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Preface

Our aim in putting this book together has been to collect in one volume the range
of materials systems with differing functionalities that show many of the common
characteristics of geometrical frustration, where interacting degrees of freedom
do not fit in a lattice or medium, and glassy behavior is accompanied by the
additional presence of disorder. Ferroics include a range of materials classes with
functionalities such as magnetism, polarization, orbital degrees of freedom, and
strain. Frustration, due to geometrical constraints, and disorder due to chemical
and/or structural inhomogeneities, can lead to glassy behavior, which has either
been directly observed or inferred in a range of materials classes. These include
model systems such as artificial spin ice, shape memory alloys and ferroelectrics,
and electronically functional materials such as manganites. The glasses include
structural glass, spin glass, relaxor ferroelectrics, and recently studied strain glass.
Interesting and unusual properties are found to be associated with these glasses and
they have potential for novel applications. Just as in the prototypical spin glass and
structural glasses, the elements of frustration and disorder lead to non-ergodicity,
history dependence, frequency-dependent relaxation behavior, and the presence of
inhomogeneous nanoclusters or domains. In addition, there are new states of matter,
such as spin ice, but it is still an open question whether these systems belong to the
same family or universality class.

With chapters written by experts in their field and spanning experiments, theory,
and simulations, the book will be of interest to a wide readership spanning areas
of condensed matter physics and materials science. It is expected to be accessible
to an interdisciplinary readership that includes graduate students and beginning
researchers as well as experts. The chapters are intended to be partly a review with a
broad perspective, partly original research, and partly delineating open issues in the
field. We have organized the chapters so that we begin with a broad perspective from
David S. Sherrington in Chap. 1, who uses the developments in spin glass theory
to distill common concepts and features, observed or anticipated, among the ferroic
glasses. Sherrington utilizes simple models to determine the fundamental origins
within a larger picture involving spin glasses, cluster glasses and relaxors, and strain
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vi Preface

glasses. Eric Vincent and Vincent Dupuis in Chap. 2 bring an experimentalist’s
perspective to the study of spin glasses and provide an excellent introduction and
review for those interested in other glasses. They consider spin glasses on laboratory
time scales and discuss nonequilibrium aspects, including the aging process and
its restart (known as rejuvenation), as well as the ability of a spin glass to keep
memory. With its origins in frustration, the ice rule emerges as a unifying topological
concept to describe a large variety of material systems. Cristiano Nisoli discusses
in Chap. 3 how this has evolved into a powerful notion to describe diverse systems
such as water ice, spin ice behavior in rare earth titanates, and systems designed to
study frustration in a controlled manner, known as artificial spin ice. An example
of the latter includes an array of elongated, mutually interacting, single-domain,
shape-anisotropic, magnetic nano-islands arranged in different patterns. Advances
in nano-fabrication, such as lithography, have allowed such systems to be readily
synthesized and their properties, such as the collective magnetic and topological
behavior, to be studied. As model systems with novel field-induced transitions, they
provide a means to study very unusual forms of glassy behavior.

Chapter 4 by Michael E. Manley provides a bridge between the fundamental
physics of glasses and frustration discussed in Chaps. 1–3 and the details and
mechanisms at work in specific ferroic systems, such as ferroelectrics and shape
memory alloys, which are discussed in the later chapters of this book. Manley
discusses how the nanoregions in a ferroelectric (polar nanoregions or PNRs) can
result from an interplay of nonlinearity and lattice discreteness, in modes called
breathers or intrinsic localized modes. PNR can also be formed via disorder by a
mechanism known as Anderson localization in which waves scattered by disorder
constructively interfere in small regions and destructively interfere elsewhere.
Manley describes evidence via neutron diffraction data and shows that it is more
consistent with the latter mechanism. Given that in ferroic systems the competition
between long-range and short-range order leads to frustration, the importance of
this chapter is that it shows how the long-range order becomes localized into
PNRs or why this happens specifically at the nanoscale. Broadening the theme
somewhat, Wolfgang Kleemann in Chap. 5 considers the strain glass, cluster glass,
and nanopolar glassy relaxors as based on supercritical chemical disorder, preceded
by the analogous tweed-lie regions in these ferroic cases. Kleemann discusses how
these glasses are the result of nontrivial interactions between point defects and the
surrounding matrix, and that the mechanisms so far proposed may not be adequate
to fully understand these glasses. This is in contrast to superspin glass involving an
insulating matrix and interacting nonmagnetic nanoparticles. The cluster spin glass
emerges from complex spin and charge frustration involving magnetic nanoparticles
in dilute magnetic materials and is perhaps least understood.

The focus of Chaps. 6–10 is the study of glassy behavior in alloys, which can
be magnetic. In Chap. 6, Peter Entel et al. review the properties of magnetic
Heusler alloys, which are intermetallics that on rapid quenching acquire frozen
in compositional disorder. These alloys show the magnetic shape memory effect
and can be magnetocaloric with a jump-like change in magnetization as a function
of decreasing temperature. They also make the point that the alloys all have the
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Preface vii

ingredients of a glass, such as intrinsic disorder and frustration as well as elastic
anisotropy. The subject of Chaps. 7–10 is strain glass. Yuanchao Ji et al. review
in Chap. 7 the origin of strain glass induced by defects, be they point defects or
topological in nature, such as dislocations or precipitates. Their focus is on the
results obtained from experimental measurements. In Chap. 8, Xue and Lookman
consider phenomenological Landau models at the continuum, mesoscale level of
description and show how a discrete pseudo-spin model in the sharp interface
limit may be extracted. They solve the pseudo-spin model using the methods of
statistical mechanics including Monte Carlo simulations. Their approach toward
disorder is based on adding substitutional dopants with given chemistry and range
of interaction. Pol Lloveras et al. and Wang et al. study the Landau-based models
extensively in Chaps. 9 and 10, respectively. Disorder is added via the temperature-
dependent quadratic term in the strain or via a stress term. The modeling studies in
Chaps. 8–10 essentially calculate frequency dispersion and zero field/field cooling
curves as signatures of the glassy behavior.

This book is aimed at an interdisciplinary audience and it aims to be both timely
and appealing to those interested in learning about this growing field. We are grateful
to all the authors for their articles as well as their support and patience during the
editorial process.

Los Alamos, NM Turab Lookman
Tsukuba, Japan Xiaobing Ren
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Chapter 1
What Can Spin Glass Theory and
Analogies Tell Us About Ferroic Glasses?

David Sherrington

Abstract As well as several different kinds of periodically ordered ferroic phases,
there are now recognized several different examples of ferroic glassiness, although
not always described as such and in material fields of study that have mostly
been developed separately. In this chapter an attempt is made to indicate common
conceptual origins and features, observed or anticipated. Throughout, this aim is
pursued through the use of simple models, in an attempt to determine probable
fundamental origins within a larger picture of greater complication, and analogies
between systems in different areas, both experimental and theoretical, in the light of
significant progress in spin glass understanding.

1.1 Introduction

The existence of macroscopic magnetism has been known since ancient times,
with appreciation of its possible spontaneous microscopic origins coming from
the mean-field theories of Weiss [1] and Stoner [2], respectively for local-moment
and itinerant ferromagnets. The electrical analogue, ferroelectricity, was discovered
experimentally in 1920 [3]. The subsequent recognition of antiferromagnetic and
ferrimagnetic orderings is due to Néel [4]. In these conventional phases, as well as
in many other subsequently discovered ferroic phases, the order is macroscopically
periodic, as well as of lower symmetry than the corresponding higher temperature
para-phases, which lack long range ferroic order.

The recognition of the existence of different dipolar-glassy behaviour in certain
alloys, quasi-frozen locally but without periodic ferroic order, dates back some half
a century in both magnetic and electrical scenarios. Initially it was thought ‘just’
to represent slowing down of dynamics with reduced temperature as experienced in

D. Sherrington (�)
Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Oxford, UK

Santa Fe Institute, Santa Fe, NM, USA
e-mail: David.Sherrington@physics.ox.ac.uk
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2 D. Sherrington

conventional glasses, but interest in the magnetic ‘glasses’ became more focussed
with the observation, at the beginning of the 1970s, of sharp but non-divergent low-
field magnetic susceptibility peaks as a function of temperature in AuFe alloys
[5], suggesting a conceptually new type of phase transition. In combination with
evidence of local spin freezing through Mössbauer experiments and of lack of
periodicity through neutron diffraction experiments, the new state became known
as ‘spin glass’. Attempting to understand these observations led to theoretical mod-
elling and novel theoretical, experimental and computational methodologies [6–9]
that exposed subtle new concepts and useful applications, not only in many material
systems but also in many physically very different complex systems/problems, such
as neural networks, hard optimization, protein-folding and also probability theory.
At a model level the underlying physical origins of the behaviour are reasonably
understood, although some controversies remain, and many material examples are
now known; see, e.g., [10–16].

Independently, a potentially related observation was made already in the 1950s
and 1960s in ferroelectric alloys [17, 18], in the form of peaks in the a.c. electrical
susceptibility of the perovskite alloy Pb(Mg1/3Nb2/3)O3 (PMN), with significant
frequency dependence, no ferroelectricity and no change of global symmetry,
at temperatures much below those of the relatively frequency-independent fer-
roelectric transition in the related non-disordered compound PbTiO3 (PT). This
new behaviour was named ‘relaxor’. The discovery of the relaxor behaviour in
ferroelectric alloys1 also sparked much interest and practical application, but its
fundamental origin has remained uncertain and contested.

A third type of ferroic glass can be found in martensitic alloys, given the name
‘strain glass’ [19], but this was a more recent discovery, despite the fact that practical
interest in martensites goes back to the nineteenth century.

In this chapter I shall try to relate these different types of ferroic glasses under
a common conceptual umbrella, including both well-defined local moments and
induced moments, within minimal modelling.

1.2 Experimental Indications

Before giving a theoretical discussion, it is suggestive to note some further
similarities in experimental observations of different systems.

In Fig. 1.1, are shown AC susceptibilities (electrical or magnetic, as appropriate),
of the original (heterovalent) relaxor PMN, the spin glass Pt1−xMnx at x = 0.025,
and the more recently discovered homovalent relaxor BaZr1−xTixO3 (BZT) at
x = 0.65. They are clearly very similar, with peaks indicative of transitions or
strong crossovers, with strong frequency dependence, slow to respond and glassy,

1We use the expression ‘ferroelectric alloy’ to refer to alloys which exhibit ferroelectricity (or
antiferroelectricity) at appropriate concentrations and low enough temperatures.



1 Spin Glass Theory and Ferroic Glasses 3

Fig. 1.1 (a) AC susceptibilities; heterovalent relaxor Pb(Mg1/3Nb2/3)O3 (PMN) [17], (b) spin
glass PtMn [20] ©Springer 1983, (c) homovalent relaxor BaZr0.35Ti0.65O3 (BZT) [21] ©IOPP
(2004)

Fig. 1.2 (a) a.c. electrical susceptibility of ferroelectric BaZr0,2Ti0.8O3 (BZT) at several frequen-
cies [21] ©IOPP (2004); (b) low-field magnetic susceptibility of two AuFe alloys under different
applied fields [5] ©APS (1972)

suggesting that similar physics is at play in these experiments. Yet they are rather
different in several other aspects of their physical make-ups; both PMN and BZT are
ceramic (insulating) substitutional alloys with the basic average perovskite structure
ABO3, where A is an ion of charge 2+, B is an ion of charge 4+ and O has charge
2−, but with random substitution on the B sites; however, in BZT the replacement
B ions also have charge 4+, hence the labelling as ‘homovalent’, while in PMN the
replacement B ions have charges 2+ for Mg and 5+ for Nb, in ratio 1:2 to maintain
the average charge, hence the description as ‘heterovalent’; PtMn is a face centred
cubic metallic alloy with magnetic moments only on the Mn. It is thus natural to
look for conceptual common links beyond normal material appearances.

For comparison/contrast, Fig. 1.2a shows the corresponding susceptibilities of
BZT at a concentration at which the alloy is ferroelectric, demonstrating no
significant frequency dependence and hence no glassy slow response. Figure 1.2b
shows the effects of even small applied fields in spin glass AuFe, rounding the
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Fig. 1.3 Field-cooled (FC) and zero-field-cooled (ZFC) static susceptibility measurements; PMN
[22] ©APS (1998), spin glass CuMn [23] ©APS (1979), BZT(50:50) simulation [24] ©APS (2012)

transition but also suggesting that it is sharp in the limit of zero applied field. One
can also note that although the (normal) susceptibility diverges at a second-order
ferromagnetic or ferroelectric transition, it does not diverge at spin glass or relaxor
transitions, indicating that the global moment is not a primary order parameter for a
spin glass or relaxor.

In Fig. 1.3 are shown for comparison examples of the field-cooled (FC) and zero-
field-cooled (ZFC) susceptibilities for the heterovalent relaxor PMN [22] and the
spin glass CuMn [23], along with results of computer simulation of analogous
measures for a model of the homovalent relaxor BZT [24]. Again there are clear
similarities as the temperature is reduced through that associated with the low-
frequency a.c. susceptibility peak, of the continuous separation of the two kinds of
susceptibility measure, cooling in the probe field (FC) and cooling without the field
and then applying the field to measure (ZFC), respectively understood as probing all
thermodynamic states (FC) and probing only accessible states (ZFC), the separation
indicating the onset of a hierarchy of barriers.

1.3 Spin Glasses

The canonical spin glasses, such as AuFe and CuMn, involve non-magnetic hosts,
Au and Cu, and a finite concentration of local-moment-bearing substitutions, Fe and
Mn. Paramagnetic at high temperatures, they exhibit spin glass behaviour beneath
critical temperatures at lower (but finite) concentrations of magnetic ions. A similar
behaviour is also found in many other systems, both metals and insulators; see, e.g.,
Fig. 1.4.

To model the cooperative magnetic behaviour one typically expresses the
Hamiltonian as

HCSG = −
∑

(ij)(Mag)

J (Rij )Si .Sj (1.1)
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Fig. 1.4 Spin glass phase diagrams; (a) metal: AuFe [25] ©Taylor and Francis (1978), (b) semi-
conductor: EuxSr1−xS, [26] ©APS (1979), (c) SK model with mean and variance of exchange
distribution both scaling with concentration x. [27] ©Springer (2012)

where the Si are localized spins, of fixed length but variable direction, located on the
magnetic ions, J (R) is a translationally invariant but spatially frustrated ‘effective
interaction’ and the sum is over pairs of sites occupied by magnetic atoms.

For the canonical metallic systems such as AuFe and CuMn, the exchange
interaction between the magnetic ions is carried by the conduction electrons via
the s-d coupling, resulting in the RKKY form

J (Rij ) = J 2χij (1.2)

where J is the coupling strength between the conduction electron spin (si) and
the local moment spin (Si ) and χij is the conduction band susceptibility between
sites i and j . χij oscillates in sign with separation Rij , with wavevector 2kF where
kF is the Fermi wavevector, and (in 3 dimensions) also decays in magnitude as
R−3. The oscillation in sign results in a competition in ordering tendencies of the
spins, now known as ‘frustration’ [28], while the randomness of occupation of
lattice sites by magnetic ions provides quenched disorder and inhomogeneity of
local environments.

The RKKY interacting metal systems are, however, just one experimental exam-
ple of the combination of frustration and disorder leading to spin glass behaviour.
In the second example of Fig. 1.4 the material is semiconducting, the spins are
on the Eu and their interaction arises from shorter-range superexchange, with
frustration due to competition between nearest-neighbour and antiferromagnetic
next-neighbour interactions.

It is now well-established that the combination of frustration and quenched
disorder are the key ingredients for spin glass behaviour. This realization by
Edwards and Anderson (EA) [6] led them to suggest in 1975 an alternative model for
potentially easier but conceptually equivalent theoretical study, along with further
new conceptualization and methods of analysis that ignited theoretical excitement.
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In their model every site is occupied by a magnetic spin but their interactions are
chosen randomly and quenched:

HEA = −
∑

(ij)

JijSi .Sj , (1.3)

where the Jij are chosen randomly from a symmetric distribution of mean zero,
ensuring that no conventional periodic order is possible.

Through novel and innovative analysis EA demonstrated the existence of a new
phase with random spin-freezing. They noted that a relevant order parameter to test
for spin freezing, independent of overall periodic order, is

qEA = lim
τ→∞ Si(t)Si (t + τ ), (1.4)

where the overbar refers to an average over sites i and times t , or, equivalently

qEA = 〈Si〉2, (1.5)

where the 〈.〉 brackets refer to a thermodynamic average and the overbar to a
site/disorder average. Thus, ‘amorphous’ spin freezing without ferromagnetism is
signalled by non-zero qEA but zero overall magnetization m, as given by

m = 〈Si〉i . (1.6)

The EA model has become an important paradigm in further theoretical study. It
is normally considered as having only nearest-neighbour interactions on a simple
cubic (or hypercubic) lattice. Computer simulations have demonstrated that it
captures key features of real systems. An extension to allow for competition of the
spin glass phase with ferromagnetism by allowing a finite mean J0 to the interaction
distribution, of standard deviation J , by Sherrington and Southern (SS) [29], showed
that when J0/J is large enough the low temperature state is a ferromagnet, while
for smaller J0/J , beneath a critical value, the low temperature state is spin glass.

The EA model with finite interaction range is not exactly soluble. However,
an extension in which the distribution from which the interactions are drawn is
the same for all pairs of sites, independently of their separation, the Sherrington-
Kirkpatrick (SK) model [7], is soluble, although its solution is very subtle, requiring
a description beyond that of a single simple order parameter [8], and has exposed
several unexpected but interesting features and concepts [9]. Its solution clearly
demonstrates the existence of phase transition to a glassy phase, even in an applied
field, and also that its spin glass phase has a complex structure with a hierarchy
of metastable states and chaotic evolution under change of global controls (such
as temperature). It has stimulated much further study in many other range-free
random problem scenarios. However, there remains controversy about whether all
the conceptual results of the SK model studies apply to finite-ranged systems,
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especially those related to so-called replica-symmetry-breaking [8] and to whether
a phase transition still persists in an applied field.

1.3.1 Simulations

Computer simulations of model systems have played an important role in deter-
mining whether true phase transitions exist also in systems with range-dependent
interactions, using their ability to measure directly observables which are not readily
accessible to conventional experimentation, such as the spin glass order parameter
qEA and a related spin glass susceptibility, as well as the more conventional
measures such as the ferromagnetic order parameter m.

The existence of true phase transitions can be tested through sophisticated
simulation studies, especially through the use of finite-size scaling and Binder
plots [30]. These studies have provided clear demonstrations of spin glass phase
transitions in several interesting situations, e.g. as illustrated in Fig. 1.5 for three
examples; (1) spin-glass correlations in the SK model with zero mean exchange
[31], (2) a nearest-neighbour Ising EA model in dimensions 3 (again with zero mean
exchange) [32] and (3) a longer-range dipolar model emulating LiHoxY(1−x)F4 at
x = 0.001, a concentration at which the system is a spin glass [33].2 Corresponding
plots for ordinary magnetic correlations in these systems do not show crossings,
indicating the absence of a ferromagnetic transition. The combination of these two
results, crossing of the size-normalized spin glass correlation lengths together with
the lack of crossing of the normal magnetic correlation lengths, lead to the deduction
of a true spin glass phase transition at the crossing temperature.

Fig. 1.5 Spin glass correlation plots for different sample sizes, with crossovers at phase transition
temperatures, for (a) SK model [31] ©APS (1984), (b) three-dimensional Ising EA [32] ©APS
2006 and (c) LiHoxY(1−x)F4;x = 0.001 [33]

2The phase transitions are demonstrated by the crossing of appropriate correlation measures for
systems of different sizes, with scaling plots providing further confirmations and exponents.
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1.3.2 Soft Spins

In analytic studies of spin glasses the Hamiltonian is often re-expressed using
continuously valued ‘spin fields’ {φ} in place of the fixed length spins {S}. Within
a simplification to one-dimensional (Ising) spins HEA becomes

HEAcont =
∑

i

(rφi
2 + uφi

4) −
∑

(ij)

Jij φiφj , (1.7)

while the analogue for site-disorder is

HCSGcont =
∑

i

(riφ
2
i + uiφ

4
i ) −

∑

(ij)

J (Rij )φiφj . (1.8)

The full hard-spin Ising case (S = ±1) results from taking the limits

r → −∞, u → ∞, r/2u → −1. (1.9)

The sums are taken over only magnetic sites or, equivalently, the non-magnetic sites
can be emulated by taking ri → ∞ on those sites. Note, however, that if some ri
are positive but finite then for those sites to displace there needs to be a sufficient
binding energy from the interaction term to overcome the local quadratic penalty for
displacements, otherwise the ground state would have φ = 0. Such bootstrapping
is referred to as ‘induced moment’. Note that the resultant order will depend on
the character of the interactions and can be either globally periodic, including
ferromagnetic, or spin glass in a system with sufficient disorder and frustration.

Early experimental indications of induced moment spin glass behaviour were
found in the alloys YTb and ScTb [34], in which crystal field effects lead to a
singlet ground state for isolated Tb ions. For Tb concentrations less than a small but
finite percentage the ground state is non-magnetic, in contrast to the corresponding
alloys with non-singlet ground state Gd in place of Tb, in which the spin glass state
continues to the lowest finite concentrations.

A simple extension of the EA model exhibiting induced moment spin glass
behaviour was introduced in 1977 by Ghatak and Sherrington (GS) [35];

HGS = −
∑

i

DS2
i −

∑

(ij)

JijSi .Sj (1.10)

with the S taking values S = 0,±1 and the {J } again drawn randomly from a
distribution of mean zero. For D less than a critical (negative) value Dc there is only
a paramagnetic phase, while above there is an induced-moment spin glass phase.
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1.4 Polar Glasses and Relaxors

Ferroelectric systems are often categorized as being of polar/‘order-disorder’ type
or ‘displacive’ type.

In the former one envisages local electric dipolar moments well formed (but
not cooperatively ordered) already in the paraelectric phase above the macroscopic
ordering transition to ferroelectricity (or, if energetically preferable, to another
periodic phase), in close analogy with local moment magnetism. Correspondingly,
alloys with sufficient dilution of local moment units by neutral ones, together with
frustrated interactions, can lead to close analogies of conventional local moment
spin glasses [36, 37]. Extensions of spin glass modelling and analysis have also
been developed for systems characterized by the interaction of higher-order local
moments [38–40].

By contrast, in displacive ferroelectrics there are no long-lived electric moments
above the transition to ferroelectricity and the charged ions fluctuate around a mean
lattice structure with no overall electric moment. Rather, in such ferroelectrics, as
the temperature is lowered beneath the transition temperature the time-averaged
positions of charged ions displace collectively in such a manner as to yield overall
ferroelectricity. The transition to ferroelectric is typically accompanied by a change
in global symmetry but the ferroelectricity itself is caused by a relative distorsion
of positively and negatively charged ions within the unit cells, yielding electric
moments. Unless pre-empted by a first order transition, the susceptibility diverges at
the transition. However, not all candidate systems with the same ionic charges and
higher temperature structures do exhibit cooperative ordering; for example BaTiO3
(BT) is a displacive ferroelectric while BaZrO3 (BZ) is not. An energetic advantage
of distorsion is needed.

Displacive ferroelectrics can be modelled by considering the displacements of the
ions as variables governed by Hamiltonians including local costs, the (non-local)
effects of interactions between displacements at different sites and the effects of
charges on different sites, with coefficients calculable by first-principles methods,
followed by computer simulations at finite temperatures.

A detailed first-principles theoretical/computational study of BaTiO3 was given
in [41] and demonstrated the ferroelectric transition; see also [42]. However, the
conceptual principles can be seen already from a simplified model allowing only for
one-dimensional displacements of the most polarizable ions:

HR =
∑

i

{κu2
i + λu4

i } +
∑

ij

Jij uiuj (1.11)

where the ui are the displacements of the ions at sites {i}, the first (single-site) term
describes the local energy costs of displacements and the last term represents the
interaction energy. Clearly, this has a similar form to Eq. (1.7) and can yield an
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induced moment (displaced u �= 0) ground state if the energy minimizing gain
from the interaction term can overcome the local cost from the κ term, with a
corresponding transition at a higher temperature. For κ close to zero one expects
features of both displacive and order-disorder behaviour, reducing κ making it more
order-disorder-like.

Here, however, the main interest is in alloys. In particular, we shall concentrate
on alloys of underlying perovskite structure ABO3 with substitutional disorder on
the B sites. This disorder can be either homovalent, for which the ions on the B-sites
all have the same 4+ charge as the template, or heterovalent, for which the B-ions
have different charges but with the average charge of 4+.

1.4.1 Homovalent Relaxors

The homovalent alloy Ba(Zr1−xTix)O3 (BZT) exhibits ferroelectricity at higher x >

xc1, only paraelectricity for x < xc2, with relaxor behaviour in between [43]. The
present author has argued that the relaxor state of BZT is essentially an induced
moment spin glass [44]. The susceptibility measured in BZT in a relaxor region of
the concentration x is shown in Fig. 1.1.

Here we shall use only a simplified model to illustrate the probable origin of
the relaxor behaviour observed in BZT at intermediate concentrations [45]. We note
that at para- to ferro-electric transitions of ABO3, while the overall lattice structure
stretches from cubic to tetrahedral, the B-site ions displace from the symmetric
lattice positions yielding the ferroelectricity; see Fig. 1.6. Also, it is observed that
in the relaxor state the overall average lattice structure remains cubic. Hence, while
all the ion locations are, in principle, variable, we shall initially ignore any A and
O site displacements, coupling to global strain and change in global lattice structure
and concentrate on the deviations of the B-site ions from their locations on the pure
perovskite ABO3 lattice, using

HR =
∑

i

{κi |ui |2 + λi |u|4 + γi(u
2
ixu2

iy + u2
iyu2

iz + u2
izu

2
ix)} +

∑

(ij)

∑

αβ

J
αβ
ij uiαujβ

(1.12)

Fig. 1.6 Unit cell structure
of PbTiO3 above and below
the ferroelectric transition
temperature. BaTiO3 is
similar, but with smaller
tetrahedral stretching
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where the {ui} are the displacements of the ions at B-sites {i}, the first (single-
site) term describes the local energy costs of displacements, with the κ, λ and
γ coefficients depending upon the types of atoms at those sites, and the last
term represents the interaction energy, involving a short-range contribution due to
(quantum mechanical) electronic interference of neighbouring pairs of B ions, long-
range Coulomb interactions and effective interactions via the ions on A and O sites.
This is immediately recognizable as a vector analogue of Eq. (1.7), also allowing for
anisotropy.

For κ positive the ground state will have u = 0 if the interaction strength is
insufficient to overcome it. This appears to be the case for Zr in BaZrO3, which
is everywhere paraelectric, while for Ti κ is smaller and BaTiO3 is ferroelectric.
Empirically, for a pure system at finite temperature one can consider Eq. (1.12)
to represent instead an effective Landau free energy with temperature-dependent
coefficients,

κ = κc + a(T − Tc) + O(T − Tc)
2 (1.13)

where κc > 0 is the critical value at which the energy cost from the local harmonic
term equals the maximum energy gain from the interaction and Tc is the transition
temperature.

For alloys such as BZT one can model as in Eq. (1.12) but with different κ, λ and
γ on Zr and Ti sites. Given that κZr is too great to allow order in BZ, the situation
is analogous to that in Eq. (1.8), albeit without the extremes of coefficients and with
r rather positive on Zr sites, reminiscent of the non-magnetic sites in conventional
spin glasses but allowing for some paraelectric induction.

Dipolar interactions are frustrated, as well as long-ranged, well-known to lead to
several different magnetic phases in different structures and in combination with
different extra shorter-range interactions [46]; e.g. a simple cubic Ising dipolar
system has an antiferromagnetic ground state, while the tetragonal LiHoF4 is
ferromagnetic at low temperature. It is also known from experiment and from
computational studies of hard-spin dipolar models that site-dilution of dipolar sites
can lead to spin glass phases in such systems; see the first two sub-figures of Fig. 1.7
[47, 48].

Hence it seems reasonable to anticipate a corresponding soft pseudo-spin glass
phase in homovalently diluted frustrated ferroelectrics in appropriate parameter
regions and for the observed relaxor state in BZT to be a manifestation of such
a phase, the pseudo-spins being the local dipoles induced by displacement of
the charged B-ions. Computer simulations of Ba(Zr0.5Ti0.5)O3 (50:50 BZT) [24]
demonstrate such behaviour; see Fig. 1.3.

Note, however, that for any ordered phase the binding energy from the interaction
term must be sufficient to overcome the cost of any positive κ . Hence the phase
diagram for soft-spin versions of the models of [47, 48] would be expected to
correspond to lowering the phase transition lines shown in the first two sub-figures
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Fig. 1.7 Phase diagrams: Computer simulations of site-diluted dipolar Ising models (a) on
a simple cubic lattice [47] ©APS (2010), (b) on a tetragonal lattice with also short-range
antiferromagnetic interaction, with parameters based on LiHoxY(1−x)F4 [48], and (c) schematic
speculation for BZT

of Fig. 1.7 by an amount of order κT i , thereby yielding a phase diagram as indicated
schematically in the third sub-figure,3 in qualitative accord with observations
[21, 43, 45].

In the model considerations above we have ignored any possible change in
the basic cubic lattice structure. This is in accord with observations for relaxors.
However, in para- to ferro-electric transitions there are normally observed changes
in the global average lattice structure, for example in BaTiO3 and PbTiO3 to a
tetragonal structure. This is a consequence of inclusion of global strain coupling
which we have not included explicitly; see [41]. It will affect the relative energetic
preferences for the ferroelectricity and relaxor and hence transition compositions
at phase boundaries separating them, but the present author believes it does not
affect the conceptual principles given above for the existence of pseudo spin glasses
and experiment shows no change in global symmetry at the relaxor transition.4 We
have also not considered the other constituent elements explicitly, only assumed
inclusion of their contributions implicitly via effective interactions between B-ions.
Such extra effective interaction contributions will depend upon the ions on the A
sites and is presumably at least part of the reason why BaZr1−xTixO3 (BZT) has
a relaxor phase but PbZr1−xTixO3 (PZT) appears not to have one; while the direct
B-B interactions should be similar in both alloys, the indirect interaction via the A
ions will be different, with that for A=Pb more strongly ferroelectric than that for
A=Ba. In fact. both experiment [49, 50] and theoretical calculations [42] show that
while the Ti displacements in BaTiO3 are much greater than those of the Ba ions,
in PbTiO3 the situation is almost inverted, the Pb displacements being greater than
those of the Ti ions. Hence, in the Pb-based systems ideally one should include the

3 Conceptually, at the simplest level, the Zr ions are analogues of the non-magnetic atoms in
conventional local moment spin glasses (e.g. Cu or Au in CuMn and AuFe), although in fact
they should be paraelectrically displaced a small amount by the electric fields associated with the
displaced Ti ions.
4The absence of a global strain in the relaxor state can be attributed to the lack of an overall global
moment.
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Pb (and O) displacements explicitly in the Hamiltonian. However, the combination
of frustration and disorder should continue to allow for the possibility of a spin-
glass-like relaxor state, albeit that it may not be a preferred one in PZT.

1.4.2 Heterovalent Relaxors

The original classic relaxor PMN is heterovalent, the B-site 4+ ions of the ABO3
template being replaced by Mg 2+ ions and Nb 5+ ions in the ratio 1:2. Below we
attempt to move conceptually towards a possible understanding in the light of the
observations above, albeit in a discussion that is at some variance with convention.

Let us first consider in terms of the basic Hamiltonian of Eq. (1.12) but now
with account needing to be taken of the fact that the B-ions are of different charges
and hence that Jij depends on the particular ions at i and j and not simply on
their separation. Allowing also for different types of A ions we shall refer to this
Hamiltonian as H 1

AMN . Let us also introduce a corresponding Hamiltonian H 1
AM∗N∗

for a fictitious material AM*N* in which the Mg++ and Nb+++++ of AMN are
replaced by fictitious ions Mg*++++ and Nb*++++ which have the same properties
as Mg++ and Nb+++++ except for their charges, which are ++++ as in the standard
ABO3 template. We next note that Mg++ has an ionic radius similar to that of
Zr++++ and hence can be expected to have a similar largish κ , while Nb+++++ and
Ti++++ also have similar but smaller ionic radii, suggesting similar κ and likelihood
to displace. We shall assume that the B-ion replacement is random. Consequently,
one might initially expect that AM*N* would have a similar phase structure to AZT
at the same relative concentrations of 1:2. This would suggest that BM*N* would
be a relaxor, or close to a boundary between ferroelectric and relaxor, while PM*N*
would be a ferroelectric.

Hence the observation that PMN appears to show the same sort of relaxor
behaviour as BZT indicates that the difference between H 1

PMN and H 1
PM∗N∗ is

important in stabilizing the relaxor phase in PMN. This difference is given by

H 1
PMN = H 1

PM∗N∗ + VCoulomb(Zi, Zj , Rij ) − VCoulomb(Z
0
i , Z

0
j , Rij ) (1.14)

where VCoulomb(Z̃i, Z̃j , R̃ij ) is the Coulomb energy associated with charges Z̃i and
Z̃j separated by a distance R̃ij , the {Zi} are the actual charges at sites {i} while Z0

i is
the charge at site i accounted for in PM*N* ( i.e. for B-sites, Z0 = 4+ , for A-sites
Z0 = 2+ and for O-sites Z0 = 2−), and

Rij = |R0
i + ui − R0

j − uj |. (1.15)

Expanding, the perturbation component compared with PM*N* includes terms both
linear and bilinear in the displacements [51]. The coefficients of the linear terms
can be viewed as effective fields and the bilinear terms as effective extra ‘exchange’
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interactions. The effective fields at any site i depend upon the types of ions on all
sites j �= i. Given that the B-site interactions are (quasi-)random, so are the effective
fields.

Let us concentrate now on the possible effects of including the random fields,
which have been considered as driving forces for relaxor behaviour in PMN,
particularly since the work of [52]; for more recent discussion, see [53, 54].

Microscopically random magnetic fields are difficult to produce so there is
little experiment to compare directly with in magnetic systems; rather, diluted
antiferromagnets have been studied in uniform fields, emulating ferromagnets in
random uniaxial ±h fields; in the context of relaxor analogies, see [55].

The problem of the statistical physics of a system controlled by the Hamiltonian
of Eq. (1.14) is not soluble exactly and raises many questions. One relates to whether
a system with a spin-glass transition in the absence of applied fields should continue
to exhibit a sharp transition in the presence of such field(s). It is accepted that the
range-free SK model (with spins of any dimension) has an ergodic-non-ergodic spin
glass transition even in the presence of uniform or randomly chosen local fields [56–
59]. On the other hand, there remains controversy about the effects of fields in short-
range spin glasses, with many authors arguing that they destroy sharp spin glass
transitions, on the basis of both theoretical arguments and computer simulations, but
still without a clear accepted answer [60–63]. Most computer simulations have been
performed on Ising EA-like model systems with interactions drawn randomly from
symmetric (zero-mean) distributions, whereas in the relaxor systems there are biases
in the overall effective interactions, as demonstrated by the existence of ferroelectric
phases in appropriate concentration regimes. Most of the simulated models have also
had short-range nearest-neighbour interactions or are on one-dimensional structures
employed to emulate short-range systems in different dimensions.

It is generally accepted that random fields have a detrimental effect on tendencies
for ferromagnetism and that for sufficient strength they suppress ferromagnetism.
Thus, the effective random fields in PMN can be expected to act to reduce the
ferroelectric tendency anticipated above in PM*N*. An approximate Ising analogue
of interactions in PMN has, in fact, been studied in computer simulations of
Ising spins based on magnetic (Ho) sites of the diluted alloy LiHoxY(1−x)F4 [64]
and of an EA model with non-zero mean exchange [65], each in the presence
of random fields; see Fig. 1.8. These simulations also indicate what their authors
call a ‘quasi-spin-glass’ in not-too-large random fields, including the existence of
parameter regions where the quasi-spin-glass is preferred to the ferromagnet in
sufficient finite random fields, even though at lower random fields the opposite is
the case and for higher fields the system is paramagnetic. It is tempting to wonder
whether PMN might lie in such a region, hence relaxor. However, more study is
needed, particularly of the transition/crossover from paramagnet to (quasi-)spin
glass; currently, there is no computational study indicating a sharp transition from
paraelectric to relaxor, as suggested by extrapolation to zero frequency of the a.c.
susceptibility observed experimentally in PMN.



1 Spin Glass Theory and Ferroic Glasses 15

Fig. 1.8 Phase diagrams: Computer simulations of (a) diluted Ising model based on
LiHoxY(1−x)F4 plus Gaussian distributed quenched random fields of standard deviation h [64]
©APS (2013). (b) n.n. EA/SS Ising model with finite mean J0 = 1 and variance J with Gaussian-
distributed random fields of standard deviation Hr [65]

We also note that computer simulational study of an Ising dipolar system on
a simple cubic lattice has indicated5 that the sharp spin glass transition seen in
zero applied field is removed in a uniform field [66]. Note, however, that random
±h fields cannot be simply gauged away into a uniform field h in systems with
non-zero mean exchange, as they can in the usually studied models with zero
mean. Furthermore, the magnitudes of effective fields in PMN are also randomly
multivalued.

It should also be recalled that the displacements in real relaxor systems are
not one-dimensional, but are 3-vector. It was realized long ago that vector spin
versions of the SK model in a uniform field would exhibit a spin glass transition
in a transverse direction as the temperature is lowered [58], but with only weak non-
ergodicity in the longitudinal direction until a lower crossover temperature [59].
It seems probable that the first of these transition temperatures will persist even
for short-range interactions. It has been observed experimentally [67]. It is also of
probable relevance that the effective dipolar interaction in displacive systems is not
anisotropic as in the Ising cases of Refs. [64] and [65], in which the dipoles are
restricted to lie in the z-direction. Rather it has the more general isotropic form
[41]; [ui · uj − 3(R̂ij · ui )(R̂ij · uj )]/|Rij |3.

As already noted, others have claimed that the relaxor peak observed in PMN
is driven dominantly by the random fields [52, 53].6 A recent simulational study
inspired by PMN has also indicated in favour of this [68], using a model similar
to Eq. (1.14) with the only disorder attributed to the random field terms; i.e. with
H 1

PM∗N∗ calculated with parameters averaged over the M and N and ignoring

5Via a study of the size dependence of the spin glass correlation length, showing no Binder
crossover.
6See also [54].
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Fig. 1.9 Susceptibilities of model of PMN based on averaged interactions, (a) with random fields,
(b) without random fields [68] ©APS (2015)

the extra site-interaction terms. Figure 1.9 shows the results obtained for the
susceptibility both with and without inclusion of the random fields. Taken in
combination these results are suggestive that relaxor/glass-like behaviour might
be possible in the combination of frustrated interactions and disorder of either
dilution or random fields. However, as yet, there is no convincing finite-size scaling
demonstration of a true thermodynamic transition in the case of purely random field
disorder, even when the non-disordered system has a ferro transition. There remains
also uncertainty in the statistical mechanics community as to whether there can be a
frozen spin glass phase driven purely by random fields without exchange frustration,
although it has been proven not to be a thermodynamically stable state in a system of
one-dimensional spins with only ferromagnetic (or zero) exchange interactions [69].

1.4.3 Polar Nanoregions

Another observed feature of displacive relaxors is that of the appearance of polar
nanoregions (PNRs)[70, 71] already at temperatures higher than those of the
susceptibility peaks, beneath a higher so-called ‘Burns temperature’ characterized
by the onset of deviations from Curie behaviour [72]. A commonly expressed
conceptualization is that relaxor behaviour is a consequence of interaction of such
PNRs, but specific details are not clarified. Here we indicate how such PNRs and
both ferroelectric and relaxor phase transitions can be expected as a consequence of
a simple extension of the modelling above. The initial discussion will be restricted
to a simple mean field consideration and, for simplicity, within a picture allowing
only for one-dimensional deviations, but allowing for spatial inhomogeneity.

We start with the homovalent case. Thus we consider minimization of a Landau-
type free energy

FR =
∑

i

{κ̃i(T )u2
i + λ̃i(T )u4

i } −
∑

(ij)

J̃ (Rij , T )uiuj . (1.16)
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where the coefficients are now temperature-dependent, the {u} at minimum are now
the mean-field values and allowance is made for different ui at different sites i.

Minimizing with respect to the {ui} yields the self-consistency relation

κ̃i(T )ui −
∑

j

J̃ (Rij )uj = −2λ̃iu
3
i . (1.17)

Of particular interest are non-zero solutions and phase transitions as a consequence
of reducing the κ̃(T ) with reducing T . This Eq. (1.17) always allows solutions
{u = 0}, corresponding to undisplaced paraelectricity, but interest is in possible
solutions {u �= 0}. These only occur for small enough κ̃.

For a pure ferroelectric all the ui have the same value, given by

u =
⎧
⎨

⎩

⎡

⎣
∑

j

J̃ (Rij , T ) − κ̃(T )

⎤

⎦ /λ̃(T )

⎫
⎬

⎭

1/2

, (1.18)

from which we see that there is a critical temperature Tc given by

κ̃(Tc) =
∑

j

J̃ (Rij , Tc). (1.19)

For T < Tc the system is ferroelectric whereas for T > Tc it is paraelectric.
In a general alloy, however, the solutions ui for different sites i will vary.

Equation (1.17) must have a (real) solution at each site i and, in principle, can
be either localized or extended/percolating. Localized solutions would represent
internally ordered nanoregions, while the onset of extended solutions would signify
a phase transition. A suggestive conceptual guide to the character of such solutions
can be visualized by comparing with the (linear) Anderson localization equation
[73]

εiψi +
∑

j

tijψj = Eψi. (1.20)

with the identifications

{εi} = {κ̃i} ; {tij } = −{J̃ij }. (1.21)

Figure 1.10 shows a schematic density of states ρ(E) for the Anderson model in a
situation where the lower band edge is positive.. Correspondingly the only solution
to Eq. (1.17) is u = 0. However, if the temperature is reduced so the mean ε is
decreased sufficiently for the lower band edge to reduce below zero, then solutions
of Eq. (1.17) with u �= 0 exist. For a pure system with no ε-disorder, all the states of
Eq. (1.20) are extended, with the lower band edge state having the highest symmetry,
resulting in a phase transition to a state of similar symmetry for Eq. (1.19). This
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Fig. 1.10 Schematic density
of states of an Anderson
model with local energy
disorder, showing localized
and extended regions. The
arrow indicates movement of
the whole figure relative to its
vertical axis on decreasing
the mean local energy ε while
maintaining its relative
distribution

corresponds to the ferroelectric transition as found in BT, whereas in BZ κ̃Zr is
never small enough for ρ(E) to reach E = 0.

However, if the Anderson model coefficients, such as the ε, are disordered
then states at the outer regions of ρ(E) are localized, with the mapping leading
to internally correlated but not cooperatively frozen clusters, identifiable as the
observed PNRs, while for a true thermodynamic phase transition an extended state
solution is required. Hence it is (crudely) suggestive that the temperature must be
lowered further until the lower mobility edge, separating localized and extended
states, crosses E = 0. This consideration suggests that lowering T in the model
system of Eq. (1.12) will lead first to finite internally ordered nanoregions, growing
in number and size as T is lowered, followed by a true thermodynamic transition at
a lower temperature. The onset of PNRs is expected at a temperature region close to
the phase transition of the pure ferroelectric host. The cooperatively ordering phase
transition is expected to be to ferroelectric at higher concentrations of ferroelectric
B-ions, passing to relaxor/pseudo-spin-glass at intermediate concentrations, and
failing to reach cooperative order at too low concentrations. This is illustrated
schematically in Fig. 1.11, where the solid lines indicate phase transitions but
the dotted and dashed lines are heuristic indications of onset and visibility of
PNRs.7 This prediction including PNRs is in qualitative accord with experimental
observations [43].

7Conceptually one can view the situation in a substitutional alloy as follows: (1) quenched
statistical fluctuations in the locations of the ions on the underlying lattice will lead to a range
of clusterings of the more potentially displaceable ions (Ti in BZT), with regions both denser
and less dense than the average concentration; (2) For clusters to displace-order internally the
energy lowering gained through interaction must overcome the local free energy penalties; (3) such
internal correlation will first occur on clusters that are close in structure to the pure ferroelectric
one (BT for BZT); (4) this can always occur in principle at a temperature close to that of the pure
ferroelectric, but will become rarer as the concentration of potentially ferroelectric ions reduces;
(5) as the temperature is lowered the decrease in the effective κ(T ) will lead to the internal mean-
field stabilization of larger clusters, until eventually there will be clusters that percolate throughout
the whole system; (6) the character of the final low temperature macroscopically cooperative state
will be determined by minimizing the free energy, which in a disordered and frustrated system can
be either globally periodic or spin glass-like.
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Fig. 1.11 Schematic ‘phase diagram’ for BZT expected in the light of heuristic considerations.
Solid lines denote true phase transitions. The dotted line indicates the onset of PNRs in the picture
discussed. The dashed line is a speculative illustration of crossover for the onset of significant
visibility of PRNs

For heterovalent alloys it is necessary also to take account of the effective random
field terms in the Hamiltonian, which yield corresponding linear contributions to
the mean-field free energy of Eq. (1.16) and consequently terms of zero-order in
the {u} in Eq. (1.17) and hence induced displacements even at higher temperatures;
e.g. even without any interaction terms the presence of the extra charges on
Mg++ and Nb+++++ ions randomly distributed on B-sites of PMN would lead
to a corresponding quasi-spherical distribution of Pb deviations from their mean-
lattice positions, as discussed in [74], in qualitative accord with observations [75].
Statistical clusterings of effective fields of similar orientations can be expected to
lead to nucleation of polar nanoregions, even without frustration in the site-to-
site interactions. Although the suggestive quasi-mapping to the Anderson equation
suggested above will no longer be applicable, the concept of relating the ‘transition’
to an ‘edge’ separating localized and extended solutions should remain qualitatively
valid.

In principle one could also change description further by considering the PNR as
‘superspins’ with effective interactions between them, with eventually a percolating
coherence between them marking the relaxor transition. This conceptualization
was used in the context of itinerant spin glasses in the early 1970s [76] and has
become popular in considerations of relaxors; for a recent discussions, see e.g.
[53, 54, 77, 78].

Of course, to be fully representative of even the soft-Ising-like model of
Eq. (1.12) for a homovalent alloy, one needs to go beyond the simple mean-field
form used above.

1.5 Itinerant Spin Glasses

In fact, some of the suggestions above in Sect. 1.4 were conceptually pre-empted
many decades ago by theoretical considerations of itinerant spin glasses, in which
the magnetism resides with conduction electrons [76, 79, 80]. These studies were not
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pursued but are probably worthy of resurrection here in the light of [44]. Again, we
follow the philosophy of using a simple model and approximations for illustration.

A simple Hubbard model for a transition metal alloy is given by the Hamiltonian

HHA =
∑

ij ;s=↑,↓
tij a

†
isajs +

∑

i;s=↑,↓
Via

†
isais +

∑

i

Uin̂i↑n̂i↓ (1.22)

where the a, a† are site-labelled d-electron annihilation and creation operators,
n̂is = a

†
isais and, in general, the tij , Vi and Ui depend upon the type of atoms

at sites i,j. We are concerned with cases in which the electron density is such that
the conduction band is only partially filled and the alloys are metallic.

This can be transformed into a form analogous to that of Eq. (1.12) with the
variables local magnetization and charge fluctuations.

We first re-write n̂i↑n̂i↓ in terms of complete squares using the identity

n̂i↑n̂i↓ = 1

4
{n̂2

i − m̂2
i } (1.23)

where

n̂i = n̂i↑ + n̂i↓; m̂i = n̂i↑ − n̂i↓. (1.24)

For easier conceptualization of the possible magnetic consequences, with minimal
more peripheral distractions, we further simplify by assuming that the charge
fluctuations are of lesser importance and take their contribution to be absorbed into
the Vi and furthermore set these all Vi equal and hence ignorable. Further re-writing
in a symmetric notation, we are left with

H =
∑

ij,σ

tij a
†
iσ ajσ − 1

4

∑

i

Ui Ŝi .Ŝi (1.25)

where

Ŝi = a
†
isσ s,s ′ais ′ . (1.26)

The quadratic form of the Ŝ-term in Eq. (1.25) enables the use of an ‘inverse
completion of a square’ procedure [81–86] to effectively ‘linearize’ the Hamiltonian
in a

†
isajs ′ through the introduction of an auxiliary magnetization field variable m̂,

conjugate to Ŝ.
One can then further ‘integrate out’ the original electron operators in favour a

description in terms purely of magnetization variables [86]. Further taking the static
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approximation yields an effective Hamiltonian in local magnetisation variables8; to
fourth order,

Hm =
∑

i

(1 − Uiχii)|m̂i |2 −
∑

ij ;i �=j

U
1/2
i U

1/2
j χij m̂i .m̂j

−
∑

ijkl;αβγ δ

(UiUjUkUl)
1/2�

αβγ δ

ijkl m̂α
i m̂

β
j m̂

γ

k m̂δ
l , (1.27)

where χ is the static band susceptibility function of the bare system (with only the
t term), � is a corresponding bare 4-point function and we have dropped the higher
order contributions.

A further change of variables

M̂ i = Uim̂i (1.28)

immediately brings this to a form reminiscent of Eq. (1.12):

HM =
∑

i

(U−1
i − χii)|M̂ i |2 −

∑

ij ;i �=j

χijM̂ i .M̂j

−
∑

ijkl;αβγ δ

(�
αβγ δ

ijkl M̂α
i M̂

β
j M̂

γ

k M̂δ
l , (1.29)

with local self-energy weight (U−1
i − χii) the analogue of κ in Eq. (1.12).

Minimization of Hm or HM gives the equation for the magnetizations {m} in mean
field approximation, the itinerant magnetic analogue of the relaxor Eq. (1.17).

A simple consideration of a system with two components A and B with UA = 0
but UB > 0 immediately demonstrates the following well-known mean field
results: (1) pure A is only paramagnetic; (2) pure B is ferromagnetic only if
(1 − UB

∑
j χij ) ≡ (1 − UBχ(q = 0)) < 0, the Stoner criterion [2], otherwise

paramagnetic, (3) a single B substituted in an A-host will only carry a mean-field
moment if (1 − UBχii) ≡ (1 − UB

∫
q
χ(q)) < 0, the Anderson condition [87].

For metallic systems χij oscillates in sign as a function of separation, so there is
frustration in the effective interactions of Eq. (1.29). Hence, a more concentrated
alloy with a sufficient finite non-zero density of B atoms can, in principle,
exhibit either ferromagnetism or another periodic order, while beneath a critical
concentration xc and with sufficient frustration, can exhibit spin-glass order.

If the Anderson local moment criterion is satisfied at B-sites, then the situation
is essentially the same as in the conventional hard spin case discussed in Sect. 1.3.

However, if the Anderson criterion is not satisfied (equivalent to κ > 0), then
a sufficiently strong potential energy lowering due to coherently-acting mutual

8Note that here the m̂ are auxiliary field variables, not the actual equilibrium magnetizations.
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magnetization fluctuation freezing at different sites is needed to bootstrap a
macroscopic magnetically ordered phase, overcoming the (1 − UBχii)|mi |2 local
fluctuation penalties on a percolating network, otherwise the system would be
paramagnetic. For the case of a high concentration of B this phase is still essentially
Stoner’s itinerant ferromagnetism. But for an intermediate concentration of B the
spontaneous cooperative phase can be a spin glass, bounded by a lower critical
concentration separating it from the (Pauli-type) paramagnet and an upper critical
concentration separating it from the ferromagnet. Hertz [80] provided the first
theory9 and introduced the term ‘Stoner glass’ to refer to the itinerant spin glass.

Furthermore, the same considerations concerning the formation of PNRs as
discussed for displacive ferroelectric alloys should apply to the formation of
bootstrapped super-spin nano-clusters due to quenched statistical fluctuations in
the locations of the B atoms, in such itinerant magnetic alloys, even above a
transition temperature for spin glass or ferromagnet [76, 79].10 Their ‘visibility’
would however depend on their effective dynamical lifetimes, not discussed here
but surely much shorter than for ferroelectric PNRs.

The sequence paramagnet/spin glass/ferromagnet was already observed in the
early days of experimental spin glass physics; e.g. in RhCo alloys [88]. It seems
highly probable that a similar phenomenological explanation should apply in other
metallic spin glass alloys, especially those labelled as ‘cluster glasses’, and it could
prove interesting to review them in this light. A full theoretical treatment would
require going beyond the simple mean-field theory presented above, as well as
beyond the other simplifying assumptions employed above, but hopefully it could
already provide a useful starting perspective complementary to those currently
employed.

1.6 Strain Glass

In this section we consider another analogue of spin glasses, of glassy strain
distortions in martensitic alloys [19, 27, 89, 101] and given the name ‘strain glass’.

Martensitic materials, see, e.g., [90, 91], exhibit first-order structural transitions
from higher to lower symmetry phases as temperature is lowered. An example is
from high temperature cubic austenite to a lower temperature phase of alternating
twin planes of complementary tetragonal character, epitomized by TiNi which in
its pure higher-temperature state is an ordered compound of rocksalt structure. Our
interest here will be particularly in when this compound is atomically disordered,
for example by randomly altering the balance of Ti and Ni or by replacing some of
these atoms by another element (e.g. Fe).

9Using a different formulation than presented here.
10These early papers discussed the formation of clusters and anticipated that their interactions
would then yield the spin glass state, much as in later considerations of relaxors.
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Although, in principle, it could be modelled microscopically in terms of atomic
displacements, as was done for relaxor problem of Sect. 1.4, or phenomenologically
at a Landau-Ginsburg level in terms of continuous-valued deviatoric strains, here
we shall simply employ a crude discrete pseudo-spin mean-field modelling for
illustration. Furthermore, again for simplicity, we shall consider a two-dimensional
version in which the local cell structure is describable in terms of a variable Si which
takes the values 0, +/−1 corresponding, respectively, to a square and two orthogonal
rectangular structures. The local part of an effective free energy is then given by

FL =
∑

i

DiS
2
i (1.30)

where the {i} label cells, so that if Di > 0 then minimizing FL yields Si = 0, while
if Di < 0 it yields degeneracy Si = ±1. There are also intercell interaction terms

Fint = −
∑

ij

SiVij Sj (1.31)

arising from both short-range neighbouring similarity effects and from longer range
St. Venant’s compatibility constraints that give (in 2 dimensions) [92]

V StV
ij ∝ − cos (4θ(Rij ))/|Rij |2. (1.32)

where θ(R) is the angle subtended by R at a Cartesian axis of the cubic lattice.
Temperature is emulated by taking the D to be temperature dependent, reduc-

ing with reducing temperature. Without the interaction term the S-values at the
minimum of the free energy will change from S = 0 to S = ±1 when their
corresponding D change from positive to negative. When the interaction is included
cooperative bootstrapping will result in S = ±1 at sites where the resultant free
energy minimization can overcome the local D, with the favoured state given by
the relative signs of the {Si} that yield the lowest free energy. For a pure system
one gets the martensite phase of diagonally alternating stripes of S = +1 and
S = −1. For a system with quenched randomness of site occupation one can
expect a corresponding quenched randomness of the {Di}, along with quenched
effective random fields. Clearly this represents a scenario similar to that discussed
above for relaxors and spin glasses, namely that for sufficient quenched disorder
the frustration, arising from the antiferroelastic interactions at values of θ where
the cosine is negative, leads to an expectation of strain glass, as has been observed
[93, 94]; see Fig. 1.12.11 Both the cases of quenched D [89] and of the effective
random fields [95], arising from local substitutions, have been proposed separately
as the disorders responsible strain glass behaviour. The reality probably includes
both.

11In this case the analogue of the ferromagnet is the martensitic stripe phase.
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Fig. 1.12 Ni50−xT i50+x : (a) FC/ZFC evidence for strain glass [93] ©APS (2007). (b) Phase
diagram [94] ©APS (2010)

1.7 Conclusion

In this chapter I have tried to demonstrate similarities in the potential for ferroic
glass behaviour in several different types of system, magnetic, ferroelectric and
martensitic/ferrolastic alloys, both metallic and insulating, using a combination of
simple modelling and analogies, experimental, theoretical/mathematical, computa-
tional and conceptual, and with a particular consideration of ‘induced moment’ and
continuously displaceable systems.

The key ingredients to permit such glassy behaviour appear to be frustrated
interactions and quenched disorder, as has often been expressed before. Probing
these relationships has provided possible explanations for phenomena such as the
onset of non-ergodicity and slow dynamics. Cluster effects such as those known
as polar nano-regions (PNR) in displacive relaxors are considered in analogy with
localization phenomena.

The simple analogies considered here suggest further conceptual transfers
between different ferroic materials and further experimental investigations; for
further discussion concerning characteristic experimental aspects of spin glasses,
see [96]; for a complementary recent discussion of relaxors, see [54].

These comparisons have also highlighted some remaining questions, particularly
concerning the issue of the role of quenched random fields. BZT has no quenched
random fields but PMN has significant such fields, yet the susceptibility measure-
ments look very similar to one another.

As noted earlier, there is controversy in the spin glass community as to whether
a true spin glass phase transition can continue to exist in the presence of an applied
field. Even without a non-analyticity it would not necessarily mean that the peak in
the pure zero-field susceptibility cannot continue in a finite-field, in a more rounded
form, as indeed was clear already in the early important small-field experiments of
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Cannella and Mydosh [5]; see Fig. 1.2b. There has been much interest in the random
field Ising model (RFIM), normally with short-range ferromagnetic interactions,
without demonstration of a spin glass, and indeed it has been proven not to be
thermodynamically stable for purely ferromagnetic or zero interactions [69]. There
have been theoretical suggestions that in a system with higher spin dimension there
could be a ‘spin glass’ state driven by the random fields [97] but there has been no
observed evidence of a sharp transition to such a phase in a magnetic system.

Although there have been many experimental demonstrations of spin glass
behaviour in frustrated and quench-disordered three-dimensional systems of three-
dimensional (Heisenberg) spins, there is still some debate about theory [15]. There
are no simple experimental methods to apply three-dimensional random magnetic
fields. On the other hand, the relaxor systems discussed above have displacement
variables able to orient in the full three-dimensional space and in heterovalent
relaxor alloys, such as PMN, the effective random fields are also spread throughout
the three-dimensional orientation space and are of significant strength, yet the peaks
in the susceptibility are quite sharp. Both the classic spin glass and the relaxor
examples have long range interaction frustration.

It is thus tempting to wonder whether the criterion of frustrated interaction
and quenched disorder as the key ingredients for spin glass/relaxor/strain glass
behaviour might apply independently whether the disorder arises from site-disorder,
bond-disorder or random fields, or a combination, preventing simple homogenous
and smoothly varying optimal compromises, and also whether one needs to go
beyond one-dimensionality of the ‘pseudospins’, but more work is required to help
decide.

Finally, let me note that my aim has not been to describe quantitatively or
completely the systems that I have discussed, but rather through simple extraction
and comparisons, to try to draw links and to expose contrasts and remaining puzzles
and uncertainties, in the hope that they might stimulate work that might not have
been obvious within the confines of just sub-classes of systems. I should also point
out that I am not the first to propose that either relaxors or martensitic alloys might
be considered as pseudo-spin glasses (see, e.g., [98–100]), but I hope my small
contribution can be stimulating in moving towards a greater understanding.
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Chapter 2
Spin Glasses: Experimental Signatures
and Salient Outcomes

Eric Vincent and Vincent Dupuis

Abstract Within the wide class of disordered materials, spin glasses occupy a
special place because of their conceptually simple definition of randomly interacting
spins. Their modelling has triggered spectacular developments of out-of-equilibrium
statistical physics, as well analytically as numerically, opening the way to a new
vision of glasses in general. “Real” spin glasses are disordered magnetic materials
which can be very diverse from the chemist’s point of view, but all share a number
of common properties, laying down the definition of generic spin glass behavior.
This paper aims at giving to nonspecialist readers an idea of what spin glasses are
from an experimentalist’s point of view, describing as simply as possible their main
features as they can be observed in the laboratory, referring to numerous detailed
publications for more substantial discussions and for all theoretical developments,
which are hardly sketched here. We strived to provide the readers who are interested
in other glassy materials with some clues about the potential of spin glasses for
improving their understanding of disordered matter. At least, arousing their curiosity
for this fascinating subject will be considered a success.

2.1 Introduction

We are surrounded by disordered materials, in which the atoms or molecules are
disposed at random. This is the case of window glass, but also of plastics, polymers,
foams, gels, granular media, etc. Although being random when seen microscopi-
cally, they have controllable and reproducible properties at the macroscopic scale.
Their modelling is a challenge for the material scientist as well as for the physicist.
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Within the wide class of disordered materials, spin glasses appear as a remark-
ably simple archetype, because they can be defined in very simple terms. A spin
glass is a set of interacting magnetic moments (originating from spins), in which
the interactions are randomly distributed in sign (and possibly in magnitude).
We easily represent ourselves ferromagnets (forming our permanent magnets),
which are constituted of positively interacting moments, tending to all align in
the same direction and produce a macroscopic magnetization. We also know
antiferromagnets, in which the moments are in a negative sign interaction that drives
them to anti-alignment, establishing a set of two intricated ferromagnetic sublattices
oriented in opposite directions.

The case of spin glasses can be simply described as a mixture of both ferro-
and antiferromagnetic situations. The magnetic moments (or spins) are in random
sign interactions, that is, each moment experiences contradicting constraints from its
neighbors, which are either ferromagnetically or antiferromagnetically interacting
with it. This situation of contradicting influences has been termed frustration. No
simple symmetric configuration of the set of spins corresponds to an equilibrium
state with a clear minimum of energy. On the opposite, the numerous possible spin
arrangements with comparable energy yield a huge number of metastable states.
Finding the absolute minimum is thus extremely difficult and, from a practical point
of view, a spin glass is virtually always out of equilibrium.

In a spin glass, the disorder is contained in the set of the magnetic interactions,
which is fixed. Contrary to this situation of frozen disorder, in usual glasses the
molecules are located at random positions that are evolving with time. The spin
glass problem is conceptually simpler, it has allowed rich, far-reaching theoretical
developments1 [1] and numerical investigations (see for instance the recent work
[2] of the Janus collaboration, and references therein). Yet, both classes of systems
share a lot of similitudes, and the spin glass has been progressively identified as a
powerful model for the description and understanding of various glassy systems.

Disordered systems in which a cooperative behavior is developing below a
characteristic temperature are sometimes called “ferroic materials,” a wide class of
materials that constitute the subject of the book in which the present paper on spin
glasses is a chapter. Interesting examples are martensitic alloys with shape memory
effects [3–5], and relaxor ferroelectrics, on which some light can now be shed thanks
to the analogy with certain spin glass models [6–8].

2.2 What Is a Spin Glass Made of?

The first spin glass materials identified were nonmagnetic metals (Au, Ag, Pt . . . )
in which a few percents of magnetic atoms (Fe, Mn . . . ) were dispersed at random

1See numerous references in “Spin glasses and random fields”, A.P. Young Editor, Series on
Directions in Condensed Matter Physics Vol. 12, World Scientific (1998).
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Fig. 2.1 Top: Phase diagram
of the CdCr2xIn2(1−x)S4
thiospinel compound, as a
function of the dilution
parameter x, showing the
measured transition points
between paramagnetic (P),
ferromagnetic (F), and spin
glass (SG) phases (lines are
guides for the eye) [14–16].
Bottom: Magnetization
(normalized to the field) as a
function of temperature for
five samples of the compound
with various dilutions (the
colors of the curves refer to
the colors of the points in the
phase diagram) [15]. The
measurement follows the
usual ZFC and FC
procedures: for ZFC, cooling
in zero field, applying the
field at low temperature, then
measuring upon increasing
slowly the temperature, for
FC, measuring upon slowly
cooling in the field (the same
curve is obtained upon
reheating)

[9]. In Cu:Mn3% for example, the Mn magnetic atoms are separated by random
distances, and the oscillating character of their RKKY interaction with respect to
distance makes their coupling constants take a random sign [10, 11]. Examples of
spin glasses have also been found within insulating compounds [12]. Interestingly,
although chemically very different, these various compounds have been found
to show a common general behavior that is now understood as generic for spin
glasses [13].

An example in which a number of spin glass properties have been observed in
detail is the Indium diluted Chromium thiospinel CdCr2xIn2(1−x)S4, with superex-
change magnetic interactions between the (magnetic) Cr3+ ions [14, 16]. The phase
diagram is shown in Fig. 2.1 (top) [15].

Let us first examine the x = 1 compound, which is a ferromagnet with Tc = 85 K.
The nearest-neighbor interactions are ferromagnetic and dominant for x = 1, but
the next-nearest ones are antiferromagnetic. Hence, there is some frustration even
in the pure Cr compound. Characteristic variations of magnetization as a function
of temperature are shown in Fig. 2.1 (bottom), they are measured along the usual
ZFC and FC procedures (see caption of Fig. 2.1 for explanation). Starting from
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high temperatures, a rise-up of magnetization from the paramagnetic phase to the
ferromagnetic plateau is clearly observed when approaching Tc = 85 K. Below
Tc, an irreversible behavior is found, signed up by a separation of the FC and
ZFC curves. The irreversibility, in which different geometrical arrangements of the
ferromagnetic domains and walls are realized according to the temperature/field
procedure, is probably due to some defects in the sample.

In CdCr2xIn2(1−x)S4, when a fraction (1−x) of the (magnetic) Cr ions is
substituted by (nonmagnetic) In ions, some nearest-neighbor ferromagnetic links
are suppressed, and the effect of next-nearest antiferromagnetic interactions is
enhanced [14, 16]. The balance that globally favors ferromagnetism in the absence
of In-dilution is disturbed. This is illustrated in Fig. 2.1 (bottom) in the case
of the x = 0.95 and x = 0.90 samples, for which the ferromagnetic plateau
becomes rounded. Meanwhile, the onset of irreversibility is shifted towards lower
temperatures, indicating the appearance of a different, re-entrant spin glass phase at
low temperatures (see phase diagram in top of Fig. 2.1) [15].

For increasing dilution, below x ≤ 0.85, the ferromagnetic phase disappears.
The transition occurs directly from the high-temperature paramagnetic phase to a
disordered low-temperature phase, which presents all characteristic features of a
spin glass, as will be explained below with various spin glass examples.

2.3 What Happens at Tg?

2.3.1 Dynamical Aspects of the Transition

When a structural glass is cooled down from its liquid phase, it fails to crystallize
and becomes a supercooled liquid. The increase of relaxation times when cooling
to the glass temperature is so abrupt that the supercooled liquid rapidly starts to
behave as a good solid at all accessible experimental time scales [17–19]. For the so-
called fragile glasses, which are the most common case, the viscosity (proportional
to a typical relaxation time τ) of the supercooled liquid increases faster than the
Arrhenius law corresponding to simple thermal slowing down over a barrier E:

τ = τ 0 exp (E/kBT),

τ 0 being a microscopic time. This is pictured in the left part of Fig. 2.2
[20], where the viscosity data from various glasses is presented. In this plot of
the viscosity versus inverse temperature, the Arrhenius behavior corresponds to a
straight line, and most glasses show an upward curvature.

In a spin glass, there is also an abrupt increase of the relaxation times when
cooling to the glass temperature. We know it quantitatively from the precise study
of the magnetic ac susceptibility. At a fixed frequency ω/2π , the ac susceptibility
of a spin glass as a function of temperature presents a maximum at Tf (ω) that can
even be very sharp [9]. Tf (ω) can be understood as the temperature at which the
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Fig. 2.2 (from [20]) Left: Plot of the logarithm of the viscosity η of different glass-forming
systems vs. Tg/T, the glass temperature Tg being defined such that η = 1013 Poise at Tg. Only
SiO2 follows an Arrhenius behavior (straight line in this plot, “strong” glass). The more common
“fragile” glasses show a viscosity increase towards low temperatures that is faster than Arrhenius.
Right: Plot of the logarithm of a typical relaxation time τ of different spin glasses vs. Tg/T, the
glass temperature Tg being defined such that τ = 104 s at Tg. Most standard spin glasses appear
as “fragile,” according to the classification of glasses. In more details, spin glasses usually obey
critical dynamic scaling (see text), and for structural glasses the question of criticality implies
further investigations [21–23]

spin glass becomes frozen at the experimental probing time scale τ equal to the
inverse of the frequency, τ = 2π /ω. This peak temperature is frequency dependent,
and it systematically shifts to lower temperatures for decreasing frequencies, as can
be seen in Fig. 2.3 [24]. The important point is to quantitatively examine the scale
of this frequency dependence, and to determine whether the peak temperature tends
to a finite value in the limit of vanishing frequencies [25].

The shift of Tf (ω) with ω in spin glasses can be regarded as an increase of the
value of a typical relaxation time 2π /ω for decreasing temperature Tf (ω). It can
be presented in the same kind of Arrhenius plot of time versus inverse temperature
as is used for glasses. This is shown in the right part of Fig. 2.2. Both Arrhenius
plots for glasses and spin glasses look very similar. In both cases the increase of
the relaxation times with decreasing temperature is faster than an Arrhenius law
(upward curvature) [20].

Numerically, the curves in Fig. 2.2 can be well fitted to the Vogel-Fulcher law
[26].

τ = τ 0 exp (E/kB(T − T0)),
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Fig. 2.3 (from [24])
Complex ac susceptibility
χ(ω) = χ ′(ω) + χ ′′(ω) of the
amorphous metallic spin
glass (FexNi1−x)B16P6Al3,
versus temperature, at
different frequencies (0.51 Hz
to 51 kHz) of the applied
oscillating field (amplitude 50
mOe). (a) χ ′(ω). The
field-cooled susceptibility
χFC at an applied field of 50
mOe is also plotted. 10% of
the equilibrium susceptibility
(≈χFC) is indicated. (b)
χ ′′(ω). 1% of the equilibrium
susceptibility (≈χFC) is
indicated. The
frequency-dependent freezing
temperature Tf (ω) can be
defined equivalently as the
temperature of the χ ′(ω) peak
or as that of the χ ′′(ω)
inflection point

where T0 is an adjustable parameter. But, for spin glasses, nothing particular is
happening at T0, to which no physical interpretation is usually given (the situation
is different for structural glasses2). It is instructive to simply consider that the
departure of the data from the Arrhenius law corresponds to a modification of
the Arrhenius law by the introduction of a temperature-dependent effective energy
barrier Eeff(T):

τ = τ 0 exp (Eeff(T)/kBT).

In these terms, the upward curvature of the data in Fig. 2.2 means an increase of
Eeff(T) for decreasing temperatures, which can be considered as a signature of the
development of correlations when approaching Tg from above, both in glasses and
in spin glasses.

In glass-forming liquids such as glycerol, an increase of the number of correlated
molecules has now been identified at the approach of Tg [21–23]. This increase
remains limited to a relatively modest extent of a few tens of molecules before
dynamical arrest, but it paves the way to a new understanding of the glass transition

2In structural glasses, it has been found that T0 from the Vogel-Fulcher law is close to the Kauzman
temperature TK , at which the measured configurational entropy extrapolates to zero. And, in the
“Random First Order Transition” scenario, TK is the critical point at which the size of the glassy
ordered domains diverges [18].
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in terms of an increase, even though limited before freezing, of a correlation length
at the approach of the glass transition [27].

In spin glasses, the increase of a relaxation time τ = 2π /ω for decreasing
temperatures (data in Fig. 2.2 right, obtained from measurements like those
presented in Fig. 2.3) can be well fitted considering a divergence of a correlation
length ξ at the approach of a transition at Tg,

ξ = ξ0[(Tf (ω) − Tg)/Tg]−ν

(ν being the usual exponent for the correlation length in a phase transition), and
using the dynamic scaling hypothesis.

τ ∝ ξ z

(z is thus defined as a dynamical exponent), which yields the critical dynamics
scaling law:

τ = τ 0[(Tf (ω) − Tg)/Tg]−zν [28].

The exponent zν is found to have a rather high value, ranging from 5 to 11 in the
various samples (see, for example, [24, 29, 30]).

2.3.2 A Thermodynamic Phase Transition

There are other classes of experiments in spin glasses which support the idea of
a thermodynamic phase transition at the zero-frequency limit Tg of the freezing
temperature Tf (ω). In a ferromagnet, the order parameter is the spontaneous
magnetization, and the order parameter susceptibility is the usual magnetic suscep-
tibility. In a spin glass, some “glassy order” takes place, yielding to an apparently
random arrangement of the spins with no visible macroscopic symmetry. The low-
temperature phase can be characterized by the Edwards-Anderson order parameter
[31], which corresponds to an average of the squared moduli of the spins, and the
order parameter susceptibility is the nonlinear magnetic susceptibility [32–34].

The magnetic susceptibility χ can be expanded in even powers of the magnetic
field H:

χ = χ0 − a3H2 + a5H4 . . . ,

χ0 being the linear susceptibility. The coefficients of the nonlinear terms are all
diverging at Tg, with critical exponents corresponding to the specific spin glass order
parameter [32–34]:

a3 ∝ (T − Tg)−γ , a5 ∝ (T − Tg)−(β + γ ), etc.

Their determination implies rather extensive measurements of the magnetic
susceptibility as a function of the field, at various temperatures close to Tg, and
careful extrapolation at zero field. Figure 2.4 shows the example of Ag:Mn0.5%
[35]. The nonlinear part of the susceptibility is plotted as a function of the field.
In this figure, a significant increase of the slope of the curves at the origin for
decreasing values of the temperature T towards Tg is very clearly visible. Such
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Fig. 2.4 (from [35])
Nonlinear susceptibility
(obtained as the difference
ΔM between the total
magnetization and its
field-linear part, divided by
the applied magnetic field H),
as a function of field H, at
different temperatures
approaching the critical
temperature Tg = 2.70 K. The
relative origins on the Y-axis
are arbitrary. 1% of the linear
susceptibility χ0 is indicated.
As T→Tg, a sharp increase of
the slope at the origin is
clearly visible. Below
1.1Tg = 2.97 K, the low field
behavior of the nonlinear
susceptibility is seen to
become singular instead of
being quadratic

evidences of a static critical behavior from the nonlinear susceptibility, in addition to
dynamic critical behavior determined from the ac susceptibility, have been obtained
in numerous different spin glass samples (see, for example, [35–38], and numerous
references in [13]).

2.3.3 Spin Glass Transition: Open Questions

The spin glass transition in real samples is now widely considered as a thermo-
dynamic phase transition, in agreement with mean-field spin glass models [1, 39].
Still, a few interesting questions are worth being mentioned on the subject. In the
mean-field theory [1], which is equivalent to infinite dimension d, a true phase
transition is indeed obtained, which persists in the presence of a magnetic field,
as well for scalar Ising [40] as for vector Heisenberg [41] spins. In d = 3, a phase
transition is expected for Ising spins, but not for Heisenberg spins. However, many
evidences of a phase transition are found in real d = 3 Heisenberg-like samples
(e.g., [36], see references in [13]). A very plausible explanation can be found in
the scenario proposed by Kawamura of chirality driven phase transition of spins,
a mechanism that has been detailed and argued both numerically and analytically
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[42–44]. The agreement between the values of the critical exponents found in this
scenario and those observed in the experiments is remarkable [13]. Experimentally,
direct access to the observation of chirality freezing is difficult, but some pioneering
measurements of the anomalous Hall effect in spin glasses have already given very
interesting results [45–47].

At the spin glass transition, critical exponents which vary from Ising to Heisen-
berg situations have been measured in a wide series of d = 3 samples with variable
spin anisotropy [13, 38]. Experiments on spin glass thin films have allowed to study
the crossover from d = 3 to d = 2, a situation in which the transition is expected to
take place at T = 0, and which allows interesting studies of the growth of the spin
glass correlation length under constrained conditions (see recent results in [48, 49],
and older references therein).

In the mean-field theory of spin glasses [1], an infinite number of different pure
states is obtained, yielding a very interesting and complex picture of the spin glass
phase. This would imply that in a real sample, after cooling from the paramagnetic
phase, many domains with different types of spin glass order should coexist and
compete. A phase diagram with a transition line is obtained as a function of the
magnetic field [40, 41]. On the other hand, in very different approaches, scaling
theories of the spin glass behavior have been developed for Ising spins on the
basis of phenomenological arguments [50–52]. In the droplet model [50, 52], there
are simply two (spin reversal symmetric) pure states, and the phase transition is
expected to be destroyed by any magnetic field. Let us comment briefly on these
important questions.

1. The question of a multiple or single nature of the ground state in the spin
glass is very difficult to address experimentally. Some (indirect) arguments in
favor of multiple pure states are discussed below (Sect. 2.5.3). Also, following a
theoretical suggestion stating that the correlation of the conductance fluctuations
in two spin states should be a direct function of their overlap [53], a new
experimental approach using transport measurements on mesoscopic samples has
been developed. Magneto-resistance traces are observed, which are reproducible
until the sample is heated well over Tg. They are likely to be correlated to
frozen spin configurations which strikingly persist under high field cycling [54].
Measurements of the universal conductance fluctuations in mesoscopic spin
glasses are a real challenge, and have not yet given full results, but in principle
they are a promising way to obtain information on the nature of the pure states.

2. The vanishing of the phase transition in the presence of a magnetic field has
been reported in a study of the dynamic scaling properties of a Fe0.5Mn0.5TiO3
single crystal [55], which is a good example of a short-range Ising spin glass [56].
Interestingly, very recent experiments on the DyxY1−xRu2Si2 show that the phase
transition persists in a field in this Ising but long-range (RKKY) system [57].
For Heisenberg-like spin glasses, data from torque measurements bring robust
evidence for a true spin glass ordered state which survives under high applied
magnetic fields [38].

Thereby, important questions concerning the nature of the spin glass transition
are still open. They are also a hot topic for structural glasses, in which the nonlinear
susceptibility is now understood as playing a similar role as in spin glasses [27].
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An important experimental program has now allowed investigating, by the means of
nonlinear dielectric susceptibility measurements, the growth of correlations at the
approach of the transition and in the glassy phase during aging [21–23].

In experiments on spin glasses, no true thermodynamic equilibrium state can be
reached at laboratory time scales. What we see in experiments probing the spin glass
state is essentially out-of-equilibrium properties [58]. A wide panel of rich results
have been obtained, of which we highlight in Sects. 2.4 and 2.5 some of the most
prominent features.

2.4 Slow Dynamics and Aging

2.4.1 DC Experimental Procedures

We present in Fig. 2.5 a typical measurement of the magnetization as a function of
temperature in a spin glass [59], performed along the usual ZFC-FC procedures (see
caption of Fig. 2.1). The sample is here a Fe0.5Mn0.5TiO3 single crystal, which is a
good example of a spin glass of Ising type, due to strong easy axis anisotropy [56].

The curves are very similar to those presented in Fig. 2.1 for the x = 0.85 diluted
thiospinel sample, they illustrate the general features of simple dc magnetization
measurements on spin glasses. Above Tg, the magnetization M follows a character-
istic Curie-Weiss law.

M ∝ C/(T − θ )

which is characteristic of a paramagnetic phase (C is a constant proportional to the
square of the individual magnetic moments, and θ is a temperature proportional
to the energy of the interactions). Below Tg, the temperature behavior becomes

Fig. 2.5 (from [59]) Magnetization divided by the applied field, as a function of temperature,
measured along the usual ZFC-FC procedures (see caption of Fig. 2.1) on a Fe0.5Mn0.5TiO3 single
crystal [56] along the c-axis direction. The onset of irreversibility is seen at Tg in the separation of
the ZFC-FC curves, which above Tg are identical with a 1/T-like paramagnetic behavior
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irreversible. The magnetization is history-dependent, and a splitting of the ZFC
and FC curves is observed. Such a splitting can be found in various magnetic
systems in which some freezing occurs for any reason (e.g. non-interacting magnetic
nanoparticles, see a review in [60]). What is characteristic here of the collective
behavior related to the spin glass transition is the (approximate) flatness of the FC
curve observed here below Tg (also obtained as a characteristic feature in mean-field
models [1], as emphasized in [61]). When going from the paramagnetic region to
low temperatures, the magnetization increase suddenly stops.

In the FC state, the magnetization value can be considered to a first approx-
imation to be at equilibrium (this is usually true within 1%), and the FC curve
can be measured upon cooling or as well heating in the presence of the field. On
the contrary, the ZFC curve is out of equilibrium, because the application of the
field has been made at low temperature, in the frozen phase. The value of the ZFC
magnetization depends on the time spent at each temperature. After cooling in zero
field and applying the field, the ZFC(t) magnetization slowly increases as a function
of time, most probably towards the FC value (that is, however, never attained in
experimental time scales).

An example is shown in Fig. 2.6 [24], in which we see that the relaxation curves
are influenced by another time parameter: the waiting time. In the procedure used to
measure these relaxations, the sample is rapidly cooled in zero field from above Tg

to T < Tg (quench), and it is kept at temperature T during a given waiting time tw,

Fig. 2.6 (from [24]) Zero
field cooled susceptibility
[(I/H)M(t)] and
corresponding relaxation rate
[S(t) = (1/H)dM/d lnt] at
different waiting times
(tw = 102, 103, 104, and
105 s) plotted versus time t
(log scale), for the amorphous
metallic spin glass
(FexNi1−x)B16P6Al3 at
T = 20.3 K (T/Tg = 0.9),
H = 0.1 Oe. Top: [(I/H)M(t)],
and Bottom: S(t). 1% of the
equilibrium susceptibility
(≈χFC , see Fig. 2.3 on the
same sample) is indicated
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after which a small field is applied (defining t = 0). Then the relaxation is measured
as a function of the observation time t (elapsed since the field change).

The relaxation curves in Fig. 2.6 (top) display two essential features of spin glass
dynamics:

1. The magnetization relaxation following a field change is slow, roughly logarith-
mic in time (glassy state).

2. It strongly depends on the waiting time: the longer tw, the slower the relaxation.
This waiting time dependence is called aging.

Hence, time translation invariance is lost in the slow dynamics of the spin glass:
the relaxation dynamics depend on both tw and t, not only on t, the dynamics is
nonstationary [62].

The logarithmic derivative dM/d log t of these magnetization curves can be given
an interesting physical interpretation, as proposed by L. Lundgren at the beginning
of the 80’s [63]. The derivatives of the curves of the top part of Fig. 2.6 are shown
in the bottom part. They are bell shaped, and, remarkably, their broad maximum
(inflection point of the magnetization curves) occurs after a time t of the order of tw
itself.

The physical interpretation is the following. As can be seen on the log t scale,
the relaxations are slower than exponential. They can be modelled as a sum of
exponential decays exp(−t/τ ), the decay times τ being distributed according to a
distribution function g(τ ) which is defined in this way, and represents the effective
density of relaxation times. Taking the derivative dM/d log t introduces a term t/τ
exp(−t/τ ) in the integrand of the sum over the τ distribution. This term is sharply
peaked around t = τ . Approximating this peaked function by a δ-function, we
estimate the integral by taking the value of the integrand for τ = t, and obtain [63].

dMtw/d log t ∝ gtw(τ = t).

Here Mtw and gtw are labelled by tw to emphasize that each relaxation curve, taken
for a given tw, gives access (through its logarithmic time derivative) to the density
of relaxation times that represents the dynamics of the spin glass at a time of the
order of tw after the quench. Thus, each derivative dMtw/d log t gives an estimate of
the density gtw(τ = t), and as tw increases gtw(τ ) shifts towards longer times. This
gives a physical picture of the two important features listed above:

1. The effective relaxation times are widely distributed (glassy state).
2. This distribution function, peaking around τ = tw, shifts towards longer times

with increasing tw: this is the phenomenon of aging.

The mirror experiment of the above ZFC relaxations can be performed as well,
it gives access to the same information, provided that the amplitude of the field
change remains small (far below the limit of linearity, typically 1–10 Oe). In this
mirror procedure, one starts from a FC state at temperature T > Tg. After cooling
the spin glass from the paramagnetic phase to a temperature T < Tg, and waiting
a time tw at T, the field is turned to zero. Then the remnant magnetization (called
“thermo-remnant” magnetization, TRM) slowly decays [64].



2 Spin Glasses: Experimental Signatures and Salient Outcomes 43

Both relaxations observed by ZFC and TRM mirror procedures are symmetric:
ZFC(t) + TRM(t) = FC (this relation holds even if a slight relaxation of the FC
magnetization occurs, FC ≡ FC(t) [65]). All these curves present an inflection point
at t ∼ tw. When plotted as a function of t/tw, the curves can be almost superimposed.
In a first approximation, we can thus consider that the relaxation curves obey a t/tw
scaling. When examined in more details, however, some systematic departures from
t/tw scaling are observed, and can be taken into account very precisely by more
refined procedures (“subaging,” [64, 66, 67]).

The same phenomenon of aging has been known for a long time in the mechani-
cal properties of a wide class of materials called “glassy polymers” [68, 69]. When
a piece of, e.g., PVC is submitted to a mechanical stress, its response (elongation,
torsion ...) is logarithmically slow. And the response depends on the time elapsed
since the polymer has been quenched below its freezing temperature. Like in spin
glasses, for increasing aging time the response becomes slower (called “physical
aging”, as opposed to “chemical aging”). The tw-dependence of the dynamics of
glassy polymers has been expressed as a scaling law [68] that could be applied to
the case of spin glasses ([64], see also [70]). Numerous other glassy materials show
similar aging phenomena, although not necessarily obeying precisely a t/tw scaling
(see, for example, [68, 69, 71, 72]). Numerical simulations of packed hard spheres
provide us with very powerful toy models of simple glasses [73].

2.4.2 AC Experimental Procedures

Slow dynamics and aging in the spin glass phase can also be observed by ac
susceptibility measurements, in which a small ac field (∼1 Oe) is applied all along
the measurement [58, 64]. Again, the starting point consists in cooling the spin glass
from above Tg, down to a given T < Tg at which the ac response is measured as a
function of the time elapsing, which is the “age” of the system (equivalent to tw + t
in the dc procedures).

Figure 2.7 [59] shows the time evolution of both components χ ′ and χ ′′ of the ac
susceptibility. We find here the same features as observed in DC experiments:

1. The ac response is delayed, as seen from the existence of an out-of-phase
susceptibility χ ′′. χ ′′ is zero above Tg in the paramagnetic phase, and rises up
as the sample is cooled into the spin glass phase (as already visible in Fig. 2.3).

2. The susceptibility relaxes down, signing up the occurrence of aging. This
relaxation is visible on both χ ′ and χ ′′, but is more important in relative value
Δχ /χ in the out-of-phase component χ ′′.

In Fig. 2.7, the relaxations of χ ′ and χ ′′ are shown for different frequencies
(ω/2π), and plotted as a function of (ω/2π).t for reasons that will soon become
clear. Their asymptotic (stationary) values χ ′

eq(ω) and χ ′′
eq(ω) in the infinite time

limit can be determined by a fit of the decaying part to (ω.t)−b (the exponent b is
found in the range 0.15–0.20 in various samples [59]).
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Fig. 2.7 (from [59]) Relaxation of both components of the ac susceptibility during the time t
following the quench from above Tg down to T = 12 K = 0.7Tg, as a function of the product of
the frequency ω/2π times t. Left: in-phase component χ ′. Right: out-of-phase component χ ′′

Fig. 2.8 (from [59]) Relaxation of both components of the ac susceptibility, same data as in
Fig. 2.7, but after subtraction of the equilibrium part, log-log scale. The inserts show the fitted
equilibrium values. The relaxations at different frequencies ω/2π merge onto a unique curve
(power law) as a function of the reduced variable (ω/2π).t

In Fig. 2.8 [59], the asymptotic values have been subtracted, and the remaining
decaying part is represented on a log scale, which emphasizes the power law
behavior (straight lines in this log-log plot). Remarkably, the decay part of the curves
measured at different frequencies are all superimposed when plotted as a function
of (ω/2π).t, as well for χ ′ as for χ ′′.

This ω.t scaling can be related to the t/tw scaling of the dc data in the following
way. In an ac measurement, the time 2π /ω can be considered as a typical observation
time, which plays the same role as t in the DC relaxation procedures. On the other
hand, the total age of the system is here the time t along which the ac relaxation is
measured after cooling, that is equivalent to tw + t in the DC experiment. Hence,

ω. t ≈ (1/t)(t + tw) = 1 + tw/t,

the present ω.t scaling is equivalent to the t/tw scaling of the dc experiments [58, 63,
64, 66].
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In structural and polymer glasses, similar ac procedures have also been used
for the study of aging effects. For instance, in [74], the dielectric constant ε

of glycerol is found to show a strong relaxation, with a frequency dependence
which has qualitatively the same trend as ω.t scaling. And, more recently, detailed
measurements of the third harmonics dielectric susceptibility in glycerol [22] have
revealed an increase of the size of the glassy domains with the aging time.

Beyond the study of the response of the spin glass to small dc and ac excita-
tions, the dynamics can also be explored by measuring the spontaneous magnetic
fluctuations (magnetic noise) in the absence of any excitation. This is a difficult
experiment, because contrary to the case of the ferromagnet the amplitude of the
spontaneous noise is very small in spin glasses. Nevertheless, such measurements
could be performed [62, 64, 75, 76]. They brought very interesting information on
the violation of the fluctuation-dissipation relations in the aging regime, which allow
comparisons with some important features of spin glass theories [77, 78] (see also
Figs. 5–7 in [61]).

2.5 Aging, Rejuvenation, and Memory Effects

It is well known that the state of a structural glass is very much dependent on the
speed at which it has been cooled, a slower cooling bringing smaller values of the
enthalpy and specific volume that are closer to equilibrium values [17, 68, 79]. This
view of glasses was the starting point of a new class of experiments in spin glasses.
We explored how the aging behavior could be influenced by the temperature history,
having in mind that well-suited cooling procedures might perhaps bring the spin
glass into a strongly aged state, which otherwise would require astronomical waiting
times to be established [80, 81]. These experiments have brought important surprises
[58].

2.5.1 Temperature Step Experiments

Figure 2.9 presents the result of an experiment in which a small negative temperature
cycle is performed during the relaxation of the ac susceptibility [81]. After a normal
cooling (∼100 s from 1.3 Tg to 0.7 Tg), the spin glass is kept at constant temperature
T = 12 K = 0.7 Tg for t1 = 300 min, during which aging is visible in the strong
relaxation of χ ′′. Then, the temperature is lowered one step further from T = 12 K
to T−ΔT = 10 K. What is then observed is not a slowing down of the relaxation, but
on the contrary a jump of χ ′′ and a restart. Such a restart upon further cooling was
termed rejuvenation, because the relaxation of χ ′′ behaves as if aging was starting
anew at T−ΔT. Apparently, there is no influence of former aging at T.

The question one may naturally ask is whether this renewed relaxation corre-
sponds to a full rejuvenation of the sample. The answer is no. Let us first point out
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Fig. 2.9 (from [81])
Relaxation of the
out-of-phase susceptibility χ ′′
during a negative temperature
cycle of amplitude ΔT = 2 K
(frequency 0.01 Hz), showing
aging at 12 K, rejuvenation at
10 K, and memory at 12 K.
The inset shows that, despite
the rejuvenation at 10 K, both
parts at 12 K are in
continuation of each other
(memory). The sample is the
CdCr2xIn2(1−x)S4 thiospinel
spin glass (Tg = 16.7 K)

that, for observing such a restart, the temperature interval ΔT must obviously be
sufficiently large, here ΔT ≥ 2–3 K. And still, the time window explored in this
experiment is limited, therefore we do not know very much about the overall state
of the spin glass, which involves relaxation processes on a very wide time scale.

The final part of the experiment brings the answer to the question. After aging
during t2 = 300 min at T−ΔT = 10 K, when the temperature is turned back to
T = 12 K, the χ ′′ relaxation restarts exactly from the point that was attained at the
end of the stay at the original temperature T. It goes in precise continuity of the
former one, as if nothing of relevance at T had happened at T-ΔT. As shown in the
inset of Fig. 2.9, this can be checked by shifting the third relaxation to the end of
the first one: they are in continuity, and can be superposed on the reference curve
which is obtained in a simple aging at T. Hence, during aging at T−ΔT and despite
the strong associated χ ′′-relaxation, the spin glass has kept a memory of previous
aging at T. This memory is retrieved when heating back to T.

This negative temperature cycle experiment pictures in a spectacular manner the
phenomenon of rejuvenation and memory in a spin glass. However, examination of
the situation in more details shows that it should not be considered too simply. We
see in Fig. 2.10 the results of negative temperature cycle experiments performed
with various values of ΔT ([59], but see also [82]).

For ΔT = 1 K, the beginning of the third part relaxation shows a transient spike,
which lasts for ∼5000 s before the curve merges with those, obtained for higher
ΔT’s, that are in continuity with the relaxation at T. Thus, for a smaller ΔT than
that corresponding to a “full” memory effect, there is indeed some contribution at T
from aging at T−ΔT that may be divided in two parts:

1. An incoherent contribution (spike), extending over rather long but finite times
(3–5000 s). For smaller ΔT, the observed “transient spike” decreases, and finally
vanishes.
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Fig. 2.10 (data from [59]) Relaxation of the out-of-phase susceptibility χ ′′ during negative
temperature cycles of different amplitudes, ranging from ΔT = 1 K (upper curve, with the
prominent spike) to ΔT = 3 K (lower curve, no spike and full memory). Same sample as in Fig.
2.9, but the frequency is here 0.1 Hz, instead of 0.01 Hz (Here, the points can be taken more rapidly,
and a small upturn is visible for T = 2 K: full memory is only obtained for T = 3 K)

2. A coherent contribution to aging at T as an additional aging time teff (called
“cumulative process” below), in such a way that the third relaxation must be
shifted by (t2−teff) to be in continuity with the first part.

Details on the results in this regime of intermediate ΔT values, together with
their discussion in terms of a Random Energy Model, can be found in [82] (see also
[83]). Many sets of temperature step experiments of this kind have been performed,
by the Saclay group (see references in [58, 59]) and also by the Uppsala group (see,
for example, [84]), with similar results, even though sometimes discussed in slightly
different terms.

2.5.2 Memory Dip Experiments

The ability of the spin glass to keep a memory despite rejuvenation has been further
explored in experiments with multiple temperature steps. The first “memory dip”
experiments, suggested by P. Nordblad, were developed in collaboration between
the Uppsala and Saclay groups [85, 86]. An example of a “multiple dip experiment”
is shown in Fig. 2.11 [59, 87, 88].

This is an ac experiment in which the sample is cooled by 2 K steps of duration
half an hour down to 4 K, and then reheated continuously (sketch in the inset of
Fig. 2.11). Figure 2.11 shows χ ′′ as a function of temperature during this procedure,
starting from T > Tg where χ ′′ = 0 (paramagnetic phase). χ ′′ rises up when crossing
Tg = 16.7 K, and when the cooling is stopped at 14 K, the relaxation of χ ′′ due
to aging is recorded during ½ h (successive points at the same temperature in
the figure). Upon further cooling by another 2 K step, a χ ′′ jump of rejuvenation
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Fig. 2.11 (from [59, 87]) An example of multiple rejuvenation and memory steps. The sample was
cooled by 2 K steps, with an aging of time of 2000 s at each step (open blue diamonds). Continuous
reheating at 0.001 K/s (full red circles) shows memory dips at each temperature of aging. The solid
black line shows a reference measurement with continuous cooling/heating and no steps. The inset
is a sketch of the procedures

is found, and the relaxation due to aging takes place. At each new cooling step,
rejuvenation and aging are seen, and this happens ∼6 times in the experiment of
Fig. 2.11.

In the second part of the experiment, the sample is reheated continuously
at a slow rate (0.001 K/s, equal to the average cooling rate). Amazingly, apart
from the rather noisy low-T region, the memory of each of the aging stages
performed during cooling is revealed in shape of “memory dips” in χ ′′ (T),
tracing back the lower value of χ ′′ which was attained at each of the aging
temperatures. Thus, the spin glass is able to keep the simultaneous memory of
several (up to 5–6!) successive aging periods performed at lower and lower temper-
atures. Increasing the temperature afterwards reveals the memories (and meanwhile
erases them).

One can think of a certain type of aging in terms of domain growth dynamics,
of the type occurring in a ferromagnet. Aging by domain growth is a naturally
“cumulative” process, in the sense that aging continues additively during the various
parts of the experimental procedure, from one temperature to the other, as long as
T < Tg. This cumulative process corresponds to the coherent contribution to aging
observed in small temperature step experiments. But it is difficult to imagine how
rejuvenation and memory effects may arise in this scheme. In the droplet model [50,
52], they are related to “temperature chaos” effects [89]. Discussions on the possible
relevance of this scenario to experiments can be found in [87, 90, 91], and also [48,
49].

In some spin glass experiments like the one that we present now in Fig. 2.12
[59], the dual aspect of aging dynamics in terms of coherent (cumulative) and
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Fig. 2.12 (from [59]) Left: Effect of various cooling procedures on the ZFC magnetization of
the Au:Fe8% spin glass. Comparison of fast and slow cooling, with and without stops. Right:
difference with the magnetization obtained after fast cooling

incoherent (rejuvenation and memory) contributions appears very clearly. In this dc
type procedure, proposed by the Uppsala group [92], the sample is cooled in zero
field with various thermal histories, and after applying the field at low temperature
the magnetization is measured while increasing the temperature continuously at
fixed speed (small steps of 0.1 K/min).

On one hand, we can observe the effect of a slow cooling in comparison with
that of a fast cooling: the slow-cooled curve lies below the fast one in the whole
temperature range. There is indeed a cooling rate effect in spin glasses, provided
that one chooses an appropriate procedure to bring it to evidence. On the other hand,
memory effects can be demonstrated by stopping the cooling at several distinct
temperatures and waiting. The magnetization measured during reheating after this
step-cooling procedure shows clear dips at all temperatures at which the sample has
been aging. These effects are emphasized in the right part of Fig. 2.12 where we have
plotted the difference between the curves obtained after a specific cooling history
and the reference one obtained after a fast cooling. Sharp oscillations (memory dips)
show up on top of a wide bump (cumulative aging).

2.5.3 Discussion

Thus, aging effects in spin glasses can be described as a combination of rejuvenation
and memory effects, which are strongly temperature specific, with some more
classical cooling rate effects [70]. Structural glasses are usually considered to be
dominated by cooling rate effects [17, 18]. However, experiments in various glassy
systems have been designed these last years to search for possible rejuvenation and
memory effects. Interesting examples of such phenomena can be found for instance
in [93–95] with PMMA and in [96, 97] with gelatine. New experimental ways have
been developed more recently for the investigation of aging effects in colloids and
soft matter, like microrheology techniques using optical traps [98, 99]. There is now
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a growing interest for the out-of-equilibrium properties of active colloidal systems
(chemically powered colloids [100], biomolecular motors [101], Janus particles
with asymmetric surface coating [102], etc.)

2.5.3.1 Hierarchical Picture

The rejuvenation and memory effects reveal a strong sensitivity of the aging state
of the spin glass to temperature changes, which have very different effects when the
temperature is decreased or increased. The Saclay group proposed to account for
these phenomena in terms of a hierarchical organization of the metastable states as
a function of temperature, as pictured in Fig. 2.13, which we now explain ([80, 103],
see details in [58, 66]).

In this scheme, the effect of temperature variations is represented by a modifi-
cation of the free-energy landscape of the metastable states (not only a change in
the transition rates between them). At fixed temperature T, aging corresponds to
the slow exploration of the numerous metastable states (at level T in Fig. 2.13).
When going from T to T−ΔT, the free-energy valleys subdivide into smaller ones,
separated by new barriers (level T−ΔT in Fig. 2.13). Rejuvenation arises from
the transitions that are now needed to equilibrate the population rates of the new
sub-valleys: this is a new aging stage. For large enough ΔT (and in the limited
experimental time window), the transitions can only take place between the sub-
valleys inside the main valleys, in such a way that the population rates of the
main valleys are untouched, keeping the memory of previous aging at T. Hence
the memory can be retrieved when reheating and going back to the T-landscape.

This tree picture may seem somewhat naïve when described in these qualitative
terms. It is, however, able to reproduce many features of the experiments when
discussed in more details (see discussions of experimental results in [58, 66]).

Fig. 2.13 Schematic picture
of the hierarchical structure
of the metastable states as a
function of temperature ([80,
103], see details in [58, 66])
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Indeed, quantitative theoretical models have been derived along such a hierarchical
scheme, in terms of developments of Bouchaud’s Trap Model [104, 105] and also
Derrida’s Random Energy model [82, 106, 107].

The hierarchical organization of the metastable states as a function of temper-
ature is, of course, reminiscent of the hierarchical organization of the pure states
(as a function of their overlap) that is obtained in the mean-field theory of the spin
glass with full replica symmetry breaking [1]. It has been shown that rejuvenation
and memory effects can indeed be expected in the dynamics of this model [108].
Detailed analysis of the temperature growth of the free-energy barriers involved in
temperature variation experiments has suggested that the hierarchical organization
of the metastable states as a function of temperature can indeed be extrapolated to
a hierarchical organization of the pure states [109] (see however the discussion of a
different barrier analysis in [87]).

Also, from another point of view [88], rejuvenation effects can be expected from
the fact that in a frustrated system effective interactions can be defined, which
are found to be temperature dependent in many cases [110]. Still, memory effects
require considering other processes in addition [111].

2.5.3.2 A Correlation Length for Spin Glass Order

Aging can also be considered as the slow establishment of a “spin glass order”
[50–52]. Starting from a random configuration obtained when cooling the spin glass
from the paramagnetic state (like the structurally liquid state of a glass after quench),
the spins will locally optimize their respective orientations over longer and longer
length scales, which define a time growing correlation length. This correlation
length could be determined, although a bit indirectly, in various sets of experiments
[112–114].

The rejuvenation and memory effects have important implications in terms of
these length scales. Let us consider that during aging at T the correlation length of
the spin glass order grows up to a certain LT . When going to T−ΔT, rejuvenation
implies that new reorganization processes take place. But, in order to keep the
memory of what happened at T, these new processes at T−ΔT should occur on
smaller length scales LT−ΔT < LT . In practice, the independence of aging at length
scales LT−ΔT and LT can be realized by a strong separation of the corresponding
time scales τ :

τ (L, T − �T) > > τ (L, T).

This necessary separation of the aging length scales with temperature has been
coined “temperature-microscope effect” by Bouchaud [87]. In experiments like
those from Figs. 2.11 and 2.12, at each temperature stop aging should take place
at well-separated length scales

Ln < · · · < L2 < L1,

as if the magnification of the microscope was varied by orders of magnitude at
each temperature step. This hierarchy of embedded length scales as a function of



52 E. Vincent and V. Dupuis

temperature is a real space equivalent of the hierarchy of metastable states in the
configuration space (Fig. 2.13) [87].

Spin glass numerical simulations have allowed the exploration of the microscopic
organization of the spins, and investigated the properties of the correlation length
of the spin glass state (see, for example [115], and references therein). But, due
to frustration, the evolutions towards equilibrium are very slow, which implies
time-consuming computations. The experiments on real spin glasses are typically
exploring the 100–105 s time range, which in units of the paramagnetic spin flip
time τ 0 ∼ 10−12 s corresponds to 1012–1017 τ 0. Taking τ 0 = 1 MC step for
comparison, the first numerical simulations were exploring up to ∼107 Monte-
Carlo (MC) steps, a rather short-time regime compared with the experiments. In
the Janus and Janus II projects [2], dedicated supercomputers have been designed,
which allow computation up to ∼1011 MC steps. A wide set of numerical results is
now available in a time range that is close to that of spin glass experiments, yielding
considerable progresses in their interpretation [2].

Intermediate time range of this dynamics could be explored in experiments on the
glassy state formed by interacting magnetic nanoparticles (see [116], and references
therein). The microscopic flip time of the “super spins” born by the nanoparticles
(104–106 ferromagnetically coupled spins in each nanoparticle) is much longer than
10−12 s (depending on the temperature and on the size of the nanoparticles, τ 0 can
range from 10−10 s up to milliseconds), and in τ 0 units the explored experimental
time window can be close to that of simulations. The results concerning the time
growth of the correlation length ξ of the glassy order during aging in experiments
(spin and super spin glass) and simulations are in overall agreement [2, 112–116].
The general trend of this growth is a slow power law

ξ ∝ (t/τ 0)aT/Tg,

with a ∼ 0.15, going up to a few tens of atomic distances for spin glasses in the
laboratory time window.

2.6 Conclusions

In this paper, we have tried to emphasize some general experimental features of
the disordered magnetic systems that are known as spin glasses. The spin glass
state develops at and below a well-defined temperature Tg, above which the spins
form a paramagnetic phase. At Tg, the nonlinear susceptibility diverges, and the
transition to the spin glass state presents most characteristics of a thermodynamic
transition. However, since relaxation times are diverging at Tg, in an experiment the
equilibrium phase cannot be established. Starting from a frozen random configu-
ration inherited from the paramagnetic phase, a “spin glass order” is progressively
established at longer and longer range, and this slow evolution is accompanied by
aging phenomena that show up in various dynamical properties, like a waiting time
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dependence of the ac susceptibility or of the magnetization relaxation in dc field
variation procedures.

Lowering the temperature during aging causes a restart of aging processes
(rejuvenation), while the memory of previous aging at higher temperatures can be
kept, and retrieved when reheating. The effect of temperature changes can be seen
as a combination of these rejuvenation and memory effects with more common
cumulative effects. In structural and polymer glasses, and many other glassy
systems, the dominant scenario is the continuation of aging from one temperature to
another in terms of cumulative processes, but rejuvenation and memory processes
can often be found, even though with weaker importance. Hence, spin glasses appear
as glassy systems in which rejuvenation and memory effects are more pronounced
than in others, but they can yet be used as powerful models for glasses in general,
because of their rather simple theoretical formulation in terms of a system of
randomly interacting spins. Certain classes of spin glass theoretical models (with
p-spin interactions) have even been found to reproduce rather precisely [117, 118]
the properties of structural glasses as modelled by mode coupling theory [119].

Since the early pioneering studies, spin glasses have continuously benefitted
from active exchanges between experiments and theory [9, 31, 39]. They have
been the opportunity of important conceptual breakthroughs in statistical physics
[1] and these developments have shed new light on the problem of glasses in general
[18, 27]. New results allowing a better microscopic understanding of the transition
in structural glasses are now being obtained [21–23]. The out-of-equilibrium
properties of spin glasses have inspired a lot of original experimental investigations
of glassy systems in general. After several decades, many crucial questions on the
nature of the glassy state are still open, and the important experimental, analytical
and numerical efforts that are presently deployed offer very promising perspectives
of new progress on these fascinating questions.
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Chapter 3
Frustration(s) and the Ice Rule: From
Natural Materials to the Deliberate
Design of Exotic Behaviors

Cristiano Nisoli

Abstract The ice rule has a long, interesting history, one that proved most influ-
ential to thermodynamics, physical chemistry, statistical mechanics, magnetism,
material science, and soft matter. First introduced to solve the mystery of the residual
entropy in water ice, it has motivated an entire set of exactly solvable problems
in statistical mechanics and applied mathematics. It was then recognized in exotic
magnets at low temperature, and designed in new artificial frustrated systems, both
magnetic and colloidal. As new classes of artificial ice rule materials are being
presented, dedicated geometries are proposed to generate new, exotic collective
behaviors, often not found in natural systems. There, a deeper understanding of the
origin of the ice rule from different forms of frustration can be exploited for design
of unusual phases.

3.1 Introduction

The story of the ice rule begins with the brilliant intuition of Linus Pauling within
the limited context of water ice. It has then evolved to a powerful topological notion
to conceptualize the effects of frustration in a variety of interesting systems, ranging
from chemistry to magnetism to soft matter to superconductors. It often leads
to a so-called “ice manifold” a quasi-disordered set of low-energy configurations
wherein new interesting phenomena can take place, and sometimes even be designed
in artificial realizations. These systems reveal common properties in their diversity,
as well as different behaviors in their commonality. Their properties are often
emergent from the collective dynamics of discrete underlying degrees of freedom.
We shall see how such exotic states and behaviors can now be designed in artificial,
collectively interacting materials at the nano or micro-scale.
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The scope of this chapter is not to provide an exhaustive, diachronic review of
these systems, but rather to compare different materials described by the ice rule,
and conceptualize their similarities and differences. It should not be considered as a
reference for the systems introduced, but rather as an attempt to provide perspective
over disparate materials, and as such it should be read in its entirety. In our choice of
the material we do not deny our intellectual bias—indeed we declare it. As reviews
of frustration and of the ice rule in such systems are plentiful, we will devote quite
some space on the most recent developments of artificial ice-rule materials, whose
phenomenology is not just richer than their “natural” counterparts, but can in fact
be designed at will, characterized at the constituent level, and accessed at desirable
ranges of temperature and field.

In particular, we will begin in Sect. 3.2 by introducing fundamental concepts in
many different yet well-known and relatively simpler systems, both natural and
artificial. Then in Sect. 3.3 we will try to conceptualize some theoretical themes
that are common to such materials, to provide some understanding on the diverse
origin on the ice rule from different conceivable forms of frustration. Finally, in
Sect. 3.4 we show how this deeper insight can lead to more complexity in behavior
in deliberately manufactured, artificial ice rule systems.

3.2 Common Systems

3.2.1 Water Ice

Water is a most common and vital substance, fundamental for Life on the planet,
and of course for our everyday life. It is therefore rather remarkable how mysterious
water still is to science, and in how many ways. The study of its chameleonic
behavior has generated famous controversies and debates as many of its physical
properties often do not lead themselves to simple modeling (see the very exhaustive
website of M. Chaplin at http://www1.lsbu.ac.uk/water/ and the references therein).

One of the early mysteries of water was the apparent residual entropy of water
ice. In the 1930s Giaque and Ashley [1, 2] performed a series of carefully conducted
calorimetric experiments, deduced the entropy of ice at very low temperature, and
found that it was not zero despite the ordered, crystalline structure. An explanation
was provided by Linus Pauling a few years later [3], and it goes as follows.

Ice comes in about eighteen crystalline forms [4], depending on metastability, but
all of them involve oxygen atoms residing at the center of tetrahedra, sharing four
hydrogen atoms with four nearest neighbor oxygen atoms (Fig. 3.1). As in all cases
the water molecules are hydrogen-bonded to each other, two of such hydrogens are
covalently bonded to the oxygen of their molecule, and two will realize hydrogen
bonds with oxygens of different molecules. One way to say that is that two are “in,”
two are “out” of the tetrahedron whose center is occupied by the oxygen atom, and
this is the so-called ice-rule introduced by Bernal and Fowler [6]. Each tetrahedron

http://www1.lsbu.ac.uk/water/
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Fig. 3.1 The ice rule in Water Ice. (a) The crystalline structure of Ih ice shows proton disorder
in the allocation of hydrogen atoms among oxygen centered tetrahedra (image from [4]). (b) In
water ice oxygen atoms sit at the center of tetrahedra, connected to each other by a hydrogen atom.
Two of such protons are close (covalently bonded) to the oxygen at the center, two are further
away, close to two of the four neighboring oxygens. (c) One might replace this picture with spins
pointing in or out depending on whether the proton is in or out of the tetrahedron. Then two spins
point in, two point out. This corresponds to the disposition of magnetic moments on pyrochlore
spin ices, rare earth titanates whose magnetic ensemble does not order at low temperature because
of frustration and, much like water ice, has non-zero low temperature entropy density (figures b, c
from [5])

has therefore 6 admissible configurations out of the 24 = 16 ideally possible, and
the collective degeneracy of the ice grows exponentially in the number of tetrahedra
N as WN . This leads to a non-zero entropy per tetrahedron s = kB ln W .

In one of the most precise and felicitous back-of-the envelope estimates in the
history of statistical mechanics, Pauling counted such degeneracy starting from
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the allowed configurations of each tetrahedron, obtaining W = 3/2. This value
was later found to be remarkably close to both the experimental value and to the
numerically evaluated value (W = 1.50685 ± 0.00015 [7]). We can anticipate here
that the same kind of heuristic estimate can be successfully applied to other ice-
rule models, including two-dimensional ones, such as the six-vertex model [8–12],
or the hexagonal ice (see later) and the results are similarly accurate. And yet, as
we shall see, the Pauling approach would fail if applied to new, vertex-frustrated
ice-rule materials described later in this chapter [13–17], where vertices are instead
ordered, and degeneracy comes from the collective inability to place all of them in
an ordered state.

The works of Jaques, Pauling, and others pointed to the reality of exotic states
of cosntrained disorder in the most common and vital substance on earth. The
idea is however more general, and of broader application. As Fig. 3.1 shows, one
can associate to the ice rule a spin model: classical binary spins are assigned to
the bonds between molecules, and they point toward the proton. Then the ice rule
dictates that two spins point in, two point out, as two protons are close and two are
away. One immediately suspects some underlying level of mathematical abstraction
and generality beyond the chemistry of water, which indeed was understood and
explored decades later in statistical mechanics. The ice rule immediately resembles
a precept for “charge” cancellation—for a proper definition of a topological charge
(see Sect. 3.3)—within each tetrahedron, which in turn can be generalized as a
“vertex” in about any geometry, not necessarily regular, as we will explain in
Sect. 3.3.1. Violations of the ice rule can also be formalized and generalized in
similar fashion. They are already present in water ice where they are known
as Bjerrum defects [18], but in magnetic materials they can lead to magnetic
monopoles as fractionalized excitations, as we shall see later [5, 19].

Before the seventies these approaches had motivated the introduction by Lieb,
Wu, Rys, and others of simplified models of mathematical physics, known as
vertex models. These are two-dimensional spin models where different energies
are ascribed to different vertex configurations, and which could in many cases be
solved exactly, typically via transfer matrix methods [8–12]. The six-vertex model
in particular [8] only admits ice ruling obeying vertices on a square lattice, and
was meant to represent a solvable, two-dimensional equivalent of water ice. Beside
helping clarifying the physics of ice, these models provided new phenomenology
(for instance, the Rys F-model, a six-vertex model with lifted degeneracy, contains
an infinitely continuous transition [9]), but also were often shown to be equivalent
to other, outstanding problems of statistical mechanics, and thus initiated an
independent, theoretical line of research in mathematical physics. Moreover, the
same set of ideas proved later of application behind the chemistry of water, to
magnetic materials.
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3.2.2 Spin Ice: Rare Earth Titanates

Beside water ice, ice-like systems have received renewed interest in the 1990s,
when unusual behaviors were discovered in the low temperature regime of rare earth
titanates such as Ho2Ti2O7 and Dy2Ti2O7. In these substances, the magnetic cations
Ho3+ and Dy3+ carry a very large magnetic moment, μ ∼ 10μB . When temperature
lowered below 200 K for Ho2Ti2O7 and 300 K for Dy2Ti2O7, these moments can be
modeled as binary, classical Ising spins constrained to point along the directions
of the lattice bonds which form a pyrochlore lattice (Fig. 3.2), mutually interacting
as magnetic dipoles. Thus, these materials exhibit a net ferromagnetic interaction
between nearest neighbor spins, yet when temperature is lowered, no ordering
transition is present. It was suggested that strong frustration impeded ordering.

It was then noted by Harris et al. [23] and confirmed experimentally by Ramirez
et al. [20] that, similar to protons in water ice, the magnetic moments of these spin
ice materials reside on a lattice of corner-sharing tetrahedra (Fig. 3.2c), and they are
constrained to point either directly toward or away from the center of a tetrahedron

Fig. 3.2 The ice rule in Spin Ice. (a) Specific-heat and (b) entropy data for Dy2Ti2O7 [20]
obtained by integrating the specific heat, compared with Monte Carlo simulation results for the
dipolar spin ice model [21]. These curves demonstrate the residual entropy of spin ice materials. If
we ascribe zero entropy to zero temperature, the entropy per spin converges at large temperature
to a value that is inferior to the expected R ln 2, the entropy per spin of uncorrelated moments. The
difference is very close to (R/2) ln(3/2) the Pauling estimate for water-ice residual entropy. The
broad bump in the specific heat corresponds to the crossover into the ice state. (c) Spin ice materials
Ho2Ti2O7 and Dy2Ti2O7 arrange in a pyrochlore lattice of corner-sharing tetrahedra, occupied by
the magnetic rare-earth ions. The magnetic Ising moments of cations occupy the corners of the
tetrahedra and are the equivalents of the proton displacement vectors in Fig. 3.1b. Figures from [22]
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(Fig. 3.1c). The resulting ferromagnetic interaction favors the ice-rule described in
the previous section.

These materials provided important model systems of constrained disorder
and its exotic state, inclusive of novel field-induced phase transitions and
unusual forms of glassiness. Many of these effects, as we shall see later
on, are mostly related to an early and practical example of a classical
topologically ordered state (see Sect. 3.3) as spin ice harbors a new frac-
tionalization phenomenon in its low-energy dynamics: emergent magnetic
monopoles [5, 19].

3.2.3 Artificial Spin Ice

Between the late 1990s and the early 2000s, the exploration of the magnetic state
of nanodots, nanoislands, and in general various geometries at the nanoscale was
already a mature effort [24]. Such studies concentrated on how to obtain interesting
magnetic textures—and transitions among them—in different, properly shaped,
lithographically fabricated nanostructures. However, a different direction emerged
around 2006 [25–27]. It considered employing relatively simple nanostructures,
which could lead to easily modeled binary degrees of freedom, and concentrate
instead on their mutual interaction to generate possibly interesting collective
states from simple magnetic building blocks.

To this end, arrays of elongated, mutually interacting, single-domain, shape-
anisotropic, magnetic nano-islands arranged along a variety of different geometries
(Fig. 3.3) were chosen: the size of the (typically, NiFe alloys, of size 200 × 80 ×

Fig. 3.3 Artificial spin ice in its most common geometries. Left: Atomic force microscopy image
of square ice showing its structure (figures from [25]). Center: a magnetic force microscopy image
of square ice, showing the orientation of the islands’ magnetic moments (north poles in black,
south poles in white); Type-I (pink) Type-II (blue) and Type-III (green) vertices are highlighted
(see the text and Fig. 3.6 for a definition). Right: schematics of honeycomb spin ice showing the
ice rule obeying vertices (2-in/1-out of charge +1 and 1-in/2-out of charge −1) and two excitations
3-in of charge +3 and 3-out of charge −3
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(5–30)nm3 patterned by nano-lithography on a non-magnetic Si substrate), has
to be inferior to the typical magnetic domain, to provide single domains with
magnetization directed along the principal axis that can be interpreted as switchable
spins. Advances in lithography allows now their nano-fabrication in virtually any
geometry, and, as we shall see, in these materials geometry dictates behavior.

This approach provides two advantages:

1. the low-energy dynamics, which underlies possible exotic states, is dictated by
geometry, which here is open to design;

2. various characterization methods (Magnetic Force Microscopy (MFM), Pho-
toElectron Emission Microscopy (PEEM), Transmission Electron Microscopy
(TEM), Surface Magneto-Optic Kerr Effect (MOKE), Lorentz Microscopy)
allow for the direct visualization of the magnetic degrees of freedom. Indeed,
even real-space, real-time characterization is possible, for unprecedented vistas
of statistical mechanics in action.

These so-called Artificial Spin Ices (ASI) were employed at first to study
frustration in a controllable setting, to mimic the behavior of spin ice rare earth
pyrochlores, but at more useful temperature and field ranges and with direct charac-
terization, and to provide practical implementation to celebrated, exactly solvable
models of statistical mechanics, previously devised to gain an understanding of
degenerate ensembles. Soon, a growing number of groups have extended the use
of ASI [26], to investigate topological defects, dynamics of magnetic charges,
and spin fragmentation [28–36], information encoding [37, 38], in and out of
equilibrium thermodynamics [39–50], avalanches [51, 52], direct realizations of
the Ising system [53–57], magnetoresistance and the Hall effect [58, 59], critical
slowing down [60], dislocations [61], spin wave excitations [62], and memory
effects [63, 64]. Meanwhile similar strategies [65–70] have found realization in
trapped colloids [71–73], vortices in nano-patterned superconductors [74, 75] (see
Sect. 3.2.4) and even at the macroscale [76]. With the evolution of nano-fabrication
and of experimental protocols it is now possible to characterize the material in
real-time, real-space [77–81], and to realize virtually any geometry, for direct
control over the collective dynamics. This has recently opened a path toward the
deliberate design of novel, exotic states [13–17, 82] often not found in natural
materials [83, 84].

Frustration is a fundamental ingredient in design: it controls the interplay of
length and energy scales, dictating the emergent dynamical properties that lie at
the boundaries between order and disorder, and leading to a lively, quasi-disordered
ensemble called ice manifold, to be exploited in the design of exotic behaviors.

Strongly correlated, classical spin systems have of course a long history in
Physics. In classical statistical mechanics, the Ising model [85] paved the way to our
understanding of long-range order from symmetry breaking as a second order phase
transition, universality classes and scaling [86], and finally the renormalization
group [87] with implications reaching well beyond condensed mater systems [88].
However, frustrated spin systems often do not order, generally resulting in quasi-
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disordered manifolds governed by some geometric or topological rule. Often their
collective dynamics lends itself to emergent descriptions that are only partially
reminiscent of the constitutive spin structure.

The situation is somehow similar to everyday life, where frustration results
from a set of constraints that cannot be all satisfied at the same time, leading
to a manifold of compromises among which the choice is most often equivalent
and can be influenced by a small bias. Thus, obstructed optimization provides
high susceptibility, much as in the complex social dynamics we witness everyday,
and which emerges from the (perhaps eventually beneficial?) frustration of our
everyday life. These analogies between social settings and frustrated materials are
not merely philosophical: ideas borrowed from the frustrated spin ice physics might
be exportable to the context of social networks [89].

3.2.3.1 Honeycomb Spin Ice

To familiarize with artificial spin ice we begin with the honeycomb structure. As
we describe its properties, we will also introduce the characterization and annealing
methods generally employed in the study of these materials.

Even before artificial spin ice realizations [40, 90, 91] (Figs. 3.4 and 3.5) honey-
comb structures have been extensively studied theoretically for various reasons. In
particular, as they describe the two-dimensional behavior of the three-dimensional
spin ice pyrochlores under a magnetic field aligned along a particular crystalline
axis. A honeycomb ice is often called the Kagome spin ice, as the spins reside on
the edges of a honeycomb lattice, which is a Kagome lattice (the dual lattice of the
honeycomb). In the context of artificial spin ice, honeycomb ice was initially the
only simple geometry with a degenerate ice manifold, and therefore for a long time
the only disordered artificial spin ice. Indeed, as we will see in the next subsection,
square ice has a frustrated yet perfectly ordered, antiferromagnetic ground state.

As we have seen above, in general magnetic, elongated nano-islands can be
described as nano-spins, binary degrees of freedom describing their magnetization
along their principal axis. This is, however, already an approximation of the mag-
netic texture of the nano-structure: both direct characterization and micromagnetic
simulations show significant relaxation of the magnetization field at the tips of
the islands, due to the local field of the surrounding islands. That such relaxation
might imply hidden variables not taken into account by a simple modeling of the
nanoisland as an Ising spin has been shown in the case of square ice [94] and it
would seem that a more general investigation might be required.

A further approximation, which seems to work surprisingly well, implies mod-
eling the inter-island interaction at the nearest neighbor level, via a vertex model.
There, one assigns energies to the various vertex configurations as in Fig. 3.4. As we
can see, the lowest energy is ascribed to the six vertices obeying a generalization of
the ice rule: one spin pointing in and two out, or two pointing in and one out.

The nano-islands being (non-ideal) magnetic dipoles, one expects the nearest
neighbor approach to eventually break down. It does indeed, and in enticing ways,
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Fig. 3.4 Top, from left to right: Schematics and MFM image of the hexagonal arrays with the 8
vertices of the honeycomb/Kagome artificial spin ice. White arrows show the vertex Ice I state, and
the percentages indicate the vertex multiplicity. Type-I vertices have lower energy than Type-II and
correspond to the generalized ice rule. Temperature dependence (top right) of the specific heat c

and entropy per spin s of the Kagome spin ice obtained by Ref. [95]. The dashed lines show values
of entropy per spin s = 0.693 (Ising paramagnet), 0.501 (Ice I), and 0.108 (charge-ordered spin
ice, or Ice II). Bottom: the four phases of Kagome ice ordered by increasing temperature. Figures
are adapted from Refs. [14, 40, 60]

revealing low entropy phases within the ice manifold. If we consider each moment
as a dumbbell of positive and negative magnetic charges (much as one would do with
electric charges in an electric dipole), we see that, unlike in pyrochlore spin ice (or in
the square ice of the following subsection) the low energy vertices are magnetically
charged, because of their odd coordination (see Sect. 3.3.1). One thus expects that
the next nearest neighbor interaction can be described as magnetic charge interaction
between vertices. That is indeed the case.

These equilibrium phases of the system have been investigated numerically [95,
96] via Metropolis Monte-Carlo simulations with full dipolar interaction. Figure 3.4
shows that at high temperature the system is paramagnetic. As temperature is
reduced, it crosses over toward a disordered ice-manifold, called Ice I, where each
vertex has charge ±1 and thus represents a neutral, disordered plasma of charges.
This is as much as a vertex model approximation would explain, because the ice-rule
minimizes the energy of the vertices.
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However, if we further lower the temperature, we see a transition toward charge
ordering. There, the disordered plasma of the magnetic charges residing on the
vertices orders within an ionic crystal. The transition appears to be of the Ising
class and is due to the Coulomb interaction among magnetic charged vertices. It
can be replicated within a vertex-model approximation, but only if one adds further
interaction via Coulomb coupling between the charges of the vertices [95, 96]. Note
that such state, often called Ice II, while being charge-ordered, is still disordered in
the spin structure: there is an exponentially growing (in the number of spins) number
of possible spin configurations that correspond to the charge ordered state. And
yet, finally, by further lowering the temperature, another transition is theoretically
predicted to lead to a long-range ordered state (LRO in Fig. 3.4), where order is
brought in by the long range effects of the dipolar interaction.

These states were variously investigated experimentally. Ice I proved easy to
reach. Indeed, even non-thermal methods could reach it [40, 90, 91]. Those methods
pertain to thicker islands that are thus not superparamagnetic at room temperature
(that is, do not flip their magnetization under thermal fluctuations away from the
Curie point). These islands are therefore coercive enough that MFM can provide a
non-destructive characterization at room temperature. The AC demagnetization [41]
of such samples is sufficient to reach the ice manifold.

The facility with which such state could be reached is telling. Indeed, while
magnetic charges are topologically protected in pyrochlore ices [97], as we shall
see in Sect. 3.3.1, they are not bona fide topological numbers in the ice manifold
of Kagome ice. There, vertices of odd coordination can gain and lose charge freely
from the surrounding, disordered, and overall neutral plasma of magnetic charges.
Consequently, the ice-manifold can be explored from within by consecutive single-
spin flips, without any need for collective moves of entire loops of spins. Note that
instead, the charge-ordered state, or Ice II, cannot be explored by individual spin
flips. A glimpse of the Ice II phase shown in Fig. 3.4 should convince that any spin
flip within the manifold will locally destroy the charge order [98].

Signatures of the Ice II state were first suspected after AC demagnetization [35].
They were subsequently investigated via thermal methods capable of providing
a bona fide thermal spin ensemble [92, 93]. These methods are of three kinds:
annealing from above the Curie point of the nanoislands, typically at higher
than room temperature followed by characterization of the static ensemble at
room temperature where the islands are more coercive and characterization is
non-destructive [80, 92, 99]; thermalization with real-time, real-space characteriza-
tion [16, 79, 81]; and thermalization without real-space characterization [60, 77]. In
the first, the material is not superparamagnetic at room temperature, but it is heated
slightly above the Curie temperature of the nano-islands (which can vary, depending
on the size and chemical composition of the nano-structure, from about 600 ◦C for
permalloy down to about 100 ◦C for Fe-Pd alloys) and then annealed down into
a frozen state, which is subsequently characterized, for instance via MFM. In the
second method the nano-islands are chosen to be thin enough (usually thickness of
2–3 nm) to be superparamagnetic at room temperature or below, and thus need to
be characterized via PEEM at a proper beam source. In the third, various averaged
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Fig. 3.5 Magnetic charge ordering in Kagome ice. (a)–(e) Charge domain maps obtained via
Lorenz TEM relative to the annealing of Fe-Pd alloy artificial Kagome ices of different edge
length (from 500 to 300 nm) show increasing size of the “ionic” crystallites of charges as the
lattice constant decreases, and thus the mutual interaction among magnetic charges increases. C is
the charge–charge correlation parameter (C = 1 for a fully charge-ordered state). Images adapted
from Ref. [92]. (f) Charge map obtained via MFM after annealing of permalloy Kagome ice of
lattice constant 260 nm showing incipient domains of charge-ordering and (g) its static structure
factor showing incipient peaks corresponding to crystalline order. (h) Static structure factor for
lattice constant 490 nm, showing no incipient peaks (images adapted from Ref. [93])

quantities are extracted, such as the average flip rate of spins, e.g. through muon
spectroscopy [60]—while spin noise spectroscopy [100, 101] should also provide
an interesting method.

Figure 3.5 shows the results of thermal annealing on artificial hexagonal ice made
of permalloy [99], which demonstrate formation of crystallites of magnetic charges,
due to the Coulomb interaction between the charges themselves. More control over
the size of those ionic crystallites has also been obtained by employing an alloy of
iron and palladium, of much lower Curie temperature [92]. However, nobody has
yet reported any direct evidence of complete charge order in such a material, nor of
the zero entropy phase of long range spin order.

Indirect indications that such low-entropy phases within the Kagome ice
manifold—or at least some kind of phases, possibly close to the ones theoretically
predicted—can be reached were obtained via muon spectroscopy studies. These
studies concerned islands that were too small and therefore too active to be imaged
directly, but whose rate of magnetic flipping could be deduced from the relaxation
time of muons implanted on a gold cap over the two-dimensional array. There,
the critical slowing down of the spins was measured and found to correspond to
that of the numerically predicted transitions, where parameters for the numerical
simulations were taken from the material [60].
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These results, the first to probe deep inside the ice manifold of Kagome lattice,
represent a strong corroboration of the existence of a complex phase diagram, most
likely the theoretical predicted one. However, we should not forget that topological
or ordered states can be hard to reach via spin dynamics of the Glauber kind [102],
and that indeed the actual spin dynamics might be even more complex than a
simple Glauber model. In fact, these “spins” are nanoscopic objects with their own
magnetic reversal dynamics, while their magnetic state exhibits various relaxations
effects coupled to the local fields generated by other spins, leading to previously
neglected symmetry breakings [94]. Such specificity might bias certain kinetic
pathways, leading to non-equilibration or ergodicity breaking even in ice models
that are not theoretically susceptible to these phenomena.

3.2.3.2 Square Ice

With the exception of the work of Tanaka et al. [90], early works on artificial spin
ice concentrated on the square geometry (Fig. 3.3) [25, 39, 40]. Square ice also
represented the benchmark on which to test demagnetization and annealing methods
which lead to experimental protocols for thermalized ensembles [44, 77, 80].

It is important to understand immediately that square artificial spin ice is not
the square ice of Lieb [8]. Firstly, because it admits topological defects in the
form of magnetic monopoles absent in the six-vertex model—in other words it
admits 10 vertex-configurations above the ice rule, for a total of 16 vertices. But
most importantly because it is not degenerate. In this sense it shares similarities
with the Rys F-model [12]. Yet, such similarities should not be overstated, as
the (physically unnatural) absence of monopoles in the Rys F-model leads to
an infinitely continuous transition to antiferromagnetic ordering [9], whereas in
artificial square ice the transition is of second order.

Figure 3.6 shows the energetic hierarchy of vertices with 90° angles (including
those of coordination z = 3, 2 to be discussed later), from lower (left) to higher
(right) energy. Because of the anisotropy of the dipolar interaction, nearest neighbor
perpendicular islands interact more strongly than collinear ones, leading to the
lifting of the degeneracy within the ice manifold. The system, if modeled at the
vertex level, can be mapped into a J1, J2 antiferromagnetic Ising model on a square
lattice [10], with a transition to antiferromagnetic ordering, ordering which indeed
has been obtained experimentally via thermal annealing protocols [80, 93], as shown
in Fig. 3.6.

Within the ordered state of square ice, potentially interesting transitions have
been proposed [103–105]. Because the system is not degenerate, creating and
separating a couple of monopoles requires energy proportional to the number of
Type-II vertices in the Dirac string (see Fig. 3.6). Much like quarks or Nambu
monopoles [106] these pairs are linearly confined, and the tensile strength of their
Dirac string drives the ordering as the temperature is reduced. There, however, one
can imagine that a topological transition corresponding to monopole deconfinement
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Fig. 3.6 Top: Nomenclature of vertex-configurations for 90° angles of coordination z = 4, 3, 2
(degeneracy in brackets) listed in order of increasing energy. Middle: MFM images of thermally
annealed square ice at different lattice constants showing an ordered domain crossed by a Dirac
string (for the specimen at 320 nm) and a multi-domain ensemble separated by domain walls
of monopoles and dirac strings (at 400 and 440 nm); note also the frozen in monopole pairs
(figures adapted from Ref. [99]). Bottom: the ordered lowest energy state of square ice as an
antiferromagnetic tiling of Type-I4 vertices; creating and separating a monopole pair entails a
Dirac string (red) of Type-II4 vertices, that are energetically more costly than the Type-I4, leading
to tensile strength of the string and this to the linear confinement of the pair. This should not be
confused with the disordered manifold of truly degenerate square ice (Fig. 3.6). There, in a setting
of constrained disorder, the Dirac strings have no tensile strength, as the system is not energetically
reminiscent of them (though they control an entropic interaction between monopoles)
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might take place under proper conditions when the energy of the Dirac string is
offset by its fluctuating entropy [103–105].

These theoretical ideas could become timely now that properly degenerate square
ice can be realized by finely gauging such degeneracy. Indeed, one way to achieve
such degeneracy is to raise the vertical islands with respect to the horizontal
ones [96] as to weaken the interaction between islands converging perpendicu-
larly into a vertex. This method has recently been pursued experimentally [107]
demonstrating a degenerate manifold whose static structure factor coincides with
the numerically computed one for a six-vertex model, and thus providing the first
artificial realization of a two-dimensional Coulomb phase (see Sect. 3.3). It was also
proposed to iterate such design on the axis perpendicular to the array, leading to
layered structures that are geometrically different but topologically equivalent to
three-dimensional spin ice pyrochlores [108]. Those have not found realization yet.
The only three-dimensional realization of artificial spin ice was obtained by filling
the voids of an artificial opal film with Cobalt [109, 110], a promising approach to
bring to room temperature some of the features of spin ice pyrochlores. Of course,
as always with three-dimensional realizations, the challenge there lies not only in
nano-fabrication, but also in characterization, as real-space methods are generally
surface methods in these materials.

Another way to produce a Coulomb phase in square ice has been presented
recently, and involves “rectangular ice” where vertical and horizontal islands
differ in length, and degeneracy is obtained for a proper critical value of their
ratio [104, 111]. Finally, a latest method, realized experimentally, corresponds to
mixing nanoislands with nanodots placed at the center of the vertex, to gauge the
relative energy difference in vertex-configurations [112].

3.2.4 Particle-Based Ice

Proposals for realizations of frustrated analogues of spin-ice materials are not,
however, limited to magnetic systems. In a series of numerical works based on
brownian dynamics, Libal et al. have proposed systems of so-called particle-based
ices. These are two-dimensional arrays of traps arranged along the edges of a lattice
(typically square [65], or hexagonal [68]). Each trap contains one particle, that can
move along the trap. The traps attract the particle via a double well potential, for
which the extreme ends of the trap are the two preferential positions. This forces
the particle to be in the proximity of one of the two vertices connected by the trap
(Fig. 3.7). The particles repel each other, the interaction depending on their specific
nature. When brownian dynamics is performed on these systems they obey the
ice rule in the strong interaction regime—that is when the local interaction energy
exceeds the potential barrier of the double well potential.

The model is general and can be realized via different kinds of “particles.” Some
of these theoretical proposals [66, 68] pertained to pinned quantum vortices in
properly nano-structured superconductors, which were recently realized experimen-
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Fig. 3.7 Particle-Based Ice. (a) Schematics of the basic unit cell with four double well traps each
capturing one colloid. (b) Random vertex distribution. (c) Long-range ordered square ice ground
state, obeying the ice rule. (d) Scanning electron microscopy of a nano-patterned substrate for
pinning of superconductive vortices in MoGe thin films (a = 102 nm, d = 300 nm). Images (a)–
(c) from Ref. [65]. Image (d) from Ref. [74]

tally [74, 75]. Of course, research in pinning superconductive vortices to a substrate
nano-patterned with holes had been conducted since the late seventies [113] with
the goal of increasing critical currents. Latimer et al., however, arranged the pinning
with the intention of reproducing the frustration of an ice-like material [74]. They
fabricated superconducting thin films of MoGe containing pairs of circular holes
arranged as in Fig. 3.7d: a square lattice whose vertices can accommodate in
principle four vortices each. Then, when the applied magnetic field is at half the
matching value, at each vertex only two holes are occupied, and two are not,
following the ice rule, as predicted numerically [66]. Clearly the particle-ice models
of Libal, Olson, Reichhardt, and collaborators are over-constrained compared with
the experimental realization of Latimer et al. In the latter there are no semi-occupied
link-shaped traps and the vortices can simply pin to in the ratio of vortices to hole
dictated by the field.

More recently, faithful realizations of those particle-based models were achieved
at the microscale [71, 73]. Magnetic colloids are confined by gravity in photolitho-
graphically patterned double wells, as shown in Fig. 3.8 and preferentially sit in one
of the two wells in each bistable microtrap. When a magnetic field �B is applied
perpendicularly to the system, the colloids magnetize and repel mutually with law
∼ B2r−3. As the field is ramped up, a random distribution of colloids evolves into
an ice-rule obeying configuration (Fig. 3.8).

While the same ice rule has also been observed in natural and artificial magnetic
spin ice materials, its origin in particle-based ices is different, as we shall see in
Sect. 3.3.2 when discussing the different levels of frustration in these systems.

3.3 Theoretical Themes

We have so far given definiteness to our material by introducing a set of rather
different physical systems and indulging more to their phenomenology than to their
underlying mathematical structures. In doing so, however, we have presaged certain



72 C. Nisoli

Fig. 3.8 (a) Schematic view of the colloidal spin ice made by a honeycomb lattice of double-
well islands filled with paramagnetic colloids. The applied field B perpendicular to the plane
induces repulsive dipolar interactions between the particles. (b) Optical profilometer image of the
honeycomb spin ice, and (c) the cross-section of a double well with a small central hill, giving
a gravitational potential Ug . (d, e) Equilibrium state of a honeycomb ice (d) (lattice constant
a = 44 μm) and a square ice (e) (lattice constant a = 33 μm). Blue arrows denote spin direction,
while green circles highlight vertices of type KI I (in d) and SI II (in e). Scale bars, 20 μm for
all images. (f and g) Vertex configurations for honeycomb (f) and square (g) ices. The lowest
panel shows the normalized magnetostatic energy for each type of vertex. Image and caption from
Ref. [71]
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notions, such as charges, topological order, the different role of frustration, and
different kinds of frustration, which we will try now to put on more solid grounds.
This will also help us introduce new approaches and geometries based on a deeper
understanding of the interplay between frustration and the ice rule, to produce
different emergent exotic behaviors.

We can consider Sect. 3.3.1 in a broader sense as “kinematic,” as it provides
a description of the ice rule and ice manifolds, one that can be topological.
The Sect. 3.3.2 discusses instead the origin of such description and explores its
relationship with frustration—which, as we shall see, can be of different types.

3.3.1 Ice Rule, Topological Charges, and Topological Order

We have seen that in pyrochlore spin ice and water ice, as well as in square artificial
spin ice, the ice rule corresponds to two spins pointing into a vertex, and two
pointing out. Instead, for honeycomb ice, it corresponds to one spin pointing in,
and two out, or vice versa.

In view of the more complex geometries that we will discuss later, let us
generalize the notion of ice manifold and ice rule for a general lattice, or graph, or
network [89], whose edges are spins impinging in vertices of various coordination
z. Then we say that a vertex of coordination z with n spins pointing toward it has
topological charge

q = 2n − z, (3.1)

corresponding to the difference between spins pointing in and out. In general, the
ice rule can be considered a local minimization for |q| at each vertex (typically, but
not necessarily, by nearest neighbor spin–spin interaction).

For a lattice of even coordination, such as the square ice or pyrochlore ice
introduced before, the ice manifold is characterized by zero charge, q = 0 on
each vertex. However, for lattices of odd coordination there cannot be any charge
cancellation, and thus in the ice manifold each vertex will have charge q = ±1.
These appear in equal fraction, as the total charge of a system of dipoles must always
be zero. That is the case of Kagome ice, but also of ladder ice which we have not
discussed [114].

The definition in (3.1) can apply to lattices of mixed coordination, and in fact to
general graphs. This can lead to more complex geometries, where the frustration is
of a different kind, and which we will discuss later.

When the spins represent magnetic moments, these topological charges are also
magnetic charges. Indeed a multipole expansion [5] shows that charged vertices
interact via Coulomb law. We have seen in honeycomb ice how their interaction
drives a transition toward charge ordering.

Even in absence of a magnetic interaction, when the ice-manifold is degenerate
one expects that excitations above the manifold must interact entropically, owing
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Fig. 3.9 The ice manifold (top left), an ensemble of spins obeying the ice rule (in each vertex two
arrows point in, two out). One can obtain another realization of the ensemble only by flipping a
proper loop of spins. Flipping a single spin creates a couple of magnetic monopoles of opposite
charge (positive is red, negative is blue). The monopoles can be separated by further spin flips
(creating a “Dirac string,” shown in red), interact via Coulomb interaction, but are topologically
protected, as they can only be created and annihilated in pairs

to the different ways to arrange the underlying spins to obtain a given charge
distribution. One is also not surprise to learn that in a three-dimensional material
such entropic interaction follows a Coulomb law, given that r−1 is the green function
of the Poisson problem in three dimension. And thus the Coulomb interaction
between magnetic monopoles in rare earth spin ice is expected to be renormalized
by a term proportional to temperature, due to these entropic effects [115]. Similarly
one expects the entropic interaction among topological charges to be logarithmic in
two dimensions.

Another interesting aspect is that these charges are topologically protected
monopoles in square or pyrochlore ice: charges can only be created and annihilated
in opposite pairs. This is tied to an underlying topological structure. To facilitate
understanding consider the convenient two-dimensional schematics of Fig. 3.9,
which represent a disordered ice manifold, an ensemble of spins where all the
vertices obey the ice rule. The reader will notice that it is impossible to explore
the manifold by single spin flips, without breaking the ice-rule. Only by flipping
proper loops of spins we can obtain a new configuration within the ice-manifold.

If we flip one spin only, we create two defects (3-in/1-out and vice versa). We
can separate those defects by further flips, and we have two deconfined magnetic
monopoles [5]. We can also annihilate these monopoles by bringing them together
via a different path: at the end the overall spin flips must amount to a loop. Of course
these monopoles are in effect simply the opposite ends of a long, floppy dipole, in
red in figure, called the Dirac string; however, owing to the disorder of the manifold,
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Fig. 3.10 Two magnetic monopoles (red and blue) and a Dirac string (highlighted in white) in a
three-dimensional spin ice material, from Ref. [5]

the system is no longer reminiscent of the Dirac string connecting the monopoles.
Thus, excitations over the ice manifold can be described by a fractionalization of
the spins into individual, separable magnetic charges which interact via a Coulomb
law.

One could indeed create a single monopole in an open system but that would
simply imply pushing the second one at the boundaries. If we, however, placed the
ensemble of Fig. 3.9 on a torus, thus without boundaries, then clearly there cannot
be a net monopole charge. Even in an open system, the total net charge will be
proportional to the flux of the magnetic moment through the boundaries, and as the
latter is bound by the net magnetization of the spins, one finds that the density of
net charge must scale at least with the reciprocal length of the system. These two-
dimensional considerations extend to the three-dimensional spin ice. Figure 3.10
shows monopoles and diract strings in three-dimensional spin ice materials, where
they were initially introduced [5].

Much as one labels the disorder of a dimer cover model via a height function, one
can also label the disorder of a pyrochlore spin ice via a field �M, a proper coarse
graining of the magnetization, such that the pure ice-manifold is characterized by

�∇ · �M = 0, (3.2)

and of course �∇ · �M = qδ(x − x0) for a monopole excitation in x0. From this
approach one can derive the correlations between spins in the ice-manifold and find
that they are algebraic, and indeed dipolar [116, 117].
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This set of properties are taken to define what is called a Coulomb phase, which
is an example of classical topological order [118]. While quantum topological
order has provided a valuable framework to conceptualize disordered states of spin
liquids that escape a Landau symmetry breaking paradigm and cannot be obviously
characterized by local correlations [119, 120], the importance of topological states
had been recognized even earlier in classical physics [121]: in the theory of disloca-
tions [122], liquid crystals [123], or topological transitions [124]. Recently, whether
in direct analogy with quantum physics [125], in purely abstract terms [118, 126], or
motivated by real systems such as pyrochlore spin ices [97, 117, 127], a consistent
notion of classical topological order in discrete systems has been proposed, to
conceptualize (1) a degenerate, locally disordered manifold (2) described by a
topologically non-trivial, emergent field (3) whose topological defects (in spin ice,
magnetic monopoles [5, 19]) coincide with excitations above the manifold.

Topological protection implies that states within the manifold can be linked only
via collective changes of entire loops of a discrete degree of freedom. Thus any
realistic low-energy dynamics happens necessarily above the manifold, through
creation, motion, and annihilation of pairs of protected topological excitations.
Typically, their constrained and discrete kinetics leads to ergodicity breaking,
fractionalization and thus various forms of glassy behaviors [118].

The fact that monopoles are topologically protected has consequences on the
kinetics: unusual forms of glassiness can result, for instance from quenches,
where the monopoles are trapped in and cannot easily annihilate by simple diffu-
sion [128]. This is often a feature of topologically protected systems with a discrete
kinetics.

Note also that such protection for magnetic charges depends on the coordination
of the lattice. In a lattice of even coordination, the ice manifold is characterized by a
local zero magnetic charge on every vertex and any individual spin flip produces two
q = ±2 excitations. There, magnetic charges are protected topological charges, and
can be created and annihilated only in couples (Fig. 3.9). However, in a lattice of odd
coordination, such as the honeycomb lattice of Sect. 3.2.3.1, it is possible to explore
the ice manifold by single, consecutive spin flips if they do not alter the constraint
that each vertex must host a charge q = ±1. There, excitations q = ±3 are
clearly not protected and therefore are not proper topological charges: the manifold
is a plasma of charges, and an excitation can lose its charge to the surrounding
plasma.

The same is true for lattices of mixed coordination involving oddly coordinated
vertices, of the kind that we will discuss later. Note also, however, that the fact
that magnetic charges are not proper topological charges does not imply necessarily
that the ice manifold is not a topological phase. We will see later that topological
order can also be found in novel, non-trivial geometries of artificial spin ice
characterized by vertex-frustration, such as Shakti spin ice [13–15]. There, higher
level topological charges can be identified in an emergent description of the ice-
manifold which is not reminiscent of the underlying spin or magnetic charge
structure [129].
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3.3.2 Ice Rule and Frustration(s)

In the previous subsection we have provided a more general description of the
ice-rule. It is time to investigate its origin from frustration. In common folklore,
“frustration” is used interchangeably for “degeneracy,” and in particular the ice rule
is generally taken to come from frustration, and to lead to degeneracy. None of that
is strictly correct.

A frustrated system can be perfectly ordered, as we saw in artificial square ice,
which also obeys the ice rule. Water ice is degenerate, obeys the ice rule but its
degeneracy is not a consequence of any discernible frustration of its interaction,
but rather of the freedom afforded by the stoichiometry of the water molecule.
Moreover, frustration can be of different kinds. It can be “local,” associated with
pairwise interactions, but also more global and collective in nature, when it is only
present in a system of a large number of elementary degrees of freedom. That is the
case of vertex-frustration, and also of frustration in particle-based ice, as we will see
later.

3.3.2.1 Frustration of Pairwise Interaction

The concept of geometric frustration in its broader mathematical form involves
a geometric system describing a manifold of degrees of freedom and a set of
prescriptions on how they should arrange with respect to each other. The system
is frustrated if there are loops along which not all the prescriptions can be satisfied
(Fig. 3.11). Clearly the concept is very general and extends beyond Physics. One
immediately recognizes topology in the nature of such definition: at least in theory,
any homotopy, that is any continuous transformation that does not tear those loops,
will lead to a system of the same frustration. In practice, in Physics that is often

Fig. 3.11 Geometric frustration can be understood schematically as a set of prescriptions that
cannot be satisfied simultaneously around certain loops. The red link on the figure on the left
represents an “unhappy link” in a generally frustrated system. More specifically, for an Ising
antiferromagnet (right) the loop in question is a loop of interactions among nearest neighbors
and the prescription is the minimization of a pairwise interaction. On a triangular lattice, triangular
loops are frustrated, as one of the three links (red) must be unhappy
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only partially true when frustration is frustration of interactions, as the latter tend to
depend on geometry.

Generally speaking, in Physics: (a) these “prescriptions” correspond to the
optimization of a certain energy, and (b) that energy is usually a pairwise interaction,
typically between binary degrees of freedom. We will see later how weakening the
request (b) can be useful to define new kinds of frustration in spin ice materials.

An early and classical example of these two points is the famous antifer-
romagnetic Ising model on a triangular lattice [130], a system of binary Ising
spins interacting antiferromagnetically on a triangular lattice (Fig. 3.11). There
the antiferromagnetic configuration among nearest neighboring spins cannot be
satisfied simultaneously on a triangular plaquette, leading to a disordered manifold.
The disorder is, however, non-trivial, it is constrained disorder and its entropy per
spin is of course not merely s = kB ln(2) � 0.6931kB. Because rules apply, due to
frustration, of all the energy links only one per plaquette is frustrated in the lowest
energy configuration, leading to an entropy per spin s � 0.3383kB, different from
zero, and about half of the entropy of a completely random configuration.

This kind of frustration of the pairwise interaction is the most commonly studied
in physics. It is however not the only form of frustration.

3.3.2.2 Vertex Frustration

As most realistic interactions in Physics are geometric, they break the topological
nature of frustration in a real system. In the case of spin ice systems, for instance,
the dipolar interaction between in-plane, shape anisotropic nanoislands depend on
their relative orientation. This is seen, for instance, in square ice of Fig. 3.6, where
the degeneracy between Type I4 and Type II4, both ice rule vertices, is lifted by the
fact that mutually perpendicular islands interact more strongly than parallel ones.
This difference in strength among the interactions does not kill frustration, but it
does remove degeneracy, as the weakest energy link (between collinear, nearest
neighboring islands) will always be frustrated, leading to a frustrated yet ordered
antiferromagnetic ensemble. The antiferromagnetically ordered artificial square ice
of Fig. 3.6 is an example of frustrated yet ordered system.

Another example of real interactions breaking the topological structure of frustra-
tion is provided by a comparison of the hexagonal lattice with the brickwork lattice,
in Fig. 3.12. The two are topologically equivalent, yet their magnetic ensemble is
different. The former is degenerate, the latter is ordered, at least when captured by
a vertex model.

This issue might appear trivial, in the Hyperuranion of pure ethereal, theoretical
concepts, yet it has truly limiting consequences for the design of new magnetic spin
ice materials. And indeed, until 2014, the only degenerate artificial spin ice was
the honeykomb/kagome geometry. As both nano-fabrication and characterization
protocols evolved, it became clear that the initial inspiration of the entire artificial
spin ice project—to design exotic behaviors in the geometry of interacting, binary
degrees of freedom—could become viable, if not for one problem: in real systems,



3 Frustration(s) and the Ice Rule: From Natural Materials to the Deliberate. . . 79

Fig. 3.12 Geometry vs. Topology. Topologically equivalent geometries leads to completely
different spin ensembles at low energy, due to the anisotropy of the dipolar interaction. The
honeycomb spin ice (top right) is topologically equivalent to the ladder spin ice (middle, right)
yet the nearest neighbor interactions lead to an ordered ground state in the latter (see also
Fig. 3.6 for the energetic hierarchy of the vertices) and a disordered manifold in the former.
Pairwise interactions are frustrated in both systems, however in the honeycomb lattice all the spins
interacting in the vertex have the same mutual angle (top left) and thus any of the three interactions
can be frustrated, whereas it is energetically favorable to frustrate the interaction between parallel
spins in the ladder lattice (middle left). At the bottom is an example of vertex-frustration, where
the allocation of vertices of lowest energy is frustrated, leading to “unhappy vertices” (blue circles)
on certain loops, instead of unhappy energy links (red lines above)

the frustration of the pairwise interaction is wedded to the geometry, because the
dipolar interaction is not topologically invariant, but instead depends very much on
the mutual arrangements of the dipoles.

To overcome this limitation and gain freedom in the design of new materials
capable of various states and unusual behaviors, the first step is to decouple
frustration from geometry. As the pairwise interaction is anisotropic, something else
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will have to be frustrated. Perhaps a cluster of islands with its own set of energy
levels. A natural candidate is the vertex itself.

Consider a geometry made of 90° vertices of coordination z = 4, 3, 2 (Figs. 3.6
and 3.12). Each vertex has a unique configuration of minimal energy (up to a flip
of all the spins). Imagine now arranging them in such a way that, however, around
certain loops not all vertices can be assigned to the lowest energy configuration [13].
This will lead to “unhappy vertices” (UV), that is, topologically protected local
excitations (Fig. 3.12) that cannot be removed from the ground state. Note that
these are not real excitations of the system, as they in fact belong to its low
energy state. We have called them local excitations as locally each vertex would
admit lower energy configurations, which are however prevented by the collective
structure. In proper geometries, the degeneracy of the allocation of such vertices
grows exponentially with the size of the system, leading to a degenerate low-energy
manifold [13, 17].

Crucial here is that within this manifold the system is best described not by the
disordered spin texture, rather it is captured by an emergent description that labels
the possible allocation of these protected local excitations. As a consequence, other
emergent properties appear that are in general not obvious nor indeed apparent in
the local spin structure.

It is of some importance to understand that while vertex models [11] had been
introduced to describe frustrated systems, they were themselves not frustrated. They
could simply subsume the degeneracy of a frustrated system within the degenerate
energetics of the vertices. Vertex-frustrated geometries can thus be considered the
first frustrated vertex models, a fact which might elicit some theoretical interest
beyond the usefulness in the design of artificial magnets with properties not found
in natural ones.

Vertex-frustration is of course a nearest-neighbor level concept, although it can
induce topological states that are collective. However, the real materials being
made of dipoles, other phases are present within their vertex-frustrated low energy
manifold, much like inner phases are present in the diagram of Kagome above. We
will see in the next section how this comes about in three such geometries: Shakti,
Tetris, and Santa Fe.

3.3.2.3 Collective Frustration

A yet different case of frustration is provided by particle based ices, already
discussed in Sect. 3.2.4. We saw there that they have been studied numerically in
square and hexagonal geometries and then realized experimentally using magnetic
colloids gravitationally trapped into microgrooves and also vortices pinned in
nanopatterned superconductors. In all these cases it was shown that they obey the ice
rule at low energy. Because of that, ideas and results have been exchanged among
the two materials, and they have been often considered as equivalent.

However, despite similarities, the two systems differ essentially in energetics and
frustration. A nearest neighbor analysis will readily convince the reader. The nearest
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neighbor energy of a magnetic spin ice vertex with n spin converging in the vertex
is typically proportional to the square of its charge, or

En ∝ q2
n, (3.3)

thus favoring the ice rule. Indeed we have shown in this section that the ice rule can
be seen as a precept for minimization of the topological (or also magnetic) charge
of a vertex. However, for particle ice, the energy of a vertex scales instead as

En ∝ n(n − 1), (3.4)

thus favoring large negative charges (n = 0 and n = 1) that violate the ice-rule.
This is seen in the energy hierarchy of vertices reported in Fig. 3.8.

Thus, we encounter the essential difference: while local energetics promotes
the ice rule in magnetic spin ices, it opposes it in particle-based ices. There,
its origin is instead collective, [70] as it was recently verified numerically and
experimentally [131].

While its vertex reaches the lowest energy for large negative charges, obviously
the total charge of particle ice must be zero. It is not possible for all vertices to
be negatively charged at the same time, and the ice rule emerges as a collective
compromise among vertices. This form of collective frustration is in a way similar
to an extreme form of the vertex frustration described previously, as here each vertex
is in a locally excited state. It is, however, also collective in as much as it depends on
the size of the system: it is fully obtained only in the thermodynamic limit. Indeed,
in a finite realization individual vertices can push their charge to the boundaries. The
resulting charge accumulation, however, is limited by the size of the boundaries, and
thus the density of topological charge in the bulk must scale as the reciprocal length
of the boundaries, leading to the emergence of the ice rule in the thermodynamic
limit.

The reason why these two different systems behave similarly can be investigated
quantitatively in a mean field approximation [70], of which we summarize below
the main results. If we constrain the total charge to be zero, then the thermodynamic
ensemble at equilibrium is controlled by effective vertex energies

Ẽn = En − qnφ, (3.5)

where φ is a constant, a Lagrange multiplier determined by the requirement of total
zero charge. Thus, for a lattice of coordination z the choice φ ∼ (z − 1) returns
a spin-ice-like effective energetics, or Ẽn ∼ q2

n , which explains the ice rule of
colloidal ice in simple lattices. The reader will notice that the formula in Eq. (3.5)
is suggestive. The collective effect of the particle-sharing vertices can be subsumed
into a field φ, which modifies the energetics of the individual vertex. One can indeed
introduce a less crude approximation, where the mean field is allowed to fluctuate
in the material, and φ is in fact an entropic, emergent field which conveys local
correlations [70].
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When the lattice has multiple coordinations, however, there is no value of φ

that produces an effective ice-like energetics for more than one coordination. For
z = 4, 3, charge conservation imposes φ = (3 − 1)/2 = 1/2 and thus the effective
energetics maintains the ice rule on z = 3 vertices. On z = 4 vertices, however, it
ascribes the same effective energy to the negative (q = −2) monopoles and to the
ice rule (q = 0) vertices [70].

This spontaneous emergence of negative magnetic charges leads to ice rule
fragility in geometries of different and mixed coordination. This phenomenon is
typical of particle spin ices and was investigated recently, both numerically and
experimentally, and we will encounter it at the end of the next section.

While this approach based on topological charges allows for quantitative predic-
tions validated by numerical simulations and experiments [131] an exact mapping
can be established between magnetic spin ices and particle based ices. In particle
ices, particles in positions {y} repel with isotropic interaction φ. Their total energy
is given by

H =
∑

y �=y′
φ

(|y − y′|) (3.6)

which does not look much similar to a magnetic spin ice Hamiltonian. Yet, both
systems are described by binary variables, at least at equilibrium. We can represent
the position y+ of a particle in a trap by — or —. Then we ascribe a positive
charge to the real particles and we consider the empty locations y− of the traps
as virtual negative charges , which repel (attract) other negative (positive) charges.
With this definition, we can then fractionalize a trap on an edge x as

—– = 1

2
— +1

2
— , (3.7)

i.e. a positive dumbbell — (a trap doubly occupied by positive charges), plus a
dipole of negative and positive charges represented by a spin �σ = — located
in x, the center of the trap so that y± = x ± �σ/2. Then, because spins are binary
variables, it is easy to see that the energy in (3.6) can always be rewritten as

H = 1

2

∑

x �=x′
σ i

xJii′
(
x − x′) σ i′

x′ −
∑

x

�σx · �B(x). (3.8)

The first term expresses the spin ice part of the hamiltonian and Jii′ (x) is a tensor
field that can be reconstructed from φ. The second term represents the interaction
between dipoles and the positive dumbbells which generate a background field �B.
Thus a particle-based ice is equivalent to a magnetic spin ice when �B = 0. Clearly
that is true if a lattice has point reflection symmetry in the middle points {x} of each
edge. This explains why the hexagonal and square PI follow the ice rule, as found
previously numerically and experimentally [65, 71, 73]. However, for more complex
geometries that is not necessarily true, as we will see in the next section, leading to
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many phenomena specific to particle ice, from ice rule fragility, to inner phases, to
order to disorder transitions, as described in Ref. [132].

3.4 Ice Manifolds and Emergent States by Artificial Design

In Sect. 3.2 we have seen simple realizations of ice rule via the more elementary
kind of frustration: frustration of the pairwise interaction among binary degrees of
freedom. In Sect. 3.3 we have then indulged more theoretically on the origin of the
ice rule from frustration and on its extensions, and we have attempted to go beyond
the generally accepted understanding of such concepts. We will now show how a
deeper understanding of frustration and the ice rule can lead to the design of novel
phenomena in artificial realizations.

We will start with vertex frustration in artificial magnetic ices. As we explained
previously, their degeneracy comes from (relative) freedom in allocation of unhappy
vertices, those topologically protected local excitations. Typically such allocation
leads to an emergent description that is not directly reminiscent of the underlying
spin structure, and that can be exploited for a variety of new phenomena, not seen
in previous systems, from topological protection to dimensional reduction.

3.4.1 Emergent Ice Rule, Charge Screening, and Topological
Protection: Shakti Ice

Consider the Shakti geometry in Fig. 3.13 [14]. Each minimal, rectangular loop of
Shakti is frustrated: trying to arrange spins on it we realize that at least one unhappy
vertex is needed, according to the energy hierarchy of Fig. 3.6. Indeed each minimal
loop must contain an odd number of unhappy vertices [13, 14]. Because each
unhappy vertex always affects two nearby loops and costs energy, the lowest energy
configuration is realized when nearby loops are dimerized by a single unhappy
vertex as in Fig. 3.13b [13]. If one considers the geometry, one finds (Fig. 3.13c)
that each plaquette made by two rectangular loops will host two unhappy vertices in
4 possible locations, much like the ice rule in water ice prescribes that 2 hydrogen
atoms are within the tetrahedron containing each oxygen atom (Fig. 3.1), in 2 of
the 4 possible allocations. In both cases the same ice-rule applies, but here in
emergent form: not in terms of the original spins, but in terms of allocation of
unhappy vertices. Thus, the lowest energy manifold, at the nearest neighbor vertex
description employed here, corresponds then to an emergent six-vertex model. This
has been shown experimentally (Fig. 3.14) [15].

Nonetheless, as we had cautioned before, this nearest neighbor description
defines the ice-manifold, within which other, non-trivial phenomena intervene, due
to the long range nature of the interaction. A particularly interesting one regards the
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Fig. 3.13 Theory of Shakti spin ice. The structure of the system (a) is such that its lowest energy
spin ensemble (b) is disordered. A look at the spin structure in (b) does not seem particularly
insightful. However, if we translate that spin map unto a picture of the allocation of locally excited
vertices, denoted by circles in (c) we then see that each plaquette will host two and only two
unhappy vertices in four possible positions. This is equivalent to a six-vertex model (d) where
pseudo-spins are assigned to each plaquettes and point toward (away from) the unhappy vertices
in plaquette of vertical (horizontal) long island. Figures adapted from Ref. [14]

screening of magnetic charges. Shakti has multiple coordination, therefore while in
its low-energy state all the vertices of coordination z = 4 are in the ice rule, they
are surrounded by vertices of coordination z = 3 which always have a magnetic
charge ±1 (in natural units, previously defined), and are disordered. When a vertex
of coordination z = 4 hosts a magnetic monopole, the overall neutral plasma of
charge around it rearranges to screen it, as shown in Fig. 3.14 [15].

It is important to understand that magnetic monopoles of the kind described in
the previous section are not proper topological charges for Shakti, as they are not
protected. Each z = 4 vertex is surrounded by z = 3 vertices, which as we know
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Fig. 3.14 Realizations of Shakti Ice. On the top left, an MFM image of Shakti ice after annealing.
On the top right, the experimental data of the left part is translated in terms of allocation of the
unhappy vertices, on plaquettes (black dots). One can see how an emergent ice rule describes
the system, as each plaquette can have only two of four slots for unhappy vertices occupied.
Bottom: screening of monopoles from magnetic charges 〈Qnn〉 denotes the average magnetic
charge surrounding a magnetic monopole on a z = 4 vertex, at the nearest neighbor level. Figures
adapted from Ref. [15]

are always charged. Surrounded by a sea of charges, a monopole can gain or lose
charge to and from it. Thus monopoles can pop up spontaneously or be reabsorbed,
and do not need an anti-monopole to annihilate, as they do in pyrochlore spin ice,
or square ice.

Despite that, however, the Shakti state is a bona fide topological phase, as we
will explain now. In fact some other topological charge can be identified in it.
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That the low-energy manifold has topological protection can be immediately
suspected by noting that a single spin flip takes the system out of the manifold,
and only a proper loop of collective spin flips realizes change within the manifold.
This can be understood easily from Fig. 3.13, as all spins impinging in a z = 3
vertex also impinge into z = 4, 2 vertices, which are in their lowest energy in the
ice manifold (Type I4, I2 of Fig. 3.6). Flipping any spin will thus necessarily cause
excitations.

To identify the topological structure, we go back to the properties of the low-
energy state. We saw that because each unhappy vertex affects two nearby plaquettes
(Fig. 3.15) and costs energy, the lowest energy configuration is realized when nearby
plaquettes are “dimerized” by a single UV [13]. The ice manifold of Shakti is
thus described by a dimer cover model on the lattice connecting the rectangular
plaquettes, which is topologically equivalent to a square lattice (Fig. 3.15) (from
now on called “dimer lattice”), and which can be solved exactly [133].

The following is then standard: a discrete, emergent vector field �E can be
introduced, perpendicular to each edge, of length 1 (o 3) if the edge is unoccupied
(or occupied) by a dimer, and direction entering (exiting) a gray square of Fig. 3.15
from top or bottom, and exiting (entering) it from the sides. The “line integral”∫
γ

�E · d�l for such a discrete vector field along a directed line γ crossing the edges
is the sum of the vectors along the line with sign taken along the line’s direction.
For a complete cover the emergent field is irrotational (

∮
γ

�E · d�l = 0) leading to the

definition of a “height function” [118] h such that �E = �∇h and thus demonstrating
the topological state.

Beyond the standard dimer model, this picture can incorporate the low-energy
excitations of Shakti ice as scramblings of the cover. As Fig. 3.15 shows, above the
ground state a frustrated plaquette (i.e. a node of the dimer lattice) can be dimerized
three times instead of one (over-dimerization) by UVs, or also diagonally by a Type-
II4 or a Type-II2 vertex. In the presence of such scramblings the emergent vector
field �E is no longer irrotational. Indeed its circulation around any topologically
equivalent loop encircling a defect defines the quantized topological charge of the
defect as q = 1

4

∮
γ

�E ·d�l (Fig. 3.15). Thus, the excitations of the Shakti ice manifold
are topological charges, turning the discrete scalar field h that defines its order into
a multivalued phase.

We have now the full picture: a topological phase, which cannot be explored
from within, but only via a discrete kinetics of excitations whose topological charge
is conserved. This picture is emergent, and not at all evident from, or indeed
reminiscent of, the original spin structure. It also has consequences for the kinetics,
in terms of ergodicity breaking, non-equilibration, and glassiness, as it is typical of a
topological state with topologically protected excitations, that cannot be reabsorbed
into the manifold individually, and which evolves via a discrete kinetics. All
these issues have been recently investigated numerically and experimentally [129],
showing that Shakti ice might provide the first artificial, controllable, modifiable
and fully characterizable magnetic system which provides non-topographic vistas of
ergodicity breaking and non-equilibration as consequences of a classical topological
order.
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Fig. 3.15 Top: Shakti manifold as a dimer cover model. From left to right: Disordered spin
ensemble for the ground state of Shakti ice manifold. The manifold is completely described by
the allocation of the UVs (circles) which affect two nearby rectangular plaquettes (connected by
the blue segments). Thus, an unhappy vertex is a dimer (blue segments) connecting frustrated
plaquettes, and the ground state is a complete dimer-cover model on the (Ochre color) lattice
with nodes in the center of rectangular plaquettes, topologically equivalent to a square lattice.
There we introduce the emergent vector field �E, as in the text. The circulation of the vector field
along any closed loop is zero. Middle and Bottom: The Shakti’s low-energy manifold. XMCD
image of Shakti spin ice, for a spin ensemble with one excitation (red and blue dots) and the
corresponding emergent dimer cover representation. Now excitations appear as multiple occupancy
and/or diagonal dimers (Type II2s). �E is no longer irrotational and its circulation defines the
topological charge as q = 1

4

∮
γ

�E · d�l (image adapted from Ref [129])

3.4.2 Dimensionality Reduction: Tetris Ice

While Shakti spin ice provides a topologically protected low-energy manifold, no
such protection is present in the ground state of Tetris ice, which can be explored
by consecutive spin flips. As Fig. 3.16 shows, the lattice can be decomposed into
T-shaped “tetris” pieces and it has a principal axis of symmetry. The geometry
represents a layered one-dimensional systems. On the blue islands in Fig. 3.16
there cannot be any Type-II3 unhappy vertex [13], and therefore the blue portion
of the lattice, which we call backbone, must be ordered at the lowest energy. The
unhappy vertices must reside on the red portions, which we call staircases, and
which therefore remain disordered at low temperature. As temperature is lowered,
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Fig. 3.16 Tetris Ice. (a) XMCD-PEEM image of a 600 nm Tetris lattice. The black/white contrast
indicates whether the magnetization of an island has a component parallel or antiparallel to the
polarization of the incident X-ray, which is indicated by the yellow arrow. (b) Map of the moment
configurations showing ordered backbones (blue) and disordered staircases (red) (images from
Ref. [16])

we have thus a dimensional reduction of an alternating ordered-disordered one-
dimensional system, which was indeed confirmed experimentally [16].

This dimensional reduction is also apparent in the kinetics. Tetris was the first
of the new geometries to be characterized in real-time, real-space, and from the
supplementary information of Ref. [16] it is possible to watch animations of Tetris
kinetics as the temperature is lowered or raised. Starting at high temperature, all the
spins flip at about the same rate. As the temperature is lowered, ordered domains
begin to form in correspondence with the backbones, where eventually the spins
become static, while the spins on the staircases continue to fluctuate.

While the low-energy state described above has been confirmed experimentally,
it follows from a nearest neighbor approximation. The profile of low-energy
excitations, however, has not been yet studied in any systematic way, and promises
interesting new effects. For instance, as one-dimensional systems, one expects
that the backbones can never order completely, and will always host excitations
above the low-energy manifold. Of course Tetris is in fact a two-dimensional
system, which decomposes into one-dimensional ones only in the lowest energy
configuration. Slightly above such a manifold, one expects correlations among
excitations that belong to different backbones. Such correlations must be controlled
both by the magnetic interaction between these defects—as Tetris is, after all,
a system of dipoles that can interact at long-range—but also through entropic
interactions. Indeed, the backbones are separated by disordered staircases of non-
zero density of entropy, and whose entropy is affected by defects and excitations on
the nearby backbones.
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None of the above issues has yet been studied theoretically, and they might
indeed provide a useful setting to explore the onset of phase decoupling into lower-
dimensional states, a broader problem relevant to liquid crystal phases [134] or
weakly coupled sliding phases [135, 136].

3.4.3 Polymers of Topologically Protected Excitations: Santa
Fe Ice

We end this vista on how novel and unusual spin ice geometries influence topology
with Santa Fe [14, 84] of Fig. 3.17, which was inspired by a terra cotta floor in the
homonymous New Mexican capital—incidentally, the oldest in the United States.
While Shakti and Tetris are maximally frustrated, which means that any minimal
loop inside the geometry needs to be affected by an unhappy vertex, in Santa Fe only
the dashed loops in the figure are frustrated and they are surrounded by unfrustrated
ones. It is an inviolable topological constraint that at any energy frustrated loops can
be affected by only an odd number of excitations, and unfrustrated ones by only an
even number (or none).

An unhappy vertex on a frustrated loop of the Santa Fe lattice affects a nearby
unfrustrated one. However, an unfrustrated loop can only be affected by an even
number of defects, and thus there will be a second unhappy vertex on it, affecting in
turn a nearby unfrustrated loop, et cetera. It follows that the low-energy state must
consist of magnetic “polymers”, whose “monomers” are local excitations. These
polymers must begin from and end into frustrated loops.

Fig. 3.17 The Santa Fe Ice can support both frustrated (shaded, green) and unfrustrated loops.
There, “polymers” of unhappy vertices (blue dots) thread through unfrustrated loops to connect
frustrated ones. On the right, brick floor in Santa Fe, New Mexico, USA
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As each monomer costs energy, the lowest energy configuration of the magnetic
ensemble will correspond to the shortest possible polymers, which are made of three
monomers, each connecting nearby frustrated loops as in Fig. 3.17. The entropy
of such a state can easily be computed exactly. As each polymer dimerizes two
frustrated loops, the degeneracy is given by the dimer cover model on the square
lattice whose node is made of nearby frustrated loops, times the number of ways
in which polymers can be chosen once their pinned ends are fixed. Thus the
ice manifold decomposes into the direct product of two states: the dimer-cover
manifold, which classifies which loops are joined by which polymers, and the
degeneracy of the polymers themselves.

At low temperature the kinetics must reduce to the fluctuations of the magnetic
polymers without changing the pinning location of their ends, and thus without
changing the dimer cover picture. Thus, the low-energy manifold can be explored
from within, but only in part: only the polymers’ configurations can change, not
their pinning sites. To change the latter, excitations above the low-energy manifold
are needed.

The kinetics within the manifold remains local and the polymer’s fluctuations
are uncorrelated, at least in a nearest neighbor energy approximation. As the
temperature rises the polymers lengthen to include more than three monomers.
At that point they can bump into each other, fuse in a cross, and then separate in
different ways. This transition can lead to a different dimerization of the frustrated
loops, as the new polymers emerging from “collisions” of old ones are now pinned
to different ending point. Thus the dimer-cover ensemble is explored via this
mechanism of polymer colliding, fusing together and then breaking again into
different ones. This of course involves excitations over the ice manifold, further
demonstrating the partial topological protection that pertains only to the dimer-cover
sector of the low-energy manifold.

3.4.4 Ice Rule Fragility in Particle Ices

We have shown above how extensions of the notion of frustration from pairwise
interactions to frustration in the allocation of vertex energy can lead to novel
emergent phenomena, such as topological protection, dimensionality reduction,
emergent ice rule, or polymers of topologically protected charges. We show now
how the collective frustration typical of particle-based ices leads instead to an ice-
rule fragility absent in magnetic realizations [70].

A recent paper [131] has reported experiments and simulations of particle-based
spin ice in mixed-coordination lattices. These lattices were obtained from square
lattices, decimated in such a way as to obtain only z = 4, 3 vertices, and η is the
ratio of z = 3 vertices over z = 4 ones. At zero decimation, η = 0.

Experimentally, the system is the same as the gravitationally confined colloids
described in Sect. 3.2.4, where paramagnetic colloids are set into microgrooves with
two preferential orientations. The difference is that the lattice is now decimated by
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Fig. 3.18 Experimental results for ice rule fragility. (a) An experimental image of the undecimated
system shows the expected antiferromagnetic ordered configuration. (b)–(e) Experimental images
of systems at increasing decimation η = 0.1892, 1.3158, 2.3846, and 5.2857, respectively for ice
rule fragility. As decimation increases, more negative charge (blue glows) forms on z = 4 vertices,
in violation of the ice rule. At low decimation most of the charge on z = 3 vertices is positive
(red glows), whereas at high decimation the ratio between positive and negative charges on z = 3
vertices tends to one, as there is less negative charge to be cancelled on z = 4 vertices (images
from Ref. [70])

leaving some of the microgrooves empty of their colloid. As a field perpendicular
to the system is ramped, the paramagnetic colloids become magnetized and thus
mutually repulsive. They evolve into a collective low-energy configuration, mapped
via video microscopy and particle tracking. Figure 3.18 shows experimental results
for different decimations. The images suggest that the ice rule is broken in the z = 4
sublattice, where q = −2 charges appear spontaneously. At the same time, the ice
rule is still obeyed on the z = 3 sublattice, where only charges q = ±1 appear.

The authors accompanied their experimental results with numerical analysis on
larger arrays. Figure 3.19a, b reports the experimentally and numerically obtained
vertex statistics nz4,q and nz3,q grouped by charge q versus η along with theoretical
predictions, which are based on the arguments of Sect. 3.3.2.3. There, one sees
more precisely that in the z = 4 sector, negative monopoles of charge q = −2
appear along ice rule vertices and increase in density with increasing decimation.
Figure 3.19c plots the total density of negative charge qz4 = ∑

q nz4,qq appearing
on the z = 4 sublattice, as a function of decimation expressed via η.
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Fig. 3.19 Ice Rule Fragility in particle-based ice. Statistics of experimental results (bullets) and
numerical results (diamonds) compared to theoretical predictions (solid lines). (a) Vertex statistics
nz4,q at equilibrium vs η = Nz3/Nz4 for z = 4 vertices grouped by topological charge q. Dark
blue: q = −4; light blue: q = −2; black: q = 0; pink: q = +2; red: q = +4. All the non-ice-
rule vertices are suppressed except q = −2 monopoles. (b) Vertex statistics nz3,q vs η for z = 3
vertices. Dark blue: q = −3; light blue: q = −1; pink: q = +1; red: q = +3. Only ice rule
vertices are present (q = ±1), but positive q = +1 charges exceed negative ones. As η → ∞,
the z = 4 sector disappears and thus nz3,q=1 and nz3,q=−1 tend to the same value of 1/2. (c) Net
density of charge qz4 forming on z = 4 vertices vs η as a measure of ice rule violation. (d) Charge
screening QNN of q = −2 monopoles (blue) and “screening” of q = 0 ice rule vertices (black) on
z = 4 vertices vs η (images from Ref. [131])

The z = 3 vertices (Fig. 3.19b) remain in the pseudo-ice manifold, however, the
z = 3 vertices are positively charged overall. Indeed, as explained in Sect. 3.2.3.1,
ice rule vertices of odd coordination are always charged with q = ±1. Therefore,
they can therefore adsorb the negative charge of the z = 4 vertices without leaving
the ice-manifold, simply by changing their relative ratio in favor of vertices of
charge q = 1, as explained also in Sect. 3.3.2.3. Finally, Fig. 3.19d shows that
the q = 1 charges on z = 3 vertices also rearrange locally to screen the z = 4
monopoles. This suggests that charge screening is not unique to magnetic charges
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that interact via a Coulomb law in magnetic ices [15, 93, 96], and in fact charge
ordering was also recently found in kagome colloidal ice [137].

These results unambiguously demonstrate the inherent fragility of the ice rule
in particle based ice as theoretically postulated in Ref. [70, 132]. As explained in
Sect. 3.3.2.3, this fragility is due to the collective origin of the frustration in particle
ice, where the ice rule is not enforced by the local energetics, unlike in magnetic ices.
Rather, it emerges as a collective compromise among vertices in the thermodynamic
limit. This effect is typical of these particular ice-rule materials. Such a breakdown
is not possible in magnetic spin ices, where indeed the ice manifold had been
found completely robust against decimation [13], mixed coordination [15, 16], and
dislocations [61], and where even isolated clusters of magnetic vertices obey the ice
rule at low energy [114].

3.5 Conclusion

We have elaborated on how the ice-rule emerges as a unifying topological concept
to describe a large variety of material systems. It often originates in frustration,
yet frustration can be of different kinds. While different forms of frustration might
lead to similar manifolds at equilibrium, at least in simple geometries, a deeper
understanding of the relationship between ice rule and frustration can unearth much
more complex phenomena, both in the equilibrium thermodynamics and in the
kinetics. These phenomena can now be explored in depth through deliberate design
of artificial frustrated realization at the nano- or micro-scale.
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Chapter 4
Glassy Phenomena and Precursors
in the Lattice Dynamics

M. E. Manley

Abstract Broad classes of functional materials exhibit glass-like phenomena
originating with the frustration of a soft phonon driven phase transition, including
relaxor ferroelectrics and shape memory strain glasses. While the soft phonon
mechanism is mostly understood, how this mechanism becomes frustrated in the
presence of disorder remains intensely debated. A common structural feature of
the frustrated state is nanoscale regions of local ferroic displacements that form
well above the ordering temperature; these are called polar nanoregions (PNRs) in
relaxor ferroelectrics and ferroelastic nanodomains (FND) in the strain glasses. The
existence of these small regions provides a basis to explain glass-like slow relaxation
phenomena, which can manifest in the lattice dynamics as phonon over damping.
However, this does not explain why the long-range order becomes localized into
PNRs or FNDs, or why this happens specifically at the nanoscale. Recent scattering
experiments and theories suggest an exciting new way to think about these problems
in terms of the physics of lattice vibrations in chemically disordered crystals. More
generally, probing the lattice dynamics of these systems sheds new light on the
microscopic origin of the nanoregions, glassy behavior, and enhanced functional
properties.

4.1 Introduction

The frustration of ferroic phase transformations by disorder is at the heart of
many technologically important functional materials. Some of highest perform-
ing piezoelectric materials used in industry, PMN-xPT ((Pb(Mg1/3Nb2/3)O3)1−x-
(PbTiO3)x) and PZN-xPT ((Pb(Zn1/3Nb2/3)O3)1−x-(PbTiO3)x) [1, 2], are relaxor-
based ferroelectrics—meaning they exhibit a ferroelectric ordering temperature
but also retain many of the disordered-induced relaxor characteristics, including
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polar nanoregions (PNRs) and a frequency-dependent dielectric response [3]. The
ultrahigh piezoelectric response in these materials has been attributed to both a
shear instability associated with being close to a morphotropic phase boundary
[4] and an additional shear softening caused by PNRs hybridizing with transverse
acoustic phonons [5]. Phase-field modeling [6] and experiments [5, 7] also show that
alignment of the PNRs in a field can further enhance the macroscopic piezoelec-
tric response. Shape memory strain glasses exhibit glass-like behavior, including
frequency-dependent mechanical damping, ferroelastic nanodomains (FNDs), and
superelasticity, and also retaining the useful property of shape memory, only with a
technologically interesting gentle shape recovery [8].

In both classes of materials the nanoscale regions (PNRs or FNDs) begin as
dynamically fluctuating regions at high temperatures before “freezing” in at some
lower temperature. These dynamic nanoregion precursors are reminiscent of the soft
phonon precursors to the un-frustrated ferroic transitions. Figure 4.1 illustrates the
prototypical soft phonon mechanisms for both the un-frustrated ferroelectric and
shape memory martensitic displacive phase transitions. In the ferroelectric case,
Fig. 4.1a, the soft phonon is a transvers optic (TO) phonon at the zone center that
corresponds to the ferroelectric displacements. Above the transition temperature
(TC) the TO phonon is stable, but as the material is cooled towards the transition
temperature the phonon gradually decreases in frequency as the forces soften until
the phonon displacements freeze in and ferroelectric domains form. This description
is for the ideal second-order transition. Typically the unit cell distorts slightly in the
direction of polarization. In practice there may also be considerable mode damping
and coupling between the TO and transverse acoustic (TA) phonons. In the case of
strong damped-mode coupling, a so-called “waterfall” effect can occur where the
TO intensity cascades vertically into the TA phonon. This effect appears different
depending on the zone measured in a neutron scattering experiment and can be
understood in terms of a simple damped harmonic oscillator model [9], although the
underlying causes for mode damping can be from anharmonicity in the interatomic

Fig. 4.1 Soft phonon precursors to two types of ferroic phase transitions. (a) Ferroelectric soft
phonon in the transverse optic (TO) phonon. Out-of-phase motion of blue and red site atoms at
k = 0 (infinite wavelength) separates the electrically charged atoms to induce ferroelectric order
as the TO mode slows. (b) Soft transverse acoustic (TA) phonon that is typical of shape memory
alloys. In-phase motion of atoms results in a shuffling of the crystal planes across three unit cells,
resulting in a tripling of the unit cell in martensitic phase
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potentials or disorder in the case of imperfect crystals. For the shape memory
alloys the transition displacements correspond, in part, to a transverse acoustic (TA)

phonon and typically occur at around q ∼=
[
1
/

3 ,
1
/

3 , 0
]
, c.f. Fig. 4.1b. This soft

phonon corresponds to a shuffling of the [110] planes along [1, −1, 0] across three
unit cells. The transition is also accompanied by a shear strain and has a weakly
first-order character. The first-order character, that there is an energy barrier to the
transition (or latent heat), means that the soft phonon does not actually go all the
way to zero frequency before the transition occurs, but in the case of a very weakly
first-order transition it can soften considerably [10].

This basic soft phonon mechanism was first proposed to explain the onset of
the ferroelectric behavior independently by William Cochran in 1959 [11] and
Philip Anderson in 1960 [12]. Interestingly, Cochran concluded that the onset of
ferroelectric properties is probably always a lattice dynamics problem, but that at
the time there was no prospect of a detailed application of the theory to disordered
crystals [11]. This conclusion makes sense since the electric polarization underlying
ferroelectric behavior is inexorably tied to the atomic displacements of the TO
phonon. If we take this as a starting point for understanding relaxor ferroelectrics,
the problem reduces to understanding how the presence of disorder changes the
lattice vibrations that drive ferroelectric behavior. In this sense we can see that
measurements of the lattice dynamics is crucial to understanding the onset of relaxor
ferroelectric behavior. A key difference between a normal ferroelectric and a relaxor
ferroelectric is that in the latter case polar displacements become spatially localized
in polar nanoregions, like small islands of ferroelectricity. Therefore, the problem
is further reduced to understanding how TO-phonon-like displacements become
spatially localized in the presence of disorder.

4.2 Phonon Localization in Relaxor Ferroelectrics

In the time since the soft mode theory was first developed, new theories have
emerged in fields unrelated to ferroelectrics showing that lattice vibrations can
spontaneously localize in crystals under certain conditions. One way of localizing
lattice vibrations is through interplay of nonlinearity and lattice discreteness, in
modes called discrete breathers or intrinsic localized modes (ILMs) [13–15]. The
essence of this mechanism is that of a non-resonance condition [14]. A feature of
nonlinearity (anharmonicity) is that a local dynamical fluctuation can have a shifted
frequency because the frequency depends on amplitude. Furthermore, because of
discreteness, the spectrum of plane waves have a cutoff frequency and can have
gaps, meaning that there are frequencies where no plane waves reside. Under right
circumstances these local fluctuations can develop out of resonance with the plane
wave spectrum. In this case, the local dynamic fluctuation does not interact with
the plane waves and an ILM forms as a new mode. This mechanism has been
proposed as a possible explanation for PNRs and relaxor ferroelectric behavior
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[16–18]. In this model the ILMs form preferentially at impurity sites and gradually
slow to form the PNRs [16]. Another way lattice vibrations may localize is in the
presence of disorder by Anderson localization. Anderson localization is in essence a
wave interference effect where waves scattered by disorder constructively interfere
in small regions and destructively interfere elsewhere [19]. Anderson localization
was first developed by Philip Anderson in 1960 [20] to explain why some metals
become insulators in the presence of disorder from impurities. In this case it is the
interferences in the electron wave functions that prevent the diffusion of electrons.
Anderson won the 1977 Nobel Prize in physics for this contribution. The idea has
since been expanded to many other types of waves, ranging from light waves to
ultrasound and phonons [19]. Only recently, however, has the idea been applied to
relaxor ferroelectrics. Akbarzadeh et al. [21] first made the suggestion in a 2012
publication on ab initio-based simulations of a relaxor ferroelectric. In the analysis
of their simulations they found that the only factor that mattered for the formation of
PNRs was the presence disorder, which led them to suggest Anderson localization
as a plausible mechanism for PNR formation. Sherrington [22] followed up on
this suggestion and showed that Anderson localization could also be derived from
equations used to describe relaxor ferroelectric behavior. Sherrington also noted
that this idea resolved several issues with the phase diagram not explained by the
random electric field model alone [23]. For example, the fact that the dilution of
random electric fields does not decrease the relaxor ferroelectric onset temperature
[22] suggests that there is more to PNR formation than the quenching of random
fields [23]. Of course, from the point of view of neutron scattering the electric fields
are not detected directly, only the resulting arrangements and motions of the atomic
nuclei are probed.

The contribution of neutron scattering experiments has been to show that atomic
scale resonant local modes (in band) occur first at high temperatures and that
this leads to nanoscale phonon localization in PMN-PT and PZN-PT relaxor
ferroelectrics when cooled into the relaxor state [24–26]. It was also found that
the temperature of nanoscale phonon localization corresponded to the temperature
that the PNRs “freeze” [26]. The dynamic fluctuating PNRs that are known to
preempt the static PNRs can be understood in terms of weak localization [26], a
known precursor to strong (Anderson) localization [19]. These experiments were
originally designed as an attempt to confirm the ILM theory of PNR formation [16–
18]. The observations themselves pointed towards an effect more consistent with the
Anderson localization idea [21, 22] rather than ILMs [16–18]. Chief among these
is the fact that localization occurs within the bands, which is counter to the non-
resonant condition of ILM formation [13–15]. The localization coherence length
is also matched to the wavelength of the localized mode, which is expected for
a wave interference effect such as that driving Anderson localization. Perhaps the
most interesting conclusion derived from this analysis is that the PNRs get their
size (∼2 nm) and shape from the wavelength of the localized phonons, and this
is determined from a single resonance frequency [24] set by atomic scale local
resonant modes (scattering centers). In this section, the rational behind the idea
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that localization is basically a wave interference effect and ultimately Anderson
localization is described.

Figure 4.2 illustrates the basic features observed in the dynamical structure of
PMN-30%PT shown in reference [24]. At temperatures above the PNR freezing
temperature, Tf , and near the Burns temperature (Td) (where dynamically fluctu-
ating PNRs first appear) a dispersionless mode is observed in resonance with the
TO phonon with a flat intensity profile (Fig. 4.2a). A lack of dispersion indicates a
mode that is stationary since it has zero group velocity, vg = dE/dk. A flat intensity
profile (constant) in reciprocal space indicates a mode that is fully localized spatially
in real space, since the Fourier transform of a constant is a delta function. On
cooling below Tf , while the mode remains dispersionless (stationary), the intensity

Fig. 4.2 This figure illustrates the structure of the phonon dispersion curves and the intensity
profile of the resonance mode (RM) and localized mode (LM) above and below the PNR freezing
temperature, Tf , respectively, after [24]. (a) Resonance mode associated with the off-centering of
Pb atoms appears in resonance with the transverse optic (TO) phonon. On the right, the intensity
profile in momentum (along Q = [2,K,0]) appears flat, which indicates an atomic scale local mode
(a constant in reciprocal space corresponds to a delta function in real space). (b) Below Tf the
dynamics transition to a state where the local mode intensity becomes concentrated near the TO
phonon. On the right, the intensity profile becomes peaked in a Lorentzian shape, with a coherence
length, L, of 2 nm. The 2 nm coherence length is equal to the wavelength of the TO phonon at the
crossing (standing phonon) and the size of the PNRs
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of the localized phonons changes to a state where it is concentrated at the crossing
with the TO phonon (Fig. 4.2b). The localized mode now has a coherence length
(size) that equals a single TO wavelength at the crossing, and this size matches
the PNRs [24]. As described below, these results are explained in terms of an
Anderson-type localization mechanism, where constructive interference of the TO
phonons interacting with randomly distributed localized resonance modes results in
the localization of the ferroelectric TO phonons.

To make sense of these results, it is informative to start by considering the
apparently paradoxical result that the localized mode becomes longer lived (shaper
in energy) as it forms resonance crossings with the TO phonon [24]. It is also useful
to first imagine the problem in one dimension, and then to build on this intuition.
As depicted in Fig. 4.3a, a localized mode in resonance with traveling phonons,
in this case the TO phonons, is expected to radiate these phonons, in the same
way that a disturbed water surface send out ripples. Now the radiation of energy
through the TO phonons is expected to quickly dissipate the resonance mode energy,

Fig. 4.3 Trapping ferroelectric modes with resonance modes. (a) Resonance mode radiating
transverse optic (TO) phonons. (b) Trapped TO phonon in 1D. (c) Anderson localization scheme.
(d) Exponential localization transformation from real space to reciprocal space
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thereby reducing it to a short-lived fluctuation rather than a long-lived excitation.
As depicted in Fig. 4.3b, however, it is possible to “trap” (localize) the radiating
phonons between two resonance modes in 1D. The radiating phonons constructively
interfere a standing wave between the pair while destructively interfering outside
of the pair, resulting in a long-lived bound state. This long-lived state will then
appear sharp in energy, yet dispersionless since it is a standing wave. The size, or
coherence length, of the standing wave trapped between the resonant modes will be
matched to the wavelength of the trapped mode, consistent with the observations
illustrated in Fig. 4.2b. Furthermore, since it is a spatial localization of the TO
phonon, it is expect that the intensity should be spread out from the position on the
dispersion curve where TO phonon appears. The reason for this can be understood
from the convolution theorem. In real space the bare TO phonon is a wave extended
throughout the crystal with a periodicity that places it at a particular q point in the
Brillouin zone. Localization can be viewed as an envelope function that attenuates
the mode outside of the local standing wave region. The Fourier transform of the
wave multiplied by this envelope function will be the convolution of the q point with
the transform of the envelope function. If the localization is exponential, this will
produce a Lorentzian broadening function. That local mode intensity profile actually
appears Lorentzian, Fig. 4.2b, indicates exponential localization [24], which is
strong localization [19]. As intuitively appealing as this simple model is, the real
problem involves randomly distributed resonance modes in three dimensions.

The problem of how a radiating wave becomes trapped (localized) in a random
three-dimensional distribution of resonance modes is essentially the Anderson
localization problem [19, 20]. The basic argument is illustrated in Fig. 4.3c: waves
emanating (scattered) from a single resonance mode and traveling in equal by
opposite directions around the same random scattering path constructively interfere
on returning. Anderson localization is exponential in real space, which transforms
to Lorentzian in reciprocal space (Fig. 4.3d), and the characteristic length scale,
L, is the wavelength of the trapped phonon. Invoking the convolution theorem,
the localized TO phonon is as a q-broadened TO mode centered at the crossing
and with a coherence length matching the wavelength. This explains the observed
dynamical structure [24]. The trapped wavelength of 2 nm matches the coherence
length of the localized phonon and the size of the PNRs. The picture emerging
here naturally introduces a new concept, the trapping wave vector. This is the wave
vector where the localization occurs and indicates the size of the PNRs that form.
This has implications beyond the size of the PNRs as viewed along the Q = [2,K,0]
direction since the points where TO phonon crosses the resonance mode form a
higher dimensional surface with a predictable shape.

The relationship between the TO phonon dispersion and the resonance mode
explains the evolution of the size, shape, and positions in reciprocal space of the
PNRs, as well as antiferroelectric nanoregions [24] that occur in PMN-xPT for
x = 0–30% [27]. Interestingly, the relationship between the TO-phonon anisotropy
and the PNR anisotropy was noted before the concept of Anderson localization was
first suggested. Matsuura et al. [28] first recognized the fact that the anisotropy
in the TO phonon dispersion, which depends on PT content, closely follows the
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anisotropy of the PNR diffuse scattering. In fact, they argued that the PNRs may be
related to a “trapping” of the TO phonons, but did not recognize that Anderson
localization could provide the mechanism [28]. In view of how the trapping
wavevector maps with direction, Fig. 4.4a, it can be seen why the anisotropy of
the PNR diffuse scattering follows directly from the anisotropy of the TO phonon
[24]. The intersection of the TO phonon dispersion surface with the resonance
mode frequency carves out the size and shape of the PNR diffuse scattering.
This is expected if the PNRs are driven by the phonon localization. The diffuse

Fig. 4.4 Trapping wavevectors expected for a single resonance mode (RM) frequency crossing
the dispersion surface of the transverse optic (TO) phonon. (a) A comparison of the trapping
wavevectors, q0, expected near the zone center for PMN-30%PT and PMN. The trapping
wavevector loci map to the observed diffuse scattering anisotropy, after [24]. (b) Locations in
reciprocal space where the second crossing introduces trapping wavevectors near the M points.
These are the wavevectors where antiferroelectric distortions were observed [27]
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scattering represents the static, or average, structural relaxation around the Anderson
localized phonons, which have sizes and shapes determined by the trapped phonon
wavevector.

Following the TO phonon throughout the Brillouin zone it also crosses the
resonance mode frequency near the high symmetry M point on the zone edge
[24], illustrated in Fig. 4.4b. Inelastic neutron scattering measurements reveal
that a similar phonon localization effect occurs at these crossing points [24].
Specifically, the intensity of the local mode concentrates near the second crossing
near the M point on cooling below the same PNR freezing temperature Tf . This
part of momentum space corresponds to TO phonons with antiferroelectric atomic
displacements, meaning the polar displacements alternate polarization from one
unit cell to the next. Based on the above arguments about phonon localization this
result suggests that antiferroelectric nanoregions should also form at the M points.
Indeed, Swainson et al. [27] reported in 2009 that diffuse elastic scattering at the
M points occurs in PMN. They attribute the diffuse scattering to antiferroelectric
distortions. Hence, knowing the TO phonon dispersion surface and the resonance
mode frequency, it is possible to explain the size and shape of the PNRs as well as
the existence of antiferroelectric distortions at the zone edge M points [24].

The resonance modes can be attributed to the off-centering of Pb atoms in
the lead-based relaxor ferroelectrics (PMN-PT and PZN-PT) [5, 29, 30]. The Pb
atomic displacements occur along the [100] crystallographic directions [5, 29, 30]
and the application of an electric field to a single crystal aligns these local atomic
displacements and the local vibrational modes [5]. As illustrated in Fig. 4.5, above
the Burns temperature the resonance modes (RM) and the associated Pb atom off-
centering occur at a density where the RMs are about 5% of the intensity of the TO
phonon [5]. Recent measurements on PZN-5%PT [26] show that on cooling below
the Burns temperature the intensity of the RMs quickly increases from about 5%
to about 10% of the TO intensity just above the PNR freezing temperature. From
neutron pair distribution function analysis we know that there is a corresponding
increase in the density of Pb atoms off-centering [29].

In the context of phonon localization, the increase in the density of RMs,
or Pb atom off-centering, on cooling is important because a critical number is
needed to establish localization [26]. The condition for localization is met when
the distance between the RMs becomes comparable to the wavelength of the
phonon that becomes localized. This is known as the Ioffe-Regel criterion [19]
and can be expressed as ql � 1, where q is the phonon wavevector and l is the
distance between RMs (Fig. 4.5). The exact value of the criterion at the transition to
Anderson localization is not known, but can be determined empirically. The closest
analogous experimental system where this can be observed directly is with the
localization of transverse ultrasound waves in brazed aluminum beads, where the
transition occurs at ql ≈ 1.8 [31]. In the case of PZN-5%PT the value of 10% just
above the PNR freezing temperature corresponds to ql ≈ 1.9 [26], based on the
size of the PNRs in PZN-5%PT and the average distance between RMs assuming
a 10% concentration. Hence, the transition to localization in PZN-5%PT occurs
at a temperature that could be reasonably expected for the number of resonance
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Fig. 4.5 This figure illustrates the relationship between the temperature dependence of the
resonance modes (RMs), weak and strong phonon localization, and dynamic and static PNR for-
mation in PMN-xPT ((Pb(Mg1/3Nb2/3)O3)1−x-(PbTiO3)x) and PZN-xPT ((Pb(Zn1/3Nb2/3)O3)1−x-
(PbTiO3)x) relaxor ferroelectrics. The general behavior, where the onset of strong localization
occurs on cooling when a critical number of scattering centers (resonance modes) form, is
consistent with Anderson-type localization

modes. Note that this localization temperature corresponds to the PNR freezing
temperature, Fig. 4.5. Above this temperature there is a state where the PNRs behave
diffusively, where they fluctuate and move around in the lattice [32]. This is also
expected in the localization picture. A precursor to Anderson or strong localization
is weak localization. In the case of weak localization the diffusive motion slows
down severely but it does not halt [19]. This provides a simple explanation for
the existence of dynamic/diffusing PNRs occurring as a precursor to the freezing
in of the PNRs (Fig. 4.5). When strong phonon localization occurs the phonons
become standing waves, fixed in place. The PNR structural distortions are then
caused by the structural relaxations that occur around these localized TO phonons.
In the precursor state of weak localization the trapped standing phonons are not long
lived and energy is able to slowly diffuse around. Consequently, the PNR structural
distortions also diffuse around slowly.

Underlying the Pb atom off-centering and all the interatomic forces are the
presence of random electric fields and the forces that polar interactions create. There
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do exist theories that deal with the effects of random fields specifically and how they
manifest in the dielectric response of relaxor ferroelectrics [23], but they do not treat
the underlying atomic displacements explicitly. From the point of view of the lattice
dynamics, the atoms are moved by the resulting energy landscape and the phonons
are scattering by the resulting atomic rearrangements. The observed PNR sizes
and shapes then follow from the way the lattice vibrations interfere (Figs. 4.3 and
4.4). For this reason the localization mechanism, like the soft phonon mechanism
described in Fig. 4.1, is more general and may be applied to a broader class of
problems where disorder and phase instability meet. On the other hand, a more
complete theory of relaxor ferroelectrics will surely require a complete account of
both the polar interactions and the physics of lattice vibrations in a disordered lattice.

4.3 Coupling of PNRs to Phonons and the Ultrahigh
Piezoelectricity in Relaxor-Based Ferroelectrics

That the mechanism driving nanoregion formation may relate to disorder is hardly
surprising given that disorder is a key feature of all of these systems. However,
nonlinear or anharmonic effects also play an important role, particularly as related to
the bulk response of these materials near the structural instabilities. After all, being
near a nearly second-order soft-mode phase transition indicates that a system is
going to be inherently anharmonic in the lattice dynamics. So we cannot ignore the
interplay of the soft phonon instability and disorder in understanding these materials
from the perspective of the lattice dynamics. Unfortunately, there is no good
theoretical model that treats both disorder localization (Anderson) and nonlinear
localization (ILMs) simultaneously, yet there have been computer simulations that
show that it is possible to analytically continue from one type of localization to
the other by trading between nonlinearity and disorder [33, 34]. Nevertheless, it is
possible to detect the instabilities by observing electric-field-driven changes in the
structure and dynamics using neutron scattering. The instabilities can be observed
on multiple length scales. At the atomic scale locally off-centered Pb atoms in lead-
based relaxors [29, 30] can be aligned in an electric field [5], and along with this
comes an alignment of the atomic local modes [5], the same random local modes
that drive the formation of the PNRs by trapping the phonons [24]. The PNRs
themselves can also be aligned in a field [7] and this comes with a softening of
the shear mode of the crystal [35]. The shear softening has been explained as a
manifestation of coupling between the transverse acoustic phonon and the PNRs
[5, 36]. This shear softening is in addition to what is expected from being close
to a morphotropic phase boundary [4] and together they enhance the piezoelectric
response. Hence, the key to understanding the giant electromechanical response of
relaxor-based ferroelectrics is in the cooperative effect of instabilities distributed
across multiple length scales.
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Fig. 4.6 Multiple length scales involved in high performance ferroelectric relaxor-PbTiO3 single
crystals

Figure 4.6 illustrates the multiple length scales involved in the macroscopic
response of relaxor-based ferroelectrics. In applications, the bulk crystals are typi-
cally poled along the [100] axis [3]. In the un-poled crystal the ferroelectric domains
are oriented along the eight equivalent cubic [111] directions possible for the
rhombohedral (R) distortions. With poling the eight orientations are reduced to the
4R domains illustrated in Fig. 4.6. These orientations are those with polarizations
closest to the [100] poling direction. The bulk electromechanical response is a
result of the 4R poled domains rotating towards the [100] poling direction as
an electric field is applied. The rotation of the domains requires a mechanical
shearing of the individual domains, which is resisted by the elasticity of the material.
Embedded within these “macro” domains (micron scale) are the much smaller
PNRs, which exhibit local polar displacements along the [110] directions. The
polarization of these PNRs causes them to couple to the ferroelectric polarization
in the micron scale domains. The effect of this coupling is to hybridize the PNRs
low energy dynamics with the transverse acoustic phonon propagating along [110]
with displacements along [1,−1,0]. This hybridization results in a lower shear
stiffness for the domains, which enable the polarization rotations underlying the
giant electromechanical response [5]. Additionally, embedded within the PNRs are
the off-centered Pb atoms, Fig. 4.6. These displacements occur along the [100]
directions, and the local modes associated with these also couple to the phonons
in the macro domains, although in this case to the transverse optic phonon [5].

Figure 4.7 shows inelastic neutron scattering intensity maps of the dispersion of
transverse phonons in [100]-poled PMN-30%PT, after Ref. [5]. Several effects of
the local dynamics interacting with the average dynamics can be observed in this
data. First, comparing the transverse scans along Q = [2,K,0] and Q = [H,−2,0]
(Fig. 4.7a, b), which are equivalent in the un-poled crystal, the PNR mode around
11.5 meV only appears in the direction that probes displacements parallel to the
[100]-poling direction (the Q = [2,K,0] direction). This shows that the PNR modes
align with the field and this matches an alignment of the Pb local off-centering [5].
Next, notice that the TO phonon dispersion is also a little different between the two
directions. In the direction with the PNR mode (Fig. 4.7a) the TO phonon is shifted
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Fig. 4.7 This figure shows inelastic neutron scattering spectrum of the transverse phonons at
different directions with respect to the [100] poling direction. (a) Polar nanoregion (PNR) modes
appear between the transverse optic (TO) and transverse acoustic (TA) along poling direction. (b)
PNR modes are absent for Q perpendicular to poling. (c) Alignment of PNRs enhances softening
in the [110]-shear mode, which enables ultrahigh piezoelectricity. This data, which was measured
on the ARCS instrument at the Spallation Neutron Source, is after Ref. [5]

to higher energy towards the zone center compared to the direction without a PNR
mode (Fig. 4.7b). The shift in the TO phonon is an expected consequence of mode
repulsion, also called mode anticrossing or avoided crossing [37], between the PNR
mode and the TO phonon. This only happens in the ferroelectric phase because
in the relaxor state at higher temperatures the phonon is localized, which means
that is uncoupled from the lattice. Mode repulsion is a consequence of coupling
between the modes. The reason for the uncoupling at high temperatures is a wave
interference effect according to the Anderson localization picture [24]. The reason
for coupling in the ferroelectric state is the interaction of the local polarization of
the PNRs and off-centered Pb atoms with the ferroelectric macro domains. The
more technologically interesting interaction is between the PNR distortions at low
energies near the elastic line and the transverse acoustic (TA) phonon along [110]
in Fig. 4.7c. These are the nanoscale displacements that occur along the [110]
direction and appearing in pink in Fig. 4.6. The TA phonon hybridizes with the
PNR displacements along [110] directions to form effectively two modes. The lower
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mode, the soft shear mode, is a hybrid mode where the PNRs move together in
phase with the normal TA phonon displacements. The upper mode, which gets
stiffer with the coupling, is from the other hybrid mode where the PNRs move
together out of phase to oppose the motion of the TA phonon. These are called
the symmetric (in phase) and antisymmetric (out of phase) modes. The net effect
of the PNR vibrations hybridizing with the TA phonon is a shear softening, which
enables the giant electromechanical coupling in these relaxor-based ferroelectrics.
What’s more, the application of an electric field along [100] tends to increase this
shear softening, further aiding in the giant electromechanical response. This shear
softening effect with poling has also been observed in ultrasound measurements of
the same mode (at long wavelengths) in both PMN-33%PT [37] and PZN-4.5%PT
[38]. The importance of the inelastic neutron scattering measurements is that they
show that shear softening extends to the nanoscale [5].

In addition to the bending of the dispersion curves there are coupling effects on
the inelastic intensity distributions. In the two mode case the TO phonon exhibits
intensity that cascades down into the TA phonon, as can be seen in Fig. 4.7b. This
is the so-called waterfall effect and can be explained in terms of a coupled two-
damped-harmonic oscillators model [9]. The situation becomes more complex in the
case of three modes [25]. To see the full complexity of this effect it is useful to take
the data used to make Fig. 4.7a, b and take slices in the out-of-plane direction along
[00L] as shown in Fig. 4.8. Perpendicular to the poling direction, Fig. 4.8a–c, the TO
and TA modes develop a column of intensity between them that increases intensity
on decreasing H in Q = [H,-2,L]. This is the standard waterfall extended into an
extra dimension. Parallel to the poling direction, Fig. 4.8d–f, the TO, TA, and PNR
modes all couple to produce some interesting features. In addition to the standard
TO-TA waterfall there is a mini waterfall at Q = [2,−0.3,L] between the TO and
PNR modes. There are also pockets of intensity minimums at Q = [2,−0.3,0.1] as
indicated in Fig. 4.8e. All of these features can be described using a three-coupled
damped harmonic oscillators model [25], the results of which are shown in Fig.
4.8g–l. The strong damping in the lattice dynamics is also a glass-like symptom
since it is indicative of dynamical relaxation at the nanoscale.

4.4 Summary

Recent computational [21], theoretical [22], and experimental work [24] are leading
to an emerging new idea about how the nanoregions of a frustrated ferroic phase
transition may result from disorder by Anderson localization. From the perspective
of the lattice dynamics described here, the problem can be cast in terms of the
behavior of lattice dynamics in disorder, and at the most elementary level Anderson
localization is a wave interference effect. In this view we can understand that the
size of the nanoregions is determined by the wavelength of coherently trapped
phonons [24]. The onset of polar nanoregions is associated with the development
of phonon localization at a critical density of random scattering centers [26], which
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Fig. 4.8 Inelastic neutron scattering and model calculations of the “waterfall” feature in PMN-
30%PT sliced into out-of-plane sections in energy-momentum space, after Ref. [25]. (a–c)
Perpendicular to the poling direction and (d–f) along the poling direction. (g–l) Corresponding
mode coupling calculations

are caused by a local off-centering of atoms. The local off-centering of atoms is
itself a consequence of local lattice instability associated with the ferroic instability
in the presence of chemical disorder. Hence, the formation of the nanoregions is a
direct consequence of both instability and disorder via the Anderson localization
wave interference mechanism.

Acknowledgements Research sponsored by the U.S. Department of Energy, Office of Basic
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Chapter 5
Relaxor Ferroelectrics and Related
Cluster Glasses

Wolfgang Kleemann and Jan Dec

Abstract Mesoscopic ferroic glasses such as strain glass, cluster spin-glass, and
nanopolar glassy relaxors are of paramount importance in the phase diagrams
of complex ferroic materials. All of them are based on supercritical chemical
disorder and are preceded by precursor patterns of elastic/magnetic tweed or polar
nanoregions, respectively. Within this general scheme we comment on the properties
of (1) superdipolar glassy relaxors PbMg1/3Nb2/3O3 and Sr0.8Ba0.2Nb2O3 in some
detail, (2) structural strain glass Ti50−xNi50+x martensite with tweed patterns,
and (3) magnetic cluster glass La0.7Ca0.3Mn0.85Cd0.15O3 with tweed precursor.
All of these mesoscopic “ferroic glasses” with their complex chemical disorder
must be distinguished from “superspin glasses,” which are known as systems of
widely dispersed nanoparticles with fixed magnetic moments and inert nonmagnetic
environment, e.g., multilayers (Co80Fe20/Al2O3)10. Nonetheless, at the (super)glass
transitions both families of materials exhibit the same glassy dynamic criticality and
non-ergodicity of their field-induced orders.

5.1 Mesoscopic Ferroic Glasses

The concept of “ferroic glasses” has recently entered the discussion of disordered
materials, which are ferroically ordered at the nano- and microscale, but retain
mesoscale glassy disorder at low temperatures [1]. Figure 5.1 shows the generic
x-T phase diagram of a defect-containing ferroic system with crossover at the
critical defect concentration xC from normal ferroic transition at Curie temperatures
TC to ferroic glass transition at glass temperatures Tg. An important additional
ingredient of these specific “ferroic glasses” is the appearance of a precursor phase
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Fig. 5.1 Generic phase
diagram of a
defect-containing ferroic
system showing the crossover
at the critical defect
concentration xC from a
normal ferroic transition at
TC to a ferroic glass transition
at the glass temperature Tg in
dependence on the defect
concentration x. Reproduced
with permission from [1]
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at intermediate temperatures, T > TC/Tg, which is called “precursory tweed” with
quasi-dynamic local order in the case of structural “strain glass” (Sect. 5.4) and
needs to be specified in the cases of electric and magnetic “ferroic glasses” (Sects.
5.2, 5.3, and 5.5, respectively).

It was conjectured that this phase diagram can be applied to ferroelastic,
ferroelectric, and ferromagnetic systems. In particular three subgroups were dis-
cussed [2]: magnetic “cluster spin glass,” structural “strain glass,” and polar
“relaxor ferroelectrics,” all of which are finally stabilized by microscopic intrinsic
defects. First, the formation of “strain glass” is attributed to ferroelastic systems
exhibiting random nanostress fields as in the nonstoichiometric martensitic com-
pound Ti50−xNi50+x [3]. Second, after the discovery of “cluster spin glass” in
magnetic materials with nonmagnetic dopants [4] charge and geometric frustration
in colossal magneto-resistance (CMR) materials La0.7Ca0.3Mn0.7Co0.3O3 [5] and
La0.7Ca0.3Mn0.7Cd0.3O3 [6] are believed to be at the origin of “cluster spin
glass” formation. Finally, “relaxor ferroelectrics” such as lanthanum-doped lead
zirconate-titanate, PLZT 8/65/35 [7] and other structurally disordered ionic com-
pounds like lead magno-niobate, PbMg1/3Nb2/3O3 (PMN), and tungsten bronze-
type Sr1−xBaxNb2O3 (SBN) became approved as “ferroic glass” by virtue of their
“superdipolar glass” ground state [8]. Similarly to the case of “strain glass” the
action of quenched random fields—albeit electric ones due to the charge disorder—
is at the origin of the mesoscopic glassy disorder. This insight has taken as long as
60 years after the discovery of PMN [9] and will be detailed in the next two sections.
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5.2 Relaxor Ferroelectrics

5.2.1 Solid Solutions of PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT)

The disordered perovskite PbMg1/3Nb2/3O3 (PMN) exhibits typical relaxor-type
ferroelectric properties, which have been studied since 1954 [9]. The relaxor state
is characterized by the frustration of the local polarization, which prevents long-
range ferroelectric order from developing globally. Although the local symmetry of
the polar domains is rhombohedral, the macroscopic symmetry of PMN remains
cubic below the temperature of maximum permittivity. A ferroelectric phase
can be induced either by application of an electric field along <111>cub or by
partial substitution of the complex (Mg1/3Nb2/3)4+ ions by Ti4+. In both cases,
the nanopolar domains transform into macrodomains with cubic-to-rhombohedral
symmetry breaking. Upon substitution a complete series of solid solutions xPMN-
(1−x)PT (PMN-PT) forms, where a morphotropic phase boundary (MPB) located
at xc ≈ 0.65 marks the frontier between the tetragonal (ferroelectric side, T) and
rhombohedral (relaxor side, R) phases, as illustrated in Fig. 5.2. Note that this
presentation has been redrawn after the original publication [10] within the spirit
of Fig. 5.1, where the “defect” ions, (Mg1/3Nb2/3)4+ (concentration x) are diluents
of the “pure” ferroic phase, PbTiO3. In the following we shall restrict our discussion
to the extremely defective case of pure PMN, x = 1.

5.2.2 Superglass Transition of PMN

In contrast to conventional ferroelectric crystals like BaTiO3 [11] the structurally
disordered relaxor ferroelectrics like PMN escape the familiar soft-mode scheme

Fig. 5.2 Phase diagram of
the PMN-PT solid solution
system. Solid circles and
related phase boundaries
separate cubic (C),
rhombohedral (R), and
tetragonal (T) regions,
respectively, while the shaded
area represents the
monoclinic (M) region.
Redrawn after [10]
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of ferroelectrics [12]. In the early 1990s the discussion of the observed polar
ordering at the nanoscale culminated in two competing models, the “dipole glass”
[13] and the “domain state” of polar nanoregions (PNR) under the constraint of
charge disorder-induced quenched electric random fields (RFs) [14], respectively.
Only gradually both ideas converged into the model of a “non-ergodic ferroelectric
cluster glass” ground state emerging from the high-T PNR ensemble under their
random electrostatic interaction via a mesoscopic random bond glass transition [8,
15–18]. In the following we shall outline the main arguments applicable to the
specific case of the cubic system PMN and expand them to other systems. As
remarked by Ahn et al. [19] in this field some reservation still remains and deserves
extra consideration.

The name “relaxor ferroelectrics” was coined by Cross [20] to ferroelectric
compounds fulfilling the following criteria:

(a) The temperature-dependent dielectric susceptibility, χ ′(T), exhibits a broad and
smeared peak.

(b) The frequency dependence of its temperature, Tm(f ), hints at dielectric relax-
ation processes.

(c) No macroscopic symmetry breaking is observed even at lowest temperatures.

Criteria (a) and (b) are evident from χ ′(T) curves in Fig. 5.3 obtained on a
(001) oriented single crystal of PMN at temperatures 197 ≤ T ≤ 297 K and ac
frequencies 10−3 ≤ f ≤ 105 Hz of the dielectric spectrometer (Solartron 1260
impedance analyzer with 1296 dielectric interface; amplitude of the ac probing field:
Eac ≈ 500 V/m [21]).

Fitting the asymptotic lowest frequency data of Tm(f ) within 10−3 ≤ f ≤ 2 × 10−2

Hz (Fig. 5.4; left dataset) to the power law of glassy critical dynamics [22]

τ (Tm) = τ0
(
Tm/Tg − 1

)−zν (5.1)

Fig. 5.3 Temperature
dependences of the dielectric
susceptibility components χ ′
and χ ′ ′ of PMN at decade
stepped frequencies within
10−3 ≤ f ≤ 105 Hz. The
glass temperature
Tg = 238.8 K is marked by an
arrow. Reproduced with
permission from [21]
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Fig. 5.4 Low-frequency
relaxation times τ = (2πf )−1

vs. peak temperatures Tm(f )
of χ ′ of PMN (left) and
SBN80 (right curve) best
fitted to Eq. (5.1) for data
points delimited by arrows
(dotted lines)

yields the (static) glass temperature Tg = (238.8 ± 1.1) K (Fig. 5.3, arrow). The
relatively large attempt time τ 0 = (4.3 ± 0.1) × 10−10 s is in accordance with
the mesoscopic size of the elementary dipole moments being active in PMN in the
critical regime. They are attributed to the above mentioned PNR, which have been
proved in relaxors like PMN, e.g., by neutron pair distribution function analysis
[23]. The dynamic critical exponent zν = 7.9 ± 0.3 agrees within uncertainties with
that of the 3D magnetic dipolar glass LiHo0.045Y0.955F4, zν = 7.8 ± 0.2 [24].

Slightly above the critical region of PMN, T/Tg > 1.04 (Fig. 5.4; left dataset),
the dynamics of the cluster system is no longer described by Eq. (5.1). Here the
“superparaelectric” regime [20] is entered, where virtually noninteracting electric
“supermoments” correspond to single PNR and give rise to local polarization
and giant susceptibility with large frequency dispersion. This “Vogel-Fulcher
(VF) regime” is often described by a relaxation time corresponding to the cusp
temperature Tm of χ ′(f, T) [25],

τVF (Tm) = τ 0
VF exp [E0/ (Tm − TVF)] . (5.2)

Although satisfactory fits hold for PMN at frequencies within 102 ≤ f ≤ 105 Hz
[26], the significance of the emerging parameters τ 0

VF, E0 and TVF is ambiguous.
Unlike the glass temperature Tg in Eq. (5.1) the interpretation of TVF as a
“freezing temperature” is denied by theory [25]. We therefore abstain from further
discussing the VF approach here and prefer the direct modeling of the interaction-
free superparaelectric permittivity as proposed by Lu and Calvarin [27]. Their
simulations of the dielectric response of 95PMN-5PT (see Fig. 15 in [27]) agree
qualitatively with our χ’ data shown in Fig. 5.1. This corroborates the absence of a
phase transition within the underlying interaction-free approach.

Indispensable properties of genuine spin and dipolar glass phases at T < Tg
are their non-ergodicity [28, 29]. Figure 5.5 shows the standard procedure, which
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Fig. 5.5 Aging, rejuvenation, and memory of PMN reflected by the susceptibility component ratio
χ ′ ′/χ ′(T) after ZFC from T = 240 K at rate dT/dt = ±0.003 K/s and frequency f = 0.1 Hz on first
cooling to 210 K with intermittent halt (�t = 2.5 × 103 s) at Ta = 225 K (curves 1–3), continuous
reheating via memorized dip at Ta to 238 K (curve 4), and continuous cooling back to 210 K (curve
5). Reproduced with permission from [21]

proves that the glass phase is thermally out-of-equilibrium except after being “aged”
for a sufficiently long time at constant temperature Ta. This is done here after
continuous cooling the PMN sample from 240 to Ta = 225 K < Tg (curve 1)
within 4.5 × 103 s followed by a halt at Ta of �t = 2.5 × 105 s (line 2). As
a result the most sensitive quantity, χ ′′/χ ′ with the imaginary component χ ′′ of
the susceptibility, is found to decrease by ≈20% when approaching equilibrium
by mere waiting. By further cooling to T = 210 K at the previous rate a strong
upward-trend indicates “rejuvenation” toward the unaged curve (curve 3), which is
subsequently reproduced on continuously heating up to T = 238 K (curve 4) and
recooling to T = 210 K (curve 5). A dip of about 20% of the initial “dielectric
hole” is recovered around Ta during heating in curve 4. This is attributed to the
“memory” of the near-ground state being approached at Ta during the first extensive
aging procedure. Non-global aging is an essential feature of the chaotic glass state
[30]. Another strong indicator for glassiness is the stretched exponential relaxation
kinetics during the aging process. For example, at Ta = 200 K it is found [31]

χ ′′/χ ′ (f = 25 Hz) = χ0 exp
[−(t/τ )β

] + χ1 (5.3)

with amplitudes χ0 = 5630 ± 35 and χ1 = 2208 ± 25, basic relaxation time
τ = 88 ± 3 s and extremely small stretching exponent β = 0.011 ± 0.003 as shown
in Fig. 5.6.
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Fig. 5.6 Temporal relaxation
of χ ′ ′/χ ′(f = 25 Hz) of PMN
at Ta = 200 K after zero-field
cooling and best fitted to Eq.
(5.3) (red line). Reproduced
with permission from [31]

5.2.3 Paraelectric PNR Precursor State

Before going into more details of the cluster glassy state of PMN it appears useful
to recall its genesis on the temperature scale. To this end we have drawn in Fig. 5.8
(see below) a schematic diagram of the stepwise evolution of the relaxor ground
state upon cooling from the melting point (Tm > 1300 K [32]) to below the glass
temperature Tg = 238.8 K [21]).

First of all, one has to bear in mind that PMN can be considered as a
stoichiometric disordered solid solution of two hypothetic perovskite compounds,
(PbMgO3)1/3(PbNbO3)2/3 ≡ PbMg1/3Nb2/3O3 (Fig. 5.7a), both of which cannot
exist separately because of their internal ionic charge imbalance. The inherent
charge disorder due to the random distribution of Mg2+ and Nb5+ ions at B
sites of this ABO3 perovskite crystal (Fig. 5.7a) offers largely uncorrelated and
quenched electric fields (random fields, RFs) at the sites of the ferroelectric-
active ions, Pb2+ and Nb5+. As predicted within the RF theory of magnetic
spin systems [34] a tremendous slowing-down of the order parameter dynamics
is expected when approaching the critical temperature. Activated dynamic scaling
controls, e.g., the transition of the RF Ising model (RFIM) [35], since the critical
order parameter fluctuations (i.e., temperature-dependent correlated regions with a
preferential uniform direction of the order parameter) become increasingly pinned
to spatial fluctuations of the RFs (i.e., to temperature-independent regions revealing
an excess of the corresponding field direction) as the correlation length grows in the
vicinity of Tc. Unlike the widely studied RFs in magnets, which linearly couple to
an order parameter of the Ising or Heisenberg type [36], the quenched electric RFs
of perovskite-type relaxors couple to a cubic order parameter. As deduced recently
within a microscopical model and a statistical mechanical solution of the combined
effect of dipolar forces and quenched RFs [37] a ground state with no-long range
FE order and anisotropic, long-ranged fluctuations of polarization was identified. It
emerges for any amount of compositional disorder in the general case of PMN-PT
solid solutions, including that of pure PMN.

However, this approach neglects novel insight into relaxor physics at the
mesoscale. Charge-disordered relaxor ferroelectrics such as PMN experience pri-
marily RF disorder, which favors the formation of PNRs by virtue of their spatial
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Fig. 5.7 Ionic distribution (a) in eight unit cells of PMN (PbMg1/3Nb2/3O3: Pb2+ = hatched
circles, O2− = small solid circles, Nb5+ = yellow/light gray circles, Mg2+ = red/dark gray
circles) and (b) in the (001) plane of SBN (SrxBa1-xNb2O6: Sr2+ = red/light gray spheres,
Ba2+ = green/dark gray spheres, A site vacancies = large open circles, empty channels = small
open circles). Reproduced with permission from [33]

fluctuations. It is common belief that the essential relaxor properties are initiated
by RF-induced generation of metastable PNRs at the Burns temperature Td, i.e., far
above room temperature. Statistical fluctuations of arbitrarily weak quenched RFs
are able to stabilize the PNRs above the Curie temperature via their local excess
amplitudes. These mesoscopic fluctuations determine the further development on
cooling. This concerns primarily the local stabilization of the PNR, their mutual
frustrated dipolar interaction, and finally their freezing into a cluster glass as
reported on PMN [18, 38]. Here, we adopt the idea of relaxors being “ferroelectrics
with multiple inhomogeneities” [38] rather than that of breeding ferroic PNRs
by virtue of Anderson localization treated within a pseudospin glass model [39].
Factually and asymptotically the ac susceptibility peak at Tm, approaches the glass
temperature Tg ≈ 240 K according to glassy dynamics, Eq. (5.1), and Fig. 5.4.

The appearance of PNR upon cooling down of a relaxor system toward Tg is
characterized by two critical temperatures, Td (“Burns temperature”) and T*. They
are associated with the condensation and the stabilization of PNR, respectively.
As noted in Fig. 5.8 for PMN the values Td ≈ 630 K and T* ≈ 500 K were
obtained from characteristic acoustic emission signals [41]. Similar values of Td
have been attributed to the phenomenon of transverse ferroelectric Anderson phonon
localization [42]. It is proposed that standing ferroelectric phonons develop with a
coherence length equal to the PNR size. Alternatively, intrinsic (nonlinear) localized
modes (ILM or “discrete localized breathers” [43]) have been proposed to originate
PNRs. In our opinion both of these lattice vibrational mechanisms might well be
vehicles for launching the PNR formation, but explicit stable pinning requires the
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Fig. 5.8 Schematic diagram
of the gradual evolution of the
relaxor ground state of PMN
upon cooling from the
melting point (Tm > 1300 K)
to below the glass
temperature Tg = 238.8 K
[21]. Specific temperatures
Td, T*, Tg, and Tp separating
different phases, sometimes
denoted as paraelectric,
dipole gas, dipole liquid, and
dipole ice [40], are indicated

quenched forces of RF fluctuations. Hitherto no serious theoretical investigation of
phonon localization under the influence of locally dominating Coulombic RFs has
been performed, although scanning piezoforce microscopy has given clear hint at
their spatial heterogeneity via the local reproducibility of PNR distribution in PMN-
PT and SBN [44]. Although pinning of PNR at local fluctuations of field amplitudes
has been proposed heuristically [8, 45], a complete theory is still missing. Dkhil
et al. [41] referred to T* as “a local phase transition that gives rise to the
appearance of static PNR.” By contrast, Burton et al. [46] reject the term “local
phase transition,” since phase transitions (strictly) only occur in infinite systems.
However, their simulation results suggest a weakly first-order transition with a subtle
stiffening of PNR-orientations below T*.

At any rate, there is ample evidence of the intrinsic PNR distribution in relaxors.
At the Burns temperature Td, the soft TO phonon mode becomes overdamped near
the zone center, and starts to condense into PNR [47]. These regions form with
local polarizations along <111> directions and are shifted uniformly along their
individual polarization direction. Number and size of PNR increase on cooling. At
the phase transition, T ≈ TC, a large-scale overall “freezing” of the PNR occurs.
Small PNR merge into larger ones and the total volume of PNR in the system keeps
increasing. The related ferroelectric soft-mode lifetime increases below TC, and the
overdamping near the zone center disappears. A macroscopic ferroelectric polar
phase without lattice distortion tends to become established.

Below TC the size of the PNR can grow slowly with further cooling. However,
if the coupling between the PNR and the surrounding lattice is not sufficiently
strong, as is the case in pure PMN, then the energy barrier created by the uniform
phase shift would prevent the PNR from merging further and forming macroscopic
lattice distortions. The resulting phase will have a polar lattice of average cubic
structure, but with embedded rhombohedrally polarized PNR. In addition to neutron
and X-ray diffuse scattering measurements, Raman studies [48] and specific-heat
measurements [49] have also provided useful information on PNR in PMN.
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Probably the most exciting recent insight is the intimate coupling of the
PNR to the ferroelectric polarization and anisotropy in relaxors [50], which
raises hopes for tailoring new relaxor systems with unprecedented piezoelectric
response. It has become clear that the observed giant electromechanical coupling
of relaxor ferroelectrics is controlled by PNR vibrations. Actually the contribution
of PNR to the room-temperature dielectric and piezoelectric properties of PMN
is in the range of 50–80% [51]. A mesoscale mechanism is proposed to reveal
the origin of the high piezoelectricity in relaxor ferroelectrics, where the PNR
aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism
emphasizes the critical role of local structure on the macroscopic properties of
ferroelectrics.

5.2.4 Percolation Transition of PNR

The versatility of the PNR in PMN is crucial of their final structure in the cluster
glass state below Tg = 238.8 K (Fig. 5.3). Obviously the relaxing elements in PMN
undergo a fundamental reorganization in the intermediate temperature range. On one
hand they are closely linked to the phase transition from superparaelectric disorder
into the superglass state. On the other hand, and probably even more significant,
a fundamental structural event takes place, viz. percolation of the continuously
growing PNR under the control of electric RFs due to the still active cationic
Mg+2/Nb5+ charge disorder. Neutron scattering data (Fig. 5.9) have evidenced [55]
that the volume fraction of PNR in PMN is overcoming the percolation threshold
of 23% for the elliptical shape [53] at a conjectured ferroelectric phase transition
at Tc ≈ 230 K [54]. This opens the chance to form large coherent ferroelectric
domains, whose dynamic phenomenology strongly reminds one of domain-wall
(DW) dynamics in disordered ferroics represented by Cole-Cole (CC) diagrams in
the complex permittivity plane [56, 57].

The resulting CC diagrams of PMN are shown in Fig. 5.10 [21]. Let us first
consider the high-T region, 246 ≤ T ≤ 285 K (Fig. 5.10, curves 1–11). A similar
extreme “blowing up” of the superparaelectric CC curve from a “dot” (285 K)
to an extremely broad distribution (246 K) was reported previously [58]. Axial
ratios Δχ ′/2�χ ′′ ≈ 2.5 and 6 at 275 and 250 K, respectively, are found and
strongly exceed unity of monodispersive Debye relaxators. Our accessible spectral
range does not suffice to correctly determine the width of the CC semicircles at
T < 246 K, where recording of the very low-f branch would require submillihertz
driving fields. Another important observation is the skewness of the CC plots and
its temperature dependence. It starts with positive sign (i.e., peaking at the high-f
side) within 285 ≥ T ≥ 262 K (curves 1–6), passes through a “crossover” regime
within 256 ≥ T > 254 K (curves 7–8), and ends up negatively (i.e., peaking at the
low-f side) within 250 ≥ T ≥ 246 K (curves 9–11). Positive skewness is well known
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Fig. 5.9 Volume fraction of
PNR in PMN estimated from
neutron scattering data
(circular [52] and pentagonal
dots [23], respectively). Lines
are marking the conjectured
percolation transition for
elliptical shape at 23% [53]
and TC ≈ 230 K [47],
respectively. Reproduced
with permission from [54]

Fig. 5.10 Cole-Cole plots χ ′ ′ vs. χ ′ of PMN measured at T = 285 (1), 280 (2), 275 (3), 270 (4),
265 (5), 262 (6), 256 (7), 254 (8), 250 (9), 248 (10), 246 (11), 242 (12), 240 (13), 238 (14) 235
(15), 230 (16), 225 (17), and 220 K (18) within 10−3 ≤ f ≤ 105 Hz. Reproduced with permission
from [21]
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from polydispersive polar cluster systems [59], as modeled in PMN-PT [60], and
mathematically described with a Lacroix-Béné-type [61] distribution of relaxation
times, τ = 1/2π f,

G (τ) = [sin (πβ) /π] [τ0/( τ − τ0)]β for τ > τ0 (5.4)

where G(τ ) = 0 for τ < τ 0 = shortest relaxation time (ionic attempt time) and
polydispersivity exponent β ≤ 1. In the case of relaxor ferroelectrics this law
was found to match with an exponentially decreasing volume distribution of PNR,
N(V) ∝ exp[(Vm − V)/V0] with Vm = minimum cluster size and V0 = width
of the size distribution [60]. It determines the distribution of cluster relaxation
times via Arrhenius-type activation, τ = τ 0exp(KV/kBT), τ 0 = ionic attempt time,
K = anisotropy energy density, kB = Boltzmann constant. Within this theory the
low-f tail of the CC “semicircle” is predicted to drop linearly under an angle nπ /2,
where the coefficient n = kBT/E0 decreases linearly with T. This subtle effect is
confirmed for the asymptotic right-hand tails of curves 2–6 in Fig. 5.10, where n
drops from 0.51 to 0.27 between T = 280 and 262 K. It implies both substantial
broadening of the size distribution and growth of the PNR. Actually this result
reinforces previous insight into PNR growth via quenched fluctuations of RFs in
PMN-PT on cooling toward the glass temperature [62].

The crossover to negative skewness (Fig. 5.10: curves 7–11) signifies the
upcoming relevance of intercluster interaction within 256 ≥ T ≥ 246 K, which was
neglected by Lu and Calvarin [60]. It is indispensable for the freezing process of the
percolating glassy cluster as T → Tg and marks the preponderance of large clusters
with steadily growing relaxation times. The polydispersive Cole-Davidson [63] or
Havriliak-Negami [64] models, both showing negative skewness, might be chosen
to approximately describe the CC semicircles enclosing the glass temperature,
242 ≥ Tg ≥ 238 K (Fig. 5.10: curves 12–14). Within this interval the glass transition
is more accurately pinpointed by the divergence of the characteristic relaxation time
related to the peak temperatures Tm(f ) of χ ′ via the critical power law, Eq. (5.1), as
discussed in Sect. 5.1.

While at T > Tg the relaxor refers to fluctuating, hence, mobile clusters, these
become immobile and stick domain-like together at T < Tg as a result of glassy
freezing (curves 14–18). All mobility under low external electric fields is now
restricted to the interfaces between the clusters. These behave essentially like ferroic
DWs under the constraint of pinning forces due to the still existing quenched electric
RFs. In this situation a driving electric field will merely excite different modes of
DW motion as observed in disordered ferroic materials such as periodically poled
ferroelectric KTiOPO4 [56]. They are described in terms of the “universal DW
dynamics of disordered ferroics” [57] by CC diagrams in the complex permittivity
plane:
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1. The essentially flat polydispersive relaxation response of oscillating DW seg-
ments as defined by a high density of pinning centers yields the CC equation,

χ (ω) = χs + (χ0 − χs) /
[
1 + (iωτc)

1−α
]
. (5.5)

2. Owing to the wide distribution of “Larkin lengths” between pinning centers
the CC semicircles in PMN are essentially flat and result in a white noise-like
spectrum as, e.g., also observed in the soft superferromagnetic discontinuous
metal-insulator multilayer [Co80Fe20(1.4 nm)/Al2O3(3 nm)]10 [65].

3. The creep regime describes the thermally activated net propagation of the DWs
after overcoming the depinning threshold at very low frequencies, ω < ωp,

χ ′ − iχ ′′ = χ∞
[
1 + (iωt)−δ

]
0 < δ < 1, (5.6)

which is readily transformed into the linear function χ
′ ′
(χ

′
) = (χ

′ − χ∞) tan
(δπ /2) as observed (Fig. 5.10). For example, at T = 220 K and χ ′ ≈ 7500
the imaginary component starts rising from χ ′′(fp ≈ 102 Hz) = 630 to χ ′′
(10−3 Hz) = 1640. The slope of this function results from scaling of the
dynamical relaxation-to-creep transition of DWs [56] and yields δ = (2−x)/z,
where the fractality exponent x ≥ 1 represents the roughness of the interfacial
(“DW”) contour line. From the experimental value δ(220 K) ≈ 0.45 and z = 1.56
[65] the fractal dimension x ≈ 1.30 is obtained (Fig. 5.10). For example,
at T = 220 K and χ ′ ≈ 7500 the imaginary component starts rising from
χ ′′(fp ≈ 102 Hz) = 630 to χ ′′(10−3 Hz) = 1640. The slope of this function
results from scaling of the dynamical relaxation-to-creep transition of DWs
[57] and yields δ = (2−x)/z, where the fractality exponent x ≥ 1 represents
the roughness of the interfacial (“DW”) contour line. For example, from the
experimental value δ(220 K) ≈ 0.45 and z = 1.56 the fractal dimension x ≈ 1.30
of interfacial contour lines in glassy PMN is obtained. Upon approaching Tg
the slope decreases to δ(238 K) ≈ 0.10. Thus x ≈ 1.84 characterizes utmost
wall roughness preceding the total loss of cluster connectivity at T ≥ Tg.
The transitions between the horizontal and inclined relaxation and creep lines,
respectively, in Fig. 5.10 become more and more rounded as T increases. This
phenomenon is well known, e.g., from periodically poled KTiOPO4 [56], where
the relaxation and the creep processes are controlled by distribution functions
of local double well potentials and DW mobilities, respectively. Since these are
not identical by nature, their transition frequencies fp cannot be identical at all
temperatures and the dynamical transition will become smeared.

4. Finally, at still lower frequencies the dynamical transitions “creep-to-slide” and
“slide-to-switching” are expected [57], but remain to be shown at much higher
ac voltages.
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Fig. 5.11 Temperature dependence of the power exponent μ of the reduced light scattering
intensity obtained in PMN, where the horizontal dotted line indicates the fitted asymptotic value
μ ≈ 1.33 below Tp ≈ 240 K (vertical arrow) and the horizontal broken line in the inset the estimated
fractal dimension dp ≈ 2.6. Reproduced with permission from [66]

At the first glance the appearance of domain walls in the glassy state of PMN
is surprising. However, one has, again, to take into account the action of quenched
electric RFs in the charge-disordered host material. They will become active at the
percolation transition of the PNR occurring in close vicinity of the glass transition
(Fig. 5.9). Since RFs are known to favor local mesoscopic order (via their statistical
fluctuations), they are also expected to take care of maximizing polar partial
volumes, viz. condensing nano- into microdomains as observed on PMN in recent
low-T transmission electron micrographs [54]. Such a process was also conjectured
from diffuse neutron scattering experiments on PMN [47] and from quasi-elastic
light scattering data, which clearly hint at percolation of the polar nanoregions into
a fractal with dimension dp ≈ 2.6 at Tp ≈ 240 K, Fig. 5.11 [66].

An important, if not decisive ingredient of domain growth is finally the occur-
rence of a global lattice instability due to the softening of the ferroelectric F1u lattice
mode in PMN as monitored by Raman spectroscopy [67] and neutron inelastic
scattering [68] at Tp ≈ Tg. These features and the observation of ferroelectric
microdomains have been considered as signatures of a factual ferroelectric phase
transition in PMN [54]. However, one still has to respect the undisputed existence
of crucial cluster glass properties discussed above (Figs. 5.2 and 5.3) and to accept
that the orientation of the microdomains and the topography of their walls remain
controlled by RFs (Fig. 5.12 [54]). They eventually form what might be called a
“dipolar microdomain glass” ground state with standard critical and non-ergodic
properties.
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Fig. 5.12 TEM micrograph
of nanoscale substructure in
the microdomain glass phase
of PMN at T = 130 K.
Reproduced with permission
from [54]

5.3 Superglass Transition in Uniaxial Relaxor
Ferroelectric SBN

5.3.1 Anisotropic PNR

In contrast with the complete series of solid solutions from defect-free (PT) to
extremely defective (PMN) in the binary system PMN-PT (Sect. 5.2.1), the end-
members, x = 0 and 1, of the tetragonal tungsten bronze-type strontium barium
niobate, SrxBa1−xNb2O6 (SBN), crystal family are unstable. The existence region
for the structure is obviously delimited by 0.26 < x < 0.87 [69]. Furthermore,
unlike the system PMN-PT there are no “pure” and “defect” cations defined by
their chemical structure. Nonetheless, also in this case the concentration ratio
[Sr]/[Ba] = x/(1−x) clearly measures the degree of disorder by virtue of the
monotonically rising amount of mixing entropy due to the architecture of the
underlying lattice geometry [70]. Recent attempts to determine the crossover
concentration between relaxor and ferroelectric phases, xc ≈ 0.4, were, however,
not conclusive [71].

Starting from the unfilled tungsten bronze structure of SBN (Fig. 5.7b), it is seen
that one out of four A2- and two A1-sites per elementary lattice cell, respectively,
must be empty [72]. This gives rise to missing charges with an effective disorder,
which are the most intense sources of RFs. They cause shifts of Nb5+ cations from
their central positions in the NbO6 octahedra. On the other hand, occupation of A2
sites by different cations, Sr2+ and Ba2+, introduces disorder of the oxygen ion
positions due to both different ionic sizes (r ≈ 113 pm and 135 pm, respectively)
and Ba-O and Sr-O bonding lengths. The presence of vacancies at both A1 and A2
sites enhances this disorder [72]. Note that A1 sites are exclusively occupied by
Sr2+ ions.

Accommodation misfits of the different oxygen octahedra give rise to local buck-
ling and tilting deformation. The emerging localized electric multipole moments
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Fig. 5.13 PFM images of up- and down-polarized domains (red and white, respectively) observed
at room temperature on c-cut single crystals of SBN40 (a), SBN50 (b), SBN61 (c), and SBN75
(d). Yellow contrast denotes vanishing piezoresponse. Reproduced with permission from [70]

are sources of electric RFs, which add to those of the bare vacancies. Thus we
can assume that larger structural disorder will induce stronger RFs. By statistical
consideration the most ordered structure is expected in (hypothetical) SBN20, where
all A2 sites are solely occupied by Ba2+ cations, while the Sr2+ ions and vacancies
are randomly distributed over the A1 sites. Upon increasing the Sr2+ content, the
mixing entropy S first increases, then reaches a maximum level at about x ≈ 0.65,
and decreases gently at large x [33]. In accordance with the Random Field Ising
Model (RFIM) [34] this explains the increasing fine-graining of the low-T domain
state as experienced by PFM images in the c-plane of single crystals SBN40, 50,
61, and 75 after being aged for 1 year at room temperature in Fig. 5.13 [70].

The decisive difference of SBN as compared to PMN, however, is the uniaxiality
of the structure and, hence, the one-dimensionality of the polar order parameter.
This changes the topology of the RF-induced domains, which appear maze-like
within the c-plane (Fig. 5.13), but stripe-like along the c-axis (Fig. 5.14). Within the
framework of an anisotropic Ising model [70] one finds the approximate relationship
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Fig. 5.14 PFM image of left-
and right-polarized domains
(red and white, respectively)
observed on an ab-cut single
crystal of SBN40 in the
lateral mode. Reproduced
with permission from [70]

La/Lc = Ja/Jc, where La(Lc) are the lateral (longitudinal) domain dimensions
and Ja(Jc) the intra(inter)layer interaction energies. Since La < < Lc as observed
experimentally, also Ja < < Jc is expected in accordance with the tetragonal lattice
symmetry. This has consequences on the anisotropy of the relaxation spectra as
discussed below.

5.3.2 Glass Transition of SBN80

Figure 5.15 shows the temperature dependence of the susceptibility com-
ponents, χ ′(a) and χ ′′(b) vs. T, for logarithmically equidistant frequencies
10−2 ≤ f ≤ 5 × 105 Hz, and temperatures 263 ≤ T ≤ 350 K. The χ ′(T) curves
reveal extremely broad peak widths, FWHM ≈ 50 K, and strong shifts of their peak
temperatures, Tm, with decreasing frequency very similar to those of PMN (Fig.
5.1). The cluster glass temperature of SBN80 is determined from the asymptotic
low-f peak shift of χ ′(Tm) as displayed in Fig. 5.4 (right curve). By use of the
low-f data points within 10−2 ≤ f ≤ 2 × 10−1 Hz (arrows) the dynamic scaling
relation, Eq. (5.1), delivers Tg = (299.0 ± 0.2) K. We notice that this result seems
to differ considerably from that reported by Dul’kin et al. [74] for the “ferroelectric
transition temperature,” TC ≈ 322 K, of the closely related compound SBN75.
Actually, however, this latter value was obtained from χ ′

max (f = 100 Hz) and
thus considerably overestimates the real TC (or Tg) in view of the large frequency
dispersion of χ ′ (Fig. 5.15a).

Peculiarly, the loss curves, χ
′ ′
(T) (Fig. 5.15b), reveal two distinct regimes of

frequencies and temperatures by an obvious “clustering” into two groups of curves,
labeled “high f & T” and “low f & T”, respectively [73]. Their crossover takes place
at f ≈ 102–103 Hz and T ≈ 310 K. This puzzling situation becomes transparent
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Fig. 5.15 Temperature
dependence of the
longitudinal susceptibility
components χ ′ (a) and χ ′ ′ (b)
of SBN80 measured within
263 K ≤ T ≤ 350 K at
frequencies
10−2 ≤ f ≤ 5 × 105 Hz.
Reproduced with permission
from [73]
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when examining the dielectric spectra in Fig. 5.16a χ ′(f ), and Fig. 5.16b, χ ′′(f ), for
temperatures within the range 260 ≤ T ≤ 380 K. While all spectra are essentially
flat for T > 330 K and monotonically descending for T < 290 K, distinct structures
become visible within 290 < T < 330 K. They consist of two smeared dispersion
steps in χ ′(f ) and peaks in χ ′′(f ) at f ≈ 100 and 105 Hz.

We argue that the double-humped relaxation spectrum mirrors the spatial
anisotropy of the PNRs, which was discovered by vertical and lateral mode PFM,
respectively, on SBN40 (Figs. 5.13a and 5.14 [70]). The estimated needle-like
width-to-length ratio La/Lc ≈ 10−3 results from the anisotropy of the dipolar intra-
and interlayer interactions of O-Nb-O chains, Ja < < Jc. This has an impact on
the response of a weak driving field E||c, which will not flip the static PNR owing
to the high activation energy of switching the dipole moment of the individual RF
stabilized PNR. Instead, a breathing motion under RF pinning constraints occurs
with pronounced longitudinal (“headways”) and lateral (“sideways”) contributions
at different frequencies. They are controlled by Debye-type relaxation processes,
which contribute to the dielectric susceptibility via

χ(L) ∝ 1/ [1 + iωτ(L)] . (5.7)

The relaxation time is expected to obey dynamic scaling of wall motion under
weak pinning, τ (L) ∝ Lz, with a dynamic exponent z ≈ 1.6 [75]. Since peak
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Fig. 5.16 Frequency
dependence of the
longitudinal susceptibility
components χ ′ (a:
double-logarithmic) and χ ′ ′
(b) of SBN80 measured
within 10−3 ≤ f ≤ 106 Hz at
temperatures
260 ≤ T ≤ 380 K.
Reproduced with permission
from [73]

contributions to χ ′′ satisfy the condition ωτ = 1, we can estimate the ratio of the
relevant relaxation frequencies by ωc/ωa = τ a/τ c = (La/Lc)z ≈ 10−5 in agreement
with the experimental observation.

It is seen in Fig. 5.16b that the fast headways relaxation enters the spectral
window (fc = ωc/2π ≈ 105 Hz) only at 320 K and fades out below 290 K, a signature
of longitudinal coalescence of the PNRs, which form domains in the ferroelectric
regime below TC ≈ 289 K. On the other hand, the slow sideways relaxation contin-
uously shifts on cooling from 380 to 295 K from fa = ωa/2π ≈ 10 Hz to ≈ 10−2Hz,
probably a signature of lateral PNR growth on cooling. Most spectacular, however,
is the replacement of the sideways relaxation peak below 295 K by continuously
decreasing hyperbolic curves, χ

′ ′ ∝ f−β , which look very similar in the real part
curves. In logarithmicscale (Fig. 5.16a) they correspond to parallel straight lines
with negative slope as shown for χ

′
(290 K) by a best-fitted line with slope β ≈ 0.09.

This is a clear signature of domain wall creep, which obeys the dispersion law [76]

χ ′′ ∝ χ ′ − χ ′∞ ∝ ω−(2−x)/z, (5.8)
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where χ ′∞ << χ ′ (
10−3Hz

)
can be neglected in first approximation. Note that

the creep formula, Eq. (5.8), is valid only under the condition ω < ωp (= Larkin
or depinning frequency), which holds up to f > 1 Hz, hence, way above the
sideways relaxation peaks at T ≥ TC. This confirms that a qualitatively new situation
arises below TC, where “infinitely long” domain walls (along the c direction)
have replaced PNR boundaries with finite length. From the exponent in Eq. (5.8),
β = (2−x)/z ≈ 0.09, and z ≈ 1.6 we calculate the exponent x ≈ 1.95, which
describes the density of states of pinning lengths, g(L) ∝ L−x, and likewise the
fractal dimension of the “domain wall” in the (001) plane. Remarkably, x agrees
within errors with the exact value of the fractal dimension of the 2D RFIM,
D = 1.96 [75].

Additional evidence of DW dynamics is delivered by the CC plots χ ′′ vs. χ ′
in Fig. 5.17. The low-T curves (12)–(18) for 295 ≥ f ≥ 260 K resemble pretty
much the hockeystick-like ones found for PMN (Fig. 5.10), where the flat “blades”
designate the flat high-f local relaxation spectra of pinned DW segments, while
the oblique “handles” signify the creep regimes. A major modification, however, is
encountered in the high-T curves (1)–(11) for 350 ≥ T ≥ 300 K as a consequence
of the double-humped loss curves in Fig. 5.16b. All of them show marked low
and high frequency Debye semicircles peaking at fc and fa, respectively (e.g., for
T = 310 K at 10−1 and 105 Hz, curve 9, vertical arrows). This phenomenon is due
to the spatial anisotropy of the PNR and best observed within 315 ≥ T ≥ 295 K
(curves 8–12) for the frequency range available. The percolation transition into

Fig. 5.17 Cole-Cole plots χ ′ ′ vs. χ ′ of SBN80 measured at T = 350 (1), 345 (2), 340 (3), 335
(4), 330 (5), 325 (6), 320 (7), 315 (8), 310 (9), 305 (10), 300 (11), 295 (12), 290 (13), 285 (14),
280 (15), 275 (16), 272 (17), and 260 K (18) within 10−2 ≤ f ≤ 5×105 Hz. Assembled from Fig.
5.16 [73]
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Fig. 5.18 (a, b) Aging of χ ′
and χ ′ ′/χ ′ vs. T of SBN75
measured after ZFC from
T = 450 K at rates
dT/dt = ±0.2 K min−1 and
frequency f = 100 Hz on first
cooling to 280 K with
intermittent halt at 295 K
(curves 1 and 2), continuous
reheating to 310 K (curve 3),
and subsequent cooling back
to 280 K (curve 4). Dotted
line = continuous cooling
from 450 K with the same
rate [77]. (c) χ ′(f = 100 Hz)
vs. t of SBN75 after ZFC at
T = 100 K and best fitted to
Eq. (5.9) [77]. Reproduced
with permission from [78]
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the ferroelectric microdomain state with “hockeystick-like” DW dynamics is thus
located at TC ≈ 295 K, below which the cluster glass regime with typical attributes
of non-ergodicity is encountered similarly as in PMN (Figs. 5.3 and 5.4).

These phenomena are shown for the compound SBN75 by a classic stop-and-wait
procedure as shown in Fig. 5.18a, b [77]. Aging of the susceptibility components χ ′
(a) and χ ′′/χ ′ (b) of SBN75 is recorded vs. T after zero-field cooling (ZFC) from
T = 450 K at rates dT/dt = ±0.2 K min−1 and frequency f = 100 Hz, on first cooling
to halt for 118 h at the wait temperature Tw = 295 K (curves 1 and 2, respectively),
continuous reheating to 310 K (curve 3), and subsequent continuous cooling back
to 280 K. The dotted line refers to continuous cooling from 450 K under identical
cooling rate. Distinct drops of both χ ′ and χ ′′/χ ′ are observed at Tw. They remain
clearly visible albeit slightly smeared on subsequent heating (curve 3) and recooling
(curves 4). Obviously a distinct memory effect due to glassy domain growth (in
the sense of “locally optimized disorder”) is encountered, which confirms that the
experiment has been carried out in the regime Tw < Tg.

The temporal relaxation of χ ′ during tw as measured after ZFC at T = 295 K
is shown in Fig. 5.18c. The observed decay is excellently fitted to a stretched
exponential corresponding to Eq. (5.3),
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χ ′(t) = A + B exp
(−[t/τ ]β

)
, (5.9)

with parameters A = 12,783(20), B = 2803(26), τ = 30.9(9) s, and β = 0.367(9).
The small value of β < 1 reflects stretching due to polydispersive relaxation
processes as in PMN (Fig. 5.6).

5.4 Strain Glass as a Random Field System

The controlling role of random electric fields in the formation of relaxor systems
with cluster glass ground states has been demonstrated in Sects. 5.2 and 5.3. A
similar mechanism applies to the structural “strain glass.” As proposed by Ren [2]
the formation of ferroelastic “martensitic nanoregions” (MNR) in Ti50-xNi50 + x at
the shear transformation is hampered by point defects, viz. random misfits due to
non-stoichiometry for x �= 0 or to doping with Fe or Cr [79]. Figure 5.19 shows the
schematics of “strain glass” evolving from ferroelastic systems exhibiting random
nanostress fields as in the nonstoichiometric martensitic compound Ti50−xNi50+x

[3]. The proximity to spin glass is demonstrated by Fig. 5.20, where Ti48.5Ni51.5
undergoes the glass transition at Tg = 168 K under shear stress τ = 40 MPa on
heating after ZFC and FC, respectively.

Fig. 5.19 Schematic illustration of martensitic long-range shear strain without defects (a) and
stabilization of strained nanodomans due to point defects (b). Reproduced with permission
from [80]
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Fig. 5.20 ZFC/FC curves of average strain under 40 MPa shear stress vs. T of Ti48.5Ni51.5 strain
glass showing a large deviation below Tg = 168 K. Inset sketches depict the unfrozen strain states
above Tg and the two differently frozen states below Tg upon field heating after different thermal
histories, respectively. Reproduced with permission from [80]

The different initial strain states contain disordered and ordered MNR,
respectively. Direct visualization of differently sheared frozen MNR separated by
antiphase boundaries was first demonstrated on Ti50Pd41Cr9 by HRTEM at room
temperature [81]. Figure 5.21 shows the storage modulus (= inverse mechanical
susceptibility, dε′/dσ ) of Ti50Pd41Cr9 together with the loss tangent, tan δ, as
functions of the temperatures for various low frequencies. In the insert the Vogel-
Fulcher relation, Eq. (5.2), is shown to apply satisfactorily and tempting to deliver
a formal “transition temperature,” TVF = Tg(f = 0) = 298 K. However, as we
have discussed in the case of uniaxial relaxors (Sect. 5.3), Eq. (5.2) is not expected
to describe the asymptotic cluster glass criticality. To the best of our knowledge
sufficiently precise asymptotic data are not yet available in order to extrapolate the
true value of Tg by checking the asymptotic dynamic criticality via Eq. (5.1).

It has been stressed [82] that the random fields emerging from point
defects changes normal long-range ordered, polytwinned domain structure
(“strain crystal”) into MNR of individual variants of martensite (“strain glass”), full
of strain disorder at interfaces between martensite and retained austenite (Fig. 5.22).
It alters the overall characteristics of the martensitic transformation from sharp
first-order to continuous as shown for Ti50Ni50-xCox with 0 ≤ x ≤ 25 in Fig. 5.23
[83]. Such an apparently continuous martensitic transformation is accompanied
by a gradual softening of the elastic modulus upon cooling that compensates the
normal modulus hardening associated with anharmonic atomic vibration, leading
to the so-called Elinvar anomaly. The first Elinvar alloy, Fe52Ni36Cr12, which has
an invariant elastic modulus over a wide temperature range, was discovered almost
100 years ago [84].
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Fig. 5.21 Dynamic freezing of Ti50Pd41Cr9 as shown by the T and f dependence of the real part
and the loss tangent of the inverse mechanical susceptibility around the “Vogel-Fulcher freezing”
temperature TVF = 298 K. Reproduced with permission from [81]

Fig. 5.22 Sketch of the strain glass structure of Ti50Pd41Cr9 with martensitic twins (A and B) and
their austenitic antiphase boundary. Cr atoms (smallest circles) exert compressive strain and thus
control the MNR formation via local majority rules. Reproduced with permission from [81]
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Fig. 5.23 Temperature
dependence of the elastic
modulus of Ti50Ni50−xCox
with 0 ≤ x ≤ 25 normalized
to E(373 K) Reproduced with
permission from [83]

Similarly to the relaxor case (Sect. 5.3) a complete theory of strain glass has
not yet been developed. In the case of the NiTi-system this would be a modifi-
cation of the conventional theory of the martensitic transition from cubic B2 into
monoclinic B19′ martensite under the nanostress action of random lattice defects in
Ni50−xTi50+x [3]. However, it has been argued [1] that the defect-free system (x = 0)
might be described by a Landau-Ginzburg free energy function including long-range
elastic interaction in order to reproduce the ferroelastic transition with the observed
domain morphology. Random defects (x > 0) are then expected to nucleate random
MNR via a spatial distribution of Ms temperatures over the system. This appears
similar to the range of local Curie temperatures within Td ≤ T ≤ T* in relaxors
(Fig. 5.8). The free energy density will then be dominated by the harmonic term,

F = a [T − Tc − η(r)] e2
2 − . . . , (5.10)

where Tc is the lower stability limit of the high temperature phase in the absence
of disorder and η(r) is the disorder field, e.g., Gaussian distributed with zero mean.
The disorder thus creates a distribution of transition temperatures, T(r) = T0 + η(r),
where T0 represents the transition temperature in the clean limit. This comparatively
simple model has been used in numerical simulations [85, 86] with remarkable
success. In good agreement with experiments it was found that

1. Static premartensitic nanostructures are absent in defect-free (η(r) ≡ 0) systems,
but arise for η(r) �= 0. At a critical defect concentration, xc, the crossover from
the normal martensitic transition at Tc into a frozen “strain glass” transition at Tg
is observed.

2. The glass transition at Tg is proven by non-ergodic behavior of the shear-induced
strain between ZFC and FC procedures (Fig. 5.20).

3. External stress can transform a strain glass containing MNR into normal
martensite with large domains or even a single domain.
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4. Inherent elastic anisotropy A can crucially affect the critical defect concentration
xc, which usually increases as A increases.

The unmistakable success of the above model theory certainly calls for a more
complete series of test experiments, e.g., the fulfillment of dynamic criticality
according to Eq. (5.1), since the Vogel-Fulcher test using Eq. (5.2) is definitely
unsuitable. On the other hand, “less developed regions” in the field of ferroic glasses
might profit from the successful strain glass discussion [1]. This applies in particular
to the relaxor problem (Sects. 5.2 and 5.3), where the distribution of local phase
transition temperatures has hitherto not yet become subject of discussion, although
local clustering of PNR and their mutual dipolar interaction are widely accepted
[8]. On the other hand, the elastic quadrupolar interaction between the MNR and
the random-field action of the defects is not yet explicitly manifest in the actual
discussion of strain glass [1]. Deeper insight into the crossover from microscopic
processes into mesoscopic glass formation seems indispensable in both fields.

5.5 Cluster Spinglass

Cluster spinglass systems have entered mesoscopic solid state physics in two
versions—as matrix isolated nanoparticular “superspin glass” [87] and as point
defect-activated intrinsic “ferroic glass” [1], respectively. Both undergo glassy
dynamic criticality as T → Tg and non-ergodicity at T < Tg. While a “superspin
glass” (SSG for short) largely resembles an atomic spin glass [88], the “ferroic
glass” states are proposed to emerge from random field-controlled nanoclustering
and subsequent dipolar glass formation as discussed for ferroelectric relaxors like
PbMg1/3Nb2/3/O3 (Sects. 5.2 and 5.3) and ferroelastic martensites like Ti48.5Ni51.5
(Sect. 5.4). Although only the latter realization had been in mind in the discussion
of “ferroic glasses” [1], the SSG concept should shortly be visited here in order to
recognize its spirit and to specify its uniqueness as a matrix isolated nanoparticular
system.

Indeed, neither ferroelectric nor ferroelastic nanoparticles have ever been
observed to enter a “neutral” matrix environment like metallic magnetic
nanoparticles in a nonmetallic insulating embedding material. Let us consider soft
magnetic nanoparticles of Co80Fe20 embedded in a film of insulating alumina,
α-Al2O3 [88], where they establish granular (discontinuous) metal–insulator
multilayer (DMIM) systems [Co80Fe20(tn)/Al2O3(3 nm)]m at nominal single-layer
thickness tn with m = 1–10 bilayer periods after growth using sequential Xe-ion
beam sputtering on sapphire glass substrates [89]. Under non-wetting condition
the CoFe alloy coagulates into quasi-spherical granules (Volmer-Weber growth
mode), while their individual size and spatial density vary via tn and thus tune the
inter-particle interactions. Up to a nominal thickness tn = 1.8 nm nonpercolating
discontinuous distributions of immiscible CoFe clusters (“superspins”) embedded
within adjacent alumina layers have been grown. Figure 5.24a shows a transmission
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Fig. 5.24 (a) TEM top view micrograph of Co80Fe20(0.9 nm)/Al2O3(3 nm) bilayer. Reproduced
with permission from [89] via CCC Rights Link. (b) Frustrated dipolar nearest-neighbor configu-
ration on a triangular lattice. Reproduced with permission from [88]

electron micrograph (TEM) of the irregular cluster distribution (dark dots) with a
near Gaussian distribution of diameters, d ≈ (2.8 ± 1.0) nm and partial hexagonal
short-range ordering (white contours indicated) in a bilayer (m = 1) with tn = 0.9 nm
[89]. Typically they exhibit frustrated nearest-neighbor configurations of magnetic
dipoles on a triangular lattice (Fig. 5.24b).

Figure 5.25 shows the temperature dependence of the susceptibility compo-
nents, χ ′ and χ ′′ vs. T, of [Co80Fe20(0.9 nm)/Al2O3(3 nm)]10 for frequencies
10−2 ≤ f ≤ 100 Hz and temperatures 30 ≤ T ≤ 90 K [90]. The χ ′(T) curves
reveal a broad full-width-at-half-maximum, FWHM ≈ 40 K, a monotonic increase
of their heights with decreasing f, and simultaneous low-T shifts of their peak
positions, Tm. Similarly as observed on PMN (Fig. 5.3) the isothermal frequency
dependence of χ ′′ changes sign at T ≈ Tg = (45.6 ± 4.6) K. While this low value
is due to the sparse spatial density of the MNP, the relatively large attempt time,
τ 0 = (2.8 ± 1.3) × 10−7 s, as obtained from fitting to Eq. (5.1) reflects their
mesoscopic dimension (Fig. 5.24a).

Non-ergodic behavior (aging, rejuvenation, and memory) of the FC and ZFC
magnetization is observed below the glass temperature Tg in Fig. 5.26 (see caption
for details) and resembles those of PMN (Fig. 5.4) and of SBN75 (Fig. 5.17).
This confirms the glassy character of the SSG. Nevertheless, important differences
arise in the glassy regimes, T < Tg. While relaxors like PMN and SBN80 enter
domain states with domain wall susceptibility dynamics as documented by the
spectra in Figs. 5.10 and 5.16, respectively, the SSG continues to map single particle
(MNP) dynamics as evidenced by CC plots in Fig. 5.27. All of them are truncated
semicircle-like and described by the CC equation [93],

χ (ω) = χs + (χ0 − χs) /
[
1 + (iωtc)

1−α
]
, (5.11)
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Fig. 5.25 Temperature dependences of the magnetic susceptibility components χ ′ and χ ′ ′ of the
SSG [Co80Fe20(0.9 nm)/Al2O3(3 nm)]10 at decade stepped frequencies within 10−2 ≤ f ≤ 100 Hz.
Tg = 45.6 K is marked by an arrow. Reproduced with permission from [90]

where the exponent, 0 < α < 1, describes the degree of polydispersivity as distin-
guished from the mono-disperse Debye process, α = 0. As discussed previously
[92], α increases from 0.75 to 0.87 as T decreases for 60 to 45 K, while it does not
increase any more for T ≤ 40 K (uppermost panel). This is a signature of the frozen
glass state at T < Tg ≈ 46 K. On decreasing T, the limited range of frequencies makes
the data point groups continuously shift away from the rightmost intersection with
the χ ′ axis, f = 0. Indeed, the fits reflect the tremendous slowing down on cooling to
the glass transition with “characteristic” relaxation times 10−4 ≤ τ c ≤ 104 s at the
apex points, 2π fτ c = 1. Thus the CC plots of the SSG clearly reflect the structural
invariance of the cluster system (Fig. 5.24a) under cooling to below Tg.

The situation is, hence, much simpler as compared to the “ferroic glasses”
PMN and Ni48.5Ti51.5, respectively, the glassiness of which is based on the
disorder-controlled generation of PNR/MNR, their subsequent dipolar/quadrupolar
interaction, glassy freezing, and eventual percolation. We are now left to unravel
a similar scenario in “spin-cluster glasses” such as La0.7Ca0.3Mn0.8Cd0.2O3 [6] as
suggested by Ren et al. [1].

The Cd doped CMR material La0.7Ca0.3Mn1−xCdxO3 with 0 ≤ x ≤ 0.2 shows
both ferromagnetism and apparent cluster spin-glass behavior. A metal-insulator
transition is exhibited by samples with x < 0.1, while samples with x = 0.15 and 0.2
are semiconductors. With increasing Cd content the system changes from para- to
ferromagnetic at x < 0.10, as well as from paramagnetic to spin-glass-like for x > 0.1.
Spin-glass-like behavior is indicated by the typical non-ergodicity of ZFC and FC
magnetization data, while χ ′

ac is found to follow dynamical critical slowing-down,
Eq. (5.1). Obviously, by slight variation of the Cd dopant with 4d10 closed electron
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Fig. 5.26 Aging and rejuvenation of the magnetization M(T) of the SSG
[Co80Fe20(0.9 nm)/Al2O3(3 nm)]10 measured in μ0H = 40 μT: (a) Temperature dependencies
of continuously measured Mref (T) (solid circles) and of Mwait(T) (open circles) measured
with intermittent zero-field wait period of Δt = 104 s at T = 42 K. (b) Magnetic hole
ΔM = Mwait(T) − Mref (T) vs. T. Reproduced with permission from [91]

shell configuration, a spin glass seems to form at x = 0.2 with best-fit parameters
Tg = 42.1 ± 0.5 K, zν = 10.8 ± 1.6, and τ 0 = 10−12 s. While Tg and zν come up
to expectation, the value of τ 0 corresponds to an atomic spin glass, τ 0 ≈ 10−13 s,
rather than to a spin cluster system, for which values of τ 0 ≈ 10−6 s are expected as
in our above SSG. The situation in the La0.7Ca0.3Mn1−xCdxO3 system is not quite
clear, since nearby compositions, e.g., x = 0.15, were reported [6] to come closer to
the spin cluster model, but dynamical critical scaling turned out to fail, supposedly
because of phase impurity issues (Fig. 5.28).

Further research is needed for clarifying the spin-clustering conjecture, if
any, in La0.7Ca0.3Mn1−xCdxO3. Another candidate is the related CMR material
La0.7Ca0.3Mn1−xCoxO3, which has shown the ZFC-FC anomaly of a spin cluster
glass for x = 0.3 (Fig. 5.29) [94]. The drop of MZFC for T < Tg ≈ 100 K has been
interpreted as a signature of cluster glass behavior. The Co substitution breaks down
the long-range ferromagnetic order seen in the pure manganates, replacing it with
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Fig. 5.27 Cole-
Cole plots χ ′ ′ vs. χ ′ of DMIM
[Co80Fe20(0.9 nm)/Al2O3(3 nm)]10
measured at T = 30, 35, 40 K
within 10−2 ≤ f ≤ 100 Hz,
and at T = 45, 50, 55, and
60 K within 10−2

≤ f ≤ 103 Hz. Reproduced
with permission from [92]

Fig. 5.28 χ ′
ac of La0.7Ca0.3Mn0.8Cd0.2O3 within 28 ≤ T ≤ 68 K for 10−1 ≤ f ≤ 102 Hz and

Hac = 3.5 Oe. Reproduced with permission from [6]

cluster-type ferromagnetic order. This breakdown of ferromagnetic order can arise
both from the mixed exchange and from the dilution by low spin diamagnetic Co3+
ions. A similar mechanism is assumed to work in the above La0.7Ca0.3Mn0.8Cd0.2O3
system.
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Fig. 5.29 FC and ZFC
magnetization of
La0.7Ca0.3Mn0.7Co0.3O3
measured in B = 30 mT.
Reproduced with permission
from [94]
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Although nanodomain structures have not yet been reported in the La0.7Ca0.3
Mn0.8M0.2O3 cluster glass and precursor phases (M = Cd and Co, respectively), it
appears highly probable that they do exist and are preceded by magnetic tweed
patterns above Tg similarly as in melt-spun magnetic Ni2(Mn,Fe)Ga Heusler
alloys [95]. These were recently predicted as structural and precursory tweed in
shape memory Heusler alloys, Ni50−xCoxMn39Sn11, at the upper bound of the Co
concentration, 0 ≤ x ≤ 10 [96].

5.6 Conclusion

Dipolarly interacting magnetic nanoparticles in an insulating matrix paved the
way toward the field of “supermagnetism.” Its first manifestation was a system
of nanosized particles of amorphous Fe0.78C0.22 under the name “super spin-
glass” [97]. Later on the modified name “superspin glass” [98] became commonly
accepted in order to pinpoint the main actor of the physics involved: “superspin”
denoting the nanoparticular magnetic moment. The physics of “supermagnetism”
has meanwhile become standard as manifested by recent reviews [88, 99].

This does not yet fully apply to “ferroic glasses” [1], which involve nontrivial
interactions between point defects and matrix. They are mesoscopic cluster glasses,
where “point defects” trigger nanoscale glassy freezing in martensitic “strain glass”
[2] or charge disorder initiates “polar nanoregions” condensing into “superdipolar
glass” in relaxors [8], while “cluster spin glass” emerges from complex spin and
charge frustration in dilute magnetic materials [6]. The mechanisms of martensitic
shear, electric random field polarity, or double-exchange and competing magnetic
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instabilities, respectively, need thorough experience for adequate understanding.
These mechanisms are only partly deciphered, where most questions seem to remain
open for the “cluster spin glass” in CMR materials.
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Chapter 6
Probing Glassiness in Heuslers via
Density Functional Theory Calculations

P. Entel, M. E. Gruner, M. Acet, A. Hucht, A. Çakır, R. Arróyave,
I. Karaman, T. C. Duong, A. Talapatra, N. M. Bruno, D. Salas, S. Mankovsky,
L. Sandratskii, T. Gottschall, O. Gutfleisch, S. Sahoo, S. Fähler, P. Lázpita,
V. A. Chernenko, J. M. Barandiaran, V. D. Buchelnikov, V. V. Sokolovskiy,
T. Lookman, and X. Ren

Abstract Heusler compounds and alloys form a unique class of intermetallic
systems with functional properties interfering with basic questions of fundamental
aspects of materials science. Among the functional properties, the magnetic shape
memory behavior (Planes et al., J Phys: Condens Matter 21:233201 (29 pp),
2009) and the ferrocaloric effects like the inverse magnetocaloric effect which is
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associated with the first order magnetostructural transformation with a jump-like
change of the magnetization with lowering of temperature (Acet et al., Magnetic-
field-induced effects in martensitic Heusler-based magnetic shape memory alloys.
In: Bushow KHJ (ed) Handbook of magnetic materials, vol 19. North-Holland,
Amsterdam, pp 231–289, 2011) have been intensively investigated in various
reviews. Important references can be found in Acet et al. (Magnetic-field-induced
effects in martensitc Heusler-based magnetic shape memory alloys. In: Bushow KHJ
(ed) Handbook of magnetic materials, vol 19. North-Holland, Amsterdam, pp 231–
289, 2011). Besides magnetocaloric effects, other ferroic cooling mechanisms of
Heuslers (electrocaloric, barocaloric, and elastocaloric ones) have recently been
discussed by Xavier Moya et al. (Nat Mater 13:439–450, 2014). A discussion of
caloric effects in ferroic materials including a brief discussion of the importance
of correlating time and length scales can be found in Fähler et al. (Adv Eng
Mater 14:10–19, 2012). In the present article, we emphasize this item further by
showing that, in particular, the physics at different time scales leads to markedly
different properties of the Heusler materials. “Rapidly quenched” alloys behave
differently from “less rapidly quenched” alloys. In the latter case, the so-called
magnetostructural transformation may vanish altogether because of segregation
of the alloys into the stoichiometric L21 Heusler phase and L10 Ni-Mn occurs.
We argue that this tendency for segregation is at the origin of glassiness in
Heuslers.
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6.1 Introduction

Glassiness near martensitic transformations has been observed experimentally in
intermetallic alloys where precursor effects above the martensitic transformation
determine the ferroelastic properties. The disordered nature of the alloys or disorder
arising from impurities may lead to a disordered array of strain fields (as for the
systems studied in [1, 2]). For an overview on strain-glass effects in ferroelastic
systems, where premartensitic tweed competes with strain glass, see Ren et al. [3].
The exciting point is that the ferroelastic systems may show magnetic order like
the ternary intermetallic Heusler alloys and that the resulting strain glass exhibits
the same competing ferromagnetic–antiferromagnetic interactions as bulk austenite
and martensite.

This article describes the physical properties of rapidly quenched magnetic
Heusler alloys with frozen compositional disorder and competing magnetic inter-
actions. These emerge as a consequence of the excess Mn atoms interacting
ferromagnetically because of the occupation of atomic sites in the original Mn
sublattice and interacting antiferromagnetically because of the occupation of the
excess Mn of atomic sites of the Z element in Ni-Mn-Z with Z = Al, Ga, In, Sn, Sb.
In contrast to the rapidly quenched alloys we describe also the physics of the less
rapidly quenched alloys where the temper-annealed samples of Ni50Mn45(Al, Ga In,
Sn)5 are not stable but decompose into ferromagnetic L21 Heusler Ni2Mn(Al, Ga,
In, Sn) and antiferromagnetic L10 NiMn. This type of segregation leads to new func-
tional properties as the quenching under magnetic fields generates ferromagnetic
Heusler-type precipitates with a paramagnetic core. These precipitates affect the
magnetic response in a peculiar way by shifting the magnetization loops vertically
[4]. Shell-ferromagnetism, noncollinear magnetism, and skyrmions may lead to new
exciting functional properties of Heusler alloys [4–7].

The prototype magnetic Heusler system Ni2MnGa consists of four interpenetrat-
ing fcc lattices with a phase transition to a tetragonal structure upon cooling below
202 K [8] and a magnetic transition to ferromagnetic order (where experimental
and calculated Curie temperatures, using ab initio exchange coupling constants, are
close to each other, TC ≈ 376 K [8, 9]). Phonon softening in Heuslers underlines the
importance of Fermi surface nesting to explain the origin of martensitic instabilities
[10]. With respect to shape memory properties, the reorientation of the tetragonal
unit cell can be induced either by a magnetic field or by mechanical stress [11–15].
In this context it is important to note that the coexistence of austenite, 14M phase and
tetragonal martensite in Ni-Mn-Ga and other Heusler alloys as well as the presence
of adaptive martensite in magnetic shape memory alloys which follows from elastic
energy minimization are beneficial for the shape memory properties [16, 17] and
ferroic cooling [35, 36, 86, 87]. Furthermore, the modulated structure is a nanoscale
microstructure of non-modulated martensite [89].

For the quenched magnetic Heusler alloys Ni-Mn-Ga and Ni-Mn-Sn with Mn
excess Fig. 6.1 shows the typical behavior of the critical temperatures (TC and Ms)
versus electron concentration with austenite in the L21 structure and martensite



156 P. Entel et al.

Fig. 6.1 Phase diagrams of (a) Ni50Mn50−xGax and (b) Ni50Mn50−xSnx with austenite-
martensite transitions (filled circles) and intermartensitic transitions (triangles up and down).
Open circles mark the Curie temperatures of austenite and martensite. TIM , SSG, and TB mark
the intermartensitic transition line, the super-spin-glass region, and the blocking temperature,
respectively. The experimental phase diagram has been adapted from Çakır et al., copyright
Elsevier (2015) [1]

in the L10 structure and intermartensitic modulated structures. Besides spin-glass
phases we also find strain-glass phases in most of the Mn excess region, where the
strain-glass emerges because of local disorder beyond a certain threshold.

An example for a strain-glass phase in Ni-Mn-Ga alloys with Co as impurity is
shown in Fig. 6.2. We find a ferromagnetic strain-glass phase because the underlying
intermetallic phase is ferromagnetic (FM austenite, FM martensite, and FM strain
glass). The strain-glass phase arises because of the disorder induced frozen strain of
the intermetallic alloy and the additional local strains arising from the Co impurities,
which destroys the long-range strain features of martensite. This phenomenon leads
to a ferromagnetic strain glass with coexisting short range strain ordering and long-
range ordering of the magnetic moments, where Co essentially suppresses the long-
range strain ordering of martensite and enhances the ferromagnetic exchange [2].

We will see below that the segregation into an antiferromagnetic background
matrix of NiMn and precipitates of ferromagnetic L21 Heuslers is also a non-
equilibrium phenomenon which leads to a mixture of complex nanophase material.
This, however, is not beneficial for the magnetocaloric effect, since the jump of
the magnetization at the magnetostructural phase transition can be considerably
reduced.

We first investigate the trend of the intermetallic alloys and compounds of the
rapidly quenched Heusler alloys for noncollinear magnetic features and tendencies
to form skyrmions like magnetic excitations.
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Fig. 6.2 Phase diagram of Ni55−xCoxMn20Ga25 showing the paramagnetic and ferromagnetic
austenitic phases, ferromagnetic martensite as well as the ferromagnetic strain-glass phase
(calculation of the extrapolated TM is also shown). Ferromagnetic martensite exists to rather high
concentrations of Co impurities and the strain-glass phase exists between 10% Co and more than
18% Co. Phase diagram adapted from Wang et al. [2]

6.2 Magnetostructural Phase Transition of Rapidly
Quenched Heusler Alloys

Figure 6.3 shows the structural transformation between the high-temperature fer-
romagnetic austenite and the low-temperature weak magnetic, antiferromagnetic
or paramagnetic martensite as well as the shift of the martensitic transformation,
with applied magnetic field in Ni50Mn34.5In15.5 (experimental data provided by P.
Lazpita [18]).

Note that the isofield magnetization curves of Fig. 6.3 are not the result of a very
fast quenching of the alloy, since some partial order prevails although the degree of
order retained has never been specified in detail [18].

The occurrence of the isothermally magnetic-field induced transformation at
different temperatures is evident and allows to discuss magnetization and entropy
changes, �M and �S, as a function of the applied field as predicted by the Clausius-
Clapeyron equation dT/dH = μ0 �M/�S. The direct martensitic transformation
is accompanied by a drastic drop in magnetization, favoring the magnetic field-
induced reverse transformation, demonstrating the metamagnetic behavior.

In disordered Ni50Mn34.5In15.5 alloy (rapid quenching) the jump-like curve of
�M across the martensitic transition is steeper and increases with field while it
remains nearly constant for the more ordered sample (slower cooling) [19].
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Fig. 6.3 Magnetization curves of Ni50Mn34.5In15.5 showing first-order magnetostructural trans-
formation from weak magnetic martensite to ferromagnetic austenite. The M(T ) data from more
ordered alloys (a) are very different from disordered alloys shown in (b). We think that this could
be related to the order and its influence on the Curie temperature. For both cases, the shift of
the martensitic transformation with applied field is clearly visible. Data provided by P. Lazpita
Arizmendiarreta. (a) Copyright AIP 2013 [18], (b) copyright IOP 2013 [19]. With increasing
magnetic field the jump is reduced in both cases and vanishes for very large fields (saturation
magnetization) or the transformation can become kinetically arrested, when the driving force
�G ≈ �S × �T becomes smaller and smaller

Hence, the change of slope of dTM/μ0dH = �M/�S may be related to the
decrease of �S with applied field. However, for both, more ordered and more
disordered alloys, the entropy change amounts to �S ≈ 5 J/(kg K), which originates
mostly from the lattice contribution being larger than the magnetic entropy change
across the magnetostructural transformation [20].

With respect to the theoretical modeling of magnetostructural transition, we have
adopted a combined effort consisting of ab initio modeling of the complex scenario
of magnetic exchange interactions in Ni-Co-Mn-In combined with Monte Carlo
simulations of an effective spin model (Potts model for the multi-spin interactions
in Heusler alloys), where the exchange integrals serve as input.

The Hamiltonian (1) consists of the Potts model in Eq. (6.2), the coupling to the
structural (elastic) component which allows martensitic transformation with the help
of Eq. (6.3), and the magnetoelastic interaction (in Eq. (6.4)):

H = HPotts + Helast ic + Hmagneto−elast ic (6.1)

with

HPotts =
∑

〈ij〉
Jij δSi,Sj − gμBHext

∑

i

μiδSi,Sg − Kani

∑

i

μ2
i δSi ,Sk , (6.2)
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Helast ic = −
(

J + K1gμBHext

∑

i

μiδSi,Sg

)
∑

〈ij〉
σiσj

− K
∑

〈ij〉
(1 − σ 2

i )(1 − σ 2
j ) − kBT ln(p)

∑

i

(1 − σ 2
i ), (6.3)

Hmagneto−elast ic = 2
∑

〈ij〉
Uijμiμj δSi,Sj {( 1

2 − σ 2
i )( 1

2 − σ 2
j ) − 1

4 }. (6.4)

The Jij are the magnetic exchange parameters,

Jij = 1

4π

∫ εF

−∞
dE Im Tr[�iτ

ij
↑ τ

ji
↓ ], (6.5)

calculated with the Munich SPR-KKR package [21]. We make use of them in
the Monte Carlo simulations of the Potts model [22–24]. In order to describe
the magnetostructural transformation, we use the Blume-Emery-Griffiths (BEG)
model following the work of Castán [25]. Since mapping of magnetic ab initio
energies is onto Jij and unit length of spins, field terms must include explicitly
μi and μ2

i , where μi is the ab initio value of the magnetization of the atom
at site i taken to be dimensionless. J and K are the elastic and K1 (Uij ) the
magnetoelastic interaction parameters. The Kronecker symbol restricts the spin–
spin interactions to those between the same Potts-q states. The spin moment of
Mn is S = 5

2 and we identify the 2S + 1 spin projections with qMn = 1 . . . 6.
Likewise, we assume S = 1 for Ni and S = 3

2 for Co. The BEG model defines
σi = 0,±1 for austenite and two martensite variants, respectively [22–25]. The
model allows first-order martensitic phase transformation with thermal hysteresis.
Because of the magnetoelastic coupling term, the jump �μ(Tm) is coupled to the
martensitic transformation and exhibits hysteresis as well. For further technical
details, see [22–24]. A recent summary of novel experimental achievements of the
magnetocaloric effect can be found in [26]. We find that both conventional and
inverse magnetocaloric effects are well reproduced by this model and even allows a
quantitative description of the effect.

Note that spin-glass effects and strain-glass-effects can also be described by using
the same model Hamiltonian and ab initio description of magnetic interactions for
the atomically disordered Heusler alloys. This is in progress, but, the simulations
require large supercells to treat disorder adequately. Nevertheless spin-glass effects
and zero-field cooling and field-cooling protocols of Ni-Mn-In alloys have been
successfully simulated using a standard Heisenberg model [27].

Figure 6.4 shows typical results of Monte Carlo simulations obtained for the
magnetostructural transition for a series of Ni-Mn-In based alloys using the model
defined by Eq. (6.1) with large magnetocaloric effects (MCE) [28].
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Fig. 6.4 Results of Monte Carlo simulations for a series of Ni-Mn-In alloys. The magnetostruc-
tural transition shows hysteresis where the hysteresis width is in most cases of the same order
although the jump �M(T ) is different. The largest jump is shown when Co and Cr are added to
Ni-Mn-In. This alloy also exhibits the largest MCE which is of the order of �Tad ≈ 10 K [28].
Reprinted from Ref. [28]. © (2015) by the American Physical Society

Note that the magnetostructural transitions shown in Fig. 6.4 correspond to those
of very rapidly quenched samples, since the standard atomic relaxations during the
ab initio calculations do not consider diffusion or similar relaxation processes.

6.2.1 Order–Disorder Transitions and Classification of Phase
Transitions

Since Heusler alloys undergo an ordering process between 1100 and 900 K when
cooling from high temperatures, rapidly or less rapidly quenched alloys show
different degrees of order and show time dependence effects of the nucleation of
the microstructure depending on the details of the cooling process. This has never
been discussed in deeper details for magnetic Heusler alloys by trying to relate, for
example, the degree of order and atomic density function theory to the evolution of
microstructure at the atomic scale as discussed by Khachaturyan [29] in relation to
martensite transformation [30].

Also we do not want to go into details, most classification schemes of phase
transitions use a simple thermodynamic concept for systems in thermal equilibrium,
where the transition is a compromise of the energy, which tends to order, and the
entropy associated to temperature which tends to break the order. Crystal chemistry
then provides a basis for the classification of phase transitions at a critical tempera-
ture Tc where the system absorbs thermal energy leading to a higher internal energy
of the transformed phase, the bonding between neighboring atoms is weaker in the
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low-temperature phase. This results in a change in the nature of mainly the first and
second-nearest neighbor bonds. We distinguish three phase transitions. Displacive
(martensitic) transitions with small distortion of the bonds. Characteristic is the
group-subgroup relationship between the phases. Reconstructive transitions through
the breaking of primary or secondary bonds and order–disorder transitions through
substitution between atoms which is usually followed by small displacements
commonly found in metals. Some systems keep a group-subgroup relationship,
others are reconstructive. Now, the Heusler alloys considered here are mostly rapidly
quenched materials showing features of martensitic transformations as Ni-Mn-Z
with Z = (Al, Ga, In, Sn, Sb) with, for example, simple tetragonal transformation
L21 →L10, and disorder-order transformation from the completely disordered high-
temperature A2 phase to partially ordered B2 to ordered L21: A2 → B2 → L21.

Since we will discuss below the case of segregation of Heusler alloys in case of
slower cooling, where some partial order is kept, we have to envisage systems where
structural and order–disorder phase transitions may overlap in some temperature
or composition range. This requires a kind of unified model description of order–
disorder and displacive structural phase transitions. Indeed such an approach has
been formulated and applied to ferroelectric systems which show mixed type of
phase transitions [31].

But to our knowledge, this concept unified model description has never been
applied to metallic Heusler systems with order–disorder transition using some
pseudo-spin formulation which coexists with a displacive transformation originating
from some cooperative phonon mechanism which would yield a mixed type of
phase transition, where the individual order parameters can be varied continuously
depending on the coupling strength. Note, however, that for a one-dimensional
model system with strong anharmonic displacement fields new solutions in the form
of domain walls have been found [32], which is also some kind of order–disorder
transition, where domain-like excitations induce the formation of microdomains
which act as precursor-clusters of the ordered phase.

We think that this is an important point because the influence of atomic disorder
on the martensitic transformation may also cause the appearance of strain-glass and
spin-glass effects. We just argue further below that the nature of glassy effects
is related to the existence of some kind of atomic disorder in the alloy and so,
the alloys which show tendencies for segregation should also show tendencies for
strain-glass behavior. And due to the existence of competing ferromagnetic and
antiferromagnetic interaction spin-glass may appear quite naturally.

6.2.2 Influence of Annealing Process on the Isofield
Magnetization Curves

The magnetostructural transformation and the form of the magnetization curve over
the structural change at the martensitic transformation depend to a large degree on
the annealing process. For high annealing temperature AQ, for example, AQ ≈
1173 K and rapid quenching of Ni50.2Mn33.4In16.4, the form of the magnetization
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curve is rectangular like and very steep, but with decreasing annealing temperature
the rage of forward martensite transformation temperatures TFMT and reverse
martensite transformation temperatures TRMT increases and thus the magnetization
curves are smoothed [33]. But for high annealing temperature and rapid quenching,
the form of the magnetization curve is nearly rectangular (in the case of a very low
external field of 10 mT).

This becomes obvious if one compares further experimental results of the
influence of the atomic order in Ni-Mn-In metamagnetic shape memory alloys on
the martensitic transformation and magnetic transition by Recarte et al. and similar
results observed by other authors. Recarte et al. considered Ni50.2Mn33.4In16.4
polycrystalline alloy, which was homogenized at 1173 K. In order to retain states
with different degrees of LRO (long-range order), the alloys were subjected to a
30 min annealing treatment at three different temperatures (samples labeled AQ
1173 K, AQ 823 K, and AQ 723 K in the Fig. 6.5), followed by quenching into ice
water. Another piece of the same alloy was slowly cooled from 1173 K (labeled AQ
300 K) for comparison with the quenched samples. The temperature dependence of
the low-field magnetization (H = 0.1 T) curves is displayed in Fig. 6.5.

A “quadratic-block” like form of magnetization curves was obtained recently for
Ni50Mn35In15 in a higher field of 0.5 T together with a splitting of ZFC, FC, and
FH curves [34]. Note that such block like form of the magnetization curves is very
common for the magnetic Heusler alloys after rapid quenching, references can be
found in [35, 36]. For recent work on Ni-Mn-Sn alloy systems, see [37, 38].
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Fig. 6.5 Temperature dependence of the magnetization in a field of 0.1 T for the
Ni50.2Mn33.4In16.4 polycrystalline alloy subject to four different heat treatments labeled AQ
1173 K, AQ 823 K, AQ 723 K and AQ 300 K, which yield different degrees of order. The slowly
cooled sample labeled AQ 300 K exhibits the largest degree of order (without further specifying
the order here). Figure adapted from [33]. Copyright Elsevier (2012)
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6.2.3 Effect of Cobalt on the Isofield Magnetization Curves

If Co is added to the rapidly quenched Ni-Mn-In alloys, the magnetostructural
transformation does not vanish, but the transformation becomes steeper because of
the enhanced ferromagnetic component due to Co, compare Fig. 6.6.

The magnetic nature has been recently studied in other Ni-Mn based metamag-
netic systems, primarily for Co-added Ni-(Co)-Mn-Z with Z = In, Sn and Sb and
various explanations of the magnetic behavior of martensite have been proposed:
paramagnetism, antiferromagnetism, superparamagnetism, re-entrant spin-glass,
super-spin glasses, etc. [35, 39–41]. Note that all spin-glass discussions automat-
ically involve the possibility of strain-glass formation due to the coupling of the
spins to the local strain fields arising from atomic disorder.

Superparamagnetic domains in a paramagnetic matrix have been shown to exist
in the martensitic phase of Ni45Mn36.5In13.5Co5 evolving to a superspin glass
on cooling below a critical temperature [42]. Superparamagnetic and superspin-
glass behavior have also been observed in Ni50−xCoxMn39Sn11 (0 ≤ x ≤ 10),
where the superparamagnetic state is formed by magnetic clusters distributed in a
weak magnetic matrix, which has directly been confirmed by small-angle neutron
scattering [43].

For completeness, we give reference to the work of Kainuma’s and Chaddah’s
group which performed experiments like those shown in Fig. 6.6 some years before
for Ni-Co-Mn-In alloys, see Fig. 6.7 [44–49]. Figs. 6.6 and 6.7 show results of
rapidly quenched samples.

Note that the shift of the isofield magnetization curves over a temperature
interval covering the magnetostructural transition in Figs. 6.6 and 6.7 has already
been postulated by a 30-year-old model calculation of structural and magnetic
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interactions in a twofold degenerate band model of eg symmetry using the model
Hamiltonian [50, 51]:

H =
∑

ijσ

tij (c
†
i1σ cj1σ +c

†
i2σ cj2σ ) + U

∑

i

(ni1↑ni1↓+ni2↑ni2↓)+U ′ ∑

iσσ ′
ni1σ ni2σ ′

− J
∑

iσ

ni1σ ni2σ + Ge
∑

iσ

(ni1σ − ni2σ ) + 3
4N(C11 − C12)e

2

− μBH
∑

i

[(ni1↑ − ni1↓) + (ni2↑ − ni2↓)], (6.6)

where n is the number of atoms, 1 and 2 denote the orbitals, U and U ′ are the intra-
orbital and inter-orbital Coulomb interaction terms, J is the exchange interaction
between the two orbitals at the same site, G is the interaction between eg-type
electrons and strain modes, (C11 − C12) is the tetragonal-type elastic constant for
the lattice, and the last term is the Zeeman term, for details and the Hartree-Fock
approximation, see [50, 51].

This degenerate eg-band model yields for the shift of the martensitic transforma-
tion temperature in an external field with a Stoner-like enhancement factor,

�TM

T 0
M

∝
(

μBH

kBT 0
M(1 − ρεF Ueff )

)2

, (6.7)

where Ueff = U + J .
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peak to the unoccupied region above EF . This stabilizes the martensitic phase

This result shows that the shift of the transformation temperature varies approxi-
mately with the square of the magnetic field. Although �TM follows from a simple
eg band model, it gives at least an explanation why the shift is non-linear with the
external field. However, we believe that a more realistic band structure involving
all d-bands and the s, p bands are necessary for an adequate description, since all
d-bands contribute to the martensitic transformation as follows from the density of
states and its orbital decomposed eg and t2g contributions as illustrated in Figs. 6.8
and 6.9.

A further interesting phenomena in magnetic Heusler alloys is the so-called
kinetic arrest and de-arrest, for example, in Mn50Ni36Sn9Co5, which has recently
been summarized in [52]. Usually, the Curie temperature of austenite is higher
than the magnetostructural transformation temperature and 100% austenite is trans-
formed to 100% martensite. But the first-order magnetostructural transformation
can be significantly influenced by the magnetic field, by pressure and by the alloy
composition. In Mn50Ni36Sn9Co5 the magnetostructural transformation becomes
kinetically arrested below 35 K, when the cooling field exceeds 1 T; the amount of
frozen austenite depends on the cooling field. Kinetic arrest has been observed in
Ni-Mn-In [53, 54], Ni-Co-Mn-In [44], Ni-Co-Mn-Ga [45], Ni-Co-Mn-Sn [46, 47],
and Ni-Mn-Co-Al [48, 49].

Figure 6.10 shows experimental results of the kinetic arrest phenomenon for the
Heusler alloy Ni45Co5Mn36.6In13.4.
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Fig. 6.9 Orbital-projected electronic density of states of t2g and eg orbitals for austenite in (a)
and (c) and for martensite in (b) and (d), respectively. In spite of the atomic disorder in the
supercell with 16 atoms, it is evident that martensite with a tetragonal distortion of (c/a = 1.275)

is stabilized by the dips in the density of states at the Fermi level. The electronic contributions of
s, p electrons is omitted from the plots
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Although in [57], the martensitic and magnetic properties of Ni45Co5Mn30Ga20
were investigated in the full range of aging times (from as quenched conditions up to
2 × 104 min at 470 K in a small magnetic field of 80 mT) trends for decomposition
have not been investigated, nor in the other recent papers [37, 38, 42]. Therefore,
the report on decomposition tendencies of Ni-Mn-(Al, Ga, In, Sn, Sb) in this paper
is rather new information as well as its impact on segregation and formation of
structural glasses.

In the context of magnetostructural transition, the magnetization curves of
austenite is usually a high-spin state (HS) while martensite is paramagnetic or a
low-spin state (LS). Indeed, on the basis of the eg-band model it was shown that
a high-spin austenite and a high-spin martensite are mutually exclusive [50, 51].
This reminds of Invar [58], where LS and HS states can be connected by a bunch of
non-collinear solutions.

From the discussion of the magnetostructural transition leading to the inverse
magnetocaloric effect, we deduce that beside both spin-glass effects accompanied
by glassy effects involving the strains in the alloys may exist, although we have
not yet simulated the dynamic mechanical properties of Ni55−xCoxMn20Ga25 as
reported in [2]. Ab initio calculations for Ni55−xCoxMn20Ga25 are so far restricted
to the evaluation of the martensitic transformation temperature. Strain-glass effects
still require attention.

To summarize this part, we may say that in addition to fast cooling (rapidly
quenched alloys) and magnetic frustration arising from ferromagnetic and anti-
ferromagnetic exchange interactions, a third independent cause for glassiness is
the presence of quenched-in disorder, which is particularly relevant in strain-
glasses since it leads to anisotropic forces as is evident from Fig. 6.11 showing
the differences in tetragonal and orthorhombic distortions. We notice here that
these three triggering factors are independent, although magnetic frustration and
quenched-in disorder, mostly appear together. This non-equilibrium situation in
Fig. 6.11 may well accompany segregation tendencies discussed further below. Also
the frozen-in disorder will help the strain-glass phase to form. From this non-
equilibrium situation we expect the most important driving force for segregation
to arise. A deeper discussion concerning ferroic systems and their corresponding
cluster glasses is presented in the contribution by P. Lloveras et al. in this volume
[59].

Concerning cluster-spin glasses, we just like to comment that the cause for
magnetic spin cluster glasses has indeed been observed in the ab initio simulations
(fixed spin moment calculations) when simulating the effect of reversing clusters of
Mn spins in a supercell and considering their energetics, which is discussed in [60].

In the next section we check whether indeed noncollinear spin states in Heusler
alloys may exist.
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6.3 Noncollinear Magnetism

We have searched for tendencies that the Heusler alloys form noncollinear spin
configurations or spin spirals which could be related to spin-glass features brought
about the atomic disorder of the alloys. All calculations are based on the evaluation
of magnetic exchange constants using ab initio calculations. Since we highlight in
this article particular the properties of disordered Ni-Mn-In-Z as a representative
case for Ni-Mn-(Al, Ga, In, Sn)-Z, with Z = Co, where Co can be used to
tune the strength of ferromagnetic interactions with respect to the strength of
antiferromagnetic interactions, we show in Fig. 6.12 the rich scenario of the
exchange constants of Ni50Mn34In16 and Ni45Co5Mn34In16. Ferromagnetic and
antiferromagnetic exchange interactions, which arise from the excess Mn, which
contribute to the metamagnetic behavior of the Heusler alloys leading to a first-
order magnetostructural transition have been discussed in detail in [24]. We would
like to stress that the antiferromagnetic interactions lead to low-spin-behavior of
martensite below the magnetostructural transition. When decomposing the exchange
interaction into their orbital contributions and resulting mixed terms as in magnetic-
exchange it becomes obvious that the antiferromagnetic contributions result more
from the localized eg orbitals. We would like to point out that these competing
magnetic exchange interactions may well explain the tendencies to form a spin
glass in martensite and may explain the absence of a high-spin ferromagnetic state
in martensite. When adding Co to the Heusler, ferromagnetic trend increases as
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Fig. 6.12 Magnetic exchange interaction of cubic Ni50Mn34In16 for austenite (a) and martensite
with a tetragonal distortion of c/a = 1.29 (b) and for the corresponding alloy containing 5% Co in
(c) and (d). Plotted are the total of the interaction constants consisting of the s − p and d electron
contributions as well as mixed terms from the different orbital contributions. For details, see the
corresponding decomposition of Mn-rich Ni50Mn30Ga20 in [24]. The notation used is obvious: The
first atom is always at the origin and the distance between the atom sites is n units of the lattice
constant. Positive exchange interactions are ferromagnetic and negative exchange interactions are
antiferromagnetic ones. Reprinted from Ref. [88]. © (2018) by Wiley-VCH

is obvious from Fig. 6.12. We would like to emphasize that the disordered array
of magnetic atoms will also favor the formation of a strain-glass phase as in
Ni55−xCoxMn20Ga25 [2].

In order to see whether the competing magnetic interactions may enhance the
tendency for noncollinear spin configurations, we have performed a few model
calculations by allowing for different spin orientations of the neighboring Mn spins.
Figure 6.13 shows typical resulting configurations which are indeed lower in energy
by a few meV than the collinear one (calculations by S. Mankovsky [61] and
L. Sandratskii [62]).
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Fig. 6.13 Noncollinear magnetic moments between neighboring Mn atoms in a 16-atom supercell
for Ni7Co1Mn6In2 Heusler alloy. Left: Spin configuration obtained with the SPR KKR method
[61] which is slightly lower in energy than the configuration in the right panel [62]. Reprinted
from Ref. [88]. © (2018) by Wiley-VCH

Fig. 6.14 A model description of the resulting magnetic configuration after the sample decom-
position in a magnetic field adapted from [4]. The yellow area represents the precipitated Heusler
in the surrounding antiferromagnetically aligned Ni-Mn. The red arrows depict the spins in the
applied field direction during segregation which are strongly pinned by the interlayer exchange.
The blue spins are those which align only in an external magnetic field. In (a) all spins are aligned
in the external field. In (b) the external field is zero. In (c) the core spins align opposite the reverse
field direction

A new functionality and on the edge of noncollinearity have indeed been
observed in antiferromagnetic martensitic Heusler Ni50Mn45In5, where shell ferro-
magnetism of nano-Heuslers is generated by segregation under magnetic field [4],
which is shown in Fig. 6.14. Figure 6.15 shows recent observation of nanoscale
skyrmions in a nonchiral multiferroic Ni2MnGa Heusler material [7].

6.4 Decomposition in Less Rapidly Quenched Heusler Alloys

In a series of publications a systematic adjustment of composition for magnetic
ordering and giant magnetocaloric effect has been discussed [63–65]. It appears
that for the Ni-Mn-Sn alloy system, this compositional tuning has dramatic effects
on the microstructural development influencing structural as well as magnetic phase
transitions in that it can mask the magnetostructural behavior in Ni50Mn37Sn13.
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Fig. 6.15 High-resolution under-focus image of a bubble domain in (a) 0 mT and (d) 180 mT
field with corresponding color maps in panels (b) and (e). (c) and (f) show the corresponding
under-focus LTEM Images and (g) and (h) show the 3D representation of the simulated magnetic
spin textures. Image adapted from [7]. Reprinted with permission from Phatak et al. [7]. Copyright
(2016) American Chemical Society

Consistent with the magnetization data, transition electron microscopy examination
confirms that Ni50Mn50−xSnx is decomposed into two phases with x = 20 and
x = 1. Hence, one may conclude that the martensitic transformation occurs only in
those compositions where the single phase L21 has been retained in a metastable
state on cooling [64]. In a subsequent experiment it was checked that 150 K
below the disorder-order transition (B2 → L21) on a 1223 K homogenized sample
the magnetization measurements show drastic changes of the annealed samples.
Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis
confirmed the decomposition of the single-phase Heusler alloys into two phases
with compositions close to Ni54Mn45Sn1 and Ni50Mn30Sn20. The observed phase
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decomposition indicates that the off-stoichiometric Ni-Mn-Sn Heusler alloys, which
feature martensitic transformations, are metastable at 773 K.

On the other hand, thermal stability of high-temperature Ni-Mn-Ga alloys in
the range 620–770 K was investigated by Cesari et al. showing that increasing
the e/a ratio by substitution of Ga with Mn results in very stable alloys under
aging [66]. This work aimed to characterize the martensitic transformation evolution
and microstructural changes produced by aging. Relatively large precipitates were
observed, for details see [66]. ‘Self-patterning’ of epitaxial Ni-Mn-Ga/MgO(001)
thin films was reported in [67]. Quite interestingly, also the influence of vacancies on
the martensitic transformation was studied in [68, 69]. A difference in the behavior
of modulated and non-modulated structures was observed.

The solidification process of metamagnetic Ni-Co-Mn-Sn was investigated by
Perez-Sierra et al. [70]. The as-cast microstructures are composed of four phases:
L21 austenite, 6-layered martensite, DO3 phase, and γ phase (disordered fcc).
Subsequent annealing at high temperatures at 1173 K completely dissolves the DO3
phase in the alloys and also the γ phase in alloys with low Co content. Effect of high-
temperature quenching on the martensitic transformation and magnetic properties
was discussed in [71].

This is not a complete list of publications but shows that disorder-order transi-
tions and related physical properties of shape memory and magnetocaloric Heusler
materials is a field of active research. Other experimental work shows trends or
new features like the exchange bias effect, which may arise from the competing
ferromagnetic–antiferromagnetic interactions in Heusler alloys with excess of Ni
or Mn atoms [72]. In any case, it has been shown by using ab initio calculations
that anomalous change of the nature of magnetic exchange interactions above
and below the magnetostructural phase transition from dominating ferromagnetic
interactions in austenite to antiferromagnetic interaction in martensite can very often
be related to metamagnetic features [73]. In [73] we have shown that for Mn-rich
Ni-Mn-Ga the competing magnetic interactions in austenite transform to dominating
antiferromagnetic interactions in martensite. The as-quenched austenitic alloys may
easily micro-segregate to form nanophase strain-glasses. Hence, we have another
driving force for forming strain-glasses in form of micro-segregation of the Heusler
alloys.

Indeed, ab initio calculations show that all Ni-Mn-based Heusler alloys with
excess of either Mn or Ni show tendencies for micro-segregation on the nano-scale
in form of, taking Ni-Mn-In as example,

Ni50Mn45In5 → Ni10Mn5In5 + Ni40Mn40,

i.e. Ni-Mn-In with intrinsically competing ferromagnetic and antiferromag-
netic interaction for the rapidly quenched alloys segregates into ferro-
magnetic L21 structure and an L10 antiferromagnetic Ni-Mn matrix [4].
Meanwhile, this micro-segregation has been confirmed for a series of Heusler
alloys, namely Ni49.6Mn45.5In4.9[4]. Ni49.8Mn45.1Sn5.1[74], Ni48.7Mn46.2Ga5.1
[75], Ni51.87Mn43.73Al4.40 [76].
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The tendencies for decomposition of the Ni-Mn-(Al, Ga, In, Sn) have to
be compared with the corresponding phase stability and magnetic properties of
Heusler type alloys, namely the critical temperature of the B2/L21 order–disorder
transformation determined by the DSC measurements for Ni50Mn50−xInx [77, 78]
compared with those for Ni-Mn-Al [79] and Ni-Mn-Ga [80], where it was shown
that the ordering sequence A2→B2′ →L21 may also be modeled by using the
Bragg-Williams approximation [81].

The order–disorder transformation temperature plays an important role when
discussing segregation in Heusler alloys. The closer in composition the alloy is, for
example, to the critical temperature of B2/L21 order–disorder transformation, the
easier one can relate segregation phenomena to the ordering process. However, this
is not always the case, as in Ni50Mn50−xZx alloys, the temper annealing experiments
to observe decomposition are done for alloy composition which are well outside the
order–disorder transformation area as shown in Fig. 6.16.

Taking Ni-Mn-In as an example for decomposition when temper-annealing the
alloy, we show in Fig. 6.17 that the B2/L21 ordering and the decomposition which
we observe in experiment occur outside the disorder-order phase transition.

6.5 Calculation of Mixing Energies in Heusler Alloys

A convenient way to look for the stability of compounds and alloys is to calculate
the mixing energy of the corresponding material system.
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Figure 6.18a, b shows the calculated mixing energies of the two Heusler alloy
systems Ni2Mn1+xIn1−x and Ni2Mn1+xSn1−x while the antiferromagnetic ordering
(columnar and staggered) is shown in Figs. 6.19 and 6.20. Spin ordering in binary
NiMn has been discussed very early by Kaspar and Kouvel [82] and Krén et al. [84].

In order to explain the physical behavior of the influence of annealing and phase
decomposition on the magnetostructural transitions in Ni50Mn39Sn11 (blue star in
Fig. 6.17) we refer to the work of [64] regarding the heat treatment of the alloys. To
study the role of chemical ordering in fine-tuning their magnetostructural properties,
the alloys were first annealed for 4 weeks at 1223 K to achieve structural and
compositional homogeneity, and were then further annealed for 1 week (∼150 K
below the reported B2 to L21 transition at 773 K to increase the degree of chemical
ordering). For 11 at.% Sn, this anneal resulted in a dramatic change in the magnetic
ordering temperature. Following the 1223 K anneal, the sample exhibited ferro-
magnetic ordering at 140 K. After the 773 K anneal, the ferromagnetic transition
is at 350 K, a characteristic of the ferromagnetic austenite phase for alloys with
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Fig. 6.18 Mixing energies and magnetic moments of (a) Ni2Mn1+x In1−x and (b)
Ni2Mn1+xSn1−x for two different antiferromagnetic spin orderings AF2 and AF3, which is
illustrated in Figs. 6.19 and 6.20. The mixing energy is calculated by assuming that over the whole
concentration range the decomposition of the alloy will lead to a dual-phase composite alloy
like L21 Ni50Mn25In25 and L10 Ni50Mn50. The Heusler precipitates are ferromagnetic while the
antiferromagnetic matrix is assumed to have AF2 ordering. The structures of antiferromagnetic of
Ni8Mn8 show considerable tetragonal deformations: “staggered AF” (a = 5.076, c/a = 1.4209),
“columnar AF” (a = 5.1066, c/a = 1.4019), see also Figs. 6.19 and 6.20. Reprinted from Ref.
[88]. © (2018) by Wiley-VCH
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Fig. 6.20 Antiferromagnetic spin structures, for which the mixing energies have been evaluated.
Left: “columnar AF” (AF2) and right: “staggered AF” (AF3) ordering. Reprinted from Ref. [88].
© (2018) by Wiley-VCH

15 < x < 25 content of Sn. The authors further find from transmission electron
microscopy examination that the alloy decomposed into two phases with x = 20 and
1. From this result one can conclude that the martensitic transformation occurs only
in those compositions where the single phase L21 has been retained in a metastable
state on cooling.

Thus the driving force for the decomposition seems not to be directly related to
the disordering-ordering B2/L21 phase transition, which is at higher temperatures,
it occurs for compositions near the martensitic instability. Nonetheless, in the spirit
of a unified theory of disorder-order and martensitic transformations we expect the
disorder-order and martensitic phase transition lines to intersect, which would place
the systems which segregate right in the interesting region of structural and disorder-
order transformation and segregation. Experimentally it seems to be difficult to get
information of disorder-order transformation at lower temperatures.

Our ab initio calculations of phonons for the disordered alloys confirm the
existence of the martensitic instability near this critical concentration. Earlier
calculations of Fermi surface nesting confirmed that nesting behavior is still present
for the non-stoichiometric, disordered systems. The number of valence electrons
which is larger in Ni-Mn-Sn (e/a ≈ 8.2) compared to stoichiometric Ni2MnGa
(e/a = 7.5) just blows the Fermi surface up but does not lead to complete vanishing
of nesting behavior.

There is a series of recent temper-annealing experiments on Ni-Mn-In [4],
Ni-Mn-Sn [74], Ni-Mn-Ga [75], Ni-Mn-Al [76] alloy systems all with high e/a

ratios and very well separated in temperature from the B2/L21 disordering-ordering
transition but also close to the martensitic transformation, which are also marked
in Fig. 6.17, with post-annealing temperatures from 650 to 750 K, which show



6 Probing Glassiness in Heuslers via Density Functional Theory Calculations 177

similar effects of segregation than just explained for the Sn-sample. Indeed in the
experimental setup one lets the samples undergo the martensitic transformation to
the L10 structure and subsequently observes the decomposition or segregation into
a dual-phase composite alloy, where the two phases are identified to be cubic L21
Ni50Mn25In25 and L10 Ni50Mn50 [4].

The results of decomposition for the Ni-Mn-In and Ni-Mn-Sn alloys have been
calculated by assuming that the segregation follows the prescription in Fig. 6.18,

Emixing = ENi2Mn1+x In1−x − (1 − x) ENi2MnIn − x E(NiMn)2, (6.8)

where the reference energy is the energy of the alloy decomposed into stoichiometric
Ni2MnIn and binary NiMn. We assume different antiferromagnetic configurations,
columnar (AF2) and staggered (AF3). The energies of segregation are quite
large and approximately correspond to the temperature scale in Fig. 6.17 of the
decomposed alloys Ni-Mn-(Al, Ga, In, Sn).

It seems to be obvious that the decomposition into stoichiometric precipitates
in a NiMn antiferromagnetic background of all alloy systems listed in Fig. 6.17 is
energetically favored. The decomposed Heusler alloys all have high e/a rations near
8.3 which puts them in the martensitic region or very close to it. But segregation
also occurs 150 K below the disorder-order transformation. So, it maybe debated
whether coexistence of disorder-order and martensitic tendencies may play a role in
these alloys and have to be considered within the frame of a unified description for
order–disorder and structural instability.

6.6 Conclusions

There is clear tendency that the decomposition of the Heusler alloys with large (e/a)

ratios leads to some nanophase materials which all bear glassy features ranging from
cluster-spin glasses to strain-glasses. The very nature of the decomposition itself
favors the formation of a nanocomposite alloy with glassy behavior. To be specific
the dual phases of the composite alloy, L21 (Co, Ni)2MnIn + L10 Ni50Mn50, are
separated by a three-dimensional array of nanophase or nanocomposite strain glass.
All basic ingredients for a strain and spin glass are there: Intrinsic disorder and
frustration as well as elastic anisotropy arising from symmetry breaking long-range
displacive fields leading to non-ergodicity in C44 and C’ on zero-stress-cooling
and stress-cooling (ZSC/SC) cycles. In spite of this segregation phenomenon,
reversible martensite transformation under low magnetic fields has been observed
in Ni45Co5Mn36.6In13.4 without segregation [85].
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Chapter 7
Strain Glasses

Yuanchao Ji, Shuai Ren, Dong Wang, Yu Wang, and Xiaobing Ren

Abstract Since its discovery in 2005 in a Ni-rich Ti-Ni alloy, strain glass has
drawn much attention in martensite/ferroelastic community and has been reported
to be a rather general phenomenon in martensitic/ferroelastic systems. In this
chapter we present a review of strain glass, including a brief history, its physical
origin, its generic phase diagram, followed by presenting strain glasses in var-
ious martensitic/ferroelastic systems induced by 0D defects (point defects), 1D
defects (dislocations), and 3D defects (nano-precipitates), respectively. The material
systems include Ti-Ni-based systems, Ti-Pd-based systems, Ti-based alloys, ferro-
magnetic shape memory alloys and ceramics. We further show that strain glass can
result in technologically important properties such as the “Gum metal” properties,
high damping, and giant magnetostriction at small field, thus making strain glass
a promising candidate for novel structural/functional materials. Finally, a “ferroic
glass” concept (the glass form of ferroic materials) is introduced by combining
three physically parallel glasses: strain glass, relaxor ferroelectrics, and cluster spin
glass. It is expected that ferroic glasses and generic ferroic glasses may yield unique
mechanical, electrical, magnetic properties, and thus may lead to a new class of
structural/functional materials.

7.1 A Brief History of Strain Glass

Since 1960s martensite community has been plagued by a puzzling phenomenon
known as “premartensitic tweed,” which refers to a cross-hatched or mottled
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nanoscale microstructure appearing well above the onset of martensitic transfor-
mation in many systems [1], and it has been subject to intensive debate [2]. The
term “premartensitic” signifies that the phenomenon occurs prior to a martensitic
transformation [3, 4] and also implies the linkage to the forthcoming martensitic
transformation.

Experiments indicate the tweed is an early stage of the low temperature phase,
the martensite, and thus it can be viewed as a “baby martensite” [3]. However, this
poses a big challenge to the classical theory of martensitic transformation, because
it is hard to understand why static (not dynamic) baby martensite can stay stable
over 100K above the martensitic transformation temperature. According to standard
theory of martensitic transformation [5], if stable martensite nuclei (i.e., the baby
martensite domains) are formed, martensitic transformation should have happened,
as nucleation is the bottleneck of a martensitic transformation.

A number of models [6–8] have been developed to account for the mys-
terious stability of the baby martensite while without triggering a martensitic
transformation, so as to circumvent the difficulty with the standard theory of
martensite. These models take into account the role of inhomogeneities (or point
defects) in stabilizing the baby martensite but without prematurely triggering a
formal martensitic transformation. As a result, the models predict that there is
a stable premartensitic tweed temperature region prior to the formal martensitic
transformation and the tweed should eventually transform into martensite at low
temperature. However, such models are challenged by experimental findings that
similar “premartensitic tweed” occurs in non-transforming compositions [3] where
the premartensitic microstructure does not end up into martensite.

In 2005 a critical experiment was performed for a non-transforming Ti-51.5Ni
alloy with mottled premartensitic nanodomains [9]. It was a dynamical mechanical
analysis (DMA) measurement, which measures the mechanical response of the sys-
tem to small AC stresses, in analogous to the magnetic susceptibility measurement
for magnetic systems. The experiment revealed that the hitherto unexplained non-
martensitic premartensitic alloy exhibits a frequency-dependent modulus dip (Fig. 2
of Ref. 9) with the dip temperature following Vogel-Fulcher relation. This behavior
very much resembles that found in spin glass and relaxor ferroelectrics (or electric
dipole glass), and strongly suggests a glass transition of lattice strain. Thus it is
named “strain glass.” Mechanical ZFC/FC (zero-field-cool/field-cool) measurement
[10] further shows characteristic branching of ZFC/FC curves, evidence of the
non-ergodicity—another important signature of glass. Up to this point, the long-
standing puzzle about the premartensitic tweed was solved, and it is a glass form
of martensitic/ferroelastic systems, a mechanical analog of spin glass in magnetic
systems and relaxor in ferroelectric systems [11, 12]. Glass features in spin glass
and relaxor ferroelectrics can be referred to chapters by Sherrington and Kleemann
in this volume [13, 14].

The experimental signatures of strain glass have been shown to be [11] (1)
frequency-dependent modulus dip or loss peak following Vogel-Fulcher relation, (2)
branching in mechanical ZFC/FC (zero-field-cool/field-cool) curves, (3) invariance
of average structure during heating/cooling or absence of martensitic transforma-
tion, and (4) existence of nanosized strain domains or local strain ordering.
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Fig. 7.1 Relationship among
martensite, strain glass, and
non-martensite revealed by
the different strain ordering
(i.e., long-range strain order,
short-range strain order, and
strain disorder, respectively)
[11]

The relationship among martensite, strain glass, and non-martensite is demon-
strated in Fig. 7.1. Martensite can be considered as “strain crystal”—a long-range
ordered form of lattice strain. By contrast, strain glass is a “strain jelly”—a frozen
local ordered form of lattice strain. Normal non-martensitic alloys can be considered
as dynamically disordered strains without static local strain, in analogous to a
normal paramagnetic material.

7.2 Origin of Strain Glass and a Generic Phase Diagram

Strain glass has been successfully modelled in phase-field models such as in Refs
15, 16; these models enable qualitative or quantitative explanation of the observed
strain glass features. Here, we provide a tutorial “domino-and-stone model” (Fig.
7.2) that enables one to “feel” why and how strain glass is formed.

Figure 7.2a shows that martensitic transformation can be viewed as the long-
range toppling of a domino chain when there are no “stones/defects” to disturb the
process. Figure 7.2b shows that with doping “stones/defects” into the domino chain
in the parent state, the long-range ordering is prohibited and instead a short-range
toppling will appear, forming a locally ordered “strain glass (STG)” state. Such
a local ordered domino phenomenon originates from different preference of each
stone when the neighboring tile is toppled. This is a pedagogical picture of strain
glass formation.

Wang et al. recently have provided a rigorous modelling and phase-field simula-
tions on strain glass [16, 17] based on the above picture, and their results reproduce
all known features of strain glass, including phase diagram. A detailed discussion
about modelling can refer to another chapter of this book [17].
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Fig. 7.2 A “domino-and-stone model” showing the microscopic formation mechanism of marten-
site and strain glass [11]. (a) Long-range toppling (strain ordering) without stones (defects). (b)
Short-range toppling (strain ordering) with many stones (defects). P, M, and STG represent the
parent phase (strain liquid), martensite (strain crystal), and strain glass, respectively

The above simple “domino-and-stone model” also shows how to produce strain
glass, i.e., doping “stones” into the “domino chain.” Up to now, experimental results
indeed confirm that the strain glass can be generated through doping sufficient
defects into a martensitic system [9, 18–22].

Figures 7.3 and 7.4 show a generic phase diagram of a strain glass system, which
has been experimentally verified in all strain glass systems. The phase diagram
contains four states of a ferroelastic system: normal parent phase (strain liquid),
unfrozen strain glass (tweed), martensite (long-range strain order or strain crystal),
and a strain glass (frozen local strain order or strain jelly) can be seen and the
relationship among them are shown as follows. At high temperature, the system
is in a normal parent phase, which can be viewed as an ideal strain liquid state
with dynamically disordered lattice strain (i.e., lattice vibration). With temperature
decreasing to Tnd (nanodomain formation temperature), the strain liquid becomes
sticky, i.e., some quasi-static clusters of lattice strain appears. This state was
previously named “precursor” or “premartensitic state.” Upon further cooling, the
strain liquid becomes stickier because of the formation of more quasi-static clusters.
Finally, it either transforms into martensite or freezes into a strain glass depending
on defect concentration. At low defect concentration (x < xc), the system transforms
into a martensite (strain crystal) due to the large thermodynamic driving force and
small local energy barrier. However, when the defect concentration is beyond a
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Fig. 7.3 A generic phase
diagram of a strain glass
system, where four different
strain states (normal parent
phase, martensite, tweed, and
strain glass) exist [11]. A
strain glass transition occurs
when the defect concentration
x exceeds a critical value xc.
Ms and Tg represent the
martensitic transformation
temperature and strain glass
transition temperature,
respectively

critical value (x > xc), the local barrier becomes large enough to prevent a long-
range strain ordering or martensite formation, and the system freezes into a strain
glass (frozen strain liquid).

This generic strain glass phase diagram (Fig. 7.3) can be used as a guide to
designing strain glasses. To discover or design a strain glass, one should first select
a system exhibiting normal martensitic transformation and then dope defects to
suppress the transition. When defect-doping level is above a critical concentration
xc, the martensitic transformation disappears and the system crossovers into strain
glass.

So far, defects that make a strain glass have been found to be one of the following
types according to their dimensions: point defects (0D), dislocations (1D), and
nanosized precipitates (3D). Probably 2D defects (like boundaries) can also make
a strain glass but this awaits future investigation. In the following sections we shall
provide examples showing strain glass induced by point defects (0D), dislocations
(1D), and nanosized precipitates (3D).

7.3 Strain Glass Induced by Point Defects

The first strain glass system reported is the famous Ti-Ni system in Ni-rich
(Ti50−xNi50+x) compositions, where excess Ni atoms are the point defects [9].
The transition behaviors as a function of defect concentration are shown in Fig. 7.5,
which appears to be a common feature of all strain glass systems [19]. At the
low defect concentration, a martensitic transformation occurs, characterized by a
DSC peak/dip, the presence of hysteresis in the resistivity curve, and the frequency
independence of elastic modulus dip temperature and of mechanical loss peak
temperature. Above a critical concentration (x > 1.3), strain glass appears, which
is characterized by the disappearance of DSC peak/dip, the absence of hysteresis
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Fig. 7.4 Schematic demonstration of the microstructure evolution of a strain glass system as
a function of temperature and defect concentration [19]. Arrows indicate the point-defects-
induced random stress. T0 and Tnd represent the ideal strain glass transition temperature and the
nanodomain formation temperature, respectively

in the resistivity curve, and the frequency dependence of elastic modulus dip
temperature and of mechanical loss peak temperature. The frequency dependence
follows the Volgel-Fulcher relation (ω = ω0 exp(−Ea/kB(Tg − T0)), a key signature
of strain glass transition. Other glass signatures such as branching of ZFC/FC curves
and invariance of average structure, local strain ordering can be referred to Refs.
[10–12].

Figure 7.6 shows the strain glass phase diagram of binary Ti50−xNi50+x

(0 < x < 3) alloys [19]. Besides the well-known parent phase (B2) and martensite
phase (B19′) in the previously reported phase diagram, two new states of precursor
phase and strain glass are also shown. Although both states are characterized by a
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Fig. 7.5 Transition behavior of Ti50−xNi50+x as a function of defect concentration, which shows a
crossover from martensitic transformation into strain glass transition [19]. (a), (e), (i), (m), and (q)
show heat flow curves; (b), (f), (j), (n), and (r) show the normalized electrical resistivity; (c), (g),
(k), (o), and (s) show the normalized storage modulus; (d), (h), (l), (p), and (t) show the internal
friction. Tg(ω) represents the freezing temperature at different frequency

short-range strain ordering, the former is primarily a dynamically disordered strain
state with some quasi-static strain nanodomains, the latter is a disordered strain
state with frozen nano-sized strain domains.

After the discovery of strain glass in Ti-Ni system, more strain glasses were
found in ternary Ti-Ni-X (X = Fe, Co, Cr, Mn) systems [20, 21] as shown in
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Fig. 7.6 Strain glass phase
diagram of binary
Ti50−xNi50+x alloys, where
the excess Ni atoms act as
point defects [19]. With
doping more Ni atoms, the
martensitic transformation
gradually suppresses and
instead the strain glass
transition appears

Fig. 7.7 Strain glass phase
diagram of ternary Ti-Ni-Fe
(Ti50Ni50−xFex) alloys, where
the Fe atoms act as point
defects [20]. Rs represents the
R-martensitic transformation
temperature

Figs. 7.7 and 7.8. Here, the substitutional X atoms act as point defects. The transition
behavior as a function of defect concentration is similar with that of Ti-Ni alloys as
shown in Fig. 7.5. In these ternary Ti-Ni-X systems an R martensite is found to exist
and locates between B19′ martensite and strain glass. The existence of R martensite
in Ti-Ni-X ternary systems explains a puzzle why in Ti-Ni binary system the strain
glass does not have a B19′ local symmetry but a R-like local symmetry. This is
because R martensite is disfavored relative to B19′ for long-range strain ordering
but favored for local strain ordering due to its small strain.

Strain glass in Ti-Ni-based systems appears well below room temperature, as
shown above. Figure 7.9 shows an example that a room temperature strain glass
can be achieved by doping point defects into high temperature martensitic systems
Ti-Pd-X (X = Fe, Mn, Cr) [23–25]. This may enable potential application of strain
glass at room temperature or even higher temperatures.
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Fig. 7.8 Strain glass phase diagram of ternary Ti-Ni-X (X = Co, Cr, Mn) alloys, where the X
atoms act as point defects [21]

Fig. 7.9 Strain glass phase diagram of high temperature shape memory alloys Ti-Pd-X (X = Fe,
Mn, Cr), where the X atoms act as point defects [24]

Figure 7.10 shows the strain glass phase diagram of Ti-xNb shape memory alloys
[26]. With increasing Nb concentration, the martensitic transformation from the β-
phase (BCC) to the α′′-phase (orthorhombic) is gradually suppressed and it finally
disappears above a critical value (xc∼25). When x > 25, the system undergoes a
strain glass transition. The GUM metal (Ti-23Nb-0.7Ta-2Zr-1.2O), which is known
to exhibit interesting properties such as low modulus, superelasticity, and Invar and
Elinvar effects after heavy plastic deformation, turned out to be a strain glass alloy
[26]. Recently, more strain glass systems have been reported in β-Ti alloys such as
Ti-26Nb-xO, Ti–xNb–2Zr–0.7Ta–1.2O, Ti–23Nb–2Zr–0.7Ta–xO, Ti–24Nb–4Zr–
8Sn (Ti2448), and Ti-30Nb-1Mo-4Sn [27–29].

Figure 7.11 shows the strain glass phase diagram of Ni55−xCoxMn20Ga25 [30]
and Ni55−xCoxFe20Ga25 [31] Heusler alloys, which are known as ferromagnetic
shape memory alloys (FSMAs). Similar with the nonmagnetic strain glass systems,
the martensitic transformation crossovers into strain glass transition by doping Co.
In this magnetic system it is noted that the ferromagnetic transition deviates from
the martensitic/strain glass transition with increasing the Co concentration, although
two transitions coincide at the lower Co compositions.

Very recently, strain glass has been reported in another ferromagnetic shape
memory alloy system Fe-Pd [32]. The strain glass phase diagram of Fe100−xPdx
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Fig. 7.10 Strain glass phase
diagram of Ti-xNb system,
where the Nb atoms act as
point defects [26]. The strain
glass transition also occurs in
the GUM metal
(Ti-23Nb-0.7Ta-2Zr-1.2O,
abbreviated as TNTZ-1.2O)
and has been added into the
phase diagram according to
its strain glass temperature
(T0)

Fig. 7.11 Strain glass phase diagram of ferromagnetic shape memory alloys (a)
Ni55−xCoxMn20Ga25 [30] and (b) Ni55−xCoxFe18Ga27 [31] Heusler alloys, where the Co
atoms act as point defects

(Fig. 7.12a) resembles those of Heusler alloys as shown in Fig. 7.11. In the
strain glass state of Fe67.7Pd32.3 a remarkable property has been found, i.e., a
low-field-triggered large magnetostriction (Fig. 7.12b), which is advantageous to
existing magnetostrictive materials like Terfenol-D and Ni-Mn-Ga. This finding
indicates that ferromagnetic strain glass may be an effective approach to design
high-performance magnetostrictive materials.

Strain glass is also reported in nonmetallic martensitic/ferroelastic ceramics.
Figure 7.13 shows the strain glass phase diagram of Bi1/2Na1/2TiO3-xBaTiO3 (BNT-
xBT) perovskite ceramics [33]. With doping BT into BNT, at low concentration
(e.g., x = 2) two ferroelastic/ferroelectric transitions are observed, manifested by
two dips in the modulus curves and two peaks in the mechanical loss curves (Fig.
7.14a). By contrast, at high concentration (e.g., x = 6) only strain glass transition
occurs (Fig. 7.14c). Besides BNT-BT system, strain glass has also been reported in
another ferroelastic ceramic system, La-doped CaTiO3 [34]. The mechanical and
functional properties of strain glass ceramics await future investigation.
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Fig. 7.12 (a) Strain glass phase diagram of Fe-Pd shape memory alloys (Fe100−xPdx), where the
Pd atoms act as point defects [32]. (b) Comparison of the magnetostrictive benchmark (λ//,s vs Hs)
between Fe-Pd alloys and main magnetostrictive families, including single crystal (SC) of FSMAs,
rare-earth-iron Laves phase alloys, and Fe-Ga alloys [32]. DS and PC represent directionally
solidfied alloys and polycrystalline alloys, respectively

Au7Cu5Al4 alloy has been reported to exhibit features of the strain glass
transition, but upon further cooling a martensitic transformation occurs [35, 36].
A Ni45Co5Mn36.6In13.4 alloy has been reported to show the absence of a thermally
induced martensitic transformation but the existence of a stress-induced martensitic
transformation (i.e., superelasticity) [37]. It is likely that this alloy is also a strain
glass and further investigation is necessary.
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Fig. 7.13 Strain glass phase
diagram of
Bi1/2Na1/2TiO3-xBaTiO3
(BNT-xBT) ceramics, where
the Ba2+ ions act as point
defects [33]

Fig. 7.14 (a–d) Transition evolution of BNT-xBT from the ferroelastic/martensitic transition
(x = 2, 4) to the strain glass transition (x = 6, 7) with increasing the Ba2+ concentration [33]
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7.4 Strain Glass Induced by Dislocations
and Nano-Precipitates

Strain glasses introduced so far are induced by point defects that can be considered
as 0D defects. In the following we shall show that strain glass can also be induced
by introducing dislocations (1D defects) or nanoparticles (3D defects) [38–40].

Figure 7.15 shows a temperature vs. dislocation-density phase diagram of
Ti50Ni45Fe5 alloys, where dislocations are produced through cold-rolling [38].
Being similar with point-defect-induced strain glass phase diagram, strain glass
appears when dislocation density is above a critical value (ρ>ρc). The nanodomains
of strain glass exhibit an R-like local structure, which is a reminiscence of the B2-R
martensitic transition.

Figure 7.16 shows another example of dislocation-induced strain glass in a
Ti49.2Ni50.8 alloy [39]. With increasing plastic deformation (thickness reduction,
εp), the B2-B19′ martensitic transformation gradually weakens and eventually
vanishes above a critical value (εp > 25%). Figures 7.16b, c show the existence
of strain glass transition for the εp = 27% sample. Interestingly, this strain glass
exhibits a quasi-linear slim-hysteretic superelasticity with a large recoverable strain
of ∼4% over a temperature range as wide as 200K (from 323 to 123K) (Fig. 7.16d).

Figure 7.17 shows the microstructure of εp = 27% strain glass sample at different
temperatures [39]. From the diffraction pattern, two sets of satellite spots can be
observed and are identified to be R-like spots (locating around 1/3(011)B2) and
B19′-like spots (locating around 1/2(011)B2). In situ dark-field imaging shows that
the density of R-like nanodomains remains unchanged while the density of B19′-like

Fig. 7.15 Temperature vs. dislocation-density strain glass phase diagram of Ti50Ni45Fe5 alloys,
where dislocations act as the defects [38]. With increasing dislocation density, the B2-R martensite
transition crossovers into a strain glass transition
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Fig. 7.16 (a) The change in transition entropy as a function of cold work εp. The inset describes
the DSC results with εp from 0% to 70% upon cooling [39]. (b) The disappearance of martensitic
transition in the εp = 27% sample. (c) The evidence for strain glass transition in the εp = 27%
sample, i.e., the frequency-dispersion of storage modulus, which follows the Vogel-Fulcher
relationship (Inset) [39]. (d) Stress-strain curves at different temperatures [39]

nanodomains increases upon cooling, indicating the B19′-like nanodomains playing
a major role in the properties. Therefore, the large superelasticity with slim
hysteresis can be explained by the growth of B19′-like nanodomains.

Figure 7.18 shows an example of strain glass induced by 3D defects (nano-
precipitates) in a Ti48.7Ni51.3 alloy [40]. The precipitate-free sample undergoes a
normal martensitic transition, characterized by a DSC peak/dip, the presence of
hysteresis in the resistivity curve, the temperature-dependent structural change, and
the frequency independence of elastic modulus dip temperature (Fig. 7.18a). By
contrast, in the nano-precipitate-bearing sample, a strain glass transition occurs,
being characterized by the absence of DSC peak/dip, the absence of hysteresis in
the resistivity curve, no temperature-dependent structural change, and the frequency
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Fig. 7.17 (a–d) TEM dark-field images and corresponding diffraction patterns of Ti49.2Ni50.8
strain glass alloy cold rolled down to a thickness reduction of 27% at 298 K (>Tg), 243 K (∼Tg),
193 K (<Tg), and 96 K, respectively [39]. The zone axis is [111]B2

dependence of modulus dip temperature (Fig. 7.18b). This nano-precipitate-induced
strain glass has R-like nanodomains, being the same as that of the point-defect-
induced strain glass in the Ti48Ni52 alloy (Fig. 7.19). Another example of nano-
precipitate-induced strain glass can be found in a Fe-based shape memory alloy
system [41].

7.5 Competing Consequences of Defect-Doping
in Ferroelastic/Martensite Systems: New Martensite vs.
Strain Glass

It should be noted that doping defects into a ferroelastic/martensitic system does
not always lead to strain glass; in many cases it leads to a new martensite. Examples
include doping Pd or Cu into Ti-Ni alloys eventually lead to a new martensite B19
in Ti-Ni-Pd/Cu alloys, in contrast with the B19′ martensite in the undoped alloy.
Therefore, there exists a competition between a new martensite and strain glass in
some defect-doped systems.
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Fig. 7.18 (a, b) Evidence for martensitic transformation and strain glass transition in precipitate-
free and precipitate-bearing samples, respectively [49]

Figure 7.20 shows a 3D phase diagram of Ti50−yNi50+y−xPdx alloys. At y = 0
(i.e., no anti-site defects in Ti-site), the Ti50Ni50−xPdx phase diagram (Fig. 7.20a)
shows a crossover from B19′ martensite into a new martensite B19 by doping Pd
[42]. On the other hand, at y = 1 the Ti49Ni51−xPdx phase diagram in Fig. 7.20b
shows an interesting “sandwich-like” shape, characterized by a crossover from
B19′ martensite into strain glass first and then into B19 martensite. The DMA data
corresponding to this unique phase diagram are given in Fig. 7.21.
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Fig. 7.19 TEM images and corresponding diffraction patterns of (a) nano-precipitates induced
strain glass and (b) point-defects induced strain glass. Both have the same R-like nano-domains
(indicated by the incommensurate 1/3 diffuse spots in the inset) [49]

Fig. 7.20 3D phase diagram of Ti50−yNi50+y−xPdx (x = 0–25, y = 0 and 1) [42]. (a) Phase dia-
gram of Ti50Ni50−xPdx (x = 0–25). (b) Sandwich-like strain glass phase diagram of Ti49Ni51−xPdx
(x = 0–25)
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Fig. 7.21 Transition behaviors of Ti50Ni50−xPdx (x = 0, 3, 7.5, 15, 20, 25). Insets exhibit Vogel-
Fulcher relation fitting of each strain glass transition

This sandwich-like strain glass phase diagram can be understood from the
dual role of Pd. On one hand, it destabilizes B19′ martensite and stabilizes B19
martensite, thus resulting in a crossover from B19′ martensite into B19 martensite
in Ti50Ni50−xPdx (Fig. 7.20a). On the other hand, in Ti49Ni51−xPdx the system is
close to strain glass due to excess Ni doping. In such a situation the randomness
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caused by Pd doping changes the B19′ martensite into a strain glass first and then
into a new martensite B19 due to the stabilization effect of Pd on B19 martensite.

7.6 Summary and Outlook

In this chapter we have reviewed the state of the art of strain glass research since
2005. It is shown that strain glass can be viewed as a “strain jelly” with frozen
local strains, and can be generally produced by doping into a martensitic/ferroelastic
system with sufficient amount of defects, such as dopant atoms (0D), dislocations
(1D), and nano-precipitates (3D). It is likely that planar defects (2D) may also
produce strain glass, and this speculation awaits future experiment for verification.

Strain glass exhibits unusual properties unexpected for a martensitic alloy,
including superelasticity with slim hysteresis over a wide temperature range, Invar,
Elinvar effect, low modulus, and high damping. Ferromagnetic strain glass alloy
Fe-Pd is shown to exhibit a remarkable low-field-triggered large magnetostriction.
These unique properties suggest strain glass may become a new class of func-
tional/structural materials.

Strain glass exhibits all glass features, being physically parallel with cluster spin
glass and relaxor ferroelectrics. These three types of glasses can be generalized by
a new name “ferroic glass” and they share very similar glass features.

Besides the typical ferroic glasses (i.e., without long-range ferroic order,
Fig. 7.22 left), it is in principle possible to have another two classes of ferroic-
glass-derived states/materials. One is glass-ferroic composite [43], a mixture of
nanosized ferroic domains with large ferroic domains (Fig. 7.22 center). This
state occurs at the crossover composition between ferroic phase and ferroic glass.
Another is LRO-matrix ferroic glass, nanosized ferroic glass domains embedded

Fig. 7.22 Schematic microstructure of ferroic glass, glass-ferroic composite, and LRO-matrix
ferroic glass
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into large ferroic domain (Fig. 7.22 right). These new states are expected to show
unusual properties absent in both ferroic glass and ferroic phases. Investigations
along these directions are highly desired, and they may provide new opportunities
for ferroic materials.
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Chapter 8
Discrete Pseudo Spin and Continuum
Models for Strain Glass

Dezhen Xue and Turab Lookman

Abstract Strain glass refers to a frozen disordered state of lattice strain, conjugate
to the long-range ordering in ferroelastics. A number of descriptions have been
invoked over the last few years to model strain glasses. These include the continuum
Landau free energy approach with added disorder, and the discrete pseudo spin
model. We review these and focus on the discrete pseudo spin model, which
is derived from the continuum Landau model in the sharp interface limit. We
also show how the pseudo spin model leads to predictions that can be confirmed
experimentally. We conclude by briefly discussing how the continuum model can
be coupled with machine learning to provide a basis for rapidly finding material
attributes that optimize alloy response.

8.1 Introduction

Ferroic materials form an essential subgroup of functional materials whose physical
properties are sensitive to the changes in external conditions such as temperature,
pressure, electric, and magnetic fields. A phase transition with symmetry-breaking
usually occurs in ferroic materials, leading to two or more orientation states of
a physical property (or an order parameter) corresponding to the same energy.
Moreover, the states can be switched by the application of an external field (electric,
magnetic or stress depending on the ferroic property). The most important three
classes of primary ferroic materials are ferroelectrics with long-range ordering
of electric dipoles, ferromagnets with long-range ordering of magnetic moments,
and ferroelastics with long-range ordering of lattice strains below their critical
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temperatures. These ferroic materials have an anisotropic long-range interaction
encoding the various symmetries at play due to magnetic dipole interaction, electric
dipole interaction and strain compatibility, respectively, and consequently possess a
multi-orientation or domain configuration [1]. Improper ferroelectrics can also show
multi-orientation states due to the breaking of symmetry due to short wavelength
modes. For example, YMnO3, a magnetoelectric, shows the characteristic six
orientation states associated with the rotation of octahedra in the unit cell [2].
The hysteretic response of ferroics to external stimuli, and cross-coupling between
different responses, enables them to find a variety of applications as memory
devices, actuators, sensors, and transducers.

However, in the presence of quenched-in disorder, the long-range ordering
associated with the order parameters can be perturbed resulting in a frustrated state.
Examples include certain relaxor ferroelectrics and the usual spin glasses or cluster-
spin glass phases discussed in the previous chapters in this book. The state usually
manifests in its non-ergodic response, slow dynamics and nanoscale heterogeneities,
and certain types of experiments are performed to characterize these aspects. The
state exhibiting such behavior is described as ferroic glass. This suggests the need
to exercise care in merely relying on these characteristics to identify a glassy state
as there are alloys that can display such signatures but are poly-twinned rather than
glassy. Recent experiments on shape memory alloys, as discussed by Ji et al. in this
book, have shown the existence of a strain glass phase in which localized random
configurations of lattice distortions are kinetically frozen below a glass transition
temperature, Tg. This glass phase was initially observed in non-martensitic Ni-rich
Ti50−xNi50+x alloys with B2 structure above a compositional threshold x ∼ 1.3,
below which the B2 to B19’ martensitic transformation takes place [3]. It can be
produced by introducing either point defects, compositional variations, precipitates
or dislocations into the host martensitic alloys, and has been identified in numerous
alloys including Ti-Ni-X (X = Fe, Co, Cr, Mn), Ti-Pd-X (X = Fe, Co, Cr, Mn)
systems [4–6], as well as ferromagnetic systems [7]. The strain glass shows typical
features of “dynamic or kinetic freezing” measured by dynamic mechanical analysis
(DMA) experiments, and the breaking down of ergodicity measured by zero-field-
cooling and field-cooling (ZFC/FC) experiments [8, 9]. The phenomena observed in
strain glass are analogous to those observed in other ferroic glasses, including spin
glass and relaxor ferroelectrics. The concept of strain glass is not only of interest in
terms of distill physics purely based on strain, but also provides its unique aspects
relevant to applications such as the shape-memory effect and pseudoelasticity, which
are typical of alloys undergoing martensitic transformations [10]. Moreover, the
pretransitional “tweed” phase, which can exist over a wide temperature range 100 K
above the martensitic transformation, shows no glass-like responses within the
current experimental measurement capabilities. However, the tweed phase shows
short-range strain order and has previously been suggested and modeled as a glassy
state [11–13].

Motivated by the experiments referred to above, there have been a number
of studies recently focused on describing the glass phase. These have attempted
to elucidate the nature of strain glass in analogy with spin glass and relaxor
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ferroelectrics [14–17]. The focus has been to recognize the importance of the elastic
long-range interaction and disorder via chemical inhomogeneity or compositional
fluctuations in the context of martensites, where the interplay of short range and
long range order gives rise to an ordered phase with a characteristic twin width
(see Chaps. 7, 9, 10). These studies have largely been of two kinds, namely (a)
those that utilize a continuum Landau free energy approach with elastic energy and
disorder and solve a relaxation dynamics equation [18–20], and (b) those that derive
a discrete model from the continuum Landau description and utilize the tools of
statistical mechanics to obtain predictions of the glass behavior [14, 15, 21–23].
Our purpose here is to review these mesoscopic models for strain glass. Thus,
the work we describe makes connections with Chap. 1 (Sherrington) as well as
Chaps. 7 (Ji et al.), 9 (Lloveras et al.) and 10 (Wang et al.). We will also show
that the discrete formulation or pseudo spin model leads to predictions that can be
confirmed experimentally. We conclude this chapter with some suggestions of how
in the context of Landau continuum models, informatics tools can aid to accelerate
the discovery of alloys with given parameters encoding defect concentration and
potency.

8.2 A Continuum Landau Model with Elastic Interactions
and Defects

A continuum Landau model and its variations have been used to simulate the glassy
features, the microstructure evolution and especially how intrinsic inhomogeneities
arise, including when coupled to magnetization and charge [24]. Here we will focus
on the origin of the elastic interactions in a purely strain based picture as it is
the competition of the long-range and short range interactions within the Landau
description that creates heterogeneities, such as the ordered twins in martensites.
The disorder is an additional factor that essentially perturbs the ordered state
and forms a glass. We will consider a two-dimensional (2D) square to rectangle
transformation driven by the deviatoric shear, which serves as an order parameter
for the shear driven martensitic transformation in an alloy such as FePd. This
transition is a 2D analog of a cubic to tetragonal or tetragonal to orthorhombic
transformation and is one of the simplest that illustrates the salient physics. To
describe elastic effects, the linearized strain tensor in a global reference frame is
defined as εij = (∂ui/∂rj + ∂uj/∂ri)/2 (i = 1, 2; j= 1, 2), where ui is the lattice
displacement. The strain tensor components, εxx is the longitudinal strain, εyy is the
transverse strain and εxy is the simple shear strain. The symmetry adapted strains
[25] e1, e2, and e3 representing the dilatational, deviatoric, and shear modes, are
defined by e1 = 1√

2
(εxx + εyy), e2 = 1√

2
(εxx − εyy) and e3 = εxy . And the three

adapted strains are not independent but related through the compatibility relation,

�2e1 −
(

∂2

∂x2 − ∂2

∂y2

)
e2 − √

8
∂2

∂x∂y
e3 = 0 (8.1)
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as they are derivatives of the same underlying displacement field. From a com-
putational point, a key difference between the approach using the compatibility
equation and that typically used in the phase field approach is that we eliminate
the displacements using this relationship and only solve for the strains. The usual
phase field approach eliminates strains and solves for the displacements. The free
energy density is written as the sum of three contributions, namely

f (e1, e2, e3) = fh(e2) + fgrad(�e2) + fnon-OP(e1, e3), (8.2)

where fh(e2) is the homogeneous Landau part accounting for the required non-
linearities in the order parameters, fgrad(�e2) is the gradient (Ginzburg) term
responsible for the interface energy in the order parameters, and fnon-OP(e1, e3)

is the contribution from the non-order parameter components of the strain which is
assumed to be harmonic and gives the long-range elastic interaction. The forms of
those contributions are chosen as

fh(e2) = 1

2
A2[T ]e2

2 + 1

4
βe2

4 + 1

6
γ e2

6 (8.3)

fgrad(�e2) = 1

2
g|�e2|2 (8.4)

fnon-OP(e1, e3) = 1

2
A1e1

2 + 1

2
A3e3

2, (8.5)

where A1 = C11 + C12 is the bulk modulus and A2 = C11 − C12 = 2C′ and A3 =
4C44 are elastic modulus associated with deviatoric and shear modes, respectively
[26]. The C11, C12, and C44 are the elastic constant tensor components for a crystal
with square symmetry. The time-dependent Ginzburg-Landau equation is used for
the time-evolution of the order parameter e2,

∂e2(r, t)
∂t

= �
δF

δe2(r, t)
, (8.6)

where � is a kinetic coefficient which controls the rate of free energy evolution. The
essential Landau contribution to the free energy for a first-order transition leads
to a single energy well corresponding to the parent phase at high temperature,
and a double energy well corresponding to the two martensite variants below the
martensitic transformation temperature.

Disorder may be added to drive the system to a strain glass or a premartensite
tweed [18]. One way to consider the effects of disorder is via a spatial fluctuation
in the martensitic transformation temperature, through A2[T , η(r)] = αT (T −
Tc) + αηη(r), where Tc is the lower stability limit of the high temperature parent
phase in the clean limit and η(r) is a random variable that can gaussian distributed
around zero and with spatial correlations that can delta correlated or described by
an exponential pair correlation function that Lloveras et al. (Chap. 9) have used.

Disorder may also be added by introducing a global variation of the martensite
stability together with a local breaking of the symmetry of the Landau potential.
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The former changes the stability of martensite through A2[T , c] = α[T −Tc −αcc],
where again Tc is the lower stability limit of the high temperature parent phase, c

is the defect concentration, and αc is the strength of defect necessary to change the
transformation temperature [20]. The latter incorporates local random deviatoric
stress field that interacts with the strain order parameters directly and breaks the
symmetry of the Landau potential through an extra contribution to the free energy
density of the form −e2ζ(r), where ζ(r) is a spatially distributed random field
coupled directly to the order parameter e2 [20].

A third approach, which we will consider in the next section, is to only introduce
the random dilatational stress field that couples to the non-order parameter strain e1.
The time-dependent simulations in all cases reproduce microstructure similar to the
premartensite tweed, strain glass state, and experimentally observed phase diagram
of a ferroelastic system in the presence of defects. The glass behavior is monitored
largely by the deviation in ZFC/FC curves (as in experiment) and/or presence of
glass like morphology. The difficulty with this is that it is not so straightforward to
identify a glass in the sense of a spin glass as an appropriate order parameter is not
defined. Thus, such models tend not to be particularly predictive. Hence, we will
consider in Sect. 8.4 a discrete version of the continuum strain model that allows us
to evaluate a spin glass like OP for strain glass.

8.3 A Strain Glass with Randomly Distributed Dopants

As mentioned, a random-field model for strain glass can be formulated with a
deviatoric strain/stress field directly coupled to the order parameter e2. Intuitively,
the dopants with different atomic sizes effectively replacing the host atom would
cause a local volume change of the lattice. In general, the dopants have different
atomic sizes compared to the host alloy and the size mismatch gives rise to a local
dilatational strain or stress. Thus, the effect of dopants can be modeled as a randomly
distributed dilatational stress in the system and the concentrations can be varied
by changing the number of dopants. A dilatational internal stresses coupled to a
volumetric strain (e1 = 1√

2
(εxx + εyy)) can be introduced.

We thus consider a 2D Ginzburg-Landau free energy that includes point defect
doping for a square to rectangle martensitic transition. The free energy density is
written as the summation of four contributions:

f (e1, e2, e3, ρ, σ11) = fh(e2)+fgrad(�e2)+fnon-OP(e1, e3)+fdefect(e1, ρ), (8.7)

where fh(e2), fgrad(�e2), and fnon-OP(e1, e3) are defined as before and are the
homogeneous Landau contribution, the gradient (Ginzburg) term and the contri-
bution due to the non-order parameter strain components, respectively. We couple
randomly distributed dilatational stresses, ρ, to the volume strain e1, that is,

fdefect(e1, ρ) = −e1ρ (8.8)
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The local dilatation stress will not only affect the dopant crystallographic site
but also its nearest neighbors and beyond because of long-range elastic forces.
Therefore, the dilatation stress will acquire a certain distribution rather than a Delta
function. We assume a Gaussian distribution of the form

ρ(r) = h
1

σ
√

2π
e

r2

2σ2 , (8.9)

such that different chemical dopants will have varied strengths in the host lat-
tice affected surrounding regions heterogeneously. Therefore, the combination of
parameters h (strength) and σ (range of stress disturbance) in Eq. (8.9) characterize
the dopants. By relaxing the free energy F(e2, e1, e3, ρ(r)) through solving the
time-dependent Ginzburg-Landau evolution equation (8.6), we can reproduce the
strain glass phase diagram. Figure 8.1 shows our preliminary simulation results of
the microstructure change with number of dopants or defect concentration. It has
been known for decades that the martensitic transformation temperature change
depends differently on the concentration for different types of point defects. For
Cr dopant, one percent in concentration can change the transformation temperature
by more than 150 K, where as for Co one needs more than 7% to decrease the
martensitic transformation temperature by 150 K. Certain dopants such as Fe, Cr, V,
Mn, Co can result in a strain glass state in TiNi, but dopants of Zr, Hf, Cu do not
give give to a strain glass. By varying the range (σ ) and the strength or potency (h)
within this model, the behavior of different dopants can be reproduced.

Fig. 8.1 Strain states with different defect concentrations at different temperatures. Green
describes the parent phase; Blue and red colors describe the two martensitic variants
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8.4 A Discrete Pseudo Spin Model for Strain Glass

An alternative, yet complementary approach to strain glass we discuss here is a
discrete pseudo spin model for martensites, which we obtain from the previous
continuum model, to which we add quenched disorder of varying strengths. The
methods of statistical mechanics then allow us to identify and distinguish the
different phases using the analog of a spin glass order parameter. The Renormal-
ization Group (RG) approach, as well as mean field and Monte Carlo approaches,
can then be used to study the pseudo spin model. RG allows us to integrate out
microscopic degrees of freedom so that the attractive basins characterize the physics
at large scales. The values of the interaction strength and strength of disorder
uniquely characterize the different phases, including the glassy state, thereby
allowing the phase diagram in terms of temperature and disorder to be predicted.
Thus, our approach makes contact with the discussion in Chap. 1 (Sherrington).
The continuum to discrete limit is achieved by replacing the OP strain, e2, for the
square to rectangle transformation by the discrete variable (pseudo spin), S, using
e2 → |e2S|; where S = 0,+1,−1 are the minima of the free energy representing
austenite and the two martensite variants. If we perform this mapping on the
nonlinear Landau free energy, it collapses to the linear crystal-field form w(T )S2

as S2 = S4 = S6, where the coefficient, w(T ), is some function of temperature.
Similarly, the gradient or interaction energy term g

2 (�e2)
2 may be written in terms

of the product SiSj involving discrete S values on neighboring sites < i, j > by
using the finite difference definition of gradient. Thus, the energy of the original
square to rectangle problem now transforms to

H = −
∑

<i,j>

Jij (T )SiSj + w(T )
∑

i

S2
i + A1

∑

i,j

SiUij Sj , (8.10)

with Si = 0,+1,−1, and where U is the long-range anisotropic elastic interaction
with strength A1. This is the well-known spin-1 or Blume-Capel model with long-
range interactions [21]. The interaction J is related to the interface energy, g, and
the minimum energy or ground state of H gives the well-known twin microstructure
in both 2D and 3D for a cubic to tetragonal transformation. Models such as these,
even though they are quite simplified, encode the main physics of the continuum
description, which is phenomenological anyway, and have the advantage of being
studied by well-known methods from spin glass theory. It is important to recognize
that such models, including the Landau phenomenological description, are effective
or mean field which can predict universal features, such as the phase diagram rather
than quantitative comparisons to experiments.

In analogy with usual spin glasses, we can add disorder to mimic the effects of
changing composition or defects (e.g., point defects, dislocations, precipitates) in
the strain alloys. The disorder-free hamiltonian of Eq. (8.10) does not consider the
long-range interaction. Based on Eq. (8.10), we take the nearest neighbor couplings
to be quenched independent random variables Jij . It is drawn from the distribution
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Fig. 8.2 Monte Carlo simulation results. (a) Typical microstructures on a 256 × 256 lattice in
the different phases of the phase diagram. (a1) austenite, (a2) tweed, (a3) martensite, and (a4)
strain glass. (b) Example of FC and ZFC curves for different levels of disorder. (c) Qualitative
phase diagram showing the influence of the long-range interaction and disorder on the various
phase transitions. Four different phases are shown: austenite, martensite, tweed, and strain glass.
Reprinted figure with permission from [23] Copyright (2018) by the American Physical Society

P(Jij ) with mean given by J (T ) and variance sJ , which is a measure of the
quenched disorder in the system. The form of the distribution is irrelevant to
the geometry of the phase diagram, indicating that this approach tries to capture
salient, universal features. A real-space RG approach can be applied to obtain the
experimentally observed phase diagram. In addition to the glass phase, this approach
predicts a tweed precursor phase, consistent with Monte Carlo simulations shown
in Fig. 8.2. Therefore, such an approach appears simpler and more reliable than the
replica/mean-field approach for this model.

The martensite (ferroelastic) phase is the analog of the ordered ferromagnetic
phase, and in terms of order parameters (OPs) used in mean field and replica theory,
this phase is identified by a non-zero magnetization m = < Si > �= 0, where
the averaging over the disorder is represented by the bar and the angle brackets
correspond to an average with respect to Boltzmann weights. There are two high
symmetry or paraelastic phases which are disordered. One favors the state S = 0,
and the other is identified as tweed with OP given by the martensite volume fraction

p = S2
i that separates the two phases. The tweed precursor is found to be ergodic

and non-glassy, in agreement with recent experiments.
At large scales, the effective hamiltonian favors variants S = ±1, and this

phase is also identified by the Edward-Anderson order parameter q = S2
i , which

corresponds to the overlap between two replicas q =< S1
i S2

i > of the system in
the replica formulation. We find that a first order phase transition occurs between
the austenite and martensite phase with τ ≈ 0 without disorder (σJ = 0), as
expected. As the disorder increases, an intermediate tweed phase exists before it
transforms into a low temperature phase (either martensite or glass). In the limit of
large disorder and low temperatures, there is a spin glass phase that we interpret as
strain glass. If the disorder is intermediate (1.3 < σJ < 2.3 in our model), we predict
a spontaneous phase transition from glass to martensite for a given concentration.



8 Discrete Pseudo Spin and Continuum Models for Strain Glass 213

Fig. 8.3 Comparison between theoretical and experimental phase diagrams. (a) Phase diagram
in the temperature-disorder (τ , σJ ) plane for our spin model, obtained within the RG projection
approximation. τ is the normalized temperature and σJ characterizes the amount of quenched dis-
order in the system. (b) Experimental phase diagram of the ternary ferroelastic Ti50(Pd50−xCrx)).
STG refers to strain glass. 9R is a new martensite phase formed, other than B19, if TiPd-based
alloys are doped with certain defects. It is a martensite with long periodic stacking structure.
Reprinted figure with permission from [23] Copyright (2018) by the American Physical Society

To check the predictions of the RG calculations, the temperature-composition
phase diagram of a modeled strain glass system given by Ti50(Pd50−xCrx) was
experimentally established, shown in Fig. 8.3b. The transformation behavior was
systematically investigated as a function of defect concentration x. In the low
doping concentration regime (x < 8), the system undergoes a normal B2 → B19
martensitic transformation with a sharp increase in electrical resistivity, a frequency-
independent peak in internal friction and a frequency-independent dip in storage
modulus. In the high doping concentration regime (x > 12), the alloy transforms
upon cooling from austenite through tweed to strain glass. A frequency-dependent
storage modulus dip and an internal friction peak can be observed for these strain
glass alloys, demonstrating a dynamic freezing strain-glass transition in these alloys.
Such behavior is in contrast with the frequency-independent response of the low
doping concentration alloys in the course of the martensitic transformation. The
most interesting phenomenon occurs within the crossover regime (9 < x < 12)
between martensite and strain glass, where the alloys experience all four strain
states of parent phase, tweed, strain glass, and martensite phase upon cooling. In
particular, a spontaneous transformation from strain glass to the martensite phase
(9R) takes place at the crossover regime. The Ti50(Pd40Cr10) alloy possesses a
frequency-dispersive internal friction peak and a storage modulus dip, followed by
a frequency-independent internal friction peak, which shows a similar feature to
the martensitic transformation. This indicates a spontaneous phase transformation
from strain glass to martensite phase occurs. According to the experimental results,
a phase diagram for Ti50(Pd50−xCrx) alloys, where a crossover composition regime
is included, is shown in Fig. 8.3b. This phase diagram is in good agreement with the
phase diagram from the RG approach as shown in Fig. 8.3a.
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8.5 Coupling Information Sciences with Landau Models

The Materials Genome Initiative (MGI) in the U.S. has created much recent interest
in accelerating materials discovery. A key challenge of this initiative is to reduce
the number of costly and time-consuming trial and error experiments required to
find new materials with targeted properties. This is not an easy task because the
space over which we need to search for new materials is vast due to the structural,
chemical, and microstructural complexity involved and only a small fraction of the
space has been experimentally investigated. Data-driven machine learning tools
have created much interest as they are very efficient in optimally guiding new
experiments or calculations to find materials with desired properties. However,
applying some of these tools that rely merely on data can be a problem because
they can yield suboptimal results, as the available training data are often limited
compared to the number of features (or material descriptors) and size of the space
over which one is searching for new compounds [27]. An advantage of materials
science is that knowledge in the form of scaling relations or constitutive laws
and functional relationships are often available from theory or known. Such prior
knowledge can be used with data to accelerate the discovery of new materials with
targeted properties [28]. The Landau model we have discussed applied to shape
memory alloys (SMAs) has been shown to capture reasonably well the underlying
physics of the shape memory effect (SME) and superelasticity (SE). Such a model
with dopants, which we have discussed in the context of strain glass, provides a
prototype example of how we can couple the results from simulations of the model
with a data-driven optimization method to find desired attributes or descriptors
encoding specific alloys that give rise to small energy dissipation [29].

The SE effect arises as a result of a stress induced martensitic transformation
and it appears in the parent phase above the transformation temperature. When the
high symmetry parent phase is stress loaded beyond a critical value, it transforms to
the low symmetry martensite phase; upon unloading, the martensite reverts back to
the parent phase which is the stable phase in energy. The martensitic transformation
gives rise to the large, non-linear, but recoverable strain, leading to a variety of
applications for SE. However, the martensitic transformation is typically a first-
order phase transition accompanied by large hysteresis in the stress-strain curve.
The enclosed area between loading and unloading curves is the amount of energy
dissipated during the stress-strain cycle and a measure of hysteresis. For practical
applications, a large energy dissipation or hysteresis is undesirable because it results
in serious fatigue problems of SMAs in devices (such as cardiovascular stents)
that require high sensitivity, precision, and durability. Finding new SMAs with
low energy dissipation accompanying SE is critical for realizing SMAs in practical
applications. Therefore, it serves as one of the design targets in SMAs. One can
modify the chemistry of SMAs experimentally, for example, by doping alloying
elements in the host alloy. The chemical modification would vary the stress-strain
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materials synthesis

posterior distribution
Data fitting

Training data

fitted model

Experimental designUpdating prior distribution

Prior knowledge Making measurement

prior distribution chosen measurementoutcome

Fig. 8.4 An illustrative view of the experimental design process when used recursively. Reprinted
figure from [29], Copyright (2018), with permission from Elsevier

response of SE and consequently, the energy dissipation. Our dilatational random-
field model for strain glass described in Sect. 8.3 can “mimic” the doping effects
by varying the model parameters. We thus integrated the Landau model (which
computes the stress-strain curve for prototypical SMAs at different temperatures and
doping concentrations) with the experimental design algorithms to rapidly optimize
the material specific model parameters (c, h, and σ ) that minimize the energy
dissipation associated with SE.

We assume a virtual set of different dopants that can be used. The range (σ )
and strength or potency (h) of the dopants, and the associated SE properties
are unknown. The design strategy is shown in Fig. 8.4. We build an inference
model for the energy dissipation as a function of dopant concentration, dopant
potency, and dopant range based on a small training dataset which was established
beforehand. The trained model is used together with the optimization algorithms
in the experimental design step to find the best dopant and concentration for the
next measurement. After the outcome of the chosen measurement is obtained by
using the Landau model, the prior distribution that encodes the prior knowledge
of unknown dopant parameters is updated to the posterior distribution. One can
make further measurements so that the posterior distribution serves as the new prior
distribution for the next design loop. In case no further measurements are needed,
the posterior distribution can be used to design the low energy dissipation material.
The design loop provides a potential strategy for designing materials with targeted
properties given that some parameters or features in the problem are unknown.
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8.6 Summary

We review the continuum Landau free energy approach with added disorder and
show how the discrete pseudo spin model is derived from the continuum model in
the sharp interface limit. We examine the predictions of this model, in particular,
we discuss how the temperature-composition phase diagram of a modeled strain
glass system given by Ti50(Pd50−xCrx ) can be established (Fig. 8.3b). The use of
machine learning and a phenomenological model, such as Landau theory, provides
a new paradigm for accelerating how we can find new materials, including new
ferroic glasses.
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Chapter 9
Mesoscopic Modelling of Strain Glass

P. Lloveras, T. Castán, M. Porta, A. Saxena, and A. Planes

Abstract Glassiness is ubiquitous in nature but it still keeps many fascinating
phenomena hidden. The discovery about a decade ago of glassy behavior in strain
nanoclusters (the strain glass) has extended ferroic glasses to include the ferroelastic
property. Here, by means of numerical modelling and comparison with experimental
data in the literature, we identify disorder and anisotropy as key parameters whose
interplay determines the ferroelastic behavior in alloys: While anisotropy-driven
systems exhibit a normal ferroelastic transition, disorder-driven systems may result
in the strain glass state. Interestingly, strain glass preserves functional properties
such as the shape memory effect (SME) and superelasticity. Moreover, it exhibits
hysteresis reduction and widening of operational temperature-stress range, which
enhances its technological appeal. Precisely based on the occurrence of the SME,
the relevance of geometrical frustration in strain glass is called into question as it
might play a minor role in the freezing process. In magnetostructural systems, the
multiferroic coupling could yield strain-mediated magnetic glass.
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9.1 Introduction

Glassiness is one of the most intriguing phenomenon in condensed matter physics
[1]. It basically refers to long-lived out-of-equilibrium states characterized by the
presence of quasistatic disorder, that replace the long-range anisotropic order arising
in thermodynamic solid phases. The freezing of these states results from a slowing-
down and subsequent arrest of the relaxation dynamics that is initiated by the drop of
thermal fluctuations across a phase instability within a (quasi-)degenerate, multiwell
free-energy landscape. This prevents the system from spontaneously finding the
path towards the thermodynamic equilibrium and thus blocks the occurrence of
a thermodynamic phase transition. The temperature below which the thermally
activated dynamically-disordered phases become effectively frozen (i.e., when
typical relaxation times reach the arbitrary threshold of ∼ 100 s) is denoted the
glass transition temperature.

The (extremely) slow yet continuous nonequilibrium relaxation process towards
the equilibrium is called aging and renders the glass properties to depend on time
and on thermal and external field history. While the time dependence entails fre-
quency dependent peaks in the susceptibility obtained by broadband spectroscopy,
the history dependence leads to a loss of ergodicity (in contrast to equilibrium
states which are ergodic [2]), which is revealed by the splitting of the curves in
Zero-Field-Cooling/Field-Cooling (ZFC/FC) protocols. Other traces characteristic
of the glass transition are the absence of signatures associated with the suppressed
thermodynamic phase transition, namely the lack of a calorimetric peak and
anomalies in the susceptibility.

Glassy characteristics are met in a wide variety of systems, involving one or more
physical quantities (such as translational, orientational, magnetic [3], vortex [4],
polar [5], orbital degrees of freedom [6], etc.) and exhibiting different correlation
lengths (canonical, clusterized). Moreover, depending on the particulars of the
system, different additional requirements for the vitrification must accompany the
thermal deactivation, such as fast cooling, geometrical frustration, and/or quenched-
in disorder. Therefore, glassiness does not refer to a unified framework accounting
for the underlying physics, but it rather corresponds to the aforementioned descrip-
tion of the phenomenology associated with a certain relaxation dynamics.

Beyond the fundamental interest in condensed matter physics, glasses exhibit
unique features related to structure, magnetism, and electricity that are absent in
equilibrium phases, and that makes them useful in a wide range of applications
[7]: windows, optical components, containers, construction materials, medicine
(bioactive implants), electronic components, recording heads, transformer cores,
diffraction gratings, planar channel waveguides, optical fiber amplifiers, lasers
and optical switches, and also in the development of new approaches to studying
problems in computer science, neural networks, biology and economics, and a
variety of other topics [8]. Hence, gaining insight into the underlying physics is
also important in order to control the emergence and stability of glassiness which is
crucial before considering any application.
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This chapter is devoted to modelling cluster glasses involving strain as the
primary frozen disordered physical quantity. This will include strain glass and
strain-mediated magnetic glass. Prior to going into the details of modelling a brief
overview on glasses will be presented, sketching the concepts of frustration, non-
ergodicity, and cluster glasses with respect to aspects that are relevant for strain
glasses. More importantly, we will particularly focus on the key role of anisotropy
and intrinsic disorder, which will be supported by our simulations. This will provide
insight into the common trends and requirements for the emergence of glassiness
in ferroelastics and ferroic systems in general. Multiferroic couplings and their
relationship to strain glass will be discussed as well.

9.1.1 Canonical Structural Glasses

Prototypical structural glasses refer to certain amorphous solids, and are obtained by
fast cooling from a supercooled liquid. The consequent sudden drop of the thermal
fluctuations traps the system in local minima between free-energy barriers such that
the relaxation towards the equilibrium crystalline phase is prevented. Instead, atoms
(or molecules) arrange in a disordered quasistatic network, with random positions
and orientations with no specific symmetry. These systems lack translational and
orientational invariance so that a Bravais lattice cannot be defined. Long range
order is absent, resulting in diffraction patterns with only one or very few diffuse
peaks, resembling that of liquids. However, they behave like solids, with diverging
viscosity at finite temperature (which is proportional to the relaxation time), and
often display useful technological properties.

Some liquids undergo thermodynamic phase transitions towards intermediate
phases where some type of dynamical disorder is still present, before ordering
completely across a lower-temperature transition towards the crystalline phase. This
is the case, for instance, of liquid crystals (nematic, smectic, discotic, cholesteric,
etc.), which are also known as anisotropic liquids due to the anisometric shape of
their molecules. This confers on them orientational order but (partial) translational
disorder. In contrast, plastic crystals are formed by globular molecules, yielding
orientational disorder but translational order. Like in supercooled liquids, upon fast
cooling these mesophases may undergo a glass transition involving the freezing
of the disordered state, giving rise to nematic, smectic [9, 10], and orientational
glasses [11].

It is worth emphasizing that the unique condition for vitrification of all these sys-
tems is fast cooling, in contrast to other glass-forming systems that originate from
frustration and/or intrinsic disorder, which will be reviewed later. The minimum
cooling rate needed to obtain glass depends on the system [12]; in fact, all ranges
have been reported: while all systems are suitable for undergoing the glass transition
provided that the cooling rate is high enough, some systems can easily form glassy
compounds, so that glassiness can hardly be avoided upon cooling. Signatures of the
glass transition may resemble second-order phase transitions (such as a continuous
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change of volume versus temperature with slope change and a step in calorimetric
signal) but it cannot be designated as a true thermodynamic transition since the glass
transition temperature depends on the cooling rate [12]. Slowing-down dynamics
may be very intricate and include multiple relaxations (primary, secondary, etc.)
associated with different degrees of freedom (intermolecular, intramolecular) in
such a way that susceptibilities may exhibit more than one peak associated with
glassiness.

9.1.2 Geometrical Frustration

Paramagnetic phases consist of spins arranged on a lattice with dynamically
disordered orientations, i.e. dominated by thermal fluctuations. This gives rise
to magnetically isotropic systems. Upon cooling below the Curie temperature,
typically the spins spontaneously evolve to an ordered configuration with parallel
orientations, establishing an anisotropic magnetic phase called ferromagnetic.
Nevertheless, under certain circumstances the ferromagnetic transition may be
suppressed, with the spins frozen in a static orientationally disordered configuration
which is called spin glass. Glassiness in magnetic systems may result from fast
cooling as in the case of structural glasses, but also from an incompatibility between
the magnetic interactions and the underlying topology of the lattice. The latter
situation is referred to as geometrical frustration [13], and may take place when
antiferromagnetic exchange interactions arise. The simplest, prototypical example
is an antiferromagnetic order on a triangular lattice. There, it becomes clear that
energy minimization of all bonds cannot be satisfied at the same time. This leads
to multiplicity of ground states with residual entropy at T = 0. Notice that this is
essentially different from the case of the structural glasses discussed in the preceding
section, where the global thermodynamic minimum does exist, despite being not
reached due to kinetic reasons. Although in both classes of glasses the existence
of multiple quasi-degenerate minima causes the trapping of the system in a limited
area of the phase space, leading to non-ergodicity and a lack of long-range order, in
purely frustrated systems such as the antiferromagnetic triangular lattice, glassiness
is an intrinsic feature of the system, as it appears inevitably regardless of the cooling
rate.

Other examples of geometrically frustrated magnets are found in the Kagome
lattice [14, 15], pyrochlore oxides [16], and artificial spin ice [17], where the
coexistence of ferromagnetic and antiferromagnetic interactions resembles the
configurational disorder associated with the doubly degenerate position of hydrogen
in water ice. Notice that water ice is a frustrated system, with a residual entropy
at T = 0 but, interestingly, it must be considered a thermodynamic phase, as
it is reached on cooling across a first-order phase transition with a finite volume
change and associated latent heat. Therefore, one can deduce that frustration is not
exclusive in glassy systems. Some magnetic systems with competing ferromagnetic
and antiferromagnetic interactions may exhibit exotic frustrated magnetic phases,
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although they cannot be designated as glasses [18]. Even liquids have been proposed
as frustrated systems as well [19, 20], although this is still under discussion. From
this it can be inferred that the set of experimental evidence shared by all glasses,
regardless of the diverse underlying physical causes, must be met to establish
rigorously the existence of vitrification. That is to say, systems exhibiting only a
few of them cannot be claimed as glasses.

9.2 Anisotropy and Intrinsic Disorder

In addition to fast cooling and frustration, a third independent cause for glassiness is
the presence of quenched-in disorder, which is particularly relevant in strain glasses.
We remark here that these three triggering factors are independent, although the two
latter cases, frustration and quenched-in disorder, often appear together. A deeper
discussion concerning this issue will be presented in Sect. 9.3.2. In the present
section, we will focus on the role of intrinsic disorder and anisotropy. They will
be proposed as quite general parameters that can be used for characterization of
thermodynamic and glassy phases, in particular those concerning ferroic systems
and their corresponding cluster glasses.

9.2.1 Anisotropy

We have seen that the thermodynamic phase transitions that are susceptible to be
replaced by vitrification are accompanied by a local symmetry breaking with a
consequent increase in anisotropy in the low-temperature phase, and the establish-
ment or increase of long-range order. The latter allows to define the anisotropy as
an intensive thermodynamic variable, setting up a link between long-range order
and the anisotropy of the thermodynamic phases [21–23]. A simple example is the
lattice periodicity and related space group resulting from crystallization. Instead, the
crossover to the glassy state occurs only if the symmetry loss is inhibited, and the
long-range order cannot be achieved or increased. In this case, the anisotropy is kept
rather constant throughout the freezing process.

In addition, in many systems such as ferroics, the local symmetry breaking is
degenerate, and the existing symmetry-related domains propagate long distances in
an orderly manner mediated by dipolar-like long-range interactions and subjected
to specific boundary conditions, such as phase boundaries or free surfaces. This
self-accommodation process yields the emergence of long-range, low-symmetry
domains with specific morphologies that can also be considered as an additional
thermodynamic signature of the anisotropy of the system. Let us recall here that
this feature is common to all ferroics, including ferromagnets, ferroelectrics, and
ferroelastics. It is however apparent that the underlying physics is different: Whereas
the electric and magnetic degrees of freedom are vectors, elastic strain is a rank-2
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tensor. Moreover, while electric and magnetic fields are long ranged in nature,
elastic interactions are propagated by a “knock-on effect.” In fact, they emerge from
compatibility constraints in the strain field arising from the underlying displacement
field.

In the case of ferromagnets, for instance, there is a shape anisotropy arising
from dipolar interactions (i.e. the demagnetizing factor) and a magnetocrystalline
anisotropy coming from coupling of the magnetic degrees of freedom to the
underlying lattice. Precisely, within ferroic variables, the strain is of particular
interest because very often it plays an important role in multiferroic couplings,
as it defines the lattice where magnetic and electric dipoles reside. With respect
to the former, lattice (or sublattice) spacing determines the sign of the exchange
parameter, thus setting the ferromagnetic or antiferromagnetic character of magnetic
interactions. In turn, electric dipoles emerge from off-center ions as a consequence
of a lattice distortion and magnetoelectric coupling is often mediated by strain
[24]. Therefore, to gain insight into ferroics it is useful to start with the analysis
of pure ferroelastic systems, where strain is the unique ferroic property that fully
characterizes the system in terms of the free energy.

Ferroelastic transitions are usually triggered by the softening of certain phonon
modes that stabilize the low-symmetry phase. Such soft directions, and the sub-
sequent low elastic constants provide the lattice with easy channels that rule
the long-range elastic interactions. This results in highly anisotropic patterns that
usually organize in the form of twin related domains (or variants). In cubic systems,
for instance, the elastic anisotropy factor is defined as A = C44/C′ with C44 and
C′ being elastic constants associated with shear and deviatoric modes, respectively.
In ferroelastic transitions, A gains relevance as a result of the softening of C′
while other elastic constants maintain their magnitude to a good approximation.
Indeed, it can be inferred that, in general, the anisotropy is directly involved in
the strength of the forces giving rise to long-range order. In the next section,
mathematical explanation supporting this argument will be given for a square-
to-rectangle transition. The role of long-range anisotropic elastic interactions is
indeed prominent. In most of the systems, they suppress the otherwise decisive
role of the critical fluctuations, thus rendering the transition athermal. In this case,
thermal fluctuations are not the triggering factor leading up to the transition but
temperature acts as a scalar control parameter like an external applied field. Hence, it
is reasonable that some ferroelastic (and other ferroic) phase transitions are referred
to as anisotropy-driven transformations.

Now it is worth considering two aspects related to twinning: First, twinning is not
an inherent fact of the phase transition but the anisotropic long-range response of the
ferroelastic phase to the coexistence with the high-symmetry phase taking advantage
of the degenerate multi-well structure of the free energy. Second, the specific
transformation path taken by the self-accommodation process, and consequently
the microstructure of a given ferroelastic material depend on a number of additional
factors: the initial nucleation conditions, the specimen size, grain size, history,
external conditions, coupling with other entities like magnetic fields, the presence
of impurities and defects, the specific composition, etc., and there may be a high
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degree of complexity. In fact, defects may also act as pinning centers for twin
boundary motion, eventually leading to unique paths for forward and backward
transformations, which results in small hysteresis in temperature [25]. The length
scale of twins may range from few nanometers to tenths of millimeters [26], with
twin boundary mobilities that may be very high or essentially zero [27]. Self-similar
patterns—twins within twins and hierarchical patterns—have also been observed.
Polycrystals also show a coexistence of variants with multiple length scales, etc.
Hence, it is apparent that the specific stabilized configuration of the twin interfaces
is different from case to case. Within this framework, it has been suggested that,
while anisotropy underpins the long-range interactions, when combined with real
heterogeneous nucleation, it may also cause that some ferroics are unable to go
over the phase space but they get trapped into a certain region once a configuration
is stabilized, entailing a loss of ergodicity [28–30]. Also, the role of energy and
entropy barriers, and the possibility of glass-like behavior in ferroelastic models
without quenched disorder have been discussed elsewhere [31]. Hence, some
systems exhibiting multidomain patterns resulting from quasi-degenerate multiwell
energy profile may also be described as inhomogeneous, non-ergodic and/or
frustrated anisotropy-driven systems. However, they lack disorder and display long-
range order resulting from a first-order phase transition, thus excluding the glassy
character.

9.2.2 Intrinsic Disorder

The presence of intrinsic inhomogeneities has been already mentioned because it
leaves significant marks on the specific stabilized structures, but actually their origin
is diverse. Examples are point defects from intrinsic compositional fluctuations,
vacancies, interstitial and substitutional atoms from doping or self-doping, line
defects like dislocations, among others. Unavoidable or intentional disorder can in
general be characterized as random and local. While the local strain field arising
from impurities tries to propagate long distances through the knock-on effect, its
statistically random character may prevent any self-organized global process, and
the strain field finally decays at a short range.

Disorder has been observed to cause a number of effects on materials [32]. First,
it may cause rounding of phase transitions [33, 34], moving away from the sharp
case in the ideal clean limit and giving rise to multiphase coexistence well above
and below the transition point. Second, and intimately related to the first, disorder
may induce local free-energy barriers in such a way that the total free energy of the
system can adopt a bumpy profile with many degenerate and nearly degenerate low-
energy states that, in general, do not correspond to the global minimum of energy,
if it still exists [32].

In general, it is observed that the rounding of the transition results in anomalies in
the specific heat such as softening and shift of the peak towards lower temperatures,
changes in the baseline, power-law singularities, etc. Indeed, a more accurate sample
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treatment may result in a decrease and even removing of the anomalies. With
respect to this, anomalies in Cp have been proposed to be an indicator of the
level of dopant and lattice imperfections in a material [35]. Also, impurities have
been observed to modify the elastic constants of the material and, subsequently, its
elastic anisotropy. Consequently, the phase diagrams strongly depend on the level
of doping. Slight changes in the alloy composition can result in a large shift of the
transition temperature or even inhibition of the transformation.

It is significant, and may also be paradoxical, that ferroic systems in general and
ferroelastics in particular may exhibit frustration and non-ergodicity in two extreme
and opposite cases—from anisotropy-driven to disorder-driven—where physics is
dominated by either long-range or local interactions, respectively. Here it is worth
mentioning that frustration in ferroelastics may give rise to precursor nanoscale
textures, whose origin lies in the interplay between anisotropy and disorder. The
magnitude of the elastic anisotropy factor has been suggested to determine the
morphology of these patterns [36]. Pretransitional tweed consisting of cross-hatched
modulations of small strain of the low-temperature phase at temperatures above
the ferroelastic transition arise as the natural response of long-range interactions
to local coupling to disorder. Kartha et al. [37] showed that in the limit of infinite
anisotropy, tweed can be considered as a frustrated system and formally identified as
a spin glass. In finite-anisotropy real materials, however, tweed seems to lack glassy
signatures that do appear in strain glass [38].

9.2.3 Cluster Glasses

It is hence clear that both anisotropy and quenched-in disorder are intrinsic to
ferroic materials and play key roles in determining many of their properties.
Both high-anisotropy and high-disorder limits may lead to anisotropy-driven and
disorder-driven non-ergodicity and frustration [39], yet undergoing normal ferroic
transitions. However, above a certain threshold of disorder the growth of the
domains is interrupted at the nanoscale and long-range order cannot be achieved.
Hence, the thermodynamic transition throughout the system is suppressed and both
the symmetry breaking and consequent gain of anisotropy occur within these locally
transformed nanoregions only, losing their thermodynamic character. Frustration
may emerge as the long-range interactions cannot be satisfied because of the random
fields created by impurities [40, 41].

The slowing down and final arrest of the domain growth results in a vitrified
nanostructured state that is denoted cluster glass, as it is evidenced by the usual
frequency dispersion peak and non-ergodic ZFC/FC measurements. Cluster glasses
corresponding to all types of ferroic systems have been reported: cluster-spin glasses
[42–45], ferroelectric relaxors [5, 46], and strain glasses. Cluster glasses were
first interpreted as superparamagnetic and superferroelectric states but experimental
signatures pointing to glass behavior discarded such hypothesis.
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Fig. 9.1 Routes to glassiness: qualitative temperature-anisotropy phase diagram. Thermodynamic
(glass) phases are indicated by bold (italic) letters and the corresponding thermodynamic (glass)
transitions by thick (thin) arrows. Each phase is accompanied by a schematic representative
configuration

As a summary, Fig. 9.1 displays some typical thermodynamic and glass phases
linked by their corresponding transitions in a temperature-anisotropy diagram. They
are represented by bold and italic letters and thick and thin lines respectively,
and are accompanied by qualitative representative snapshots of configurations. The
direction of entropy and free energy increase is also shown.

Interestingly, these nanostructured glasses also display functional properties,
which in the past were thought to be associated with the occurrence of ferroic transi-
tions. This widens the operational range of alloy compositions and temperatures that
can be used for technological applications. In addition, even some properties may
be enhanced with respect to normal ferroics and other new ones may emerge. For
instance, the rounding of the susceptibility around the glass crossover spreads the
temperature interval where high response to an applied field is obtained. Hereafter
we will focus on ferroelastic systems and strain glasses, as they are the very last
ferroic cluster glasses discovered so far, although of crucial importance for both an
understanding of fundamental physics and technological applications.
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9.2.3.1 Strain Glass

Strain glass refers to a cluster glass consisting of ferroelastic (non-zero strain)
nanodomains, surrounded by a retained paraelastic matrix. It has been observed
to occur in ferroelastic alloys for off-stoichiometric compositions above a threshold
of doping for which the ferroelastic transition is inhibited. Prior to the discovery of
strain glass, it was believed that the transition temperature dropped drastically by
stabilizing the parent phase down to 0 K. This was consistent with the strong depen-
dence of the transition temperature on composition, a widely observed phenomenon
in alloys and compounds. However, a new framework was proposed for the non-
transforming composition regime after strain glass was simultaneously reported for
the first time by different research groups [47–49] in three different materials. It was,
however, the group of X. Ren in Tsukuba that drove the progress in this research
field throughout the last decade [50–60], laying the foundations of a firm new
paradigm by incorporating an increasing number of systems exhibiting strain glass,
including mainly shape memory alloys and ferromagnetic shape memory alloys,
but also gum metals and others, thus establishing this phenomenon as a generality
in alloys. A summary of temperature-composition phase diagrams of systems
exhibiting strain glass behavior [49, 52–54, 56–58, 60, 61] is shown in Fig. 9.2.
The critical composition xc above which the ferroelastic transition is inhibited may
in general depend on multiple features of the particular system. However, there
is experimental and theoretical evidence indicating the relevance of the elastic
anisotropy A as a key factor influencing xc. Although there are no systematic
experimental studies on the influence of A on the existence of the strain glass phase,
available data [52, 53, 62–66] is compiled in Fig. 9.3, showing indeed a correlation
between A and xc. More specifically, the higher the anisotropy, the higher the
critical concentration. While in Ti-Ni- and Ti-Pd-based alloys, strain glass behavior
has been observed above xc, in Fe-Pd, Cu-Al-Mn, and Ni-Al alloys the existence
of strain glass has not been studied yet. Close to xc, mixed phases containing
both normal ferroelastic and strain glass regions, and spontaneous strain glass-to-
ferroelastic transition have also been reported. This is analogous to observations in
ferromagnetic and ferroelectric systems, and extends the common framework shared
by ferroic systems.

As the transition temperature strongly depends on the composition, it is natural to
expect that other characteristics such as the elastic anisotropy may also be modified
by doping. For instance, ab initio density functional theory (DFT) calculations
predict a strong dependence of A on composition in Ti-Nb alloys: A = 3.2 for
Ti-18.75 at.%Nb, A = 2.4 for Ti-25 at.%Nb and A = 1.1 for Ti-31.25 at.%Nb
[67].

Strain glasses have been reported to meet all the required signatures to claim
the existence of glassy behavior: absence of a peak in calorimetry measurements,
frequency dependent peak in the real part (ac storage modulus) and the imaginary
part (loss tangent), non-ergodicity in Zero-Stress-Cooling/Stress-Cooling (ZSC/SC)
protocols, and evidence in X-Ray diffraction and high-resolution transmission
electron microscope (HRTEM) imaging [59].
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Fig. 9.2 Experimental temperature-composition phase diagrams of shape-memory alloys that are
known to display strain glass behavior in the non-transforming regime. References for the materials
are the following: Ti50−xNi50+x [49], Ti50Ni50−xCrx [53], Ti50Ni50−xMnx [53], Ti50Ni50−xFex

[54], Ti50Ni50−xCox [53], Ti50(Pd50−xCrx ) [52], Ti50(Pd50−xMnx ) [60], Ti50(Pd50−xFex ) [60],
Ni55−xCoxMn20Ga25 [57], Ti80−xNb20+x [58], (1 − x)(Bi0.5Na0.5)TiO3 − xBaTiO3 [56],
Ni50−xCoxMn39Sn11 [61] Solid symbols stand for the normal ferroelastic transition, empty
symbols refer to the crossover towards the strain glass and dashed lines indicate the critical
composition xc separating both regimes. Dotted line in Ni50−xCoxMn39Sn11 stands for a proposed
strain glass crossover. The inset is a schematic qualitative picture of the phase diagram, applicable
to all cases in general. Precursors refer to either pretransitional textures anticipating the ferroelastic
transition or unfrozen nanodomains above the strain glass

Among ferroelastics exhibiting a strain glass composition regime, it is specially
worth focusing on shape memory alloys because they display two outstanding
features related to the ferroelastic transition: The shape memory effect (SME) and
superelasticity [68], which consist of the shape recovery after severe stress-induced
deformations. This behavior confers upon them functional properties that are
intensively exploited in a broad variety of technological applications, ranging from
medical devices to sensors and actuators, muscular wires in robotics, mechanical
aeronautic and underwater couplings, and others.

It is well known that the operational characteristics of both superelasticity
and shape memory effect (i.e. onset temperature, hysteresis, etc.) are crucially
affected by the specific alloy composition [69–74]. To date, stoichiometric Ti-Ni
alloy is the most used shape-memory alloy due to its lasting durability (wear and
corrosion resistance), repeatability, and biocompatibility. However, Ti-Ni exhibits
large hysteresis in stress and temperature, and a narrow operating temperature
interval, which challenges a further technological development. The discovery of
strain glass, first observed precisely in off-stoichiometric Ti-Ni alloy, may overcome
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these obstacles since, unexpectedly, they also show both functional properties [50],
which in principle were thought to require a normal ferroelastic behavior. This
results in the widening of the operational temperature window and may reduce the
hysteresis as a consequence of the rounding of the stress-induced transition. Other
appealing properties absent in normal ferroelastics have been observed to arise in
the strain glass [75].

9.3 Modelling Strain Glass

This section is devoted to the analysis of numerical simulations obtained from
a mesoscopic model for ferroelastics. Modelling ferroelastic systems has been
extensively addressed by many different groups. Mesoscopic approaches can be
basically summarized in the sharp-interface minimizers introduced by Ball and
James [26, 76], phase fields based on Kachaturyan’s elasticity [77–79] or similar
theories [80], and models derived from Ginzburg-Landau (GL) theory [25, 81–83].
In turn, the latter, either in the usual continuum version [51, 83–85] or combined
with a discrete pseudo-spin mapping approach [31], has been also employed to
investigate non-ergodicity, frustration and glassy behavior in ferroelastic systems.

9.3.1 The Model

Here we present a GL free-energy functional to perform simulations of a square-to-
rectangle structural transition. This can be considered as the 2-dimensional analogue
of a 3-d cubic-to-tetragonal transition, commonly occurring among ferroelastics.
This becomes more meaningful since the former can be conceived as the cross-
section of the latter, where some strain textures of interest take place in certain 2-d
planes.

In a square lattice, the corresponding symmetry adapted strains e1, e2, and e3 are
hydrostatic, deviatoric, and shear modes, with associated harmonic elastic constants
A1 = (C11 + C12), A2 = (C11 − C12) = 2C′ and A3 = 4C44, respectively. Since
the tetragonal distortion e2 is the order-parameter (OP) strain of the transition, the
structural free-energy density fs contains a GL sixth-order polynomial expansion
fGL in terms of e2 as allowed by symmetry:

fGL(e2) = A2(T )

2
e2

2(r) + β

4
e4

2(r) + γ

6
e6

2(r) + κ

2
|∇e2(r)|2 (9.1)

where the nonlinear elastic parameters β and γ together with A2(T ) = αT (T −Tc)

account for the structural transition and the Ginzburg coefficient κ captures the
interfacial energy cost. Here, Tc is the lower stability limit of the high-temperature
phase and defines the equilibrium transition temperature Tt and the higher stability
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limit of the low-temperature phase Ti . Indeed, above Tt , Eq. (9.1) renders e2 = 0,
which corresponds to the undistorted paraelastic (or square) phase. Below Tt ,
e2 = ±e, that corresponds to the two twin rectangular orientation variants. However,
to properly describe heterogeneous structures in both ferroelastic systems and strain
glasses, anisotropy and disorder must also be included. In the following we will see
how both parameters can naturally be incorporated in the model.

9.3.1.1 Anisotropy

In addition to the OP expansion, the secondary strains e1 and e3 are taken into
account up to the harmonic contribution only, since they are expected to be small.
Hence, the resulting non-OP free-energy density fnon-OP is written as:

fnon-OP(e1, e3) = A1

2
e2

1 + A3

2
e2

3, (9.2)

so that the total free-energy density is expressed as fs(e1, e2, e3) = fGL(e2) +
fnon-OP(e1, e3). To ensure lattice integrity, the St. Vénant compatibility relation that
links the three strains derived from the 2-d underlying displacement field must be
taken into account [86]. It reduces fs to only two independent strains, e2 and e3.
Here, linear elasticity is assumed. After further minimization of the total free energy
with respect to e3, it can be expressed in terms of only e2. The resulting expression
for the non-OP free energy can be expressed as

Fnon-OP =
∫

fnon-OPdr =
∫

A3

2

(k2
x − k2

y)
2

(A3/A1)k4 + 8(kxky)2
|ẽ2(k)|2dk, (9.3)

where k is the wavevector of the reciprocal space and ẽ2(k) stands for the Fourier
transform of e2(r). This term is crucial to understand two characteristic features of
ferroelastic systems. On the one hand, it has a dipolar-like expression (decaying as
1/r2 in real space) that accounts for long-range elastic interactions. On the other
hand, it reveals that it is minimized for kx = ±ky , thus providing an explanation for
the directionality of the [11] and [11̄] twin interfaces. Notice that, since the elastic
anisotropy factor can be expressed as A = A3/2A2, then at constant temperature
A ∼ A3 from which it follows that A is directly related to the strength of
the dipolar interaction in Eq. (9.3). This is consistent with the highly anisotropic
character of twinning and explains why large values of anisotropy favor long-range
patterns. Here, variations in A will be carried out by modifying the value of A3,
while the ratio A3/A1 (in the denominator of the Fourier-space kernel) is kept
constant, making clear that we change the weight of the long-range interactions.
Actually, we have checked that variations of this ratio do not lead to qualitatively
new physics.
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9.3.1.2 Disorder

As here we mainly focus on shape memory alloys, it is appropriate to take into
account that they contain intrinsic disorder associated with inherent compositional
fluctuations and/or intentional doping that, in turn, is known to highly influence
their transition temperature. Hence, to naturally account for disorder we introduce a
random static field coupled to the harmonic term by replacing Tc by a distribution of
local stability limits (that in turn entail a distribution of local transition temperatures)
T̃c(r) = Tc + η(r), where η(r) is a random variable exponentially (i.e., short-
range) correlated in space and gaussian distributed with zero mean and variance ζ 2.
Variations of disorder will be taken into account by changing the value of standard
deviation ζ .

It is worth noting here that results are qualitatively independent of this specific
form of disorder. In fact, other forms of disorder have been considered in similar
models [31], but they do not lead to new physics as the key feature lies in
the local character of disorder competing against long-range anisotropic order.
In particular, our disorder is fully characterized by the correlation length and
the standard deviation, that determine the effective density and intensity of local
phase instabilities, respectively. Precisely, the comparison with experiments will
indicate that these characteristics have a physically relevant correspondence to
experimental disorder features at the mesoscale, which, in principle, could be
rigorously approached from a combination of experiments (specific doping, level
of off-stoichiometry) and ab initio calculations.

9.3.1.3 Numerical Simulations

Model parameters we use correspond to Fe70Pd30 and are given in Ref. [81]. The
free energy Fs is discretized by means of the finite differences scheme onto a square
mesh, typically of 512 × 512 mesoscopic unit cells. Boundary and initial conditions
will be imposed according to the needs of the particular simulation experiments.
The system will evolve following a purely relaxational dynamics until reaching a
stable configuration. Exhaustive numerical details of the simulations can be found
elsewhere [83–85]. Having said that, however, it is not our aim here to focus on
a quantitative description of a particular system but instead to provide a general
theoretical framework for strain glass from which qualitative behavior can be
inferred. Following this guideline, simulation results will be presented with neither
numerical scales nor specific anisotropy and disorder values, but only general trends
will be indicated. This will make it easier for a qualitative comparison with a number
of experimental observations in different systems.

First, a preliminary analysis of the model behavior will be carried out to discuss
and establish the physical grounds ruling ferroelastics and strain glasses. Next
sections will be devoted to the simulations of diverse aspects that are relevant
for their characterization, namely the structural morphology, thermodynamics, and
thermomechanics.
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9.3.2 Preliminary Analysis: Origin of Glassy Behavior

First, it is important to notice that the local transition temperatures do not correspond
to any thermodynamic transition temperature Tt as the latter must be unique across a
thermodynamic transition. It will only occur at Tt if long-range anisotropic interac-
tions are strong enough to correlate distant sites with different local phase stability,
thus unifying the transformation temperature. Instead, if long-range interactions are
weak with respect to disorder, the thermodynamic behavior may be broken, with the
subsequent suppression of the global transition.

From this point of view we can anticipate the prime achievement of this model,
which is twofold: (1) the ferroelastic transition is suppressed above a critical value
of disorder, and (2) the disorder threshold depends on the elastic anisotropy A :
The higher the anisotropy, the higher the disorder threshold, and it is found that the
latter goes approximately as ∼ √

A . This is shown in Fig. 9.3, in agreement with
experimental data from shape-memory alloys [87], and confirms the picture set out
in the introduction that points to the anisotropy and the disorder as the two key
parameters whose balance determines either normal ferroelastic or glassy behavior.

Also, it is interesting to explore the limit of zero anisotropy, that entails the
removal of the long-range interactions. In this case the model still displays glassy
behavior, and from the resultant local character of the free energy, the hypothesis
of geometrical frustration can be excluded. This is consistent with the idea that the

Fig. 9.3 Crossover between twinned and non-transforming systems. Solid symbols have been
obtained from experiments on different shape-memory alloys: Ti50−xNi50+x [62], Ti50Ni50−xCrx
[53], Ti50Ni50−xFex [62, 63], Ti50Pd50−xCrx [52], Fe75−xPd25+x [64], Cu50−xAl25Mn25+x [65]
and Ni50+xAl50−x [66]. Empty circles are simulation results. Figure adopted from Ref. [87]
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origin of the vitrification may lie in the kinetic arrest of the domain growth due
to the encounter between domains that belong to different variants. The process
can be summarized as follows: In the early stages of nucleation and growth of
ferroelastic nanodomains, the strain fields can be absorbed by the surrounding
paraelastic matrix. However, when the interfaces of different growing domains
approach each other, the domains either will percolate if they are of the same
variant or they will stop growing if they correspond to different variants. It is yet
another example showing that quenched disorder can exist without frustration (one
of the best known examples being the Mattis model [88]) and frustration without
disorder (for example, the antiferromagnetic triangle; see also Ref. [31]): These are
not inseparable concepts and can exist independently [8].

The absence or minor role of frustration in strain glass is consistent with
the occurrence of the SME in the strain glass phase of Ti48.5Ni51.5 [50] and
Ti50(Pd50−xCrx ) [52], that reveals that the stress-induced ferroelastic phase (i.e.,
the macroscopic strain) is mostly preserved after the unloading process. This would
indicate that: either (1) geometrical frustration does not occur in strain glass or (2)
the stress field is able to rearrange or overcome lattice imperfections. In the latter
case, frustration would either be removed or not be strong enough to bring the
system back to the strain glass phase, respectively. Notice that this is in contrast
to the case of significant geometrically frustrated systems, where the removal of
the external field entails the reestablishment of a frustrated configuration. A similar
situation takes place in complex spin glasses whose behavior is known to lie in the
combination of both frustration and quenched disorder: There, while the application
of an external magnetic field may induce the ferromagnetic phase as in the strain-
glass mechanical analogue, the removal of magnetic field results in that case in the
partial or total demagnetization of the system [89–91]. This is probably due to the
fact that the role of frustration is in general more important in spin glasses than
in strain glasses: While in the former case the antiferromagnetic interactions are
essential for the existence of magnetic frustration, in the latter case, antiferroelastic
interactions, if existent, would play a much less relevant role in the dynamics of the
systems analyzed so far.

In real ferroelastic materials, which have finite anisotropy, the disorder consists
of topological defects of the lattice that create a strain field that may have long-range
character. Thus, in addition to the local phase instabilities considered by the model
disorder, real disorder may render geometric incompatibilities that effectively give
rise to geometric frustration preventing the development of long-range order. Hence,
the presence of some degree of frustration cannot be discarded. In fact, experiments
in O-doped Ti-Nb strain glass [34] do show strain below the glass crossover upon
unloading that have some analogy to the situation in spin glasses described above,
where frustration plays a more relevant role. In O-doped Ti-Nb alloy, SME is not
obtained from the strain glass phase but superelasticity is observed instead. This
could be a consequence of the fact that temperature is still too high for SME to
occur or the fact that frustration cannot be avoided at all. Maybe the slightly larger
anisotropy for this system compared to Ti-based alloys might increase the degree of
frustration, although the difference in their nominal values is really small and there
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is no available exhaustive data concerning the anisotropy and range of SME in these
off-stoichiometric and/or doped systems to carry out a deeper analysis.

In summary, neither experiments nor simulations are conclusive so far, so that
the relevance of frustration is an open question deserving further investigation
and might depend on the specific system and doping. Broadband spectroscopy
measurements in loaded-unloaded configurations, and cooling the system from the
high-T phase after the shape memory protocol could probably give more insight
into the existence of frustration in these systems. Strain glasses are likely complex
systems dominated, as in spin glasses, by the combination of frustration and
quenched disorder, although with different relative weights for each quantity with
respect to their magnetic counterpart.

9.3.3 Structural Morphology

In this section we focus on the morphology of the structures to identify characteristic
features that distinguish strain glasses from normal ferroelastics. As the embryos of
ferroelastic distortions (either twinning or nanodomains) are often incubated well
above the transition in the form of precursor textures that anticipate the oncoming
(thermodynamic or local) symmetry breaking, it is interesting to begin with the
analysis of the strains arising in this regime. Moreover, since precursors are well
accepted to emerge as a consequence of compositional disorder cooperating with
anisotropy, they are particularly suited to be investigated by the present model.

Following the suggestion of Murakami et al. [36], who associated the shape of
such pretransitional structures with the particular value of A in some shape-memory
alloys, in Fig. 9.4 we show the dependence of high-temperature configurations
on the anisotropy [panels (a, c–e)], accompanied by the structure factor and
experimental snapshots [panels (b, f–i)] for comparison. The agreement is excellent
and confirms that, indeed, large values of A modulate the strain according to well-
defined directions (cross-hatched textures), whereas low A results in uniform strain
droplets of almost spherical shape. Also, in this last case, both experimental and
simulation observations lead to an increasing number of such droplets when the
transition is approached on cooling.

In Fig. 9.5 the evolution of the structures on cooling yields evidence of the
differences between normal ferroelastic and strain glass behavior. In normal ferroe-
lastics, precursors transform to twinned textures on cooling across the ferroelastic
transition. In contrast, the inhibition of the ferroelastic transition in strain glass
is accompanied by the preservation of the precursor nanostructures down to low
temperatures. During this process, domain growth and coarsening slow down
basically occur because the retained paraelastic matrix is progressively distorted and
hence incorporated into strain glassy nanodomains. Secondly, percolative processes
may take place, but domain boundary mobility is very low at these low temperatures.
This mechanism makes the glassy nanostructures to be irregular in shape, from
almost spherical to ramified droplets, with no preferential directions. Simulations
are depicted along with experimental configurations for comparison.
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Fig. 9.4 Influence of anisotropy on the morphology of precursor strain textures: high anisotropy
favors cross-hatched striations named tweed (a), in agreement with experiments (b), taken from
Ref. [92]. Instead, low anisotropy configurations (c)–(e) do not exhibit preferential directions
but consist of rather isotropic short-range domains. The number of domains increases when the
transition is approached, in agreement with experiments (f)–(i), taken from Refs. [36, 49]. Both
high- and low-anisotropy configurations are accompanied by the corresponding structure factor,
which are X-shaped and almost spherical, respectively. Experimental values of A are indicated in
each case

It is worth noting that retained paraelastic phase surrounds the glassy strain
nanodomains and, due to averaging, this results in X-ray patterns that resemble those
at the high-T phase (with broader peaks) [49], which is yet another evidence of the
suppression of the ferroelastic transition.

The interfacial dynamics can be inferred from the evolution on cooling of the
strain profiles along [11] direction and quantified by computing the corresponding
domain size distributions. In Fig. 9.6a, it is clearly seen that in ferroelastic systems,
the high-temperature pretransitional strain configuration is uncorrelated with the
low-temperature twinning interfaces due to the ferroelastic transition. Moreover,
they exhibit different typical widths as indicated by the distinct peak positions
(dashed lines) of the domain size distributions, in agreement with experimental
observations [25, 93–95]. Instead, in strain glass (Fig. 9.6b), the local strains arising
at high temperatures survive on cooling. This is further supported by the invariance
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Fig. 9.5 Effect of disorder on ferroelastic systems: on cooling, low-disorder systems undergo
ferroelastic transitions with consequent development of twinning, whereas above a certain
threshold of disorder, the transition is suppressed, preventing the formation of long-range domains,
with strain glass characteristics. The agreement with experiments [51] indicates that disorder can
be associated with point defects arising from off-stoichiometric composition

of the peak position of the distributions, confirming the stabilization of the high-
temperature nanostructural domains on cooling. The increasing tails indicate a slight
domain coarsening. These strong correlations are a signature of history dependence,
which limits the region of the phase space accessible to the system, therefore leading
to non-ergodic behavior.

9.3.4 Thermodynamics

The effective kinetic arrest in glasses leaves well-established marks on the ther-
modynamic quantities that differentiate the former from the thermodynamic phase.
On the one hand, the peak in calorimetry associated with the first-order transition
progressively softens and shifts to lower temperatures as the transition weakens, and
disappears when the transition is suppressed (see Fig. 9.7a–c).

On the other hand, as the anisotropy is introduced in the model as a local
parameter, in general it may not correspond to the thermodynamic anisotropy
accessible through elastic constants measurements. Actually, A may couple to
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Fig. 9.6 Temperature
evolution of representative
strain profiles and typical
domain size distributions on
cooling towards (a) the
ferroelastic phase and (b) the
strain glass state. Vertical
dashed lines are depicted to
highlight differences or
correlations between
high-temperature and
low-temperature structures

disorder as the latter influences the overall response of the system to external
stimuli, such as the softening of the elastic constant underlying the ferroelastic
transition. Hence, it is important to carry out simulation experiments to obtain the
thermodynamic elastic response when local anisotropy and disorder are modified.
Results are shown in Fig. 9.7d–f, where it can be observed that the dip in the dc-
stress field response flattens compared to normal ferroelastics.

As a nonequilibrium system, the thermodynamic instability entails that its
properties continuously evolve in time. In turn, this time dependence of glass
properties makes them depend (1) on the measurement time scale, giving rise to
frequency dependent susceptibility, and (2) on thermal and external field history.
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Fig. 9.7 Simulations and experiments of some thermodynamic signatures, from normal ferroe-
lastics to strain glass: (a)–(c) Calorimetry, (d)–(f) elastic response and (g) and (h) zero-stress-
cooling/stress-cooling results. Experimental measurements taken from Refs: (b) [96], (c) [52], (e)
[97], (f) [49] and (h) [98]

These two signatures are inferred by means of low-ac-field broadband spectroscopy
and ZSC/SC experiments, respectively. While the former cannot be simulated with
the relaxation dynamics used here, ZSC/SC simulations are shown in Fig. 9.7g–h.
The splitting between the ZSC and SC curves indicates the glassy behavior.

This set of simulations is in qualitative agreement with experimental measure-
ments and reveals that the ferroelastic nanodomains replacing twinning in the
disorder-anisotropy diagram (see Fig. 9.3) meet the requirements for glassiness.

9.3.5 Thermomechanics

We have seen that ferroic cluster glasses in general, and strain glasses in par-
ticular, exhibit all the thermodynamic evidence for vitrification. Therefore, it is
seemingly surprising that they also exhibit a number of functional properties
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that in non-glass systems are intimately associated with a first-order transition.
Remarkably, experiments have revealed that thermomechanical phenomena such
as the SME and superelasticity [35] also take place in strain glasses. This is of
primary technological interest because it broadens the compositional range (and
consequently the temperature intervals) that can be exploitable for applications.

The SME refers to macroscopic shape recovery upon heating across the reverse
ferroelastic phase transition after being deformed at low temperature by means
of a stress field. It occurs because twinning preserves the macroscopic shape in
the temperature-induced low-symmetry locally distorted phase due to the self-
accommodation process. Then, application of stress causes twin reorientation
resulting in macroscopic deformation, while heating to the parent phase removes
any strain, thus restoring the initial undeformed shape. Superelasticity stands for a
nonlinear reversible deformation beyond the elastic limit, originating through the
stress-induced ferroelastic transition from the paraelastic phase. The application
of stress leads to the nucleation and growth of a single variant, thus preventing
twinning and giving rise to deformations as big as 10% in some cases. Depending
on the phase stability, removal of the stress may bring the system back to the initial
state (by undergoing the backward transition with hysteresis) or remain in the single
variant state if the ferroelastic phase is still metastable. In this latter case, SME is
obtained again on heating.

The effect of a stress field can be introduced in the model by performing a
Legendre transform G = F − σe2 of the free-energy F , where σ is the stress
field conjugated to the OP strain e2.

Figure 9.8 shows a loading–unloading process from the paraelastic phase at
different temperatures for three different sets of anisotropy and disorder: (a)
the anisotropy-driven system exhibits normal ferroelastic behavior. By increasing
enough the amount of disorder, it evolves towards (b) strain glass, corresponding
to disorder-driven systems. For comparison with a reference framework, the homo-
geneous Landau paths for equilibrium and metastability limits are displayed with
dashed and dotted lines, respectively. Nonlinear behavior is obtained in all cases,
indicating the stress-induced transformation. Again, disorder causes the rounding
of the transition. Interestingly, for technological implications, superelasticity is
observed in non-transforming regimes, and it is accompanied by a hysteresis
reduction, enhancing the range of temperatures with reversible effect. Residual
strain remains, however, to higher temperatures compared to the other cases. The
resemblance with experimental observations in O-doped Ti-Nb [34] shown in
Fig. 9.8c is notable. Nevertheless, the phenomenology observed in experiments is
diverse: For instance, the SME in Ti-Ni strain glass [50] does not exhibit such
a pronounced rounding nor a hysteresis reduction, but preserves the essential
characteristics of the SME in ferroelastic Ti-Ni (see Fig. 9.8d and Sect. 9.3.2 for
discussion). In all cases, arrows originating at the end of the unloading process
indicate the recovery of the initial shape after a heating process, entailing the SME.

In our simulations, the critical stress field above which nonlinear behavior
occurs decreases when the glassy regime is approached (Fig. 9.8b), compared to
normal ferroelastics (Fig. 9.8a). This disagreement with the experiments shown in
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Fig. 9.8 (a) Simulations of stress-strain behavior as a function of temperature, from (a)
anisotropy-driven (normal ferroelastics) to (b) disorder-driven (strain glass) systems. Dashed and
dotted red lines correspond to the equilibrium and metastable limits of the Landau homogeneous
free energy respectively, and are displayed to highlight the transition rounding caused by disorder.
(c) Stress-strain experiments on O-doped Ti-Nb as a function of defect concentration, adopted
from Ref. [34]. (d) Stress-strain behavior in Ti-Ni strain glass, adopted from Ref. [50]. In all
cases, arrows after unloading indicate shape recovery on heating above the zero-stress transition
temperature, leading to the shape-memory effect

Fig. 9.8c,d may come from the fact that impurities may act as pinning sites for strain
propagation and the domain walls may have lower mobility than twin boundaries,
thus requiring a larger stress to trigger the transformation.

Simulations of the shape-memory effect in the strain glass are displayed in
Fig. 9.9. The σ − e2 − T curves illustrating the SME are averaged over 50
curves to approach the thermodynamic limit. Snapshots accompanying the curves
show representative configurations at intermediate stages of the loading–unloading–
heating process. When loading from the glass state (steps (i)→(ii)→(iii)), there is a
combination of local variant switching and transformation from retained unstrained
phase. These mechanisms cause a gradual growth of the domains of the variant
favored by the stress field, evidenced by a rounded loading curve, in contrast to the
sharp variant reorientation in the normal ferroelastic case occurring from a global
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Fig. 9.9 Shape memory
effect occurring in the strain
glass. (i)–(iii): loading from
the strain glass. (iii)–(iv)
Unloading. (iv)–(vi) Heating
above the ferroelastic
transition

high twin-boundary mobility. As the final loaded state is a single-variant ferroelastic
phase, the loading process can be described as a stress-induced ferroelastic transition
from the glass phase.

On removing the stress field ((iii)→(iv)) the single variant state is preserved, in
agreement with experiments. This may suggest that the origin of the freezing in
strain glass is not dominated by topological frustration but a kinetic arrest imposed
by a random distribution of energy barriers that impede the correct relaxation of
the system towards the thermodynamic equilibrium; however, the latter does exist.
This is similar to canonical structural glasses: once crystallization is achieved, it
must be melted to freeze again, in contrast to geometrically frustrated systems,
where the removal of the external field restores the system to a disordered state
corresponding to one of the degenerate minima (e.g., the antiferromagnetic triangle).
A deeper discussion regarding the presence of frustration in strain glass is contained
in Sect. 9.3.2.

Finally, the process (iv→v→vi) corresponds to the heating process across the
ferroelastic transition towards the paraelastic phase, recovering its initial undistorted
shape. From this state, in our model the system will evolve towards the glass state if
it is cooled down again.

It is worth remarking that the origin of these thermomechanical functional
properties lies in the fact that in strain glass forming systems the application of
stress can induce the formation of the ferroelastic phase (consisting of a single
variant state), in contrast to the fact that the temperature-induced process leads
to vitrification. This is yet another common feature of ferroic glasses where the
transition towards a thermodynamic phase (ferromagnetic, ferroelectric) can be
driven from the glass phase by the corresponding conjugated field. Moreover, the
field-induced transition establishes a key difference with structural glasses where
there is no external field that is able to induce crystallization from an amorphous
state. Instead, pressure has been observed to favor amorphization in these systems
[99, 100].
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9.3.5.1 Elastocaloric Response

Caloric effects refer to isothermal entropy changes or adiabatic changes in tem-
perature induced by application of an external field. Giant caloric effects near
first-order phase transitions in the solid-state are of increasing interest in functional
materials due to their application in novel cooling technologies [101]. Ferroic
materials are being intensively studied as caloric materials, since they exhibit
reversible transitions that can be driven by magnetic, electric, and/or mechanical
fields (anisotropic stress or hydrostatic pressure), depending on the nature of the OP
associated with the transition.

Interestingly, relaxor ferroelectrics have attracted particular attention in this field
[102]. This is particularly intriguing as they are the cluster-glass counterpart of
ferroelectric systems. Hence, relaxors do not exhibit the ferroelectric first-order
phase transition, and thus they lack the corresponding latent heat from which giant
caloric effects are expected. Indeed, experimental results report a slight softening
of the maximum isothermal entropy change achievable, as the entropy change
on cooling across the relaxor transition is not as high as in the corresponding
ferroelectric transition. However, the former entails a temperature range and a
hysteresis reduction with respect to the latter that results in significant improvement
of electrocaloric performance.

On the other hand, we have seen that, as strain glass can be transformed to an
ordered, normal ferroelastic phase by application of stress, it is able to display func-
tional stress-induced properties such as shape-memory effect and superelasticity,
and they are of the same order of magnitude as in its normal ferroelastic analogue.
For these two reasons, it is natural to also expect interesting elastocaloric effect
in strain glass derived from the stress-induced ferroelastic transition. Our model
permits the evaluation of the elastocaloric effect from the stress-strain curve. Taking
into account the Maxwell relation (∂S/∂σ)T = (∂e2/∂T )σ , the elastocaloric effect
can be obtained as

�S(T ; 0 → σ) =
∫ σ

0

(
∂e2

∂T

)
dσ. (9.4)

Indeed, simulations of the present model predicted this phenomenon to occur
[85], which recently has been experimentally confirmed [103]. Both simulations
and experiments of the elastocaloric effect in strain glass are shown in Fig. 9.10
for different stress values. Basic features are comparable to those observed in
relaxors, with a tendency towards a rounding and slight flattening of the effect in the
strain glass case which would entail higher temperature range and lower hysteresis
compared to the elastocaloric effect in normal ferroelastics. Interestingly, for a given
stress, the area below the curve remains essentially constant (not shown), which is
associated with the refrigerant capacity [101]. We can then conclude that caloric
effects are yet another example of functional properties that arise unexpectedly in
non-transforming, cluster-glass ferroics, which enhances the spectrum of materials
and temperature range that are appealing for novel refrigeration techniques.
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Fig. 9.10 Elastocaloric effect of strain glass: (a) Simulations and (b) experimental results on Ti-
Ni, taken from Ref. [103]

9.4 Modelling Strain-Mediated Magnetic Glass

As the underlying physical forces ruling the different ferroic properties are of the
same nature, namely electromagnetic, they normally couple each other. Interest-
ingly, in some cases this coupling emerges at a significant level. This multiferroic
interplay is at the origin of the magnetostructural, magnetoelectric, and piezoelectric
cross-variable responses observed in many ferroics and yields mixed-variable pat-
terns with correlated domains such as magnetic twins, magnetic stripes within twins
[104–106], magnetoelastic tweed [107], polar tweed [108], and strong correlations
between magnetic and electric dipoles [109].

Also, the possibility of controlling macroscopic physical properties by different
external fields has led to fascinating functional properties: Magnetostriction refers
to a volume change driven by a magnetic field [110], while the magnetic shape
memory effect results from large strains arising due to magnetic field-induced twin
reorientation [111]. Giant electrocaloric and magnetocaloric effects are enhanced
when they are accompanied by a structural transition [101]. Colossal magnetoresis-
tance (CMR) refers to dramatic changes in conductivity due to the presence of a
magnetic field [112].

Therefore, it is natural to consider the occurrence of mixed glass phases as well.
For instance, although not necessarily, it is widely known that positional disorder
in amorphous states may give rise to spin glass [113, 114] and dipolar glass states
[115]. In multiferroic systems, simultaneous vitrification of magnetic and dipolar
degrees of freedom has also been reported in a magnetoelectric system [116]. Here
we investigate the possibility of magnetic glass behavior induced by strain glass
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phase in ferromagnetic shape-memory alloys [61, 117, 118]. For this purpose, we
extend the elastic model presented above to include magnetic degrees of freedom by
means of the micromagnetic theory [119] and a magnetostructural coupling [120].
The total free energy FT consists of three main contributions: FT = Fs+Fm+Fm−s ,
where Fs corresponds to the pure elastic contribution explained in detail in the
previous section. The term Fm includes magnetocrystalline anisotropy, exchange,
magnetostatic and Zeeman energies:

Fm = D

∫
m2

x(r)m
2
y(r)d

2r + J

∫
|∇m(r)|2d2r

−μ0Ms

∫ (
1

2
Hd(r) + Hext(r)

)
· m(r)d2r, (9.5)

where m = (mx,my,mz) is the unit magnetization vector, D is the magnetocrys-
talline anisotropy constant, J is the exchange stiffness constant, Ms is the saturation
magnetization, Hd is the demagnetizing field, and Hext is the external magnetic field.

The magnetostructural energy Fm−s is taken to the lowest order allowed by
symmetry:

Fm−s = B1

∫
[(m2

x + m2
y)e1 + (m2

x − m2
y)e2]d2r + B2

∫
mxmye3d

2r (9.6)

where B1 and B2 are magnetostructural coupling constants. In the absence of
thermal fluctuations, we assume that the Curie temperature is much higher than
the ferroelastic transition temperature. In addition, for the sake of simplicity, the
exchange stiffness constant J is taken to be positive and independent of position
and distance between spins. Consequently, Fm is minimized when all the spins
are parallel to each other. Then, the magnetic domains emerge from heterogeneous
nucleation and coupling with the strain field from Fm−s . As Fm−s depends on the
non-OP strains, the elastic compatibility constraint must be applied here as well.
Despite the fact that the energy minimization here includes Fm−s , giving rise in this
case to two additional Fourier kernels apart from that in Eq. (9.3), it does not give
rise to new physics (see [118] for details). The magnetic dynamics is ruled by the
Landau-Lifshitz-Gilbert equation [119].

At high temperatures, the magnetostructural coupling is absent as the strain field
vanishes. Therefore, the spin field can arrange in a pure multidomain ferromagnetic
configuration, with 180° domain walls arising from heterogeneous nucleation
combined with the demagnetizing field that induces the magnetic field lines to form
closed loops. Similarly, magnetic vortices may eventually emerge. Interestingly,
on cooling below the ferroelastic transition, the magnetostructural term becomes
relevant: The elastic twins impose a hierarchical arrangement of the magnetic
domain walls: On the one hand, 90° walls correlated with the twin boundaries
and, on the other hand, magnetic stripes with 180° walls inside the twins. These
orientations are dictated by the interplay between the magnetostructural coupling
that determines the magnetocrystalline anisotropy of each ferroelastic variant, and
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Fig. 9.11 Magnetostructures: strain (a and e) and magnetic (b and f) configurations obtained from
the magnetoelastic model, for the normal magnetoelastic ferroic system (a and b) and strain-
induced magnetostructural glass (e and f). Panel (d): experimental micromagnetic structure, taken
from Ref. [106], whose ferroelastic domain boundaries are highlighted (red dashed lines) in panel
(c). Arrows in magnetic configurations indicate the spin orientation within the magnetic stripes

the demagnetizing field. The exchange energy plays a role in determining the
width of the magnetic stripes. Figures 9.11a and b show strain and magnetic
configurations, respectively, in a normal magnetostructural multiferroic, which
reproduce accurately the experimental image shown in Fig. 9.11d [106] (and
other experimental observations [104, 105]). From the latter, we can deduce the
domain walls, which have been highlighted with red dashed lines in Fig. 9.11c, for
comparison with the simulated strain configuration.

Now we proceed as previously to induce a strain glass phase by increasing
disorder and/or decreasing the elastic anisotropy. Notice that the pure magnetic
terms are not modified, so that low anisotropy values influence the magnetization
through the magnetostructural coupling only. The obtained strain and magnetic
configurations are shown in Fig. 9.11e and f, respectively. In this case, the glassy
strain nanodomains sweep the spin orientations along, with the subsequent loss
of long-range order of the 180° magnetic domain walls. Therefore, despite 90°
walls associated with magnetic stripes are still formed inside the ferroelastic nan-
odomains, magnetostructural correlations induce magnetic nanodomains associated
with the clusters, assuming the slowing down of the strain dynamics and the conse-
quent glassy state. Depending on the value of J and the transformed ferroelastic
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Fig. 9.12 Zero Magnetic
Field Cooling
(ZFC)/Magnetic Field
Cooling (FC) protocols
applied on the
magnetostructural model.
Strain (right) and
magnetization (left) are
displayed

fraction, the magnetic stripes may disappear, leading to a superspin glass-like
configuration. Strain-induced magnetostructural glasses have been suggested in
ferromagnetic shape-memory alloys such as Ni-Co-Mn-Sn [61].

To detect glassy features associated with the magnetostructural nanodomains,
the system is subjected to Zero Magnetic Field Cooling/Magnetic Field Cooling
(ZFC/FC) protocols while both the strain and magnetization are monitored. The
resulting curves are shown in Fig. 9.12. The splitting between the two curves in both
the magnetization and strain reveals glassy behavior in both ferroic variables. The
decay of the magnetization at high temperatures will be expected above the Curie
point, which is assumed to be well above the temperature range of simulations.
It is worth mentioning that we have also performed ZSC/SC simulations (under
application of stress instead of a magnetic field) and the splitting between ZSC and
SC curves has been also obtained (not shown), which strengthens the existence of
such clusterized magnetostructural glassy behavior.

9.5 Summary and Conclusions

Mesoscopic Ginzburg-Landau-based modelling has shown that anisotropy and
disorder are the relevant parameters in the competition that rules the behavior
of ferroelastics. Anisotropy-driven systems result in normal ferroelastics whereas
disorder, above a critical threshold, breaks down long-range correlation and triggers
the glassy behavior. It creates random strain fields that give rise to inhomo-
geneous nucleation of ferroelastic sites. Possible emerging incompatible strain
interactions may result in the frustration of domain growth that slows down and
finally freezes at the nanoscale, yielding the strain glass. This is consistent with
numerous experimental observations showing glassy behavior beyond a critical
off-stoichiometric composition, that introduces disorder basically as randomly
distributed point defects.
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The thermodynamic ferroelastic phase can be reached by application of external
stress, which is a feature that in general differentiates ferroic cluster glasses from
canonical structural glasses. This enables the occurrence, and eventually improve-
ment, of functional properties typical from normal ferroelastics, namely shape-
memory effect, superelasticity and elastocaloric effect, which renders them very
useful in materials engineering as it widens the range of materials, temperatures,
and performance in general that can be exploited in technological applications.

In summary, the characteristics of strain glass extend to cluster glasses the
common broad framework shared by all ferroics. In turn, the magnetoelastic model
predicts that multiferroic cross-variable response in magnetostructural systems
could lead to magnetic glass mediated by strain.
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Chapter 10
Phase Field Model and Computer
Simulation of Strain Glasses

Dong Wang, Xiaobing Ren, and Yunzhi Wang

Abstract Strain glass is a new structural state in ferroelastic materials, which
offers unique transition behavior and properties. In this chapter, we introduce
a phase field model of strain glass systems and study their transition behavior
and the associated properties by computer simulations. Local stresses associated
with randomly distributed defects, including point defects and extended defects
(dislocations and concentration modulations), are found to play the most important
role in the formation of strain glass, by suppressing autocatalysis in nucleation
and confining the growth of martensitic domains. A broad distribution of defect
strength leads to continued nucleation and growth of martensitic domains in a broad
temperature or stress range and renders the otherwise sharp first-order martensitic
transformation into a broadly smeared “diffuse” strain glass transition with slim
hysteresis, nearly linear superelasticity, ultralow elastic modulus and Invar and
Elinvar anomalies. New strategies for designing strain glass systems with large
recoverable strain are discussed.
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10.1 Martensitic Transformation and Strain Glass Transition
in Ferroelastic Systems

Martensitic phase transformation (MT) describes a diffusionless transition from
high-symmetry parent phase (strain liquid) at high temperature to low-symmetry
product phase (strain crystal) at low temperature [1]. Temperature/stress induced
martensitic phase transformation is the physical origin of shape memory effect and
superelasticity in shape memory, which produces wide applications in different
fields [2–4]. However, conventional MT will form coarsen martensitic domains
accompanying with large hysteresis, narrow temperature range. Recently, a new
strain glass state (nanosized martensitic domains with randomly distribution) was
reported in NiTi shape memory alloys with excess Ni doping, which has shown
the possibility to design novel shape memory alloys with new properties [5–7].
Figure 10.1 shows a schematic drawing of three strain states in ferroelastic system
in a temperature vs. point defect concentration phase diagram. High temperature
shows austenite with high symmetry for all composition regions. With the decrease
of temperature, high defect concentration and low defect concentration show
different strain state at low temperature. Low defect concentration shows long-
range ordered twinned martensite and high defect concentration shows short-range
ordered nanoscale martensitic domains. Defects play important role in breaking the
long-range order twinned martensite in strain glass systems. However, it is difficult
to capture the physical origin of strain glass by experiments, e.g., how defects
influence the martensitic phase transition and strain glass transition or whether all
the martensitic systems could produce strain glass? Phase field model could be a
powerful tool to help us study the microstructure evolution of MT and strain glass
transition and the role of defects in strain glass transition.

Fig. 10.1 Schematic drawing
of the three strain states
(austenite, twinned
martensite, and strain glass)
in ferroelastic systems
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10.1.1 Phase Field Modeling of Martensitic Phase
Transformation

Phase field approach can exhibit the microstructure evolution of solid-state phase
transformations, which can be characterized by order parameters [8–13]. The
order parameter for Ferroic phase transition is the local strain, polarization, and
magnetization for ferroelastic [14, 15], ferroelectric [16–18], and ferromagnetic
[19, 20] materials, respectively. Effective accommodation of elastic strain plays
an important role in solid-state phase transformations, especially in ferroelastic
materials. In a phenomenological description, the local free energy function is
expressed as a polynomial of order parameters using a Landau expansion. All the
terms of this expansion are required to respect to the symmetry operations of the
high-temperature phase. The dependence of a phase transformation on strain is
primarily determined by the coupling between the primary order parameter and
strain. Martensitic systems include proper MT and improper MT; for proper MT,
the primary order parameter is directly the strain, while for improper MT, the
primary order parameter characterizes shuffle and strain are coupled to the primary
order parameter [11, 21]. A phase field model describes domain patterns by spatial
dependent order parameters (i.e., order parameter fields).

For martensitic systems, the total free energy of an inhomogeneous microstruc-
ture system described by nonconserved field variables (η1, η2, . . . ) is given by:

F =
∫ ⎡

⎣f
(
η1, η2, . . . ηp

) +
3∑

i=1

3∑

j=1

p∑

k=1

βij∇iηk∇j ηk

⎤

⎦ d3r

+
∫∫

G
(
r − r’

)
d3rd3r ′

where f is the local free energy density as a function of field variables ηi, β ij is the
gradient energy coefficient. The second integral represents the contributions of long-
range interactions, such as elastic interactions and electric dipole-dipole interaction,
which also depend on the field variables.

For solid-state phase transformations, the local chemical free energy density f is
expressed as a polynomial of field variables (i.e., the order parameters) by using
a Landau-type expansion, which respects to the symmetry operations of the high-
temperature phase. For example, for a martensitic phase transition from cubic to
trigonal (R phase) in NiTi with four martensitic variants [22], the local free energy
function is given by

fch (η1, η2, . . . η4) = f 0 (c, T ) + 1
2A2 (c, T )

(
η2

1 + η2
2 + η2

3 + η2
4

)

− 1
4A4 (c, T )

(
η4

1 + η4
2 + η4

3 + η4
4

) + A6 (c, T )
(
η2

1 + η2
2 + η2

3 + η2
4

)3
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where f0 is the free energy of the parent phase, ηi are the structural order (SO)
parameters that characterize the correspondence or deformation variants [23] of
the low-symmetry martensitic phase, and A2, A4, A6 are the expansion coefficients
that are functions of temperature and composition. Any given microstructural
state can be described by spatial distribution of these four order parameters
(i.e., phase fields), e.g., (η1, η2, η3, η4, ) = (0, 0, 0, 0, ) represents the austenite
and (η1, η2, η3, η4, ) = (η0, 0, 0, 0, ), (0, η0, 0, 0, ), (0, 0, η0, 0, ), (0, 0, 0, η0, )represent
four deformation variants of martensitic phases, respectively, where η0 is the
equilibrium value of the structural order parameter.

The gradient term fgrad describes the interfacial energy caused by structural
inhomogeneities [24] such as interfaces between austenite and martensite and
among different variants of the martensite

fgrad = 1

2

3∑

i=1

3∑

j=1

4∑

p=1

β
η
ij (p)∇iηp(r)∇j ηp(r) = 1

2

∑3

i=1

∑4

p=1
β

η
ii(p)

(∇ηp

)2

The elastic energy associated with long-range elastic interactions in ferroelastic
system (caused by lattice mismatch between austenite and martensite and among
different martensitic variants) is described by Khachaturyan’s microelasticity the-
ory [9]:

Eel = 1

2
Cijkl

4∑

p=1

4∑

q=1

ε00
ij (p)ε00
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where Cijkl is the elastic modulus tensor, ε00
ij (p) (p = 1, 2, . . . n) is the transfor-

mation strain tensor of the martensitic variant, and n is the number of martensitic

variants, k is the wave vector defined in the reciprocal space,
{
η2

p (r)

}

k
is the

Fourier transform of η2
p (r),
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is the complex conjugate of
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Elastic energy caused by an external load can be described by:

Eload = −σloadε = −
∫

σ load
ij

4∑

p=1

ε00
ij (p)η2

pd3r

where σ is the external load and ε is the average strain of the whole system.
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The stochastic time-dependent Ginsburg-Landau equation is used for the time-
evolution of the SO parameters:

∂ηp (r, t)

∂t
= −M

δF

δηp (r, t)
+ ζp (r, t) , p = 1, 2, . . . n

where ζ is the noise term describing the thermal fluctuations, F is the total free
energy, η is the structural order (SO) parameters, t is the time, M is the kinetic
coefficient.

In numerical simulations [25], dimensionless parameters are often used, includ-
ing reduced elastic strain energy E∗

el = Eel
�fscale

and elastic constants C∗
ij = Cij

�fscale
,

reduced chemical free energy f ∗
ch = fch

�fscale
and Landau expansion coefficients

A∗
i = Ai

�fscale
, reduced gradient energy f ∗

grad = fgrad
�fscalel0

and gradient energy

coefficient β∗
ij = βij

�fscalel
2
0
, reduced noise term ζ ∗ = ζ

�fscaleM
, and reduced length

scale r∗ = r
l0

and time scale t∗ = tM�fscale
M∗ . Based on the relationship between

velocity and driving force v = Min(−�f ) [26] of a dissipative process, and the
relationship between physical interface mobility, Min, and phase field mobility of

the order parameter, M, we have M = Min
∫

δ

(
dη
dx

)2
dx = Min

γAM
β

, where δ

(the integration limit) is the interface width in phase field simulations, γ AM is the
interfacial energy between austenite and martensite, β is the corresponding gradient
energy coefficient.

The noise term in phase field simulations is assumed to be uncorrelated in space
and time, it satisfy [25]:

〈
ζp (r, t)

〉 = 0

〈
ζp (r, t) ζp

(
r ′, t ′

)〉 = 2kBT Mδ
(
t − t ′

) (
r − r ′)

In discrete form, we have:

〈
ζp (n,m)

〉 = 0

〈
ζp (n,m) ζp

(
n′,m′)〉 = 2kBT M

δmm’
�t

δnn′

ld0

where n and m are the discrete spatial positions, �t is the time step, l0 is the grid
size, d is the dimensionality of the space, and δij is the Kronecker delta. The noise
term can be emulated by a random number generator ρi with Gaussian distribution,

and 〈ρi〉 = 0 and 〈ρiρi′ 〉 = δii′ , and we have ζp (n,m) =
√

2kBT M/
(
l3
0�t

)
ρ.

According to above-described phase field simulations, temperature-dependent
martensitic phase transition has been shown in Fig. 10.2. Figure 10.2 exhibits the
volume fraction change upon cooling and heating for cubic to trigonal (R phase)
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Fig. 10.2 Martensitic volume fraction vs. temperature and Microstructure evolution of martensitic
phase transformation from Cubic to trigonal (R) by phase field simulations. White color describes
the austenite and red, blue, green, and yellow color describes four martensitic variants respectively

martensitic transition in NiTi [22], which shows the formation of long-range ordered
twinned martensite (inset picture) with large thermal hysteresis and sharp transition
temperature.

10.1.2 Role of Point Defects

Point defects play an important role in changing transition temperature, transition
sequence, and product phase for martensitic systems. It is believed that there exist
three effects caused by point defects [27–31]: (1) global transition temperature
effect (GTTE) caused by homogeneous composition change, which will influence
the average phase transition temperature or the phase stability; (2) local transition
temperature effect (LTTE) caused by inhomogeneous composition distribution,
which will influence the local phase transition temperature or the local phase
stability; (3) local field effect (LFE) caused by local stress/strain field associated
with doped point defects, which will influence the local phase transition temperature
and variants selections. Figure 10.3 shows the schematic pictures of the three
effects caused by point defects. The GTTE or LTTE caused by point defects can
be obtained by the expansion coefficient A1 of Landau free energy in Eq. (2),
A1 = A0

1

(
T − T 0(c)

)
, and T0(c) = T00 + bc, where T00 is the phase transition

temperature of defect-free materials (Fig. 10.3a), b is the strength of transition
temperature effect associated with defect concentration. When c = c, the equation
describes the average composition and the GTTE (Fig. 10.3b), and if c = c(r),
the defect composition depends on position and describe the LTTE (Fig. 10.3c). In
addition, doped point defects will produce lattice distortions εlocal(r) and generate
excess energy fLFE (r) = Cijkl

∑3
i,j,k,lε

local
kl (r) ε00

ij (r), which describe the LFE
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Fig. 10.3 Schematic pictures of effects caused by point defects. (a) The defect-free state with
related Landau free energy. (b) GTTE with related Landau free energy. (c) LTTE with Landau free
energy. Color in microstructure describes the different defect concentration. (d) LFE with related
Landau free energy, black dot describes the defect position, and green lattice describes the lattice
distortion caused by defects. Different colors in Landau free energy describe the free energy curves
at different temperatures.

(Fig. 10.3d). Note that the schematic drawing of lattice distortion just shows local
influence. The GTTE describes how the doped point defects alter the average
thermodynamic stability of martensite and change the transition temperature of the
whole system, and the LTTE describes such effect of spatial variation of the defect
concentration (i.e., the composition inhomogeneity) and the Landau potential. The
LFE associated with local lattice distortions caused by point defects creates spatial
variation and symmetry-breaking of the Landau potential. Need to note that other
extended defects such as precipitates, dislocations, and grain boundary may also
produce composition change and lattice distortion, which also could influence the
MT and strain glass transition.

10.2 Phase Field Simulation of Strain Glass Transition

Point defects such as dopants/impurities and vacancies have been known to play
a key role in altering and controlling the transition behavior and designing novel
properties of ferroelastic materials [32, 33]. In addition to the well-known parae-
lastic and ferroelastic states, it has been found that point defects can induce two
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other abnormal strain states: (1) the “precursory strain state” (or partially frozen
strain order), characterized by a cross-hatched strain domain structure or growing
nanosized strain domain structure embedded in a dynamically disordered paraelastic
matrix [7, 34, 35] and (2) the new strain glass, which is a frozen state of local strain
order [5, 6, 28, 36]. Many experimental studies have proven the existence of strain
glass states for different ferroelastic systems [37–44]. Lots of theoretical studies
have been attempted to elucidate the nature of tweed [27, 45] and strain glass [28, 30,
46] states by using the spin glass model [47, 48]. It was thought that these abnormal
strain states are caused by a spatial fluctuation in Ms, i.e., LTTE, which could
be produced by concentration fluctuation [18, 37]. At low defect concentration, it
could produce spatial correlated tweed structure at high temperature and martensite
at a lower temperature. At very high defect concentrations, the formed tweed
structure could not transform to long-range ordered martensite and it is frozen into
a strain glass state. However, experiments have shown that other defects without
concentration fluctuation, such as high-density nano-precipitates and dislocations
(as lattice distortion centers), can also generate strain glass [42, 49, 50], suggesting
that local field effect may also play some role in the formation of strain glasses.
To understanding the nature of strain glass, the role of defects, and the potential
properties of strain glass, phase field simulations could be the best way.

Phase field simulations with considering two effects of point defects (LFE and
GTTE) have been carried out [28], which reproduced a phase transition phase
diagram (Fig. 10.4b) agreeing well with experimental observation (see Fig. 10.4a)
[37]. According to the calculated phase diagram and related microstructure evo-
lution in Fig. 10.5a, the strain glass transition can be understood easily. At high
temperatures (T > Tnd), it is the austenite state which shows the existence of dynamic
strain-domains in the system (i.e., strain liquid). When the temperature is lowered
to T < Tnd, some dynamic strain-domains start to freeze (to long-range ordered
martensite at T < Ms or short-range ordered strain glass at T < Tg) and the system
starts to lose ergodicity. For strain glass transition at high defect concentration, Tnd
and Tg on defect concentration show opposite dependence, which can be attributed

Fig. 10.4 (a) The experimental phase diagram of Ti50Ni50−xFex system [37]. Rs and Ms denote
the martensitic transformation temperatures of R martensite and B19′ martensite, Tnd is the start
temperature of static nanodomains, Tg is the strain glass transition temperature. (b) The calculated
phase diagram according to phase field simulation [28]. (c) The calculated phase diagram in a
temperature-disorder plane for spin model [51]
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Fig. 10.5 (a) Microstructural evolution upon cooling for different defect concentration
(c = 0.0∼0.2). Gray color describes the parent phase, white and black color describe the two
martensitic variants, respectively. (b) Comparison of zero-field cooling/field cooling curves for
normal martensitic transformation (c = 0.0) and strain glass transition (c = 0.125). (c1) Volume
fraction of nanosized martensite domains; (c2) heat capacity; (c3) ZFC/FC curves. (d) The heat
capacity and martensite volume fraction curves at different defect concentrations. The arrows
describe the peak temperatures (Ms or Tg) in heat capacity curves and Tnd in volume fraction
curves

to the competition between the two effects: LFE and the GTTE. While the LFE is
related to lattice distortion, which promotes the formation/freezing of local strain
ordering (i.e., nanodomains) but prevents the formation of long-range ordered
martensitic twins, the GTTE stabilizes the parent phase in our simulation (or Ti-
Ni-Fe system [37]) and hence decreases Ms, Tg, and Tnd. The interplay of these two
effects is the physical origin of the abnormal temperature dependence of Tnd and Tg
as shown in Fig. 10.4b. Similar results can also be obtained by the spin model as
shown in Fig. 10.4c [51].

Related microstructural evolution upon cooling from parent phase at different
defect concentrations are shown in Fig. 10.5a. In the case of defect-free system
(c = 0.0), the parent phase transformed into martensite with a typical long-
range ordered twinned microstructure within a narrow temperature range. At low
defect concentrations (c = 0.025–0.05), the system first generates some spatially
correlated nanodomains of martensite and then transformed into the long-range
ordered strain state (i.e., poly-twinned martensite) upon further cooling. When the
defect concentration further increases (c = 0.075–0.2), the system will first form
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randomly distributed nanodomains and these domains will be frozen in nanoscale
and did not transform into long-range ordered poly-twinned microstructure anymore
upon cooling. These simulations are consistent with the experimental observation
[5, 37, 39] that strain glass state is a static or frozen state of local lattice strains.

To understand the freezing process of strain glass transition at high defect con-
centration and capture the strain glass transition temperature, zero-field cooling/field
cooling (ZFC/FC) calculation was carried out for the system as shown in Fig. 10.5b
or Fig. 10.5(c3). Comparing with the sharp change of the ZFC/FC gap for normal
martensitic transition (c = 0.0), the gradual increase of the gap between the ZFC and
FC curves upon cooling for strain glass transition (c = 0.125) indicates a continuous
breaking of the ergodicity of the strain glass system. This confirms the existence
of the freezing process during the strain glass transition. Especially, the calculated
ZFC/FC curves for strain glass are very similar to that obtained experimentally for
strain glass [36], cluster-spin glass [52], and ferroelectric relaxor [53].

From the ZFC/FC curves, the glass transition temperature Tg is defined by
the peak position in the ZFC curve [36, 54], and the strain glass freezing start
temperature Tnd is defined by the branching point between ZFC and FC curves [37,
39]. Figure 10.5c shows the relationship among different properties (Fig. 10.5(c1)
volume fraction, Fig. 10.5(c2) heat capacity and Fig. 10.5(c3) ZFC/FC), then the
two glass transition characteristic temperatures Tg and Tnd have been labeled in the
ZFC/FC curves. As the dash lines shown in Fig. 10.5c, we can easily find that glass
freezing temperature is related to the maximum heat capacity value temperature
(i.e., the peak position) and Tnd is related to the formation start temperature
of martensitic domains. So the nanodomains occurrence temperatures and glass
transition temperatures are determined by heat capacity and volume fraction curves
in Fig. 10.5d. According to Fig. 10.5d, a complete phase diagram is established as
shown in Fig. 10.4b including normal martensite, precursory strain state, and strain
glass, which is in excellent agreement with the experimentally measured phase
diagram for the Ti50Ni50−xFex system (Fig. 10.4a) [37, 39] and could help us to
predict potential strain glass composition.

Besides the abovementioned defect concentration, defect strength and elastic
anisotropy also influence the martensitic phase transition and strain glass transi-
tion. Lloveras et al. show that a decrease of anisotropy (strength of long-range
interactions) may change the transition behavior and microstructural evolution as
shown in Fig. 10.6a [30, 55]. Further study reports that the defect strength relative
to the strength of the martensitic transformation plays an important role as shown
in Fig. 10.6b [56]. This finding may shed light on why there is no report of the
B19’/B19 strain glass in NiTi systems through point defect doping. B19’/B19 phase
has large transformation strain (∼10%) that is too large for point defects to confine
the transformation when it starts. In our understanding, low strength of long-range
interactions caused by martensitic phase and high strength/concentration of disorder
caused by doped defects should be the origin of strain glass transition. Figure 10.7a
shows the randomly spatial distribution of phase field voxels containing defects
in the system and Fig. 10.7b–f shows the related spatial distribution of local Von
Mises stress caused by doped defects with different defect strength. With the
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Fig. 10.6 (a) Elastic anisotropy’s effect on martensitic phase transition with fixed defect concen-
tration. (b) Defect strength’s effect on martensitic phase transition with fixed defect concentration

Fig. 10.7 (a) Spatial distribution of simulation grids containing point defects (white color). (b–f)
Spatial distribution of local Von Mises stress σ VM caused by point defects with different strength
coefficient φ

increase of defect strength, the distribution of local stress caused by defects becomes
more and more inhomogeneous/percolation and the volume of high-stress regions
increase and these regions are separated by low-stress regions when defect strength
coefficient is high. High-stress regions prefer the nucleation of certain M domains
but limit its growth by the other local stress regions. The randomly distributed
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Fig. 10.8 (a, b)
Pre-produced dislocation with
different density. (c, d)
Related martensitic
microstructure at low
temperature

local stress field and its percolation state influences the nucleation and growth of
martensitic domains and should be the physical origin of strain glass transition and
the existence of nanodomains.

For a given ferroelastic system, the elastic anisotropy is fixed, the way to produce
strain glass is to adjust defect concentration and defect type (i.e., defect strength).
Extended defects with high strength/density such as dislocations, grain bound-
aries, and precipitates could be a potential way to produce strain glass transition
[56]. Figure 10.8 shows the dislocation density’s effect on R martensitic phase
transition; high-density dislocation could break the normal martensitic transition
(MT) with long-range ordered martensitic twin structure and produce strain glass
transition (STG) with short-range ordered martensitic nanodomain states as shown
in Fig. 10.8. Similar experimental results and simulations have confirmed that the
dislocation could influence martensitic transition and produce strain glass [42, 50].

LTTE could also influence the phase transition if we could produce a composition
inhomogeneity with certain conditions. It was reported that precursory spinodal
decomposition could be an efficient way [57, 58]. Figure 10.9a shows the simulation
results of concentration evolution with spinodal decomposition in a single-crystal
Ti2448 (with an average composition of Ti-15 at %Nb). Figure 10.9b, c shows
the concentration wave along the body-diagonal of the computational cell and
the statistical distribution of defect concentrations (Nb) with different aging time
respectively. The Nb-lean and Nb-rich regions form a typical network structure
due to spinodal decomposition. This concentration distribution leads to different
stress-strain (SS) curves (in terms of the hysteresis and critical stress for the
MT, and the pseudo-elastic behavior) for systems. Before aging (i.e., t* = 0),
the SS curve in Fig. 10.9(d1) shows a large stress hysteresis and obvious stress
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Fig. 10.9 (a) Nb concentration modulation induced by spinodal decomposition in the parent phase
with different aging time. (b1–b5) One-dimensional Nb concentration profiles along the body-
diagonal of the computation cells shown in (a1–a5). (c1–c5) The statistical distributions of Nb
concentration in the computational cell of (a1–a5). (d1–d5) The stress-strain curves under uniaxial
tension shown in (a1–a5). (e1–e5) The normalized volume fraction of martensite during cyclic
loading shown in (a1–a5)

plateau (i.e., strongly nonlinear pseudo-elasticity) which are typical characteristics
of conventional martensitic phase. However, the SS curves become slim ones with
narrow hysteresis with the increase of aging time, as shown in Fig. 10.9(d2–d4).
The volume fraction of martensite vs. stress curve shows a similar change from a
square-like loop (sharp changes) (Fig. 10.9(e1)) to a slim and smooth loop (gradual
changes) (Fig. 10.9(e3, e4), again demonstrating a transition from a sharp first-order
MT to a higher-order like continuous transition. However, this simulation needs
more experimental work to prove whether it is a strain glass transition.
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10.3 Unique Properties Associated with Strain Glass
Transition and Strain Glass State

Strain glass has shown different transition behavior from normal martensitic tran-
sition, which may solve previously reported puzzles and suggest novel properties.
According to the microstructural evolution, the continuous nucleation and growth
of nanoscaled martensitic domains from strain glass transition could produce
continuous volume/strain change, or modulus change and slim hysteresis. Simu-
lations have shown that strain glass could exhibit slim hysteresis upon cooling
or loading, which may shed light on the new functional materials [22, 42, 44,
57, 59]. Figure 10.10a shows that the martensitic nanodomains volume fraction
changes are almost reversible upon cooling and heating for strain glass system,
showing a narrow thermal hysteresis. Figure 10.10b shows the enlarged images of
microstructural evolution in Fig. 10.10a, which could show a gradual increase of
the number and size for irregular shaped martensitic nanodomains in the systems

Fig. 10.10 (a) Calculated
strain glass transition with
volume fraction change and
microstructural evolution
upon cooling and heating. (b)
Portions of the enlarged
image of the microstructures
shown in (a). (c) Calculated
stress-strain curve for strain
glass system and related
corresponding
microstructural evolution (to
the red dots). Four colors
represent the four variants of
martensite
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upon cooling, and the final domain size is limited by the randomly distributed point
defects. Gradual nucleation caused by the continuous distribution of local stress
field by point defects can be attributed to the physical origin of continuous transition
characteristics of strain glass transition. High concentration of point defects or other
defects also plays role in limiting the growth space of formed martensitic domains,
which results in the existence of frozen nanoscaled martensitic domains. Different
from the large hysteresis of stress-strain curves in the normal martensitic system, the
stress-strain curve in strain glass system show superelasticity with narrow hysteresis
without stress plateau and nearly zero remnant strain (see Fig. 10.10c). Insets of
Fig. 10.10c show the microstructures evolution corresponding to the red dots in a
stress-strain curve during loading and unloading. Upon loading, the systems evolve
gradually from a state consisting of nanodomains of all martensitic variants having
approximately equal volume fraction into nanodomains consisting dominantly of
certain variant (red) that is favored by the load. Upon unloading, local fields
associated with point defects tend to restore gradually the initial multi-variants state.

In addition, continuous strain glass transition could provide continuous volume
change or strain change over a wide temperature range, which may help design
tailorable Invar [38, 60] or Elinvar materials [61, 62]. Calculated temperature
dependence of elastic modulus (including normal modulus hardening caused by
anharmonic atomic vibration and softening caused by phase transition) with dif-
ferent defect concentrations are shown in Fig. 10.11. A normal modulus hardening
with a constant thermoelastic coefficient is assumed for the model system. At low
defect concentration (e.g., X = 0.09), the simulation result (open squares) shows
a sharp decrease in the elastic modulus at the transition temperature and then
a steady increase after the transition. A narrow and sharp peak is shown in the
corresponding thermoelastic coefficient (Fig. 10.11b) (i.e., the derivative of the
modulus with respect to temperature). With the increase of the defect concentration
(e.g., X = 0.30), the sharp thermoelastic coefficient peak changes into a broadly
smeared peak. When the defect concentration reaches a certain value, e.g., X = 0.45,
the elastic modulus show almost invariant (open triangles in Fig. 10.11a) and the
thermoelastic coefficient (Fig. 10.11b) is nearly zero over a wide temperature range
(∼100 K). Figure 10.11c shows the change in volume fraction of the M phase, and
a gradual change of the volume fraction occurs at high defect concentration. These
results suggest that impurity doping in ferroelastic systems is an effective way to
adjust MT characteristics and tailor the thermoelastic coefficients.

10.4 Challenge and Opportunity

Strain glass not only exhibits important theoretical significance but also show wide
applications. However, current strain glass system faces one key problem: small
recoverable strain as shown in Fig. 10.12, i.e., local transition strain of nanoscaled
martensitic domains is small. For example, there is no report of the existence of
B19 or B19’ (transformation strain ∼8%) strain glass in point defect doped NiTi
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Fig. 10.11 Variations of (a) elastic modulus, (b) corresponding thermoelastic coefficient, and (c)
volume fraction of martensitic domains as a function of temperature in doped ferroelastic systems
have different point defect composition

Fig. 10.12 Comparison of
strength and maximum
recoverable strain among
existing strain glasses
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systems. Theoretical work has shown that both long-range interaction and defect
strength/concentration play an important role. For certain system which includes
martensitic phase with large transformation strain will have strong long-range
interaction, the possible way to produce strain glass is to increase the defect strength
and concentration. Based on the theoretical guidance, recent experimental work
design materials with introducing the high strength dislocations by cold rolling and
produce such B19’ strain glass with large recoverable strain [42]. However, more
work to help predict and design novel strain glass system with better properties
is still a challenge. With the development of computer technology and method,
simulations could be an efficient way to guide the new materials design with high
speed and low cost in future.
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