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Preface

In the summer of 1982 as a biochemistry undergraduate at Cornell University I had
the good fortune to pursue a research project in a prestigious fly (Drosophila
melanogaster) laboratory. The then very young John Lis took a chance on me,
offering the opportunity to do undergraduate research in his laboratory. It was an
exciting time even though I was on the periphery, gaining experience with Drosophila,
molecular biology technique, and the excitement of seeing the first “blue” flies from
the heterologous-controlled expression of B-galactosidase driven by the HSP70
promoter, a cover photo in Cell back in 1983. But the upshot was that I wanted to
know what controlled genes, what caused the chromosomal puffing, and what were
the chromatin (and epigenetic) factors.

As a graduate student and McKnight Scholar at the University of California at
Davis, I continued my interest in transcription. Through interactions with Peter Yau
(now at University of Illinois, Champaign-Urbana) and Morton Bradbury, an interest
was spawned in me in the acetylation of histones and other epigenetic factors.
Naturally, I moved on to Mike Grunstein’s laboratory at the University of California
at Los Angeles (UCLA). I knew that epigenetic factors, and certainly histones, were
key elements in transcription. My personal “holy grail” at the time was the elusive
histone acetyltransferase. Being somewhat naive in regard to biochemistry at the
time, I thought purification would be no problem. To my shock and dismay, I could
purify it and follow its activity, but it fell apart, no matter how fast I worked or what
I tried. Fortunately for me, I decided to see if I could find a histone deacetylase
activity in my extracts. Fortuitously, again, I had done a great job at purifying a
fairly stable histone deacetylase complex in some of my “acetyltransferase” extracts.
Not much of it, but it was relatively stable; some quick math determined it was
doable for protein sequence, if purified from approximately 5 kg of yeast. As luck
would have it, Thomas Sutherland at UCLA ran a fermentor facility that would
allow this to happen. Thus, I was enabled to purify the relatively scarce yeast HDA
complex.

Of course, this was only the setup for a bigger problem: Now you have the
enzyme, and good lord, the yeast genome was just sequenced, but you have four
other genes similar to HDA1, including RPD3, HOS1, HOS2, and HOS3. We had
some work to interpret this complexity. The fractionated enzyme activities would
disappear with their corresponding deletion, but how do you tell what they were
actually doing in the cell? Single deletions didn’t seem to have much effect. Fortu-
nately for me, I was in the laboratory concurrent to Andreas Hecht, (now at Max
Planck Freiburg) and Stephen Rundlett, who were developing chromatin IP cross-
linking techniques coupled with PCR for determination of targeting of protein factors
involved in gene-silencing. We decided to take two approaches: see if the deacetylase
proteins could be found associated directly or if a telltale trail of histone acetylation
could be seen in a gene-specific manner. In order to do this we developed a full set



of specific antibodies directed toward every possible histone acetylation site and
every deacetylase. A large team of graduate students and “postdocs” took on the
daunting task of multiplex PCR, with limited automation. The deacetylases proved
elusive, but their trail of action could be followed. Eventually, we found site-specific
targeting of the enzyme but clearly, though, there was a better way.

It was the dawn of microarray. As Mike Grunstein said to me at the time, “Pat
Brown has it on a Web site. You can build it.” No more of that tedious multiplex
PCR stuff. Not knowing what I was getting into, I agreed to the project, along with
the help of the very skilled Rick Klufas and the late Mike Eng, both highly motivated
UCLA instrumentation facility staff. They were key to the success of the project.
To me, I got my feet wet in microarray and found it attractive enough to use as a
base for my next position. No more linear science, do the whole genome, or any
subset, in one go. Answer questions faster in days that previously took years.

Having spent, arguably, too much time at UCLA “having fun” as a postdoc and
assistant research scientist, I wanted a new challenge. I had spent a number of years
collaborating with Merck scientists and saw that I had more opportunity than I had
been led to believe in pharmaceutical R&D. An actual application and direction,
rather than just pure science, was compelling. The perfect position was found in
La Jolla at the new R.W. Johnson facility, now Johnson & Johnson Pharmaceutical
Research & Development, managing a small genomic operation. There I wouldn’t
just be building the technology, but I could drive it. If it didn’t exist, I had the
resources to define the new direction.

So, it was strive for the new chip to answer the questions that just 10 years ago
were daunting. Find the targets, bind the drugs, optimize them, put them in rats, and
test in people. Sounds simple. The truth is that there are many problems and inefficien-
cies in drug discovery. In a fiercely competitive marketplace, pharmaceutical companies
can not afford to spend excess dollars on developing drugs that will fail to get FDA
approval or will have some profoundly poor characteristics. In this book we present a
comprehensive look at how the industry faces these challenges, in many cases with new
technologies such as biochips to reduce the cost of drug discovery and improve drug
safety. The industry is getting smarter, finding the targets and weeding out potentially
problematic drugs sooner, thus cutting costs. In short order, we may also find that the
one drug for everyone may not be the norm. Pharmacogenomics presents a hope not
only to get better drugs, but to fit the right drugs to the right people. This might also
have implications that we may improve selection for clinical trials. Here, we look at
how these trends will affect the industry and what the outcomes might be on the science
and long-term prospects of these technologies and the companies utilizing them.

Andrew Carmen, Ph.D.
San Diego, California

In 1989 I received my first introduction to molecular biology in the laboratory of
Frank Gannon, then at the National University of Galway in Ireland. As a B.Sc.
honors student in microbiology, I had, like my classmates, to complete a 6-month
laboratory project; mine was on the examination of strains of E. coli for the
production of lambda phage extracts. This I dove into with the help of the late



Riche Powell, and after many late nights, the lack of success in producing successful
extracts was attributed to the E. coli strains not being what they were supposed to
be. Nevertheless, my interest was piqued, and when Frank offered me a postgrad
position in his lab, working on the effects of saltwater adaptation on gene expression
in the Atlantic salmon, this seemed like a good way to spend the next few years. At
that time in late 1989, little of any genome, and in particular the salmon, had been
sequenced by today’s standards. Much of 1989 and 1990 consisted of sampling fish,
at local fish farms and at the National Diagnostics Center in Galway, extracting RNA
and building up a repository of salmon at different developmental stages. By today’s
standards the approach I took, although sound, seems quaint. I generated first-strand
cDNA from these salmon and used this material to screen salmon liver and kidney
cDNA libraries for clones that exhibited differences in their hybridization patterns.
Not surprisingly, the majority of the cDNA clones appeared the same in fresh and
saltwater salmon. I have a great memory, though, of looking at a series of autorads
on a long Irish summer evening and finding a series of cDNAs that clearly had
elevated levels in the saltwater fish compared to the freshwater fish. The next two
years was spent capitalizing on this find and characterizing these cDNAs. Not
surprisingly, many of the cDNAs I had uncovered were what one would expect,
namely genes encoding proteins involved in aerobic metabolism and growth.

In 1993, I decided that after 8 years in the same university, in a location well-
known for lots of rain, I wanted to live in a sunny climate for a couple of years. I
had the opportunity to spend a brief stint in the lab of Frank Talamantes at the
University of California, Santa Cruz in 1992 and, really liking California, I decided
that would be my next move. As luck would have it, I found a postdoc position at
DNAX Research Institute in Palo Alto in October 1993. At that time DNAX was
ramping up its in-house sequencing efforts and applying the high-throughput
approach to novel factor discovery under the direction of Gerard Zurawski and the
late Jacques Chiller. I joined the lab of Fernando Bazan and Rob Kastelein and, with
Fernando Rock, became part of a structural biology group involved in bioinformatics-
based gene discovery, with a strong emphasis on comparative genomics, in particular,
the characterization of novel signaling molecules and pathways in both human, fly,
and nematode systems. This allowed me to first work with DNA microarrays in the
mid 1990s as DNAX had a key interest in the technology. My earliest memory of
DNA microarray data is a 4 mB file Excel file (reasonably large by my mid 1990s
standards) that someone had aptly named “the complete enchilada.”

In 1998, I joined the ill-fated Axys Pharmaceuticals. This, at the time, seemed
like a unique opportunity, the chance to do interesting science in a biotech
setting. Working at Axys afforded me the chance to work with microarrays, in
the context of both oncology and nematode projects, but more importantly it
allowed me to participate in the Molecular Dynamics Early Technology Access
Program, which among other opportunities, introduced me to Andrew, ultimately
leading to this publication. In 1999, after living in four cities in an 18-month
period and my Chrysler Le Baron convertible having traversed the U.S. twice
on two occasions, I slowly began to think hard about what to do next. Another
Boston winter was not an option. Most of my colleagues seemed to be working
for or starting dot-com companies.



Around this time, when Axys closed its doors in La Jolla in the fall of 1999,
my colleague and friend Antonio Tugores made me aware that the University of
California at San Diego (UCSD) wanted to hire a director to oversee the running of
the UCSD Biomedical Genomics Microarray (BIOGEM) Core Facility. This seemed
like the perfect opportunity to help establish a new genomics facility and assist
diverse researchers in applying this technology to a variety of biological questions.
Being able to optimize the technology, build microarrays that were not commercially
available, and help bring in emerging technologies has been enormously satisfying.
Working on the challenges of biochip technology, particularly dealing with small
sample sizes and applying the technology to the clinical setting, are current interests
of mine.

In this edition, we provide a comprehensive overview of the current state of
biochip technology and the effect biochips are having on biomedical research, in
particular the pharmaceutical industry. Technology platforms are presented and
covered in detail. The clinical and pharmacogenomic relevance of biochips, ChIP-
chip assays, and high-throughput approaches are all reviewed in depth. Chapters are
presented detailing the application of biochips to the study of malaria, toxicogenom-
ics, and SNPs. Intellectual property and market overviews are presented as current
and forward-looking perspectives. The DNA microarray field will thrive in the
coming years, an expansion that will encompass robotics, nucleic acid chemistries,
and informatics. Multidisciplinary approaches will help this field mature and find
its niche in the clinical arena. I trust that you find this book a valuable reference.

Gary Hardiman, Ph.D.
La Jolla, California

Note: This preface expresses the views of the authors and is not intended to express
any views of their respective employers.
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INTRODUCTION

Drug discovery is a complex and costly process, with greater than 99% of the
investigated experimental compounds discarded as failures. Only a handful of the
molecules evaluated as part of the discovery and preclinical phases reach the mar-
ketplace [1]. In the current economic climate, the pharmaceutical industry is faced
with the double-edged dilemma of increased research and development costs and a
decline in the number of novel therapeutics dispensed to the public. The main
consequence of this is that the industry has been forced to devise and adapt meth-
odologies that increase the number of new drug candidates in the pipeline, within
a much shorter time frame [2]. In the drug discovery process, the identification of
viable drug target for a therapeutic area of interest is of key importance [3]. This
target is invariably a protein whose function or dysfunction is implicated in the
pathology or progression of the disease, for example, a growth factor. A well-
characterized example is the epidermal growth factor (EGF) receptor family. Inter-
action of the extracellular EGF ligand with its receptor results in a signal transduction
cascade, ultimately leading to cell division, the synthesis of new proteins, and tumor
progression.

Once a target has been identified or validated, the subsequent step is the design
of a drug that will interact with the target and deliver the desired therapeutic effect.
Knowledge of the ligand-receptor interaction is an important element of the design
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process, as the drug molecules typically insert at the functional or critical site of the
target protein, analogous to a lock and key scenario. Recent advances in protein
structure elucidation methods and improvements in three-dimensional modeling
techniques have yielded sophisticated approaches to the generation of drug candi-
dates, which are collectively termed rational drug design. Candidates are tailored
to the three-dimensional structure of target binding and active sites. Medicinal and
combinatorial chemistry techniques are employed to generate large compound librar-
ies whose structures correspond to the target’s strategic site. These libraries are
subsequently screened using high-throughput approaches to identify compounds that
reflect the activity of the target protein. Screening assays reveal those compounds
that achieve optimal in vitro effects.

Drugs can be classified according to their chemical composition into small
molecule drugs (SMDs) and biologics (therapeutic hormones, enzymes, monoclonal
antibodies, cytokines, and antisense drugs). The tyrosine kinase inhibitor ST1571
(imatinib mesylate, Gleevac; Novartis Pharmaceuticals Corp., East Hanover, NJ) is
an excellent example of an SMD that has had a huge impact on the treatment of
chronic myelogenous leukemia and gastrointestinal stromal tumors. Monoclonal
antibodies (MADbs) have found application in the treatment of cancer, autoimmune
disease, viral infection, and myocardial infarction, and as diagnostic agents. Rixtux-
imab (Rituxan; Genentech, Inc., South San Francisco, CA) was the first MAb
approved for the treatment of cancer, specifically for non-Hodgkin’s B cell lym-
phoma. Trastuzumab (Herceptin; Genentech, Inc.), a humanized MAb that targets
the extracellular portion of the human epidermal growth factor receptor 2
(HER2)/Neu receptor, overexpressed in many breast cancers, is another success
story. Remicade (Infliximab; Centocor, Inc., Horsham, PA) and Enbrel (Entanercept;
Immunex, Thousand Oaks, CA) both target tumor necrosis factor alpha TNFalpha
and block its inflammatory response, with indications for Crohn’s disease (Remi-
cade) and various forms of rheumatoid and psoriatic arthritis.

In recent years, high-density DNA microarrays or biochips have revolutionized
biomedical research and greatly accelerated target validation and drug discovery
efforts [4]. The utility of microarray technology is that it permits highly parallel
gene expression profiling, providing snapshots of the transcriptome in both healthy
and diseased states. This knowledge obtained from such comparisons is highly
valuable as it identifies gene families and more importantly pathways that are
affected by the disease, in addition to those that remain unaffected [5]. Similar
expression profiles may imply that genes are coregulated, and this allows researchers
to formulate hypotheses about genes with hitherto unknown functions by comparing
their expression to those with well-defined functions. Biochips thus can be used to
identify and prioritize drug targets, based on their ability to confirm a massive
number of gene expression measurements in parallel.

Microarrays are still predominantly used for gene expression analyses, but they
are also finding utility in genotyping and resequencing applications, in addition to
comparative genomic hybridization and genomewide (epigenetic) localization studies,
as covered later in this book. Biochips have been utilized to address in vitro phar-
macology and toxicology issues, and are being widely applied to improve the
processes of disease diagnosis, pharmacogenomics, and toxicogenomics [6-9].
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The DNA microarray market is expected to thrive in the coming years, an
expansion that will encompass robotic devices, biochip chemistries, nucleic acid
labeling and detection strategies, and the significant informatics and data manage-
ment systems required to store, maintain, and tease the meaning from the voluminous
data generated from such studies. This growth is not surprising, given the incredibly
powerful nature of this technology and its application to understanding the genomic
basis of disease.

This chapter examines the brief history of the biochip field and tracks the
evolution of the major platforms in use today by the pharmaceutical industry.

EVOLUTION AND DEVELOPMENT OF BIOCHIPS

Gene expression analysis has rapidly progressed from a classical “single gene”
analytical approach to a series of robust technologies that allow highly detailed
surveys of complete genomes in a variety of organisms. The origin of the microarray
or biochip has its roots in the seminal discovery by Edwin Southern 30 years ago
that DNA could be attached to a solid support and interrogated for sequences of
interest [10]. Southern described a process whereby a DNA sequence termed a probe
could easily be labeled with a radioactive or fluorescent marker and hybridized to
a mobilized DNA target sample on a filter membrane. The DNA probe hybridized
to complementary DNA sequences in the respective sample and the association of
the probe, and target sequences could be visualized via autoradiography or chemi-
luminescent detection mechanisms.

In the 1980s, a decade noted for the increasing use and application of recombinant
cloning methodology, researchers adapted the Southern Blot method to facilitate
screening of genomic and cDNA libraries. DNA filters were generated from these
libraries consisting of bacterial colonies grown on standard laboratory petri dishes.
These crude bacterial lysates represent the earliest arrays whereby cDNA or gene
banks could be routinely screened for DNA sequences of interest [10—12]. Advances
in laboratory automation facilitated the creation of complex high-density filters
with a very large number of DNA sequences immobilized in a two-dimensional
addressable grid or array format. Differential screening techniques utilizing total
cellular RNA and membrane arrays have been widely applied to these macroarrays
to study differences in gene expression in different tissues and cells undergoing
differentiation [13].

The biochips widely in use today, however, owe their existence to innovation in
miniaturization in both the private and academic sectors. Innovators in the development
of this technology include Hyseq (Sunnyvale, CA), Affymetrix (formerly Affymax)
(Santa Clara, CA), Oxford Gene Technologies (Oxford, UK), and Stanford University
(Stanford, CA). Scientists working at these respective organizations developed and
advanced technologies related to manufacturing, experimental processing, and
genomic profiling. Hyseq developed a method for sequencing DNA by hybridization
on an array, using oligonucleotide probes with lengths between 11 and 20 nucleotides
that are hybridized to the target nucleic acid sequence. The complementary oligo-
nucleotide probe sequences were overlapping in length and thereby enabled iden-
tification of the target nucleic acid sequence. The Hyseq technology permitted the
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discrimination of perfect match hybrids from hybrids that contained a single nucle-
otide mismatch. This allowed highly accurate DNA sequencing in a high-throughput
array format [14]. Affymetrix developed a technology to manufacture polymers
on solid supports, using light-directed spatially parallel chemical synthesis. Their
approach to chip manufacturing utilized Very Large Scale Immobilized Polymer
Synthesis (VLSIPS™) substrate technologies that could be applied for the synthesis
of both peptides and oligonucleotides. The process utilized a series of photo-labile
groups attached to solid supports that upon exposure to light activation could react
with monomers such as nucleotides and amino acids. Affymetrix has successfully
applied this technology to DNA sequencing, DNA fingerprinting, chromosomal
mapping, and specific interaction screening [15]. Oxford Gene Technologies
(OGT), a company established by Edwin Southern, also developed technology
utilizing a solid support containing an array of oligonucleotides to identify DNA
sequences, under hybridization conditions where discriminations can be made
between matched and mismatched oligonucleotide probes.

The spotted microarray represents an important format and widely utilized
application of this technology that was developed at Stanford University by Patrick
Brown and colleagues. This experimental paradigm compares mRNA abundance in
two different samples via a competitive hybridization. Fluorescent targets are pre-
pared separately from control and test mRNA species, and both are mixed and
hybridized together on the same microarray slide. The target gene sequences are
allowed to hybridize to their complementary sequences present in the array features.
The relative intensities of the resulting signals on the individual features are pro-
portional to the amounts of specific mRNA transcripts in each sample, thereby
enabling an estimation of the relative expression levels of the genes in the test and
control populations [16]. The DNA arrays are fabricated using a capillary dispenser,
which deposits DNA at specific array positions. Spotted microarray production
remains a highly automated process, utilizing either capillary-pin-based or inkjet
microdispensing liquid handling systems [17]. This particular genre of biochip has
been widely adapted by the academic community due to the open source nature of
the approach. Many protocols, software tools, and detailed blueprints for robotic
printing devices have been freely disseminated. Nevertheless, spotted arrays found
commercial utility. Synteni, a company founded in 1994, commercialized this tech-
nology and eventually became the microarray division of Incyte upon its acquisition.
Agilent (Palo Alto, CA) has utilized inkjet technology to fabricate spotted cDNA
arrays from PCR amplicons, although this array format has been largely retired.

BIOCHIPS PLATFORMS: COMPARISONS AND
CONTRASTS

Many competing technologies have been adapted by the pharmaceutical industry
including oligonucleotide and full-length cDNA arrays [18,19]. These platforms
enable the comparison of mRNA abundance in two different biological samples, on
identical or replicate microarrays. Affymetrix (Santa Clara, CA) has been a leader
in the field for many years, applying photolithographic technologies derived from the
semiconductor industry to the fabrication of high-density biochips. The GeneChip™
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rapidly became a pharmaceutical industry standard owing to its extensive genome
coverage, high levels of reproducibility, and relative ease of use. It is comprised of
short single-stranded oligonucleotides. GeneChip fabrication is achieved via a combi-
nation of photolithography and solid-phase DNA synthesis. Arbitrary polynucleotides
are synthesized in a highly specific manner at defined locations. Initially, a series of
synthetic linkers containing photolabile groups are attached to a silicon substrate.
Ultraviolet light is subsequently targeted to specific areas on the chip surface using a
photolithographic mask. This has the effect of causing localized photodeprotection.
The DNA chemical building blocks, hydroxyl-protected deoxynucleosides, are added
to the surface, and coupling occurs at the sites that have been illuminated. Additional
steps involve directing light to alternate areas of the substrate by using a different
photolithographic mask, followed by DNA synthesis. A major advantage of GeneChips
is its in silico design, which eradicates the requirement of cDNA or oligonucleotide
libraries and the potential likelihood of mislabeled features [20]. Additionally the
small feature size allows the fabrication of very dense arrays. A disadvantage of this
platform is that it demands commitment to GeneChip-specific hardware. Further-
more, it utilizes short 25-mer oligonucleotides, which are inherently less sensitive
than the longer 60-mers utilized in other technologies. Affymetrix overcomes this
shortcoming, perhaps, via a sophisticated multiple match and mismatch strategy,
and powerful algorithms to deconvolute the data.

Alternative platforms have recently emerged. Illumina (San Diego, CA) has
developed a bead-based technology for SNP genotyping and gene expression pro-
filing applications on two distinct substrates, the Sentrix LD BeadChip and the
Sentrix Array Matrix (which multiplex up to 8 and 96 samples, respectively). Both
formats employ an “array of arrays,” which increases throughput by enabling the
processing of multiple samples simultaneously. Each array contains thousands of
tiny etched wells, into which thousands to hundreds of thousands of 3-micron beads
self-assemble in a random fashion. Then, 50-mer gene-specific probes concatenated
with “address or zip-code” sequences are immobilized on the bead surface. Once
bead assembly has occurred, the array is “decoded,” using a proprietary process, to
determine which bead type containing a particular sequence is present in each well
of the substrate. The advantages of this platform are its sensitivity and reproducibil-
ity, and small feature size. The oligonucleotide probes can be validated off-line. The
[lumina technology offers major increases in throughput to the pharmaceutical
industry, but similar to the Affymetrix technology, it demands a commitment to
dedicated hardware and software.

The Applied Biosystems Expression Array System (Foster City, CA) employs
standard phosphoramidite chemistry to synthesize 60-mer oligonucleotides that are
validated off-line by mass spectrometry and are subsequently deposited onto a derivatized
nylon substrate. The 3’ end of the oligonucleotide is covalently coupled to the nylon
via a carbon spacer, thereby elevating the oligonucleotide off the surface and avoiding
steric hindrance. The use of chemiluminescence rather than fluorescence distin-
guishes this platform from others. The advantage of the chemiluminescent scheme
is lower background signal intensities. Additionally, once gene targets of interest
have been discovered, validation can be carried out rapidly using prevalidated, real-
time PCR probes designed from the same genomic region as the microarray probe.
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A disadvantage with this platform at present is that it is not readily amenable to
customization, offering custom arrays for a limited number of species. In a recurring
theme to other commercial platforms, dedicated hardware is required.

Another platform that has been used by the pharmaceutical industry is the
CodeLink™ Bioarray from GE Healthcare (Piscataway, NJ), in which 30-mer oli-
gonucleotides are synthesized ex situ using standard phosphoramidite chemistry in
a similar manner to the ABI biochips. Using piezoelectric deposition technology,
the probes are spotted on a proprietary three-dimensional gel matrix. Covalent
attachment of the probes is accomplished via covalent interactions between 5’ amine
groups on the oligonucleotide probes and functional groups on the slide surface.
The three-dimensional nature of the slide surface supports an aqueous biological
environment and solution-phase kinetics, which improve the limit of detection [21].
The platform is relatively open and in principle the arrays can be utilized with most
microarray scanners. The limitations of this platform are a much larger feature size
than Illumina or Affymetrix. Consequently, smaller numbers of features can be
packed into similar biochip real estate. Additionally, the nature of printed biochips,
not just CodeLink™, is such that imperfections will exist with certain probes, albeit
in a very small number. Such features are identified as MSR, where the probe was
masked after printing, because it represented a suboptimal probe. In such a case,
data cannot be obtained from these features. With proper experimental design though,
this need not be a major detractor for these arrays.

Agilent Technologies (Palo Alto, CA) relies on the in situ synthesis of 60-mer probes
by inkjet printing using phosphoramidite chemistry. The 60 mers provide enhance-
ments in sensitivity over 25 mers in part to the larger area available for hybridization.
Another advantage is that only one 60 mer per gene or transcript is required [22].
Although short oligonucleotides should in theory provide the greatest discrimination
between related sequences, they often have poor hybridization properties. Hughes
et al. [22] carried out a detailed study on the effects of oligonucleotide probe length
to examine the effects of hybridization specificity and concluded that the beneficial
effects of long oligonucleotides were due to both steric and nonsteric effects. The
Agilent platform is both reproducible and sensitive. Furthermore, considerable cost
savings are realized with this biochip platform, as it is a two-color assay, unlike the
others described previously. However, the two-color approach has the potential
disadvantage of different fluorescently labeled nucleotides incorporating into nucleic
acid targets with different frequencies, thereby altering ratios due to enzymatic
parameters rather than actual transcript abundance. Additionally, multiple experiment
comparisons are not possible without replicating the reference sample (which, in
the case of certain samples such as biopsy material, may be impractical to obtain).

Combimatrix (Mukilteo, WA) has established a solid-phase oligonucleotide
synthesis system by using a method that electrochemically places monomers to
specific locations on substrates [23]. Alternatives to conventional photolithography
with chromium masks are being utilized to fabricate biochips. Nimblegen has syn-
thesized microarrays containing 380,000 features using a digital light processor that
creates digital masks to synthesize specific polymers [24]. Microarray devices con-
taining microfluidic structures have also been developed. Microfluidic-based systems
have been established that detect hybridization events using electrochemical methods



DNA Biochips — Past, Present, and Future: An Overview 7

such as voltammetry, amperometry, and conductivity, which will alleviate the need
for target sample labeling [25].

PROTEIN BiocHips

Biochemical studies have traditionally focused on the analyses of single-protein
species [26]. Two approaches have been widely used to characterize multiple proteins
in biological samples. One approach has utilized two-dimensional gels and permitted
the separation and visualization of up to 10,000 proteins at once. Upon separation,
proteins of interest have been excised from the gel matrix and characterized by mass
spectrometry, a time-consuming endeavor applicable only to abundant proteins.
Furthermore, limitations exist with current two-dimensional gel separation technol-
ogy. Although mass spectrometric methods remain unquestionably an excellent
means of uncovering potential targets and novel biomarkers, they are not suitable
for validation studies, where the initial finding needs to be subjected to rigorous
follow-up. The changes observed in the levels of proteins of interest often need to
be retested multiple times in a variety of tissues under different conditions and time
points. The pharmaceutical industry needs a lower-cost alternative screening tech-
nology, amenable to high throughput, such as a protein biochip.

Protein biochips were worth an estimated $122 million in 2002 and have a
predicted value of $545 million in 2008 [27]. In November 2004, the first commercially
available high-density protein biochip was released by Invitrogen (Carlsbad, CA),
containing 1800 unique human proteins, encompassing a wide cross-section of
proteins, including kinase, membrane-associated, cell-signaling, and metabolic
proteins. Increasing attention is at present being focused on the development of
protein microarrays [28-30]. Protein arrays, analogous to their DNA counterparts,
are comprised of a library of proteins, immobilized in a two-dimensional, addressable
grid. Different chip formats currently exist, including glass and matrix slides and
nanowells, with a typical array containing 10° to 10* features within a total area of
1 cm? [31].

In contrast to nucleic acid biochips where miniaturization has increased throughput
considerably with decreased bioreagent costs, the inherent structural diversity and
complexity in proteins has made the development of protein arrays technically very
difficult. Nucleic acid analysis is relatively straightforward in comparison, as both
DNA and mRNA molecules are relatively homogenous, and possess high affinity and
high-specificity binding partners. Proteins in comparison do not possess straightforward
binding partners. The rapid production of proteins is hindered by the lack of a Poly-
merase Chain Reaction (PCR) equivalent. Major technical hurdles exist with protein
biochips, primarily related to acquisition, arraying, and stable attachment of proteins
to chip surfaces, and subsequently the detection of interacting proteins.

Proteins are highly sensitive to the physiochemical properties of the chip support
material. Polar arrays, for example, are chemically treated to bind hydrophilic
proteins. Such surfaces are unsuitable for cell membrane proteins such as G-protein-
coupled receptors possessing exposed hydrophobic moieties. Membrane proteins
represent the majority of all potential drug targets and are very difficult to stabilize.
As opposed to nucleic acids, proteins do not all behave in a similar fashion when
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exposed to the same surface chemistry. Surface chemistries may promote retention
of certain proteins and cause denaturation or loss in activity of others. Often, proteins
that are soluble in their native environments may precipitate on chip surfaces. One
of the major difficulties is selecting a surface chemistry that permits diverse proteins
to retain their native folded conformation and biological activity. Affinity tags are
utilized to offset these problems by providing gentle immobilization conditions that
maintain protein stability and function. They permit a common immobilization
strategy that can be applied to a variety of proteins.

Antibodies represent an all-purpose high-affinity, high-selectivity, protein-
binding reagent that has found utility in the generation of protein arrays. However,
at present, antibodies are available for a mere fraction of the proteome, and the
specificity of many of these antibodies remains poorly documented. Many antibodies
are glycosylated and contain large protein-based supporting structures, and cross-
reaction with other proteins is, consequently, not uncommon, resulting in large
numbers of false positives and questionable data. Yet another layer of complexity
with protein detection is that the range in cells of protein concentrations is several
orders of magnitude greater than that for mRNAs. Protein microarray detectors
require a greater dynamic range of operation, up to a factor of 108, as compared to
10* for mRNAs. This presents difficulties in the design of a global protein array as
separate chips are needed for the detection of rare and abundant proteins, respec-
tively. Because of these limitations, chip-based protein biochips may never obtain
the same level of penetration as the nucleic-acid-based chips. It is likely that alter-
native nonchip strategies such as chromatography-coupled mass spectrometry may
prove more useful in this field.

DNA BiocHirP LIMITATIONS AND CHALLENGES

Each of the respective microarray platforms has a demonstrated efficiency with respect
to signal dynamic range, the ability to discriminate mRNA species, the reproducibility
of the raw data, and the fold change and expression level values. Nevertheless, tech-
nological, standardization, and patent use limitations exist with biochip technologies.
Biochips currently permit the analysis of the relative levels of mRNA species in one
tissue sample compared to another. Although a measure of abundance is obtained,
biochips do not permit the absolute quantification of specific transcript. This poses a
greater challenge requiring in-depth knowledge of the hybridization of each probe to
its cognate mRINA species. As each probe—target interaction represents a unique inter-
action, this is not a trivial pursuit [32]. Additionally, microarrays are limited by the
fact that the data obtained merely indicate whether a certain messenger RNA is above
the system’s threshold level of detection. If the signal is significantly above the
background intensity, one can say with a high degree of confidence that it is present.
However, the absence of signal does not indicate that the particular mRNA is not
expressed. There is a very strong possibility that the mRNA is expressed, albeit at low
levels and, further, this low-level expression may be of importance.

DNA microarrays are limited in their ability to detect gene transcription; it should
also be noted that mRNA abundance in a cell often correlates poorly with the amount
of protein synthesized [33]. Expression analysis using DNA microarrays measures
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only the transcriptome. Important regulation takes place at the levels of translation and
enzymatic activities. The only effect of signal transduction that is observed in a gene
expression experiment lies downstream and may be at the end point of a given pathway.
Furthermore, DNA microarrays currently have little utility in determining biologically
relevant posttranslational modifications, which influence the diversity, affinity, func-
tion, cellular abundance, and transport of proteins. DNA microarrays, for example, are
not applicable to samples lacking mRNA, such as bodily fluids like urine.

Yet another limitation is that alternative splicing is virtually ignored in many of
the current array iterations. Therefore, it is difficult to address definitively whether
changes in signal from a particular message are because of alternative splicing events
rather than a change in transcript abundance. Current knowledge of alternative
splicing in the transcriptome is limited, but this deficiency will likely be addressed
in future generations of biochips. A great difficulty for biochips is that mRNA is an
unstable molecule. Messenger RNAs are programmed for enzymatic degradation,
and the half-lives of different species vary considerably. Those transcripts with short
half-lives may be difficult to extract in reproducible quantities. Thus, regulation in
expression of a gene with a very short half-life may be impossible to detect with
any degree of statistical significance. Poor experimental practices can also lead to
differential degradation in samples, making comparisons dubious.

Microarray experimentation is a complex process, and significant time and effort
are required to design biologically sound and statistically robust experiments. Once
target genes are identified, additional time and expense are required to validate their
selection and relevance. Drug discovery programs utilizing microarray technologies
must, therefore, consider all available technologies before allocating precious
resources. Extensive platform evaluations are impractical for the majority of
researchers as this involves considerable expenditure and often a commitment to
dedicated hardware and software [18,19,34—37]. The choice of platform utilized by
the pharmaceutical industry will continue to be guided by the content on that platform
and the amount of RNA available for experimentation.

The existence of multiple technologies has raised the possibility of cross-platform
comparison and integration of data. Carefully designed studies have been performed to
evaluate the interchangeability of data from different platforms. The outlook for cross-
platform integration of data to date is more encouraging than the initial studies suggested.
Nevertheless, it poses formidable challenges. The cross-platform discordance observed
is attributable to the differences inherent in each of the respective platforms. The probes
utilized in different platforms may cause inaccurate expression measurements owing to
overlap with related gene family members and the inability to discriminate between
splice variants. In view of these issues, cross-platform data from microarray analysis
needs to be interpreted cautiously and preferably using sequence-matched probes. As
commercial manufacturers make probe data more readily available, we can expect to
see improvements in data integration and better standards.

Moreover, when commercial manufacturers adopt standard DNA chip manufac-
turing practices, and arrays begin to be implemented as clinical diagnostic tools,
many of the quality control methods currently employed in the semiconductor
industry will appear. This will result in higher-quality, higher-density arrays with
greater sensitivity and reproducibility, facilitating a more robust analysis of cellular



10 Biochips as Pathways to Drug Discovery

gene expression. The critical issues that remain are standardization, reproducibility,
development of appropriate controls, reference standards, and regulatory compli-
ances. Reference standards will be available in the near future from institutes such
as the National Institute for Biological Standards and Control (NIBSC).

MICROARRAYS AND FUTURE DIRECTIONS

The boundaries of technology will be continually challenged as this technology
progresses, and novel applications are devised [34]. In addition to the evolving
technical approaches of DNA microarray systems, new applications for microarrays
are being developed. Recent progress in combining the use of chromatin (ChIP) assays
with DNA microarrays has allowed genomewide analysis of transcription factor local-
ization to specific regulatory sequences in living cells [38]. Higher-density arrays,
tiling the entire genome, will permit high-resolution maps and global views of the
functional relationships amongst transcriptional machinery, chromatin structure, and
gene expression in human cells [39].

Additionally, microarrays are being employed as gene delivery vectors that
transfect cell monolayers cultured on the array surfaces. The widespread use of
RNA interference (RNAi) has prompted several groups to fabricate RNAi cell
microarrays permitting discrete, in-parallel transfection with thousands of RNAIi
reagents on a microarray slide [40]. Though still in their infancy, RNAi cell
microarrays promise to increase the efficiency, economy, and ease of genomewide
RNAI screens. Tissue microarrays are permitting histological analyses in a high-
throughput, parallel manner [41]. Microarrays have entered the clinical arena and
hold much promise for molecular diagnostics and clinical medicine. Automated
chip platforms permitting multiplexed assays such as the INFINITI™ System from
Autogenomics (Carlsbad, CA) (discussed later in this book) should improve the
throughput and quality of genetic testing [42]. Affymetrix has developed the
GeneChip System 3000Dx, which will enable clinical laboratories to analyze
microarray diagnostics, such as the Roche AmpliChip CYP450 Test. This test can
be used to identify certain naturally occurring variations in the drug-metabolism
genes CYP2D6 and CYP2C19 that affect the rate at which a person metabolizes
many commonly used drugs. Affymetrix has also introduced an automation system
discussed in this text, which offers the ability to run low-cost dense arrays in plate-
based formats. Perhaps, as the cost of arrays is reduced via economy of scale,
array technologies may see new applications in plate-based arrays, such as in
toxicogenomic, preclinical and clinical proof-of-concept studies. SNP-based
arrays, not a focus of this chapter, are also emerging as powerful tools in drug
discovery and are discussed in subsequent chapters.
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INTRODUCTION

The research unveiled in 1995 by Schena et al. started a new era of monitoring gene
transcription [1]. The paper by Schena described the simultaneous measurement of
the expression of thousands of genes using DNA microarrays. Although techniques
such as Northern blot, RT-PCR, and RNase protection are typically and reproducibly
used to measure levels of gene expression, they do not allow for simultaneous
assessment of thousands of genes in a parallel fashion. As high-density microarrays
became more prevalent, the role of the older techniques shifted from discovery to
validation; now assays like Northern blots are used to verify data collected through
microarray technology.

15
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Although initial screening of genomes is best done using high-density microar-
rays, the identification of genes or pathways of interest as well as the study of specific
genomic events and pathways may be best performed using arrays containing smaller
subsets of selected genes, which we called focus arrays. In many cases, when only
a small group of genes is sampled, having thousands of gene probes on one array
may provide too much information. Analysis of such massive data sets is time
consuming, requires complex bioinformatics, and may obscure relevant data. We,
therefore, propose smaller, more precise, highly reproducible “focus” (or “pathway”)
arrays as an alternative method for validating, verifying, and studying data initially
collected by high-density arrays. In this chapter, we describe one such array, includ-
ing its unique three-dimensional features and its applications to genomics and
proteomics studies.

THREE-DIMENSIONAL HYDROARRAYS

In a standard oligonucleotide or cDNA microarray, probes are arranged in a monolayer
fashion directly on a solid surface [1,2]. To print such arrays, the probes are suspended
in a printing buffer and transferred onto a solid substrate where they react with the
chemically derived surface, after which excess probes are washed away. For the
purpose of this chapter, we define such microarrays as two-dimensional arrays.

We have developed three-dimensional polyurethane-urea-hydrogel-based arrays
(three-dimensional HydroArrays). With HydroArrays, probes are not bound directly
to the solid substrate, but are rather derived to and suspended within swellable
hydrogel. The hydrogel is comprised mainly of “soft,” hydrophilic polyethylene
glycol (PEG) chains, with the probe moieties bound directly into the gel matrix.

A comparison between a two-dimensional and three-dimensional array is illus-
trated in Figure 2.1. In the two-dimensional array, the probes are bound in a two-
dimensional fashion directly to the surface. In contrast, the three-dimensional
HydroArray probes are bound in a multilayer fashion within a three-dimensional
microdroplet.

The three-dimensional structures of three-dimensional HydroArrays allow for a
much greater number of possible probe attachment points than a standard two-
dimensional substrate. Each microdroplet effectively consists of many layers of
probes covalently tethered to and uniformly dispersed throughout the gel matrix.

FIGURE 2.1 Two-dimensional vs. three-dimensional microarray.
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With this configuration, each microdroplet contains 10!! to 10'? probes. This is an
order of magnitude greater than the number of probes available in conventional two-
dimensional arrays.

The three-dimensional distribution of capture probes allows for greater spatial
separation between individual probes. This overcomes steric hindrance arising from
probes being too close to one another. In addition, biomolecules covalently tethered
in the aqueous environment of the hydrogel retain their native conformation and
activity. The probes are now free to rotate fully in three dimensions, allowing for
better hybridization.

Because of the relatively large molecular weight, length, and hydrophilic nature
of PEG chains, the gel, in its fully swollen state, is made up of over 95% water,
therefore permitting free diffusion of target molecules in and out of the matrix. Much
like the more commonly used polyacrylamide gel, hydrogel microdroplets are perme-
able to both macromolecules (up to at least 160,000 Da) as well as small molecules.

HYDROARRAY CHEMISTRY

Trimeric PEG polyol, which is end-derived with an aliphatic isocyanate (NCO),
serves as the starting point. Trimeric PEG polyol is dissolved in anhydrous organic
solvents to yield a PEG-NCO or solvent mixture prepolymer. This prepolymer is
then mixed with buffered aqueous solutions containing the biological probes. Essen-
tially, the initiation of polymerization is triggered by water.

Other gel-based arrays have been reported in the literature [3]. These arrays are
typically made of polyacrylamide and require either free radicals, UV, or harsh
organic solvents to initiate polymerization. In contrast, the polymerization of PEG-
NCO begins as soon as the prepolymer is mixed with the aqueous buffer containing
the biological probes. This avoids the exposure of sensitive biological probes, such
as proteins, to harsh polymerization conditions.

During polymerization, a series of amine—isocyanate reactions simultaneously
perform three different reactions, as indicated in Figure 2.2: (1) cross-link the
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FIGURE 2.2 PEG-Hydrogel chemistry: amine-isocyanate reaction.
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polymer; (2) tether the amine-derived bimolecular probes to the emerging polymer
matrix, and (3) bind the hydrogel microdroplets to primary-amine-derived glass
slides, firmly linking the microdroplet to the solid support.

In the case of genomic HydroArrays, the probes are 45-mer oligonucleotides
derived via their 5° NHS end. Later in this chapter, we will also discuss the use of
protein as probes for proteomic applications. Although not discussed in this chapter,
we have also produced arrays whereby the capture probes are made of small bio-
logical molecules, such as biotin or metal chelators, to immobilize proteins as part
of our proteomic arrays program. We have also succeeded in encapsulating func-
tional, living bacterial and mammalian cells within hydrogel microdroplets in an
array format to generate cell-based microarrays.

In the printing step, the prepolymer is mixed with the probes in aqueous buffer
in a microtiter plate, which is then used as a source plate for printing. Next, a
robotically controlled matrix of solid printing pins (specifically designed to optimize
transfer of hydrogel) picks up small amounts (approximately one nanoliter) of probe
or hydrogel mixtures from the source plate and deposits or “prints” an array of
microdroplets on a glass slide. After printing, arrays are allowed to polymerize to
completion, a process that takes 3 h. No further processing of the hydrogel is
necessary, and the HydroArrays are ready for use.

The size of each microdroplet is typically 300 uM in diameter, with a height of
40 uM. The estimated volume varies between 1.9 and 5.7 nL, using a slightly rounded
cylinder as the model. Due to its hydrophilic properties, the hydrogel readily absorbs
water, and is therefore fully hydrated during hybridization. When dried, it rapidly
loses water and, with it, most of its volume. In its fully dried state, the hydrogel
collapses to 5% of its maximum volume, with a height of just 5 uM. Hydrogel is
optically clear in both its hydrated and dried states, as shown in Figure 2.3. Both
features were designed for fluorescent detection of hybridization, using standard
confocal laser scanners such as ScanArray or Axon Gene-Pix.

FIGURE 2.3 Phase-contrast image of a set of four dried spots. (From Gurevitch, D., et al.,
A novel three-dimensional hydrogel-based microarray platform, JALA, 6(4): 87-91, 2001.
With permission.)
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FIGURE 2.4 Three identical hybridized three-dimensional HydroArrays.

The high number of capture probes and the low steric hindrance provided by
the aqueous microenvironment of hydrogel microdroplets create hybridization
conditions that result in a high signal-to-noise ratios, low spot-to-spot and print-
to-print variation, and very tight coefficient of variations (CV). The performance
of a typical three-dimensional HydroArray is visually illustrated in Figure 2.4.
Table 2.1 shows the CVs and the reproducibility of three separate print-to-print
hybridizations. Note the tight CVs, varying between 1 and 6% (4% average).

TABLE 2.1
Coefficient of Variations and Fluorescence Signal Intensity of Three

Separate Hybridizations

Three Different Hybridizations with Cy3-Labeled Targets

Probe Id Name Slide 1 Slide 2 Slide 3 Avg cv
2732 ACTB 28453 31709 29889 30017 5%
2736 RPLI3A 39686 40660 40148 40165 1%
2742 RPL19 6141 6401 6220 6254 2%
2745 GAPD 19606 21063 21678 20782 5%
2746 PDHB 31631 31534 30126 31097 3%
2753 RPS9 30751 29008 27224 28994 6%
2796 PDHAI 25189 25673 24427 25096 3%
2797 UBC 35247 37414 36071 36244 3%
2798 HPRT1 8804 8878 8158 8613 5%
2799 HLA-C 27284 26614 25673 26524 3%
2827 ARA1 33456 35672 34778 34635 3%
2836 ARA4 21602 23204 22474 22427 4%

Avgcev 4%
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EXAMPLE OF FOCUS THREE-DIMENSIONAL
HYDROARRAYS

The analysis of the genes involved in apoptosis provides an example of focus three-
dimensional HydroArrays. Antihuman CD95 (FAS), a widely studied inducer of apop-
tosis [4], was chosen as the model system. Human T-cell leukemia cell line, Jurkat
clone E6-1 cells (American Cell Culture Collection, Rockville, MD), were cultured
in RPMI-1640 media and 10% FBS. After reaching a concentration of 7 x 10 cells/mL,
cells were treated with 100 ng/mL antihuman CD95 (eBioscience, San Diego, CA)
for 6 h. Poly-A RNA was extracted, and Cy3-labeled targets were prepared by incu-
bating 2-ug poly-A RNA with Cy3-labeled random hexamers (IDT, Skokie, IL) and
reverse transcriptase (SuperScript II, Invitrogen, Carlsbad, CA) for 2 h. In this proce-
dure, targets were not amplified, and each synthesized target contained one Cy3
molecule on the 5° end. The focus HydroArrays are also compatible with target
processing systems that utilize amplification, e.g., T7 RNA amplification.

In this example, the targets were hybridized to an apoptosis pathway HydroArray,
consisting of 256 apoptosis-related genes and control probes, for 16 h. The distribution
of gene induction, normalized against housekeeping genes, is shown in Figure 2.5A.
Figure 2.5B shows the genes that are induced threefold or more under the experimental
conditions described previously. These genes include DAPK1, BIRC4, CRADD, and
TNFSF12, all of which have previously been described to be involved in FAS signaling
and apoptosis. DAPKI is a proapoptotic kinase, reportedly induced by FAS [5,6]. BIRC4
has been described as an inhibitor of FAS-mediated apoptosis [7]. CRADD interacts with
the intracellular death domain of CD95 (FAS) [8]. Finally, TNFSF12 (TWEAK) has also
been described as an inducer of apoptosis [9]. Few of the housekeeping genes were affected
by FAS treatment. These results demonstrate that the apoptosis HydroArray effectively
identifies alterations in gene transcription in cells subjected to apoptotic events.

To demonstrate the responsiveness of the capture probes used in the preceding
example, we used the same apoptosis three-dimensional HydroArray to compare
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FIGURE 2.5 Effect of antihuman CD95 (FAS) antibody on gene expression.
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Fold Anti-FAS Induced
Gene Induction

CDKN1A NGFR DAPK1 BIRC4 CRADD TNFSF12
Genes induced in Jurkat T-cells by anti-human CD95 (FAS) antibody.
FIGURE 2.5. (continued).

two different tissue samples with high differential expression to visualize alterations
in gene transcription. Here, we synthesized Cy3-labeled targets from equal amounts
(2 ug) of commercially obtained poly-A RNA (Ambion) from human liver and brain,
using Cy3-labeled random hexamers in a reverse transcriptase reaction, and hybrid-
ized the prepared single-stranded targets to the apoptosis three-dimensional
HydroArray described in the previous paragraph. Figure 2.6 illustrates visible dif-
ferences in gene expression levels between liver and brain tissues.

FIGURE 2.6 Differential expression between liver and brain genes.
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IN VITRO DIAGNOSTIC APPLICATIONS

The examples of focus three-dimensional HydroArrays provided in this chapter
indicate that HydroArrays can be used as life-science research tools. However,
HydroArrays can also provide effective diagnostic assays. The recent launch of the
Roche Amplichip CYP450 array, jointly developed by Affymetrix and Roche Diag-
nostics to monitor drug toxicity and metabolism, illustrates this new application of
microarrays. Consequently, we have applied our focus, low-density array platform
to the prenatal diagnosis of fetal abnormalities and have developed the Chromosomal
Disorder array (CD HydroArray). In this section, we will highlight the key features
of such array.

Approximately 4 million deliveries take place every year in the U.S. The aging
population and the trend to delay pregnancies until later in life has resulted in an
increase in the number of prenatal diagnostic procedures, since the incidence of fetal
chromosomal disorders is known to increase with the age of the mother. A list of
common chromosomal disorders, including aneuploidies and microdeletions, and
their incidence at birth is listed in Table 2.2.

About 300,000 amniocentesis and chorionic villous sampling (CVS) procedures
take place every year in the U.S. For amniocentesis, a needle is inserted through the
mother’s abdomen into the uterus. Amniotic fluid containing fetal cells is drawn and
sent to a lab for karyotyping analysis. CVS involves the insertion of a catheter through
the vagina and the cervix and into the uterus to the developing placenta under ultra-
sound guidance to remove sample of placental cells from the placental chorionic villi.
Alternative approaches of CVS are the transvaginal and transabdominal routes.

Both procedures are invasive and carry a small risk of injury to the fetus, which
may cause spontaneous abortions. CVS in particular can cause morbidity to the fetus
at a rate that is about 0.5 to 1% higher than that of amniocentesis. Moreover,

TABLE 2.2
Common Aneuploidies and Microdeletions Tested by CD HydroArray
and Their Incidence at Birth

Type/Key Examples

Kleinfelter, XXY
Turner, XO

Triple X, XXX
XYY

Patau syndrome
Edwards syndrome
Down syndrome

Di George syndrome
Cri-du-Chat syndrome
Williams-Beuren syndrome

Disorder

Aneuploid
Sex chromosome
Sex chromosome
Sex chromosome
Sex chromosome
Chromosome 13
Chromosome 18
Chromosome 21

Microdeletion
22q11
5pl5.2
7q11.2

Incidence at Birth

1/800 male birth
1/4,000 female birth
1/700 female birth
1/1,000 male birth
1/10,000 birth
1/6,000 birth

1/800 birth

1/4,000-8,000 birth
1/20,000-50,000 birth
1/10,000 birth
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karyotyping analysis of amniocentesis samples requires culturing these cells for
about 2 weeks to allow enough cell propagation for chromosomal analysis. Diag-
nostic assays capable of detecting genetic abnormalities in a noninvasive manner
and in a more rapid time frame are required.

FISH (fluorescent in situ hybridization) is a tool commonly used to diagnose
chromosomal disorders to a fairly high degree of accuracy. The technique, however,
though time proven, is not only time-consuming but also requires allocating large
amounts of a skilled technician’s time. Furthermore, though FISH can accurately
detect aneuploidies, it cannot detect microdeletions.

Building on the advantages of reproducibility and sensitivity of our three-
dimensional HydroArrays, we have designed a diagnostic array with both sensitivity
and specificity greater than 99.5% for detecting both aneuploidies and microdeletions
in fetal DNA samples. Specifically designed 45-mer probes to genes located on nine
different chromosomes are printed using six spots each on a single array, providing
a statistically significant number of data points. Each group of six spots consists of
two groups of three spots, representing two separate transfer pins used to manufac-
ture each cluster. A cluster of blanks, which do not contain any probes, is also
included as a control. Two identical slides are used per patient, and the final result
is only computed if the data obtained from both slides is identical to within 5%.

The ability of CD HydroArrays to correctly identify chromosomal disorders is
visually illustrated in Figure 2.7 to Figure 2.9. The quantification of signal intensity,
and the statistical correlations leading to diagnostic values are indicated in Table 2.3
and Table 2.4.

The detection of male and female sex chromosomes in normal subjects and the
identification of genetic disorders caused by sex chromosome aneuploidism is illus-
trated in Figure 2.7. Control probes are hybridized in the first lane of each of the
three panels.

Figure 2.8 illustrates the detection of trisomy at chromosomes 13, 18, and 21.
The first panel represents normal male values (46 chromosomes XY). The second
panel illustrates a male patient’s with Patau syndrome, characterized by trisomy at
chromosome 13. In this case, the signal generated by the corresponding probe is
greater than that generated by the control sample in the first panel. Panel 3 indicates
elevated values of chromosome 18 probes, characteristic of trisomy 18, or Edward
syndrome. Panel 4 illustrates the greater intensity generated by the chromosome
21 probes, indicative of the chromosome 21 trisomy typical of Down syndrome.

The detection of chromosome microdeletions is visually illustrated in Figure 2.9.
The first panel shows normal values. The second panel shows the values of a patient
with Cri-du-chat syndrome, characterized by a microdeletion at chromosome 5.
Relative to the signal generated by a normal sample, the Cri-du-chat patient sample
had virtually no signal at the chromosome 5 probe.

The third panel shows the values of a patient with Di George syndrome, charac-
terized by a microdeletion at chromosome 22. Relative to the signal generated by the
chromosome 22 probe of a normal sample, Di George patients generated a signal at
the corresponding probe that was significantly lower than that of the control probes.

The relative fluorescence intensities generated by the CD HydroArrays indicated
in the previous paragraphs were quantified, their intensity ratios computed against
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FIGURE 2.7 Detection of sex-chromosome aneuploid.

GAPDH for each of the eight genes being tested. These data are summarized in
Table 2.3 and Table 2.4.

As previously stated, the CD HydroArray contains nine genes, of which eight
are specific for genes at risk. The remaining probe is for the internal control GAPDH,
a “housekeeping” gene, known to be unaffected by any of the disorders studied in
this test. To normalize the data for each patient, intensity ratios are computed against
GAPDH for each of the eight genes being tested. The normalization procedure
marginalizes differences in starting material. Ratios to GAPDH are the same for all
normal patients, regardless of the absolute fluorescent intensities. Sample data were
accumulated over time, averaged, normalized against GAPDH gene, and used as the
acceptance criteria by which all incoming patient data were evaluated. These data are
summarized in the first two columns of Table 2.3.

Quantifying the signal generated by the male Y chromosome on the CD
HydroArray can easily identify blind normal male and female samples. Because
females lack the Y chromosome, the difference between males and females is
determined by the presence of signal in the SRY (Y chromosome) position in male
samples. After normalization against the GAPDH gene, male samples gave rise to
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ratio values of 0.166, whereas female samples did not produce detectable signals owing
to lack of the Y chromosome (hence, the blank SRY value in the Normal Female
column). Similarly, female samples, by virtue of possessing two X chromosomes vs.
only one for males, can be accurately identified by the signal produced by XP22
position of the X chromosome. Indeed, these values are almost double those of males
(0.35 for females vs. 0.19 for males).

Similar trends in signal ratios are utilized to detect sexual aneuploidies.
Kleinfelter syndrome is characterized by the XXY genotype, i.e., patients have two

TABLE 2.3
Detection of Sex Chromosome Disorders with CD HydroArrays

XP22
SRY
SOD1
ATP7B
WDR?7
ELN
TAS2R1
DGCR2

Normal Male

0.19
0.17
0.68
0.59
0.26
0.35
0.25
0.35

Normal
Female

0.35
0.65
0.56
0.25
0.33
0.25
0.32

XO

0.18

0.65
0.55
0.24
0.33
0.24
0.34

XXX

0.51
0.65
0.52
0.22
0.32
0.25
0.38

XXY

0.38
0.15
0.66
0.53
0.24
0.32
0.25
0.31
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TABLE 2.4
Detection of Trisomy and Microdeletions with CD HydroArrays

Female, Female, Male, Male,
Normal Normal Trisomy Trisomy Trisomy Trisomy Di George Cri-du-Chat

Male Female 18 21 18 21 (Female) (Male)
XP22 0.19 0.35 0.33 0.36 0.20 0.19 0.35 0.19
SRY 0.17 — — — 0.16 0.15 — —
SOD1 0.68 0.65 0.64 0.88 0.64 0.90 0.70 0.72
ATP7B 0.59 0.56 0.59 0.60 0.62 0.63 0.57 0.57
‘WDR7 0.26 0.25 0.39 0.26 0.37 0.26 0.22 0.23
ELN 0.35 0.33 0.37 0.34 0.36 0.35 0.36 0.38
TAS2R1 0.25 0.25 0.23 0.22 0.25 0.27 0.22 0.12
DGCR2 0.35 0.32 0.32 0.29 0.34 0.34 0.22 —

X chromosomes and one Y chromosome. When samples of these patients were ana-
lyzed with our CD HydroArray, they generated XP22 ratios (typical of X chromosome)
of 0.38, similar to the 0.35 value of normal females. Their SRY value (characteristic
of Y chromosome) was 0.15, consistent with normal male ratio of 0.17 (Table 2.3).
Therefore, a fetal sample with XP22 value of 0.38 and an SRY value of 0.15 can
correctly diagnose a male fetus carrying Kleinfelter syndrome.

Patients affected by Turner syndrome, characterized by XO, lack the Y chromo-
some. When Turner’s samples patients were analyzed with our CD HydroArray,
XP22 values were 0.18, comparable to those of normal males. Because these patients
lack the Y chromosome, their SRY values were not detectable (Table 2.3). Similarly,
Triple X (or XXX) patients gave rise to XP22 values of 0.51, or 50% higher than
that of normal females due to the presence of three X chromosomes, but gave rise
to no SRY value, due to the lack of the Y chromosomes.

Chromosome microdeletions, which are characterized by selective loss of gene
parts, give rise to signals that are lower than the normal values. Samples of such
patients were tested with our CD HydroArray, and the data are summarized in
Table 2.4, where green highlights indicate the affected gene.

The patient in column three has XP22 values of 0.33 and undetectable SRY
values: This patient therefore is female. The other ratios are very similar to normal
female ratios, except for the WDR?7 value, which is 0.36, about 50% greater than
the normal value of 0.25. The WDR7 gene is located on Chromosome 18; the value
reported indicates the presence of an extra Chromosome 18. This patient is therefore
diagnosed as a female with Trisomy 18.

PROTEIN THREE-DIMENSIONAL HYDROARRAYS

The design of protein chip microarrays faces two major challenges: (1) the need for
easy microfabrication methods, and (2) a microenvironment on the surface of the
chip capable of maintaining proteins in hydrated conditions. This is essential for
proteins to retain their native three-dimensional configuration and consequently their
biological activity.
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Because of these challenges, only a select number of protein arrays have been
microfabricated thus far. Zhu H. et al. [10] reported the fabrication of an array of
microwells made of the disposable silicone elastomere poly(dimethylsiloxane). With
this platform, the authors have been able to fabricate a number of densely packed
microwells on a small chip, each well providing the physical segregation between
analytes necessary to enable the screening of multiple analytes on the same chip.
Proteins are covalently attached to each microwell using the cross-linker 3-
glycidoxypropyltrimethoxysilane. The authors reported the attachment of up to 8 x 10°
ug/um? of protein on the surface of each microwell. These wells, however, are
exposed to ambient air, with potential fluid evaporation and drying of the captured
proteins, and consequent loss of their biological activity.

The same authors reported the analysis of 6566 yeast proteins, representing 5800
different yeast gene expression products, with a microarray printed on a glass slide.
Proteins were immobilized to aldehyde-treated glass slides; their free amino group
binding via a Shiff base formation [11]. However, Shiff bases are unstable binding
events that require stabilization with reducing agents. In the absence of such treatment,
dissociation would occur, resulting in detachment of the proteins from the solid sup-
port. Alternatively, the authors linked proteins onto slides treated with nickel, to which
proteins would bind through the expression of a histidine tag. This paper is one of the
first reports to describe a massive array with a large number of proteins for rapid
parallel screening. However, in these arrays, the immobilized proteins are exposed to
ambient air and thus are liable to dry on the surface of the chip, which results in loss
of biological activity. With such a chip, maintaining the proteins in a constantly
hydrated state to retain their folded configuration is a challenging task.

MacBeath G. and Schreiber S.L. [12] printed a protein array on a glass slide.
The proteins were in 40% glycerol to prevent evaporation of the nanodroplets. Slides
were previously treated with aldehyde-containing silane to form Shiff-base linkages
with the amino groups of the proteins. When slides are washed and prepared for
interaction with test proteins at the end of the immobilization phase, glycerol is
equally washed away and, as before, unless proteins are constantly maintained in a
hydrated state, they can easily dry and denature.

In the first reported example of a three-dimensional chip, Zlatanova and
Mirzabiekov [3] developed an array made of micropads of polyacrylamide. DNA
was deposited on the top of each micropad and allowed to passively diffuse into the
gel. However, the fabrication of a microarray of polyacrylamide micropads is cum-
bersome, requiring photomasks and equipment commonly used in photolithographic
processes. In addition, the diffusion of DNA into the polyacrylamide micropads is
a slow process, requiring up to 48 h.

To immobilize protein on a solid support in a way that preserves their folded
configuration, Arenkov P. et al. [13] arrayed functionally active proteins within
microfabricated polyacrylamide pads and microelectrophoresed proteins to acceler-
ate diffusion. However, the polymerization of acrylamide requires free radicals,
which may damage proteins as well as produce an unstable morpholino derivative
that can negatively affect the stability and shelf life of the chip itself.

Polyurethane hydrogels provide a viable alternative to the methods mentioned
previously. Unlike acrylamide, the polymerization of polyurethane hydrogels is
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initiated by water. This bypasses the need to use free radicals or organic solvents,
creating a microenvironment into which proteins can be directly encapsulated during
polymerization. In addition, (1) the initiation of polymerization, (2) the binding of
proteins to the hydrogel backbone, and (3) the binding of the hydrogel microdroplets
to the glass slide are mediated by the same isocyanate reactive groups in conditions
that can be meticulously controlled. Consequently, the molar concentration of pro-
teins immobilized within each microdroplet can be carefully quantified. Moreover,
the fact that the hydrogel droplets contain up to 96% water results in the encapsulated
proteins being maintained in a constant state of hydration, thereby retaining their
three-dimensional native conformation.

In the following paragraphs, we will describe a series of protein chips that utilize
our PEG-NCO hydrogel platform. In particular, we will show examples of arrays
suitable for antigen—antibody recognition, protein—protein interactions, protein—
DNA interactions, and enzymatic reactions within hydrogel microdroplets.

PROTEIN DIFFUSION AND MOLECULAR RECOGNITION: AN EXAMPLE OF
ANTIBODY—ANTIGEN BINDING

To demonstrate that proteins can diffuse into the hydrogel droplets in a functionally
viable state, we chose the FITC—Anti-FITC antigen—antibody system. In this exper-
iment, FITC was first encapsulated within the microdroplet. Then, anti-FITC
antibodies labeled with Alexa Fluor594 were allowed to diffuse through the micro-
droplets to bind to FITC, as indicated schematically in Figure 2.9A.

A *
a-FITC ',7 ¢I¢*
FITC conjugated :g
to gel-immobilized  @@PFTC ——> @DTTCN\
protein "%
B FITC Fluorescence Alexa Fluor594 Fluorescence
- ‘?
Buffer
-
Alexa Fluor594
conjugatedO.-FITC Rﬁ
0 4 hrs 0 4 hrs
quenched visible
signal signal

FIGURE 2.9 Detection of chromosome microdeletions. (From Gurevitch, D., et al., A
novel three-dimensional hydrogel-based microarray platform, JALA, 6(4): 87-91, 2001.
With permission.)
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FIGURE 2.10 Example of complex protein—protein interactions.

In the absence of anti-FITC antibodies, the fluorescence of FITC embedded within the
hydrogel can be readily detected (Figure 2.9B). Incubation of anti-FITC antibody leads to
diffusion of the antibody into the hydrogel microdroplet, where the binding of the antibody
with its cognate antigen (FITC) results in the quenching and subsequent loss of FITCs
fluorescence (Figure 2.9B). The presence of the anti-FITC antibody in the hydrogel micro-
droplet is further confirmed by the red fluorescence emitted by Alexa Fluor594 (the fluo-
rophor used to label the antibodies) when excited at 590 nm (Figure 2.9B).

To further demonstrate that antibodies can specifically bind to their respective
antigens within hydrogel microdroplets, the reverse experiment was also executed.
In this case, antibodies raised against transferrin PSA or BSA were first tethered
within the gel matrix of microdroplets. Fluorescent-labeled transferrin PSA or BSA
were then allowed to diffuse through the microdroplets, where they bound specifically
to their respective antibodies tethered to the hydrogel (Figure 2.10). The bovine IgG
antibody control did not interact with any of the targets.

These experiments demonstrate that antibodies and other large proteins are capable
of diffusing through hydrogel microdroplets and binding to their cognate antigens.
This not only provides a method to detect the presence of various antigens within the
hydrogel microdroplets but also opens many possibilities for carrying out biochemical
reactions in a microarray format. Therefore, we explored whether other protein assays
can be miniaturized in a microarray format. The following sections describe our results
in developing assays aimed at performing protein—protein interactions, protein—DNA
interactions, and enzymatic activities within hydrogel microdroplets.

PROTEIN—PROTEIN INTERACTIONS

The ability to study protein—protein interactions is important for drug discovery and
structural proteomics. We studied the interaction between calmodulin and calcineurin
as a model for complex protein—protein interactions. For these experiments, we used
antibody capture to support a selective calcium-mediated interaction between
calcineurin (a heterodimer) and fluorescently labeled calmodulin (Figure 2.11).
The calcium-independent calmodulin or anticalmodulin antibody interaction served
as positive control.
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FIGURE 2.11 (A color version follows page 204) Sequence-specific protein-DNA recognition
in three-dimensional HydroArray. (From Gurevitch, D., et al., A novel three-dimensional
hydrogel-based microarray platform, JALA, 6(4): 87-91, 2001. With permission.)

PROTEIN-DNA INTERACTIONS

Transcription factor binding to a recognition DNA sequence is an essential event in
gene expression. Building upon our DNA microarrays, we developed a transcription
factor DNA array as a model system for specific DNA—protein interactions. This
provided a novel tool to help further our understanding of gene regulation and control.

Bacterial A repressor binding sequence Oz20;1 and its mutant, carrying a single
base mutation at the binding site, are printed and hybridized to their corresponding
complementary sequences, as described in Figure 2.12A and Figure 2.12B. Binding
of the Cy3-labeled A repressor to its native operon sequence results in the gain of
fluorescent signal in the corresponding spots. The absence of a strong fluorescence
in the mutant spots indicates that the interaction is sequence specific (Figure 2.12C).
Comparison of the SYBR Gold (a double-stranded DNA strain) stained fluorescence
of the printed slides with the Cy3 fluorescence from A repressor confirms that it is
the sequence-specific A repressor—A operon interaction, rather than nonspecific pro-
tein binding to unevenly printed DNA that gives rise to the Cy3 signal associated
with the wild type Oz20;1 sequence.

A second example of protein—-DNA interaction with our three-dimensional
HydroArray platform is provided by the binding of the Estrogen Receptor (ER)
(UBI, Lake Placid, NY) to its consensus estrogen response element (ERE). The
sequence of the wild-type ERE is as follows: 5’-acggtag AGGTCActgTGACCTctac-
ccg-3’, and the two ER binding sites are highlighted in capital letters [14]. A mutant
ERE sequence was used as the negative control. The wild-type ERE sequence differs
from the mutant sequence by four nucleotides in a region known to be critical for
binding by the receptor, as described by Vanacker et al. [14]. The binding of the
estrogen receptor to the estrogen response element forms the ER-ERE complex,
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FIGURE 2.12 Transcription factor binding to target DNA.

which was then detected with anti-ER antibodies coupled to a fluorescent signal
display. These data are shown in Figure 2.13.

Transcription factor—DNA interactions with short half-lives (i.e., less than 1 min)
can be better detected with electrophoresis gel shift assays than with nitrocellulose
filter assays. This is due in part to the “caging effect” provided by the gel matrix
[15]. In these conditions, transcription factor molecules that dissociate from their
cognate DNA sequences cannot diffuse away because they are trapped in close
proximity to one another by the gel matrix. Thus, they can rapidly recombine with
each other, increasing the stability of the complex. Because of these caging effects,
gel shift assays are more sensitive than nitrocellulose filter assays, where kinetically
labile complexes are prone to dissociate during washing of the filter. Our experiments
demonstrate that protein—-DNA binding studies can be performed within hydrogel
microdroplets, possibly due to a cage-effect-like activity of the hydrogel scaffold.

The ability to analyze DNA—protein interactions on microarrays offers a route to
more efficient screening of agents, focused on transcriptional regulation as possible
therapeutic targets. We anticipate that double-stranded DNA microarrays designed in
various formats may have broad applications in studying protein-DNA interactions,
including inhibitors and activators of sequence-specific transcription factors, agonists
and antagonists, transcription regulatory proteins, and synergy among transcription
regulators. We also anticipate that double-stranded DNA microarrays will be very
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FIGURE 2.13 Enzymatic reactions within three-dimensional HydroArrays.

effective substitutes for cumbersome protein—-DNA interaction assays currently used
in the field, such as gel mobility shift assays or filter binding assays.

ENzYMATIC REACTIONS WITHIN THREE-DIMENSIONAL HYDROARRAYS

We have further extended the sequence-specific protein—DNA interaction study to
protein—DNA interactions associated with enzymatic activity. Figure 2.14 shows the
results of a tyrosine phosphatase model enzymatic system. Nine unique peptides
were deposited as probes, with six of the nine being tyrosine phosphopeptides. The
color of the spots is proportional to the amount of fluorescent dye bound to the
microarray. The lower intensity (weakest signal — least binding) is blue in color,
while the highest intensity (strongest signal — most binding) is red. There is no
signal on either array for replicates of the three peptides that are not phosphorylated.
The control panel shows the signals generated by the tyrosine phosphopeptides.
The tyrosine phosphatase, Yersinia enterocolitica YOP phosphatase (NEB, Bev-
erly, MA) was applied to the array on the right. Following incubation for 10 min,
the residual phosphopeptide on the treated and control arrays was then detected by
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. phosphorylated
= peptides
A
—
Non- 5U/300 wl,
phosphorylated 10 mins

control peptide

FIGURE 2.14



Three-Dimensional HydroArrays 33

biotinylated antiphosphotyrosine antibody, followed by Cy3-labeled streptavidin
for signal display. Each polypeptide was printed as two quadruplet spots: the first
eight spots represent blank hydrogel controls for nonspecific binding and the next
eight spots contain a negative control, the serine and threonine phosphate substrate.
When the phosphatase cleaves a phosphate from the peptide, one expects a corre-
sponding loss of signal.

The results shown in Figure 2.14 demonstrate the activity of tyrosine phosphatase
on phosphopeptides tethered in the hydrogel. Not all the peptides are dephosphory-
lated at the same rate. Peptides with higher acidity (containing aspartic acid or
glutamic acid) in positions 4, 3, 2, or 1 form the phosphotyrosine in 0 position
relative to the aminoterminal and are known to be efficiently dephosphorylated [16].
In our study, peptides containing ENDY(P), EDNEY(P), and DADEY(P) were
efficiently dephosphorylated. Peptides containing ENAEY(P) were dephosphory-
lated more slowly, whereas DRVY (P), TRNIY(P), and VVPLY (P) were dephospho-
rylated at the slowest rate. The relative dephosphorylation rates are consistent with
the literature. An important application of this technology is for drug screening,
including evaluating the activity of potential enzyme inhibitors.

CONCLUSIONS

The experiments described in this chapter indicate that our new, three-dimensional
HydroArrays provide a diverse novel platform with increased sensitivity and spec-
ificity for genomic studies. By virtue of immobilizing a greater number of capture
probes in a three-dimensional microdroplet format, the arrays exhibited greater
sensitivity and very low (6%) coefficient variations. The greater accuracy of three-
dimensional HydroArrays enabled the detection of 1.5-fold differences in gene
expression. This has allowed the development of a diagnostic three-dimensional
HydroArray, which correctly identifies a number of chromosomal abnormalities.

The high water content (95%) provides a microenvironment wherein the proteins
are fully hydrated and retain their natural three-dimensional configurations. This has
allowed the microfabrication of a number of protein chip prototypes, such as those
suitable for antigen—antibody binding, protein—protein interactions, protein-DNA
interactions. In addition, we demonstrated that enzymatic reactions can also be
miniaturized and carried out in a microarray format.
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INTRODUCTION

Plasmodium falciparum is the causative agent of the most deadly form of human
malaria, killing 1 to 3 million individuals per year. The emergence and spread of
resistance to widely used antimalarials make the development of novel therapeutic
approaches an urgent task. The recent publication of the entire genome of the P.
falciparum revealed over 5400 genes of which 60% encode for hypothetical proteins
with unknown function and will potentially have a high impact for malaria drug
discovery. Moreover, high throughput functional genomics and especially DNA
microarray technology are already opening the doors to better understanding of the
malaria parasite biology. In this chapter, we describe some of the genomic
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approaches that have been used to increase the knowledge of the biology of this
eukaryotic parasite, an essential step in the antiparasitic discovery pipeline.

MALARIA

Malaria is one of the most ancient and devastating parasitic diseases of humans with
an estimated 300 to 500 million infections and 1.5 to 3 million deaths annually
(Breman et al., 2001). Caused by four species of apicomplexan parasites belonging
to the genus Plasmodium, malaria is transmitted to humans by the Anopheles mos-
quito. Despite massive efforts over the past century to eradicate the disease through
mosquito control and prophylactic antimalarial drugs such as chloroquine (CQ), or
sulphadoxine-pyrimethanine (SP), malaria continues to pose a severe threat to human
health worldwide. The common clinical signs are fever, chills, prostration, and
anemia. With severe disease progression, symptoms can include delirium, acidosis,
cerebral malaria, multiorgan failure, coma, and death. Recent analyses suggest that
the medical and economic impacts of malaria in endemic areas are underestimated
(Breman et al., 2001; Gallup and Sachs, 2001). Moreover, the increasing emergence
of multidrug-resistant Plasmodium spp. as well as insecticide resistant Anopheles
spp- and the lack of an effective malaria vaccine highlight a critical need for the
identification of new chemotherapeutics and vaccines.

LIFE CYCLE OF THE MALARIA PARASITE

The malaria parasite has a complex life cycle (Figure 3.1). Transmission is initiated
when an infected mosquito takes a blood meal and haploid sporozoites are released
from its salivary gland into the human host blood stream. These parasites rapidly
invade hepatocytes where they differentiate and replicate, releasing free merozoites
into the bloodstream. These merozoites rapidly infect host erythrocytes where the

a  Sporozoites 57 SE> b

Gametocytes

FIGURE 3.1 Life cycle of the malaria parasite. (From Wirth, D.F., Biological revelations,
Nature, 2002, 419, 495-496. With permission.)
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parasite differentiates through ring, trophozoite, and the multinucleate schizont stage
over a 48- to 72-h period (depending on the particular Plasmodium spp.). At the end
of this asexual cycle, the erythrocytes lyse, releasing a new batch of merozoites that
can invade new erythrocytes. This erythrocytic cycle is responsible for the clinical
symptoms of malaria. By unknown molecular mechanisms, some erythrocytic
parasites do not undergo asexual multiplication and instead differentiate to form
male and female gametocytes. When mature gametocytes are taken up by a feeding
mosquito, gamete formation and fertilization occur in the gut; the resultant diploid
zygote (ookinete) penetrates the stomach wall where it encysts (oocyst); within this
oocyst, sporozoites form and, when released, invade the mosquito’s salivary glands.

GENOME OF P. FALCIPARUM

In an international effort to accelerate the discovery of drugs and protective vaccines,
the entire 22.8 Mb genome of the most lethal Plasmodium species, P. falciparum,
which consists of 14 chromosomes, a linear mitochondrial genome, and a circular
plastidlike genome, was published in October 2002 (Gardner et al., 2002). The
falciparum genome is twice the size of the yeast Schizosaccharomyces pombe’s
genome, and represents the richest A+T genome sequenced to date (80.6% overall,
and 90% in the introns and intergenic regions). The malaria genome sequencing
consortium estimates that there were more than 5409 predicted open reading frames
(ORFs) encoded in the P. falciparum genome, 60% of which lack sequence similarity
to genes from any other known organism (Gardner et al., 2002). However, peptides
from over 2400 of these ORFs have been detected by mass spectrometry, validating
the gene prediction algorithms (Florens et al., 2002; Lasonder et al., 2002). Thus,
almost two thirds of the proteins appear to be unique to this organism, a proportion
higher than that of any other eukaryote. This may reflect a greater evolutionary
distance from other organisms, increased by the reduction of the sequence similarity
due to the A+T richness of the genome (Gardner et al., 2002). Particular categories
of genes appear to be overrepresented, such as those involved in immune evasion
and host—parasite interactions. Other categories appear to be underrepresented, such
as those associated with cell cycle, cell organization and biogenesis, enzymes,
transporters, or transcription factors (Gardner et al., 2002). The presence of under-
represented gene families does not necessarily mean that fewer genes are involved
in these processes relative to other organisms, but highlights a lack of biological
knowledge about the malaria parasite. Although defining putative roles for these
OREFs in the absence of similarities to other organisms remains challenging, discov-
ery of their roles and identification of Plasmodium-specific key regulatory sequences
could be fundamental to develop new antimalarials.

FUNCTIONAL GENOMICS AND DISCOVERY
OF ANTIPARASITIC AGENTS

Following the publication of the P. falciparum genome sequence, efforts were made to
translate the genomic information into a better understanding of the biology of the
malaria parasite to design more effective and affordable antimalarial drugs. Because of
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FIGURE 3.2 (A color version follows page 204) Comparison of the two microarray methods
used for the malaria parasite gene expression’s life cycle (A, short oligonucleotides by in situ
synthesis, Affymetrix, Santa Clara, CA) or malaria cell cycle (B, long oligonucleotides by
robotic deposition of nucleic acids onto a glass side). I — Probe Design: For the high-density
25-mer oligonucleotide array, multiple probes per gene are placed on the array (A). In the
case of robotic deposition, a single (75-mer) probe is generally used for each gene. I —
Preparation of labeled material for measurement of gene expression using a cRNA-labeled
protocol (A) or a cDNA labeling protocol using the Cy3 (or CyS5) for a two-color strategy (B).
IIT — Experimental design and expression level using different algorithms: MOID algorithm
(A) and Fourier transform (B). IIl — Cluster analysis using the robust k-mean algorithm (A)
or the fast Fourier transform (FTT) (B).
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the complexity of the parasite’s life cycle, as well as the fact that the organism is haploid
during most of its development, the use of traditional forward and reverse genetic
techniques have been challenging and time-consuming. Understanding this complex
organism at the biological level requires more than just knowledge of genes and the
genome, it required knowledge about the complex parasite-host interactions that occur
throughout the life cycle. As a result, high-throughput functional techniques (transcrip-
tomic and/or proteomic techniques) emerged as significant tools to elucidate gene
function more rapidly and cost effectively. DNA microarray technologies represent a
powerful tool for a whole genome approach to generate quantitative gene expression
data. Variations in gene expression can reflect important aspects of biological function.
Up- or downregulation of a gene or set of genes at a particular stage of the life cycle
can provide predictive information about their function, involvement in a metabolic
pathway, or their interaction with the host. Systematic characterization of expression
patterns can provide information for interpreting biological significance and understand-
ing how developmental events are controlled, facilitating effort to design better methods
for interrupting these expression pattern and developmental events.

To distinguish between differences among the hundreds of potential hypothetical
proteins, changes in the expression profiles for thousands of genes throughout the
life cycle were analyzed. Two transcriptional analyses covering the entire genome
of P. falciparum were published (Bozdech, Llinas et al., 2003; Le Roch et al., 2003).
Le Roch et al. used a high-density, 25-mer oligonucleotide array generated by in
situ synthesis by photochemistry and mask-based photolithography (Affymetrix,
Santa Clara, CA). Bozdech et al. used a custom-made array with a robotic disposition
of long 70 nt oligonucleotides. These studies were used to identify developmental
events at the steady-state mRNA level throughout the life cycle or the erythrocytic
cell cycle, respectively. Despite differences in technologies (short oligonucleotide
vs. long oligomer microarray), both studies showed comparable expression patterns
for the erythrocytic stage (Figure 3.2). This serves to emphasize that microarray
technologies are reliable and powerful techniques. When well-designed, biochips
can be a critical tool for answering significant biological questions. For P. falciparum,
one such question to be answered is, what biochemical targets might serve as the
basis for the rational design of antimalarials?

SHORT OLIGONUCLEOTIDE VS. LONG
OLIGONUCLEOTIDE MICROARRAY

ARRAY AND PROBE DESIGN

Before the completion of the P. falciparum genome project, a customized high-
density oligonucleotide array was designed in early 2002 at the Genomic Institute
of the Novartis Foundation (GNF) U.S., using the available genome draft and
annotation. The array had a distinctive design, unique in three ways: rather than a
fixed number of probes per gene, the array used a variable number of probes matching
the length of the predicted ORFs (from 1 to more than 200 probes); the array included
probes in the intergenic and antisense coding regions; and the probe design differed
from the standard Affymetrix technology, which uses perfect match (PM) and its
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corresponding mismatch (MM), differing by a single base in the middle. As the MM
tends to overcorrect the signal by increasing the noise level and occupies half of the
probe space, researchers at GNF designed a whole malaria genome array with PM
only containing 260,596 25-mer single-stranded probes from predicted coding
sequences (including mitochondrion and plastid genome sequences) and 106,630
probes from the noncoding sequence covering the 23-Mb genome with an average
density of one probe per 150 bases on both DNA strands.

Around the same time that GNF created its Affymetrix custom-made malaria
array, Bozdech et al. constructed a gene-specific microarray of the P. falciparum
genome sequence, using the publicly available resource from the Malaria Genome
Consortium. For each of the predicted ORFs, they designed 70-mer oligonucleotide
array elements for the entire genome (Bozdech, Zhu et al., 2003). The DNA microar-
ray used 7462 70-mer oligonucleotides representing 4488 of the 5409 annotated
ORFs. The 70-bp oligonucleotides were synthesized in well format (Operon Tech-
nologies, California) and robotically spotted onto glass slides to detect cDNA hybrid-
ization level.

EXPERIMENTAL DESIGN AND EXPRESSION LEVEL

For the short oligonucleotide array experiment, total RNA was extracted from
different stages of the malaria parasite life cycle, labeled by a strand-specific
protocol and hybridized on the array (Le Roch et al., 2002; Le Roch et al., 2003). Life
cycle stages used were carefully chosen: sporozoites, seven time points spanning
the intraerythrocytic cell cycle (using two independent synchronization methods to
obtain replicates and reveal genes that were under true cell-cycle control), and
mature gametocytes. Because no mismatch probes were designed in this custom-
made high-density oligonucleotide array, standard Affymetrix algorithms depending
on the PM-MM values could not be utilized. To analyze the expression level within
the array, the Match Only Integral Distribution (MOID) algorithm was used (Zhou
and Abagyan, 2002; Zhou and Abagyan, 2003) to give an absolute expression level
for each gene.

The correlation coefficient of the logarithm-transformed expression values
between synchronizations and hybridizations (values range from 0.87 to 0.91) dem-
onstrates high reproducibility and establishes that 88% of the predicted genes were
expressed in at least one stage of the life cycle where expression levels throughout
the life cycle varied by 5 orders of magnitude.

To profile the malaria parasite life cycle, a one-way statistical test was applied
to identify differentially expressed genes, using time course data. To be considered
a regulated gene, a minimum of a 1.5-fold change across the life cycle with a P
value less than 0.05 was required. Forty-nine percent of the expressed genes were
found to be life cycle regulated. As a result, the 51% that did not pass the statistical
barrier were considered to be constitutively expressed. This group contained mainly
hypothetical proteins and housekeeping genes. Although one cannot suggest a par-
ticular function for these hypothetical proteins using this transcriptome data, one
can speculate about their importance as to the maintenance of the parasite through
its life cycle. Moreover, those with no strong human orthologs may serve as potential
drug targets.
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The 70-nt long oligonucleotide array study was confined to a high-resolution
analysis of the erythrocytic cell cycle. The mRNA was collected from a highly
synchronized in vitro culture (using the sorbitol treatment technique) of P. falciparum
strain HB3. Using a large-scale culturing technique (4.5-1 bioreactor), samples were
collected hourly for a 48-h period during the intraerythrocytic developmental cycle
(IDC) of P. falciparum.

Because experimental variability is high for glass slide arrays, expression values
were normalized throughout the IDC to a common pool control in a standard two-
color competitive hybridization (Eisen and Brown, 1999). This normalization pro-
duced a graph of expression induction that cannot be directly compared to absolute
values. The relative abundance of individual mRNAs varied continuously throughout
the IDC with a single maximum and a single minimum. Experiments were repro-
ducible. Pearson correlation (r) was greater than 0.90 for 68% and 0.75 for 86% of
the transcripts represented by multiple oligonucleotides with detectable expression
during the IDC. In contrast to the short oligonucleotide array, they found only 20%
of the genes with a relative constant expression profile. This discrepancy may be
due to differences in the criteria used.

CLusTER ANALYSIS VS. FAsT FOURIER TRANSFORM (FFT) ANALYSIS

Various methods of cluster analysis for genomewide expression data using statistical
algorithms can be used to organize and group genes according to similarities in gene
expression patterns. The main objective of expression profiling using the short oligo-
nucleotide array was to demonstrate that genes that performed or that are involved
in similar molecular processes have similar expression profiles. This makes it possible
to assign functions to thousands of uncharacterized proteins encoded by the P. falci-
parum genome and to establish participation in specific biochemical pathways. To
this end, genes whose expression was regulated were first grouped on the basis of
expression time through the life cycle. Groups were assigned using a robust k mean
algorithm. The cluster number, k = 15, was arbitrarily chosen as a reasonable estimate
for the biological conditions analyzed. A higher number of clusters (e.g. k = 20 or
30) tended to overfractionate genes with similar molecular processes, whereas lower
cluster numbers tended to assemble genes within molecular pathways that were not
biologically related. Despite the fact that most of the genes in these clusters were
hypothetical proteins (48 to 88%), a sufficient number of them have already been
described experimentally and/or sequence homologies, and were defined to have
specific cellular roles. For example, 13 of the 18 differentially expressed genes
described as proteasome endopeptidases were found in a cluster of 110 genes. Our
aim here is not to provide an exhaustive list of genes or descriptions of the different
clusters observed throughout the parasite life cycle, but rather to convey the general
idea that components in a cluster are both logical and nonrandom. By comparing
gene ontology rosters with gene cluster rosters, it was observed that genes in each
cluster shared particular functions by several orders of magnitude less than would be
predicted by chance, allowing us to conclude that gene expression profiling can
provide an insight into the gene’s cellular role. Genes from cluster 4, for example,
demonstrate upregulation expression at the merozoite and ring stages. Genes in this
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cluster exhibit gene ontology annotation, indicating their role in the establishment of
the parasite into the red blood cell (i.e., early transcribed membrane proteins, erythrocyte-
binding antigens, or genes involved in lipid and fatty acid metabolism). Hypothetical
proteins that belong to this cluster are expected to perform similar functions. Cluster
15 groups genes that were highly expressed at the late schizont stage as well as genes
involved in the invasion of the erythrocyte. Given that most of the genes considered
as candidates for blood-stage vaccines reside in cluster 15, it can be reasonably
assumed that the 90 hypothetical genes in this cluster could possibly be used in the
development of new vaccines. Using this cluster analysis, more than 1000 genes
within the malaria genome were given a hypothetical function and several numbers
of them were seen as potential new drug or vaccine candidates.

Despite the usefulness of hierarchical clustering for comparing sets of expression
data, Bozdech et al. used a different approach in the analysis of expression patterns.
They applied the simple Fourier analysis technique to calculate the apparent phase
and the frequency of expression for each gene during IDC. A score for each expres-
sion profile was then calculated based upon the period tightness in the periodicity
and the amplitude of the peak in order to create a phaseogram of the IDC transcrip-
tome of P. falciparum.

As with the short oligonucleotide array and the data set cluster analyses, the IDC
phaseogram showed a cascade of expression from the ring to the schizont stage. Using
this FFT method analysis, they demonstrated a programmed cascade of cellular pro-
cesses that ensured the completion of the P. falciparum IDC and described that func-
tionally related genes usually have common expression profiles (Figure 3.2).

AFFYMETRIX VS. LONG OLIGONUCLEOTIDE MICROARRAY

These two alternative formats for oligonucleotide-based microarray are commonly
utilized. Both techniques allow for effective and complete genome design. Yet despite
the use of dissimilar technologies, different falciparum strains (3D7 vs. HB3), varying
methods of synchronization (sorbitol vs. thermocycling incubation), and varying
sample time points throughout the erythrocytic cycle, the expression profiles were
almost identical (Figure 3.2). In addition, both studies came to the same conclusion:
genes with correlated temporal expression patterns often share similar functional roles.
To conclude, to further biological relevance of the data sets and design best potential
antimalarials, additional experiments and computational tools are needed.

BIOLOGICAL RELEVANCE OF EXPRESSION
PROFILING

The advantage of using gene expression profiling for the malaria parasite can be
enormous. In contrast to the analysis of human tissues, in which one often works
with nonhomogeneous samples and is dependent upon access to good clinical and
medical data, malaria parasites tend to be highly synchronized with homogeneous
samples. Therefore, with a good bioinformatics platform and data processing, it is
easier to correlate a change in gene expression to biological relevance. Although
cluster analysis together with the “guilt by association” principle constituted a
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significant advance for a better understanding of many hypothetical proteins in
Plasmodium, there is still a need to maximize the vast amount of gene expression
data sets to fully exploit the potential of high-throughput genomic approach and to
narrow the research for identifying new targets. To make the most of high-throughput
techniques, Zhou et al. (2004) used the high-density oligonucleotide array gene
expression data sets to describe and apply a novel data-mining algorithm: the
ontology-based pattern identification (OPI). The OPI systematically discovers the
expression patterns that best represent functionally related genes based on the prin-
ciple of guilt by association. The OPI uses the gene ontology (GO) consortium to
partially organize clusters. The OPI combined the malaria life cycle expression data
sets with the Plasmodium gene annotation to begin with some a priori knowledge
of the functional classification of a subset of genes and uses this functional infor-
mation to dynamically create a cluster maximized for their biological information
content. Using this technique, rather than the k mean algorithm, genes can be grouped
into multiple functional categories according to their expression profiles and their
association with multiple biological functions, a model closer to biological reality.
OPI analysis for the malaria life cycle expression profile yielded 320 significant
gene clusters representing 320 biological processes, cellular components, and molecular
functions and allowed the functional annotation of uncharacterized genes based on
existing ontology knowledge. Analogous methods have been published recently
with a similar idea: to challenge in silico biological interpretations of microarray
experiments, using the hierarchical nature of GO terms (Breitling et al., 2004a;
Breitling et al., 2004b; Lee et al., 2004; Toronen, 2004). This method was used to
successfully identify, within the malaria life cycle expression data sets (Le Roch
et al., 2003) and additional gametocytogenesis time courses, a cluster of 271 genes,
including 204 hypothetical genes, most likely to be involved in sexual differentiation
and, potentially, targets for transmission-blocking vaccine and drug development
(Young, 2004).

METABOLIC PATHWAY ANALYSIS

Although it is obvious that genes involved in multiprotein complexes or in similar
function should be coexpressed, it is less evident that genes involved in a single
metabolic pathway would cluster together. Indeed, genes involved in a single met-
abolic pathway may be posttranscriptionally regulated or specifically activated at
the protein level only when needed. To investigate possible coexpression of genes
involved in single metabolic pathways, Young et al. (2005) used the OPI for this
analysis. They found, for example, that the cluster “carbohydrate metabolism”
includes seven of the ten enzymes involved in the glycolysis with the exception of
the hexokinase (first step) aldolase, and pyruvate kinase (last step). Overall, this
result demonstrated that genes associated with similar biochemical pathways gen-
erally cluster together. One trying observation was that, in addition to genes involved
in glycolysis, this cluster possesses several ribosomal proteins that represent a
significant overlap between protein synthesis and carbohydrate metabolism.
Although the two processes could possibly be under similar transcriptional regula-
tion, this result may highlight the fact that the numbers of biological conditions
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examined thus far were insufficient to distinguish all molecular processes. This
overlap might be avoided by analyzing additional conditions and time points across
the malaria life cycle (e.g., several mosquito stages as well as liver stage). Although
OPI attempts to separate functionally unrelated coexpressed genes by clustering
according to biological knowledge, single hypothetical genes may be found in
multiple clusters that contain overlapping genes. This observation is somewhat
troublesome when attempting to predict functions of coclustering genes, but such
data are extremely valuable for generating hypotheses about gene networks and
multifunctional genes. This new computational tool will generate more complete
knowledge of the parasite’s metabolic pathways or metabolome and identify parasite-
specific enzymes that can serve for the identification of potential drug targets.

CHips FOR New DRruG

The genome, expression profiles, and functional characterization of hypothetical
genes using rational databases and computational queries have allowed a glimpse
of unique biochemical targets in P. falciparum with no human homologues and can
serve as the basis for the rational design of antimalarials. This eukaryotic parasite
contains a unique organelle, an apicoplast, a plastid homologous to chloroplasts
acquired by the process of endosymbiosis (Foth and McFadden, 2003). The apico-
plast of prokaryotic origin is semiautonomous. It possesses its own genome and
expression machinery in addition to numerous proteins encoded by nuclear genes.
The apicoplast has been implicated in various metabolic functions, including syn-
thesis of lipids, heme, and isoprenoids (Ralph et al., 2004). Inhibitions of plastid-
associated proteins have been shown to kill the parasite and demonstrate that the
apicoplast is an essential organelle. Computational analysis predicted that 550
nuclear proteins that targeted the plastid may potentially be excellent drug targets.
A large percentage of these plastid proteins have unknown functions; analysis of
the life cycle data, using computational algorithms such as the OPI, will allow a
functional characterization of a subset of them, thereby narrowing the research of
the best candidates for such drug discovery.

Proteases have also been shown to play an important role in the metabolism of
the erythrocytic cell cycle (Rosenthal, 2002). Some serve for the degradation of the
host cell hemoglobin in the food vacuole to produce amino acids essential for protein
synthesis. Inhibition of growth by protease inhibitors validates their importance for
the parasite development (Rosenthal et al., 2002). Ninety-two proteases have been
identified in the P. falciparum genome (Wu et al., 2003); variation in their expres-
sion profiles shows that they are involved in cellular processes in addition to hemo-
globin degradation. Association with OPI clusters will allow for the identification
of protease functions throughout the life cycle and to suggest protease inhibitors
with efficacy at all stages of the parasite’s life cycle.

Molecular mechanisms regulating cell proliferation and development in the
malaria parasite are still largely unknown. Cell cycle controls and signal transduction
pathways responsible for the developmental stage transitions have been difficult to
analyze thus far. Identification of putative homologues for a number of eukaryotic
cell cycle regulators such as cyclines, cycline-dependant kinases (CDKs), and
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components involved in transduction pathways (e.g., the Map kinase pathways have
been limited by the fact that the plasmodial sequence homologies, because of their
high A + T content, are usually weak). The importance of the cell cycle and life
cycle progression in the malaria parasite and the fact that inhibition by kinase
inhibitors kills the parasite validate the drug potential of these genes (Doerig, 2004).
Gene expression profiling and cluster analysis will help elucidate these complex
pathways and identify specific malaria targets.

Mechanisms controlling transcriptional or posttranscriptional activations are fun-
damental in eukaryotic cells. Previous analyses of gene expression in the malaria
parasite have shown that transcription was generally monocistronic and develop-
mentally regulated (Horrocks et al., 1998; Horrocks et al., 1996; Lanzer et al., 1993;
Scherf et al., 1998). This has been widely confirmed by microarray data sets, which
show that there is a good correlation in the timing between when a gene is expressed
and when its product is required by the cell (Bozdech, Llinas et al., 2003; Le Roch
et al., 2003). Multiple sequence alignments of protein domains using the profile-
hidden Markov model (HMM) obtained from transcriptional regulators, was able to
identify only 71 protein hits, a third of the transcriptional control elements expected
for the Plasmodium genome size based on comparisons with fungi, plants, and
animals (Coulson et al., 2004). On the contrary, protein motifs that have been shown
to have a role in regulating mRNA stability, localization and translation seem to be
prevalent in Plasmodium. Additional malaria sequences, whose functions have been
shown to alter chromatin structure, as well as the presence of adjacent cotranscrip-
tional genes (Le Roch et al., 2003) and the presence of chromosomal clusters of
coexpressed proteins (Florens et al., 2004) suggest a potential mechanism for gene
control in Plasmodium by chromatin structure. Analysis of the expression profiles
of these control elements across the life cycle shows a high degree of stage specificity.
Examination of these profiles through computational algorithms and/or OPI analysis
will highlight the association of coregulated genes to produce additional hypotheses.
Understanding this complex and apparently specific transcriptional regulation in the
malaria parasite will undoubtedly lead to the identification of vital regulator elements
that can be excellent potential drug candidates.

Lipid metabolism is also clearly of interest for drug design. P. falciparum intra-
erythrocytic growth is associated with a dramatic increase in total membrane content
resulting from parasite enzymatic activities. Parasite membranes are associated with
essential structure and specific processes (cell invasion, nutrient acquisition, traf-
ficking, modulation of the host membranes, or immune evasion against the host
immune system). Furthermore, it was recently shown that Plasmodium has unique
phospholipid metabolic pathways (Vial et al., 2003). The identification of fatty acid
biosynthesis, as well as the isoprenoid biosynthesis (in the apicoplast), confirmed
the uniqueness of lipid metabolism in the malaria parasite. In addition, drugs that
target the phosphatidylcholine biosynthesis inhibit parasite growth and validated this
metabolic pathway as a potential drug target (Wengelnik et al., 2002). Complete
elucidation of this metabolism will highlight possible new candidates.

Possibilities of discovering drugs against the malaria parasite are enormous.
Here, we have merely presented an overview of what is currently known and
researched. We have not discussed the potential inhibitors targeting the parasite’s
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transport mechanisms, the possible inhibitors of the invasion process, or the ubiquitin
regulation system pathway, largely underinvestigated and likely to have a central
role in the cell cycle progression. It should also be kept in mind that genes involved
in sexual development will likely be excellent transmission blocking targets. Expres-
sion profile analyses fetched substantial elucidation within these specific metabolic
pathways, but functional elucidation of a significant number of hypothetical proteins
will certainly bring innovative insights. There is no doubt that complete functional
characterization of specific pathways or enzymes crucial to parasite survival (and
not that of the host) will bring additional features to the rational design of new
chemotherapeutic agents.

THE USE OF BIOCHIPS FOR ELUCIDATING THE
MECHANISM OF DRUG ACTION

To this point, our analysis has focused on the identification of potential drug targets
using life cycle expression profiling and elucidation of gene function. A reverse
approach could provide additional insight. When micro-organisms or tissues are treated
with small molecules that inhibit basic cellular processes, genes in the inhibited
pathway may be transcriptionally up- or downregulated (Evans and Guy, 2004;
Gunther et al., 2003; Hatzixanthis et al., 2003; Reinoso-Martin et al., 2003;
Schuller et al., 2004). This observation leads to the evaluation of the global
transcriptional response to drug treatment, a useful tool for identifying the cellular
processes affected by the drug, as well as for finding new potential targets within
the affected pathway. Today, despite many years of investigation, the mechanisms
of action of the most effective antimalarials such as quinoline, antifolate, or
artemisinin-derivatived compounds remain uncertain. To identify genes implicated
in drug interactions and to study the drug’s mechanism of action, genomewide
microarray analyses were performed. To our knowledge, few analyses of transcrip-
tional changes under drug treatments have been performed. Ganesan et al. (2003)
analyzed the effect of the lethal antifolate WR99210 directed at the dihydrofolate
reductase-thymidylate synthase using the long oligonucleotide microarray. RNA
for de novo pyrimidine biosynthesis and folate biosynthesis pathway show only
subtitle changes (less than 25%) in dying cells. The antimalarial choline analog,
T4, a compound in preclinical studies, which targets the inhibition of the phos-
phatidylcholine biosynthesis, has been extensively investigated using the high-
density oligonucleotide array (Le Roch et al., 2006). Transcriptome analysis using
the hierarchical nature of GO terms reveals a significant induction (2- to 69-fold
changes) in stress-related genes and genes involved in sexual differentiation after
more than 30 h of incubation with synchronized parasites. No significant changes
were observed for the enzymes involved in the lipid biosynthesis pathway. An
arrest of the genes involved in the cell cycle progression was also detected, which
illustrates that the parasites can detect a chemical stress and stimulate sexual
development. This effect is not surprising; it has been demonstrated that gameto-
cytogenesis can be induced by stress. Indeed, gamete formation is a toll that
enables the parasite to escape the host’s death by a rapid transmission to the
Anopheles mosquito. To date, no other study has shown a significant drug response
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of the metabolic pathway, theoretically involved in a drug’s action. However, it
should be noted that the malaria parasite, as an obligate intracellular parasite, has
evolved in a buffered intracellular environment in which the evolutionary forces
may have induced the loss of genes involved in transcriptional feedback responses.
This may explain why Plasmodium has a tight and specific transcriptional regu-
lation across its life cycle, which may imply a certain susceptibility to specific
new antimetabolites.

VACCINE DEVELOPMENT

Over the last 20 years, extensive research has focused on vaccine development, but
so far the outlook for vaccines is less optimistic than for drug discovery. An effective
malaria vaccine must induce a protective immune response equivalent to or better
than that provided by natural immunity. Indeed, when an adult who acquired natural
immunity returns to his or her endemic area after a few months, he has usually lost
his protective immunity and become sick. For this reason, an effective malaria
vaccine requires new methods of maximizing the longevity of the protective immune
response. The “winning” vaccine will possess multiantigenic determinants with
multistage expression. The most promising antigens under evaluation for use in
vaccine development against the erythrocytic stage are targeted at the invasive step
of the malaria parasite (e.g., merozoite surface proteins, erythrocyte binding antigens,
and rhoptry proteins). Interestingly, all of these potential targets have similar expres-
sion profiles across the cell cycle and are extensively expressed at the late schizont
stage. Identification of hypothetical genes coexpressed with cell invasion genes are
great potential vaccine candidates. Approximately 100 to 200 hypothetical proteins
have been identified with such profiles (Bozdech, Llinas et al., 2003; Le Roch
et al., 2003).

The detection of single-feature polymorphism (SFP) within the Plasmodium
genome will certainly bring new insights for the identification of possible vaccine
candidates. Large-scale identification of SFPs is now achievable for complex
genomes (Borevitz et al., 2003). Genomic DNA hybridization to high-density
nucleotide arrays, together with new analytical tools, can detect an increase or
decrease of the hybridization intensity level for the 25-mer probes and identify
SFPs across the whole genome. This has been successfully tested for four isolates
of P. falciparum from geographically diverse areas (Honduras, Southeast Asia,
Sierra Leone, and Brazil) with the complete sequence of P. falciparum chromo-
some 2 (Volkman et al., 2002). Variations were mostly concentrated in subtelom-
eric regions of the chromosome end, a region known to be encoded by multigene
families involved in immune evasion. Membrane-associated proteins were found
to be responsible for more than 85% of all detected polymorphisms. A number of
hypothetical proteins were also detected as highly polymorphic, suggesting that
these genes may be under genetic selection pressures similar to those observed
with antigenic and membrane protein genes. This study led to the conclusion that
a whole genome analysis of malaria strains will identify new and efficient vaccine
candidates under genetic selection pressures across all stages of the malaria life
cycle (Kidgell, 2006).
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CONCLUSIONS

Functional genomic analyses, using high-throughput studies of the whole genome
have generated huge data sets. Complete reference genome sequences for Plasmo-
dium species, genome annotations, transcriptional analysis, steady-state levels using
microarray technologies, and cluster analysis of coexpressed genes are part of these
and offer a huge advantage in understanding the parasite biology. But efficient an—
tiparasitic discoveries need to integrate the relationship between transcriptome and
proteome. Analyses of protein levels across the malaria life cycle have also been
highly informative (Florens et al., 2002; Lasonder et al., 2002); analysis of the
protein—protein interactions will assist in the construction of the Plasmodium’s
interactome and unquestionably yield fundamental biological information. Polymor-
phic diversities and comparative genomic analyses will certainly provide additional
informative data. All these data need to be stored, organized, analyzed using the
latest computational tools, and be widely accessible online. The Plasmodium genome
database PlasmoDB (http://PlasmoDB.org) provides the latest and most comprehen-
sive collection of Plasmodium-related data sets. Once stored, data can be integrated
and linked in relational databases; depending upon the relationship between multiple
data types, integrated queries can then be submitted for “in silico research” in order
to filter and structure new hypotheses. These revolutionary technologies will
undoubtedly bring success to antiparasitic discovery although it should be borne in
mind that experimental and clinical validations will always be required.
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INTRODUCTION

Emerging comprehensive technologies for examining genes, proteins, and metabo-
lites have led to fundamental changes in our approach to assessing health and
identifying disease biomarkers. Indeed, these analytical platforms are now widely

* This chapter has been adapted from Mutch et al., 2004 [52], and Mansourian et al., 2004 [56].
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GENES PROTEINS METABOLITES ORGANISM
INFORMATION ————— > FUNCTION ———* HEALTH

FIGURE 4.1 Integrated metabolism can be defined as the relationships between genes,
proteins, and metabolites, which can ultimately define the health status of the organism.

used by both the pharmaceutical and nutritional communities alike. Although the
approaches differ, i.e., pharmaceuticals aim to specifically target a dysfunctional
gene or protein to treat a disease whereas nutrition aims to predominantly prevent
the onset of disease, both fields require a profound understanding of the disease
state and its development in order to maintain and/or improve health status. Each
analytical platform yields requisite and complementary information implicit in
unraveling the mechanisms underlying metabolic disorders. However, despite the
obvious relationship between genes, proteins, and metabolites (see Figure 4.1), few
examples exist in which these multiple platforms have been integrated at a compre-
hensive level [1]. Rather, most scientists have concentrated on the field of functional
genomics (i.e., those active genes in a biological condition). The sequencing of
several genomes, such as human [2,3], mouse [4,5], and rat [6], have provided a
complete molecular catalogue that can be used to assay gene function. This knowl-
edge has been exploited with the development of species-specific microarrays com-
posed of all genetic elements present in the aforementioned genomes. Furthermore,
the maturing field of gene expression analysis has benefited from the standardization
of protocols and data presentation stemming from such initiatives as minimum
information about a microarray experiment (MIAME) [7] and Gene Expression
Omnibus (GEO) [8,9]. Indeed, the intense perseverance to accurately analyze and
interpret the enormous data sets stemming from microarray studies has demonstrated
that the field of functional genomics is by far the most characterized and actively
utilized global technology on the market.

Despite the tremendous advances in data analysis and supporting bioinformatic
software used with the numerous microarray studies performed to date, a critical
question remains: Can genomics identify suitable biomarkers to assess both indi-
vidual and population health status? Encouragingly, the answer appears to be yes
in that microarrays, when complemented with additional technologies, can identify
genes responsible for a disease state. For example, microarrays have been used to
explore the gene expression profile of diseases such as cancer [10], ulcerative colitis
[11], Alzheimer’s [12,13], celiac [14], etc.; however, these studies have not found
that a single dysfunctional gene contributes to the onset of disease. In other words,
complex gene networks have been attributed to these disease states. In contrast, such
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diseases as sitosterolemia and Tangier’s disease (both characterized by abnormal
lipid transport) have been correlated to mutations in members of the ATP-binding
cassette (ABC) family of transporters. Coupling microarray technology, bioinfor-
matics, classical biochemical studies, and genetic mapping revealed that mutations
in Abcg5/Abcg8 [15] and Abcal [16] are implicated in the development of sitoster-
olemia and Tangier’s disease, respectively. However, based on the aforementioned
examples, it is difficult to assume a priori that a single genetic element underlies a
given disease phenotype. Therefore, microarrays provide a complete assessment of
all genetic elements in a given species and offers an attractive approach to unravel
those molecular mechanisms contributing to a specific disease state.

ABC proteins are the largest known family of transmembrane transporters [17]
and are involved in the directional transport of a wide variety of substrates, including
sugars, amino acids, glycans, sterols, phospholipids, peptides, proteins, toxins, anti-
biotics, and xenobiotics across biological membranes [18]. This protein family,
comprising approximately 50 transporters in higher mammals, has been further
subdivided based on structural similarities and domain sequence homologies into
seven subfamilies, ABCA to ABCG [19]. Furthermore, the high degree of conser-
vation between the ABC proteins of different species reinforces their functional
importance in the transport of molecular compounds. The structure, molecular orga-
nization both within and between species, the known functions of ABC transporters,
and how they may contribute to the onset of disease have been thoroughly described
in recent reviews [17,20,21].

To fully characterize the biological functions of this large transporter family
and, ultimately, their contribution to the onset of disease states, it is critically
important to ascertain where in the body these transporters are expressed. Langmann
and colleagues described a whole-body gene transcript characterization of all cur-
rently known human ABC transporters, using quantitative real-time PCR [22]. The
authors analyzed and revealed the expression profiles of these genes in 20 different
tissues and concluded that tissues involved in secretory function (adrenal gland),
metabolic function (liver), barrier function (small intestine), and development
(uterus, testis) had high levels of ABC transporter transcripts. However, the authors
did not divide the small intestine into its functionally distinct regions (i.e., duodenum,
jejunum, and ileum). It has previously been reported that factors such as disease,
pH, motility, bile, and the microbial community vary along the length of the
gastrointestinal tract (GIT) and influence drug, and therefore presumably nutrient,
bioavailability [23]. Furthermore, it can be assumed that these factors coordinate
gut function by mediating gene expression. Indeed, this notion is supported by the
findings of a study suggesting that the microbial community coordinates only a
subset of GIT gene expression (i.e., 10x more genes differ between GIT regions
than within any given region examined with and without a microbiota) [24]. There-
fore, this would suggest that each of the aforementioned factors contribute to the
regional expression profiles, and eventually the regional functions, in the anatomi-
cally distinct organs of the digestive tract, as demonstrated by several laboratories
[25-28]. As ABC proteins are highly involved in the transport of nutrients and drug
compounds alike, we propose that their regional expression patterns along the intes-
tinal tract are a prerequisite to deciphering their functions in this organ.
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In this regard, the present chapter illustrates both the thoroughness and innate
sensitivity of microarrays by examining the regional variations of the critically
important ABC transporter family along the intestinal tract. This protein family is
implicated in the transport of both pharmaceutical and nutritional compounds and
certain members have been, as already described briefly, correlated with the onset
of metabolic disorders. However, prior to the interpretation of microarray data sets,
one must assure that the analysis has been performed with an appropriate biostatis-
tical model. Therefore, this chapter aims to describe the development of a Global
Error Assessment (GEA) model for the identification of differentially expressed
genes from microarray data sets and its use in the focused analysis of ABC trans-
porter expression along the intestinal tract.

GLOBAL ERROR ASSESSMENT (GEA) MODEL

Many of the first experiments to benefit from the global view of microarrays
utilized a simple fold-change (FC) cutoff for the selection of differentially
expressed genes. However, evidence now demonstrates that such a selection
method makes several assumptions that are out of context with the rest of the
experimental and biological data at hand [29]. As a result, the maturing biostatis-
tical community is continually motivated to develop methods permitting the power
of this comprehensive platform to be exploited [30-40]. However, the new statis-
tical models, annotation tools, and exploration into the many facets of microarray
technology (e.g., number of replicates, pooling, etc.) published on a monthly basis
highlight the fact that there is currently no universal method being applied for the
analysis of these enormous data sets.

The drive to develop statistical models for the analysis of microarray experiments
stems primarily from a single common factor across the majority of studies: a low
number of experimental replicates (k). As the use of microarrays is relatively resource
intensive for most laboratories, a low k is the experimental norm. A small number
of experimental replicates decrease the power of standard statistical tests (e.g.,
Student’s #-test, classical ANOVA, etc.) to differentiate between regulated and non-
regulated genes by producing an inaccurate estimate of variance [41,42]. Further-
more, even in the case of achieving reasonable numbers of replicates, there is a
continuous desire to derive greater statistical power from the inherent multidimen-
sional, yet simultaneous, measurements characteristic of microarrays. Increasing
support for this approach has appeared in the literature [39,43-49]. These
publications call for the need to “borrow statistical power” through pooling replicates
from different genes together during significance testing. In our present research,
we extended the concept of borrowing statistical power for estimating noise variance
(as previously described by Mutch et al. [29,50]]) and applied this to an ANOVA-
based regulation significance test. This model, termed the Global Error Assessment
(GEA) model, directly generates a robust estimate of the mean squared error (MSE)
or, equivalently, of the standard deviation by estimating a localized error from the
measurement information of several hundred neighboring genes with similar expres-
sion levels. The robust MSE of this group of neighboring genes is a highly powerful
estimate of the denominator of the F statistic used in standard statistical tests. It is
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this principal difference between GEA and other ANOVA-based tests that enable
GEA to more powerfully determine differentially expressed genes.

THe GEA Prot1oCOL

The principles underlying GEA methodology resemble those of a typical analysis
of variance; however, this method calculates a robust estimation of the within
treatment variability. Robustness is achieved by two means: (1) averaging within
treatment variability of genes that are expressed at a similar level (i.e., neighboring
genes) and (2) using estimates of the average variability instead of classical ones.
For this to be accomplished, the following protocol was implemented:

1. Calculate the mean normalized average difference intensity (ADI) from
MASS.0%, the MSA and the MSE for each gene on the microarray plat-
form, where MSE is defined as the standard deviation (SD) of a gene
within a single condition and MSA as the SD of a gene between n
conditions.

2. Sort genes by ascending mean ADI and group them into bins of 200
consecutive genes (corresponding to approximately 100 bins for an
Affymetrix GeneChip). Various bin sizes were examined in order to deter-
mine how bin size would affect the GEA model. Bin sizes of 25, 50, 100,
and 400 genes were examined, as shown in Figure 4.2. The relationship
between variability and expression level remained stable across the range
of bin sizes, indicating that small changes in bin size do not have major
effects. A bin size of 200 appeared to be optimal because it provides an
accurate local estimate of MSE while simultaneously approaching a
smoothed trend line.

3. The MSE of the 200 genes in each bin are summarized using a robust
estimation:

MSEg s = Median; _; ,0((MSE) * dfg/y " (0.5,dfy),

where 7! is the inverse of the one-tailed probability of the chi-squared
distribution.
4. For each gene, compute the test statistic:

F = MSA/MSEy .0

which follows Snedecor’s F distribution with degrees of freedom df, =n — 1
and dff gy, = 200%(nk — n).

5. Select genes for which MSA > Limitg, o = MSEggu™ F7' (1 — o, dfy,
dfg ropust)s Where . is the significance level.

* Note that the GEA methodology does not need to be used exclusively with MASS.0 software; this
model can be applied to the normalized data derived from any analytical platform.
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FIGURE 4.2 Bin sizes of 25 (A), 50 (B), 100 (C), and 400 (D) genes are compared with a bin
of 200 genes, where the x-axis is the mean normalized ADI per bin and the y-axis the robust
standard deviation per bin (i.e., the square root of MSEg,,). (Adapted from Mansourian, R.,
Mutch, D.M., Antille, N., Aubert, J., Fogel, P., Le Goff, J.M., Moulin, J., Petrov, A., Rytz,
A., Voegel, J.J., Roberts, M.A. The global error assessment (GEA) model for the selection of
differentially expressed genes in microarray data. Bioinformatics 20(16): 2726-2737, 2004.)

CoMPARING GEA wiTH THE CLASSICAL AND
PermuTtaTIONAL ANOVA TESTS

Using a well-defined in vitro system comprised of nine replicates for each treatment,
a comparison between GEA and a classical ANOVA was performed with the goal
of demonstrating the enhanced ability of GEA to minimize the number of false
positives and identify those genes that are truly differentially regulated. Figure 4.3
illustrates both the characteristic “data cloud” to be expected with a microarray
platform and the increased sensitivity of GEA vs. the classical ANOVA to identify
true positives around this data cloud. If one simply plots the expression (in log scale)
of each gene on the microarray platform for two control samples, one can quickly
see that variability is a function of absolute expression, i.e., as indicated by the pear-
shaped form of the gray data cloud (Figure 4.3A). When plotting a control sample
(x-axis) vs. a treatment sample (y-axis), the great majority of genes still lie within
the data cloud; however, genes that are differentially regulated by the treatment
diffuse out of the data cloud (open black squares in Figure 4.3B). By choosing a
highly confident GEA p-value the question can then be asked, at what confidence
level would the classical technique be required to achieve full concordance in the
gene selection. In this example, a highly significant, but arbitrary, p-value of 1e¥
was chosen and led to the selection of 531 genes. Black closed squares overlaid on
the variability cloud identify these 531 genes and demonstrate that as absolute
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FIGURE 4.3 Comparing GEA and the classical ANOVA. (A) Defining the relationship
between absolute gene expression and variability demonstrates the heterogeneous relationship
between the two, as shown when plotting control 1 vs. control 2. (B) Plotting control 1 vs.
treatment reveals those genes modulated by the treatment (indicated by black dots). (C) GEA
attributes significance to 531 genes (identified in black dots, p < 1e3°) that truly differentiate
themselves from the underlying data cloud (in gray). (D) In contrast, the classical ANOVA
must be less stringent (p < .02) in order to select the same genes as GEA, resulting in many
false positives (i.e., those genes clearly lying within the underlying data cloud). (Adapted
from Mansourian, R., Mutch, D.M., Antille, N., Aubert, J., Fogel, P., Le Goff, J.M., Moulin,
J., Petrov, A., Rytz, A., Voegel, J.J., Roberts, M.A. The global error assessment (GEA) model
for the selection of differentially expressed genes in microarray data. Bioinformatics. 20(16):
2726-2737, 2004.)
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expression increases, GEA is able to confidently select genes closer to the contour
of the variability cloud (Figure 4.3C). In order to achieve concordance (523 out of
531 genes), the classical ANOVA must relax to a p-value of .02 or greater. Black
closed squares in Figure 4.3D correspond to 3358 genes selected by classical
ANOVA with p > .02, almost all of which overlap with the underlying variability
cloud. It can be concluded from this analysis that GEA does in fact derive increased
statistical power from the binned MSE.

A similar comparison was performed between GEA and a permutational analog
of ANOVA [51]. The benefit of utilizing this method lies in the attempt to estimate
the actual distribution of the test statistic (F) through the use of thousands of
computer permutations. Although more robust than the classical ANOVA, it still
suffers from a lack of power under conditions of low k. Results from this comparison
indicated that the permutational ANOVA performed better than its classical coun-
terpart; however, for concordance to be achieved between the two methods, the
permutational ANOVA must relax to a p-value of .003 or greater. This further
demonstrates the enhanced statistical power of GEA to discriminate between true
and false positives and, ultimately, yield biological information that can be accurately
and confidently interpreted.

REGIONAL VARIATIONS IN ABC TRANSPORTER
EXPRESSION IN THE INTESTINE

In order to elucidate the expression profiles of ABC transporters along the anterior—
posterior (A—P) axis of the intestinal tract, murine RNA samples corresponding to
the duodenum, jejunum, ileum, and colon were hybridized to Affymetrix Mu74v2
GeneChips [52]. To date, 43 of 49 murine ABC transporters have been annotated
by Affymetrix and are located across the three GeneChips. ABC transporters not yet
annotated or present on the GeneChips are Abca8, Abcal2, Abcal3, Abcb5, Abcbs,
Abcc4, and Abccll.

It is interesting to note that, at the mRNA level, most of the ABC transporters
are not differentially expressed along the intestinal tract. Indeed, only eight trans-
porters were identified as differentially expressed in the gut by both the classical
ANOVA and GEA (o < 0.01 for both statistical tests). Differentially expressed
transporters were Abcb2, Abcb3, Abcb9, Abcc3, Abcc6, Abedl, AbcgS, and Abcg8.
When visualizing all ABC transporters on a bivariate plot comparing the small
intestine (duodenum, jejunum, and ileum values averaged to obtain a single value)
to the colon, where the mean of the natural logarithm of the fold change (M) is
plotted against the mean expression value (A), one can immediately observe that
the great majority of these transporters (identified by gray dots) lie within the data
cloud (Figure 4.4). Additionally, estimation of a lowess regression function predict-
ing the local mean standard deviation demonstrates that the majority of these trans-
porters are not differentially expressed. Furthermore, as the x-axis is representative
of absolute expression levels, it is clear that ABC transporters are present in the
intestinal tract at various levels, from lowly or not at all expressed up to highly
expressed. The aforementioned eight differentially expressed ABC transporters are
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FIGURE 4.4 Plotting absolute average intensity (absolute expression) vs. fold change iden-
tifies differentially regulated genes between the small intestine and colon. Lowess curves
indicated the two- and three-times standard deviations. Differentially expressed ABC trans-
porters are indicated. (Adapted from Mutch, D.M., Anderle, P., Fiaux, M., Mansourian, R.,
Vidal, K., Wahli, W., Williamson, G., Roberts, M.A. Regional variations in ABC transporter
expression along the mouse intestinal tract. Physiol Genomics 17(1): 11-20, 2004.)

indicated and their degree of differential expression placed in context with all genetic
elements present on the GeneChips.

VALIDATION 1: GEA ANALYSIS OF MICROARRAY
DATA VS. REAL-TIME PCR

Eight ABC transporters were validated using both TagMan RT-PCR assays on
demand and assays by design primer/probe sets (Applied Biosystems, Foster City,
CA) [52]. The transporters selected for validation displayed one of the following
trends: (1) no change along the intestinal tract (Abcal, Abccl, Abcc6, Abcd3),
(2) an increase along the intestinal tract (Abcbla), or (3) a decrease along the
intestinal tract (Abcdl, Abcg5, Abcg8). Overall, the concordance between the two
techniques indicated that trends seen in microarray data could also be seen with
RT-PCR; for example, an increase in gene expression along the A—P axis could
be seen with both techniques (Table 4.1). Because of the greater dynamic range
attainable with RT-PCR, this technique is more often used as a means to confirm
trends in microarray data rather than duplicate the fold changes seen with chip
experiments [50,53,54]. Therefore, it was not surprising to see that discrepancies
in the two data sets arose when examining the statistical significance of fold
changes (for both RT-PCR and microarray data) in gene expression levels of the
jejunum, ileum, and colon in relation to the duodenum. Microarray data indicated
that many of the gene changes observed were not found to be statistically different
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TABLE 4.1
Comparative Analysis of Gene Expression Levels
Microarray Real-Time PCR

Gene Jejunum lleum Colon Jejunum lleum Colon
Abcal 1.21 1.04 1.51 3.43% 3.78° 3.22°
Abcbla 1.52 3.29° 6.36° 1.66 5.68° 7.02°
Abccl 1.00 1.42 2.01 1.01 3.56° 4.86°
Abcc6 4.71 1.08 2.61 3.83° 2.58° 1.58
Abcdl 2.83b 2.37 7.46° 2.31° 1.48° 2.14°
Abcd3 1.28 1.16 1.03 1.64 1.93b 2.38°
Abcg5 1.63% 1.17 21.33b 1.76 2.44 45.41°
Abcg8 2.27° 1.08 15.96° 2.30° 2.19° 60.55°

Note: Jejunum, ileum, and colon values are compared to the duodenum, which has been arbitrarily
set to 1 (and therefore not depicted). A positive value represents an increase in mRNA levels, and a
negative value represents a decrease. Significance for microarray results was identified by pairwise
GEA analyses. Significance for RT-PCR results was determined using a two-tailed, homoscedastic
Student’s #-test.

ap < 0.01.
bp < 0.001.

Source: Data from Mutch, D.M., Anderle, P., Fiaux, M., Mansourian, R., Vidal, K., Wahli, W.,
Williamson, G., Roberts, M.A. Regional variations in ABC transporter expression along the mouse
intestinal tract. Physiol Genomics 17(1): 11-20, 2004.

(00 < 0.01), even in circumstances in which an apparent fold change of 4.7 (Abcc6
in the jejunum) is seen. In contrast, RT-PCR was able to identify additional
statistically significant differences in situations in which the microarray was not,
such as the 3.8 fold change observed for Abcc6 in the jejunum. Findings such as
these were expected because of the inherent differences in sensitivities between
the two methods [55]. Indeed, identifying 100% of the truly differentially regulated
genes in a microarray experiment is still complicated by lowly expressed genes
(i.e., corresponding to many transcription factors and receptors), which may be
highly variable within or between biological treatments [48]. The development of
robust statistical methods, such as GEA, aim to dissociate those lowly expressed
genes that are variable within a treatment (i.e., technical variability) from those
that are variable between experimental conditions (i.e., biological variability)
[48,56]. The present study demonstrated that the GEA methodology has increased
sensitivity in comparison to the classical ANOVA for gene selection. Whereas
GEA identified Abcbla and Abcdl as differentially expressed, the classical
ANOVA failed to assign statistical significance to the changes in expression. RT-
PCR confirmed that these genes were indeed differentially expressed in the gut,
reinforcing the validity of the finding that the GEA method has increased sensi-
tivity for the detection of low-abundance genes.
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FIGURE 4.5 Comparing expression profiles for Abcd1 (A) and Abcg5 (B) along the intestinal
tract, as assayed by cDNA (gray bars) and oligonucleotide microarrays (black line).

VALIDATION 2: GEA ANALYSIS OF MICROARRAY
DATA VS. AN IN SILICO cDNA DATA SET

An alternative means to validate the Affymetrix data set was through an in silico
comparison with the publicly available cDNA data set produced by Bates and col-
leagues [27]. As previously described in the literature, the hybridization specificity for
target transcripts and the platform comparisons between spotted cDNA and oligonu-
cleotide microarrays are still being explored [57,58]; however, enough similarities
remain to make the comparison useful. Despite the different strain of mouse used by
Bates and colleagues, their mice, consisting of only male animals, were sacrificed at
a similar age. It should be further noted that the GEM1 cDNA platform (Incyte
Genomics) comprised approximately 8000 sequence-verified expression sequence tags
(ESTs), corresponding to roughly 25% of the mouse genome [4,5].

The cDNA data set contained expression information for 16 of the 49 ABC
transporters. Of the eight ABC transporters identified in our data set as differentially
regulated along the gut, only two were present in the cDNA data set: Abcdl and
Abcg5. Figure 4.5 demonstrates that despite the experimental differences, both cDNA
and Affymetrix platforms indicate that Abcg5 is expressed at significantly lower levels
in the colon and similarly expressed in the duodenum, jejunum, and ileum. This
finding is in agreement with RT-PCR data (Table 4.1). Expression-profiling trends
revealed that Abcd1 is most highly expressed in the jejunum and most lowly expressed
in the colon (Figure 4.5), as confirmed by RT-PCR. The remaining 14 ABC trans-
porters found in the cDNA data set were not differentially expressed along the
intestinal tract. This agrees with our high-density oligonucleotide results and further
specifies that the members of this family are expressed at various levels in the intestine
and that most of these transporters are not differentially expressed.

VALIDATION 3: GEA ANALYSIS OF MICROARRAY
DATA VS. PROTEIN EXPRESSION

Inasmuch as agreement between different gene expression platforms reinforces the
validity of microarray data, it is only through comparisons with proteins and metab-
olites that one can achieve the greatest degree of confidence with gene expression
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data. However, analyzing proteins and metabolites at a comprehensive level is not
well established and faces many challenges from the complexity of biological sys-
tems. Previous attempts to correlate genes expression with protein profiles have
yielded poor results [59,60]. Nevertheless, one of the differentially regulated ABC
transporters was qualitatively examined by immunohistochemistry, with the goal of
correlating gene and protein expression. Immunohistochemical staining for Abcc3
revealed a similar cellular pattern of expression along the intestinal tract; i.e., protein
location is restricted to the villi of the intestine, as no staining was present in the
crypts of Lieberkiihn (data not shown). In all segments of the intestine, Abcc3 is
expressed basolaterally in enterocytes. Abcc3 mRNA is most highly expressed in
the colon and to a lesser extent in the various regions of the small intestine (data
not shown). Although not quantitative, the high degree of protein staining in the
colon visually concords with the mRNA expression profile; however, this qualitative
statement is based on the lower exposure time required to capture protein staining
in the colon (0.48 sec) compared to the small intestine (between 1.04 and 1.44 sec).

CONCLUSION

Microarray technology enables the simultaneous study of thousands of unique
genetic elements and provides insight into the coordinated control of many genes
[50]. Furthermore, the comprehensive nature of transcriptomic platforms provides
an ideal tool for deciphering the potentially complex gene networks underlying
physiological functions. This platform, in conjunction with classical experimental
approaches, can yield a powerful tool for both the identification of disease biomar-
kers and the unraveling of molecular mechanisms underlying biological function.
The example described in this chapter outlined the principal findings of a recent
study in which the expression profiles of ABC transporters along the murine intes-
tinal tract were explored. Previous work has illustrated that members of this trans-
porter family, Abcal and Abcg5/g8, are implicated in the onset of Tangier’s disease
and sitosterolemia, respectively. Although the biological significance of a number
of ABC transporters remains to be discovered, several transporters have been char-
acterized and reported to regulate the transport of numerous medicinal and nutritional
compounds. In the GIT, these transporters have a potential role in regulating the
bioavailability of bioactive compounds. Therefore, creating a catalogue of ABC
transporter expression profiles along the intestinal tract will provide the pharmaceu-
tical community information to exploit the mechanisms regulating the absorption of
orally consumed compounds.

Few studies have examined the expression profiles of ABC transporters in the
intestine in order to elucidate their region-specific functions. Studies by Rost et al.,
Stephens et al., and Chianale et al. demonstrate the importance of treating the small
intestine as functionally distinct regions rather than as a single entity, as differences
in mRNA profiles, protein expression, and ATP-transporter function were reported
[28,61,62]. Of those ABC transporters identified as differentially expressed in the
present study, Abcb9, Abcc6, and Abcdl have not been previously examined in the
intestine and their functions in this organ are currently unknown. Nevertheless,
current information concerning their functions permits some speculation regarding
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their expression profiles in the intestine. For example, Abcb9 (transporter associated
with antigen processing-like; TAPL) is closely related to the TAP2 gene and has a
similar intestinal expression pattern as the TAP1/TAP2 complex (described in more
detail later). This lysosomal protein may play a role in the translocation of peptides
from the cytosol into the lysosome for degradation [63,64]. Abcc6 is a confirmed
member of the MRP family of drug efflux pumps and has been demonstrated to
transport glutathione conjugates, thereby having a potential role in the regulation of
xenobiotic bioavailability in the intestine [65]. Finally, Abcdl is a peroxisomal half
transporter that is mutated in adrenoleukodystrophy, which is characterized by a
reduced peroxisomal very long chain fatty acid (VLCFA) B-oxidation [17]. As the
primary site for dietary fatty acid absorption occurs in the upper intestine, the higher
Abcdl expression levels in the duodenum and jejunum suggest that this peroxisomal
transporter is actively involved in the metabolism of dietary VLCFA. Although the
definitive functions of intestinal Abcb9, Abcc6, and Abcdl have yet to be ascribed,
two pairs of half transporters, Abcb2/Abcb3 (TAP1/TAP2) and Abcg5/Abcg8, have
previously been studied in the intestine and have been implicated in immune
responses and sterol transport, respectively.

TAP1 and TAP2 (transporters associated with antigen presentation/processing)
have been found to preferentially transport 9 to 12 amino acid peptides into the lumen
of the endoplasmic reticulum and load these peptides onto major histocompatibility
complex class 1 molecules, which are critical to an immune response [66,67].

Abcg5 and Abcg8, which are associated with sitosterolemia and the selective
transport of sterol compounds [15,68], are highly expressed in the small intestine
and found at much lower levels in the colon. This suggests that the selection process
for the efflux of plant sterols vs. cholesterol from enterocytes back to the intestinal
lumen is restricted to the small intestine and would not occur to a significant extent
in the large intestine. The relative stability of mRNA expression in the duodenum,
jejunum, and ileum would suggest that this active selection process could occur
equivalently along the entire length of the small intestine; however, this will need
to be examined via functional transport studies.

Abcc3 protein analysis provided additional information that is important in
understanding the role of this differentially expressed transporter in the GIT. As
indicated above, Rost and colleagues found that Abcc3 (MRP3) was most highly
expressed in the colon of the rat intestine [28]. Our findings indicate that MRP3 is
also highly expressed in the murine colon at both the mRNA and protein levels.
Furthermore, the similar cellular location (basolateral in enterocytes) found between
the mouse and rat further supports the notion of a high degree of conservation for
ABC transporters among eukaryotes. This suggests that MRP3 may have a similar
role in the ATP-dependent transport of 17B-glucuronosyl estradiol, glucuronsosyl
bilirubin, monovalent bile salts (taurocholate and glycocholate), and sulfated bile
salts (i.e., taurochenodeoxycholate-3-sulfate, taurolithocholate-3-sulfate) from the
enterocyte to the blood in all higher mammals.

In conclusion, GEA methodology was able to identify significant differences in
the expression levels of ABC transporters along the intestinal tract. As revealed through
a complementary analysis by real-time PCR, GEA attributed significance to regional
variations in expression where the classical ANOVA did not. Concordance with an
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alternate expression-profiling platform reinforces the high degree of conservation
for ABC transporters among eukaryotes. Furthermore, with regard to Abcc3, con-
cordance between gene and protein profiles suggested that mRNA is a suitable means
to assay function. Therefore, in addition to demonstrating the enhanced statistical
power of GEA, this study revealed that transporters implicated in regulating the
bioavailability of bioactive compounds are differentially regulated along the intes-
tinal tract, thereby providing the scientific community with specific targets to mod-
ulate the absorption of medicinal and nutritional compounds alike. Comparing ABC
transporter expression and function in various disease states (e.g., inflammatory
bowel disease and cholestasis) to the steady state described in this chapter may yield
molecular targets that will permit disease-associated complications, such as nutrient
malabsorption and inflammation, to be addressed.
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INTRODUCTION

Biological responses to xenobiotics are frequently manifest at the transcriptional
level. Hence, differential gene expression studies are highly applicable to both pure
and applied toxicology. The sequencing of the human genome and in particular the
sequencing of genomes of laboratory species along with the development of DNA
microarrays has allowed for more comprehensive and rapid investigations of gene
expression relevant to toxicology. Increasing knowledge of gene expression
responses, gained using DNA microarray technology, also brings about the ability
to screen chemicals and drugs for toxic potential, because it has been recognized
that such responses can be predictive of toxicity by revealing early biological
responses to xenobiotics [1,2]. Gene expression also indicates at the molecular-level
changes to the biology of a cell or organ that may lead to or constitute the likely
basis of a toxicity [3,4].

The term toxicogenomics has been applied to the use of genomics and transcrip-
tional profiling in toxicology [3]. In the academic sector, toxicogenomics approaches
are being used to understand toxic mechanisms of environmental chemicals and
drugs [5-8]. In the chemical industry, these approaches are being used in screening
for toxicity and for hazard identification [9,10]. The pharmaceutical sector has
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invested in toxicogenomics for the purposes of drug candidate selection (on the basis
of predictive screening for toxicity), hazard identification, and risk assessment
[11-14].

A variety of gene array platforms from commercial and in-house sources have
been used, including nylon cDNA macroarrays [15-17], glass-based cDNA microar-
rays [18-21], and oligonucleotide chips [22,23]. Whole genome microarrays have
found good use for gene hunting and hypothesis generation. More focused microar-
rays, particularly spotted arrays, are by nature better for screening purposes because
of lower cost and lower data content.

Focused microarrays have been developed in several ways. In the early days of
toxicogenomics, arrays were assembled from genes chosen from the literature as
being relevant to specific toxic mechanisms (Clontechniques Vol X VI, January 2001,
24,25). For example, perturbations of biological processes such as proliferation and
apoptosis are considered to be critical in chemical carcinogenesis [26-28]. Hence,
genes implicated in these processes can be used to predict or examine carcinogenic
responses. Stress response genes indicate exposure to xenobiotics and to some extent
their expression can predict the outcome [29-33]. Changes in expression of genes
for several enzyme families can be interpreted as predictive or indicative of toxicity.
Induction of genes for drug-metabolizing enzymes and drug transporters gives a
good indication of potential ADME characteristics [34]. Genes have additionally
been selected empirically from experiments using well-characterized toxins. These
have generally used gene-hunting techniques such as differential display [35,36] or
suppression subtraction hybridization [37,38] but have also used whole genome
arrays [34].

In the pharmaceutical industry, the interest in microarrays for toxicology has
been driven mainly by the desire to better screen candidate drugs for their toxicity
[14]. There are huge benefits to be made from resolving toxicity issues early in the
drug development process both from the perspective of making cost savings and
from accelerating the development program. Typically, microarrays are used in short-
term in vitro or in vivo studies of drugs. These studies provide information for
making decisions on progressing a drug through the development process. Drugs
from the same compound series may be ranked for toxic potency if they manifest
the same toxicity. Alternatively candidates may be selected or deselected on the
basis of prediction of a potential toxicity.

Applying microarrays in toxicology has not been simple. Changes in gene
transcription represent a part of a dynamic response to xenobiotics; however, it is
not practicable to monitor a complete time-course of the response, particularly with
in vivo studies. In spite of this, the microarray approach has proven to be effective
in identifying changes in gene expression associated with toxicity [19,21-23,39].
Following more in-depth study, defined links between specific transcriptional
responses and subsequent toxicity will be determined, but for the time being it must
be recognized that much of these data are not immediately interpretable.

The implementation of more screens for predicting toxicity in early phases of
drug development has led to much debate about their relevance to conventional
(regulatory) drug safety assessment. [11,40,41]. Genomic data have predictive value
but, in general, do not constitute definitive endpoints for toxicity. One way of viewing
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such data is that they generate hypotheses that are then tested by conventional toxicity
assays. Ideally, gene expression information can predict an outcome before it is
pathologically manifest.

The challenges of using microarrays in toxicology are varied but are being
addressed and overcome. Many of the technical issues are not specific to toxicolog-
ical applications. Issues of data normalization, statistical processing, and data visu-
alization are generic to microarray experiments [42,43]. The available data format
standards lend themselves to toxicogenomics experiments with little need for adap-
tation. It is more in the capture of nongenomic experimental information where
attention needs to be paid so that the genomic data can be properly evaluated in
context with the biological data. There are a number of initiatives in establishing
data standards for toxicogenomics (comprehensively reviewed by Mattes and col-
leagues; see Reference 44). Collectively, these initiatives should resolve the issues
of data formatting raised by FDA in their recent draft guidance on submission of
pharmacogenomic data to the regulatory agencies (http://www.fda.gov/cder/guidance/
5900dft.doc). The ILSI/HESI Committee on the use of genomics in risk assessment
has been in the unique position of providing shared learning, consensus building,
and a debating forum to enable the toxicogenomic community to address the chal-
lenges of using gene microarrays [45]. A public database of toxicogenomic data was
a high priority of the collaboration. With the help of this consortium of companies,
academics, and regulatory agencies, the EBI has proposed the MIAME/TOX guid-
ance (http://www.mged.org/Workgroups/MIAME/miame_1.1.html) for a toxicoge-
nomics experiment database. The committee has also provided a focus for industry,
academics, and regulators alike to gain an in-depth understanding of the complexities
of each microarray platform and approaches to data analysis.

A continuing challenge is at the philosophical level. Making the distinction
between predictive data vs. definitive data is proving to be problematic in the
regulatory setting of drug risk assessment. Much of the concern about using gene
expression data in a risk assessment revolves around the difficulty in accepting that
such data are mostly nondefinitive. The data provide mechanistic information that
is used to develop hypotheses that are testable by further experimentation. It is useful
to compare transcriptional analysis with traditional toxicological analysis. Microar-
ray experiments generate much more data than the more conventional toxicology
experiments. For example, clinical chemistry analysis may comprise around 20
different measurements per animal per time-point in an in vivo study [46,47]. A
microarray experiment may comprise 30,000 different measurements per RNA sam-
ple, of which several hundred may show statistically significant differences between
control and treated tissue. Additionally, clinical chemistry measurements have a long
history of use in drug risk assessment, whereas microarray data interpretation in a
biological context is at a very early stage of understanding. Clinical chemistry effects
are truly endpoints in that they reflect events such as cell damage, e.g., ALT [48].
Genomic measurements often reflect the beginnings of a toxic response and therefore
represent starting points rather than endpoints.

Engagement of industry with regulators to understand both the power and lim-
itations of multiple gene expression analysis will help to ensure that microarray
technology is used to its greatest advantage in drug development.
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TOXICOGENOMICS EXPERIMENTAL DESIGN

Although much has been written about experimental design for microarray experi-
ments [49-54], questions of biological interest and costs generally determine the
approaches taken. A common biological question with candidate drugs is how they
may induce liver toxicities. Most types of liver toxicities are detected only after
repeated administration of drug candidate compound; some types are relatively
benign and reversible, others are rodent-specific, and still others are likely to cause
serious problems in man. These latter compounds must be detected and their potential
toxicity understood to cease their continued development into pharmaceuticals,
whereas development can continue if the toxicity of compounds is rodent-specific
or if the therapeutic benefits of mildly toxic compounds outweigh their potential
safety risk. At present, decisions on the continued development of drug candidates
that cause liver toxicities in rodents or dogs are largely made based on histopathology
and clinical chemistry results. Toxicogenomics offers a number of advantages when
used in conjunction with conventional toxicological methods. Transcriptional
responses of hepatic parenchymal cells in response to treatment with drug compound
are largely adaptive (dying or dead cells stop making mRNA), and frequently give
clues to developing pathology long before histological changes occur. Thus, changes
in expression of important genes can be used as “predictor biomarkers” rather than
the “indicator biomarkers” of conventional toxicology where damage is assessed. A
feature of prediction is that few if any gene signatures are 100% accurate at predicting
damage. Incidentally, mRNA changes usually reflect stress responses rather than
damage responses, and often toxicity is prevented by adaptive changes, so toxico-
genomics data are best used to point out likely problems that can subsequently be
examined with conventional methods.

Another major advantage of toxicogenomics is that just knowing the genes and
pathways affected by a hepatotoxic compound frequently increases understanding
of relevant toxic mechanisms. PPAR« agonists, which are peroxisome proliferators
and nongenotoxic carcinogens in rodent liver, provide a good example of a class
of toxicants amenable to investigation through transcriptional profiling. These
compounds exert their pharmacological effects by activating a transcription factor,
and most of their toxicities appear to reflect exaggerated pharmacology; for exam-
ple, the more efficacious in activating PPARa, the more likely a compound is to
induce tumors [55]. Many enzyme inductions by peroxisome proliferators, partic-
ularly those enzymes involved in B-oxidation of fatty acids, were characterized
long before PPARx. was identified as the transcription factor responsible. Data
obtained using microarrays are largely confirmatory of such historic data, but
additional relationships with other genes and pathways become apparent, particularly
when comparing a large number of gene responses to a large number of diverse
hepatotoxicants. For example, many hepatic genes have been found to be oppositely
regulated by PPAR« agonists and macrophage activators [21]. These differential
transcriptional effects probably contribute to anti-inflammatory effects observed
with many PPARo agonists [56].

A single gene change can sometimes be an adequate predictor for a type of
hepatotoxicity, but more frequently a combination of gene changes is necessary to



Toxicogenomics in Drug Safety Evaluation: 73

establish a signature for a particular type of hepatotoxicity. A great deal of time,
effort, and money have been spent characterizing gene signatures for a number of
common hepatotoxicities—peroxisome proliferation, macrophage activator-induced
necrosis and fibrosis, oxidative stress and reactive-metabolite-induced necrosis,
phospholipidosis, microvesicular and macrovesicular steatosis, cholestasis, bile duct
damage, venoocclusion, genotoxic and nongenotoxic carcinogenesis, and
hepatomegaly—with varying degrees of success. Hepatotoxicants are seldom
“pure,” and a single compound often produces several types of toxicity. For example,
if enough structurally distinct PPARo agonists are compared, distinctions can be
made between class-specific and compound-specific gene responses. For instance,
several strong PPAR« agonists repress CYP8B1 (sterol 12a-hydroxylase), a rate-
limiting enzyme in bile acid synthesis and one of several gene changes associated
with intrahepatic cholestasis [57,58], but this mRNA effect and cholestasis are not
observed with all PPAR«. agonists. Similarly, few hepatotoxicities are “pure.” Severe
bile duct damage induces extrahepatic cholestasis, and many necrosis inducers
induce steatosis at low dose or early time points. To be most useful, selection of
gene signature sets (and eventually the best marker genes for routine screening)
must be reasonably specific for the outcome (particularly as to reversible or nonre-
versible); genes that elucidate rodent-specific or independent outcomes can be par-
ticularly useful (as in comparing mouse and human PPARa transcription factor
effects [55]).

Our approach to identifying gene signatures has been to take as many well-
characterized hepatotoxicants as possible, administer to three male rats per group
as a single maximal tolerated dose, snap-freeze liver at necropsy at 24 h, prepare
RNA, label RNA as probe, hybridize to cDNA microarrays (with four replicate spots
per liver sample), normalize microarray data, and then analyze data for signature
genes. The end result is effectively cherry-picking the best genes for routine screen-
ing by PCR. Supervised clustering of a large number of different paradigm com-
pounds in a given toxicity class lessens the chance of spurious gene correlations
frequently observed using just one or two paradigm compounds as a training set. A
group of three animals represents the minimum biological replicates for interpreting
the effect of a paradigm hepatotoxicant (five is better, but almost doubles the cost).
A single high dose of a paradigm hepatotoxicant generally provides useful gene
changes (multiple doses are again preferable but expensive). In most cases, gene
responses to low doses are difficult to distinguish from controls. The obvious excep-
tions are compounds where the toxicities reflect exaggerated pharmacology, for
example, PPAR«. agonists, steroids, and other transcriptional effectors; low doses
could separate toxic from pharmacological gene responses. The 24-h time period
allows establishment of a broad, survey type of database where most hepatotoxicities
can be predicted before they occur. Preparation of high-quality RNA is critical;
enough RNA is prepared for repeated uses of the database samples, and the archive
is only as good as the RNA stored. Microarray preparation and RNA labeling and
hybridization have improved markedly in the last few years. Four replicate spots
generally provide sufficient data per gene per sample. The normalization and analysis
involved in establishing gene signatures for hepatotoxicities is a cumulative, creative
process that is improving and incorporating weaker (often low abundance mRNA)
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but important gene changes. Although results derived from unbiased data analysis
might seem preferable, supervised clustering of paradigm compounds (and some
genes) makes use of a solid literature on hepatotoxicants, and this knowledge-based
approach allows subtle but important distinctions to be made that might be missed
(or overfit) by a purely statistical approach.

It is important to note that the above experimental design applies only to the
100 or so well-characterized paradigm hepatotoxicants that populate our database.
Toxicogenomic experiments on in-house drug candidates are generally run at mul-
tiple doses (but again for 24 h in 3 male rats per group). Parallel studies provide
exposure data for these compounds (absence of toxicity often reflects poor bioavail-
ability) and 5 to 14 d later rats are necropsied, and histopathology and clinical
chemistry results are obtained (which provide a reality check for 24-h gene signature
predictions). Frequently, a well-investigated compound of the same class is compared
at the same time. Thus from a toxicogenomics perspective, we can rank order in-
house drug candidates with a known therapeutic.

CASE STUDY: PPARo. AGONIST EXAMPLE

To illustrate the data analysis process and demonstrate how toxicogenomics helps
with drug safety assessment but to obviate the need for complicated figures and
tables, we have selected a small portion of the database as a sample data set that
includes 7 PPARo agonists and 13 reference compounds representing 8 other toxicity
classes (Table 5.1). One proprietary compound (Compound X, designed as a novel
PPAR activator) has been used for testing.

Due to the large number of samples in the study, animal handling and dosing,
RNA preparation and labeling, and array manufacturing and hybridization had to
be split into batches. These extraneous factors may and have been observed in earlier
experiments to cause variations. Therefore, the raw microarray data need to be
preprocessed to correct for such effects and biases. The preprocessing starts with a
base two logarithmic transformation, a Spline normalization among four technical
replicates. An averaging of them into one chip, a sorted Spline normalization among
chips, run on the same day, followed by a linear normalization and background
flooring steps, and finally log ratios are generated by subtracting the geometric mean
of the vehicle controls on the same day from each chip [21]. This normalization
procedure places all of the chips in the study to the same scale to compare (Figure 5.1).
It is important to note that after normalizing and summarizing, the 444 raw data
chips are condensed into only 111 samples.

Data analysis is facilitated with good visualization tools such as clustering
algorithms and heat maps [59] and multidimensional projections of principle com-
ponent analysis (PCA). Figure 5.2 shows that PPARo agonists are not separable
from vehicle controls or the reference compounds using all genes on the chip. Gene
selection is thus required and is important in removing genes that do not carry
relevant information while keeping ones that respond specifically and uniformly to
a class of treatments (PPAR«. agonists in the present example).

In a typical toxicogenomic study, a group of treatments from a certain toxicological
class are compared to ones that are not in that class, and a list of genes and their associated
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FIGURE 5.1 Boxplots of raw and normalized data sets. Raw data (on the right-hand side)
show marked batch-to-batch differences. The normalization procedure removes most of these
batch effects and keeps samples comparable across the database. There is a noticeable
difference between the first third of the samples (on the left-hand side) and the rest, reflecting
a microarray platform change. To take advantage of the large number of samples in each
batch, the normalization is done with all of the samples in the toxicogenomics database instead
of the selected PPARo. agonist sample data set.

mathematical rules can be determined to discriminate them. Then the same gene list and
discriminant rules can be used to classify new treatments. If a new treatment is classified
as a close resembler to the treatments in the toxicological class, it is predicted as a toxic
treatment in that class, otherwise it is not. It is generally believed that before the gene
list can be used to test new treatment, it needs to be tested with blinded samples that are
not previously used to generate the gene list and rules [60]. The needs for such an
independent testing will be discussed in the following paragraphs.
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FIGURE 5.2 PCA plot with all of the genes on the chip. PPAR«a agonists (black) are not
visually separable from vehicle controls (grey) or other reference compounds (white).

There are a large number of discriminant methods available [61], and basically
all of them can be applied in toxicogenomics. Just to name a few: k-nearest neighbor,
linear and quadratic discriminant analysis, and linear discriminant analysis following
PCA. In this chapter, we are using PCA with the largest two principal components
followed by linear discriminant analysis. However, instead of drawing a line in the
two-dimensional PCA space to separate treatment groups, we will just plot them on
a figure and visualize the separabilities. If samples are visually separable on the
PCA plot, they are separable by discriminant analysis with the principal components
that are used to generate the plot, but even if they are not visually separable, there
still is a chance that the samples can be separated using more principal components.

In the following section, six typical gene selection approaches are used on this
data set and compared for their performances. Prior to gene selection, the PPAR
agonist sample data set is partitioned into training and testing subsets. All the
compounds are sorted alphabetically, and every third compound (except WY 14643,
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FIGURE 5.3 PCA plots with selected genes. Only the training samples are plotted. The color
scheme is the same as in Figure 5.2.

which is the second in group) is selected for testing. The vehicle controls are also
split so that one third of them are for testing too. This partitioning results in a 73-
sample training and a 38-sample testing data sets. Gene selection is solely done on
the 73 training samples, and a PCA plot based on the selected genes for each
approach is generated in Figure 5.3.

Unsupervised gene selection procedures take no treatment classification into
consideration while selecting genes and therefore are least likely to be biased by
treatment classification. The most intuitive way of selecting genes using an unsu-
pervised procedure is to use a cutoff fold change value, i.e., any gene over that
decreased or increased level is chosen. Using a fourfold cutoff value yields 205
genes from the 73 training samples. The two-dimensional PCA plot in Figure 5.3a
shows that with this simple approach, PPARo agonists can be well separated from
vehicle controls and most of the reference samples.

Ranking all of the genes by their ability to separate different treatments and
keep the same treatments together is the second unsupervised gene selection
approach. This approach selects genes with small variance within treatments and
great variance between treatments; ANOVA is normally used for this purpose. The
top 50 genes from the ANOVA test are used to generate the PCA plot in Figure 5.3b.

Unlike the unsupervised approaches, supervised gene selection approaches are
largely dependent on treatment classification, and genes that are coregulated by a
specific group of treatments are selected. The strength of supervised gene selection
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is specificity to a certain toxicological end point, such as peroxisome proliferation
in the present example, and this approach is therefore more likely to select genes
that best separate PPAR«-agonist-treated samples from other samples. A major
limitation of such supervised approaches, especially when complicated discriminant
functions are used on such large sets of gene expression data, is that the “best” genes
will always be selected, but these genes may only be predictive for the samples from
which they are selected. Cross-validation is normally used to avoid such false
findings [60]. The 38 testing samples in this sample data set will be used to cross-
validate the genes selected using the 73 training samples.

Using a cutoff value, typically 1.5-, 2-, or 4-fold, to filter out genes that do not
have big changes in the target treatment group (PPARo. agonists here), has been
widely used in literature. We use 4-fold as the cutoff value in the present example,
and 93 genes pass the criteria (Figure 5.3c). However, genes that are biologically
important but do not change by a large magnitude are missed by this approach.
Ranking all genes by comparing the difference in between and within treatment
class variance takes advantage of statistical power and is preferable to a simple fold
change cutoff. Student’s #-test is a powerful but simple method and is our fourth
gene selection method in this study. Fifty genes that rank the highest in comparing
all PPARo agonists with vehicle controls in the training set are selected by Student’s
t-test (Figure 5.3d). Similarly, 50 genes are selected by ANOVA that compares PPARo
agonists to both vehicle controls and all the other reference compounds (Figure 5.3e);
this yields good specificity to the peroxisome proliferator class, and the selected
genes tend to show robust, coregulated responses. For PPARa agonists, enzymes
involved in B-oxidation of fatty acids are coinduced and share common biochemical
pathways [62,63].

The univariate gene selection approaches described so far evaluate each gene
independently, and gene lists are compiled from the best individual genes. In contrast,
a multivariate approach evaluates a group of genes at a time, until a best or close-
to-best group of genes is found for separating the treatment class of interest (PPARo
agonists) from other samples [64]. A multivariate gene selection approach takes
advantage of the combinatory power of all genes in the list. In multivariate gene
selection approaches, a large number of combinations of genes are searched, and
the search can be exhaustive, i.e., every possible combination is evaluated and
compared (which is practically unfeasible) or heuristically improved by algorithms
such as forward selection, backward elimination, or genetic algorithm. At each step
during the search, the performance of the gene set is computed as the posterior error
from linear discriminant analysis. In forward selection, performance improves while
more genes are added into the gene list at each step, and the search can be stopped
either when perfect separation is achieved or the number of genes reaches a preset
number. Forward selection was used to select 25 genes (Figure 5.3f). This number
of genes was decided experimentally to balance the search time and performance
of the gene lists. A characteristic of multivariate approaches to gene selection is
selection against redundant (coregulated and covariant) gene changes; whereas these
approaches select against genes overrepresented in a single biochemical pathway,
multivariate gene selection is more likely to pick up other important genes that
behave differently across the treatment groups.
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FIGURE 5.4 PCA plots with selected genes. Both training (round) and testing (diamond)
samples are plotted. The color scheme is the same as in Figure 5.2.

The 38 testing samples left out from the gene selection approaches are now
brought back to test the selected gene lists (Figure 5.4). The figure shows that the
performance of the selected gene lists on the testing samples is comparable to that
on the training samples, with a few testing non-PPARa agonists, frequently “mis-
classified” as PPAR« agonists. These “misclassified” samples fenbufen and diflunisal
are NSAIDs (nonsteroidal anti-inflammatory drugs); many if not most NSAIDs have
been demonstrated to bind to and activate PPAR receptors, and several reportedly
act as peroxisome proliferators at high doses [65-84]. Therefore, instead of invali-
dating the predictions, it is reasonable to regard both fenbufen and diflunisal as
PPAR« agonists (these two NSAIDs also clustered with PPARo agonists using the
full database). In addition to all gene selection approaches predicting PPARo. ago-
nists and non-PPAR«. agonists quite accurately, it is noticed that supervised gene
selection methods marginally outperformed unsupervised ones (Figure 5.4).

The selected gene lists are shown in Table 5.2. Genes are sorted by the number
of their appearances, using the six different gene selection methods. Many of these
genes, especially those on the top such as acyl-CoA oxidase and CYP4bl, are
well known for their roles in the peroxisome proliferation process and have been
annotated by us in a previous publication [21]. A few genes that repeatedly show
up in a number of lists such as the rat androgen binding protein may provide fresh
insight into the mechanisms of action of PPAR«. agonists, although their roles in
peroxisome proliferation have not been well documented previously.
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TABLE 5.2

Genes Selected by the Six Different Methods

Gene
Accession

NM_017340
NM_013214
NM_016999
NM_031315
Gene 07
NM_031561
BG671569
Gene 05
Gene 11
M38759

NM_022407
NM_022298
NM_031703
M33936
NM_017156
NM_022936
NM_017306
AA817759
BE110688
NM_031589
NM_017080
NM_013122
M1179%4
J00696
Gene 10
Gene 16
Gene 29
NM_031531
AF157026

NM_006082
NM_006082
NM_006082
NM_006082
M89902

NM_017075
X05341

Gene Name

Acyl-CoA oxidase
Brain acyl-CoA hydrolase

Cytochrome P450, subfamily 4B, polypeptide 1

Cytosolic acyl-CoA thioesterase 1

Proprietary gene

cd36 Antigen

EST

Proprietary gene

Proprietary gene

Rat androgen binding protein (ABP) mRNA,
complete cds

Aldehyde dehydrogenase family 1, member Al

Alpha-tubulin

Aquaporin 3

Cytochrome P450 4A3

Cytochrome P450, 2b19

Cytosolic epoxide hydrolase

Dodecenoyl-coenzyme A delta isomerase

EST

EST

Glucose-6-phosphatase, transport protein 1

Hydroxysteroid 11-beta dehydrogenase 1

Insulin-like growth factor binding protein 2

Metallothionein

Orosomucoid 1

Proprietary gene

Proprietary gene

Proprietary gene

Serine protease inhibitor

Solute carrier family 34 (sodium phosphate),
member 2

Tubulin, alpha, ubiquitous

Tubulin, alpha, ubiquitous

Tubulin, alpha, ubiquitous

Tubulin, alpha, ubiquitous

3-Hydroxybutyrate dehydrogenase (heart,
mitochondrial)

Acetyl-Coenzyme A acetyltransferase 1

Acetyl-Coenzyme A acyltransferase 2
(mitochondrial 3-oxoacyl-Coenzyme A
thiolase)

Gene Selection Method

-
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X
X
X
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X
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X
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(continued)
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TABLE 5.2 (Continued)

Genes Selected by the Six Different Methods

Gene
Accession

NM_016990
NM_013218
NM_013215
NM_012488
NM_022298
NM_012824
NM_021577
NM_013113
NM_012504
NM_030850
AB010632
NM_012532
NM_017177
NM_016994
NM_016995
NM_022536
U46118
M35266
NM_031853
NM_022594
NM_012844
AAB48338
AA858661
AA945076
AA945149
AI013902
AI059602
AW915938
AW918678
BG667982
BI1285007
M20629
NM_001402
X86561
NM_012792
NM_017251
M96674
NM_031580
NM_013098
NM_013096
NM_012964

Adducin 1, alpha

Adenylate kinase 3

Aflatoxin B1 aldehyde reductase
Alpha-2-macroglobulin

Alpha-tubulin

Apolipoprotein C-I

Argininosuccinate lyase

ATPase Na+/K+ transporting beta 1 polypeptide
ATPase, Na+K+ transporting, alpha 1
Betaine-homocysteine methyltransferase
Carboxylesterase 2 (intestine, liver)
Ceruloplasmin

Choline/ethanolamine kinase
Complement component 3

Complement component 4 binding protein, beta
Cyclophilin B

Cytochrome P450 3A9

Cytosolic cysteine dioxygenase 1
Diazepam binding inhibitor

Enoyl coenzyme A hydratase 1

Epoxide hydrolase 1

EST
EST
EST
EST
EST
EST
EST
EST
EST
EST

Esterase 2

Eukaryotic translation elongation factor 1 alpha 1
Fibrinogen, alpha polypeptide

Flavin containing monooxygenase 1

Gap junction membrane channel protein beta 1
Glucagon receptor

Glucose regulated protein, 58 kDa
Glucose-6-phosphatase, catalytic

Hemoglobin, alpha 1

Gene Selection Method
2 3 4 5 6

-

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X X
X X
X X
X X
X X

X X
X X
X X

X X

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X X

X X
X X
X X

Hyaluronan mediated motility receptor X X
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TABLE 5.2 (Continued)
Genes Selected by the Six Different Methods
Gene Gene Selection Method
Accession Gene Name 1 2 3 4 5 6
NM_012964 Hyaluronan mediated motility receptor X X
NM_032082 Hydroxyacid oxidase (glycolate oxidase) 3 X X
NM_053329 Insulin-like growth factor binding protein, acid X X
labile subunit
NM_019242 Interferon-related developmental regulator 1 X X
NM_017321 Iron-responsive element-binding protein X X
NM_012608 Membrane metallo endopeptidase X X
X60822 Methionine adenosyltransferase I, alpha X X
NM_017028 Myxovirus (influenza virus) resistance 2 X X
AF014503 Nuclear protein 1 X X
NM_022381 Proliferating cell nuclear antigen X X
NM_012998 Prolyl 4-hydroxylase, beta polypeptide X X
Gene 01 Proprietary gene X X
Gene 03 Proprietary gene X X
Gene 04 Proprietary gene X X
Gene 06 Proprietary gene X X
Gene 08 Proprietary gene X X
Gene 15 Proprietary gene X X
Gene 17 Proprietary gene X X
Gene 18 Proprietary gene X X
Gene 20 Proprietary gene X X
Gene 22 Proprietary gene X X
Gene 31 Proprietary gene X X
Gene 33 Proprietary gene X X
Gene 35 Proprietary gene X X
NM_013065 Protein phosphatase 1, catalytic subunit, betaisoform X X
NM_017039 Protein phosphatase 2a, catalytic subunit, alpha X X
isoform
NM_019140 Protein tyrosine phosphatase, receptor type, D X X
AF306457 RAN, member RAS oncogene family X X
NM_012695 Rat senescence marker protein 2A gene, exons 1 X X
and 2
NM_012695 Rat senescence marker protein 2A gene, exons 1 X X
and 2
M91235 Rat VL30 element mRNA X X
NM_022514 Ribosomal protein L27 X X
X82669 RT1 class Ib gene(Aw2) X X
NM_012656 Secreted acidic cysteine rich glycoprotein X X
U58857 Serine (or cysteine) proteinase inhibitor, clade B, X X

member 5

(continued)
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TABLE 5.2 (Continued)
Genes Selected by the Six Different Methods

Gene Gene Selection Method
Accession Gene Name 1 2 3 4 5 6
M83143 Sialyltransferase 1 X X
NM_019269 Solute carrier family 22, member 5 X X
AF157026 Solute carrier family 34 (sodium phosphate), X X
member 2
AF249673 Solute carrier family 38, member 2 X X
U19485 Spp-24 precursor X X
J02585 Stearoyl-Coenzyme A desaturase 1 X X
D50559 Sterol-C4-methyl oxidase-like X X
NM_031834 Sulfotransferase family 1A, phenol-preferring, X X
member 1
NM_031834 Sulfotransferase family 1A, phenol-preferring, X X
member 1
L31883 Tissue inhibitor of metalloproteinase 1 X X
NM_012681 Transthyretin X X
NM_006082 Tubulin, alpha, ubiquitous X X
NM_006082 Tubulin, alpha, ubiquitous X X
NM_006082 Tubulin, alpha, ubiquitous X X
NM_006082 Tubulin, alpha, ubiquitous X X
NM_006082 Tubulin, alpha, ubiquitous X X
NM_006082 Tubulin, alpha, ubiquitous X X
NM_006082 Tubulin, alpha, ubiquitous X X
NM_006082 Tubulin, alpha, ubiquitous X X
J02589 UDP glycosyltransferase 2 family, polypeptide B X X
Y07744 UDP-N-acetylglucosamine-2-epimerase/ X X
N-acetylmannosamine kinase
M96548 Zinc finger protein 354A X X
D00569 2,4-Dienoyl CoA reductase 1, mitochondrial X
NM_017268 3-Hydroxy-3-methylglutaryl-Coenzyme A X
synthase 1
NM_017268 3-Hydroxy-3-methylglutaryl-Coenzyme A X
synthase 1
M33648 3-Hydroxy-3-methylglutaryl-Coenzyme A X
synthase 2
NM_016986 Acetyl-coenzyme A dehydrogenase, X
medium chain
NM_012891 Acyl-Coenzyme A dehydrogenase, X
very long chain
M64780 Agrin X
NM_031731 Aldehyde dehydrogenase family 3, subfamily A2 X
NM_012899 Aminolevulinate, delta-, dehydratase X

NM_024484 Aminolevulinic acid synthase 1
NM_024148 Apurinic/apyrimidinic endonuclease 1 X

o
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TABLE 5.2 (Continued)

Genes Selected by the Six Different Methods

Gene
Accession

NM_031839
NM_012911
J03753
AJ277881

NM_012828

NM_013146
NM_022399
NM_031565
NM_031559
NM_012930
U05341
U52948
NM_032061
NM_031690
NM_017148
NM_031572
NM_012541
NM_031543
U64030
AY026512
U31668
NM_012551
Y07783
AA817749
AA817964
AA818163
AA818342
AA851329
AA858661
AA892234
AA899344
AA899344
AA900340
AA9%44161
AA945615
AA946508
AI228159
AI230381
AI233916
AI317842

Gene Name

Arachidonic acid epoxygenase
Arrestin, beta 2

ATPase, Ca++ transporting, plasma membrane 1

ATP-binding cassette, sub-family C
(CFTR/MRP), member 1

Calcium channel, voltage-dependent,
beta 3 subunit

Caldesmon 1

Calreticulin

Carboxylesterase 1

Carnitine palmitoyltransferase 1, liver

Carnitine palmitoyltransferase 2

Cell cycle protein pS5SCDC

Complement component 9

Contactin associated protein 1

Crystallin, beta B3

Cysteine and glycine-rich protein 1

Cytochrome P450 15-beta gene

Cytochrome P450, 1a2

Cytochrome P450, subfamily 2E, polypeptide 1

Deoxyuridinetriphosphatase (dUTPase)
Dynein-associated protein RKM23
E2F transcription factor 5

Early growth response 1

ER transmembrane protein Dri 42
EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

Gene Selection Method

-

XXX X

>

XXX KX

>ox X

e

2 3 4 5 6

X
X
X
X
X
X
X
X
X
X
X
X
X
X

(continued)
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TABLE 5.2 (Continued)
Genes Selected by the Six Different Methods

Gene Gene Selection Method

Accession Gene Name 1 2 3 4 5 6
AI406939 EST X
AW 143388 EST X
BE095878 EST X
BE108882 EST X
BE109520 EST X
BF281192 EST X
BF284879 EST X
BF524965 EST X
BF555189 EST X
BG378729 EST X
BG378729 EST X
BG663025 EST X
BG672085 EST X
BI278268 EST X
BI278598 EST X
BI278612 EST X
BI278780 EST X
BI282736 EST X
BI284279 EST X
BI285402 EST X
BI296125 EST X
BI303631 EST X
NM_012947 Eukaryotic elongation factor-2 kinase X
NM_019356 Eukaryotic translation initiation factor 2, X

subunit 1 (alpha)
NM_031840 Farensyl diphosphate synthase X
D90109 Fatty acid Coenzyme A ligase, long chain 2 X
NM_017332 Fatty acid synthase X
U05675 Fibrinogen, beta polypeptide X
NM_019143 Fibronectin 1 X
AF281018 Flap structure-specific endonuclease 1 X
NM_022928 G protein-coupled receptor kinase 2, groucho X
gene related (Drosophila)

NM_017006 Glucose-6-phosphate dehydrogenase X
NM_017305 Glutamate cysteine ligase, modifier subunit X
NM_017014 Glutathione S-transferase, mu 1 X
X02904 Glutathione S-transferase, pi 2 X
NM_017013 Glutathione-S-transferase, alpha type2 X
M17412 Growth and transformation-dependent protein X
NM_012966 Heat shock 10 kDa protein 1 X
NM_031970 Heat shock 27kDa protein 1 X
NM_012580 Heme oxygenase 1 X
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TABLE 5.2 (Continued)
Genes Selected by the Six Different Methods
Gene Gene Selection Method
Accession Gene Name 1 2 3 4 5 6
BG668317 Hsp90 alpha X
D16478 Hydroxyacyl-Coenzyme A dehydrogenase/ X
3-ketoacyl-Coenzyme A hiolase/
enoyl-Coenzyme A hydratase (trifunctional
protein), alpha subunit
D16479 Hydroxyacyl-Coenzyme A dehydrogenase/ X
3-ketoacyl-Coenzyme A thiolase/
enoyl-Coenzyme A hydratase (trifunctional
protein), beta subunit
NM_031512 Interleukin 1 beta X
AF003835 Isopentenyl-diphosphate delta isomerase X
NM_012741 K-kininogen, differential splicing leads to HMW X
Kngk
NM_012811 Milk fat globule-EGF factor 8 protein X
NM_017083 Myosin 5B X
NM_017000 NAD(P)H dehydrogenase, quinone 1 X
NM_031130 Nuclear receptor subfamily 2, group F, member 1 X
NM_031553 Nuclear transcription factor-Y beta X
NM_022521 Ornithine aminotransferase X
NM_022694 P105 coactivator X
NM_031975 Parathymosin X
D88666 Phosphatidylserine-specific phospholipase A1l X
M76591 Phosphoglycerate mutase 1 X
NM_019237 Procollagen C-proteinase enhancer protein X
AF121217 Procollagen, type I, alpha 2 X
NM_012929 Procollagen, type II, alpha 1 X
NM_021766 Progesterone receptor membrane component 1 X
Gene 02 Proprietary gene X
Gene 09 Proprietary gene X
Gene 12 Proprietary gene X
Gene 13 Proprietary gene X
Gene 14 Proprietary gene X
Gene 19 Proprietary gene X
Gene 21 Proprietary gene X
Gene 23 Proprietary gene X
Gene 24 Proprietary gene X
Gene 25 Proprietary gene X
Gene 26 Proprietary gene X
Gene 27 Proprietary gene X
Gene 28 Proprietary gene X
Gene 30 Proprietary gene X
Gene 32 Proprietary gene X

(continued)
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TABLE 5.2 (Continued)
Genes Selected by the Six Different Methods

Gene
Accession

Gene 34
Gene 36
NM_033236

D32249
NM_017347

NM_019249
X15800
AA858574
L18948
NM_012656
NM_012657
NM_017170
NM_012751
NM_017166
NM_017051
NM_019350
NM_013026
NM_012887
NM_006082
NM_006082
NM_006082
NM_006082
NM_006082
NM_006082
ABO011679
NM_019376

NM_031603

J02589

NM_031325
NM_031836
NM_012603

Gene Name

Proprietary gene

Proprietary gene

Proteasome (prosome, macropain) 26S subunit,
ATPase 2

Protein carrying the RING-H2 sequence motif

Protein kinase, mitogen activated 3
(extracellular-signal-regulated kinase 1, ERK1)

Protein tyrosine phosphatase, receptor type, F

Pyruvate kinase, muscle

R. norvegicus mRNA for lamin A

S100 calcium-binding protein A9 (calgranulin B)

Secreted acidic cysteine rich glycoprotein

Serine protease inhibitor

Serum amyloid P-component

Solute carrier family 2, member 4

Stathmin 1

Superoxide dismutase 2

Synaptotagmin 5

Syndecan 1

Thymopoietin

Tubulin, alpha, ubiquitous

Tubulin, alpha, ubiquitous

Tubulin, alpha, ubiquitous

Tubulin, alpha, ubiquitous

Tubulin, alpha, ubiquitous

Tubulin, alpha, ubiquitous

Tubulin, beta 5

Tyrosine 3-monooxygenase/tryptophan
5-monooxygenase activation protein, gamma
polypeptide

Tyrosine 3-monooxygenase/tryptophan
5-monooxygenase activation protein, epsilon
polypeptide

UDP glycosyltransferase 2 family, polypeptide B

UDP-glucose dehydrogenase

Vascular endothelial growth factor

v-myc Avian myelocytomatosis viral oncogene
homolog

Gene Selection Method

>

XXM X o

XX

2

3

4

5
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FIGURE 5.5 PCA plots with selected genes. Two difference doses, 25 mg/kg (circled with
dotted line) and 250 mg/kg (circled with solid line), of Compound X (triangle) are plotted
relative to the training (round) and testing (diamond) samples. Both doses of Compound X
are colocated with the PPARo agonists. The color scheme is the same as in Figure 5.2.

Because the selected gene lists have been tested and validated by the testing
samples, it naturally follows that these gene lists can be used to classify the real
testing compound, Compound X. As shown in Figure 5.5, Compound X is predicted
as a PPARo agonist with all six of the selected gene lists. Examining the clinical,
chemical, and pathological reports that were made available after this prediction was
done, it was clearly demonstrated that Compound X is truly a PPARo ligand and
causes peroxisome proliferation.

The six gene selection methods differ in many ways. Unsupervised methods
are least prone to classification bias but are less sensitive to weak toxicological
responses. Statistical methods emphasize both the magnitude and the consistency
of fold changes. Although univariate methods tend to select all genes responding to
the toxicological treatments and thus can be useful in understanding the underlying
mechanisms of such changes, multivariate methods ignore redundant genes and
therefore are more specific in prediction. All of these methods, however, worked
well on the PPAR« sample data set and arrived at the same conclusion when testing
Compound X. The important thing in analyzing toxicogenomic data is not to pre-
decide what method to use, but to test and cross-validate them on real data to see
which ones work best. After the methods are cross-validated, they tend to give the
correct prediction, using new treatment samples.
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SUMMARY AND CONCLUSIONS

The field of toxicogenomics has matured rapidly, and interpretation of toxicoge-
nomic data is becoming much easier as available data analysis methods generally
lead to the same conclusions when conducted properly. In addition, it is recognized
that experimental design is very important in yielding results that can be interpreted
in the best biological and toxicological context. It is becoming apparent that a
relatively small proportion of genes is discriminatory for toxic responses. Differential
gene expression experiments are emerging as valuable additions to the battery of
conventional assays routinely used in drug risk assessment.
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INTRODUCTION

One recent advance and fundamental shift in medicine has been the advent of
personalized medicine. Improvements in DNA microarray technology have gener-
ated data on a scale that, for the first time, permits detailed scrutiny of the human
genome, thereby providing the infrastructure to understand the genetic basis of
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diseases. These advances have the potential to enhance healthcare management by
improving disease diagnosis and implementing treatments adapted to each patient.
The traditional approach of “one drug fits all” is no longer acceptable. The advent
of custom optimization of drugs and dosages results in better treatment efficacy and
enhanced safety [1,2]. The emergence of pharmacogenomics has provided a basis
with which to evaluate individual variations in response to treatments. Pharmaco-
genetic testing aims at determining the underlying genotypic and phenotypic differ-
ences in the pharmacodynamics and pharmacokinetics of drug metabolism and, as
a result, will become an integral part of the therapeutic monitoring and health
management of patients.

Drug metabolism occurs predominantly in the liver and involves cytochrome
P450 enzymes. The most common drug metabolism variations among individuals
are due to polymorphisms of cytochrome P450 genes [3,4]. CYP2D6 is one of the
best-studied cytochrome P450 enzymes and is responsible for the metabolism of the
majority of pharmaceuticals presently on the market, including a wide range of
agents such as beta-blockers, antidepressants, antipsychotics, and opioids (Table 6.1).
Currently, more than 70 variant alleles of the CYP2D6 gene have been identified,
and additional alleles will likely be expanded [5]. Some of these influence drug
metabolism directly.

The CYP2D6 locus is localized on Chromosome 22 in humans and consists of
the active CYP2D6 gene and two pseudogenes, CYP2D7P and CYP2DSP [6].
Specific mutations in the CYP2D6 gene result in ultra rapid metabolizer (UM),
extensive metabolizer (EM), or poor metabolizer (PM) phenotypes. For instance,
deficient hydroxylation (i.e., PM) of debrisoquinone affects 5 to 10% of Caucasian,
1 to 2% of Asian, and 5% of African American populations [7,8,9]. A PM phenotype
may result in an adverse reaction upon administration of drugs in standard doses or
undesirable drug—drug interactions using multiple-drug therapeutics [10]. Genotyp-
ing will become an integral part of evaluating the drug metabolic status of an
individual prior to drug administration. Microarray technology is now being applied
to clinical diagnostics and genotyping. However, the emergence and success of
microarray utilization in the clinic will depend on the ability of this technology to
meet the rigorous requirements applied to human diagnostics, and cost-effective,
automated, high-throughput microarray platforms are clearly needed to meet the
demands of monitoring multiple genotypes as well as the stringent requirements for
clinical assays.

In this chapter, we discuss the characteristics of the INFINITI™ system designed
for the clinical laboratory and present the CYP2D6 assay we have developed. A
challenge with many CYP2D6 genotyping methods is to analyze in a “multiplex”
manner using a large number of allelic variants in a single tube and to integrate all
the complex steps employed in molecular testing such as allele-specific primer
extension (ASPE), hybridization, washing, and signal detection. With the INFINITI™
system, the discrete processes of sample handling, reagent management, hybridization,
and detection have been integrated into a totally self-contained automated platform.

The CYP2D6 assay is designed to detect the most prevalent and informative
CYP2D6 allele variants. The target regions of the CYP2D6 gene are amplified via
a multiplex PCR reaction with specific primers and reaction conditions that can
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discriminate CYP2D6 from its pseudogenes. The PCR multiplex reaction is followed
by the incorporation of fluorescently labeled nucleotides by primer extension and
by the hybridization of the labeled products to an array of immobilized oligonucle-
otides on the biochip.

THE INFINITI™ PLATFORM

The platform comprises four major elements, which are discussed in the following
subsections.

THe INFINITI  ANALYZER

The INFINITI™ Analyzer is an automated, continuous-flow, microarray platform
(Figure 6.1). The analyzer contains two lasers (red and green), a thermal stringency
station, and a thermal cycling unit for performing assays requiring varying temper-
ature conditions or cycles for ASPE and additional applications. The system is
designed to operate in a continuous random access mode. To avoid cross contami-
nation of samples or reagents, disposable pipette tips are used for each step in the
assay. The analyzer has no tubing or pump and does not require any priming of
reagents, therefore eliminating leakage and minimizing microbial contamination
growth in the analyzer.

To perform a test such as an ASPE, an operator loads the microplate with the
PCR products on the temperature cycling unit, the appropriate microarray magazines,
and the Intellipac™ (described below), which contains all the necessary reagents.

Temperature
Cycling Unit

Display

Confocal
Microscope

Bio Film Chip
Magazines

Bio Film Chip

Chamber Intellipac

FIGURE 6.1 The INFINITI™ Analyzer showing location of its components and reagents.
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The assay begins with an inventory check to ensure that all the appropriate consum-
ables such as pipette tips, BioFilmChips™, and wash buffers are loaded onto the
platform. Upon passing the reagent requirements test, the analyzer generates a work
list and processes 24 BioFilmChips simultaneously.

The system’s scheduler enables seamless processing without any manual interven-
tion. The turnaround time of an assay depends on the type of assay being performed.
The time to first results using primer extension and hybridization is 1 to 2 h, depending
on the assay. The analyzer can store data, perform data analysis, and generate a report.
The results can be formatted and personalized to meet any requirements.

BioFiLtMCHIP™

Glass-slide-based microarrays have been widely employed in research. However,
glass slides are not practical for routine clinical laboratory use because they are
difficult to handle by automation. Their open configuration is not suitable to hold
and maintain reaction mixtures without evaporation. To solve these issues, a novel
film-based microarray with a reaction chamber was developed. The key component
of the novel chip is the BioFilm™, which consists of multiple layers of porous
hydrogel matrices 8~10-um thick on a polyester solid base. This provides an aqueous
microenvironment that is highly compatible with biological materials. The second
layer incorporates a proprietary composition that reduces intrinsic fluorescence,
thereby improving assay sensitivity and eliminating potential artifacts due to “hot
spots.” The linker layer is used for immobilization of biological molecules such as
oligonucleotides, antibodies, or antigens. These molecules can be coupled covalently
using glutaraldehyde, imidoester, and epoxides, or noncovalently using the highly
specific streptavidin—biotin interaction [11]. The BioFilm™ is then “sandwiched”
between a thermal conducting base and a plastic chamber.

The BioFilmChip microarray is configured with 15 X 16 arrays (240 spots) per
chip, which is practical for most current diagnostic applications. Multiple chips can
be utilized for gene expression and protein expression analyses that require thousands
of spots. The BioFilmChip microarray can be printed using contact (quill pin) or
noncontact (piezoelectric) methods [12]. The BioFilmChips are washed to remove
uncoupled materials after printing, and then dried and stored desiccated at 2 to 8°C.
The BioFilmChips are housed in a magazine.

QMATIC™™

The Qmatic Software Manager is the brain of the system; it provides unprecedented
flexibility and simplicity for performing many different types of assays simulta-
neously. This proprietary software manages the complex tasks performed by the
INFINITI™ Analyzer. This is accomplished by the integration and synchronization
of assay protocols, including regulation of temperature cycling, delivery of reagents
by robotics (aspiration and dispensing), detection, data analysis, and handling and
reporting results. It identifies samples, queries the Laboratory Information System
(LIS) for the assays to be performed, and prompts the operator to load the assay
components, such as the BioFilmChip Microarray Magazine and Intellipac. In addi-
tion, it also calculates and monitors usage of reagents required for each assay.
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INTELLIPAC

Intellipac is the reagent management module and the communication link between
INFINITI™ and the onboard reagent management system. Intellipac has eight reser-
voirs, each containing specific assay reagents, and it has a built-in chip with 128 KB
of memory. This chip provides an electronic storage of assay protocols and reagents
lot numbers. Upon entering the specific test, the assay information is downloaded
into the analyzer. Pertinent data, such as the expiration date of reagents, the volume
of reagents previously used, the history of prior usage, and the operator information,
are stored and updated with each utilization. Intellipac is equipped with a sliding
lid for enclosing the reservoirs to minimize evaporation.

CYP2D6 GENOTYPING
SINGLE-TUBE MuULTIPLEXED PCR AMPLIFICATION

DNA samples were extracted using the QIAamp DNA Blood Mini Kit (QIAGEN,
Valencia, CA) from 300 ul of whole blood. Three target regions of the CYP2D6
gene were amplified using three sets of primers designed to amplify specific target
regions using Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA) without
amplifying pseudogenes. This can be achieved using 10 to 50 ng of isolated genomic
DNA. PCR amplicons were sized using 1% agarose gel electrophoresis. The spec-
ificity of PCR reaction was confirmed by the absence of any nonspecific PCR
products due to pseudogenes. The 5’-end fragment of 1649 bp (for the detection of
*41), the middle 1545 bp fragment (for the detection of *10, *12, and *17 alleles),
and the 3’-end 1505 bp fragment (for the detection of *29, *6, *8, *4, *3, *9  *2,
and *7) were coamplified (Figure 6.2). The reaction buffer conditions used elimi-
nated the separation of unused primers and unincorporated dNTPs post-PCR, and
allowed continuous ASPE processing in a single tube. The thermal cycling conditions
were 95°C for 3 min, 30 cycles of 95°C for 30 sec, 62°C for 30 sec, 72°C for 3 min,
and a final holding at 4°C.

BioFILM™ CHip PRINTING FORMAT

A set of capture oligonucleotides (18 to 24 mers) was synthesized with 3’ biotin
(Integrated DNA Technology, Coralville, IA), and these were printed on the strepta-
vidin-coated BioFilmChip- using a custom contact arrayer in triplicates. Each spot
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FIGURE 6.2 Three different regions of CYP2D6 gene were amplified using a single tube
multiplexed PCR reaction. The corresponding allele variants contained in these specific
regions are shown.
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has a diameter of 150 to 180 ym and contains approximately 10® capture molecules.
The distance between the centers of each of the spots was 400 um. The capture probe
for mutant alleles *2 (2850C > T), *3 (2549Adel), *4 (1846G > A), *6 (1707Tdel),
*7 (2935A > C), *8 (1785G > T), *9 (2613-2615delAGA), *10 (100C > T), *12
(124G > A), *17 (1023C > T), *29 (1659G > A), and *41 (1584C > G), and their
corresponding wild-type alleles were printed in triplicates to form allelic blocks (see
Figure 6.3B for detail).

CYP2D6 AssAY PROCEDURE AND ASSAY VALIDATION

Upon completion of the PCR amplification, the microplate was loaded onto the
thermal cycling unit on board INFINITI™ Analyzer. The system automatically
scanned Intellipac and the magazine holding the CYP2D6 BioFilmChips. This
inventory process ensured that the material required for each run was present and
monitored utilization of each component throughout the entire process. Upon
engaging the initial inventory process, the operator generated a “work list.” Qmatic
Software determined the critical assay parameters and scheduled the process
sequences. It initiated the ASPE process by applying ASPE reagent mix from
Intellipac. After the ASPE reaction of 40 cycles of 95°C for 15 sec, and 53°C for
15 sec with intermediate ramping rates of 1.5°C/sec heating and 1°C/sec cooling,
the robotic dispensing unit dispensed the hybridization buffer into each reaction
and subsequently applied the reaction mixture onto the BioFilmChipsin the hybrid-
ization chamber. Each allele-specific primer was designed with unique but very-
well-characterized oligo-zip molecules linked to their 5" end. These oligo-zip frag-
ments of allele-specific probes participated in the subsequent hybridization step
with universal hybridization conditions, and the genotype-independent oligo-zip
and zip-capture interaction ensured the elimination of false signal from potential
cross-hybridization often seen in other nucleic acid detection systems. Regardless
of the polymerase-mediated extension status, all allele-specific probes bind to
their corresponding zip-capture molecules on the BioFilmChips surface. This
universal hybridization process was performed for 30 min at 39°C (£0.5°C), and
the BioFilmChips were subsequently washed and transported automatically to the
optical detectors, where the signal from each oligo-zip spot was analyzed auto-
matically and a report was generated. The assay was validated via a blind study
using 46 samples, after which the key was revealed by comparison against a
reference method.

RESULTS AND DISCUSSION

The time to the first reportable result was approximately 90 min, and subsequent
results were generated every 5 min. The positive hybridization control spots (based
on cy3, not shown), ensured the reagent dispensing and assay performance. The
analyzer examined both cy5 (for assay signals) and cy3 (for control signals) to
qualify each chip. A typical scanned image is shown in Figure 6.3A. However,
genotyping of clinical samples was performed in a randomly scattered pattern as
shown in Figure 6.3B. The local and global background subtractions were performed
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FIGURE 6.3 (A) Cy-5 laser scanned image showing homozygous mutations for *2 (2850C >
T) with three mutant spots, and a heterozygous genotype for *17 (1023C > T), and *29
(1659G > A). (B) Allelic cell organization in triplicate for both the wild type and corresponding
SNP. (C) Randomly scattered CYP2D6 chip in triplicate configuration. Both local and global
background subtraction processes are integrated into the data analysis software.
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by the Qmatic software. The results (Figure 6.3C) were analyzed based on triplicates,
and displayed the analyte, ratio, % CV, and the patient’s genotype (homozygote,
heterozygote, or wild-type).

A patient sample displayed was determined to be homozygous mutant for *2
(2850C > T) (three mutant spots), and heterozygous for *17 (1023C > T) and *29
(1659G > A) (six positive spots in their allelic cells), with the following possible
genotypes: *2, *17, *29 or *2, *29, and *17. The patient was homozygous wild-
type for other alleles (*3, *4, *6, *7, *8, *9, *10, and *12), with only three positive
signals.

We performed 2D6 genotyping validation studies using 46 ethnically diverse
DNA samples. We had 100% correlation (Table 6.2) on all the SNP genotype calls.

TABLE 6.2

Summary of Assay Validation Studies

Sample ID  *2 *3 *4 *6 *7 *8 *9  *10 *12 *17 *29 *41 Genotype
AGO001 X X *41
AG002 X *10
AGO003 X X *2,%¥29
AG004 XX X *2,%17
AG005 XX XX *4,%4
AGO013 #1541
AG0014 X *10
AGO0015 X X X X *4.%4]
AGO016 X *10
AG0017 X *10
AG0025 XX XX *41,%41
AG0026 XX #5410
AG0027 X *2
AG0028 X *2
AG0029 XX XX *17,%17
AG0037 XX *10,%10
AG0038 X X *2,%10
AG0039 #1541
AG0040 X *41
AG0041 X X *17
AG0049 #1541
AG0050 X *10
AG0051 X X *41
AG0052 XX XX *41,%41
AG0053 XX XX *41,%41
AG0061 X X X *9,%17
AGO062 XX *10,410
AG0063 X X *4
AG0064 X X *4
AGO066 #1541
AG0074 *1,%1
AG0075 XX *10,%10
AGO076 X *10

(continued)
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TABLE 6.2 (Continued)
Summary of Assay Validation Studies

Sample ID  *2 *3 *4 *6 *7 *8 *9  *10 *12 *17  *29 *41 Genotype

AG0077 X X 41
AG0078 #1541
AG0086 XX XX %554
AGO087 XX X 2,417
AG0088 #155
AG0089 X X *4
AG0090 w151
AGOO32L X X X X 4517
AGOOBIL X X 41
AG0021L XX XX *17,%17
AGOOIOL X X X X 4517
AGO0I11L X X X X *4.%17
AGOOI2L X %2

“All 46 samples had 100 concordant genotype calls. *5 (deletion) for samples AG0026, AG0086,
and AG0088, and *2XN (duplication) for a sample AG0040 were determined by accompanying
deletion and duplication analysis based on PCR & ASPE process. Gene deletion and duplication
determination process are being integrated into SNP-multiplex reaction along with all the other SNPs
in a single tube reaction format.

Furthermore, microarray-based deletion and duplication detection also showed 100%
concordance with the reference method. Additional deletion (for *5) and duplication
(*2XN) analysis showed three *5 samples and a *2XN sample. Currently, SNP and
deletion or duplication detection processes are performed separately, and the goal
is to multiplex them into a single tube (see also Figure 6.4).

CONCLUSION

Modern therapeutic approaches will require knowledge of a patient’s pharmacogenetic
profile to assist the physician in prescribing the appropriate medication at the most
effective dosage. This approach should therefore enhance the effectiveness and safety
of treatments for many diseases. Pharmacogenetic testing and profiling may soon
become routine as the demand for cost effectiveness, high throughput, and rapid
turnaround are realized. Because patients” CYP2D6 phenotype can have a profound
impact on their response to drug treatments, it is critical to have rapid and economical
molecular diagnostic tools to determine individuals’ CYP2D6 genotypes.

Currently, the methods most widely used for genetic testing, such as the CFTR
test, typically require simultaneous analysis of multiple mutations, a process which
is laborious and highly complex. Unquestionably, microarray technology offers a
more practical approach and is gaining wider acceptance in the clinical environment.

The CYP2D6 assay is a high-throughput molecular diagnostic test, optimized
for use on the completely automated INFINITI™ microarray platform. The most
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common point mutations and small deletions in CYP2D6 can be readily detected
using this system. As the platform is completely automated, a large number of
samples can be processed simultaneously, with minimal human intervention. The
CYP2D6 assay should provide great benefits to clinical laboratories performing
patient pharmacogenetic profiling for therapy management and to the pharmaceutical
industry conducting drug discovery and clinical trials.
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INTRODUCTION

Since the publication of the first microarray experiment in 1995 [1], this technology
has rapidly evolved and has now become one of the major tools for global gene-
expression profiling. The results of recent microarray studies have greatly added to
our understanding of e.g., disease pathways [2—5], mechanisms of drug action [6],
and tumor classification [7,8] underlining the increasingly important role of gene-
expression profiling in biomedicine.

Microarray analysis (using cDNA spotted arrays) typically requires 5 to 10 ug
of good-quality RNA per sample to obtain accurate and reproducible results. Animal
and human studies using cell cultures or therapeutically removed tissues (e.g., tumor
material) have little or no constraints in obtaining sufficient RNA quantity as the
tissue supply is usually large. In contrast, clinical (drug intervention) trials are
restricted in the amount and type of healthy tissue that can be obtained. It is therefore
of great importance to make use of tissue biopsy procedures that yield sufficient
high-quality RNA while having a minimal burden on the study subjects, which would
allow these procedures to be performed repeatedly.

There are currently no published studies that have systematically evaluated skeletal
muscle and adipose tissue biopsy procedures in terms of tolerability as well as RNA
yield and quality. To this end, we selected minimally invasive muscle (modified
Bergstrom needle procedure [9]) and adipose tissue (hollow needle aspiration) proce-
dures as most promising candidates to be evaluated for potential future application in
clinical trials studying gene expression in humans. We wanted to balance the
tolerability and RNA yield of these candidate methodologies against the RNA yield
of white blood cells as obtained by venapuncture. The evaluation of all sampling
methodologies was extended to array hybridization, data normalization, as well as
outlier detection and removal in order to cover the complete sample processing flow.

Therefore, the objectives of this study were:

1. To evaluate the tolerability of the selected minimally invasive human
skeletal muscle and adipose tissue biopsy procedures

2. To evaluate the selected RNA extraction methods for muscle, adipose
tissue, and white blood cells in terms of RNA yield and quality

3. To evaluate the selected cDNA microarray hybridization and normaliza-
tion procedures as well as data reproducibility and outlier detection or
removal methodologies

SUBJECTS AND METHODS

The study protocol was approved by the Medical Ethical Committee of the Leiden
University Medical Center and performed according to the principles of ICH-GCP,
the Helsinki Declaration, and Dutch law.

Six healthy male and six healthy female subjects with an abdominal skin fold
thickness of 21 cm were included (Table 7.1). Subjects were excluded if they (had)
used any medication other than oral contraceptives or occasional paracetamol within
2 weeks of the expected study start.
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TABLE 7.1
Demographics
Age BMI W/H Skin-Fold
Subject  Gender (Years) (kg/m?) Ratio Thickness (cm)
1 F 22 254 0.72 2.8
2 F 40 27.1 0.78 34
3 M 36 34.1 1.05 4.0
4 F 22 22.8 0.71 2.1
5 M 22 24.7 0.94 2.8
6 M 22 29.2 0.91 3.9
7 F 22 22.5 0.73 1.5
8 M 23 21.5 0.87 1.0
9 M 18 24.7 0.84 3.5
10 F 20 19.0 0.67 1.7
11 F 41 33.6 0.96 4.0
12 M 24 28.7 0.86 3.0

Note: BMI = body mass index; W/H ratio = ratio of waist/hip circumference.

The study period consisted of a medical screening followed by a single study
day and two follow-up visits after 3 and 7 d, respectively. On the study day, a skeletal
muscle biopsy, a subcutaneous adipose tissue biopsy, and a 10-ml blood sample
were collected. On the two follow-up visits, the biopsy sites were inspected and the
biopsy procedures were evaluated with a tolerability questionnaire.

SKELETAL MuscLE Biorsy PROCEDURE

The subject was in a comfortable (semi) recumbent position with one knee supported
in 20° flexion allowing the quadriceps muscle to relax. A skin area 10 cm proximal
from the patella on the ventrolateral side of the upper leg was disinfected using a
chlorhexidine solution. The skin area and muscle tissue were anesthetized by local
infiltration of 2- to 5-ml lidocaine HCI 1% and disinfected again. Subsequently,
sterile gloves were put on and a sterile surgical aperture cloth was spread over the
disinfected area (the area was covered using a disposable surgical drape). The trocard
was retracted from the biopsy needle (modified Bergstrém muscle biopsy needle
[9], Department of Movement Sciences, Maastricht University, the Netherlands),
and a tube (Connecta Plus 3, Becton & Dickinson) was attached to the needle con-
necting it to a 20-ml syringe. A small incision (approximately 5-mm width) was made
in the skin, subcutaneous tissue, and muscle fascia of the vastus lateralis muscle. The
biopsy needle was introduced through the skin and fascia into the muscle. Vacuum
was applied to the needle by pulling the syringe plunger and holding it in place to
a negative pressure at the 15-ml mark. The cutter was moved 2 cm upwards allowing
the muscle tissue to be drawn into the needle opening. Subsequently, the cutter was
moved down swiftly and was rotated several times to assure the muscle sample had
been cut free completely. Three cuts were made in several directions by rotating the
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needle 45° after each cut. Subsequently, the vacuum was released by gently letting
down the plunger. The needle was retracted, and moderate pressure was applied to
the puncture site. The incision in the skin was closed with suture tape, and a pressure
bandage (Cohefix, 4m x 10cm) was applied for 24 h.

After retracting the needle, the muscle sample was pushed out of the cutter on
a sterile surface and transferred into a preweighed sterile cryo-vial. The sample was
weighed on a calibrated electronic balance, immediately snap-frozen in liquid nitro-
gen, and stored at 80°C.

ADIPOSE TiSSUE Biopsy

The subject was in a relaxed (semi) recumbent position. A skin area 10 cm lateral
from the umbilicus was disinfected using a chlorhexidine solution. The skin and
subcutaneous tissue of the sample site were anesthetized by local infiltration of
approximately 2 ml lidocaine HCI 1%. The skin-fold was lifted and a 14 G needle,
connected to a 50-ml syringe, was introduced into the subcutaneous adipose tissue.
Vacuum was applied to the syringe, and the needle was passed several times in a
horizontal plane through the subcutaneous adipose tissue, drawing it into the needle.
The needle was retracted while maintaining the vacuum, and moderate pressure was
applied to the biopsy site. Approximately 20 ml of saline at 37°C was drawn into
the syringe to wash out excess blood from the adipose tissue. The needle was replaced
by a sterile combi-cap (Luer lock) and the plunger was removed from the syringe
with the cap facing downwards. A sterile funnel with a nylon filter (Millipore nylon
net filter NY8H, & 47 mm, 180-um pore size) was placed in an Erlenmeyer flask
and the contents of the syringe were poured out in the filter leaving the adipose
tissue sample as washed residue. The adipose tissue was removed from the filter
with two sterile spatulas and transferred to a polypropylene cryo-vial. The sample
was weighed on a calibrated electronic balance, snap-frozen immediately in liquid
nitrogen, and stored at —80°C.

BLOOD SAMPLING AND LEUKOCYTE ISOLATION

A 10-ml blood sample was collected by venapuncture in a sodium heparin coated
tube. Samples were immediately stored on ice, and leukocytes were isolated by
lysing the red blood cells in 40 ml EL-buffer (Qiagen, Westburg, the Netherlands)
within 30 min. Subsequently, white blood cells were washed twice with 20 ml of
EL-buffer, lysed in RLT-buffer (Qiagen), and stored at 80°C until extraction of
total RNA.

TOLERABILITY ASSESSMENT

Tolerability was assessed using the following questionnaires.

Directly after each biopsy:
* How would you rank the discomfort experienced from the procedure?
Not painful, slightly painful (comparable to a venipuncture), moderately
painful, or very painful?
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At follow-up (1 week after the biopsy procedures):

* How long did you experience discomfort after the biopsy procedure,
and if you did, how would you rank the discomfort? Slight, moderate
(interfering with normal daily activities), or severe (immobilization)?

* Would you object to (fictively) having the biopsies two more times,
now knowing how it feels?

RNA EXTRACTION

For RNA isolation from skeletal muscle and adipose tissue, biopsies were homog-
enized in RNABee (Tel-Test, Inc., Friendwood, TX), (1 ml RNABee/50 mg biopsy
weight) using an Ultraturrax T25 mixer (Janke & Kunkel, IKA Labortechnik,
Staufen, Germany). RNA was extracted by the addition of 0.2 ml chloroform to
1 ml homogenate, and precipitated by the addition of 1 volume isopropanol in
the presence of 20 ug glycogen as carrier. Following washing with 75% ethanol,
RNA was dissolved in diethylpyrocarbonate-treated water. DNA was removed
from all RNA samples by DNAse treatment followed by cleanup using an RNeasy
minikit according to the manufacturer’s instructions (Qiagen, Venlo, The Neth-
erlands). For leukocytes, total RNA was extracted using an RNAeasy midikit
(Qiagen). Purity and quantity of the RNA was determined by spectrophotometric
analysis at 260 and 280 nm. Integrity of the RNA was verified by agarose gel
electrophoresis.

MICROARRAY HYBRIDIZATION

Human cDNAs were spotted onto Corning GAPS slides using an Amersham
Biosciences Generation III spotter. Each clone was spotted in duplicate or trip-
licate on the array, with the exception of control clones that were spotted 4 to
12 times. The in-house microarray contained 7426 clones that represented 5762
unique human genes. The Cy3-labeled cDNA probe preparation, hybridization,
and subsequent washes of the arrays were performed as previously described
[10]. All arrays were scanned in a ScanArray 4000 (Perkin Elmer Life Sciences,
Boston, MA). Quantification was performed using Imagene (Biodiscovery,
Marina del Rey, CA).

MICROARRAY STATISTICAL ANALYSIS
CORRELATIONS

Spearman’s correlations were calculated between skin-fold thickness and duration
of discomfort (adipose tissue only), and between sample weight and duration of
discomfort (skeletal muscle and adipose tissue). In addition, Spearman’s correla-
tions were calculated between skin-fold thickness and RNA yield (skeletal muscle
and adipose tissue).

All calculations were performed using SAS for Windows V8.2 (SAS Institute,
Inc., Cary, NC).
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NORMALIZATION AND ELIMINATION OF OUTLIER DATA POINTS

Depending on the RNA yield, each RNA sample was hybridized to two to three
microarray slides run in parallel, yielding duplicate or triplicate data points for each
sample. For analysis, the intensities from each chip were scaled to the 75th percentile
(the 75th percentile value of each chip was set to 100), followed by log, transfor-
mation. A nonlinear normalization procedure based on smooth spline [11] was
applied on the duplicate or triplicate data sets for each sample. A data point was
flagged as an outlier if the fold change between the data point and the median of
the duplicate or triplicate data points was greater than 1.5-fold and was removed for
further analysis. The remaining data points (log, transformed intensities) for each
clone were averaged in each sample and the resulting mean was designated as the
log, transformed expression intensity in the sample.

MICROARRAY DATA NORMALIZATION AMONG SAMPLES WITHIN EACH TisSUE

A sorted nonlinear smooth spline normalization procedure [11] was applied on all
samples from the same tissue. After normalization, the ratio between the 95th
percentile and the 5th percentile of the expression intensities in each sample was
calculated as the dynamic range in that sample. Concordance correlation coefficients
were calculated among all samples from the same tissue as described previously [12].

CLUSTERING ANALYSIS

Normalized log,-transformed expression intensities of samples from all three tissues
were subjected to clustering analysis for visualization purposes. The average of the
log, transformed intensities in all samples, defined as the log, transformed geomean,
was set to zero for each clone. Clones with at least twofold change between one
sample and the geomean of all samples were selected for clustering analysis using
GeneCluster™ software and visually represented using Treeview™ version 1.6
(Stanford University, Stanford, CA).

RESULTS
ToLerABILITY Biorsy PROCEDURES

The results of the tolerability questionnaires are summarized in Table 7.2. It should
be noted that four subjects experienced discomfort for more than 72 h after the
muscle biopsy procedure; three subjects reported low-intensity discomfort (slightly
bruised feeling; no immobilization) at the muscle biopsy site up to 4 d after the
procedure. In one other subject, although suture tape had been applied, the small
cut had sprung open, which resulted in delayed wound healing and prolonged
discomfort up to 2 weeks. In addition, eight subjects reported a hematoma at the
adipose tissue biopsy site that remained visible for approximately 1 week but this
did not result in any discomfort.

There was a significant inverse correlation between skin-fold thickness and
duration of discomfort after the adipose tissue biopsy procedure (r = —.68; p = .02).
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TABLE 7.2
Summary Table Tolerability Questionnaires

Discomfort during Biopsy Procedure

None Mild Moderate Severe
Adipose tissue 6 (50%) 6 (50%) 0 (0%) 0 (0%)
Muscle tissue 1 (8.3%) 7 (58.3%) 4 (33.3%) 0 (0%)

Duration (h) of Discomfort after Biopsy Procedure

None <48 h <72 h >72 h
Adipose tissue 5 (41.7%) 3 (25%) 3 (25%) 1 (8.3%)*
Muscle tissue 0 (0%) 6 (50%) 2 (16.7%) 4 (33.3%)*

2 Low-intensity discomfort.

There was no significant correlation between sample weight and duration of dis-
comfort after the biopsy procedure for muscle or adipose tissue (r = —.036; p = .25
and r = .01; p = .97), respectively.

None of the subjects objected to a (fictitious) repeat of the adipose tissue biopsy
procedure two more times, while three subjects objected to repeating the muscle
biopsy procedure two more times. Of these three subjects, one subject thought the
muscle biopsy procedure had been too unpleasant, and the two other subjects
objected because they had felt too restricted in their normal daily activities in the 2
d following the procedure.

Biopsy WEIGHT AND RNA YIELD

For all three tissues, the average biopsy weight (range) and RNA yield (range) are
summarized in Table 7.3. It should be noted that only half of each muscle sample
was analyzed for RNA quantity. This enabled us to repeat the RNA extraction
procedure using an alternative RNA extraction method in case the quality of the

TABLE 7.3
Summary Table Biopsy Weight and RNA Yield

Average Biopsy
Weight (mg) Average RNA Content  Average RNA (ug)/Weight

Tissue Mean (Range) (ug) Mean (Range) (mg) Ratio Mean (Range)
Muscle 121.2 (79-202.0) 16.9 (4.1-41.8) 0.139 (0.051-0.246)
Adipose tissue  197.3 (61-430.0) 3.9 (1.3-8.5) 0.021 (0.013-0.026)
Leucocytes N.a.? 13.0 (2.3-28.8) N.a.?

2Not available; 10-ml blood sample.
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«—— 28S

«—— 18S

FIGURE 7.1 Example of agarose gel electrophoresis of RNA extracted from one blood
sample. The intensity of 28S ribosomal RNA is approximately twice that of the 18S RNA
band, indicating integrity of the RNA.

RNA was unsatisfactory. The ratios of the spectrophotometric readings at 260 and
280 nm were 2.04 + 0.12, 1.97 = 0.09, and 2.01 + 0.08 for RNA extracted from
muscle, adipose tissue, and leukocytes, respectively, indicating purity of the RNA.
No visible RNA degradation or genomic DNA contamination was observed on
agarose gel electrophoresis (Figure 7.1).

For adipose tissue, there was a significant correlation between biopsy weight
and RNA yield (r = .95; p <.0001), but there was no significant correlation between
skin-fold thickness and RNA yield (r = .10; p = .75) or skin-fold thickness and
biopsy weight (r = .25; p = .43). For muscle tissue, the correlation between total
biopsy weight and RNA yield showed a positive trend but was not statistically
significant (r = .46; p = .13).

EVALUATION OF GENE EXPRESSION PROFILES IN
BIOPSY TISSUES AND WHITE BLOOD CELLS

The gene expression profiles in muscle, adipose tissue, and white blood cells were
evaluated by hybridization to an in-house custom made cDNA microarray that covers
5762 unique human genes. We observed a higher expression dynamic range in
leucocytes from white blood cells, as compared to that in adipose and muscle tissue;
the average dynamic ranges among nonoutlier samples (defined below) were 21.8,
14.0, and 4.9 in blood, adipose tissue, and muscle tissue, respectively. Two blood
samples and one adipose sample exhibited an atypical, narrow dynamic range as
compared to their peers (Figure 7.2). These three samples were therefore labeled as
outlier samples.

Pairwise scatter plots and concordance correlation coefficients were generated
among all biopsy samples within each tissue type (Figure 7.3 and Figure 7.4). The
averages (and standard deviations) of the concordance correlation coefficients
observed between nonoutlier samples were 0.971 (0.010), 0.952 (0.021), and 0.949
(0.017) in blood, adipose tissue, and muscle tissue, respectively, indicating high
reproducibility of the expression profiles among nonoutlier samples within each
tissue type. In contrast, the averages of concordance correlation coefficients were
only 0.36 and 0.12 in two blood outliers, and 0.87 in one adipose outlier, after
comparing to nonoutlier samples from the same tissue type. The low concordance
correlation coefficients observed between outlier samples and nonoutlier samples
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FIGURE 7.2 Dynamic range of gene expression intensities in leukocytes and tissue samples,
including three samples (in red) identified as putative outliers.

indicate the discrepancy of the underlying expression profiles and further confirm
the expressional abnormality in these outlier samples.

Clustering analysis of all 36 samples based on 4303 differentially expressed
clones revealed three major clusters that correspond to the three tissue types, with
the exception of two blood samples and two adipose samples that were clustered
with muscle samples (Figure 7.5). Three of the four incorrectly clustered samples



1

—

8

2504
2505

2506

P
VLB
PV

2508

1.00

Biochips as Pathways to Drug Discovery

0.87

0.87

0.B8 [0. 87

0.12

0.87

1.00

0.84

0.Br

0.B7 |0.8F
0.B7 |0. 87

0.87

0.12

0.12

0.87

1.00 |o. B2

0.87

.87

0.87

0.2r

0. 14

0.B7

0.B2 |1.00

0.7

0.87

0.B7 |0.BF

0.87

0.8y

1.00

0.B7

0.B7

P

0.2r7

0.12

0.67 [0. 82

0.87

1.00

0.87 [0.82

0.21

0BT

0.87

1.00

P

0.B7

0.24

0.10

0.44/

0. 18

0.Br

0.pd 0. 87

0.BE [1.00

0.2r

0.12

0.27 |0. 27
0.1 |0. 18

0.12]0.

0.12

0.21

0.24/

0.44 (0. 27
0.18 |0. 12

1.00

0.84

0.10

0.4

1.00

VWAV

FIGURE 7.3 Scatter plots and concordance correlations scheme of gene expression intensi-
ties among white blood cell samples. Samples 8941 and 8942 (in red) are identified as putative

outliers.

P
JF" r
PP A dVadl o 4V

0.83

0.95

0,05

097 [0, 57

098]0,

0.88

081

0,84

0960, 5g

0940,

0.83

0.04

0,05

0Tl -

0arn,

.51

0.54

[

0.ar|0. 57

0.85]0.

n.ar

0.88

0,80

087 |0. 86

0240,

Loo

0.84

0.85

0.83)0.53

0.a1)0.

094

0860, 95

09§

IJBi"

1.00

0.ar|0.aF

I.'IBE 5

083

0.88

0.8r

1.00)0. 88

AT,

0832

0.88]1.00

081

IJ.‘!E

.85

0.ArF|0. 87

loajn.

083

0.88

.88

0.83)0. 88

A7) 1.

m Jﬂ&ﬂﬁﬂ
77

Pa0z

QE09

i 4

2:10

FIGURE 7.4 Scatter plots and concordance correlations scheme of gene expression intensi-
ties among adipose tissue samples. Sample 9803 (in red) is identified as putative outlier.



Evaluation of Skeletal Muscle and Adipose Tissue Biopsy 119

Tree View -~ CumentHade HODEEOTX -~ Comelation 0, 7179565479675
Fie Seling Frd Hep Mo About

Two fat sarples and two
blood sarples are clustered

B39 X005131 EGR-Erkd2
AL391] RRAZIS ) HUMELR |
L2311 Te30IL1 RSUFTHE |
2196 | TR alnba?fde
1T62E RILIH] Rowel

1124 RI9ISE1 RFOSIIe |
9236 511 eroteasom
13275 Dadeaz) MY FLEY
ST RIS MBS
43280 REVFTILE| HNCFEL
1T RMELGRL] EFOLEETO
15264| WR0IIN FEHRFTORE
307 RRAENISE| SEE191 R

FIGURE 7.5 (A color version follows page 204) Clustering on 36 samples reveals 4 spurious
samples. Gene number (at least twofold change in one sample and geo-mean): 4303.

were outlier samples as determined by the analyses of expression dynamic range
and concordance correlation coefficients, whereas the fourth incorrectly clustered
sample contained adipose tissue that also exhibited low dynamic range (6.8 vs. the
average of 14.0) and low concordance correlation coefficients (0.92 vs. the average
of 0.96), as compared to other nonoutlier adipose tissues. Three tissue-specific
clusters were confirmed in clustering analysis after removal of these four incorrectly
clustered samples (Figure 7.6).
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after excluding 4 spurious samples. Gene number (at least twofold change in one sample and
geo-mean): 3709.
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DISCUSSION

This study evaluated the tolerability of minimally invasive skeletal muscle and
adipose tissue biopsy procedures, and the resulting RNA yields and quality for
subsequent cDNA microarray analysis. In addition, we evaluated the RNA yield and
quality of white blood cells and our methods for microarray hybridization and
detection and removal of outliers in the microarray data. In general, the tissue biopsy
procedures were well tolerated (Table 7.2).

The sampling of adipose tissue was virtually painless, and discomfort reported
during the procedure was primarily related to the introduction of the local anesthetic
injection needle. None of the subjects objected to a fictitious repeat of the proce-
dures two more times. The procedure caused a superficial hematoma (in 67% of
the subjects) that disappeared after 1 week but did not result in any discomfort.
There was a significant inverse correlation between abdominal skin-fold thickness
and duration of discomfort after the adipose tissue biopsy procedure. This probably
relates to the increased difficulty and duration of the biopsy procedure in leaner
subjects with a borderline (approximately 1 cm) abdominal skin-fold thickness.
Therefore, subjects with a relatively large abdominal skin-fold thickness are pre-
ferred, in order to further minimize the duration of discomfort after the adipose
tissue biopsy. The muscle biopsy caused more discomfort during and after the
procedure. This was probably related to the more invasive nature of the procedure.
The discomfort experienced during the biopsy session was, as for adipose tissue,
primarily related to the local anesthetization procedure. Because of adequate anes-
thesia, performing the biopsy procedure itself was virtually painless. Furthermore,
in one subject the surgical tape had been unable to support the small cut sufficiently,
which resulted in wound dehiscence and therefore delayed healing. After this
observation it was decided to close the biopsy site with a single suture (4 x 0
ethilon) for all remaining subjects.

Three subjects objected to participating when the procedure would have been
repeated two more times. One subject had found the procedure unpleasant, which
probably related to some difficulty in relaxing the quadriceps muscle during the
procedures. In addition, two subjects complained of pain and discomfort when straining
the muscle on the day after the procedure, which restricted them in their daily (sports)
activities. Hence, it is of great importance that the subjects are adequately relaxed
during the muscle biopsy procedure and should be advised to avoid strenuous exercise
(e.g., climbing stairs, sports) the day after the procedure as they may be hindered by
the small lesion in the quadriceps muscle. Hence, our data allow future investigators
to provide accurate informed consent for potential subjects. In addition, for future
studies we suggest closing the biopsy site with a single suture to avoid wound dehis-
cence. Taking these points into account, it is expected that performing the muscle
biopsies more than once in a single study will be tolerable for all subjects. In addition,
we now also have data from a considerable number of healthy volunteers and diabetic
patients who have undergone the biopsy procedures two or three times per study, and
tolerability was in line with the expectations raised in this study.

In the preparatory phase of this study, it was established that cDNA microarray
analysis with triplicate hybridizations requires at least 5 ug total RNA per sample
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but more (up to 10 ug) is preferable to compensate for potential RNA degradation
(data not shown). The muscle samples yielded sufficient RNA (average 17 ug,
minimum was 4.1 ug), considering only half of each sample was analyzed for
RNA content (Table 7.3). In contrast, the adipose tissue samples yielded insuffi-
cient RNA quantities (average 3.9 ug), with two samples yielding only 1.4 ug
RNA. This was probably related to the comparatively low sample weight (84 and
86 mg), because RNA yield proved to correlate with biopsy weight in adipose
tissue. As the RNA yield was relatively low (average 0.021 ug/mg), care should
be taken that sufficient adipose tissue is sampled. The projected minimal sample
weight for adipose tissue, calculated from the lowest RNA and weight ratio
observed in this study (0.013 ug/mg), is around 400 mg yielding approximately
5 ug total RNA. This appears feasible from a technical and tolerability point of
view because there was no correlation between biopsy size and duration of dis-
comfort within the 61 to 430 mg range (Table 7.3). Furthermore, it is expected
that sampling beyond 400 mg (up to 1000 mg) to obtain even higher RNA yields
will not result in any additional discomfort.

The 10-ml blood samples harboring white blood cells yielded sufficient RNA
in most cases. One sample had a very low RNA yield (2.3 ug) compared to its peers
where the average RNA yield was 13.0 ug (Table 7.3). This sample was designated
as an outlier by dynamic range, concordance, and cluster analysis but not by gel
electrophoresis analysis, which showed no clear evidence of RNA degradation. The
low RNA yield in this case may have resulted from inefficient RNA extraction,
which did not allow triplicate or even duplicate microarray hybridizations. Another
blood sample was considered a putative outlier although the RNA yield of this
sample appeared sufficient (13.8 ug). This was possibly related to RNA degradation
during cy3 labeling or just prior to array hybridization. Another possibility could be
an inferior-quality cDNA microarray slide. However, quality control showed no chip
abnormalities. More recently collected, extensive experience with all described
methodologies in two clinical pharmacology studies led to the conclusion that failure
rate of the techniques is reduced importantly when methods are applied in a semi
routine setting. Therefore, although the chances of accumulating missing data points
because of occasional RNA degradation or inefficient RNA extraction can be reduced
by collecting samples in duplicate. However, there seems to be little justification to
do so in an experienced setting.

In summary, the muscle and adipose tissue biopsy procedures evaluated in this
study were well tolerated. The muscle biopsy procedure yielded sufficient amounts
of good quality RNA, evidenced by gel electrophoresis as well as subsequent
dynamic range, concordance correlation, and cluster analyses. The adipose tissue
biopsy procedure however, yielded insufficient RNA quantities to allow duplicate
or triplicate hybridizations for all samples, which resulted in two putative outlier
samples. The white blood samples yielded sufficient RNA in most cases, and may
be taken in duplo to prevent unnecessary missing data points in an inexperienced
setting. Therefore, we conclude that the procedures evaluated in this study are
suitable for use in future clinical microarray studies, provided that adipose tissue
biopsy weight is minimally 400 mg and the skeletal muscle biopsy weight is mini-
mally 100 mg. Our methodology for microarray data normalization, and elimination
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of outlier data points and subsequent clustering analysis proved to be an appropriate
approach that is expected to be fully applicable to compare gene expression profiles
of healthy volunteers and patients at baseline, and to study drug effects in a clinical
pharmacology setting.
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ABSTRACT

The mapping of an increasing number of genomes and the recent development of
DNA microarrays have allowed researchers to greatly enhance their pace of discovery
and raised several questions genomewide; these were not feasible a decade ago. DNA
microarrays are mainly used to study global changes in gene expression patterns within
the cell under various experimental conditions. Gene expression is a complex network
of regulatory cascades and interconnectivity. The analysis of protein binding genom-
ewide, rather than its effect on gene expession, provides a useful tool to circumvent
interpretation issues related to these indirect effects. This approach is achieved by a
combination of chromatin immunoprecipitation and hybridization to DNA microarrays
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(ChIP-on-chip). The purpose of this review is to discuss the strengths of ChIP-on-chip
experiments, alone and in combination with standard expression arrays.

INTRODUCTION

The completion of the genetic map of the first free-living organism in 1995 (Haemo-
philia influenzae) [1] marked an important milestone in the genomic era. It was soon
followed by a flurry of publications of complete genome sequences of other organisms,
from the budding yeast Saccharomyces cerevisiae [2] to higher eukaryotes, including
the fruit fly Drosophila melanogaster [3]; these culminated in the publication of the
human genome in 2001 [4,5]. The challenge for current and future generations in the
postgenomic era consists in making sense of these primary DNA sequences containing
coding, regulatory, and “junk” DNA regions. Scientists have traditionally and success-
fully used a gene-by-gene approach that is both time-consuming and does not take
advantage of the available data. For fulfillment of their promises, various genome
projects required new technological advances that could not only provide a global and
unbiased view of the biological processes but also greatly increase the pace of discov-
eries. Pioneer work by Fodor (cofounder of Affymetrix) and later by Patrick O. Brown’s
group led the way to the development and generalization of high-density DNA microar-
rays [6,7] adapted to genomewide studies. In the past, DNA microarrays have become
an invaluable tool for rapid genomewide surveys of gene expression patterns for both
biological researchers and clinicians. Expression microarrays are ideal for diagnostic
(cancer profiling, disease classification, etc.) studies or for the study of the global
effect of drugs or gene mutations on downstream gene regulation. However, the
inherent cascade effect of the expression of one gene on others will inevitably hinder
a coherent mechanistic interpretation of the data. Indirect effects are best illustrated
by the common observation that disruption of a gene encoding a transcriptional
repressor can lead to both repression and derepression of gene activity genomewide,
whereas only the latter is expected [8,9]. In this case, the issue was alleviated by
the development of new tools to determine the transcriptional repressor recruitment
sites on the chromosomes [10]. The protein-interacting loci are identified with DNA-
binding microarrays that are a combination of chromatin immunoprecipitation
(ChIP) and DNA microarrays, also known as ChIP-on-chip. In addition, the activity
of some proteins, such as histone-modifying enzymes, can readily be surveyed, using
the same ChIP-on-chip approach [11-14]. This chapter will focus on applications
and various issues concerning ChIP-on-chip experiments with a special emphasis
on yeast, because the technique has been applied mostly to this organism so far.

CHIP-ON-CHIP: BRIEF HISTORY AND OVERVIEW OF
THE METHOD

A Brier HiSTORY

In 1985, Solomon and Varshavsky observed that histones could be efficiently and
reversibly cross-linked to chromosomal DNA with formaldehyde in vivo [15]. They
envisioned that this property could be exploited to map protein—~DNA interactions
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in vivo; a few years later, they used antibodies to immunoprecipitate cross-linked
histones and RNA polymerase Il at the Drosophila hsp70 locus, laying the foundation
for chromatin immunoprecipitation (ChIP) [16]. The authors state in the last sentence
of their article, “The formaldehyde-based in vivo mapping techniques of this work
are generally applicable, and can be used both to probe protein—-DNA interactions
within specific genes and to determine the genomic location of specific chromosomal
proteins” [16]. A little more than a decade later, chromatin immunoprecipitation had
become the tool of choice for those desiring to study chromatin and protein—DNA
interactions in vivo. The emergence of DNA microarrays allowed two laboratories
to combine both technologies and publish simultaneously genomewide binding maps
for several budding yeast transcription factors [17,18].

THE METHOD

Formaldehyde reacts with amino and imino groups found on the side chains of
residues such as arginine, histidine, and lysine, creating an intermediate Schiff base,
which in turn reacts with another amine group, leading to the final covalent cross-
linking of two amino groups. In addition, cross-linking occurs through the amino
group of an adenine, cytosine, and guanine. The short range (2 A) of the reaction,
however, prevents efficient cross-linking of proteins that are not close enough to the
DNA. Bifunctional imidoester cross-linkers with long spacer arm lengths allow the
formation of covalent bonds between more distant primary amine groups on proteins.
These include dimethyl adipimidate (DMA), dimethyl pimelimidate (DMP), and
dimethyl 3,3’-dithiobispropionimidate (DTBP) with respective spacer lengths of 8.6 A,
9.2 A, and 11.9 A. However, these compounds do not react with DNA and have to
be used in conjunction with formaldehyde. This double cross-linking approach
assumes that the protein of interest interacts with a formaldehyde-cross-linked DNA-
binding protein either directly or indirectly within a larger protein complex. These
imidoester compounds were successfully used to cross-link and immunoprecipitate
proteins that were resistant to formaldehyde alone [10,19]. Formaldehyde can also
be used to cross-link successfully RNA-binding proteins that can subsequently be
immunoprecipitated [20].

Several similar ChIP-on-chip methods have been described in detail by different
laboratories [21-25]. Here, the basic technical aspects of the approach will only be
briefly summarized (Figure 8.1). First, cells are cross-linked with formaldehyde,
lysed, and their chromatin content is sheared down to an average size of 500 base
pair (bp), either by sonication or by enzymatic digestion. The resolution of the ChIP
will depend greatly on the size of the sheared chromatin. Then, highly specific
antibodies are used to immunoprecipitate cross-linked chromatin fragments enriched
for the targeted protein and “associated” DNA. The antibody specificity is certainly
one of the most critical elements of the whole procedure. If possible, these antibodies
have to be tested both by ELISA and by chromatin immunoprecipitation against a
strain lacking the epitope [26]. In situations in which there are no antibodies raised
against the protein of interest, epitope-tagged proteins can be immunoprecipitated
with the corresponding antibody. Alternatively, proteins can be affinity-purified using
a tag that bypasses the need for an antibody altogether, such as GST (glutathione
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FIGURE 8.1 (A color version follows page 204) General ChIP-on-chip method overview. The
“test” and “reference” experiments are run in parallel. The test strain contains the protein of
interest (or its epitope-tagged version), whereas the reference strain has neither the protein nor
the tag. Chromatin from formaldehyde-treated cells is sheared by sonication to an average size
of 500 bp and immunoprecipitated using highly specific antibodies raised against the analyzed
protein. After immunoprecipitation and cross-linking reversal, DNA is purified and amplified
by PCR. INPUT DNA from the reference strain (cross-linked and sonicated) is used as an
alternative in case immunoprecipitation does not yield enough DNA. INPUT DNA is amplified
by PCR directly, bypassing the immunoprecipitation step. This approach, however, does not
control for any potential weak antibody specificity. Enriched DNA from the test and reference
strains is then labeled with the fluorophores Cy3 and Cy5, respectively. The fluorescent DNA
probes are subsequently combined and hybridized to a DNA microarray. For any given DNA
fragment on the microarray, the ratio of the normalized fluorescent intensities between the two
probes reflects the protein enrichment in the test relative to the reference experiment.
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S-transferase) or TAP (tandem affinity purification). The tagging of a protein, how-
ever, may partially or even fully disrupt its ability to interact with chromosomes.
Finally, after cross-linking reversal, DNA is purified, amplified by PCR, and labeled
with a fluorophore. One fluorescent dye (e.g., Cy5) is used to label DNA recovered
from the “test” strain containing the protein of interest, whereas a second dye (e.g.,
Cy3) is used for the isogenic control or reference strain lacking that same protein.
Background DNA levels recovered from the “reference” strain may be extremely
low and, as such, may not be labeled efficiently. Thus, as an alternative control, it
is possible to use nonimmunoprecipitated INPUT genomic DNA from the test
chromatin after cross-linking and sonication. The problem with this approach, how-
ever, is that “INPUT DNA” control does not guarantee against false positives due
to weak antibody specificity. Finally, the test- and reference-labeled DNA probes
are combined and hybridized onto DNA microarray glass slides containing either
intergenic regions (IGRs), open reading frames (ORFs), or both. After scanning for
both fluorescent dyes, the normalized ratios of intensities between the two probes
reflect the relative enrichment of the protein at different genomic loci. Data normal-
ization and data mining will not be discussed here because it has been reviewed
recently, specifically in regard to ChIP-on-chip [27].

YEAST CHIP-ON-CHIP AND BEYOND

The budding yeast Saccharomyces cerevisiae was among the first organisms to have its
entire genome sequenced [2], primarily because of its relatively small size (12 million
bases). As such, it was a prime candidate for early ChIP-on-chip experiments. A
full yeast genome can be spotted on a glass microarray with about 12,000 DNA
fragments of 1 kb. A similar human microarray, with a genome size roughly 250-
fold larger, would require a staggering 3 million spotted elements of 1 kb length,
currently not technically achievable on a single chip. Moreover, the low level of
repetitive sequences of the yeast genome reduces interpretation uncertainties due to
potential cross-hybridization. Unsurprisingly, most published data on ChIP-on-chip
are from work on yeast. The proof of the principle came from the binding maps of
individual transcription factors such as Gal4, Mbpl, Swi4, Stel2, and Rapl
[17,18,28]. Subsequently, the genomewide binding of over 100 epitope-tagged tran-
scriptional regulators was published [29] in an unprecedented effort to identify
interconnection between networks of transcriptional regulators.

CHROMATIN MODIFICATIONS: A CASE STUDY FOR
CHIP-oN-CHIP EXPERIMENTS

ChIP-on-chip experiments have been successfully applied to the understanding of
histone modifications during gene regulation. These experiments will be discussed
in this section in order to best illustrate the complementarity between expression
microarrays, binding microarrays, and acetylation microarrays.

In eukaryotes, the packaging of DNA into chromosomes is a crucial component
in the regulation of most nuclear processes, including gene regulation, DNA replica-
tion, repair, and chromosome recombination. In chromatin, DNA is associated with
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histone proteins to form nucleosomes, which may hinder or enhance these nuclear
events depending on their structure. This may occur through nucleosome positioning,
chromatin remodeling, and higher-order chromosome folding, all of which influence
DNA accessibility. In addition, histones are the targets of a number of posttranslational
modifications such as acetylation, phosphorylation, and methylation. Over the years,
considerable amount of effort has been dedicated to the understanding of the purpose
and mechanism underlying the regulation of these nuclear events. Histone acetylation
is probably the best understood among these molecular switches.

The addition and removal of acetyl groups on lysine residues on histone tails is
mediated by histone acetyltransferases and deacetylases, respectively. The numerous
members of this class of enzymes have different histone and lysine specificities, and
also act at different genomic loci. In yeast, the histone deacetylase Rpd3 is recruited to
some promoters by the repressor Ume6 [30], leading to the local deacetylation of all
four core histones [26], whereas Hdal deacetylates histone H3 and H2B at Tupl-
repressed loci [31]. In addition, histone acetyltransferases and deacetylases function
globally over portions of the genome in an unknown mechanism that does not appear
to require targeted recruitment by a transcriptional regulator [32]. However, the histone
and gene specificity in vivo for some of these enzymes (i.e., Hosl, Hos2, and Hos3)
remained elusive, mainly because of the inability to identify their genomic targets using
a “one gene at a time” approach. Genomewide studies by expression cDNA microarrays
proved unable to unequivocally identify the genes regulated directly by histone deacety-
lases. For instance, disruption of the gene encoding the histone deacetylase Rpd3 led to
more genes’ being repressed than derepressed in an expression cDNA microarray [8,9].
This is a common problem with expression cDNA microarrays, in which measurement
of gene activity at steady state cannot take into account indirect effects. One way to
partially solve this problem would be to take different snapshots over time in an attempt
to sort out immediate early-response genes from late-response genes, assuming that the
first responders are direct targets. In addition, different activation or repression pathways
may converge toward the regulation of a particular gene. Indeed, disruption of a repressor
gene may not necessarily lead to a measurable and significant change in gene regulation
in the absence of proper activation conditions or because of redundant pathways. Thus,
the localization of a gene regulator at a specific genomic locus is a better indicator of
its primary function than its potential effect on gene activity. ChIP-on-chip experiments
provide an ideal tool. Although Rpd3 is a repressor, its genomewide binding map
revealed that it is associated with some genes harboring high transcriptional activity
[10]. For instance, Rpd3 is found at the promoter of about half of the highly active
ribosomal protein genes in logarithmically growing cells, yet its disruption affects neither
their acetylation [12] nor their expression [8,9]. Rpd3 was later shown to play a role in
the repression of ribosomal protein genes after inhibition of the nutrient-sensitive Tor
pathway with rapamycin [33]. Thus, Rpd3 appears to be poised at ribosomal protein
genes, ready to resume its repressive activity in response to poor nutrient availability.
This case illustrates the strength of binding microarrays as it revealed functions for Rpd3
that went unnoticed using expression microarrays alone.

On the other hand, failing to detect a protein at a particular genomic locus may
inaccurately suggest that the protein does not function at this site. Weak or no
cross-linking, epitope masking or even transient interaction of the protein with the
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chromosome can all contribute to what at first may appear to be a negative result.
Unfortunately, there is no easy way to solve this problem other than by altering
experiment conditions.

Histones are cross-linked efficiently [15] and the acetylation, methylation, or
phosphorylation status of their residues can be monitored by chromatin immuno-
precipitation, providing an additional approach to identify histone-modifying
enzymes’ genomic targets. The availability of very specific antibodies raised against
individual acetylated lysine residues on histone tails [26] permits the adaptation of
ChIP-on-chip to histone posttranslational modifications [11-13].

Acetylation microarrays have uncovered a “division of labor” for most yeast
histone deacetylases [12]. They also allowed the identification of large chromatin
domains affected by individual deacetylases such as the subtelomeric domains
deacetylated by Hdal (HAST domains). Importantly, these domains are continu-
ous, encompassing both ORFs and large IGRs. For this reason, their identification
would not have been possible using expression arrays. Acetylation microarrays
also gave clues for the function of another histone deacetylase, Hos2, whose
function was unclear until then. Although Hos2 disruption displayed only a minor
effect on acetylation genomewide, the regions affected most appeared to be ORFs,
not IGRs [12]. Hos2 function at ORFs was investigated further and, surprisingly,
its disruption decreased the activation kinetics of its target genes [34], contradicting
the previously accepted notion that all histone deacetylases are transcriptional
repressors. Moreover, Hos2 binding on ORFs genomewide correlates positively
with gene activity [34].

It is believed that acetylation is globally associated with gene activity and
deacetylation with gene repression. For instance, silenced heterochromatin is
hypoacetylated as opposed to the hyperacetylated state of transcriptionally compe-
tent euchromatin. However, the status and contribution of individual lysine residues
in euchromatin during gene transcription was unclear. Acetylation patterns were
carefully analyzed at individual genes both under repressive and induced conditions.
Because gene regulation comes in a variety of flavors, it may be erroneous to
extrapolate data from a single gene to the entire genome. The use of acetylation
microarrays allows for the opportunity to ask whether different histone modification
patterns are associated with specific functions.

This question was investigated recently in an effort to systematically map genom-
ewide acetylation sites in wild-type cells [13]. This study showed that hyperacety-
lation of histone H3 lysine 9 (H3K9), H3K18, and H3K27, but hypoacetylation of
H4K16, both at promoters and over ORFs, correlates positively with transcription.
Most interestingly, specific acetylation patterns turned out to be associated with
biologically related gene clusters that respond to particular environment conditions
such as heat and cold shock or nitrogen starvation. Specific acetylation patterns may
create specialized interaction surfaces for given chromatin regulatory proteins. For
instance, chromatin interaction with the bromodomain protein Bdf1 requires a pos-
itive charge (deacetylated lysine) at H4K16. Similarly, artificial H4K16 acetylation
at the telomere abolishes recruitment of the silencing regulatory protein SIR3
[35,36]. These experiments provide mechanistic insights into gene regulation that
were not revealed by expression cDNA microarrays.
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CHIP-ON-CHIP AND BIOMEDICAL APPLICATIONS

Profiling of gene expression using cDNA microarrays has been used to classify
diseases or tumors with the hope of its being able to refine and customize both
diagnosis and treatment. Such an approach, however, would require the ability to
accurately compare gene expression between patients and healthy individuals,
which is not a trivial matter. Different genetic backgrounds among individuals
may alone account for substantial variations in gene expression. RNA sampling
and pooling from a large population will level out natural differences but will
defeat one main purpose of gene profiling, namely, customized treatment for
individuals. Cell homogeneity or lack thereof is another crucial parameter in gene
profiling, because crude biopsies often contain many different cell types. Never-
theless, cDNA microarrays have been applied to the profiling of a variety of
pathologic conditions, including among others cardiovascular disease, diabetes,
breast cancer, or immune diseases (for a review see Weeraratna et al. [37]).
Although gene profiling is unequivocally a useful tool for drug and clinical
research, its “field” application to both diagnostics and treatment of individual
patients will require appropriately devised experimental protocols and data anal-
ysis algorithms to separate “noise” from genuine disease-induced expression pat-
terns. ChIP-on-chip will face the same challenges described in this paragraph. A
combination of the two arrays approaches (expression and ChIP-on-chip) may be
part of the answer.

As mentioned earlier in this chapter, indirect effects are less of a concern
for gene profiling in clinical applications, because all that really matters is the
change of global expression patterns and not the underlying molecular mecha-
nisms. In that respect, ChIP-on-chip is not necessarily complementary to expres-
sion microarrays. ChIP-on-chip, however, may have its own specialized role in
areas that cannot be adequately investigated with expression microarrays, such
as histone modifications. Covalent histone modifications are linked to tumero-
genesis and metastasis mostly through aberrant gene expression [38]. The impor-
tance of histone deacetylation has been highlighted in human leukemia [39,40].
Two forms of acute promyelocytic leukemia (APML) are caused by chromosomal
translocations, which create oncogenic fusion proteins between the retinoic acid
receptor (RAR) and either PML (promyelocytic leukemia) or PFLZ (promyelo-
cytic leukemia zinc finger); these ectopically recruit histone deacetylases, lead-
ing to aberrant deacetylation. Naturally, efforts are currently under way to
analyze the potential therapeutic action of histone deacetylase inhibitors. Sub-
eroylanilide hydroxamic acid (SAHA) is such an inhibitor whose antitumoral
activity appears to commit target cells to apoptosis [41]. In that context, one
could envision the use of “acetylation” microarrays to investigate the existence
of a histone modification signature, specific to a particular type of cancer; this
could be acetylation, phosphorylation, methylation, ubiquitination, sumolation,
or ADP-ribosylation. The unraveling of potential tumor-specific signatures at
precise genes could not only provide formidable insights into tumorigenesis but
also aid the design of highly specific inhibitors, thereby minimizing the risk of
side effects.
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CONCLUDING REMARKS

The incomplete coverage of current DNA microarrays for higher eukaryotic genomes
limits their full extension to ChIP-on-chip in theses organisms. Nevertheless, it is
possible to prepare custom microarrays that contain a portion of the genome of interest.
Using this approach, several groups have applied ChIP-on-chip to Drosophila melan-
ogaster [14] and humans [42,43]. ChIP-on-chip resolution can be greatly improved
by using tiled microarrays. The preparation of such microarrays usually leads to a
decrease in the coverage of the genome of interest since those would require a stag-
gering amount of synthesized probes that would not fit into a single chip. Thus,
researchers who are currently using tiled microarray for ChIP-on-chip experiments
have limited themselves to small areas of various genomes. In the near future, much
needed higher-density microarrays will certainly be available.

In the postgenomic era, ChIP-on-chip experiments will be a crucial tool for
deciphering the regulatory networks within the nucleus and their interaction with
the genome.
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ABSTRACT

Developments in DNA microarray technology and related “-omics” technologies
have generated a vast amount of data that allows for a higher level of scrutiny of
the human genome. This provides a tremendous opportunity for describing and
understanding not only the wiring diagram and annotation of the human genome
but also molecular defects in cancer genomes. These insights could significantly
improve health-care management of human cancers by molecular targeted therapy,
method development, and microarray assay-based screening techniques, among oth-
ers. In this chapter, the usage of DNA microarrays in cancer biology and related
approaches in drug discovery programs is reviewed, and recent approaches that have
shown promise are discussed.

INTRODUCTION: DNA MICROARRAYS
IN DRUG DISCOVERY

Development of the microarray technology in the last decade was aided by the
interest of cancer drug manufacturers and biotechnology companies, as well as
funding of cancer research by public groups (e.g., funding for cancer and
genomics programs in the U.S. by the National Institutes of Health, NHGRI,
and NCI programs such as the Directors Challenge Program). Public interest
and funding resulted in a comprehensive body of knowledge, which, on a basic
level, provided a catalog of expression signatures for human cancers
(http://dc.nci.nih.gov/organization/publications, accessed February 2005). How-
ever, the efforts of this scientific community had broader implications beyond
a cancer genome’s afflicted genes or wiring diagram. The interest also led to a
rapid commercialization of DNA microarray technology in recent years. Today,
“tool maker” companies such as Agilent, Affymetrix, and Nimblegen have devel-
oped DNA microarray technologies, now routinely used in drug discovery and
development efforts. The tool makers hope to prevail in their respective markets
by making the drug discovery and development process successful, effective,
efficient, and economical. Although, as many are quick to point out, these gene
catalogs and parts lists are still in their infancy, a long way from curing cancer
and filling up the drug discovery pipelines, the efforts have undoubtedly culmi-
nated in a solid understanding of microarray technology and molecular images
of human cancers and syndromes. Without a thorough understanding of the
molecular circuitry in cancer cells, finding new promising drugs will remain a
formidable challenge. Until then, cancer patients will continue to be treated in
a nonelegant fashion with conventional chemotherapy, which has nonspecific
effects.

This chapter outlines the context in which DNA microarray technologies and
applications are used in cancer research and the impact of this on drug discovery.
Subsequently, new approaches in discovery and screens that utilize microarrays are
reviewed. Finally, the impact of the technology in discovery efforts and possible
uses of microarrays in the future are discussed.
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FROM CANCER CLASSIFICATION
TO DRUG DISCOVERY

The early landmark paper, which unleashed the power of gene expression and
microarray technologies, demonstrated accurate classification of hematologic
malignancy-acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL)
[1]. This study demonstrated that molecular signatures could clearly classify
patients at the clinic. The study led the way for microarrays to gain importance
in several areas: tumor classification, prediction of tumor classes, molecular diag-
nostics, and revelation of the genetic defects, the Achilles’ heel of cancers. Sub-
sequently, many solid tumor studies were performed using DNA microarrays. For
example, in breast and lung cancer, the focus moved from tumor classification
based on unsupervised clustering of gene expression index [2—4] to dissection of
solid tumors in the context of patient survival [5] and defining tumors by metastasis
signatures from multiple data sets and cancer subtypes [6,7]. These cancer studies
were able to reveal gene expression class-based molecular classification of cancer,
and also to perform supervised analyses in which classes with different patient
outcomes were associated with dysregulated genes or gene sets. In the breast
cancer study [5], the set of genes that correlates with good or bad patient outcomes
(metastasis or no metastasis) was determined, as were the marker genes for the
estrogen receptor and BRCA1 pathway defects [5]. From this arose the notion that
transcriptional profiling (which allowed monitoring of genes in a massive parallel
fashion at a genomewide level) could help discover new tumor classes, pathway
defects, patient stratification for treatment, and discovery of new drug candidates.
Similarly, the discovery of fms-like tyrosine kinase 3 (flt3) receptor overexpression
was observed in a new tumor class in ALL and AML patients, namely, MLL-
rearranged acute lymphoblastic leukemia (MLL), which subsequently revealed
mutations in flt3 receptor tyrosine kinase (RTK) [8,9]. Drugs that could target fIt3,
such as PKC-412, MLN-518, and CEP-701, could shut off signaling through fit3,
especially in ft3 overexpressing cells or cells that harbored activating mutations
in fit3. Phase I clinical studies with such drugs have shown modest tumor responses
[10-12]. These results were contrasted with imatinib mesylate (Gleevec, Glivec,
STI-571), a tyrosine kinase receptor inhibitor, which targets the ATP-binding
portion of the kinase domain, shutting off kinase activity. The drug targets c-kit/
PDGREF translocations or mutations in gastrointestinal stromal cancers (GIST) as
well as ber-abl mutant kinase fusion/translocation events in chronic myelogenous
leukemia (CML), and the results in these tumors were impressive. The drug was
recently approved by FDA and reduces tumor burden by several orders of mag-
nitude in patients. More recently, mutations in the kinase domain of EGFR (another
RTK) in a subclass of lung cancer (nonsmall cell lung cancer, NSCLC) correlate
with sensitivity to inhibitors in the kinase domain of EGFR, providing a rational
explanation for both the susceptibility of this class of cancer to such druggable
compounds and the superior response in patients, albeit in less than 10% of NSCLC
patients [13,14]. These three examples have therefore generated immense interest
in looking at RTKs and their susceptibility to small molecules.
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HUNTING AND SCREENING APPROACHES
IN DRUG DISCOVERY

Typically, there are two approaches to drug discovery. One method begins with
screening for compounds from causative genes. The other approach is to first screen
compounds for desirable effects, then pinpoint the causative genes. Following in the
footsteps of the genome sequencing efforts, the early DNA microarray research
community primarily aimed at selecting a gene list or testing a hypothesis by
conducting partial genome screens. Because molecular classification of tumors could
be achieved with fewer genes or features, and knowledge of molecular data was
rudimentary, early efforts in microarrays were relegated to the molecular aspect of
cancer classification. The recent availability of whole genome arrays has alleviated
such constraints [15,16], making it possible to discover precise defects in pathways
at the transcriptional level. In a recent talk at a scientific meeting on cancer research
[17], it was emphasized that the low number of truly druggable targets (only a few
hundred) was due to the poor annotation of the human genome (description or
knowledge of gene function). The ability to create large repositories of data using
microarray assays exists; however, the challenge is to make sense of the data and
enable problem solving, generating new questions, and validating experiments that
ultimately lead to generation of new drug compounds or therapies. One should not
lose sight of the fact that proteins are the ultimate arbitrators of cellular function,
and the genes encode the proteins. These networks and their role in tumorigenesis
must be understood to determine effective therapies. Much to the dismay of Wall
Street, the proposition that microarrays can quickly deliver new compounds has not
proven to be true. In contrast, recent success with RTK inhibitors in cancers has
renewed the hope of mechanism-based therapeutics.

Although all screening approaches cannot be reviewed here, a few deserve to
be mentioned in the context of microarrays. The importance of drug screens using
yeast or NCI-60 cancer cell lines was recognized very early in genomics-based
screening [18-20]. Both specific targeting of pathways and wide screens are needed
for drug discovery [21] and, in some cases, can be addressed by microarray-based
assays. The insights that led to the discovery of Gleevec and its therapeutic impact
are not readily replicated for the discovery of other drugs in which the same pathways
are affected. Incomplete understanding of pathways and redundancies create chal-
lenges for screening approaches. It was noted that when lesions in RTK pathways
were involved later in tumor progression, Gleevec was less effective, and thus for
the concept of single-agent therapy, stage and state of tumor are important factors
in determining clinical outcome [22]. Note that this statement does not indicate that
microarrays cannot be used to discover compounds. Solving diseases such as cancer
requires additional efforts far beyond whole genome analysis, a quick shortcut
screen, and platform specifications such as sensitivity, specificity, and feature/spot
density. It is accepted that cancer is plagued by complexity because of the etiology
of the disease, patient response, heterogeneity and polygenic traits (rarely does
cancer evolve from a single genetic event), tumor evolution, increased mutation
rates, and chromosomal aberrations [22]. Thus, a battery of biological applications
are attempted to precisely understand the problem and to test for specificity of the
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cancer drug in disparate disease states. DNA microarrays will invariably be included
in the assortment of technological tools utilized.

Recently, Stegmaier and colleagues used microarrays to study AML differen-
tiation, and were able to determine five predictive marker genes that reflected the
change of AML cells to normal blood cell phenotype, as initiated by retinoic acid
[23]. This showed that surrogate marker analysis of this desirable clinical end
point could be achieved using microarray expression assays. The method involved
identification of predictive markers, which were subsequently monitored by mass
spectrometry, to screen thousands of drug candidates that elicited desirable
responses following treatment. This approach bypassed the need to understand
mechanisms of action or identification of compounds that interact with a single
target and are therefore prone to poor responses because of issues of pathway
redundancies or multiple aberrations of the cancer genome. This phenotypic
screening approach holds considerable promise in pharmacology and discovery,
because there are issues surrounding toxicity of targets, as well as the need to
identify more compounds with desirable end points. However, the successful
utilization of this method is dependent upon a priori knowledge and known
outcomes that are desirable, such as phenotypes or markers. This approach also
holds promise in screening additional compounds that help in creating robust drug
classes or clinical end points.

Yet another approach that deserves to be mentioned was the discovery of RITA,
an inhibitor that blocked interaction of p53 vs. hdm2, from a broad cell-based screen
that sensitized tumors with functional p53 in in vitro and in vivo experiments [21].
In the future, additional compounds that elicit similar responses can be screened by
approaches using microarrays to get detailed molecular views of drug activity or
toxicity profiles. Additional approaches will be reviewed in application-specific
methods (see the following text).

From a technological point of view, microarray assays have a broad impact
on the dissection of cancer genomes and therapeutic intervention (see schema in
Figure 9.1). The microarray technology is adaptable and flexible in the sense that
one can query different molecular states in the cell by using the same basic platform
for different microarray assays, such as array-based CGH, transcription profiling, or
genomewide chromatin immunoprecipitation experiments [24]. Thus, instead of a
single technology approach, questions relating to cancer drug discovery can be
tailored to the most appropriate technology. The questions can also fit into mecha-
nistic or phenotypic queries as described earlier or in the context of systems biology-
level investigations. On occasion, DNA microarrays and a suitable platform, such
as ChIP-on-chip or transcriptional profiling, would be the discovery tools of choice.
The completion of the human genome sequencing project, as well as genomes of
several model organisms, has enabled oligonucleotide DNA microarray-based
research to fit into any of these assay modalities, thereby providing immense flexi-
bility in querying the sequenced genomes for specific answers to address the overall
goals of research and discovery projects. The methods described in the following
paragraphs are powerful aids in understanding cancer genomes of patients and their
response to particular drugs; how they can be developed or discovered is outlined
in Figure 9.2.
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FIGURE 9.1 Cancer is a complex disease of impaired cellular process and occurs in diverse
cell types. Many genes in the genome regulate cell cycle control and differentiation, thereby
involving various genes and pathways that are causative and predictive and whose activities
evolve with onset of cancer. In one view of systems biology, the biological knowledge and
experimental data are used to define the relationships between various components of the
system of interest and to extract biological variables. These relationships and variables can
be used to build preliminary models to describe a particular biological process such as
carcinogenesis or drug discovery. A comparison between the experimental data generated
from perturbations of the system and predictions from various candidate models can be used to
screen for the model or a set of parameters that best describes the phenomenon or observed
data. One may also design new experiments eliciting different system responses between
models to discriminate among candidate models. The outcome of this exercise can have far
reaching effects on understanding the pathobiology of cancer at the molecular level and
possible interventions. (Portions of the schema are adapted from Aggarwal, K., Lee, K.H.
Functional genomics and proteomics as a foundation for systems biology. Brief Funct
Genomic Proteomic. 2(3): 175-184, 2003).

THE ERA OF DNA MICROARRAYS
GENE ExPResSION TECHNOLOGY AND THE FUTURE

Microarrays have been used for determining gene annotation, pathway dissection,
tumor class prediction and discovery, drug marker identification, markers for drug
toxicity, and associating tumor classes to clinical outcomes or drug responses [25].
However, as with any technology, there are caveats. For example, the susceptibility
of NSCLC patients to gefitinib (Iressa) could not be determined by expression
technology. Similarly, some tumor classes were tied to clinical outcomes [3,4], but
it was difficult to pinpoint drug targets that would benefit these discovered tumor
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FIGURE 9.2 In diseases such as cancer, systems biology-level approaches are needed to
understand basic gene regulation (i.e., a list of genes that are classifiers) or, perhaps, to predict
class of distinct patient groups. Classification and its accuracy are very important for first-
pass diagnosis of the disease in patient populations to better detect, diagnose, and describe
the disease; these results have an impact on drug response and clinical trials. A tumor may
look phenotypically identical by morphometric analysis, but could be very different at the
molecular level as has been discovered for many solid tumors like lung cancer [3,4,6,13,14].
As evident from reviewing these studies, alterations in molecular circuitry that are causative
of disease, or are markers in cohorts of patients, can also indicate druggable pathways.
Sometimes, the pathway changes are not discernible or, perhaps, difficult to use as a target.
A recent group has shown the importance of directly moving into marker responses that
indicate drug activity match [23]. Complementary approaches may involve use of siRNA-
based approaches to yield similar results or define drug function and mechanism of action [17].
The notion exists that profile-based, nonhypothesis-driven screen-based, and mechanism-based
drug selection approaches are very powerful and will triumph over existing drug selection
methodologies. Thus, from the point of view of finding a drug or intervention efforts, an
approach using a combination of genomics and proteomics is very powerful and comprehen-
sive. Diagnostics, discovery, and clinical management of patients can be addressed by microar-
rays, although all of them cannot be monitored by genomics approaches alone. Because of
several legacy issues such as pathologists and their clinical practices, utilization of microarrays
for determining cancer markers and their applicability for diagnostics and clinical trial eval-
uations has not become commonplace. Other usage needs for end users are as follows: density
of features per slide, flexibility depending on assay type, need for more bases per feature
(say, 60 [i.e., 90 mers] and beyond), a low-cost envelope for screens, high throughput without
compromising density of features, adaptability of general assays and methods to array-based
molecular diagnostics, and gene or pathway discovery.

classes from the list of genes that were deregulated and that initially characterized
these tumor classes, even though the diagnostic benefit of classification existed.
Although transcriptome analysis is a critical technology, other platforms could
provide valuable information in conjunction or independently. The combined infor-
mation needs to be effectively harnessed and orchestrated for a successful drug
discovery program.
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There are additional reasons why profiling alone cannot resolve all issues in
drug discovery. First, cancer often involves changes in genetic programs and clonal
expansion of a particular cell type. Although this causes widespread shifts in gene
expression baseline measurements in the cancer tissue, the changes in specific genes
may not be the cause of tumorigenesis. Second, transcription profiling is a snapshot
of the overall steady-state level of mRNA and only a part of the gene expression
program that involves synthesis and modifications in DNA, mRNA, and proteins.
Multiple events before and after transcription regulate the final outcome of genetic
expression. Some aspects of regulation may not be discovered because of poor
sensitivity of the platform. Therefore, the need to perform diverse assays in addition
to transcriptome analysis exists. Also, from a cell biology point of view, there are
alarge set of cellular conditions but only a few catalog gene expression compendiums
to study such cellular states (see bottom part of Figure 9.2). Thus, the need for 96-
well array formats has evolved. Finally, measurement of nucleic acids is typically
noisy, so most users automatically use quantitative RT-PCR for validating results.
However, transcriptome analysis can only uncover one piece of the story, and
validating a biological artifact by an alternative technology or platform does not
provide much value.

ALTERNATIVE DNA MICROARRAY-BASED TECHNOLOGIES IN
CANCER RESEARCH AND INTEGRATIVE GENOMICS

Investigations in basic cancer biology have shown that many diverse biological
assays can essentially be conceived and performed in conjunction with DNA
microarrays. Microarrays can essentially handle a wide variety of assays, such as
CGH, ChIP-on-chip, methylation, RNAI, and alternative splicing [24,26,27]. Today,
most genome scientists in cancer biology intend to query multiple data sets, using
diverse technologies to determine specific events that can form a foundation for
therapeutic strategies. The ability to conduct such searches and analysis is no longer
limited by the sequencing of genomes, but more by data analysis methods and data
integration tools. Each of these data analysis tools allows scientists to look at specific,
overlapping events to frame the overall portrait of a disease state and relevant
therapeutic intervention strategies.

Alternative Splicing

A significant portion of the expressed genome exhibits exon rearrangement that leads
to complexity of the proteome. Several groups have shown the ability to determine
and monitor splice variants in various disease states via microarrays [27-29]. It is
interesting that point mutations could affect splicing, in which the changes can be
more readily discerned than from the mutation itself, especially in heterogeneous
tumor populations. Given the mutation-based onset of several human cancers, this
could be important in patient stratification and in understanding the mechanisms of
action and drug discovery. In short, this technology reveals yet another layer of
complexity in the expressed genome that was previously difficult to study, and holds
considerable promise in revealing these events in the future.
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RNA Interference

Although the RNAi phenomenon has been known for a while, only recently has it
been possible to use it in mammalian systems [30]. RNAi technology can employ
small interfering RNA (siRNA) or short hairpin RNAs (shRNA) to knock down
specific expressed genes, thereby acting as a surrogate drug compound for testing
genes and pathways that can halt cancer progression. The end points of these assays,
such as drug effect or pathway effect, can be measured by DNA microarrays as
readout systems [26,31]. Although earlier attempts in the creation of mammalian
DNA libraries of shRNA vectors used off-line synthesized oligonucleotides, newer
generation of libraries can be created by designing arrays that produce all possible
target sequences in parallel on a microarray; these sequences are subsequently
immortalized in cloning vectors [32]. The short hairpin target clones can be followed
in cell populations by monitoring bar-code-tagged clones using a DNA microarray
experiment [26]. Bernards and colleagues identified the affected NFkB pathway
members in cylindromatosis disease (CYLD) using an RNAi screening approach
and microarrays [17]. This led the team to identify and demonstrate the effectiveness
of aspirin because of its known impact on blocking the NFkB pathway.

Array CGH

Comparative genomic hybridization (CGH) and fluorescent in sifu hybridization tech-
niques (FISH) have been well described in the cancer literature [33]. The implemen-
tation of CGH assay on microarrays can focus on genes and minimal regions of
recurrent aberration. Early progress involved the use of BAC and cDNA arrays [33,34].
Recently, Lucito and colleagues published their work on oligonucleotide arrays using
partial genome representation methods [35,36] to sample and label only a small portion
of the genome via restriction enzymes. More recently, several groups have demon-
strated the use of DNA oligonucleotide arrays using whole genome labeling and
amplification methods [37,38]. This is significant, as the approaches can now be readily
combined for genomewide analysis at the DNA level, such as methylation or ChIP-
on-chip assays [24]. Array CGH has also been favored in diagnostic approaches
because of its monotonic intensity across the genome, which allows for more simple
normalization algorithms and accurate determination of aberrations against a normal
genome. In combination with transcriptome analysis, the insights can be very powerful
for determining gene dosage effects on pathways and chromosomal breakpoints. An
alternative technology is the high-density single nucleotide polymorphism (SNP)
screen for determining loss of heterozygosity (LOH) in cancer cells. LOH studies
using SNP arrays can basically interrogate regions lost in chromosomes, which could
harbor tumor suppressor genes [39,40]. However, this technique is dependent on SNP
density [41] and may not be very valuable in studies in which such polymorphisms
may be nonexistent at high density or in inbred model organisms such as mice.

Array-Based Sequencing

Sequencing technology has been used to discover activating mutations and develop
treatment strategies. This has spurred interest in sequencing patient tumors for RTK
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mutations [13,14,42]. Gene-based resequencing is possible on oligonucleotide arrays
and is perhaps more meaningful in a stepwise fashion as lesser quantities of genomic
material are involved in the assay. The findings from several groups also indicate
that, rather than tiling the whole gene, selecting areas of the gene that harbor
mutations may be more effective [13,42]. If a typical gene is 1.2 knt in size, one
could determine single base changes by querying 4 x 1200 = 4800 probe sequences.
Thus, on a single array with a feature density of 50,000, roughly 10 distinct kinases
and their targets could be sequenced. If only a portion of the region harboring
mutations is used, almost all tyrosine kinase receptors could be screened for muta-
tions, using a single DNA microarray of 50,000 features.

Chromatin IP and Regulome Analysis

Microarray methods have now been adapted to dissecting regulation of the genome [43].
The microarray-based chromatin immunoprecipitation (ChIP) experiments are well
developed for understanding transcription factor function, chromatin modification, epi-
genetics (e.g., methylation), and its role in cancer. Genomewide analysis of transcription
factors and their targets holds immense promise in cancer biology and drug discovery,
and in teasing apart the function of proteins. The importance of protein interaction was
demonstrated for the annotation of menin (a tumor suppressor protein whose dysregu-
lation causes multiple endocrine neoplasia), which was solved by several protein-inter-
action experiments [44]. Microarray analysis involving ChIP demonstrated how RB
pocket proteins and interactors are involved in regulating a cancer cell [45]. ChIP-on-
chip assays have also demonstrated estrogen receptor alpha-mediated epigenetic silenc-
ing in breast cancer [46,47] and the regulatory role of c-myc in Burkitts lymphoma [48].

SUMMARY

Analyzing multiple assay data sets of different types, such as array CGH vs. gene
expression, has helped resolve some of the issues in many cases, but such data sets
are difficult to analyze simultaneously. Much of these types of studies are also
dependent on informatics interfaces to synthesize and sort out important facts. DNA
microarrays and similar technologies allow massive parallel assays. These assays
are very important for drug discovery and development programs, especially those
involving high-throughput screens. Although some continue to argue that microarray-
based transcription profiling has generally proved to be unimportant in drug discov-
ery, the sheer pace of discovery using microarrays and its role in gathering knowledge
in the drug industry can no longer be ignored. Without this technology, the basic
science and discovery processes involved in understanding disease and solving its
problems would be extremely time-consuming and difficult.

IMPACT OF MECHANISM-BASED STUDIES IN CANCER
DRUG DISCOVERY AND DEVELOPMENT

As with any disease, tackling cancer by drugs requires a priori knowledge of drug
targets, the cell cycle, and an ability to carry out large-scale whole genome studies
that provide biochemical and genetic evidence, as well as population studies such as
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population statistics and epidemiology. Such efforts are all dependent upon a series
of tools, including informatics and platform tools such as sequencing, PCR, and DNA
microarrays. In the discovery of cancer drugs such as Herceptin, EGFR inhibitor (Iressa
and Tarceva) for lung cancer, and Imitanib (Gleevec) for CML and GIST, it has become
common knowledge that a systematic dissection of molecular biology mechanisms is
needed to understand the Achilles’ heel of cancer and discover drugs that resolve the
outcome of patients who suffer from cancers. Many of the findings reviewed here were
dependent upon powerful genetic and biochemical approaches or assays. Poor under-
standing of tumor classes and effective stratification can also affect drug discovery
outcomes and is perhaps the case for Iressa [13,14,49,50]. Microarray-based classifi-
cation therefore has a tremendous role in classifying such cancer patients, as well as
in the future of personalized medicine. Even findings from Stegmaier and colleagues
[23] and RNAI studies [26] underscore not only the importance of gene manipulation,
annotation, and affected pathways, but also the importance of microarray studies and
the value of the information they provide for a mechanistic understanding of the
underlying genetic lesions in human cancers.

It is also clear that many of the ideas to pursue the EGFR story came from
questions pertaining to the dysregulated expression observed in tumors [13]. Simi-
larly, gene expression dysregulation observed in MLL patients led to the discovery
of a new tumor class, when researchers focused on fIt3 overexpressed in this class
of tumors [8]. Subsequently, the mutations in the fit3 and the drug efficacy response
of a murine tumor model paved the way for drug testing [9]. This and other stories
in the discovery of drugs against Erbb2 [42] are well documented in the literature
and demonstrate how similar approaches and focuses on molecular studies can
provide unexpected but exciting results.

Thus, proof-of-principle studies and new targets discovered in mechanism-based
approaches to drug discovery have shown promise and have suggested ways of
monitoring the genome and proteome at several levels, thereby providing a holistic
view that should ultimately make drug discovery more effective. Also, these discov-
eries have suggested that, because of complexities of the disease, such as drug
resistance, stem cell relapse, and clonal expansion of drug resistant tumor cells,
understanding the disease in every patient is critical. Unfortunately, that cannot be
determined by morphometric analysis alone, making microarray analysis of para-
mount importance.

FUTURE OF MICROARRAYS IN SYSTEM-LEVEL
OVERVIEW OF CANCER AND THERAPEUTIC
INTERVENTION

DNA microarrays were first used in the laboratory setting to answer specific questions.
In general, data mining or reanalysis of archival data addressed by an ‘“-omic”
technology, such as DNA microarrays, addressed complex biological questions, but
these laboratory-specific questions were neither data driven nor vast in scope. Today,
biology in general, and even cancer biology, involves multiple array-based tech-
niques and re-experimentation strategies (Figure 9.1). One can understand the
response of a cancer cell to a drug by precisely monitoring the altered transcriptome
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on a DNA oligonucleotide microarray or choose from other nontranscriptional pro-
filing technologies. The focus is ultimately on better understanding a wiring diagram
of the cancer cell or tissue and the patient’s response to a drug. This will require
tools, and the tools will include microarrays among others. This big picture or “organ-
ismal” view of complex processes is often dubbed systems biology (Figure 9.1).

Microarrays are not only used to understand biological questions, its use in a
clinical setting with regard to drug responses and patient response predictions is
being considered. Indications of side effects such as stroke and heart disease from
prolonged treatment of osteoarthritis with cox2 inhibitor rofecoxib (Vioxx) has
prompted the discovery process to utilize better markers for various chemical and
clinical end points. As reviewed here, such clinical effects can be monitored by
expression technology or be used to identify new compounds without such side
effects. Microarrays have also gained the center stage in recent FDA approvals
(Roche and cytochrome, p450 chip) and in diagnostics (http://www.agendia.com/,
accessed February 2005). Microarrays have also risen to the challenge of consistency
in interlaboratory measurements [S1]. In the future, microarrays may also guide
patient responses before and after treatment and/or patient recruitment for clinical
trials based on expression signatures of tumors, which correlate with class identifi-
cation and response rates.

CONCLUSIONS

Microarrays are now a fundamental tool in basic cancer biology and drug discovery
and in patient-response evaluation. Although intense debates continue, microarray-
based discoveries are used directly as clinical tools or for the development of
secondary or diagnostic tools to measure clinical end points or therapeutic interven-
tion methods.
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With the completion of the Human Genome Project 4 years ago came the hope and
promise that the world’s most ambitious sequencing effort would revolutionize phar-
maceutical research and, ultimately, give us better therapies and improved patient care.
However, during the decade-long project, scientists learned that the genome is far more
complex than previously thought. The first estimate of 30,000 genes has given way to
estimates of hundreds of thousands of splice variants, millions of newly discovered
transcripts, and tens of millions of genetic polymorphisms. But the tools needed to
understand this level of complexity simply did not exist.

The microarray, invented in 1989 by Stephen P. A. Fodor and colleagues [1-3],
has emerged as a central technology that is helping to unravel much of the genome’s
complexity. Over the past 15 years, microarray information capacity has consistently
increased, providing for a tool that allows meaningful whole-genome analysis,
currently able to measure expression for nearly 50,000 transcripts or genotype more
than 100,000 polymorphisms in a single experiment. This broadscale genetic analysis
has not only helped to discover the underlying genetics for countless diseases but
has fundamentally improved drug discovery and development research.

Before whole-genome microarray analysis, many drug development assays were
typically limited to answering a very focused question, often generating a single
data point. To perform comprehensive drug discovery, researchers must answer
hundreds or even thousands of different questions, making the process slow, expen-
sive, and prone to variability.
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Microarrays have offered a significant improvement by measuring thousands
of data points in a single assay, with the ability to analyze changes in gene
expression and DNA sequence variation across the whole genome. However,
microarray throughput and cost-efficiency have limited their application in
pharmaceutical research, which requires analyzing far more samples than in
biomedical research.

To enable industrialized microarray research, Affymetrix has recently devel-
oped an automated 96-array high-throughput (HT) system. The system automates
the most labor-intensive steps in microarray processing — target preparation,
washing, and staining — increasing productivity, throughput, and reducing the
cost per assay. This decrease in cost, increase in throughput, and added reliability
make the HT system ideally suited for drug discovery and development applica-
tions, including target identification and validation, compound profiling, and
improved clinical trial outcome.

Genetic and Genomic Analyses Possible on a Single 96-Array Plate Containing
Microarrays Manufactured at a Given Feature Size

Feature Size

Analysis Type 8 pm 5 pm
Transcripts/genes 96 well 25,500 65,000
Per plate 2,448,000 6,240,000
SNPs 96 well 14,000 36,000
Per plate 1,344,000 3,456,000
Base pairs 96 well 70,000 180,000
Per plate 6,720,000 17,280,000

DEVELOPING THE HT ARRAY

The complexity of microarrays presented a challenge for engineering the HT system.

The Affymetrix HT array adapts the same GeneChip® technology and content
to a standard 96-well plate footprint. Advances in feature size reduction have allowed
significantly more content to be placed on smaller-sized arrays. And, by leveraging
advanced automation methods, the HT system provides the consistency required to
simultaneously analyze hundreds of high-content arrays.

The current HT microarray prototype contains 96 individual arrays mounted on a
single plate, with each array containing the same genomic information as the com-
pany’s Human Genome U133A array, but in approximately one fifth the surface area.

For each array of the 96-array plate, more than 500,000 probes are used to
measure the expression of 18,400 human transcripts, meaning that each HT plate
generates more than 48 million data points. By comparison, conventional HT
screening may only generate a single data point per, well, a total of 96 data points
per plate.

Each 96-array plate is processed and analyzed on a robotic Array Station that
automates the microarray processing workflow. Figure 10.1 shows how this is done.
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FIGURE 10.1 Example of workflow.

This allows a high level of multiplexing in a single experiment and results in a
significant decrease in sample-to-sample variation. To process an equivalent number
of samples on GeneChip cartridges, a lab not only would have to dedicate extraor-
dinary labor resources, but would require additional fluidics stations and multiple
scanners as well. Modeling studies have determined that the automated system
increases productivity by threefold or fourfold.

APPLICATIONS TO DRUG DISCOVERY AND
DEVELOPMENT

Microarray technology has already revolutionized significant parts of the drug dis-
covery process, but with the development of HT arrays, pharmaceutical companies
can now more wholly implement and apply the technology. For example, at the
beginning of the process, HT technology can play a role in disease pathway iden-
tification and validation, and later on, once a target has been identified, in compound
screening and lead optimization. Researchers can then use the HT microarray system
to manage clinical trials, potentially expediting the delivery of new drugs to market.

Disease PATHWAY IDENTIFICATION

HT array analysis provides researchers with a cost-efficient way to use genomewide
expression profiling to generate hypotheses for complex disease mechanisms and to
identify drug targets and their pathways. Additionally, GeneChip DNA analysis
arrays have been used to discover the genetic basis of disease, by mapping disease
genes with whole-genome single nucleotide polymorphism (SNP) assays [4-9].
The two array types complement each other: Gene expression arrays identify dif-
ferentially regulated genes from related individuals, and DNA analysis arrays can
validate those differences in fine mapping experiments.

Disease PATHWAY VALIDATION

Once a disease pathway is identified, researchers need to validate it, and verify that
disrupting the pathway will actually affect the disease etiology. Using whole-genome
expression profiling, scientists can understand a wide range of effects — desirable
and undesirable — that result from disrupting a pathway; they are then able to better
evaluate potential targets for drug design. Modern technologies, such as small inter-
fering RNA (siRNA), are now being used to rapidly and specifically inhibit gene
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function, speeding up the exploratory process of validating useful drug targets.
However, being able to affect many different genes quickly requires an equally
efficient way to measure the downstream effects generated by those changes [10].
HT arrays enable researchers to simultaneously analyze the effects of nearly 100
different siRNA molecules on global gene expression.

Furthermore, the system will be used for microarray-based resequencing efforts
to economically pinpoint disease-causing mutations and genetic variations in large
clinical populations. The expression and sequence information generated from high-
density microarrays gives researchers a more complete understanding of how a gene
functions within a cell and adds significant value to the biological models used to
validate gene targets.

COMPOUND SCREENING: MECHANISM OF ACTION

Following disease pathway identification and validation, whole-genome microarray
analysis can be used to characterize lead compounds for selectivity and specificity
and to identify compounds that disrupt expression of intended disease genes.
Although existing technologies are well suited to measure the anticipated action of
a development compound, these methods do not typically identify any additional or
unexpected effects. Whole-genome expression analysis provides a complete and
unbiased measure of both on-target and off-target effects for each compound tested.
On-target effects are clearly desired; however, off-target changes in expression may
help treat different diseases operating through a different mechanism. For example,
despite their development to treat hypertension and depression, the respective block-
buster successes of Viagra for erectile dysfunction and Wellbutrin for smoking
cessation are prime examples of exploiting off-target drug action to serve other
therapeutic markets. By developing large databases of information on the global
activity for each member of a compound library, HT microarray expression anal-
ysis allows companies to ultimately create “smarter” compound libraries, with
recorded and known effects for each member compound.

COMPOUND SCREENING: MECHANISMS OF ToxiCITy

HT microarray gene expression screening not only helps to identify mechanisms of
drug action, but also points to other off-target effects that may suggest the compound
produces far too many side effects to be approved. For instance, if changes in gene
expression match those of a known toxin, a compound can be eliminated from the
screening process early in development, saving both time and money. Compound
toxicity is typically not evaluated until later stages in the development pipeline, and
this has become a major reason for the high attrition rate in drug development. In the
past, the belief has been that once a compound is found to be active, it can be
sufficiently modified to avoid toxic effects while retaining its specific activity [11].
However, a recent review of the literature demonstrates that, in general, successfully
developed drugs undergo few modifications from their initial lead form [12]. Using
HT microarrays to understand risk profiles for multiple compounds earlier in the
development process allows for more efficient and cost-effective decision making
regarding compound prioritization for future drug development.
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MORE SUCCESSFUL CLINICAL TRIALS

By providing more complete genetic and genomic information, microarrays are
helping researchers classify disease markers, predict drug efficacy, and more suc-
cessfully manage clinical trials. The throughput and cost-efficiency of the HT system
are the keys to industrializing microarray technology. There are already more than
40 examples of microarrays being used in large-scale trials.

For example, a recent Phase III clinical trial by Novartis Pharmaceuticals used
expression profiles to predict the success or failure of Glivec/Gleevec treatment on
chronic myelogenous leukemia [4]. Researchers analyzed gene expression patterns
from patients prior to treatment and found a 31-gene “no response” signature, which
predicts a 200-fold-higher probability of failed therapy.

Similarly, in a Phase II clinical trial conducted at the Dana Farber Cancer
Research Institute for Millennium Pharmaceuticals’ drug Velcade, researchers used
GeneChip arrays to collect pharmacogenomic data from myeloma patients treated
with the drug [5]. The scientists discovered a pattern consisting of 30 genes that
correlate with response or lack of response to therapy. Clinical utility of biomarkers
will be further assessed in a Phase III trial.

Though much progress has already been made using gene-expression analysis,
studies to identify genes associated with drug response, efficacy, and toxicity may
become one of the most promising applications for whole-genome DNA analysis.
Tools like the GeneChip Mapping 100K Array Set (which can genotype more than
100,000 SNPs distributed across the genome) now allow researchers to readily
genotype large populations of responders and nonresponders to a given drug for
phenotypes including efficacy and toxicity.

With these kinds of genetic studies, scientists hope to elucidate the genes con-
tributing to variable drug response. In key Phase III trials, microarray genotype
analysis could be used to stratify patient populations to eliminate poor or toxic
responders. Such stratification would help ensure maximum effectiveness through
clearer statistical differentiation between drug and placebo, while also reducing trial
size and costs, and improving the odds of drug approval.

Once a drug is on the market, patient stratification could also be used to accelerate
drug expansion into new indications through faster, smaller, and more definitive Phase IV
trials or to establish medical superiority of a late-to-market drug relative to entrenched
competitors in an important class of patients. Genomewide genotype information will also
fuel future research. By better understanding genetic mechanisms of drug response in
patients, researchers will have made significant progress on finding next-generation drugs.

THE WAY AHEAD

As microarray technology advances and more content can be placed on smaller-
sized arrays, the application of HT microarray systems to pharmaceutical develop-
ment will become even more significant and extend beyond the traditional genetic
and genomic experiments.

Though the ability to use HT microarrays representing the complete coding
content of the human genome — more than 47,000 transcripts — will help accelerate
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discovery even further, HT analysis will also enable scientists to look beyond the
coding content, and mine for drug targets and pathways in DNA sequences histor-
ically considered to be of inconsequential “junk.” Human transcriptome analysis
(i.e., the complete collection of transcribed elements of the genome) is made feasible
by the HT system where an experiment can now be constructed to analyze an entire
genome (coding and noncoding DNA) for structure—function relationships on a
single plate. And the importance of noncoding DNA is only beginning to emerge;
recent whole-genome association studies have implicated this “junk” in diseases like
multiple sclerosis.

Similarly, advances in genotype analysis will be accelerated by microarrays that
can analyze more SNPs, allowing scientists to more rapidly discover the genes
associated with disease and drug response. Using next-generation HT SNP arrays
promises to improve clinical trials and speed drugs to market by stratifying patients
into more refined classes of disease and drug tolerance.

Efforts such as these are helping researchers use the genome sequence to improve
pharmaceutical R&D and develop new therapies for improved disease management.
Although the benefits of HT array analysis are only beginning to be realized, with
the care taken to fit this technology into existing infrastructures, it offers the prospect
of more efficient, cost-effective approaches to drug discovery and development.
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ABSTRACT

Accelerating the rise of genomic research, microarrays have become an essential means for
high-throughput gene expression profiling for both the pharmaceutical industry and aca-
demia. The diversity of microarray applications continues to broaden, experiment size is
growing, and demands for higher throughput are being driven by the success of the technol-
ogy. Similar to the rise of automated DNA sequencing technology in the late 1980s, special-
ized core labs, within industry and academia, are becoming the ideal environment to handle
the requirements of the platform. Automation is a key component to achieving reproducibility
and throughput in these environments. This chapter focuses on strategies for increasing
throughput and decreasing variability through rational implementation of automation.

INTRODUCTION

With the advent of the microarray, the entire genome can now be represented on a
single chip. The chips contain tens of thousands of individual elements each repre-
senting an individual gene. RNA can be extracted from experimental tissues and
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labeled with fluorescent probes and hybridized with these arrays. The relative fluo-
rescence retained on each spot is an indication of how much each gene is expressed
(in the case of gene expression analysis). However, to get consistent results with
these complex systems, which can be cross compared in a meaningful manner, a
number of steps must be taken to ensure consistency of data. This is particularly
true in the industrial core lab setting, where many tens of thousands of arrays can
be run every year, representing multiple billions of data points. With the advent of
plate-based systems, presented in other chapters, one can consider this number
moving to the hundreds of thousands of arrays per year. In such a setting, the
management of variability in the laboratory (discussed here) and the management of
data at an enterprise level (discussed here but more extensively in other chapters) is
essential for success. Variability must be managed to leverage the maximal benefit
from these systems over time. To face this task, we must break down these processes
into their discrete elements and address each. Here we discuss one such strategy via
the rational implementation of automation in the system to reduce costs and variability.

The array processing elements of a microarray experiment, hybridization, and
wash, require expertise and specialized equipment for obtaining optimal results. As
the initial scanned images have little meaning as is, data extraction and analysis
software are necessary for these experiments and have similar specialization. Repro-
ducibility and throughput, both omnipresent concerns for microarray experiments, are
hallmarks of successful core labs, so the proliferation of these laboratories is no
surprise. High volumes of focused tasks are performed repetitively, an ideal environ-
ment for automation. But the unique complications of microarray hybridization, wash-
ing, and staining provide challenges to effective implementation of such automation.

Even though its full potential is yet to be realized, microarray technology has
already proven itself as a legitimate tool for gene expression research [20-22].
Published microarray experiments are now commonplace, and content has moved
beyond discussing the technology to focus instead on the results of the experiment.
Further maturity of the technology will increase the willingness of an institution to
invest the time, money, and energy to adapt automation for microarray processes.
Microarray substrates are already being adjusted to fit automation, moving away
from the standard 17 x 3” slide to formats better suited for current automation. Many
array manufacturers have already designed 96-well formats for oligonucleotide
arrays, some of which are discussed in other chapters [2,17,19]. In this format, end-
to-end automation of the protocol becomes more realistic, and justified as the number
of samples increase.

BENEFIT OF AUTOMATION TO MICROARRAY
EXPERIMENTS

Automation can benefit more than just the high-volume industrial core lab. The size
of microarray experiments is growing throughout the field, while the expectations
of quality — sensitivity and accuracy — continually rise as well [12]. Larger studies
benefit in consistency from increasing the batch size of samples processed in parallel.
Our own experience is that the most significant technical bias in a large data set is
subset processing [unpublished data]. Not surprisingly, we have also observed that
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differences in the levels of skill and attention to detail between technicians have a
profound effect on the quality of the data. Several published studies have shown
that microarray experiments of the same design and the same materials conducted
in different labs produce variable data [5-7]. Considering that core labs are often
plagued with high turnover of entry-level staff due to the repetitive nature of the
work, automation can reduce the bias normally afflicted by a newly trained techni-
cian. Well-designed automation should enable improvement upon the limitations of
both small batch size and technician variability. Larger capacity also allows for
greater replication, enhancing statistical significance and confidence in the data.

Cost savings are another benefit of automating processes in microarray experi-
ments. Though there is an initial capital investment, automation lowers the costs
associated with running large numbers of arrays. For management, the easiest factor
to appreciate is the decrease in labor costs; whereas scaling up many of the manual
processing methods can only be accomplished by adding more technicians. Auto-
mation also allows for extension of the productive workday for a lab, performing
tasks overnight and during lunch. Fitting with the theory of constraints, the bottleneck
should never be idled. Cost savings associated with economy of scale may also be
realized.

Owing to the expense and time required to optimize and integrate automation,
choosing which processes to automate requires careful thought. A targeted approach is
a more rational and cost-effective means of implementing automation rather than
indiscriminate end-to-end automation. The primary areas to target are those in which
individual technique causes the greatest bias on the data. Quality and productivity
should be the primary criteria for assessing automation needs, but cost savings and
ergonomic risk mitigation are legitimate requirements as well. Identification of
bottlenecks (which we define as the points at which capacity is limited) in the process
can help focus automation efforts, but gains are only meaningful if the automation
can realistically increase throughput without sacrificing quality. Automation usually
has significant up-front costs and is time-consuming to optimize and integrate.
Because the initial investment is large, the potential reward needs to be realistic and
proportional to that investment.

AUTOMATION FOR ARRAY PROCESSING

Array processing is an area of particular concern, not only because of capacity-
limiting constraints, but also because manual processing is subject to many variables.
This makes array processing, the hybridization and washing of arrays, a particularly
technique-dependent task, prone to inconsistency that automation can potentially
improve. Overcoming this limitation has been the focus of many companies selling
automation products specifically for microarray technology. Several tactics exist to
approach these problems. Some use isolated sealed chambers, others are adapted
from histology applications, and another combines both approaches.

The most common approach is to immobilize the slide in a sealed chamber
plumbed to deliver target from a plate or tube as well as wash solutions pumped
from bulk source containers. A metal plate beneath the slide controls hybridization
temperature. The user loads the slides into the chamber, programs hybridization
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temperature and duration, orders and determines the volume of wash solutions, adds
target (hybridization probes), and then returns when the cycle is complete. Benefits
of this strategy are that the process is uninterrupted, and fluid delivery can be precise
in volume and flow rate. It is also relatively easy to incorporate a feature to actively
mix the target during hybridization by pumping small volumes of hybridization
buffer in and out of the chamber. A weakness of this approach is that one unit can
only process a limited number of slides, typically between 4 and 12. Daisy chaining
the units improves upon the relatively low throughput, but not necessarily consis-
tency, because each has its own fluid delivery apparatus, the performance of which
can drift over time.

The design of histology instrumentation is predisposed to a 17 x 3” glass slide
format, making them easily adaptable to standard-sized microarrays. An example of
this approach is a robotic unit, currently marketed for microarray processing, which
was originally designed for immunohistochemistry. On this instrument, up to 20 arrays
are placed on the outside edge of a turntable. The instrument has a fluid delivery
system that first adds target to the slide, followed by a layer of mineral oil that acts
as a cover slip during the hybridization. The turntable, conducting heat directly to
the slide, precisely controls hybridization temperature. Throughout hybridization,
air jets accomplish mixing by gently circulating the mineral oil layer, creating
turbulence in the target buffer underneath. Following hybridization, the instrument’s
fluid delivery system washes the slides according to a user-programmed protocol.
Though this offers more slides per instrument than fixed-chamber units, detergents
in wash buffers are required to clean the mineral oil may alter stringency.

We have also used other robotic systems designed specifically for histology
applications for microarray prehybridization. Most cDNA chip production protocols
require postdeposition modification to the arrays [23,24], a prehybridization step,
or both. Performed manually in slide-staining dishes, the protocol is plagued with
batch variation. Robotic systems can much better control the simple task of constant
agitation for 5 min in a prehybridization buffer than the most attentive lab technician.
This simple, inexpensive device merely moves a slide rack up and down, but with
a uniform pace and motion that enables a drastic improvement in batch consistency
for a seemingly minor section of the protocol.

A high-throughput robotic unit capable of processing 200 slides in a single run
has also been developed [9], though not marketed. This instrument consists of a
fluidics compartment separate from an incubator, both serviced by the same robotic
transfer arm. Slides are stored in disposable cassettes in a carousel within the
incubator. Cassettes are moved independently from the incubator to the fluidics
compartment, where target is added to the array. The cassette is then returned to the
incubator for hybridization. At a precise interval, the cassette is retrieved and placed
back in the fluidics compartment for washing, then finally returned to the carousel
for the user to scan. Precision of timing and fluid delivery, avoidance of intervention
requirement, and unmatched throughput are all advantages of this system. Complex-
ity of the system, large footprint, and costs that are prohibitive to most core labs are
the disadvantages.

The benefits of automating target preparation are not as noteworthy as those for
hybridization and wash. Because 96-well formats can be handled easily manually
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through multichannel pipetters, there is not an overwhelming advantage to throughput.
Achieving consistency of manual target preparation is not unreasonable; in contrast
to the array-processing steps, different labs using the same protocol can even achieve
consistent results [5]. Automation will not necessarily improve reproducibility of the
target prep, and may cause even more variable yields than manual prep [1]. Properly
tuned robotic units can achieve great consistency, but the maintenance required for the
system to continue operating at such a level can be more challenging than consistent
manual pipetting. There are productivity benefits to well-designed automated proto-
cols; however, the ability to run overnight decreases cycle time for an experiment. An
obvious caveat to this is that the robotic units must be robust enough to be trusted to
operate without anyone nearby. Great trustworthiness is required of an instrument,
typically fairly complex, that is allowed to run unattended, and those deserving of
that trust are rarely inexpensive. There are also strong ergonomic risk mitigation
benefits that accompany reduction of manual pipetting steps, an attribute that is
becoming increasingly valued in the workplace [18]. Greater reagent volumes are
also required, and requirements for tips used on robotic systems add more expense
compared to those used for manual pipetters, offsetting some of the labor cost savings.

DATA COLLECTION, ANALYSIS,
AND SAMPLE TRACKING

Productivity gains from automating data collection, extraction, and quality control
are perhaps the most important compared to all other parts of the microarray exper-
iment. Scan time for a single microarray is widely variable and depends on scan
resolution and array dimensions, but a typical run lasts 7 min. Without automation,
a technician needs to spend less than 1 min, eight to nine times every hour unloading
and loading slides. Although this accounts for less than 10% of someone’s workday,
the interruptions are frequent enough not to allow adequate concentration for other
lab or analysis work, thus consuming an entire workday for one technician. Auto-
loader features are common options to many scanners now, and savings in labor
costs quickly make up for the cost of the autoloader.

Data extraction in batch mode maintains autoloader productivity gains and is
available in most feature extraction software packages. However, a massive bottle-
neck can form downstream in quality assessment, and software automating this
process improves accuracy as well as productivity. Meaningful quality assessment
should be much more than just determining the number of genes with intensities
above noise. But manual determination and rejection of contaminated spots is almost
entirely subjective and time-consuming. Outlier identification based on statistical
analysis algorithms is a rapid, completely objective approach [10]. There are several
flaws to manual outlier identification, most notably the inconsistency of the approach —
not only between identically trained technicians, but also with the same technician
over the course of a few hours. Accuracy is also problematic: discrimination of gray
levels (white to black) for the human eye is 20-25 [11], hopeless in discriminating
the 65,536-level resolution that a 16-bit image encodes.

Algorithms that compare three or more replicate features or replicate arrays
can quickly identify which genes show a high coefficient of variation (CV). After
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FIGURE 11.1 (A color version follows page 204) Batch variability: Two separate hybrid-
izations of the same sample to cDNA arrays, replicated 16 times in each hybridization, run
on consecutive days, are compared, with a color scale of correlation as indicated from 0.8 to
1.0. Average correlation between all arrays from Day 1 = 0.987, Day 2 = 0.981. Average
correlation between arrays hybridized on different days = 0.945. Scatter plots within each
individual square can be observed; less scatter will typically indicate a higher degree of
correlation. Correlations calculated using OmniViz Desktop 3.9.0 using the CorScape tool.

identifying outlier genes, intensities from the individual features for those genes can
be compared, and outlier spots then isolated and flagged. A more sophisticated
algorithm can also examine distribution of signal within and around isolated spots
to flag those with poor spot morphology or background problems. Using this
approach with four replicate features per sample (two per array, two arrays per
sample), we were able to successfully identify and remove outliers on our cDNA
arrays to improve average CVs from 14% to less than 6%.

All of the posthybridization functions can be integrated through a Laboratory
Information Management System (LIMS) that addresses each as separate modules.
A bar coding system can be created to help track samples through this process with
relative ease and little expense. Bar coding is an efficient means for tracking and
identification, and robotic systems typically integrate bar code readers to accommo-
date tracking. Creating a LIMS sophisticated enough to recognize when to move
images to feature extraction, and data to quality assessment, is not a trivial under-
taking. We have integrated this type of system and it has proven to be a powerful
way to enhance the productivity of those working in the lab, because they no longer
have the pedestrian tasks of moving files and loading them into analysis software.
A summary display is presented to an administrator after the data is processed, who
makes the decision whether to upload to the database or fail the experiment. Because
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the system can operate unattended, data extraction can run overnight, dramatically
improving throughput as well.

PITFALLS OF AUTOMATION

Poorly designed automation causes more problems than it solves, squanders budgets,
wastes time and energy, and eventually lies fallow. Because it is useful only when
operating, the dependability of a robotic system is as important as its capability.
Equipment that breaks down disrupts the rhythm of workflow in the lab, and when
it happens with frequency has an effect on throughput opposite to what was intended.
Even with reliable systems, redundant instrumentation is desirable where cost is not
prohibitive. Redundancy is almost compulsory in some cases. A microarray scanner,
for example, is critical to the success of the experiment — no practical manual
method for collecting data exists, and similar equipment is not likely to reside in
neighboring labs.

There is a desire to stay on the cutting edge of technology, especially in a rapidly
evolving field such as genomics, but obvious risks are involved with unproven
systems. A mature product may be stable and well known, but also closer to obso-
lescence. Tolerance for risk, immediate need for production, and level of experience
with automation should all factor into selection of robotic systems. The importance
of intuitiveness of the software, flexibility of the instrument, and footprint are
considerations that will also vary by the unique characteristics of each lab.

SUMMARY

Expectations on throughput and reproducibility steadily increase as microarray tech-
nology evolves. Automated workflows can increase batch size and consistency while
decreasing ergonomic risk to lab technicians. For the sake of consistency, one is better
off building a large capacity and using it with less frequency rather than processing
smaller sets more frequently. Increased capacity associated with higher throughput
allows for more data points, and in a carefully controlled experiment, better statistical
significance. In this way, benefits of automation can extend to any microarray core
lab, regardless of size, as long as the automation employed is tailored to the needs of
the lab. Proper attention must be focused on selection of appropriate processes to
automate as well as the robotic systems. Rational integration of automation must
improve either efficiency, reproducibility, reduce costs, or alleviate ergonomic risks,
but a gain in one of these areas must not come at the expense of another.
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INTRODUCTION
GAME PLAN FOR EARLY ADOPTERS

Some scientists quickly embrace new technologies with the desperate hope that a
panacea for the unsolvable is at last at hand, but others in the field approach with
greater caution. Historically, the pessimists have amassed more credible data and
there is good cause to be skeptical. However, for a scientist to avoid the monikers
of either Luddite or naif, it is necessary to approach new technology with the intent
to both expose the caveats and to engage one’s creativity to overcome these limita-
tions. The objective of this chapter is to provide a practical guide to understanding
and, where possible, compensating for the caveats inherent in using microarray
technology to facilitate association studies.

FOREWARNED IS FOREARMED: OVERVIEW OF THE CAVEATS

Caveats come in two basic flavors: those that arise owing to limitations in technology
and those that are the consequence of biology. Although technical and biological
limitations will largely be described as separate issues in the following, the reader
will notice that there are frequent interactions between these two effects. Technical
limitations may be ephemeral. Biological limitations are unchanging, although our
understanding of these limitations changes.

Over time, technical limitations may eventually be overcome through the intro-
duction of better processes; however, when assessing the “as is” environment, it is
wise to take nothing for granted when exploring new technologies. For example,
high-density microarrays for global gene expression analysis have been widely used
in the scientific community over the last few years. Corrections in both design and/or
fabrication have been implemented during this period. These improvements have
been made possible because users have dutifully reported findings that impact
performance (see Lessons from Transcriptomics in the following text). In contrast,
although biological limitations are also being recognized, it is not always possible
to adjust for this type of caveat.

Biological limitations are generally less amenable to engineering solutions. In
the context of association studies, false positive associations can be generated
because of, for example, unappreciated population substructure or sequence dupli-
cations in the genome. Population history with concomitant admixture and selection
can create genetic architectures that affect one’s ability to identify genes responsible
for the phenotype of interest. In addition, variation contributing to a phenotype may
not necessarily be in the form of a SNP, and may therefore be more difficult to
identify using microarrays that detect mutations through direct hybridization of target
and probe. Similarly, variation may reside in regions of the genome with vastly
different GC-content, again posing difficulties for direct hybridization chips.
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As with any high-throughput technology, implementation is a double-edged sword:
users can produce large amounts of data with minimal effort compared to currently used
methodologies; however, any error in design, manufacture, or process can have large-
scale consequences for the quality of the data. In addition, biological realities impinge
on data interpretation and must be considered if useful hypotheses are to be generated.

QUESTIONS TO CONSIDER BEFORE EMBARKING ON A STUDY

There are several questions that must be addressed by an investigator prior to
launching a large-scale study. In practice, these questions include:

1. Is the presence or absence of the trait of interest really influenced mainly
by genes, or does the environment play a more critical role?

2. Is it possible to develop a strong, testable hypothesis based on existing
information?

3. Are DNA samples available from appropriate cases and controls that have
richly detailed, supporting clinical information?

4. Isiteconomically feasible to rigorously test the genotyping platform of choice?

Although it is tempting for drug discovery scientists searching for new targets
to attribute much of the variation observed in disease states to genetic causes, this
is not necessarily the case. An example to consider is Parkinson’s disease. Although
there are well-documented familial cases with a strong genetic component, there are
also cases where environmental chemicals created permanent parkinsonism, as well
as cases where there appears to be genetic susceptibility and frank disease-only
results upon exposure to environmental insult [1]. Before pursuing costly high-
throughput genetic studies, scientists must have compelling evidence to support the
claim that the trait of interest is influenced strongly enough by genetics to warrant
pursuit. Once this question is addressed and a decision is made to go forward, the
choice of methodology for the study should be considered.

Genetic studies can be conducted using either candidate gene or hypothesis-free
approaches. If the existing literature supports the formulation of a strong, testable
hypothesis, it is usually preferable to perform a candidate gene study. Similarly,
candidate gene analysis may also be possible if data from global expression analysis
yields information that suggests genes or signaling pathways that should be pursued
to explain a phenotype. The guiding principle in this decision is generally the reduced
cost compared to whole-genome approaches. An added benefit is that the statistical
burden of multiple comparisons is also reduced for the investigator. If, on the other
hand, no convincing evidence from existing data and literature are available to help
formulate a hypothesis, whole-genome analysis should be pursued. An additional
consideration for deciding the type of genetic study to pursue is the availability of
appropriate DNA samples: fewer samples compel fewer comparisons.

Appropriate DNA samples are a critical component of an association study. In
general, investigators aim for a balanced study design with equal numbers of cases
and controls. To minimize genetic variation that is unrelated to the trait of interest,
cases and controls are ethnically matched. In practice, it is generally only possible to
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do this crudely (e.g., Caucasian cases vs. Caucasian controls), and it is strongly advised
that the cohort be assessed to verify that any associations do not result from unappre-
ciated population substructure (see Reference 2 and the later subsection “Population
Structure and Admixture”). Frequently, investigators will attempt to assemble a disease
cohort from populations that are considered to be homogeneous and then to translate
the findings from an association study to the general population. Another selection
tool involves stratifying by clinical data. Because a single disease phenotype could be
produced by multiple different genotypes, subtle clinical differences may help to select
cases that most resemble each other in order to enrich data for subjects with the same
underlying genotype. In addition to a well-defined phenotype, the magnitude of the
clinical endpoint can be helpful in selecting subjects. To adequately power a study, it
will be necessary to consult a statistician. Because each study is likely to possess
unique characteristics, only general considerations will be mentioned in this section.
To help guide the power analysis, the investigator should provide the statistician with
as much information as possible. Useful information includes the frequency of the
disease within the general population, the impact of candidate genes (i.e., odds ratios),
whether there is any reason to believe certain alleles behave in a dominant or recessive
manner, whether a candidate gene or a whole-genome scan is planned, etc. Once
appropriate and sufficient samples have been obtained, the next step in developing a
genetic study is to verify the performance of the platform.

The primary limiting factor in conducting genetic association studies is typically
the available budget. A secondary consideration is the fact that DNA is a nonrenew-
able resource and future investigations will likely be planned around existing sam-
ples. Both factors require the investigator to be sure that the platform trusted to
generate genotypes for the study is indeed trustworthy. When possible, it is advisable
to pilot the platform in a positive control situation, including blinded replicate
samples to ascertain the reproducibility of the data. An alternative approach is to
test the platform for its ability to reproduce results from (now) classic examples that
were successfully produced using traditional methods in select populations, e.g.,
mapping BRCA1 and BRCA2 [3] or BLM [4] using microsatellite markers. If neither
approach is possible due to budgetary constraints, a long hard look at the quality
control processes used during design, manufacture, and implementation of the plat-
form is suggested before reaching a decision. If these processes are robust and
convincing, it is still advisable to include blinded replicate samples during the actual
study in order to verify consistency. Additional suggestions on assessing the func-
tionality of a platform are presented in the next section.

We shall now discuss details of available technologies and potential pitfalls. This
is followed by a critical consideration of the impact of biological variables on the
ability to detect associations.

TECHNICAL CONSIDERATIONS
OVErVIEW OF SNP CHip TECHNOLOGY

There are numerous technologies available for genotyping, with varying capacities
for throughput, accuracy, and detection capabilities for different types of variation
[5-7]. In terms of biochips that detect genetic variation, microarrays rely on two
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general strategies: direct hybridization of target and probe to detect mutations or
liquid-phase enzymatic detection of mutations followed by hybridization to a solid
support using nongenomic “zip-code” DNA sequences.

The strength of direct hybridization microarrays is the potential for high SNP
content. For hypothesis-free whole-genome approaches, an important prerequisite
for mapping genes associated with a trait of interest is sufficient SNP density across
the genome (see the subsection “Frequencies and Spacing of Polymorphisms”).
High-density SNP chips [8-10] are designed using quartets of probes that accom-
modate perfect match sequences for both possible alleles, as well as two mismatch
probes. Quartets are created for both the sense and antisense versions of the sequence
with the query SNP positioned at the center of the 25-base probe. By moving a 25-
base sliding window along a reference sequence containing the SNP, the position
of the query SNP within the probe is altered and additional quartets are created. In
this way, 10 probe quartets with the best performance are selected for each SNP.
Target is produced from genomic DNA by first digesting the DNA with a restriction
enzyme. Following this, adapters compatible with the restriction site are ligated to
the ends of the fragments and the DNA is subjected to PCR amplification using
primers complementary to the adapters. The PCR product is then fragmented with
DNase and terminal transferase is used to label the fragments with biotinylated
nucleotides to produce the target that will be hybridized to the chip. Perfectly
matched probes and targets are expected to hybridize efficiently, but mismatches
should produce comparatively low signal or no signal. Visualization of hybridized
target is made possible through a network formed by interactions between the
biotinylated nucleotide, streptavidin, biotinylated antibodies directed against streptavidin
and SAPE (streptavidin conjugated to the fluorescent group phycoerythrin). Complex
algorithms and bioinformatics approaches are then required to analyze and interpret the
information generated by the chip. In contrast to this approach, microarrays using zip-
code tags completely separate the mutation detection step from hybridization.

Zip-code tag arrays are best suited for candidate gene analysis and ideal for
analyzing haplotypes. The advantages of this approach include a reduction in the
number of multiple comparisons, a straightforward analysis of the chip hybridization
patterns and the ability of the investigator to determine the content of the chip without
incurring a large expense. A simple, but powerful implementation of this strategy is
PCR/LDR/Universal Array [11]. The SNP detection strategy for this approach relies
on the polymerase chain reaction coupled to a ligase detection reaction. Following
multiplex amplification of the target sequences of interest, multiplex SNP detection
is accomplished by hybridizing two adjacent oligonucleotides to the target
sequences. To detect a SNP, two discriminating primers with distinct fluorescent
labels are designed with the two possible bases represented by the 3’ terminal base
on each primer. A common primer is designed to hybridize immediately adjacent
to the discriminating primer and bears a unique 24-base sequence on its 3’ end. If
there is perfect complementarity to the target sequence at the junction between the
discriminating and common primer, a thermostable ligase will join these two oligo-
nucleotides. The unique 24-base sequence permits hybridization to the microarray
because it is complementary to the zip-code sequences that are spotted on the chip.
The identity of a particular SNP is revealed by the color of the fluorescence and the
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address to which it hybridizes. This approach has been validated in numerous cancer
studies [12—16], where the sensitivity of the ligase-based mutation detection was
exploited to detect low-level oncogenic mutations. The sensitivity has also been
employed to facilitate sample pooling, which can enormously accelerate the progress
of large-scale association studies [17]. Following publication of Gerry et al., this
concept of separating mutation detection from hybridization to a microarray attained
wide use in the scientific community, and this type of design was coupled with
primer extension and other ligase-based approaches to detect SNPs using capillary,
liquid, bead, and microchip arrays [18-37].

LessoNs FROM TRANSCRIPTOMICS: Is THE CHIP CONTENT TRUSTWORTHY?

Technical improvements continue to enhance the performance of microarrays assess-
ing global gene expression. During the growing pains of early implementation, it
was recognized that issues involving probes were a potential source of error. For
cDNA microarrays, between 1% and 5% on average (and as high as 30%) of the
clones used for spotting were incorrectly identified [38]. These cases of mistaken
identity were generally traced back to errors in plate handling and cross-
contamination of the bacterial cultures harboring the cDNA clones. Careful and
systematic sequencing to verify the identities of the clones used for spotting has
greatly reduced this source of error; however, sustained vigilance is necessary. For
oligonucleotide arrays, errors involving probes were also encountered. In this case,
owing to confusion in the public databases, sequences corresponding to the wrong
strand of DNA were used as probe, resulting in erroneous sequences for up to one
third of the addresses [38]. More recently, individual oligonucleotide probes on
mammalian Affymetrix microarrays were assessed, and greater than 19% of the
probes were found to deviate from their corresponding mRNAs in the RefSeq
database [39]. To obtain better reproducibility between hybridization results, the
authors of this study recommended eliminating these questionable probes from
analysis. A permanent solution would involve redesigning probes based on the most
current information available in the sequence information databases. Although the
solutions and “work-arounds” to the above technical issues were relatively trivial,
recognizing the presence of these errors a priori is a more formidable task, and one
that will also be required to verify the quality of SNP chips.

Probe content and identity are caveats that readily translate from expression to
variation microarrays. The greater the number of probes on an array, the more
difficult it becomes to verify that all probes are correctly assigned. Because the probe
verification method to check the content of Affymetrix expression chips used by
Mecham et al. [39] (in the preceding text) is in silico and can be automated, this
should perhaps be adapted for SNP chips. Probe verification can be made standard
practice for every new version of a chip that is released and when sequence databases
are updated. This action would provide peace of mind for the design aspect of a
variation microarray, but the question of probe identity on the physical chip remains
an open question. Addressing this question thoroughly requires a thorough consid-
eration of the budget allocated. Although the most reliable approach would be to
compare genotyping results for reference samples produced by the high-density SNP
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chip and another high-throughput technology, this is also the most expensive option
and unlikely to be repeated with each new chip version. A more realistic alternative
is to spot-check the chip results for a reference sample by sequencing. Probe
sequence validation is considerably more straightforward for zip-code tag arrays.

A simple and effective method has been developed to rapidly verify the identity
of probes on zip-code tag arrays [40]. Fluorescently labeled complements to the
spotted sequences are combined such that the complements for each individual row
and column of the array are pooled in separate batches. Sequential hybridization of
femtomole quantities of each batch will allow the user to determine if the array lot
has been fabricated without error. A flawless array lot will emit signal for each
individual row or column without extraneous signal appearing anywhere else on the
array. Stray signal would indicate cross-contamination of addresses or the presence
of an illegitimate probe at a particular address. Quality analysis of universal arrays
[11] is particularly economical, because these arrays can be stripped of target and
reused; thus, only a few arrays from each lot need to be sacrificed to determine
quality.

Besides confirming that the design and fabrication of the platform of choice is
technically sound, another consideration is the platform’s ability to detect the type
of variation that underlies the disease phenotype.

THE INTERSECTION OF TECHNICAL AND BiOLOGICAL LIMITATIONS:
VARIATION WITHIN GENETIC VARIATION

Due to the relative ease of detection, SNPs remain the focus of most drug discovery
efforts. However, other types of mutation also have biological and pharmaceutical
significance, e.g., insertion/deletions (BRCA1 and BRCA2 mutations in familial
breast cancer), mononucleotide repeats (hereditary nonpolyposis colorectal cancer),
translocations (formation of BCR-ABL oncoprotein in chronic myeloid leukemia),
inversions (Hemophilia A) and duplications (CYP2D6 copy number and drug metab-
olism). Although no platform can detect all types of variation, it is essential to
understand what platform to apply when variation other than (or in addition to) SNPs
should be tested for association.

Direct hybridization arrays are designed to detect SNPs and are not well suited
to detect most other types of variation. For example, several studies attempted to
use direct hybridization arrays to identify all p53 mutations in enriched tumor tissue
derived by selective microdissection. These studies succeeded in detecting only 81%
[41], 84% [42], and 92% [43] of p53 mutations. In all cases, insertion/deletion
mutations proved intractable to this detection scheme. In contrast, PCR/LDR/
universal array has demonstrated ability to detect insertion/deletion mutations well
[17], length polymorphisms in mononucleotide [44], dinucleotide repeats [45], and
even methylation of CpG islands [40]. In terms of large genomic rearrangements
(translocations, inversions, and duplications), direct hybridization microarrays,
PCR/LDR/universal array and other detection strategies using zip-code tag arrays
could theoretically detect these aberrations. In all cases, if the breakpoints for these
chromosomal rearrangements are perfectly consistent, probes can be designed across
the junction that will capture sequence from both of the chromosomal regions
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involved. Depending on the sequence, direct hybridization arrays run the risk of
producing false positives, because a portion of the sequence on the probe will exist
regardless of whether a translocation exists. Enzymatic mutation detection based on
ligation will not suffer from this constraint. If, on the other hand, the breakpoints
are not predictable, none of these technologies can be used to detect chromosomal
rearrangements and alternative, lower-throughput strategies must be employed.
Although the types of variation so far discussed have been well documented and
frequently observed, additional forms of duplications within the genome are starting
to be recognized. The origins and biological significance of these duplications are
still a puzzle, but the implications for SNP-based association studies are worrying.

THE INTERSECTION OF TECHNICAL AND BIOLOGICAL LIMITATIONS:
GENOMIC PECULIARITIES

The human genome project has provided researchers with the ability to examine the
genome at a higher level than simple gene-by-gene analyses. As a result, patterns
are emerging that could not have been visualized in the recent past. One surprising
finding is the presence of numerous different types of duplications in the average
genome. The extents to which these duplications arise by similar mechanisms and
to what degree they will impact genotyping accuracy remain open questions.
Pseudogenes are a familiar form of duplication that can be described as complete
or partial copies of genes that are unable to code for functional peptides. Two major
types of pseudogenes exist. Duplicated pseudogenes arise from unequal crossover
events, while processed pseudogenes result from retrotransposition, where cellular
mRNA is reverse transcribed and inserted into DNA. Because pseudogenes do not
generally possess cis-acting elements, these sequences are released from selective
pressure and evolve neutrally. In a recent study that screened all intergenic regions
in the human genome using homology searches and tests to identify functional
nucleotide changes, 19,724 regions were revealed that appeared to evolve neutrally
and were thus likely to encode pseudogenes [46]. A second study identified about
8,000 processed pseudogenes in the human genome [47]. Although pseudogenes are
familiar forms of genomic duplications known to interfere with assay development,
other types of duplications exist that do not necessarily mimic coding sequence.
Segmental duplications, or duplicons, are thought to comprise at least 5% of the
genome [48,49] and many are yet to be annotated in the genome draft. Duplicons
are defined as being greater than 1 kb in length and having greater than 90%
similarity between copies. Recently, a careful analysis of duplicon SNPs used mono-
spermic complete hydatidiform moles (CHMs), which contain fully homozygous
genomes [50]. This clever experiment allowed the investigators to distinguish
between true SNP alleles at a single genome locus and SNPs that arise from
paralogous sequence variants (PSVs). Complex patterns of genotypes were detected
that could be explained by various models: homozygosity in one copy of a duplicon
with heterozygosity in the other; two different homozygotes represented in either
copy of the duplicon; multisite variation represented by heterozygosity in both copies
of the duplicon; and multisite variation with additional copies bearing variously
heterozygous and both homozygous versions. Of note, when the SNP data was
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reanalyzed without consideration for allele copy number, only half of the apparent
SNPs that were actually complex multisite variants deviated from Hardy—Weinberg
equilibrium (HWE). Clearly, complex multisite variants of this type create distortions
in the interpretation of genotype frequencies at the true SNP locus. Interfering
duplications are, however, not limited to long sequences. More recently, additional
forms of duplications have been identified that involve short sequence lengths.

Short duplications between 25 and 100 bp have been found that have peculiar
and consistent spacing patterns [51]. There appear to be three populations of doublets:
those that are separated by at most 100 bp, those with distances between 100
to 10 kb and doublets that are separated by greater than 10 kb or are found on
distinct chromosomes. Full (both doublets and the spacer region) and partial con-
servation (single core sequence with or without spacer sequence) of these doublets
have been observed between human and chimpanzees, indicating a relatively ancient
evolutionary origin.

In contrast to the duplications discussed above, large-scale copy number poly-
morphisms of about 100 kb and greater (dubbed CNPs) [52] appear to be of more
recent vintage. Using representational oligonucleotide microarray analysis, 20 indi-
viduals were compared. The investigators found that on average, individuals differed
by 11 CNPs and the average length of a CNP interval was 465 kb. Because the
tissues used for these studies (blood and sperm) have high mitotic indices, it is
possible that this observation is the result of mitotic recombination. If this mechanism
is responsible, this implies that analyses of different tissues with different propen-
sities for mitosis may result in different genotype calls for the same individual. In
addition, duplication for some chromosomes may be mirrored by deletions in others
[53], also complicating genotype analysis by increasing the count for homozygotes
due to the presence of hemizygotes. Further analysis of these CNP phenomena is
warranted. Indeed, improved information for all types of duplications would provide
for better assay development.

Although mutations that can distinguish duplicated regions from true genes
accumulate over time, similarity to paralogous functional genes can still interfere
with PCR or chromosomal in sifu hybridization experiments [54]. Based on this
observation and the sheer volume and complexity of potential duplications, it seems
likely that SNP detection could be influenced by the presence of these types of
sequences. If the duplication is relatively new evolutionarily, and has not had time
to accumulate many differences from the true gene, microarray probes designed to
query the true gene will cross-hybridize to both sequences.

Probes and PCR primers can be designed to avoid duplications in many
instances; however, it is necessary to have a priori knowledge of these sequences
during the design phase to achieve specificity. Without prior knowledge, interference
from duplications could go unnoticed during microarray analysis because the algorithms
used to call SNPs are not designed to detect copy number differences. If the true
gene is homozygous at a particular base and some fraction of duplications (complex
or otherwise) within a population is heterozygous, the microarray will wrongly report
that the position can be both heterozygous and homozygous when the population is
queried. This would go unnoticed as long as the genotype frequencies did not deviate
from HWE.
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Although probes producing genotype frequencies that deviate from HWE values
are routinely eliminated during the design phase of a platform, comparatively small
numbers of samples are used for development, compared to the number of samples
required for the numerous association studies that will use that platform. Put simply,
design phase samples only a small fraction of the variation that exists and probes
that will prove faulty in the long run will be retained. Further, HWE as a criterion
for eliminating probes is not foolproof if the resulting signal from the duplication
is consistent with HWE in the overall population. (Recall that this was the finding
for half of the complex multisite variants when the CHM data described above was
analyzed without regard to copy number.) In summary, it is highly unlikely that all
faulty probes on an array have been eliminated.

To eliminate the potential for confounding due to cross-reaction of probes,
Fredman et al. [50] recommended the use of fully homozygous CHMs or haploid
genomes in upstream assay validation during platform development. This recom-
mendation has merit if genomic duplication with contrary and complex genotypes
is truly shown to be a widespread and significant phenomenon within human
populations. Given that the generation of labeled target for high-density SNP chips
involves a nonspecific process of amplification of genomic representations, known
regions of duplication cannot be filtered out at this stage. Eliminating duplicated
regions can only be achieved when quartets are selected during development of the
platform. In contrast, PCR/LDR/Universal array can avoid duplicated regions
through PCR and/or LDR selection [55,56], provided that information is available
to identify duplications and to highlight any variation found in duplicates. Other
enzymatic detection strategies may employ similar approaches for selective
analysis; however, as stated, the first step is to know which regions are affected.
In time and with further research, it should be possible to determine the degree
to which genomic duplications may cause confounding in SNP-based association
studies.

In addition to the confounding potentiated by various forms of genomic dupli-
cation, the history of the population used to investigate a trait of interest and complex
gene-by-environment interactions will influence the likelihood of identifying genes
associated with a trait of interest. As stated earlier in this chapter, technical limita-
tions are relatively easy to overcome; accommodating biological constraints poses
more of a challenge.

BIOLOGICAL CONSIDERATIONS
GENES, ENVIRONMENT, AND COMPLEXITY

The most important assumption underlying identification of genes that contribute to
variation in medically relevant traits is that such genes exist. Given that this assump-
tion is valid, one is faced with a broad range of genotype—phenotype relationships.
Is most phenotypic variation associated with highly penetrant variation at a single
gene of major effect? Or are many genes involved, with epitasis possibly reducing
penetrance? Is penetrance influenced by environmental factors, and do gene X
environment interactions complicate matters further?
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From a public health standpoint, it is apparent that diseases that affect a large
number of individuals may not be associated with single genes of major effect [57].
The same cannot be said for genetic variation that influences the major routes of
metabolization of pharmaceuticals. Thus, functional and pharmacogenomics (involv-
ing many loci, e.g., relating to etiology of disease) and pharmacogenetics (involving
one or few loci, e.g., relating to drug metabolism) may benefit from different
approaches. Regardless, because identification of relevant genes usually requires
initial correlation between the character states of the trait of interest and a mapped
marker, it is essential to appreciate the processes responsible for the origin and
eventual loss of such correlations.

LINKAGE DISEQUILIBRIUM
Definitions

Fundamental concepts intrinsic to the ability to apply association studies to identify
genes involved in a trait of interest include “linkage” and “linkage disequilibrium”
(LD). Linkage refers to the tendency of two or more loci to be inherited together
because of their location near one another on the same chromosome. Tightly linked
loci do not assort independently during the creation of germ cells (meiosis). This
results in a state of disequilibrium, because the two-locus haplotype frequency for
a pair of alleles is not equal to the product of the individual allele frequencies. This
difference reflects the degree of linkage disequilibrium. Because two loci in close
proximity to one another will tend to associate nonrandomly, this will lead to a
higher degree of LD for the two loci. The underlying hope when performing asso-
ciation studies is that mapped markers will be able to identify genes contributing to
the trait of interest due to LD.

Frequencies and Spacing of Polymorphisms

Both linkage and LD mapping require that the character states of the trait of interest
and the mapped marker reflect genetic variation. In many studies today, the mapped
marker is itself a genetically polymorphic site (e.g., a SNP). Genetic polymorphism
is the result of at least one mutation, such that a given genetic locus has an ancestral
state and at least one derived state. Most mutations will be quickly lost to genetic
drift, but a few will rise to measurable frequency over time. For this reason, when
a polymorphism is due to a single mutation, low-frequency derived states tend to
be younger than high-frequency derived states.

If a polymorphism is due to multiple mutations at the same position, the fre-
quency of the derived state will be higher. Unfortunately, LD with nearby polymor-
phisms will be lower, thus decreasing the likelihood that susceptibility loci will be
detected through association with a mapped marker. Pritchard [58] shows that sus-
ceptibility alleles can reach appreciable frequencies by recurrent mutation:
essentially mutation balances weak selection against the deleterious allele. Interest-
ingly, such independent mutations in the same gene, detected by family-based
linkage analysis, can provide very strong evidence for disease causation (e.g., DJ1
and early-onset parkinsonism [59]).
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Figure 12.1a shows the expected frequency spectrum of derived states at poly-
morphic sites (assuming one mutation per site) for a sample of 1000 individuals in
a population of constant size; the y-axis is on a log scale for ease of visualization.
Figure 12.1b shows the probability that the frequency of the derived state will be at
least the value on the x-axis. For example, only about 21.5% of polymorphic sites
will have a derived state frequency at or above 0.2 (see highlighted point in Figure 12.1b).
For an expanding population, such as that of humans, the frequency distribution of
derived states, d, is left-skewed. Thus, for a given level of pairwise polymorphism,
relative to a constant population, an expanding population will have a greater density
of polymorphic sites, but with lower average frequency of the derived state.

It should be noted that, without an outgroup, the ancestral/derived state polarity
of a polymorphic site is unknown. However, because low frequency derived states
are much more common than the corresponding high frequency derived states (i.e.,
those with frequency of 1-d/k, where k is the number of haplotypes screened), the
derived state is usually the rare state.

The actual density of polymorphic sites in any sample depends, in large part,
on the overall level of polymorphism. For k haplotypes sampled from a population
of constant size N over time, the expected density of polymorphic sites with derived
state frequency at least d/k is given by the formula

—1

k-1
site density = 621’" ,
i=d

where 6 is the expected pairwise polymorphism, given the population size and the
mutation rate. This parameter is generally estimated from the observed pairwise
polymorphism [60] or the observed number of polymorphic sites [61]. Figure 12.1c
shows the expected number of base pairs between polymorphic sites under a constant
N model and 6 = 0.0008 (slightly greater than the value of 0.0007 estimated by
Reich et al. [62]) for sites with derived state frequencies up to 0.5. For example, in
this constant N model, we expect sites with derived frequencies at or above 0.2 to
be spaced, on average, every 775 bp (see highlighted point in Figure 12.1c).

Correlating a Mapped Marker and a Trait of Interest

We are now in a position to consider the correlation between character states of a
mapped marker (locus A) and a trait of interest (locus B) — i.e., linkage disequilib-
rium [63]. The simplest measure of LD is D, the difference between the observed
frequency of a given haplotype (e.g., A,B,) and its expected frequency under the
assumption of independent assortment (i.e., D = f(A,B,) — f(A,)f(B,)). Note that D can
be positive or negative; in a two-gene, two-allele model, IDI is the same for any of
the four haplotypes. A limitation to the use of IDI| as a measure of LD is that it is
sensitive to allele frequencies. It reaches its maximum (IDI = 0.25) when all alleles
are at a frequency of 0.5. An alternative index, D’, scales D by the maximum possible
value given the observed allele frequencies. However, a more intuitive index is
simply the product-moment correlation of character states (0 or 1) of the two loci.
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FIGURE 12.1 Frequency of derived states and the number of polymorphic sites with a given
frequency of derived states. (A) The expected frequency spectrum for a sample of 1000
individuals in a population of constant size; the y-axis is on a log scale for ease of visualization.
(B) The probability that the frequency of the derived state will be at least the value on the
x-axis. (C) Expected number of base pairs between polymorphic sites with a derived state
frequency at or above d/k under a constant N model and 6 = 0.0008.
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It can be shown that the squared correlation coefficient of the allelic states of the
two genes is

2 U(AB) - f(A)IB) D’
FANFAFBYFB) — f(A)FA)FBfB)

It can also be shown by algebraic rearrangement that the value of the test statistic
for a chi-square test of independence of the character states of the two loci is kr2.
One can then easily test the hypothesis that two loci are in linkage equilibrium,
because kr? is chi-square distributed with one degree of freedom [64]. The critical
value of a chi-square test with one d.f. is 3.841. Thus, for a sample size of k = 100
haplotypes, r* must exceed 0.03841 to infer nonzero linkage disequilibrium. This
drops to 0.00384 if the sample size is increased to k = 1000.

High LD When Frequencies Match for Derived States
of the Mapped Marker and Trait of Interest

It is reasonable to ask whether a statistically significant, but low, value of #? is
useful for mapping a locus that influences the trait of interest. The answer to this
question is a cautionary “yes.” Consider a derived state at a polymorphic mapped
marker that has been sampled at a frequency of d/k. For r? to be at its maximum
value (1.0), certain conditions must be met. First, the sampled frequencies of the
two character states at the trait of interest must also be d/k and 1 — d/k. Second,
the character states of the two loci must be in phase: individuals with the rare
character state at the mapped marker must have the rare character state for the
trait of interest. Figure 12.2 shows a gene tree for two completely linked sites
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FIGURE 12.2 Gene tree. Black lines represent the tree for one site; gray lines represent the tree
for a second, completely linked site. Lines are dashed prior to, and solid subsequent to, the
mutation responsible for polymorphism. When the two mutations occur on different branches of
the tree, three haplotypes must be present, even without recombination between loci.
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FIGURE 12.3 Maximum possible r? for all combinations of derived state frequencies ranging
from 0.025 to 0.975 for two loci. As the derived state frequencies become increasingly
different, the maximum possible value of 7> goes down. The figure is symmetrical with respect
to the ridge.

(one depicted in black, the other in gray). It shows that, when the two frequencies
are different because of historical contingency, three haplotypes must be present
even in the absence of recombination between the sites. It should be clear that the
strongest association will occur when the two mutations occur on the same branch
of the tree. A gene tree relating k haplotypes will have 2(k — 1) branches of varying
lengths (in generations), and the probability that a mutation will occur on a given
branch is proportional to the branch length. The probability that both mutations
will occur on the same branch — a requirement for perfect LD — is, therefore,
exceedingly small. Only a small fraction of polymorphisms will be in strong LD,
even in the absence of recombination, because of this historical contingency
requirement.

Because derived-state frequencies will usually be different, even for a pair
of completely linked polymorphic sites, it is worth considering the effect this
has on LD. Figure 12.3 shows the maximum possible r? for combinations of
derived-state frequencies ranging from 0.025 to 0.975 for two loci. Note that
the 72 along the diagonal (where the frequencies of derived states are equal) is
1.0. The remainder of the plot is saddle shaped, showing that the maximum
possible value of 7> decreases as the frequencies of the derived states at the two
sites diverge.

The Consequences of Genetic Recombination

Of course, the assumption of no recombination between sites is unrealistic. The
gene tree that underlies the frequencies of the character states of the trait of
interest will be correlated to that of the mapped marker if recombination subse-
quent to the causative mutation has not effectively randomized the character states
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FIGURE 12.4 r? remaining over time for given recombination rates. The variable ¢ in the
figure corresponds to rec in the text; ¢ is time in generations. Values are calculated from the
formula 2, = r?(1 — ¢)*.

of the two loci. Intuitively, the two trees will be less congruent if there has been
greater opportunity for recombination. The consequence of this, from the stand-
point of LD, is that, in the absence of any change over time in allele frequencies,
D must decrease as time passes and recombination occurs. In an infinite popu-
lation (i.e., one with no genetic drift), this LD decay process can be described
as follows: D at generation ¢ can be related to D at generation O by the simple
formula D, = Dy(1 — rec),, where rec is the recombination probability per generation
between the polymorphic sites [65]. Because #? is proportional to D?, r? = r?(1 — rec)?,
assuming no change in character state frequencies over time. Figure 12.4 shows the
expected decay of r? for different recombination rates. The take-home message
is that r> will be lower today than it was in the past, but it may remain significant
for some time.

A paradox should be apparent from the above discussion: if LD decays over
time, how does it arise in the first place? For association mapping, the assumption
is that LD between two polymorphic sites originates at the time of the second
mutation. However, this is not equivalent to t = O in the decay formula. Rather, if
the appropriate haplotypes (those bearing the initially rare derived states) become
sufficiently common soon thereafter, then D will initially rise. (Recall that D reaches
its maximum when allele frequencies equal 0.5). This initial change in SNP fre-
quencies may be due to drift or it may be driven by natural selection (e.g., by
hitchhiking to selectively favored linked mutations). We can think of t = 0 as
corresponding to that arbitrary point in time when D peaks and begins its expected
decay. What really matters is that generating and maintaining LD becomes more
difficult as recombination rate increases.
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Population Structure and Admixture

It is important to note that LD can arise for reasons unrelated to physical linkage
between a mapped marker and a gene associated with a trait of interest. Natural
selection (including selection in utero) can make certain combinations of character
states appear at different frequencies than expected on the basis of the product rule.
More problematic for association mapping in humans is population structure fol-
lowed by admixture. Consider a population in which a character state of the trait of
interest has risen to an unusually high frequency, for example, by genetic drift.
Presumably, frequencies of character states at various mapped markers have also
changed in frequency. There need be no linkage disequilibrium between the loci
within populations. However, consider the possibility that the combination A, B, has
become common in one population. That population now mixes with another, in
which A,B, is common. Even if the two loci are independently assorting (i.e., rec =
0.5), it could take multiple generations for the character states to become uncorre-
lated. As shown in Figure 12.4, r? is expected to decay to 6.25% of its starting value
in two generations. The generation time in humans is about 25 years. If 2 was 0.1
as a consequence of admixture 50 years ago, it would be about 0.00625 today. For
a sample of k = 1000 haplotypes, this would be a statistically significant level of
LD. Fortunately, there are association mapping strategies that ameliorate the problem
of population structure/admixture [66], but these require special sampling protocols
(such as genotyping both parents of all cases and controls) that may be unfeasible
for many studies.

Correcting for Multiple Comparisons

The final consideration, before turning to mapping strategies, is correction for mul-
tiple tests. As noted earlier, the statistical significance of LD can be estimated on
the basis of a simple chi-square test. With large sample sizes, even very small values
of #? can indicate significant LD between a mapped marker and a trait of interest.
But what happens if the trait of interest is compared to several mapped markers?
One simple definition of the p-value of a statistical test is the probability that the
strength of the signal (e.g., ¥?) used to reject a null hypothesis could arise just by
chance. This means that, for x tests and a single-test significance cutoff of o (tradi-
tionally 0.05), we expect xa tests to be spuriously significant. A conservative correction
is the Bonferroni correction [67], which sets the cutoff for statistical significance at
o/x. That the Bonferroni correction is overly conservative is a common criticism,
but it is clear that the multiple testing problem is a significant problem, particularly
for whole-genome analyses [68]. Thus, association analysis involving many mapped
markers requires some form of correction for multiple tests. If this correction is
conservative (for example, the use of the Bonferroni correction when some mapped
markers are not independently assorting), some useful information will be lost. If
this correction is liberal, for example, by allowing an arbitrarily acceptable false-
discovery rate [69], researchers will be misled into searching for a relevant gene
when none exists. When possible, replication of association studies with independent
samples can decrease the likelihood of a false positive association; however,
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systematic biases, such as those involving population structure, may allow replication
of false positive associations.

MAPPING STRATEGIES

If there were a simple way to map all genes that contribute to variation in a trait of
interest, the point of this chapter would be moot. The reality is that tradeoffs are
unavoidable. On the one hand, whole-genome analysis would allow one to map all
relevant genes. However, this would require screening huge numbers of mapped
markers, making false positive correlations a virtual guarantee. Assuming an average
recombination rate of 0.5 cM/mb in the human genome, a marker density of 0.5 cM
would require 3,000 markers; a density of 0.1 cM would require 15,000 markers.
Figure 12.5 shows the number of generations for loss of statistical significance
(following Bonferroni correction) in a sample of k = 1,000 haplotypes for markers
starting at a given r?> with the trait of interest. Along the x-axis are markers that are
progressively farther from the gene of interest (i.e., in increments of 0.1 or 0.5 cM).
Because the closest marker may, for reasons of historical contingency, never have
been in strong LD with the gene of interest, it may be necessary to rely on more
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FIGURE 12.5 Number of generations for loss of statistical significance (following Bonferroni
correction) of markers starting at a given r2. Marker density is set to 0.1 or 0.5 cM. It is
assumed that the first marker is 0.05 or 0.25 cM from the gene of interest (i.e., half the marker
density). Subsequent markers are farther from the gene interest, in successive increments of
0.1 or 0.5 cM along the x-axis. Sample size is £ = 1,000 haplotypes. Statistical significance
of kr? is determined by a chi-square test with one degree of freedom. Following Bonferroni
correction for 15,000 tests (0.1-cM density), a critical value of r? of 0.021614 is required for
statistical significance. For 3,000 tests (0.5-cM density), the critical value of 2 is 0.018536.
In contrast, the critical value of r? for a single test is 0.003841.
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distant markers. The problem is that more distant markers will recombine more
rapidly with the gene of interest. It is clear that, unless 72 is initially very high, it is
unlikely that LD would be statistically significant today.

Would a “block-like” structure of the genome improve whole-genome mapping
efforts? Variation across the genome in recombination rate, as well as gene density,
should lead to increased LD among polymorphisms located between recombination
hot spots. McVean et al. [70] have suggested that there may be about 10,000
recombination hot spots in the genome, which would divide it into blocks of 300
kb. Taken to its extreme, there would be no recombination within blocks, such that,
aside from cases of recurrent mutation, all polymorphisms would be in maximum
LD for their relative frequencies (see Figure 12.3). If one were to select a handful
of markers based on a frequency match with the trait of interest, one could presum-
ably find one that is in very high LD. The catch, however, is that one could only
infer that polymorphism of interest is somewhere in the block. If a limited amount
of recombination is allowed in the block, more careful mapping might be possible,
but more sites would have to be screened. Further, there is no guarantee that a site
in stronger LD with the gene of interest will be available, given the limitations in
marker density due to low polymorphism levels in general. Also, LD with a gene
of interest is not necessarily greater for closer markers, due to the historical contin-
gency effect. Thus, if there is very low recombination within a block, fine-scale
association mapping may not work. As it stands, the “block-like” structure of the
genome is debatable. Wall and Pritchard [71,72] find that, though a uniform recom-
bination rate model is unsuitable for the human genome, data are not fully consistent
with a strict haplotype block model.

The alternative to whole-genome analysis is to take some form of candidate
gene (or candidate region) approach. One could begin with an a priori list of
candidate genes, and determine if nearby SNPs are in LD with the trait of interest.
The obvious drawback is that the analysis is limited by the imagination of the
investigators, insofar as the subjective decision as to what constitutes a candidate
gene. Linkage analysis may be used to narrow the region to a megabase scale, and
association analysis could then focus on SNPs within the region. By narrowing the
regions of the genome to be screened, one could either assay fewer SNPs (decreasing
the cost of correction for multiple tests) or screen SNPs at a higher density (increas-
ing the likelihood that one will be in high LD with the polymorphism of interest).
As recently noted by Blangero [73], progress in identifying relevant loci has gen-
erally begun with a more traditional linkage-based approach involving extended
pedigrees. The example of DJ-1 and early-onset parkinsonism is especially inter-
esting, as the investigators were forced to rule out all of the “obvious” candidate
genes within a 5.6-Mb region of chromosome 1 [59]. However, because their search
had been narrowed to this smaller region, they were able to assay other transcribed
regions to find mutations that were perfectly associated (as homozygotes) with
disease. Of course, one could argue that this study did not rely at all on association
mapping, per se. However, other efforts have used LD, in conjunction with linkage
analysis, to pinpoint medically important genes [74]. Recent reviews by Terwilliger
and Weiss [75] and Blangero [73] merit attention by those interested in further
exploration of these issues.
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CONCLUDING REMARKS

The intent of this chapter is to highlight some of the caveats that must be addressed
during association studies and to serve as a resource for discovery by scientists. By
bringing the issues of interest to the attention of researchers, we are hopeful that
many of the problems encountered will be resolved prior to commencing a study.
As success stories for association studies reach publication, it will be possible to
more accurately assess the factors that drive success, redirect efforts to avoid inef-
fective approaches, and refine strategies to further improve the state of the art.
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’l 3 Approaches for

Microarray Data
Validation

Sergey E. llyin

Microarray data has numerous scientific applications and, in many instances,
investigators may not need to go beyond the statistical analysis of an expressional
profile obtained on array. An example would be a situation in which a certain
microarray signature is proven to have a diagnostic validity. For example, RNA
samples from 74 patients with Dukes’ B colon cancer were analyzed using an
Affymetrix Ul133a GeneChip [1]. Class prediction approaches were used to iden-
tify gene markers that can best discriminate between patients who would experi-
ence relapse and patients who would remain disease-free. Gene expression pro-
filing identified a 23-gene signature that predicts recurrence in Dukes’ B patients
[1]. In a number of other instances, however, validation of microarray data may
become an integral part of research projects. Validation means answering one or
several of the following questions:

1. Are the observed statistically significant changes for certain genes real
(relates to false positive)?

2. Are the observed statistically insignificant values for certain genes real
(false negative findings)?

3. An additional aspect of validation relates to functional characterization.
Microarray experiments are often carried out to identify the potential
function of certain genes, and, as such, these modeling experiments
require functional validation.

Prior to validation of microarray findings, microarray data needs to undergo
a rigorous quality control, normalization, and statistical analysis to identify can-
didate genes. Microarray data analysis is a well-studied area, described elsewhere
[2-5]. Confirmation of microarray data using some independent methods is the
most straightforward task (see Figure 13.1). There are a number of independent
technologies, which can be used for expressional profiling (i.e., the Northern blot,
RNase protection assay [6]). Despite being quite old, these technologies still offer
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FIGURE 13.1 (A color version follows page 204) A representative amplification plot show-
ing amplification of reference samples. Linear relationship between amount of input material
and CT values was observed across all reference samples suggesting a broad dynamic range
of detection.

some unique advantages. For example, Northern blot analysis enables one to detect
the sizes of mRNA. TagMan qRT-PCR is currently a method of choice for
microarray data validation, because of the relative simplicity of the procedure and
availability of validated reagents for a significant number of genes. Applied Bio-
systems (http://www.appliedbiosystems.com) offers a compelling choice of rede-
signed human (over 40,000 ready-to-use human gene detection reagents), rat, and
mouse gene detection reagents. TagMan qRT-PCR is a kinetic PCR [7], which
means that the accumulation of product is observed in real time. A liquid hybrid-
ization assay is incorporated into the reaction. Standards are generally incorporated
in each plate run, and these may include: standards with a known amount of
material to estimate unknowns, negative controls (contamination control), and RT
control to verify absence of genomic DNA. The type of standards used in the
experiment will determine whether it is a quantitative or semiquantitative charac-
terization. Most experimental designs also incorporate the analysis of a house-
keeping gene to verify that an equal amount of material is used for all samples.
Data analysis and interpretation of these types of experiments was previously
described. General observations made in the course of microarray data confirma-
tion are:
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1. Itis highly advisable to design PCR primers for the same sequence as the
one represented on microarray as it significantly increases chances of
successful validation.

2. Microarray data exhibits a so-called compression effect [8] or smaller fold
change compared to the real one. Compression may significantly affect the
observed fold change for a low-level expressed gene and, in some cases,
could make these changes even undetectable, thus leading to false negatives.

False negatives are a more complicated problem to investigate. False negatives
may arise from different technical issues (for example, poor probe design, a problem
with a specific spot, or a very low level of expression leading to extreme compres-
sion). In general, much less attention is paid to the existence of false negatives. A
problem may be studied by performing large-scale parallel microarray/qPCR exper-
iments with genes representing different ranges of expression. TagMan qPCR con-
firmation is facilitated by the advent of novel methodologies for sample preparation;
such as the novel poly-A mRNA capture plate-based method [9]. This technology
eliminates all traditional steps of sample preparation and all steps including RNA
extraction, RT, and PCR are performed in the same tube, thus significantly enhancing
throughput of this method and making it automation friendly [10]. As the sample is
lysed in poly-T-containing plates, mRNA gets captured, wells are washed, and
subsequent steps of RT and PCR are performed. Figure 13.2 shows the results of
an experiment designed to determine if mRNA binding to the GenePlate HT would

Lysis Conditions

[ Culture Tube

Il GenePlate HT

PBS Media

FIGURE 13.2 Ten thousand K562 cells were suspended in either PBS or growth media
containing 10% FCS. The cells were either lysed in separate culture tubes by mixing equal
parts of 2X lysis buffer with the medium or PBS, then added to the GenePlate HT, or were
lysed directly in the GenePlate HT using 2X lysis buffer. Samples were reverse transcribed
and amplified as described. The results represent the mean of four replicates. (From Maley,
D., Mei, J., Lu, H., Johnson, D.L., and Ilyin, S.E. Multiplexed RT- PCR for high-throughput
screening applications. Comb Chem High Throughput Screen 7(8), 727-732, 2004. With
permission.)
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FIGURE 13.3 Increasing numbers of cells were plated in the GenePlate HT, to determine
the limits of RNA capture. 1:2 dilutions from 10,000 cells/well were extracted with 2X lysis
buffer, then the poly-A RNA allowed to capture for 4 h to the oligo-T on the plate. The wells
were washed, and cDNA reverse transcribed for 2 h at 37°C. GAPDH or beta-Actin cDNA
were quantified using TagMan directly in the GenePlate HT as described in Methods. The
results were expressed as the number of amplifications needed to reach a threshold of detection
(CT). (From Maley, D., Mei, J., Lu, H., Johnson, D.L., and Ilyin, S.E. Multiplexed RT- PCR
for high-throughput screening applications. Comb Chem High Throughput Screen 7(8),
727-732, 2004. With permission.)

be influenced by serum proteins or other media components, and if the cellular
mRNA can be extracted directly in the GenePlate HT. There was a minimal differ-
ence between cells lysed in PBS or in growth media containing 10% FCS. There
was no statistically significant difference between lysis directly in the GenePlate HT
and lysis in separate culture tubes with subsequent transfer to GenePlate HT. Figure 13.3
demonstrates the range of cell numbers that can be used in the GenePlate HT. The
reduction was linear through the entire range of cells from 10,000 to approximately 10.

Figure 13.4 is a time course for binding of lysates to a GenePlate HT. The oligo-
dT plate requires time for the polyA RNA to bind. Allowing the lysate to sit in the
plate 1 h was sufficient to capture the gene product. Figure 13.5 demonstrates a dose
response of a certain gene AOD (assay on demand), and the changes in both
the target gene (AOD) and a nontarget gene (GAPDH). Induction and amplification
of the target gene occurred when the primer/probe set was used alone, or multiplexed
with GAPDH primers/probe. There was no observed difference between the induc-
tion curves. At the same time, signals from the second target (GAPDH) did not vary
with increasing compound concentrations.

The BioTrove qPCR microfluidics device (http://www.biotrove.com/) is another
approach to microarray data validation. The OpenArray™ transcript analysis system
performs real-time PCR reactions achieving a throughput of over 3000 reactions per
array (Figure 13.6). This technology is based on a sandwich of hydrophobic layers
encapsulating a hydrophilic inner part of the well. When this sandwich is immersing
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FIGURE 13.4 The time required for optimum binding of poly-A RNA to the GenePlate HT
was evaluated by lysis of cells in the plate, followed by increasing binding times. Ten thousand
and 150 cells were plated, in replicate wells. 2X lysis buffer was added directly to the culture
medium, and then the plates incubated at 37°C until the next time point. Lysis buffer was
added to the next set of wells, and the plates returned to the incubator. Following the last
hour of binding, the final wells were lysed, and the plates mixed at room temperature.
Following lysis and binding, all of the wells were washed 3X with wash buffer, then cDNA
reverse transcribed, and DNA amplified by TagMan as described. Results were expressed as
CT. (From Maley, D., Mei, J., Lu, H., Johnson, D.L., and Ilyin, S.E. Multiplexed RT- PCR
for high-throughput screening applications. Comb Chem High Throughput Screen 7(8),
727-732, 2004. With permission.)

in the water-based solution, capillary force fills each capillar with a fairly constant
amount of solvent. Each well contains a primer pair probe encapsulated in the thermo
labile material so the release of reagents occurs during the first cycle of the PCR
reaction. Each chip contains a number of negative and positive controls in addition
to experimental samples. A significant advantage of OpenArray is in the system
scalability. Different manipulations could be performed in the sandwiched chips and
materials could be transferred using capillary forces (Figure 13.7).

A note worthy of mentioning with regard to the comparison between microarray
and other approaches relates to informatics support of such exercises. Although it
may be a relatively straightforward task to compare the expression of a couple of
genes between microarray and qPCR data, large data sets require a completely
different way of consideration. Guided applications incorporating statistical and
visualization tools offer convenient and timesaving solutions. Example of such
solution is Spotfire/R application for microarray and PCR analysis described by
Stephen Prouty and his colleagues [11]. Solution enables to deploy application on
a server and distribute guided statistical routines across organization. In this inte-
grated approach, Spotfire is used as an interface with end user, and statistical analysis
is performed on R or/and S-PLUS server (Figure 13.8).

The functional characterization of genes identified in a microarray experiment
may be achieved using functional genomics tools. If a straightforward test system
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FIGURE 13.5 A multiplex experiment testing the induction of a gene by a compound com-
pares the RT-PCR signal generated in a reaction containing a single primer/probe set with
the same reaction containing a second, housekeeping primer/probe set. Ten thousand K562
cells were treated with increasing concentrations of an inducer compound for 2 h in a
GenePlate HT at 37°C. The cells were lysed and RT-PCR was conducted as described in
Methods. An assay on demand (AOD) primer/probe set targeting the induced gene was
employed to quantify the changes in message induced by the compound. A duplicate set of
inductions was performed using an additional primer/probe set targeting GAPDH in a mul-
tiplex reaction with the AOD. The results were expressed as the threshold CT as described.
The results of the multiplex reaction are described as two curves, one for the AOD target
gene, and a GAPDH curve from the same multiplex wells. The AOD utilized a FAM TagMan
signal, while GAPDH uses the fluorescent signal VIC. Compound, tested in doses ranging
from 0.001 uM to 10.00 uM, was used as indicated. Compound treatment induced significant
upregulation of AOD (over 50-fold, as data expressed in threshold cycle numbers). (From
Maley, D., Mei, J., Lu, H., Johnson, D.L., and Ilyin, S.E. Multiplexed RT- PCR for high-
throughput screening applications. Comb Chem High Throughput Screen 7(8), 727-732, 2004.
With permission.)

for functional validation could be created in vitro, then a battery of functional
genomics tools could be used for this purpose: viral vectors [12], antisense, aptamers
[13], and siRNA [14,15]. In vivo validation generally requires the development of
animal models and is fairly time-consuming. An exception to this is a situation in
which the localized delivery of a gene-expression-modifying agent is used to create
an animal model [12]. In vitro functional validation could be achieved by delivering a
gene expression-modulating reagent to the cell in culture and subjecting modified
and control cell populations to a battery of tests to interrogate gene function. This
experimentation can be automated [14]; in fact, a novel experimental paradigm,
functional informatics, which is based on the integration of automation and bio-
informatics, was described and validated. The integrative functional informatics
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FIGURE 13.6 Microfluidics OpenArray from BioTrove performs uHT Real Time PCR in 33
nl total reaction volume. Solution achieves throughput of 3000 reactions per chip. Top:
OpenArray overview. Bottom: Example of data generated in the course of real-time PCR
experiment.

definition has been included in the Cambridge Healthtech Institute Bioinformatics
Glossary: (http://www.genomicglossaries.com/content/Bioinformatics_gloss.asp).
Functional informatics takes advantage of automated assays and integrates them
with machine learning techniques for analysis and hypothesis generation. This inte-
gration enables target identification, validation, lead generation, and optimization to
be performed seamlessly in the same system. Information obtained in the first rounds
of testing will be processed, integrated, and used for hypothesis generation using
neuronal networks or other types of methodologies. Input from this modeling can
be fed back directly into the integrated robotic system for testing, thus enabling fully
automated operations to define novel knowledge space. Functional Informatics also
facilitates a novel approach to personalized medicine by enabling economically
viable testing of individual patients’ biology [17,18]. A current limitation of this
approach is in the fairly high cost of large-scale experimentation using industrial
robotics. Just as an example, in a 96-well format, each data point in an expression
profiling assay is between $1.00 to $3.00, cost drops substantially by transitioning
to a 384-well format (i.e., $0.33 to $1.00), but still remains prohibitively high for
large-scale studies. Microfluidics, however, opens a totally new dimension by poten-
tially reducing cost to several cents per well. Reduced cost, in turn, enables the
investigator to perform an increased number of testing and refine knowledge about
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FIGURE 13.7 (A color version follows page 204) Example of control amplification (all wells
equally loaded with positive control) performed in OpenArray on BioTrove system.
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FIGURE 13.8 (A color version follows page 204) Integrated solutions for data analysis
facilitate data processing, integration, and reporting. Spotfire DecisionSite is used as an
interface. The user communicates directly with the R and S-PLUS servers, and uses the
DecisionSite server for software updates.
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the biological role of the molecule and potential side effects of a new treatment,
thus derisking patients and enhancing value to pharmaceutical and biomedical orga-
nizations. Fairly interesting studies can be performed to adapt microarray technology
for functional characterization. First, cDNAs or siRNA are printed on the chip, cells
are then plated, and then image-based analysis of transfected cells can be performed.
For example, a cell-based microarray system was described [19,20]. cDNAs or
siRNA are printed on the chip, cells are plated and image-based analysis of trans-
fected cells is performed. The system offers significant throughput as at least 10,000
different sequences can be simultaneously tested on a single chip. The lack of
physical boundaries between spots imposes certain limitations on this technology
and limits the types of assays that can be performed. The possibility to incorporate
physical boundaries to limit diffusion, while maintaining throughput capability rep-
resents an exciting and highly practical opportunity.
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ABSTRACT

A microarray experiment is conceptually simple — the expression levels of many
genes (many thousands, in most cases) in a particular biological sample are measured
[1,2]. However, to place the results of an array experiment in proper context, a great
deal of data must be collected and properly organized and interrelated with respect
to how the expression data were collected and later how these data were transformed
into biologically relevant information. In this chapter, we will outline the microarray
experimental workflow for both self-spotted as well as commercial array platforms.
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We will concentrate on the data generated at each step of this process and the various
approaches that can be taken to store and manage such data. We will highlight the
importance of structured data management in ensuring result integrity through the
use of an example. We will then provide an examination of how experimental process
data can be used for performing quality control checks, facilitating collaborative
research, meeting publication requirements, and encapsulating knowledge. An essen-
tial goal of this discussion is to highlight the importance of proper collection,
management, and integration of experimental data when conducting microarray
experiments. Throughout this chapter, we will use the GeneDirector® product from
BioDiscovery, Inc. as an example of a comprehensive data management solution.

INTRODUCTION

Microarray experimentation is unlike most studies undertaken by biologists. The
issues that make this process unique are as follows: (1) it takes days to generate all
the raw data, (2) the large expense necessitates collaboration and sharing of
resources, (3) the large volume of data requires active management, (4) results are
generated as large tables and complex images, and (5) there is a large diversity and
heterogeneity in the types of data generated at different stages of the experimental
process, which include detailed notes in laboratory notebooks, instrumentation log
files, images, etc. The complexity of the different file formats and handwritten notes
and their complex relationships are inherently a substantial challenge for even the
most basic microarray experiment. In the end, the user must be able to correctly
associate and integrate these different files and associated data to achieve a mean-
ingful analytical understanding.

The microarray experimental process can be broken into a set of logical steps.
This chapter will present the process in terms of the following distinct components
along the experimental data flow: (1) designing the array, (2) processing samples,
(3) hybridizing arrays, (4) scanning array images, (5) generating and summarizing
the expression measurements, and (6) discovering biological insights by analysis
and data mining. Our goal in this chapter is to demonstrate the value of a data
management system in ensuring the accuracy of the results obtained from array
experiments or at least one’s confidence in the data. Furthermore, we aim to dem-
onstrate the importance of collecting and archiving all the experimental information
in a structured fashion to both aid in enhancing the technical quality control capa-
bility, which may be applied to future experiments, as well as simplify the data
submission for peer-reviewed publications. Figure 14.1 shows the inherent relation-
ships among these processes.

In the remainder of this chapter, we will discuss the importance of data
management for assurance of data integrity, including an example in which con-
ventional methods for data management have resulted in data corruption and
eventual loss of value of an important large-scale microarray experiment. Then
we will discuss in detail all aspects of array experiment data management, from
array design to quantified arrays. Finally, we provide some concluding remarks
and future directions.
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FIGURE 14.1 Microarray experimental process.

IMPORTANCE OF SYSTEMATIC DATA
MANAGEMENT FOR QUALITY ASSURANCE

Because a microarray experiment involves several different data types, ranging
from nucleotide sequences of probes to analyzed expression results, it is important
to have a microarray data management system that organizes this wide range of
data and enforces logical relationships between the data items to maintain data
integrity. Traditionally, a combination of computer file system and the laboratory
notebook has been used to “organize” all data associated with an experiment.
For example, a scientist might use the file name to specify a number of diverse
data attributes, such as array type, sample information and ID. A case in point
would be the file name 7093-7085#659astro133a.cel, which might indicate the
following information: It is a HG-U133A Affymetrix GeneChip CEL file and the
Array ID is 7093-7085 and sample information includes the patient ID 659 and
tissue diagnosis of the brain tissue sample as an astrocytoma. To locate informa-
tion about how the labeled extract was generated, such as the RNA extraction
protocol, who did the extraction and when this was done, and what label lot
number was used, the scientist must locate and refer to files on many computers
in a laboratory as well as through laboratory notebooks in the hope that such
information was indeed noted. There are several inherent problems with this
traditional process:
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1. It is very time-consuming: Especially when the number of experiments
increases, it will take a significant amount of time and personnel to find
the relevant information.

2. Data can get lost: If the technician that performed the experiment leaves
the organization, it might be very difficult to search for the information
in the notebooks or file system.

3. Difficult to enforce policies: If the site wants to capture a particular piece
of information, e.g., RNA quality metrics, it is very hard to enforce this
policy with a manual system.

4. Highly error prone: Any typos in the file name can make a drastic error
in the result. Being able to enforce logical constraints will alleviate many
sources of possible errors.

The last point just stated is one of the most important aspects of having a robust
data management system. It is very troublesome to find out that the results of an
expensive experiment might have been compromised because of very simple errors.
A real-world example of this was highlighted as part of a recent Critical Assessment
of Microarray Data Analysis (CAMDA) conference [3]. The participants of this
conference competition were provided with publicly available published data sets
to analyze. What the winning team discovered was not a scientific breakthrough,
but rather evidence that the data set provided had been corrupted by a simple manual
error in file manipulation [4]. This occurred through an altered mapping of genes
to the coordinate locations on a subset of the arrays in the data set. Such a corruption
of data is highly improbable when robust data management is used to track and
relate data across an experiment. For example because all the arrays shared the same
“array design,” it would have been impossible, in this case, for a subset of the arrays
to have incorrectly mapped features, as this variation would be constrained to force
consistency. This type of rational consistency enforcement is a significant feature of
a robust data management solution. It is informative to quote from the abstract of
the winning analysis:

One of the greatest challenges in dealing with microarray data is keeping track of the
auxiliary information that surrounds the gene expression measurements extracted from
scanned images of microarray experiments. Unlike the sequence data collected for the
human genome project, microarray data is highly structured. Any number of factors,
including sample sources, sample preparation protocols, hybridization conditions, and
microarray lot numbers, can critically affect our ability to interpret the results of a set
of microarray experiments.

It should be clear that for almost all array experiments, having a data manage-
ment system in place is becoming a necessity rather than a luxury. It is becoming
simply too expensive to correct these mistakes after the fact, when they can be
readily and cost effectively avoided by implementing an effective data management
system. Today, there are both academic/shareware solutions as well as more robust
and better-supported commercial data management solutions. Examples of these
options are BASE [5], GeneTraffic [6], Affymetrix GCOS Server [7], and BioDis-
covery’s GeneDirector [8]. All these systems have advantages and disadvantages
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that must be weighed carefully before any group commits to a single solution. In
this chapter we will primarily describe the data management capabilities of BioDis-
covery’s GeneDirector product, as it is one of the more comprehensive systems.

DATA MANAGEMENT NEEDS AT EACH STEP OF
ARRAY EXPERIMENT

In this section, we will provide detailed discussion of the need and type of data
management required at each step for the microarray experiment.

ARRAY DESIGN

The first issue that arises when one wants to conduct a microarray experiment is
designing or selecting the array that will address the experimenter’s questions. An
array design is the association of a selection of genes that are of interest to the
investigator and the mapping of the probe sequences to array elements. Usually, this
array is in the form of a glass slide, but other types or platforms exist. In general, arrays
can be divided in two major groups: home-spotted and commercial catalog arrays. The
home-spotted variety is produced by the experimenter (or a core facility of an institu-
tion). These arrays are often produced using robotic arrayers that transfer the probes
from microtiter plates to the surface of a glass slide to create the microarray [9].
These arrays are used more commonly among those studying less-characterized
organisms or in more focused studies in which the investigators want to probe only
a small portion of the expressed genome. The commercial catalog arrays can also
be subdivided into two categories. The first consists of arrays of oligonucleotides
produced in situ by synthesis-based methods using photolithography [7]. The second
is material deposited using industrial methods, which involve electromechanical
equipment and high-performance inkjet technology [10,11]. The probes themselves
can be either full-length cDNAs, PCR fragments, or chemically synthesized short
oligonucleotides of variable length, selected either experimentally from clones found
in interesting cDNA libraries or computationally from nonredundant sequence data-
bases. The array design process also consists of mapping these gene sequences
(probes) to a physical location on the array, often referred to as a feature.

The probe design aspect can be computationally demanding and experimentally
challenging. Initial microarrays were simply based on clones from cDNA libraries,
and the issue of concern was tracking these cDNAs across wells and plates and their
subsequent mapping to microarray features [12]. This information did require data
management, as not only were the plate well positions mapped to the probes, but
also the cDNA clones or their PCR products were validated by sequencing and
assessed for quality before printing. This is still done in custom spotted cDNA arrays,
but as the technology has moved quickly to oligo-based probes for numerous reasons,
this mapping is not the only issue, but instead, much interest has revolved around
optimizing the criteria for the representative oligonucleotide set. Furthermore,
microarray manufacturers have expended much effort to empirically validate the
efficacy of their selected probes, demonstrating the limitations of computation alone
in identifying ideal probes. Fortunately, there are many commercial sources one can
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turn to nowadays to address this problem. Nonetheless, as the impact of the array
design on experimental results remains poorly understood by the community, the
primary reason that many select an array or manufacturer remains cost.

ARRAY TRACKING

Arrays are usually purchased, to cover the anticipated needs of an experiment. This
set of arrays typically shares many properties provided by the manufacturer, such
as manufacturing lot number and “use by” dates, based on the half-life of the probe
stability or some other metric. The user laboratory personnel will track additional
information for the arrays, which may include an array bar code, their storage
location and condition, and date received. These arrays will typically be stored until
the experiment requires them.

When these arrays are consumed, new arrays must be purchased, and tracking
their usage may become a much more complicated task. This task may be further
complicated if, in the interval between ordering, either new lots are manufactured
or, potentially, the array design itself has been revised. This has ramifications likely
to need addressing during the analysis phase of the experiment as well, and thus,
tracking these details is crucial to interpreting the data. It has been observed that
different array lots may generate different signal values because of variations intrin-
sic to printing of individual probes and variation in array fabrication. Although data
generated from the arrays within a particular lot are generally considered consistent
and highly reproducible by most manufacturers, they can vary significantly across
different lots or print runs. Such systematic changes, sometimes referred to as lot
effects, can often be effectively addressed and corrected using statistical processing,
but may be insignificant depending on the experimental analysis undertaken. How-
ever, in order to perform this task, the user must have readily available information
associating a given quantification to a particular array’s lot number. Therefore, to
ensure proper treatment of data downstream, it is vital to collect, manage, and
associate this information early in the experimental process. Figure 14.2 shows, as
an example, the array data capture view in BioDiscovery’s GeneDirector product.
Figure 14.3 shows how, using the relationship viewer, the association between a
particular quantification and a particular array is kept and can be quickly retrieved.

SAMPLE HANDLING/PROCESSING

A variety of sample types are used in the microarray process, ranging from biom-
aterials, i.e., animal or plant tissues and cultured cell lines, to RNA extracted from
the biomaterial, amplified, and then labeled with a dye or conjugate. The samples
at each stage are related to one another by a series of particular laboratory protocols.
For instance, investigators use protocols for tissue handling, cell treatment and
collection, extraction of the RNA, amplification, and labeling. Furthermore, the
microarray experimental process relies upon a variety of laboratory materials pur-
chased from many manufacturers, all of which may be important for the technical
reproduction of the resulting data.

It is a challenge to keep track of samples through a microarray experiment.
Besides information about the samples themselves, including the location where
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FIGURE 14.2 GeneDirector stores the arrays in the database, indicating the array design that
they belong to. In addition, the array editor also displays the properties belonging to the arrays.

they are stored, the protocols used to create them should also be tracked, which is
often done across the pages of laboratory notebooks and the documents kept in
various computer folders. This organization challenges the curious investigator when
they wish to retrospectively verify either interesting or disappointing experimental
results. They may be left wondering whether the results might have been different
if they had better controlled for factors such as RNA quality, experimental protocols,
or the reagents used. However, without effective data management and organization,
it becomes quite a challenge to confidently verify these and other factors in the
experimental process.

The Sample Tracker module of GeneDirector, for example, offers a solution to
all the challenges mentioned previously. This module manages the data related to
biomaterials, RNA, amplified RNA, and labeled extract; e.g., RNA labeled with Cy3
and Cy5 dyes. In addition to the sample information, sample protocols can also be
imported into GeneDirector and associated with their respective samples (Figure 14.4).

The sample tracker also allows users to create or import sample properties
(Figure 14.5). The properties could be text, numeric, Boolean, image, or binary files
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FIGURE 14.3 The relationship viewer in GeneDirector retrieves and displays how any
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tionship viewer shows that “Epi_vs_Vas_12282631_Epi_Cy5” quantification belongs to
“Epi_vs_Vas_12282631" array and “Maize” array design.

[l sampleTracker: RNA Sample Editor b = ol xi
File Tools Handling

J (] |ﬂ | Ql By | B ” o | o || € Biomsterial 1% RNA Sample 7 SRIA Sample € Labeled Sample

General | progerties | chins |
Source Satmple:

veast_Omin Eraise

Maime:
east_Dmin_RMA

Extraction Protocol Extraction Dete: (2.5. 4/18005)

[Rua Extraction_vesst seiect = Janais
Info:

Whielcomme

FIGURE 14.4 This figure displays the GeneDirector sample tracker for RNA along with the
source biological material it is derived from and the RNA extraction protocol.
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FIGURE 14.5 Sample properties stored in the GeneDirector sample tracker.

and could be set by the administrator as required; there could also be optional prop-
erties. Additionally, the experimental factors, those sample properties of interest for
the experiment, can be specified. Because experimental factors can be quite different
depending on the type of experiment, the data management software must provide
the capability to define the type of study and, depending on the type, present the
corresponding fields. For example, if the experiment is a drug dosage study, experi-
mental factors would include such items as the drug, dosage level, treatment time,
etc. More details about this requirement can be found at the MIAME Web site [13].

The importance of good quality RNA can never be overemphasized to ensure
good quality expression results. Many scientists now routinely use accepted methods
to check RNA quality before committing to spend time and resources associated
with an experiment. One of the most popular tools in this area is the bioanalyzer
product marketed by Agilent Technologies [14]. This product can simultaneously
measure the RNA quality of multiple samples on a microfluidic chip. It is important
to associate the results of this analysis with the biological sample that is to be
hybridized (cDNA, RNA, or labeled RNA) in an array experiment. For example, in
GeneDirector, the sample tracker offers direct importation of BioAnalyzer data files
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FIGURE 14.6 This figure shows the association of an RNA sample in GeneDirector with
the corresponding BioAnalyzer data. After selecting a sample in the sample tracker, it can
directly be launched into the BioAnalyzer image viewer for RNA quality assessment.

as well as the capability of directly launching the image viewer, enabling easy
tracking and quality assessment of target samples (Figure 14.6). These data are
associated with the proper sample type in GeneDirector. This comes handy in a
situation in which when, after months of research, the user finds interesting results
and wonders about the RNA quality.

HyBRrIDIZING

Hybridization is an important part of the microarray process in which probes on the
arrays are hybridized with RNA samples labeled, typically, with dyes (e.g., Cy3 or
Cy5). This step joins the information regarding an array (probes on the array surface)
with information from the sample. Tracking various aspects of this process and
organizing them in a common framework greatly facilitates process validation and
results verification. As an example, we show how GeneDirector provides a system
for tracking these experimental details about hybridizations (Figure 14.7). The
hybridization editor also stores properties related to a particular hybridized array
(Figure 14.8). In addition, the hybridization protocol can be readily viewed
(Figure 14.9).
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FIGURE 14.7 GeneDirector hybridization editor showing the labeled samples and array used

for hybridization along with its protocol.
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FIGURE 14.8 Hybridization editor showing the required and nonrequired hybridization prop-
erties. The properties could be text, numeric, Boolean, or binary files.
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FIGURE 14.9 Hybridization procedure panel showing the actual protocol used for array
hybridization in the project.

ARRAY SCANNING

Hybridization occurs when the detectable target is mixed with the surface-affixed
probes, enabling changes in fluorescence levels to be converted to expression mea-
surements. The process in which this label is first detected (or visualized) and
measured (or quantified) at the probe level is called imaging or scanning. The
microarray image data file is the first true result that the experimentalist can inter-
rogate or simply look at and assess. The display generally consists of a pseudo color
image showing the target fluorescing in the pattern of the fixed arrayed probes. This
image is subsequently converted to a spreadsheet, representing the intensities of the pixels
of every feature or probe. It is at this stage of the experiment that data volume first
becomes a real concern and handling data management issues assumes importance.
The image file itself is generated through the scanner hardware and imaging
software system. This technology is usually laser based, enabling the selective
capture of the labeled sample by its emission spectra. Array scanners offer their own
unique and competitive features, which enable the user to individually optimize the
image acquisition of their particular hybridized array. It is advisable that along with
the resultant image file, typically in TIFF (tagged image file format), the selected
instrument parameter settings should also be saved. These parameters or properties
may include model of scanner, serial number, software (or version), sensitivity
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setting (PMT, voltage), laser power, pixel resolution (commonly 10 uM), dynamic
range (commonly 16 bit) as well as operator, and an output scanner log. If such
settings are not noted, it is possible that apparent overexpression measures from a
sample may be confounded by altered settings, and the experimental analytical
results corrupted.

IMAGE QUANTIFICATION

As outlined in the previous section, all array experiments eventually result in an
image file. This image file needs to be computationally processed to generate gene
expression values. This process is referred to as the image quantification step. At
this step, the location of each feature (spots in spotted arrays and square elements
in Affymetrix arrays) must be found, the signal intensity values measured and,
potentially, spot-quality measures generated. There are numerous software tools in
the market that provide the necessary algorithms to accomplish this task. The major
differences between various available tools are their ability to accurately locate the
features in the array, to correctly segment signal pixels from background and poten-
tial contaminants, and finally, to generate various quality measures on the quantified
values. One of the most complete tools for spotted-array image analysis is BioDis-
covery’s ImaGene product [8]. The reader is referred to a recent publication on
details of image analysis and quality measurements process for spotted arrays [15].

For a comprehensive data management system to track the entire array experi-
ment workflow, it must be able to either directly process scanned arrays in the
database to generate quantified arrays within the database, or provide tools for
importing quantified array data and properly associating this information to existing
arrays and labeled samples within the database. In the case of GeneDirector, this
tool provides both options. GeneDirector is directly integrated with the ImaGene
software, which offers automated quantification and quality assessment of the spots
and removal of contaminants from the spots. Furthermore, there are batch import
facilities in GeneDirector, allowing the user to load expression data from the file
system into the database and provide the necessary data relationships. Figure 14.10
shows a screenshot of the ImaGene tool implemented within GeneDirector, and
Figure 14.11 shows the automated batch image analysis in action.

ProcCESSED DATA

Once array images have been quantified, the database contains the raw material that
is needed to perform statistical analysis and visualization of expression data. Here
again, there is a large and growing variety of software products and open-source tools,
such as the Bioconductor package [16], which can be used to perform the analysis. It
is important to note that currently few of these products utilize the valuable
experimental process information that can and should be used to improve data quality
[17]. Importantly, the results of an analysis should directly be linked to the source
quantification values. In a highly structured database implementation, such as Gene-
Director, this process is automatic and also enables the user to “drill down” to any
point in the experimental workflow. For example, if a particular gene is deemed to
be very significant in a disease condition based on differential expression data, before
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undertaking expensive validation experiments (e.g., running RT-PCR experiments),
the scientist can quickly traverse backward to find the quality of RNA used in the
experiment, source of the biomaterial, protocols associated with hybridization or
labeling, and so forth. With a relational database designed to hold such information
at basic atomic level, the task of performing such a process review would take
considerable time and resources.

The GeneDirector product is a good example of a data management system
that can provide functionality as described previously. In addition to managing
all the data as already discussed, expression data can be analyzed using the
integrated GeneSight analysis tool or exported as text files to be analyzed using
any other commercial software package. The data analysis module GeneSight®,
embedded within GeneDirector, is a comprehensive bioinformatics software solu-
tion that offers exploratory data mining and confirmatory statistical analyses tools
to obtain biological insights from the complex and high-dimensional microarray
experiments.

The quantified arrays can be uploaded into GeneSight for sophisticated data
analysis (Figure 14.12). The data transformation methods embedded in GeneSight
include the following steps: background adjustment, flagged spot removal, combin-
ing replicates, replacing missing values, flooring, log transformation, pairing, and
several normalization algorithms, including lowess. The exploratory tools offered
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FIGURE 14.12 (A color version follows page 204) GeneDirector’s data mining and statistical
analysis module GeneSight for knowledge discovery from the microarray data.
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FIGURE 14.13 GeneDirector showing the processed data stored in the database for review
and further analysis.

by GeneSight include scatter plot, histogram plot, box plot, principal component
analysis (PCA), time series analysis, hierarchical clustering, k-means clustering,
self-organizing map (SOM), and chromosome mapping. The statistical confirmatory
tools offered include the Significance Analyzer (z-test, ANOVA, Kruskal-Wallis, and
Mann-Whitney), and cluster annotation enrichment analysis. GeneSight also offers
text-based query building to find genes of interest in the data set. The Integrated
Annotation Compiler (IAC) tool of GeneSight allows the users to download anno-
tations and biological pathways information from public domain databases, namely,
NCBI LocusLink and GenBank, KEGG, and BioCarta. All these exploratory and
confirmatory tools unmask the biological patterns hidden inside the complex and
high-dimensional microarray data sets.

The data analysis results of GeneSight are saved as processed data into the
GeneDirector database. These processed data can be reviewed with GeneSight for
further analysis (Figure 14.13).

CONCLUSIONS

In this chapter, we have described the need for a comprehensive and robust data
management solution to store and manage all the data associated with array-based
experiments. We emphasized the need for such a system to minimize potential
sources of errors as well as provide a mechanism for easy archival and retrieval of
data. With more and more publications requiring comprehensive data submission as
part of their publication requirements, it has become a necessity for practically all
scientists conducting microarray experiments to have a true data management solu-
tion. In this chapter, we used BioDiscovery’s GeneDirector as a primary example
of a system for enterprise deployment designed to address these needs. However,
the concepts behind this explicit software implementation are applicable to any tool
or project and should be used as a guide.

As the use of microarray technology grows, enterprise data management systems
must transform into knowledge management tools, allowing scientists to mine not
just data but experimental results as well and combine results obtained through
multiple experiments. This is a future direction that we are currently pursuing and
will report on in future publications.
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INTRODUCTION
EvoLuTION OF MICROARRAYS INTO A HIGH-THROUGHPUT TECHNOLOGY

Today’s pharmaceutical industry experiences a continuous increase in research and
development costs, although the number of new molecular entities reaching the market
increases at a significantly lower rate. These trends have prompted pharmaceutical
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companies to use experimental methods that have the potential to increase the quality
and number of novel drug candidates within a shorter time frame. In this capacity,
microarray technology has become a favored tool to screen potential drug targets
and diagnose diseases.

The utility and prediction power of microarrays in forwarding drug discovery
research have proven to be diverse. Gene expression profiles are capable of not only
diagnosing certain diseases [1-3], but also determining whether a patient will
respond to a certain drug treatment [1-3]. Expression profiles have also been used
successfully to identify some classes of toxic response [4,5]. In early drug discovery
research, microarrays have been used in the identification of drug targets [6]. Expres-
sion profiles, which lead to the elucidation of a cellular pathway, also have the
potential to identify multiple drug targets of interest within that pathway [7].

One of the strengths of microarray technology is the ability to perform massive
parallel profiling of gene expression from a single sample. A global view of gene
expression can provide information not only by identifying families or pathways of
genes that are affected, but also by specifying those classes of genes not affected
[7]. Hypotheses about genes with unknown function can also be derived by com-
paring their expression with that of genes with known functions [8]. Thus, microar-
rays have proven to be adept at explaining how genes act in concert, resulting in a
certain biological condition.

Microarrays can detect transcripts present in very low levels; this sensitivity is
a great benefit of the technology. However, high sensitivity can lead to problems
with subsequent data analysis if a large experimental error interferes with the detec-
tion of differential gene expression due to the biological condition being studied.
For this reason, microarray research is largely focused on developing algorithms
that address quality control (QC) and normalization of data. Many of these methods
are statistical and therefore rely on replicated experiments, both technical (hybrid-
ization) and biological, to establish characteristics of a population. As a result of
this and other such factors, larger numbers of samples are processed by microarrays;
this has evolved into a high-throughput technology to accommodate the increasing
size of data sets.

Processing larger numbers of samples has not proven to be a problem; instead,
the bottleneck lies downstream in the time required for the analysis of expression
data. Analysis involves an initial process that checks the quality of data being
generated. The success of subsequent stages of analysis is dependent on the data
quality. For example, during normalization, a data set may be assumed to fit a certain
distribution, which may not hold true if outliers that should have been removed
during the QC step are included. High-quality data results in identification of gene
expression changes with high confidence.

QuALITY CONTROL OF MICROARRAY DATA

Three main concepts have emerged in the QC of high-throughput microarray data
used for drug discovery research. These are (1) high-throughput processing of data,
(2) objective and reproducible analysis of quality, and (3) standardization of methods
to compare across platforms. Together, these criteria support an ideal in which large
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quantities of data can be processed rapidly, yet consistently. Consistency of how
data is processed and the resulting quality is especially important in extracting
information with high confidence from microarrays.

The QC of microarray data is an extremely important process, as further steps
in downstream analysis rely on the assumption that effects seen in the data are due
to biological changes and not to variations in the technique. Additionally, as the
wealth of expression data made available to the public grows, the question of data
quality also becomes an issue. To compare data from different laboratories, different
platforms, or different years, the ability to analyze quality in a standardized manner
is critical. Bias can be introduced into the QC process through an individual’s
subjectivity, and these minute differences in data handling potentially introduce data
artifacts and lead to false conclusions.

As microarrays become a standard experimental method, the requirements about
how the data are handled and can be shared become more defined. For example, the
Minimum Information about a Microarray Experiment (MIAME) organization is
focused on how to define and describe microarray experiments in a strict language
that allows any scientist not only to understand the biological experiment, but also
to store the information in a database [9]. For public databases, such as Stanford
[10] and OmniBus [11], the ability to ascertain what data are in the database is
crucial. Likewise, standards for data quality will emerge from drug discovery intent
on extracting expression profiles that can be used in assessing compound efficacy
or patient stratification in clinical trials [12].

IMAGING Issues IN QuUALITY CONTROL OF MICROARRAY DATA

There are two basic types of microarrays available: oligonucleotide and cDNA.
Affymetrix commercially produces and currently dominates the oligonucleotide array
market. Some algorithms and programs have been developed in order to analyze
Affymetrix microarray data [13—15], but image analysis has largely been addressed
by software included with Affymetrix instrumentation [16]. cDNA arrays, although
commercially produced today, are more diverse, as they have also been produced
by many organizations in-house as the cheaper alternative to Affymetrix arrays.
Because of widespread availability and abundance of data, most academic labora-
tories have focused on developing algorithms for cDNA array quality. In this chapter,
we focus primarily on QC metrics that have been developed specifically for cDNA
microarray data.

Obtaining microarray data is a multistep process that is full of opportunities to
introduce experimental variation. The workflow begins with two parallel processes:
the manufacturing of microarrays and the generation of biological samples, which
come together in hybridization. Subsequent scanning and quantitation (imaging)
converts an analog signal to a digital signal. Variability and error can be derived at
five phases of data acquisition: microarray manufacturing, preparation of samples,
hybridization, scanning, and imaging, all of which affect the quality of data. Each
phase of the experiment can introduce data artifacts, affecting gene expression
profiling and complicating the identification of gene expression changes. With cDNA
arrays, variability can arise in the preparation of DNA for spotting. During the
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spotting process, pin-specific variation is introduced. Errors introduced by sample
preparation depend on the protocol and efficiency of reactions, with critical steps
being RNA extraction, amplification, and labeling. Scanner settings can be a source
of experimental variation. In imaging, software is used for quantification, but human
input is often still required for steps such as checking grid alignment and removing
poor-quality spots. A daunting challenge is how to assess and filter raw expression
data to retain only high-quality data for further analysis.

As a typical microarray array consists of thousands of targets, any process
requiring manual inspection would be tedious, slow, and, because of human inter-
vention, potentially subjective. Although it is not easy to avoid variability, many
errors arising from limitations of the technology can be categorized as systematic.
For systematic errors, it is possible to monitor and generate warnings when
aberrant characteristics arise during the experiment. Poor-quality data can then be
filtered out and only high-quality data imported to a database for subsequent
mining of expression patterns. Errors are often associated with a local region of
an array, and, therefore, QC can be implemented at several levels: the pixel, spot,
region, or entire array. By automating the identification of systematic variability
and limiting human intervention, the QC process can be accelerated, standardized,
and made reproducible.

In this chapter, we review some of the more popular methods of QC for cDNA
arrays described in the literature. The algorithms use different statistical approaches
for identifying abnormal readings in data and frequently focus on a single charac-
teristic, such as spot morphology, that contributes to technical error. Commercial
packages incorporate several algorithms to address multiple aspects of QC, and we
review some of the widely used programs. Although commercial software is widely
used, packages developed by academic groups have their own advantages. Finally,
we present an automated QC method that we have implemented in-house to accom-
modate high-throughput microarray experimentation.

ALGORITHMS DEVELOPED FOR MICROARRAY
QUALITY CONTROL

DEeTtecTiION OF OUTLIER SPOTS

Outliers are observations that appear to be inconsistent with most of the data pop-
ulation. Identification of outlier spots is an important component of QC for cDNA
arrays, linked inherently to image analysis [17-20]. Disparate amounts of DNA
deposited in a spot and uneven sample labeling can create inconsistent signal inten-
sity. Different settings can affect the sensitivity of a scanner. Misaligned grids during
image quantitation can lead to poor-quality data. Spot morphology and intensity
measurements are subject to variability from factors in array manufacturing and in
the hybridization process, such as labeling, washing, and scanning. Variation between
chips is also possible, although replicate arrays are commonly used to detect spot
outliers. Ideally, multiple algorithms would be employed to monitor and identify
variability that arises from different aspects of microarray experimentation, which
would be adjusted constantly to maintain optimal processing conditions. Ultimately,
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identifying any factor that results in poor-quality data is helpful in that further data
analysis is not skewed.

DETECTION OF ABERRANT SPOT MORPHOLOGY

A Bayesian network approach [18] has been proposed, which enables incorporation
of a priori knowledge and explicit representation of the impact of the features on
spot quality. In this method, spot quality is treated as a classification problem (good
or bad), and, as with many algorithms, a training set is necessary. Selection of a
prior distribution is also controversial, and in the publication, the authors have
assumed that the prior is uniformly distributed. Estimation of an appropriate prior
is much more involved and would require a training set from which features with
high impact on spot quality are first identified, and then the dependencies between
the features and spot quality are solved. The software package, BlueFuse [21], uses
a Bayesian approach to automatically generate a confidence estimate for spot quality.

Brown et al. [17] proposed a pixel-by-pixel analysis of individual spots to
estimate intensity and system error in a 2-dye cDNA array system. Using “best-fit
values” of background, computed based on spot intensity, eliminated the problem
of a large number of negative intensities calculated when using local background.
The normalized standard deviation of the ratio measurement, the spot ratio variability
(SRV), was proposed as a simple measure of the irregularity of a spot and correlated
with the quality of expression ratios. Additionally, the SRV was used for significance
estimates of expression ratios, which improved data quality of a test set of replicate
arrays.

Wang et al. [20] first reported the approach of defining quality scores for spots
according to their size, signal-to-noise ratio, background level and uniformity, and
saturation status, which is commonly used now. A composite score gives an overall
assessment of spot quality. Spots with higher scores give less variable measurements
and vice versa. According to their study, constructing quality measures is laboratory and
system dependent, because variations can be laboratory and system dependent. So
a weighted-mean approach that automatically calculates the optimal quality measure
for a given microarray experiment is proposed [22]. A similar approach was reported
by Chen et al. [23] and is used by Imagene™ [24] and Koadarray [25].

FINDING OUTLIER SPOTS STATISTICALLY

If replicate hybridizations are available, they can be used to identify discrepancies
in spot intensities in the data. The most common approach to detect outliers is by
calculating the mean and standard deviation (SD) among replicates and eliminating
spots greater than 2 SD from the mean. In one report [26], filtering out outlier pairs
that deviated greatly from the mean increased the global correlation between repli-
cates dramatically, suggesting that this simple method is effective in identifying spot
outliers. Another common approach is based on calculating the coefficient of vari-
ance (CV) [26]. With more than two replicates, this can be employed as an iterative
process. When a spot exceeds a threshold CV, the spot contributing the most to
variance is filtered out, the CV is recalculated with the remaining data points, and
the new CV compared again to the threshold. Both methods are easily implemented;
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however, outliers affect the result itself. To improve reliability, one strategy “borrows
strength” from genes expressed at a similar level by constructing a window encom-
passing genes whose mean intensities are closest to the gene being tested [27-29].
Another strategy is to use the median and median absolute deviation (MAD) from
the median, because the median is better resistant to outliers compared to the mean
[28].

DEeTeCcTION OF OUTLIER CHIPS

Systematic changes in experimental conditions across multiple chips can seriously
affect data quality and lead to false biological conclusions. The detection of outlying
samples before sample classification is essential. Robust principle component anal-
ysis (PCA) has been used to detect outliers in microarray experiments [19]. A major
advantage of the method is that it does not rely on explicit modeling of the microarray
process as they are based solely on the distribution of measurements of arrays within
the project. The sensitivity of the method improves with increasing study sizes.
Because of its multivariate nature, this method is particularly suitable for large-scale
microarray experiments in a high-throughput environment.

Another method based on Akaike’s Information Criterion (AIC) was developed
to detect outliers. AIC was developed to select an optimal model from a set of
models. Kadota et al. [30] have applied this method in identifying outlier arrays and
have demonstrated an improvement in subsequent sample classification. An advan-
tage of using this criterion is that selection of a significance level is not necessary,
which helps objective decision-making in the identification of outlier arrays.

AUTOMATION OF QUALITY CONTROL

Software packages that provide methods for performing QC have focused on devel-
oping more complete systems to identify data abnormalities at several levels and
require a systematic approach to the identification of variations in data. Many pack-
ages are platform specific, though some will accommodate several array types. These
packages begin to approach full automation of QC; however, in order to accommodate
differences in data handling between customers, they tend to include steps in which
a human decision is required. On the other hand, human intervention can lead to
variation because of the subjectivity of an individual. Automation of microarray QC
is, therefore, a trade-off. Although enabling high-throughput, objective, reproducible
decisions in data quality, automation requires knowledge to set thresholds for QC
parameters and limits decision-making based on human knowledge.

When choosing or developing an automated QC system that fits the needs of
a microarray system, there are several factors that should be considered. Technical
error can be observed at spot, region, whole array, or interarray levels. Experimental
problems, such as sample degradation, labeling failure, and wash contamination
can be identified with specific QC features. Many parameters that indicate quality
also require knowledge; acceptance criteria can be chosen by analyzing the tech-
nology and instrument or by using training data. Batch-enabled software, the ability
to process results in open format (e.g., text), scriptable algorithms, and software
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development kits (SDK) are also important features that will help users to customize
and automate the QC process. In addition to the description of QC packages that
follow, a breakdown of automated QC into components, with features of individual
packages, is given in Table 15.1.

COMMERCIALLY AVAILABLE PACKAGES

Several software packages are available commercially, and here, we review two of
the most widely used packages. Most vendors focus their efforts on the accuracy
and effectiveness of feature extraction and data analysis algorithms rather than on
full automation for high-throughput analysis of arrays. The release of SDKs helps
individual users to customize or automate processes according to their needs.

BioDiscovery is a provider of software solutions for microarray research. Its
platform, the independent image quantitation product ImaGene [24], is widely used
and provides automatic spot quality flagging [31]. In addition to empty and negative
spots, its quality measures include background contamination, signal contamination,
abnormal shape regularity, and significant offset from expected position, among
others. Poor quality spots are flagged by comparing a spot’s intensity with the
intensity distribution over the chip; how to use this information in quality control
is up to the user. Another BioDiscovery product, GeneSight™ [32], takes the mean
or median of replicates that are either on the same slide or on multiple slides after
background correction. Outlier spots are identified by defining a cutoff for deviation
from the mean and removed. The batch-processing feature enables automatic image
processing in a high-throughput environment. Although ImaGene and GeneSight do
not completely automate microarray QC processing, it is composed of modules that
allow the end user to complete the automation.

Agilent [33] is a major array and scanner supplier. The company markets sophis-
ticated feature extraction software, which generates intensity data from arrays
scanned by Agilent scanners. An algorithm identifies and removes data for outlier
pixels within a spot as well as in the local background, using the standard deviation
or interquartile range. These outlier pixels are omitted before spot statistics (mean,
median, and standard deviation) are generated. With replication of spots, a box plot
analysis can be used to set an interquartile range cutoff criterion for omission of
outlier spots. Background correction is performed using local nearest-neighbor and
negative control probe methods. The feature extraction software outputs parameter
settings and intensity measurements in multiple formats, which allows results to be
loaded into other software for further analysis.

NonNcoMMERCIAL QUALITY CONTROL PACKAGES

Microarrays are used primarily as a research tool in academic or research institutes.
They are unlikely to be performed on a scale that necessitates a high-throughput,
fully automated QC process. Most of the automated processes are algorithm based,
focus on reproducibility, and allow users the flexibility to make decisions based on
QC indicators.

ExpressYourself [34] is a Web-based platform for processing microarray data.
It has been developed in C and Perl, and supports GenePix [35] and ScanAnalyze [36]
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file formats. The software performs individual spot and regional filtering, as well as
background correction utilizing the nearest-neighbor method. Three measures were
established to provide an objective indication of quality. The first is the percentage
of good-quality array elements as measured by the proportion of array elements and
regions the filtering process has removed. The second is intra-array hybridization
quality as measured by the difference in signals between duplicates on the same
slide. The third is replicate array hybridization quality as measured by calculating
the difference in signal between equivalent spots across multiple slides. ExpressY-
ourself has a sound but simple algorithmic approach that could be implemented to
produce an automated system.

Array-A-Lizer [37] is a stand-alone package freely available to all (via Web
download). The graphical user interface has been built in Borland Delphi and the
statistical algorithms in the R language. It supports GenePixPro [38] and Spotfinder
[39] file formats and runs under a Microsoft Windows platform. Signal distribution
is analyzed to provide quality control measurements. The diagnostic report creates
MA plots (where M is log intensity ratio and A is mean log intensity) and red/green
scatter plots to identify intensity-dependent biases such as those introduced by
scanners. The MA plot has been used by several groups to identify biases and artifacts
[40—42]. Included in the diagnostic report is a histogram of intensities, which
illustrates the negative and saturated spots. Spatial reports plot the foreground and
background intensity, and the position of negative spots shows the gradient, high
background, and wash problems. This tool is mainly a visualization tool and lacks
objective QC classifiers; therefore, it will not be easy to automate. However, it
provides a quick snapshot of the hybridization results. Stanford utilizes a similar
visualization tool, which provides simple visualization of biases evident in hybrid-
ization and also provides an ANOVA tool to assess variability introduced during
microarray printing [43].

MicroPrep [44] is a stand-alone software suite consisting of three modules.
PrePreP and PostPreP were developed in Delphi. PreP was coded in visual C++
studio, and the package runs on a Microsoft Windows platform. PrePreP processes
output files generated from feature extraction software such as Array-Pro [45],
GenePix, and ImaGene. Empty and “bad” spots identified by the imaging software
are omitted from further analysis. PreP uses a spotpin-based LOWESS [46,42] to
minimize systematic errors such as dye effect, differential amounts of target printed
on a chip, and scanner nonlinearity. Visualizations such as MA plot (log intensity
ratio vs. mean log intensity), RG plot (log Red vs. log Green), boxplots, and image
views allow exploration of the data. PostPreP identifies outlier spots and outlier
chips, using the standard deviation. A ratio of the signal intensity standard devi-
ation to the standard deviation minus the spot or slide in question is compared to
an empirically derived threshold; when the ratio exceeds the threshold, the spot
or slide is labeled an outlier. Although MicroPrep does not have sophisticated
image-level QC algorithms, it effectively uses the data generated by image-processing
software to identify factors indicative of errors such as bleeding or scratching.
Its spot outlier and array outlier QC methods can be easily implemented in an
automated fashion.



230 Biochips as Pathways to Drug Discovery

OLIGONUCLEOTIDE ARRAYS

Although the focus of this review is on cDNA arrays, it is worth mentioning Affymetrix
and CodeLink oligonucleotide array alternatives, as they are widely used. Both plat-
forms are complete systems with the software as an integral part of the technology.
Affymetrix’s GeneChip Operating System (GCOS) [16] manages and analyzes
GeneChip arrays. Affymetrix technology is unique (data from 11 perfect and mis-
matched oligonucleotide pairs are converted into a single intensity measurement);
therefore, GCOS handles early stages in data processing and utilizes algorithms that
are robust to outliers and returns p values as an indication of data quality.

GE Healthcare’s CodeLink™ expression analysis [47] software is used for
primary data extraction and acquisition of gene expression values from CodeLink
bioarray images. Although CodeLink arrays are oligonucleotide based, the target is
spotted onto the array so that QC methods are similar to those used for cDNA arrays.
QC printed information for each spot is provided with every array and can be
reviewed before hybridization to ensure that a gene of interest is represented on the
array. The expression analysis software flags spots with irregularities such as satu-
ration, contamination, and low intensities. The signal intensity variation between
replicate arrays is returned in a CV report.

AUTOMATIC MONITORING OF EXPRESSION DATA
IMPROVES THROUGHPUT OF DATA PROCESSING
AND DATA QUALITY

Similar to some of the organizations whose methods have been presented here, we
found a customized solution to address microarray QC to be our best option. At
maximum throughput, well over 100 cDNA arrays are processed in a single day by
our microarray core facility. Taking advantage of the fact that our complete database
consists of over 34,000 samples analyzed by microarrays, we used the data to identify
trends and characteristics attributable to failures at specific stages of microarray
experimentation. Before implementation of our system, named AutoQC [48], image
processing and QC formed the bottleneck for the production of gene expression
data. By developing and implementing AutoQC, we were able to improve the speed
of image processing dramatically, make our QC process less subjective, and improve
the overall quality of expression data in our database.

The system we have designed consists of two components: The QC data collector
and QC data analyzer. The QC data collector refers to the experimental design and chip
layouts used to collect essential control information about key elements of the process
of generating gene expression data. These key elements include RNA preparation, probe
labeling, hybridization, washing, and scanning. The QC data analyzer refers to a collec-
tion of algorithms used to analyze the information collected by the QC data collector
and produce a management report, which summarizes quality control information.

QC Data COLLECTOR

Because cDNA arrays are printed in our core genomic laboratory, a custom layout
design was implemented to collect the essential information for quality analysis.
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Two strategies, the use of spiked control genes and replication, are implemented as
essential elements in the array layout design.

Two sets of control genes, internal spiked genes and external spiked genes,
obtained from Stratagene [49], are spotted on the array. The corresponding internal
control RNA is spiked into a reaction before labeling, and external control RNAs,
already labeled, are spiked into the hybridization mixture. These controls can be
used to determine the quality of the RNA samples, as well as the sensitivity, signal
linearity, and consistency of the array. For example, if the internal control signal in
the array has a normal dynamic range, but the experimentally derived RNA on the
same array does not, it suggests that the sample RNA was degraded.

Adding control genes is helpful but not sufficient to eliminate or evaluate all
sources of experimental error; therefore, replication is also important. Intra-array
duplication consists of spots within the same array, spotted with the same pin but
well spaced to give a better indication of variability across the slide. Interarray
replication can be achieved by hybridizing two arrays for each labeled RNA probe
sample. Replication provides the ability to use statistical tests to make a decision
whether a given intensity is significant or behaves as an outlier.

Besides the special array design, multiple quality measurements based on geo-
metric properties of the spots, provided by the imaging analysis software ImaGene
[24], are collected. These measurements are signal standard deviation, background
standard deviation, ignored area, signal area, ignored median, and positionoff. Some
algorithms were developed based on both the geometric measurements and intensi-
ties of spots. They are used not only for assessing the quality of spots, but also for
monitoring the quality of laboratory procedures in the array production.

QC DATA ANALYZER

A quality control package performing data analysis was developed, using the Perl
programming language with S-Plus [50] normalization and statistical functions
embedded within. A conceptualized workflow is described in Figure 15.1. There are
two key components; QCI1 is an array-level quality check, and QC2 an experiment-

QC1 (Array level) QC2 (Sample level)

| Scanner focus | | Filter bad arrays |
v v

| Grid misalignment | | Normalization |

| Abnormal intensities | | Replicate correlation |

| Dynamic range | | Replicate CV |
v

| Wash problems | | Outlier removal |

FIGURE 15.1 AutoQC consists of two modules. QC1 checks for failures at the array level.
QC2 normalizes data and checks for outlier intensities based on sample replication or spot
morphology. Failure at any step of QC results in failure of the array or spot.
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level quality check. Data files ready to undergo a quality check wait in a queue. The
workflow automatically starts with reading an intensity data file, in which one
experiment is a unit. First, partial focus errors and grid misalignments are checked
for. Both these errors are correctable by repeating the image scanning; data from
repeated scans can then be added to the end of the queue.

There are five categories for the QC1 check in the QC data analyzer: spots with
unexpected intensity (including saturated spots, negative spots, and zero-intensity
spots), RNA dynamic range, dynamic range of spiked controls, abnormal high
background measurements, and patch (wash) problems. A QCI1 status ruling is given
following these checks. After discarding arrays rejected by QC1, QC2 checks for
data consistency and detects outlier spots. The entire process flow ends with a QC2
status ruling, in which experiments with a CV higher than an empirically defined
value are discarded.

Analytic data is stored in a relational database, and microarray data curators can
access a summary of results through a Web interface. This interactive setup allows
curators to act as administrators and interject knowledge and experience into the QC
process. Through the Web interface, experiments can be resubmitted for QC analysis
and AutoQC decisions can be overridden. Additionally, visualization from QClInspector
[51] and ImaGene [24] can be launched from a link in the detailed review.

REesuLTs

The AutoQC system has been running at our organization for over 2 years and has
been used to evaluate more than 32,000 arrays. Algorithms designed to assess data
quality have performed well and have increased the efficiency of our data processing.
Replicate hybridizations are less variable as measured by a twofold reduction in the
average CV. Whereas one curator could visually screen a maximum of 35 arrays in
a day, with the aid of AutoQC, a curator can process up to 200 chips in a day. Thus,
image QC is no longer the limiting step in the processing of microarray samples.
The following results give specific examples of how the QC system has improved
data quality by automatically identifying target failures, hybridization failures, wash
problems, and outlier intensities.

QC1: Detection of Intraarray Failures

Our facility database hosts a great amount of cDNA microarray data; therefore, the
RNA dynamic range of an array population (represented as an intensity profile) is
readily calculated. On the assumption that most genes do not change in expression
level across arrays representing thousands of genes, a comparison of the intensity
profile of a single array with the profile of the array population is a good indicator
of the array quality. For comparison between arrays, we use the concordance cor-
relation coefficient (CCC) [52]. Our study suggests that CCC is more effective than
Pearson’s correlation coefficient [53] (PCC) in evaluating the similarity between
each pair of data spots, because CCC considers how well replicates fit a line with
a slope of 1 whereas PCC only evaluates line fitting.

Data from two mouse arrays were used to illustrate the behavior of a target
failure. Percentiles of log-transformed intensities were used to describe the dynamic



Quality Control of Microarray Data 233

5001

400{

3001

Individual Array

200

100]
-2 |

ol .
400 500 600 700 800
Intensities

-2 Population

FIGURE 15.2 (A color version follows page 204) The concordance correlation coefficient
(CCC) detects many target-labeling failures. (A) CCC of array with a good quality (dark blue),
poor array (pink), and the array shown in B (light blue). (B) A representative area of the array
with low overall hybridization to probes. (C) A histogram of intensities for the array shown in B.

range of the chip and the population. The CCC of the chosen percentiles was
calculated to measure the degree of similarity (Figure 15.2A). The CCC of a good
array (0.99, dark blue) compared to the population showed a goodness of fit for a
line as well as for a regression slope approaching 1; the CCC of a poor array (0.85,
pink) displayed a poorer fit. Visual inspection of the array images (data not shown)
showed that with the exception of some spiked-in controls, there was little variation
in the intensities. Another criterion was required to detect evenly low hybridization
over the entire array, often indicative of a degraded RNA sample. The CCC for this
array was high (0.98, light blue); however, minimal hybridization was evident with
visual inspection (Figure 15.2B). The flat intensity profile of this array (Figure 15.2C)
was detectable by comparison of the 75th percentile with the mean and median. If
the 75th percentile was similar to the mean or median (ratio between 0.98 and 1.1),
the array was designated a failure.

This algorithm was tested on 2404 randomly chosen arrays covering several
species. Microarray curators used visual inspection to label 8% (187) of the arrays
failures. The algorithm identified 183 failures (98%), missed 4 failures, and called
28 arrays failures that were not detectable by eye. This corresponded to a sensitivity
and specificity of 97.9 and 98.9%, respectively. The small percentage of failures that
were not agreed upon by AutoQC and curators illustrate disagreement between
human and the automated systems, which is why image curators were given the
flexibility to override the results of automatic detection.

Degradation of RNA samples can be detected using BioAnalyzer [54] in the
early stages after RNA extraction, but a good sample is essential to obtain a trusted
expression data profile because errors happen during the hybridization process. Data
accumulated in the past few years have supported our hypothesis that labeling or
hybridization failures can be detected by combining information about the RNA
dynamic range with spiked control genes. Labeling errors are distinguishable from
hybridization errors using controls spiked in before and after the target-labeling step.
If both control types perform poorly, then the problem is likely in the hybridization
process. However, if controls spiked in after the labeling step hybridize well, but
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FIGURE 15.3 AutoQC monitors the sample process. While passing through AutoQC, image
analysis is monitored computationally. Bit scores of O (fail) or 1 (pass) are assigned at each
stage. Any score containing a zero indicates failure, whereas a score of 111 means a pass.
The status indicates which stage of AutoQC has detected failure without having to manually
curate images. Panels below illustrate images that have been assigned different status codes.

not those spiked in before labeling, the failure is in the labeling step. Distinguishing
between these types of failures contributes to efficiency in that only necessary steps
are repeated to correct for an array failure (Figure 15.3). By assigning bit scores at
each step of the QC1 checks, manual visualization of the array is also unnecessary.

Figure 15.4, panels A to F, displays a variety of contaminated images caused by
wash problems, which are detected by our algorithm. Most contaminant areas display
higher intensity measurements (See Figure 15.4, A to C), but some show lower
intensities (Figure 15.4, D and F). Either of these cases increases the variation of
background measurements, suggesting that comparison of background measure-
ments over the chip are a reasonable indication of streaking, scratching, or uneven
washing of an array.

To identify hybridization errors shown in Figure 15.4, two estimates of back-
ground variability were defined and calculated for defined areas of equal size on the
array, the CV and the distribution measure (DM). In addition to variation, the DM
contains information about distribution and excludes the three top and bottom back-
ground values from the calculation. The two parameters together provide information
about the type of contaminant. For example, high CV and low DM suggested a small
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FIGURE 15.4 QC1 detects hybridization errors. A number of problems after hybridization
are detected by our algorithms: (A) flagging, (B) streaking, (C) contaminants, (D) scratches,
(E) background gradients, and (F) other wash problems.

region of aberrant high intensity. If both were high, it implied a large region of
abnormal intensities. Interestingly, we found it unnecessary to discard these arrays,
as the following spot outlier algorithm, which was able to identify these regions,
removed abnormal intensity values (Figure 15.5).

QC2: Detection of Outliers

Flagging of bad spots on an array is time-consuming, tedious, and subjective;
variations between individual curators were striking. We noted trends among four
spot curators analyzing two chips. Of the total number of spots rejected by one or
more of the curators, less than 15% were agreed upon by all four. Only 56% of the
rejected spots were agreed upon by more than one curator. Further examination
showed that manual curation tended to focus on spot morphology and disregarded
any assessment based on the consistency of replicated spots.

QC2 detects outliers using replicate measurements and spot morphology. When
present in at least triplicate, spots are accepted when similar in intensity, regardless
of spot morphology. In this case, a Z score is defined, similar to the Z score rule
described previously; however, the median is used instead of the mean. The associ-
ated p value is adjusted, using a Bonferroni correction, for the large number of genes
tested, which results in discarding outliers with at least 95% confidence. For one or
two spots, image parameters extracted by ImaGene [24] are used to describe the
spot geometry. Spots with poor morphology were labeled outliers. Although the
approach to the identification of outlier spot intensities was quite simple, it proved
to be very effective. Figure 15.6 shows a scatter plot of intensities before and after
outlier removal.
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FIGURE 15.5 (A color version follows page 204) The outlier algorithm identifies spots
affected by hybridization. The top panel is an applet display of regions in the bottom panel.

Red-labeled outliers were based on high replicates. Yellow spots were outliers by both variance
and morphology.

100000 -
= Original -
» Outliers Removed vt
10000
™
Q
H
g
.
]
4
1000
[}
100
100 1000 10000 100000

Replicate 1

FIGURE 15.6 (A color version follows page 204) QC2 identifies and removes outlier inten-
sities from the data set. Replicate arrays were compared with each other in an intensity plot
on a log scale. Data are shown before (pink) and after (blue) outlier removal.
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The novel AutoQC system that we have created and implemented is well suited
to a high-throughput microarray environment. By enabling automatic workflow, the
system provides full traceability throughout every processing step in microarray
experimentation. Potential errors, which could occur during each procedure, are
monitored. Only questionable quality values are reported to QC curators and unam-
biguous QC failures are processed automatically, reducing the subjectivity intro-
duced by human judgment. The laboratory bottleneck is removed by bypassing the
tedious visual check and manual quantitation phases. As expected, implementation
of analytic algorithms keeps the QC process more consistent and image quantitation
results reproducible.

CONCLUSIONS

Quality control is an important step in the processing of microarray data. For mining
data with high confidence, the initial quality of data is crucial. There are several
platforms for obtaining microarray data; each platform, including the technology, is
slightly different and may require handling of QC in a special manner. Each labo-
ratory is likely to have specialized techniques with errors specific to its own sample
handling methods. Nonetheless, there are certain steps in microarray experimentation
that are consistent, and variations of QC methods can be applied to many different
platforms.

Here, we describe some of the common areas in which systematic error arises.
These include stages in sample preparation, as well as in hybridization of microar-
rays. Many of these errors can be identified using algorithms that require no bio-
logical input from scientists, some of which are described. Users can choose to
implement preferred algorithms with assumptions that best fit a platform. For groups
that run enough microarrays to establish a population, parameters for the algorithms
can be determined empirically from the population, thus providing customization
of QC in their laboratories.

For many groups hybridizing small numbers of arrays, high throughput is
not a necessity. These groups may prefer to monitor results interactively, espe-
cially if QC acceptance criteria are dependent on the biological nature of the
experiment. Many academic groups fall into this category, and the QC systems
from academic groups that are described here are sufficient for small numbers
of arrays. Although QC may not be reproducible when human intervention is
required, manual curation has the advantage of being flexible when making QC
decisions.

Users of large numbers of microarrays (for example, pharmaceutical research
and development) would likely prefer an automated QC system that is faster, as well
as efficient and reproducible. In our organization, automation became a necessity, as
QC was at the stage in which it limited the throughput of microarray experimentation.
In addition to standardizing QC through automation, the arrays were customized
to provide the most information possible to achieve reproducible and reliable
results. In the pharmaceutical industry, standardization and reproducibility of data
analysis are extremely important for the future when FDA accepts transcriptional
profiling data.
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When selecting an appropriate method for QC of microarray data, one must
consider the importance of flexibility vs. speed and reproducibility. The priority will
help determine whether a partially or fully automated QC process is necessary. Many
of the software packages return QC parameters; it is up to the user how to use the
information. Therefore, algorithms specific to a platform and developed around these
parameters are important; replicating measurements and building a database population
are extremely helpful in associating an error type with a QC parameter. These types
of explorations and decisions can help customize a QC solution for a group. Although
every group may have a system that uses specific algorithms or parameters, it is a
necessity for every group to have a QC process to produce high-quality microarray data.
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With the sequencing of the human genome [1,2], newer generation microarrays are
more capable than ever of presenting a global view of gene expression. Tens of
thousands of data points can be obtained from a single assayed sample. With such
a large payoff potential, experimental design and subsequent analysis methods are
immensely important so that reliable results can be obtained from the data.
Microarray data analysis entails comparing expression data from several sam-
ples to obtain information about changes in gene expression among the studied
biological states. Data normalization is the process by which the data from several
samples in a data set are adjusted or transformed so that they are comparable to
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each other. Single-color microarray experiments result in intensity measurements,
which are proportional to the amount of message RNA in a sample. By comparing
intensity measurements among samples, measurable information about changes in
gene expression can be derived; therefore, normalizing data is an essential step in
the analysis of microarray data. Two-dye systems produce ratio data, but still
require normalization to extract reliable results. In this type of system, normal-
ization to correct for differences in the dyes used is most common. In the absence
of proper normalization procedures, confounding factors introduced during the
experimental process can mask biological changes in gene expression. This
increases the probability of selecting false positives and increases the work
required to verify results in a secondary assay.

Normalization aids in correcting for systematic variations due to experimental
procedures. Technical variation in the data can stem from multiple procedures in
microarray processing. RNA isolation, dye incorporation during labeling, variations
in spotting, and hybridizations occurring on separate days are just a few factors that
can contribute to error in microarray experimentation [3,4]. Regardless of the care
in which experiments are performed, some variability will arise simply because of
the high sensitivity that can be achieved with microarrays. Therefore, good design
of experiments is essential to obtain high-quality data.

Several factors contribute to the design of a good microarray experiment. Rep-
lication of experiments, both technical and biological, has emerged as an important
principle. Many normalization methods are based on statistical procedures, and
general data assumptions can be gleaned from data with sufficient replication. Other
methods, such as dye swapping in cDNA arrays, are accepted as a means to identify
variations introduced by differential incorporation of label. Removal of poor quality
data, both individual spots and whole samples, is also essential and is addressed
elsewhere in this book (see Chapter 15).

Conventions of normalizing microarray data have changed dramatically since
their first use. Early methods utilized variations of linear scaling. Affymetrix soft-
ware initially offered two types of linear normalization. The favored method was
a global scaling procedure, which assumed that the total fluorescence obtained from
each sample should be equivalent. Data from each sample was multiplied by a
constant such that the total fluorescence on a chip was achieved. A second method
utilized by Affymetrix was to use a housekeeping gene in order to obtain a scaling
factor, with the assumption that RNA levels from the housekeeping gene are
constant between samples. Stanford Cluster used a variation of the linear scaling
method, in which data could be scaled so that the mean or median of each array
was equivalent [5].

Data normalization has evolved to incorporate other statistical methods, long
used in other applications. For example, several groups have noted that there is a
relationship between the variance and the expression levels of genes [3,6]. Because
of this, local normalization methods such as splines and quantile-quantile are more
commonly used with microarray data today. Likewise, data transformation methods,
such as a simple log transformation, reduce the dependence of variance on intensity
and are commonly used. Statistical methods are frequently used to identify differ-
ential genes expression. Many of these assume a normal distribution with the data;
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therefore, data transformations that cause microarray data to resemble a normal
distribution are also popular.

In this chapter, we review some of the more popular methods of data normal-
ization and transformation that play a role in the identification of true changes in
gene expression between biological conditions. Although these methods are inher-
ently linked to distinguishing between experimental and biological variance, methods
that are applied to the determination of data quality (technical variance) are reviewed
elsewhere.

OVERVIEW

There are many sources of systematic variation in microarray, which affect expres-
sion intensities [3,4,7]. These include unequal quantities of starting RNA, differences
in labeling or detection efficiencies between the fluorescent dyes used, and system-
atic biases in the measured expression levels. Normalization is the process used to
remove these variations so that meaningful biological comparisons between microar-
ray samples can be made.

Normalization can be carried out at different levels: within a single array (between
replicate spots), between a pair of replicate arrays, and among multiple arrays (over
samples to be compared). Normalization between print tips can correct inconsistencies
among the spotting tip used to make an array, variability in the array surface, and
differences in hybridization conditions across the array. Normalization among multiple
arrays makes the comparison between samples and sample groups possible. These
methods encompass two distinct types of normalization, between replicates and among
different samples; however, the goal is the same, namely, to remove technical variation
while retaining the variance from the biology being studied.

LINEAR NORMALIZATION

The linear method of normalization is the simplest type of microarray normalization
and was commonly used in early applications. This approach scales all data points
on an array by the array mean, median, or quintiles. The principle behind linear
normalization is that the intensity distributions of arrays have the same central
tendency and a linear relationship passing through the origin. Under these assump-
tions, a numerical constant, called the normalizing factor, can be used to correct the
intensity of each spot on any array without taking into account its intensity level.
In some applications, the third quartile is used to obtain a scaling factor (data from
each array are scaled such that the third quartile is equivalent) based on the assump-
tion that most genes were not expressed [6]. This method is most effective for
normalizing between replicate spots or hybridizations, but the assumptions of linear
relationships and similar intensity distributions are not always true for different
samples in a data set. It has been observed that genes with low expression intensities
require a scaling factor different than those with high expression intensities [3,6];
in these situations, a linear scaling factor is inappropriate. Intensity-dependent nor-
malization is used more widely in the latest applications, in which the normalizing
factor is a function of intensity levels instead of a constant value.
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INTENSITY-DEPENDENT NORMALIZATION
REFERENCE AND BASELINE ARRAY

Conducting intensity-dependent normalization requires a good reference or baseline
array that contains an invariant gene set with expression levels spanning the entire
dynamic range of expression observed in the experiments. In addition, normalization
for these genes should be representative of the normalization relationship for all the
genes.

A small set of negative control plant genes and highly expressed housekeeping genes
were the early choices for invariant gene sets in many applications [8]. However, it was
found that their expression levels exhibit natural variability across samples and they did
not fit the requirement of spanning the whole expression range of the intensity measure-
ments (unpublished observations). More recently, labeled synthetic or cross-species
DNA sequences spiked into the probe at various known concentrations are used as
control genes for normalization purposes. These controls are more effective, but a small
set of genes may not represent the normalization relationship for all the genes in the
microarray. Currently, the most common method is to use the entire set of genes on the
microarray as the reference in the normalization process. This approach assumes that
only a very small percentage of the genes will be differentially expressed across the
arrays being normalized and is true in most situations.

Microarray sample pool (MSP) [6] has been proposed; this uses a robust local
regression with a set of appropriate controls to aid in intensity-dependent normal-
ization. MSP, a novel sample ensemble, includes all genes on the microarray, and
is analogous to genomic DNA without the noncoding sequences. It was titrated over
the intensity range of a typical microarray experiment to account for all levels of
intensity-dependent bias and was compared to other methods of normalization. Using
all genes or MSP works well under specific conditions, but not for every situation.
A composite method of normalization was designed (using all genes and MSP
together) in which the strengths of the two methods could complement each other.
The composite method also provides flexibility, where the techniques that best fit
the data can be combined.

Li and Wong have proposed a method to identify genes that are not differentially
expressed to use in normalization [9]. The premise is that a gene with invariant
expression among samples would also have a similar ranked expression within each
sample. They applied an iterative process to the perfect match intensities of a set of
Affymetrix samples that calculates the absolute rank difference. Empirically derived
cutoffs of the absolute rank difference were used to identify nondifferentially
expressed genes at a range of expression levels. This set of genes can then be used
to derive a normalization factor. Their data demonstrate that the procedure works
well for a pair of arrays.

SMOOTHING FUNCTIONS

There are a few popular methods for intensity-dependent normalization: spline
normalization, lowess normalization, and quantile normalization. Both spline and
lowess belong to the category of smooth function normalization, which assumes that



Microarray Data Normalization and Transformation 245

the majority of genes in a sample are invariant in their expression levels. Spline
normalization uses a smooth but flexible function, like a cubic, with a small number
of degrees of freedom. The less the degrees of freedom, the smoother is the fit. On
the other hand, the smoothness of the lowess curve is controlled by a bandwidth
parameter, called span; the larger it is, the smoother the fit. The advantage of these
two methods is that neither of them is affected by a small percentage of outliers and
is, therefore, widely used in microarray applications.

QUANTILE NORMALIZATION

Quantile normalization is useful for normalization across a series of conditions in
which a small but indeterminate number of genes may be differentially expressed,
and the distribution of spot intensities does not vary too much. The objective of
quantile normalization is to make the intensity distributions of the gene expression
as similar as possible across the array set. In other words, all quantiles are adjusted
to be equal over the normalized arrays.

QsPLINE NORMALIZATION

Qspline, proposed by Workman et al.[10] is a combination of the spline and quantile
normalization methods. Qspline uses quantiles from the full range of array signals
to fit smoothing B-splines. The data presented showed similar performance between
the gspline, lowess, and invariant gene set methods in all aspects examined. Qspline
can normalize over a set of arrays, whereas the lowess method works on a pairwise
basis. Therefore, gspline is computationally much less expensive, although gener-
ating similar results. The lowess method also uses random sampling such that the
normalization results are not stable over data fittings.

Z-NORMALIZATION

Z-normalization is a modified lowess method developed by Wang et al. [11], which
incorporates their spot quality model. A dependence of ratio distribution on the
quality control score in a two-dye system was observed, which resulted in a novel
method of normalizing the microarray data. The method starts with a quality-
dependent Z-score. The local standard deviation of the log ratio is calculated using
the fraction of neighboring data spots used for lowess smoothing. Their study
suggested that Z-normalization is potentially more sensitive in detection at the high-
quality end and in generating far less false positives in the low-quality regions.

CHOOSING A NORMALIZATION METHOD

It is difficult to make a conclusion about which normalization methods are the most
accurate or adequate for all types of microarray comparison. The general thinking
is that the technical replicates can be normalized using smooth function normal-
ization methods (spline or lowess) and biological replicates can be normalized by
the quantile method. The quantile method is also appropriate for cross-sample
normalization. The prevailing belief, however, is that the best choice of normalization
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FIGURE 16.1 Comparison of different normalization methods. Spline and Quantile-Quantile
normalization provide the best results, especially for low intensities.

methods is application dependent [6]. In a specific application, the better the data
assumptions fit the normalization method and the better the reference set used
(invariant gene set), the more accurate the results obtained. Figure 16.1 shows a
comparison of linear, spline, and quantile-quantile normalization between technical
replicates. In this situation, both spline and quantile-quantile normalization provide
better performance than linear normalization.

NORMALIZATION FOR OLIGONUCLEOTIDE-BASED
ARRAYS

Choosing a normalization method is mainly application and data dependent but not array-
platform dependent. All methods discussed earlier are widely used experiments with
cDNA arrays; they also work well for oligonucleotide arrays (Affymetrix and CodeLink®
arrays, for example). The main difference is that for Affymetrix arrays, normalization at
the probe level can be done before the normalization at the probe set level, because there
are typically 16 to 20 (currently as few as 11) probe pairs, each interrogating a different
region of a gene’s sequence. Speed’s group proposed three methods of performing
normalization at the probe level without using a baseline array, which extended the idea
of lowess and quantile [12] methods. There is a trade-off between the risk of choosing
a poor baseline and of performing time-consuming calculations.
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PERFORMANCE OF NORMALIZATION

Judging the success of normalization is not a trivial job. Amaratunga and Cabrera
[13] have suggested using Spearman’s rank correlation coefficient, which is a mea-
sure of monotone association between two variables, as a guide to whether the
normalization is essential. The concordance correlation coefficient can be used as
an indicator of how well the normalization procedure worked, as it is an index that
quantifies the degree of agreement between two sets of numbers.

DATA TRANSFORMATION

Many statistical procedures assume a normal distribution (or at least symmetrical
distribution) of samples. Significant violation of this assumption often leads to a
major distortion and increases the chance of a type I or type II error, or a false
discovery of (or failure to discover) differentially expressed genes in microarray
analysis. These procedures include the #-test and ANOVA, which have been com-
monly applied to microarray expression analysis [14,15].

Normal distributions are clearly not suitable for the measured raw intensities in
microarray experiments. A simple test for normality can be done either by visually
inspecting the data distribution or calculating skewness and kurtosis. There are also
more precise tests available such as Kolmogorov-Smirnov test. When we look at
raw intensities of a CodeLink human whole-genome chip experiment with four
replicates, we clearly see a deviation from the normal distribution. The curve is
“peaked and fat tailed” (also known as leprokurtic), and “positively tailed” (positively
skewed) (Figure 16.2A). This is also confirmed by statistical measurements. Whereas
for a perfect normal distribution, skewness = 0 and kurtosis = 3, for the raw-intensity
distribution, skewness = 5.5 and kurtosis = 33. More importantly, when we plot
sample deviation of replicates against sample intensity, it is far from constant
(Figure 16.2B). And this also violates a very important requirement for accurate
t-test, making it unsuitable for these raw intensities.
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FIGURE 16.2 Nonnormal distribution of chip raw intensities. A. Raw-intensity histogram
shows a positively skewed distribution with a long “tail” of high intensities. B. Standard
deviations of raw intensities show an upward trend for high intensities.
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If we can apply a mathematical transformation to these intensities, and when
the transformed data approximately observes a normal distribution across all expres-
sion levels, we can still use existing statistical analysis techniques without significant
modification. Several transformations have been proposed for microarray data anal-
ysis under different situations and have been applied with various degrees of success.

LOGARITHMIC TRANSFORMATION

f(y)=log (y)

For a positively skewed sample distribution, logarithmic transformations provide
“compression” for high intensities; this may partially correct the positive skew. The
log base can be 2, e, or 10, and it does not affect the sample distribution. When we
investigate the log-transformed raw intensities (Figure 16.3A), the positive data skew
is greatly reduced. The variance is also minimized, and it approaches a constant for
highly expressed genes (Figure 16.3B). This makes it practical to apply traditional
statistical analysis tools. Based on these observations, Chen et al. have recommended
using logarithmic transformation for microarray data [16]. Under this transformation,
the traditional differential expression ratio between experiments can be simply viewed
as the difference between transformed data, as In(y,/y,) = In(y;) — In(y,).

Although logarithmic transformation has been successful for highly expressed
genes, it has problems with weaker-expressed genes. In microarray experiments,
intensities are often background-corrected by subtracting an estimate of mean back-
ground intensity & from measured intensity. This often leads to a negative intensity
when expression is low and background is high. For example, 0.87% of the probes
on CodeLink chip used in Figure 16.2 have negative values, and they are not eligible
for logarithmic transformation. This results in potentially discarding weakly express-
ing genes with significant changes in the raw data.

Additionally, assumption of a constant variance of log-transformed intensi-
ties clearly breaks down when the expression is low (Figure 16.3B). These
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FIGURE 16.3 Distribution of log-transformed chip intensities. A. Log-transformed intensity
histogram shows a distribution much closer to normal than raw intensity. B. Standard devi-
ations of log-transformed intensities approach a constant for high intensities.
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problems result in discarding all data close to the background, which is clearly
suboptimal.

PowER TRANSFORMATION

F»)=y(>0)

A second transformation often used in reducing positive data skew is square root
transformation or, more generally, power transformation with a constant ¢ > 0.
Practically, cubic root transformations are often used for negative values. Although
these transformations have also been proposed for certain situations [14], they are
usually not recommended because they do not stabilize variance, as logarithmic
transformations do, for high intensities. For low intensities, they are not continuous
(for intensity values under 1, the transformed values get larger as the raw intensities
get smaller), and this is not desirable.

VARIANCE STABILIZING TRANSFORMATION (VST)

In 2001, Rocke and Durbin introduced a two-component model of intensity mea-
surement errors. In this model, measurement error follows a distribution based on
the model

y=o+ue"+¢,

where y is the raw expression measurement, ¢ the mean background measurement,
u the true expression level, and 1 and € are error terms. 711 and € are normally
distributed with mean of zero and variances of Gi and Gj , respectively [17].

Under this model, we notice that for highly expressed genes (y >> 0), y = ue”
or In(y) = In(u) + 1. This suggests that logarithmic-transformed data will have a
constant variance, consistent with the earlier observation of a constant coefficient
variation for highly expressed genes. On the other extreme of weakly expressed
genes (u — 0), y = o+ &. This indicates that y will have a normal distribution around
background intensity o with a constant standard deviation 0,; it also means log-
transformed intensity In(y) will have an asymptotic variance that approaches infinity
[17]. This explains why the logarithmic transformation breaks down for weakly
expressed genes. For measurements between the two extremes, the variance of y
equals u’S; + 07, where S} = %1 (e% — 1),

GENERALIZED AND MODIFIED LOGARITHMIC TRANSFORMATIONS

An ideal transformation f(y) will stabilize variance across full intensities range;
i.e., AV(f(y)) = Const. In addition, it is desired that variance of df = f(y,) — f(y,)
will be approximately constant. Based on the error model, Durbin et al. and Huber
et al. independently proposed two different versions of generalized logarithm
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FIGURE 16.4 Standard deviation of glog and hlog transformed intensities. Both glog and
hlog successfully stabilize variance except for intensities very close to background.
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They have shown that for both transformations, the variance is approximately
constant at Sr2] [18]. As seen in Figure 16.4, both glog and hlog transformations
successfully stabilize variance except for intensities very close to the background.

The parameters o, and o, can be estimated from expression intensities of well-
defined strong-expressing and weak-expressing genes in replicate experiments. In
most commercial microarray platforms, o, can be estimated from standard deviation
of negative controls (it can be further validated by y <a+20,). 0, can be estimated
from the standard deviation of the logarithmic-transformed positive controls in
replicate measurements.

Although glog transformation satisfies the stable variance requirement, it may
still be convenient to have ratio information in some situations. Roche et al. evaluated
two modifications of logarithmic transformations, started logarithm and log-linear
hybrid, to retain the advantages of logarithmic transformation [20].

Started logarithm takes a general form of g(y) =log(y—a+c¢), with ¢ > 0. The
addition of a positive constant ¢ will reduce the problems of discarding all genes
expressed below background. It also will limit the variance to o*/c* when u — 0,
instead of infinite. Rocke et al. have shown that the optimal conditional to achieve
minimal _maximum deviation from constant variance will take a form of
c=0,A28, 120].
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Log-linear hybrid transformation takes a general form of

_JO-—o)/k+Ink)-1, y-a<k
§ log(y— o), y-o>k

k is a cutoff constant. Rocke et al. have shown that the optimal conditional to achieve
minimum deviation from constant variance can be achieved with k = \/EO'E/SW [20].

In theory, glog should have the best performance, although simulation and
experimental data show that the three different transformations (glog, started, and
log-linear hybrid) perform almost equally well [18]. If ratio or fold change is
important for interpretation or visualization, such as pathway analysis, a log-linear
hybrid approach may be the best compromise.

CONCLUSION

Microarray data can generate powerful results leading to the elucidation of molecular
pathways that contribute to biological states such as disease progression or drug
effects. Central to the ability to detect meaningful biological changes in gene expres-
sion are the normalization and transformation of raw expression data. Here, we
review some of the popular methods for rendering data so that samples are compa-
rable within an experiment. Knowledge of variations in data handling is essential,
as nuances of each array system can determine which method is best for normalizing
and transforming data. Data from genes expressed at high levels have different
properties in comparison with data from low-expressing genes, which creates an
additional challenge in normalizing array data. The most recent methods for address-
ing these special issues are hybrids, and it appears that data normalization and
transformation will continue to evolve and improve by combining the best charac-
teristics of existing methods.
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INTRODUCTION

Gene expression analysis has progressed rapidly over the past decade, from the
historical analyses of individual genes to the sophisticated genome surveys routinely
performed today. DNA biochips have facilitated this progression and helped accel-
erate target validation and drug discovery efforts by the pharmaceutical industry.
The increasing use and acceptance of biochips to study genetic and cellular processes
is clearly demonstrated by the large number of publications in recent years and the
emergence of several robust commercial microarray platforms [1-3]. Affymetrix
(Santa Clara, CA) pioneered this field and has been the market leader for many
years, applying photolithographic technologies derived from the semiconductor
industry to the fabrication of high-density 25-mer oligonucleotide microarrays.
Alternative commercial platforms equally as robust have emerged, including array
platforms from Agilent, Amersham, Illumina, and Applied Biosystems (see Chapter 1
of this book for further discussion of the technology platforms).

Microarrays are primarily used for gene expression studies, where transcriptional
profiling is carried out on RNA extracted from cells or tissues under different
physiological conditions. Microarrays have been utilized by the pharmaceutical
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industry for both in vitro pharmacology and toxicology analyses. Chip technology
allows questions to be asked at a qualitatively different scale than has been possible
in the past. Additional biochip applications in routine use include DNA sequencing,
genotyping, comparative genomic hybridization studies, and chromatin immunopre-
cipitation assays (ChIP/chip) [3-7].

To date, the greatest application of microarray technology has been in the fields of
cancer research and genetics. This technology has now matured to the point where it is
being widely used in many other biomedical fields. One of the more exciting applications
is in the area of neuroscience, where we are seeing an expansion of our understanding
of the brain’s functions and the ability to study at a molecular level the complex disorders
that affect the central nervous system. When one considers the intricacy of the brain, it
is not surprising that difficulties emerge with expression analyses of this complex organ
[8]. The greatest difficulty is the challenge of extracting sufficient amounts of high-quality
RNA. The mammalian brain is characterized by a unique cellular and anatomical com-
plexity. Heterogeneous cells (e.g., neurons and glia cells) contribute to form complex
cytoarchitectures that can differentiate the various brain areas or, within the same nucleus,
can delineate the structure of different subregions. Furthermore, these cells are organized
in complex synaptic networks that have distinct neurophysiological, neurochemical,
morphological, and molecular characteristics. Given the intricate organization of the
brain, it is extremely difficult to obtain homogeneous samples to use for RNA extraction
and subsequent array experiments [9-11].

LASER CAPTURE MICRODISSECTION (LCM)

A major reason for the variability in brain tissue sample preparation and RNA
extraction is the low amounts of starting material that are typically obtained from
small nuclei or single cells. In order to properly interrogate neuronal functions, the
investigator must isolate and collect sufficient RNA quantities from a single cell,
which requires the use of Laser Capture Microdissection (LCM) [12,13]. This
technology was developed over a decade ago at The National Institutes of Health
(NIH) and subsequently commercialized by Arcturus Bioscience, Inc. (Mountain
View, CA). LCM initially found use amongst cancer researchers who utilized the
technology to segregate benign and malignant cells [14]. The cells are visualized
through a thermoplastic film, which is attached to the bottom of an optically clear
microfuge-tube cap. A laser pulse is directed onto the target cells through the film.
This causes the film to melt and allows it to flow onto the targeted area where it
cools and binds with the underlying cells. The film including the adhered cells or
clusters is then lifted, and the captured cells can be used for mRNA-expression
profiling studies. A second method of laser capture has also been commercialized
by PA.LM. (P.A.L.M. Microlaser Technologies GmbH, Bernried, Germany) that
utilizes a cutting laser to perform microsurgery and free individual cells from
surrounding tissue. LCM has been applied to the study of the central nervous system
(CNS) [15]. As it permits the selection and capture of cells, cell aggregates, and
discrete morphological structures deriving from thin tissue sections, LCM is now
well established as a tool for enriching cells from tissue sections, thus overcoming
the issue of tissue heterogeneity.
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MICROARRAY TARGET LABELING

Two dominant target-sample preparation methodologies have emerged, a one-color
approach utilized by the majority of the commercial platforms where the sample of
interest is assayed on a single biochip, and a two-color competitive hybridization
utilized solely by Agilent where an additional sample, typically a control, is also
included [15,16]. The Agilent platform can also be utilized as a single-color platform,
although historically these arrays have been hybridized with two samples, one
labeled with cyanine 3 and the other with cyanine 5.

In the early studies, fluorescent targets were prepared by reverse transcription
of RNA with direct incorporation of Cy3- or Cy5-labelled deoxyribonucleotides
(dNTPs) into the synthesized first-strand cDNA. A popular alternative method uti-
lizes a chemically reactive nucleotide analog, an amino allyl-dUTP, which is incor-
porated into the cDNA and then subsequently labeled with monoreactive Cy3- or
Cy5 dyes. These methods require relatively large amounts of cellular RNA, which
makes them inadequate for use with samples, where RNA is limiting, or a tissue
such as the brain where a study of specific cell types is often required. The amount
of RNA in a single cell is in the range of 0.1 to 1 pg, which is difficult to manipulate
experimentally and also two orders of magnitude less than the minimum amount
required for direct or amino-allyl-based labeling schemes. Direct labeling demands
10 to 20 ug of total RNA or 0.5 to 2 ug polyA+ mRNA, the amounts of RNA
corresponding to approximately 107 cells or several milligrams of tissue [17]. RNA
samples extracted from cells harvested by needle biopsy, cell sorting, or laser capture
microdissection thus require an amplification step [18]. Two different amplification
approaches have been employed, one based on enhancement of the fluorescent signal
and the other on global enrichment of the mRNA.

SIGNAL AMPLIFICATION

Signal amplification methodologies such as dendrimer technology [19] and tyramide
signal amplification (TSA) [20] boost the fluorescence signal emitted per mRNA
molecule. Dendrimers are essentially branched polymers that permit attachment of
various molecules including fluorescent moieties to their branched ends. A multitude
of fluorescent markers are attached to the dendrimers in addition to a capture
oligonucleotide DNA sequence complementary to primer used to initiate cDNA
synthesis. This ensures that all the cDNA molecules have a binding site for detection
with the dendrimers. The overall dendrimer signal amplification process is a two-
step process. Initially, the extracted mRNAs are converted into cDNA targets, which
are hybridized to the microarray. The complementary oligonucleotide-branched den-
drimers are then subsequently hybridized to the array and interact with the bound
target cDNAs via base pairing interaction between the oligonucleotide capture
sequence, and the branched dendrimers capture sequence oligonucleotide. Approx-
imately 360 molecules of dye per labeled DNA are obtained when the dendrimers
are hybridized to the modified target sequences [19]. The labeling is independent of
the composition of the DNA sequence. This system is therefore advantageous in
that a constant amount of fluorescent dye is incorporated per DNA molecule. Uti-
lizing this labeling system, the amount of DNA hybridized can be determined on
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a molar basis, permitting the calculation of a stoichiometric unit representing the
ratio between a defined amount of a target cDNA, hybridized to a defined amount
of the corresponding homologous array probe [21].

Tyramide signal amplification differs from branched dendrimers in that it utilizes
an enzymatic reaction. This methodology was originally developed to increase the
sensitivity of immunohistochemical detection schemes. In a similar manner to the
dendrimer approach, a cDNA target is first synthesized from the extracted RNA.
During the reverse transcription process, a biotin dNTP is incorporated into the
synthesized cDNA. The cDNA target is hybridized to the microarray and subse-
quently detected with streptavidin-horseradish peroxidase. This enzymatic reaction
causes the deposition of numerous cyanine 5 fluorophores on the array, thereby
amplifying the signal intensity. The use of different haptens coupled to dNTPS,
detected with different antibody or protein conjugates, permits two-color labeling
approaches using this scheme.

GrLoBaL MRNA AMPLIFICATION

Experimental fidelity is dependent on both even and uniform amplification of the entire
population of mRNA species with minimal bias and the preservation of the relative
transcript levels. Global mRNA amplification methods therefore increase the number
of transcript equivalents [22] with the objective of generating sufficient nucleic acid
target to permit standard labeling techniques. In order to obtain adequate RNA from
small tissue samples such as biopsy material or single cell isolations, global amplifi-
cation techniques based either on isothermal linear RNA polymerase amplification
[23], exponential PCR [24], or single primer isothermal amplification have been
employed [25].

T7 RNA POLYMERASE-BASED AMPLIFICATION

The T7 RNA Polymerase amplification method described by Eberwine and
coworkers [23] has found wide application in the microarray field. This method
employs a synthetic oligo (dT) primer fused to a phage T7 RNA polymerase
promoter to prime synthesis of first strand cDNA by reverse transcription of the
polyA* RNA component of total RNA. Second-strand cDNA is synthesized with
RNase H by degrading the polyA* RNA strand, followed by second-strand syn-
thesis step with E. coli DNA polymerase I. Amplified antisense RNA (aRNA) is
synthesized via in vitro transcription of the double-stranded cDNA (ds cDNA)
template using T7 RNA polymerase. This approach enables amplification of the
starting RNA material by up to 200-fold. A second round of amplification can
also be carried out by annealing random hexamers to the newly synthesized cRNA
and performing first-strand cDNA synthesis, permitting further amplification. Lin-
ear RNA amplification is preferred over exponential amplification as RNA Poly-
merase activity is less influenced by template sequence or concentration than Taq
DNA polymerase. Additionally, comparison of RNA-based amplification with
a nonamplified control revealed stronger correlation and less bias than with PCR-
based amplification [25]. The resultant cRNA products are nevertheless biased
toward the 3’ end of their cognate transcripts because of the initial priming
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occurring at the polyA+ tail. This generally does not pose a problem as microarray
probes are designed from sequence at the 3’ end of mRNAs [26-29].

T7 linear amplification protocols currently in use differ, based on a few criteria,
namely whether a template-switching mechanism is used in the synthesis of second-
strand cDNA, the enzymes utilized, the method used to purify the double-stranded
cDNA prior to in vitro transcription step. The level of bias, introduced into gene
expression profiling experiments by RNA amplification, has been shown to be
relatively low. Zhao et al. [18] utilized a virtual array approach with repeatedly
amplified samples to examine and minimize experimental variation. They observed
that slight differences in T7 linear amplification protocols did not greatly affect the
correlation of amplified samples with unamplified samples. Expression profiles
obtained with aRNA were seen to closely resemble expression profiles of the original
sample. The degree of reproducibility in microarray experiments with amplified
material presented a greater concern. Samples amplified on the same day were seen
to have a much greater correlation than samples amplified on different days [18].
Additionally, the amount of total RNA input was also seen to affect the amplification
process. Within the range of 0.3 to 3 ug total RNA, decreasing the input RNA did
not adversely affect either the fidelity or reproducibility of amplification. However,
when reducing the input starting total RNA to less than 300 ng, the yields of aRNA
were less than 3 pg and not sufficient to permit even one hybridization experiment.
The fold of amplification was observed to be greater with smaller starting quantities
of template RNA, but the absolute yield of aRNA was typically smaller.

Gold et al. [30] utilized Affymetrix GeneChips (U95Av2) with samples extracted
from normal human tracheobronchial epithelial cells (NHTBE) and human pulmo-
nary mucoepidermoid carcinoma cells (NCI-H292) to examine the effect of two
rounds of amplification, a double IVT (dIVT) requiring 200 ng of total RNA com-
pared to a single IVT requiring 5 ug of total RNA. In both cell lines, approximately
10% more genes were detected with IVT than with dIVT.

PCR-BASED AMPLIFICATION

Linear isothermal RNA procedures require multiple steps and are dependent on
nucleic acid extractions, reverse transcription, and purification steps, all of which
may introduce bias. Additionally, these steps are both labor intensive and time-
consuming, and do not preserve accurately the abundance information from smaller
starting amounts of sample. PCR-based amplification is more straightforward but is
prone to bias the abundance relationships. PCR-based approaches have been applied
to microarray studies. One approach utilized terminal deoxynucleotide transferase
to append a homomeric tail to the 3" end of the first strand cDNA, followed by PCR
with a homomeric primer (dN) and one incorporated during the reverse transcription
step at the 5" end of the cDNA. Nonspecificity arising from the use of homomeric
primers for PCR poses problems with this approach. Another approach, termed three-
prime end amplification (TPEA), facilitated global amplification of the 3 end of all
mRNAs present in a sample [31,32]. PCR amplification was performed with a
primer, incorporated into the first strand, during reverse transcription, and a second
primer was used to initiate second-strand synthesis. The second-strand primer
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contained partially degenerate sequence at the 3’ end, which promoted annealing
every 1 kb, resulting in uniformly sized amplicons. This was advantageous, as all
mRNA species were amplified, regardless of the initial size of the transcript. Iscove
et al. [33] were the first group to demonstrate that the exponential approach, when
performed carefully, actually preserved abundance relationships through amplifica-
tion as high as 3 x 10! fold. Their approach involved reverse transcription of a first
strand cDNA primed by oligo (dT) and addition of an oligo (dA) tail with terminal
transferase, followed by exponential amplification with an oligo(dT) containing
primer. This global RT-PCR protocol was reported to be applicable to 10 pg of
starting RNA, or as the authors noted, a single cell.

SINGLE PRIMER ISOTHERMAL AMPLIFICATION TECHNIQUE

The single primer isothermal amplification technique, SPIA™, has been developed
and commercialized by NuGEN™ Technologies and is discussed in depth else-
where in this book (see Chapter 18, Dafforn et al.). It allows linear amplification
of DNA by employing chimeric oligonucleotide primers to generate cDNA that
serves as a substrate for amplification, producing multiple copies of first-strand
cDNA representing all mRNAs in the sample [34]. This amplification scheme
generates microgram amounts of amplified cDNA from 5 to 100 ng of total RNA
in a single amplification round and is performed in less than 4 h. The combination
of this amplification approach with a simple fragmentation and labeling method
generates amplified cDNA, ready for hybridization to Affymetrix® GeneChip®
arrays or spotted arrays.

CONCLUSION

In conclusion, we are facing a robust expansion of gene array studies in many fields
and particularly neuroscience, but in order to take full advantage of this technology,
it will require considerable attention to all experimental variables that may influence
the resulting data. When working with samples that are limiting, amplification of
nucleic acid targets is a necessity. Experimental fidelity is dependent on both equal
and consistent amplification of the entire population of mRNA transcripts. The ability
to accurately preserve relative transcript levels is the most important issue with any
amplification methodology.
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INTRODUCTION

Gene expression profiling provides a snapshot of complex, regulated gene expression
processes that link the genotype of an organism with a corresponding phenotype.
The new analytical tools developed in recent years for the determination of gene
expression profiles have greatly advanced the understanding of the regulation of
normal and pathogenic cell development and function. Large-scale gene expression
profiling currently relies on a variety of methods, including microarrays for parallel
determination and quantification of thousands of gene transcripts [1] and any of
various quantification methods for individual gene transcripts. A major limitation
for large-scale gene expression profiling is the large quantity of RNA required for
analysis when using either microarrays or the quantification of large numbers of
specific gene transcripts by methods such as quantitative PCR. Thus, most expression
profiles have been obtained for samples derived from large numbers of cells, tissues,
or organs, representing mixtures of large numbers of cell types. They represent
average expression profiles of all cells in the mixture and clearly do not reflect the
expression profile of any of the specific cell types present. In contrast, gene expres-
sion profiling in defined cell populations enables the elucidation of gene expression
patterns that are specific for defined genotype and cell function in normal and
pathological states. However, this approach typically requires the analysis of sample
from relatively small numbers of cells. Recent advances in sample acquisition [2],
the isolation of pure cell populations [3], and methods for RNA amplification are
being implemented toward establishing expression profiles and patterns at the level
of homogeneous cell populations.

Various RNA amplification schemes have been developed for this purpose.
Insofar as expression profiles are expected to provide an accurate representation of
all the mRNA species in a given sample, it is clear that the amplification method
must provide high representation fidelity. Thus, linear amplification of all transcripts
in a sample is essential. One of the most common methods is that first described by
Eberwine and colleagues [4,5]. In this method, T7 RNA polymerase transcription
is used to generate cRNA for microarray-based analysis. Additional rounds of tran-
scription are used to allow analysis of small samples. Although capable of reasonable
representation of transcripts in the unamplified material [6,7], this approach is rather
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lengthy, tedious, and requires highly skilled operators. A serious limitation of this
method is the requirement for different numbers of amplification rounds for prepa-
ration of hybridization targets from samples of various sizes, leading to complica-
tions in interpretation of the data obtained. Each additional round of amplification
also reduces the template fidelity.

PCR-based methods for global amplification have also been described [8,9].
These are also somewhat cumbersome, and fidelity of transcript representation may
be reduced because of the exponential nature of PCR. Thus neither approach offers
arapid, simple procedure for global gene expression analysis suitable for all samples,
including samples with RNA input in the low-nanogram range.

We have developed a novel, isothermal, linear RNA amplification, Ribo-SPIA™,
which generates microgram amounts of amplified cDNA from 5 to 100 ng of total
RNA in a single amplification round and is performed in less than 4 h [10]. This
scheme provides a single method for target preparation from all samples. The
combination of this amplification technology with a simple fragmentation and label-
ing method generates amplified cDNA, ready for hybridization to Affymetrix®
GeneChip® arrays or spotted arrays from as little as 5 ng of starting total RNA in
one day. This report summarizes applications of this new technology and demon-
strates its accuracy and fidelity of representation.

RiBO-SPIA™: A NOVEL METHOD FOR GLOBAL
ISOTHERMAL LINEAR AMPLIFICATION OF mRNA

Ribo-SPIA™ allows global mRNA amplification while preserving representation of
relative expression levels. This simple, rapid process reproducibly achieves ampli-
fication from as little as 5 ng of total RNA, generating single-stranded DNA products
that are complementary to mRNA (homologous to the first strand cDNA). Ribo-SPIA
amplification products are ideally suited for quantifying expression levels by any
commercially available nucleic acid measurement technique such as real time PCR
or various microarrays.

Ribo-SPIA incorporates a single primer isothermal amplification technique,
SPIA™, developed by NuGEN™ Technologies, for the linear amplification of DNA.
The method employs unique features of chimeric oligonucleotide primers to generate
cDNA that serves as a substrate for amplification, producing multiple copies of first
strand cDNA representing all mRNAs in the sample. The Ribo-SPIA reaction for
amplification of mRNA is schematically described in Figure 18.1. A chimeric primer
comprising a 3 DNA portion and a 5° RNA portion is employed for synthesis of
first, strand cDNA. The chimeric primer hybridizes to all mRNA targets in the
sample, at the beginning of the polyA tail. Primer extension by reverse transcriptase
is initiated to produce first strand cDNA. The heteroduplex produced at the end of
replication of all mRNA targets by reverse transcriptase contains a unique RNA tail
at the 5" end of the newly synthesized cDNA strand, which was incorporated by the
chimeric primer.

Second-strand cDNA is synthesized in the next step. The first-strand DNA is
replicated by DNA polymerase and the RNA tail incorporated by the chimeric
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Ribo-SPIA™ RNA Amplification Used in the Ovation™ System
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FIGURE 18.1 Scheme for Ribo-SPIA amplification. Individual steps are described in the text.
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primer is simultaneously reverse transcribed. The double-stranded cDNA produced
by this process comprises a DNA/RNA heteroduplex at one end, containing a
unique sequence that was introduced by the 5" end of the chimeric primer. The
RNA portion of the heteroduplex is cleavable by RNase H, which specifically
cleaves an RNA strand in a DNA/RNA heteroduplex. Cleavage of the RNA strand
in the heteroduplex portion of the double-stranded cDNA leads to formation of a
unique partial duplex of first- and second-strand cDNA. The single-stranded por-
tion of the partial duplex, at the 3" end of the second-strand cDNA, is the com-
plement of the unique sequence introduced by the 5’-RNA portion of the chimeric
primer.

This sequence is employed as the priming site for SPIA amplification, using a
second chimeric SPIA primer that is complementary to the unique single-stranded
sequence. After binding to the priming site, the primer is extended isothermally by
a strand-displacing polymerase. Once extension begins, RNase H can again digest
the new DNA/RNA heteroduplex and regenerate the priming site. Binding and
extension of new molecules of primer leads to the continuous, isothermal generation
of multiple copies of cDNA complementary to the original mRNA. Modified bases
can be incorporated if needed to allow labeling reactions.

Ribo-SPIA PROTOCOL FOR RAPID ROBUST
AMPLIFICATION OF TOTAL mRNA IN SMALL TOTAL
RNA SAMPLES

The simple NuGEN protocol for linear, isothermal mRNA amplification from total
RNA can be carried out by minimally trained laboratory personnel in less than 4 hours
(Figure 18.2). The continuous nature of the linear amplification reaction makes it
possible to generate microgram amounts of cDNA from as little as 5 ng of total
RNA input. This product is suitable for both array-based expression profiling and
expression analysis of specific genes. Products of the linear amplification exhibit a
size distribution with most material below 2 kb for optimal performance on arrays
designed for other 3’-biased IVT methods. Specific gene transcripts may be quan-
tified directly by various quantitative PCR (qPCR) methods such as TagMan®,
SYBR® Green detection, or others.

Alternatively, array-based expression profiling can be carried out, following
labeling of the amplification products to produce targets suitable for the desired
array platform. NuGEN is currently commercializing the Ovation family of products
designed for target preparation for quantitative analysis. The Aminoallyl Ovation kit
incorporates aminoallyl-dUTP during DNA synthesis, to allow subsequent reaction
with dyes such as Cy3/CyS5. The amplified product can be used for gene expression
profiling on spotted arrays employing two-dye detection schemes, such as the Agilent
oligonucleotide arrays, home brew-spotted arrays, cDNA arrays, and the like. The
Biotin Ovation kit provides reagents that allow the fragmentation and biotin labeling
of the cDNA product, generating targets suitable for hybridization to Affymetrix
GeneChip arrays or GE’s CodeLink arrays for gene expression profiling. Finally,
the Ovation RNA Amplification System kit is especially tailored for preamplification
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URE 18.2 Flow diagram of the steps in the Ribo-SPIA procedure. The entire process is

run in a single tube, with an addition between each of the incubations shown. Steps following
the amplification are specific to the desired application. More detail is provided in Table 18.1
for the case of target generation for the Affymetrix GeneChip.

for

gPCR applications. Table 18.1 summarizes in more detail the Biotin Ovation

protocol, illustrating its relative simplicity and suitability for automation. The entire
process, from total RNA (5 to 100 ng) to either fragmented, biotin-labeled product
ready for hybridization to GeneChip arrays or Cy3/Cy5-labeled product ready for
hybridization to any of various spotted arrays, can be completed in a single 8-hour
day.

TA

BLE 18.1

Protocol for Ribo-SPIA Amplification and Biotin Labeling

LI

Mix 1-100 ng of total RNA in 5 ul of water with 2 ul of primer, denature 5 min at 65°C

Add 13 pl of first-strand reaction mix, incubate 1 h at 48°C and 15 min at 70°C

Add 20 pl second-strand reaction mix, incubate 30 min at 37°C and 15 min at 75°C

Add 120 ul SPIA amplification mix (primer, enzymes, dNTPs, and buffer), incubate for 60 min at
50°C and 5 min at 95°C

Purify amplified cDNA on one Nucleospin column (BD Biosciences); elute in 30 ul total volume
of water. Amplification efficiency may be determined by qPCR if desired either before or after
purification

Add 5 ul each of fragmentation reagents 1 and 2, incubate 30 min at 50°C

Add 5 and 2.5 ul of labeling reagents 1 and 2, incubate 30 min at 50°C

Purify by gel filtration using a DyeEx spin kit (Qiagen)
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ACCURACY, REPRODUCIBILITY, AND LINEARITY OF
Ribo-SPIA ASSESSED BY qPCR

Essential requirements of any global mRNA amplification for gene expression anal-
ysis are high reproducibility, linearity, and accuracy for maintaining fidelity of
representation of all transcripts in the sample. Ribo-SPIA reproducibility for global
mRNA amplification from 20 ng total RNA UHR (Universal Human Reference
RNA, Stratagene), is shown in Figure 18.3. Primers and probe sets were designed
for quantification of GAPDH c¢DNA at two positions relative to the 3" poly-A end
of the mRNA, GAPDH 3’ (330 nucleotides) and GAPDH 5’ (1000 nucleotides), and
real time PCR (TagMan) was employed for the quantification of Ribo-SPIA ampli-
fied cDNA. The data presented was obtained from 88 amplification reactions carried
out by multiple users on multiple days and using various Ovation kits, and demon-
strates the high degree of reproducibility of the method.

The linearity and accuracy of the Ribo-SPIA global mRNA amplification is
demonstrated by the comparison of amplification efficiency of various housekeeping
gene transcripts in the sample. real time PCR, with SYBR Green, was employed for
the quantification of a set of 19 housekeeping gene transcripts in nonamplified and
amplified cDNA generated from 20 ng HeLa total RNA, representing about a 1000-
fold abundance range. The amplification efficiency is denoted by the delta Ct (cutoff
threshold) values for nonamplified cDNA (produced by the Ribo-SPIA enzyme
system) and the amplified cDNA, as shown in Figure 18.4. The delta Ct, representing
the fold amplification for the various transcripts is very consistent, thus indicating
equal amplification of all mRNA species in the sample.

Differential expression of 68 genes in total RNA from either Universal Human
Reference RNA (UHR) sample or from human skeletal muscle was compared in
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FIGURE 18.3 Reproducibility of the Ribo-SPIA process. The amount of amplified product
from two loci in the GAPDH gene was determined by TagMan for 88 separate Ribo-SPIA
amplifications over an extended period. Data is summarized as observed cutoff threshold (Ct)
without any normalization. Yield data (ug) is included for the same data set.
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FIGURE 18.4 Accuracy of Ribo-SPIA™ amplification of different genes. Transcripts from
19 genes were quantified before and after amplification using real time PCR. The cutoff
threshold (Ct) before amplification for cDNA from each transcript and the extent of amplifi-
cation, delta Ct, the change in Ct after amplification are shown. The amount of amplification
remains consistent over a broad range of inputs.

nonamplified or amplified cDNA. Figure 18.5 shows an excellent linear relationship
for log, of relative expression levels between the two samples before or after ampli-
fication (expressed as difference in threshold cycle Ct) over a range of 30 Ct, or
9 orders of magnitude, with a correlation coefficient R? of 0.95. Thus Ribo-SPIA
provides a reliable representation of changes in transcript abundance in nonamplified
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FIGURE 18.5 Differential expression of 68 genes before or after amplification. Log, of
relative expression in UHR compared to human skeletal muscle (expressed as difference in
Ct) is compared after (vertical axis) or before amplification.
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mRNA. Preamplification by Ribo-SPIA before qPCR analysis, as illustrated here,
is especially useful in multiplexed gene expression analysis in general, as well as
microfluidic applications. In cases where a small sample must be divided extensively,
some aliquots may not contain even a single molecule of the template mRNA. Linear
preamplification of the sample is then indispensable to provide statistically mean-
ingful amounts of template in each aliquot for transcript quantification. The ampli-
fication product generated by the Ribo-SPIA procedure can be directly quantified
by any quantitative PCR method, as it is amplified cDNA, and provides sufficient
material for quantification of hundreds of transcripts per sample.

EXPRESSION ANALYSIS USING THE Ribo-SPIA
AMPLIFICATION AND GeneChip ARRAYS

FRAGMENTATION AND LABELING OF RiBo-SPIA Probpuct
FOR MICROARRAYS

Labels for detection of Ribo-SPIA product on microarrays may be introduced using
any of the conventional techniques for labeling of DNA. Platforms such as Affyme-
trix® GeneChip® arrays and GE CodeLink arrays also require fragmentation of the
labeled nucleic acid before hybridization. The Ovation™ Biotin kit provides a rapid,
simple procedure, and reagents for fragmentation and biotin labeling of Ribo-SPIA
c¢DNA products. The process involves only two 30 min incubations, followed by
purification to remove unincorporated label (Table 18.1) and thus is readily amenable
to automation. Figure 18.6 shows a typical analysis of the size distribution of
products on an Agilent BioAnalyzer, illustrating the fragmented material with a peak
at about 75 bases and most material below 200 bases in length. For comparison,
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FIGURE 18.6 Bioanalyzer analysis of Ribo-SPIA product before and after labeling and
fragmentation. Sharp peaks are internal standards at 25, 200, 500, and 1000 bases; 2kb, 4kb,
and 6 kb. Unfragmented Ribo-SPIA product gives a very broad peak with maximum intensity
typically in the 500-1000 base region. Fragmented material gives a narrow distribution with
maximum intensity around 75 bases.
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unfragmented material gives a broad peak, mostly below 2 kb but extending to about
6 kb. Biotin incorporation is easily demonstrated by a gel-shift assay. Product
aliquots are incubated with excess streptavidin and resolved by gel electrophoresis
using a nondenaturing gel. Gel electrophoresis analysis of replicate fragmented
products demonstrated that most of the fragmented and labeled products were shifted
to larger size by reaction with streptavidin. The extent of labeling may be quantified
by image analysis. The gel-shift analysis is also useful to determine qualitatively
the reproducibility of fragmentation, but does not provide an accurate picture of
fragment size because it is performed under nondenaturing conditions.

GENECHIP HYBRIDIZATION RESULTS

Ribo-SPIA performance on microarrays was tested most extensively on Affymetrix®
GeneChip arrays because this system has come to occupy a central role in expression
analysis. Fragmented and labeled targets, produced by amplification from 20 ng of
UHR total RNA as described above, performed as well on the HG-U133A GeneChip
arrays as cCRNA produced from 10 ug total RNA input by the T7-based standard
Affymetrix protocol [11] even though only 2.5 ug cDNA was used for hybridization
compared to 10 ug for cRNA. Reproducibility of gene expression analysis on the
U133A GeneChip arrays was excellent for replicate-independent target preparations.
Figure 18.7 compares signals from two independently generated Ribo-SPIA products
made by amplification of 20 ng total UHR, giving a signal correlation R? of 0.992.
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FIGURE 18.7 Signal correlation on Affymetrix HG-U133A GeneChip between two biolog-
ical replicates amplified by Ribo-SPIA.
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TABLE 18.2
Signal Correlation and Call Concordance between Independent
Ribo-SPIA Reactions as a Function of Total RNA Input

a. Signal Correlations (R?)

1 ng 5 ng 20 ng 100 ng
1 ng 0.98
5 ng 0.98 0.99
20 ng 0.96 0.98 0.99
100 ng 0.91 0.94 0.96 0.98

b. Call Concordance (%)

1 ng 5 ng 20 ng 100 ng
1 ng 87.3
5ng 87.4 89.8
20 ng 85.9 88.7 90.9
100 ng 85.8 88.6 89.5 89.3

Signal correlation coefficients (R?) were 0.98 to 0.99 over the entire range of 5 to
100 ng for comparison of duplicates at the same input and as high as 0.94 for
correlation between 5 and 100 ng total RNA input (Table 18.2). Call concordance
over the same range is also highly reproducible, ranging from 89 to 91%. Although
outside of the range currently recommended for the Ovation™ Biotin system, excel-
lent reproducibility was achieved with as little as 1 ng total RNA input (signal
correlation coefficient of 0.98 and call concordance of 87% for replicate-independent
amplification products).

Gene expression profiling with the Ovation™ system was further shown to be
highly accurate and comparable to that achieved with targets generated by the
standard T7-based protocol. The standard protocol represents GeneChip array-based
gene expression analysis of samples after relatively little amplification, as these are
carried out with high-input total RNA (10 pg total RNA per target preparation
reaction). Three replicate CRNA targets were prepared using the standard protocol
and hybridized to U133A GeneChip arrays, all by an independent laboratory, yield-
ing an average Present Call = 51.5 + 1.7%. Hybridization of 13 Ribo-SPIA-derived
cDNA targets yielded an average Present Call = 53.6 + 2.7%. Most other quality-
control metrics were in the range defined as acceptable by Affymetrix®, including
3’/5’ ratios less than 3 for GAPDH, except for an average value of about 20 for the
3’/5’ ratio for beta-Actin. Increases in 3’/5 ratios have also been noted in T7-based
amplification of small (10-30 ng) samples and are attributed to decreased average
length of the product with increasing amplification [6].

The high efficiency and accuracy of the Ribo-SPIA single-cycle linear-ampli-
fication method is also demonstrated by the high degree of call concordance on the
U133A GeneChip arrays between targets prepared by Ribo-SPIA amplification of
mRNA from 20 ng total RNA as compared to targets prepared by the T7-based standard
protocol. Call concordance of greater than 85% was demonstrated between targets
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prepared by the two methods. Similar call concordances for Ovation™ amplifica-
tion targets and T7-labeled cRNA targets were obtained for RNA samples from
various other tissues and cell lines including human liver, placenta, skeletal muscle,
and spleen.

DirrereNTIAL GENE ExPRESSION UsING THE RiBO-SPIA MEeTHOD
AND GENECHIP ARRAYS

More extensive data were obtained in an experiment comparing Ribo-SPIA to the
standard T7 Affymetrix® procedure, using a series of mixtures of placenta and
spleen total RNA as input. The samples employed for this experiment were generated
by mixing the two total RNA samples to generate a series of samples with 100%
placenta, 90% placenta-and-10% spleen total RNA, 50% of each, 10% placenta-
and-90% spleen, and 100% spleen total RNA. Targets for expression profiling on
U133A GeneChip arrays were generated by the Ovation™ Biotin system (20 ng
total RNA input) and Affymetrix® standard T7-based protocol (10 ug total RNA
input), in triplicates. A total of 15 GeneChip arrays were hybridized with the corre-
sponding 15 target preparations generated with each of the two methods (3 replicates
for each of 5 mixed total RNA samples).

Signal correlation coefficients, R2, were calculated using all possible pairs of arrays
for each sample or mixture. Average signal correlation coefficients, representing the
reproducibility of independent target preparations by either procedure, were similar
for targets obtained by the Ovation™ Biotin system and T7 cRNA targets, with average
R?=0.981 for the Ovation™ system and average R? = 0.988 for the T7-based standard
Affymetrix® protocol, in spite of the 500-fold difference in RNA input (20 ng vs. 10 tig).
Excellent call concordance between the Ribo-SPIA and T7 products prepared from
this large number of targets was also demonstrated, as shown in Table 18.3.

The accuracy of Ribo-SPIA amplification of mRNA for differential gene
expression determination with the GeneChip high-density array was confirmed by
correlation of relative expression levels. Highly reproducible differential gene
expression determination, R? = 0.94, using the Ovation™ Biotin system was dem-
onstrated by correlation of Log, of signal ratios obtained with independently pre-
pared replicate samples, as shown in Figure 18.8 (UHR vs. liver total RNA). Targets
prepared with the Ovation™ Biotin system and targets generated with the Affyme-
trix® method were also well correlated, with R? = 0.83, representing the correlation

TABLE 18.3

Call Concordance (%) between cRNA and Ovation™ cDNA
Sample (Total RNA Composition) Call Concordance (Total)
100% Placenta 89.7% (17387)

P90% & S10% 89.1% (17290)

P50% & S50% 88.7% (17346)

P10% & S90% 88.2% (17571)

100% Spleen 88.7% (17756)
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FIGURE 18.8 Correlation of differential expression measurement between two replicate
Ribo-SPIA amplifications. Log, of signal ratios for each transcript in UHR vs. human liver
total RNA are plotted for replicate reactions.

of gene expression profiling in amplified and nonamplified samples, as shown in
Figure 18.9 (UHR vs. liver total RNA).

RiBO-SPIA LINEARITY

Linearity of mRNA amplification by the Ribo-SPIA technology and target
preparation by the Ovation™ Biotin system was assessed by amplification from
mixtures of placenta and spleen total RNA samples, as described above, and
analysis of gene expression levels using the U133A GeneChip arrays. Amplifica-
tion linearity was assessed from the signal correlation as a function of dilution of
the placenta total RNA into spleen total RNA in a sample. Placenta-specific
transcripts were identified by comparing array results obtained from triplicate
independently prepared targets of placenta and spleen total RNA, selecting those
that were in full concordance on all triplicate preparations by the Ovation™ Biotin
system (20 ng input) and T7 standard protocol (10 ug input), and gave signal >
200 for the placenta-only sample. Excellent linear correlation of signals as a
function of % placenta total RNA in the sample (mixed with spleen total RNA)
was obtained with an average R?>= 0.922 gained for 127 placenta-specific tran-
scripts. Similar linear correlation was obtained for targets obtained by the T7
standard protocol, with R?= 0.885. Examples of the linear correlation of signals
of three placenta-specific transcripts as a function of dilution (% placenta RNA
in a sample) are shown in Figure 18.10.
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FIGURE 18.9 Correlation of differential expression between Ovation™ Ribo-SPIA amplifi-
cation and the Affymetrix® method. Tissues and plots are as described earlier.

PERFORMANCE OF Ribo-SPIA-AMPLIFIED PRODUCT
ON TWO-COLOR SPOTTED ARRAYS

Ribo-SPIA product can easily be labeled with multiple dyes by incorporating ami-
noallyl-dUTP during amplification. The Aminoallyl side chains can then be reacted
with derivatives of Cy3 and Cy5 or other dyes using standard methods. The Ova-
tion™ Aminoallyl kit includes all the reagents required to produce Aminoallyl
product suitable for reaction with any dyes appropriate for the experiment. As with
biotin, this kit enables the amplification of mRNA in 5 to 100 ng total RNA to give
microgram quantities of labeled product ready for hybridization within a single day.
Performance was assessed, using the Agilent Human 1A (v2) Oligo Microarray Kit.
Replicate Ribo-SPIA amplifications of UHR total RNA were labeled with either
Cy3 or Cys5, then hybridized and scanned. Signal correlation between slides was
excellent, with R? = 0.96 to 0.98 for comparison of duplicates.

CONCLUSIONS

Gene expression profiling often requires more input mRNA than is available from
the sample, especially when analyzing very small samples representing homogeneous
cell populations. The ability to linearly amplify all mRNA species in a sample
enables transcriptome analysis from small samples and enhances the sensitivity of
analysis of very low abundance transcripts. Achieving the ability to determine expres-
sion profiles of homogeneous well-defined cell populations greatly increases the
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reliability of our understanding of cellular processes. In order to achieve accurate
gene expression profiling from small samples, it is also imperative to employ a
global amplification methodology that is linear, nonselective, and capable of pro-
viding sufficient efficiency in a single round of amplification.

The present report describes a rapid, highly efficient linear RNA amplification
methodology, Ribo-SPIA, which, when applied to mRNA, satisfies these require-
ments. Unlike current transcription-based mRNA amplification methods, Ribo-SPIA
generates single-stranded cDNA products suitable for direct analysis using any of
the currently available analysis platforms, in a single round of amplification. Global
mRNA amplification is dependent on the generation of unique, partially double-
stranded cDNA, which serves as a substrate for single-primer isothermal amplifica-
tion using a DNA/RNA chimeric primer, and employs a DNA polymerase with
strand-displacement activity and a RNase H enzyme. The simple, highly efficient
and robust procedure enables amplification of mRNA from as little as 5 ng total
RNA, yielding microgram amounts of cDNA in less than 4 h. The linearity and
accuracy of the Ribo-SPIA amplification method was demonstrated by quantification
of amplification products, using both quantitative PCR and hybridization to GeneChip
arrays. The results demonstrated high correlations between amplified products and
nonamplified samples, an indication of high amplification fidelity.

The simple procedure and speed of the Ribo-SPIA amplification technology,
combined with a straightforward labeling and fragmentation procedure, renders this
technology suitable for high-throughput gene expression profiling of all samples,
large and small. Options are available, tailored for Affymetrix® GeneChip arrays,
for spotted arrays, and for preamplification before quantitative PCR. Because of its
operational simplicity, the technology should be readily amenable to automation.
Further advances of this new technology are expected to enable single-cell expression-
profiling analysis on the one hand, and the development of procedures and reagents
for the amplification of the total-sequence content of the transcriptome.

MATERIALS AND METHODS
MATERIALS

Universal Human Reference total RNA and HeLa total RNA were obtained from
Stratagene (La Jolla, CA), human spleen and placenta total RNA were from Ambion
(Austin, TX), and human skeletal muscle total RNA was from Clontech (Palo Alto,
CA). RNA quality was confirmed using an Agilent 2100 Bioanalyzer (Agilent, Palo
Alto, CA). PCR primers were from QIAGEN (Valencia, CA) or Integrated DNA
Technologies (Coralville, 1A).

RiBo-SPIA

Ribo-SPIA amplifications were performed with the Ovation™ Biotin RNA Amplifi-
cation and Labeling System for GeneChip experiments or the Ovation™ Aminoallyl
RNA Amplification and Labeling System for all other experiments (NuGEN Technol-
ogies, Inc., San Carlos, CA), as described by the manufacturer [12].
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AMPLIFICATION AND LABELING BY IN VITRO TRANSCRIPTION

RNA samples were labeled, using the Enzo® BioArray™ High Yield RNA Transcript
Labeling Kit. All labeling reactions using in vitro transcription were carried out by
Expression Analysis (Durham, NC), an Affymetrix® authorized GeneChip service
provider.

QuanTtitaTive PCR (qPCR)

Quantification of amplified and nonamplified HeLLa, UHR, and skeletal muscle
mRNA for the study of amplification fidelity, and the fidelity of differential expres-
sion determination before and after Ribo-SPIA amplification, used detection by
SYBR green. PCR primer pairs were designed using Primer Express® software
(ABI, Foster City, CA). RNA samples were reverse-transcribed into cDNA, then
amplified using Ribo-SPIA™ reagents. Aliquots of the reaction mixtures, following
the second-strand cDNA synthesis step and after amplification, were diluted into TE
buffer, and transcripts present were quantified using the QuantiTect® SYBR® Green
PCR Kit (QIAGEN®), following manufacturer’s instructions. Real-time PCR reac-
tions were monitored using an MJ Opticon® (MJ Research, Waltham, MA). Data
on reproducibility of amplification, as determined by the quantification of GAPDH
cDNA (Figure 18.3), were obtained with TagMan primers and probes (ABI, Foster
City, CA), monitored on an ABI Prism™ 7700 Sequence Detector, as described by
the manufacturer.

AFFYMETRIX® GENECHIP ANALYSIS

Samples were labeled either with the Ovation™ Biotin kit or the Affymetrix® standard
protocol and hybridized to HG-U133A GeneChip® arrays (Affymetrix, Santa Clara,
CA). Hybridization, staining with streptavidin-phycoerythrin having antibody ampli-
fication, and scanning were carried out according to the manufacturer’s protocols, with
the following exceptions: (1) only 2.5 ug per chip of cDNA target prepared by the
Ovation Biotin system was hybridized to the GeneChip array, compared to 10 ug
cRNA; (2) target denaturation before hybridization was for 2 min at 99°C, and (3)
hybridization was carried out for 20 h. cRNA samples, labeled by the Affymetrix®
protocol, were prepared, hybridized, and scanned by Expression Analysis, following
their standard protocol. Array data was analyzed using MASS software (Affymetrix).

ANALYSIS OF OVATION™ AMINOALLYL KiT PRODUCT ON AGILENT
MICROARRAYS

Product aliquots from amplification of 20 ng UHR were reacted with either Cy3 or
Cy5 NHS esters (Amersham, Piscataway, NJ) following manufacturer’s instructions.
Extent of labeling was determined by UV-visible spectroscopy. Samples (0.75 ug)
were hybridized to Agilent Human 1A arrays as recommended by Agilent, except that
slides were washed after hybridization with 6x SSPE, 0.005% sarcosine, then with
0.06x SSPE. Arrays were scanned with a GenePix 4000B scanner (Axon Instruments,
Hayward, CA). Reproducibility was evaluated from log—log plots of unfiltered signal.
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ANALYsIS OF RiBo-SPIA Probpuct BY BIOANALYZER

Aliquots of product before or after fragmentation and labeling (about 100 ng in 1 ul
water) were analyzed using Agilent RNA 6000 Nano Chips and the RNA Nanosmear
program on the 2100 Bioanalyzer. This option gave the most consistent results for
the single-stranded cDNA product. Accordingly, the RNA 6000 Ladder (Ambion,
Austin, TX) was used as internal standard.

DETERMINATION OF BIOTIN INCORPORATION BY GEL SHIFT ANALYSIS

Two sample aliquots were prepared, each containing about 50 ng of fragmented,
labeled cDNA in 3 ul of TE. Streptavidin solution (3 ul of 2.5 mg/ml Sigma
streptavidin (Cat # S4762 in water) was added to one and allowed to incubate for
at least two minutes. Glycerol-bromophenol blue loading dye (3 ul) was added to
each aliquot, and solutions were loaded on a 4 to 20% TBE PAGE gel (Novex pre-
cast, Invitrogen, Carlsbad, CA) with 1x TBE running buffer. The gels were stained
with SYBR Green II RNA gel stain (Molecular Probes, Eugene, OR) and imaged,
following manufacturer’s instructions.
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BACKGROUND AND INTRODUCTION

What drives the development of novel technological innovations in the biomedical
field? What is the catalyst that makes researchers notice the lack of some ability or
capacity? What is the fundamental element that fosters the inventive spirit? For
example, the expression microarray answered a pressing need; observing expression
of mRNA was difficult and time-consuming and was low density. Researchers
wanted to know expression levels over the entire transcriptome for several different
biological phenotypes but who first asked this question? Is the quest for new block-
buster drugs responsible for this tidal wave of biological data, or are we as scientists
simply asking increasingly detailed questions that require much broader views of
the cell?

We are enmeshed in the process of data accumulation precisely because we have
adopted high-throughput measurement technologies. What was luxury has become
essential. We routinely design experiments that measure miniscule amounts of biological
molecules, sometimes obtained from a mere handful of cells that were laser-
captured, and often measured at the very limit of detection. We often find ourselves
tipping the scales away from thoughtful and elegant experimental design toward
rather blunt methods of data accrual and high-throughput analysis because our
hypothesis is open ended. How do we turn all of this biological data into insight
and foster inspiration and discovery? How do we leverage new technology and
become truly translational?

First and foremost, we should emphasize that disease has been, and likely will
continue to be, the single major impetus behind most of the biological advances in
the 21st century. Although research into environment, ecology, population biology,
and other high-level aspects of biology will continue to provide us with a view into
the natural world at a macroscopic level, much of the funded research from the
National Institutes of Health and other government agencies continues to use human
disease as the biological paradigm. Pharmaceutical companies have invested enormous
resources into finding the next blockbuster drug for the most prevalent and dangerous
human diseases. The growth of systems biology has certainly aided this search, via
the development of novel algorithms and data representations that allow difficult or
intractable biological experiments to be conducted in silico (i.e., PhysioLab from
Entelos, www.entelos.com). It is the engineering advances in miniaturization,
however, that have played a pivotal role in the advancement of genetic research.
Much of our current understanding of oncogenesis was made possible using the
high-density expression microarray. As new technologies utilize microminiaturization
and high-density molecular probes, they will continue to ensure that glimpses into
the complex molecular interrelationships within the cell will prove fruitful at a very
practical level. Disease is a dynamic and often host-specific biological state, and
will likely guarantee that personalized medicine is the next great medical development.
Microarrays and other high-density/high-throughput devices will play an increasing
role in helping to convert today’s generic treatment regimes into more personalized
methods that accommodate individual genetic factors. This will help reduce the risk
of off-target effects, increase the chance of killing unwanted cells, and provide a
more effective combination of drugs that work synergistically.
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Microarray technology, miniaturization of fluidics pumps, high-intensity quan-
tum dots, novel fluorophores, and new detection technologies have been driven by
a need to measure cellular functions at many levels or dimensions. Researchers have
found that measuring a cell really means measuring a dead cell frozen in time. That
cell represents a phenotype of the cell at a particular point in its life. This has some
drawbacks including measuring the effects of killing the cell, and measuring mole-
cules that supposedly represent the cell immediately before its death; molecules are
dynamic, always changing, shifting, denaturing. Measuring a living cell means
watching a cell accommodate perturbations. Unfortunately, measurements taken
within living cells are often prone to nonspecific responses that result from introduction
of molecular probes that are abiotic or even toxic, illustrating a biological corollary
of Heisenberg’s Uncertainty Principle — one can thoroughly visualize a cell, but
what you see may not represent the cell in its native state. Many of these problems
can be accommodated through proper experimental design. Let us refer to a case
where a researcher wants to measure a cell by extracting its DNA, RNA, and proteins.
In this case, each molecular species is a dimension, and here each dimension can
be thought of as an “-ome” (Figure 19.1). Biologists have always had the desire to
look at more than one dimension of the cell at a time to determine whether each
aspect correlates well with other aspects; whether the gene sequence causes a direct
and predictable mRNA quantity; whether mRNA causes a predicted quantity of a
single species of protein, whether proteins are quantitatively modified, etc. As we
are discovering, the cell is much more complex than we imagined. These different
biological molecules represent the historic traces of cellular process. The traces are
often the remnants of complex molecular interactions that in essence drive an
energetically unfavorable process within the cell’s life. The traces also record the
cell’s attempt to return to an equilibrium state after perturbation. The scientist
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FIGURE 19.1 Biological life can be described in terms of complexity. At the genome level,
a single molecule of DNA (error rate: 10'%) defines the code necessary for life. RNA, a more
dynamic copy of DNA, adds complexity, functionality, and error (error rate: 10 to 1075).
Proteins (error rate: 10~#) are even more functional and dynamic than RNA and have an even
higher error rate, but the process of translation absorbs mistakes through many inherent
accommodations. As complexity grows, so does the amount of information contained within
the molecular profile. Protein—protein networks combine to drive signaling, metabolic path-
ways, and functional specialization in cells. Tissues are combinations of specialized cells,
and organs are complex connections of specialized tissues. Organisms are functional groups
of optimized organs working for mutual survival, and populations are groups of individual
organisms interacting and often modifying the local environment and other organisms to form
functional groups.
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measures the endpoint of a cell, a state that cannot return to a normal equilibrium
because of the interference of a drug, or because of disease (cancer being a prime
example). Often, we wish to understand the behavior of a cell in response to an
environmental insult, but for years we were unable to visualize more than a few
molecular interactions at one time, and these were often transitory and not fully
captured by our technology. Researchers can stop the process of transcription
(actinomycin D or edeine) or translation (clotrimazole, cyclohexamide) and study
cellular responses, but these drugs often have nonspecific or epistatic effects that
may confuse the transcriptional picture. The advent of the microarray, attributable
to many labs simultaneously in the 1980s (which is itself an interesting story), has
led to an enormous leap forward in detecting the presence of an entire “-ome” in a
homogenous population of eukaryotic cells. This was followed closely by another
“-ome”; the entire S. cerevisiae genome was the first fully sequenced eukaryote and
now another biomolecule was thoroughly known, if not completely understood. We
then had the ability to measure two “-omes” completely and with reasonably high
accuracy, resulting in discoveries that could only have been made in the context of
the genome and transcriptome. Because the knowledge gained from observations of
only two biomolecules has been so synergistic, the push is on to develop high-resolution,
high-density microarrays and microdetection technologies that measure genomic
polymorphisms (variome), protein abundance (proteome), protein interactions
(interactome), modified molecules (e.g., methylation arrays, CpG islands, glycosylation
and other posttranslational modification of proteins), and even siRNA and drug
interaction arrays. The gain in insight as we added more observations has been much
more than additive, and we fully expect that continuing this trend will increase our
insight into complex causal relationships even more. Early prototype protein
abundance and siRNA arrays have led to rapid progress in the field of systems and
integrative biology, where classification and prediction algorithms can now fully
accommodate interactions between thousands of biological molecules. These
methods are far from perfect, but to simply compare the state of knowledge now
with where we were 5 years ago gives us an understanding of the tremendous value
of systems biology and high-throughput screening. As biological databases grow,
the benefits reaped are exponentially greater than the investment, and we are now
in an ideal position to leverage public data as we search for the next blockbuster drug.

FOSTERING BIOLOGICAL KNOWLEDGE:
CROSS-DISCIPLINE DATA

The development of high-density, high-resolution microarrays and microfluidics
devices has given us a wealth of data but has simultaneously created a need for data
storage, data representations, and integration. We most often see data stored in native
formats (see www.ncbi.nlm.nih.gov/geo/ as an example of storing expression, CGH
and SNP arrays). This is the most intuitive method for posting and retrieving data
and NCBI has done a good job in providing the necessary infrastructure. However,
we need to consider new data representations, a transformation of our current
observational data into a new format that is both unified and consistent, yet fully
represents the information contained within each of the “-omes” that we measure.
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The cancer bioinformatics grid (caBIG, http://cabig.nci.nih.gov) at the National
Cancer Institute is working diligently to create new biological data representations,
to create databases that allow sharing and interaction from one class of biological
observations to another, and to allow users to integrate their own software with the
highly open and utilitarian software being developed by caBIG. Other efforts exist,
and many will flourish, but time will filter out those not destined to become a
universal standard.

UNIFYING THE BIOLOGICAL (DATA) WORLD

Biological data centers are collections of biological data sets. Some of the most
widely used are those that represent a genome (Genebank), polymorphisms (dbSNP),
protein structure and function (Swiss-Prot, UniProt, TrTEMBL, BIND, PDB), synthetic
lethal (gene interaction) data, siRNA libraries (Dharmacon, Ambion, Qiagen, and
see www.proteinlounge.com), and many more. Each of these data centers is a
repository for native formats of a particular measurement, whether DNA sequence,
mRNA abundance, protein mass spectrometry data, protein abundance, etc. Each of
these elements is measured as fluorescence level, binary presence/absence, mass
spectrometry data, even fluorescence images or tissue microarrays. With this much
variation across data types, it is difficult to assign a new numeric scale that fully
represents the range of data, or the implications and subtleties that are inherent in
each measurement. Quantized or Boolean data (binomial, trinomial, or other discrete
representation) can describe several conditions: state change, scalar range, affectation
status, cell growth, drug response, etc., and may prove to be the least loss-prone and
most cross-platform representation available. It would be highly useful for data
integration and analysis, and it is an appropriate representation for manipulations in
Boolean space, feature selection and classification methods, principal components,
naive Bayes, maximum likelihood estimators, etc. Thus, as long as the methods for
converting data into a discrete range of values, representing as much of the data’s
original dynamic range as possible are applied, the inherent problem of losing
precision is overcome by the flexibility of combining multiple data types. The
combination of a federated system of biomedical databases, a standards-driven
metadata server, and remote databases throughout the physical world logically
connected, coupled with intelligent data transformation will lead us eventually to
the integration and application of multidisciplinary biological data.

THE LEGACY OF EXPRESSION ARRAYS

Expression arrays have provided much useful information about the transcriptional
state of a cell. This single bit of information about mRNA abundance continues
to add to our understanding of cellular response to perturbations, disease progression,
gene regulatory networks, and metabolic pathways. It has had a direct impact on
prediction of tumor development, disease susceptibility and recurrence, drug
response, and other medical consequences of gene expression. Today, we are using
expression data to identify the best anticancer drugs for late-stage cancer patients,
and to predict whether a tumor may become metastatic (see www.agendia.com
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for their X-Print technology). However, to be even more comprehensive, we could
expand our knowledge of the disease by using such resources as arrayCGH, protein
abundance arrays, tissue microarrays, and SNP arrays. If we knew that a region
of chromosome is amplified using arrayCGH, we might also suspect some form
of cancer development. We can validate that genes implicated in cancer progression
are expressed or mutated through expression and SNP arrays. We can say with a
little more certainty that the chromosome amplification event was important in the
transformation from healthy to diseased state. Using these array-based technologies
and highly parallel informatics methods, we can now look at how tumors respond
to drugs and drug combinations (see www.combinatorix.com for examples) in the
context of the patients’ genome, and we can start to make a direct impact on
patients’ lives.

All of the aforementioned technologies are considered high density and most
are fairly high precision. As we celebrate the 18" birthday of the first commercial
microarray and the 16" anniversary of the first microarray publication, we are
seeing an increase in the amount and type of data that is required to identify
complex disease phenotypes. Many of the early disease discoveries had strong
genetic components — one gene, one phenotype. New research into complex
multigenic diseases like Alzheimer’s clearly shows that quite often a large number
of genes interact with varying degrees of synergy to eventually contribute to
disease susceptibility and/or progression. Thus, as our technology improves, our
ability to successfully tackle highly complex and seemingly intractable disease
improves. Additionally, the ongoing miniaturization of pumps, valves, heaters, and
mixing chambers has brought sample preparation to a new level of simplicity.
These microfluidics chips can process raw tissues acquired onsite and be directly
plugged into any observational technology such as an expression, SNP, or protein
microarray without the need of sophisticated laboratory environments. These auto-
mated systems are being developed for use in defense applications, where rapid
identification of unknown biological compounds is important but clinical applica-
tions where speed and precision are important are also being targeted. Sample
preparation was one of the biggest sources of variation for expression arrays;
automation and miniaturization of tissue extraction systems now has the potential
for reducing that variability to a minimal level, and moves the preparation away
from the laboratory to almost anywhere on the Earth.

SYSTEMS BIOLOGY — DRIVING DRUG
DEVELOPMENT THROUGH DATA INTEGRATION

Systems biology is driving the integration of many types of cellular observations
into one mathematically defined model with the eventual goal of modeling the entire
cell in silico. The goal of systems biology is to transform observations that
range from transcript number, protein structure and abundance, drug efficacy,
genome sequence, etc. into a form where one can create an algorithm that is
sufficiently trained to accurately simulate cellular molecular profiles. It seeks to
integrate the fundamental aspects of each type of data that makes that measurement
unique and important. For example, in some cases, DNA sequence is key to whether
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an individual will respond to a drug or not, in other cases that same DNA sequence
has no effect. Each measurement must be examined in the proper context, and that
is the supreme challenge for systems biology. If the aforementioned data is analyzed
individually, those results can be used to support or reject an alternate hypothesis
on a case-by-case basis, but systems biology has expanded the analysis paradigm
to a point where multidisciplinary, multivariate analyses can foster much more
complex hypotheses than univariate models. The trouble with multidata-type analysis
is the necessity of generating a specific, sophisticated hypothesis that accommodates
the corresponding limitations or usefulness of our data. There is always a limitation
to the depth and quality of metadata, and that limitation has been a significant
bottleneck for many years, regardless of the efforts of groups like MGED
(www.mged.org). However, the tremendous benefits and insight that should result
from examination of complex disease traits using molecular profiles should more
than offset the difficulty in mining the vast metadata repositories and establishing
an appropriate and all-encompassing hypothesis.

CONTROLS AND STANDARDS

As the proliferation of new technology continues, little effort has gone into developing
molecular standards for each of the measurement technologies. It is incumbent on
adopters to identify a resource where known and fixed quantities of biomolecules
are compiled. The metric system is well served by identifying standards for weight,
length, and temperature and storing or accurately describing those standards so
anyone anywhere can reproduce a metric measurement precisely. The National
Institute of Standards and Technology (http://www.cstl. nist. gov/biotech/workshops/
ERCC2003/, http://www.cstl.nist.gov/biotech/workshops/ERCC2004/, and www.fda.
gov/nctr/science/centers/toxicoinformatics/maqc/) in Gaithersburg, MD, hosts a
grass-roots effort that is aimed at creating a series of spike-in controls for at least
100 well-characterized clones for expression arrays. The FDA is clearly interested
in establishing a standards-based approach to microarray analysis because so many
new and upcoming clinical devices rely on expression profiling. If one creates a
series of spike-in experiments using known targets at three different concentrations
(at least), one can calibrate any expression experiment in a simple manner, and
obtain a precise measurement of the actual copy number by referencing fluorescence
value of the spike-in experiments. This essentially means that the expression
platform with the highest precision wins the game — accuracy would no longer
be an issue, only repeatability. In this respect, at least in expression arrays, a
manufacturer has already made reproducibility a high priority and has been making
the highest-precision arrays for a number of years. Any detection technology that
measures molecule abundance can and should be calibrated with artificial mixtures
of biomolecules. Even self-calibration can be useful — Shyamsundar et al. [1]
used genomic DNA as a way to accommodate differences in fluorescence in expres-
sion arrays. Genomic DNA should be present at a known concentration per gene,
while the number of transcripts fluctuates. This ratio is not as precise a measure as
a true mRNA spike-in, but clearly emphasizes the point that some internal or external
control is needed to ensure precision translates into accuracy.
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BIOMARKERS AND THE HISTORY OF GENETICS

For years, scientists have been investigating processes such as heritability, genetic
linkage, patterns of linkage disequilibrium, and genetic instability in order to better
understand complex heritable traits. Much of the early work focused on single-locus,
single-allele human disease genes, as well as diseases of commercially important
agricultural species. Phenotypes are marked by either discrete qualitative traits,
similar to those identified by Gregor Mendel in the pea plant, or continuous quan-
titative traits, such as height or weight. In the fields of commercial agriculture, animal
husbandry, host—pathogen interaction, and disease resistance, we find that many of
the simple one-trait, one-gene models have been thoroughly studied, leaving only
the complex multilocus models. Traits with many genes contributing to a single
complex phenotype are taxing the resources of traditional geneticists and have led
to the progression from basic genetics experiments (like the three-point cross) to
whole-genome haplotype mapping.

Early genetic studies would analyze polymorphic markers that spanned the
genome. These markers might have included variable nucleotide tandem-repeats
(VNTRs or minisatellites, 15 to 100 bp), microsatellites or STRs (dinucleotide
repeats or short tandem repeats), or RFLP (restriction fragment-length polymor-
phisms). These markers were often analyzed using fluorescent or radioactive gels
and blots requiring large investments of time to analyze the combinatorial patterns
of genetic inheritance within a family. Association studies required far too many
samples and too much resolution to fulfill the promise of a true case/control study,
so most early analyses examined pedigreed families with well-characterized histories
(i.e., the CEPH family via Foundation Jean Dausset, www.cephb.fr/, or the Coriell
Institute for Medical Research, locus.umdnj.edu/nigms/ceph/ceph.html). Many
familial diseases have single-gene mutations, and most have been identified quite
early in the history of human genetics. With the completion of the human and mouse
genome, great advances in understanding gene and gene functions have propelled
disease study forward. Unfortunately, many dangerous and poorly understood
diseases are multigenic in nature, and some are mixtures of genetically defined
disease susceptibility, environment, and health, and immunologically enhanced disease
onset. The genetic load for these diseases ranges from 70% to 80% on the high end
to a low 20%; enough to warrant research into genetic risk factors. Even risk factors
themselves are incredibly hard to identify. Although Alzheimer’s disease has been
studied for years, only now are we accumulating enough data to clarify the distinction
between the causative agents of the disease and the well-known risk factors that
interact so closely with environment, such as APOE, beta amyloid production,
cholesterol synthesis, and others.

These new diseases and disease paradigms require much more precision and
depth than is possible using microsatellite markers. Although highly informative,
microsatellites are too far apart to cover the resolution necessary for high-density
genetic mapping. SNPs (single nucleotide polymorphisms) are abundant (11 million
SNPs in humans with minor allele frequencies above 1%). These low-information,
high-density markers that have been well-characterized are due in large part to the
success of the human genome project. The principal benefit of using SNPs for
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mapping genetic diversity is the abundance. Out of 3.2 billion nucleotides, roughly
one SNP/300 bases is available as a potential marker. This density is adequate to
identify relatively small regions of the genome in association studies, and resequenc-
ing costs are dropping to less than a penny per genotype. Thus, as genetic studies
continue and the dreams of personalized medicine continue to drive our research,
we find that technology has supplied a number of highly sensitive, precise and
economical devices that allow us to look at the linkage between phenotype and gene
in almost any organism we choose, at high density in a short amount of time. It will
be shown that data availability is not always the end; in fact a great deal of super-
computing, algorithm development and novel combinatorics may be required to
make sense of our growing genetic databases.

SNP DETECTION

Single nucleotide polymorphisms, or SNPs, are DNA sequence variations that
occur when a single nucleotide (A, T, C, or G) in the genome is altered relative
to an allele that occurs most often in a particular population. For a variation to be
considered a SNP, it must occur in at least 1% of the population, but populations
are defined based on the scope of the experimenter. Often, SNPs are defined within
a certain tiny population, such as a race or a geographically isolated group, and
may not be considered SNPs in the larger world population. SNPs, which make
up about 90% of all human genetic variation, occur every 100 to 300 bases along
the 3-billion-base human genome. Two of every three SNPs involve the replace-
ment of cytosine (C) with thymine (T). SNPs can occur in both coding (exonic)
and noncoding (intronic) regions of the genome and may be present in transcription
factor binding sites, promoters, enhancers, splice junctions, 3’ UTR sequences, or
other subtle functional locations. Many SNPs have no effect on protein structure,
transcription, or gene replication and are simply markers that cosegregate with a
functional polymorphism. The most widely studied SNPs are those that could
predispose people to disease or influence their metabolic response to a drug.
Several groups have worked to identify novel SNPs, and ultimately create maps
of the human genome. Among these groups were the U.S. Human Genome Project
(HGP) and a large group of pharmaceutical companies called the SNP Consortium
(TSC) (http://snp.cshl.org and www.ncbi.nlm.nih.gov/SNP/). The TSC used a pool
of 24 individuals’ DNA across several racial groups who were incontrovertibly
identifiable in order to identify the variation within and across subpopulations of
human beings. The likelihood of duplication among the groups was quite small
because of the estimated 3 million potential SNPs that could be identified. The
international HapMap project (www.hapmap.org) continues to elicit data from and
provide data to the international community from its groups of Japanese, Chinese,
European-American, and African populations. The HapMap project seeks to estab-
lish the most common haplotypes that exist in populations worldwide. Haplotypes
are those patterns of SNPs that are commonly inherited together. Haplotypes add
depth to the normally quite sparse amount of information contained in a single
SNP, and will allow researchers to spend less money on sequencing each and every
SNP and concentrate instead on Tag SNPs — those polymorphisms that are
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dominant and unique to particular combinations of haplotypes. As data from more
individuals continues to grow, our genetic databases grow in size and utility.
NCBI’s dbSNP database is now (build 126) over 10 million unique human SNPs
and continues to grow.

Although SNPs are much less informative on an individual basis than microsat-
ellites, the fact that 10 million validated SNPs exist throughout the human genome
means that on average a useful validated SNP exists every 300 bases in the human
genome, and likely there will be much more coverage as remaining SNPs are
identified and annotated. Although some regions of the genome are SNP rich and
others are very sparse, the sheer coverage allows scientists to design experiments
that can identify and map small regions of the chromosome that show linkage
disequilibrium. The field of pharmacogenomics specializes in those SNPs that are
associated with an effect drug metabolism. The cytochrome P450 family of genes
was an early target because several well-described P450 SNPs were associated with
differential drug metabolism. Pharmaceutical companies could use this information
to design clinical trials and eliminate physiological variation and to foster the
development of personalized medicine.

SNPs are not ordinarily associated directly with disease, but they can help
determine the likelihood that someone will develop a particular disease or may suffer
more than usual from the deleterious effects of a disease. One of the genes associated
with Alzheimer’s, apolipoprotein E or ApoE, is a good example of how SNPs affect
disease development. This gene contains two SNPs that result in three possible alleles
for this gene: E2, E3, and E4. Each allele differs by one DNA base, and the protein
product of each gene differs by one amino acid. Each individual inherits one maternal
and one paternal copy of ApoE. Research has shown that an individual who inherits
at least one E4 allele will have a greater chance of getting Alzheimer’s during his
or her lifetime. Inheriting the E2 allele, on the other hand, is strongly associated
with a positive outcome, or a small likelihood of Alzheimer’s.

SNPs are not absolute indicators for disease development; rather they show
linkage between a marker and a phenotype. Someone who has inherited two E4 alleles
may never develop Alzheimer’s, but another who has inherited two E2 alleles may.
ApoE is one gene that has been linked to Alzheimer’s, but, as with many diseases,
AD is polygenic. Many cis- and trans-acting effects from a broad panel of several
genes contribute differentially to the disease. The polygenic nature of many of our
most dangerous disorders is what makes genetics so complicated. The problem, until
recently, was how to detect a large number of SNPs in a sizable case-control or
pedigree-based experiment. Detection of SNPs was often done by direct sequencing
of the individual regions of interest, or by PCR amplification. The need for measuring
thousands or even millions of genotypes at a single time from many individuals has
led to the development of SNP microarrays and other high-density SNP detection
methods. In this chapter, we will investigate those companies and research organi-
zations that have developed and/or are marketing SNP detection technologies, and
what each platform offers in terms of flexibility, cost, density, and accuracy.
Because of the nature of the technology, we will list some similar technologies, such
as the protein array, simply because the detection technology in many cases is similar
to SNP detection.
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SOME DETECTION TECHNOLOGIES OF INTEREST

Several companies have now or are in the process of developing new technologies
of interest to biologists and drug researchers. As such they should be addressed in
a chapter about biological detection technologies. We begin this section by intro-
ducing a few companies that have contributed intellectual property (patents or
concepts), but have not contributed to the technological or engineering development
of a device. In the early years of genomics and transcriptional profiling, some
companies pursued a goal of protecting some sweeping intellectual property that
covered fairly generic ideas. Two such companies, Xenometrix (subsumed by
Discovery Partners International, www.xeno.com) and Oxford Gene Technology
(OGT, founded by Edwin Southern in 1995, www.ogt.co.uk) are worthy of mention
because their business plan was based on licensing technology. OGT licensed the
general “technology” or “concept” of expression microarrays [2,3], where spotted
features on a slide would report the mRNA content of a cell. Xenometrix [4,5] had
obtained a license for the general concept of “gene expression profiling,” where
eukaryotic cells are exposed to a pharmacological agent and the resulting expression
patterns are analyzed for changes caused by the treatment effect. These companies
are an interesting study in the history of microarray commercialization because they
cleverly obtained broad and highly controversial patents on basic biological
processes and research techniques, and have (or had, because Xenometrix is no
longer a recognizable entity) no obvious external liabilities or development overhead.
Questions arise on whether these global patents should have been awarded at all, as
many believe they drive up the cost of basic research and drive down the incentive
to improve existing technology. As patent offices have become more technologically
savvy and resistant to scientific jargon, it is (gratifyingly) more difficult to obtain
these sorts of basic methodology patents. Litigiousness aside, most companies are
simply not finding it fruitful in the long run to remain in business only to sue
investigators who are in the business to discover knowledge. It remains to be seen
whether one of the last and very public business plans devoted to litigation (SCO,
Santa Cruz Operation) can successfully sue all users of LINUX; the consequences
of that battle may permeate the biotechnology field.

Research into disease development drives much of the research in molecular
detection technology. One example is the study of aberrant methylation patterns that are
common in all major human cancers. CpG islands are genomic elements that
comprise about 2% of the human genome (or approximately 30,000 islands) and
about half of these are found within the promoter region of genes. Normally the
cytosines in CpG dinucleotides are unmethylated, but cytosines of CpG dinucleotides
outside of CpG islands are methylated at the C5 position, a reaction catalyzed by
DNA methyltransferase (DNMT). These mutations are frequently observed in the
promoter and exon-1 regions of genes. CpG island hypermethylation can cause
chromatin structures in the promoter to be altered, preventing normal interaction
with the transcriptional machinery [6,7]. If this occurs in genes critical to growth
inhibition (tumor suppressors), the resulting silencing of transcription could promote
tumor progression and in fact has been seen in most solid tumors studied to date
[8—11]. In addition to classic genetic mutations, promoter CpG island hypermethylation
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has been shown to be a fairly typical mechanism for transcriptional inactivation of
classic tumor suppressor genes [6,8] as well as genes important for cell cycle
regulation [6,8], and DNA mismatch repair [12].

The Human Epigenome Project (http://www.epigenome.org) aims to collect and
partition genomewide DNA methylation patterns of all human genes in most major
tissues, similar in many fundamental respects to the GeneAtlas and SymAtlas from the
Genomics Institute of the Novartis Research Foundation (http://expression.gnf.org
and http://symatlas.gnf.org). Many medical research centers specialize in identifying
methylation patterns as part of their larger effort to characterize the molecular
profiles that distinguish cancer types (http://www.mdanderson.org/departments/
methylation/). Several human CpG island arrays are available from small research
houses but an important advance is the availability of MSOs, or methylation-specific
oligos [13]. DMH (differential methylation hybridization) is run on tumor samples
vs. normal tissues in order to distinguish potentially silenced (often tumor-
suppressor) genes due to hypermethylation and is a unique technology that looks
at biomolecular modifications that commonly lead to oncogenesis (Figure 19.2A,
Figure 19.2B) [14].

NONSNP TECHNOLOGY: THE PROTEIN CHIP,
MICROFLUIDICS, AND ASSORTED ENGINEERING
MARVELS

Another rapidly developing technology is the protein microarray. Several manufac-
turers are scrambling to get a robust and inexpensive quantitative protein array to
market in order to measure protein abundance. Many approaches have been
attempted, because a protein abundance array is difficult and expensive to create.
Several examples include protein—protein interaction, where a purified protein or
hapten is immobilized on the surface of an array and proteins and protein complexes
are allowed to hybridize to the haptens. Proteins are cross-linked to freeze their
interaction state onto the array, and all other proteins are washed off. Mass-
spectrometry is used to identify the proteins that bind. Antibodies are also used to
bind specific proteins, and the relative abundance of bound protein is measured by
fluorescence or other simple methods. Other approaches include HPLC/MS-MS to
filter complex mixtures of proteins by size, ionic strength, or molecular weight before
using MS to identify specific protein species. Further, as mentioned above with the
methylation array, scientists are examining the potential for measuring posttrans-
lational modifications using a technology such as the glycoarray. These arrays utilize
a neoglycolipid conjugation technology to create a multivalence surface that allows
sufficient and robust interactions to provide a strong signal-to-noise ratio.
Glycominds Ltd. (Lod, Israel, www.glycominds.com, Figure 19.2C) has devel-
oped several protocols for detecting carbohydrate moieties from a variety of sub-
strates, including intact cells [15]. The concept of a “glycomics profile” is becoming
widely accepted, as many debilitating diseases (such as Crohn’s disease) are char-
acterized by variant carbohydrate levels in the blood. Protein arrays face numerous
challenges; narrowing the field of protein detection down to a clinically relevant
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FIGURE 19.2 (A color version follows page 204) A: DMH (differential methylation
hybridization). B: DNA Methylation. C: Glycominds, Ltd. D: Biocept. E: Ciphergen. F:
High-Throughput Genomics. G: Protagen. H: Zyomyx. I: Jerini. J: Genoptics. K: HTS
Biosystems. L: Zeptosens. M: Aclara/Virologic. N: Protiveris. O: Advalytix. P: Calipertech.
Q: HandyLab. R: Gyros Systems. S: Xeotron. T: Sequenom. U: Illumina. V: Affymetrix. W:
Applied Biosystems. X: PerkinElmer. Y: Parallele. Z: Tebu-Bio. AA: Orchid. BB: Nanosphere.
CC: Lynx Therapeutics. DD: Nanogen. EE: CMS. FF: Combimatrix. GG: GeneOhm. HH:
Nanoplex. II: BioArray Solutions. JJ: Luminex. KK: PamGene. LL: Metrigenix. MM: Solexa.
NN: Graffinity. OO: Febit. PP: Genospectra. QQ: Epoch Biosciences. RR: Exiqon. SS:
Nimblegen. TT: Perlegen. UU: Arraylt. VV: Genomic Solutions. WW: Idaho Technology.
XX: Asper Biotech. YY: Agilent Technologies.
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FIGURE 19.2 (Continued)

subset of posttransitionally modified proteins means the developer can create an
assay that is extremely stringent and detects only glycosylated proteins.

Biocept (San Diego, CA, www.biocept.com, Figure 19.2D) has created a cell
enrichment and extraction concept that extends beyond their original technology,
primarily microarrays that utilized hydrogel pads (Figure 19.2D bottom). These
original hydrogels were semifluid hemispherical microdroplets, distinct from both
fluids and solid substrates. PEG (polyethylene glycol) was used as the polymer to
form the matrix, and each microdroplet of hydrogel spanning 300 microns by
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30 microns thick contained 10'° to 10! molecules of a single probe. Although very
promising during development because it allowed more fluid transfer across each
probe than normal surface-spotting technologies, Biocept now embraces MEMS
technology (MicroElectroMechanical Systems) in order to capture and analyze entire
cells. Specific antibodies for low-copy or unique protein are bound on an array
through which cells are concentrated, enhancing the capture of cells containing these
rare proteins. PreCEED is a product designed to enrich for fetal trophoblasts from
endocervical mucus, a clinically useful application to a technology that combines
cell acquisition and highly sensitive protein detection. The end analysis is a standard
FISH test but the sensitivity and accuracy is greatly enhanced through preselection
by the CEE (Cell Enrichment and Extraction) technology [16].

Ciphergen (Fremont, CA, www.ciphergen.com, Figure 19.2E) now has the Protein
Chip 4000 system (both Enterprise and Personal editions) for integrating the
ProteinChip arrays into a SELDI-TOF-MS system for identifying unknown proteins.
The ProteinChip Assay binds entire classes of biomolecules using highly specific
functional groups and active moieties to capture proteins from complex mixtures,
but relies on the power of mass spectrometry to identify individual proteins [17].
The mass spectrometer relies on the ability of the ProteinChip Assay to lower the
complexity of the input, increasing the specificity and resolution of its output.
Ciphergen has patented a system known as Surface-Enhanced Laser Desorption/
Ionization (SELDI), designed for the direct analysis of protein—protein interactions
and individual protein resolution. The ProteinChip System provides molecular
weight-based analytical information about the protein and peptide components of
biological samples, whether the sample of interest is a pure protein, a chromatog-
raphy fraction from a purification application, a bioprocessing sample, or a crude
clinical or biological sample. The ProteinChip reader is based on time-of-flight mass
spectrometry (TOF-MS). Typically, less than 10 ul of crude sample is necessary
and can be analyzed in 5 to 10 min. SELDI-TOF MS technology can be used for
real-time analysis of protein expression samples from cell culture systems. Both
tagged and untagged proteins can be selectively captured on an array providing
qualitative and quantitative data about individual and groups of proteins.

High Throughput Genomics (Tucson, AZ, www.htgenomics.com, Figure 19.2F)
has developed and marketed a system of 96-well microplate containing a 16-target
Universal Array in each well that can be customized to simultaneously measure
16 DNA, RNA, or protein targets. HTG also markets a Quantitative Nuclease
Protection Assay (QNPA) that simultaneously allows a measurement of gene expres-
sion as sets of genes, rather than one at a time. aNPA technology allows RNA to be
quantitatively measured from samples of fewer than 1,000 cells (0.001ng total RNA)
[18]. The assay can detect RNA at 10ng total mRNA without amplification and
protein at 1 pg/ml and can distinguish single nucleotide differences.

Protagen (Dortmund, Germany, www.protagen.de, Figure 19.2G) markets pro-
tein separation and identification technologies. Large-gel technology (LGT) enables
resolution of up to 10,000 proteins ranging in pH from 3 to 12 and a size range of
almost three orders of magnitude. Protein identification uses mass spectroscopy,
either MALDI (Matrix-Assisted Laser Disorption and Ionization) or ESI (Electrospray
Ionization). Currently Protagen owns a library containing a collection of clones of
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over 10,000 different human recombinant proteins. From this collection, Protagen
developed a biochip containing 2,500 different human recombinant proteins known
as the UNIchip®. This protein biochip has been successfully used to characterize
binding molecules like monoclonal antibodies for their binding specificity. Protagen
continues to use these technologies in-house for its continuing research into autoim-
mune diseases and cancer biomarker detection. The technology relies on total recom-
binant protein isolated from bacterial clones and affixed to a proprietary substrate in
most cases retaining the native three-dimensional structure and conformation.

Zyomyx (Hayward, CA, www.zyomyx.com, Figure 19.2H) creates protein-
profiling biochips. The Zyomyx system utilizes microfluidics and microimmunoas-
say technologies to miniaturize and increase the density of the necessary components
for protein detection. The Assay 1200 Workstation is a fully automated system that
applies the sample, hybridizes the sample to the biochip, and automatically performs
washes. Detection technology relies on standard biomolecule markers and common
wavelengths such that a standard microarray scanner such as the Axon GenePix
4000B can be used [19].

Jerini (Berlin, Germany, www.jerini.com, Figure 19.2, Jerini 20050©) is primarily
a drug company specializing in liver cirrhosis, angioedema, tissue burns, and macular
degeneration but is also a technology company created in 1994 to commercialize
the SPOT™ technology. Currently the company continues to create small custom
peptides designed to bind to active sites of proteins. The pepSTAT microarray is a
platform that immobilizes Jerini’s custom peptide molecules in a matrix such that
proper folding and protein—protein interactions can still occur in solution. Jerini has
created a 2000-protein biochip utilizing standard fluorescent tags and a proprietary
hybridization buffer that limits background and promotes protein—peptide interac-
tions that can be seen at a similar level seen in two-hybrid yeast systems. The
most significant advance made by Jerini is the noncontact attachment of biodetector
molecules on a low-background substrate that works for almost any biological molecule.
Of the three distinct proteomic systems available for purchase today (MS of single
or complex mixtures or proteins, abundance measurements using antibodies, and
protein—protein interaction using whole or partial protein fragments), it is likely that
protein—protein interaction chips will gain a strong foothold in high-density/
high-throughput proteomic analysis, and should prove extremely useful for systems
biologists. Companies that provide products that can accommodate these needs will
likely find themselves in an ideal market position.

Genoptics (Orsay, France, www.genoptics-spr.com, Figure 19.2]), a French
company that began operations in 2001, utilizes an optical approach similar to the
Biacore technology (www.biacore.com), where surface plasmon resonance reports
the interactions of biomolecules’ differential interference of the angle of polarized
light at the surface of a biochip on which a biomolecular interaction occurs. Two
instruments, the Interactor and the SPRiLLab, when combined with Genochips, report
the interaction between two biological molecules. When light of a certain wavelength
and polarization angle strikes gold, a resonance is set up in the electrons from the
metal, causing a large drop in reflected light. When protein—Ab or protein—protein
interactions occur near the surface of the biosensor (the gold-plated detector), a
quantitative change in the resonance angle occurs. Genoptics has leveraged that
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technology to measure a large number of protein interactions simultaneously on the
surface of a proprietary biochip. Sensors that detect the SPR scan the surface of the chip
where many protein interactions can occur, thus effectively generating a detection
system that can simultaneously screen thousands of protein—protein, protein—Ab, or
protein—peptide interactions.

HTS Biosystems (East Hartford, CT, www.htsbiosystems.com, Figure 19.2K)
FlexChip™ Kinetic Assay system essentially utilizes the Biacore (Surface Plasmon
Resonance) technology but adds a diffraction grating (grating-coupled SPR, or
GCSPR) for enhanced sensitivity and discrimination. The FlexChip has since been
acquired by Biacore AB, but the technology remains essentially as developed. HTS
continues to use this system for parallel kinetic analysis of hundreds to thousands
of binding events simultaneously. Genoptics utilizes fiber optics to channel the light
information to the detectors. HTS utilizes direct sensors and grating—coupling to
enhance detection of minute interactions while lowering the background. HTS also
produces the ChemiFlex microarray device and the PhaseFlex device that measures
fluorescence lifetimes.

Zeptosens, a Swiss/German company (Witterswil, Switzerland, www.zeptosens.com,
Figure 19.2L), produces the SensiChip™ and ZeptoMARK™ products [20,21]. They
utilize a method where a coherent light source is coupled into a thin (150 to 300 nm)
film of a highly refractive material (Ta,O; or TiO,) overlaying glass or polymer by a
diffractive grating that is etched in the film. This material forms a so-called waveguide
that tends to propagate the coherent light creating a strong evanescent field
perpendicular to the direction of light propagation. Essentially this light is much
more focused and intense than confocal illumination, and can thus selectively
illuminate fluorophores in a very confined area. This allows even weak binding events
to be monitored, and is sensitive and nondestructive enough to allow real-time kinetic
studies. The detection system is similar to surface plasmon resonance in that no
molecular tags are necessary, but the evanescence interference has the potential to
exceed the detection limits of SPR and confocal microscopy significantly. Subnanometer
and sub-kM interaction strengths are detectable with this system and repeatability is
only limited by the purity of the protein samples. Density per chip is relatively low
but has the potential to exceed several thousand samples per chip.

MICROFLUIDICS AND ALTERNATE SMALL-SCALE
DETECTION DEVICES

Microfluidics systems are becoming increasingly popular due to the fact that only
very small amounts of reagents are needed, application, hybridization and washing
steps are all possible simultaneously, and because computer-controlled nanopumps
and relays have precision comparable to full-scale peristaltic and pneumatic pumps.
Companies investing in this area include Aclara, Advalytix, Calipertech, HandyLab,
Protagen, and Xeotron.

Aclara/Virologic (Mountain View, CA, www.aclara.com, Figure 19.2M)
markets the eTag™ system where a system of tagged antibodies elucidates tags from
antibodies that coat proteins of interest [22,23]. The system provides a unique method
of covering those proteins that the researcher is interested in with tagged antibodies
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and releasing only specific tags from those antibodies that are proximal to activated
molecular scissors, extremely useful for cell-surface receptors, signaling proteins,
and ligands. The tags are identified and the researcher immediately knows the specific
tags that correspond to the antibodies of interest, and directly knows the proximity
of tagged proteins to one another. The system works on a microfluidics system where
microtiter plates containing hundreds of wells are used as individual bioreactors.
Aclara is using the system to pursue oncology-specific pathway discovery through
the discovery of new and complex protein—protein interactions.

Protiveris (Rockville, MD, www.protiveris.com, Figure 19.2N) is a company that
utilizes a unique physical cantilever approach to the problem of protein detection, a
true nanotechnology utilizing the exertion of force caused by complementation of two
biomolecules [24,25]. In 1996 at Oak Ridge National Laboratories scientists identified
label-free microcantilevers that physically react by creating force on a nanometer scale
in direct response to a target molecule. The system acts much like a bimetallic strip
that bends due to differential expansion between two metals. The cantilever is coated
on one side with a biomolecule such as an antibody, DNA or RNA molecule, or protein
that is expected to interact with another species of molecule. The cantilever will exert
force through distance when the opposite side of the system is exposed to a
complementary or binding partner to the first biomolecule. Exposing the cantilever to
interacting molecules is the job of an advanced microfluidics system, a system that
prevents complex mixtures from overwhelming the detector system.

Advalytix (Brunnthal, Germany, www.advalytix.de, Figure 19.20) is a German
company that uses a slightly different approach to microfluidics, specifically the use
of nanopumps that utilize surface acoustic waves (SAW) that are generated through the
application of radiofrequency electric pulses to the surface of biochips. Through
the appropriate use of biochemical reactions, labels and marker molecules, a large
variety of molecular interaction events can occur and be detected rapidly on the
surface of a small chip. Any type of biochemical reaction that uses standard markers
and labels can be performed using SAW technology to move reactants together into
the reaction vessel. One enormous problem with fluid dynamics at the micro- or
nanoscale is the differential flow of water and other liquids due to the much larger
effects of surface tension.

Calipertech (Hopkinton, MA, www.calipertech.com, Figure 19.2P) is a company
that has developed a system of microfluidics devices that utilize electro-osmosis: a
method whereby electrodes attached to reservoirs at each end of a channel create a
current that physically moves fluids of the appropriate type within a defined reservoir.
Calipertech offers a unique system whereby continuous biochemical experiments
can be performed by designing the flow sequence, rate, and volume. The technology
developed at Calipertech is applied to many different technological problems
including electrokinetic (charged) and pressure (mixed charged and uncharged)
driven flows, microenvironment temperature control, microfluidic flow cytometry,
and on-chip sample preconcentration to enhance sensitivity.

HandyLab (Ann Arbor, MI, www.handylab.com, Figure 19.2Q) relies on
thermopneumatic pumps to move nanoliter-sized plugs of fluid from compartment
to compartment on a small, siliconized chip in order to complete biochemical
reactions on a nanoscale. No special changes other than rescaling are necessary to
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convert full-scale reactions to nanoscale reactions. The chips are available in a
number of sizes, and reservoirs support a large number of configurations. These self-
contained microfluidic systems are capable of integrating and automating several
bioprocessing steps on a single chip. Primary benefits include high speed and
sensitivity in point-of-service devices requiring minimal skills to operate, and a high
specificity/low noise environment. Reproducibility derives primarily from a “hands-
off” approach to processing, ensuring that any biases in sample preparation are
known and accommodated internally.

Gyros Systems (Monmouth Junction, NJ, www.gyros.com, Figure 19.2R)
utilizes a CD-sized reaction chamber that creates motion force for its microfluidics
device via centrifugal force. This Amersham-owned company utilizes CD spindle
mechanisms to produce a balanced low-g inexpensive system of chambers and tubes
that use differential centripetal forces to move fluid through a designed series of
reservoirs and channels. Properly designed Gyros discs encompass entire biochemical
detection events and increase the efficiency and reduce variability by reducing human
interaction.

OTHER BIOMOLECULE DETECTION METHODS

Xeotron (acquired mid-2004 by Invitrogen, www.xeotron.com, Figure 19.2S) was
founded in 2001 by Xiaochuan Zhou and Xiaolin Gao in Houston, Texas, and has
combined microfluidics and digital photonics to create a unique microarray technology
that utilizes a system similar to TI’s DLP micromirror system (found in many home
large screen TVs and projectors). This process can create a biochip from customer
data in a matter of hours. Essentially this technology is in sifu parallel combinatorial
maskless synthesis of nucleotides in three-dimensional nanochambers [26].
XeoChips can be composed of nucleic acids or peptide sequences, greatly expanding
the utility for this technology, as Invitrogen’s acquisition has clearly shown.
Affymetrix holds that this level of flexibility tends to be niche-oriented but companies
that have been offering customization at low cost have reaped the benefits (e.g.,
Agilent’s custom expression arrays). The actual process uses computer generated
light patterns to control a projection device, which in turn projects light onto the
chip at each elongation cycle to create a specific oligonucleotide (or polypeptide),
avoiding the use of individual photomasks. The localized light energy generates
deprotection; only these deprotected sites couple with the incoming monomer. The
major difference in the XeoChip™ synthesis process is the use of a photogenerated
acid (PGA) rather than an acid in the deprotection step to control the parallel
synthesis. In a synthesis cycle, upon light activation, acid forms in seconds, removing
the DMT group. An incoming phosphoramidite nucleoside monomer is then coupled
to the growing oligonucleotide chain. The synthesis cycle is repeated for each
additional monomer until an array of thousands of oligonucleotides in a microfluidic
chip is formed [27]. Xeotron has synthesized a 150-mer DNA oligonucleotide using
the above process. XeoChip™ synthesis is not limited to DNA oligonucleotides.
RNA sequences, peptides, peptide analogs, biomolecular conjugates, and a variety
of organic molecules can be utilized and are highly flexible. Invitrogen has acquired
the technology and a portion of Xeotron’s staff.
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Other companies have oligosynthesis technology that can be used to generate
SNP chips, although the companies have not created a specific SNP product. Agilent
Technologies has a completely customizable 44K array comprised of 60-mers
generated by sequential addition of nucleotides through inkjet spotting [28]. Each
spot on each array is essentially custom, thus any manufacturing run could generate
a 44K SNP chip for the price of a custom expression array, given the appropriate
bioinformatics expertise (not endorsed by Agilent). Rather than focus on the highly
competitive and fragmented SNP market, Agilent has continued its track to provide
scientists highly precise measurement tools for expression, chromosomal copy
number, proteomics and metabolomics, microfluidics, and most laboratory development
of chromosomal instability with its oligo CGH arrays, ChIP-on-chip technologies
(chromatin immunoprecipitation), and unique high-throughput mass spec technologies
targeted at protein identification and metabolomics. Amersham (now part of GE)
has the CodeLink SNP chip, which detects a panel of 72 human P450 genes. This
technology used the same platform and scanning infrastructure as its expression
arrays, but was dropped due to lack of interest underscoring the highly dynamic and
competitive genomics market. Affymetrix has led the way in SNP arrays, producing
in rapid succession the 10K, 100K and soon the 500K human genome SNP chips.
Although the density of new SNP chips exceeds previous efforts by almost two
orders of magnitude, candidate gene screening and fine mapping still require that
almost all available SNPs are detected, almost guaranteeing that mass spectrometry
and sequencing will not be replaced by SNP arrays in the near future.

SNP DETECTION: MAJOR COMMERCIAL
TECHNOLOGIES

Several companies have risen to the top in SNP arrays. One important distinction
between expression array detection technology and SNP detection technology is the
relative lack of competition to license the detection methodology. The high-density
array has already been developed, and there are so many interesting and accurate
detection methodologies, that it is unlikely that any one company will stymie
development by imposing a sweeping and litigious licensing program simply to
make money based on patents. This becomes quite apparent as we examine the top
SNP detection technologies — arrays, mass spectrometry, fiber optics, and sequencing,
none of which have a substantial upper hand. Price per genotype and density will
likely determine the winner but it seems just as likely that there will still be uses
for each of the leading technologies.

Sequenom’s MassArray 7K and 20K (San Diego, CA, www.sequenom,
Figure 19.2T) focuses on both SNP genotyping and SNP discovery. The MassArray
system identifies individual SNPs in a multiplex reaction (up to 16 individuals per
reaction chamber) using MALDI-TOF to selectively measure the atomic fingerprint
of nucleotides in order to unambiguously determine the SNP sequence [29-35].
This system uses SNP probes supplied from Sequenom, so the system can measure
SNPs not only contained in dbSNP but also those the user has discovered. Sequence
patterns are produced by running four cleavage reactions compared to patterns of
known reference sequences; the variations between the two indicate sequence
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changes caused by SNPs. As little as 25 ng DNA per patient pool (83 pg/individual
patient) can be used, and sensitivity is on the order of allele frequencies as low as
3% (a SNP is defined as prevalence of at least 1%, see www.hapmap.org) and can
scan nearly 200,000 individuals per hour.

Further advancing the utility of nanobeads in SNP detection is Illumina (San
Diego, CA, www.illumina.com, Figure 19.2U). The BeadArray™ technology has
enabled [llumina to achieve high-throughput and high-density test sites and to format
arrays in a pattern arranged to match the wells of standard microtiter plates. [llumina
utilizes fiber-optic bundles to convey fluorescence information throughout a microchip,
delivering light to sensors precisely located for a unique application [36]. The Oligator
system synthesizes many different short segments of DNA to meet the requirements
of large-scale genomics applications. The miniaturization of the BeadArray provides
substantial information content per unit area than similar competing arrays. A wide
variety of conventional chemistries are available for attaching different molecules
such as DNA, RNA, proteins, and other chemicals to beads. By using beads, Illumina
is able to take advantage of these alternate chemistries to create a wide variety of
sensors, which are assembled into arrays. Additionally the fiber-optic bundles can
be manufactured in multiple shapes and sizes and organized in various arrangements
to optimize them for different applications. The high density of beads in each array
enables multiple copies of each individual bead type, measured simultaneously,
allowing comparison of each bead against its own population of identical beads,
statistically validating each bead’s data. Illumina has been researching human
populations to determine variations among races and geographically isolated populations.
Through this basic research [llumina continues to gather novel SNP data, and because
its technology is unique it offers detection of certain SNPs that other technologies
find intractable.

Affymetrix (Santa Clara, CA, www.affymetrix.com, Figure 19.2V) is winning the
overall volume race for SNP chips, and offers the SNP 10K and the SNP 100K arrays,
soon 500K arrays. These arrays utilize hybridization to perfect and mismatch probes
to identify major and minor alleles. Probes are created in order to detect a SNP
approximately every 210kb on the human genome for genome-scanning applications.

Applied Biosystems (Foster City, CA, www.appliedbiosystems.com, Figure 19.2W)
offers a 7900HT sequence detection system, a high-throughput real-time PCR system
that detects and quantifies nucleic acid sequences. qRT-PCR/TaqgMan® has long been
regarded as the gold standard for quantifying mRNA levels within a cell and ABI
has been an innovator in RT-PCR detection systems for years. ABI has been in
genotyping development for at least as long, and through many state-of-the-art
technologies including SNPPlex, genotyping can be performed at either high-density,
high-resolution or at low-density genome-scanning levels. Many laboratories have
sequencing systems utilizing ABI technology, and much of that hardware can be
reused with new reagents designed for genotyping rather than sequencing. ABI offers
over 50K SNPs per reaction set, and can be used for whole genome or fine mapping
applications, depending on the reaction set purchased. ABI’s SNPPlex genotyping
system uses OLA (oligonucleotide ligation assay) where ligation only occurs when
there is a perfect match between probe and SNP. Reporter probes bind to biotin and
utilize a so-called zipchute probe. Products are run on ABI sequencers where the
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mobility modifiers are used to control the rate of SNPs that pass past the laser
scanners. This system also uses multiple dyes to increase multiplexing.

SNP DETECTION DIVERSITY

SNPs can be detected in a sequence-specific or nonspecific way. Target capture, cleavage
or mobility shifts are based on the match or mismatch between allelic or single-stranded
DNA, or the conformation of the DNA duplex or heteroduplex in denaturing gels.
Specific detection is preferred over nonspecific detection simply because one is able to
ensure the actual genotype. Several methods are in wide use today.

Single nucleotide primer extension has been widely used to detect SNPs. It is
a method where an amplicon (target DNA) is amplified by PCR and used in a
separate reaction where primers with a known SNP sequence promote extension (or
not) from the potential polymorphism. The primer binds when the single nucleotide
that makes up the SNP matches perfectly, and does not bind when there is a
mismatch. Often when the SNP is an unknown sequence but the position is known,
four different primers can be used to verify the true sequence of the SNP. Extension
products are fluorescently labeled and detected using a variety of methods. The
amplification reaction is so robust that it can actually be performed on the surface
of microarrays (such as the CodeLink SNP chip, using the SurModics™ surface).
Amplification products are detected and compared to a spot where there should be
no signal (a mismatch primer) and the ratio of match to mismatch will indicate
the presence of a major allele, minor allele, or heterozygote.

Electronic detection is another popular method for detection of sequence-specific
DNA targets. These techniques take advantage of the fact that DNA differentially
conducts electrical current based on the sequence. Although these methods require
substantial knowledge about the target sequence, they can often detect SNPs in a
highly heterogeneous mixture. Some technologies utilize probes (CMS/Motorola
uses a ferrodoxin probe) and some detect the DNA directly with no intermediate.

Bead-based detection uses Dynal® beads to conjugate a probe and fluorescently
labeled dye to a small glass bead which then finds its complementary match (for example,
Luminex). Other methods use gold beads (Nanogen) conjugated to specific probes, which
can then be used in extremely heterogeneous mixtures, such as whole cells.

MPSS®, or massively parallel signature sequencing, developed at Lynx
Technologies [37], uses a large number of identifiable tags and fluorescent beads
coupled with FACS (fluorescently activated cell sorting) to quantitatively identify
all available mRNAs, but this technology also identifies SNPs because it is a
sequence-based technology.

Many methods use variations on those listed above; occasionally the technology
involves flow-through arrays that greatly decrease the detection time, and some rely
on existing technologies modified to a specific new purpose (Sequenom’s mass
spectrometer and ABI’s sequencers, for example).

PerkinElmer (Wellesley, MA, www.perkinelmer.com, Figure 19.2X) uses FP-
TDI (fluorescence polarization template directed dye terminator incorporation) to
perform SNO genotyping [38,39]. In single-base extension, the target region is
amplified by PCR followed by a single-base sequencing reaction using a primer that
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anneals one base short of the polymorphic site. Several detection methods can be
used: one can label the primer and apply the extension products to gel electrophoresis,
or the single-base extension product can be measured by MS. Fluorescence detection
of the terminal dideocynucleotide terminator can also be detected on a microarray,
such as the CodeLink SNP Chip, but in PerkinElmer’s case they chose to detect the
fluorescence polarization. The fluorescence polarization technique takes advantage
of the fact that small molecules labeled with a fluorophore spin rapidly and large
molecules labeled with a fluorophore spin slowly. When a polarizing light is used
to excite the fluorophores small molecules emit light in all directions while large
molecules emit light in a single plane, producing highly polarized fluorescence.
Several of the benefits include low cost because it does not require labeled primer.
Reagent costs are around 50 cents per SNP and FP reading instruments are typically
$30k. Single-base incorporations are simple to optimize, and FP does not require
high intensity and FP is not sensitive to differential incorporation of fluorophores.

Parallele (San Francisco, CA, www.parallelebio.com, Figure 19.2Y) supplies
an inverse PCR method for improving the Affymetrix system, and supplies a
Molecular Inversion probe detection system, using several different detection plat-
forms, although Affymetrix remains the largest single application [40]. Molecular
Inversion Probes are named to reflect the oligonucleotide central to the amplification,
and self-ligation reaction undergoes a unimolecular rearrangement from a retractable
unamplifiable molecule to one that can be amplified. Enzymes are used to fill in the
gaps in an allele-specific manner. The circularized probe can be separated from
cross-reacted or unreacted probes through exonuclease digestion. Additionally
Parallele offers TrueTags, a library of 21-mer tags for detection of genomic targets
from complex biological mixtures. These tags work for PCR, array hybridization,
bead-based detection and conjugation reactions.

Tebu-Bio (www.tebu-bio.com) has developed a similar method through a process
called Mutector (TrimGen Genetic Technology, Sparks, MD, www.trimgen. com,
Figure 19.27) that utilizes a primer extension reaction, specifically known as STA, or
Shift Termination Assay. A detection primer complementary to the target DNA (just
upstream of a potential SNP) is designed to hybridize near the SNP. If the SNP, or
target base, is the expected wild type nucleotide, the primer extension reaction will be
terminated at the target base position without incorporating any labeled nucleotides.
If any mutation is present at the target base, the primer extension will continue
incorporating labeled nucleotides, yielding a strong fluorescent or colorimetric
reaction. The Mutector technology has a sensitivity of 1 mutated molecule in 100.

Orchid CellMark (Princeton, NJ, www.orchidbiosciences.com, Figure 19.2AA)
also makes use of the enzymatic addition of a fluorophore that can be read by
Affymetrix’s GeneChip™ Scanner. This primer extension method is identical to
many of the above methods and differs only in the detection matrix, but Orchid has
worked diligently to remain part of the new clique of genomics technologies, in part
by contributing heavily to the TSC (The SNP Consortium, snp.cshl.org [41]).
Orchid also provides genomic testing in several forms: Orchid Identity Genomics, Orchid
Cellmark, Orchid GeneScreen, Orchid Diagnostics and Orchid GeneShield. Each of
these business units is built from the genomic detection methods developed in the
late 1990s at Orchid.
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Nanosphere’s (Northbrook, IL, www.nanosphere-inc.com, Figure 19.2BB)
Verigene platform uses nanoprobes that are bound to gold particles and bind
specifically to specific DNA or protein sequences [42]. This renders the system
capable of operating in dense and heterogenous cellular milieux and has spawned
several practical disease detection application as well as sensitive and precise
detection of unamplified DNA and RNA [43,44]. Nanosphere takes full advantage
of the specificity of antibodies with the detectability and robustness of gold
nanoparticles and the ease of amplification of biobarodes [45].

Lynx Therapeutics (Hayward, CA, www.lynxgen.com, Figure 19.2CC) uses a
unique massively parallel sequencing system (MPSS) to sequence every identifiable
cRNA or DNA on beads separated by FACS sorting [37]. The method is very complex
but highly reproducible and accurate. Megaclone™ transforms a sample containing
millions of DNA molecules into one made up of millions of microbeads, each of which
carries approximately 100,000 copies of one of the DNA molecules in the sample.
MPSS™ identifies the DNA sequence of the molecules on each bead in a parallel process.

SNP DETECTION: ELECTRONIC DETECTION

It is notable that many e-detection SNP kits are targeting the clinical market with
low-density disposable chips. Some SNPs are so prevalent and pharmacologically
relevant that insurance carriers will reimburse the cost for the test, to determine
correct drug dosages. For example, the P450 gene shows enormous variation within
the human population, and this particular gene effectively determines the rate of
metabolism of many drugs. Knowledge of the behavior and individual drug turnover
would greatly facilitate care-providers’ prescriptions and dosages, and could bring
the hope of personalized medicine much closer to reality.

Although robotic spotted arrayers are becoming increasingly popular and much
more cost-effective, some companies have taken advantage of the fact that DNA
behaves in a predictable manner in an electrical field in the presence of certain
chemicals or metals. Electronic biomolecular detection relies on the ability to
produce an electromagnetic field that provides a method for discriminating
biomolecules in an extremely heterogeneous mixture of biological detritus.

Nanogen’s (San Diego, CA, www.nanogen.com, Figure 19.2DD) technology
uses amplicons and biotinylated probes but makes use of differential resistance and
the partial charge inherent in DNA to move, concentrate, and detect single species
of DNA (SNPs). One added benefit to utilizing the charge of nucleic acids is the
speed at which samples can be moved and concentrated. Using charge to concentrate
DNA, a speed increase of 1000 times over passive hybridization techniques can be
routinely seen. Nanogen’s electronic addressing technology utilizes individually
addressable units on a microchip to anchor solutions containing nucleic acid probes
in-place. The technique involves placing charged molecules at specific sites on a
NanoChip® array. When a biotinylated sample solution is added to the array, the
negatively charged sample moves to the selected positively charged sites where the
sample is concentrated and bound to the streptavidin in the permeation layer.
Currently Nanogen offers a 2 mm? array containing 100 test sites of 80 um diameter
spaced 200 um apart. CMOS-prepared arrays may extend to 10,000 sites or more.
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The minimum sample volume is 60 ul and a maximum loading of 10° fragments
per site can be accurately detected. These arrays have been shown to detect SNPs,
STRs, insertions, deletions, and other mutation analyses. Of note is a new technology
from Nanogen and Becton, Dickinson and Company for Strand Displacement Ampli-
fication (SDA) for exponential detection of low levels of target. Relying on the
ability of the Nanogen system to concentrate DNA at sequence-specific sites,
amplification is specific, rapid and quantitative, suggesting point-of-service or field
work applications.

CMS (Clinical Microsensors, a division of Motorola Life Sciences, Pasadena, CA
previously, now acquired by Osmetech, PLC as of July 26, 2005 — www.osmetech.
plc.uk, Figure 19.2EE) utilized a similar technology where bioelectronic signal probes
(2-ribose Ferrocene with multiple redox potentials) hybridize to a capture probe that
targets a genomic amplicon, a segment of DNA where a unique nucleotide
polymorphism can be found. A completed hybridization completes a circuit detectable
by monitoring the first harmonic of signal produced by alternating current voltam-
metry. Motorola Life Sciences was developing a cost-effective and easy to use
eSensor™ Cytochrome P450 DNA Detection System that simultaneously detects
ten well-characterized mutations belonging to the 2D6, 2C9 and 2C19 genes of the
Cytochrome P450 superfamily, but Motorola has decided to deactivate the company
pending further investigation. Note that the current iteration of Motorola Life
Sciences no longer includes the fluorescence detection SNP chip (CodeLink) and
depending on the outcome of the board of directors at Motorola, all life sciences
may be suspended or divested completely.

Another unique approach for electronic biological molecule detection is
CombiMatrix’ (Mukilteo, WA, www.combimatrix.com, Figure 19.2FF) application
of electronic current for altering or enhancing chemical reactions through application of
microcurrents [46]. CombiMatrix’ core technology is the Lab-on-a-Chip integrated
circuit. Sensitivity is approximately 0.5 pM and a dynamic range of approximately
three orders of magnitude for nucleic acids, although this system is flexible enough
for smaller and larger molecules including proteins, protein complexes and even
entire cells. These integrated circuits contain arrays of microelectrodes that are
individually addressable using logic circuitry on the chip. The first generation of
these integrated circuits was designed and produced in 1996 under a controlled
process developed by CombiMatrix. Each microelectrode is uniquely addressed to
generate chemical reagents by means of an electrochemical reaction. These chemical
reagents facilitate the in situ synthesis of complex molecules such as DNA oligo-
nucleotides. These molecules are synthesized within a proprietary porous reaction layer
(PRL) that coats the chip. Once the chip is placed inside a small reaction chamber,
thousands of simultaneous reactions are initiated by logically addressing spots
on the chip. The chip synthesizes hundreds or thousands of different molecules
in parallel within the PRL above each electrode. Because a different product is
synthesized at each site, this technology eliminates the need to synthesize different
products in individual flasks by conventional methods. Conventional CMOS pro-
cesses are used to fabricate the semiconductor chips. The first-generation chips had a
density of 1,000 microelectrodes/cm?, the second-generation chips have a density of
18,000 microelectrodes/cm?, new internal designs exceed 500,000 microelectrodes/cm?
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using conventional CMOS manufacturing technologies. Laboratory-scale
experiments have achieved densities as high as 1.7 million electrodes per cm?.

GeneOhm Sciences (San Diego, CA, www.geneohm.com, Figure 19.2GG) uses
the flow of electric current through DNA to detect genetic mutations (single nucle-
otide polymorphisms, or SNPs). The system has high sensitivity and accuracy,
critical for SNP detection. GeneOhm was formed in 2001 with technology developed
throughout the previous decade by Professor Jacqueline Barton at CIT and merged
with Infectio Diagnostic of Quebec, Canada, in 2004. GeneOhm’s technology uses
electrochemistry for the detection and readout of genetic variations in DNA or RNA.
A known electrical current flows through DNA (or RNA) based on sequence com-
position. If a DNA sequence shows single or multiple mismatches in comparison to
a control sequence, the current is altered regardless of the sequence. GeneOhm is
targeting the point-of-care clinical market by distributing single-use disposable
detection devices and low-density arrays. The company is leveraging the benefit that
direct detection provides. Such a technology that uses the electrical properties of
DNA, not hybridization, to detect SNPs, is independent of the gene sequence and
could prove to be much more flexible and robust, especially in detection systems
that operate in the field under harsh conditions. The system will also provide the
ability to work with either RNA or DNA, simplifying sample preparation.

SNP DETECTION: BEAD-BASED

Electronic detection has provided an alternative detection method for biomolecules
in complex solutions, but new technologies have continued to develop, some brand
new, and some novel applications to older technologies. No longer will molecular
interactions occur on a flat substrate. Now, detection systems are taking advantage
of three-dimensional space and the access of probe and target, and the enormous
changes in fluid dynamics on the submicron scale. Companies are looking at grafting
detection molecules onto microbeads, be they magnetic, or coated with reporter
molecules that fluoresce, or to particles that have intrinsic identifiers. The largest
player in the evolution of bead-based detection systems has been Dynal (www.dynal.no)
Industries. In 1979, Professor John Ugelstad of Norway created polystyrene spheres
of uniform size. These beads were made paramagnetic (magnetic in a strong EM
field), and were subsequently induced to acquire very uniform and useful properties.
Paramagnetism allows resuspension when the magnetic fields are removed and has
become very useful in the isolation and separation of biological materials
(target-specific antibodies, nucleic acid probes, peptide probes, etc.). Dynal, in Oslo,
Norway, was formed in 1986 as a joint venture between Dyno Industries ASA and
A.L. Industries AS, combining knowledge from the chemical, pharmaceutical and
biotechnology fields. In July 2001, Dynal Biotech was acquired by the Swedish
equity firm Nordic Capital. Today, the supraparamagnetic particles supplied by Dynal
Biotech are known as Dynabeads® and the nonmagnetic beads called Dynospheres®,
both widely used in bead-based array detection systems.

It is interesting to note that beads are not the only nanoparticle used in
biomedical imaging. Nanoplex Technologies (Menlo Park, CA, www.nanoplextech.
com, Figure 19.2HH) provides nanoparticles that are cylinders coded with differential
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gold and silver bands, knows as Nanobarcodes®, as mentioned above [47]. These
cylindrical nanoparticles are encoded with submicron stripes used for creating unique
tags that can be used for tracking particles and other tiny biological particles.
Multiplexing has always relied on the number of distinguishable fluorescent tags in
order to increase sensitivity, throughput, and mixture complexity [48].

A combination electrical detection and bead-based detection system is represented
in the electronic detection system from BioArray Solutions (Piscataway, NJ,
www.bioarraysolutions.com, Figure 19.21I). They have developed a unique,
proprietary technology for the rapid and flexible analysis of DNA (LEAPS, Light-
controlled Electrokinetic Assembly of Particles near Surfaces), proteins and cells on
semiconductor chips. BioArray Solutions’ optically programmable bead array
technology enables a universal assay platform for clinical and research-based
biomolecule detection systems. BioArray Solutions combines semiconductor
physics, extensive bead chemistry (Dynal) and molecular biology to bring selectivity
and sensitivity to quantitative DNA, protein and cellular detection. BioArray
Solutions’ assay can be used for any homogeneous assay that monitors the binding
of one molecule to another using color-encoded beads.

As mentioned above, LynxGen is a company with a similar product line and
technology. Lynx Technologies uses Dynal microbeads with unique combitag
sequences hybridized to a cDNA library that has a unique and arbitrary sequence
bound to the beads. The combitag on each bead is created by MPSS (Massively
Parallel Signature Sequencing) invented by Sydney Brenner [37]. MPSS is based
on Megaclone, Lynx’s technology for cloning DNA molecules onto microbeads. It
measures expression or sequence (SNPs) by counting the number of individual
mRNA molecules or DNA sequences on a per-gene basis. MPSS does not measure
transcript abundance in an analog fashion, but uses a digital approach where tran-
scripts are counted using FACS (Fluorescence-Activated Cell Sorting). MPSS counts
more than 1 million transcripts per sample, providing quantitative expression or SNP
data at single-copy-per-cell sensitivity levels. Each target molecule is grafted onto
the surface of a 5um Dynal bead. An arbitrary but unique DNA combitag sequence
is attached to a fragment of target, and the tagged library is PCR amplified. The
resulting library is hybridized to beads, each of which is decorated with 100,000
identical oligonucleotide strands complementary to one of the combitags. After
hybridization, each of the beads displays copies one target molecule. It has been
shown (Stolovitsky, personal communication) that MPSS expression mirrors the
expression distribution of Affymetrix U133 A chips. SNP detection is highly precise,
and quantized with a very low noise threshold and high signal-to-noise ratio.

Luminex (Riverside, CA, www.luminexcorp.com, Figure 19.2]J) uses Dynal
beads in its proprietary detection system [49,50]. With Luminex’s proprietary XMAP
technology, molecular reactions take place on the surface of microspheres. For each
reaction in an xXMAP profile, thousands of molecules are attached to the surface of
internally color-coded microspheres. The assigned color code identifies the reaction
throughout the test. The magnitude of the biomolecular reaction is measured using
a second reporter molecule. The reporter molecule signals the extent of the reaction
by attaching to the molecules on the microspheres. Because the reporter’s signal is
also a color, there are two sources of color, the color code inside the microsphere
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and the reporter color on the surface of the microsphere. To perform a test, the color-
coded microspheres, reporter molecules, and sample are combined. This mixture is
then injected into an instrument that uses microfluidics to align the microspheres in
single file where lasers illuminate the colors inside and on the surface of each
microsphere. Next, optics captures the color signals. Finally, digital signal processing
translates the signals into real-time, quantitative data for each reaction. Twenty
thousand microspheres can be analyzed per second, which shortens the analysis time.

THE SNP CHIP: FLOW-THROUGH METHODS

Flow-through technologies are significantly different from microfluidics systems.
Typically surface hybridizations are inefficient due to the small volumes used for
microarrays. Small hybridization volumes help to keep the required sample quantity
to a reasonable level, but the drawback is high background, inefficient hybridizations,
and extended hybridization times, often exceeding 24 h. Flow-through techniques
allow a large volume of hybridization buffer wash over a probe yielding reduced
background, efficient hybridization and reduced hybridization times. Companies that
have developed flow-through solutions include PamGene, Metrigenix, and others.

PamGene (Hertogenbosch, Holland, www.pamgene.com, Figure 19.2KK) offers
a unique approach to microarrays. The company has perfected hollow nanotubes
that allow rapid back-and-forth passage of reagents across a bound probe, as opposed
to the limited amount of exposure most microarray spots receive from the hybrid-
ization mixture (containing labeled target). The nanotubes can bind protein, nucleic
acids, and small molecules so that any compound that can be labeled with a
detectable tag can be used in the PamGene system. Direct labeling of the target
takes approximately 2 h with most target molecules, RNA amplification using a
linear amplification system (TYRAS) takes approximately 3 to 4 h. Hybridization
takes 5 to 30 min (as opposed to 18 to 24 h for flat microarrays) due to the active
pulsing of sample through the porous membrane. Reproducibility measured with
CV% is of the order of 18% to 24%, depending on the complexity of the target
solution and the biomolecule being used.

Metrigenix (Baltimore, MD, www.metrigenix.com, Figure 19.2LL) utilizes a
patented flow-through chip technology (FTC) that serves as the technology base for
the MetriGenix microarray [51]. The FTC is a state-of-the-art three-dimensional
microarray technology platform that can be used to provide high-throughput,
high-content assays to measure gene expression or genetic polymorphisms. The
flexibility of the system is based on the detection biomolecules bound to the chip
surface, but the speed of hybridization exceeds standard surface hybridization techniques
by several orders of magnitude due to molecular availability. The applications to date
include colon cancer biomarker detection, as well as nonsmall cell lung cancer signatures.

SNP DETECTION: SEQUENCE-BASED

Several detection technologies fall into sequence-based detection where the samples
are actually shotgun sequenced in order to detect single nucleotide polymorphisms.
Also included in this section are some detection methods that utilize small-molecule
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arrays that allow the user to screen bioactive molecules against heterogeneous protein
mixtures.

Solexa (Essex, U.K., www.solexa.co.uk, Figure 19.2MM), a U.K.-based
company recently merged with Lynx, has developed a nanotechnology known as a
Single Molecule Array, which allows analysis of individual target molecules. This
technology has been applied to genome sequencing known as Total Genotyping.
Unlike conventional high-density arrays, Solexa has developed a single molecule array
that randomly distributes single molecules at extremely high density (10 sites/cm?)
across an array substrate. Solexa’s goal is to short-read sequencing bursts in order
to compare individual genotypes to a reference sequence of approximately 25 bases.
This allows SNP mapping of individuals in one reaction with no target amplification.
Eventually an entire genome can be mapped to a single chip and an entire sequence
can be SNP mapped for less than a thousand dollars.

Graffinity (Heidelberg, Germany, www.graffinity.com, Figure 19.2NN) has
developed a system of immobilizing small molecules on a carrier substrate in order
to screen labeled target molecules. Graffinity has pioneered the RAISE paradigm
for drug discovery (Rapid Array Informed Structure Evolution) as an important
application of its technology. One approach consists of binding a small molecule
that has an affinity to a certain subset of proteins, and then interacting those immo-
bilized proteins with their binding partners or a specific antibody in the detection
process. These array-based “far-westerns” offer greater resolution, density, and
throughput than previously possible using standard western-based hybridizations.
Most importantly this approach can screen thousands of mutant proteins for target
interactions and thousands of targets in one reaction, theoretically increasing drug-
screening throughput several thousandfold. This approach is especially useful for
structural feature detection in engineered proteins.

Febit (Mannheim, Germany, www.febit.de, Figure 19.200) offers automated
machinery for DNA analysis and creation of custom arrays on the benchtop
(Geniom). Microarray synthesis and hybridization is performed inside a three-
dimensional microchannel structure that connects microfluidics and DNA synthesis
components. Hybridization and detection occur immediately following the probe
synthesis reactions and utilize standard fluorescent dyes. All portions of a SNP or
expression microarray experiment occur within the same machine, preventing con-
tamination or laboratory conditions from introducing external variability. Another
company that specializes in the TI micromirror oligonucleotide synthesis space,
Febit utilizes customization and nanofluidics to create a self-contained customizable
microarray construction system.

GenoSpectra (Fremont, CA, www.genospectra.com, Figure 19.2PP) utilizes
fiber-optic processes to detect RNA sequences within a still-living cell. Real-time
in vivo expression analyses can occur as the cell is being subjected to external
manipulations, the Holy Grail of systems biologists. Multiple detection events can
occur over a short time span, enabling researchers to detect short-term expression
level events with a degree of time resolution previously difficult to achieve. Because
the detected cell remains alive, the changes in expression levels are of high quality
simply because one is not overlaying a death response from Kkilling the cell and
extracting the biomolecules that one hopes accurately reflects the state of physiology
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due to the manipulation. The reproducibility of the platform bears this out, with
repeated measures of the same cell exceeding 4% CV and less. Key products from
GenoSpectra include PQB (Parallel Quantitative Biology) and XHTS (extreme
high-throughput screening), both of which are still under development but are at late
stages of testing. In much the same vein as a FACS-based cell sorter, GenoSpectra
hopes to utilize micro fiber-optic channels to focus the detection system on single
unmobilized cells using nonharmful fluorescent biomarkers.

SNP DETECTION: ALTERNATE DETECTION
METHODS

Other types of detection systems include alternate approaches to binding nucleic
acids other than the standard denatured single-strand hybridization. Included in this
list are arrays that simply do not fit into an easily describable category.

Epoch Biosciences (Bothell, WA, www.epochbiosciences.com, Figure 19.2QQ)
uses a minor-groove detection system where nucleic acids are exposed to a unique
three-dimensional conformation in a nucleic acid molecule [52,53]. The detection
system avoids hybridization issues that often occur during single-stranded DNA
hybridization. One major advantage of this system is that there is no requirement
for denaturation of nucleic acids. Large-scale and extended-sequences of DNA can be
easily detected using nondenatured nucleic acids. DNA—protein interactions can
be accommodated with this system as well because it is examining a tertiary structure
of the DNA with any interacting binding partner. Arrays are low- to mid-density
including less than 1000 features per chip, however this system can be used for
extremely complex mixtures including multispecies and multi-individual forensic
analysis, multi-individual polymorphism detection (microsatellites, VNTRs, and
highly disrupting SNPs, that is SNPs that add large amounts of destabilization
energy). Reproducibility yields CVs near 20% under standard laboratory conditions.

Exiqon, Inc. (Vedbzk, Holland, www.exiqon.com, Figure 19.2RR), has created
a system of immobilization for biomolecules that uses a proprietary surface to immo-
bilize DNA labeled with an amino-linker, protein, polypeptides, and RNA against
various conjugates. Tags may include glutathione, strepavidin, nickel-chelates and
other widely used biological tags from molecular biology and biochemistry. Exiqon
sells blank microarray slides and custom spotted polymer arrays (using noncontact
printing and capillary isolation of those full-length cDNAs directly from cell solution).
Exiqon also supplies a microfluidics chip called the “Immobilizer Chip.”

NimbleGen Systems (Madison, WI, www.nimblegen.com, Figure 19.2SS)
creates custom arrays based on user-defined sequences (or using in-house bioinfor-
matics expertise) and utilizes technology based on the Texas Instruments DLP, or
moving mirror display products, seen in many digital projectors today. The light is
used to create custom oligos without photomasking. NimbleGen recently acquired
Dallas-based Light Biology in a move that parallels the considerable consolidation
in the projection-based oligonucleotide synthesis field. NimbleGen designs arrays
for any genome for which sequence information is available using its proprietary
Maskless Array Synthesizer (MAS) technology. This unique technology provides
up to 786,000 probes/array. Probe sizes range from 24 mers up to 70 mers, in any
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configuration, including the concept of an isothermal array where each probe is
designed to hybridize ideally at one temperature, rather than fixed length oligos that
hybridize at varying temperatures directly related to their sequence. NimbleGen’s
technology is so flexible that it has been applied to mRNA expression [54], whole
genome prokaryotic resequencing [55], oligoCGH [56], and chromatin immunopre-
cipitation (CHiP) [57] — all techniques that will see continuing growth in the life
sciences. Currently Affymetrix markets NimbleExpress Arrays for use with the
GeneChip system, allowing customers to use the Affymetrix reagents, instrumenta-
tion and analysis software. The technology utilized by NimbleGen is unique and
uses a computer to control movable DMD micromirrors (Digital Micromirror
Device) that modify the protection status of subunits that make up the synthesized
oligonucleotides. This method is distinct from the DLP-like projection system used
by Xeotron and the photolithography masking system used by Affymetrix. This
technology dramatically cuts the upfront cost of array design, enabling low-cost,
small-scale manufacturing runs that can be scaled up when necessary. NimbleGen’s
subsidiary, Chemogenix, develops and markets the photochemistry technology.

Perlegen (Mountain View, CA, www.perlegen.com, Figure 19.2TT) uses Affy’s
in situ synthesis to create enormous SNP wafers that cover entire genomes with
multiple redundancies, enabling scientists to assay 1.5 million SNPs at once. In
contrast, the Affymetrix SNP chip will be able to assay as many as 500,000 SNPs
at once per array. The advantage to the Perlegen system is that all target and buffers
can be applied simultaneously onto the same large chip, avoiding the inherent
prep-to-prep technical variability that occurs when using multiple smaller chips. In
addition, data mining can begin as soon as a single chip is complete, enhancing the
throughput of large-scale genotyping [58]. Enormous strides have been made
recently in whole-genome scanning at high density, and Perlegen is applying its
technology to the complex genetics of drug metabolism on an individual basis as
well as diseases such as rheumatoid arthritis.

Arraylt (Sunnyvale, CA, www.arrayit.com, Figure 19.2UU) is a basic one-stop shop/
supermarket for microarray technology. Telechem International owns the Arraylt
division where products and services span a wide gamut, include robotic spotters,
printing pins, slide centrifuges, protein chip spotters, clean rooms and full-service
microarray services. Arraylt has a low-density microarray service where 70 mers
are used in 384-well plates allowing targeted analysis of gene subsets, but they have
recently added a 25K expression chip capable of detecting 25,509 different genes
in one-, two-, three-, or four-channel modes. Arraylt also offers specialized arrays
including transcription factors, cancer splice variants, the hematome, phosphodi-
esterases, and others.

Genomic Solutions (Ann Arbor, MI, www.genomicsolutions.com, Figure 19.2VV)
is a Michigan-based biotech company that has created an automated microarrayer
(the GeneMachine) to move cDNAs from clones to chip in one step. Companies
that have a large collection of clones that need to be screened are able to utilize the
Genomics Solutions system to quickly scan through their clones by programming
the microarrayer to scroll through stacks of bacterial plates and quickly move the
cloned DNA to microarray in one step. The advantage of this system is a novel
method of skipping many tedious steps in the process of screening bacterial clones.
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This solution makes large-scale multigenome mutagenesis screens much more
viable. Beyond the standard high-throughput screening systems is the Investigator
Proteomic system that offers a broad range of analysis software, hardware, and
bioinformatics tools to begin mining proteomic data quickly. SynQUAD is a
noncontact dispensing system that dispenses DNA onto a slide enabling highly
precise SNP detection given a large library of paired perfect-match, mismatch
oligonucleotides. High throughput is easily achievable — an eight-channel synQUAD
system can dispense 100 nL into a 384-well microtiter plate in <10 sec [59].

Idaho Technology’s RapidCycler system (www.idahotech.com, Figure 19.2WW)
utilizes real-time analysis of melting curve data of prelabeled DNA to identify the
temperature (and subsequently the sequence) of DNA duplexes. Many probe/
amplicon heteroduplexes contain destabilizing mismatches that can be detected
through melting curves [60]. Idaho still manufactures the fastest thermocycler
available, using heated high-volume air rather than Peltier technology to distribute
heat to reaction vessels.

Estonia has proven that SNP technology spans the globe by creating and supporting
a SNP company, Asper Biotech, Ltd. Located in Etartu, Estonia, Asper (Www.
asperbio.com, Figure 19.2XX) has licensed the primer extension technology from
Orchid BioSciences and develops and supplies its own SNP-detection technologies
throughout the world. Asper is creating an APEX (Arrayed Primer Extension)
design where up to 30,000 SNPs can be assayed on a single chip, greatly expanding
previous technology in terms of both density and accuracy [61]. Primer extension
using 25-mer oligonucleotides and DNA polymerase continues to form the basis of
an increasing number of basic SNP-detection platforms. Sensitivity and precision are
high, but the necessity of generating amplicons is often a rate-limiting step.

SNP TECHNOLOGY: ANALYSIS SOFTWARE

Scientists who are using whole-genome SNP arrays are finding significant limitations
in the software that performs linkage disequilibrium, association analysis, and mul-
tilocus susceptibility studies. The limitations of current software are often obvious
when hundreds of thousands or even millions of markers are loaded in the context
of large families and complex pedigrees, partial penetrance and QTL phenotypes,
and HW errors that occasionally occur in the data. When many of these analytical
programs were written, it was unimaginable that even 1000 markers would be
available for analysis, much less markers numbering in the millions. Much of
the new SNP analysis programs are also sorely lacking in the statistical depth to
move beyond the one marker/one disease paradigm. The simplest disease associa-
tions can be found quickly, but multiallelic susceptibility, case-control studies and
disease sensitivity markers will be much harder to identify, and will require not only
high-density SNP coverage, but also enormous cohorts likely exceeding thousands
of samples.

Haplotype maps are relatively simple to construct and use, and enhance the
inherently low information content of individual SNP markers. Although not a
perfect replacement for microsatellites, which are actually highly informative,
haplotypes are a robust method for data reduction in genetic linkage analysis.
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HT SNPs are those markers that contribute maximal information to the definition
of a single haplotype across the population that is under study. In pedigree analysis
(linkage disequilibrium analysis in particular), one can filter potentially 60 to 80%
of all SNPs, retaining only those highly informative markers; conversely, large-scale
association studies often require the contribution of every SNP because the
heterogeneity in a disease-based case-control study is substantial.

A few hundred microsatellites markers were once the limit for a genotyping
experiment. When the number of markers exceeds a few thousand, linkage programs
such as GeneHunter2, Linkage, Merlin, etc. use increasing amounts of memory and
time to generate haplotypes and compute disequilibrium odds ratios and LOD scores.
The analysis is combinatorial, iterative and recursive, therefore, time and memory
is required to expand the number of markers in the analysis. SNP Assistant, Mapper,
and many other software programs utilize very intuitive graphical interfaces to ease
the analytical process, yet underneath these GUIs the basic algorithms are much the
same from program to program. New algorithms and more efficient processing
techniques are being developed and published, but data is outpacing the development
of new analytical tools.

Data conversion remains a difficult task as well. Ideally, one would like a standard
format from every type of SNP platform, so no interconversion would be necessary,
and all software programs could read genetic information regardless of the platform.
Unfortunately, manufacturers have no real interest in standardizing their output because
no consensus exists among statistical geneticists on the most appropriate analytical
algorithm, much less the most appropriate software for a given problem. Thus, output
ranges from individual nucleotide sequence calls to calls listed as a number or nonspecific
letter assignment to probability values of a heterozygote, minor or major allele call
all the way to raw mass spectrometry output. Increasingly, researchers are requesting
not only uniformity of data to enhance data sharing across the scientific community,
but also a software tool that could integrate their data with dbSNP (www.ncbi.
nlm.nih.gov/SNP) and could locate and visualize all human genes, splice variants,
promoters, enhancers, and other genetic elements while at the same time supporting
the visualization of the results of genetic analyses over the genome. The Affymetrix
GeneChip system has developed to a point where one can buy off-the-shelf whole-
genome expression and SNP chips that measure the entire human genome for mMRNA
expression, and up to 500K SNPs in a single experiment. Although other manufacturers
may be able to manufacture higher-accuracy/higher-precision arrays for expression or
SNP detection, Affymetrix is leveraging its market position to offer a simple whole-
genome/whole-transcriptome one-stop shop. To this end, it has expanded the analysis
and database capabilities of GCOS/GREX to encompass its genotyping products and
make integration with its expression products as seamless as possible. The availability
of the new high-density Affymetrix products (and the limitations of the Affymetrix
software) has in fact driven rapid development of new genotyping tools, and continues
to drive database development in the life sciences. Witness GPL96, a code used by
GEO (gene expression omnibus, http://www.ncbi.nlm.nih.gov/geo/) to represent the
Affymetrix U133A GeneChip platform. Overwhelmingly most of the data stored at
GEO is of this variety, so any high volume database mechanism must take into
consideration the Affymetrix format.
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Silicon Genetics (www.silicongenetics.com), now part of Agilent Technologies
(www.chem.agilent.com), is one of the leaders in expression software and has
developed just such a tool based on its GeneSpring software package. GeneSpring
GT (aka Varia for genotyping analysis) is now paired with GeneSpring GX (for
expression) and is designed to handle many types of linkage and association studies,
but does so in the context of visualizing the entire genome, zoomable and hotlinked.
The user can display genes, cytobands, SNPs, sequence, haplotypes, linkage scores,
parental contribution, GOLD plots, clustering, pedigree maps, and much more on
top of a fully interactive image of all human chromosomes. Functions that do not
now exist in the base version of the software can be easily added through the visual
programming interface, or through R or Java connections, while still accessing the
built-in chromosome viewer. GeneSpring GT handles the entire NCBI human
genome in memory, and allows the user to quickly move around the chromosome
while zooming in on details including SNP names, chromosomal regions, gene
names, exons and introns, and other features. Most importantly, the software auto-
matically recognizes the data format of many types of genotyping equipment and
makes data import easy. There are even scripts to allow GeneSpring GT to connect
directly to a relational database or data warehouse.

Insightful Corporation (www.insightful.com) has invested in genomic analysis
software with its soon-to-be-released S+Gene software package, adding to its Array-
Analyzer Module already in production. This new library of statistical genetics
functions includes a number of analyses: QC (pedigree check, Hardy—Weinberg,
etc.), linkage and association analyses, haplotype mapping and analysis models
combining haplotype estimation and association, TDT, QTL, variance components,
and others. Few software companies have the statistical infrastructure like S+ that
can be used to build these types of sophisticated genetic algorithms, and the bonus
is built-in integration with Java, C++ and relational databases as part of the core of
S+. These fundamental features make it possible to add many data access and
analysis routines and functions that would be extremely difficult in any other plat-
form. S+ is based on the S language originally developed at Bell Labs and has a
number of high-level statistical algorithms and visualization features as a core part
of the language. Integration with external data sources (ODBC, JDBC), visualization
resources (VB, C++, Java), and languages (C++, Fortran, Java) allow the user to
create sophisticated multilocus analyses without undue concern about memory,
speed, or platform compatibility.

DISCUSSION

Many high-quality biomolecular detection systems now exist in order to provide
users with quantitative or qualitative information about interactions between biolog-
ical species extracted from a cell or population of cells. The user now has a unique
problem; how to choose the best platform that matches the detection requirements
of the experimenter, both statistically and qualitatively, and is of appropriate density
and throughput. Many biological questions must be asked with statistical limits in
mind, to ensure that the inherent detection limits are not exceeded. So many alter-
native platforms now exist that the user must extend the experimental design beyond
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the standard alpha (false positive rate), beta (false negative rate), and delta (minimum
detection limit) requirements, and should start to examine the experimental hypoth-
esis to determine if the detection system chosen matches the user expectations
without wasting resources. Does the experiment really require high-density SNP
detection as part of an association study or would low density be adequate? Will
the user look at more than a handful of genes or is the experiment designed to extract
information from a whole genome scan? Will the user need quantitative protein data
or will qualitative data suffice? Experimental design becomes much more important
in the postgenome world, and with dozens of technological platforms to choose
from, it becomes vital that the experimenter thoroughly analyze his or her experiment
from the ground up if only to determine the absolute needs and expectations inherent
in the experimental design.

A standard spotted array consists of an expression probe bound to a hydrophobic
surface where quantitative binding of fluorescent target is measured via confocal
scanning. Now much more complex tertiary interactions, such as protein—protein,
or antibody—protein abundance arrays require care during development to determine
the proper annealing temperatures and the best wash conditions. Now, a microarray
surface can be the location of enzymatic reactions, such as single-extension priming
for SNP detection or protein—protein interactions in the case of protein abundance
chips. In such a case, the substrate must be enzyme-friendly and should allow free
access between substrate and reactants in a near fluid-phase environment.
Manufacturers have used the ongoing sophistication of microfluidic devices to ensure
consistency of sample preparation, especially when the devices are used outside a
biological laboratory. Increasingly, manufacturers are taking more processes
traditionally left to technicians inside the MEMS devices to decrease the potential
for user error and to increase precision.

A slightly more radical deviation from standard flat microarrays is electrical
detection of biomolecules, especially nucleic acids. Direct detection of electrical
current passing through DNA of different sequences is a sensitive and accurate
method for detection of polymorphisms in defined regions of DNA. These systems
are limited in the size of DNA that can be accurately detected, but using electrical
charge to measure and/or capture nucleic acids has been remarkably accurate.
Creating amplicons (small amplified regions of DNA that contain target SNPs)
significantly reduces the burden placed on the SNP detector. Using a ferrous or
other electrically conducive conjugate along with DNA amplicons effectively
increases sensitivity and repeatability at the expense of more time necessary for
preparation of samples. Fragmenting DNA, either randomly using physical shearing
or systematically using restriction enzymes, is necessary for e-detection systems
and both methods are used in many of the most popular SNP detection systems.
The strength of e-detection systems is very clear when the analyst is looking at a
few highly significant and/or clinically relevant SNPs, or when performing
point-of-service detection, as the military is doing with its biohazard identification
equipment.

Bead-based detection systems have appeared in a variety of formats. Dynal
microbeads have several useful properties including magnetism, paramagnetism, the
property of being easily coated with fluorescent tags, simple conjugation chemistry
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to DNA and RNA probes, peptides, antibodies, complex proteins, and many other
biomolecules, and abundance. It is becoming obvious that microbeads are so useful
that we should expect many more applications and platforms to come online in the
next few years. Zero-gravity synthesis of microbeads allows even more uniform
sizes and shapes and a wider variety of substrates. New physical properties have
been seen in microbeads made from glass, exotic metals, and even carbon structures
such as nanotubes and buckyballs.

Sequencing has always been a brute force approach to SNP and protein peptide
sequence detection, but new mass spectrometry methods have increased the accuracy,
speed, and multiplexing of such methods. Sequenom is leading the commercialization
of SNP detection using MALDI-TOF MS and informatics-rich applications, but many
other companies are leveraging the high degree of flexibility and precision of mass
spectrometry in proteomics and metabolomics, such as Agilent Technologies. Mass
spectrometry has always performed best when analyzing single highly purified com-
pounds. Now mass spectrometry and the associated analytical tools can analyze highly
complex biological mixtures with sensitivity and selectivity. The MS approach will be
much more visible in the future, especially as portable field units are coming online.

Ever more sophisticated detection methods are developed each year. Today it is
not unusual to see offshore companies developing astounding technology but at the
same time wisely avoiding the associated licensing fees and potential lawsuits that
hound technological development in the U.S. and U.K. Unfortunately, some very
basic array-based methodologies have been patented, and patent owners continue to
pursue litigation as a means to produce revenue. This situation has driven some very
creative companies far from U.S. shores and in many cases has made the manufacture
of array technology too expensive to complete. For example, Phalanx Biotech
(www.phalanxbiotech.com) in Hsinchu, Taiwan, will market a $100 expression array
to the world market but must remain ever vigilant to protect itself from lawsuits.
This trend will likely continue as technology forges ever forward and prices continue
to drop on experiments that increase in density and throughput. Some day a single
chip will measure the genome, transcriptome, and proteome at the same time and
analysis software will analyze these data in an integrated fashion yielding high-
quality insights into disease, development, and basic biology. Until then companies
like Agilent technologies are pushing the envelope by developing (or acquiring)
technologies that enable whole cell investigation (Figure 19.2YY). The 2100
Bioanalyzer® can measure RNA, protein, cell fluorescence, and others and is highly
adaptable (protein solutions utilize Caliper Life Sciences’ lab-on-a-chip technology
(Figure 19.2P right). Agilent also markets an HPLC chip that allows nanoflow
electrospray LC/MS that encompasses all hydraulics, electrospray emitters,
analytical and enrichment columns all on a single chip. New ChIP-on-Chip
(chromatin immunoprecipitation) [62] arrays, oligoCGH, expression, spectroscopy
and mass spectrometry, and data analysis software divisions all work together in
concert to provide the potential to measure all potential signals from a single cell,
analyze and interpret the data, and begin to model the underlying physiology of a
living cell. This is the new biomedical paradigm, this is the direction that biotech-
nology leads, and this is the path we must surely follow if personalized medicine
and disease eradication are ever to succeed.
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Development of the array format for DNA hybridization assays has changed the
speed and throughput that researchers can achieve, permitting researchers to study
hundreds or thousands of DNA sequences in a single experiment.

DNA chips and microarrays have already proven to be valuable tools in drug
discovery, leading to the filing of patent applications directed to arrays and their
uses, including target identification, SNP analysis for the diagnosis of genetic
diseases, gene expression, pharmacogenomics, toxicogenomics, proteomics, and
bioinformatics. Recent FDA approvals of the use of microarrays as Class II
medical devices should further expand commercial uses for microarrays and
gene chips.
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As with any valuable technology, the commercialization of DNA array and gene
chip technologies has led to aggressive patenting of technologies and patent litigation
as array manufacturers seek to stake out a share of the market.* Meanwhile, the
wealth of genomic information available from the Human Genome Project has led
to a deluge of patent applications filed at the United States Patent and Trademark
Office (PTO), and initial attempts to patent raw sequencing data have resulted in
changes in the guidelines used by PTO to examine biotechnology and genomic
patents. This chapter surveys the impact of recent court decisions and PTO proceed-
ings that bear on array and genomic technologies.

OVERVIEW OF PATENT LAW STATUTES AND
GUIDELINES APPLIED TO GENOMIC INVENTIONS

The general rule under U.S. patent laws is that any new, useful, and nonobvious
aspects of array technology may be patentable if the applicant sufficiently describes
the claimed technology. Among the many types of claims found in patents issued
are claims to the design itself of the arrays, methods of making and using the arrays,
methods of preparing samples to be analyzed on the arrays, and methods, compo-
sitions, and devices for generating, measuring, and analyzing signals from arrays.
These are further described as follows:

» Patents to the array design: Patent claims may be directed to features of
the array design, such as the density, size, and arrangement of the capture
oligonucleotide, polynucleotide, or cDNA; the chemical nature and
spatial arrangement of the array surface; methods of making arrays, such
as in situ synthesis, or spotting array features; and devices to make the
designed arrays

» Patents to methods of using arrays and to the targets and ligands identified
using the arrays: Patents can include methods of using arrays for various
applications such as pharmacogenomics, toxicogenomics, and expression
analysis; analysis of SNPs/mutation/polymorphism; sequencing; methods
of identifying new targets and ligands; and the ligands and targets identified
using the arrays. Certain aspects of new pathways discovered with the
help of arrays may also be patentable.

» Patents to samples and methods of preparing samples: Claims in patents
may also cover methods of preparing samples to be analyzed using the
arrays, such as libraries of nucleic acids for the arrays, and robust,
representative amplification methods such as whole genome amplification
samples, as well as methods of labeling the samples.

» Patents to methods of hybridizing nucleic acids to the arrays: In addition, patents
may cover methods of hybridization and ways to measure hybridization.

* Patents to methods and devices used in data analysis: Patents may also
cover methods, devices, and software to scan, quantitate, and process data

* See, for example, “Patently Inefficient,” Scientific American, February 2001 (setting forth in a chart a
summary of U.S. and European lawsuits relating to array technology as of early 2001).
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from arrays; improvements to make assays more sensitive to changes in
expression level, and to determine whether differences in expression level
are meaningful or result from errors in the assay; image-processing
techniques; methods of overlaying array data after hybridization with two
differently color-labeled samples (e.g., mRNAs from two different tissues,
(or tumor vs. nontumor); and improved methods for the design and analysis
of microarray-based experiments.

Patents directed to these and other aspects of array technology are subject to
the same general legal requirements applicable to all patents. Those legal require-
ments originate in the U.S. Constitution’s mandate that Congress enact laws to
“promote the progress of science and the useful arts, by securing for limited times
to authors and inventors the exclusive right to their respective writings and discov-
eries.” (Art. I, § 8). The patent statutory scheme was accordingly enacted to strike
a bargain between the public and the inventor, in which the inventor gains the right
to exclude others from using patented technology for a limited term (generally
20 years from filing for most patents issuing under current patent laws). In return
for this exclusionary right, the inventor must provide a description of the invention,
which clearly informs the public what activity the patent claim excludes, permits
the public to determine that the inventor was in possession of the patented tech-
nology, and provides the public with information sufficient to make and use the
invention once the period of exclusivity has passed. The patent statutes therefore
promote technological discoveries by offering incentives to the first discoverer of
a technological innovation to commercialize the patented invention, while at the
same time benefiting the public.

One important aspect of the patent law is that obtaining a patent does not give
its owner the right to use the technology — a patent gives its owner the right to
preclude others from using or commercializing the patented technology. However,
others may own patents, which in turn may prevent the patent owner from using or
commercializing a patented technology. Of course, a patent owner can license
or cross-license a patent to give others the right to use a patented technology.

Because U.S. patent applications remain confidential until publication 18 months
after filing, it is impossible to determine at any given time which technologies are
the subject of U.S. patent applications. In addition, determining whether the use of
specific DNA chip or microarray technology might be covered by a third party’s
patent can be a time-consuming process. *

* For example, a researcher who decides to use a nucleic acid sequence as a probe on an array, based
on an analysis of sequences in public databases and published patents and patent applications, may risk
a lawsuit for patent infringement if a private company later secures a patent on the basis of previously
filed patent applications. http://www.ornl.gov/sci/techresources/Human_Genome/elsi/patents.shtml.
Moreover, it might be possible for a single sequence to be the subject of more than one patent, referred
to as patent “stacking.” For example, depending on the information included in each patent application,
it might be possible for multiple applicants to obtain a claim to a short sequence as an EST, for use as
a probe, and as part of the sequence of a full-length gene. This further contributes to the difficulty in
determining whether the use of specific sequences in DNA chips or microarrays might be covered by a
third party’s patent.
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GENERAL LEGAL REQUIREMENTS FOR PATENTABILITY

Under U.S. patent laws, an invention claimed in a patent must meet the following
three legal requirements (see 35 U.S.C. § 101* to 103):

1. The invention must be useful; e.g., it must have a specific, practical
utility. **

2. The invention must be new (novel, in view of what was known, to one
with ordinary skill in the art).

3. The invention must be nonobvious (not obvious, in view of what was
known, to one with ordinary skill in the art).

The patent application must also meet certain legal requirements to ensure that
the claimed invention is described sufficiently so that the public can enjoy the full
benefit of its bargain once the period of the patentee’s exclusive rights ends and the
technology passes into the public domain for use by the public. For example, the
patent application must meet the following requirements set forth in 35 U.S.C.
§ 112, 99 1-2:

1. The “enablement” requirement: The patent must contain an enabling
description of the invention sufficient to enable those skilled in the art to
make and use the invention ( 1).

2. The “written-description” requirement: The patent must contain a sufficient
written description to inform those of skill in the art that the inventor was
in possession of any claimed invention that the patent owner would seek
to exclude the public from using (] 1).

3. The “definiteness” requirement: The patent must claim the invention in
clear and definite terms, so those of skill in the art can understand what
activities fall within scope of the invention (] 2).

In litigation, if an accused patent infringer can prove that the patent fails to meet
one or more of these requirements, the patent will be invalid.

*35 U. S. C. §101 provides:

“Whoever invents or discovers any new and useful process, machine, manufacture, or composition of
matter, or any new and useful improvement thereof, may obtain a patent therefore, subject to the conditions
and requirements of this title.”

*#* The United States Supreme Court provided the following perspective on the origin of the “utility”
requirement in the 1952 Patent Act:

The act embodied Jefferson’s philosophy that “ingenuity should receive a liberal encouragement.” (The
V Writings of Thomas Jefferson, at 75-76. See Graham v. John Deere Co., 383 U.S. 1, 7-10, 1966).
Subsequent patent statutes in 1836, 1870, and 1874 employed the same broad language. In 1952, when
the patent laws were recodified, Congress replaced the word “art” with “process,” but otherwise left
Jefferson’s language intact. The Committee Reports accompanying the 1952 act inform us that Congress
intended statutory subject matter to “include anything under the sun that is made by man.” (S. Rep. No. 1979,
82d Cong., 2d Sess., 5 (1952); H.R. Rep. No. 1923, 82d Cong., 2d Sess., 6, 1952).

Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980).
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The application of the requirements for stating definiteness and written description
to a patent on array technology is illustrated by the court’s ruling in the patent
infringement suit brought by Affymetrix against Synteni, Inc. (Synteni) and Incyte
Pharmaceuticals (Incyte) in the Northern District of California. Array manufacturer
Affymetrix alleged that Synteni and Incyte infringed various patents including U.S.
Patent 5,800,992 (the ‘992 patent), directed to “two-color” methods of using a
polynucleotide array to detect a substantially complementary nucleic acid sequence
in two or more collections of distinguishably labeled nucleic acids, and U.S. Patent
5,744,305 (the ‘305 patent), directed to certain arrays of materials attached to a
substrate in predefined regions.

Incyte successfully argued before the district court that the claims of the ‘992
patent were invalid for failing to clearly and definitely set forth what was encom-
passed by claims 1-3, because the meaning of the term “substantially complementary”
was unclear to one skilled in the art. The court also sided with Incyte in holding
that claims 4-5 of the ‘992 patent were invalid for failing to provide a written
description of multiplex detection of a nucleic acid in two or more collections of
nucleic acids labeled with distinguishable labels. In addition, the court found that
Incyte’s cDNA arrays did not infringe any of the claims limited to use of oligonu-
cleotide arrays in the ‘934 or ‘305 patents (see, for example, Incyte Genomics
(INCY) Receives Favorable Court Ruling Invalidating Affymetrix (AFFX) Patent,
Biospace Beat, http://links.biospace.com/news_story.cfm?StoryID=6574415&full=1).
The case was settled before the ruling by the district court was appealed.

In other litigation related to array technology, Oxford Gene Technology, which
owns the array technology developed by Edwin M. Southern, filed lawsuits in
December 2002 for infringement of U.S. Patent No. 6,054,270 against a number of
companies, including BioDiscovery, Mergen, Nanogen, Genomic Solutions, Axon
Instruments, BD Biosciences Clontech, Nanogen Inc., Axon Instruments Inc., Bio-
discovery Inc., Mergen Ltd., and Motorola, along with PerkinElmer Life Sciences
Inc. and Harvard Bioscience Inc. unit Genomic Solutions Inc. OGT has since settled
the lawsuits with BioDiscovery, Mergen, Nanogen, Genomic Solutions, Axon Instruments,
and Motorola. In Europe, after its array patent was challenged, OGT voluntarily
narrowed its patent to cover only arrays containing oligonucleotides that are
covalently attached to a smooth impermeable surface. It is not clear if a patent could
be challenged in the U.S. if it extended beyond the scope of the European patent.*

In the related area of genomic inventions, which might cover, for example, the
sequences attached to the surface of the array, targets identified using the arrays, or
even therapeutic biologics discovered using the array, PTO and the courts have
grappled most with § 101’s utility requirement and § 112’s written-description
standard for informing one skilled in the art that the inventor is in possession of the
invention. The utility requirement is usually implicated when sequence data is
available but the function of the encoded protein is not known (e.g., EST sequences or
homologous sequence data). Conversely, the written-description requirement is
usually implicated for genomic or proteomic inventions when the function of a

* OGT patent 6,770,751, issued in August 2004, is directed to certain methods to detect variations in
DNA sequences, e.g., SNPs or different lengths of tandem repeat regions.
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protein or DNA is known (e.g., the DNA encodes a protein that inhibits a receptor)
but its entire nucleotide or amino acid sequence is not known.

In the past, PTO has taken a somewhat narrow view of whether a patent appli-
cation discloses an invention having sufficient utility to meet the requirement of §
101, although courts have generally taken a broader view of the type of subject
matter that meets the utility requirement. It was only through the action of courts
(reversing a decision by PTO) that patents were first obtained to genetically engi-
neered organisms.

On the other hand, courts have tended to take a narrower view of the written-
description requirement than PTO. Several patents issued by PTO to biomolecules
described in functional terms have been held invalid by the Federal Circuit Appeals
Court, which is the federal appeals court that hears all appeals in patent cases.* The
Federal Circuit has characterized DNA as a large chemical compound whose struc-
ture can only be adequately described when its sequence is known. Accordingly, the
Federal Circuit has held that claims to biochemicals stated in terms of biological
function lack sufficient written description unless a structure (i.e., the sequence or
a deposited cell line containing the cloned gene) is associated by those of skill in
the art with that function.

THE UTility REQUIREMENT: AT WHAT STAGE OF Discovery CAN A
BiocHEmIcAL BE PATENTED?

Federal courts began applying patent law requirements to products obtained from
living systems in 1911 when a court sustained the validity of claims to an extracted
and concentrated form of adrenaline. (Parke Davis & Co. v. H.K. Mulford Co., 189
Fed. 95, S.D.N.Y. 1911, aff’d, 196 F. 496, 2d Cir. 1912).** The Federal Appeals
Court held that although powdered adrenal gland tissue had been used for medicinal
purposes, purified adrenaline was free of the disadvantages of using the unpurified
form and was therefore a new commercial therapeutic entitled to patent protection.
Thus, although hormones, genes, proteins, and other biochemicals are not patentable
in their naturally occurring form, purified or isolated hormones, genes, gene fragments
and proteins may be patentable if they meet the criteria for patentability, including
utility, novelty, and nonobviousness, and they are properly described.

After molecular biology techniques enabled the genetic engineering of living
organisms, courts faced new questions of how to apply the legal requirements of
patentability to living systems. Prior to 1980, PTO had refused to grant patents to
living organisms, which were considered products of nature lacking sufficient utility
to meet the requirement of section 101.

In 1980, Dr. Chakrabarty appealed PTO’s rejection of his patent application to
a bacterium genetically engineered to consume oil spills, and the case was finally

* Parties who lose before the Federal Circuit can request review of the case by the Supreme Court of
the United States; however, it is relatively uncommon for the Supreme Court to agree to review a patent
case.

*% Prior to the establishment of the Federal Circuit on October 1, 1982, by the Federal Courts Improvement
Act of 1982, Pub. L. No. 97-164, 96 Stat. 25., appeals from patent cases were heard by various regional
circuit courts of appeal, such as the Second Circuit.
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heard by the Supreme Court. In Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980),
the Supreme Court construed § 101 broadly, holding that Dr. Chakrabarty’s bacterium
was patentable; the court cited the legislative history of § 101 to support its conclusion
that, “Congress intended statutory subject matter to ‘include anything under the sun
that is made by man.”” See Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980)
(quoting S. Rep. No. 82-1979, at 5 (1952); H.R. Rep. No. 82-1923, at 6 (1952)).
Later cases reaffirmed the basic rule that under section 101 products or processes
made by man are patentable, whereas products and processes of nature are not. See
SmithKline Beecham Corp. v. Apotex Corp., 365 F3d 1306 (Fed. Cir. 2004) (citing
Chakrabarty at 313; JJE.M. Ag Supply v. Pioneer Hi-Bred Int’l, 534 U.S. 124, 130
(2001)); see also Gottschalk v. Benson, 409 U.S. 63, 67 (1972) (“Phenomena of
nature, though just discovered, mental processes, and abstract intellectual concepts
are not patentable, as they are the basic tools of scientific and technological work.”)*.
In 2001, PTO promulgated utility guidelines to address concerns raised over the
examination of genomic-related inventions.

Early projects relating to the Human Genome Project brought many issues relating to
patenting of human DNA sequences to the forefront. When the Human Genome Project
began in 1990, scientists had discovered fewer than 100 human disease genes; today, more
than 1400 disease genes have been identified. http://www.genome.gov/11006929.**

The question, who owns the human genome, was first raised in 1991 when the
NIH applied for a patent on brain cDNA discovered in an EST*** project led by
Dr. Craig Venter. (Tom Strachan and Andrew P. Read, Human Molecular Genetics 2,
BIOS Scientific Publishers Ltd. 1999). PTO rejected the applications for lack of
utility. Venter later left the NIH to set up a commercially backed Institute of Genome
Research, and eventually joined forces with Applied Biosystems/Celera Genomics
to sequence the human genome.

As the private sector vied with the public sector to be the first to sequence
the human genome, the race was on to file thousands of applications directed
to DNA sequences, gene fragment sequences, or expressed DNA sequences
before any further information was ascertained about the function of the encoded
protein. Although Celera Genomics, the winner of the race to sequence the
human genome initially filed over 6500 patent applications on gene sequences,
its then president, Craig Venter, said in a 2000 interview that the company
intended to pursue 500 or so patents on specific genes that might be significant
for drug development. (Kristen Philipkoski, “Celera Wins Genome Race,” Wired,
4/6/2000.) Over 3 million genome-related patent applications have been

*In 1987, in Ex parte Allen, 2 USPQ2d 1425, 1428 (Bd. Pat. App. & Inter. 1987).3 The Board of Patent
Appeals and Interferences found that subject matter patentable under §101 extended to man-made life
forms. One year later, the USPTO issued the famous “Harvard mouse” patent to a transgenic mouse.
*% In 2003, the Human Genome Project Consortium announced that the goal to sequence the human
genome had been achieved at a cost under the $3 billion estimate, and 2 years ahead of schedule. The
wealth of genomic information made available from sequencing of the entire human genome, combined
with high-throughput array technology, has permitted scientists in industry and academia to quickly
explore the genomic data.

*##% ESTs, or expressed sequence tags are 300- to 500-bp gene fragments, which represent only 10 to
30% of the length of the average cDNA, often 10 to 20 times smaller than the corresponding genomic gene.
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filed.* (Human Genome Project information at http://www.ornl.gov/sci/
techresources/Human _Genome/elsi/patents.shtml).

The number of patent applications filed for gene fragments such as ESTs, and other
partial gene sequences raised concerns among researchers in both academia and private
industry, as well as commentators, over whether PTO should grant patents based on
early-stage genome sequence data, and if so, what standards should be applied.

Some researchers and industry commentators maintained that patenting gene frag-
ments was inappropriate because the methods used to obtain raw sequence data or to
identify ESTs were routine, and the amount of work to obtain the sequence data was
small compared to the amount of work spent developing a drug.** In other words,
permitting patents on ESTs would reward the smallest up-front contribution, but not
the harder effort of isolating and sequencing a gene, finding out what the gene product
does, and developing a commercial product based on it once the target gene and protein
product were known. Allowing applicants to obtain “gatekeeper” patents on raw
sequences would permit them to control the use and commercialization of further
genomic research. Proponents of patenting ESTs, however, argued that the gene frag-
ments were useful as molecular probes to search for complete cDNA sequences.

In 1999, to address concerns raised in debates between the academic scientific
community, the private sector, industry commentators, and bioethicists, USPTO
promulgated guidelines for examiners to determine whether applications for patents
to genomic inventions meet the legal standard for utility under § 101 and to address
questions and policy concerns raised over the patentability of sequence information
obtained in the Human Genome Project.

The PTO’s Revised Interim Utility Examination Guidelines issued in January
2001 addressed comments from both sides and appeared to resolve competing
concerns by maintaining the patentability of gene sequences, although tightening
the utility requirement for patents to genes and gene fragments.

With its systematic consideration of a wide range of comments, the 2001 Utility
Guidelines drew praise from those associated with genomic companies. William Haseltine,

* Many biotech companies have applied for provisional patents, which provides a 1-year grace period
for determining whether the company wishes to proceed with filing a utility application. This means that
companies filing the provisional patent application have up to 1 year to file their actual patent claims in
a utility patent application. The 1-year grace period does not count as one of the 20 years that the patent
is issued for.

** For example, in a comment in Nature Biotechnology, John H. Barton proposed three further limitations
(1) whether data obtained from automated gene sequencing is really something “made by man”";
(2) the weighing of economic policy considerations in favor of rewarding the development of research
tools with a patent monopoly with the need to split the benefits of the monopoly rent on a new
pharmaceutical drug with all tool makers who helped in development of the drug dictates that a tool such
as an SNP or an EST should be patentable only if the benefit of such a patent in strengthening incentives
to develop genomic information is greater than the costs of the patent in foreclosing others’ ability to
use the information about the genome; (3) determining whether bioinformatics data is patentable as a
description of a property of a physical chemical, or if it is not patentable subject matter because it merely
represents naturally occurring information (and a law of nature cannot be patented); if rulings in court
cases finding software applications patentable are extended to bioinformatics, it could blur the distinction
between patentable subject matter and a principle of nature and may spur the filing of patent claims
designed to exclude others from using genomic information. (John H. Barton, Commentary, 18:9 Nature
Biotechnology 804, August 2000).
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then the chairman and CEO of Human Genome Sciences (Rockville, MD), was quoted
as saying, “I think this could be the Magna Carta of biotechnology.” (David Holzman,
“Magna Carta” of biotechnology, Genetic Engineering News, February 1, 2001. “This
is probably the most systematic review of this field that has ever been done. It acknowl-
edges every comment and lays out a rational, clear response to each one.”)

The 2001 Utility Guidelines clarified to patent examiners that a DNA fragment
such as an EST would not meet the utility requirement if the patent application failed
to disclose at least one practical utility. In the past, patenting of a gene sequence was
allowed based on general claims such as its use as a probe for locating the full-length
gene; now, such a general claim would be insufficient. To meet the requirement, either
(1) the application had to disclose a specific, substantial, and credible utility or (2) those
skilled in the art would have to readily recognize that the invention was useful based
on a well-established utility (Utility Guidelines at 1094). The burden of disclosure, or
of demonstrating that those skilled in the art are aware of a well-established utility,
would fall on the patent applicant (Utility Guidelines at 1096-1097).

Under the revised guidelines, a specific, substantial utility is provided only if
the applicant has disclosed that the invention is useful for a particular, practical purpose.
A specific, substantial, and credible utility cannot be “throwaway,” “insubstantial,” or
“nonspecific” such as use of a composition as landfill (Utility Guidelines at 1098).
Credibility is measured from the perspective of one of ordinary skill in the art who has
viewed the disclosure and any other evidence; e.g., test data, affidavits, or declarations
from experts in the art, patents, or printed publications (Utility Guidelines at 1098). The
PTO further elaborated that “[a] claimed DNA may have a specific and substantial utility
because, e.g., it hybridizes near a disease-associated gene or it has a gene-regulating
activity.” (January 5, 2001 Utility Examination Guidelines, 66(4) Fed. Reg. 1092, 1095).

The PTO guideline requirement for a specific, credible, substantial utility appeared
to track the utility requirement formulated by the Supreme Court in Brenner v. Manson,
383 U.S. 519 (1966). In Brenner, the Supreme Court emphasized the need for the
disclosure of a present, real-world utility in ruling that utility was not established for
a process of making a chemical compound where no specific utility had been demon-
strated for the compound itself except as the object of further testing.

This is not to say that we mean to disparage the importance of contributions to the
fund of scientific information short of the invention of something “useful,” or that we
are blind to the prospect that what now seems without “use” may tomorrow command
the grateful attention of the public. But a patent is not a hunting license. It is not a
reward for the search, but compensation for its successful conclusion. “[A] patent
system must be related to the world of commerce rather than to the realm of
philosophy...” (Brenner v. Manson, 383 U.S. 534-535 [1966]%*).

Thus, the PTO’s stricter standard guidelines appeared to draw from the United States
Supreme Court’s recognition in Brenner that a patent is not “a reward for the search”

* In so ruling, the Supreme Court noted it was not relying on reference to an article in the November 1956
issue of the Journal of Organic Chemistry, 21 J. Org. Chem. 1333-1335, which revealed that steroids of a
class that included the compound in question were undergoing screening for possible tumor-inhibiting
effects in mice, and that a homologue 3 adjacent to Manson’s steroid had proven effective for that purpose. Id.
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3

for an invention’s utility but, rather,
utility.

In adopting the requirement for a specific, credible, substantial utility, the PTO
recognized that under traditional patent law principles a patent on a composition,
such as DNA, granted exclusive rights to any use of the composition. The PTO also
addressed many policy-based concerns relating to the patentability of genomic
inventions and whether a patentee should be permitted to assert claims against
speculative uses of DNA that were unforeseeable at time of filing. The PTO
responded to some of the issues as follows:

‘compensation” for successfully finding its

e The PTO rejected the suggestion that genes ought to be patentable only
when the complete sequence of the gene is disclosed and a function for
the gene product was determined; the PTO noted that a partial gene
sequence might have use, for example, if it hybridizes near a disease-
associated gene or has a gene regulating activity (Utility Guidelines at
1095). Thus, recitation of use of a DNA sequence in detecting or regulating
a particular disease state may satisfy the utility requirement.

* The PTO also rejected the suggestion that the DNA sequences should be
freely available for research or that certain raw DNA sequence data might
be unworthy of any patent protection — instead, the PTO determined that
DNA patents were subject to the same statutory interpretation governing
the scope of patentable subject matter (Utility Guidelines at 1095).

* Inaddition, the PTO rejected the suggestion that because methods of DNA
sequencing had become so routine, determining the DNA sequence was
not inventive. The PTO quoted from the statute governing obviousness in
rejecting this argument (Utility Guidelines at 1095, quoting § 103:
“Patentability shall not be negatived by the manner in which the invention
was made”).

* Another rejected comment suggested that the use of computer-based
analysis of nucleic acids to assign a function based on homology to prior
art nucleic acids was unpredictable and should therefore not form a
sufficient basis for assigning a function to a putatively encoded protein
(Utility Guidelines at 1096). The PTO indicated that such findings should
be made on a case-by-case basis and that it would take into account the
nature and degree of the homology (e.g., whether the class of proteins
was defined and highly conserved) in deciding whether a specific, substantial
and credible utility had been asserted (Utility Guidelines at 1096).

e The PTO also responded to one comment asserting that utility based on
homology data should correspondingly render the sequence obvious by
noting that even where a homology-based utility was established, a
complete inquiry into whether the sequence would be obvious under §
103 should be made on a case-by-case basis, but it should not result in a
per se finding of obviousness (Utility Guidelines at 1096).

In the absence of a disclosed specific, substantial, and credible utility, a well-
established utility would have to be readily apparent to one of skill in the art as of
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the time the application was filed, not based on a later-discovered utility (Utility
Guidelines at 1096). The well-established utility is a specific, substantial, and
credible utility that must be readily apparent to one skilled in the art (Utility
Guidelines at 1097). Moreover, if the examiner does not readily perceive a well-
established utility, the guidelines provide that the examiner may issue a rejection
for lack of utility, thereby placing the burden on the applicant to establish that such
a utility exist (Utility Guidelines at 1097).

It will remain to be seen if separate utility guidelines are the proper way to alter
the balance struck between the discovery of bioinformatic information and the
researcher’s ability to use downstream in applied research for new drug innovation
bioinformatics information, including information gleaned from the use of gene
chips and microarrays.

REQUIREMENTS OF WRITTEN DEscripTioN UNDER 35 U.S.C. SectioN 112

Several appeals court decisions have discussed the legal requirements for written
description in the context of genomic inventions. “The written-description require-
ment serves a teaching function, as a quid pro quo in which the public is given
meaningful disclosure in exchange for being excluded from practicing the invention
for a limited period of time.” University of Rochester v. G.D. Searle & Co., Inc.,
358 F.3d 916, 919 (Fed. Cir. 2004) (quoting Enzo, 323 F.3d at 970). Thus, the written-
description requirement “ensure[s] that the scope of the right to exclude, as set forth
in the claims, does not overreach the scope of the inventor’s contribution to the field
of art as described in the patent specification.” Reiffin v. Microsoft Corp., 214 F.3d
1342, 1345 (Fed. Cir. 2000).

The legal standard for written description under §112, {1,* requires that the
patent specification clearly “describe the claimed invention so that one skilled in the
art can recognize what is claimed.” University of Rochester v. G.D. Searle & Co.,
Inc., 358 F.3d 916, 924 (Fed. Cir. 2004) (quoting Enzo v. Gen-Probe, 323 F.3d at
968). That is, the patent must contain enough detail “to allow a person of ordinary
skill in the art to understand what is claimed and to recognize that the inventor
invented what is claimed.” University of Rochester, 358 F.3d at 929; Regents of the
Univ. of Cal. v. Eli Lilly & Co., 119 FE.3d 1559, 1568 (Fed. Cir. 1997).

The Federal Circuit Court of Appeals has held that a patent claiming a DNA-
related invention in functional terms must also describe a structure associated with
that function, unless those skilled in the art are aware of a structure associated
with that function. See, for example, Enzo Biochem Inc. v. Gen-Probe Inc., 323 F.3d 956,
964 (Fed. Cir. 2002); Regents of the Univ. of Cal. v. Eli Lilly & Co., 119 E.3d 1559,
1568 (Fed. Cir. 1997). To describe a class of cDNAs, such as mammalian cDNA
for insulin, a patent must describe the sequence of a sufficient number of sequences
so that one skilled in the art can visualize or recognize the members of the genus;

* The first paragraph of 35 U.S.C. § 112 requires as follows:

“[t]he specification shall contain a written description of the invention, and of the manner and process
of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in
the art to which it pertains, or is most nearly connected, to make and use the same, and shall set forth
the best mode contemplated by the inventor of carrying out his invention.”
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thus, it is not a sufficient description of a mammalian cDNA to provide the sequence
for a rat insulin cDNA and the amino acid sequence for human insulin:

In claims to genetic material, however, a generic statement such as “vertebrate insulin
cDNA” or “mammalian insulin cDNA,” without more, is not an adequate written
description of the genus because it does not distinguish the claimed genus from others,
except by function. It does not specifically define any of the genes that fall within its
definition. It does not define any structural features commonly possessed by members
of the genus that distinguish them from others. One skilled in the art therefore cannot,
as one can do with a fully described genus, visualize or recognize the identity of the
members of the genus... The description requirement of the patent statute requires a
description of an invention, not an indication of a result that one might achieve if one
made that invention. [citation omitted]. Accordingly, naming a type of material gener-
ally known to exist, in the absence of knowledge as to what that material consists of,
is not a description of that material.

...A description of a genus of cDNAs may be achieved by means of a recitation of a
representative number of cDNAs, defined by nucleotide sequence, falling within the
scope of the genus or of a recitation of structural features common to the members of
the genus, which features constitute a substantial portion of the genus. (Regents of the
Univ. of Cal. v. Eli Lilly & Co., 119 E3d 1559, 1568 [Fed. Cir. 1997]).

In Enzo, a later case involving claims to DNA sequences, the Federal Circuit
Court of Appeals held that sufficient written description of a claim to a full-length
DNA sequence with recited functional characteristics may not constitute adequate
written description of subsequences having those functional characteristics. (Enzo
v. Gen-Probe, 323 F.3d at 964-966). The Federal Circuit appeared to relax the rule
in Lilly requiring description of the sequence of a cloned DNA by holding that a
cloned-DNA sequence could be sufficiently described by referring to a publicly
available ATCC culture deposit containing the sequence, instead of sequencing the
cloned DNA and describing that sequence. Id.

However, the Federal Circuit determined that factual issues remained concerning
whether the patent description was sufficient to demonstrate that the inventors were
in possession of claimed subject matter to sequences, subsequences, and mutated
sequences that preferentially hybridized to Neisseria gonorrhoeae. 1d. The Federal
Circuit therefore sent the case back to the district court for a determination of whether
a person of skill in the art would glean from the written description, subsequences,
mutated variants, and mixtures sufficient to demonstrate possession of the class of
sequences covered by the claims. Id. The appeal court also adopted the standard set
forth in the PTO guidelines for written description:

In its guidelines, PTO has determined that the written description requirement can be
met by “showing that an invention is complete by disclosure of sufficiently detailed,
relevant identifying characteristics..., i.e., complete or partial structure, other physical
and/or chemical properties, functional characteristics when coupled with a known or
disclosed correlation between function and structure or some combination of such
characteristics.” (Guidelines, 66 Fed. Reg. at 1106).... Thus, under the guidelines, the
written-description requirement would be met for all of the claims of the ‘659 patent
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if the functional characteristic of preferential binding to N. gonorrhoeae over N.
meningitidis were coupled with a disclosed correlation between that function and a
structure that is sufficiently known or disclosed. We are persuaded by the guidelines
on this point and adopt PTO’s applicable standard for determining compliance with
the written-description requirement.

Id.

More recently, the Federal Circuit applied this test in affirming the PTO’s rejection
of claims to DNA encoding a specific protein isolated from human urine that selectively
inhibits the cytotoxic effect of tumor necrosis factor (TNF), where the only data in
the specification was a partial amino acid sequence of the N-terminal portion of the
protein, and a determination of the molecular weight of the intact, isolated protein. In
re Wallach, 378 F.3d 1330 (Fed. Cir. 2004), the Federal Circuit concluded that the
decision of the Board of Patent Appeals and Interferences that the claims lacked written
description was consistent with the PTO’s policy set forth in its Manual of Patent
Examining Procedure, which advises that “disclosure of a partial structure without
additional characterization of the product may not be sufficient to evidence possession
of the claimed invention.” Id. (quoting MPEP § 2163.11.A.3.a.i.). The Federal Circuit
cited the PTO’s written-description guidelines in rejecting the patent applicant’s
argument that possession of the isolated protein, its molecular weight and a partial
sequence provided possession of the protein’s full amino acid sequence, which the
Federal Circuit acknowledged would have been sufficient to give possession of any
DNA sequence that could code for that protein sequence:

Appellants have provided no evidence that there is any known or disclosed correlation
between the combination of a partial structure of a protein, the protein’s biological
activity, and the protein’s molecular weight, on the one hand, and the structure of the
DNA encoding the protein on the other.

Whether Appellants were in possession of the protein says nothing about whether
they were in possession of the protein’s amino acid sequence. Although Appellants
correctly point out that a protein’s amino acid sequence is an inherent property of the
protein, the fact that Appellants may have isolated and thus physically possessed
TBP-II does not amount to knowledge of that protein’s sequence or possession of any
of its other descriptive properties. Appellants have not provided any evidence that the
full amino acid sequence of a protein can be deduced from a partial sequence and
the limited additional physical characteristics that they have identified. Without that
full sequence, we cannot agree with Appellants that they were in possession of the
claimed nucleic acid sequences.

A gene is a chemical compound, albeit a complex one, and it is well established
in our law that conception of a chemical compound requires that the inventor be able
to define it so as to distinguish it from other materials, and to describe how to obtain
it.... Until Appellants obtained the complete amino acid sequence of TBP-II, they had
no more than a wish to know the identity of the DNA encoding it. (In re Wallach,
378 F.3d 1330).

Finally, in a decision that may have implications for the extent to which newly
discovered target pathways must be described to obtain claims to therapeutic uses
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of ligands to the targets, the Federal Circuit ruled that an inventor must describe
more than a target gene and a compound that binds to that gene in vitro in order to
sufficiently describe a method of inhibiting the target gene’s activity in a human by
administering a compound that selectively inhibits the target. See University of
Rochester v. G.D. Searle & Co., Inc., 358 E3d 916, 919 (Fed. Cir. 2004). In
University of Rochester, the Federal Appeals Court affirmed the District Court’s
finding of lack of written description, where the patent claimed a method of selec-
tively inhibiting PGHS-2 activity in a human host” by “administering a nonsteroidal
compound that “selectively inhibits activity of the PGHS-2 gene to a human to [or
in] a human host in need of such treatment,” but the specification did not describe
any compound capable of achieving the claimed effect of selectively inhibiting
PGHS-2 activity. Id. at 924; see also id. at 928. Without that disclosure, the Federal
Circuit held that “the claimed methods cannot be said to have been described.” Id.
Accordingly, the court found the claims invalid for lack of written description.
Thus, the determination of whether a patent specification contains a sufficient
description of a claim to a genomic invention includes case-specific factual deter-
minations of whether one of ordinary skill in the art would glean from the particular
patent specification at issue a structure associated with a claimed biological function.

IP IMPLICATIONS FOR DNA CHIPS AND
MICROARRAYS

NONUNIFORM APPLICATION OF EVOLVING GUIDELINES FOR EXAMINING
BIOTECHNOLOGY INVENTIONS

Since 1991, when the NIH filed its patent application claiming thousands of EST
sequences, controversy and disagreement about the patenting of such sequences cul-
minated in the promulgation of the 2001 Utility Guidelines by PTO. Critics argued
that patents on gene fragments, especially uncharacterized cDNA sequences may
reward activity too early in the drug discovery process — it will benefit those who
contributed early by sequencing DNA using routine technologies, but penalize those
who perform the more difficult task of discovering biological function or pathways.
Because of the evolving standards for examining of biotech inventions, the
standards may not have been uniformly applied to all issued patents. For example,
patents may be issued that were examined under older, more lax utility guidelines.
On October 6, 1998, the PTO issued to Incyte Pharmaceuticals, Inc., U.S. Patent
No. 5,817,479, one of the first patents known to include claims to purified polynu-
cleotide EST sequences for “Human Kinase Homologs.” Similarly, PTO issued U.S.
Patent 6,025,154 to Human Genome Sciences with claims directed to an isolated
polynucleotide encoding CCRS5, a receptor that binds chemokines, the CCRS protein
and host cells containing the gene. Human Genome Sciences obtained the sequence
while sequencing the entire human genome. The patent specification did not disclose
any experimentally determined function for the CCRS protein, but deduced from
the protein’s homology to other chemokine receptors that the new protein would
bind chemokines. Other researchers later independently discovered that the CCRS
protein is a coreceptor for HIV binding. However, Human Genome Sciences’ patent
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is a potential block for researchers using the CCRS gene or protein as a target for
AIDS research, even the researchers who were the first to discover the function of
the protein. See, for example, J. Madeline Nash, “Who Owns The Genome? Battle
Pending,” CNN.com, at http://cgi.cnn.com/ALLPOLITICS/time/2000/04/10/ genome.
html (April 10, 2000).

The issues of whether the standard set forth in the 2001 guidelines should apply
to patents issued before their implementation has not yet been litigated, although
recent litigation over whether the description in the patent provides a specific,
substantial, credible utility meeting the standard of the 2001 utility guidelines has
occurred. Despite the earlier issuance of U.S. patents with claims to ESTs, the
Federal Circuit recently affirmed rejection of claims to EST sequences based on
lack of utility, approving the Board of Appeals’ reliance on the Supreme Court’s
analysis in Brenner. In re Fisher, 421 F.3d 1365, 1371-74 (Fed. Cir. 2005); see also
Ex parte Fisher, 72 U.S.P.Q.2d (BNA) 1020 (unpublished decision).

In Fisher, the Board of Appeals relied on the Supreme Court’s ruling in Brenner
to reach its decision that the application for EST sequences did not describe a
specific, substantial, credible utility. Ex parte Fisher, 72 U.S.P.Q.2d at 1020,
1023-26. The Federal Circuit affirmed, and noted that the PTO’s 2001 Utility
guidelines were consistent with its interpretation of the utility requirement. In re
Fisher, 421 F.3d at 1372. Thus, as with the guidelines for written description (see
Enzo v. Gen-Probe, 323 F.3d at 964-966), the Federal Circuit approved the PTO’s
guidelines for utility. The Federal Circuit’s affirmance of the Board’s rejection of
the EST sequence claims provides some useful guidance on the description an
Applicant for a patent on EST sequences must provide in order to meet the require-
ments for the patentability of DNA sequences.

The EST sequences in Fisher were raw EST sequences with no description of
its function, no confirmed characteristic based on sequence homology, or any other
feature that would establish a specific use of the ESTs. Although Fisher had described
several catch all uses in the application including the identification and detection of
polymorphisms, use as probes in hybridization assays, and as primers for amplifi-
cation, without further information such as the proteins encoded by the genes the
ESTs are derived from, the Federal Circuit concluded that the stated uses were
general uses for nucleic acids and thus did not satisfy the requirement for specific
utility. In re Fisher, 421 F.3d at 1374; see also ex parte Fisher, 72 U.S.P.Q.2d at 1029.

PATENTING ON GENES AS AFFECTING DIAGNOSTIC RESEARCH

Patents on genes and gene sequences could impact the development of diagnostics,
including array diagnostics, because of the costs associated with licensing and using
patented sequences.

Patents issued in the U.S. and Europe have recently brought into focus the
debate over how the patenting of genes affects patient care and research, and how
private companies that own certain patents can monopolize certain genetic testing
markets. For example, after Myriad Genetics Laboratories received a patent to the
BRCAI1 gene and BRCA2 mutations associated with a risk for breast cancer, the
company sent a letter to the Genetics Diagnostics Center at the University of
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Pennsylvania seeking licensing fees for use of a BRCAL1 screening test. The letter
informed researchers performing diagnostic screens for the gene that they would
have to pay a fee for each test performed, raising concerns over the cost and
availability of genetic diagnostic testing. (see Charles Schmidt, Cashing in on gene
sequences, Money Matters Corporate, http://pubs.acs.org/subscribe/journals/mdd/
v04/i05/html/ 05Smoney.html.). In Europe, a challenge to Myriad’s patents resulted
in nullification of one patent and narrowing of a second patent to the one mutation/
sequence correctly identified in the original patent application. Myriad’s European
BRCAZ2 patent had been earlier successfully opposed because the charity Cancer
Research UK had filed a patent on the gene first. (Breast Cancer Gene Patent
Revoked in Europe, Science and Intellectual Property in the Public Interest, May
19, 2004 at http://sippi.aaas.org/ipissues/updates/?res_id=312.).

Restrictions on use of a gene sequence might also apply to use of DNA microar-
rays or gene chips to carry out diagnostic testing.

MuLtipLe PATENTS: CosT IMPACT ON DRUG PrRODUCT DEVELOPMENT

Stacking of multiple patents on the same sequence might also discourage the devel-
opment of diagnostics and drug products as a result of multiple royalty payments.

Under current laws, patent stacking is permitted, for example, where a single
genomic sequence is first patented as an EST, then a gene, then an SNP, or where
different patents cover both the composition of an array surface and a method of
attaching oligonucleotides to the surface. In addition, as noted previously, as
researchers use array technology to identify the genes involved in genetic diseases
or predisposition to genetic diseases, holders of earlier patents to genes or gene
fragments may require a royalty payment and/or prohibit the development or use of
hybridization assays to screen for individuals at risk for developing the disease.
Stacking may therefore discourage the development of diagnostic and drug product
development because payment of multiple royalty costs owed to each of the patent
owners of that sequence may be prohibitive.

Allowing multiple patents on the same sequence, or different aspects of the same
genome region, also creates a related concern — that the costs to determine whether
patents are blocking freedom to use any given nucleic acid sequence may, in itself,
become prohibitive. Moreover, DNA chips and diagnostic devices may contain tens
of thousands of DNA sequences. The lag in publication of patent applications adds
to the complexity because of the difficulty of determining, at any given time, whether
a third party has filed a patent on a given sequence. Additional patents on other
aspects of array technology may add further complexity to the analysis of freedom
to operate for use of a given sequence on an array.

CLAIMS TO SUBFRAGMENTS OF CLONED DNA witH UNIQUE
FUNCTIONAL PROPERTIES

A catch-22 might arise for patent applications directed to subsequences with unusual
functional properties. In a recent Federal Circuit decision, the appeals court held
that a claim to a purified oligonucleotide comprising a promoter having activity for
the human involucrin gene lacked novelty in view of the disclosure by the inventor’s
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publication of a plasmid containing a cloned gene (including the promoter region)
and the method of obtaining the plasmid, even though the promoter region had not
yet been sequenced. (see In re Crish, 393 F. 3d 1253).

On the other hand, the written-description standard dictates that a DNA cannot
be patented unless its sequence is known or unless it is cloned in a cell line deposited
in a public cell depository. Thus, if claims are not carefully drafted, the information
required to satisfy the written-description requirement for the gene sequence may
eliminate novelty for a subfragment of the cloned DNA later shown to have unusual
functional properties.

OTHER SOLUTIONS TO PROMOTE INNOVATION:
FREE SHARING OF SNP INFORMATION

Several genetic diseases have already been shown to be the product of SNPs,
sequence variations that occur when a single nucleotide in a sequence is altered. It
is believed that SNPs could be partially responsible for genetic conditions, predispose
individuals to disease, or influence metabolism of, and responses to, drugs, toxins,
or infectious agents. Using array methodology to study SNPs should permit scientists
to establish additional correlations and associations of multiple genes that jointly
contribute to these conditions. SNP analysis may also help to predict the action of
drug candidates, and the effect of genetic makeup on the mode of drug action. This
makes the use of arrays to study SNPs of great value in new drug discovery, and
many arrays are designed for genotyping of single nucleotide polymorphisms.

In April 1999, fearful that patenting of SNPs would severely impact drug discovery
research, ten pharmaceutical, biotech, array and/or bioinformatics companies and the
U.K. Wellcome Trust announced the establishment of a nonprofit foundation, the SNP
Consortium Ltd., to find and make publicly available without patent restrictions a
highly reliable map of 300,000 common SNPs distributed evenly throughout the human
genome. The SNP Consortium planned to patent all the SNPs found as part of the
project, but to enforce the patents only to prevent others from patenting the same
information. The consortium has made its information freely available to the public.

During the project, which began in April 1999 and continued until the end of
2001, the SNP Consortium identified nearly 1.8 million SNPs, many more than
originally planned. See notes on the last data release (Sept 2001) for more informa-
tion. Various member laboratories are now in the process of genotyping a subset of
those SNPs as a part of the Allele Frequency/Genotype Project.

Whether the consortium’s unique approach to solving the debate over patenting
SNPs is successful in eliminating freedom to operate issues relating to SNP
sequences remains to be seen. In addition, processes for analyzing SNPs using array
technology have been separately patented.

CONCLUSION

Microarray and gene chip technology has proven to be a valuable tool in explaining
the genetic basis of disease, identifying new targets in the search for new thera-
peutics and the diagnosis of genetic predisposition to disease. The increasing
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market for array and gene chip technologies will likely lead to the enforcement
and challenge of patents to array and gene chip technologies, and genomic dis-
coveries made possible by those enabling technologies. As courts continue to
grapple with the application of patent law requirements and PTO guidelines to the
patentability of array, gene chip, and related technologies, new court rulings may
determine and impact the balance between rewarding early discovery and encour-
aging long-term innovation.
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Since their conception in the late 1980s, DNA microarrays and biochips have not only
proven their value in genomic research but also created a multibillion dollar industry
with diverse applications. From DNA microarray to protein arrays, microarrays have
made their impact in many aspects of life science and forever changed the way scientists
in life science approach their research. The microarray industry has been one of the
fastest growing fields since the mid-1990s and will remain so in years to come.

DNA MICROARRAYS: AN ESTABLISHED AND
EXPANDING BUSINESS

By all accounts the research community, either academia or pharmaceutical industry,
has embraced DNA microarrays. Since the publication of the first microarray study
in Science in 1995 [1], the DNA microarray burst into a $48 million industry in
1997 [2]. As DNA microarrays quickly became the standard in genomic research,
the market expanded to $232 million in 1999 [2,3]. As the genomic research further
expanded, the DNA microarray market further doubled to $596 million in 2003 [4].

The extremely fast growth of the DNA microarray industry from 1997 to 2000
had led to overoptimistic projections for the industry. Market research reports
published in late 2000 and early 2001 predicted a compounded annual growth rate
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of more than 50% and over a $2 billion market in 2004 [3]. Such predictions did
not come true. After a take-off period from 1997 to 2000, the DNA microarray
market continued to grow, but at a marked slower pace from 2001 to 2003. According
to a report published by Frost & Sullivan in 2004, the global market for DNA
microarrays is poised to grow at an annual average of 6.7% from $596 million in
2003 to $937 million in 2010 [4].

From 2000 to 2005, applications of DNA microarray have expanded from now
standard gene expression profiling and genotyping research and development in the
pharmaceutical industry and academia to new markets in agriculture, business,
environmental analysis, forensic analysis, and clinical diagnostics. If successfully
adopted in molecular diagnostics, the DNA microarray and related reagents will
experience an even more explosive surge in market growth. Much of this growth
will be from new growth areas for microarray, such as SNP analysis, Comparative
Genome Hybridization (CGH), and the study of myriad epigenetic factors with whole
genome or tiling arrays.

Geographically, the U.S. is still the leader as well as the biggest market in DNA
microarray, followed by Europe and Japan. According to a report by Frost and
Sullivan at the end of 2005, the total U.S. DNA microarray revenue was approxi-
mately $447 million in 2005, and projected to grow at a compounded annual growth
rate of 10.9% to $532 million by the end of 2012 [5].

THE EVOLVING INDUSTRY LANDSCAPE

The DNA microarray industry emerged in the mid-1990s. In the past decade, the
industry has matured, and the landscape has changed significantly from its early
days. Affymetrix of Santa Clara, CA, was one of the very first companies to commer-
cialize microarrays. The company pioneered the in situ synthesis of oligonucleotides
on glass chips. Affymetrix’s proprietary processes combine solid-phase chemical
synthesis with photolithography. It was the first to offer commercial human genome
microarrays, as well as the first to offer human “whole-genome” arrays. Its GeneChip —
an Affymetrix trademark — now contains over 1 million different oligonucleotides,
representing more than 33,000 of the best-characterized human genes. The price of
GeneChips has come down significantly, bringing them within the reach of at least
some academic researchers. On a cost per feature basis, they have come down an
order of magnitude. Affymetrix’s strategy has been to offer more per chip as com-
pared to reducing individual chip price, partly because the company has command
over the high-density market. Affymetrix had an estimated 70% market share in 2003.
There have been major shakeups in the industry. Incyte Genomics of Palo Alto,
California, one of the leading suppliers of microarrays in the 1990s, quit the chip-
making business in 2001, deciding to refocus on its core business of bioinformatics.
Incyte shifted its focus again from informatics to drug discovery a year later. In
part, Incyte had hoped or hopes to utilize revenues gained from its informatic sales
and milestone payments resulting from utilization of this information to leverage
itself into a full-fledged pharmaceutical company, but this remains to be seen.
Motorola of Northbrook, IL, intending to enter the already crowded market,
launched CodeLink bioarray in summer 2001. Motorola’s move into the DNA
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microarray industry turned out to be unsuccessful. In summer 2002, Motorola sold
its CodeLink™ prearrayed slides business to British biochip maker Amersham in
an effort to downsize the company and refocus on its core business. To further mark
transition for this company, its new parent company was sold in January 2004 to
General Electric. Concurrent with this the CodeLink platform offered full arrays for
human, rat and mouse genomes in 2004. It is expected that General Electric will
breathe new life into this once ailing business, in part with an emphasis of utilization
of this technology in the diagnostic market.

Motorola and Incyte may be gone, but there are more competitors entering
the market, including the No. 2 rank holder, Agilent Technologies in Palo Alto,
California, and General Electric (GE). Other recent entrants, such as Illumina of
San Diego, California and Applied Biosystems of (Foster City, California), are vying
to grab chunks of Affymetrix’s market share as well.

In contrast to Affymetrix’s methods, Agilent Technologies uses proprietary Sure-
Print inkjet technology and offers human, mouse, and rat cDNA arrays and custom
oligonucleotide arrays. As a recent spun-off subsidiary of Hewlett-Packard, Agilent
still has access to considerable expertise in inkjet printing methods and high-end
analytical instrumentation, principally high-performance liquid chromatography and
mass spectrometry.

Much of the new demand for chips is for more customized chips than Affymetrix
makes. Once the first draft of the human genome was completed in 2001, researchers
quickly turned up a vast number of possible targets for potential drugs. The need
thereafter is to narrow the field by validating which targets deserve further study.
This new mission requires chips whose focus is small groups of specific genes,
potentially run in higher throughput, or the genetic makeup of obscure organisms.

Agilent is benefiting from this trend. Its inkjet manufacturing process seems to
be much more adaptable to customization than the photolithography process that
Affymetrix uses. Agilent estimates that its share of the biochip market rose to 15%
in 2003, up from what analysts say was single digits previously. That growth came
from sales of “catalog chips,” which contain the genetic maps of organisms widely
used in research, such as human, rat, and mouse, and from sales of customized chips.

Other players are trying to expand the limits to how much can be put on a single
chip. Illumina launched a six-genome chip in mid-January 2004 that will let cus-
tomers run six of the same experiments on a single chip, saving time and money.
[lumina hopes that this product will take some market share from Affymetrix. At
the press release price of $160 per genome chip this will be a very compelling
offering compared to the current GeneChip. Unfortunately a lawsuit alleging
infringement of various Affymetrix patents quickly ensued following this press
release. Illumina fought back with a countersuit against Affymetrix for unfair com-
petition. The patent war saga continued when Illumina challenged Affymetrix’ right
of a different patent in October 2005. It remains to see the final outcome of these
lawsuits and how it will affect the industry. Recent press releases in the industry
are suggestive of Illumina’s favorable position in that even the more conservative
pharmaceutical customers are now willing to work with Illumina, with public state-
ment, even with these pending lawsuits. It is also interesting to note that in 2006
the total market cap of Illumina, once dwarfed by mighty Affymetrix, has now for
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the first time, exceeded that of its rival. Much of this growth for Illumina has been
largely based upon its expansion into the new SNP markets, after Affymetrix had
significant setbacks with its 500K chip-set in early 2006.

Along with actively protecting its voluminous patent position, Affymetrix has
stepped up its efforts to push the GeneChip envelope. The company in the fall of 2003
was the first large player to put the entire human genome on a single chip, and it
continues to add to its large library of chips containing whole genomes of heavily
researched organisms. The company also strengthened its custom array offerings by
initiating a partnership with NimbleGen, a DNA custom array maker, in mid-2004.
Under the agreement, Affymetrix will market NimbleGen’s made-to-order Nimble-
Express arrays for use on Affymetrix’s GeneChip instrument systems.

Yet such dominance has not stopped new entrants into the market. Undaunted,
Invitrogen of Carlsbad, California, made a foray into the DNA custom array market
through its acquisition of Xeotron in 2004. Still, Affymetrix enjoys a comfortable
lead in the DNA microarray market. A survey in late 2005 shows that 75% of
researchers use Affymetrix arrays [6]. A recent report by BioCompare Inc. of South
San Francisco in mid-2006 shows that Affymetrix’s microarray sales bring in well
over $350 million revenue annually, while the revenue of Agilent, GE Healthcare,
and Illumina combined only account for just over one-third of that amount [7].
Indeed, Affymetrix’s competitors find it the biggest challenge to convert the Big
Pharma customers who have been entrenched with Affymetrix. Once again you don’t
lose your job by buying IBM conceptually.

CONTINUED MARKET DRIVERS AND
COMMERCIAL PROSPECTS

Suppliers of DNA microarray products and services will face major challenges in a
market environment characterized by rapidly changing technology, extensive gov-
ernment regulation, downward pricing pressures and ongoing intellectual property
battles. Genomic research will continue to be the leading application of DNA
microarrays in the foreseeable future. Genomic research is moving well beyond
deciphering genetic code sequences, rather focusing on analyzing specific actions
of genes and gene-encoded proteins. As a result, for DNA microarrays, gene expres-
sion profiling is projected to also comprise the leading application over the next
several years.

After a rapid embrace of DNA microarray technology, the research community
soon realized the problems associated with a lack of consensus on how to analyze
microarray data. In response to standardizing data collection from different microar-
ray platforms so that they can be accurately compared, the Microarray Gene Expres-
sion Data Society (www.mged.org) has developed guidelines for the publication of
DNA microarray data. The guidelines, Minimal Information about a Microarray
Experiment (MIAME), are meant as provisional solutions to the broader problem
of standardizing microarray data annotation and interpretation. Some journals —
including Nature, Cell, and The Lancet — have adopted MIAME. The desire to
standardize may lead more researchers to choose commercial arrays over the home-
grown variety, and will inspire investigators to purchase complete array systems to
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ensure the reproducibility of their data. As prices of DNA microarrays continue to
drop, more researchers are expected to be able to buy into the commercial arrays.
In fact the economy of scale, in part, dictates that it will be a cost-effective, and
therefore a wise business decision to choose manufactured arrays over self-spotted.
Self-spotted arrays pose myriad problems for the spotter, such as the aforementioned
standardization and quality control issues inherent in self-spotting.

Pharmaceutical companies and academic laboratories will remain the leading
markets for DNA microarray products and services. DNA microarrays have been
used in almost all aspects of drug discovery and development, from target discovery
and identification to toxicogenomics and pharmacogenomics. Pharmacogenomics,
for example, stands to benefit from DNA chips. Defects in certain genes are asso-
ciated with adverse reactions to commonly prescribed drugs. Current tests for those
genes are expensive. If microarrays become inexpensive enough, they will present
an effective alternative means of testing. In fact with the advent of pharmacogenomic
screens we may see future drugs that will have as prerequisite to their dispensation
a chip-based prescreen. Ongoing efforts to improve the efficiency of drug discovery
and screening processes will boost growth opportunities among pharmaceutical
manufacturers.

However, there has been increasing pressure from the public for drug price
control in the U.S., as well as demand for approval of drug reimportation to the U.S.
(It can be argued that this is due to a misguided insurance industry and the lack
of a proper safety web for the poor and elderly). Such changes may cap the
growth of the U.S. pharmaceutical market, which is the single largest pharma-
ceutical market. With patents for several blockbuster drugs expected to expire in
the next 5 years, big pharmas are facing fierce competition from generic drug
makers, who do not have the significant R&D overhead. If big pharmas, the most
lucrative customer base for DNA microarray products, fail to sustain their sales,
it is likely that they will cut the hefty R&D cost, leading to less demand for DNA
microarrays. The real downside to this of course will be that development of new
drugs will be thwarted, and likely be a death spiral for pharma, driving further
consolidation. Alternative viewpoints suggest that if DNA microarrays can be
used to fail poor compounds earlier in the discovery process, cost savings would
dictate increased expenditure.

Demand in the academic community will increase as life science researchers
seek powerful and versatile tools for basic research. On the other hand, college and
university laboratories will remain price sensitive due to ongoing funding constraints.
The academic community will remain more likely to use “homemade” biochip
products whenever feasible. This trend will impose downward pricing pressures on
industry suppliers. Again economy of scale and desire for standardization may be
the ultimate drivers.

Though genomic research will remain the leading application of DNA microar-
rays, the market is reaching saturation due to constraints on private sector’s R&D
costs and public sector’s funding. Therefore, it is imperative for the microarray
market leaders to move aggressively into other markets for further growth. Rapid
growing niche opportunities will emerge in in vitro diagnostic testing, forensic
medicine, agriculture, and food diagnosis. DNA fingerprinting has become widely
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accepted in forensic medicine, plant genetics, and food diagnosis. DNA microarrays
are very effective test systems for nucleic acids and will likely become the new
standard tool for these tests, if the price becomes affordable. With razor-thin margins
in the diagnostic industry, it is likely that these costs will have to be driven down
an order of magnitude or more.

Still, the move into diagnostics has the greatest potential, in part because of
the scale, opening the doors to a market that could exceed $1 billion [4,8].
Affymetrix and Roche Diagnostics have launched in June 2003 the AmpliChip
CYP450 array (an Affymetrix chip), which measures genetic variations in drug-
metabolizing enzymes. Agilent and Agendia are in collaboration to develop what
could become the first gene-expression-based test used in the clinic. Amersham’s
2004 acquisition by GE was facilitated by their mutual interest in pharmacoge-
nomics and diagnostics.

As mentioned, diagnostic chips will have to be priced significantly lower to be
competitive in a market saturated with low-priced qualitative diagnostic kits. Cur-
rently, microarrays range from a few hundred dollars to $1000 or more. The good
news is that diagnostic chips will carry far fewer genes than the latest research arrays,
making it possible to be in smaller size and priced in the double digits. Time will
tell how much share of the diagnostic market DNA chips can grab.

PROTEIN ARRAYS: AN INDUSTRY IN TAKE-OFF

Though not yet at DNA microarray status, protein arrays are on their way to become
a key technology. Because the size of the protein field is much larger than that of
the DNA field, many expect the protein microarray potential to be much larger than
the DNA microarray field.

In their simplest iterations the principle that underlies protein microarrays are
similar to DNA microarrays. When the protein microarray is exposed to a mixture of
other proteins, molecules that naturally interact with the proteins fixed on a slide
bind to the protein probes. The proteins bind to the probes and can be labeled and
visualized similar to the way the gene sequences in DNA microarrays are. However,
many more potential applications and specific detection methods than can be men-
tioned here are possible.

Making a protein biochip is technically much more challenging than making a
DNA chip. Proteins are far less stable than DNA. They tend to be active only when
in their native conformation. Changes in pH, temperature, or the ionic strength of
a solution can cause native proteins to change conformation and denature, rendering
them inactive. Therefore, the research community was much more cautious to accept
this technology than DNA microarray.

Many of these initial technical problems are now solved or being solved and
scientists can now choose among various ready-made antibody- or protein-profiling
arrays. For those that prefer to make their own protein chips, tools and kits for do-it-
yourself arrays are also available. As researchers overcome initial skepticism, protein
arrays are on their way to become a mainstream tool. Still, protein array developers
have to continue to address problems such as manufacturing cost and sensitivity.
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EMERGING INDUSTRY LANDSCAPE

Protein microarrays have only just begun to make an impact on the life science
community. Although not as significant as its DNA counterpart yet, the industry is
maturing from its emerging state. Many companies are betting that proteomics will
emerge as the next wave of research in basic life science and drug discovery. Early
entrants into the protein chip business from the late 1990s to the early 2000s included
Ciphergen of Fremont, California, Large Scale Proteomics, a division of Large Scale
Biology Co. of Vacaville, California, Packard BioScience of in Meriden, Connecticut,
and Phylos of Lexington, Massachusetts. There have been major changes of these
early entrants in the protein microarray market. Packard was acquired by PerkinElmer
in 2001. Phylos was acquired in 2004 by Compound Therapeutics, the now Adnexus
Therapeutics of Waltham Massachusetts, and refocused on its pursuit of protein
therapeutics. Large Scale Biology filed bankruptcy in January 2006. Ciphergen, while
formerly a major player, eventually decided to focus on its diagnostics business in
2006. The company recently announced the sale of its life science research business,
including its protein chip business, to Bio-Rad of Hercules, California.

Several companies offering DNA microarray technologies have also begun
migrating into the field. For example, Amersham Bioscience of GE Healthcare, No. 3
in the DNA microarray industry, has been actively working on high-density protein
chips and hopes to sell them in 2005. Likewise, Boston-based PerkinElmer, provider
of MICROMAX™ line of cDNA arrays, now offers a complete proteomics package
from slides, printing and scanning equipment to labeling and amplification reagents
for the production of protein microarrays.

Major life science reagent companies are eyeing the field as well. For example,
Invitrogen has strengthened its position in the proteomics research tool market through
a series of acquisition and licensing deals since 2003. In summer 2004, the company
launched ProtoArray Yeast Proteome Microarray, the world’s first proteome microar-
ray, soon after its acquisition of Protometrix of Branford. Connecticut, the developer
of the pioneering ProtoArray technology. Invitrogen has since launched several
ProtoArray human protein microarrays. Clontech of Mountain View, California, now
a Takara Bio company, offers Clontech Ab Microarray 500 Slides, which contain
512 well-characterized antibodies. The two companies emerge as top suppliers of
protein microarrays, as indicated by a market survey in fall 2005 [9].

Although the content of most protein arrays is proteins, ranging from antibodies
and antigens to recombinant proteins and peptides, some companies are currently
developing alternatives. SomaLogic of Boulder, Colorado, for example, employs
photoaptamers, single-stranded nucleic acids selected to bind specifically to target
proteins. These aptamers form covalent bonds with their targets when irradiated with
ultraviolet light, allowing more stringent washing and better signal-to-noise ratios.
This approach also seems to be more cost-efficient and less time-consuming than
developing specific monoclonal antibodies.

It is too early to predict whether aptamer arrays, a nucleic acid-based technology,
will outshine antibody arrays and become the dominant protein chip. Only time will
tell. Neither is it absolutely clear at this current stage which company, if any, will
become the dominant leader in the protein chip industry. Several companies have
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invested heavily in protein chips. Like many other emerging industries, there will
be a consolidation in the protein chip industry in the next 10 to 15 years. Whatever
the fate of individual protein microarray companies, it is clear that the era of
microarray-based proteomics has arrived.

MARKET DRIVERS AND COMMERCIAL PROSPECTS

Proteomics has been the most imminent driver for protein microarrays and will
remain so in the next 5 years. The proteomics market has reportedly grown from
$1.1 billion in 2001 to $1.4 billion in 2002 [10]. Although DNA microarrays can
measure mRNA expression levels in a cell, they cannot yield direct measures of the
proteins produced. Protein chips on the other hand can directly measure both the
relative level of proteins and their interactions with other molecules. Recognizing
that mRNA expression levels do not always accurately reflect the expression of
corresponding proteins or secondary processing/modification events researchers are
increasingly combining gene expression and proteomic data. As genomic research
is moving toward analyzing specific actions of genes and gene-encoded proteins,
protein arrays’ potential in the proteomics field appears tremendous.

Furthermore, protein microarrays will permit researchers routinely to study
families of proteins in their efforts to understand the complex interactions of protein
systems inside cells. Such studies can illustrate protein interactions and signaling
pathways, providing more definite answers to whether a potential target is indeed
involved in the disease etiology and how it affects the disease development. Scientists
can address more complicated questions about gene function and drug interactions
than they otherwise might.

Protein microarrays have great potential for use in drug development as well.
One such application is for toxicology studies. Currently, drug developers screen
compounds for toxicity only in animal trials. With effective toxicity assays, protein
microarrays could identify toxic compounds well before the animal trials, saving
pharmaceutical developers the costs of further developing drug candidates that will
prove fruitless — in other words, taking the fail-early strategy.

Beyond proteomics research, protein microarrays have great potential in clinical
trials and diagnostics. Yet it is not likely that commercial products in this arena will
be widely available in the next 5 years. As in DNA microarrays, challenges to develop
clinical products are higher than research products. One cannot sacrifice accuracy or
ease of use in clinical products. With that said, protein microarrays can be adapted
into many different applications. Market potential for protein chips is likely to be much
bigger than that of DNA microarrays, which already reached $596 million in 2003 [4].

BIOCHIP INDUSTRY: THE NEXT 5 YEARS

The biochip industry has grown beyond DNA and protein microarrays to tissue
arrays, cell arrays and other arrays. The fast adoption of biochips also drives the
growth of related services such as instruments, software, reagents, and other con-
sumables. According to a recent market report, demand for biochip products and
services in the U.S. will expand more than 25% annually to nearly $1.8 billion in
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2006 [2]. Sales of biochips will reach $720 million, while combined sales and
revenues of related products and services will reach $1 billion.

Different microarray industries will see different growth projections in the next
5 years. The DNA microarray industry will continue to grow, but the market has
matured. The past 5 years saw the fastest growth of DNA microarrays in genomic
research. Although DNA microarrays will be more widely used in the next 5 years,
the total revenue for DNA microarrays in genomic research will grow at a much
slower pace as the price of DNA chips fall due to competitive pressures. Diagnostic
DNA chips will likely become available in the next 5 years and open a whole new
market for DNA microarrays.

Protein microarrays have overcome initial technical challenges and started mak-
ing an impact in the life science community. Protein chips will see the strongest
growth owing to demand for functional genomics studies by pharmaceutical and
other life science researchers. A market report projected the protein microarray
market to grow at an annual growth rate of 85% to 2006 [11].

Tissue arrays, cell arrays, and other arrays are in an emerging stage. The next
5 years may see the emergence and maturation of commercialization of these novel
arrays. Microarrays are such a versatile technology that can be adapted into a
spectrum of different applications. In many ways, this ensures microarray remains
one of the fastest growing fields for years to come.
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MICROARRAYS: CURRENT-MARKET OVERVIEW

Since the completion of the Human Genome Project, DNA microarrays have become
a significant laboratory research tool. The microarray industry is now poised for
explosive growth into other areas including clinical diagnostics/toxicogenomics,
environmental analysis, antiterrorism monitoring, comparative genomics, and foren-
sic testing. Most industry analysts would agree with a recent Frost & Sullivan report
that puts the current size of the DNA microarray market at nearly $600 million [1].
In their report, Frost & Sullivan predict that total DNA microarray revenue will
reach $937 million by the end of the decade with a compound annual growth rate
of 6.7%. Estimates regarding the DNA microarray industry could go higher if one
considers that Affymetrix alone posted $222 million in product revenue in 2003 and
if it were to continue to post growth at 10% compounded annually for the next
6 years (a low rate when compared with its previous 5 years) Affymetrix could
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anticipate product revenues of $430 million by the end of the decade [2]. When one
considers that close to 50% of the array market, by volume, was done by do-it-
yourselfers in 2003, shrinking to less than 25% in 2006, and not with commercially
purchased arrays, and that Affymetrix accounts for 80% of commercial array sales,
the total market for DNA arrays could be well over $1 billion by 2010 [3]. The
continued conversion from the home-grown variety of arrays to the commercial
arrays, as economy of scale and qualitative considerations takes hold, could greatly
drive these numbers. Additionally, the array industry as a whole, including DNA,
protein, cell, and tissue arrays could exceed $5 billion by 2010 [4].

Though these estimates are impressive, they still fail to take into account the
explosive industry growth that could occur, should microarrays take off in any of
the four emerging growth areas, namely clinical diagnostics, toxicogenomics,
environmental monitoring, and bioterrorism. Current estimates put the DNA-based
(nonmicroarray) diagnostics industry at more than $1 billion (2002) with expectations
that it will reach $3 billion by 2008 [5]. Toxicogenomics, with a current market of
only $120 million (2003), is expected to grow to almost $259 million by 2008 [6].
But the real financial incentives are coming from the U.S. government’s commitment
to combating terrorism. There is an expectation that DNA microarrays will be used
in every aspect of counterterrorism from surveillance to exposure diagnosis to
treatment monitoring. The stakes are high and so are the funding opportunities for
microarray technologies. For example, funding at the CDC for initiatives regarding
public health preparedness and response to bioterrorism topped $49 billion in 2004
[7]. To add to these numbers, the budget proposed by President Bush for 2005
includes a 10% increase to Homeland Security funding and an increase in the Health
and Human Services budget for bioterrorism preparedness to over $5 billion from
just $300 million in 2001 [8]. Included in the 2005 number is money for Project
Bioshield with a $2.5 billion budget proposal before Congress (up from $900 million
in 2004) and an estimated $5.5 billion secured for the project over the next 10 years
and a new $129 million biosurveillance initiative. The proposed funding for the NITH
tops $28 billion in 2005 with $1.7 billion set aside for bioterrorism research. There
is also a $567 million allocation for defending food and agriculture systems. In many
of these areas DNA microarray technology could prove useful pending further
development. It is clear that federal initiatives offer great financial incentives for
those in the DNA microarray industry to push this technology forward.

Of these “new frontiers” for DNA microarrays, early commercial applications
and market adoption is expected in the area of molecular diagnostics. Diagnostic
arrays could be used to profile tumor subtypes to identify patients who would respond
to a particular drug treatment a priori, for treatment decisions or for inclusion in
clinical trials, and might also be used to follow a patient through treatment to see
if the tumor is responding [9-13]. One recent study using DNA microarrays to
diagnose non-Hodgkin’s lymphoma (NHL) illustrates this point [14]. In 2000, there
were 22,553 deaths from NHL subtypes, and 54,900 patients were newly diagnosed.
Of the various subtypes of NHL, diffuse large B-cell lymphoma (DLBCL) subtype
is the most common. Within this subtype, only 35-40% of patients can be cured
with chemotherapy, the remaining 60-65% with DLBCL will die from the disease.
Current techniques, such as histopathology and molecular markers, are unable to
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distinguish between responsive and nonresponsive DLBCL tumors. However, using
DNA microarrays to profile gene expression, researchers were able to classify
DLBCL tumors into several subclasses and to further link those profiles with patient
prognosis.

The application of microarrays to the study of toxicogenomics is already moving
into the commercial realm. Affymetrix and Roche have teamed up with a $70 million
multiyear partnership to develop commercial array applications. Their first product
is the Amplichip™ CYP450 microarray launched in June 2003 in the U.S. and, in
fall 2004, received its CE mark for launch in Europe [15]. The CYP450 chip is used
to identify variations in two genes (CYP2D6 and CYP2C19) that play a major role
in the metabolism of various drugs. Revenue expectations are high, and corporate
sources are hoping for $100 million annually by 2008 from this single product,
though the pair expects the P450 array will be only one of several pharmacogenomic
tests in the platform [16]. However, the FDA has already begun to question
Roche’s classification of the Amplichip as an ASR (analyte-specific reagent), which
did not require review prior to launch [17]. The FDA is investigating whether the
claims made by the company for the chip would require it to be designated as a
medical device that would then be subject to FDA review and likely array platform
standardization requirements for both test procedures and data analysis. Currently,
the device is approved for research use only, and is not indicated for clinical
diagnosis, though Roche is pursuing IVD (in vitro diagnostic device) status for the
Amplichip. Regardless of its designation, toxicogenomic chips are in demand not
only for clinical patient profiling but also from drug industry researchers to enable
them to identify toxic compounds earlier in the R&D timeline, saving time and
money. Meanwhile, there are those in market research who anticipate that over the
next year, the use of microarrays for toxicogenomics could grow by approximately
33% among existing users [18].

The combination of molecular diagnostics and toxicogenomics studies are lead-
ing the way toward personalized medicine where treatment plans would be tailored
to an individual’s response and potential for side-effects based on the personal
genetic expression pattern. There is a growing eagerness for such personalized
medicine. In a recent, though small, survey, 43 participants were asked how much
more they would be willing to pay for tailored drugs that better matched their body
type and have fewer adverse reactions [19]. Of the 43 questioned, 27 said they would
pay 10% or more for such personalized medicines. There are, however, significant
barriers to the widespread adoption of microarrays in clinical diagnostics such as
reimbursement, education, awareness of the test’s utility, nonuniform testing proce-
dures, data interpretation, and intellectual property rights covering specific genes
that limit their inclusion in such tests [20].

Federal funding of environmental and antiterrorism surveillance has helped to
stimulate the development of commercially viable microarray-based detection prod-
ucts. In order to be competitive, biosurveillance devices must become more accurate,
faster and cheaper as outlined by panelists at a bioterrorism session at the Biotech-
nology Industry Organization (BIO) Convention in Washington, D.C. (June, 2003).
For example, current air monitoring tests cost about $40 and are truck-mounted but
will need to be made both cheaper and smaller according to Cindy Bruckner-Lea
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(staff scientist, U.S. DoE Pacific Northwest National Laboratory). It is in this context
that DNA microarrays could prove useful if the analysis device could be miniatur-
ized. Recently, BioLog Corporation has been awarded an NIAID grant to develop
their Phenotype Microarray™ for bioterrorism agents, and a group at Lawrence
Livermore National Laboratory has constructed a Multi-Pathogen Identification array
that proved to be 91% accurate and able to detect as little as 10fg of B. anthracis
DNA in a sample [21]. Microarrays can also be used to aid in determining if there
has been a terrorist attack at the patient level. Because an outbreak of flu might
present symptoms similar to an outbreak caused by exposure to a biowarfare agent,
there is a real need to be able to quickly determine the source of a patient’s symptoms.
One can imagine a scenario at local emergency rooms during such an outbreak where
physicians would have to make a rapid assessment about public threat levels and
will need diagnostic tools to do so. With this in mind, Dr. Maria Salvato at the
Institute of Human Virology, University of Maryland Biotechnology Institute is
employing DNA microarrays to identify gene expression profiles that correspond to
a flu infection vs. infection from a more serious threat [22]. There are many other
potential applications for microarrays in combating terrorism that have not been
discussed here.

DNA sequencing is also becoming an important growth area for microarray
technology and has applications in both terrorism surveillance and public health
monitoring. For example, the recent severe acute respiratory syndrome (SARS)
outbreak highlighted the need for rapid genetic level identification of the virus, as
well as an immediate need for an easy-to-use, accurate screening tool for patient
diagnosis. There was really no time to develop a traditional antibody-based diag-
nostic test in light of the rapid spread of the virus from Asia to North America and
Europe. The ability to quickly identify the strain of the outbreak through comparative
sequencing could lead to a better understanding of how the virus spreads and how
best to treat patients. Monitoring mutation patterns and rates among other viruses
such as HIV, polio, and rhinoviruses might enable researchers to create better vaccine
or drugs that target specific variants.

In summary, there are many areas in which DNA microarrays will have a
significant impact. From bioterrorism, cancer profiling, or to monitoring global flu
outbreaks, there are a wide range of opportunities and significant increases in both
public and private funding to stimulate microarray technology development.

MICROARRAYS: COMPANY PROFILES

The following is a list of companies that are involved in the microarray arena. The
list is by no means exhaustive, nor is it a complete description of the offerings of
an individual company. The following is meant to provide an overview of the kinds
of business involved in microarray development and include companies that provide:
sample preparation, microarray construction, do-it-yourself providers, robotics, data
analysis, reagents and full-service array outsourcing.

Affymetrix (Santa Clara, CA) generates oligonucleotide arrays by synthesizing
short oligonucleotide probes (20 to 25 bases) directly on the surface of chips via
photolithography and combinatorial chemistry using photomasks akin to the
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semiconductor industry. Although their DNA density is quite high (500,000 features
per chip), Affymetrix continues to work on decreasing feature size to realize signif-
icant reductions in manufacturing cost, especially as measured on a per feature basis.
Affymetrix expects to get to features that are orders of magnitude smaller than
currently produced. Several new high-density array products have recently been
launched including CustomSeq, for large-scale resequencing projects and Mapping
10K, Centurion 100K, and reports of a release of 500K SNP genotyping chips in
2005, which allows genotyping of 10,000, 100,000 or 500,000 SNPs, respectively.
At 500K density, this will give a serious competitive advantage to Affymetrix for
genetic association studies that predict the need for greater than 300K SNPs needed
for most screens. Affymetrix also has prelaunched a 96-well-based system for expres-
sion profiling geared toward large pharmaceutical users; this has the potential to
provide a much lower cost alternative to the cartridge arrays. This system is based
upon a modified CaliperLS SciClone robotic platform. Whole plate scanning is
achieved via an Axon OEMed whole plate scanner.

Agencourt Bioscience Corporation (Beverly, MA) provides DNA sequencing,
SNP discovery and library construction services.

Agilent (Palo Alto, CA) provides Printed Microarray Solutions, which are a line
of catalog oligo microarrays printed with 60-mer probes including a new whole
mouse genome microarray kit and which has been a widely used source for custom
array design and printing services.

AGOWA (Berlin, Germany) provides DNA sequencing and genomics services.

Agilix Corporation (New Haven, CT) has designed a set of universal probes
and a procedure called rolling circle amplification (RCA) to provide full transcrip-
tome analysis that can be done without the need for prior consent?

Applied Biosystems (Norwalk, CT) offers the Applied Biosystems Expression
Array System that includes the Human Genome Survey Microarray. The current
version of Human Genome Survey Microarray contains 31,077 probes that cover
53,977 individual transcripts and target a complete, annotated, and fully curated set
of 27,868 human genes from the public and Celera databases and is used with the
Applied Biosystems 1700 Chemiluminescent Microarray Analyzer. They also offer
a macroconfocal system (8200 Cellular Detection System) that employs the com-
pany’s FMAT® platform [3] for assaying cells or beads in standard microtiter plates.

Applied Precision, LLC (Issaquah, WA) is a provider of imaging, measurement,
and analysis systems for life science research and of outsourced microarray analysis
services.

Avalon Pharmaceuticals (Germantown, MD) is a drug discovery company that
measures changes in gene expression patterns in response to an applied drug candidate.

Axon Instruments (now part of Molecular Devices) (Union City, CA) pro-
duces the GenePix® 4000B microarray scanner equipment, one of the most well
adopted scanners for smaller scale microarray, as well as a line of specialized
imaging systems.

Bangs Laboratories (Fisher, IN) is a supplier of uniform microsphere products
including its QuantumPlex™ product line for flow cytometry-based multiplexed
analyses. The company offers bead sets preconjugated with streptavidin or goat-
anti-mouse IgG, or beads bearing a carboxylate group.
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BD Biosciences Clontech (Franklin Lakes, NJ) manufactures the Atlas™ gene
expression microarrays made with spotted 70-mer probes and also supplies antibody
microarrays and Cytometric Bead Arrays.

BioArray Solutions (Warren, NJ) provides custom bead arrays for DNA, pro-
tein, and cell analysis.

Biocept Laboratories (Carlsbad, CA) employs the 3D HydroArray Technology
platform using a ‘hydrogel’ substrate to generate two-dimensional DNA or protein
microarrays with a focus on prenatal health.

Bioforce Nanosciences, Inc. (Ames, IA) is applying its nanoarray technology
to proteomics and diagnostics uses and had developed the ViriChip™ pathogen
screening system.

BioLog (Hayward, CA) offers array sets, testing 2000 phenotypes of microbial
cells called the Phenotype MicroArray™.

Bio-Rad Laboratories (Hercules, CA) offers the VersArray™ microarray
hybridization chamber and offers Luminex’s instrumentation integrated with Bio-
Rad’s Bio-Plex™ software for simplified system setup, data analysis/management,
and automated hardware validation/calibration.

BioSource International (Camarillo, CA) offers antibody bead array kits using
the Luminex platform.

Caliper Life Sciences (Hopkinton, MA) is a microfluidics company that offers
the LabChip 90 for DNA analysis of multiplex PCR and digest fragments as well
as protein analysis. It also now offers a new version, the LabChip 3000, with a 16-
sipper design that may prove to be a fundamental part of higher throughput systems
requiring high-density plate formats. It would be intriguing if they combine an RNA
analysis for high-throughput applications and QC. They also have had a limited
foray into automation cassettes and instrumentation for higher throughput slide-based
applications, as well as newer joint ventures with Affymetrix to provide instrumen-
tation for high-density plate arrays. Perhaps this company is well poised to take part
in the next wave of higher density microarray.

Compugen (Tel Aviv, Israel) is an informatics company that has agreements
with Sigma-Genosys, Pfizer, and Novartis. Microarray manufacturers are increas-
ingly forming partnerships with bioinformatics companies to develop probes that
more accurately reflect mRNA variations.

Combimatrix (Mukilteo, WA) sells a semiconductor-like custom array with the poten-
tial for electrochemical detection as well as standard fluorescent detection. It has had
collaborations with Roche for diagnostic systems and with the Department of Defense.

Corning (Corning, NY) sells GAPS™ II and Ultra-GAPS™ coated ultraflat
glass slides for self-spotted arrays as well as many reagents and plasticware for
microarray. They had made an earlier unsuccessful foray into spotting of microarrays
with limited acceptance, using a fairly unique process utilizing a ceramic spotting
head system for which they still hold the patent.

Decode Genetics (Reykjavik, Iceland) is a biopharmaceutical company that
employs a population-based approach to gene discovery using genetic and genea-
logical data gathered from more than half the adult population of Iceland. Decode
currently has lead programs in heart attack, arthrosclerosis, asthma, stroke, schizo-
phrenia, diabetes and obesity.
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EraGen Biosciences (Madison, WI) uses novel DNA chemistry, incorporating
synthetic base pairs into the natural DNA code to develop “universal DNA microar-
rays” that are not specific to a single organism.

Fluidigm Corporation (San Francisco, CA) produces integrated fluidics circuits
with the TOPAZ™ System that are currently used to identify conditions for protein
crystallization. Microfluidics techniques such as those offered by Fluidigm may be
used 1 d to create integrated systems for both sample preparation and analysis of
DNA and protein microarrays.

Furuno Electronic, Ltd. (Japan) has recently announced that it will be offering
DNA microarray synthesizers through a deal with Combimatrix. The pair will
codevelop a commercial bench-top synthesizer (BTS) instrument to be launched in
2005.

Future Diagnostics (Netherlands) specializes in the contract development of
assays for other companies.

GE Healthcare (former Amersham BioScience, former Motorola) (Piscat-
away, NJ) offers CodeLink™ prearrayed oligonucleotide bioarrays for gene expres-
sion and SNP analysis as well as CyScribe™ labeling kits. CodeLink™ is a new
type of array that reportedly eliminates hybridization problems and reduces back-
ground levels by putting the oligo probes into a gel matrix that more closely
resembles a solution-phase environment. The CodeLink™ brand was acquired from
Motorola Life Sciences. They also offer the Typhoon™ series imager as well as
reagents and slides for microarray applications.

Genomic Solutions (Ann Arbor, MI) produces the GeneMachines® line of array
instrumentation.

Genomics USA (Chicago, IL) is a private company working on a Human ID
chip, a Bacterial/Viral ID chip and an HLA (human leukocyte antigen typing) chip
for which they received almost $500K to develop.

Genisphere, Inc. (Hatfield, PA) offers the 3DNA™ microarray detection Kkits.

GenoSpectra (Fremont, CA) provides gene expression profiling using the
QuantiGene® Reagent System based on branched DNA signal amplification for
RNA quantification. GenoSpectra is developing a multiplex method for analyzing
the activity of up to 30 genes from a single sample simultaneously.

Illumina (San Diego, CA) pioneered the BeadArray® multiplex array technol-
ogy comprised of addressable beads that self-assemble into microwells etched into
an array substrate. The company has developed two different platforms based on
BeadArray: the Sentrix™ 96 Array Matrix for high-throughput applications, and the
Sentrix BeadChip for lower-throughput applications. Though primarily noted for its
work in the SNP arena, the company also recently announced a foray into the whole
genome expression array at a low price point utilizing its bead technology.

Invitrogen (Carlsbad, CA) is the leader in custom oligonucleotide synthesis,
enzymes and reagents for genomic expression profiling with new products focused on
proteomic arrays including the Yeast Protoarray PPI (protein—protein interaction) kit.

Luminex (Austin, TX) developed the widely popular XMAP platform enabling
up to 100 assays to be performed simultaneously in a single multiplex reaction. Tm
Biosciences (Toronto, Canada) offers beads with its Universal Array™ oligonucle-
otide adapters to create DNA multiplexed arrays for use on the xMAP platform.
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The Tm 100 Universal Sequence Set™, used with Luminex’s FlexMAP™ beads,
consists of 100 unique 24-mer tags designed to work in a single reaction with
minimal cross-hybridization. The tags can be integrated into virtually any primer
for genomic screens and SNP detection.

Marligen Biosciences (Ijamsville, MD) offers two preconfigured multiplexed
systems in its Signet™ line of xXMAP-based genotyping assays: one for detecting
43 male-specific SNPs on the Y chromosome, and one for distinguishing 30 genetic
variations in the hypervariable regions I and II of mitochondrial DNA. The company
also will work with customers to custom-design multiplexed SNP assays.

MicroFab Technologies (Plano, TX) uses inkjet technology to generate DNA
and protein microarrays.

MiraiBio (Alameda, CA) offers software for streamlining data analysis includ-
ing its MasterPlex GT program for genotyping applications.

Motorola Life Sciences (Schaumburg, IL) acquired Clinical Microsensors in
June 2000 and now offers their eSensor™ Cytochrome P450 DNA Detection System
that simultaneously detects ten well-characterized mutations belonging to the 2D6,
2C9 and 2C19 genes of the Cytochrome P450 superfamily. CodeLink systems also
originated from this group, later sold to Amersham, now part of GE.

MWG Biotech (Germany) offers catalog arrays and oligo sets using its HPSF
oligonucleotides. The MWG human array comprises 40,000 genes on two slides.

Nanoplex Technologies (Mountain View, CA) has developed novel particles
that are an alternative to traditional microsphere beads. Nanoplex has developed a
technology for manufacturing tiny, cylindrical particles that serve as the nanoscale
equivalents of bar codes. Fashioned from inert metals such as gold, nickel, platinum,
or silver, these Nanobarcodes™ are encoded with a series of submicron stripes that
can be machine-read. The rods can be complexed directly to biological molecules
for various applications, including multiplexed assays

Nanosphere (Northbrook, IL) offers the Verigene™ platform that can perform
several tests including a SNP-based test for hypercoagulation disorder and is devel-
oping assays for infectious diseases, cancer and CNS disorders.

NimbleGen (Madison, WI) offers versatile low-volume, but high-density custom
arrays synthesized using DLP technology vs. photomasks. This product is now
offered via Affymetrix as NimbleExpress.

Orchid Diagnostics (Stamford, CT) offers the SNP-IT tag array for genotyping
capabilities and provides paternity testing through its GeneScreen product.

OriGene Technologies, Inc (Rockville, MD) specializes in low-density, focused
arrays to permit study on one specific biological pathway or the study of a limited
number of genes.

Perkin Elmer (Boston, MA) provides an Integrated Microarray Laboratory
including the ScanArray scanners and MICROMAX™ line of cDNA arrays and
reagents and the Piezorray microdispensing system to generate spotted arrays.

Pharmaseq (Monmouth Junction, NJ) applies its patented microtransponder
technology to DNA probe diagnostics, single-nucleotide polymorphism (SNP) detec-
tion, and proteomics.

Qiagen (Netherlands) is the leader in oligonucleotide isolation kits and now
sells SensiChip spotted arrays. Each SensiChip Bar contains six arrays separated by
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microfluidic hybridization chambers permitting the researcher the flexibility to run
six low-density experiments at once

Quantum Dot (Hayward, CA) has developed a system based on its Qdot™
quantum dot conjugates with the following advantages over traditional labeling
methods cited: increased probe brightness, photostability, broad excitation ranges,
and narrow-emission spectra. QDC is currently developing a product line featuring
QDot-labeled beads for multiplexed assays, with applications for SNP detection and
immunoassays that may enable the simultaneous analysis of up to thousands of
analytes at once. This technology is now owned by Invitrogen.

Radix BioSolutions (Georgetown, TX) specializes in custom-developed assays
using the client’s chosen platform. A large portion of Radix’s business is currently
devoted to developing xXMAP (Luminex) assays for protein and DNA analytes.

Roche (Basel, Switzerland) launched the first commercially available pharma-
cogenomic microarray, the AmpliChip CYP450, in June 2003 for metabolic profiling
and is working on approval of a clinical diagnostic version of the test in 2004. Roche
also offers the MagNA Pure Compact for benchtop nucleic acid purification and the
LightTyper for single nucleotide polymorphism (SNP) analysis.

Sequenom (Boston, MA) offers the MassARRAY™ genetic analysis system for
SNP detection primarily and quantitative gene expression determination both based
upon a high-throughput MALDI-MS technology.

SuperArray Bioscience Corporation (Frederick, MD) is a privately held com-
pany that offers its own GEArray™ line of pathway-specific DNA microarray
products as well as other expression products and services.

Sigma-Genosys (Haverhill, UK) is well known for providing custom oligonu-
cleotides and oligo kits in addition to offering its Panorama™ expression arrays and
ORFmers.

SmartBead Technologies (Cambridge, UK) employs an alternate to bead arrays
by using a barcoding strategy called The UltraPlex™ system. This system employs
microscale aluminum particles that have a series of holes that make up the barcode.
UltraPlex™ barcodes can be used to tag biomolecules in multiplexed assays.

SuperArray Bioscience Corporation (Frederick, MD) specializes in low-
density, focused arrays for researchers who want to study a limited number of genes
involved in a specific biological pathway using GEArray® focused microarrays.

SurModics (Eden Prairie, MN) offers reagents to stabilize proteins bound to
microarrays or to microspheres for maintenance of protein integrity during storage.
They are the supplier to GE for the CodeLink microarrays substrate.

TeleChem International (Sunnyvale, CA) offers the Arraylt™ platform for
colorimetric protein microarray analysis with several new applications anticipated
in low- and high-throughput nucleic acid and protein array analysis using fluorescent,
colorimetric, chemiluminescent and surface plasmon resonance detection. Telechem
also offers microspotting devices as well as array slides and labeling kits.

3D Molecular Sciences (Cambridge, UK) has created “optically readable”
microparticles that are identified by both their shape and the holes contained in the
particle. The particles can be coupled to biomolecules for multiplex array analysis
in research, clinical diagnostics, and environmental monitoring and antiterrorism
applications.
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MICROARRAYS: FUTURE MARKET DIRECTIONS
AND HURDLES

Many exciting advances are being made in the field of microarray technology, but
there continue to be several major hurdles for the technology to evolve fully.

1. Regulatory: As demonstrated by the Roche launch of the AmpliChip, there
are many FDA regulatory problems that need to be resolved. These include
not only the designation as an IVD vs. ASR, but also how to standardize
the sample preparation, and the interpretation of results. What would
happen to isolated failures? Would failure of one gene or one section of
the array invalidate the entire assay? What controls would be required?
Many other similar questions would need to be resolved.

2. Quality control: Other FDA issues include quality control in both the
design and the manufacturing process of the array itself. One can hope
for improvements in microfabrication to minimize defects (and to
reduce costs).

3. Cost: The cost per datapoint and cost per assay will need to be comparable
to current assays, and in the context of increasing overall medical costs,
the array data will likely need to be even more cost-efficient than current
tests in order to be competitive.

4. Standardization: Currently genomic expression data is reported in many
different ways in the literature. SuperArray (Frederick, MD). is developing
a method of reporting expression levels in “copies per microgram of total
RNA per cell.” This would help to allow researchers in different labs to
compare data; however, it does not address the role of alternate splicing
of mRNA. This lab-to-lab and platform-to-platform standardization is a
major hurdle to widespread routine use of DNA microarrays. The creation
of the Genetic Analysis Technology Consortium (GATC), initiated by
Affymetrix and Molecular Dynamics, is working to standardize array-
based genetic analysis.

5. Sensitivity: Improvements in detection level of RNA to identify rare
transcripts is critical to array technology.

6. Ease of use: For DNA microarrays to become universally useful, espe-
cially in a large clinical diagnostics lab, the integration of sample prepa-
ration with detection and analysis in one machine is fundamental to
moving into the diagnostics area.

7. Reimbursement: The problem of who will pay for the adoption of DNA
microarray technologies in the clinical setting has yet to be tested. But
the ability of microarrays to generate diagnoses in hours rather than days
may help to push insurers to cover the cost of the new technologies.

Now that the Human Genome Project is completed, researchers have a nearly
complete catalog of all human genes. Because the practice of genomics relies on
large-scale, comprehensive analyses of genes, the ability to parallel process expres-
sion information using DNA microarrays has become invaluable in genomics
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research. Advances in our understanding of genomewide expression patterns will
foster many uses for microarray technology including: determining the potential for
disease, predicting drug response, disease diagnosis and monitoring, bioterrorism
surveillance, identifying infectious disease outbreaks, as well as forensic and pater-
nity identification.

Furthermore, the U.S. government has indicated its inclination toward accep-
tance of genomic data in clinical settings. In 2003, the NIH issued a vision statement
describing how genomics can contribute to the future of the practice of medicine
and the FDA issued draft guidelines for the submission of genomic data in drug
applications [23,24]. In September 2003, J. Craig Venter announced at the 15th
Annual Genome Sequencing and Analysis Conference that his Science Foundation
would establish a $500,000 cash prize to the person(s) who can develop a whole
human genome sequencing technique at a cost of $1,000 per genome. The use of
microarrays for DNA sequencing holds great promise for reaching Dr. Venter’s goal.
The recent increases in funding sources, the creation of new corporate partnerships,
the launch of new commercial products and the tantalizing potential for wide-use
applications combine to make the future of DNA microarray technology very bright.
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high degree of conservation, 64
regional variations in, 54
role in regulating bioavailability of bioactive
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Abcb9/Abcc3/Abecb transporters, 63
Aberrant methylation patterns, 291
Aberrant spot morphology, algorithms for
detection of, 225
Absolute average intensity, 59
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Academic laboratories
increased demands in, 343
as leading market for DNA microarray
products, 343
Accuracy
improving with automation, 163
of Ribo-SPIA mRNA amplification, 267-269,
272
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Acetylation microarrays, 130
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eTag system, 297
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Affinity-purified proteins, 126
in ChIP-on-Chip method, 125
Affinity tags, 8
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automated quality control packages from, 228
company profile, 352-353
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Akaike’s Information Criterion (AIC), 226
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detection of outlier spots, 224-225
for statistical search of outlier spots, 225-226
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Alternative splicing, 142
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Antihistamines, metabolism by CYP2D6, 99
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effect on gene expression, 20
Antihypertensives, metabolism by CYP2D6,
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mechanism of action, 46
resistance to, 35
Antiparasitic drug discovery, 35-36
biochips for elucidating mechanism of drug
action, 4647
biological relevance of expression profiling,
42-46
functional genomics and, 37-39
high-throughput functional techniques, 39
short vs. long oligonucleotide microarrays,
39-42
vaccine development in, 47
Antisense drugs, 2
Antisense functional genomics tools, 198
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Apoptosis
Antihuman CD95 as inducer of, 20
BIRC4 as inhibitor of FAS-mediated, 20
Applied Biosystems
company profile, 351
Expression Array System, 5, 194, 253,
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7900HT sequence detection system, 301
infringement on Affymetrix market, 341
SNPPIlex genotyping system, 301-302
Applied Precision, LLC, 353
Aptamer arrays, 345
Aptamers, as functional genomics tool, 198
Arcturus Bioscience, Inc., 254
Array-A-Lizer, 229
Array-based sequencing, 143-144
Array CGH, 143, 286
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Array processing, automation for, 161-163
Array scanning step, 204
data management needs in, 214-215
variability in, 223
Array tracking step, data management needs in,
208
Arraylt, 293, 311
ASPE testing, 100, 103
Asper Biotech, 293
APEX (Arrayed Primer Extension) system,
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Aspirin, effectiveness in blocking NFxB pathway,
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Association studies, 288
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caveats in, 170-171
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183-184
correcting for multiple comparisons, 185-186
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in, 180-182
in drug discovery, 169-172
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179-180
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genes, environment, and complexity in,
178-179
high linkage density with matched frequencies,
182-183
implications of within-genome duplications for,
176
interaction of technical and biological
limitations, 174-175, 176-178
lessons from transcriptomics, 174—175
linkage disequilibrium in, 179-186
mapping strategies, 186187
population structure and admixture
considerations, 185
pre-study considerations, 171-172
and SNP chip technology, 172-174
technical considerations, 172—-178
Atlantic salmon, effects of saltwater adaptation on
gene expression in, vii
ATP-binding cassette (ABC) transporters,
mutations in, 53
Auto-loader features, 163
Autogenomics, 10
Automated data quality control, 226-227
commercial packages, 227
and improved throughput, 231-237
limiting human error via, 224
noncommercial packages, 227-229
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Automated microarray platforms. See also

Laboratory automation
ability to run overnight, 163
Affymetrix 96-array HT system, 152-153
CYP2D6 genotyping on, 102-103
end-to-end, 160
INFINITI platform, 100-102
large footprint disadvantages, 162
for multiplexed CYP2D6 assay, 97-100
obsolescence issues, 165
pitfalls, 165
and productivity, 153
results and discussion, 103-106

AutoQC, monitoring of sample process with, 234
Auxiliary information, keeping track of, 206
Avalon Pharmaceuticals, 353

Axon Instruments, 353

Axys Pharmaceuticals, vii, xi
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Background correction techniques, 227, 229
Background gradients, and hybridization errors, 235
Background signal intensity, 225, 227, 232

before and after outlier removal, 235
with chemiluminescence vs. fluorescence, 5

Background variability, estimates of, 234
Bangs Laboratories, 353

Bar coding, in LIMS systems, 164

Barrier function, and ABC transporters, 53
BASE product, 206

Baseline arrays, for intensity-dependent

normalization, 244

Bases per feature, 141

Basic methodology patents, 291
Batch-enabled software, 226

Batch image processing, in ImaGene software,

216

Batch variability, 164
Bayesian network approach, to aberrant spot

morphology detection, 225

ber-abl mutant kinase fusion/translocation, in

CML, 137

BD Biosciences Clontech, 354
Bead-based technology, 5, 315

for SNP detection, 306-308

BeadArray technology, 301
Bergstrom needle procedure, 111

in muscle tissue biopsy, 110

Between treatment class variance, 79
Bias

with PCR-based amplification, 257

reduction with unsupervised gene selection
procedures, 78, 89

in subset processing, 160-161
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Bile, role in mediating gene expression in gut, 53
Bile duct damage, and hepatotoxicity, 73
Bin sizes, 55, 56
BinD bank, 285
BioAnalyzer product, 211
analysis of Ribo-SPIA amplified product by,
278
association of RNA sample in GeneDirector
with, 212
RNA degradation detection by, 233
size distribution analysis of amplified mRNA,
269
BioArray Solutions, 293
combination electrical and bead-based SNP
detection, 307
company profile, 354
Biocept, 293
cell enrichment and extraction technology, 294
company profile, 354
MEMS technology at, 295
ProCEED product, 295
Biochemical pathways, and gene clustering, 43
Biochips. See also DNA biochips; Protein bio-
chips
drug discovery reduction costs with, vi
five-year forecast, 346-347
in malaria for antiparasitic discovery, 35-36
market drivers and commercial prospects, 329
for new drugs in antiparasitic discovery, 44-46
for in vitro pharmacology and toxicology, 2
Biochips platforms, 4-7
DNA biochip limitations and challenges, 8-10
protein biochips, 7-8
Biocore technology, 297
BioDiscovery, 228
GeneDirector product, 206, 207
ImaGene software, 215, 227
BioFilmChip, 101
printing format for CYP2D6 genotyping,
102-103
Bioforce Nanosciences, Inc., 354
Bioinformatics-based gene discovery, vii
patent filings for, 321
Biological complexity, 283
Biological data centers, 285
Biological replicates, normalization by quantile
method, 245
Biological variability, 60
and association studies, 170
Biologics, 2
Biomarkers, and history of genetics, 288-289
Biomedical databases, federated system of, 285
Biomolecule detection methods, 299-300
Biopsy procedure
adipose tissue, 112
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skeletal muscle, 111-112
Biopsy weight, and RNA yield, 115-116
Biotechnology Industry Organization (BIO), 351
Bioterrorism monitoring, 349, 350, 352, 359
Biotin, incorporation and gel shift analysis, 278
Biotin labeling protocol, 266
Biotin Ovation kit, 265
protocol for Ribo-SPIA amplification, 266
BioTrove qPCR multifluidics device, 196-197,
199, 200
BIRC4 gene, 20
Blood sampling
for gene expression profiling, 112
RNA yield from, 116, 121
tolerability assessment, 112-113
BlueFuse software, 225
Bonferroni correction, 185, 235
Bottlenecks
bypassing via automated software, 237
in depth and quality of metadata, 287
identifying in automation design, 161
time for analysis of expression data, 222
Brain, difficulty of extracting RNA from, 254
Brain tissue heterogeneity, LCM to overcome,
254
BRCALI pathway defects, 137, 175
patent issues, 335-336
reproducing data in association studies, 172
Breakpoint predictability, importance for
association studies, 176
Breast cancer
estrogen receptor alpha-mediated epigenetic
silencing in, 144
gene patent issues, 335-336
insertions/deletions as focus of studies, 175
Brenner: In re Fisher, 335
Brenner v. Manson, 329
Burkitts lymphoma, regulatory role of c-myc in,
144
Business opportunities
in DNA microarrays, 329-330
five-year forecast, 346347
in protein arrays, 344-345
in proteomics, 345-346
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c-kit/PDGRF translocations, in gastrointestinal
stromal cancers (GIST), 137
c-myc, regulatory role in Burkitts lymphoma,
144
Caging effect, 31
Caliper Life Sciences
company profile, 354
lab-on-a-chip technology, 316
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Calipertech, 293, 297
microfluidics electro-osmosis devices, 298
Call concordance, with Ribo-SPIA amplification
method, 271, 272
Calmodulin-calcineurin interactions, 29-30
Cancer
aberrant methylation patterns common to, 291
and arrayCGH amplification, 286
catalog of expression signatures for, 136
c¢DNA microarray profiling of, 130
complexity in etiology, response, heterogeneity,
138, 140, 145
gene expression profiles of, 52
genetic defects in, 137
importance of stage and state of tumor, 138
molecular circuitry in, 136
molecular defects in genomes, 136
monitoring cellular response to drug, 145
requirement of drug target knowledge, 144
screening for loss of heterozygosity in, 143
Cancer bioinformatics grid (caBIG), 285
Cancer classification, DNA microarrays in, 137
Cancer drug discovery
DNA microarrays in, 135-136
impact of mechanism-based studies in,
144-145
Cancer research, 352
alternative DNA microarray technologies in,
142
as greatest application of microarray
technology, 254
separation of benign and malignant cells,
254
SNP identification methods in, 173-174
Candidate gene studies, 171
zip-code tag arrays in, 173
Capital investment, with automation, 161
Carbohydrate metabolism, gene cluster for, 43
Carbohydrate moiety detection, 292
Carcinogenesis
genotoxic and nongenotoxic, 73
perturbations of proliferation and apoptosis in,
70
Cardiovascular disease, cDNA microarray
profiling of, 130
Carmen, Andrew, xi
Catalog chips, 341
Causative genes, screening for compounds from,
138
cDNA arrays, 4
as cheaper alternative to oligonucleotide arrays,
223
comparing ABC transporter expression profiles
by, 61
of muscle and blood samples, 120
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in profiling of specific pathological conditions,
130
in toxicogenomics, 70
vs. GEA analysis of microarray data, 61
cDNA libraries, 3
Celera Genomics, 327
Cell arrays, 347
Cell complexity, 283
Cell damage, clinical chemistry effects, 71
CEPH family, 288
CGH arrays, 284
Character states, of trait of interest, 179
Chemiluminescence, 5
Chemotherapy, nonspecific effects of, 136
Chi-square test, correcting for multiple
comparisons with, 185
Chimeric SPIA primers, 265
Chip content trustworthiness, in association
studies, 174-175
ChIP-on-Chip, viii, 123-124, 139, 143, 316
biomedical applications, 130
brief history, 124-125
chromatin modification case study, 127-129
improved resolution with tiled microarrays, 131
method description, 125-127
yeast genome analysis with, 127-129
Chip support material, 7
Chip variations, 224
Chloroquine (CQ), 36
Cholestasis
and hepatotoxicity, 73
in PPAR« agonist case study, 75
Chorionic villous sampling (CVS), 22
Chromatin chip assays, 144
combining with DNA microarrays, 10
Chromatin immunoprecipitation, 123, 254.
See also ChIP-on-Chip
and DNA microarrays, 124
and regulome analysis, 144
with specific antibodies, 126
as tool of choice for studying protein-DNA
interactions, 125
Chromatin IP cross-linking techniques, v
Chromatin modifications, ChIP-on-Chip
experiments, 127-129
Chromatin remodeling, 128
Chromatography-coupled mass spectrometry, 8
Chromosomal Disorder array, 22
detection of sex chromosome disorders with, 25
vs. FISH detection, 23
Chromosome mapping, in GeneSight software, 218
Chronic myelogenous leukemia (CML)
ber-abl mutant kinase fusion/translocation
events in, 137
clinical trial with HT arrays, 155
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Ciphergen, 293, 295, 345
Protein Chip 4000 system, 294
Class-specific gene responses, 73
Classical ANOVA tests, comparing GEA with,
56-58
Clinical diagnostics, 350, 359
barriers to adoption of microarrays in, 351
non-Hodgkin’s lymphoma, 350
Clinical endpoint, magnitude and subject selec-
tion, 172
Clinical Microsensors (CMS), 293
eSensor Cytochrome P450 DNA Detection
System, 305
Clinical outcomes, tumor classes and, 140-141
Clinical products, cost vs. research products, 345
Clinical trials, improved outcomes with HT
microarrays, 155
Cloned DNA superfragments, patent claims to,
336-337
Cluster analysis, 38, 45, 117
in antiparasitic discovery, 41-42
in muscle and adipose tissue sampling, 114
and spurious samples, 119
Clustering algorithms, in PPAR agonists case
study, 74
CodeLink Bioarray, 6, 230, 300, 340
CodeLink expression analysis software, 230
Coefficient of variations (CV)
automated algorithms for identifying, 163—-164
calculating outlier spots via, 225
in three-dimensional hydroarrays, 19
CombiMatrix, 6, 293
company profile, 354
Lab-on-a-Chip integrated circuit, 305
Commercial catalog arrays, 207, 350
Commercial data management solutions,
206-207, 227
Commercialization, patenting controls over, 328
Comparative genomic hybridization (CGH), 143,
254, 347
Comparative genomics, vii
Complete hydatidiform moles (CHMs), 176
Compound screening
for mechanism of action, 154
for mechanisms of toxicity, 154
Compound-specific gene responses, 73
Compound X, 90
as PPARo agonist, 74-80
Compugen, 354
Computer file systems, 205
Concordance correlation coefficients, 232, 233,
247
in tissue and leukocyte sampling, 116
Confounding factors, 242
Consistency, of data processing, 223
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Contaminants, and hybridization errors, 235
Control amplification, 200
Control genes, 231, 244
Controls and standards, 288
Conventional data management, problems
inherent in, 205-206
Core labs, 160
turnover of entry-level staff in, 161
Coriell Institute for Medical Research, 288
Corning GAPS slides, 113
company profile, 354
Correlation coefficient, in Ribo-SPIA assay, 268
Correlation statistics, in muscle and adipose tissue
sampling, 113
Cost issues, 356
for academic laboratories, 343-344
in array selection, 208
automation and cost reduction, 160, 161, 163
candidate gene vs. whole-genome association
studies, 171
collaboration and resource sharing due to, 204
determination of patent blocks, 336
developing clinical vs. research products, 346
as limiting factor for association studies, 172
microarray cost per feature, 340
patent licensing costs and drug development,
336
patents and cost of genetic testing, 336
personalized medicine, 199
protein abundance array development, 292
toxicity findings, 154
in toxicogenomic microarray experiments, 72
Cost per assay, reductions with high-throughput
systems, 152
CpG islands, 291
CRADD gene, 20
Cri-du-chat syndrome, 26
Critical Assessment of Microarray Data Analysis
(CAMDA) conference, 206
Crohn’s disease, 2
glycomics profile potential for, 292
Cross-contamination, and data accuracy, 174
Cross-discipline data, 284-285
Cross-hybridization, reduced likelihood in yeast
genome, 127
Cross-linking, 127
of amino groups in ChIP-on-Chip method, 125
of histones, 129
protein to DNA and chromatin shearing,
126
Cross-platform comparison, 9
Cross-sample normalization, by quantile method,
245
Cross-validation, 79
Cubic root transformations, 249
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Customized treatment. See also Personalized
medicine
ChIP-on-Chip applications in, 130
Cutoff fold change value, 78
Cycline-dependent kinases (CDKs), 44
Cylindromatosis disease (CYLD), NFxB pathway
in, 143
CYP8BI, repression by PPAR«. agonists, 73
CYP2D6 allele variants, 98, 102
CYP2D6 copy number, and drug metabolism, 175
CYP2D6 enzyme
automated microarray platforms for multi-
plexed assay, 97-100
drugs metabolized by, 99
CYP982D6 enzyme, 98
CYP2D6 genotyping
assay procedure and assay validation, 103
BioFilmChip printing format, 102-103
homozygous mutations shown by Cy-5 laser, 104
results analysis and presentation, 107
single-tube multiplexed PCR amplification, 102
summary of assay validation studies, 105-106
three gene regions in, 102
Cytochrome P450 gene, 290
in drug metabolism, 98
variation within human population, 304
Cytokines, 2
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3D Molecular Sciences, 357
Daisy chaining, and throughput improvements,
162
Dana Farber Cancer Research Institute, 155
DAPKI1 gene, 20
Data accumulation challenges, 282
Data analysis, 204, 241
automating, 163-165
integrated solutions for, 200
patent claims to methods and devices for, 322
Data attributes, specifying, 205
Data cloud, increased sensitivity of GEA to
identify positives in, 56
Data collection, automating, 163—165
Data conversion challenges, 313
Data extraction
in batch mode with automation, 163
overnight runs and productivity, 165
Data heterogeneity, 204, 205
Data integration, 284
as driving force for drug development, 286287
Data integrity, importance of data management
for, 204
Data loss, 206
Data management, 203-204
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academic and shareware solutions, 206
in array design step, 207-208
in array scanning step, 214-215
in array tracking step, 208
by GeneDirector, 204
in hybridizing step, 212-214
in image quantification step, 215
importance for quality assurance, 205-207
for processed data, 215-218
requirements by experiment step, 207-218
in sample handling/processing step, 208—-209
Data mining, 204, 237
Data normalization, 74, 193, 222, 241-243
choice of method, 245-246
and data transformation, 247-251
intensity-dependent normalization, 244-245
linear normalization, 243
method comparison, 246
in microarray experiments, 71
in muscle and adipose tissue sampling, 114
for oligonucleotide-based arrays, 246
performance criteria, 247
in PPAR« agonist case study, 76
Qspline normalization, 245
quantile normalization, 245
reference and baseline arrays for, 244
smoothing functions, 244-245
Z-normalization, 245
Data points
in industrial core labs, 160
number of feasible, 151-152
Data quality, 223, 237
and technician skill variability, 161
Data quality control, 221-223
algorithms for, 224-226
automatic monitoring and throughput
improvements, 231-237
automation of, 226-230
detection of outlier chips in, 226
finding outlier spots statistically in, 225-226
imaging issues in, 223-224
outlier data point detection, 224-225
with QC Data Analyzer, 231-232
with QC Data Collector, 230-231
Data representations, 284
Data simplification, 204
Data smoothing, 244-245
Data storage needs, 284
Data transformation, 247-248
generalized and modified logarithmic
transformations, 249-251
logarithmic transformation, 248-249
power transformation, 249
variance stabilizing transformation (VST),
249
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Data validation
functional informatics in, 198—-199
for microarray data, 193
and PCR primer design, 195
by TagMan qRT-PCR, 194
Data visualization, in microarray experiments for
toxicogenomics, 71
DbSNP bank, 285
Decode Genetics, 354
Definiteness requirement, 325
for patentability, 324
Degrees of freedom, and spline normalization,
245
Dendrimer technology, 255
Density of features per slide, 141
Derived states, 183
in association studies, 179
expected frequencies at polymorphic sites, 180,
181
Description requirement, and patentability, 324
Design errors, and data quality in association
studies, 171
Detection technologies, 281-284
biomolecule detection methods, 299-300
microfluidic biochips, 297-299
non-SNP based, 292-297
small-scale devices, 297-299
Di George syndrome, 26
and microdeletion 22, 23
Diabetes, cDNA microarray profiling of, 130
Diagnostic assays, 22, 222
effects of patents on, 335-336
Diagnostic DNA chips, 346
Diagnostic validity, 193
Diamond v. Chakrabarty, 327
Differential display gene-hunting techniques, 70
Differential gene expression, comparing Ribo-
SPIA with GeneChip arrays, 272-273
Differential methylation hybridization (DMH),
292, 293
Diffuse large B-cell lymphoma (DLBCL), clinical
diagnostics studies in, 350-351
Diffusion, limiting with physical boundaries, 201
Direct hybridization microarrays, 175
to detect mutations, 173
risk of false positives with, 176
Discovery Partners International, 291
Disease, as impetus behind biological advances,
282
Disease biomarkers, 155
identifying, 51, 52
Disease pathway identification, with HT arrays,
153
Disease pathway validation, with HT arrays,
153-154
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Disposable silicone elastomere
poly(dimethylsiloxane), 27
DNA accessibility, factors affecting, 128
DNA biochips, 1-3, 123
amplification strategies, 253-258
evolution and development, 3—4
intellectual property issues, 321-322, 334-337
limitations and challenges, 8—10
platforms, 4-10
DNA labeling, in ChIP-on-Chip method, 126, 127
DNA methylation, 293
DNA microarray technologies
alternative splicing, 142
alternative technologies in cancer research, 142
an gene expression technology, 140-142
array-based sequencing, 143-144
array CGH, 143
in cancer drug discovery, 135-136
chromatin IP and regulome analysis, 144
continued market drivers and commercial
prospects, 342-344
era of, 140
established business opportunities, 329-330
evolving industry landscape, 341-342
future in systems biology of cancer, 145-146
overoptimistic business projections, 329
RNA interference and, 142
DNA samples, ethnic matching of cases and
controls, 171-172
DNA sequencing applications, 254, 316
and drug response, 286-287
inventiveness for patentability, 330
DNAX Research Institute, Palo Alto, vii
Double-stranded DNA microarrays, 31
Drug classification, 2
Drug design process, ligand-receptor interaction
in, 1-2
Drug development
cost impact of multiple patents on, 336
late toxicity findings and high attrition rate, 154
predicting toxicity in early phases, 70-71
threats from R&D cost cutting, 343
Drug discovery
association studies in, 169-172
biochips in malaria for, 35-36
in cancer, 135-136, 137
discouragement by existing patents and costs,
336
DNA microarrays in, 136
enhanced pace with ChIP-on-Chip, 123-124
HT array applications to, 153-154
hunting and screening approaches, 138-140
impact of mechanism-based studies in cancer,
144-145
novel detection technologies for, 281-284
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number of data points in HT, 151-152
percentage of failed candidates in, 1
reducing cost of, vi
SNP as primary focus of, 175
and toxicogenomics, 69-71
two approaches to, 138
Drug efficacy, predicting with HT arrays, 155
Drug market identification, microarrays in, 140
Drug metabolism
Cytochrome P450 enzymes in, 98, 304
duplications and CYP2D6 copy number in, 175
Drug price control, pressure in U.S., 343
Drug reimporting pressures, 343
Drug resistant tumor cells, clonal expansion of,
145
Drug response, 222, 357
clinical trials with HT arrays, 155
in DLBCL tumors, 351
multiple gene patterns predicting, 155
by tumors, 286
Drug screens, using yeast or NCI-60 cancer cell
lines, 138
Duplicated pseudogenes, 176
Duplications
as focus of drug discovery, 175
problematic within-genome, 176
Duplicons, 176
Duration of discomfort
during and after biopsy procedure, 115
and skin-fold thickness, 113-114, 114-115
Dynal Industries, 306
Dynabeads, 306
Dynospheres, 306
microbeads products, 315
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Ease of use issues, 358
Edward syndrome, and trisomy 18, 23
EFGR, sensitivity to inhibitors in kinase domain
of, 137
EGFR inhibitor, 145
Electronic SNP detection, 304-306
Electrospray Ionization (ESI), 295
Enbrel, 2
Environmental analysis, 349, 350
Environmental chemicals/drugs, toxicogenomics
research in, 69
Environmental influences
implications for association studies, 178-179
vs. genetic influences in association study
design, 171
Enzymatic reactions
in three-dimensional hydroarrays, 32-33
in tyramide signal amplification, 256
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Enzymes, 2
Epidermal growth factor (EGF) receptor
family, 1
Epoch Biosciences, 293
minor-groove detection system, 310
EraGen Biosciences, 355
Erbb2, discovery of drugs against, 145
Erectile dysfunction, and off-target drug effects,
154
Errors
introduced by sample preparation, 224
with manual data management, 206
Erythrocytic cycle
and clinical symptoms of malaria, 37
varying sample time points in, 42
EST sequences, rejection of patent claims to,
335
Estrogen receptor (ER) binding, 137
ChIP-on-chip assays on, 144
to consensus estrogen response element (ERE),
30
Ethnic matching, in DNA samples, 171-172
Exiquon, 293, 310
Exon rearrangement, 142
Experiment cycle times, and overnight automated
runs, 163
Experiment size, growth of, 159, 160
Experimental design
importance in postgenome world, 315
short vs. long oligonucleotide in antiparasitic
discovery, 4041
for toxicogenomics, 72-74
Experimental factors, specifying in GeneDirector,
211
Experimental protocols
controlling for, 209
need to utilize in statistical analysis, 215
Experimental replicates, import of low number, 54
Exponential PCR amplification, 256
Expression profiling
Affymetrix vs. long oligonucleotide results,
42
for anticancer drug identification, 285
biological relevance in antiparasitic discovery,
41-42
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interest in integrated metabolism, 52
as leading markets for DNA microarray
products, 343
toxicity screening for candidate drugs, 70
uses of toxicogenomics, 6970
Pharmacogenetic testing, and advent of
personalized medicine, 97-98
Pharmacogenomics, vi, 343
patent filings for, 321
and SNPs associated with drug metabolism,
290
Pharmaseq, 356
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Phenotype Microarray, for bioterrorism agents, 352
Phenotypic screening approach, 139, 288
Phospholipidosis
and hepatotoxicity, 73
in PPAR« agonist case study, 75
Photoaptamers, 345
Photolithography methods, cost vs. inkjet
technologies, 342
Phylos, 345
Plasmodium falciparium, 35
genome, 37
life cycle, 36-37
parasite-host interactions, 39
profiling life cycle of, 40
unique phospholipid metabolic pathways, 45
Plate-based systems, 160
Plate handling errors, and data accuracy, 174
Platinum Taq DNA polymerase, 102
Point mutations, effects on splicing, 142
Policy enforcement, with manual vs. electronic
data management, 206
Poly-A mRNA capture, 21, 195
Polyacrylamide, 17
Polymerase Chain Reaction (PCR)
lack of equivalents for protein production, 7
real-time with microfluidics device, 199
use in CYP2D6 genotyping, 102
Polyurethane hydrogels, 27-28
Poor metabolizer (PM) phenotype, 98
Population structure/admixture, considerations in
association studies, 185
Positive hybridization control spots, 103
Positively tailed curves, 247, 248
Posttranslational modifications
ChIP-on-Chip analysis, 123-124
DNA microarray limitations in, 9
potential for measuring, 292
Power transformation, 249
PPAR. agonist, boxplots of raw and normalized
data sets, 76
PPAR0. agonists
case study, 74-80, 89
Compound X, 74
fenbufen and diflunisal as, 80
genes selected by six methods, 81-88
and reference compounds, 75
regulation of hepatic genes by, 72
repression of CYP8B1 by, 73
and tumor induction, 72
Preamplification, by Ribo-SPIA before gPCR
analysis, 269
Predictive marker gene screenings, 139
Prehybridization, robotic systems for, 162
Primer Express software, 277
Principle component analysis (PCA)
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in GeneSight software, 218
linear discriminant analysis following, 77
in outlier detection, 226
plots with selected genes in PPARo agonist
case study, 78
in PPAR« agonist case study, 74
Print-to-print variation, in three-dimensional
hydroarrays, 19
Probe attachment points, in three-dimensional
hydroarrays, 16
Probe design, 207
for association studies, 174
to avoid duplications, 177
short vs. long oligonucleotide microarrays,
39-40
Probe separation, in three-dimensional hydroar-
rays, 17
Probe sequence validation, in zip-code tag arrays,
175
Probe sequences, mapping to array elements, 207
Processed data, data management needs for,
215-218
Processed pseudogenes, 176
Productivity
with automated HT systems, 153
gains through automation, 163
with LIMS and bar coding, 164
with overnight runs, 165
Proof-of-concept studies, 10
Protagen, 293, 297
protein separation and identification
technologies, 295
Protein abundance arrays, 286
difficulty and expense of, 292
Protein arrays, industry forecast, 344-345
Protein biochips, 7-8, 292-297, 347
direct measurement of molecular interactions
with, 347
Protagen products, 296
stability vs. DNA arrays, 344-345
Protein Chip 4000 system, 295
Protein-DNA interactions
mapping in vivo, 124-125
in three-dimensional hydroarrays, 30-32
Protein enrichment, detecting in ChIP-on-Chip
method, 126
Protein expression, correlating with gene expres-
sion, 62
Protein immobilization, with preservation of
folded configuration, 27
Protein microarray detectors, 8
Protein-protein interactions, 29, 315
in three-dimensional hydroarrays, 29-30
Protein structure elucidation methods, 2
Protein three-dimensional hydroarrays, 2628
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antibody-antigen binding, 28-29
enzymatic reactions in, 32-33
protein diffusion and molecular recognition,
28-29
protein-DNA interactions, 30-32
protein-protein interactions, 29-30
ProteinChip Assay, 295
Proteins
patentability of, 326
relationships in integrated metabolism, 52
as ultimate arbitrators of cellular function,
138
Proteomic applications, 281-284
emerging industry landscape, 344-345
market drivers and commercial prospects,
345-346
patent filings for, 321
protein as probes for, 18
Protiveris, 293
physical cantilever approach to protein detec-
tion, 298
Pseudogenes, implications for association studies,
176-178
Public gene databases, 223
Pure cell populations, isolation of, 262

Q

QC Data Analyzer, 231-232
detection of interarray failures with,
232-235
outlier detection with, 235-237
results, 232
QC Data Collector, 230-231
QClnspector, 232
QIAamp DNA Blood Mini Kit, 102
Qiagen, 102, 112, 113
company profile, 354
QMatic Software Manager, 101, 103
qPCR, 269. See also Quantitative PCR (qPCR)
in analysis of Ribo-SPIA, 267-269
qRT-PCR/TagMan, 301
Qspline normalization, 245
Quadratic discriminant analysis, 77
Quality control methods, 358
bottleneck and software automation of, 163
importance of data management for,
205-207
in manufacture of DNA chips, 9
productivity gains from automation, 163
Quantile normalization, 244, 245, 246
Quantitative PCR (qPCR), 277
Quantum Dot, 357
Querying flexibility, with DNA microarrays,
139
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R

Radix BioSolutions, 357
Rapid isothermal RNA amplification, with
Ribo-SPIA, 261-263
Rate of dephosphorylation, 33
Rational consistency enforcement, 206
Raw data generation time, 214
Raw expression measurement, 249
Raw-intensity histogram, 247
Reactive-metabolite-induced necrosis, 73
Reagents
calculating amount required per assay, 101
controlling for, 209
in INFINITI analyzer, 100
Intellipac management module, 102
volume requirements for automated systems,
163
Real-time PCR, 199
and mapping of ABC transporters, 53
vs. GEA analysis of microarray data, 59-60
Recombinant cloning methodology, 3
Recombination hot spots, 187
Redundant gene changes
multivariate methods’ disregard of, 89
selection against, 79
Reference samples
amplification of, 194
for intensity-dependent normalization, 244
Reference standards, 10
Regents of the Univ. of Cal. v. Eli Lilly & Co.,
331
Regulatory compliance, 10, 358
and early-stage toxicity screening, 70-71
effects on commercial prospects, 342
predictive vs. definitive data, 71
Regulome analysis, and chromatin IP, 144
Reimbursement issues, 358
Relapse prediction, 193
Repeatability, 287
Replicate measurements
to detect outliers, 235
importance for data quality, 242
Replication, in array layout design, 231
Repressor genes, 128
Reproducibility issues, 10, 227, 237
analysis of quality and, 222
in association studies, 172
with automated systems, 165
probe errors and, 174
for Ribo-SPIA mRNA amplification, 267-269
for T7 linear amplification protocols, 257
tradeoffs with flexibility and speed, 238
Research and development costs, 1, 221-222
effects of existing patents on, 335-336
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Restriction fragment-length polymorphisms
(RFLP), 288
Revised Interim Utility Examination Guidelines
of 2001, 328, 329, 334
Ribo-SPIA, 276
accuracy, reproducibility, linearity of, 267-269
amplification and labeling by in vitro
transcription, 272
analysis by BioAnalyzer, 278
differential gene expression, 272-273
expression analysis with GeneChip arrays,
269-273
first strand synthesis, 263, 264, 266
flow diagram of procedural steps, 266
fragmentation and labeling for microarrays,
269-270
for gene expression analysis, 261-263
GeneChip hybridization results, 270-272
linearity, 273-274, 275
materials and methods, 276-278
performance of amplified product on two-color
spotted arrays, 274
protocol for rapid robust mRNA amplification,
265-266
as rapid isothermal RNA amplification method,
261-263
RNA denaturation with, 266
second strand synthesis, 263, 264, 266
Ribosomal protein gene repression, by Rpd3, 128
Risk assessment
ILSI/HESI Committee on use of genomics in, 71
by pharmaceutical companies, 70
Risk tolerance, with automated microarray
systems, 165
RITA, as inhibitor of p53-hdm?2 interaction, 139
Rituximab, 2
RNA amplification, 262. See also Amplification
strategies; Global mRNA amplification
differential gene expression before or after, 268
with Ribo-SPIA, 261-263
RNA capture limits, 196
RNA degradation, 121
detection with BioAnalyzer, 233
RNA dynamic range, 232, 233, 234, 244
RNA extraction method
in automated systems, 159-160
for muscle and adipose tissue, 113
and RNA yield, 115
RNA interference (RNAi), 10, 143
RNA per sample requirements, 120-121
RNA quality, controlling for, 209
RNA yield, 121
and biopsy weight, 115-116
study results, 120
and tissue biopsy procedures, 110



382

RNase protection assay, 193
Robotic devices, 3
Affymetrix robotic Array Station, 152-153
dependability and maintenance issues, 165
maintenance requirements, 163
for microarray prehybridization, 162
Robotic printing devices, 4
Robust statistical methods, dissociating lowly
expressed genes in, 60
Robustness, 56
in GEA protocol, 55
Roche Amplichip CYP450 array, 22, 344, 351
Roche Diagnostics, 22, 344
company profile, 357
Rofecoxib, 146
RPD3 gene, v
role in repression of ribosomal protein genes,
128
RT-PCR, dynamic range of, 59
in data validation experiment, 198
for validating screening results, 142
RTK inhibitors
in cancers, 138
and tumor sequencing, 143-144

S

Sample acquisition advances, 262
Sample degradation, 226
Sample generation, 223
Sample handling and processing, 204, 237
data management needs in, 208-212
keeping track of protocols for, 206
microarray target labeling methodologies, 255
patent claims to, 322
as source of variation in expression arrays,
286
variability in, 223
Sample properties, importing/creating in
GeneDirector, 209, 211
Sample protocols, 209
Sample tracking, automating, 163-165
Santa Cruz Operation (SCO), 291
SAPE, 173
SAS for Windows, 113
Saturation status, 225
Scalability, OpenArray system, 197
ScanAnalyze, 227
ScanArray 4000, 113
Scatter plots, 116
adipose tissue samples, 118
gene expression intensities among white blood
cell samples, 118
in GeneSight software, 218
Scratches, and hybridization errors, 235
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Screening approaches, in cancer drug discovery,
138-140
Scriptable algorithms, 226
Segmental duplications, 176
SELDI-TOF-MS, 295
Selectivity, characterizing lead compounds with
HT arrays, 154
Self-organizing map (SOM), 218
Self-spotted arrays
trend away from, 350
vs. manufactured, 343
Sensitivity, 356
as benefit of microarray technology, 222
and oligonucleotide length, 5
Sentrix Array Matrix, 5
Sentrix LD BeadChip, 5
Sequence-based SNP detection technologies,
308-310
Sequencing technology, 145
in discovery of activating mutations, 143
Sequenom, 293
company profile, 357
MassArray 7K and 20K, 300
Sex-chromosome aneuploids, detection of, 24
Sex chromosome disorders, detection with CD
hydroarrays, 25
Sexual aneuploidies, 25-26
Shiff bases, instability of, 27
Short duplications, 177
Short hairpin RNA (shRNA), 143
Short oligonucleotide microarrays, 38
Affymetrix vs. long oligonucleotide
microarray, 42
array and probe design, 39-40
cluster analysis vs. fast Fourier transform (FFT)
analysis, 38, 41-42
experimental design and expression level, 38,
40-41
probe design, 38
Short tandem repeats (STRs), 288
Side effects
efficient discovery with HT arrays, 154
and need to use better markers, 146
Sigma-Genosys, 357
Signal amplification, 255-256
Signal contamination, 227
Signal correlation coefficients, 275
in Ribo-SPIA method, 272
Signal intensity values, measuring in image
quantification step, 215
Signal-to-noise ratios, with hydrogel
microdroplets, 19
Significance Analyzer, in GeneSight software,
218
Silicon Genetics, 314
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Single-agent therapy, importance of stage and
state of tumor, 138
Single-color microarrays, 242
Single-cycle linear amplification method, 271
Single-feature polymorphism (SFP), in
Plasmodium genome, 47
Single genes of major effect, 179
Single nucleotide polymorphism (SNP), 143, 288,
289. See also SNP detection
benefits in mapping genetic diversity, 288-289
caveats in association studies, 172-174
and feature size, 152
free information for drug development, 337
HT array systems assays, 153
identification by fluorescence color, 173
and marker-phenotype linkages, 290
as primary focus in drug discovery, 175
from PSVs, 176
vs. microsatellites, 290
Single nucleotide primer extension, 302-304,
303
Single primer isothermal amplification (SPIA)
technique, 256, 258, 263, 276
siRNA libraries, 285
Sitosterolemia, 62
and ATP-binding cassette (ABC) mutations, 53
Skewness, 247
Skin-fold thickness, correlation with duration of
discomfort, 113-114, 114-115
Small interfering RNA (sRNA), 143, 153
as functional genomics tool, 198
Small molecule drugs (SMDs), 2
Small tissue samples, global mMRNA amplification
for, 256
SmartBead Technologies, 357
Smoking cessation, and off-target drug effects,
154
Smoothing functions, 244-245
Snedecor’s F distribution, 55
SNP analysis, patent filings for, 321
SNP analysis software, 312-314
lack of statistical depth, 312
SNP arrays, 285, 286, 290
SNP Assistant, 313
SNP-based arrays, 10
in association studies, 173
SNP chips, flow-through methods, 308
SNP Consortium, 289, 303
solution to promote research innovation, 337
SNP detection, 289-290, 290
bead-based, 302, 306-308
electronic detection products, 302, 304-306
major commercial technologies, 300-302
novel detection methods, 310-312
sequence-based technologies, 308-310
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technologies of interest, 291-292
technology diversity in, 302-304
SNPPIlex genotyping system, 301-302
Software development kits (SDKs), 226-227
Solexa, 293
Single Molecule Array, 309
Solid-phase oligonucleotide synthesis system, 6
SomalLogic, 345
Southern, Edwin, 3, 325
Spearman’s correlations, 113, 247
Specificity
characterizing lead compounds with HT arrays,
154
and a priori knowledge of duplications, 177
Spike-in experiments, 287
Spiked control genes, 231, 234
dynamic range of, 232
Splice variants, 142
in human genome, 151
Spline normalization, 244, 245, 246
Spontaneous abortions, via amniocentesis, 22
Spot morphology measurements
for outlier detection, 235
variability in, 224
Spot ratio variability (SRV), 225
Spot-to-spot variation, in three-dimensional
hydroarrays, 19
Spotfinder, 229
Spotfire DecisionSite, 200
Spotfire/R application, 200
for microarray and PCR analysis, 197
Spotted microarray, 4, 113
in toxicogenomics, 70
Staining step
automating, 160
labor-intensiveness of, 152
Standard deviation, of raw intensities, 247
calculating for outliers, 225
of log-transformed intensities, 248
Standardization issues, 10, 358
and academic laboratory markets, 344
FDA-related, 237
sample preparation methods, 358
Stanford University, 3
public gene databases, 223
visualization tool from, 229
Started logarithm transformation, 250
Statistical analysis
assumption of normal distribution, 247
to identify candidate genes, 193
raw material for, 215
use by data normalization, 242
Statistical models
and fold change magnitude/consistency, 89
importance for association studies, 172
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in microarray experiments for toxicogenomics,
71
need for development of novel, 54
in PPAR« agonist case study, 77
Statistical power
borrowing, 54
enhanced with GEA, 56
and low number of experimental replicates, 54
Statistical significance, number of generations for
loss of, 186
Steatosis, in PPARo. agonist case study, 75
Stem cell relapse, 145
Stimulant drugs, metabolism by CYP2D6, 99
Streaking, and hybridization errors, 235
Streptavidin conjugations, in association studies,
173
Stress-induced gametocytogenesis, in
P. falciparum, 46
Stress response genes, and exposure to
xenobiotics, 70
Structure-function relationships, whole-genome,
156
Student’s #-test, 79
Subset processing, as technical bias, 160-161
Sulphadoxine-pyrimethanine (SP), 36
SuperArray Bioscience Corporation, 357
company profile, 357
Supervised gene selection approaches, 78
specificity to toxicological end points, 79
Suppression subtraction hybridization techniques,
70
SurModics, 357
Susceptibility alleles, and recurrent mutation, 179
Swiss-Prot bank, 285
SYBR green, 277
Synteni, 4
Systematic biases, and false positives, 186
Systematic errors, 224, 237
Systems biology, 146
and cancer drug development, 145-146
in cancer research, 141
as driving force for drug development via data
integration, 286287
value of, 284

T

T7 RNA polymerase-based amplification,
256-257, 262
comparison with Ovation system, 271, 272
T-test, 218, 247
Tag SNPs, 289-290
Tangier’s disease, 62
and ATP-binding cassette (ABC) family of
transporters, 53

Biochips as Pathways to Drug Discovery

TagMan qRT-PCR
as method of choice for microarray data
validation, 194
and novel sample preparation methodologies,
195
Target identification, patent filings for, 321
Target labeling failures, 233
Target preparation
automating, 162-163
labor intensiveness of, 152
Tebu-Bio, 293
Mutector and Shift Termination Assay (STA)
products, 303
Technical-biological interactions
in association studies, 175-176
genomic peculiarities, 176-178
Technical replicates, normalization by smoothing
methods, 245
Technical variability, 60
and association studies, 170
Technician variability, and data quality, 161
Telechem International, 311
Telecom International, 357
Tertiary interactions, 315
Test and reference samples, in ChIP-on-Chip
method, 126
Therapeutic hormones, 2
Three-dimensional hydroarrays, 15-16, 16-17
example, 20-21
hybridized examples, 19
hydroarray chemistry, 17-19
protein-based, 26-33
sequence-specific protein-DNA recognition in,
30
in vitro diagnostic applications, 22-26
Three-dimensional modeling techniques, 2
Three-prime end amplification (TPEA), 257
TIFF file format, 214
Time-of-flight mass spectrometry (TOF-MS), 295
Time series analysis, in GeneSight software,
218
Tissue microarrays, 10, 286, 347
TNFSFI12 gene, 20
Tolerability assessment
adipose tissue, 120
for blood sampling and leukocyte isolation,
112-113
study results, 114-115
summary table, 115
white blood cells, 121
Toxicity screening, 70
with HT microarrays, 154
microarrays in, 140
Toxicogenomics, 350, 351
in drug safety evaluation, 69-71
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experimental design, 72-74
measuring endpoints vs. startpoints, 71
patent filings for, 321
PPARa agonist case study, 74-90
predictive vs. definitive data, 71
Toxicological end points, and supervised gene
selection approaches, 78-79
Traceability, 237
Trait of interest
comparing with multiple mapped markers, 185
correlating with mapped marker in association
studies, 179, 180-182
genetic vs. environmental origin issues, 171
matched frequencies for derived states of
mapped marker with, 182
Transcription factor binding
in gene expression, 30
to target DNA, 31
Transcription profiling, limitations of, 142
Transcriptional activations
and hepatotoxicity, 73
monocistronic and developmentally regulated
in P. falciparum, 45
Transcriptional profiling, 137
Transcriptomics, 281-284
lessons applicable to association studies,
174-175
Transduction pathways, in antiparasitic discovery,
45
Trastuzumab, 2
Treatment classification, and supervised gene
selection approaches, 78
TreMBL bank, 285
Trimeric PEG polyol, 17
Trisomy detection, 23-24, 25
with CD hydroarrays, 26
Tumor class prediction, 137, 285
effect on drug discovery, 145
microarrays in, 140
Tumor necrosis factor alpha, 2
DNA patent claims related to, 333
Tumor sequencing, for RTK mutations, 143-144
Tumorigenesis, ChIP-on-Chip applications to,
130
Tumors, defining by metastasis signatures, 137
Turner syndrome, lack of Y chromosome in, 26
Two-color assays, 6
by Agilent Technologies, 255
in antiparasitic discovery, 41
patent litigation involving, 325
performance of Ribo-SPIA amplified product
on, 274
Two-dimensional arrays, 16
Two-dimensional gels, 7
Tyramide signal amplification (TSA), 255, 256
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Tyrosine phosphatase, 32
activity on phosphopeptides in hydrogel, 33

U

Ubiquitin regulation system pathway, 46
UCSD Biomedical Genomics Microarray
(BIOGEM), viii, ix
Ulcerative colitis, gene expression profiles of, 52
Ultra rapid metabolizer (UM) phenotype, 98
UNIchip, 296
UniProt bank, 284
Univariate gene selection approaches, 79, 89
Universal arrays, economical quality analysis of,
175
University of California, San Diego (UCSD), viii,
xi
University of Rochesterv. G.D. Searle & Co., Inc.,
331, 334
Unsupervised gene selection procedures, freedom
from bias, 78, 89
U.S. Patent and Trademark Office (PTO), 322
narrow view of utility requirements, 326
Utility requirement
for genomic inventions, 325-326
and patentability by stage of discovery, 324,
326-331
PTO vs. court interpretations of, 326
in revised 2001 utility guidelines, 329

\%

Vaccine development
in antiparasitic discovery, 47
candidates for blood-stage vaccines in cluster
15, 42
Validation. See also Data validation
defined, 193
Variability
batch, 164
biological, 60
decreasing through automation, 159, 160
in expression arrays, 286
at five phases of data acquisition, 223
reducing via miniaturization of tissue
extraction systems, 286
relationship to absolute gene expression, 57
in spot morphology and intensity
measurements, 224
systematic sources of, 243
technical, 60
within treatment, 55
via human intervention/decision making, 226
Variable nucleotide tandem repeats (VNTRs),
288. See also Microsatellites
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Variance stabilizing transformation (VST), 249
Velcade, clinical trial with HT arrays, 155
Venoocclusion
and hepatotoxicity, 73
in PPAR« agonist case study, 75
Very Large Scale Immobilized Polymer Synthesis
(VLSIPS) substrate technologies, 4
Viagra, off-target effects, 154
Vioxx, side effects of, 146
Viral vectors, as functional genomics tool,
198
VLCFA, peroxisomal transporter in metabolism
of, 63

W

‘Wash contamination, 226, 235
Washing step
automating, 160
labor-intensiveness of, 152
WDR?7 gene, on chromosome 18, 26
Wellbutrin, off-target effects, 154
White blood cells
evaluation of gene expression profiles in,
116-119
RNA yield from, 121
scatter plots of gene expression intensities, 118
Whole genome arrays
in association studies, 171
and false positive correlations, 186
importance in cancer research, 144
recent availability of, 138
and structure-function relationships, 156
Within treatment variability, 55, 79
Wound dehiscence, avoiding in tissue sampling,
120
Written description requirement, 325
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DNA patent requiring known sequence, 337
for genomic inventions, 325-326

for patentability, 324, 331-334

PTO vs. court interpretations of, 326
teaching function of, 331

X

X-Print technology, 286
Xenobiotics
biological responses to, 69
stress response genes as signal of response to,
70
Xenometrix, 291
Xeotron, 293, 297
XeoChip synthesis process, 299

Y

Yeast ChIP-on-Chip, 127-129, 138
Yeast genome, 284
low level of repetitive sequences,
127
Yersinia enterocolitica, 32

z

Z-normalization, 245
Zeptosens, 293
SensiChip and ZeptoMARK products, 297
Zip-code tag arrays
in candidate gene analysis, 173
insertion/deletion mutations detection with,
175
probe sequence validation for, 175
Zyomyx, 293
Assay 1200 Workstation, 296
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COLOR FIGURE 3.2 Comparison of the two microarray methods used for the malaria
parasite gene expression’s life cycle (A, short oligonucleotides by in situ synthesis; Affyme-
trix, Santa Clara, CA) or malaria cell cycle (B, long oligonucleotides by robotic deposition
of nucleic acids onto a glass slide). I — Probe Design: For the high-density 25-mer oligonu-
cleotide array, multiple probes per gene are placed on the array (A). In the case of robotic
deposition, a single (75-mer) probe is generally used for each gene. II — Preparation of
labeled material for measurement of gene expression using a cRNA labeled protocol (A) or
a cDNA labeling protocol using the Cy3 (or CyS5) for a two-color strategy (B). III — Experi-
mental design and expression level using different algorithms: MOID algorithm (A) and
Fourier transform (B). III — Cluster analysis using the robust k-mean algorithm (A) or the
fast Fourier transform (FTT) (B).
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COLOR FIGURE 7.5 Clustering on 36 samples reveals 4 spurious samples. Gene number
(at least twofold change in one sample and geo-mean): 4303.
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COLOR FIGURE 7.6 Clustering on the remaining 32 samples after excluding 4 spurious
samples. Gene number (at least twofold change in one sample and geo-mean): 3709.
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COLOR FIGURE 8.1 General ChIP-on-chip method overview. The “test” and “reference”
experiments are run in parallel. The test strain contains the protein of interest (or its epitope-
tagged version), whereas the reference strain has neither the protein nor the tag. Chromatin from
formaldehyde-treated cells is sheared by sonication to an average size of 500 bp and immuno-
precipitated using highly specific antibodies raised against the analyzed protein. After immu-
noprecipitation and crosslinking reversal, DNA is purified and amplified by PCR. INPUT DNA
from the reference strain (crosslinked and sonicated) is used as an alternative in case immuno-
precipitation does not yield enough DNA. INPUT DNA is amplified by PCR directly, bypassing
the immunoprecipitation step. This approach, however, does not control for any potential weak
antibody specificity. Enriched DNA from the test and reference strains is then labeled with the
fluorophores Cy3 and Cy5, respectively. The fluorescent DNA probes are subsequently com-
bined and hybridized to a DNA microarray. For any given DNA fragment on the microarray,
the ratio of the normalized fluorescent intensities between the two probes reflects the protein
enrichment in the test relative to the reference experiment.
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COLOR FIGURE 11.1 Batch variability: Two separate hybridizations of the same sample
to cDNA arrays, replicated 16 times in each hybridization, run on consecutive days, are
compared, with a color scale of correlation as indicated from 0.8 to 1.0. Average correlation
between all arrays from Day 1 = 0.987, Day 2 = 0.981. Average correlation between arrays
hybridized on different days = 0.945. Scatter plots within each individual square can be
observed; less scatter will typically indicate a higher degree of correlation. Correlations
calculated using OmniViz Desktop 3.9.0 using the CorScape tool.
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COLOR FIGURE 13.1 A representative amplification plot showing amplification of refer-
ence samples. Linear relationship between amount of input material and CT values was
observed across all reference samples suggesting a broad dynamic range of detection.
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COLOR FIGURE 13.7 Example of control amplification (all wells equally loaded with
positive control) performed in OpenArray on BioTrove system.
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COLOR FIGURE 13.8 Integrated solutions for data analysis facilitate data processing, inte-
gration, and reporting. Spotfire DecisionSite is used as an interface. The user communicates
directly with the R and S-PLUS servers and uses the DecisionSite server for software updates.
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COLOR FIGURE 14.10 GeneDirector’s image analysis module ImaGene for the spot quan-
tification, flagging, and removal of contamination.
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COLOR FIGURE 14.12 GeneDirector’s data mining and statistical analysis module Gene-
Sight for knowledge discovery from the microarray data.
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COLOR FIGURE 15.2 The concordance correlation coefficient (CCC) detects many target-
labeling failures. (A) CCC of array with a good quality (dark blue), poor array (pink), and
the array shown in B (light blue). (B) A representative area of the array with low overall
hybridization to probes. (C) A histogram of intensities for the array shown in B.



COLOR FIGURE 15.5 The outlier algorithm identifies spots affected by hybridization. The
top panel is an applet display of regions in the bottom panel. Red-labeled outliers were based

on high replicates. Yellow spots were outliers by both variance and morphology.
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COLOR FIGURE 15.6 QC2 identifies and removes outlier intensities from the data set.
Replicate arrays were compared with each other in an intensity plot on a log scale. Data are

shown before (pink) and after (blue) outlier removal.
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COLOR FIGURE 19.2 A: DMH (differential methylation hybridization). B: DNA Methy-
lation. C: Glycominds, Ltd. D: Biocept. E: Ciphergen. F: High-Throughput Genomics. G:
Protagen. H: Zyomyx. I: Jerini. J: Genoptics. K: HTS Biosystems. L: Zeptosens. M:
Aclara/Virologic. N: Protiveris. O: Advalytix. P: Calipertech. Q: HandyLab. R: Gyros
Systems. S: Xeotron. T: Sequenom. U: Illumina. V: Affymetrix. W: Applied Biosystems. X:
PerkinElmer. Y: Parallele. Z: Tebu-Bio. AA: Orchid. BB: Nanosphere. CC: Lynx Therapeutics.
DD: Nanogen. EE: CMS. FF: Combimatrix. GG: GeneOhm. HH: Nanoplex. 1I: BioArray
Solutions. JJ: Luminex. KK: PamGene. LL: Metrigenix. MM: Solexa. NN: Graffinity. OO:
Febit. PP: Genospectra. QQ: Epoch Biosciences. RR: Exiqon. SS: Nimblegen. TT: Perlegen.
UU: Arraylt. VV: Genomic Solutions. WW: Idaho Technology. XX: Asper Biotech. YY:
Agilent Technologies.



COLOR FIGURE 19.2 (Continued).
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In the fiercely competitive pharmaceutical marketplace, your
organization cannot afford to spend excess dollars developing
drugs that will fail to get FDA approval or have profoundly poor
characteristics. Biochips as Pathways to Drug Discovery takes
a comprehensive look at how the industry faces these challenges,
using new technologies such as biochips to reduce the cost of
drug discovery and improve drug safety. The book explores the
tools and skills required at each step of the discovery process
when using biochips to determine biological outcomes.

The authors provide an in-depth review of the clinical and
pharmacogenomic relevance of biochips, ChIP-chip assays, and
high-throughput approaches. They discuss how biochips are
used to develop biomarkers in the drug discovery process,
primarily for gene expression profiling and Single Nucleotide
Polymorphism (SNP) analysis. The book includes coverage of
experimental theory, quality control, clinical laboratory sampling
considerations, database concepts, industrial laboratory design,
and the analysis of the resultant large data sets. It discusses the
application of biochips to the study of malaria, toxicogenomics,
and SNPs, as well as intellectual property and market overviews.
The book concludes with a comprehensive overview of how
these chips are employed from early target discovery through
preclinical toxicology and on through to pharmacogenomic and
proof of concept studies in humans.

Written in an easily accessible style, the breadth of coverage
introduces the subject to those new to the field, while the depth
of coverage forms a foundation for future work. The book gives
you the knowledge required to leverage the technology into
bona fide discoveries.
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