly lower threshold 
than determined by Lande (1988). 

16.3.3 Spatially Explicit Patches 

While the above model of Spotted Owls allows us to manipulate space-related param- 
eters such as the ability of females to find distributed mates, we cannot investigate 
the effects of the arrangement of suitable sites. For this, we need to know the spatial 
location of each patch; that is, we need a spatially explicit representation of the suit- 
able sites and a model of the explicit movement of individual owls among the sites. 
Such a model is an example of an individual-based model (IBM) discussed in Sec- 
tion 13.1.4. McKelvey et al. (1993), building on their aggregated patch model just 
described, constructed a spatially explicit landscape model of the Spotted Owl. 

An individual-based model, when applied to population phenomena, follows the 
fate of a number of individuals from their birth to death. In the process, this IBM 
follows the individuals' movement across patches searching for suitable territories or 
mates. The determination of whether a particular individual will find a mate, or if it 
will die is the result of probabilistic rules. In this case, a set of rules for males and 
females operates at each time step. As an illustration, the flow of computation (Fig. 
16.7) for females is similar to an IBM for fish population dynamics (Sec. 13.1.4). 

By repeating this basic algorithm for all females, and a similar one for males and 
mated pairs, the position of each individual is known as well as its current state: alive 
or dead, mated or single. The rules used in this model are more complex than the sim- 
ple equations of the population-based model above; they are designed to incorporate 
more of the known behavior of the owls. For example, owls can move toward good 
habitat and away from poor sites; females will avoid crossing territories with mated 
pairs, and so on. More importantly, since space is explicitly represented, the model 
can predict the population effects of different spatial arrangements of good and bad 
sites. This permits an investigation of whether forests should be harvested to preserve 
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Figure 16.6: Equilibria of Spotted Owl patch occupancy as a function of percent suitable 
habitat available using three levels of juvenile searching efficiency for unoccupied patches 
(m = 40, 20, 10). The solid line is the single equilibrium resulting when mating success is 
independent of population levels (females do not search for mates). The broken lines show 
the two equilibria that result when mating success declines at low male population density 
(Allee effect). At each value of m, the dotted line (top) is the locus of stable equilibria; the 
dashed line (below) is the locus of unstable equilibria. (From Lamberson et al. 1992, Fig. 4. 
@ 1992 Blackwell Science, Inc. Reprinted by permission of Blackwell Science, Inc.) 

one large tract of nesting habitat or to preserve many small "islands" of suitable habitat 
widely dispersed throughout the forest. This is the basic question of biotic preserve de- 
sign known as SLOSS: Is it best to create a Single Large Or Several Small preserves? 
McKelvey et al. (1993) simulated 30 replicates of several scenarios to investigate this 
question. The results (Fig. 16.8) show that many small patches of suitable habitat 
produced smaller populations than a single large patch. 

In both the earlier spatially aggregated model as well as this more complex spa- 
tially explicit individual-based model, we have a model of a system that is neither a 
white box nor a black box (sensu Karplus 1983). The model results, nevertheless, are 
tantalizing pictures of possible outcomes of management strategies. Because the issue 
of whether to cut mature forests is so contentious with such a great deal at stake on 
both sides of the issue, it behooves us to evaluate carefully if this model in particular, 
and population ecology, in general, is mature enough to support the model's use as a 
prescriptive tool (Fig. 1.6). On the one hand, the model captures the basic demography 
and behavior of the birds using the best data available for parameter estimates. On the 
other hand, this simple model is a shallow caricature of a mature forest ecosystem of 
which the owl is a single component. Should we base decisions that will affect the 
profitability of a major industry, thousands of jobs, and the fate of a cherished species 
on such a model? Perhaps no other issue or simple model more starkly confronts us 
with the potential and limitations of computer simulation models to address societal 
conflicts. 

16.4 Exercises 

1. In Chapter 4 we discussed several methods to combine multiple rate-limiting 
processes. Which method was used in the aphid-ladybug model to describe the 
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1. Assign random spatial locations to all owls 
2. Loop over time steps 
3. Loop over all females 
4. Calculate probability of predation or starvation (Pd) 
5. Choose Uniform random deviate (x) Is x < Pd? 

Yes: KILL this female. GOT0 8 
No: Continue 

6. If female not mated, SEARCH for male in surrounding 
patches. Male found? 
Yes: Assign to pair. GOT0 8 
No: Continue 

7. FIND new suitable patch and MOVE. 
If Out-of-Region, KILL female. 

8. GOT0 3 
9. GOT0 2 

Figure 16.7: Computer algorithm for Spotted Owl individual-bassd model. 

rate at which aphids are killed? 

2. Implement and simulate the Keller-Segel model of slime mold aggregation. 
Identify conditions for aggregation. 

k (MBSCD contains SimSlime to help with this exercise. I 
3. In Chapter 6, we described the method of lines (or coupled ODEs) to solve PDE 

models. Write the system of coupled ODEs that are appropriate for the aphid- 
ladybug model. Attempt to numerically duplicate Kareiva and Odell's results 
using this method. Compare your results to those of the original. 

k [MBS-CD contains SimMOL to help with this exercise. 1 
4. Using the above solution method, or the original method, investigate the impor- 

tance of ladybug movement speed (u) to the aggregation process. How impor- 
tant is it to measure this parameter precisely? 

5. Create a conceptual individual-based model (Sec. 13.1.4) of ladybug movement 
that incorporates the same behavioral and ecological processes as those used in 
the Kareiva-Ode11 PDE model. Compare and contrast the two approaches. 

6. Stability analyses of metapopulation models. 
a) Using Eq. 16.9, solve for the equilibrium in terms of p, e, m. Perform 

a stability analysis (using the symbolic variables e and m). Diagram your 
results in a two-dimensional graph with e on the x-axis and m on the y-axis 
showing the regions of qualitative dynamics (extinction, stable equilibria, 
unstable equilibria. 

b) Repeat with Eq. 16.10 using a and m. 
7. Show why the equilibria in Fig. 16.3 are classified as stable or unstable. 
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Figure 16.8: Results of 30 replicate simulations of a spatially explicit model of Spotted 
Owl population dynamics. The scenario on the left shows population mean and *1 standard 
deviation for 100 years when the habitat is distributed as many small patches (see insert). 
On the right are the results when a single large patch is present. (From McKelvey et al. 
1993, Figs. 8 and 10. @ 1993 Sinauer Associates, Inc. Reprinted with permission of the 
publisher.) 

8. Simulate the Spotted Owl model and attempt to reproduce the results of Lam- 
berson et al. (1992). Add stochastic effects in the environment; do sufficient 
Monte Carlo runs to produce 95% confidence intervals at several points in time 
for breeding pairs and site occupancy. As one possibility, try making fecundity 
a normal random deviate, then repeat using survival fractions. What effect does 
stochasticity have on the probability that the population will survive 250 years? 

MBS-CD contains SimAgePop in CD directory . . ./OPopulations 
to help with this exercise. 

9. Where in Fig. 1.6 would you position the model of Lamberson et al. (1992)? 
Where would you position the model of McKelvey et al. (1993)? Why? Seek 
out a professional wildlife manager and discuss this issue with them. 
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Scaling Models 

17.1 Pattern and Scale 

T HE KAREIVA-ODELL MODEL of spatial predation (Chapter 16) did well in describing 
the dispersion of aphids and ladybugs over a scale of 10 m2. But, what we often 

want to know is: How many ladybugs will it take to eliminate aphid damage in my 
yard? This is a question of population densities over hundreds of square meters. In 
Chapter 6, we discussed how the computational difficulty of a problem increases as 
we increase the spatial extent and dimension of a system. We can reduce this compu- 
tational explosion if we decrease the spatial resolution we use to solve the equations 
as we increase the extent. Unfortunately, when we reduce spatial resolution, we often 
lose the mechanistic basis of the fine-scale model, since the low-resolution model will 
not be able to represent processes that can be described only at small spatial scales 
(e.g., biochemical reactions, or individual animal movement). Thus, we have a conun- 
drum: How can we incorporate mechanistic processes into models that must predict 
over long time and large distances? In short, how can we scale models from the small 
to the large? One solution is to simply use larger and faster computers, which may in- 
clude massively parallel computers (Haefner 1992). But another approach is to build 
large-scale models that preserve the behavior of the mechanistic, small-scale models. 
In this context, Levin (1992) has famously noted ". . .the problem of pattern and scale 
is the central problem in ecology . . . ." Moreover, as Levin (1992) emphasized, the 
scale at which a pattern is observed is often much larger than the scale at which the 
process is studied. Because of its importance to spatial models, we will discuss some 
basic issues underlying the concept of scale and its implications. In particular, we will 
discuss the role of models in bridging the gap between process and pattern, but first 
a few fundamentals. Schneider (2001) describes the history of the scaling problem in 
ecology. 

17.1.1 Scaling as Extrapolation 

The essence of scaling is extrapolation. Given a measurement that depends on an in- 
dependent variable (x), we want a rule or law that permits us to predict the variable 
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for values of the x beyond those used in defining the original relationship. This is the 
scaling problem, and it has been around for a long time. Most biologists encounter it 
in the form of allometric relations that state that one morphological variable is a power 
function of another morphological variable: M2 = a ~ f ,  where the parameters vary 
depending on the system to which the function is applied. For example, the weight of a 
mammalian brain in grams is proportional to the total body mass (gm): B = 0.059m0.76 
(Calder I11 1996). This has been extended to relationships between physiological pro- 
cesses (e.g., oxygen consumption as a function of running speed). In physiological or 
organismal systems, body size is an important independent variable, as many physi- 
ological processes are simple power functions of body size (Schmidt-Nielsen 1984). 
This application of power functions as scaling laws has been generalized and extended 
to ecological relations (Peters 1983; Brown 1995; Brown and West 2000; Schneider 
2001; Enquist et al. 2003). 

More recently, the scaling problem has taken on new meaning with the realization 
that not only can properties of a system (e.g., body size) form the basis of a scaling law, 
but that the measurement device itself can determine the magnitude of the dependent 
variable. Mandelbrot (1977) graphically brought to our attention the fact that simple 
measurements such as the length of a natural object (e.g., the shoreline of an island) 
will depend on the basic unit of measurement used. For example, in measuring the 
length of the coast of England, if the length unit is 100 kilometers our estimate will be 
far shorter than if the length unit is 1 meter, because in the former units we skip many 
little twists and turns that the shorter ruler picks up. In this case, the quantity measured 
(Q) is related to the measurement scale (L) by a simple power law: Q = a ~ ~ ,  where a 
and D (the fractal dimension) are constants. 

The point here is that the characteristics of the measurement device (or, more 
generally, the sampling regimen) will determine the result. Consequently, for many 
natural problems there is no one, unique answer to questions of measurement. To dis- 
tinguish this aspect of the scaling problem from physiological scaling, I refer to it as 
measurement scaling. This aspect of the scaling problem has attracted much attention 
in the analyses of distributed systems and models. 

17.1.2 Measurement Scale 

Within the context of scaling problems created by finite measurement units, two as- 
pects of scale must be distinguished: properties and dimensions. There are three di- 
mensions along which scale can be defined: space, time, and biological organization 
(Frost et al. 1988). The dimensions of space and time have the usual physical defi- 
nition. So, we can speak of the time and space scale at which observations are made 
or to which models pertain. The dimension of biological organization relates to the 
biological object studied: biochemical, cellular, organismal, population, etc. We can 
define, for each of these dimensions, two properties: extent and resolution. Extent 
refers to the length or duration of the observations (e.g., number of months or years). 
Resolution refers to the frequency of observation or the period between observations. 
Applied to biological organization, extent refers to the number of levels of organiza- 
tion incorporated in the study; resolution pertains to the position of the system studied 
in the hierarchy of biological systems (e.g., cell, organism, population, ecosystem). 
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The lower the position, the higher the resolution (e.g., molecules vs ecosystems). For 
many processes, there is a positive correlation among the dimensions and the prop- 
erties. As one increases the spatial extent of analysis, the time-scale extent also in- 
creases: events that occur uniquely at a small spatial scale occur more quickly than 
those that exist at larger scales. For example, water percolates quickly among soil par- 
ticles, but requires more time to flow from one end of a watershed to the other. Also, 
as one studies biological systems higher in the hierarchy of organization (e.g., whole 
vertebrate organisms vs their individual cells) processes proceed more slowly and over 
larger spatial distances. 

Every model or observational study must be performed at a particular resolution 
and extent. Improper choice of scale properties can provide misleading data. To il- 
lustrate this, suppose Martians landed in a wheat field in central England and their 
spacecraft left a large imprint identical to the Roman letter "A" (Fig. 17.1). Suppose 
further that it was our job to determine the shape of the imprint, and, like the elephant 
and the blind men, we were restricted to ground sampling at discrete points. Without 
knowing the size or shape of the spaceship, we would have to choose an area from 
which to sample and a distance between sampling stations. If the distance between 
stations is too large, we might conclude the ship was shaped like the letter "Y" (Fig. 
17.la). If the size of the sampling plot was too small, we might conclude the ship 
was shaped like the letter "V" (Fig. 17.lb). A blind man who touched the elephant 
with his hand at four points that just exactly coincided with the legs of the creature 
would conclude he was in a forest! The same problem occurs if we sample at a single 
spatial point over time: we can sample too infrequently or for too short a duration to 
accurately describe the true dynamics (Fig. 17.lc,d). 

The relative intractability of the scaling problem depends on the quantity being 
measured. If the quantity is a length-related measurement such as length, area, and so 
on, then Mandelbrot (1977) has shown how to use the fractal dimension of the process 
to define a scaling rule. More often, however, the quantity to scale is a biological 
property that covaries with spatial or temporal scale but is the outcome of complex 
biological subprocesses. It is not obvious how to relate scale and quantity in these 
cases. Almost certainly, it will not be a simple power function which is the basis of 
fractal dimensions. The magnitude of the problem can be glimpsed by considering 
the problems of describing and modeling plant photosynthesis at scales ranging from 
biochemistry to global primary production (Fig. 17.2). It is clear that a simple equation 
will not successfully predict the global consequences of humidity changes over a small 
area of a leaf (Sec. 11.3). Other approaches will be required and below we survey some 
of the models and scale-related issues. 

17.1.3 Approaches to Scaling 

There are two components to the problem of scale: identifying the important scales 
and producing an algorithm for relating processes across scales. The first problem has 
two solutions: (1) decide a priori what the biological levels and scales are and (2) use 
the patterns emerging from statistical analyses. The problem with the first solution is 
that the biases of the observer may influence the choice of scales. When the decision is 
made by an experienced observer, well informed on the spatial and temporal dynamics 
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Figure 17.1 : Errors encountered when improper choice of extent and resolution are used 
in space [(a) and (b)] and time [(c) and (d)]. The correct pattern in space is the letter 
"A" and in time a sine wave. The sampled points are represented by circles. lnadequate 
resolution of spatial sampling (a) suggests the pattern is the inverted letter "Y" (dashed 
line). lnadequate resolution in the time dimension means the peaks and troughs will be 
missed (c). Too short an extent of observations in space (b) suggests the inverted letter "V ;  
temporally, (d) the data would suggest a constant decrease over time. 

of the biological components of the system, often good, even optimal, results can be 
obtained. If we are not well informed, then we can be badly misled by a poor choice 
of the appropriate scales (Fig. 17.1). Alternatively, we can use statistical analysis. We 
do not have space to cover any of these in great detail, but we can mention some and 
give a few examples. 

17.1.4 Statistical Techniques for Scale Identification 

In both space and time, the primary technique, in one form or another, is to search 
for correlations among sampling points. In spatial sampling, the semivariogram is a 
powerful tool (Davis 1986). Highly correlated regions are similar and, to some degree 
of approximation, can be treated as identical. Basically, this method examines the 
variances associated with a set of points separated by a given distance. The method 
calculates the variances for all distances nAh where Ah is a step size between samples, 
and n is the number of pairs of distances examined. If the quantity measured is sim- 
ilar for a particular nAh, then the variance will be low. If the variance is high, there 
is no correspondence between the two spatial points: they are independent. Figure 
17.3 shows hypothetical data along a transect (Fig. 17.3a) and the associated semivari- 
ogram (Fig. 17.3b). The latter shows that nearby points are similar (low variance) and 
distant points are uncorrelated. The distance at which the semivariogram reaches its 
maximum (3.5 m) indicates a natural spatial scale of patchiness. 

A related technique is spectral analysis (Platt and Denman 1975; Levin 1992). 
In this method, the time or space series is assumed to be a summation of sine waves 
that combine to produce a complicated signal (see Section 17.2). For each component 
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Figure 17.2: Schematic of the hierarchy of scales at which photosynthesis occurs. At 
the lowest (reasonable) level are molecular and biochemical processes. At the highest 
(reasonable) level are global processes. Each level has a characteristic space, time, and 
biological scale. The challenge is to find algorithms for using mechanistic knowledge at 
small scales to predict patterns at large scales. 

frequency in the signal, there will be an associated variance that is proportional to the 
amplitude of that frequency. A time series that is dominated by frequency x will have 
a high amplitude associated with x. The variance is also called power, so the power 
spectrum of a signal is a plot of the variance against frequency or, equivalently, period. 

These analyses can be used to identify characteristic length scales that explain 
relatively large amounts of variability in data sets. For example, from stationary me- 
ters and transects in Lake Tahoe, Powell (reported in Platt and Denman 1975) plotted 
chlorophyll variance and current speed variance against the inverse of distance. The 
power spectra of both these variables increase from short to long length scales. The 
two spectra have similar slopes from 100 m to 10 m. At 100 m, the chlorophyll power 
spectrum shows a sharp break and discontinuity where the current speed does not. 
This is interpreted as indicating that physical processes determine biological patches 
of length scale less than 100 m, but that biological processes dominate above this 

5 .- 
0  10 2 0 5 0 1 2 3 4 5  

x (meters) x (meters) 

Figure 17.3: The semivariogram of a spatial transect can indicate space scales. (a) A 
quantity y varying across a transect of 20 m. (b) The semivariogram for the transect where 
the breakpoint (arrow) indicates a natural spatial scale of 3.5 m. 
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Figure 17.4: Variance in percent of space as grassland in remotely sensed images as 
a function of the size of the integrated area. The stair-step pattern in which steep slopes 
alternate with shallow slopes indicates the presence of distinct hierarchical levels. (From 
(O'Neill et al. 1991, Fig. 5.2). @ 1991 by Springer-Verlag New York, Inc. Reprinted by 
permission of the publisher and author.) 

scale. Levin (1992) tells a similar story for phytoplankton and krill in the Southern 
Ocean. 

O'Neill et al. (1991) have gone a step further with this type of analysis to draw 
broad generalizations about ecosystem structure. Using remotely sensed digital pho- 
tographs, they placed 32 transects radiating from a common central point. The fraction 
of the landscape occurring as grassland was determined every 200 m along each of the 
transects and analyzed to simulate transects of different distances. For example, a 
short transect included only the first 1000 m from the central point. This was a small 
spatial scale analysis. The longest transect (large spatial scale) used the complete 
transect and covered 30,000 m. The variance was computed from these 32 observa- 
tions and repeated for 30 total transect lengths. While there was a noisy relationship 
between scale and variance at extremely short scales, a striking pattern emerged for 
the middle to large spatial scales (Fig. 17.4). The slopes relating scale to variance 
changed in a stair-step fashion. O'Neill et al. (1991) interpreted this as indicating a 
hierarchy of processes in the system. Scale intervals labeled B, D, and F are believed 
to be structured by different processes with F representing events that occur on the 
largest spatial scale and subsuming the progressively smaller spatial scales of D and 
B. O'Neill et al. (1991) conclude that the pattern in Fig. 17.4 reveals hierarchical 
structure in the ecosystem, where the hierarchical levels are those operating at the 
spatial scales labeled B, D, and F .  

This method does not tell us what the processes are that cause these patterns, but 
it helps identify the scale-dependent scaling laws which Levin (1992) believes must 
be found. Levin and his colleagues (Levin and Butte1 1987; Levin 1992; Moloney 
et al. 1992) analyzed spatially explicit simulation models of disturbance and plant 
dispersal using similar techniques and have found strikingly similar patterns. In this 
work, the discontinuities arose from spatial correlation lengths that were determined 
by the interaction of dispersal ability and disturbance frequency. Since the structure 
of the model is known, spatial correlation techniques in combination with mechanistic 
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models provide a methodology for teasing apart the relative contributions of processes 
producing spatial pattern. 

While there have been successes and insights from these methods, many others 
have been proposed and used. These include tests for randomness, fractal dimension, 
average patch size, autocorrelation, and others. Cullinan and Thomas (1992) com- 
pared the ability of many of these approaches to detect structure in hypothetical and 
real data. Not too surprisingly, they found that no one method was clearly superior and 
recommended that several methods be used in detecting scaling laws. Other method- 
ological analyses can be found in Turner et al. (1989) and Milne (1991). 

17.1.5 Scaling Models 

A popular belief is that the world is hierarchically organized (Pattee 1973; Allen and 
Starr 1982; O'Neill et al. 1986), perhaps along the lines of Fig. 17.2, perhaps in some 
other way (Fig. 17.4). On the one hand, most modern-day biologists are sufficiently 
well-indoctrinated with mechanistic and reductionistic explanations to accept the idea 
that lower level processes (e.g., biomolecular) are the cause of higher level patterns. 
On the other hand, researchers of large-scale, global-level phenomena, such as climate 
change, believe that the states of higher levels of organization constrain low level pro- 
cesses. One example of this might be the belief that the global level of C02 influences 
average surface temperatures, which in turn affects enzyme reaction kinetics. There 
is the possibility that the myriad of fine-scale systems interact among themselves and 
with physical transport systems to alter physical regions beyond the small spatial scale 
of the lower level systems. So, one reasonable world view envisions an hierarchical 
system with material causation working upwards and set-point constraints operating 
downward. Holding this view does not imply that phenomena exist that cannot be 
given mechanistic or causal explanations. 

This basic philosophy has led to two different approaches toward model construc- 
tion. Bottom-up models attempt to predict higher level phenomena using low-level 
processes. These models are deterministic, mechanistic, and process-based to explain 
high-level system performance as the outcome of systems at smaller spatial and shorter 
time scales (Jarvis 1993). Such explanations may be error-prone due to error propa- 
gation of knowledge beyond the scales at which it was acquired. Top-down models 
attempt to describe system behavior as the result of a phenomenological relation be- 
tween system variables and an external driving variable (Jarvis 1993). 

Scaling can be done for each of the three scaling dimensions. When the dimension 
is biological resolution, we are dealing with the errors of model aggregation. This was 
discussed in Section 9.2.3. Scaling across space and time are similar problems since, 
as a general rule, the scales are correlated: long times are associated with large spatial 
extent. One obvious approach is to derive a new model appropriate to the larger scale 
from a combination of first principles and empirical data for the new scale. The new 
and original models can be compared because the output of the new model is also pro- 
duced by the original model, when it is iterated over as many spatial or temporal units 
as necessary to achieve the larger extent. We have already noted that using the origi- 
nal model in this way is computationally burdensome and cannot be done for routine 
analysis of the larger scale. It is possible, however, on reduced problems to quantify 
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the discrepancies among models designed for different scales. New methods are being 
developed to address specifically the problem of scaling across space from an existing, 
low-level model. King (1991) identified four such approaches: (1) lumping, (2) direct 
extrapolation, (3) extrapolating by expected value, and (4) explicit integration. We 
briefly review these below. 

(1) Lumping (also calibration in Rastetter et al. (1992) is probably the simplest 
and most common approach to scale changes. It involves retaining the original math- 
ematical model, but selecting new parameter values applicable to the larger scale. An 
example is the "big leaf" approach to scaling from leaf-based physiological models of 
photosynthesis to the total photosynthesis associated with the canopy of a population 
of plants. (2) In direct extrapolation, the model's inherent spatial unit is replicated 
a sufficient number of times to encompass the larger spatial scale with appropriate 
information and material flow between the units. Although this approach may be 
mechanistically realistic, it can be computationally impractical. (3) Extrapolating by 
expected value is an approach that scales local output to a wider region by multiplying 
the area of the large region by the expected local output. One problem of this approach 
is defining which of the local outputs to use or how to combine them into an aggre- 
gated variable. As we saw in the section on error propagation, a nonlinear function 
evaluated at the mean of its arguments is not equal to the mean of the function eval- 
uated at a range of values of the arguments. The expected value approach assumes 
that local output is a random variable distributed across the landscape according to 
some assumed probability distribution, which is used to estimate the expected value 
of a local function (Rastetter et al. 1992). This has the problem that we must estimate 
the probability distribution given incomplete and uncertain knowledge. Rastetter et al. 
(1992) provide some methods to approximate the distribution. (4) Finally, explicit in- 
tegration is an analytical solution that requires mathematical integration of the local 
function over two- or three-dimensional space. This is usually impractical because 
complex, nonlinear models cannot be analytically integrated (King 1991). 

Of these methods identified to date, lumping and direct extrapolation are the most 
common. When some information on the probability distribution of model compo- 
nents is known, Rastetter et al. (1992) provide some tools for correcting the response 
to the variable input values. Their recommendation is to lump if sufficient data ex- 
ist at the larger scale. Otherwise, some kind of expected value approach is needed, 
but this too requires data at the fine scale for as many of the contributing functional 
components as possible. 

Scaling up, however, is only half of the problem, although it is disproportionately 
important due to our current uncertainty and inexperience with the concepts. We must 
also understand how large-scale events (e.g., global) will affect the scales at which the 
mechanisms operate. For example, if average global atmospheric C 0 2  increases, we 
must be able to relate that event with changes in photosynthetic capacity at the leaf 
level and below. To address these issues, Jarvis (1993) and Reynolds et al. (1993) 
have called for a combined approach that uses both top-down and bottom-up strate- 
gies. This is not a new idea. A quarter of a century ago, it was extensively investi- 
gated and implemented in a specialized computer simulation language called FLEX 
(Overton 1972; White and Overton 1974). The FLEX modeling language forced the 
modeler to define the hierarchical structure of the system and to specify explicitly the 
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constraints from higher levels as well as the causal mechanisms of the low levels. A 
fundamental concept was that every model has some target system that can be influ- 
enced by at least one organizational level below and one constraining or forcing level 
above. Models constructed in this paradigm simultaneously integrated bottom-up and 
top-down forces, just as Jarvis has recently suggested. 

These ideas and coding efforts were the result of the U.S. International Biological 
Program of the 1970s. Although theoretical ecology has moved in different directions 
since then, we now have a renewed need to address questions of global change and 
landscape ecology combining new tools with recent advances in the technology of 
parallel computers, individual-based models, and object-oriented simulation. Perhaps 
we should now reexamine some of the innovative approaches to ecosystem modeling 
that emerged from those early years. As we will note below, some modelers are un- 
dertaking this challenge in order to comprehend the complexity of large-scale models. 

17.2 Scaling Plant Processes: Stomate to Globe 

No other single system characterizes the problems of scale better than that of pho- 
tosynthesis and primary production. Figure 17.2 illustrates the levels that interact to 
produce global pattern. Models have been constructed at each level and several have 
been extended across scales. We have space only to mention a few of these and direct 
the readers to the literature. 

Stomate to Leaf One of the central modeling problems at the level of a single stomate 
is transpiration: rate of water loss through the guard cells. An important mechanistic 
hypothesis is that water flows between the guard cells and the surrounding epidermis 
tissue, causing the former to open and close. We have presented details of one such 
model in Section 11.3. The scaling problem here is to extrapolate from the single 
stomate to the leaf. There are several possibilities. 

(1) Replicate the system of ODEs for single stomata across the entire leaf for each 
of several million stomata. This would require massive computer resources. For a leaf 
of 10 cm2 with 100 stomata/mm2, this requires that we solve a system of 3 million 
ODEs. Converting the framework to continuous space using PDEs is possible (Rand 
and Ellenson 1986), but loses the natural discrete form of the plant anatomy. Since 
most of the current technology applied to water-relations physiology cannot make 
measurements at the individual stomate level, the PDE approach may lose little in the 
way of spatial resolution. 

(2) Lump groups of contiguous stomata. Nearby stomata are likely to behave sim- 
ilarly, so pooling them together is not likely to affect overall outcomes. One obvious 
choice is to pool stomata sharing a given areole (i.e., the leaf area lying within the 
smallest veins). Effectively, this approach scales by lumping. Other spatial averaging 
methods are possible, including pooling all stomata on the leaf. This could be called 
the Big Stomate model of the leaf and has the disadvantage that model parameters do 
not correspond to the physical setting of the individual stomate (Rastetter et al. 1992). 
Moreover, in the extreme, spatial averaging removes the ability to incorporate recent 
discoveries of the spatially patchy nature of stomata1 responses that may materially 
affect transpiration rates (Mott et al. 1993). 
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(3) An intermediate approach is to simplify the equations so that cellular automata 
(Chapter 19) can be used. This simplifies the solution but retains the spatially explicit 
nature of the phenomena. One possible implementation of this approach might be to 
create a large lattice in which each cell represents a stomate. Each lattice cell would be 
composed of a guard cell and epidermal tissue, both of which would switch from one 
of a finite number of states to another state by very simple state transition rules. For 
this approach to be successful, it would be necessary to demonstrate that the reduced 
equations are dynamically faithful, in some sense, to the original, mechanistic and 
physically correct equations. Peak et al. (2004) have recently attempted this. 

Leaf to Canopy Jarvis and McNaughton (1986) and Boote and Loomis (1991) re- 
viewed attempts to scale from the leaf to the canopy and region level. A classical 
approach is the level-specific models of canopy transpiration developed separately by 
Penman and Monteith. This equation is based on a careful analysis of the energy 
balance for vegetation at this scale. We will not derive the equation here, but co- 
gent presentations can be found in Jarvis and McNaughton (1986) and Thornley and 
Johnson (1990). Using primarily the notation of France and Thornley (1984), the 
Penman-Monteith equation is 

where E is transpiration, s is the slope of the effect of air temperature on saturated 
vapor pressure, A is net radiation or available energy, cp is the specific heat capacity 
of air, p is the density of air, Ap is the vapor pressure deficit or the difference between 
saturated vapor pressure of air at ambient temperature and actual vapor pressure, ga is 
the conductance of water from the leaf surface through the boundary layer, g, is the 
water conductance through the canopy, R is the latent heat of evaporation of water, and 
y is the psychrometric constant or cpP/Re, where P is atmospheric pressure and E is 
the ratio of the molecular weights of water and air. 

All of the parameters apply to the canopy level; there is no attempt to scale in the 
sense of King (1991) from a lower level (e.g., leaf). So while it does not address the 
scaling problem from lower levels per se, this equation (and others like it) is tremen- 
dously important for scaling from the canopy to higher levels. 

Norman (1993) has made extensive attempts to scale leaf processes to canopy pat- 
tern. He compares his scaling equations with the output of complex mechanistic plant- 
environment (PE) models. The canopy-level models use synthetic variables such as 
leaf area index (LAI) and photosynthetically active radiation (PAR) to statically pre- 
dict assimilation and conductance. Norman (1993) made two sets of comparisons: 
when light was the only control on assimilation; and when C02, wind speed, and 
other factors influenced the energy balance of leaves. Although he did not quantita- 
tively compare the relative precision of the five scaling equations to the PE model, it 
appears that when light alone was limiting, stratification of the canopy into sunlit and 
shaded leaves produced the closest fit to the more detailed PE model. Adding multiple 
canopy layers did not increase the precision significantly. However, using more com- 
plex controls on photosynthesis such as temperature and canopy air vapor pressure 
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Figure 17.5: Flow of computation for a layer-specific canopy photosynthesis model. Light 
from all important sources strikes layers and alters leaf temperature and transpiration. Lay- 
ers affect each other and two loops ensure that layer temperatures and energy exchanges 
are in equilibrium. (From Caldwell et al. 1986, Fig. 1. @ 1986 by Springer-Verlag GmbH 
and Co. Reprinted by permission of the publisher and author.) 

allowed the scaled-leaf model to be a closer fit to the complex PE model (Norman 
1993). 

Others have also built complex energy balance models to scale up from the leaf. 
Most of these require an iterative procedure. The class of possible strategies was 
reviewed by Boote and Loomis (1991) as a continuum from simple to complex. At 
one extreme is the "big leaf" approach which assumes homogeneously distributed 
photosynthetic material over a "leaf" that has the area of the canopy. Complex models, 
in contrast, are those that divide the canopy into layers and model layer-specific leaf 
conditions for light, temperature, boundary layer thickness, and so on. 

An example of this latter approach extrapolated leaf-level transpiration rate to 
canopy-level photosynthesis and water loss rates (Caldwell et al. 1986, see Fig. 17.5). 
This model assumes that (1) a leaf is internally homogeneous so that leaf assimilation 
rate is proportional to the product of leaf volume and assimilation rate per chloroplast, 
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(2) a canopy possesses a fixed density of leaves measured as leaf area index (LAI) for 
each of several canopy layers, (3) leaves are oriented using a fixed frequency distri- 
bution of azimuth angles (usually randomly determined), (4) photosynthesis is based 
on steady-state chloroplast biochemistry similar to that described in Chapter 11, (5) 
transpiration is a simple empirical function of temperature and the water vapor differ- 
ence between the leaf and atmosphere (unlike Chapter 1 I), and (6) the energy budget 
of incident radiation is balanced with regard to heat and its spectral components. 

The model is driven by the global rate of shortwave radiation that impinges on 
the highest canopy layer. The amount incident depends on the position of the sun 
in the sky. Shortwave radiation strikes the canopy in two forms: direct beam and 
diffuse. Not all of the direct beam component is absorbed by the leaves in the top layer. 
Due to random placement of leaves, some radiation passes through to lower levels. 
Diffuse radiation is treated approximately the same. Longwave radiation is produced 
by scattering from surfaces and the sky itself and is dependent on temperature and 
the average emissivity of the surfaces. Shortwave radiation inside the canopy is either 
absorbed or scattered as longwave radiation. 

When light enters the canopy and strikes leaves, a number of events are initi- 
ated. First, the leaf heats up; second, photosynthesis occurs so that stomata open 
and transpiration occurs. Transpiration, however, alters the microclimate of the leaf 
and thereby influences the leaf's temperature, which feeds back on transpiration rates 
(Section 11.3.2). Caldwell et al. (1986) therefore used an iterative procedure to alter 
transpiration rates until the leaf temperature within a canopy layer equilibrates (Fig. 
17.5, inner loop). 

In addition to these interactions within a canopy layer, there are radiation inter- 
actions between layers. Because light passes through layers and can be scattered up- 
wards, the total radiation input to a layer can not be determined from the top to bottom 
layer. Moreover, longwave scattering within the canopy depends on the temperature 
of leaves, thereby creating interactions involving scattering between layers, leaf tem- 
perature, and leaf transpiration rates. Consequently, Caldwell et al. (1986) employed 
another iterative scheme to bring the dynamics of energy exchange between adjacent 
layers into equilibrium (Fig. 17.5). 

The iterative nature of this algorithm illustrates extremely well the problems of 
scaling models. Both spatial and temporal scales become important when we attempt 
to maintain a mechanistic basis for large-scale processes. Leaf temperature and tran- 
spiration rates operate on faster scales than inter-layer energy transfer. Therefore, the 
model uses an inner loop to achieve equilibrium at the leaf-scale. The outer loop 
addresses the spatial scale component in the form of energy exchange between lay- 
ers. When all iterations are complete, the canopy as a whole is in equilibrium until 
global environmental conditions change (e.g., daily solar azimuth or season). Once in 
equilibrium, the state of the canopy can be used as input to other larger-scale models 
or to other iterative loops to model seasonal and stand-level scales. This conceptual 
framework can be further extended to watersheds, regions, and beyond (Fig. 17.2). 

These iterative canopy models do remarkably well in predicting physiological pro- 
cesses of canopies (Caldwell et al. 1986; Boote and Loomis 1991). For example, in 
one comparison conducted in Portugal on Quercus coccifera (Caldwell et al. 1986), 
the model fit observed net photosynthesis with r2 = 0.91; validation with independent 
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data sets had similarly high accuracy. Part of the reason for this accuracy is that the 
models rely heavily on empirical measurements to parameterize empirical functions 
and driving variables. But empirical accuracy is exactly what is required for confi- 
dent extrapolation of knowledge at the small-scale of a whole leaf to the scale of the 
canopy. 

Stand to Watershed While the above model works well for relatively closed canopies, 
the patchy distribution of trees at the level of a forest stand involves demographic pro- 
cesses that shape the structure of the canopy itself. The gap models epitomized by 
JABOWA, FORET, and the many variants (Botkin et al. 1977; Shugart, Jr and West 
1977; Shugart 1984; Shugart et al. 1992) are stochastic, small-scale models of a plot 
that contains a medium number of trees. Random events determine the number of trees 
of the various species present on the plot that die, grow, and reproduce. These models 
have been used for scaling by the direct extrapolation method of replicating the plot 
over larger areas (Shugart et al. 1992). Used in this mode, they can address questions 
of community succession and the range expansion of species under different abiotic 
conditions (e.g., global change, Davis and Botkin 1985; Davis 1986; Shugart et al. 
1992; Bugmann et al. 2000, and references therein). These models can reasonably 
be applied to large regions by direct extrapolation because the computations on each 
plot are relatively simple. In part, this is achieved by employing very simple empirical 
relationships for photosynthesis and transpiration. This approach, while tractable, can 
nevertheless require substantial computer resources. 

Watershed to Region Great strides have been made in recent years modeling spa- 
tially explicit landscapes with variable soil, hydrology, plant communities, and human 
impacts. Several groups are working on major models that integrate ecosystem pro- 
cesses and individual-based FORET-like models of plant responses: Costanza et al. 
(1990), Band et al. (1991), Sklar and Costanza (1991), and Lauenroth et al. (1993). 
Most of these modeling projects use sophisticated technology ranging from remote 
sensing, geographic information systems (GIs), automated data collection, supercom- 
puters, and high-end visualization hardware. The models are complex and technically 
difficult since they integrate the physics of water flow in saturated and unsaturated 
soils, surface runoff, complex hydrological sequences, climate and weather modeling 
on a regional scale, plant growth patterns, and animal movement. They are collectively 
known as process-based, as opposed to individual-based, since most of the models use 
a complex, system-specific lattice of discrete-space cells through which materials and 
biological populations flow. They therefore attempt to scale from the small grid cell to 
larger regions by direct extrapolation. The lowest level of biological organization used 
is dependent on the size of the larger region model and the computational requirements 
for each lattice cells. 

17.3 Summary 

Scaling knowledge from small to large scales remains one of the challenges of eco- 
logical modeling (Levin 1992). A variety of statistical techniques must be used within 
each study in order to avoid a biases view (Cullinan and Thomas 1992). Models play 
a crucial role in extrapolating to the level of regions from the individual or organ (leaf) 



level, but this requires computational power beyond the limits of current technology. 
Thus far, no universally applicable scaling methods or laws have been discovered. 
Rather, we now see the use of system-specific models (e.g., Caldwell et al. 1986) that 
permit extrapolation among two or three scales. This approach is likely to dominate 
for the near future. 



1 8 1  Chapter 

Chaos in Biology 

18.1 Nonlinear Can Be Weird 

C HAOS, THE MATHEMATICAL concept, was rediscovered, explicated, and applied in the 
mid-1960s and 70s (Lorenz 1963; May 1974) and has since then been broadly 

assimilated into contemporary Western culture. (Of course, the concept of social and 
political chaos has been well-known to even casual observers of contemporary events 
for a long time.) An informative, brief history of mathematical chaos was given by 
Holton and May (1990). Although the word is encountered frequently, as with sim- 
ilar over-arching and broadly applicable concepts such as relativity, Darwinism, or 
connectionism, the concept of chaos is sometimes only vaguely understood. In this 
chapter, we have the very modest goal of giving a qualitative, informal exposition of 
some of the underlying concepts plus a few examples. Many fine books on the subject 
exist ranging from the popular (Gleick 1987) to the mathematical (e.g., Guckenheimer 
and Holmes 1990; Hilborn 1994). 

To begin, we must recognize that chaos is a mathematical property of the time 
domain solutions of a set of equations and the parameters. Only nonlinear equations 
possess this property, so the study of chaos is a subset of nonlinear dynamics. Every 
well-educated student of nonlinear dynamics should have at least passing familiarity 
with the following core concepts: 

a Bifurcations 
a Attractors: fixed, cyclic, toroidal, and strange 
a Lyapunov exponents and sensitivity to initial conditions 
a Fractal dimensions of dynamics 
a 'Qpes of models that produce chaos 
a Identifying chaos in empirical data. 

Below, we will address each of these in different degrees of detail. As before, we 
will encounter principles used in Part I. These include age-structured population mod- 
els, stability and eigenvalues, stochasticity, limit cycles, and one-dimensional maps of 
finite difference equations. The biological questions we will examine include: Are bi- 
ological systems chaotic? What is the best test for chaos in biological systems? What 
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biological processes cause chaos? Is chaos an adaptive trait? Do chaotic populations 
have a lower probability of extinction than nonchaotic populations? 

18.1.1 Attractors 

An attractor is a mathematical object to which a system's dynamics are eventually 
confined. Qualitatively, the object is the set of solutions to the dynamic equations when 
the system is allowed to run for a long time. There are four main types of attractors: 
fixed point, limit cycle, toroidal or quasiperiodical, and strange. A fixed point attractor 
is just a fancy name for an equilibrium point. A limit cycle, discussed in Chapter 9, is 
a closed curve that represents the repetitive solutions. A toroidal attractor is a surface 
in phase space shaped like a torus or doughnut, which may be stretched and twisted. 
The system solutions are confined to this doughnut-like surface, and we discuss an 
example of this in the model of the forced Monod chemostat system (Chapter 14). 
A strange attractor is a similar but more complicated surface to which the solutions 
are confined. The important point of the attractor concept is that the dynamics are 
bounded by being confined to the attractor structure in the long run. The choice of the 
word "attractor" is appropriate here, because, when a strange attractor exits, almost all 
trajectories will approach it over time. 

18.1.2 Bifurcations 

A structure bifurcates when it splits into two branches, as in footpaths or tree branches. 
The word applies to equations because we can qualitatively represent the possible so- 
lutions to an equation as a path along which we traverse, not through time or physical 
space, but through parameter space. The qualitative solutions of an equation bifurcate 
in parameter space when the number of solutions changes as a parameter is changed. 
The parameter being altered is called the control parameter. The effects of the con- 
trol parameter on the qualitative dynamics are represented in the bifurcation diagram, 
which is an x-y plot with the control parameter on the abscissa and the long-term 
values of the state variable on the ordinate. 

By qualitative dynamics, we mean, among other things, the number of different 
values for a state variable that the long-time dynamics produce. For example, the con- 
tinuous form of the density-dependent population growth model (the logistic) has a 
long-term equilibrium of K, the carrying capacity. Over a long time, this equation 
converges on one solution value. The continuous Lotka-Volterra predator-prey model 
has for the prey (or predator) either one solution at the equilibrium point or two ex- 
trema when the prey (or predator) oscillates. 

Now, when the prey oscillates, it literally has an infinite number of states as it 
moves from its maximum to its minimum. But when speaking of qualitative solutions, 
we ignore all of these except a finite number of points. Researchers do not completely 
agree on which points to plot, but the usual practice in continuous systems is to plot 
the local maxima (the peaks). Focusing on the peaks of a state variable's dynamics 
is useful because, as we will see, there are some equations that oscillate between sev- 
eral maxima. In the theoretical (mathematical) analysis of these equations, we are 
not concerned with the exact values of states that are produced (even though they are 
definite quantities), but only the essential feature that separates one class of equations 
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or conditions (e.g., parameter values) from another. When the system is forced by 
an oscillating driving function, a slightly different analysis is used. The period of the 
driving function is the control parameter, and we analyze the dynamics by systemat- 
ically varying the period of oscillation. In this situation, the points in the bifurcation 
plot are generated by taking a snapshot of the system at the frequency of the forcing 
function. This is done irrespective of whether or not the system happens to be at an 
extrema. Producing a bifurcation diagram when finite difference equations are used 
is much simpler, for in that case only a finite number of points are generated. The 
bifurcation diagram consists of all the solution points plotted. 

The algorithm for generating a bifurcation diagram is straightforward: 

1. Set the initial and maximum parameter values and the number of parameter 
values to sample. 

2. While the current parameter value is less than the maximum, do: 
a) Run the simulation for approximately 200 time steps to allow the system 

to settle down to long-term behavior. 
b) To sample, run the simulation for approximately 200 time steps. 
c) Store the sample from the dynamics [e.g., find the peaks (continuous case), 

or save the current value (discrete case)]. 
d) Increment the parameter and go to Step 2. 

While this is correct in principle, two caveats must be mentioned. First, the al- 
gorithm will find only one attractor. Different starting values might converge on a 
different attractor. Second, the number 200 is a vague rule-of-thumb, at best. Larger 
values may be needed; some experimentation is usually required. Obviously, when 
the equations are solved on digital computers (as described above), large numbers of 
iterations can require long computing times. In any case, bifurcation diagrams give 
great insight into the dynamical structure of the equations. An important lesson from 
work in nonlinear dynamics is that this structure can be incredibly complex. We next 
illustrate this complexity with a few biological examples. 

18.1.3 Chaos in Finite Difference Equations 

Here, we illustrate bifurcation and chaos using the standard logistic map for finite 
difference equations (May 1974, 1976). However, we give a slightly different slant to 
the equations to make a point about numerical stability in ODE solvers. The Euler 
approximation of the continuous density-dependent population growth equation is 

We assume for the moment that At = 1. The expression in square brackets in Eq. 18.1 
represents the effects of population density (N,) on the per capita growth rate of pop- 
ulation. This relation is plotted in Fig. 18.la for three values of r, the maximum per 
capita rate of increase. The insert shows how the per capita rate changes over sev- 
eral iterations for r = 0.5 (line C) and r = 3.5 (line A). This figure shows that when 
the density effect is steep (large r) for a finite time step (At = I), the dynamics will 
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Figure 18.1 : Nonlinear dynamics of the logistic map. (a) Density effects on per capita 
growth rate for three values of r (A, B, C). Insert: changes in the per capita rate for several 
iterations when r = 0.5 and r = 3.5. Note that when r is large (A), the finite time step forces 
N, > K: the sequence of jumps (1, 2, 3, 4). When r is small (C), N, does not over-shoot 
K. (b) The logistic map representation for three values of r. The dashed line is the 1:l line. 
Solid curves are the density-dependent function at three values of r. Dotted lines show the 
history of population sizes visited when r = 3.5 and the initial population is 90. When r is 
large (A) the dynamics (points 1,2,3,.  . .9) are complicated. 

overshoot K, producing negative growth rates and a population decline. The dynamics 
resulting from small r converge on K without oscillations. It is the steep slope coupled 
with a finite time step that produces the weird dynamics. As Eq. 18.2 indicates, the 
critical quantity is not r, but rAt. Even if r is small, by choosing At too large, oscilla- 
tions can be produced. This is the source of numerical instability in the Euler solution 
method. When the interest in a modeling study is not bifurcation, but simply accu- 
rate solutions of the equations, the numerical instability of the Euler method should 
be avoided either by choosing At small or by using a more robust numerical method 
(Chapter 6). 

There is a simple graphical method to follow the dynamics of this nonlinear equa- 
tion. Equation 18.1 expresses N,+l as a quadratic function of N,. This relationship is 
plotted as three humped-shaped curves (for three different values of r) in Fig. 18.lb 
along with the 1:l line (dashed). Points on the 1:l line signify a population at equi- 
librium: N, = Nt+l .  To follow the dynamics, begin at an initial point (e.g., 90) on the 
x-axis, then move up to the curve that defines Nt+1. This value becomes the new N,; 
but, rather than laboriously returning to the x-axis, we move from the curve to the 1: 1 
line, and then up (or down) to the curve again for the second iteration of the equation. 
Continue this for as many iterations as desired; five iterations are shown for r = 3.5 
in Fig. 18.lb. The population values produced are the points of intersection of the 
dotted lines and the function projected onto the y-axis. Since this model contains a 
single state variable (N), it is called a one-dimensional map, or the logistic map for 
this particular model. 

Consistent with Fig. 18.la, the one-dimensional map shows that at low r (curve 
C in Fig. 18.lb) the system monotonically converges on the equilibrium. At slightly 
larger r (curve B), the population oscillates as it converges on the equilibrium. In- 
creasing r increases the negativity of the slope of the curve at the point it intersects the 
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1: 1 line. As r continues to increase, the slope becomes more negative until a slope is 
achieved for which there exists a pair of Nt and Nt+l such that Nt maps onto Nt+l and 
Nt+l maps onto Nt. This is a two-point cycle that has emerged from a bifurcation from 
a single solution. 

This bifurcation phenomenon continues as the slope is made progressively steeper. 
The second bifurcation produces a four-point cycle, followed by eight-point cycles , 
sixteen-point cycles, and so on until the condition of chaos is achieved. Since this 
process and its ultimate endpoint is so important, we develop further the dynamical 
properties of the logistic map. This has been published in many other places, but 
it is still the best illustration. Figure 18.1 demonstrates that the dynamics resulting 
from one form of the logistic map (Eq. 18.1) depend on the parameters. Curve C 
corresponds to small r, and the dynamics are a smooth convergence on the equilibrium. 
Curve A corresponds to large r, and we obtain very erratic dynamics as the rate of 
growth bounces between large positive and negative values. 

This transition from smooth, asymptotic dynamics to dynamics that do not appear 
to settle down to any simple behavior is a subject worth studying. We will do it here 
for a simpler version of the logistic map (May 1976): 

where a is the growth rate of the system scaled by the carrying capacity. In effect, the 
dynamics represent the population size as a fraction of the carrying capacity. 

Clearly, the size of the parameter will determine the number of distinct solutions 
that the equation produces. We can study the behavior of this equation by plotting the 
system dynamics for many time steps at a series of parameter values. Such a plot is 
called a bifurcation diagram (Fig. 18.2). 

& (MBS-CD contains SimBifurcate that generates plots of a bifurcation diagram. ) 

When we construct the bifurcation diagram over a range of a values (Fig. 18.2), 
we see sharp jumps from one type of dynamics to another. At small a < 3.04, the 
asymptotic values are the equilibrium. The equilibrium (y*) in this model depends on 
the parameter a; it is easy to show that y* = 1 - I la. The set of stable fixed-point equi- 
libria are represented by the slowly increasing line for 2.95 < a < 3.04. As a increases 
beyond 3.04, however, the dynamics converge not on a single equilibrium value, but 
on a two-point cycle. The qualitative solutions have bifurcated. These dynamics are il- 
lustrated in the bottom panel of Fig. 18.2. Further increases in a cause bifurcations to a 
four-point cycle, an eight-point cycle, and continued proliferation of cycle periods un- 
til, at a = 3.57, the system enters a chaotic regime (May 1976). This region basically 
is one in which the dynamics are characterized by cycles having an infinite number of 
points before repeating. The complicated time courses associated with these regions 
(Fig. 18.2, bottom-right panel) can superficially appear to be random, but it is crucial 
to remember that the model (Eq. 18.3) is completely deterministic. 

One of the fundamental implications of the complicated dynamics occurring in 
the chaotic region of parameter space is that slight differences in the starting point 
will produce drastically different sequences of values. This phenomenon is called 
sensitivity to initial conditions. This sensitivity is illustrated for a = 3.9 of Eq. 18.3 
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Figure 18.2: The bifurcation diagram for the simple one-parameter logistic finite differ- 
ence equation. In the top panel, the parameter a is varied, and a number of solutions are 
plotted for each a. The dynamics corresponding to three values of a are plotted in the 
bottom panels. 

in Fig. 18.3, where two sequences are plotted that differ in their initial conditions by 
0.0001. Initially, the dynamics are the same, but they diverge and never coincide, 
except at isolated times. Divergence is exactly the opposite of the dynamics in the 
region of a single stable equilibrium (e.g., a < 3.04). No matter where one starts, the 
dynamics always converge on the same equilibrium value. 

The above bifurcations occurred with one state variable (e.g., population size) and 
were therefore one-dimensional maps. There is a similar concept in two or more di- 
mensions when the system is continuous. A Hopf bifurcation is a bifurcation from a 
stable fixed point (equilibrium) to a limit cycle in multiple dimensions. It is more dif- 
ficult to picture, but can be done in low dimensional systems. Figure 18.4 shows how 
the dynamics can change from a stable fixed equilibrium when the control parameter 

Figure 18.3: Sensitivity to initial conditions in chaotic systems based on the logistic map. 
Using Eq. 18.3 with a = 3.9, two different trajectories were started with values that differed 
by 0.0001. The cumulative deviation between the two sequences continually grows with 
time. 
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Figure 18.4: Diagrammatic view of a Hopf bifurcation. The vl and v2 axes are the state 
variables of the system (vl and v2). Below the critical value of the control parameter (p,) ,  the 
system is in a stable equilibrium, as indicated by the heavy, straight line. As the parameter 
p is increased, the dynamics change from an equilibrium to oscillations that are confined to 
the cone. 

is below a threshold (p,) to stable limit cycles confined to the surface of a cone-like 
structure. This phenomenon was observed in the stomate model (Section 11.3.2, Fig. 
11.6, and Rand et al. 1981) when an equilibrium bifurcated into a stable limit cycle 
when Aw exceeded about 20 bars. 

The Hopf bifurcation theorem states conditions under which this bifurcation will 
occur for small parameter perturbations in state space. Mullin (1993b) gives an un- 
derstandable introduction with meaningful graphics. Caswell (1989) gives a slightly 
more technical discussion of the nature and limitations of the theorem when applied 
in ecology. 

18.1.4 Chaos in Continuous Models 

The above discussion was based on finite difference equations (except for the mention 
of Hopf bifurcation). It is also possible for chaos to arise in continuous systems, 
but the system must have at least three state variables. A biological example in the 
form of the forced chemostat model can be found in Kot et al. (1992). Complex, 
chaotic dynamics can also arise from purely endogenous interactions without external 
perturbations. One of the earliest examples from ecological systems was a model with 
two prey and one predator (Vance 1978; Gilpin 1979). 

Vance's model used Lotka-Volterra relationships among two competing prey (N1, 
N2) and a predator (P): 

Most of the parameters should be familiar by now (Chapter 9). The new parameters in 
this model are a (effect of an individual of N1 on per capita growth of N2) and E (the 
predator avoidance advantage of N2 relative to N1). N1 is a superior competitor to N2. 
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a 1.5 
b 0.01 
c 0.5 
d 1.0 
E varied 
K varied 
r 1.0 

Figure 18.5: Stability diagram for the two-prey one-predator model. Parameter values 
are listed to the right. Regions are identified by the state variables that persist in the system. 
(From Vance 1978, Fig. 1. @ 1978 by the University of Chicago. Reprinted by permission 
of the University of Chicago, publisher.) 

Using both linearized neighborhood stability analysis and computer simulations, 
Vance (1978) showed that this system produces a wide range of qualitatively differ- 
ent dynamics depending on parameter values. Vance showed that the dynamics were 
especially sensitive to K (carrying capacity) and E. He summarized this sensitivity in 
a stability diagram (Fig. 18.5) that graphs the boundaries of the qualitatively differ- 
ent dynamics in parameter space. As can be seen in the figure, different parameter 
combinations produce qualitatively different dynamics. The dynamics include all pos- 
sible outcomes: competitive exclusion, coexistence of all populations, extinction of 
the predator, and aperiodicity or chaos. These results are interesting because they 
indicate great complexity in outcomes from simple, continuous models. Also, the 
stability diagram is an important descriptive tool, one that we will use again below. 

Gilpin (1979) followed Vance's study with a brief note that plotted the dynamics 
in 3D phase space to reveal a strange attractor. This structure had been previously 
classified as spiral chaos, since the attractor is twisted in such a way as to resemble 
a spiral. This is one of the first formal analyses of a continuous ecological model 
that produced chaos. Gilpin's paper is worth reading both because of its historical 
importance for theoretical ecology, and because it contains one of the few published 
stereoscopic views of a strange attractor in an ecological journal. If strange attractors 
plotted in phase space look bizarre under normal circumstances, imagine how they 
look with your eyes crossed. In any case, the result demonstrates endogenous chaos 
in simple ecological models and the difficulty of visualizing and understanding the 
complex dynamics that nonlinear equations produce. It is to this second concern that 
we now turn our attention. 

18.1.5 Signatures of Chaos 

For all the youthful enthusiasm associated with the recent interest in nonlinear dy- 
namics, it is surprisingly difficult to unambiguously determine the existence of chaos 
in either empirical or theoretical time series. As we will see below, the problem is 
even more severe in stochastic, empirical data. Nevertheless, there are philosophical 
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reasons deeply embedded in the human psyche for wanting to make this determina- 
tion. Chaotic dynamics are based on deterministic laws, but appear to be random. The 
underlying laws are a unifying principle that ties the incoherence of immediate sensa- 
tion to regularity, constancy, and, in some sense, predictability at a deep level. We can 
replace the jumble of observations with a single line of mathematics (e.g., Eq. 18.3). 

Dynamics produced by purely random processes, on the other hand, are nothing 
more than one particular sequence out of an infinity of others. Although we may 
be able to discover the underlying probability distribution from which the sequence 
of events we experience is drawn, this knowledge does not provide even the crude 
mechanistic explanation given by the logistic equation. An empirical, probabilistic 
explanation does not seem to carry the same philosophical weight as a small number 
of deterministic differential equations. Why? Possibly, the desire for determinism is 
an evolved trait, but it is hard to attach individual adaptive value to a need for an or- 
dered universe. Predicting the future, however, is another matter. Predicting individual 
events (as opposed to probabilistic likelihood statements) has obvious survival value. 
Knowing that there's an 80% chance of rain is fine as far as it goes, but what we really 
want to know is whether or not to carry an umbrella tomorrow. Unfortunately, as we 
have just seen (Figs. 18.2 and 18.3), finding the underlying nonlinear equation of the 
universe will not necessarily improve our predictions, if we are operating in a chaotic 
region of parameter space. 

So, it is not really clear philosophically why so much effort is being expended on 
tests to distinguish random from complex, but deterministic, dynamics. One thing we 
can all agree on, however, is that it is a hard problem (Abarbanel 1996). To illustrate 
this, consider the two sequences in Fig. 18.6. These sequences were generated from 

where t is time, rt is a sequence of uniform random deviates from the interval 0 to 1 .O, 
and m, a ,  and p are the mean, amplitude, and phase of the sine function, respectively. 
Equation 18.5 is a random sine curve and Eq. 18.6 is a random version of Eq. 18.3. The 
models represented by Eqs. 18.5 and 18.6 are fundamentally different. Equation 18.5 
is an empirical description based on time alone; there are no feedbacks or relationships 
between the system variable y. Equation 18.6 hypothesizes that a negative feedback 
drives the dynamics. 

Which of these sequences was generated by which equation? Perhaps, for these 
particular models, which have very simple implementations of stochasticity, it is not 
so hard to tell by inspection. But more complicated models can be much more diffi- 
cult, and we need alternative ways of looking at time series in our quest for underlying 
pattern. To briefly illustrate the possibilities and to motivate the discussion that fol- 
lows, instead of using the time domain, we represent the time series by plotting y, vs 
yt-l. Figure 18.7a is this set of pairs of points for the random sine function (Eq. 18.5). 
Figure 18.7b is the plot for the random logistic model (Eq. 18.6). This figure makes 
three points. First, this type of plot reveals patterns that are not apparent from the 
time domain (Fig. 18.6). The random logistic model does appear to be qualitatively 
different from the sine'function. Second, while the simple method of introducing ran- 
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Figure 18.6: Two sequences of values. One is generated from a noisy sine function; the 
other comes from a noisy version of Eq. 18.3. 

domness into the logistic model shows differences in Fig. 18.7, possibly some other 
method would destroy the pattern seen there. Third, even with this method, if the data 
set were restricted to a small region around y,-1 = y, = 0.5 in Fig. 18.7b, it would 
be difficult to distinguish the two phase plots. In short, stochastic nonlinear differ- 
ence equation models can be difficult to distinguish from random models, but a deeper 
analysis of the time series, for example, phase plane plots, may help. 

The problem of distinguishing the dynamics of stochastic empirical descriptions 
from theoretical nonlinear difference equations also applies to observed time series. 
Figure 18.8 shows the time series from a linear random model and the time series of 
heart rate (beatslmin) from a sleeping human. The observed data were taken from 
a long time series described in Rigney et al. (1994). Heart rate is calculated as the 
inverse of the interval between sequential R events in the ECG record of the patient. 
(Read Sec. 19.4.2 for a description of ECGs and QRST events.) The linear model is 

Figure 18.7: Phase space plot of two random models. (a) Random sine function. (b) 
Random logistic model. 
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Figure 18.8: Two time series of the heart rate (beatslmin) of a sleeping patient (lower 
panel) and a linear random model (upper panel). 

one from a family of possible models called autoregressive models [AR(M)], where 
M represents the order of the model (Chatfield 1975; Gershenfeld and Weigend 1994). 
The general form of the family is 

where yt-, is the mth previous value of the series, and Zt is the tth deviate from a 
normal distribution with a mean @) and variance (a2) estimated from the time series. 
The simplest model of this family is AR(l), the first-order process also known as a 
Markov process 

AR(M) models can, with proper choice of the parameters, provide very accurate 
fits to empirical data. Figure 18.8 is an example of this using a = 0.7, ,u estimated 
as 22, and a2 estimated as 16. Even though these parameters are probably not sta- 
tistically optimal, there is a remarkable, albeit superficial, similarity between the data 
and the model. This is the central problem for understanding empirical time series 
(Gershenfeld and Weigend 1994): Are the dynamics a simple, linear autoregressive 
process, or is there a deterministic nonlinear model that underlies the data? Is there a 
method for deciding? 

These last two questions have not yet been answered, except that, so far, there 
is no "silver bullet" algorithm, index, or visualization scheme that will definitively 
identify the nature of the nonlinearity or if chaos is present. As a result, a number of 
characteristic patterns or signatures have been developed that suggest the existence of 
chaos or other patterns in models or empirical data. Sugihara (1994) reviews several 
methods in the context of chaos induced by randomness. The methods fall into five 
general categories: (1) patterns in the time series, (2) structure in phase space (i.e., 
attractors), (3) dimensionality of the phase space structure, (4) sensitivity to initial 
conditions, and (5) controllability of time series. 
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Figure 18.9: Complicated time series can be represented by translating plots in the time 
domain to plots in the frequency domain. Curve A: a simple sine wave with amplitude 1.0 
and a single frequency of 0.159 (period 2n) is represented in the frequency domain as a 
single point in the amplitude-frequency space. Curve B: a more complex time series formed 
from the summation of two simple sine waves is represented as two points in the amplitude- 
frequency space, one for each component sine wave. 

In discussing these signatures, we will proceed in two steps. First, we will intro- 
duce the main concepts underlying these signatures; then we will discuss a few exam- 
ples from biology. The reader should be aware that all of the measures and character- 
istics discussed below are problematical and can yield ambiguous conclusions when 
applied to short, noisy time series. There are many more recent and ingenious tech- 
niques being invented daily, but all have flaws (see Weigend and Gershenfeld 1994a 
for a summary using real world data). Consequently, this is a good point at which to 
remind the reader: caveat lector. 

18.2 Patterns in Time Series 

Power spectral analysis is one approach for distinguishing chaotic dynamics from ran- 
dom fluctuations (see also Sec. 17.1.4). The idea is based on the fact that all time series 
can be approximated by a summation of sine waves with different amplitudes, frequen- 
cies, and phases. Figure 18.9a shows two time series: Curve A is a single, simple sine 
wave with an amplitude of 1.0 and a period of 2n (frequency of 0.159). Curve B is 
the result of summing two sine waves, one identical to A, the other with amplitude 1.2 
and frequency 0.053. Since they are periodic, the essential features of the curves are 
just two numbers: amplitude and frequency. From these sine function parameters, we 
can reconstruct the dynamics. These features can be graphically presented by plotting 
the two values in the frequency domain (Figs. 18.9b and c). 

Roughly speaking, the power of a particular frequency is proportional to the square 
of the amplitude (Press et al. 1992). Power represents the importance of the frequency 
in determining the nature of the time series: frequencies with zero power (i.e., zero 
amplitude) make no contribution to the dynamics. Likewise, waves with large power 



368 Chapter 18 Chaos in Biology 

Frequency 

0.10 

0.08 

$ 0.06 

z 
0.04 

0.02 

0.00 

Figure 18.10: Power spectra for four classes of noise generated by the function p = a?, 
where p = 0, -1, -2 - 3 for white, pink, brown, and black noise. Curves are scaled by a to 
fit on the graph. 
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in extremely low frequencies are important because they set the long-term trends in the 
series. The set of power values at all frequencies needed to approximate the dynam- 
ics to some level of precision is the power spectrum of the dynamics. In the simple 
example with only two sine waves (Fig. 18.9), the spectrum is just two points, but the 
concept can be extended to more complicated dynamics that require many frequen- 
cies for adequate approximation. It is also possible to represent continuous time series 
as possessing an infinite number of frequencies that produce a continuous function 
(curve) in the frequency domain. 

Different physical phenomena can be characterized by a family of power spectra 
(Schroeder 1991). Figure 18.10 illustrates four of these. White noise is that in which 
all frequencies are equally likely; in color, it is an equal admixture of all wavelengths. 
Red light has relatively many low frequencies compared to high frequencies. Pink 
noise is less than red and has substantial numbers of the shorter wavelengths (i.e., 
broad band), but decreases with frequency relative to white noise. Brown and black 
noise decrease even more rapidly with frequency than pink. B 

All of these functions follow a power law: p = fP, where p is power, f is fre- 
quency, and P = 0, -1, -2 - 3 for white, pink, brown, and black noise. On a log- 
log plot, the spectra appear as straight lines with slope equal to P. Brown noise 
(p = -2), as the name suggests, characterizes aspects of Brownian motion. Black 
noise (p = -3) describes natural catastrophes such as the occurrences of droughts, 
or floods (Schroeder 1991). Pink (or f-' = llf) noise is important here because it 
is characteristic of the power spectra of the complex dynamics associated with chaos 
and strange attractors. Power spectra are not very powerful tests for chaos, but they do 
provide evidence for its existence. West and Shlesinger (1990) also review the above 
topics and provide additional examples from physics, psychology, and sociology. 

To give a single theoretical example here, and some empirical cases later, Schaffer 
and Kot (1986) calculated the power spectrum of Vance's predator-prey model (Eqs. 
18.4), and in a log-log plot found a strong linear relationship indicating fP colored 
noise, which they interpreted as partial evidence for chaos. Unfortunately, the AR(1) 
model (Eq. 18.7) also produces colored noise (Chatfield 1975) and contains no non- 
linearities. 

0 20 40 60 80 100 120 
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(4 (b) 

Figure 18.1 1 : A multi-dimensional attractor can be reconstructed from a time series using 
sets of time lagged values. Groups of values in the time series (a) (e.g., triplets: N,, N,-,, 
N 4  are grouped together sequentially (numbers on horizontal lines). These are plotted 
as points in a three-dimensional space (b) so that repetitive sequences [triplets (1,2,3) and 
(1 1,12,13)] will appear as nearby points. 

18.3 Structure in Phase Space 

Phase space plots of chaotic systems are not similar to those of limit cycles. Non- 
chaotic systems with three state variables have orbits that lie on a plane embedded in 
the three dimensional phase space. When the dynamics become chaotic, the attractor 
has greater dimensionality and the trajectories do not remain on a plane. Chaotic sys- 
tems have the "signature" of complicated phase plane plots such as the spiral attractor 
studied by Vance (1978) and Gilpin (1979). A simple approach to detecting chaos is 
to plot the time series in a phase space and visually (i.e., qualitatively) determine that 
it looks complicated and chaos-like. 

An immediate problem is that a single empirical time series such as population 
numbers or heart rate does not have additional variables that can form the other axes 
in a phase space. This is solved by using values from previous times (Fig. 18.1 1). 
So, we plot the trajectory of the time series in a space having axes Nt, Nt - l ,  Nt-2. 
This sounds like an attempt to get something (multidimensional objects) from nothing 
(one-dimensional time series). However, it is actually a very clever and useful idea. 
It graphically reveals subtle, repetitive structure in the time series by causing similar 
sequences of time points to be plotted near each other (Fig. 18.1 lb). The method is 
not limited to three dimensions; when longer time lags are used we lose the graphical 
visualization, but other analytical tools relevant to chaos still apply. 

Common practice is to use a lag of one or two time steps. A lag of two means these 
plots are three-dimensional and, therefore, difficult to visualize. Consequently, a stan- 
dard technique is to dissect the attractor by taking a Poincare' section and constructing 
the associated Poincare' (return) map. A Poincar6 section is a planar slice through the 
attractor as shown in Fig. 18.12. The lines in Fig. 18.12a are fragments of the tra- 
jectory that constitute the attractor (assuming one exists and that transient dynamics 
have settled down). The vertical plane shown is the Poincar6 section, and the points 
on its surface constitute the intersection of the attractor with the section. The numbers 
represent the time order of the points. Figure 18.12b is a clearer portrait of the slice 
through the attractor, where the closed curve represents the set of points on the slice. 
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Poincar6 Section 
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Figure 18.12: Graphical depiction of (a) an attractor for a hypothetical model showing 
the location of the Poincare section and a few points (in time order) of intersection of the 
attractor trajectory and the section; (b) the plane of the Poincare section, the envelope of 
the set of points that pass through the section, and a measure (Li) of the relative distance 
of the point of intersection; and (c) the return map summarizing the iterative function that 
relates the distance at time t to that at time t + 1. 

As shown in the hypothetical example, this curve represents organized structure in the 
attractor; random dynamics would produce a cloud of disorganized points. See Fig. 
18.7 for similar structure. 

Additional attractor structure is visualized by constructing the return map (Fig. 
18.12~). This is created by assigning a measure to the position of each ordered inter- 
section point (Li in Fig. 18.12b). A recursive map describing the relation of sequential 
values of this measure (Fig. 18.12~) illustrates the deterministic relations underlying 
the time series. In the example shown, the map represents chaotic dynamics because 
of the large negative slope of the map at the point of intersection with the 1: 1 line (see 
Fig. 18.1). 

18.4 Dimensions of Dynamics 

As seen above, chaotic dynamics produce complex attractor structures that are bounded. 
Since they are bounded, they do not completely fill up the space in which they are em- 
bedded; nor, however, are they simple planar objects (Kot et al. 1992). Strange attrac- 
tors are somewhere in between, so that one of the signatures of chaotic dynamics is 
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the existence of objects having intermediate dimensionality. Several methods of mea- 
suring the dimensions associated with chaos and weird dynamics have been defined: 
correlation dimension, fractal dimension, information dimension, and the list goes on 
(see Farmer et al. 1983 for a review). Here, we give only a qualitative description of 
correlation dimension originally introduced by Grassberger and Procaccia (1983) to 
give the reader the flavor of the approach. 

Suppose we have solutions on a strange attractor that is sampled at discrete points 
in time. First, choose a focal point on the attractor, and assume, for the moment, 
that the attractor is flat around the chosen point. Draw a circle of radius r around 
the focal point and count the number of solution points [N(r)] also in the circle (i.e., 
Ixi - xcl < r, where xc is the circle center and xi is a randomly chosen point on the 
attractor). Decrease the radius, say to r/2, and again count the number of points 
inside the circle. This number will be smaller than the previous number because the 
circle is smaller. Continue making the radius smaller and counting the interior solution 
points. Roughly speaking, the number of points (or "mass") inside a circle of radius 
r relative to the total number points in the attractor is proportional to rD, where D 
is the correlation dimension (Mullin 1993a). Thus, the correlation dimension can be 
approximated by counting points inside circles of different radii as described above. 
Using linear regression on the log transform of N(r) = crD gives an empirical estimate 
of the D. 

This procedure does not require that the attractor be flat; that was assumed only 
for explanatory purposes. The attractor can be arbitrarily convoluted (i.e., multidimen- 
sional), but we do not know how convoluted it really is. For more complex attractors, 
we must use N-dimensional spheres in place of circles. So, a complication of the 
above procedure is that the answer we get will depend on the embedding dimension- 
ality of the hyper-sphere that we use. The procedure, then, is to compute D for a 
series of embedding dimensions and hope that after some number of dimensions, our 
answers begin to converge. For deterministic chaotic time series this indeed happens 
(Mullin 1993a). As the embedding dimension increases, the family of curves plotted 
in log N vs log r space converges on a single linear relationship with positive slope. 
This can be visualized by plotting D against the embedding dimension. In chaotic 
systems, D quickly rises and levels off to a constant. In random time series, however, 
the correlation dimension usually continues to increase with embedding dimension. 
This is another signature of chaotic vs random time series. As always, though, there 
are types of random sequences whose correlation dimension will behave like that of a 
chaotic sequence. 

18.5 Sensitivity to Initial Conditions 

There is almost universal agreement that chaotic series have one property that distin- 
guishes them from other dynamics. Chaotic dynamics are boundedfluctuations that 
are sensitive to initial conditions (Ellner and Turchin 1995). By this we mean that 
if we compare two solutions produced by a chaotic, deterministic model that differ 
only in slight differences in the starting values, the resulting two sets of dynamics will 
diverge over time (Fig. 18.3), but both will stay within a finitely bounded region of 
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state space. This should sound paradoxical to you: how can two points move away 
from each other yet remain within a small region? Here we discuss two methods for 
quantifying the concept: Lyapunov exponents and predictive ability. 

18.5.1 Lyapunov Exponents 

The standard method for ascertaining that dynamics are sensitive to initial conditions 
is to measure the rate at which two points in phase space diverge from one another. 
For example, the two points labeled 1 and 2 in Fig. 18.12a diverge: 1 continues on to 
cut the section at 2, and 2 eventually cuts the section at 3. This divergence of nearby 
points on an attractor is quantified by the Lyapunov exponent. This quantity gets its 
name from its use in the one-dimensional divergence equation (Mullin 1993a): 

where R is the Lyapunov exponent and do is the initial difference in initial conditions. 
This quantity plays a role analogous to the eigenvalue of the characteristic equation 

in local stability analysis (Sec. 9.3.2). If R > 0, the solutions diverge and the system 
is sensitive to initial conditions. An algorithm for calculating the exponent is based 
on the following facts. The Lyapunov exponent for a pair of solutions of the one- 
dimensional map is the average of the natural logarithm of the absolute value of the 
derivatives of the map function at each of n solution points (Hilborn 1994): 

where n is the iteration number and represents discrete time (t) in Eq. 18.8. 
Also, 

Equation 18.9 simply states that R is the geometric mean ( l ln  applied to a sum of 
logarithms) of the deviations (df ldx) that are calculated at progressively greater time 
intervals (i = 1 to i = n- 1). There are many assumptions and computational consider- 
ations involved in implementing this definition. Generally, several starting points are 
sampled and the average of Eq. 18.9 is the estimate of 2. The interested reader should 
consult Earnshaw and Haughey (1993) or the texts by Mullin (1993~) and Hilborn 
(1994) for details. 

18.5.2 Predictive Ability 

A related idea is that if the dynamics are deterministic, but sensitive to initial condi- 
tions, then we might expect that our ability to predict from past trajectories might be 
high for short time scales, but will become poor as we attempt to predict further into 
the future. Farmer and Sidorowich (1989) developed nonlinear forecasting techniques 
appropriate to this problem, and Sugihara and May (1990) developed a simpler version 
that they applied to ecological data. In the latter method, a trial time series is used to 
create projection rules for predicting the future some number of time steps into the fu- 
ture. Applying these rules to new data permits predictions T time steps into the future 
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Figure 18.13: The prediction accuracy of chaotic systems (solid curve) d ecrea 
prediction time, but not for a random sine wave (dashed line). (From Sugihara and May 
1990, Fig. 2a. @ 1990 Macmillan Magazines Limited. Reprinted from Nature with permis- 
sion of the publisher and author.) 

that are compared to observed values. Prediction accuracy is measured by the cor- 
relation coefficient between predicted and observed datum points, where 1.0 implies 
perfect correlation or predictability. This method can be applied to both chaotic and 
white noise sequences. The effect of the size of r, the number of future time steps for 
prediction, on prediction accuracy is shown in Fig. 18.13 for a chaotic series and a sine 
wave to which were added random values from a normal distribution. After exami- 
nation of several models and data sets, Sugihara and May (1990) found that chaotic 
systems, unlike random sequences, showed a decrease in the correlation coefficient as 
prediction time increased. 

18.6 Controllability of Chaos 

A recent development in nonlinear dynamics is the study of the control of chaotic sys- 
tems (Ott and Yorke 1990; Peak and Frame 1994). This is important for the practical 
problem of the management of nonlinear systems and as another tool to identify a 
signature that suggests the existence of chaos. This method is based on the fact that 
chaotic systems can be controlled because of their underlying nonlinear deterministic 
structure, whereas random sequences cannot be controlled because there is no under- 
lying structure. 

We have discussed how time series produced by stochastic nonlinear recursive 
equations are difficult to distinguish from those produced by noisy sine functions. Al- 
though both can produce a cloud of points in the yt-yt-l plane (Fig. 18.7), there will be 
in the chaotic trajectory a number of subsets of points that form an alternating pattern 
about the 1: 1 line. This pattern will be missing in the uncorrelated random sequences. 
Figure 18.14a illustrates the alternating pattern in question for a deterministic model. 
The points produced may be hidden in the cloud of points (Fig. 18.14b), but these can 
be discovered. If the subsets of alternating points exist, then there may be underlying 
determinism that we can exploit for control. 

Attempts to control chaos exploit the situation in Fig. 18.14a in the following way. 
We will interpret "control" to mean manipulating the system so as to keep the dynam- 
ics within some finite region around the fixed point (* in Fig. 18.14a) as determined 
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Figure 18.14: The pattern of alternating states hidden in stochastic nonlinear models. 
(a) Points that alternate around the 1:l line for short segments of the trajectory in a deter- 
ministic model. (b) The same points that may be hidden in a noisy model. 

by the parameters of the equation. We further assume we can manipulate the system 
in time by tweaking a parameter p that interacts with the original nonlinear system so 
that 

yt+l = ptayt(l - yt), (18.10) 

where p, is our time-dependent manipulations of the control parameter. If pt is 1 .O, we 
have, of course, the familiar logistic equation. Now, a was the original parameter that 
determined the qualitative dynamics of the system as shown in Fig. 18.2. By inventing 
pa, we have simply defined a new time-dependent parameter for the system. If we 
restrict p < 1.0, we are effectively reducing the system parameter a.  Smaller values 
of a were usually indicative of less complex dynamics (Fig. 18.2, when a < 3.57). 
This is diagrammed in Fig. 18.15a, which shows portions of the logistic map with four 
parameter values. Notice that the fixed point is reduced as a is reduced. 

To control such a system when a of Eq. 18.10 is in the chaotic region, we set p, 
to values slightly less than 1.0 whenever y, moves outside the desired region. Figure 
18.15b shows that doing this will force the system back into the box. It might occur 
to you that if we simply want to contain the fluctuations of y, we should just set p, 
to some relatively small fixed value that will produce a permanent, stable fixed point. 
This will not work because our constraint on control was to keep the dynamics near 
the original fixed point, not the new one that would be produced if p, were kept small. 
Figure 18.15a illustrates that a small value of the parameter of Eq. 18.3 will shift the 
fixed point. 

18.7 Biological Models Producing Chaos 

Not all models produce bifurcations and chaos. We can make a few brief generaliza- 
tions concerning the biological conditions under which we would expect chaos and 
other weird dynamics to emerge. 

Nonlinearity It should be obvious by now that while systems of linear differential 
equations can produce complicated and oscillatory dynamics, they do not exhibit limit 
cycles, strange attractors, and chaos. Nonlinear relationships, such as exemplified in 
the logistic map, are required. Moreover, in chaos producing models, these nonlinear 
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Figure 18.15: How to control chaos. (a) One complete and three fragments of maps 
from Eq. 18.3 with different values of the parameter a. Shallow slopes at the intersection 
of the map with the 1 :1 line imply smaller equilibrium values and more constant dynamics. 
The complete map has a slope producing chaos. The dotted box is the region in which we 
wish to confine the dynamics. (b) An enlarged view of (a) near the fixed point. The original, 
unperturbed map is shown as a heavy line; the dot-dash box is the control region. The 
trajectory starts at * and, if uncontrolled, would quickly wander outside of the control region. 
By perturbing the map using Eq. 18.10, the trajectory encounters a new map with a slightly 
lower slope that projects the trajectory back into the control region. 

relations are of the type that show strong positive feedback in one interval of the do- 
main of the function and strong negative feedback in another interval (Berryman and 
Millstein 1989). By strong positive or negative feedback, we mean that the function 
increases or decreases rapidly for a unit increase in the state variable (the domain of 
the function). For complex dynamics to result, the positive feedback interval must 
occur at domain values that are smaller than the negative feedback interval. Again, the 
logistic map illustrates the relation. When population size is smaller than the peak of 
the hump in Fig. 18.1, positive feedback (amplification) is strong and drives the pop- 
ulation up rapidly. This causes a sudden transition to the negative feedback interval at 
large population levels (to the right of the hump). 

Time Delays Time lags in continuous systems can also produce complex dynamics 
and instabilities. A general form of these equations is: 

where r is the time delay so that x responds not to the current value of x, but to 
the value r time units in the past. Broadly speaking, time delays arise because in- 
formation has a finite transmission rate through biological systems. In physiological 
systems, information transmission has a literal interpretation: propagation speeds of 
nerve impulses or diffusion rates of chemical signals (e.g., hormones). In ecological 
systems, time delays are often associated with age classes: events influencing a young 
age class (e.g., a bad winter in a habitat frequented by young individuals) will not be 
manifested in population growth rates until those individuals experiencing the catas- 
trophe reach reproductive age. Usually, these systems could be modeled with explicit 
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representations of the information transmission process. But time delay formulations 
can be a useful and simpler approximation to this more complex system description. 

May (1973) analyzed the logistic model of population growth when time delays 
were present in the density dependence term, so that 

where N is the population of interest (e.g., herbivores) and t - r is the past time in- 
fluencing current growth rates. The ecological rationale for this is that it captures in 
one equation the dynamics of a theoretical system with two variables, one of which, 
for example, is vegetation and the other (N) is a herbivore. The current population 
growth rate depends on the number of reproductives that were produced at t - T, when 
the vegetation was different. May (1973) derived some simple relations that indicate 
how large T must be before instability arises. He found that the system will become 
unstable if r - ~  > n/2. He also provides some numerical simulations that indicate that 
the instability that arises produces a stable limit cycle. 

As another example, Mackey and Glass (1977) studied the effects of time delays 
on a model of white blood cells: 

where x is the number of white blood cells (WBC); y is the rate of WBC destruction; 
p, 6, and n are WBC proliferation parameters; and t - T is the past time influencing the 
dynamics. As with May's population analysis, a Hopf bifurcation occurs at a critical 
time delay. See Glass and Mackey (1988) for more examples. 

Compartment Cascades Certain models have an effective time delay induced by a 
cascading flow of material (individuals) through a series of compartments that have 
a single input and output. An example is age-structured population models in which 
each compartment represents the numbers of individuals in an age class. 

Caswell(1989) studied a variant of a simple system originally examined by Guck- 
enheimer et al. (1977). The two-age class system is 

where N = nl + n2. Even though the equation for n2,,+l is linear in nl,t, it has an 
indirect nonlinearity on ni,t-l : 

The combination of the nonlinearity and time lag produces bifurcations and chaos. 

Forcing Functions External periodic perturbations of a system that also oscillates 
from its own internal forces have long been known to produce complex dynamics. 
This was the basis for the complexity of the forced chemostat system studied by Kot 
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(1992). In that study, the predator induced internal limit cycles. Perturbing these cy- 
cles by a signal whose frequency did not match that of the internal dynamics produced 
dynamics that were sensitive to initial conditions. When the perturbing frequency did 
match the internal frequencies, phase locking occurred and more regular oscillations 
were observed. 

There can be no doubt that reasonable models of biological systems can be chaotic. 
It is another problem, however, to demonstrate that a real biological system is or can 
operate in a chaotic parameter region. This is difficult because there are superficial 
similarities between a chaotic time series and a random time series. Neither can be 
predicted for long times into the future. Both can fluctuate widely with no apparent 
simple period. For theoretical and practical reasons, it is valuable to determine if a 
given time series is random or deterministically chaotic. Unfortunately, this is sur- 
prisingly difficult to do, and all of the attempts to recognize chaotic signatures, as 
described above, have problems. Below, we briefly summarize some of the recent 
applications and results. The status of efforts to detect chaos in ecological systems 
was reviewed by Logan and Allen (1992) and Hastings et al. (1993). Below, we re- 
view some of the attempts to identify the signatures of chaos in empirical time series. 
Lastly, we describe more recent experimental manipulations of insect populations that 
provide evidence for chaotic behavior. 

18.7.1 Power Spectra 

The usual view of physiological systems, especially in the "higher" organisms such 
as mammals, is that they are a finely tuned, well-articulated collection of mechanisms 
all of which act in concordance and cooperation with one another. Proper physiolog- 
ical functioning is typically associated with regular dynamics. Similarly, the opposite 
relation is also commonly accepted: physiologically corrupt systems will result in 
irregular and unpredictable dynamics. This view is held by some under the name 
of "dynamical disease": the conditions of disease cause a breakdown of regular, co- 
ordinated dynamics to produce chaos (e.g., Glass and Mackey 1988). The opposite 
extreme is "chaos is healthy" (e.g., Goldberger 1992), in which normal operation is 
thought to be irregular within bounds, but becomes more regular and cyclical during 
the onset of disease (e.g., heart failure). While the final assessment is far from settled, 
there is some evidence that chaos may be beneficial. 

Power spectra, despite their shortcomings in detecting chaos, have been used ex- 
tensively in the study of nonlinear heart dynamics. Goldberger and his colleagues 
(e.g., Goldberger and West 1987 and Goldberger and Rigney 1991 calculated heart 
rates (beats per minute) from interpulse intervals (Fig. 18.16). A healthy patient (Fig. 
18.16a) showed irregular dynamics that could be described with a classical 1 / f noise 
power spectrum. Contrary to this, a patient undergoing heart failure (Fig. 18.16b) 
shows oscillatory heart rate dynamics in which the power spectrum indicates the strong 
peak at about 0.02 cycles/second (period = 50 seconds). Other studies have found sim- 
ilar loss of "broad-band complexity" in the heart rates of older patients, the effects of 
toxicological stresses, and so on. 

Schaffer et al. (1990) have also used this method to show that the chickenpox 
(apparently not chaotic) power spectra was dominated by a single frequency of 1 year, 
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Frequency (Hz) Frequency (Hz) 

(a) Healthy Control (b) Heart Failure 

Figure 18.16: Power spectra of normal and abnormal hearts. (a) A healthy patient with 
irregular heart rates (above) and a power spectrum showing 11 f noise. (b) An unhealthy 
patient with cyclic dynamics and strong power peak corresponding to a period of 50 sec- 
onds. (From Goldberger and Rigney 1991, Fig. 22.1 0. @ 1991 Springer-Verlag New York, 
Inc. Reprinted by permission of the publisher and author.) 
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while that of the measles time series (which possessed other chaotic signatures) had 
several important frequencies. Schaffer (1987) cautions that when applied to short 
time series this method of detecting chaos can mislead. 
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18.7.2 Attractor Structure 
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Another common signature examined in the search for chaos in physiological and 
ecological systems is the structure of the attractor. This includes not only a graphical 
picture of the flows in phase space, but also the Poincar6 section and return maps. For 
example, Hayashi and Ishizuka (1987) inserted a microelectrode into the esophageal 
ganglion of a marine snail so that they could both record electrical signals as well 
as stimulate the nervous tissue. They stimulated the nerve by passing an oscillating 
current across the ganglion membrane. 

When a membrane experiences a periodic current whose amplitude is below a 
threshold specific to a particular experimental preparation, the nerve cell responds with 
a depolarization manifested by an increase in electrical potential across the membrane 
(see Section 19.4.2 for more details). This is followed by a repolarization and voltage 
drop back to the resting potential; a complete action potential does not occur. This 
response and the voltage achieved is called the "subthreshold response" (SR). When 
the current threshold is exceeded, an action potential occurs with a preparation spe- 
cific increase in potential (AP) across the membrane. Because membrane resistance 
varies among preparations, the amplitude of the applied current does not measure the 
intensity of the stimulus. Therefore, Hayashi and Ishizuka (1987) used the ratio of the 
subthreshold voltage (SR) to the action potential voltage (i.e., SR/AP) as a measure of 
the resistance of the membrane to the applied current fluctuations. In addition, a spe- 
cial feature of the snail esophageal ganglion is that, in resting conditions, this tissue 
spontaneously emits electrical pulses, so that an external current is a forcing function 
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Figure 18.17: Complex dynamics resulting from externally forcing snail ganglia. (a) Sta- 
bility diagram for two control parameters: jjlfo (where jj = frequency of forcing stimulus, 
fo = frequency of spontaneous firing) and SWAP = voltage ratio of the preparation (where 
S R = subthreshold response voltage, A P  = action potential voltage); labels indicate qualita- 
tive dynamics: l/n harmonic = nerve fires once every n stimulation periods, T = transitional 
dynamics. (b) The attractor based on observed dynamics of the three state variables. (c) 
Graphical depiction of the reconstructed attractor with stimulus pattern shown to the left. 
(d) The return map for chaos conditions. (From Hayashi and lshizuka 1987, Figs. 2, 4, 
6. @ 1987 Plenum Publishing Corporation. Reprinted with permission of the author and 
publisher.) 

applied to an endogenous limit cycle. This can, in general, induce complex dynamics, 
and Hayashi and Ishizuka (1987) did indeed observe this (Fig. 18.17). 

This experimental system produces large amounts of relatively noise-free data, 
unlike ecological systems. As a consequence, the data can be used directly to recon- 
struct the attractor (Fig. 18.17b). Figure 18.17~ shows a diagram of the attractor in 
the space of membrane voltage (V), stimulus current (I), and voltage rate of change 
(dVJdt). Depending on the parameter values of the forcing function, this system can 
be driven into regular oscillations, chaos, intermittency, and random alternations (Fig. 
18.17a). Again, thanks to the large data set, Hayashi and Ishizuka (1987) were able 
to construct an accurate return map from the Poincar6 section (Fig. 18.17d). The map 
clearly supports the chaos hypothesis. It should be remembered, however, that these 
data arise from periodically forcing a stable system. The data do not represent the 
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Figure 18.18: Graphical analysis of a time series of thrip population numbers and a 
theoretical stochastic model. (a) Reconstruction of the thrip time-lagged attractor. (b) and 
(c) the Poincare section and map, respectively. (d) The "attractor" for a noisy, non-chaotic 
periodic function; (e) and (f) the Poincare section and map associated with (d). (From Ellner 
1991, Figs. 2 and 3. @ 1991 Virginia Agricultural Experiment Station. Reprinted courtesy 
of Virginia Agricultural Experiment Station.) 

naturally occurring dynamics. 
Ecological systems are much shorter than physiological datasets and, therefore, 

more difficult to analyze using these techniques. Nevertheless, Schaffer and Kot 
(1986) have done this for several time series of natural populations and human dis- 
ease epidemics. Figure 18.18a is Ellner's (Ellner 1991) representation of the attractor 
originally reconstructed by Schaffer and Kot. The attractor appears to be organized as 
expected by deterministic chaos. The Poincar6 section (Fig. 18.18b) and return map 
(Fig. 18.18~) also show simple, nonrandom structures. 

There are two major problems with this approach. First, long time and noise-free 
time series are required to see pattern in the section and maps. These are difficult 
to obtain in ecological systems. Second, Ellner (1991) obtained essentially identical 
qualitative graphical results when he simulated a periodic equation with noise using 
parameter estimates derived from the thrip time series (Fig. 18.18d-f). Thus, sim- 
ple structure in time-lagged phase space is not compelling evidence for deterministic 
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chaos. 

18.7.3 Prediction of Time Series 

One of the first features of complex nonlinear dynamics to be discovered in recent 
times was the fact that particular trajectories are sensitive to the starting point. A 
consequence of this is that chaotic systems, being deterministic, can be accurately 
predicted for a short period, but the predictions get worse over long times. In contrast, 
the accuracy of predictions of true, stationary, stochastic processes is independent of 
the time scale. As a result, we expect high correlation between observed and predicted 
variable values when we predict over two or three time steps; we expect the correlation 
coefficient to decrease if we predict over five or six time steps Fig. 18.13). 

Sugihara and May (1990) applied this technique to empirical epidemic and natural 
population time series. They found that the decline over time of prediction accuracy 
varied depending on the system. Prediction of the monthly incidence of measles in 
New York state from 1923 to 1963 was consistent with deterministic chaos, as found 
by Schaffer and his colleagues. The correlation of predicted and observed measles 
cases declined from about 0.85 over one time step to 0.4 over seven time steps. Sug- 
ihara and May obtained a similar result for the analysis of inshore marine plankton 
population dynamics. Their analysis for chickenpox epidemics, however, showed lit- 
tle evidence for chaos as the correlation coefficients varied between 0.7 and 0.8 for 
prediction times 1-12. This is evidence for noisy seasonal cycles, again consistent 
with Schaffer et al. (1990). 

Like power spectra and attractor structure, this method, however, may also have 
little power to distinguish random series from deterministic chaos. Ellner's (Ellner 
1991) forecasting analysis of periodic cycles with noise showed the same decline of 
prediction correlation with time scale as did chaotic series. Sugihara (1994) describes 
more powerful techniques applied to a 20-year time series of diatom (marine plank- 
tonic algae) population numbers taken from the Scripps Pier in southern California. 

18.7.4 Lyapunov Exponents 

Much current interest in statistically identifying chaos in time series focuses on esti- 
mating the Lyapunov exponent. The original algorithms worked best when there was 
no noise in the signal and there were several thousand data points in the series (Ell- 
ner 1991). Because these conditions are rarely, if ever, met in many time series, an 
alternative method has been developed. The empirical time series is used to estimate 
the parameters of a time-lagged finite difference equation that relates the next point 
in the series to a function of previous values in the series. If a sufficiently good fit is 
obtained, this function is used to generate surrogate data from which an estimate of 
the Lyapunov exponent is obtained. Recent work has extended this to include stochas- 
tic variation. In ecology, this approach has been widely applied by William Schaffer, 
Peter Turchin, Steven Ellner, and others. (But see Sugihara (1994) for some reasons 
why this is not a good idea.) 

Ellner and Turchin (1995) calculated Lyapunov exponents for nearly 50 popula- 
tion time series to determine the distribution of exponents in nature. Ellner and Turchin 
used the time series data to estimate parameters of a convenient but biologically mean- 
ingless equation that could reproduce the original time series with statistical accuracy. 
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They then used the model to generate "datum" points to be used in reconstructing the 
attractor. Their results depended on the function they used for fitting, but, in general, 
they found that Lyapunov exponents were less than zero in all but a few data sets. This 
is evidence for the absence of sensitivity to initial conditions. Moreover, most of the 
exponents were small negative numbers near zero, meaning that the populations were 
"at the edge of chaos." This is an intriguing situation that other theoretical models 
have also predicted. Although Ellner and Turchin found little evidence for chaos, they 
were quick to point out that their methods were conservative and that chaos may exist 
in more of the data than their methods revealed. 

18.7.5 Controlling Chaos 

The controllability test for chaos has recently been successfully performed in several 
biological systems. In a lovely set of experiments, Schiff et al. (1994) demonstrated 
that populations of neurons in extracted tissue of the rat brain fire in bursts separated 
by a chaotic sequence of intervals. They further demonstrated that this chaos could be 
controlled by direct stimulation of surrounding neurons. They removed and sectioned 
the hippocampus of rats (an area where sensory inputs are distributed to the forebrain) 
and perfused it with artificial cerebrospinal fluid. Under these in vitro conditions, the 
CA3 neurons continue to fire spontaneously. A recording electrode was inserted in the 
CA3 region and a stimulating (controlling) electrode was inserted about 1 mm away 
in the Schaffer collateral fibers. Input from the recording electrode in the form of the 
interburst firing intervals was sent to a computer system that determined when the sys- 
tem was diverging from an unstable fixed point. This determination was made based 
on sequences of states in the yt-yt-1 phase space (Fig. 18.14). When this intermit- 
tent (non-periodic) condition was detected, the control electrodes delivered a single, 
short burst of current directly to the Schaffer fibres. The control burst instigates an ac- 
tion potential (see Sec. 19.4.2) that propagates into the CA3 pyramidal cells, thereby 
depolarizing and synchronizing a large population of these cells. 

Figure 18.19 shows a rough caricature of some of their results. As shown, control 
using the above technique was effective in maintaining a constant interburst interval. 
The effect of the control was instantaneous as shown by the sharp change in dynam- 
ics. Schiff et al. (1994) also investigated several other control firing schedules. Simply 
firing the control electrode with a fixed period (ignoring the chaotic phase space dy- 
namics) also reduced the scatter around the interburst interval, but not so effectively 
as the single-pulse, chaos-based method. 

It is tempting to conclude from these positive results that interburst intervals in 
this in vitro preparation are chaotic. As evidence, the authors found subsets in the 
time series consistent with unstable fixed points, and they were able to control the 
variability of interburst interval using knowledge of the phase space. Unfortunately, as 
with many such previously positive tests for chaos, Christini and Collins (1995) were 
able to duplicate the chaos-based control result on a stochastic, nonchaotic model of 
neuron firing. They used the FitzHugh-Nagumo model of nerve voltage with Gaussian 
white noise added. Like Schiff et al. (1994), they were able to find sequences of 
solutions in the y,-y,-1 phase space that mimicked the exponential divergence from 
unstable fixed points characteristic of chaos (Fig. 18.14). Christini and Collins (1995) 
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Figure 18.19: Control of chaotic sequences of intervals between bursts of neuronal 
activity in the rat brain. The x-axis is the burst number (analogous to time); the y-axis is 
the time interval between successive bursts. The down-arrow indicates the onset of control; 
points to the left of that arrow are normal intervals; to the right are the controlled intervals. 
The up-arrow indicates the removal of control. Control was effected by single pulses of 
electrical current in cells adjacent to those shown. (Loosely after Schiff et al. 1994, Fig. 3. 
@ 1994 Macmillan Magazines Limited. Reprinted from Nature with permission of the author 
and publisher.) 

were also able to control the dynamics using the same single-pulse firing scheduling 
method as Schiff et al. (1994). 

These results may be disappointing to those searching for the Holy Grail of a 
definitive test for chaos in empirical systems. But the positive side is that we now 
have another tool for controlling dynamic variability, whether it is generated from 
nonlinear deterministic systems or stochastic systems. Moreover, there is some evi- 
dence that interburst intervals during epileptic seizures behave like those observed in 
the hippocampus. It is possible that these preliminary results will develop into prac- 
tical medical treatment techniques. Chaos-based control techniques certainly need to 
be attempted on a wide variety of systems, for example, population fluctuations. 

18.7.6 Experimental Population Studies 

While chaos control has yet to be tried in ecology, an experimental test of nonlinear 
dynamical theory in population dynamics was recently performed. An elegant study 
of flour beetle (Tribolium castaneum) dynamics by Costantino et al. (1995) provides 
strong empirical evidence for deterministic mechanisms of complex, aperiodic popu- 
lation dynamics. Flour beetles inhabit large bins of ground grain such as flour (hence 
the name), can be a major pest, and are an important model organism for laboratory 
ecology. Like many other insects, they have discrete age classes (larvae, pupae, and 
adults, Fig. 18.20). Adults, of course, contribute individuals to the larvae, but unlike 
many insects, the adults and pupae can also cannibalize smaller age classes. These 
two phenomena result in both positive and negative feedback mechanisms and have 
the potential to produce complex dynamics. 

The model is a wonderfully simple system of three finite difference equations that 
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Figure 18.20: On the left is the stability diagram of a model of flour beetle population 
dynamics (genetic strain SS) as it is affected by rate of egg cannibalism (y-axis) and adult 
mortality rate (x-axis). Filled circles are experimental manipulations of adult mortality rates. 
Labeled regions are the qualitative dynamics as predicted by the model. (From Costantino 
et al. 1995, Fig. lc. @ 1995 by Macmillan Magazines Limited. Reprinted from Nature with 
permission of the author and publisher.) On the right are the three life stages of Tribolium 
confusum, a species similar to that studied by Costantino et al. (1995). A=adult, B=larva, 
C=pupa (ventral view), and D=pupa lateral view. (From California Agricultural Experiment 
Station Report 696. @ 1956 California Agricultural Experiment Station. Reprinted with 
permission of the publisher.) 

describe an age-structured population: 

where the variables and parameters are defined in Table 18.1. 
Cannibalism is important in this species and is represented in the model as a de- 

crease in the survival rates of the consumed ages in the presence of the consuming age. 
Adults and larvae both consume larvae; pupae do not eat larvae. Adults eat pupae, but 
not other adults. So, the negative exponentials in Eq. 18.13 represent the reduction of 
larval survival rate as adult or larvae numbers increase. The number of larval recruits 
increases linearly with adult numbers by the rate b. Thus, the rate equation for lar- 
vae is composed of two process rates multiplied together: reproduction and mortality. 
This equation should be familiar as the maximum function presented in Chapter 4. The 
equation for pupae is simple: every larva that survives predation pupates, but pupae 
die from causes of mortality other than cannibalism at the rate pl. Adults have a similar 
death term. In addition, adults consume pupae, so the number of pupae emerging as 
adults is the fraction not eaten by the current adult cohort. This survival rate declines 
as a negative exponential term with increasing numbers of adults. 

The model has all the ingredients for interestingly complex dynamics; it contains 
(1) positive feedback in the form of larvae production by adults, (2) negative feedback 
at high adult densities by cannibalism, and (3) an implicit time lag in the form of the 
compartment cascade through the age classes. This promise of complex dynamics is 



Table 18.1 : Values and definitions for variables and parameters in the Tribolium model. 

VARIABLES 
L 250 numbers Larvae 
P 5 numbers Pupae 
A IOOnumbers Adults 

PARAMETERS 

11.68 numberr-' Larvae recruits per adult 
0.01 1 unitless Susceptibility of eggs to cannibalism by adults 
= 0.013 unitless Susceptibility of eggs to cannibalism by larvae 
0.017 unitless Susceptibility of pupae to cannibalism by adults 
0.513 unitless Fraction of larvae dying (not cannibalism) 

pa varied unitless Fraction of adults dying 

well fulfilled, as Costantino et al. (1995) and Cushing et al. (1996) demonstrated. With 
proper choice of parameters, the model exhibits stable equilibria, two-point cycles, and 
aperiodicity (Fig. l8.2Oa). 

But Costantino and colleagues did more than a simple numerical analysis of the 
model to produce yet another set of bifurcation diagrams. In a set of papers sum- 
marized in Costantino et al. (1995) and Cushing et al. (2003), they described param- 
eter estimation, model validation using independent data, and experimental tests of 
the major predictions. To do this, they identified two parameters that controlled the 
dynamics: larvae cannibalism rate (eel) and adult mortality rate (pa). In computer 
experiments, they numerically manipulated these parameters in order to identify the 
qualitative dynamics (i.e., stable equilibrium, two point cycles, or aperiodic fluctua- 
tions) that resulted from different combinations of these two parameters (Fig. 18.20). 
They then attempted to determine if, indeed, the real insects behaved as predicted by 
the model. Many other modelers have previously attempted and succeeded in experi- 
mentally validating their models, but what was new here was the attempt to push the 
experimental conditions to the point that qualitative dynamics changed dramatically 
from an equilibrium to chaos or aperiodic behavior. (Recall the discussion of model 
reliability in Section 8.2.) 

The experimental system consisted of small laboratory containers of flour and T 
castaneum. The environments of the containers were held constant to minimize envi- 
ronmental stochasticity. The populations were censused every 2 weeks by removing, 
aging, and counting all individuals, which were then returned to the container. Adult 
mortality was manipulated to coincide with different stability regions (Fig. 18.20). 
Adult mortality was manipulated by adding or removing adults at the time of the cen- 
sus. 

The observed larval dynamics were gratifyingly close to the predictions (Fig. 
18.21). By and large, the three theoretical kinds of dynamics were observed when 
the adult mortality was set to values predicted by the model. Adult numbers were 
slightly less consistent with expectations than larvae. This is the first experimental 
validation of chaotic behavior in a real population that was predicted a priori by a 
simple model. It is further significant that the complex dynamics seen were generated 
from endogenous interactions without external forcing (e.g., as in some neurophysio- 
logical systems: Hayashi and Ishizuka 1987). 

Now, experimentally applied levels of adult mortality are not necessarily those of 
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Figure 18.21 : Observed adult and larval population dynamics in experimental conditions 
corresponding to the four (of six) filled circles in Fig. 18.20. The manipulation of adult 
mortality rates (pa) commenced on week 12. The predicted qualitative dynamics are listed 
above each panel. Note the large scale in the last panel for p = 0.96. (From Costantino 
et al. 1995, Fig. 3. @ 1995 by Macmillan Magazines Limited. Reprinted from Nature with 
permission of the author and publisher.) 

natural populations, and an analysis of an unrelated Tribolium experiment (Dennis 
et al. 1995) estimated adult mortality to be in the range 0.096 - 0.148, much smaller 
than that needed to produce aperiodic dynamics (depending on larvae susceptibility to 
cannibalism: circles in Fig. 18.20). So, the generality of these results to other popu- 
lations and experimental situations will need to be explicitly tested. But, the method- 
ological framework has been developed in these studies, and we can expect to see 
future attempts to demonstrate similar effects in other experimental populations (e.g., 
Fussmann et al. 2000, Fig. 14.7). The large body of mathematical and experimental 
work that this project produced has been summarized in Cushing et al. (2003). 

18.8 Why Is There Chaos in Biology? 

At the beginning of the previous section, we mentioned that one view of physiological 
systems held that chaos was a healthy state. Another view holds that those systems are 
basically well-regulated around a stable equilibrium or limit cycle and that chaos indi- 
cates disease. We have seen some evidence that biological systems can be chaotic and 
somewhat less that natural unforced systems are chaotic or have complex dynamics. 
Why should this be so? Why is chaos rare in some systems and common in others? 
Are complex dynamics adaptive or merely a consequence of the multitude of con- 
straints and external forcing functions placed on evolving systems? Here, we explore 
these questions a bit further, particularly as they apply to ecological systems. 

There are two primary reasons why chaos and weird dynamics might not be com- 
mon in ecological systems. First, the parameter values needed to generate these dy- 
namics are large compared to typical values. For example, in the logistic map, the 
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onset of chaos occurs when the finite rate of increase is approximately 3.5. Most pop- 
ulations appear to have much smaller values. Second, in the logistic map, chaos occurs 
as population numbers range from very large to nearly zero (Fig. 18.2). If a natural 
population were to experience similar ranges, it would surely go extinct at such low 
population levels (Berryman and Millstein 1989). There are a number of counters to 
these arguments. First, even though the analysis occurs with a single population it is 
understood that in fact many other populations are present in the system. So, the pa- 
rameter values obtained from reconstruction or fitting of single populations dynamics 
are those from a projection of high-dimensional dynamics (with many populations) 
to a single dimension. There is, therefore, no real reason to expect the fitted values 
to correspond to those obtained from populations truly growing in isolation. Second, 
as we have seen previously, the logistic map is not the only mechanism to produce 
chaos. It can occur in multidimensional continuous systems that have bounded attrac- 
tors that do not approach one or more of the axes (zero values). So, complex dynamics 
can occur without a great risk of extinction. Further, chaos in these multidimensional 
systems may arise at biologically reasonable parameter values (McCann and Yodzis 
1994). 

Moreover, spatial versions of population models similar to the logistic map give 
theoretical evidence that chaos may reduce the chance of extinction. Allen et al. (1993) 
constructed a metapopulation model (Section 16.3) in which each population in a patch 
was subject to global and local random perturbations. Global perturbations simulated 
such events as region-wide weather events ("bad" years). Local perturbations were 
small-scale events that affected patches independently of each other. Migration oc- 
curred among patches. Allen et al. (1993) reasoned that in the absence of spatial 
structure (i.e., a single population in a patch), global perturbations would, of course, 
act on all individuals simultaneously. If a bad year occurred at the same time at which 
internal chaotic dynamics had driven the population to low numbers, then extinction 
would, indeed, be very likely. However, if the populations were in isolated patches, 
their complex dynamics would not be synchronized and a bad weather year would ad- 
versely affect only that subset of populations that happened to have low numbers due 
to their chaotic dynamics. Other populations would have large numbers, would not be 
driven extinct, and could then colonize the patches at which extinctions had occurred. 
In short, chaos would desynchronize the local populations so that the metapopulation 
is in some sense more adaptable to environmental stochasticity (Conrad 1986). This 
idea has also been suggested to explain chaos in individual cardio- and neurophysi- 
ological systems: changing external and internal environments requires rapid change 
and adaptation that is more easily effected if variability exists. 

To test the adaptability concept in ecological systems, Allen et al. (1993) con- 
structed a simulation model with a variety of conditions for global and local perturba- 
tions. A representative result illustrates the potential advantages of chaos (Fig. 18.22). 
When the probability of a global perturbation is 0.05, then as the probability of local 
perturbations increases from 0.0 to 0.01, the species extinction probability gets smaller 
as the dynamics become more complex. 

None of the arguments and studies discussed permit a clear and convincing answer 
to the question: Why is there chaos in biology? As noted, there is still disagreement 
as to the frequency of its occurrence. We will need more careful studies under natural 
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Figure 18.22: The proportion of subpopulations in a metapopulation going extinct (heavy 
lines) as  a function of reproductive rate (r) .  The upper branch corresponds to the average 
extinction probability of local populations. The bottom branch shows the extinction proba- 
bility of the species (metapopulation) as a whole. The background contains the bifurcation 
diagram for the non-spatial logistic map showing the increasing oscillations produced by 
large reproductive rate. (From Allen et al. 1993, Fig. 2e. @ 1993 by Macmillan Magazines 
Limited. Reprinted from Nature with permission of the author and publisher.) 

conditions. While still important at this point, it is less convincing to show that ap- 
plying an arbitrary external driving force to biological material will induce complex 
dynamics. It is important, however, to demonstrate that complex dynamics are pro- 
duced by naturally occurring exogenous forces (e.g., seasonal weather) and extreme 
parameter values in the absence of external forcing functions. In addition, the adapta- 
tion of interacting biological subsystems (be they chemical transformation pathways, 
organ systems, or populations) involves responses to complex connections within the 
entire system. In ecology, the study of the evolution of chaos must include not only 
spatial heterogeneity, but complex evolution within the ecosystem and its complicated 
articulation of interacting components (Ellner and Turchin 1995). This is a fruitful 
area for future research. 

MBS-CD contains simulation code for several of the models discussed in this 
chapter. On the CD, see the directory . . ./@Chaos. 

18.9 Exercises 

1. The Allee effect was discussed in Section 4.3. Its effect can be modeled as a 
negative per capita growth rate when the population level falls below a threshold. 
Draw the one-dimensional map (Fig. 18.lb) for this situation and follow the 
dynamics for a wide range of starting values. 

2. Derive Eq. 18.9 beginning with the definition: 

and Eq. 18.8. 
3. Write a program or use simulation software to study the Vance model (Eqs. 

18.4). Verify that the stability diagram is accurate. What happens if E and b 
are pushed beyond 0.01? How does the diagram change if other parameters are 
varied? 
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4. The heart rate data of Fig. 18.8 were used in a friendly contest to test and com- 
pare different methods to identify pattern in complex time series (Weigend and 
Gershenfeld 1994b). These data can be obtained from the following anonymous 
ftp Internet site: 
f t p  . santafe . edu in the directory 
pub\Time-Series\competition. 
Download the two files of human physiological data ( B l  . dat and B2. dat). Try a 
few of the techniques described above. Examine the other two variables present 
in the data: respiration rates and blood oxygen saturation levels. Try plotting the 
data in a three-dimensional phase space consisting of y,, yt-1, and y t 4 .  Use plot- 
ting software to fit qualitatively the time series to AR(1) and AR(2) processes. 

5. Draw a Forrester diagram of the Tribolium model (Eqs. 18.13 - 18.15). Use an 
auxiliary variable to represent the probability of surviving cannibalism. 

6. Generate a bifurcation diagram for Eqs. 18.1 1-18.12. 
7. As Allen et al. (1993) did for ecological systems, construct a model to test the 

hypothesis that aperiodic dynamics in physiological systems are beneficial. The 
model should show, for example, that periodic heart rates have a lower ability 
to respond to random environmental demands for blood flow than chaotic heart 
rates. 
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Cellular Automata and Recursive 
Growth 

19.1 An Analog and Digital World 

W HEN WE STROLL across the quadrangle on a university campus, we feel we move 
through unbroken space that smoothly connects our beginning and ending 

points and that time flows continuously without interruption during our walk. When 
we pour water from one container to another, it is a continuous stream of water that 
flows. Yet, we know that water, at one level, is composed of discrete molecules. And 
we know that organisms reproduce discretely; each female produces an integer num- 
ber of offspring or each asexually dividing cell results in exactly two cells. In the 
space and time scales of human movement, we are a distinct entity that moves, not 
an amorphous, diffuse, electromagnetic field. Moreover, our neurons fire at discrete 
intervals, with finite recovery periods, and, more or less, in an on-off manner that 
prevents our observing the world at arbitrarily small time intervals. In this way, our 
senses and perceptions are digital; it is something else that makes us think reality is 
continuous. It could be reality itself that gives us this idea, even if we base our beliefs 
on incomplete knowledge. Indeed, many of our earlier models and techniques used 
a discrete representation that was justified as an abstraction to simplify our computa- 
tions or analysis of what we believed to be the true, underlying continuous physical 
reality. But given the particulate nature of our perceptions of nature and the underlying 
discreteness of many biological processes, we have to ask: Which is the reality and 
which the abstraction: continuous or discrete -analog or digital? Given that the world 
includes the observers and that, to a certain extent, the world is as we observe it, the 
answer is probably "both." 

Other chapters (e.g., Chapters 5 and 16) describe biological processes with spatial 
extent. Systems that are viewed as occupying space invite a discrete representation. 
Even when we use continuous mathematics such as PDEs to describe movements from 
place to place, to solve the equations we discretize space and time. Space becomes 
a grid of discrete points at which events occur. Moreover, not every model concerns 
a dynamical system; we also wish to model systems such as biological shapes or 



$1 9.2: Finite State Automata 391 

abc, abcbc, abcbcbc, ... ad, abcdabc, adadbcbcdabc, ... 
Figure 19.1: Two state transition diagrams. (a) A three-state determinant FSA and a 
sample of the output language. (b) A three-state indeterminant FSA and a sample of its 
output. 

organism morphology and anatomy. These too can be usefully represented as discrete: 
a plant is composed of discrete modules such as branches, nodes, leaves, etc. In this 
approach, we model an individual plant as a repetitive collection of these basic discrete 
building blocks. In this chapter, we will describe several disparate approaches and 
tools for the discrete perspective of biological modeling. One of the central concepts 
for this perspective is finite state automata, a mathematical object used extensively in 
theoretical computer science. 

The systems and models we present in this chapter address some fundamental bi- 
ological questions. (1) Does the spatial position of individual plants affect population- 
level phenomena such as species coexistence? (2) What are the causes of heart failure? 
(3) What biological forces are necessary to explain the broad patterns of plant evolu- 
tion? All of these questions share the characteristic that discrete, recursive structures 
can be used to answer them. 

19.2 Finite State Automata 

Finite state automata (FSAs) are a family of mathematical constructs that, informally 
speaking, are defined by a finite set of states, an output alphabet, and rules that take the 
automaton from its current state to the next state. [This definition is a simplification, 
and the reader should consult Arbib 1965 or Hopcroft and Ullman 1969 for embellish- 
ment.] One of the states is designated the initial state from which the execution of the 
FSA begins. 

When the machine changes state it produces a symbol; the dynamics of the ma- 
chine are reflected in the sequence of symbols that it produces. The symbol might 
simply represent the last state of the machine, but there is no necessary connection 
between the value of the state and the symbol produced. Figure 19.la shows a FSA 
that has three states and that produces either a, b, or c at the indicated state transi- 
tion. The set of sequences of symbols can be considered to be the language that the 
FSA produces, and the state transition rules constitute the grammar that underlies the 
language. 

A FSA can be either determinant (Fig. 19.la) or indeterminant (Fig. 19.lb). A 
determinant FSA is one in which the state transition rules are such that each state goes 
from one state to only one other state. An indeterminant FSA has at least one state that 
can become one of several possible states. In this case, the transition rules must have a 
mechanism for choosing one of the alternatives. This is usually done randomly. Rules 
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Figure 19.2: FSA transition rules stated as a table (a) for a determinant FSA, where rows 
are the current states; columns are the subsequent state, and table elements are the output 
symbols, and as probabilistic rules (b), where S 1  ---t Sz(b);  p = 0.5 means "change state 1 
to state 2 and output b with probability 0.5." 

can be stated as a look-up table or as an equation in which the next state is computed 
from the current one (Fig. 19.2). 

19.3 Cellular Automata 

A cellular automaton (CA) is a spatially explicit form of a FSA. A set of cells are 
defined in a space; each cell is a FSA whose transition function depends on the cell's 
own state and those of neighboring cells. Typically, the symbolic output of CAs is the 
state of each cell. Later, we will discuss L-systems, which are another special case of 
a CA-like construct that has symbolic output used to describe the growth of biological 
structures (e.g., plants). 

Consider the following simple example. We define the space to be a one-dimensional 
sequence of squares. Each square represents a FSA that has two states (0, l), and the 
transition rules depend only on the immediate left and right neighbors of cell. The 
transition rule is very easy to state verbally: if the middle cell is in state 0 and has 
exactly one neighbor in state 1, the middle cell state changes to 1. Otherwise, the state 
becomes (or remains) 0. Figure 19.3 shows the spatial pattern (horizontal) that devel- 
ops over time (vertical) when the rules are applied to each cell in the space. Recall 
that all changes in state are done "in parallel," so that the previous state of neighbors 
is used, not that resulting from the current changes. 

CAs can be defined over a space with any number of dimensions and with any 
geometrical relationships between neighbors. Typical applications use two dimensions 
and define the cells on a rectangular lattice. Other lattice arrangements are possible, for 
example, equilateral triangles and hexagons. The number of neighbors to use can be 
made a property of the model in two senses. First, the model must specify if diagonal 
neighbors are to be included. Thus, in a rectangular grid there may be four or eight 
contiguous neighbors, depending on the definition. Hexagonal grids do not have this 
problem, but triangular grids do. Second, the model must specify if non-contiguous 
"neighbors" are to influence the transition functions. 

In real CAs coded in computers, the size of the lattice is finite, and this creates the 
problem of dealing with the ends of the lattice. The last cell at each end is missing 
one of its neighbors (Fig. 19.3b). This is the same problem as boundary conditions 
in PDEs. The possible solutions include (1) make a buffer (i.e., an edge of one cell 
around the edge of the lattice) that has a fixed state, (2) create a special rule for the edge 
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(a) L l R + L O R  
L O R + L l R  i f L = l X O R R = l  l D s D a c e  - 

Figure 19.3: A simple example of a one-dimensional cellular automaton. (a) Transition 
rules for each cell (middle symbol on left-hand side) based on its state (0,l) and the states 
of its left (L) and right (R) neighbors. 'XOR' is logical exclusive OR; it is false if L=l AND 
R=l. The first rule says that a cell in state 1 will become 0, regardless of its neighbors. The 
second rule states that a cell will change from 0 to 1 only if it has exactly one neighbor. If 
neither rule applies, the cell does not change state. (b) The spatial pattern (a row) produced 
over time (rows moving downward). A black cell is in state 1, and an open cell is 0. 

cells that uses a single neighbor, or (3) connect the edges together to form a surface 
without boundaries. In the latter solution, this converts a 1D lattice into a circle. A 2D 
lattice becomes a torus (i.e., a doughnut-shaped surface). See the Exercises for further 
details. 

Another modeling consideration is the order of updating the cells. Two choices 
are possible: (1) change each cell immediately after its new state is computed (asyn- 
chronous updating), or (2) save the new state of each cell until all cells have been 
computed, then change all old states to new states in one operation (synchronous up- 
dating). The latter approach is analogous to using the entire system condition at the 
current time step to evaluate the state at the next time step. The advantage is that 
the latter method eliminates the effects of the order in which updating is done on the 
lattice. It does not matter where in the lattice the transition algorithm begins. The 
disadvantage is that one loses the "parallel" nature of state transitions in spatially dis- 
tributed systems. The latter method has an implicit assumption that the time step is 
short compared to the time scale of the processes being simulated. 

No discussion of CAs in biology would be complete without mention of John Con- 
way's remarkable game "Life" (Gardner 1970, 1971). This is a two-dimensional CA 
with deceptively simple rules that produces complex and interesting behavior. A cell 
is "alive" if its state is 1; a dead cell has a state of 0. The transition rules are inspired 
by simple notions of competition and mating in real organisms as these are influenced 
by the states of the 8 neighbors surrounding a focal cell. An occupied cell dies unless 
it has exactly 2 or 3 occupied neighbors, in which case it remains unchanged. An 
unoccupied cell becomes occupied if it has exactly 3 occupied neighbors. 

These simple rules permit a great variety of patterns. For example, if the spatial 
pattern is three contiguous horizontal living cells at time t, then it changes to three 
vertical living cells. The vertical pattern flips back to a horizontal row of three cells, 



394 Cha~ter  19 Cellular Automata and Recursive Growth 

and this continues indefinitely as a limit cycle. If the three cells form three-fourths of 
a square, then the fourth cell becomes alive to form a square of four living cells, which 
do not change in further iterations: an equilibrium. All other different arrangements of 
three cells go extinct. Other dynamics are possible, for example, "gliders" can be cre- 
ated that simply translate across the lattice. Interactions between patterns can evolve. 
One famous example is the "eaters" and the "glider gun." The gun shoots gliders at the 
eater, which devours them and returns eventually to its former configuration in time 
to catch another glider shot from the gun. This complex "predator-prey" interaction 
continues indefinitely. 

Finally, like all spatially explicit models, there are serious problems of visualiz- 
ing and summarizing model results. The usual approach is to show the reader many 
interesting snapshots of the system over time. More advanced treatments attempt to 
characterize the statistical properties of the system by calculating a measure of entropy 
or spatial power spectra. For a more advanced treatment, consult Toffoli and Margolus 
(1987), Casti (1992), or Langton (1992). 

19.4 Applications in Biology 

While the game "Life" is simple and fun, it is only a ghost of real systems. But the 
reader should not conclude that CAs are only video games of blinking monitor pixels. 
CAs are serious tools for spatial processes. Below, we examine two examples, one 
dealing with the ecological interactions of plants and the other modeling the spread of 
electrical voltage across the surface of the vertebrate heart. 

19.4.1 Plant Competition 

Silvertown et al. (1992) constructed a CA model of spatial competition among five 
species of grass in the United Kingdom. This model elegantly demonstrated that 
spatial configuration significantly affects competitive outcomes.The grasses involved 
were Agmstis stolonifera (A), Holcus lanatus (H), Cynosurus cristatus (C), Poa trivi- 
alis ( P ) ,  and Loliurn perenne (L). A 40 x 40 lattice was used in which each grid point 
(cell) could contain one of the five species. Thus, the grid spacing was approximately 
the size of one plant. 

Each cell was updated based on the number and species of its four immediate 
neighbors (N, S, E, W) and random chance. Using data from a field study, Silver- 
town et al. (1992) determined the probabilities of replacement of a species in a cell 
by a neighbor crossing one of the four neighboring grid faces. Table 19.1 lists the 
probabilities, assuming all four neighbors belong to the species listed in the rows. To 
determine the new state of the cell, the number of neighboring cells occupied by each 
species was counted, and the replacement probabilities (Table 19.1) were weighted 
accordingly. Thus, if Agrostis was the resident species and had three neighbors of 
Holcus and one of Poa, the probability that Agmstis was replaced by Holcus would 
be 0.08 x (3/4), and by Poa would be 0.06 x (114). Otherwise, the cell remained 
as Agrostis. A call to a random number generator determined which of these three 
outcomes occurred (see Sec. 10.5.2). Based on the probabilities, Agrostis is both an 
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Table 19.1: Probabilities that a species in a grid cell (columns) will be replaced by a 
species in neighboring grid cell (rows), if all neighboring grid cells are occupied by the 
neighbor species. 

aggressive invader and resistant to invasion. So, we would expect that equilibrium 
plant communities would be dominated by this species. 

I MBS-CD contains SimCAPlant that simulates this model.] 

Following Silvertown et al. (1992), Fig. 19.4 illustrates the effects of initial spatial 
configuration beginning with two different initial spatial relationships among the five 
species. The spatial dynamics are shown for five times. The results clearly show 
that the spatial configuration matters. Table 19.1 indicates that Agrostis is only a 
slightly better competitor than Holcus (0.09 vs 0.08). Although Lolium persists for 
some time, the combined effects of Holcus, Agrostis, and Poa cause its early demise. 
Similarly, Poa, a relatively weak competitor, grows from the lowest band and early 
displaces Cynosurus and eventually Lolium, but is eliminated by the combined effects 
of Agrostis and Holcus. If the best competitor (Agrostis) starts in the middle (Fig. 
19.4, right panel of grids), it quickly eliminates all other species. 

The dynamics of the proportions of the species are shown in the set of graphs in the 
middle of Fig. 19.4 for the two scenarios. Shannon-Wiener diversity is calculated as 
H' = C pi log pi, where pi is the proportion of the ith species in the community. These 
dynamics reflect the spatial dynamics, but without the latter, one might conclude that 
the differences in the global population dynamics was caused by random events. 

The lesson from these simulations is that spatially explicit models can show dra- 
matically different transient dynamics depending on the initial configuration. This 
phenomenon was also illustrated by the game "Life." A related lesson in the con- 
text of plant competition studies is that diffuse competition (competition from many 
species in the same habitat) can delay or alter the outcome of competition. In those 
situations, the spatial configuration can be as important as the quantitative effect of 
one species on another. 

19.4.2 Excitable Tissue 

Heart Basics 

Everyone knows that the heart beats and blood flows. But the specific mechanisms 
by which this marvelously adapted structure accomplishes blood circulation are truly 
remarkable. Spatially explicit models help understand not only how the actions of 
individual muscle packets are coordinated to produce normal beating hearts, but also 
how disease can interfere with these mechanisms to cause heart failure. As in popula- 
tion and community ecology, both continuous models (e.g., Keener 1991 and discrete 



396 Chapter 19 Cellular Automata and Recursive Growth 

Figure 19.4: Spatial dynamics of the Silvertown cellular automaton model of plant com- 
petition. The left panel shows the spatial snapshot dynamics for five iteration values. Each 
band is a species; from the top the species are: Agrostis, Holcus, Lolium, Cynosurus, and 
Poa. The right panel has this order: Poa, Lolium, Agrostis, Cynosurus, and Holcus. The 
graphs in the middle show dynamics of the proportions of each species and (below) a mea- 
sure of the diversity of the community. 
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Figure 19.5: Basic anatomy of the human heart. (a) Interior view with major chambers 
and vessels indicated. Atrial contraction is diagrammed with blood flow indicated by shaded 
arrows. (b) Cut-away of an exterior view showing the location of the SA (sinoartrial) node 
(pacemaker) on the inside wall of the right atrium and the AV (atrioventricular) node on the 
interatrial septum with the Bundle of His and connecting Purkinje fibers that innervate the 
ventricles. Stimulus from the SA node causes atrial contraction and propagates via intern- 
odal tracts (heavy lines) to the AV node which, after a delay, causes ventricular contraction 
via the Purkinje fibers. 

models (e.g., Saxberg and Cohen 1991) are applicable. Here, as illustration, we will 
describe a CA model of heart beating. But first, we briefly review some of these ba- 
sic mechanisms involved in heart function. More detail can be found in the standard 
physiology texts (e.g., Guyton 1986; Berne and Levy 1993). 

In mammals, the heart is a four-chambered structure composed of two pairs of 
chambers that pump more or less in unison (Fig. 19.5). Deoxygenated blood enters 
the right atrium from veins, and oxygenated blood enters the left atrium from the lungs. 
These two chambers pump their contents to the left and right ventricles (respectively). 
After the ventricles have filled, the right ventricle contracts and pumps the deoxy- 
genated blood to the lungs, and the left ventricle pumps its oxygenated blood to the 
rest of the body. These events are timed so that the contraction of the ventricles occurs 
after the atria are emptied. The contractions are produced by the rhythmic excitation 
of the heart's conductive system. Before discussing the specific details, we review a 
bit of the physiology of excitable media. 

An electrical voltage is a potential for electrical charges to flow from one point 
to another. This is analogous to the concept of water potential that we introduced in 
Chapter 11. Spatial heterogeneity is implied in electrical potentials, as the concept 
applies only between two points that are, for some reason, electrically isolated from 
each other, but that have different amounts of electrical charge. Think of applying a 
volt meter to a battery. We do not measure volts by placing both meter probes on the 
positive terminal or on the metallic battery case. We must put one probe on the positive 
terminal and the other on the negative terminal. Inside the battery, the terminals are 
electrically isolated from each other; outside the battery the terminals are connected 
by air, which, of course, does not conduct electricity. Conduction occurs only when 
we connect the terminals with a conductor such as the meter probes. 
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In a charged battery, the negative terminal has more negative charges than the pos- 
itive terminal. In chemical systems, such as batteries and nerves, negative charges are 
electrons. Cell membranes are the barriers that separate points at different electrical 
potentials. As with water potential, two physical processes contribute to the electro- 
chemical potential across a cell membrane. With water potential across a membrane, 
the processes involved are hydrostatic pressure and the relative ionic concentrations 
across the membrane. In electrochemical potential, the processes are ionic concen- 
tration and the electrical potentials at the two points. Electrical potential is measured 
relative to a fixed reference point ("ground"), just as hydrostatic pressure is measured 
as the "pressure head." The total electrochemical potential at a point is the sum of 
these two forces composed of ionic concentrations and electrical potential, just as wa- 
ter potential is the sum of its forces. The net flow of an ion (e.g., Na+) between two 
points (e.g., across a membrane) is the difference between the two electrochemical 
potentials. 

In excitable tissue, we are concerned with electrochemical potential across mem- 
branes. Cell membranes in animals are complex structures composed of lipids (fatty 
acids) and proteins. Membranes are filled with holes called channels. Some chan- 
nels (also called "pumps") use active transport to move compounds through them, 
which requires ATP and special carrier substances embedded in the membrane. Oth- 
ers, which are important in excitable media, are open passages "lined" with special 
compounds that can close the passages at either the exterior or interior side of the 
membrane. One form of the latter are called "leak" channels, because they continually 
allow ions to leak across the membrane. 

In excitable cells, a pump actively transports Na+ to the outside of the cell and 
K+ to the inside. This produces ionic concentration differences across the membrane 
which diffusion counteracts by moving the ions through the leak channels. The com- 
bined action of these processes results in a nonzero resting potential. Such membranes 
are then in apolarized state. The amount of the potential varies according to cell type, 
but in typical motoneurons it is -70 mV (millivolts). In typical smooth muscle such as 
that composing the ventricular wall of the heart, the resting potential is about -90 mV. 
(Just as with measuring the voltage of batteries, the sign of voltage depends on which 
probe is applied to which terminal; the sign of a membrane's electrical potential is, by 
convention, determined using the inside of the cell as the reference.) 

When a polarized membrane is depolarized, ions are able to move across the mem- 
brane so as to reduce the electrochemical potential. If this process continues gradually 
to the point at which a tissue-specific minimum threshold potential is obtained, confor- 
mational changes in the structure of special channels occur. These changes cause an 
action potential, which is a characteristic time course of membrane potential. Figure 
19.6a shows a typical action potential for the ventricle. 

Hearts are special excitatory material in that they contract at regular intervals un- 
der the control of the autonomic nervous system. This regularity is generated by a 
system of interacting neurons and electrically conducting fibers that connect different 
areas of the heart. Figure 19.5b illustrates the major components. The SA (sinoatrial) 
node is the primary "pacemaker" that initiates the contraction sequence at the begin- 
ning of each heart beat. This collection of excitable cells depolarizes the rest of the 
atrium nearly instantaneously because of fast transmission of the potential wave along 
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low-resistance pathways. The wave eventually reaches the AV (atrioventricular) node 
that comprises excitable tissue which actually delays the wave's progress to permit 
the atrium to contract and fill the ventricle with blood. Once the ventricle is filled, 
the electrical potential at the AV node is regenerated and rapidly transmitted to the 
excitable tissue in the ventricles via a collection of low-resistance pathways called 
the Purkinje fibers. When this system is working properly, a coordinated set of con- 
tractions is initiated at precisely the moment the chambers of the heart are filled with 
blood. To function optimally two conditions must be met: (1) the major depolariza- 
tions at the SA and AV nodes must be timed to occur when the chambers are full of 
blood, and (2) each element of the excitable tissue in the atrial wall and the ventricular 
wall must be, more or less, synchronized so that coordinated contraction results in the 
expulsion of the blood from the chamber. If either of these two conditions is prevented 
from occurring, a heart beat will not occur or the contraction will not pump blood. 

Ventricularfibrillation, if not treated immediately, can cause loss of consciousness 
and death within a few seconds. Understanding its initiation and persistence (however 
brief) within excitable tissue, such as the mammalian heart, that is driven so strongly 
by synchronizing pulses, is a major area of medical research. Ventricular fibrillation 
occurs when heart muscle does not contract synchronously to produce a coordinated 
contraction wave. Instead of this wave, groups of muscle fibers contract indepen- 
dently resulting in uncoordinated twitching of the heart. The isolation of groups of 
muscle fibers is caused by the phenomenon of reentry which is the result of a cardiac 
impulse re-exciting small regions of the heart after they have become quiescent fol- 
lowing excitation. The cardiac impulse "re-enters" the local region. These twitches, 
once established, can be self-sustaining through the internal dynamics of the locally 
connected neighboring muscle elements. A major hypothesis to explain the initiation 
and persistence of these "islands" of uncoordinated twitching is the "dispersion of 
refractoriness" hypothesis. Smith and Cohen (1984) describe the hypothesis in this 
way: 

The spread of depolarization over myocardial tissue is fundamentally a synchron- 
ous process in which activation of one region of tissue spreads to activate neigh- 
boring regions. The process of repolarization, on the other hand, is fundamentally 
an asynchronous process in which local clocks determine the length of time during 
which a region of tissue remains depolarized and thus refractory to further stim- 
ulation. Spatial variation in refractory times leads to the appearance of islands of 
refractory tissue during the repolarization process. A new wave of depolarization 
impinging on these islands of refractory tissue will fractionate. Such fractionation 
of the depolarization wave front can lead to eddies and reentry. 

CA Model of Ventricular Excitation 

Predicting the flow of electrical potential over the surface of the heart is an important 
problem because any errors in these dynamics affect normal cardiac function. This 
problem requires a spatially explicit approach, and standard numerical procedures to 
solve the appropriate PDEs have been applied (Glass et al. 1991; Panfilov and Holden 
1997). These models, while incorporating the details of heart muscular and neuro- 
logical structure, are computationally intensive and, for some model objectives, may 
contain more detail than necessary. Being based on PDEs, they assume that conduc- 
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Figure 19.6: CA model of neuron states during heart excitation. (a) The four states 
of a CA grid cell in relation to a typical cardiac action potential. Q=quiescent, E=excited, 
A=absolute refractory, R=relative refractory. (b) The number of excited neighbors required 
to excite a grid cell in the relative refractory state. Time axis indicates elapsed time since 
the cell was excited. (c) Typical electrocardiogram (ECG) for a normal human. 

tion is spatially continuous across the heart, but evidence indicates it may actually be 
a discrete, discontinuous process. Modifications of PDE models can account for this 
phenomenon, however (Keener 1991). 

To incorporate spatial discontinuity in conduction and to minimize computational 
requirements, Smith and Cohen (1984) and Mitchell et al. (1992) created a cellular 
automaton model in which each grid cell of the automaton represents a homogeneous 
group of excitable units. Each grid cell is in one of four possible states that define 
the cardiac action potential: quiescent (Q), excited (E), absolute refractory (A), and 
relative refractory (R). Figure 19.6a shows the relation of the four states to the ven- 
tricular action potential. Each grid cell is connected to its eight neighbors with which 
it interacts either by exciting its neighbors or being excited by its neighbors. 

The rules of state change are as follows. (1) If a grid cell is Q, then it becomes E 
if any one of 8 neighbors is E. (2) An excited cell remains in state E for EP (excited 
period) msec, at which point it becomes A (absolute refractory). (3) A cell remains in 
A for APij = RPij seconds, where RPij = refractory period (msec) of cell (i, j )  (msec). 
At the end of APij msec, the cell becomes R. While in A, the cell cannot be stimulated 
to become E. (4) A cell remains R for RRP (relative refractory period) msec when it 
becomes Q, unless a sufficient number of excited E neighbors transform it to E. The 
number of neighbors required for this change of state decreases exponentially as the 
amount of time the cell has been in the R state (Fig. 19.6b). 

Only the ventricle is modeled. Therefore, the behavior of the SA node is ignored, 
and the AV node is represented abstractly as a periodic stimulation from an external 
driving function. The surface of the ventricle is assumed to be a cylinder created from 
a 50 x 50 matrix. The time-dependent pulses of stimulation from the atrium appear 
at a single point on the upper rim of the cylinder (roughly equivalent to the AV node). 
Recent research has shown that the total refractory period (RPij+ RRP) is not identical 
over the surface of the ventricle. This is modeled by assigning random RPij values to 
grid cells at the beginning of each simulation run. The values are drawn from a normal 
distribution with mean MP and standard deviation SD. The parameter definitions and 
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Table 19.2: Definitions and values of CA variables and parameters. 

VARIABLES 
Variable Definition 

Q Quiescent state 
E Excited state 
A Absolute refractory state 
R Relative refractory state 

PARAMETERS 

AP Absolute refractory period (random) (msec) 
RRP Relative refractory period (50 msec) 

RP Refractory period, msec deviate of N(MR,SD) 
MR Mean refractory period (250 msec) 

values are shown in Table 19.2. 

MBS-CD contains SimCAHeart that implements the model of a normal heart, 
while SimCAHeart-fib models a fibrillating heart. 

Model output is presented as sequences of states of the grid cells in the matrix. 
This is not only cumbersome, but the states of heart grid cells are not available for 
most human patients, making it difficult to evaluate the usefulness of the model. Heart 
dynamics in living subjects are obtained as electrocardiographs (ECG). A typical ECG 
is shown in Fig. 19 .6~ with the three components (P, QRS, and T) labeled. The model 
simulates the ECG based on the current electrical states of the grid. In the implementa- 
tion described here (SimHeartCA.~), the ECG is the vector sum of the dipole moments 
computed as the number of pairs of cells, one of which is in the Q state and where the 
direction of the moment is from the quiescent cell to the depolarized cell (a cell hav- 
ing state E, A, or R). Similar to real ECGs, the resultant vector is projected onto an 
axis analogous to that formed by the electrodes attached to a real ECG subject. In the 
current case, the projection axis is the vertical axis of the cylinder. This is analogous 
to recording an ECG from lead I1 (Left Leg minus Right Arm) of Einthoven's triangle 
(Berne and Levy 1993). See Smith and Cohen (1984) and Mitchell et al. (1992) for 
details. 

The dynamics evolve on the surface of the ventricle modeled as a cylinder as shown 
in Fig. 19.7. Initially, all elements are in state Q. With period SP a stimulation sig- 
nal is simulated as arriving from the atria as a group of excited elements on the top 
border of the cylinder (Fig. 19.7a). The E elements excite their neighboring Q ele- 
ments and a front of E elements spreads down and outward (Fig. 19.7b,c). Since an 
element remains as E for only EP msec, E elements behind the front quickly change 
to the absolute refractory state A. These elements then become relative refractory, but 
for visualization we lump the two refractory states together (Fig. 19.7b,c). Also for 
presentation ease, we unfold the cylinder and present the spatial dispersion of states 
on a plane (Fig. 19.7d). 

Figure 19.8 shows the electrical state of the ventricle during one normal heart beat 
cycle. The heart beat is initiated with the stimulation of the AV node at T=501. The 
isolated non-quiescent cells at T=501 represent cells with long random absolute re- 
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Figure 19.7: Spatial dynamics of the CA model of ventricular conduction when the ven- 
tricle is modeled as a cylinder. Three time periods are depicted in (a) - (c) showing the 
spread of the ventricle elements in the excited state (E) through the quiescent state (Q). 
Behind the Efront are refractory elements (R). For ease of presentation, in (d) the cylinder 
is bisected along the vertical dotted line (from point "b-a", opposite the simulated AV node) 
and unrolled to be shown as a plane at the moment that the expanding vertical edges of the 
wave of excitation meets at the back of the cylinder. 

fractory periods residual from the previous heart beat cycle. At T=530, the wave front 
of excited cells (white) meets at the back of the "heart" and then progresses down- 
ward. During this phase, the simulated ECG is at its maximum. The ECG becomes 
zero when all of the cells are in a refractory state. As these refractory periods expire, 
from oldest to youngest cells, the dipole vector predominantly points down since the 
cells most likely to achieve quiescence are near the top of the grid, thereby producing a 
negative ECG. This negative excursion corresponds to the "T" phase of the ECG (Fig. 
19.6~) caused by repolarization of the electrical elements. The direction is reversed 
compared to real ECGs due to the absence of a finite thickness to the heart wall (Smith 
and Cohen 1984; Mitchell et al. 1992). The corresponding simulated ECG dynamics 
are shown in Fig. 19.9. 

In addition to these simulations of normal behavior, the model is able to simulate 
various pathological conditions. Mitchell et al. (1992) described the results of push- 
ing the system to unstable behavior by decreasing the period of stimulation events. 
This simulates abnormal electrical behavior in the atria and results in a variety of con- 
duction blocks in the ventricle. The blocks are produced as the stimulation period is 
decreased because the heart elements do not have adequate time before the next stim- 
ulation to recover to a quiescent state. As the new wave passes over the heart, some of 
the elements encountered by the wave are in a refractory state and not excitable (the 
dispersion of refractoriness hypothesis). This creates islands of unexcitable material 
that disrupt the synchrony of the heart elements and would prevent heart contraction. 
At sufficiently short stimulation periods (e.g., SP = 170 msec), this imbalance of stim- 
ulation and recovery results in a 2: 1 conduction block and electrical alternans in which 
every other contraction is skipped. With different stimulation periods, the model can 
produce ECGs other rhythm abnormalities (e.g., a 4:4 alternans which is a set of four 
repeating beats each with a different QRS signature in the ECG). 
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Time=SOl msec ECG=9.66 Tlme430 msec ECG=123.12 

TIme=TOO msec ECG=-9.66 

Tlme=slO msec ECG=-38.63 Tlme=940 msec ECG=-9.66 

Figure 19.8: CA output for a normal heart showing time across and down. States: Q=light 
grey, E=white, A=dark grey, kmedium grey. The top and bottom rows are boundaries and 
not part of the simulated grid. 

A more interesting case is ventricular fibrillation, a pathological condition de- 
scribed above. Previous models have shown that fibrillation can occur if conduction 
times are long, stimulation periods short, or refractory periods short. A better test 
of the model is to determine if fibrillation will arise and be maintained with reason- 
able action potential parameters and periodic stimulation rates. This model shows 
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Figure 19.9: Dynamics of simulated normal ECG (arbitrary units). Open squares indicate 
the AV node pulses. 

Figure 19.10: Typical human ECGs for (a) a normal heart and (b) one in ventricular 
fibrillation. The letters 'P' and 'QRS' and 'T' refer to three fundamental patterns in a normal 
ECG. 

that fibrillation can be induced simply by the discontinuous nature of the conducting 
elements and the spatially inhomogeneous dispersion of refractory periods. A fibril- 
lation episode is triggered when a small number of central heart elements (not those 
associated with the AV node) are externally stimulated. In the CA model, fibrillation 
is induced by stimulating a few of the central elements during the relative refractory 
state (R) of a normal heart beat. 

When normal parameters are used and the heart model is stimulated in this way a 
persistent fibrillation episode is induced. The resultant spatial pattern of element states 
is shown in the panels on the right of Fig. 19.11. Note the islands of E states that prop- 
agate over the ventricle surface according to the pattern of Q and late refractory stages 
(R states). After the intervention (Fig. 19.1 1, bottom), the ECG is completely irregu- 
lar and shows low-amplitude potential fluctuations much faster than atrial stimulation. 
There is no coordinated wave of E states that produces a coherent contraction. This 
heart would be pumping essentially no blood to the brain, and death would quickly 
result. 

In conclusion, this model is an interesting example of CA models that combines 
the finite state approach with the ability to study time lag effects by permitting CA 
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Figure 19.1 1 : Top four panels: CA output for a fibrillating heart showing time across and 
down. States: Q=light grey, E=white, A=dark grey, R=medium grey. Parameters: RP = 350, 
S D = 200, EP = 180, S P = 800, RRP = 50. Fibrillation was induced by a single excitatory 
impulse of 2x2 cells in the bottom-center of the ventricle at 1450 msec. The top and bottom 
rows of each grid are boundaries and are not part of the simulated grid. Bottom time trace: 
development of fibrillation from an intervention to a normally beating heart. 
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elements to remain in a state for fixed time periods. Although it does not represent 
the complex physics of an accurate three-dimensional model, it preserves the essence 
of the electrical phenomena. As a result, it captures much of the qualitative behavior. 
Although one would not want to use such a model for the design of artificial hearts 
used in human patients, it is nevertheless a valuable tool for understanding a complex, 
spatially extended system. 

19.5 Recursive Growth 

A final biological example comes from a hybrid of FSAs and CAs. Like the latter, 
the problem is spatial: the shape of growing plants. Like FSAs, it is based on a finite 
state machine with symbolic output. Aristid Lindenmayer invented L-systems (hence 
the name) to describe the morphological development of simple organisms in space 
(Lindenmayer 1968,b). L-systems are not finite state machines as defined above, but 
are represented as a rewriting system or grammar. L-systems are related to FSAs 
because FSAs can be shown to be equivalent to a form of grammars. 

19.5.1 Definition of L-Systems 

A rewriting system is a formal construct (or algorithm) the output of which is a string 
in a formal language (Chomsky 1957). There is a deep, mathematical connection 
between rewriting systems and finite state automata. Rewrite rules and output strings 
can take many forms, such as rules of grammar that produce sentences composed of 
English words. Lindenmayer had the great insight to represent biological structure 
and morphology as symbols distributed in space. Unlike other biological grammars 
(e.g., Haefner 1975; Dale 1980), L-systems have no nonterminal alphabet, and thus 
bear a strong resemblance to cellular automata. The grammar is considered to be 
"parallel" because each symbol is rewritten in one pass through the current structure, 
as is the case with asynchronous CAs. The system outputs a linear string, which by 
the definitions of its symbols, defines complex biological morphology. 

Lindenmayer defined a hierarchy of grammars based on the complexity of the rules 
and on the complexity of strings that could be produced. The simplest grammar is a 
DOL grammar signifying a deterministic rewrite system in which the symbol produced 
for a given spatial cell depends only on the current state of the cell and not on the states 
of any neighbors. In other words, this grammar assumes no interactions between cells 
in a developing structure. Biologically, this is an overly simplified assumption, but it 
serves as a baseline. 

19.5.2 Plant Shape as an L-System 

Figure 19.12 is a simple example of a grammar that describes the margins of leaves. 
Since leaves are typically bilaterally symmetrical, the grammar produces strings that 
are symmetric around the uppermost apex. The rewriting rules capture this feature 
by expanding around the symbol at the midpoint of the string which represents the 
uppermost apex of the leaf. By its recursive nature, the grammar produces leaves that 
are lobes within lobes within lobes. The grammar is nonterminating in the sense that 
no production ever gets to the state of all "k," so there are always symbols that can be 
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RULES PRODUCTIONS 
a 4 cbc a 
b + dad cbc 
c+k  kdadk 
d - t a  kacbcak 
k - t k  kcbckdadkcbck 

[ I  1 kkdadkkacbcakkdadkk 
[2] kkacbcakkcbckdadkcbckkacbcakk 

[3] kkcbckdadkcbckkkdadkkacbcakkdadkkkcbckdadkcbckk 

INTERPRETATIONS PI 
Figure 19.12: A simple DOL grammar for leaf margins. The recursive rewrite rules are 
listed in the upper left; the initial symbol is the letter "a." A sequence of productions is shown 
in the upper right. The last three productions listed are interpreted as specific leaf shapes. 
The symbols have the following interpretations: a and b are sharp tips (apex); c and d are 
lateral margins of lobes, and k is a notch between lobes. (Redrawn from (Lindenmayer 
1975, Fig. 1). @ 1975 Academic Press, Ltd.) 

rewritten, and the leaf grows indefinitely. The size of leaves can be incorporated by 
assigning to each symbol a distance along the leaf margin. 

The concept of a parallel rewriting system such as that used for leaf margins can 
be generalized to any spatially distributed structure that is recursively generated in 
time. Another important example is the growth of branches, limbs, and twigs in the 
development of vascular plants. Early models of this problem were developed by Lin- 
denmayer (1968b) and Hogeweg and Hesper (1974). Figure 19.13 illustrates the basic 
concept. Symbols represent cytological states related to the timing of cell divisions. 
Branching is modeled as a recursive process in which branches are hierarchically com- 
posed of nested branches. In the grammar, the nested nature of the branches is denoted 
by nested braces (e.g., "[. . [ . ] . 1" ). Square brackets (i.e., [ I )  indicate a branch 
to the right of the stem, and parentheses [i.e., "()"I denote a left branch. 

This simple grammar produces only two-dimensional structures and, as with the 
leaf margin model, is not able to describe metric properties of growth forms. For 
example, the modeling approach cannot vary the angle of branching or the length of 
branches. Extensions to the basic formal language approach, however, provide strik- 
ingly accurate graphical simulations of a wide variety of plant forms (Prusinkiewicz 
and Lindenmayer 1990). This accuracy has, however, been achieved at the expense of 
the simplicity of the formalism. While still using L-systems, the new approach uses 
continuous parameters, and, consequently, follows more closely other recursive plant 
models not tied to a grammar perspective (Honda 1971; Fisher 1992). The best for- 
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Figure 19.13: A Lindenmayer grammar of branching growth. (a) Rewrite rules, (b) several 
strings that result from use of the rules, (c) the interpretation of the last production in (b). 
Symbols represent cytological states. Square brackets indicate a branch forming to the 
right; parentheses indicate left branches. Brackets and parentheses may be nested. 

malism to use apparently depends on the requirements for high-resolution graphical 
display, the complexity of the morphology simulated, and the aesthetic beliefs of the 
modeler (Aono and Kunii 1984). Jaeger and DeReffye (1992) give an overview of 
computational methods appropriate to the nongrammatical approach. 

19.5.3 Plant Evolution 

While the ability to capture broad, qualitative features of leaf gross morphology is 
interesting, the rules are, nonetheless, nothing more than formal descriptions. Several 
other applications, however, give us new understanding of the evolution of optimal 
plant design. For example, Honda and Fisher (1978), using a recursive method, sim- 
ulated individual tropical trees having the basic morphology of Terminalia catappa. 
This is a tall tree having a canopy composed of horizontal tiers of three to five lat- 
eral branches. Its morphology is typical of upper canopy trees in the tropics where 
competition for light is intense. A reasonable prediction, then, is that the morpho- 
logical parameters (e.g., number of branches per tier and branching angles) will have 
evolved to maximize the effective light gathering (leaf) area of the tree. The model 
should show maximum leaf area using parameters from real trees. Using determin- 
istic simulations over a range of plausible parameters, Honda and Fisher (1978) and 
Fisher and Fisher and Honda (1979) found statistically significant agreement between 
the model parameters that produce maximum leaf area and the parameters of many 
species of tropical trees. This provides some support to the idea that trees of this form 
have evolved an optimal structure. The model was crucial in the argument as a tool to 
generate alternative trees based on suboptimal parameters. 

Karl Niklas and colleagues (Niklas 1986b,a, 1992; Niklas and Kerchner 1984) took 
a more elaborate approach to early vascular plant evolution which included multiple 
evolutionary constraints and interspecific competition. They used a stochastic, recur- 
sive growth function to grow leafless trees in which photosynthesis occurs in the axes 
(i.e., leafless stems). Four parameters determine the shape of the plant (see Fig. 19.14): 
(1) The bifurcation angle (4) is the angle between branches that arise from a "mother 
axis." 4 is composed of two subangles &), one for each branch as measured from 
the angle of the mother branch. (2) The rotation angle (y) of a bifurcation is the angle 
between two planes, one formed by the current bifurcation and the second formed by 
the previous bifurcation (Fig. 19.14). (3) The length of branch growth elements ( I ) .  
(4) The probability of a bifurcation (p) following a unit branch growth. In the simu- 
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Figure 19.14: Definitions of parameters controlling plant growth and branching. (Adapted 
from Niklas and Kerchner 1984, Fig. 2. @ 1984 Paleontological Society.) 

lations reported in Niklas and Kerchner (1984) and Niklas (1986a), 1 is fixed at 1.0 in 
arbitrary units, and y and 4 are varied systematically. The sizes of plants were lim- 
ited by the maximum number of bifurcations (N = 10) that were allowed. By simple 
observation of existing plants, it is apparent that branchiness increases vertically from 
the ground to the terminus. Niklas incorporated this fact by forcing the probability of 
bifurcation to increase linearly as the plant grows. Plants are grown from an initial 
segment of stem. Either growth or a bifurcation to a branch occurs according to the 
parameters. Each of the two branches thus produced can either grow or bifurcate. The 
process continues in this recursive manner until the maximum levels of bifurcation 
(N) is achieved. 

The three manipulated parameters (p, 4, y) define a three-dimensional space that 
characterizes the shape of all possible plants. The computer algorithm generates ran- 
dom forms using specified parameter values. At each combination of parameters, 
the plant's photosynthetic efficiency and its resistance to mechanical damage are cal- 
culated from the randomly generated forms. Photosynthetic efficiency increases with 
plant photosynthetic surface area, but decreases due to self-shading. If two plant forms 
have identical total surface areas (A), self-shading will be greatest in that form that pos- 
sesses the smallest area projected from the angle of the sun (8) on to the ground (where 
A, is projected area). Furthermore, for two forms with identical projected areas, that 
form with the largest total surface area will be the least efficient since it produces pho- 
tosynthetic material that is shaded. So, photosynthetic efficiency (10) at a given solar 
angle 8 is large if projected area is large and decreases as total area decreases. Thus, 
Ap(8)/A, the ratio of projected to total area, is an index of photosynthetic efficiency 
at solar angle 8. Total photosynthetic efficiency (I) is Ie times solar irradiance (S,) 
integrated over all solar angles during a day. Or, when angles are measured in degrees, 

In computer simulations, S, is assumed to be independent of 8 and set arbitrarily 
to 1.0. 8 is varied in fixed, discrete intervals. The ratio of projected to total area at 
given 8 is a complex function of 8, y, and branch diameter and length. The reader is 
referred to Niklas and Kerchner (1984) for details of spherical trigonometry. 

The second evolutionary constraint that simulated plants must satisfy is the ability 
to stand up under their own weight. A branch growing at some angle from vertical 
( e g ,  in Fig. 19.14 4 # 0) experiences compression and tensile stresses which cause 
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the branch to bend and, ultimately, break. The bending moment (M) measures the 
tendency of a branch to bend. In early plants, M depends only on the geometric 
placement and size of branches so that bending moment is 

where m is the mass weight of a branch, d and 1 are the diameter and length of the 
branch (respectively), g is the constant of gravitational acceleration, and 4 is the 
branching angle. 

The overall fitness of a generated plant is a function of photosynthetic efficiency 
and bending moment. Early plant species did not possess specialized tissue that re- 
duces bending moments at horizontal angles, such as is present in modern plants. 
The presence of this tissue negates the importance of purely geometrical placing of 
branches (i.e., angles and rotations). For species with this tissue, fitness (f) is best 
represented by photosynthetic efficiency: f = I .  For species lacking the reinforcing 
tissue, an index of fitness is the ratio of photosynthetic efficiency and bending mo- 
ment: f = IIM. In both cases, f is a function of the three fundamental parameters: 4, 
y, and p. Thus, the fitness of different plant shapes can be summarized by the value of 
f at different points in a three-dimensional space whose axes are the three parameters. 

The model is stochastic because the occurrence of a bifurcation at any particular 
node depends on the overall branching probability (p). p was varied from 0 (highly 
branched plants) to 0.9 (little branching). To determine plant fitness in the parameter 
space, Niklas and Kerchner (1984) simulated 10 plants at each of 10 choices of p, y, 
and 42 .  (This latter parameter was used to characterize branching angle because 
was arbitrarily held constant to reduce the parameter dimension from four to three.) 
Consequently, 10,000 simulations were performed for both of the fitness functions 
(f) tested. The average of the 10 random trials are plotted in the three dimensional 
parameter space. 

When f = IIM, the most fit forms are those with large 4 and y (Fig. 19.15a). 
The probability of branching (p) has only a slight effect on the optimum. Notice that 
the shapes associated with the most fit forms are not those of modern plants. The 
oak-like and conifer-like forms have low to intermediate fitness. Indeed, some of the 
most fit plants seem almost to be random structures with branches going every which 
way. If, however, structurally reinforcing tissue is present, so that the appropriate 
fitness function is f = I ,  then plants with modern shapes seem to be the most fit (Fig. 
19.15b). In this case, branching frequency and maximum rotation angle are important 
parameters (large p and low y have low fitness), while fitness does not change much 
with branching angle (42). 

These results are intriguing because they make a certain sense and were generated 
from an obviously simplified set of assumptions. One major assumption of the model 
is that all positions in the parameter space are equally likely. Real evolution, however, 
is a stepwise, historical process. Moreover,one of the primary mechanisms by which 
natural selection operates is through competition between individuals of the same and 
different species. Niklas (1986b) addressed these omissions by starting with primi- 
tive plants (low, with little branching) and allowing them to evolve by determining the 
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Figure 19.15: Regions of maximum fitness as a function of three parameters: branch 
rotation (y, vertical direction), probability of branching ( p ,  horizontal direction), and branch 
angle (I& third direction). Representative plant shapes that are produced by various pa- 
rameter values are shown. (a) The fitness function uses both photosynthetic efficiency and 
bending moment (f = IIM) .  The blocks of values with diagonal lines (HIGH) are parameter 
combinations with high fitness. The blocks of values with cross-hatching are parameters 
producing low fitness (LOW). (b) The fitness function uses only photosynthetic efficiency 
(f = I ) .  The blocks of values with diagonal lines are parameter combinations with high 
fitness values. (From (Niklas and Kerchner 1984, Fig. 13b, d). @ 1984 The Paleontological 
Society.) 

most fit neighbor i n  parameter space. He did this intwo different ways that produced 
similar evolutionary trajectories. First, he ignored interspecific competition and, from 
the current best parameter set, computed fitness (I  or IIM) for all 26 neighboring pa- 
rameter locations (33 - l). He took as the next best morphology that parameter set 
which had the largest fitness. By  iterating this process, he traced the optimal evolu- 
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Figure 19.16: Optimal evolutionary trajectory of plant shapes. The evolution of vascular 
plants from a primitive form (point A) is modeled by growing plants, measuring fitness, and 
searching nearby points in parameter space for a more fit shape. Repeated application 
of this procedure produces the curve in the three-dimensional parameter space (see Fig. 
19.15). Letters indicate the location of representative plant shapes. (From "Computer- 
simulated plant evolution" by K.J. Niklas 1986b. Copyright @ 1986 by Scientific American, 
Inc. All rights reserved.) 

tionary trajectory through the discretized parameter space such that each evolutionary 
step produced increased fitness. The results are shown in Fig. 19.16 (Niklas 1986b). 
Similar results were obtained for both fitness measures ( I ,  and IIM) .  Niklas (1986b) 
repeated the exercise with a more realistic model that included competition for light 
and space. Primitive plants were simulated to grow in a physical space in which they 
shaded themselves and neighboring plants. Each plant grew according to its loca- 
tion in parameter space, and dispersed spores into the wind. The ability of spores to 
disperse to uninhabited sites was a function of the height of the parent plant and the 
number of branch tips from which spores were emitted. Spores falling on areas shaded 
by any plant died. Spores that did not die, germinated and grew according to param- 
eters slightly altered from their parents due to random mutation. This procedure was 
repeated for many "generations," in a fashion reminiscent of genetic algorithms (Chap- 
ter 20). Niklas (1986b) found similar results in this method of simulated evolution as 
he did in his "direct search" of neighboring parameters. This modeling approach is 
interesting because it mechanistically calculates fitness from morphological parame- 
ters. The focus has shifted from system dynamics given fixed parameter values to the 
evolutionary dynamics of the parameters themselves. 

19.6 Summary 

The class of models presented in this chapter differ markedly from the continuous dif- 
ferential equations with which we have dealt to such a large extent in this book. The 
CAs and recursive models described here use relatively simple and abstract rules. Con- 
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sequently, statistically rigorous validation was not attempted. Moreover, the models 
are hard to analyze mathematically, and most of the results are obtained from computer 
simulation. This level of computational analysis has become possible only in the last 
decade because of easy access to powerful computers. As a consequence, these models 
require great care and attention to numerical analysis. Their strong point, however, is 
that most are relatively easy to formulate and, thanks to recently available computing 
environments and tools, easy to implement on computers. CAs, in particular, replace 
continuous systems (PDEs) and so it should be recognized that an explicit form of 
discretization is being used that may be inconsistent with physical and mathemati- 
cal concepts. On the other hand, vascular plant morphology is an inherently discrete 
process, and discrete, recursive models are well-suited to this use. 

19.7 Exercises 

1. Modify SimCAPlant. c on MBS-CD to simulate Conway's Game of Life (see 
Section 19.3. After replicating the original game, examine the sensitivity of the 
emergent patterns to the rule definitions. The original death rule (only survive 
with 2 or 3 neighbors) is analogous to the ecological concept of the Allee Effect: 
low survival at low and high number of neighbors. Modify this rule, so that 
survival occurs if there are 0, 1,2, or 3 neighbors. Also modify the birth rule so 
an unoccupied cell must have 4 neighbors before becoming occupied. 

2. How do the dynamics of the game of Life change if you use a torus or absorbing 
barrier as the boundary condition? How to they change if you use asynchronous 
updating as opposed to synchronous updating? 

3. Code the Silvertown et al. (1992) cellular automaton model of plant competi- 
tion, and verify their results. Examine the case where the plants are randomly 
distributed. Add disturbance that clears some grid cells of all species and is 
re-invaded probabilistically. Do different levels of disturbance support the In- 
termediate Disturbance Hypothesis (Connell 1978), where species richness is 
low at both low and high disturbance rates, but maximal at intermediate distur- 
bance levels? 

( MBS-CD contains SimCAPlant to help with this exercise.) k 
4. Modify Use a CA model based on Silvertown et al. (1992) to investigate the 

effects of arrival order of propagules on the community that develops. 
5. Write the complete set of transition rules of the pattern shown in Fig. 19.3 as a 

look-up table. (Each row will be a triplet of 0s and Is.) 
6. For 10 iterations, simulate the CA in Fig. 19.3 when it is started with three 

contiguous Is. 
7. Develop the CA pattern over time for the CA shown in Fig. 19.3 with the fol- 

lowing rule added: Zfa cell in state 1 has two 0 neighbors, it remains in state 
1. 

8. Write the leaf margin production that follows [3] in Fig. 19.12. 
9. Draw the state transition diagram for the heart CA model. Include the time lag 

parameters. 
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10. List the sequence of productions and rules used to generate the branching inter- 
pretation shown in Fig. 19.13. 

11. Draw the state transition diagram for the Werner-Caswell model of teasel de- 
scribed in exercise 1 of Chapter 13. 

12. Investigate the heart CA model (Sec. 19.4.2) for the following situations. 
a) What is the effect of very fast heart rates on ECG dynamics? E.g., generate 

a 2: 1 conduction block (one complete heart contraction for every two AV 
node pulses) by reducing SP. 

b) Alter the CA heart code to replicate Fig. 19.1 1. The intervention that in- 
duces the fibrillatory episode is a 2x2 set of cells located at the bottom 
center of the heart (last 2 rows) and occurs shortly before the third heart 
beat pulse. Several of the parameters used in that simulation are unreal- 
istically large; attempt to find a parameter set that uses better values. For 
fibrillations to be persistent, what is the relation of the period of the stimu- 
lus (SP) and the average time cells are in states E, A, and R? (Use multiple 
simulations to answer this question "empirically.") 

c) The onset of fibrillation appears to be sensitive to the number of cells that 
are not sensitive to stimulation when the AV node is stimulated. In this 
regard, the log-normal distribution may be a better approximation to the 
distribution of absolute refractory periods than the Gaussian. Use the GSL 
to replace the Gaussian with a the Log-normal distribution. 

Ch) (MBSCD contains SirnCAHeart b help in this exercise. 1 
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Evolutionary Computation 

20.1 The Problem of Global Optimization 

P ROBLEMS TO FIND maxima and minima (optimization) are common in biological 
modeling. We have already encountered them in the context of parameter esti- 

mation where we minimized the error between data and a function. Optimization also 
arises in models of the evolutionary process (e.g., optimal foraging) because a valuable 
working hypothesis when addressing questions of adaptations in organisms is that the 
observed traits maximize individual Darwinian fitness (i.e., reproductive contribution 
to future generations). A related application arises when modeling biological systems 
as control systems: systems that are able to adjust parameters in order to maintain 
system dynamics within some specified operating range. For example, in mammals, 
heart rate is increased when oxygen demand through physical exertion increases so 
that a constant amount of oxygen is delivered to vital organs. This can be considered 
to be an optimization problem since the system is "attempting" to minimize deviations 
of oxygen delivery rates from normal (acceptable) values. A third application arises 
when dynamic models must adjust flow rates of physical quantities between compart- 
ments so as to adhere to a physical law. For example, Caldwell et al. (1986, Chapter 
17) modeled radiant heat absorption by leaves as part of a canopy-level photosynthe- 
sis model. Since there was no analytical solution for the heat flow into each layer of 
leaves in the canopy given only the input radiation, they used an iterative approxima- 
tion that minimized the difference between the energy input at the top of the canopy 
and the total amount of energy absorbed based on a model of the effects of higher leaf 
levels on lower ones. 

The above applications share a common feature in that they are all based on real- 
valued, continuous functions. That is, least-square minimization in parameter esti- 
mation, individual fitness as a function of a foraging efficiency, and balancing energy 
budgets all fit this pattern. When the functions to optimize are "simple," there are 
robust and well-studied methods (e.g., nonlinear regression). There are, however, two 
situations in which the methods have difficulty: global optimization in the context of 
nonlinear functions with many local extrema and combinatorial optimization. 

Hill-climbing methods such as Nelder-Mead simplex will usually find the closest 
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extremum, but this may not be the global optimum. In Sec. 7.4, we recommended 
that the locality of the solution be tested by starting the simplex at several different 
initial parameter values. However, as we will see below, there are better approaches. 
Combinatorial optimization problems are those in which optima are sought that are not 
simple, real-valued functions. These are optimization problems, as the name suggests, 
whose goal is not to find parameter values, but to find the best way to combine objects 
together. A classical example is the traveling salesperson problem where the problem 
is to find the best sequence of cities to visit in order to minimize total distance traveled. 
Both of these aspects of optimization are hard, and new computational techniques 
using biological metaphors have been developed to deal with them. Foremost among 
these are methods based on analogies with evolution by natural selection. 

New optimization techniques are useful only if they address interesting biological 
questions. In this chapter, the models used as examples will attempt to answer the 
following. (1) What are the best days to irrigate a field crop to get the highest yield 
and use the least water? (2) What set of parameters best predicts dry mass accretion 
in a cotton crop simulator? (3) To survive when competing for food, is it better for 
bean weevils to stay and fight with each other or to eat fast and run? (4) How can a 
lizard know when to chase an insect and when to pass it by? All of these questions are 
optimization problems that can be answered with evolutionary computation. 

20.2 Optimization as Natural Selection 

Based on the observation that biological evolution by means of natural selection pro- 
duces organisms progressively better fit for a given environment, several computer sci- 
entists [e.g., Fogel et al. 1966; Holland 1975 (re-issued and updated in 1992)l proposed 
an analogy between natural selection and general optimization algorithms. While there 
are many biological situations where we would not expect organisms to be optimally 
adapted to their environment, the general relationship is strong enough to encourage 
computer scientists. The basic analogy is that potential solutions to an optimization 
problem are similar to the phenotype (observable traits) of organisms, and the proxim- 
ity of a potential solution to the true solution is similar to Darwinian fitness. If there 
are differences within a population of potential solutions, then some will be "fitter" 
than others and, such as biological evolution, the best potential solutions will be those 
that contribute the most to the next iteration of the algorithm just as more fit organisms 
contribute more offspring to the next generation. 

A large family of algorithms uses this basic analogy and has been subsumed under 
the label evolutionary computation. The algorithms differ in their interpretations of 
the basic elements of the analogy and in their computer implementations. Below, 
we briefly survey some of the alternatives and describe in more detail one especially 
popular approach. 

20.3 Kinds of Evolutionary Computation 

Let P(k) denote a population of N potentially optimal solutions at algorithm iteration k. 
Most approaches to evolutionary computation use the following general evolutionary 
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algorithm (Back 1994). 
1. Initialize P(0) with random solutions. 
2. Evaluate the fitness of each element of the initial P(0). 
3. Recombine elements of the current P(k) to form a new P'(k). 
4. Mutate P'(k) to form Pn(k). 
5. Evaluate the fitness of Pt'(k). 
6. Select the best of the PU(k) to form a new P(k). 
7. Repeat steps 3-7 with k = k + 1 until a stopping criterion is met. 

The differences among the methods depend on the class of problems (and solutions) 
attacked, methods to evaluate fitness, choice of the potential solutions to retain for 
the next generation, and techniques to modify the current set of potential solutions 
to produce variation in the population. In this discussion, we include as evolutionary 
algorithms the following techniques: simulated annealing, evolutionary programming, 
evolution strategies, genetic algorithms, and genetic programming. 

20.3.1 Simulated Annealing 

Simulated annealing (SA) is based on an analogy with physical thermal annealing: 
a process used to create crystals by heating a substance to liquid and allowing it to 
cool. If the cooling proceeds sufficiently slowly, pure crystals will form because the 
individual molecules will succeed in reaching an energy minimum given the states of 
their neighbors. If cooling is too fast, not all molecules can orient properly before their 
thermal energy is removed, and imperfect crystals are the result. Imperfections are not 
necessarily bad; different types of metal are produced by different cooling rates. 

The basic approach to SA is straightforward: (I) generate a single random solution 
to the problem, (2) calculate the cost or quality of the solution (i.e., "energy"), (3) if the 
solution is better than the previous best, accept the current solution, (4) if the solution 
is worse than the previous best, accept the current solution with some probability, and 
(5) repeat step (1) until a stopping criterion is satisfied. SA is a special case of the 
general evolutionary algorithm because it uses a population size of 1 and does not 
perform recombination among existing solutions (step 3). 

The purpose of step (4) in SA is to avoid local minima by sometimes accepting 
poorer solutions. This allows the proposed solution to jump out of local minimum 
energy traps. The probability functions used vary greatly among applications. In gen- 
eral, the probability decreases as the control "temperature" increases (van Laarhoven 
and Aarts 1987): 

1 
Pr(k) = qk(c) = -e-(Ac(k)lc), (20.1) 

Q(c> 

where k is iteration number, qk(c) is usually called the Boltzmann probability, Q(c) is a 
normalization function, c is the control constant analogous to temperature, and AC(k) 
is the difference between the costs of the current solution and the previous best. If 
AC(k) < 0, the new configuration is accepted as the best. If AC(k) > 0, the choice to 
retain the inferior current solution is essentially accomplished by a coin toss. If qk(c) is 
greater than a uniform random deviate from the interval 0-1, then the current solution 
becomes the best solution, even though its quality is less than that of the previous best. 
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When c is small, qk(c) is large, causing the algorithm to accept "inferior" solutions 
relatively frequently. This permits the algorithm to continue searching for the global 
minimum when it is in the vicinity of a local minimum. To converge on a solution, 
however, the acceptance of inferior solutions must eventually become unlikely. This 
is accomplished by reducing c, analogous to cooling the medium in real annealing. In 
minimization problems, it is typical to choose the new control value as ck+l = f (ck), 
where f () is the cooling schedule. 

The algorithm for reducing c is not specified and, generally, is chosen by a combi- 
nation of intuition and iterative trials. Common approaches (van Laarhoven and Aarts 
1987) include: (1) linear decrement: f (ck) = aCk, where a is a number slightly less 
than 1.0. a can be chosen by fixing the final control value and maximum number of 
iterations to be performed. (2) Nonlinear decrement: 

where k = 1,. . . , K. (3) Complex nonlinear decrement: (van Laarhoven and Aarts 
1987) discuss several approaches based on the variance of the cost at the kth iteration. 

The stopping criterion is usually the "equilibrium" state. Equilibrium is achieved 
when the previous best solution is not replaced by the current trial solution for N 
iterations, where N is on the order of 20. Termination can also be specified by setting 
a final value for the control constant (ck). 

Applications that have used evolutionary computation include complex electronic 
circuit design, determination of chemical structure of molecules, and scheduling prob- 
lems (factory optimization). The typical application of SA is, following the physical 
analogy, minimization of an error function, but it can easily be adapted to maximiza- 
tion problems. The convergence rate of the algorithm can be increased by choosing 
Pr(k) (Eq. 20.1) not from the Boltzmann distribution, but from a Cauchy distribution 
(Ingber 1989; Ingber and Rosen 1992). These methodological details are currently the 
subject of intense debate and research. 

A common application of SA is to optimize real-valued functions; this can be ex- 
tended to complex differential equation models. An example of the latter is to optimize 
parameters in simulation models. Walker (1992) used SA to predict the optimal timing 
and volume of irrigation that must be applied to a peanut crop in order to maximize 
yield. He used PEANUT, a validated and well-studied simulation model of peanut 
crop growth that incorporates temperature, rainfall, irrigation, and soil water content 
to predict yields using several irrigation schedules. For each of the years 1974-1991, 
he used PEANUT, yearly local weather data, and SA to set the optimal irrigation 
schedule in the form of the volume of water applied to a standard field on 10 different 
days during the growing season. He used 10 irrigation days because this was the usual 
number used by the local growers. Since this is basically a function optimization 
problem applied to scheduling, Walker (1992) relied heavily on theoretical research 
by Bohachevsky et al. (1986). He compared the yields predicted with those obtained 
using a "typical" schedule employed by local growers. 

An irrigation schedule was a vector of 10 days and volumes of water applied. The 
initial schedule was 10 equally spaced days. A new schedule was generated on the kth 
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Table 20.1 : Irrigation optimization results using SA and computer simulation. The typical 
irrigation schedule was determined from historical records. 

Schedule Yield (kgha) Total Water (mm) 
Typical 7063 154 
S A 7586 138 

iteration from the previous best schedule according to the recursive function: 

where Dk,i is the Julian date of the ith irrigation time during the kth SA iteration, Do,i is 
the same quantity in the previous best schedule, Ad is an empirically determined time 
step equal to 6, and Ri is a normalized uniform random deviate (Bohachevsky et al. 
1986). After the 10 Dk,i had been determined, the PEANUT model was simulated to 
determine predicted current yield. If the current yield was greater than the yield of 
the previous best schedule, Dk,i was accepted as the new best schedule. If the current 
yield was less than the previous best, it was rejected if a uniform random deviate was 
greater than the Boltzmann probability. Otherwise, the inferior schedule was accepted. 
The SA algorithm terminated when the Dk schedule was rejected for 20 consecutive 
iterations. 

Walker (1992) used as the Boltzmann probability 

where Ym is the estimated maximum yield, Yk is the yield of the current schedule, 
Ay is the difference between the yield of the current schedule and the previous best 
schedule, P is a positive scaling variable (x  0.85) for cooling, and g is a negative 
constant (x - 1 .O) that controls the shape of the cooling schedule at low temperatures. 

Since g is negative, Eq. 20.2 has the standard, general form of the Boltzmann prob- 
ability. In this application, the cooling schedule of the control constant is a linearly 
decreasing function of the current yield. The cooling schedule depends on Ym, which 
is unknown but iteratively increased by small amounts as the SA proceeds to ensure 
Y, > Yk. As the SA approaches the global maximum, the probability of accepting an 
inferior schedule approaches zero. 

For each year in the period 1974-1991, Walker (1992) determined the optimal 
schedule and compared its predictions to those produced from a typical irrigation 
schedule. The results, averaged over the 21 years, are shown in Table 20.1. Walker 
(1992) found that optimizing irrigation resulted in approximately 7% greater yields 
while using 10% less water compared to a typical irrigation schedule determined intu- 
itively by local growers. The actual schedule to use varies among years and depends 
on the yearly rainfall, but in average rainfall years the best strategy is to begin irriga- 
tion on 13 June and repeat for nine additional irrigation episodes spaced approximately 
10-1 3 days apart. 

20.3.2 Evolutionary Programming 

SA finds the optimum by randomly walking through the solution space using a single 
(currently best) solution. Global optimization was achieved by occasionally accepting 
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poor solutions as the current best. The remaining evolutionary approaches we discuss 
differ in that they use a population of current solutions iterated over time and an al- 
gorithm based on the metaphor of biological reproduction, ecological relationships, 
and evolution. The three major approaches are evolutionary programming, evolution 
strategies, and genetic algorithms; these have been recently reviewed and compared 
(Back and Schwefel 1993; Back 1994; Schwefel 1995). 

Evolutionary programming (EP) was invented by Fogel et al. (1966), who used 
the technique to estimate finite state automata transition probabilities (Section 10.4). 
Since many optimization problems can be cast in the framework of FSA (Finite State 
Automata), this is a broadly useful technique. Moreover, the basic idea has been ex- 
tended to include other problem domains that involve estimation of continuous param- 
eters (Fogel 1994b,a). The typical application is function optimization (e.g., parameter 
estimation, function minimization). EP follows the general evolutionary algorithm ex- 
cept it does not recombine the solutions (step 3). 

Population variability is generated entirely by random mutations. Fogel and Stay- 
ton (1994) report accuracy and efficiency benchmarks on function minimization com- 
paring EP with recombining methods (genetic algorithms, see below) that suggest that 
recombination does not improve the searching. Each element of P(t) (a "parent") gen- 
erates by mutation a single offspring to form P'(t). In most applications, mutation 
occurs by drawing new values of solution components (e.g., continuous parameters) 
from an N-dimensional normal distribution. The variance from which to draw the de- 
viate determines the amount of variability in the population of potential solutions. The 
control variables of the algorithm (e.g., the variances from which solution components 
are drawn) are variable and adaptable during runs. 

Selection occurs by pooling P(t) and P'(t) and placing a subset (e.g., 10 individu- 
als) in competition with each other. This is a stochastic form of tournament selection. 
Each solution is placed in competition with a randomly chosen subset, and the number 
of competing solutions that are worse than the target solution are counted. When all 
solutions have had an opportunity to compete, they are rank ordered by the number of 
wins they experienced. The new population of solutions is the best N by rank. 

Fogel (1994a) demonstrated the method and compared it to genetic algorithms 
(GA, see below) on the problem of maximizing the total harvest of a population grow- 
ing exponentially. The problem is to identify the population harvest schedule (i.e., the 
amounts to remove from the population at each point in time) that maximizes the total 
amount taken over a time interval for a population that is increasing exponentially. 
The schedule must be chosen so that the population is the same size at the end of the 
interval as at the beginning. This problem has analytical solutions of 73.23768 and 
279.275275, when the duration of the population dynamics and harvesting is 20 and 
45 time steps (t), respectively. Fogel found that when t = 20 after 1000 algorithm 
iterations, EP obtained the value 73.234749 and GA obtained 73.1 167. When t = 45, 
EP found 214.033813 and GA found 277.3990. This shows that both of these evolu- 
tionary algorithms can get close to the optimum and that the comparative efficiency 
of the two methods depends on the size (duration) of the problem. In this example, 
summing the errors from both methods supports the view that GA is overall the better 
method. Clearly, choosing the algorithm to use is not always an easy task. 
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20.3.3 Evolution Strategies 

Evolution strategies (ES) (Back and Schwefel 1993; Back 1994; Schwefel 1995) are 
similar to EP except they incorporate recombination among solutions in the general 
algorithm (step 3). Each parent can produce more than one offspring. Most applica- 
tions concern continuous function optimization. Mutation occurs by random draws 
from an N-dimensional normal distribution, but the methods for choosing the standard 
deviation differs from EP. Selection in ES also differs from EP in that tournament com- 
petition is not used. Instead, each offspring [Pt'(g)] is ordered by its fitness and the best 
N are chosen as the population in the next iteration. Solutions are described as a set 
of components (e.g., a finite number of parameter values in function minimization). 
Recombination occurs by swapping a subset of these components among a number 
of parents to produce offspring. Unlike GA, the values of the components are not af- 
fected by recombination. There are many variants on the basic ES described. Schwefel 
(1995) reviews many of these with function minimization benchmarks against a wide 
variety of functions. 

20.3.4 Genetic Algorithms 

Genetic algorithms (GA, Holland 1975) and their derivative, genetic programming 
(GP, Koza 1992b), follow the general algorithm described above, but differ from EP 
and ES in two ways. First, this method was designed to be applied to a broader class of 
problems than EP and ES. In particular, GAJGP, like SA, are useful for combinatorial 
optimization, although EP and ES also work on these problems. Second, the GAJGP 
method was derived from a close analogy with biological reproduction and evolution. 
Since this is one of the most important evolutionary optimization techniques (in the 
United States, at least), we will describe it in detail below. 

20.4 Genetic Algorithms and Genetic Programming 

20.4.1 The Basic Genetic Algorithm 

As mentioned, the classical GA formulation follows the general evolutionary algo- 
rithm described earlier. GA is distinguished from EP and ES by its method of repre- 
senting problem solutions and by its ability to address combinatorial problems. Like 
EP and ES, GA uses population's of potential solutions, but each individual solution is 
likened to a biological chromosome on which reside genes. The composite of genes 
on a given chromosome represents the potential solution. For example, if the problem 
was to estimate the parameters in a linear regression, the chromosome would be com- 
posed of two genes, one for each of the parameters that are sought. The number of 
genes is fixed for a particular problem. However, in principle, there can be any finite 
number of genes up to the storage capacity of the computer. 

Genotypic and phenotypic variability in biological populations arises from many 
sources, but mutation and recombination among chromosomes in sexually reproduc- 
ing species are two important sources. Variability is good in search algorithms since 
it is the primary way to avoid becoming trapped at local extrema. These two genetic 
operators manipulate the basic representation of solutions in GA: binary strings. In 
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4 CHROMOSOME t - gene -- gene -- gene - 
0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1  

Parents 

Offspring 
0 0 

0 0 0 1 0 0 1 0 1 0 1 1 0 0  1 1 1 0 1 1 0 1 1 1  

0 I 

1 1 0 1 1 1 1 0 1 1 1 1 0 1  0 0 0 0 1 1 0 0 1 1  
I 

Figure 20.1 : Chromosome definition and basic operations applied to bit strings used in 
GA optimization. Above: chromosomes as bit strings of three genes, each eight bits in 
length. Below: mutation is a random bit-by-bit reversal of gene values within an offspring 
(denoted by e); crossover exchanges portions of bit strings (to the right of the vertical dotted 
line) between two parents. 

classical GA, every gene is represented as a string of 0s and Is. A chromosome, being 
a collection of genes, is a set of binary strings. GA implements mutation as the rever- 
sal of N randomly chosen bits along the chromosome regardless of the interpretation 
of the gene to which the bit belongs. That is, if the bit is a 0, it is changed to a 1; if it 
is 1, it becomes 0 (Fig. 20.1). For a given GA run, a mutation rate (m) is specified as 
a small number (usually << 0.5). Each bit is tested for reversal by selecting a deviate 
from ui = U(0,l) and reversing bit i if ui < m. 

When mating occurs between two chromosomes, recombination occurs by ex- 
changing portions of the binary strings between the two chromosomes (Fig. 20.1). 
This is called crossover. At a random point on the two chromosomes, portions of the 
binary string to the right of the crossover point are swapped between the chromosomes. 
As Fig. 20.1 indicates, the crossover position is the same for both chromosomes. The 
crossover point need not occur at a gene boundary, which is different from ES. There 
may be more than one crossover point, although most applications use only one. Re- 
combination is one of the hallmarks of GA, but EP does not use crossover and some 
have claimed that it is not necessary (e.g., Fogel and Stayton 1994). This is a ma- 
jor point of controversy in evolutionary computation; there is no easy answer, but the 
value of crossover appears to depend on the problem being solved. 

While maintaining variability is important, it is also important that the algorithm 
actually progressively improve the mean value of the population to solve the problem. 
This is ensured by (1) biasing the choice of potential parents so that only the most fit 
chromosomes are parents and (2) by forcing the very best chromosome in the current 
generation to be present in the next generation. To effect (I), mating chromosomes are 
selected at random but the probability that an individual will be selected is proportional 
to its fitness. A common method is the roulette wheel (Davis 1991) that is similar to the 
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inverse method of choosing random deviates from an empirical probability frequency 
distribution described in Sec. 10.2. When strategy (2) is implemented by forcing the 
best chromosome to survive into the next generation, elitism occurs. 

Most implementations use constant numbers of chromosomes. This can be achieved 
by requiring that there be N/2 matings in a population of N chromosomes and that 
each mating result in two offspring. Then the next generation is formed by replacing 
the parents [P(t)] with the children [P'(t)] created through mutation and recombina- 
tion. This can be generalized so that fewer than N offspring are produced and only 
this smaller number of parents are replaced. 

The binary representation of genes permits a wide variety of problems to be at- 
tacked by this evolutionary method. This includes combinatorial problems such as 
the traveling salesperson problem, which is the problem of ordering a set of integers 
(cities are given arbitrary integer codes). Problems such as parameter estimation that 
require manipulation of noninteger (real) numbers are easy in EP and ES, but are ac- 
tually somewhat cumbersome in GA. It can be done, however, by suitably coding real 
numbers as binary strings. A simple method is binary coding in which a range of real 
numbers is approximated by n = 2m divisions, where m is the number of bits per gene. 
In the binary coding method, the bit string is interpreted as binary numbers that have 
the usual integer interpretations: 8888 is integer 0,8  11 1 is integer 7, etc. For example, 
if a gene has eight bits, then it represents 256 different integers. A real interval from 0 
to 10 (say) can be approximated by these 256 integers by assigning gene 88888888 to 
real 0.0, gene 88888881 to the real interval 0.0 < x 5 0.03906, gene 88888818 to the 
real interval 0.03906 < x 5 0.07813, and so on. 

Obviously, the larger the length of genes, the better the approximation. But long 
genes are computationally expensive. There is another problem with the binary cod- 
ing method: adjacent integers are not "adjacent" bit strings. For example, to change 
integer 7 to integer 8 requires that four bits be reversed. But GA mutation operates 
by reversing a single bit of a gene. Based on the rather loose but intuitively appealing 
analogy between the bit strings and biological genes, we would like a small effect of 
mutation to be caused by a small number of bit reversals. The Gray code has this 
effect: each adjacent pair of integers differ in their Gray code by a single bit difference 
(Goldberg 1989). For example, integer 7 is 8111 in binary code and 8180 in the Gray 
code; integer 8 is 1888 in binary and 1188 in Gray. As a result of this property, Gray 
codes are frequently used in GA. 

20.4.2 Examples: Parameters and Beetles 

The literature on GA is massive and growing by leaps and bounds (or, perhaps better: 
by mutations and crossovers). Many examples can be found in Goldberg (1989), Davis 
(1991), and the proceedings emanating from the many frequent conferences. Here we 
describe two from biology that differ radically in their problems definitions. 

Model Calibration 

Sequeira and Olson (1995) used GA to calibrate a subset of the free parameters in 
GOSSYM, a dynamic simulation model of crop growth over a growing season widely 
applied to cotton, soybeans, and winter wheat. The complete model has over 50 pa- 
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rameters, but Sequeira and Olson (1995) examined the efficiency of GA for estimating 
five parameters. Each chromosome was partitioned into five genes, and, since the pa- 
rameters differed in their biologically reasonable ranges, the bit length of genes varied 
between 8 and 12. 

The calibration algorithm was: (1) initialize a population of potentially optimal pa- 
rameter values based on heuristically obtained values reported in the literature (Reddy 
et al. 1985); (2) obtain new values by the standard GA algorithm outlined above (bi- 
nary coding, single crossover); (3) for each member of the population, run the simula- 
tion model to obtain predictions at the sampling times; (4) compare model predictions 
with observations and calculate fitness; (5) repeat step 3 until all potential solutions 
have been evaluated; and (6) repeat step 2 until the stopping criterion is satisfied. 
The chance that a given chromosome would survive to the next generation (step 6 in 
the general evolutionary algorithm, Section 19.3) was proportional to the ratio of the 
chromosome's fitness to average population fitness. 

Fitness was not a simple sum of squared deviations. Earlier experiments by Se- 
queira and Olson (1995) showed that absolute differences were more effective for GA. 
Moreover, complex computer simulation models such as this one produce complex 
output. In this case, the model predicts both mass accretion and organ generation for 
several different organ types (e.g., floral buds, immature fruit, etc., see Sec. 11.4). 
The model also predicts whole organism measures such as plant height and leaf area. 
Comparison of all of these measures with observations contributes to the evaluation of 
model quality. This was implemented in their GA with a fitness function that summed 
the differences between predictions and data for all of these model outputs. 

Sequeira and Olson (1995) found that GA improved model predictions over the 
heuristic parameters for several of the model outputs. The improvement was most 
dramatic for dry mass accretion, in which GA improved predictive ability by 25%. 
For all output quantities, GA resulted in a 15% improvement. Using a population size 
of 1000, the average error decreased from about 100 to 35 in 30 generations. This ap- 
plication of GA is computationally intense, but there are several GA implementations 
for parallel computers (Goldberg 1989). 

Optimal Beetles 

The second application used a rather different approach to GA optimization. Since 
GA was created by drawing an analogy between evolution by natural selection and 
optimization, it seems reasonable to turn around and apply GA to problems of opti- 
mal adaptive traits in evolution. Toquenaga et al. (1994) simulated competition and 
evolution between two species of beetles that attack beans. Callosobruchus analis and 
C. phaseoli lay eggs on the bean surface, the larvae burrow into the interior, develop 
over a number of days, and emerge as adults. The two species differ in four ecological 
traits: (1) mode of competition, (2) rate of development, (3) foraging location, and 
(4) number of eggs laid per bean. Mode of competition is a binary trait and refers to 
whether the beetle uses scramble or contest competition. In contest competition, dom- 
inant individuals interfere with the foraging of subdominant individuals and thereby 
acquire more resources. In scramble competition, all individuals compete equally for 
the resources without interfering with each other directly. C. analis uses contest com- 
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petition, while C. phaseoli uses scramble competition. Rate of development refers to 
the number of days from egg deposition to adult emergence. Foraging location refers 
to whether the beetles prefer to burrow to the central core of the bean or remain near 
the surface. There is more and better food in the interior, but emergence rates are 
higher if the developing larva is near the surface. Number of eggs laid per bean by 
adults is self-explanatory. 

In addition to the behavioral and physiological traits of beetles, the size of the 
bean is important in evolution. Large beans (i.e., cultivated varieties) should favor 
scramble competition, while small beans should select for contest competition. To 
test this hypothesis, Toquenaga et al. (1994) performed laboratory experiments and 
computer simulations to determine which strategy would out-compete the other on 
large and small beans. The model was a stochastic individual-based model in which 
the properties of the individuals evolved using GA. The above four individual traits 
[(I)-(4)] were encoded as bit strings on a GA chromosome with four genes of length 
one, five, four, and four bits per gene, respectively. 

Toquenaga et al. (1994) constructed an individual-based model (Sec. 13.1.4) in 
which GA was used to determine the phenotypic characteristics of the individuals. The 
model assumed that individuals having the contest gene [trait (I)] competed with and 
did not interbreed with individuals having the scramble gene. Starting with five pairs 
of each species in an arena with either large or small beans, the simulations followed 
the reproductive fates of individuals over 100 generations. The genetic composition 
of the next generation was a function of the number of emerging adults produced by 
each genotype in the previous generation. Consequently, the frequency of genes in 
the population evolved according to their relative abilities to produce offspring. After 
emergence, mating occurred randomly among adults of opposite sex that belonged to 
the same species [based on the competition gene (I)]. 

The simulations supported the primary hypothesis and agreed with experimental 
results: small beans favor individuals using contest competition, large beans favor 
scramble competition (Fig. 20.2). Significantly, the model did not predict extinction 
of either population, as observed. The evolution of other traits (e.g., developmental 
rates, etc.) in both populations apparently was able to keep ahead of extinction. To- 
quenaga et al. (1994) also tracked the evolutionary dynamics of the average life history 
and behavioral traits in each of the two populations. Surprisingly, they found that con- 
test individuals increased their use of the bean core relative to the peripheral regions, 
but decreased their developmental rates. This occurred in both large and small beans. 
Scramble individuals evolved in the opposite direction: they evolved to use the pe- 
ripheral regions of the bean more than the core and increased their development rate. 
Both of these results qualitatively agree with experiments. 

To summarize, if you are a bean beetle and your strategy is to fight (contest com- 
petitor), your best evolvable strategy is to go deep into the bean and out-wait your 
competitor by developing slowly. If your strategy is to scramble for food, your best 
strategy is to stay near the surface of the egg, eat the minimum necessary, and get out 
fast by developing quickly. In essence, Toquenaga's model showed the spontaneous 
emergence of microhabitat partitioning within a single bean. Neither strategy evolved 
to produce the maximum number of eggs per female, which you might naively expect 
to be a winning strategy. 
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Figure 20.2: Dynamics of real and simulated population dynamics of a contest competitor 
(C. analis) and a scramble competitor (C. phaseoli). (a) Dynamics of a laboratory interspe- 
cific competition experiment with food renewal at 10-d intervals. In the replicate shown, 
the scramble strategy dominates in large beans; the contest strategy dominates in small 
beans. (From Toquenaga and Fugii 1990, Fig. 1 ; results from controls not shown. @ 1991 
the Society of Population Ecology. Reprinted by permission of the Society of Population 
Ecology) (b) Simulated evolution of competition related life history traits using GA. When 
the resource is large beans, scramble competitors evolve to dominate; on small beans, 
contest competitors evolve to dominate. (From Toquenaga et al. 1994, Fig. 9. C. Langton, 
Artificial Life 111, @ 1994 Addison-Wesley Publishing Company Inc. Reprinted by permission 
of Addison-Wesley Publishing Company, Inc.) 

20.5 Genetic Programming (GP) 

A computer program, like a sequence of cities visited by a traveling salesperson, is a 
solution to a problem. It will, no doubt, come as no surprise to learn that there are good 
and bad computer programs: programs that are more or less efficient, or that give more 
or less correct answers. As computer users, we tend to think of a computer program 
as a tool that performs an activity. For example, a word processor is a program that 
allows us to input text, edit it, format it, and print it. Theoretical computer scientists, 
however, think of programs as complex objects, which can be studied and classified by 
their structure. As objects with parts (e.g., for loops, assignment statements, i f - then 
conditionals, etc.), programs can be constructed like any other structure by assem- 
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Figure 20.3: Programs represented as trees and S-expressions. (a) Two equivalent 
representations of a simple program to multiply 2 times 2. The tree structure shows the 
hierarchical arrangement between the function ('*I) and its arguments (2 and 2). The S- 
expression on the right is a non-graphical representation that uses parentheses to represent 
the hierarchy. (b) The two representations for a more complicated program. 

bling the available parts. Recently, there has been much research on the use of GA 
to automatically discover computer programs (Koza 1992b, 1994; Kinnear 1994) by 
assembling them from parts. Although based on GA, this problem is sufficiently dif- 
ferent from other GA applications that it deserves its own name: genetic programming 
(GP). 

20.5.1 GP: GAS Applied to S-Expressions 

In GP, the search space is defined by the structure of a computer program. Computer 
programs can be represented as a tree graph that, in turn, can be represented as an S- 
expression. Figure 20.3a shows these two objects for a program that multiplies 2 and 
2; Fig. 20.3b illustrates a more complicated program. In more typical mathematical 
notation, the latter program computes the function y = 2 + (3 - (9 -20)). Figures 20.1 
and 20.3 illustrate a feature of GP that distinguishes it from GA. GA solutions have 
a fixed size: the number of bits on the chromosome. GP solutions are constructed 
recursively and are open-ended: GP chromosomes (solutions) can be arbitrarily large. 
We will discuss below how these structures are created and evolved. 

Obviously, GP would not be so wonderful if all it could do was string together 
arithmetic statements, although, as we will see, this is a very useful idea. GP can also 
solve combinatorial problems such as discovering a set of moves to be performed by 
an imaginary ant in following a trail of food (Koza 1992a; also done using GAS by Jef- 
ferson et al. 1992). The food is arranged along a contorted trail in a two-dimensional 
grid, and the task for the ant is to discover as much of the food in the time available. 
The ant can perform only three simple actions: pivot to the left in the current cell 
(LEFT), pivot right in the cell (RIGHT), or move ahead to the next cell in front of the ant 
(MOVE). If the ant moves on to a spatial grid cell containing a food item, then the ant 
consumes the food. These three activities are analogous to the numbers in the exam- 
ples of Fig. 20.3; they terminate branches of trees. The arithmetic operations in those 
examples are analogous to the two functions in the ant system called IF-FOOD-AHEAD 
and DO-TWO (we've taken some license with Koza's original terminology). The former 
function looks in the current facing direction and if food is available in the next cell, a 
specified activity is performed. If no food is available, another activity is performed. 
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DO-TWO IF-FOOD-AHEAD 
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Figure 20.4: GP operations on programs. Crossover: exchanging nodes between two 
parent programs to form a new offspring. Mutation: randomly altering a single node. Each 
tree represents one "chromosome" or potential solution. 

Thus, this function requires two arguments, one for each possible outcome of the test 
for food. DO-TWO instructs the ant to perform two sequential operations, e.g., move or 
turn without looking for food. It also requires two arguments, but they are performed 
unconditionally. 

Four examples of possible S-expressions are: (1) (DO-TWO LEFT LEFT), (2) (IF-- 
FOOD-AHEAD MOVE MOVE), (3) (MOVE), and (4) (DO-TWO IF-FOOD-AHEAD (IF-FOOD-AHEAD 
(IF-FOOD-AHEAD DO-TWO (LEFT LEFT) M0VE)RIGHT) DO-TWO (RIGHT HOVE)). Program 
(1) causes the ant to spin in place making left turns forever. The ant of program (2) 
looks for food then moves straight ahead traversing the arena without turning. The ant 
of (3) does the same thing, but never looks for food. Describing the behavior of the 
ant of program (4) is left as an exercise for the reader. 

As illustrated by this ant example, a GP solution requires that we identify four 
elements of a problem: (1) a function set: a set of functions (e.g., IF-FOOD-AHEAD, 
and DO-TWO); (2) a terminal set: a set of program elements that do not require argu- 
ments (e.g., LEFT, RIGHT, MOVE); (3) a fitness calculation for each possible program; 
and (4) various GP system control parameters. A computer program that implements 
a GP system follows a similar structure to that for GA and the general evolutionary 
algorithm. An initial population of potential solutions is generated at random. Their 
fitnesses are determined and a subset are chosen for "mating." During the mating pro- 
cess, crossover and mutation can occur. Mutation acts on terminals, giving them new 
values from the terminal set. Crossover exchanges nodes of a program tree between 
potential solutions (Fig. 20.4). 

To test these small sets of functions and terminals, Jefferson et al. (1992) created a 
trail called the Santa Fe Trail that comprised 89 food items (Fig. 20.5a). GP discov- 
ered a program (Fig. 20.5b) that found all of the food before a fixed amount of time 
had expired (Koza 1992a). 

The above solution depends on the initial trail. A different trail will cause a dif- 
ferent program to evolve. Indeed, there is some evidence that starting a search for a 
program to solve a new trail beginning with a population based on the solution to the 
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(b) (IF-FOOD-AHEAD MOVE DO-TWO 
(RIGHT IF-FOOD-AHEAD (MOVE LEFT)) 
DO-TWO 
(LEFT 
IF-FOOD-AHEAD (LEFT IF-FOOD-AHEAD (MOVE RIGHT)) 
MOVE) 

Figure 20.5: The Santa Fe Trail and its solution. (a) The positions of 89 black food 
squares. The ant starts in the upper left corner on the square marked with an X. (b) The 
evolved program discovered by GP that follows the trail exactly. (From Koza 1992a, Fig. 
5. C. Langton, Artificial Life: Volume 11, @ 1992 Addison-Wesley Publishing Company Inc. 
Reprinted by permission of Addison-Wesley Publishing Company, Inc.) 

Santa Fe Trail is actually worse than starting the new search with random programs. 
Nevertheless, it is a remarkable accomplishment that a "dumb" computer can learn to 
traverse this trail by means of a relatively simple program. 

20.5.2 Simple Symbolic Regression 

Another excellent problem for GP is symbolic regression, or the problem to find the 
best function through a set of datum points that has a single independent variable and 
a single dependent variable. We have previously discussed parameter estimation tech- 
niques to find the best parameters when the function is given. Finding the function and 
the parameters is harder, but GP can help because one of the fundamental methods GP 
uses to generate potential solutions is the recursive application of mathematical oper- 
ations. By providing both arithmetic operations shown above in Fig. 20.3 and other 
fundamental mathematical functions (e.g., log, sine, cosine, etc.), extremely complex 
functions can be built using recursive applications of the functions. 

The function set is the set of all these mathematical functions we care to provide; 
the terminal set has two elements: a random real number that represents the param- 
eter values (coefficients) and a variable (X) that represents the independent variable. 
A potential solution's fitness can be calculated using any method that integrates the 
differences between the data at all values of the independent variable, for example, the 
sum of the square of the differences. In the following, X can have integer values from 0 
to 9. Fitness is calculated by iteratively stepping through each value of x, subtracting 
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Figure 20.6: GP solution to symbolic regression on a discontinuous function. (a) Above: 
the input ramp function to fit; below: the program found. (b) Above: the input triangular 
function to fit; below: the program found. The function "%" is arithmetic division that returns 
0 if the denominator is 0. X represents the independent variable and ranges from 0 to 9. 

the value calculated by the potential solution from the data value at each x. For exam- 
ple, if the data to fit are generated from the function Y =  AX^ + B X ~  + CX, where A, 
B, and C have definite numerical values, a GP can readily find the S-expression: 
* ( * ( a x >  I (+ ( *  ( +  ( * ( c X I  1 )  *(b XI I 1  I ) ,  
where a, b, c have definite, evolved values such that A = abc, B = ab, and C = a. 

The problem becomes more interesting when we try to fit discontinuous data such 
as a ramp function that increases linearly to a threshold value of x, and then becomes 
horizontal (Fig. 20.6a). Simple.polynomia1 equations that result from the combination 
of multiplication and addition (as above) do not fit this function well. We only obtain a 
perfect fit if we provide the GP system with a two-argument function RAMP that returns 
the first argument if it is less than or equal to the second argument, otherwise it returns 
the second argument. If the first argument is the independent variable (X), then RAW 
increases linearly from 0 with slope 1.0 until a threshold (the second argument) is 
reached [e.g., X = 41, for all larger values of X the function is horizontal. 

Given this function, the GP system must find a program that, first, uses RAMP, and, 
second, sets the first argument to x and the second argument to the correct threshold 
value. This is not hard with moderately large populations (e.g., about 1000). So, 
the lesson is that the search space (number and nature of elements in the function 
set) is critical for success using GP. This constraint is not such a great shortcoming, 
however, since it is only a restatement of the old joke about the drunk who looked for 
his lost car keys under the street lamp because the lighting was better there than in the 
place the keys were actually lost. For any optimization method to succeed, the region 
wherein the solution lies must be searched. The value of GP is that the solution space 
is automatically generated from the elemental functions. 

A slight modification of the present case (D. Neff, pers. commun.) provides a good 
example of this use of elemental functions and illustrates that GP solutions are often 
not what the designer expected, or even, sometimes, what the designer can fathom. 
An example of the latter condition is deferred until the next section. The former case 
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occurs when one attempts to extend the application of the simple functions above to fit 
a dataset that forms a triangular function (Fig. 20.6b, above). One would expect that 
a perfect fit would require a TRIANGULAR function with three arguments analogous to 
RAMP. As Fig. 20.6b illustrates, however, this is not so. The program shown is a perfect 
fit to the data, but it uses only the RAMP function with a complicated, nonconstant 
second argument. The equivalent S-expression for this program is ( RAMP ( X - ( 

18 X ) ) ). [Because of the complicated method used to compute the number 10 
(Fig. 20.6b), this program is not optimized for efficiency.] When this program was 
evolved, the GP system also had available to it a TRIANGULAR function that could have 
been used, but was not. 

Astonishingly, this solution (Fig. 20.6b) implies that the GP system discovered 
how to count backward! The solution found is a function that increases as X increases 
from 0 because only the first component of the conditional is invoked (left branch). 
Then, when the threshold is reached, the second component of the conditional is acti- 
vated and (18-x) is used. This function decreases as X increases to 9. The program has 
discovered how to count backward from 5 down to 1 using a common trick applied to 
the loop index long known to experienced programmers. This example of the ability 
of "mindlessly" created programs to find "new" solutions not originally designed into 
the system is typical of GP; it sometimes borders on the spooky. 

A more complex and less contrived application is the prediction of phytoplankton 
blooms in estuaries (Jeong et al. 2003). 

20.5.3 GP Applied to Optimal Foraging 

These made-up examples are nice because they illustrate the concepts, but is this sys- 
tem useful for real biological problems? GP is young enough that not many examples 
exist, but one from optimal foraging theory shows the power of symbolic regression 
to derive functional relationships. 

Anolis lizards are a group of arboreal insectivorous lizards endemic to Central 
America and the Caribbean islands. They primarily use a foraging strategy called sit- 
and-wait, which involves sitting on a tree branch until a desirable insect approaches 
and undertaking a short pursuit followed by a return to the perch. These lizards have 
excellent binocular vision and can probably detect prey at 8 m. They can eat most 
species of insect, but these occur in a wide range of sizes and distances from the 
perch. The lizard's optimization problem is to determine which prey items to pursue. 
To pursue insects far from the perch risks a lower probability of success and implies 
a greater time away from the perch (cost of lost opportunity). Large, close insects are 
clearly worthwhile since the pay-off is high, the risk low, and the opportunity costs 
are also low. Small, near insects are also probably worthwhile. Distant insects are 
problematical. Koza et al. (1992) applied GP to this problem, and the following is 
taken from there. 

Formally, the optimization problem is to determine the distance from the perch 
at which the average energy intake rate is maximized by minimizing the total time 
required to consume a food item. The time to consume a prey item is a function of 
four variables: prey abundance, lizard sprint velocity, and the two coordinates of prey 
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Generation 0 Generation 10 Generation 40 Generation 60 
1,460 insects 1,514 insects 1,646 insects 1,652 insects 

Figure 20.7: Number of captures by best solutions for critical regions to pursue insects 
at four different stages in the GP search. Insects occurring within the cross-hatched region 
should be pursued. The dashed semicircle in Generation 60 is the theoretical optimal re- 
gion. In each panel, axes represent spatial position relative to lizard perch (0,O). (From 
Koza et al. 1992, Figs. 8-1 1. @ 1992 the Massachusetts Institute of Technology. Published 
by the MIT Press.) 

location relative to the lizard. From first principles and the assumption that all prey 
encountered are captured, Roughgarden (cited in Koza et al. 1992) solved the problem 
analytically for the optimal radius (re) beyond which no insect should be pursued. 
In terms of the pursuit criterion, the lizard should pursue an insect at position x, y 
(distance ri from the lizard) only if ri < re. Or, the lizard should pursue if (x2 + y2)1 < 
(3v/na)f, where (x, y) is the prey location, v is the lizard sprinting velocity, and a is 
the arrival rate of insects. 

To test GP on this problem, Koza et al. (1992) used a five-element terminal set: 
x and Y position of insect, AB insect abundance, V lizard velocity, and a random real 
number. The function set included the arithmetic operators (+, -, %, *), an if-less-than 
conditional (IFLTE), and a special power function (SREXPT). The evolved programs 
calculated the critical distance needed to determine the pursuit decision: if a prey is 
within the critical distance, pursue and capture, otherwise ignore. Since the arrival of 
insects is stochastic and lizard sprint velocity unpredictable, each potential solution 
(program) was tested against several conditions of prey abundance and lizard speed. 
Program fitness was the average energy intake rate in all these conditions. 

The progression of the GP in finding a solution is shown in Fig. 20.7. From the 
analytical solution, the optimal number of insects captured under the conditions of 
the GP trial was about 1671 insects (depending on stochastic variables). The number 
captured by the best program in each generation is shown with the curve of critical 
distances. The run was terminated at generation 61 and the best program was: 

(+ (- (+ (- (SREXPT AB -8.9738) (* SREXPT X X) (* X AB))) 
(* (+ VEL AB) (% (- VEL (% (- VEL (% AB Y)) (+ 8.7457 8.338898)))) 
(SREXPT Y X)) (- (- SREXPT AB -8.9738) (SREXPT -8.443684 (- (- (+ (- 
(SREXPT AB -8.9738) (SREXPT -8.443684 Y)) (+ AB X)) (SREXPT Y X)) 
(* (* (+ X 8.8181929) AB) X)))) (* (SREXPT Y Y) (* X AB)))) 

Koza et al. (1992) translated this as: 
c = -0 44(a+~+a-0'9738 )-(0.44Y+yX+ax[x+O.O1]) 
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This is a far cry from Roughgarden's simple and elegant analytical result, and it is hard 
to imagine a lizard keeping track of all those parentheses in deciding to eat or not to eat. 
Despite the complexity of the answer obtained, there is merit in this application. One 
value of this exercise was to demonstrate the potential to find discriminating functions 
without imposing hypotheses of the functional form. Second, the analysis can now be 
applied to new problems where no analytical solution is known. Koza et al. (1992) 
applied the GP to a hypothetical lizard that could not see equally well at all angles. In 
this case, the GP evolved a considerably more complex rule than before (3.4 times as 
complex) that indicated that regions of poor visibility should be avoided. 

20.6 Precis on Evolutionary Computation 

Currently, there is much unresolved diversity in approaches to evolutionary compu- 
tation. You might say that the field of computational optimization has yet to find its 
global extremum. Since it is not good for scientific disciplines to become trapped in 
local extrema, the diversity we see is still beneficial. Nevertheless, each of the major 
approaches have their adherents and sometimes the advocacy is intense and evange- 
lism overblown. There are many, perhaps too many, comparative studies written by 
an advocate for one of the methods that demonstrate the advantages of the approach 
favored by the author. For those without strong feelings or great professional invest- 
ment in one particular approach, the best choice for a given problem is not obvious. A 
central issue is the relative merits of methods with and without recombination. More- 
over, there is great diversity within each approach and many control parameters that 
must be specified. As a result, users should expect to spend considerable time eval- 
uating alternatives and tuning parameters to obtain the best results. Schwefel(1995) 
provides discussion and C and FORTRAN code for many function minimization prob- 
lems with and without constraints. This includes a particularly valuable compendium 
of multidimensional functions with equations and graphical displays that can be used 
to compare different optimization approaches. New results can be found at: 
www . genetic-programming . org. Many of the new biological applications concern 
searching genomic databases. 

MBS-CD contains simulation code for several of the models discussed in this 
chapter. On the CD, see the directory . . . /BEvolution. ) &  

20.7 Exercises 

1. GA and GP software are available from a number of Internet sites. Four of these 
are: 
ftp: alife.santafe.edu/pub/user-area/ec 
http://www.aic.nrl.navy.mil/galist 
http://isl.cps.msu.edu/software 
http://alife. santafe. edu/" joke/encore Download a GA package (e.g., SGA). 
Use it to find the best values for the slope and intercept of a straight line to min- 



434 Chapter 20 Evolutionary Computation 

imize the sums-of-squares deviations with a hypothetical data set. Compare the 
results and solution time to a standard parameter estimation package (e.g., SAS 
linear regression, or simplex). 

2. From the above MSU Internet site, download one of the GP packages (e.g., 
GPCPP or l i l -gp).  Compile the symbolic regression package that is used as 
examples in these systems. When you have been successful, try the following. 

a) Implement a ramp function (Section 19.5) and test it against the triangle 
data in Fig. 20.6. Did your system discover counting backward? 

b) Using the standard functions supplied with the symbolic regression pack- 
age you downloaded and a set of table values for a standard mathematical 
function (e.g., the gamma distribution in the exercises of Chapter 7), com- 
pare the solution found by GP with a high order polynomial equation with 
parameters estimated by standard nonlinear estimation (e.g., simplex). 

3. In Fig. 20.1, suppose the ranges of the numerical values represented by the genes 
from left to right is -10 - 20,0 - 1.0, and 0 - 10, respectively. If binary coding 
is used, what values do the three genes contain? 

4. Verify that the solution for the Santa Fe Trail works by starting the ant at the "X" 
in Fig. 20.5 and stepping through the program to find the first 11 food items. 

5. Just using your intuition and innate problem-solving skills, try to discover a bet- 
ter program for the Santa Fe Trail. What should "better" mean in this context? 

6. Work through the program in Fig. 20.6b to verify that it gives a perfect fit to the 
input data. 

7. In the context of Chapters 1 and 8, what was the objective of Toquenaga's 
model? How could validation be improved? 

8. Can GP be used for model identiJication? In other words, can GP derive a system 
of ODES plus parameter values whose solution will fit a given data set. Explore 
your ideas using Luckinbill's predator-prey data and the functional components 
taken from Harrison's set of models (Section 13.2.3). 
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evaluation, see validation 
finite state, see Finite state 
forest gap, 354 
forms, 10 
formulation, 20 

principles, 45-47 
qualitative, 32,45 
quantitative, 58 
simplification, 47-49 

individual-based, 5 1 
JABOWA, 354 
mathematical classification, 10 
mechanistic, 10 
misuse, 13 
multiple controls, 74 
null, 27 
null (neutral), see Model, base 
objectives, 28-30 
particle, 11 
phenomenological, see Model, em- 

pirical 
philosophy, 21 

alternative model, 21 
Bayes, 22 
multiple hypotheses, 2 1 
strong inference, 22 

random, 11 
reliability, 148 
secondary uses, 5 
simplifying, 47 
simulation, 14 
spatial, 11 
Spotted Owl, 338 
static, 10 
terminology, 12 
trade-off, 12 

generality, 12 
precision, 12 
realism, 12 

transport, 11 
uncertainty, see Uncertainty analysis 

uses, 4-6,262 
Modeling process 

alternative 
null model, 27 

alternative view, 2 1 
multiple working hypotheses, 

analysis, 21 
calibration, 20 
checking units, 89 
classical view, 18-2 1 

problems, 21 
conservation, 95 
hypotheses, 18 
making dimensionless, 90 
mathematical formulation, 20 
objectives, 18 
parameter estimation, 20 
rules of thumb, 95 
set of rules, 17 
toolbox, 89 
two approaches, 18 
useful functions, 96 
verification, 20 

Modus tollens, 146 
Monochrysis lutheri, 298 
Monod model, see Chemostat 
Monte Carlo, 189, 190, 192 

Latin hypercube sampling, 189 
Multiple controls, 74 

additive, 78 
average, 77 
harmonic mean, 77 
mean resistance, 77 
minimum, 76 
multiplicative, 76, 329 

Multiple working hypotheses, 22-24 
example, 24 

Miinch flow, 256 

N 
National Micropopulation Simulation Re- 

source, 277 
Nelder-Mead simplex, 139 
Neuron model, 41,378,379,382,383 

FitzHugh-Nagumo, 382 
Nonlinear 
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attractor 
fixed point, 357 

Nonlinear dynamics 
attractor, 357,359 

dimensions, 370-37 1 
limit cycle, 357 
Poincark section, 369, 370, 380 
reconstructing, 369,370 
return map, 369,370,380 
strange, 357,363 
structure in neurons, 378,379 
structure in populations, 380 
torus, 357 

bifurcation, 357-360,386, 388 
control parameter, 357,360 
diagram, 357,361 
Hopf, 361,362 
method for generating, 358 
plots, 357 

chaos 
age structure, 376 
biological reasons for, 386,388 
chickenpox, 377 
controlling, 373-375,382,383 
distinguishing from random, 364- 

366,373,374 
evolution, 388 
model characteristics, 374-376 
population, 383 
power spectra, 367,368,377 
signatures, 363,366 
snail neurons, 378,379 

heart beat, 377 
Lyapunov exponent, 372,381 
one-dimensional map, 359 
predator-prey, 362 

1 / f noise, 368 
spiral chaos, 363 

predictability, 372, 373, 381 
qualitative dynamics, 357 
sensitivity to initial conditions, 360, 

361,371 
stability diagram, 363,379,384,385 

Nonlinear regression, 129 

Nullcline, 208,248 
separatrix, 208 

Nullclines, 196 
competition, 200,201,282,283 
Lotka-Volterra, 196 
predator-prey, 196,284,288,289 
Spruce budworm, 286-288 

Number representation, 107 
Numerical integration, 110-1 15 

boundary conditions, 12 1 
periodic boundary, 12 1 
torus, 121 

Euler's method, 1 1 1- 1 12, 1 12 
method of lines, 1 18, 1 19 
PDEs, 1 18 
Runge-Kutta method, 112-1 15 
slope fields, 1 11 
stiff equations, 115 
variable steps, 117 

0 
Obesity, 268,269 
Objective, 25,29 

grassland model, 29 
Objectives, 18, see Model, objectives 
Objectivity in science, 173 
l /  f noise, 368 
Optimal foraging, 43 1,432 
Optimization, see Evolutionary computa- 

tion 
Osmotic potential, 244 
Osmotic pressure, 243 

P 
Paradox of enrichment, 289 
Parallel computers, 342,424 
Paramecium aurelia, 289 
Paramecium-Didinium experiment, 177 
Parameter estimation, 20, 123 

calibration, 138 
cautions, 140 
direct methods, 135 
evolutionary methods, 139,415,423, 

429 
Normal distribution, see Random numbers, extrapolation, 140 

normal deviates gradient methods, 13 1 
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inverse transformation, 126 
iterative methods, 131, 135, 140 

speed, 141 
local and global minima, 140 
nonlinear parameters, 130 
regression, 125-126, 128 
simplex, 135-138 
statistics, 140, 141 
transformations, 126, 127, 140 

Parameter sensitivity, 179-185 
amount to perturb, 182 
factorial design, 183-184 
index, 18 1 
methods, 180 
multiple parameter, 18 1 
single parameter, 18 1-1 82 
uses, 179 

Parameters 
in Forrester diagrams, 35 

Partial difference equations, 326 
Partial differential equations, 83,118-121, 

328,413 
heart, 399 

Particle models, 5 1, see Individual-based 
model 

Patch model 
extinction 

and chaos, 387 
Spotted Owl, 338,339 

Hanski, 334 
Levins, 334 
Spotted Owl, 335 

individual-based, 338,341 
parameters, 337 
spatially explicit, 338 
timber harvesting, 337 

Patches, 333 
PDE, 11 
PEANUT crop simulator, 418 
PGA, see Photosynthesis 
Philosophy 

Lakatos, 22 
Popper, 22 

Philosophy,strong inference, see Model, 
philosophy 

Photoinhibition, 73 

Photosynthesis, 353 
biochemical, 237 
Calvin cycle, 238 
carbon assimilation, 238 
carboxylation, 238 
cell wall modulus, 246 
conductance, 246 
efficiency, 258 
light effects, 242 
oxidation, 238 
oxygen effects, 239 
phosphoglycerate (PGA), 238 
photosystem, 238 
ribulose 1,5-biphosphate (RuBP), 238 
RuBP saturating, 239 
stomata, 245-248 

humidity effect, 249 
ion effects, 247 
limit cycles, 250,252,362 
nullcline, 248 
osmotic pressure, 247 
parameters, 25 1 

transpiration, 246 
turgor pressure, 244 
water relations, 242 

n, see Buckingham Pi, 96 
Pink noise, see Nonlinear dynamics 
Plant growth, 251-255 

Chanter model, 253 
Gompertz, 253 
Gompertz model, 252 
lettuce model, 253,255 
logistic, 25 1 
optimal parameters, 424 

Plant partitioning, 255-258 
Miinch flow, 256 
parameters, 258 
photosynthetic efficiency, 258 
Shoot:Root ratio, 257 

Poa trivialis, 394 
Poincark section, see Nonlinear dynam- 

ics, attractor 
Poisson distribution, 279 
Polya, George, 17 
Polynomial regression, 129 
Popper, 21 
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Popper, Karl, 22 
Population 

age structure, 273-276,335,383 
chaos, 376 
fecundity, 274 
sex ratio, 274 
stable, 275 
two sexes, 274 

complex dynamics, 358 
defined, 272 
eigenvalue, 275 
fish 

consumption, 280 
growth, 279 
individual-based, 278,279,28 1 

flour beetle 
chaos experiments, 383,384 

human, 24 
individual-based, 276,425 
insect, 328,383 
Leslie matrix, 274 
sex ratio, 336 
simple, 37-39 
size structure, 275,292 
synchrony 

role in extinction, 387 
Population model 

density-dependent 
stochastic, 227 

Predation, 294 
chaos, 362 
chemostats, 302 
laboratory models, 287 
Lotka-Volterra, 283 
model, 290 

parameters, 29 1 
nutrient enrichment, 289 

Predator-prey 
Lotka-Volterra, 362 

Prediction, 5 
model, see Model, uses 

Preserve design, 339 
Prey taxis, 33 1 
Profile analysis, see Validation 

Purkinje fibers, 399 

Q 
Qualitative dynamics, 357 
Qualitative model, 32,45 
Quantitative formulation, see Useful func- 

tions 

R 
R*, 301 
R*, 300 
Random numbers, 2 17 

congruential method, 2 18 
inverse cumulative method, 219 
normal deviates, 219,366 
other distributions, 279 
table look-up, 220,23 1 
wrapped Cauchy, 22 1 

Rational functions, 101 
Real numbers, see Floating point numbers 
Rectangular distribution, see Uniform dis- 

tribution 
Recursive growth, 406 

L-system, 406,407 
plant morphology, 406-408 

non-grammatical, 407 
optimality, 408 
plant evolution, 408 

fitness, 410,411 
Niklas model, 408-4 12 
self-shading, 409,410 

Resistance, 244 
Retrovirus, 3 1 1 
Return map, see Nonlinear dynamics, at- 

tractor 
Reverse transcriptase, 3 12 
Ribulose 1 J-biphosphate (RuBP), see Pho- 

tosynthesis 
Routh-Hunvitz, 208 
RuBP, see Photosynthesis 
RuBP oxidation, 238 
Runge-Kutta 

variable time steps, 117 

Pseudo-random numbers, see Random num- S 
bers S-expression, see Genetic programming 
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Saddle point, 208 Species coexistence 
Santa Fe trail, see Genetic programming in variable environments, 302 
Satiation, 328, 329 Spotted Owl, Northern, 335 
Scaling, 342 Spruce budworm, 285 

and hierarchical structure, 347 model, 285 
canopies, 35 1 nullclines, 286 

iterative model, 352-354 stable limit cycle, 286 
ecosystem-level models, 354 Stability, 194, 372 
errors, 344-345 competition, 208 
extrapolation, 342 competition model, 207 
leaves, 350 eigenvalue, 206 
measurements, 343 complex, 205 
methods, 348,349 examples, 195-197 

direct extrapolation, 349 global vs local, 195 
expected value, 349 Jacobian matrix, 207 
explicit integration, 349 limitations, 209 
lumping, 349 linear systems, 201-205 
mechanistic models, 347 linearization, 206 
semivariograms, 345 local, 195, 196,201 
spectral analysis, 345 Lotka-Volterra, 196 
variance analysis, 347 neighborhood, 195 

regional, 354 neutral, 202,205 
watersheds, 354 nullclines, 196 

Schaffer collateral fibers, 382 Routh-Hurwitz criteria, 208 
Sensitivity analysis saddle point, 208 

and model reliability, 148 separatrix, 208 
and validation, 192 steps in performing, 209 

Shoot:Root ratio, 257 Taylor series, 206 
Simplex, see Parameter estimation Stable age distribution, 275 
Simulated annealing, see Evolutionary com- Stiff equations, 1 15 

putation, simulated annealing Stizostedion vitreum, 278 
Simulation Stochastic 

defined, 14 density-dependent population, 227 
individual-based, 276 distributions 
integration, see Numerical integration Poisson, 279 

Sinoatrial node, 398 insect competition model, 425 
SIR Markov process, 228,229 

model, 308 metapopulations, 387 
school flu, 309 Spotted Owl habitat selection, 336 

Slime mold, 325 time series, 364,365 
Slime mold model, 325-327 colored noise, 368 
Slope fields, 11 1 transition matrix, 229 
SLOSS, 339 Stoichiometric processes, 74 
Spatial heterogeneity, 11 Stoichiometry and mass action, 74 

effects on competition, 395 Stopping rule, 18 
Spatial patterns, 324, 332 Strix occidentalis caurina, 335 
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Subthreshold response, 378 errors, see Error analysis 
Synthesis, see Understanding parameter sensitivity, see Parameter 
System sensitivity 

and models, 4 reasons, 178 
definition, 4 Understanding, 5 
object, 4 model, see Model, uses 
type of model, 1 1 understanding 
well-defined, 14 system 

T 
lowest level, 144 

Units 
T celIs, 3 10 incompatible, 42 
Taylor series, 185,206,207 Uroleucon nigrotuberculatum, 328 
Temperature Useful functions, 96 

Qlo, 254 Blumberg, 99, 273 
Terminalia catappa, 408 cubic splines, 101 
3', 5'-cyclic AMP, 325 exponential, 96 
Thrips, 380 Hill, 98 
Time lag, 369,375,381 hyperbolic tangent, 263 
Time series, 159 linear, 96 

Forecasting, 372 maximum, 100 
Top-down models, 348 polynomials, 101 
Torpor, 261 power, 98 
Torricelli's Law, 54, 142 rational functions, 101 
Torricelli's law, 122 Richards, 99, 273 
Transition probability, see Stochastic, Markov relative, 99 

process 
Transpiration, 246,353 
Transport models, 50,83 

advection, 85 
diffusion, 86 
reactions in, 87 

Triangular distribution, 233 
Tribolium castaneum, 383,385 
Tribolium confusum, 384 
Triticum aestivum, 243 
Triticum monococcum, 243 
Turgor pressure, see Photosynthesis, tur- 

gor pressure 
Turing test, 151 
Turing, Alan, 15 1 
Type 2,329 

U 
Uncertainty, 144 
Uncertainty analysis 

and validation, 192 

saturation, 98 
temperature optimum, 100 
triangular, 100 
trigonometric, 101 
Weibull, 100, 101 

v 
Validation, 150, 158 

adequacy, 148 
alternative models, 290 
and Bayesian inference, 172-174 
and falsification, 146 
and model complexity, 169,29 1 
and shimmering mists, 175 
and uncertainty analysis, 192 
bootstrapping, 158 
chemostat, 301 
confidence intervals, 163 
confirmation, 145 
corroboration, 145 
criteria, 145 



Index 475 

data and models, 147 
data independence, 150 
difficulty of Turing test, 153 
Droop chemostat model, 298 
Dursban models, 169, 174 
indices, 156-158 
likelihood functions, 164, 166 
logical basis, 146 
meta-models, 174 
model discrimination, 164, 169 
objectivity, 173 
predator-prey model, 29 1 
profile analysis, 159 

example, 160- 162 
null hypothesis, 160 
tables, 162 

regression, 153-156 
problems, 155 

reliability, 148 
repeated measures problem, 159 
response variables, 150 
spatial predation, 332 
Turing test, 151 

hospital use, 15 1 
variability, 15 1, 158 
what to compare, 149 

validation, 144 
Van't Hoff's Law, 243 
Variance-Covariance, 162 

in random numbers, 222 
Verification, 20, 145 
Virus, 3 1 1 

W 
Walleye, 278 
Water potential, 244 
Well-defined system, 14 
What-if gaming, 6 

Y 
Yeast, 103 

z 
Zero isoclines, see Nullclines 




