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Preface

Organic biomass from plants provided the energy and chemical resources for

mankind for centuries, until the widespread discovery and mining of fossil

resources, particularly coal and petroleum, fueled worldwide industrialization

during the last 150 years. The burgeoning world population and its increasing

demand for energy and materials/chemicals, the unequally distributed and

non-renewability of the fossil resources, and their environmental and climatological

impacts have stimulated renewed interest in the discovery and development of new

processes for the conversion of renewable, biomass-derived, and carbon-neutral

feedstocks into useful fuels and value-added chemicals. The latter is the focus of the

present volume.

The purpose of this volume is to highlight several recent research efforts to

discover and to develop selective, catalytic reactions and processes for the conver-

sion of ligno-cellulosic and plant oil-derived feedstocks to value-added chemicals.

The value of catalytic chemical processes lies in their reduced energy consumption

and potentially increased efficiency and product selectivity, which minimize envi-

ronmental and societal impacts. Selectivity is especially important for the prepara-

tion of commodity and specialty chemical and materials where single compounds

are usually needed, unlike fuel production where mixtures of high energy com-

pounds (e.g., gasoline and diesel) are useable.

The challenge to chemists seeking to reconstitute/refunctionalize biomass

resources is their polyoxygenated nature (CHO)n, which requires the transformation

of C–O bonds for oxygen removal or substitution, whereas the functionalization of

hydrocarbon-rich fossil resources focuses on C–C and C–H activation. Different

chemistries and types of catalysts are thus needed to effect the selective, catalytic

conversions desired for refunctionalizing typical biomass feedstocks.

In this volume we begin with an introduction to identify and assess the value of

potential chemical conversions of biomass feedstocks. This is then followed by

several chapters from leaders in the field covering various catalytic methods for

oxygen-removal and refunctionalization of polyoxygenates, including selective

dehydration to multipurpose furan derivatives, carbohydrate retroaldol/

v



dehydrations/isomerization to the platform chemical lactic acid, polyol

hydrogenolysis to partially deoxygenated products, and deoxydehydration to unsat-

urated products. Finally, we conclude with two chapters focusing on biomass

reconstruction and deconstruction processes – the polymerization of biomass-

derived monomers to macromolecules (polyesters, etc.) and lignin deconstruction

reactions.

In is our hope that this volume will help to stimulate continued interest and

developments in biomass conversion catalysis for the biorefineries of the future.

Norman, OK, USA Kenneth M. Nicholas

May 2014
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Top Chemical Opportunities from

Carbohydrate Biomass: A Chemist’s View

of the Biorefinery

Michiel Dusselier, Mark Mascal, and Bert F. Sels

Abstract Cheap fossil oil resources are becoming depleted and crude oil prices are

rising. In this context, alternatives to fossil fuel-derived carbon are examined in an

effort to improve the security of carbon resources through the development of novel

technologies for the production of chemicals, fuels, and materials from renewable

feedstocks such as biomass. The general concept unifying the conversion processes

for raw biomass is that of the biorefinery, which integrates biofuels with a selection of

pivot points towards value-added chemical end products via so-called “platform

chemicals”. While the concept of biorefining is not new, now more than ever there

is the motivation to investigate its true potential for the production of carbon-based

products. A variety of renewable chemicals have been proposed by many research

groups, many of them being categorized as drop-ins, while others are novel chemicals

with the potential to displace petrochemicals across several markets. To be compet-

itive with petrochemicals, carbohydrate-derived products should have advantageous

chemical properties that can be profitably exploited, and/or their production should

offer cost-effective benefits. The production of drop-ins will likely proceed in short

term since the markets are familiar, while the commercial introduction of novel

chemicals takes longer and demands more technological and marketing effort.

Rather than describing elaborate catalytic routes and giving exhaustive lists of

reactions, a large part of this review is devoted to creating a guideline for the

selection of the most promising (platform) chemicals derived via chemical-catalytic

reaction routes from lignocellulosic biomass. The major rationale behind our rec-

ommendations is a maximum conservation of functionality, alongside a high atom

economy. Nature provides us with complex molecules like cellulose and hemicel-

lulose, and it should be possible to transform them into chemical products while
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maintaining aspects of their original structure, rather than taking them completely

apart only to put them back together again in a different order, or turning them into

metabolites and CO2. Thus, rather thanmerely pursuing energy content as in the case

of biofuels, the chemist sees atom efficiency, functional versatility, and reactivity as

the key criteria for the successful valorization of biomass into chemicals.

To guide the choice of renewable chemicals and their production, this review

adopts the original van Krevelen plots and develops alternative diagrams by

introducing a functionality parameter F and a functionality index F:C (rather than

O:C). This index is more powerful than the O index to describe the importance of

functional groups. Such plots are ideal to assess the effect of several reaction types

on the overall functionality in biomass conversion. The atom economy is an

additional arbitrator in the evaluation of the reaction types. The assessment is

illustrated in detail for the case of carbohydrate resources, and about 25 chemicals,

including drop-ins as well as novel chemicals, are selected.

Most of these chemicals would be difficult to synthesize from petrochemicals

feeds, and this highlights the unique potential of carbohydrates as feedstocks, but,

importantly, the products should have a strong applied dimension in existing or

rising markets. Ultimately, the production scales of those markets must be harmo-

nized to the biomass availability and its collection and storage logistics.

Keywords Atom economy � Biomass conversion � Biomass-to-chemicals �
Biorefinery � Cellulose � Functionality index � Modified van Krevelen plot �
Platform chemicals
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1 General Introduction to Biomass Conversion

and Biorefineries

The concept of the biorefinery is attracting exponentially growing interest.

According to Chemical Abstracts, more than 650 publications have appeared to

date with the term “biorefinery” in their title, including 170 review papers. If the
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search is widened to include papers that contain “biorefinery” in either the title or

abstract, there are more than 1,800 references, including 436 reviews. The most

cited of these is a 2006 review by Ragauskas and coworkers in the journal Science,
which has a remarkable 1,412 citations as of mid-January 2014 [1].

While the above speaks to the current popularity of the field, the essential

concept of the biorefinery predates the term by a long stretch. A historical devel-

opment of biorefining is complicated by the fact that natural products have been

exploited for various industrial purposes since long before petroleum was commer-

cially developed. The use of the terms “biorefinery,” “biorefining,” or “biomass

refining” before the year 2000 was confined to only about 35 papers, the earliest of

which appeared in 1981 [2]. Prior to this, however, related terms were used. For

example, in 1978, an article entitled “Fuels from biomass: integration with food and

materials systems” provided an early insight into the “integrated biorefinery”

concept which has become so popular in the modern abstraction of the field [3].

We might suppose a reasonable historical marker of the modern biorefinery

could be the point at which the exploitation of cellulose as an alternative to sugars

and starches in biotechnology was put forward. However, this is not easy to pin

down, since the conversion of cellulose to fermentable sugars was a subject of

investigation as far back as 200 years ago [4]. Alternatively, the thermochemical

conversion of biomass to secondary products such as fuels might be seen as the

dawning of the biorefinery movement. However, here also there is little new under

the sun, with studies along these lines having already been described in the

eighteenth century [5, 6]. Even chemical conversion methods take root in historical

processes. For example, a review entitled “Biorefining of biomass to liquid fuels

and organic chemicals” describes the anaerobic digestion of biomass to aliphatic

acids, which were then oxidized to alkyl radicals that couple to give alkanes, citing

results that hark back to the days of Faraday [2]. Thus, we must consider biorefining

a historical, cross-disciplinary movement which has seen a surge in the twenty-first

century, rather than a field that has just arisen to confront modern environmental,

economic, and political challenges. The latter and arguably most contentious of

these challenges was foreseen in a 1982 article by Bungay entitled “Biomass

refining,” which begins as follows:

Because there is no shortage of petroleum at present, there is less apparent pressure to

develop alternative chemical feedstocks. But the respite may be brief as OPEC (the

Organization of Petroleum Exporting Countries) is attempting to cut production and to

dissipate oil stockpiles. Having alternatives to petroleum may soon be essential to eco-

nomic survival [7].

In fact, it is no coincidence that the biorefinery timeline parallels that of

historical gasoline prices in the US (Fig. 1) and the consequent launch of a range

of federal programs to stimulate research in renewable energy and materials. The

inflection just after 2001, the year in which 9–11 occurred, is also significant from a

political standpoint.

It is also a fact that the biorefinery movement is by no small measure “scientific”

in character. It is the prospect of taking raw biomass components and converting

Top Chemical Opportunities from Carbohydrate Biomass: A Chemist’s View. . . 3



them, using industrially relevant practices, into renewable energy, fuels, materials,

and chemicals that challenges the scientist. Generally, this has been approached in

three ways, as shown in Fig. 2.

The first and most common of these is microbial. This was the “low hanging

fruit,” since it is grounded in a knowledge-base with roots in antiquity, i.e.,

agriculture and brewery/distillery. An additional advantage is that the products

(mainly simple alcohols and acids) are “drop-ins” and do not require regulatory

approval for most applications. However, fermentation is a relatively slow process,

generally involving time scales on the order of days. It also does not usually

proceed directly from raw, cellulosic biomass, but requires expensive pretreatment,

saccharification, and often post-treatment to remove by-products toxic to microor-

ganisms. Finally, not all the carbon is captured into useful products. For example,

glucose is utilized following the equation C6H12O6 ! 2C2H5OH + 2CO2.

Even assuming 100% theoretical efficiency of the fermentation process, one third

of the available carbon is blown out as carbon dioxide, about an equal mass of

which is produced per unit mass of ethanol. Also belonging to the above classifi-

cation is microbial methanogenesis, which proves valuable for certain types of

feedstock (generally food and animal wastes) [8]. However, around 40% of the

output is again CO2, and the methane thus produced is for the most part limited in

its applications to local power generation. While this constitutes, alongside other

power technologies (solar, wind, hydroelectric, geothermal), a useful contribution

to the greening up of energy, biomass may be considered to have a more vital role to

play in the production of liquid transportation fuels, chemicals and materials. For

instance, we will not fly commercial aircraft on solar cells, and neither are heavy

transportation vehicles and construction equipment likely to convert to alternative

power sources soon. By the same token, a carbon source is needed to make

chemicals and materials, such as polymers, coatings, adhesives, solvents, and the

like. The chemical diversity of these industrial products and the sheer scale on

0

50

100

150

200

250

300

350

400

450

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

cents per gallon

publica�ons

Fig. 1 The average cost of a gallon of gasoline in the US (Source: Energy Information Admin-

istration, Annual Energy Review 2011, Table 5.24) plotted against the number of hits in a

Chemical Abstracts search using the index term “biorefinery”
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which they are consumed indicates they can only be provided in a renewable way

via biomass. It follows from the above that the more approaches we develop to

valorizing biomass towards these ends, the further along we will be on the way to

independence from petroleum.

The second mode of biomass processing, also historically rooted (as noted

above), is thermochemical in nature, leading either to bio-gas or bio-oil. This

method has also seen a flurry of activity, with several comprehensive reviews

having been written in recent years [9]. Nevertheless, this approach also presents

limitations. In gasification, biomass is converted into a mixture of combustible

gases (principally CO and H2) by partial oxidation at temperatures from ~800 to

1,000�C. As in fermentation, significant quantities of carbon are diverted into CO2

and, akin to methanogenic biogas, the product is mainly relevant to direct power

generation, although when reconditioned to clean synthesis gas [10], it can be

submitted to the (expensive) Fischer–Tropsch process to give liquid fuels [11].

Fast pyrolysis at lower temperatures (~500�C), which can be conducted in the

presence of heterogeneous catalysts [12, 13], gives bio-oil as the main product,

alongside gases and char. Bio-oil is a highly complex mixture of water, lignin

fragments (substituted phenols), furans, carboxylic acids, hydroxyaldehydes and

ketones, esters, alcohols, sugars, tar, and other products. This material can be

considered “densified biomass” and can also be combusted to generate heat or

electricity. Due to its reactive nature, the liquid gradually becomes more viscous

and may undergo phase separation, and thus cannot be stored for prolonged periods

in its crude state [14]. For use as transportation fuel, extensive catalytic upgrading is

required [15]. Materials applications are also limited by its heterogeneous nature.

The third approach to biomass valorization encompasses a group of chemical/

catalytic processes, which are usually targeted to a single product or a narrow range

of products. These selective catalytic approaches for renewable feedstocks and

chemicals are the main subject of this Topics in Current Chemistry volume, as

introduced in the following section.

Before examining biomass conversion approaches in detail, we first briefly

review the chemical composition of plant biomass. The main biomass components

[16, 17] are cellulose [18–20], hemicellulose [21], starch, sugars, lignin [22], oils,

fats, and waxes [23, 24], proteins [25, 26], and various extractives. Those most

relevant to the biorefinery are shown in Fig. 3.

Cellulose, hemicellulose, and starch consist of polymers of simple sugars and

thus are known as polysaccharides. Cellulose is the single most abundant organic

Fig. 2 Approaches to biomass exploitation
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compound on Earth [19, 27]. This biopolymer consists exclusively of glucose, a

six-carbon aldose sugar, whereas hemicellulose is primarily a pentosan (e.g.,

arabinoxylan in Fig. 3) based on five-carbon sugars, of which xylose and arabinose

are the main representatives (next to ribose and six-carbon glucose, mannose and,

galactose) [19, 20, 28]. The nature of hemicellulose is thus more complex, but, due to

side chain branching, this biopolymer is amorphous and amenable to facile hydro-

lysis. Cellulose, on the other hand, is able to form intra- and inter-chain hydrogen

bonds, which leads to the organization of the chains into planes, and the stacking of

those plains [18, 29]. This renders cellulose a crystalline and hydrophobic material

which is recalcitrant towards hydrolysis [30]. The other biopolymer, starch, is also

abundant in nature and is much more easily processed into its glucose monomers

than is cellulose due to its more chemically vulnerable α-glycoside linkage and

amorphous tertiary structure. Besides the polysaccharides, to a lesser extent, mono-

and disaccharides such as glucose, fructose, and sucrose are also encountered in

plants, and thus may also be considered as feedstocks for the synthesis of chemicals

and fuels. The use of sugars and starch as chemical precursors is, however, somewhat

controversial, since these products are a primary source of human nutrition. The

Fig. 3 The general chemical structure of the major biomass components. The wavy bonds indicate
further attachment in the biopolymer structure

6 M. Dusselier et al.



controversy about the use of the human edible carbohydrates or oils as replacements

for petroleum should be interpreted with care and placed in perspective. It is a case-

specific exercise, and highly dependent on issues of scale [25, 31]. Such an exercise

would, for instance, be completely different for a low volume chemical target than

for a biofuel.

Plant oils and micro-algal oils are generally composed of fatty acid tri-esters of

glycerol, although micro-algal oils are often more diverse and can also contain

phospholipids [24]. The future for the development of these as biorefinery feeds

will depend on the extent to which they can compete with carbohydrates in terms of

value as a carbon source for fuels and chemicals. Although they occur in a chemically

more reduced state than sugars, they are generally found in much lower abundance in

biomass. A co-product of the processing of these oils into fatty acid derivatives is

glycerol, which is also considered as a biomass-derived carbon precursor [32–34].

Lignin, of which one variety is shown in Fig. 3, is a highly complex, branched

biopolymer of phenolic and allylic alcohols, of which the main representatives are

sinapyl, coumaryl, and coniferyl alcohols [22]. This material is amorphous but highly

resistant towards catalytic/enzymatic hydrolysis. In Chap. 7 of this volume, the

oxidative conversion of lignin is discussed in detail by Bozell and coworkers.

2 Introduction to Chemical Biomass Conversion Strategies

Chemical-catalytic methods of biomass valorization vary widely in their reaction

conditions, but are generally fast and have the potential to utilize all of the available

carbon in the feedstock. They have, up to now, attracted less commercial attention

than fermentative and thermocatalytic or pyrolytic methods, possibly due to the fact

that they are new technologies which involve considerable method development

and thus invoke greater capital expenses on startup, whereas the classic approaches

described above were already well established and available as and when the need

arose. All the same, once an economic shakedown of the renewable technology

sector comes about, it may well be that purely chemical technologies have the

competitive edge due to their potential to process biomass inexpensively into

versatile platform molecules in short times and under mild conditions. Catalysis,

either in homogeneous or heterogeneous mode, presents a formidable toolbox for

this purpose, as will be discussed below.

2.1 Chemical Conversion Routes to Biofuels

The conversion of biomass to automotive fuels has perhaps received the most

attention of any chemical biomass conversion process. One of the most visible

technologies under this classification is the aqueous phase reforming (APR) process

[35], in which the oxygen content of carbohydrate feedstocks is reduced with in-situ

Top Chemical Opportunities from Carbohydrate Biomass: A Chemist’s View. . . 7
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generated hydrogen, the ultimate product after final hydrotreating being hydrocar-

bons, based on work originally described by Huber, Cortright, and Dumesic in 2004

[36, 37]. The main advantage of APR, now being commercially developed by

Virent, Inc., is that the product hydrocarbons are already well integrated as fuels

in the current automotive infrastructure. The disadvantages are: (1) complex,

expensive metal catalysts and relatively high temperatures and pressures are

required; (2) the overall yield of useable hydrocarbon products (�C8) is often

modest, with substantial quantities of carbon being stripped out in the reforming

process as CO2; and (3) the method operates only on sugars or starch, not directly

on cellulose or cellulosic biomass. Despite the attention it has received, APR seems

unlikely to form the basis of a renewables revolution, being ultimately displaced by

technologies that can produce new generations of biofuels at a fraction of the cost.

Since the APR process came to light, several other related approaches based on

sugar dehydration, condensation reactions, and reductive stripping of oxygen have

been described, again by Dumesic [38], but also others [39] in multiple reviews

[40–42]. 5-(Hydroxymethyl)furfural (HMF) [37, 43], furfural[44], levulinic acid

[45], and its derivatives γ-valerolactone [46, 47] and angelica lactone [48] are other
platforms on which either condensation chemistry plus hydrogenation, [49] or

conversion to olefins which can be oligomerized by well-described routes, are

founded [50]. This subject will be taken up in greater detail in Chap. 2 of this

volume Mascal and Dutta.

2.2 Chemical Conversion Routes to Bio-Derived Chemicals

As mentioned above, besides the production of low-margin/high-volume biofuels,

the integrated lignocellulosic biorefinery should also produce higher value

chemicals. However, as Bozell et al. clearly pointed out in 2010, ‘the choice of
appropriate products for addition to the biorefinery’s portfolio is challenged by a
lack of broad-based conversion technology coupled with a plethora of potential
targets’[51]. Due to the vast number of potential derivatives of carbohydrates, the

development of a set of broad-based catalytic conversion technologies is hampered

by the need to catalyze a diverse range of reactions effectively. In practice, the use

of tailored catalysts to effect specific transformations within a reaction network to

produce a desired set of chemicals is necessary. For instance, cellulose might be

hydrolyzed to glucose, which might be dehydrated to HMF, rehydrated to levulinic

acid, and hydrogenated to γ-valerolactone, or it might be hydrogenated to sorbitol,

then dehydrated to sorbitans and ultimately to isosorbide.

The approach to choosing chemicals and processes will form the subject of the

remainder of this chapter. A summary of the most important chemicals from

cellulose and hemicellulose is shown in Fig. 4.

To start with, the most abundant five- and six-carbon sugars and some of their

isomers, as well as shorter chained sugars, are indicated in green. Chemicals

produced by fermentative or biocatalytic processes of carbohydrate feedstocks are

8 M. Dusselier et al.
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indicated in blue. The chemicals in black are usually formed via catalytic

processing. For the chemicals in red, both bio- as well chemocatalytic routes

starting from hexoses and pentoses have been reported. Aside from the fermenta-

tion products, within more or less similar reaction conditions, different chemicals

will be formed from different thermodynamically allowed reaction channels, each

by using different catalyst types or by altering the balance of the active sites

accordingly. A fundamental understanding of the potential reaction network is

therefore crucial in order to tackle the selective conversion of biomass towards

targeted molecules and to design the process steps and the catalysts required.

The choice of the most cost-effective approach to producing chemicals from

carbohydrates is thus challenging, as it depends on many chemical, technical, and

economic factors. The purpose of this introduction is not to provide a comprehen-

sive techno-economic study for each target chemical, but rather to establish a

methodology for assessing and selecting the most viable chemicals from biomass,

here illustrated for carbohydrate biomass, with respect to the preservation of

functionality and high atom economy from a green chemist’s perspective. Several

reviews have been published summarizing the literature on the catalytic conversion

of cellulose to chemicals [17, 19, 20, 52, 53]. The content discussed in the present

chapter significantly complements this work, as it proposes to offer a toolbox for the

selection of the most relevant chemicals from carbohydrate biomass and to suggest

the preferred synthetic routes, in a context that bears in mind the competition with

classic petrochemicals derived from oil and natural gas.

Fig. 4 Prominent conversion products of carbohydrates. Green: sugars. Black: via chemical

catalysis. Blue: via bio-catalysis. Red: via bio-and/or chemical catalysis
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To guide the choice of chemicals, this review proposes the use of a modified van
Krevelen plot in Sect. 3.1 to assess the value of chemical functionality. Function-

ality of the target chemicals and the atom economy of their formation are the most

decisive guiding tools, as visualized in Fig. 5. Once a target molecule is selected,

pursuing an atom-efficient reaction and an efficient catalytic protocol will be

imperative. Viable reactions within this context make up the scope of Sect. 3.2.

Note that the catalytic conversion of lignin to chemicals is not within the theme of

this chapter, but a similar exercise as performed here for carbohydrates may

likewise be executed. Though somewhat more difficult than cellulose conversion

because of its complex and variable chemical structure, catalytic lignin conversion

has become important as well and will receive increasing attention in the future.

The reader is referred to a recent review regarding the potential of lignin in the

chemical industry [22] and to Chap. 7 in this volume.

3 A Chemist’s View of the Selection of Viable Target

Molecules and Their Formation in Cellulosic Biomass

Conversion to Chemicals

3.1 Modification of van Krevelen Plots to Verify the Selection
of Bio-Derived Chemicals

3.1.1 Introduction

In contrast to natural gas, coal, and oil, polysaccharide feedstocks have a very high

oxygen content, with an O:C ratio near unity. In the assessment of valorization

paths for the use of carbohydrate biomass to produce chemicals, a US Department

of Energy report was published in 2004. The final top 12 chemicals out of more than

300 potential candidates were selected, mainly based on their market potential. The

Fig. 5 Conversion of carbohydrates to chemicals requires the informed choice of target mole-

cules. Preservation of functionality and atom economy are two important parameters to guide this

choice and to search for the best reactions and the required catalysts

10 M. Dusselier et al.
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report has been used by many researchers as their guideline to identify and develop

routes to the most important platform chemicals [54]. Bozell and Petersen

re-analyzed this list in 2010, mainly based on literature citations (as a measure

for technology development) and multiple product applicability, among seven other

criteria. Details of their revised top 13 chemical opportunities from biorefinery

carbohydrates are collected together in Table 1 [51]. Clearly, the selected mole-

cules, including carboxylic acids, alcohols, ethers and aldehydes, contain a high

degree of chemical functionality, bearing at least one functional group in their

molecular structure. Such functionality is beneficial as these selected platform

chemicals can serve as entry points for further chemical transformation [16].

Beyond this careful selection of platform chemicals, the production of a number

of other polymer building blocks, chemical intermediates, and end products from

carbohydrates has been reported. Due to the unique oxygen-rich composition of

carbohydrates, their conversion into renewable chemicals that preserve the func-

tional groups is an advantage over the current petroleum and natural gas conversion

routes. Biomass conversion with high atom efficiency is a key aspect of the

competitive synthesis of chemicals and chemical-based products.

The production strategy for biofuels contrasts with that of renewable chemicals:

here, it is not so much the atom economy but rather the heating value of the product

that is of ultimate interest. The energy content of molecules is mainly associated

with the number of C–H bonds present. Therefore, complete defunctionalization

protocols, using a set of reactions such as C–O hydrogenolysis, decarbonylation,

decarboxylation, and hydrogenation are followed, resulting in a lowered atomic

O:C ratio, enhancing the energy content of the resulting fuel [13, 41, 43, 55–58]. An

inherent trait of defunctionalization is the consumption of (expensive) H2 and/or

CO2 formation. Biofuel synthesis from cellulosic feedstocks thus requires a cheap

source of hydrogen to be economically viable, unless the energy content in the

Table 1 Top chemical opportunities from carbohydrates as given by

Bozell and Petersen [51], ordered by total carbon number (#C) with

functional group analysis (defined below)

#C Compound F value F:C

2 Ethanol 1 0.5

3 Lactic acid 4 1.33

3 3-Hydroxypropanoic acid 4 1.33

3 3-Hydroxypropionaldehyde 3 1

3 Glycerol 3 1

4 Succinic acid 6 1.5

5 Levulinic acid (LA) 5 1

5 Xylitol 5 1

5 Furfural 6 1.2

5 Isoprene (biohydrocarbon) 2 0.4

6 Sorbitol 6 1

6 5-(Hydroxymethyl)furfural (HMF) 7 1.17

6 Furandicarboxylic acid (FDCA) 10 1.67
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molecule is provided by a loss of CO2 as in the fermentative production of ethanol,

but then a low carbon efficiency is obtained.

As the synthesis of transportation fuels is a high-volume, low-margin business,

process economics and feedstock logistics might be problematic with biomass,

while such scale-related issues are of less concern for renewable chemical and

polymer synthesis. Several countries have programs in place which offer govern-

mental incentives and subsidies to compensate for the economic shortcomings of

biofuel production. Only in Brazil has the production of biofuels like ethanol been

economically sustainable, but it is a matter of strong debate whether the complete

replacement of liquid transportation fuels by biofuels is feasible worldwide. Thor-

ough life cycle assessments and unbiased economic analyses should help to deter-

mine the sustainability and viability of biofuel production and use [59–62].

3.1.2 The Original Van Krevelen Diagram

The original van Krevelen diagram, proposed in 1950 by Dirk van Krevelen [63], is

frequently used in geochemistry and coal research. It typically plots the atomic H:C
ratio (H index) of a chemical feedstock on the y-axis vs the atomic O:C molar ratio

(O index) on the x-axis. A classic plot of this nature is exemplified in Fig. 6.

As can be seen, major biogeochemical classes of compounds like lignin, lignite,

peat, anthracite, cellulose, coal, and oils occupy different regions in the diagram.

Typically, the van Krevelen diagram has been used to assess the evolution and

origin of coal and oil samples. In such plots, trends along lines are indicative of

structural relationships among groups of compounds, which arise from a number of

typical reactions that influence both the H and O index – e.g., dehydration,

decarboxylation, demethanation, dehydrogenation, hydrogenation, and oxidation

[65]. van Krevelen mainly applied this methodology to monitor coalification series

[63]. In a way, the formation of coal or crude oil from plant matter containing

lignin, hemicellulose, and cellulose – a process taking thousands of years in the

crust of the Earth – is comparable to the transformation of cellulose or lignin into

fuels and chemicals in a chemical reactor, albeit on a different time scale. Different

conditions are obviously applied and, due to the enormous global demand for

chemicals, the use of rate-accelerating catalysts is paramount to achieving fast

conversion on a feasible time scale, rendering the processes cost-efficient. The

O index in the van Krevelen plot is ideal for assessing the production of fuels and

deoxygenation series with a focus on increasing the calorific value, e.g., from wood

to peat to coal (Fig. 6) or the upgrading of bio-oils [66].

However, when looking at the van Krevelen plot for the prominent

carbohydrate-based platform chemicals, monomers, and intermediates containing

functional groups (Fig. 7), the plot is not very informative for distinguishing

between various choices of chemicals. For example, all sugars occupy one point

on the diagram (x, y ¼ 1, 2), a place shared with other chemicals such as lactic and

acetic acids. Deoxygenated chemicals are indeed found in one region of this plot,

namely on the left-hand-side, but apart from this trend, evaluation of the

12 M. Dusselier et al.



functionality of the chemicals is challenging, and requires one to look diagonally at

the plot. The main carbohydrate feedstocks of importance are indicated in a green

box on the plot: sucrose, cellulose, hemicellulose, glucose, and pentoses. Functional

target molecules are found both on the left (e.g., isosorbide and HMF) and right

Fig. 6 A typical van Krevelen diagram, loosely based on [64]

Fig. 7 van Krevelen plot for carbohydrate-derived chemicals, colored by carbon number.

VGA: vinyl glycolic acid, HBL: hydroxybutyrolactone, GVL: γ-valerolactone, C5: pentoses,

C6 ¼ hexoses, LA: levulinic acid, Sucr.: sucrose, Hemi.: hemicellulose

Top Chemical Opportunities from Carbohydrate Biomass: A Chemist’s View. . . 13



(e.g., glucaric acid) as well as below (e.g., furandicarboxylic acid or FDCA) and

above (e.g., sorbitol) the feedstock box.

3.1.3 Introducing a New Parameter F, Describing the Molecular

Functionality

While appropriate for fuel purposes and deoxygenation series, the original van
Krevelen plot is not well suited for distinguishing between a variety of chemicals

with different numbers and types of functional groups and the reactivity derived

therefrom. Indeed, since all carbohydrates and even formaldehyde occupy the same

point, one cannot appreciate, for instance, the higher reactivity and functionality of

formaldehyde and glycolaldehyde. The reactivity of these aldehydes is more pro-

nounced than in molecules like glucose, which exist in stable, cyclic acetal forms.

Thus, to study the functionality of chemicals derived from original biomass feed-

stocks like cellulose, hemicellulose, sucrose, and monosaccharides, an adaptation is

necessary. Here, we propose the introduction of a new functional group parameter,

denoted by the letter F. This parameter takes into account the functional groups of

chemicals based on C, H, and O, but its application is flexible as it could easily be

extended also to heteroatoms like N, S, and P. Each functional group is thus given a

relative contribution to the parameter F, as shown in Table 2. The F value is defined

as follows: each C–O bond and each bond in addition to the σ-bond between two

carbon atoms or one carbon and one oxygen atom, such as the double bond in an

alkene or an aldehyde, respectively, is assigned a value of 1. In this way, a hydroxy

group, for instance, contains one C–O bond and is thus given an F value of 1, while

the F value of a carboxylic acid function is 3 due to the presence of two C–O

σ-bonds and one C–O π-bond. A furan ring is given an F value of 4 due to the

presence of two double bonds and the two ether C–O bonds. Accordingly, HMF has

a total F value of 7, whereas glucose has the same value due to its aldehyde and five

OH groups.

3.1.4 The Functionality Index F:C

To assess the degree of functionality of a chemical compound with respect to

its carbohydrate feedstock, its functional group parameter F is normalized to the

number of carbon atoms, giving the ratio F:C. In analogy with the van Krevelen
plot, we call F:C the functionality index. A plot of the functionality index against

the oxygen index is given in Fig. 8. The diagonal presents the chemicals for which

both indexes share the same value. Chemicals on the diagonal are the mono-,

di-, and poly-alcohols, while the origin represents alkanes. It is interesting to note

the large number of chemicals off the diagonal, confirming a substantial refinement

in the assessment of functionality using the F:C index. In contrast to the O index,

the F:C index can, for example, differentiate chemicals by their degree of

unsaturation. Thus, there is a shift to the right for acetone vs propanol due to the

14 M. Dusselier et al.



increase in functionality, while the position of a chemical drops with the presence

of an unsaturation in the carbon skeleton (e.g., olefins and aromatics) relative to

oxygen functionality, as seen by comparing 1,4-butanediol and butadiene for

instance. In this way, the F:C index as such adds useful information about the

reactivity of chemicals.

Figure 9 illustrates the F:C values for a range of different target molecules from

carbohydrate biomass, which are generally representative of the published work in

this field, ordered by carbon number. The plot is supplemented with derivatives of

these chemicals and some petrochemicals as well for the purposes of comparison.

This group of molecules comprises feedstock sugars, sugar alcohols (sorbitol),

ethers (isosorbide), aldehydes, ketones, alcohols, diols, glyoxals, and acids. More-

over, a number of compounds containing more than one kind of functional group

Table 2 Contribution to F of the most common

functional groups in oxidized hydrocarbons

Type of functional group Contribution to F

Alcohol 1

Aldehyde 2

Ketone 2

Ether 2

Carboxylic acid 3

C¼C 1

C�C 2

Fig. 8 O:C vs F:C ratio for a range of carbohydrate-derived chemicals and derivatives thereof.

Feedstocks highlighted in green box. Cx: resp. x-carbon monosaccharide
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are also included: α-hydroxy acids (lactic and vinylglycolic acids), allyl alcohol,

furan derivatives such as HMF (furan, alcohol, aldehyde) and 2,5-furandicarboxylic

acid, other acids such as levulinic acid, and the substituted lactone hydroxybutyr-

olactone (HBL).

The chemical structure of most of the compounds in Figs. 8 and 9 can be found in

Fig. 4. Table 1 also reports the calculated F:C values for the top chemical opportu-

nities from carbohydrates as defined by Bozell and Petersen (see above), whereas

Table 3 (found under section 3.1.6 ) provides a list of F:C values for the majority of

commonly reported carbohydrate-based platform chemicals, monomers, and inter-

mediates. The abscissa of the plot in Fig. 9 contains the alkanes, with a zero F value;

they have no functionality and are considered chemically inert. From a strictly

functional point of view, producing alkanes from carbohydrates is not a preferred

conversion route.

Carbohydrate feedstocks such as cellulose, sucrose, and starch have an F:C
value of 1.17, whereas hemicellulose has a value of 1.2. A tentative zone has

been indicated in red in Fig. 9 for all chemicals with an equal or higher F:C value

than cellulose. A drop below this line is equivalent to a loss of functionality. The

biopolymers share their F:C value with their respective monomers, thereby simpli-

fying hemicellulose to a pure pentosan. While the five- and six-carbon sugar

monomers have values near 1.2, shorter-chained sugars have a higher F:C index;

tetroses, trioses, and the smallest sugar, glycolaldehyde, attain F:C values of 1.2,

1.33, and 1.5, respectively. This rising trend parallels the higher reactivity of the

lower sugars.

Fig. 9 F:C ratio for a selection of carbohydrates, carbohydrate derivatives, and other chemicals,

ordered by carbon number. Feedstocks highlighted in green. Blue arcs: see text
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Most chemicals above the feedstock line are chemicals with a high added-value,

among them formaldehyde, glyoxal with its two carbonyl groups, and a number of

organic acids such as glycolic, pyruvic, and malic acid, and even furan or sugar-

based acids. Formic acid, which can also be sourced from biomass [69, 71, 89, 90],

has a value of 3, rendering it unsuitable to plot here for scaling reasons. The highest

F:C of 4 is found in CO2, but this is an artifact due to over-oxidation and not a

reflection of value. The molecules below CO2 and above the feedstock line are

generally obtained by a selectively catalyzed oxidation reaction or fermentation.

Such highly functionalized molecules are interesting targets as long as O2

(or alternatively H2O2) can be used as the oxidant. Provided that the selectivity is

kinetically under control, such exothermic reactions are favorable. CO may also be

formed through endothermic reforming, but such a route is energetically less

motivating.

This F:C analysis is based on a chemical’s structure and allows comparison to

the structure of a possible feedstock, but it does not imply that a product with high

F:C is highly valuable or useful. The market for a given chemical will ultimately

determine its value, and a (future) market may not per se exist for all chemicals

assessed and selected here. The opposite is also true, as a chemical with a low F:C

value may still be highly sought after.

It is evident from the plot that the highest degree of functionalization per carbon

is obviously achieved in the shortest molecules. However, one should take into

account that the shorter the carbon chain, the more competition is expected from

petrochemical routes for its formation. Such routes typically use natural gas com-

pounds like methane and ethane and cracked hydrocarbons like ethylene and

propylene. The lower left corner is thus occupied by petrochemicals, whereas in

the upper right corner highly oxidized six-carbon compounds are found. To high-

light the difference between these corners, zones are indicated on the chart by

expanding, concentric arcs:

• The innermost zone covers chemicals for which no petrochemical route exists, and

therein lies a great opportunity to produce them from carbohydrate feedstocks (in

the case that a market for them is present or arises): gluconic [91, 92] and glucaric

acids [17], furyl glycolic acid [87], furandicarboxylic acid [85], and fermentation-

derived malic, citric, succinic, and itaconic acids [17]. Besides these, the sugar

alcohols xylitol [78] and sorbitol [81, 93–95], as well as isosorbide [82, 96, 97],

HMF [80, 98], and furfural [44, 99] are also present, along with tetroses and their

derivatives obtained by dehydration [100]. For these molecules, it is virtually

certain that no petrochemical-based production will ever be developed. Note that

levulinic acid [67, 101–103] is at the border of this zone.

• The second zone also contains carbohydrate opportunities, exemplified by, e.g.,

glycolic [73, 104], pyruvic [105], lactic [74], and acrylic acids as well as glyoxal,

glycolaldehyde [72, 106], acetic acid [71], erythritol [70], and γ-valerolactone
[47, 77]. A petrochemical route to these chemicals could be derived (e.g., the

route to lactic acid via hydrolysis of acrylonitrile [107]), but in general, the

carbohydrate route is likely to be cost-competitive. Glyoxal, acetic acid, and
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acrylic acid are exceptions, as they are all petrochemicals at this point, although

bio-based routes from carbohydrates are receiving more attention, especially for

the acids [71, 88, 108].

• The third zone encompasses those chemicals for which there is potential com-

petition between the carbohydrate and petrochemical routes. The ultimate choice

will depend on production costs, economies of scale, technological advances, or

political directives. This zone includes, for instance, isoprene and butadiene – to

which bio-routes, e.g., via ethanol [109] and 1,4-butanediol, are increasingly

drawing attention [110, 111], as well as allyl alcohol[112, 113] and ethylene and

propylene glycols [75, 114]. The latter three chemicals may be derived from

renewable glycerol for instance [32, 115], and for ethylene glycol a direct

carbohydrate approach is becoming increasingly viable as an alternative to the

petrochemical route [70, 116].

Chemicals with F:C values comparable to the starting mono-, di-, and poly-

saccharides are produced without a net loss in functionality. Their formation

typically requires a limited number of reagents, and the number of by-products is

often low, one generally being water. Examples of such conversions are, for

instance, the formation of HMF, sorbitol, and isosorbide from the six-carbon

sugars, and furfural, xylitol, furfuryl alcohol, and levulinic acid from the five-

carbon sugars (in case of retention of total carbon number; vertical direction on

the plot). If the cleavage of C–C bonds is allowed (horizontal direction), the

formation of tetroses, vinyl glyoxal, trioses, lactic acid, acrylic acid, methyl

glyoxal, ethylene glycol, and glycolaldehyde is possible, among others. Gamma-

valerolactone, cyclic ethers like THF and dimethyl furan, hexatriene, diols like the

butanediols and propanediols, butadiene, and allylic alcohol, for example, have lost

a significant amount of functionality per carbon, compared to a carbohydrate

feedstock.

Other chemicals like the one- to six-carbon alkenes and the corresponding

alcohols are outside the three zones. According to our assessment, they are better

formed by converting natural gas and oil feedstocks, e.g., by thermal cracking

chemistry and catalytic oxidation or the Fischer–Tropsch process via syngas [117],

ideally from waste, biogas, or biomass resources. They will require a high input of

energy and H2 if generated from cellulosic biomass. Irrespective of the hydrocarbon

source used in these cases, H2 production is always associated with the formation of

CO2, either directly as in the aqueous reforming of biomass [36, 84, 118, 119], or

indirectly by compensating for the endothermic nature of the reaction as in case of

steam and dry reforming [120–122].

To summarize, the inner circle domain, as presented in Fig. 9, emphasizes the

chemicals that are (or will be) exclusively synthesized from cellulosic carbohydrate

feedstocks (in case of market demand). The second circle encompasses those

chemicals that are preferentially synthesized from carbohydrates, although in

some cases alternative petrochemical routes for their formation exist. The compe-

tition between both comes down to a question of economic factors. The third circle

is a truly competitive region and, for now, petrochemical routes are dominant (e.g.,
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butadiene and ethylene glycol). By closer inspection of these chemicals and taking

into account their current petrochemical derivation, it is evident that real competi-

tion from cellulosic feedstocks can be expected in the event that a cheap source of

H2 gas is identified (possibly solar) and the defunctionalization of carbohydrates

thus becomes less expensive. This trend is more pronounced with the size of the

molecules, e.g., in the formation of dimethyltetrahydrofuran. Note that the assess-

ment assumes the use of carbohydrate feedstocks, and does not take into account the

use of other biomass related feedstocks, such as glycerol. Somewhat different

conclusions might be drawn if such feedstocks were included.

3.1.5 Modifying the Original Van Krevelen Plot: Functionality

vs H-Index

Plotting the functionality index F:C as a function of the H:C ratio (the original y-axis
in van Krevelen plots) also provides an improved tool to assess functionality of bio-

derived chemicals and the type of reactions involved in their synthesis. Figure 10

shows such a modified van Krevelen plot. The green box marks the cellulosic and

hemicellulosic feedstocks, while the other molecules are represented with color

depending on their carbon number. The red zone indicates F:C values above the

1.17 line (as in Fig. 9), which represents chemicals with a functionality index higher

than or equal to that of the feedstock. Molecules below this line have undergone

Fig. 10 Modified van Krevelen plot for carbohydrates and their derived products, colored by

carbon number
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chemical transformations with the loss of functional groups. In contrast to the van
Krevelen plot (Fig. 7), which had one coordinate for all sugars, here they occupy

different places in the modified plot – lying on a vertical line with equalH index. This

is the result of the general carbohydrate formula (CnH2nOn) and the varying func-

tionality index which drops with increasing carbon number of the sugar molecule. In

this way, glycolaldehyde is found to be the most functional sugar molecule. Form-

aldehyde is found on this trend-line as well. The reactivity of sugars, in line with the

functionality index, is again more or less inversely related to the carbon number, and

this property is coincidentally the result of the occurrence of linear vs cyclic forms of

the sugars. The more stable cyclic form is only available to pentoses and hexoses (and

to certain tetroses).

As can be seen, cellulose and glucose are on a horizontal line, again indicating that

hydrolysis of the polysaccharide to its constituents does not affect the chemical

functionality of the carbohydrate. This plot is ideal for use as a tool to assess reactions

and how they affect functionality, as explained in full in Sect. 3.2. The two zones of this

plot that bear attention are the red zone, where higher or equal F:C values compared to

the feedstock reside, and the gray zone, where alkanes and fuels are located, with low

functionality and a high number of combustible C–H bonds (high H:C).

3.1.6 Guidelines for the Selection of Carbohydrate-Derived Chemicals:

Combining Functionality Index and Atom Economy

Atom economy (AE), first defined by Barry Trost in 1991, is a simple but extremely

useful tool to describe the conversion efficiency of a chemical process [123]. It is

calculated by dividing the molecular weight of the desired product by the total of

the molecular weights of the reagents used in the stoichiometric equation for the

reaction(s) involved. If no by-product is formed, the atom economy is 100%. While

initially developed for the synthesis of fine chemicals, higher costs of raw materials

and the increased concern for the environment have made the application of atom

economy and other green metrics very popular [124–127]. However, systematic

atom-economical approaches to the conversion of biomass feedstocks have not

often been reported, in spite of their combined “green” messages. Table 3 lists the

atom economy of the chemical reactions used to produce various chemicals. The

calculation of atom economy was based on current technologies and the described

net reactions in the literature for each chemical. For instance, the fermentative

synthesis of ethanol is known to produce two molecules of ethanol from glucose,

while also forming two molecules of CO2, yielding an AE value for ethanol of 51 %

as seen in Table 3. In Table 3 in general, the AE was calculated for primary

products of pentoses and hexoses (or their polymers), as well as for some interesting

downstream derivatives, calculated as if they were produced in a single step from

the sugar reagent. An example of this is furandicarboxylic acid via oxidation of

HMF. Thus, HMF (formed by triple dehydration of glucose or fructose) is oxidized

with 1.5 equiv. O2 to yield furandicarboxylic acid and 1 equiv. of H2O. Based on

HMF from glucose, this means that the total co-product generation for FDCA from

glucose consists of four water molecules.
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Using the data in this table, an atom economy vs F:C plot was constructed, as

shown in Fig. 11. Where high functionality and atom economy are key objectives,

Fig. 11 may be used as a guideline to recognize the preferred chemicals derived

from the carbohydrate feedstocks (in green). The best examples of an atom eco-

nomical and functional group efficient conversion are found in the upper right

corner. A tentative red zone has been indicated, with a minimum allowed F:C and

AE of 0.8 and 60%, respectively. While propylene glycol, GVL, and succinic and

itaconic acids are borderline examples, most preferred chemicals from carbohy-

drate biomass based on this analysis - which is strictly chemical and ignores

whether or not a product has relevant uses in existing or potential markets - are

among the following 25 compounds:

• In the family of carboxylic acids: formic acid, glycolic acid, glucaric acid, gluconic

acid, acetic acid, and lactic acid and, to a lesser extent, in following order: vinyl

glycolic acid, acrylic acid, furandicarboxylic acid, furyl glycolic acid, and levulinic

acid (the latter, preferably, from five-carbon sugars due to a higher AE).

• In the family of polyols: ethylene glycol, glycerol, erythritol, xylitol, and

sorbitol.

• In the family of ethers: sorbitan, isosorbide, and levoglucosan.

• In the family of aldehydes: formaldehyde, glycolaldehyde, and methyl glyoxal

(pyruvic aldehyde).

• In the family of aromatics: HMF, furfural, and furfuryl alcohol

Fig. 11 Atom economy vs F:C plot for common biomass primary products and some derivatives,

calculated directly from the pentose or glucose biomass. Cx: resp. x-carbon monosaccharide Data:

see Table 3
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It should be stated, however, that this list is by no means complete and the reader

is encouraged to calculate and plot F:C and AE values for other interesting

candidate molecules. Furthermore, the reaction route or technology (such as e.g.

fermentation for ethanol) used for the AE calculation is prone to change and thus

improvement. One could for instance envision a route to ethanol based on a

sequence of glucose hydrogenation, C–C hydrogenolysis of sorbitol leading to

three molecules of ethylene glycol, and C–O hydrogenolysis of the latter, yielding

three molecules of ethanol. The AE of this route would be 71.8% (with six

molecules of H2 as co-reagent and three molecules of H2O co-product).

3.2 Justified Reaction Types for Cellulosic Biomass
Conversion

The previous section clearly demonstrates the importance of the preservation of

functionality, while maintaining high atom economy throughout the process. The

modified van Krevelen plot is also suitable for closer inspection of the different

chemical reactions leading to these molecules in order to identify the most advanta-

geous reaction types for processing cellulosic biomass in an atom economical fashion

to functional products. It reveals that a number of reactions are ideal for preserving

functionality, among them hydrolysis, retro-aldol, rehydration, and dehydration

(retro-Michael, 1,2-elimination, or 1,4-cyclodehydration), isomerization, and partial

oxidation. Selective hydrogenolysis and hydrogenation are to some extent useful

as well.

3.2.1 Dehydration–Rehydration

In Fig. 12, a modified van Krevelen plot is shown, which contains cellulose and

common sugars as well as reaction arrows. The latter are drawn to emphasize the

impact of dehydration (in blue). As can be seen, a typical dehydration reaction

preserves the level of functionality in our assessment while decreasing the H index

of the compound. In general, dehydration involves a horizontal move to the left-

hand-side of the plot.

In catalytic biomass conversion, the dehydration of polyol moieties is a key

reaction, forming either an olefin bond, an ether, or a carbonyl group (after

tautomerization). This type of reaction usually requires the aid of acid catalysis.

Both Brønsted and Lewis acids are known to catalyze dehydration. The most

famous dehydration in the context of biomass conversion is the formation of

HMF from six-carbon sugars. As can be seen in Fig. 12, HMF from fructose

(or glucose) preserves the F:C value of 1.17, while the H index falls from 2 to 1.

Similarly, pentoses lead to furfural in aqueous media under acid catalysis. The

catalytic formation of HMF and furfural from hexoses and pentoses, respectively,

and HMF production directly from cellulose, have been reported frequently over
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the last 10 years and insightful reviews on this conversion can be found for HMF

[80, 98] and furfural [44, 128], as well as in Chap. 2 of this volume (Mascal et al.).

Both HMF and furfural are considered platform molecules for the synthesis of, e.g.,

levulinic acid and γ-valerolactone and are present in Table 1 [44, 51].

As an illustration of the importance of selective dehydration, the reaction of

tetrose sugars in alcoholic media with soluble Sn halides has recently been reported

[100]. This presents a homogeneous catalytic system, which delivers both Brønsted

(as HCl) and Lewis (as Sn2+ or Sn4+) acids. The final products of this conversion

were useful α-hydroxy-acids, such as vinyl glycolic acid as discussed in detail in

Chap. 3 of this volume (Dusselier et al.). The first step in the reaction path involves

a double dehydration leading to the proposed intermediate vinyl glyoxal, as shown

being derived from the tetrose in Fig. 12. The mechanism of the dehydration of

tetroses is shown in more detail in steps 1 and 2 in Fig. 13 (tentatively catalyzed by

a Sn salt).

Selective dehydration of triose sugars such as dihydroxyacetone and glyceral-

dehyde leads to another glyoxal, viz. pyruvic aldehyde or methyl glyoxal (Fig. 12).

Such glyoxals are notoriously unstable and reactive compounds, mainly due to their

conjugated carbonyl groups. They are nevertheless useful intermediates to take into

account when searching for unique reaction pathways towards platform chemicals

from carbohydrates, such as lactic acid [74, 129] or 1,2-propylene glycol [119]. The

dehydration route in Fig. 13 is in principle possible for all carbohydrates, with the

exception of glycolaldehyde, due to their structural combination of a carbonyl and a

β-hydroxyl group. It proceeds according to a generalized retro-Michael dehydration

Fig. 12 Modified van Krevelen plot for cellulose, sugars, and the dehydration products thereof.

RA ¼ retro-aldol reaction
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mechanism [16], combined with keto-enol tautomerization. Both mechanisms are

encountered for the tetroses in Fig. 13.

Besides sugars, a plethora of hydroxyl group-containing, oxidized hydrocarbons

and sugar-derived molecules can undergo selective 1,2-dehydration as well as

1,4-cyclodehydration. Figure 14 displays a few examples of such dehydration series

in a modified van Krevelen plot. For a start, one may consider the products derived

via carbohydrate fermentation processes. These compounds include, for instance,

ethanol, mixtures of acetone, butanol, and ethanol (ABE fermentation), and lactic

acid (anaerobic fermentation). In recent years, organisms have also been genetically

modified to produce atypical products via carbohydrate fermentation. A good

example of this is a process based on the metabolic engineering of Escherichia
coli, which is capable of directly producing 1,4-butanediol by the fermentation of

various biomass-derived sugars [111, 130, 131]. Double dehydration of

1,4-butanediol leads to the rubber precursor butadiene with preservation of the

F:C value (0.5), as seen in Fig. 14. The intermediate chemicals in this process are

interesting as well: tetrahydrofuran (via a 1,4-cyclodehydration) and the unsatu-

rated alcohol 3-buten-1-ol. The dehydration of lactic acid to acrylic acid [74, 88,

108], and that of n-butanol to butene [132, 133], are two other well known

examples, as is the dehydration of ethanol to ethylene [16, 134].

Fig. 13 Dehydration of tetroses (both ketose and aldose) via enolization and retro-Michael

reactions (steps 1 and 2). An observed side reaction after the first dehydration is a cyclization

(step 20), followed by isomerizations (¼ iso) to α-hydroxybutyrolactone HBL [100]
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Finally, 1,4-cyclodehydration is another important type of reaction for oxygen-

containing sugar derivatives, such as, for instance, sugar alcohols. A current topic

of high interest is the synthesis of isosorbide from sorbitol, the primary hydrogenation

product of glucose. As seen in Fig. 14, it proceeds via two 1,4-cyclodehydrations, via

1,4-sorbitan, culminating in the bicyclic isosorbide ether structure, seen to the left of

sorbitol, with equal F:C on the plot. Recent successful efforts have focused on

producing sorbitans and isosorbide in a one-pot approach directly from lignocellu-

lose, using bifunctional catalysis [82, 96, 135, 136]. In this work, acidic sites for

hydrolyzing the cellulosic bio-polymer and dehydrating sorbitol are combined with

active metal sites for catalyzing the hydrogenation of glucose to produce sorbitol.

Interestingly, cellulose and isosorbide are very close to each other with respect to

functionality (Fig. 14); only 14% of the original F:C value of cellulose is lost due to a

single hydrogenation step. Isosorbide indeed belongs to the list of preferred chemicals

from carbohydrate biomass in this chemist’s view, and was found in the innermost

zone of Fig. 9, for which no petrochemical competition is expected. Besides under-

going dehydration, sugars (and in general, aldehydes) can be hydrated in water,

leading to a hemiacetal with an equal F:C, as shown in Fig. 14 for glycolaldehyde.

In conclusion, dehydration, hydration, and hydrolysis (e.g., of cellulose to

glucose or hemicellulose to xylose [137]) reactions fully preserve the degree of

functionality of the starting biomass or chemicals derived therefrom. In the mod-

ified van Krevelen plot, the dehydrated products are located horizontally to the left

Fig. 14 Modified van Krevelen plot for the dehydration of sorbitol (after hydrogenation of

glucose), lactic acid, 1,4-butanediol, and n-butanol. DH ¼ dehydration, HG ¼ hydrogenation.

The effect of hydration of an aldose (hemi-acetal formation with water) is also shown
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of the feedstock, while hydration and hydrolysis shift the products horizontally to

the right of the feedstock. Dehydration has one downside; the atom economy is

never 100% since water is formed as a by-product. However, the formation of water

is not a serious disadvantage. The dehydration of trioses will be subject of intense

discussion in Chap. 3 of this volume, as a key step in the direct production of lactic

acid from carbohydrates [68, 74].

3.2.2 Retro-Aldol Reaction

The retro-aldol is a very interesting reaction as it occurs with 100% atom efficiency.

In addition, on the modified van Krevelen plots, retro-aldols induce a shift on the

curve vertically upwards towards more functionalized molecules, as evidenced by

the reactions (in red) presented in Fig. 12. In this respect, the retro-aldol is a

valuable reaction to increase functionality of the biomass feedstock without the

use of sacrificial reagents or oxidants. For example, the formation of

glycolaldehyde and erythrose from glucose leads to a substantial gain in function-

ality, while the same is true for the conversion of fructose into the trioses glycer-

aldehyde and dihydroxyacetone. The retro-aldol reaction thus transforms a sugar

into two smaller sugars. In line with the aldol addition, this reaction is catalyzed

under both Brønsted acidic or basic conditions, as well as by Lewis acidic centers or

even amines via imine formation. Similar to the retro-Michael dehydration, a

hydroxyl group β to the carbonyl is a prerequisite for the retro-aldol reaction to

occur. For a ketose sugar, this implies that dihydroxyacetone (a triose) is formed.

Applied to aldoses, a retro-aldol will always lead to at least one C2 fragment, i.e.,

glycolaldehyde [138].

In comparison to other common reactions such as dehydration (see above) or

hydrogenation (see below), the retro-aldol reaction is more difficult kinetically as a

higher activation barrier is encountered [116]. The search for catalysts with high

activity and an exclusive preference for the retro-aldol reaction is a very challenging

area. Yet control of this reaction type is of major importance in carbohydrate

chemistry and lies at the heart of a major energy pathway in living cells, viz. the

glycolysis metabolism. In the carbohydrates-to-chemicals field, the retro-aldol reac-

tion may also be useful for instance in the synthesis of ethylene glycol and propylene

glycol from glucose and cellulose. Up to now, it has been observed that solutions of

tungsten salts [116] and supported tungsten trioxides [75] or carbides [70, 114] in

water at temperatures above 200�C will preferentially lead to retro-aldol derived

products. Due to the high reaction temperature and the pronounced instability of the

smaller sugars, the retro-aldol reaction usually has to be combined with another

reaction, such as, for instance, hydrogenation. The selective conversion of cellulose

[75, 114] or concentrated glucose syrups (even demonstrated semi-continuously

[70, 116]) into ethylene glycol is a good example of this strategy, in which the

retro-aldol intermediate glycolaldehyde is immediately hydrogenated upon forma-

tion. Another illustrative example is found in the catalytic synthesis of lactic acid and
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methyl lactate from sucrose, glucose and fructose in aqueous or alcoholic media, as

discussed in detail in Chap. 3 of this volume.

3.2.3 Partial Oxidation

Partial oxidation of biomass derived sugars or their derivatives is a very useful reaction

and a simple way of introducing additional functionality. Typically, on the modified

van Krevelen plot, the oxidation of an aldehyde to a carboxylic acid involves a vertical
shift as no H is removed. The oxidation of an alcohol to an aldehyde, for instance, also

results in a shift to higher F:C values, but according to a +0.5 slope (in fact, the opposite

of a hydrogenation). An example of both shifts is given in Fig. 15 for gluconic acid

from glucose [76] and glucose from sorbitol (the latter only relevant in theory).

Multiple oxidations are, for instance, needed to convert glucose to glucaric acid

[17]. The stoichiometry and atom efficiency of these reactions are found in Table 3.

Other useful examples of the catalytic oxidation of cellulosic biomass are found in the

synthesis of glycolic acid (also found in Chap. 3), formic acid, and acetic acid [69, 71,

89, 139]. Ideally, these oxidations would be performed with simple reagents, preferably

with O2 or H2O2. In the case of gluconic acid, the use of both oxidants has been

reported [76, 92, 140], and its direct production from cellobiose and even cellulose is

known [83, 91]. A simultaneous path to gluconic acid and lactic acid from glucose has

Fig. 15 Modified van Krevelen plot for cellulose hydrolysis, carbohydrate hydrogenation and

C–C vs C–O hydrogenolysis
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also been reported [141], as well as an innovative route from cellobiose without

sacrificial agents, based on the simultaneous formation of sorbitol (reduction) and

gluconic acid (oxidation) via redox with Ru under argon [142]. When oxidizing sugar

molecules or derivatives, the production of CO2 by over-oxidation should be avoided.

Selectivity is usually the biggest challenge in the oxidation of multifunctional com-

pounds such as carbohydrates and their derivatives.

3.2.4 Hydrogenation and Hydrogenolysis

The hydrogenation of carbohydrates into sugar alcohols is a relatively easy alde-

hyde to alcohol reduction and has been commercially practiced for years in the case

of sorbitol [143]. Figure 15 depicts the formation of the five major sugar alcohols.

Hydrogenation slightly lowers the functionality index of the products with respect

to that of the feedstock, but the atom economy of hydrogenation is always 100%.

For instance, 33% of the functionality per carbon is lost by hydrogenating

glycolaldehyde to ethylene glycol. The slope of the hydrogenation lines in the

modified van Krevelen plot is �0.5, indicative of a loss of one functional group per

addition of two H atoms. The same observation is apparent in the hydrogenations

shown in Fig. 14, e.g., the hydrogenation of butadiene to butene and butane.

To illustrate a good example, the one-pot hydrolytic hydrogenation of cellulose

gives nearly quantitative yields of sorbitol, some mannitol, and some sorbitans [19,

52, 81, 93–95, 144, 145].

Besides hydrogenation, the presence of certain (metal) catalysts and H2 can also

promote hydrogenolysis. As far as C–C hydrogenolysis is concerned, the combined

F value of both fragments is not affected, while the atom economy remains high

(assuming both fragment products are considered relevant and one of them is thus not

a side product, which is not often the case). This can be seen in Fig. 15 by following

the hydrogenolysis of sorbitol into erythritol and ethylene glycol. If, however, C–O

bonds are hydrogenolyzed, there is a drop in F:C index, as exemplified by the

formation of propylene glycols (1,2- or 1,3-propanediol) from glycerol (red arrow).

Although carbohydrate C–O hydrogenolysis reduces the functionality index, this

hydrodeoxygenation reaction is becoming increasingly important these days, especially

when fuels and molecules with a high number of C–H bonds are targeted.

3.2.5 Isomerization

Isomerization reactions are of high importance to the exploitation of carbohydrates.

These transformations retain the functionality parameter of the feedstock, while

maintaining complete atom-efficiency, since the reaction only involves a reshuffle

of atoms within the molecule. Keto-enol tautomerization between aldoses and ketoses

as encountered in Fig. 13, as well as the furanose or pyranose ring formation via cyclic

hemi-acetalization of pentoses and hexoses, are simple examples. The epimerization

30 M. Dusselier et al.



of glucose into mannose has been described using the Lewis acid molybdenum oxide

in a slightly acid environment [146] or with Ca2+ under slightly alkaline conditions,

and even with Sn-zeolite in the presence of borates [147], while isomerization to

fructose has recently been shown to proceed in the presence of Sn-containing catalysts

via a 1,2-hydride shift [148, 149]. This can be exploited towards the synthesis of

HMF-based chemicals, as fructose more readily dehydrates to HMF [79, 150]. Such

1,2-hydride shifts also occur in the synthesis of carboxylic acids or esters from two to

four-carbon sugars (e.g., lactic acid from hydrated methylglyoxal, viz.Chap. 3 of this
volume) [74, 86]. Another striking example is the isomerization of glucose to sorbose

via a titanium-β-zeolite catalyzed intramolecular 1,5-hydride shift [151].

3.3 Key Lessons of the Assessment

To conclude this section, the key lessons of the assessment are summarized here:

• Cellulosic and hemicellulosic feedstocks may be converted into 100+ chemicals,

among them drop-in products but also several novel chemicals. Aside from

biofuels and their precursors, they may be classified as end products, platform

chemicals, monomers, and chemical intermediates (leading to a specific end-

product). Some of these are already produced commercially from carbohydrates

whereas others are currently petroleum or natural gas derived. Most of the

chemicals described here are not produced commercially to date.

• Limited feedstock supply in biorefineries demands a careful selection of value-

added and/or platform chemicals from carbohydrates.

• Functionality (chemical reactivity approach) and atom economy (green chemistry

approach) are the driving criteria of this assessment, which is developed from a

strictly chemical point of view. Ultimately, the applications of the product need to

be considered, next to the existence of drop-in or rising potentialmarkets; aswell as

technological measures.

• Functionality is defined here by a new functionality parameter F, and its

normalized functionality index F:C, rather than with the original oxygen index

(O:C) used for fuel and deoxygenation series.

• Plotting F:C against the calculated atom economy provides a beneficial tool for

the selection of a viable set of target molecules from carbohydrate biomass that

may compete with classic petrochemical routes for their formation.

• A list of 25 chemicals based on the above analysis was proposed.

• The modified van Krevelen diagram, plotting functionality vs H index (F:C vs

H:C), is also a useful tool for visualizing the impact of the various reaction types

involved in the synthesis of carbohydrate derivatives.

• Preferred reaction types for the conversion of carbohydrates preserve F:C or

result in an increase in functionality (or minimal decrease) with respect to the

feedstock.

• The methodology thus allows evaluation of processes and feedstocks for their

maintenance of function in the synthesis of chemicals.
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• The analysis also suggests that derivatives with a degree of functionality similar

to that of the feedstock might be more efficiently produced than those that

require more extensive transformations, and therefore have the potential to

become valuable intermediates, if a market exists or arises for them.

• α-Hydroxy acids are excellent candidates following this approach, and lactic

acid, vinyl glycolic acid, glycolic acid, and furyl glycolic acid are included in the

target chemical list. Some of these feature 100% atom economy from cellulose

or glucose, while all of them present a higher F:C value than cellulose. Given

their demonstrated usefulness in the context of existing and potential markets,

selective catalytic approaches for their synthesis would be highly valuable and

will be described in full in Chap. 3 in this volume.

4 Summary, Conclusions, Outlook

The future development of bio-derived chemicals will depend on multiple techno-

logical, economic, and environmental factors. This chapter has explored new

modes of assessment to evaluate the competitiveness and sustainability of the use

of carbohydrates, preferably from lignocellulosic feedstocks, to produce chemicals.

The assessment is based on the preservation of functionality and a high atom

economy in the process, and a toolbox with a novel functionality index and

modified van Krevelen plots is provided to assess the advantages of processes and

feedstocks. In essence, highly functionalized chemicals are very versatile and the

most cost-effective derivatives of carbohydrates, while chemical conversions

should involve maximum conservation of atoms in the desired products. Based

on the criteria, a list of about 25 chemicals was proposed and several preferred

reaction types were discussed. High scoring, drop-in chemicals from carbohydrates

are formic acid, ethylene glycol, acetic acid, glycolic acid, and acrylic acid, while

furfural, furfuryl alcohol, sorbitol, lactic and levulinic acids and isosorbide are

already exclusively produced commercially from carbohydrates in the chemical

industry. Currently non-commercial chemicals like vinyl and furyl glycolic acid

and HMF are projected to be products of high interest according to the two criteria

of the assessment. The proposed methodology presented here is easily adapted to

the assessment of chemicals and their formation routes from other feedstocks, such

as lignin for example, but it does not take into account the usefulness and potential

market demand of the products, which in the end determines their real value.

Successful integration of carbohydrate chemistry in a biorefinery will greatly

depend on the availability and price of the lignocellulosic feedstock and its frac-

tionation cost. Since the collection of biomass is limited by its volume and density,

biorefineries are likely to be smaller and more highly distributed than petroleum

refineries. In order to produce meaningful volumes of products, a biorefinery should

focus on a specific set of platform chemicals rather than attempting to provide an

extended portfolio of products. There are two technological obstacles to the deliv-

ery of such a biorefinery, and effort is required to overcome them. First, the
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sustainable and cheap fractionation of biomass into its components – cellulose,

hemicellulose, lignin, proteins, and minerals, is a key issue. Current schemes often

focus on the separation and processing of one or two of these fractions, while all the

plant components should be integrated. Second, while a chemical equation may

predict high efficiency (in terms of thermodynamics and atom economy), in prac-

tice, lower performance due to kinetic (selectivity) issues or process/technological

challenges are often seen. Although there are already many elegant examples in the

literature, further technological development in the area of chemical and

bio-catalysis and in some cases their symbiosis is required to make a biorefinery

sustainable in competition with petrochemistry.

Selective catalysis is a challenge, as many target chemicals as well as their

feedstocks are highly functionalized and chemically reactive, and their production

from carbohydrates may involve complicated multistep reaction cascades with

parallel pathways and reactive intermediates. The tuning of different catalytic

sites with regard to number, activity and location on the catalyst or in the medium,

and their stabilization under various reaction conditions, are certainly two of the

biggest future challenges in the commercial development of biorefineries.
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and Levulinates from Biomass
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Abstract The synthesis and chemistry of 5-(hydroxymethyl)furfural (HMF),

5-(chloromethyl)furfural (CMF), and levulinic acid (LA), three carbohydrate-

derived platform molecules produced by the chemical-catalytic processing of

lignocellulosic biomass, is reviewed. Starting from the historical derivation of

these molecules and progressing through modern approaches to their production

from biomass feedstocks, this review will then survey their principal derivative

chemistries, with particular attention to aspects of commercial relevance, and

discuss the relative merits of each molecule in the future of biorefining.
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1 Introduction

As discussed in detail in Chapter 1 [1], the chemical-catalytic approach to biomass

valorization is poised to come to the fore of biorefinery operations due to its

advantages over microbial and thermochemical processing of lignocellulosic

feedstocks. Below, we consider three mainstream platform chemicals, collectively

referred to as “furanics,” that are derived from the acid-catalyzed dehydration of

carbohydrates. The first, 5-(hydroxymethyl)furfural, or HMF 1, is an icon of the

biorefinery movement. With derivatives that branch out over multiple product

manifolds, HMF is a recognized commercial opportunity for whoever can manage

to produce it economically, and approaches towards the realization of this aim will

be discussed.

Obstacles that persist in the path of the economic production of HMF have

shifted some attention towards its halogen-substituted congeners (XMFs),

i.e., 5-(chloromethyl)furfural (CMF) 2 and 5-(bromomethyl)furfural (BMF) 3.

These molecules have the advantage of being obtainable in high yields directly

from cellulosic biomass and also of being easy to isolate from the medium of their

production. Additionally, they share all of the derivative chemistry of their

forerunner, HMF.

Finally, the HMF rehydration and ring cleavage product levulinic acid (LA) 4,

which can be produced from HMF, XMFs, or directly from biomass, has also

entered into the mainstream of renewable chemistry. With its easy availability

and a derivative chemistry that rivals that of the furans, LA is currently leading

the charge towards commercialization within the furanics movement, and piloted

approaches to its production and applications are described.

O
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2 5-(Hydroxymethyl)furfural (HMF)

2.1 Synthesis: Introduction

The synthesis of HMF was first reported in 1895, where inulin (a β-2,1-fructan) was
heated in acidic aqueous solution followed by solvent extraction [2, 3]. The struc-

ture was not definitively assigned until 1910 [4]. Since then, thousands of papers

have been published that involve HMF in one context or another, and several

reviews dedicated to its preparation and chemistry have appeared [5–15]. Further

interest in HMF has been generated around the possible health effects of its

presence in heat-treated foods and beverages [16].

Since so many detailed reviews are available [5–15], in this contribution we only

tabulate data for the best published outcomes under each of the below mentioned

representative approaches to HMF synthesis, involving fructose, sugars other than

fructose (glucose or sucrose), inulin, cellulose, and finally biomass itself (Table 1).

This is followed by a brief discussion of the respective advantages and practical

limitations of the feedstocks, catalysts, and media. We then also give highlights of

the derivative chemistry of HMF and discuss its future prospects as a renewable

platform chemical.

Fructose to HMF in aqueous systems under homogeneous catalysis (entry 1)

Fructose to HMF in aqueous systems under heterogeneous catalysis (entry 2)

Fructose to HMF in organic solvents under homogeneous catalysis (entry 3)

Fructose to HMF in organic solvents under heterogeneous catalysis (entry 4)

Fructose to HMF in biphasic solvent systems under homogeneous catalysis

(entry 5)

Fructose to HMF in biphasic solvent systems under heterogeneous catalysis

(entry 6)

Fructose to HMF in ionic liquids under homogeneous catalysis (entry 7)

Fructose to HMF in ionic liquids under heterogeneous catalysis (entry 8)

Glucose or sucrose to HMF in aqueous systems under homogeneous catalysis

(entry 9)

Glucose or sucrose to HMF in aqueous systems under heterogeneous catalysis

(entry 10)

Glucose or sucrose to HMF in organic solvents (entry 11)

Glucose or sucrose to HMF in biphasic solvent systems (entry 12)

Glucose or sucrose to HMF in ionic liquids (entry 13)

Inulin to HMF in aqueous systems under homogeneous catalysis (entry 14)

Inulin to HMF in aqueous systems under heterogeneous catalysis (entry 15)

Inulin to HMF in biphasic solvent systems (entry 16)

Inulin to HMF in ionic liquids (entry 17)

Cellulose to HMF in aqueous systems under homogeneous catalysis (entry 18)

Cellulose to HMF in aqueous systems under heterogeneous catalysis (entry 19)

Cellulose to HMF in organic solvents (entry 20)
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Table 1 Representative examples of HMF synthesis from sugars, carbohydrates and biomass

feedstocks

Entry Feedstock Medium Catalyst

Reaction

conditions

Yield

(%) References

1 Fructose Water aq. HCl 95�C, 1.5 h 68 [17]

2 Fructose Water-acetone Dowex-50wx8-

100

150�C,
15 min

73 [18]

3 Fructose DMSO NH4Cl 100�C,
45 min

100 [19]

4 Fructose DMSO Amberlyst-15

powder

120�C, 2 h 100 [20]

5 Fructose 1:1 Water-DMSO/

7:3 MIBK/

2-BuOH

HCl 170�C, 4 min 85 [21]

6 Fructose 1:7 DMSO/MIBK Ion exchange resin

(acidic)

76�C 97 [22]

7 Fructose [BMIm]Cl NHC/CrCl2 100�C, 6 h 96 [23]

8 Fructose [HexylMIm]Cl SO4
2-/ZrO2 100�C,

30 min

89 [24]

9 Glucose Water H3PO4/Nb2O5 120�C, 3 h 52 [25]

10 Glucose Water TiO2/ZrO2 250�C, 5 min 29 [26]

11 Sucrose DMA CrCl3/NH4Br 100�C, 1 h 87 [27]

12 Glucose 1:2.25 Water-MIBK Ag3PW12O40 130�C, 4 h 76 [28]

13 Sucrose [BMIm]Cl CrCl3 120�C, 4 h 100 [29]

14 Inulin Water CO2 (6 MPa) 200�C,
45 min

53 [30]

15 Inulin Water Cubic ZrP2O7 100�C, 1 h 70 [31]

16 Inulin 2:3 Water-2-butanol Modified hydrated

tantalum oxide

160�C,
140 min

87 [32]

17 Inulin ChoCl Oxalic acid 80�C, 2 h 64 [33]

18 Cellulose Water HCl RT!300�C,
30 min

21 [34]

19 Cellulose Water Cr[(DS)

H2PW12O40]3

150�C, 2 h 53 [35]

20 Cellulose DMA+10% LiCl CrCl3/HCl 140�C, 2 h 33 [36]

21 Cellulose 1:5 Water/MIBK TiO2 (fixed bed) 270�C, 2 min 30 [37]

22 Cellulose [EMIm]Cl CrCl2 120�C, 6 h 89 [38]

23 Oak wood

chips

Steam H2SO4 286�C, 90 s 50-80 [39]

24 Cassava

waste

Water Sulfonated carbon 250�C, 1 min 11 [40]

25 tapioca

flour

Water/acetone/

DMSO

WO3-ZrO2 230�C 22 [41]

26 Pine wood [BMIm]Cl CrCl3 200�C, 3 min 35 [38]

Abbreviations: DMSO (dimethyl sulfoxide), DMA (N,N-dimethylacetamide), MIBK (methyliso-

butylketone), [BMIm]Cl (1-butyl-3-methylimidazolium chloride), [HexylMIm]Cl (1-hexyl-3-

methylimidazolium chloride), [EMIm]Cl (1-ethyl-3-methylimidazolium chloride), ChoCl (choline
chloride), NHC (N-heterocyclic carbene), DS (dodecyl sulfate)
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Cellulose to HMF in biphasic solvent systems (entry 21)

Cellulose to HMF in ionic liquids (entry 22)

Biomass to HMF in aqueous systems under homogeneous catalysis (entry 23)

Biomass to HMF in aqueous systems under heterogeneous catalysis (entry 24)

Biomass to HMF in organic solvents (entry 25)

Biomass to HMF in ionic liquids (entry 26)

2.2 Synthesis: Discussion

2.2.1 Feedstocks

Bearing in mind from the outset that processes that employ pure sugars as feedstock

are unlikely to be competitive with those that start from raw biomass, the current

status of HMF production at scale is tenuous, since no industrially relevant

approaches have been developed that do not depend on fructose as the starting

material. In effect, no technology is any more scalable than the practical accessi-

bility of its feedstock. The historical dominance of fructose in this chemistry is

easily understood by the fact that HMF is simply a dehydration product of fructose

(Scheme 1), whereas any other hexose would first have to isomerize to fructose

under the reaction conditions. In any case, however, yields of HMF are generally

high starting from fructose, in fact reaching up to quantitative (entries 3, 4, 6, 7). A

recent review tabulated data on >300 fructose dehydration reactions leading to

HMF and its derivatives [6], so clearly this is a well-trodden reaction path.

The other commodity sugars, glucose and sucrose, have also often been targeted

as HMF feedstocks, and in some cases, particularly under CrCl3 catalysis (entries

11 and 13), yields are comparable to those of fructose.

While glucose and sucrose are produced in sufficient volumes to supply a com-

mercial HMF market, much interest has centered on the fructan inulin as a feedstock

for HMF, the advantage being that, unlike edible sugars, it does not enter into the food

vs fuel controversy. Commercial interest in inulin centers almost entirely around the

prospect of cultivating the Jerusalem artichoke as an energy crop [42], the tubers of

which can yield up to ca. 80% inulin by mass. Since inulin is essentially an easily

hydrolyzed polymer of fructose [43], it gives comparable HMF yields (entries 14–17).

O
OHHO

HO OH
HO - 3 H2O

fructose

O
OHH

O

1

Scheme 1 Dehydration of fructose to HMF
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Finally, attempts to produce HMF from cellulose and raw biomass have also

been reported. The challenges here are significant, and only under exceptional

conditions (e.g., entry 22) are high yields reported.

2.2.2 Catalyst and Medium

An acid catalyst of some description is required in most cases, which may be either

homogeneous or heterogeneous in nature. For homogeneous catalysis, either min-

eral acids (e.g., HCl, H2SO4) or organic acids (e.g., pTSA, oxalic acid) can be used,

where reactions are generally fast and proceed under mild conditions. However,

acid recovery can be problematic. HMF 1 is unstable in acidic media and either

rehydrates to levulinic acid 4 or decomposes entirely into humic material, which

limits yields. Heterogeneous catalysts tend to perform better in this regard, but may

require harsher reaction conditions. Although recovery of the catalyst is facilitated,

recycling may be limited by fouling.

HMF synthesis has classically involved either water or polar aprotic organic

solvents such as DMSO as the reaction medium, since the sugar feedstocks are

soluble in these media. Of all the technical issues that have confronted the indus-

trialization of HMF production, first and foremost has been the high solubility of

HMF in these solvents, which complicates product isolation. This problem has been

mitigated to some extent by the recent development of biphasic reaction systems

that involve continuous extraction of HMF into lower boiling solvents [5]. Salting

out strategies can also increase the efficiency of this approach.

A major movement in HMF synthesis came out of the field of ionic liquids,

which can in some cases act both as catalyst and solvent. Particularly good out-

comes are seen when ionic liquids are coupled with chromium salt catalysis, first

introduced by Zhang in 2007 [44]. While good to excellent results in terms of

conversion and selectivity have generally been seen in this medium, there are

significant drawbacks to large scale applications. Since the carbohydrate to HMF

reaction is a dehydration, quantities of water will accumulate in these hydrophilic

(and often hygroscopic) solvents, eventually necessitating a potentially expensive

drying step. Since ionic liquids are excellent solvents for polar molecules, they also

tend to solubilize polar reaction by-products and any miscellaneous compounds that

may be introduced via the feedstock, presenting a recyclability/purification chal-

lenge. This will be particularly relevant where raw biomass is used. Other issues,

such as viscosity, cost, stability, toxicity, product isolation, and reagent recovery

from the ionic liquid are together likely to limit the applications of these solvents in

large-scale industrial settings [45].
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2.3 Synthesis: Perspective

The following key challenges remain to the adoption of HMF as a renewable

platform chemical. (1) The continued reliance on fructose as a feedstock for

HMF production cannot be sustained. To be competitive in the long term, even

glucose and sucrose can only be stopgap solutions on the way to a biomass-based

HMF process. While inulin may also present opportunities in the short term, there

are questions associated even with marginal land use for planting energy crops that

may limit the future prospects of the Jerusalem artichoke. A long horizon view must

involve the processing of raw biomass into HMF, and although such approaches

have shown promise at the bench, issues involving reaction media and product

isolation may prevent scale up. (2) Aqueous and polar organic solvents have

commonly been used in HMF synthesis, but ionic liquids now show the most

promise with virtually all feedstocks. However, as discussed above, ionic liquids

suffer from a range of serious drawbacks that do not present simple solutions for

scale up. (3) HMF is a fairly sensitive molecule with well recognized decomposi-

tion paths that have long plagued its production under acid catalysis. Thus, quick

isolation of HMF from its reaction medium is desirable but practically difficult.

Biphasic reaction systems have had a measure of success using pure sugars as

feedstocks, but have yet to be proved with biomass.

The ideal HMF production process would use raw biomass as its feedstock,

without the necessity for extensive drying or pretreatment (apart from mechanical

reduction to particle sizes which do not suffer mass transfer limitations). Reactions

would proceed in high yield over short time scales under mild conditions in

inexpensive media and use simple, non-foulable catalysts. The HMF product

would be isolated without recourse to distillation or protracted solvent extraction,

and all materials would be easily recyclable. Except for product yield, none of these

objectives has currently been met in such a way as to be reducible to practice on an

industrial scale. In the end, it is a matter of economics. When the dust settles, only

the most competitive, industrially viable processes will be left standing, and the rest

will be consigned to history.

2.4 Derivatives

The great interest around HMF is the result of its recognition as a renewable

platform chemical of exceptional promise. HMF has three chemical functionalities;

the hydroxymethyl group, the aldehyde, and the furan ring itself. Together, these

offer a diverse combination of chemistries for derivative synthesis. Thus, the

hydroxymethyl group can be acylated, alkylated, substituted with nucleophiles, or

oxidized to the aldehyde or carboxylic acid oxidation state, both of which have

multiple derivatives towards which to branch out. The aldehyde can undergo

nucleophilic addition or be reduced to the hydroxymethyl group, with attendant

opportunities as already noted, or oxidized to the carboxylic acid, which can be
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variously derivatized. The furan ring can undergo cycloaddition, electrophilic

aromatic substitution, ring opening, or hydrogenation to the corresponding tetrahy-

drofuran. Chosen synthetic transformations can be applied to yield derivatives such

as biofuels, monomers for novel polymeric materials, or specialty chemicals (e.g.,

agrochemicals, pharmaceuticals). Examples of useful applications of this chemistry

are discussed below. In each case, selected, high-yielding approaches to specific

derivatives will be highlighted, but for full coverage of this field the reader is

directed to comprehensive reviews [5–15].

2.4.1 Simple Derivatization of the Hydroxymethyl or Aldehyde Group

The hydroxymethyl group of HMF has been variously derivatized. For example,

acetylation of HMF to 5 expedites its isolation from reaction media during its

preparation from carbohydrates [46], as well as facilitating the deoxygenation of the

hydroxymethyl group (discussed below) [47]. Intermolecular dehydration over the

mesoporous aluminosilicate MCM-41 gives the symmetric ether 5,50(oxybis(meth-

ylene))bis(furan-2-carbaldehyde) 6 in high yield, which has been proposed as a

potentially useful monomer [48] (Scheme 2). Substitution of the OH group for

halogens 2, 3 can be carried out with the typical reagents (SOX2, PXn, HX, etc.)

[49] or can be effected in situ during the formation of HMF from various carbohy-

drate sources [50], and this latter reactivity will be reviewed in Sect. 3 of this

chapter.

The carbonyl group of HMF participates in typical reactions of aromatic

aldehydes, including the formation of various imines 7 [51] and acetals 8 [52, 53]

(Scheme 3), the latter being interesting both as novel surfactants and potential

biodiesel fuels.

1

Ac2O

X = Cl, 2
X = Br, 3

HCl, PCl5, SOCl2 (X = Cl)
HBr, PBr5 (X= Br)

MCM-41O
O

O

56

O O

HH

O
X

O

H

O
H O

O O
O

OH

O

H

Scheme 2 Functional transformations of the hydroxymethyl group in HMF
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Scheme 3 Functional transformations of the aldehyde group in HMF
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2.4.2 Oxidation of the Hydroxymethyl and/or Aldehyde Group

2,5-Diformylfuran

Oxidation of the hydroxymethyl group of HMF to an aldehyde leads to

2,5-diformylfuran (DFF) 9, a monomer of considerable interest in the polymer

industry [54, 55]. Synthetic approaches to this molecule from HMF were reviewed

in 2012 by Hu et al. [56]. Apart from various stoichiometric oxidants, e.g.,

Ba(MnO4)2 [57], NaOCl [58], ceric ammonium nitrate [59], IBX [60], and dichro-

mates [61], a number of promising catalytic routes have recently been developed.

For example, using air as the oxidant and a silver-impregnated molecular sieve

catalyst, an essentially quantitative yield of DFF was observed [62]. Comparable

results have also been seen with ruthenium-based catalysts such as Ru/C [63], Ru

clusters [64], Ru/Al2O3 [65], and a range of vanadium oxides [66] (Scheme 4).

Thus, there is much promise here, assuming that an industrially viable route to the

HMF starting material can be established. Recognizing this issue, some investiga-

tors have sought to produce DFF directly from fructose or glucose, since DFF is

more easily extracted into hydrophobic solvents than HMF. Yields, however, have

been moderate (25–55%) [67–69].

Furancarboxylic Acids

The rate of oxidation of the HMF aldehyde group to the carboxylic acid is

substantially faster than that of the alcohol to the aldehyde, and hence the selective

preparation of 5-hydroxymethyl-2-furancarboxylic acid 10 is possible. Casanova

et al. reported the synthesis of 10 in quantitative yield using a gold-nanoparticle

catalyzed oxidation with molecular oxygen [70]. Davis et al. reported similar

results using Au/C and Au/TiO2 [71], while Pasini et al. used an Au-Cu

catalyst [72].

Scheme 4 Oxidized derivatives of HMF
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Oxidation of both the hydroxymethyl and the aldehyde group to carboxylic acids

gives 2,5-furandicarboxylic acid (FDCA) 11, a molecule that has of late attracted

strong interest as a renewable replacement for petroleum-derived terephthalic acid,

which is used to produce polyethylene terephthalate, or PET, a mainstream polymer

widely used in the production of synthetic fibers and beverage containers. The

equivalent polymer generated from FDCA, called polyethylene furanoate (PEF),

has been shown to be competitive with PET in terms of performance, and thus a

significant future market can be envisaged for FDCA [73].

Like DFF, synthetic approaches to FDCA generally rely on HMF as the starting

material. Recent, efficient approaches all involve catalytic oxidation with O2 as the

stoichiometric oxidant, as described in the reviews of Hu et al. [56] and Tong

et al. [74]. The catalysts generally used for this transformation are Pd, Pt, or Au, in

various forms and on various supports, and the yields are generally near quantita-

tive. Thus, Lew et al. [75] and Davis et al. [76] reported the application of Au/C,

Au/TiO2, Pd/C, and Pt/C as catalysts in a basic reaction medium. Linga et al. [77]

used platinum catalysts on various supports (activated carbon, ZrO2, Al2O3) in

basic, neutral, and even acidic media and observed excellent yields of FDCA in all

cases. Casanova et al. used gold nanoparticle-based catalysts (e.g., Au/TiO2,

Au/CeO2) under optimized reaction conditions (10 bar O2, 130
�C, aq. NaOH) to

achieve >99% yield of FDCA. The same authors recently reported a base-free,

aerobic oxidation of HMF to yield dimethyl furan-2,5-dicarboxylate in methanol

using an Au/CeO2 catalyst [78]. The common application of basic media in this

chemistry could be seen as problematic due to the generation of a salt waste stream.

2.4.3 Reduction Chemistry of HMF

Reduction of the aldehyde of HMF to a hydroxymethyl group gives 2,5-di

(hydroxymethyl)furan (DHMF) 12, a useful monomer building block in the pro-

duction of polymers and polyurethane foams [79]. In the bench scale synthesis,

NaBH4 is the obvious reducing agent [80–82]. Catalytic hydrogenation is, however,

more industrially relevant to this process, and essentially quantitative yields have

been reported by hydrogenation over Ir–ReOx/SiO2 [83], gold nanoparticles on

Al2O3 [84], and Pd/C with formic acid as the hydrogen source [85].

One of the most sought-after furan derivatives of recent times has been

2,5-dimethylfuran (DMF) 13, the product which results from the reduction of both

the hydroxymethyl and aldehyde functions of HMF to methyl groups, and several

high-profile papers have been devoted to its renewable production [85–88]. In addi-

tion to being a high energy density, high octane biofuel [89], DMF can be converted

into p-xylene, a high volume chemical intermediate used for the production of drop-

in terephthalate polymers [90–93]. Notable efforts towards DMF have included

hydrogenation of HMF in the presence of a CuRu/C catalyst (71% yield) [87], a

one-pot reaction of fructose with formic acid in the presence of H2SO4 and Pd/C

catalysts (51% yield) [85], and hydrogen transfer to HMF from supercritical meth-

anol with a Cu-doped porous metal oxide catalyst (48% yield) [86]. Most recently, Zu
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and co-workers reported a remarkable 93% yield of DMF by hydrogenation of HMF

using a novel Ru/Co3O4 catalyst [88] (Scheme 5).

Ring hydrogenation of HMF to tetrahydrofurans is also a highly useful trans-

formation. This can be done while preserving oxygen functionality at the methyl

positions, giving 2,5-bis(hydroxymethyl)tetrahydrofuran (BHTHF) 14. Thus,

hydrogenation of HMF on Ni–Pd/SiO2 under mild conditions provided BHTHF

in 95% yield, [94] and the use of Ra-Ni [95] or ceria-supported ruthenium catalysts

[96] gives similar outcomes.

Complete reduction of HMF to 2,5-dimethyltetrahydrofuran (DMTHF) 15 was

studied in detail by Sen and co-workers, where not only HMF but also fructose

could be converted to DMTHF by hydrogenation in the presence of HI and a

ruthenium catalyst [97, 98]. Despite the high energy content of DMTHF and its

potential as a fuel, comparatively few studies have been devoted to its selective

production from HMF or biomass in general.

2.4.4 Condensation Chemistry of HMF

In recent years, the production of simple hydrocarbons from biomass has attracted

strong interest in the renewables community, due to the fact that the products are

considered “drop-in” substitutes for petroleum-derived alkanes, with evident

applications to fuels and chemical production. HMF has received much attention in

this regard as a platform for extended carbon chain products, the hydrodeoxygenation

(HDO) of which gives products which are essentially diesel or aviation fuels,

depending on their hydrocarbon distribution. Aldol-type condensation reactions can

take place in aqueous solution between HMF (or its derivatives) and biogenic ketones

Scheme 5 Catalytic hydrogenations of HMF
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such as acetone. The method in general has been reviewed [99], so only some

representative approaches are highlighted here.

The original work in this area was done by Dumesic et al. and involved various

condensations of HMF and related molecules with acetone followed by HDO to

give C1–C15 alkanes (for example, 1!17+19) (Scheme 6) [100]. Liu and

co-workers recently described the benzoin condensation of HMF to give a dimer

that could be submitted to HDO to give C10–C12 alkanes [101]. Sutton and

co-workers likewise employed simple aldol chemistry between HMF and acetone

to access C9–C15 hydrocarbons [102]. This sugar derivative to alkane chemistry has

been successfully piloted by the startup company Virent [103].

2.4.5 Transformations Involving Cleavage of the Furan Ring

Bearing in mind that the HDO chemistry in the preceding section involves first

hydrogenation and finally hydrogenolytic cleavage of the THF ring, we now

consider other useful derivatives that also take advantage of ring-opening reactions.

Rehydration of HMF in acidic aqueous media leads to hydrolytic ring opening to

give equimolar quantities of levulinic acid (LA) 4 and formic acid [104]. As noted

in the introduction, LA is a platform chemical in its own right and its production

and chemistry will be reviewed in Sect. 4 of this chapter.

Adipic acid 20 is a high-volume commodity chemical used for making

nylon polymers. The structural similarity between FDCA and adipic acid

provides an obvious route between the two chemicals by hydrogenating

FDCA to 2,5-tetrahydrofurandicarboxylic acid followed by reductive cleavage

(Scheme 7) [105].

Oxidative cleavage of the HMF ring can be achieved in the presence of singlet

oxygen. The reaction is carried out by irradiating an aerated solution of HMF

containing a sensitizer (e.g. rose bengal). The reaction proceeds through the endo-

peroxide intermediate 21, which undergoes ring opening to a butenolide in aqueous

or alcoholic solvent, which subsequently cleaves to 4-oxopent-2-enoic acid or the

corresponding ester 22 [106, 107].
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Scheme 6 Synthesis of hydrocarbons from HMF
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3 5-(Halomethyl)furfurals

3.1 Historical Efforts

The first preparation of a 5-(halomethyl)furfural was reported as early as 1899 by

Fenton and Gostling [108], the former being well known for the development of

“Fenton chemistry.” In this work, fructose was treated with a solution of hydrogen

bromide in ether, resulting in a modest yield of a bromo-substituted dehydration

product which was correctly assigned the 5-(bromomethyl)furfural (BMF) 3 struc-

ture. Follow-up studies described yields of up to 28% BMF with cellulose sources

(paper, cotton) but rather poor outcomes with starch and sugars other than fructose

[109]. 5-(Chloromethyl)furfural (CMF) 2 was first described by the same authors in

a 1901 paper, using the same general approach as for BMF (ethereal HX) and

reporting a 9% yield from filter paper. A variety of simple derivatives produced by

reactions at the halomethyl and aldehyde functional groups were also described

[109]. Emil Fischer and co-worker later reported a convenient, scalable synthesis

from cane sugar and aqueous HCl, giving yields of up to 17% CMF, which was also

used to prepare derivatives [110]. The original work of Fenton and Gostling was

re-examined by Hibbert and Hill in 1923, who showed that glucose also gave

moderate yields of BMF, refuting the theory that cellulose was composed of ketose

subunits, which had been largely based on the former’s work [111]. In 1944,

Haworth and Jones published a method for making CMF from sucrose that for

the first time involved a biphasic acid/solvent reaction, by which CMF could be

isolated in 21% yield [112]. Only in a 1978 patent by a Japanese group was the yield

of CMF improved to preparative usefulness (up to 77% yield from fructose) when a

surfactant was also included in the processing of sugars with aqueous HCl using the

biphasic approach, ostensibly the result of a micelle-like state in the reaction

mixture [113]. Szmant and Chundury followed up this work in 1981 with a detailed

parameter study of the conversion of fructose and high-fructose corn syrup into

CMF, ultimately achieving a yield of 95%, although yields from glucose and starch

were only 45% and 21%, respectively [114]. Incremental changes to the procedure,
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Scheme 7 Transformations of HMF involving furan ring cleavage
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for example the inclusion of a magnesium halide as a promoter of the reaction, were

later reported [115–117]. As mentioned in Sect. 2, descriptions of the synthesis of

CMF by the reaction of HMF 1 with chlorinating agents have also been published

[118], but these are not considered practical due to the comparatively poor acces-

sibility of HMF from lignocellulosic feedstocks.

3.2 Modern Synthetic Approaches

In 2008, Mascal and Nikitin reported a method whereby glucose, sucrose, or

cellulose was converted into CMF in 71–76% isolated yields, alongside up to

15% of a mixture of 2-(2-hydroxyacetyl)furan (HAF) 23, HMF 1, and LA 4 [119]

(Scheme 8). The process involved the heating of the feedstock in a biphasic conc.

aq. HCl–solvent reactor over several hours with continuous solvent extraction. This

was significant in that, up to this point, there had been no report of the conversion of

cellulose to CMF in useful yield, apparently due to the harsh conditions required to

break cellulose down into glucose units and the extensive decomposition of the

furanic products that results. The process was later applied to various forms of raw

biomass, which gave CMF yields comparable to that of pure cellulose, based on

hexose content. Since plant biomass generally also contains hemicellulose, furfural

(24) was also isolated in these cases (Scheme 8) [119, 120]. The remarkable net

yield of organic products (85–91%, depending on the feedstock) was attributed to

the fact that, once formed, the furanics were swept into the organic phase, where

they were sheltered from the decomposition pathways that have long plagued the

synthesis of HMF (Scheme 9).

Although the CMF process opened a high-yielding pathway from biomass to

halomethylfurfurals, the extended reaction times (up to 30 h) could be seen as a
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Scheme 8 Production of furanic derivatives by acid-catalyzed dehydration of biomass in a

biphasic reactor
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disincentive to industrial applications. Working in an open reactor with concen-

trated HCl meant that the temperature of the process had to be restricted to about

65�C to reduce outgassing of the acid, but this also limited the reaction rate. In

2009, Mascal and Nikitin reported a closed-vessel modification of the method in

which the temperature was raised to 100�C, leading to an order of magnitude

decrease in reaction time [121]. Instead of carrying out a continuous extraction,

the biphasic mixture was extracted hourly. Depending on the feedstock, it was

found that the reaction was 85–90% complete after the first hour, with 7–12% of the

total product extracted after a second hour, and only about 2–3% after a third. On

top of this, the organic extract contained only CMF, with no HAF 23 or HMF

1 observed, and in improved yields of up to 90%. Small quantities of LA (5–8%)

could be isolated from the aqueous phase of the reaction, along with lignin as a dark

powder in cases where lignocellulosic biomass was used. Raw biomass feedstock

loadings of up to 10% w/v in the aqueous solution could be successfully managed in

this improved process.

In a 2010 report, the CMF process was applied to oil seed feedstocks for the

production of hybrid oleaginous-cellulosic biodiesel [122]. When oil seeds were

treated with aqueous HCl in a biphasic aqueous/organic reaction, a mixture of CMF

and the triglyceride 25 was obtained in the organic phase which, upon heating with

an alcohol, led to a mixture of the levulinate 26 (from the CMF) and fatty acid 27

(from the oil) esters (Scheme 10). As will be noted in the following section on

levulinic acid, levulinate esters are promising blendstocks for biodiesel. For a

selected feedstock (safflower seeds), a ca. 25% increase in fuel yield (fatty acid
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Scheme 9 Schematic representation of the CMF process in an aqueous (blue)-organic (green)
biphasic reactor
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ester/levulinate ester mixture) was obtained using a CMF process+ethanolysis

protocol over standard biodiesel ethyl ester production from the same quantity of

sample [122].

Recently, other reports have appeared in the literature for the synthesis of CMF

using biphasic aqueous hydrochloric/organic solvent reactions. For example,

Brasholz et al. adapted the biphasic CMF process to a flow reactor [123]. In contrast

to batch reaction conditions, the flow reactor allowed for much shorter reaction

times. For example, using DCM as solvent, an isolated CMF yield of 80% was

obtained from fructose with only 100 s residence time at 100�C in the reactor. A

flow rate of 2 mL/min allowed 10 g of fructose to be processed in just 20 min,

giving >6 g of CMF. Glucose and sucrose performed less well, requiring longer

residence times and giving CMF in lower yields (50–60%).

Breeden et al. reported a synthesis of CMF from various sugars (e.g., fructose,

glucose) and polysaccharides (e.g., cellulose, inulin) using conc. aq. HCl in a

biphasic system under microwave irradiation, which allows for selective heating

of the aqueous phase, leading to different outcomes compared to conventional

heating [124]. Under these conditions, CMF was isolated in 85% yield within

10 min at 70�C using fructose as the feedstock. Glucose, however, gave a lower

yield of 39%. The optimal results with cellulose (71% yield) were achieved by

pre-treatment in a ball mill prior to the reaction. A concurrent solvent study showed

that, while extraction with DCE gave the highest isolated yields of CMF, cyclo-

hexane also performed surprisingly well, and would be the alternative solvent of

choice in the event that one wished to avoid the use of halogenated solvents.

In an attempt to produce CMF under milder reaction conditions, Gao

et al. described an aqueous–organic biphasic reaction system where a combination

of concentrated HCl (37%) and H3PO4 (85%) were used in the aqueous phase with

chloroform as the extracting solvent at only 45�C [125]. CMF was obtained in 47%

isolated yield from fructose, although glucose and cellulose gave poor yields

of CMF, 7.3% and 7.8%, respectively. Surprisingly, CMF yields up to 31% were

obtained when cellulosic feedstocks (e.g., eucalyptus wood) were used.

High yields (>90%) of both CMF and BMF have been reported by treatment of

3-deoxyglucosone, which is the product of a single dehydration of glucose, with the

corresponding HX acids [126].

In a recent patent, Masuno et al. describe a process for making CMF from sugars

and biomass using a fluidized bed reactor [91]. Gaseous hydrochloric acid is fed

into a reactor containing biomass at a high velocity and temperature. The temper-

ature inside the reactor is ~220�C with pressures up to 15 atm. The hot, pressurized
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Scheme 10 Levulinate-fatty acid ester biodiesel synthesis using CMF process on oil seed

feedstocks
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acid causes fluidization of the feedstock, allowing for thorough mixing. After a

2-min residence time, the mixture of gas and solids is separated in a cyclone into

gaseous hydrochloric acid and a solid/liquid sludge. The authors observed a mixture

of CMF, HMF, and furfural as the major products and levulinic plus formic acids as

minor components.

BMF 3, historically the first halomethylfurfural to be prepared, has recently

made a re-appearance in the literature. Thus, Kumari et al. reported the production

of BMF by treating sugars, polysaccharides, and cellulosic biomass with a combi-

nation of concentrated hydrobromic acid and lithium bromide in a biphasic reactor

at 25�C for 48 h [127]. BMF was obtained in up to 82% yield using toluene as the

extracting solvent. Interestingly, cellulose gave a better yield of BMF (80%) than

did glucose (50%). Use of raw biomass (straw) gave a moderate yield of BMF

(68%) when processed at 65�C for 48 h. A related study describes the application of

an aqueous HBr/toluene biphasic reactor, resulting in up to 64%, 59%, and 56%

yields of BMF from glucose, cellulose, and softwood after 24 h at 65�C with serial

solvent extractions [50].

5-(Iodomethyl)furfural (IMF) has been prepared as an intermediate by Finkelstein

reaction of CMF with NaI in acetone, although attempts to isolate it have not been

successful [114]. In 2012, Sen et al. reported the hydroiodic acid-catalyzed dehydra-

tion of sugars during which in situ generated IMF was reduced to 5-methylfurfural

(MF) 31 [128].

Finally, 5-(fluoromethyl)furfural has also been made by heating BMF with

potassium hydrofluoride or sodium fluoride in acetonitrile solution in the presence

of 18-crown-6. Yields of 60–70% are claimed [129].

3.3 Derivatives of 5-(Halomethyl)furfurals

CMF is a low-melting solid (m.p. 37–38�C) but its liquid state is easily supercooled
and it generally occurs as a colorless or pale yellow liquid at room temperature. It

can be isolated by distillation at reduced pressure (b.p. 68–69�C at 0.7 Torr [130] or

137–138�C at 5 Torr [131]), which is predictably lower than that of HMF (110�C at

0.02 Torr) [112]. CMF is indefinitely stable when stored as a 10% solution in an

organic solvent at refrigerator temperatures. Pure samples of CMF, however,

become increasingly colored on standing, eventually turning from yellow to dark

brown, even in the cold. However, stabilization with an epoxy resin such as the

commercial DER383 renders even pure samples colorless and stable over long

periods of time [130].

Since CMF 2 can be converted into HMF 1 in high yield (see below), all the

derivative chemistry of HMF (Sect. 2) applies by proxy to CMF. Like HMF, CMF

has two essential reaction manifolds – furanic and levulinic, although there are

some subtle differences in reactivity. CMF is more reactive than HMF in sub-

stitutions at the CH2 group, and more soluble in nonpolar solvents, but otherwise,

the chemistries of CMF and HMF are largely the same. Here, we give an account of
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a selection of literature reactions involving CMF which establish its place as a new,

highly versatile platform chemical.

3.3.1 Conversion to HMF, Alkoxymethylfurfurals, LA, and Levulinic

Esters

Mascal and Nikitin reported the conversion of CMF 2 into either HMF 1 or LA

4 with excellent selectivities and yields. HMF was obtained within 30 s in 86%

yield by the action of boiling water on CMF. When CMF is hydrolyzed for an

extended period (20 min) at 190�C, LA is produced in 91% yield [132]. Similarly,

HMF has been obtained in quantitative yield by stirring the more reactive BMF 3 in

water at RT [127]. When these same reactions are carried out in alcoholic solution,

the corresponding ethers and esters are produced. Thus, both CMF and BMF have

been converted into 5-(ethoxymethyl)furfural (EMF) 28 (R¼Et), a proposed bio-

fuel, in high yield on treatment with ethanol [50, 120, 127] (Scheme 11). Levulinate

esters 29 are likewise produced in high yields from CMF on heating with alcohols at

elevated temperatures [132]. In a recent theoretical study, the thermochemistry of

the conversion of CMF into HMF, LA, EMF, and ethyl levulinate was calculated

using G4 theory and density functional (DFT) methods [133].

3.3.2 Substitution and Reduction Products

The synthesis of the dechlorination product of CMF, 5-methylfurfural (MF) 31, was

first reported by reduction with SnCl2 in low yield (~20%) [134]. In 2001, Hamada

et al. reported the palladium-catalyzed hydrogenation of CMF to MF in various

organic solvents [115, 116]. Mascal, et al. prepared MF in 88% yield by catalytic

Scheme 11 Preparation of value-added chemicals and intermediates from CMF
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hydrogenation of CMF using PdCl2 in N,N-dimethylformamide [119, 120]. Sen

et al. produced MF in 68% yield directly from fructose in a biphasic reactor with

aqueous hydroiodic acid under hydrogenation conditions via in situ generated IMF

[128]. The synthesis of 2,5-dimethylfuran (DMF) 13, a promising biofuel and a

high-profile renewable chemical intermediate (cf. Sect. 2), has also been accom-

plished from CMF. Hamada et al. reported an 81% yield of DMF by palladium-

catalyzed transfer hydrogenation of CMF in refluxing cyclohexene [135]. In a

recent patent, the synthesis of 5-methylfuran-2-carboxylic acid esters 30 has been

described by the reaction of CMF with an alcohol in the presence of an

N-heterocyclic carbene catalyst (Scheme 11) [136]. The resulting products are

highly promising fuel additives [137].

A cationic η3-furfuryl complex of palladium (33) has been prepared from CMF

(Scheme 12), which has the potential to activate the methyl group towards reactions

with various nucleophiles [138].

Friedel–Crafts alkylation of aromatics with CMF to give rise to benzyl

derivatives 34a and 34b was first demonstrated in 1909 [139] and reprised by

Rauchfuss and co-worker in 2013 to provide feedstock 34c for hydrodeoxygenation

to diesel-range hydrocarbons [140]. Similar reactions have been used to produce a

range of novel monomers and polymers. Thus, Szmant et al. reported as far back as

1981 the application of CMF to the synthesis of polymeric building blocks 35 and

36, among others (Fig. 1) [141].

The reaction of CMF with pyrrole, furan, or thiophene gives conjugated,

conducting polymers of structure 37 by attack at both the chloromethyl and

aldehyde functions (Scheme 13) [142].

The substitution of the chloro group of CMF with triphenylphosphine gives a

phosphonium derivative 38 which reacts with base to give annulene 1,4-oxide

macrocycles 39 [143] and conjugated poly(2,5-furanylvinylene) polymers 40
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Scheme 12 Preparation of a Pd η3-complex of CMF

Fig. 1 Friedel-Crafts arylation products of CMF
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(Scheme 14) [144]. Cram and co-worker also used CMF to incorporate furan

2,5-dimethylene units into crown ethers [145].

3.3.3 Condensation Chemistry of CMF

As was described for HMF in Sect. 2, CMF has likewise been used as a platform for

carbon chain extension for the purposes of making higher alkanes. Thus, Silks,

et al. describe the direct condensation of CMF with acetone, hydroxyacetone,

or dihydroxyacetone in the presence of a zinc-proline complex catalyst [146].

Similarly, Seck recruited CMF as an intermediate in a process that involves various

condensations of its derivatives and ultimately hydrotreating to arrive at

biofuels [147].

3.3.4 CMF Oxidation

As described in detail in Sect. 2, furan-2,5-dicarboxylic acid (FDCA) 11 has drawn

considerable attention in recent years as a renewable alternative to terephthalic acid

for the production of phthalate polymers. Synthesis of FDCA from CMF was first

reported by Fenton et al. by treatment with nitric acid [141]. Later, Brasholz

et al. used the same method to obtain a 59% yield of FDCA [123].

2,5-Diformylfuran 9 has also been prepared by nitric acid oxidation of CMF

[148] (Scheme 15).

Scheme 13 Synthesis of conducting polyfuranmethine polymers from CMF

Scheme 14 Synthesis of macrocycles and polymers from CMF
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3.3.5 Specialty Chemicals from CMF

In recent years, a range of value-added chemicals, including agrochemicals,

pharmaceuticals, and natural products, have been synthesized from CMF, as

described below.

XMFs as Key Starting Materials for Natural Product Synthesis

Tamariz et al. reported synthesis of the natural products 5-[(4-hydroxybenzyl)oxy]

methyl-2-furaldehyde 41 and pichiafuran C 42 from BMF and CMF, respectively.

Compound 41 was recently isolated from the rhizome of Gastrodia elata Blume

and exhibits cytotoxicity against the HT-29 cell line. It was prepared in 81% yield

by the reaction of BMF with 4-hydroxymethylphenol in the presence of an acid

catalyst. Pichiafuran C 42 was isolated from the yeast Pichia membranifaciens,
which was derived from the marine sponge Petrosia sp. It was synthesized from

CMF in two steps in 55% overall yield as shown in Scheme 16 [149].

Klein and Shanklin [150] described the total synthesis of (�)-dimethyl jaconate

46, a metabolite of the pyrrolizidine alkaloid jacobine, starting from CMF

(Scheme 17). Thus, substitution of the chloromethyl group with allyl sulfide

followed by reaction with methyllithium gave 43. Compound 43 then undergoes

intramolecular cycloaddition to 44. Benzylation, ozonolysis, and desulfurization

with Raney Ni gives 45. The hydroxymethyl groups are oxidized with the Jones

reagent and esterified with diazomethane, and the benzyl group is finally cleaved to

give the dimethyl jaconate product 46 in about 1% overall yield over nine steps.
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Scheme 15 Oxidation of CMF

Scheme 16 Synthesis of natural products 41 and 42 from XMFs
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CMF as a Synthetic Intermediate in Pharmaceutical Lead Generation

Figure 2 gives examples of chemical structures incorporating a furfurylmethyl

group which have been synthesized as lead compounds targeting various types

of pharmacological action. Thus, indolinone derivatives 47 and 48 [151] and

di-indolinones 49 and 50 [152, 153] have been prepared and evaluated for the

inhibition of protein tyrosine phosphatases, a family of enzymes that mediate

cellular signal transduction, modulators of which are gaining importance as thera-

peutic agents. The biological activities of 47–50 include anti-tumor and anti-fungal

activity.

Scheme 17 Synthesis of (�)-dimethyl jaconate 46 from CMF

Fig. 2 Biologically active iodolinones and di-indolinones derived from CMF
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Synthesis of δ-Aminolevulinic Acid from CMF

δ-Aminolevulinc acid (DALA) 54 is a natural, broad spectrum herbicide and

pesticide that has attracted much attention due to its effectiveness, low toxicity,

and biodegradability. It is also employed as a photodynamic therapy drug. Mascal

and Dutta have recently published a high-yielding, three step synthesis of DALA

from CMF (Scheme 18) [154]. The route starts by substituting the chloromethyl

group with azide anion to give 5-(azidomethyl)furfural (AZF) 51 in 92% isolated

yield. Photocatalyzed addition of singlet oxygen to the furan ring of 51 gives a

mixture of butenolide 52 and 4-oxopent-2-enoic acid 53, which is hydrogenated

over Pd/C in the presence of aqueous HCl to give DALA 54 as the hydrochloride

salt in 68% overall yield from CMF.

Synthesis of Ranitidine from CMF

Ranitidine 58, popularly known as ZantacTM, is a histamine H2-receptor antagonist

used for the treatment of gastric and duodenal ulcers. Introduced by Glaxo in 1981,

ranitidine was the first drug to achieve $1 billion in sales. It has recently been

reformulated as an over-the-counter general antacid preparation. The original

synthesis of ranitidine employed furfural as the starting material and introduced

the N,N-dimethylaminomethyl functionality on the furan ring later in the synthesis

[155]. Mascal and Dutta described a synthetic strategy whereby ranitidine was

prepared from CMF in four steps (Scheme 19) [156]. In the first step, commercially

available 3-mercapto-N-methylpropanamide reacts with CMF in presence of NaH

to give 55 in 92% isolated yield. Reductive amination with dimethylamine and

NaBH4 in methanol gives 56 in 90% yield. The acetyl protecting group is removed

by heating in KOH solution to give 57 in 94% yield. Finally, 57 reacts with

commercial 1-methylthio-1-methylamino-2-nitroethylene to give ranitidine 58

in 88% isolated yield. This renewable approach uses inexpensive reagents and

requires no chromatographic purification until the final step. The overall yield

from CMF to ranitidine was 68%.

Scheme 18 Synthesis of DALA 54 from CMF
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Synthesis of Furan-Based Pyrethroids from CMF

Pyrethroids are synthetic analogues of the naturally occurring pyrethrins (isolated

from Chrysanthemum sp.) and are popular insecticides for agricultural and

domestic uses, with favorable properties like biodegradability and low mammalian

toxicity. Prothrin 64 is a member of the furan-based class of pyrethroids, which also

includes the high-volume commercial insecticide resmethrin. Chang et al. recently

Scheme 19 Synthesis of ranitidine 58 from CMF

Scheme 20 Synthesis of prothrin 64, a furan-based pyrethroid, from CMF

64 M. Mascal and S. Dutta



published a convenient, high-yielding synthetic route to prothrin via CMF

(Scheme 20) [157]. Thus, the aldehyde moiety of CMF was first protected in the

form of a dibutyl acetal 59 and coupled with TMS-acetylene in presence of a copper

catalyst to give 60. The acetal was then cleaved and the resulting aldehyde 61 was

reduced with NaBH4. Esterification of alcohol 62 with the acid chloride of com-

mercial chrysanthemic acid gave 63, which was deprotected with Bu4NF to give

prothrin 64 in 65% yield over six steps.

4 Levulinic Acid

4.1 Introduction

The first preparation of levulinic acid (LA) 4was credited by von Grote and Tollens

[158] to Malaguti in 1836 [159] and Mulder in 1840 [160], who heated sucrose with

dilute aq. H2SO4 and, after removal of the humic material, isolated crude LA as a

viscous oil. The structure was unambiguously assigned in 1878 [161]. An Organic
Syntheses procedure for LA was published in 1929, whereby a 22% yield was

obtained from either sucrose or starch using HCl as the catalyst [162]. The yield

could be improved to 42% by heating carbohydrates in dilute aq. HCl under

pressure [163]. Dahlmann in 1968 described a simpler procedure involving the

heating of sugars, starches, or even cellulose at reflux in 20% aq. HCl (azeotropic,

b.p. 108�C) to give LA in yields of up to 60% [164]. Even better results were

obtained using HBr as the acid, whereby 75%, 64%, and 69% yields were reported

with glucose, starch, and sucrose, respectively [165].

Scheme 21 Early mechanistic speculation on the formation of LA 4 from carbohydrates
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4.2 Mechanism

The mechanism of formation of levulinic acid from carbohydrates bears discussion.

The subject was first taken up by Pummerer and co-workers in 1935 [166], who first

recognized that HMF 1 was an intermediate which underwent rehydration to open

chained products, but otherwise gave an oversimplified interpretation that involved

the "dismutation" of oxygen from the CH2OH group in 66 to the terminal aldehyde

(Scheme 21).

Isbell put forward a more intuitive analysis of the process as shown in Scheme 22

[167]. Evidence for intermediate 69 was later obtained by NMR analysis of the

hydrolysis of 1 [168]. A somewhat different, but no more reasonable, route between

69 and 4 is generally proposed which involves the hydration of the aldehyde group

in 69 and cleavage of formic acid without invoking the ketene intermediate 70.

4.3 Synthesis

A number of reviews of the synthesis of LA from various carbohydrate sources

have been published [169–173]. Approaches vary considerably in terms of selec-

tivity and overall yield, and the reader is directed to these accounts if a detailed

treatment is sought. However, given that the only competitive process for the

production of LA would use biomass as feedstock, we provide in Table 2 a survey

of the highest yielding approaches of this description.

The production of LA from biomass invariably involves chemical processing

under relatively forcing conditions. A balance must be found between good con-

version and extent of decomposition of the feedstock into humic material. As can be

seen, temperatures around 200�C are typical, although heating as low as 150�C over

extended periods is also effective in some cases. Reactions are exclusively carried

out in aqueous media under homogeneous acid catalysis. Feedstocks include

cellulose itself, various energy crops, and industrial, agricultural and forestry

Scheme 22 Mechanism for the formation of LA 4 via HMF 1
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wastes. Two entries (4, 13) based on piloted technologies are singled out for

discussion below.

Of all the methods for producing LA, the “Biofine Process” (entry 3) has attracted

the most attention. It has won a Presidential Green Chemistry Challenge Award and

has been piloted at more than one facility, with plans to go commercial in the near

future. Biofine comprises a two-step catalytic process. In the first reactor, cellulosic

biomass (0.5 to 1 cm particle size) is mixed with 1.5–3% sulfuric acid at high

temperature (210–220�C) and pressure (25 bar) in a plug flow reactor where rapid

hydrolysis of cellulose (residence time 12 s) leads first to sugar monomers followed

by dehydration to intermediates like HMF (1). In the second step, this material is fed

into a backmix reactor under less severe conditions (190–200�C, 14 bar, 20 min

residence time) during which LA and furfural are produced, with formic acid as a

co-product. The crude reaction mixture is then dehydrated and vacuum distilled,

leaving behind only a dry “char.” The acid is recovered and recycled. LA yields

ranging from 59% to 83% of the theoretical have been reported [172].

Entry 13 describes another high yielding approach to LA that involves the

intermediacy of CMF 2, the preparation of which was covered in Sect. 3 of this

chapter. Using corn stover as an example, submission to the CMF process (biphasic

aq. HCl/solvent reaction, 80�C, 3 h) gives CMF in 80% yield, during which levulinic

acid is co-produced in 8% yield. Hydrolysis of the CMF at 190�C for 20 min

provides a 91% yield of LA, for a net conversion from biomass of 81% over two

steps. The Biofine and CMF methods are co-rendered graphically in Scheme 23.

Table 2 Preparation of LA 4 by acid-catalyzed hydrolysis of cellulosic feedstocks

Entry Feedstock Catalyst Reaction conditions Yield (%) References

1 Cellulose H2SO4 (3%) 230�C, 4 h 54 [174]

2 Cellulose HCl (3%) 250�C, 2 h 40 [175]

3 Newspaper H2SO4 (10%) 150�C, 8 h 59 [176]

4 Paper sludge H2SO4 (3.5%) 196–232�C, 20 min 76 [177]

5 Wheat straw H2SO4 (3.5%) 209�C, 37 min 69 [178]

6 Paddy straw HCl (4.45%) 220�C, 45 min 79.5 [179]

7 Grain sorghum H2SO4 200�C, 40 min 45 [180]

8 Water hyacinth H2SO4 (9.5%) 175�C, 30 min 34 [181]

9 Sugarcane bagasse H2SO4 (1.3%) 165�C, 1 h 61a [182]

10 Water oak HCl (6%) 160�C, 30 min 45b [183]

11 Sawdust HCl (1.5%) 190�C, 30 min 36 [184]

12 Bagasse HCl (4.45%) 220�C, 45 min 82.5 [179]

13 Corn stover HCl (37%) 100�C, 3 h then

190�C, 20 min

81 [121]

14 Marine algae

(gelidium amansii)
H2SO4 (3%) 160�C, 43 min 19.5 [185]

aCalculated based on 30% cellulose content in sugarcane baggase (18.4 wt% compared to starting

biomass)
bCalculated based on 40.8% cellulose content in water oak
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4.4 Derivatives

Like HMF 1, LA 4 is a recognized platform chemical for the generation of a wide

array of derivatives with applications across a range of markets. LA has the

distinction of appearing on the list of Top Value-Added Chemicals from Biomass

published by the US Department of Energy’s National Renewable Energy Labora-

tory (NREL). This list of 12 mainly sugar-derived products was assembled in order

to identify major opportunities for “the production of value-added chemicals from

biomass that would economically and technically support the production of fuels

and power in an integrated biorefinery, and identify the common challenges and

barriers of associated production technologies” [186]. In its candidate summary

biography, LA is referred to as “one of the more recognized building blocks

available from carbohydrates,” the derivatives of which “address a number of

large volume chemical markets.” LA also appears in Bozell’s updated review of

top biorefinery carbohydrate derivatives [187].

While not as functionally versatile as HMF and CMF, LA nevertheless presents

multiple opportunities for derivatization. There are two functional groups – the

carboxylic acid and the ketone. In some cases only one of these groups is manip-

ulated, but in many others both are involved. Without purporting to cover the entire

breadth of LA chemistry, we discuss below some of the more attractive derivatives

with the potential to unlock important industrial markets.

4.4.1 Esters, Amides, Ketals, Alcohols, and Ethers

Alkyl levulinate esters 72 can be prepared by homogeneous acid-catalyzed Fischer

esterification of LA [188], under solid acid catalysis [189, 190], by acid-catalyzed
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reaction with LA with olefins [191], or by reaction of alcohols with the cyclic ester

angelica lactone 71 and a catalyst [192] (Scheme 24). Various levulinate esters have

been tested as blends with diesel fuel and biodiesel, where they not only act as

oxygenates but in the latter case also improve the cold-flow properties of the fuel

[193, 194].

Dehydration of LA gives angelica lactone 71, and reduction of the keto group

of LA to the alcohol followed by cyclization gives γ-valerolactone 73 (GVL)

(Scheme 24) [195]. While angelica lactone 71 has received relatively little

attention in the renewables field, GVL 73 has found wide application as a green

solvent and precursor to polymers, chemicals, and a range of biofuels [196].

Catalytic hydrogenation of GVL gives pentane-1,4-diol (1,4-PDO) 74

[197–199]. Cyclodehydration of 1,4-DPO 74 provides 2-methyltetrahydrofuran

75 which, in addition to being a useful solvent, is also a component of

EPA-approved P-series flex fuels [200, 201].

Reaction of either LA or angelica lactone with secondary amines gives the

corresponding amides 76 (Scheme 25) [202, 203]. Reductive amination of LA

with primary amines gives 5-methyl-2-pyrrolidones (MPDs) 77, which are versatile

solvents with a range of industrial applications. Reduction is routinely carried

out by hydrogenation over a heterogeneous noble metal-based catalyst (Pd, Pt,

Ru, or Au) [180, 204–207]. Recently, Xia et al. reported the reductive amination of

LA with various primary alkyl and aromatic amines with a cyclometallated iridium

complex catalyst and formic acid as the hydrogen donor [208]. The same authors

Scheme 24 Synthetic transformations of LA: esters, lactones, alcohols, and ethers

Scheme 25 Synthetic transformations of LA: amides and lactams
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have now also reported a catalyst-free synthesis of MPDs using a combination of

formic acid and triethylamine for transfer hydrogenation [209].

Levulinic esters 72 can form acetals 78 in an acid-catalyzed reaction with

alcohols, the products of which are variously useful as green plasticizers, solvents,

and monomers for renewable polymers (Scheme 26) [210, 211]. Segetis Inc. is

commercializing a broad portfolio of levulinic acetals across a range of

applications [212].

4.4.2 Transformation into Fuels

GVL 73, itself a potential biofuel, is also a starting material for pentanoate esters

(“valeric biofuels”) that have been shown to have outstanding fuel properties

[213]. GVL-derived pentanoic acid 80 can be catalytically upgraded by

decarboxylative ketonization to 5-nonanone 81, which can then be variously

processed to nonane 82 and other hydrocarbons [214, 215]. GVL has also been

converted to butenes over a silica-alumina catalyst, which are then oligomerized on

H-ZSM-5 or Amberlyst-70 to give a mixture of C8–C16 alkenes that can be

hydrogenated to drop-in fuels (Scheme 27) [216].

Recently, Mascal et al. described a synthetic approach to “cellulosic gasoline,”

i.e., exclusively branched, C7–C10 hydrocarbons, using LA as the starting material

Scheme 26 Synthetic transformations of LA: ketals

Scheme 27 GVL to hydrocarbon routes
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[217]. Thus, LA was dehydrated to angelica lactone (AL, 71) in 92% yield using

montmorillonite K10 as an inexpensive, heterogeneous, recyclable catalyst. AL

was then dimerized over solid K2CO3 to give the angelica lactone dimer (ALD, 83)

in 94% yield. ALD has a C10 backbone and, when subjected to hydrodeoxygenation

(HDO), gives the branched C10 hydrocarbon 3-ethyl-4-methylheptane 84 as the

major product, alongside other branched C7-C9 products (85–87), as shown in

Scheme 28. Ir-ReOx/SiO2 and Pt-ReOx/C HDO catalysts performed best, both

giving 88% total yield of hydrocarbons from ALD. Considering that LA is available

in >80% conversion from biomass, field-to-tank yields of drop-in, gasoline-range

hydrocarbons of >60% are achievable by this approach.

Finally, Wheeler has reported high yields of deoxygenated hydrocarbons via

simple thermal decomposition of mixtures of LA and formic acid. In contrast

to the pyrolysis oils obtained from raw biomass, this product is low in oxygen,

non-viscous, of neutral pH, and has a high energy content [218].

4.4.3 Miscellaneous Transformations Leading to Renewable

Monomers, Solvents, and Specialty Chemicals

Adipic acid 20, a component of nylon polyamides, has been prepared by the

catalytic hydroformylation of the LA-derived pentenoic acid 79 (Scheme 29)

[219], which in turn can be made by ring opening and dehydration of GVL 73

over heterogeneous acid catalysts like SiO2-Al2O3 or ZSM-5 [219, 220]. Yields of

up to 67% 20 by carbonylation of 79 have been reported by Phillipe et al. using

iridium, ruthenium, and rhodium catalysts [221].

Scheme 28 LA to “cellulosic gasoline”

Scheme 29 Adipic acid from LA
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Diphenolic acid (DPA) 88, a condensation product of LA and two molecules

of phenol, is considered to be a renewable analogue of bisphenol A (BPA), a high-

volume chemical used to make polycarbonate plastics. BPA is known to have

estrogenic activity [222], which has led to its withdrawal from some markets.

Thus, DPA has the potential to displace BPA across the range of its polymer

applications [223].

The oxidation of LA can also lead to useful derivatives. High-temperature

(365–390�C) oxidation of LA with O2 in the presence of a V2O5 catalyst gives

succinic acid 89 in high yield [224] (Scheme 30). This oxidation has also been

studied using nitric acid as the oxidant under milder reaction conditions (40�C) with
succinic acid yields up to 52% [225]. A ruthenium nanoparticle catalyst also gave

good results at 150�C under 14 bar O2 pressure [226]. Succinic acid is a platform for

important derivatives including γ-butyrolactone, 1,4-butanediol, and tetrahydrofu-

ran, which have large-scale applications in the solvent, specialty chemical, and

polymer markets.

The synthesis of the natural herbicide δ-aminolevulinic acid (DALA) 54 from

CMF was described in Sect. 3 of this chapter, but has also been approached directly

from LA. The methods have generally relied on the halogenation of the methyl

group of LA, followed by substitution with a nitrogen nucleophile which is then

transformed into the primary amine. 5-Bromolevulinic 90 can be obtained by the

direct bromination of LA in refluxing methanol, but the reaction suffers from poor

regioselectivity, low yield, and difficult product isolation [227, 228].

5 Conclusion and Future Prospects

Just as the chemical-catalytic approach to biomass processing is poised to come to

the fore of biorefining, the furanic family of carbohydrate derivatives, HMF 1, CMF

2, and LA 4, are the platforms from which this disruptive innovation in green

chemistry will be launched. The primary, secondary, tertiary, etc., generations of

their derivatives are like the branches of a tree, fanning out over virtually every

Scheme 30 Preparation of diphenolic acid, succinic acid, and 5-bromolevulinic acid from LA
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aspect of chemistry currently represented by petrochemicals and fermentation

products. While the former gradually become more expensive as fossil fuel reserves

decline, the latter become less and less competitive in the face of faster, cheaper

chemical processes that are more omnivorous with respect to feedstock input. In a

sense, because condensed carbohydrate derivatives are emerging as favored feed-

stocks for hydrodeoxygenation to medium-chain alkanes, every refinery product

that is derived from petroleum naphthas (α-olefins, aromatics, etc.) will remain

available even in the long-horizon scenario that crude oil raffinates are no longer

available as feeds. This, along with syngas from biomass gasifiers, will ensure that

the petrochemical industry, on which so many other markets depend, need not go

out of existence. In the end, it will simply come down to competition for waste

biomass and energy crop feedstocks, and the technologies that can most advanta-

geously supply the petrochemical “drop-in” chain (olefins, alcohols, carbonyl

compounds, aromatics) as well as providing innovative products that serve markets

otherwise supplied by petroleum (novel fuels and materials, green chemical prod-

ucts, etc.) will win the day, while others, like so many industries that have come and

gone, fade into history.

Where will HMF, CMF, and LA fit into this new, post-petroleum economy, and

what relative roles will they play? Despite HMF’s long history in the literature and

the volume of work devoted to its advancement as a cellulosic platform chemical,

practical issues, as described in Sect. 2, threaten to hinder its further progress. The

greater accessibility of CMF and LA, and their feedstock-agnostic nature, are set to

leverage them relative to HMF, provided that issues associated with strong acid

catalysis and acid recycle involved in their production can be suitably dealt with. In

effect, since HMF and CMF are interconvertible, CMF becomes the new HMF,

serving every derivative class and market that can be accessed from HMF, and

beyond. As noted in Chap. 1, the biorefinery as such is not a new concept, but the

furious pace of its development in the past decade has inevitably brought the issue

of commercialization to prominence, which is akin to the natural selection process

in the species, and it will be interesting to observe which approaches gain the most

traction in the decade to come.

References

1. Dusselier M, Mascal M, Sels BF (2014) Top Curr Chem doi: 10.1007/128_2014_544
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Selective Catalysis for Cellulose Conversion

to Lactic Acid and Other α-Hydroxy Acids

Michiel Dusselier and Bert F. Sels

Abstract This review discusses topical chemical routes and their catalysis for the

conversion of cellulose, hexoses, and smaller carbohydrates to lactic acid and other

useful α-hydroxy acids. Lactic acid is a top chemical opportunity from carbo-

hydrate biomass as it not only features tremendous potential as a chemical platform

molecule; it is also a common building block for commercially employed green

solvents and near-commodity bio-plastics. Its current scale fermentative synthesis

is sufficient, but it could be considered a bottleneck for a million ton scale break-

through. Alternative chemical routes are therefore investigated using multi-

functional, often heterogeneous, catalysis. Rather than summarizing yields and

conditions, this review attempts to guide the reader through the complex reaction

networks encountered when synthetic lactates from carbohydrate biomass are

targeted. Detailed inspection of the cascade of reactions emphasizes the need for

a selective retro-aldol activity in the catalyst. Recently unveiled catalytic routes

towards other promising α-hydroxy acids such as glycolic acid, and vinyl and furyl
glycolic acids are highlighted as well.

Keywords Biomass-to-chemicals �Catalysis � Cellulose � Renewables � Lactic acid �
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1 Introduction

The search for oil-independent and renewable alternatives for the production of

chemicals, fuels, and materials has led to an increased interest in the use of biomass

as a feedstock [1, 2]. The catalytic conversion of biomass, and in particular that

of the most abundant and non-edible lignocellulosic feedstock, has led to new

pathways for the synthesis of chemicals, biofuels, and polymer building blocks

[3–17]. Cellulose is the single most abundant organic compound on Earth [8, 18]. As

this biopolymer exclusively consists of glucose, a 6-carbon aldose, as seen in Fig. 1,

its selective conversion to desired chemical compounds is feasible [8, 9, 19].

Chemical catalysis, either in homogeneous or heterogeneous mode, is a formi-

dable strategy to convert cellulose and sugar feedstock selectively into chemicals,

and, since the turn of the century, publication numbers on catalytic carbohydrate

conversion have been rising progressively. In a way, they all contribute to the

concept of installing biorefineries in analogy with the existing petrochemical

refineries [18]. The ideal biorefinery is thought to supply a select portfolio

of both low value biofuels and high value bio-based chemicals and monomers

[18, 20–22]. The choice of the desired chemicals from carbohydrate biomass is

crucial and, therefore, we have recently developed a chemical selection tool from a

chemist’s point of view, based on a newly defined functionality index (F:C) of a

potential target molecule and the atom economy of its formation. This analysis is

found in the first chapter of this volume [23]. When applied to lactic acid, a

commercial bio-derived chemical of great interest, a high functionality index of

1.33 is calculated due to its carboxyl and α-hydroxyl group on its 3-carbon

backbone. Moreover, as it is a structural isomer of triose sugars, its formation

from cellulose, hexoses, or trioses implies a transformation with an atom economy

of 100%.

Lactic acid is thus a perfectly suited chemical target to produce from biomass

carbohydrates and no petrochemical routes for its formation are likely to take over.

Once a proper chemical target molecule is selected, a fundamental understanding of

the reaction network is crucial in order to tackle its selective formation from
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cellulosic biomass and to design the process steps and the catalytic activity

required. The transformation of cellulose into lactic acid or other α-hydroxy acids

(AHA), as seen in Fig. 1, is a key illustration of the proposed assessment [23] and its

novel catalytic formation routes will be discussed in depth in this review chapter.

The next two sections of this review chapter will introduce the reader to the

world of lactic acid. The acid is both a key platform chemical of the biorefinery

concept, from which other interesting molecules may be formed (Sect. 2), and a

monomer for commercial bioplastic polylactic acid (PLA) (Sect. 3). In the platform

approach, the assessment from Chap. 1 in this volume [23] proves its value, as it is

an equally useful tool to seek out the most desired routes for transforming a

biomass-derived platform molecule as it is to select the most relevant

carbohydrate-based chemicals from a chemist’s point of view. In what follows,

the desired catalytic cascade from cellulose to lactic acid will be described (Sect. 4)

as well as the specific catalytic data reported for different feedstock (Sects. 5 and 6).

Section 7 will introduce the reader to recent synthesis routes for other useful AHA

compounds such as furyl and vinyl glycolic acid, as well as others shown in Fig. 1.

Before concluding this chapter, Sect. 8 will provide a note on the stereochemistry of

the chemically produced AHAs.

2 Lactic Acid as a Platform Molecule

Lactic acid (LA) is one of the top carbohydrate-derived chemicals and it was

recently included in Bozell and Petersen’s revised selection of the top ten sugar-

based chemicals [10, 24]. The conversion of carbohydrates into LA via anaerobic

fermentation has been known for ages [25]. The first industrial fermentation was

developed by A. Boehringer in 1895 and at the present time the global installed

production capacity is estimated at 0.5 Mton year�1 [10, 26, 27]. The current

fermentation process and its issues will be critically discussed in Sect. 3 in light

of the major application of LA today, i.e., as monomer for commercial bioplastic

PLA [28]. Besides being used for polyester synthesis, LA is seriously considered as

a platform chemical for the synthesis of a diverse range of chemicals such as

pyruvic acid, 2,3-pentanedione, and acrylic acid [10, 29].

Fig. 1 Catalytic conversion of cellulose and carbohydrates to lactic acid and AHAs
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In the light of preserving functional reactivity and pursuing high atom economy,

the synthesis of LA is an excellent example (F:C ¼ 1.33; atom economy

AE ¼ 100% [23]) and the original configuration of functional groups in LA pro-

vides a high chemical reactivity, allowing for a multitude of different conversion

routes. Most of these conversions have been reported feasible in high product

selectivity, given the presence of a suitable chemocatalyst (mostly heterogeneous)

and the appropriate process conditions. A lactic acid-product family tree was

developed in our recent review with detailed emphasis on the role of chemo-

catalysis in using LA as a platform molecule for different chemicals. As the

catalytic conversion of LA is not within the scope of this review we refer the reader

to this work for catalytic details [10]. Here, we will discuss the position of

frequently reported chemicals produced from LA in the modified van Krevelen
diagram, as introduced in the first chapter of this volume [23], and, together with the

atom economy, this allows us to select the most feasible chemicals from

LA. Figure 2 shows that lactic acid transformation in nearly every direction on

the modified van Krevelen plot is feasible.

To start with, a single dehydration of LA – typically a shift to the left on the plot

– leads to acrylic acid as the major product. Such dehydration is interesting as it

preserves the functionality per carbon in the molecule (2). The atom economy

(AE) of this dehydration is as high as 80% with water as the only by-product. The

reaction is usually catalyzed in the gas phase by phosphates, sulfates, clays,

Fig. 2 Modified van Krevelen plot demonstrating the conversion of LA into various chemicals.

PLA ¼ polylactic acid. F:C ¼ functionality index as defined in Chap. 1 [23]
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modified zeolites, or oxides with dual mild acid–base character, yielding acrylic

acid at around 65% [30–34]. The current synthesis of acrylic acid is performed via

the partial oxidation of petrochemical propene (1) in the presence of steam with

equal atom economy [35].

C3H6 þ 3

2
O2 ! C3H4O2 þ H2O partial oxidationð Þ AE ¼ 80%ð Þ ð1Þ

C3H6O3 ! C3H4O2 þ H2O dehydrationð Þ AE ¼ 80%ð Þ ð2Þ

Even though the functional nature of LA is perfectly suited to synthesize acrylic

acid in one step, the main driver for replacing the acrylic petrochemical route is an

economic one and this demands a lower production price of lactic acid. At the

moment, prices of both acids are similar, in the range of 1.2–2.0 USD kg�1.

Other chemicals, like 2,3-pentanedione [36] and acetaldehyde [37], are synthe-

sized from LA via loss of water combined with decarbox(n)ylation. A side product

of these reactions is CO2 or CO, which presents a loss in one carbon atom and thus a

drop in atom economy. 2,3-Pentanedione is a valuable fine chemical, used as an

aroma and flavor, but other properties, like its condensation with two phenols,

might lead to interesting plasticizers (as an alternative to bisphenol A) and poly-

carbonate building blocks [168]. Although its functionality index of 0.8 is seriously

lowered with respect to LA, as seen in Fig. 2, its structure contains very useful

vicinal keto groups. In our analysis found in Chap. 1 of this volume [23],

2,3-pentanedione was found in the second circle of the F:C plot ranked per carbon

number, indicating that the synthesis routes from carbohydrate and petrochemistry

likely compete with each other. Its current small scale production is via extraction

from dairy waste. The carbohydrate-based route via LA follows a reaction mech-

anism entailing a sequence of Claisen-condensation, decarboxylation, and dehy-

dration. The reaction runs in the gas phase over supported phosphates [36] or alkali

hydroxides [38], typically yielding 50% of 2,3-pentanedione. This reaction has a

low atom economy of 55% calculated from LA (or from glucose), as seen in (3).

A petrochemical route has been patented, via reacting hydroxyacetone with acet-

aldehyde (4), which is more atom efficient [39]. In the light of choosing between the

carbohydrate path via LA or the fossil path, a detailed cost analysis should shed

light on the economics. Given the availability of cheap LA, the renewable option

could be a feasible route, but only after carefully comparing feedstock (acetalde-

hyde + hydroxyacetone vs LA) and process costs. The lower AE of the LA route is

a big disadvantage. Note, however, that hydroxyacetone and acetaldehyde can also

be made from renewable glycerol [40].

2C3H6O3 ! C5H8O2 þ CO2 þ 2H2O AE ¼ 55%ð Þ ð3Þ
C3H6O2 þ C2H4O ! C5H8O2 þ 2H2O AE ¼ 85%ð Þ ð4Þ

LA-based acetaldehyde is formed by a dehydration and decarbonylation

sequence according to (5) and is shown in Fig. 2. The functionality index F:C of

Selective Catalysis for Cellulose Conversion to Lactic Acid and Other. . . 89



acetaldehyde is 1 and thus predicts a decent reaction, but the atom economy of 49%

is very low. To keep the H-index constant for only a slightly lower functionality, the

reaction indeed requires the elution of CO as side-product. Decomposition of LA to

acetaldehyde, H2, and CO2 is also known. Katryniok et al. showed that the reaction

can be catalyzed via decarbonylation in the gas phase with supported

heteropolyacids at 275�C in excellent yield (90%) at high conversion (92%)

[37]. Although acetaldehyde is fairly functional, it is only a 2-carbon unit, and

petrochemical routes via selective oxidation (of natural gas derived ethene) will

likely always dominate.

C3H6O3 ! C2H4Oþ COþ H2O AE ¼ 49%ð Þ ð5Þ

Another common reaction with α-hydroxy acids such as LA is the self-

condensation under water-removal circumstances, forming lactoyl lactate, oligo-

mers, or lactide – the cyclic di-ester of LA (6) [10, 41]. These condensation

reactions are dehydrations and thus retain the full functionality in the molecule,

while lowering the H index; see Fig. 2. Moreover, the atom economy of 80% is high

with only water as side-product. Lactide is the true industrial precursor of PLA and

the atom economy of 80% is equally valid for PLA [42].

2C3H6O3 ! C6H8O4 þ 2H2O AE ¼ 80%ð Þ ð6Þ
C3H6O3 þ C2H6O ! C5H10O3 þ H2O AE ¼ 87%ð Þ ð7Þ

Besides self-esterification, alkyl lactates can easily be made under acid or base

catalysis in excess of alcohol or via water removal according to (7) [43]. The atom

economy is high and the conversion only slightly reduces the F:C index with

respect to LA. This reduction is larger with increasing length of alkyl chain in the

alcohol part, but in absolute functionality (F, definition see Chap. 1 [23]), no loss is

at hand. These alkyl esters harness realistic potential as green solvents. Ethyl lactate

in particular, with its high boiling point, low vapor pressure, and low surface

tension, receives increasing attention for solvent application and is currently com-

mercially available at a medium scale. The molecule is moreover composed of two

bio-derived platform chemicals and fully biodegradable [43, 44].

Another intensively studied reaction is the conversion of LA into 1,2-propanediol

(propylene glycol) with hydrogen according to (8) [45]. This reaction proceeds with

a significant loss of functionality, viz. from 1.33 to 0.67, while the atom economy of

81% is medium high. It can be written as a hydrogenation and subsequent

hydrogenolysis, as seen in Fig. 2. Propylene glycol is mainly used as an antifreeze,

solvent, and polyester precursor. Its commercial production involves the epoxidation

of propylene with peroxides in the presence of Lewis acid catalysts like Mo or Ti,

followed by hydration of the oxirane function [46]. If H2O2 is used as oxidant, a

100% atom economy is achieved with the petrochemical oxidation route according

to (9). It will be difficult for the carbohydrate-based route to propanediol via LA

(or glucose) to compete with this established route, due to the higher feedstock cost

and lower atom economy. Our analysis in Chap. 1 of this volume predicted this
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competition, as propylene glycol is found on the edge of the third circle in the F:C vs

carbon number plot, found in Fig. 9 of [23].

C3H6O3 þ 2H2 ! C3H8O2 þ H2O AE ¼ 81%ð Þ ð8Þ
C3H6 þ H2O2 ! C3H8O2 AE ¼ 100%ð Þ ð9Þ

Finally, the oxidation of LA to pyruvic acid has been described with both

heterogeneous and bio-catalysts. Pyruvic acid is the simplest α-keto acid and may

be considered as an added-value fine chemical for the synthesis of drugs and

agrochemicals, as well as being an antioxidant [29, 47]. The oxidation of the

α-hydroxyl of LA corresponds to an upward shift in the modified van Krevelen
plot along a +1/2 slope (Fig. 2), yielding a high F:C of 1.67 with a high atom

economy (10). The commercial production at the moment is already carbohydrate-

based, as predicted again by Chap. 1 of this volume [23], via the fermentation of

glucose with free or immobilized enzyme catalysis [48]. Pyruvic acid is the end

product of the energy providing glycolysis pathway in living cells.

C3H6O3 þ 1

2
O2 ! C3H4O3 þ H2O AE ¼ 83%ð Þ ð10Þ

To conclude, LA has tremendous potential as a high volume platform chemical

to produce a range of different products. Our assessment along the guidelines of

Chap. 1 of this volume [23] is summarized in Fig. 3, presenting the atom economy

as a function of the functionality index. The dashed box indicates the zone with

higher or equal F:C as LA and at least 80% of AE. This plot thus predicts the

following order of importance/viability of lactic acid-derived chemicals: pyruvic

acid > lactide ¼ PLA ¼ acrylic acid > methyl and ethyl lactate >> propylene

glycol > 2,3-pentanedione > acetaldehyde. The drop in atom economy for the last

two chemicals is too severe, and more AE efficient petrochemical precursors can be

found. In the case of pyruvic acid, LA has to compete with a direct carbohydrate-

based bio-catalytic process [48]. In fact, Fig. 3 would be identical if the reactions

were considered to start from glucose or cellulose itself, because the atom economy

for making LA from this feedstock is 100%.

The versatile nature of the multifunctional LA is thus ideal to offer the chemical

side of the biorefinery the necessary adaptability to product demand and market

prices, and it is encouraging to see the high selectivity of the conversions with

heterogeneous catalysis [10]. Today, only the synthesis of esters and polymers

(via lactide) among the described reactions is processed on a commercial scale.

Lactide is, for instance, produced commercially by Purac (Corbion) and Galactic

(Futerro, with Total), the largest producers of lactic acid in the world, as well as by

Natureworks, the largest PLA producer. Commercialization of other chemicals

from LA is currently hampered by the cost of its fermentative production from

glucose, as explained in the next section. The interest in bio-derived chemicals and

PLA bioplastics, and the rising demand for green solvent ethyl lactate, should be a

stimulus for researchers to develop novel chemocatalytic pathways to LA or to
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improve current fermentation processes, preferably direct from cellulosic biomass.

After a short discussion on the current fermentation to LA and its use as a monomer

for PLA, a comprehensive summary of the newly-developed chemocatalytic routes

will be given.

3 Lactic Acid as Key Monomer for Biodegradable

Polyesters

Lactic acid is the key building block of the second largest volume commercial

bio-plastic, namely PLA. This renewable polymer is a biodegradable and biocom-

patible (in vivo) thermoplastic polyester [28, 49–51]. These unique features render

the PLA polymer suitable for many custom applications, for instance in medicine,

such as prostheses and in drug delivery, while PLA is also a suitable replacement

for certain forms of polystyrene, polypropylene, and polyethylene-terephthalate,

e.g., in packaging, fibers, and textiles. On the downside, two major bottlenecks

hamper the worldwide megaton-scale breakthrough of PLA: (1) its production cost

and (2) some of its properties such as its brittleness, certain barrier properties, too

pronounced hydrophobicity, and lack of reactive side groups [52]. Nonetheless, up

to 187,000 metric tons of LA were produced in 2011, with a tentative estimated

forecast of up to 600,000 tons in 2020 [10, 53, 54].

The synthesis of PLA and its cost-driving bottlenecks are presented in Fig. 4.

The first step is the fermentative synthesis of (usually L-) LA with bacteria or yeast.

Elegant reviews on this anaerobic fermentation are available elsewhere

[55–58]. LA is further converted to its cyclic dimeric ester lactide via a two-stage

process consisting of a pre-polymerization and a backbiting reaction (second frame

in Fig. 4). This L,L-lactide is the actual monomer for high molecular weight PLA.

Fig. 3 Atom economy vs F:C for lactic acid conversion routes
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PLA synthesis proceeds via ring-opening polymerization, usually carried out in

molten lactide in the presence of minute amounts of metal catalyst (e.g., Sn, Al)

[59]. The lactide route is industrially preferred over the direct synthesis of PLA via

polycondensation, especially for the production of high molecular weight PLA.

Such high molecular weight is important to ensure high performance in physical

properties such as melt points and strengths. Polycondensation is a less controlled

process and leads to shorter, more polydisperse chains and thus PLA of inferior

quality [60]. In addition, such condensation is a tedious process because of the

removal of water from a molten, highly viscous polycondensate [61]. The lower-

right corner of Fig. 4 shows a pie chart with a rough estimate of the total PLA

production cost, from the carbohydrate feedstock to the PLA plastic pellet. It is

estimated that about 50% of the total cost is governed by the fermentative LA

synthesis from glucose or sucrose. Another 30% is spent on the transformation of

LA to the lactide, while the remaining cost is dedicated to the polymerization of

lactide and the pelleting [169].

In order to facilitate the production of PLA on a megaton scale, as suited for a

commodity plastic, it is imperative to focus on alternative production routes to LA, as

this is clearly the largest cost factor for producing PLA. The main reason for this cost

is displayed in Fig. 4 as well: the fermentation is a slow and laborious process, which

requires continuous pH buffering with alkali, ending up with dilute Ca-lactate salt in

water. To release LA from this salt, acid work-up with H2SO4, viz. the acidification

step in Fig. 4, is needed but leads to the production of CaSO4 in quantities up to 1 ton

Fig. 4 Current industrial synthesis of (L-)PLA from carbohydrate feedstock: the fermentative

synthesis of L-LA; the chemical two-step synthesis of the cyclic intermediate (L,L-) lactide and the

polymerization to PLA. A pie chart shows a rough estimate of each of the frames’ contribution to

the total production cost of PLA, from sugar to pellet
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per ton of LA. Moreover, the batch process is slow, corresponding to a low volu-

metric productivity ranging between 0.3 and 5 g L�1 h�1 [62, 63]. Aside from the

gypsum issue, numerous downstream purifying steps are in place (Fig. 4) due to the

complex nature of the fermentation’s living broth. To obtain pure LA via fermen-

tation, final steps include a laborious esterification, distillation, and hydrolysis.

Recently, some progress has been made in gypsum-free and other improved fermen-

tation technologies [57], as well as in simultaneous saccharification and fermentation

of cellulose feedstock [64], but the steep rise in PLA and ethyl lactate demand will

further stress the fermentative process.

The global drive to degradable and recyclable polymers and the success of PLA

herein thus demands a cheaper, more efficient, and waste-free LA production process.

Therefore, researchers are looking for novel selective chemocatalytic routes from

cellulose and carbohydrates to produce LA and its esters [10, 65, 66]. Cheaper and

greater availability of LA will unlock its potential as platform chemical in a dedicated

biorefinery approach. Indeed, the molecule is multifunctional and thus versatile to

convert into various high value chemicals, as discussed before [29, 30, 67–69]. Before

describing the state-of-the-art of the catalytic results in more detail (Sects. 5 and 6),

the next section will be devoted to clarifying the mechanism and the catalytic

requirements to convert cellulose into lactates.

4 Reaction Pathways and Catalytic Requirements

The price of refined sugar syrups of, e.g., glucose and sucrose, viz. around 250–

500 USD ton�1, is much higher than that of raw cellulose. Direct conversion of

low-value cellulose into highly priced LA or lactates, the precursors of a booming

bioplastics market, is thus desired but challenging since as many as six reactions

need to be controlled in a cascade reaction fashion, as seen in Fig. 5.

Step 1 is the acid- (or base-) catalyzed hydrolysis of cellulose into D-glucose.

This reaction is hampered by the recalcitrant nature of the cellulose structure due to

the presence of semi-crystalline and apolar domains [8]. The cellulose structure

comprises chains organized into planes as a result of many inter- and intra-chain

hydrogen-bonds. These planes stack on top of each other, rendering cellulose quite

crystalline and hydrophobic [8, 70]. Besides several one-pot approaches combin-

ing, for instance, hydrolysis of cellulose with other reactions, such as the hydro-

genation of cellulose to sorbitol [5, 71–77] or the cascade to LA in Fig. 5, the

production of glucose from cellulose itself is a field of great interest on its own, as it

provides an entry of cheap glucose in the biorefinery. Several groups have obtained

intriguing results for this reaction in different ways [9, 78–85]. With respect to

cascade transformations directly from cellulose in water, Brønsted acid-catalyzed

hydrolysis is most frequently used; it is performed by taking advantage of the

increased proton concentration in hot water [86] or by mineral acids such as HCl

[71], heteropoly acids [87], or solid acid catalysts [71, 73, 84, 88]. The glucose

yields range from 50% to 80%, depending on the catalyst nature, cellulose type and
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loading (usually as low as 1–5 wt% in water) and the reaction temperature (in the

range of 120–180�C). The main difficulty in keeping the glucose yield high is the

reactive nature of glucose, ultimately forming furans by acid catalysis and humins

at higher temperatures and concentrations. Therefore, others have foreseen direct

cellulose conversion to more stable molecules such as sorbitol, isosorbide [89–91],

and levulinic acid [92, 93]. While (hydrolysis) reactions with cellulose in hot water

have been investigated deeply, reactions in alcoholic solvents are underexplored.

In addition to some heteropoly acids [94], organic acids can be used such as the

combined In(OTf)3 and p-toluenesulfonic acid system, reported in a cascade

towards methyl levulinate with 74% yield at 180�C [95]. While alcoholysis of

cellulose to more stable products like α-methyl-glycoside is obvious [94], it is

usually the major side reaction towards methyl levulinate.

Step 2 is the isomerization of glucose to fructose. This reaction involves the

conversion of the aldohexose into the 2-ketohexose. Retro-aldol reaction of the

aldohexose leads to a C4 and C2 sugar, whereas the ketohexose leads to the two

trioses, dihydroxyacetone (DHA) and glyceraldehyde (GLY). As the pathway to

LA involves the trioses, selective glucose isomerization is essential, its conversion

being limited by equilibrium in the operational temperature window. The isomer-

ization of aldo- to ketoses can proceed via an acid-catalyzed hydride shift, a base-

catalyzed mechanism with a proton shift (and intermediate enol), or via a concerted

1,2-hydride shift in neutral media [96, 97]. The latter isomerization mechanism

occurs at mild temperatures (100�C) in the presence of Lewis acid catalysts, first

Fig. 5 Cascade reaction from cellulose to LA in water. Required catalysts are indicated. Bottle-

necks are usually in step 1 (hydrolysis of solid cellulose) or step 3 (retro-aldol)
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reported by Davis and co-workers for hexoses with the use of Sn-containing Beta

zeolites (BEA topology). The 1,2-hydride shift was proven with labeling experi-

ments [96, 98, 99]. Our group recently noticed an increased isomerization activity

per tin site for a Sn-Beta zeolite, which was synthesized via a dealumination-

grafting sequence instead of via the common hydrothermal synthesis in the pres-

ence of HF [100]. A recent experimental comparison of reported homogeneous and

heterogeneous catalysts for the glucose-to-fructose conversion has been reported

[101]. Triose aldo-keto isomerization has also been assessed [97], but, in general,

this reaction proceeds at lower temperatures than hexose isomerization, likely due

the solely linear nature and higher reactivity of trioses. Since glucose-to-fructose

isomerization is essential in the route to LA, the reaction should be fast, as

otherwise glucose undergoes side reactions such as dehydrations or retro-aldol,

leading to 2- and 4-carbon sugars. While being considered by-products in the

pathway of cellulose to LA, these small sugars are valuable building blocks for

the synthesis of other interesting α-hydroxy acids, as highlighted in Sect. 7.

Step 3 is the retro-aldol reaction of fructose into the trioses DHA and GLY. We

have already described its atom economy and impact on functionality in Chap. 1 of

this volume [23]. Retro-aldol is the reverse reaction of the better known aldol

addition. The reaction is rare, but most famous in metabolic pathways like the

third stage of glycolysis: the splitting of fructose-1,6-bisphosphate into DHA- and

GLY-3-phosphate, catalyzed by aldolase A enzymes [102]. The reaction is cata-

lyzed by a reactive lysine in the active pocket of the retro-aldolases [103, 104].

It also depends on equilibrium thermodynamics (with the inverse aldol) and

reactions pulling trioses away from this. Currently, there is no chemocatalyst

known that is able to perform the reaction at temperatures below 140�C. W, Pb,

and Sn-based catalysts show retro-aldol activity above 150�C in water. Thermally

uncatalyzed retro-aldol is demonstrated in (near) supercritical water [105,

106]. However, low selectivity is observed due to a plethora of other reactions

with lower energy barriers, occurring in the high temperature conditions. One

should keep in mind that C–C splitting in retro-aldol is indeed more demanding

than, for instance, dehydration or hydrogenation of sugars. Development of active

catalysts that selectively promote the retro-aldol reaction channel is therefore

imperative.

A milestone publication in this respect came in 2010 from Holm et al., with a

paper on the selective conversion of sucrose, fructose, and glucose to lactates with

Sn-Beta zeolites [107]. Apparently, isolated Sn4+, coordinated in the silica frame-

work, is able to catalyze retro-aldol chemistry at temperatures around 160�C,
besides being an efficient aldo-keto isomerization catalyst, as described above.

The mechanistic details are, however, not fully elucidated. A tentative mechanism

was given by Taarning et al., shown in Fig. 6 [108].

Step 4 in the route to LA from cellulose deals with the dehydration of the triose

sugars, according to a retro-Michael mechanism, forming the unstable intermediate

pyruvic aldehyde (or methyl glyoxal). This reaction is typically performed by

Brønsted acid catalysis, although Lewis acids are also capable of this water
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elimination [109]. More mechanistic details on retro-Michael mechanisms are

found in the first chapter of this volume [23].

Step 5 converts the multifunctional and thus reactive pyruvic aldehyde into its

hemiacetal or hydrate, when performed in water or alcohol. Brønsted acidity

typically catalyzes these reactions. Strong acidity even leads to di-acetalization,

e.g., pyruvic aldehyde diethyl acetal in ethanol [65, 110].

Step 6 is the final step in the cellulose-to-lactic acid cascade, involving the

isomerization of the 2-keto-hemi-acetal (here: pyruvic aldehyde hydrate) into a

2-hydroxy-carboxylic acid. This reaction is known to proceed in basic media

following a Cannizzaro reaction with 1,2-hydride shift [111]. Under mild condi-

tions, Lewis acids are able to catalyze this vital step, which can also be seen as an

Meerwein-Ponndorf-Verley reduction reaction mechanism. The 1,2-hydride shift

has been demonstrated with deuterium labeled solvents [110, 112]. Attack of the

solvent molecule (water or alcohol) on pyruvic aldehyde (step 5) and the hydride

shift (step 6) might occur in a concerted mechanism, but the presence of the hemi-

acetal in ethanol has been demonstrated for pyruvic aldehyde with chromatography

by Li et al. [113] and for 4-methoxy ethylglyoxal with in situ 13C NMR by Dusselier

et al. (see Sect. 7) [114].

To conclude, the one-pot conversion of cellulose-to-lactic acid (or lactate ester

in alcoholic media) thus follows a complex cascade reaction network involving at

least six reactions. These reactions have different catalytic needs, but, in general,

the presence of both Lewis and Brønsted acidity are paramount for catalytic

success. Brønsted acidity is key to the hydrolysis of cellulose (step 1) at mild

temperatures (<200�C), and to some extent to the dehydration of triose (step 4),

whereas Lewis acid sites play a vital role in the isomerization reaction of glucose-

to-fructose (step 2), the retro-aldol (step 3), and the 1,2-hydride shift (step 6).

Steps 4 and 5 are relatively less demanding; they are catalyzed by both acid types.

Rather than performing the whole cascade in one pot, many reports are available

which describe the catalytic needs of some individual steps. For instance, the

conversion of trioses to LA (and its esters) has been studied over various catalysts

by several authors. Since the number of steps is reduced from six to three (only

Fig. 6 Fructose undergoing retro-aldol reaction to glyceraldehyde and dihydroxyacetone, cata-

lyzed by an isolated Sn4+ site in Sn-beta zeolite. Adapted from [108]
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steps 4–6 in Fig. 5), an understanding of the mechanism and description of the

catalytic criteria are more evident.

5 Catalytic Conversion of Mono- and Disaccharides into

Lactates

5.1 Trioses to Lactic Acid and Its Esters

As triose sugars are not abundant in nature, they are not the preferred feedstock for

LA production. Oxidation of glycerol might result in a mixture of trioses, but the

selectivity at full conversion is currently not high enough [40, 115]. Yet reactions

with trioses are crucial for mechanistic purposes.

Conversion of trioses to lactates has been achieved in near quantitative yields in

both water and alcohols in the presence of a suitable catalyst. In water, the reaction is

more tedious and slower, and catalyst deactivation owing to the produced LA is more

pronounced. In alcohol, the formation of the di-acetal side-product is an issue. Figure 7

summarizes the triose-to-lactate pathways. Step 4, the initial dehydration of the triose,

is thought to be rate-determining in this cascade when conducted in the presence of a

Lewis acid [66], but generally, it strongly depends on the catalyst and temperature.

A first eye-opening report on the conversion of trioses to alkyl lactates in

alcoholic media was produced by Hayashi and Sasaki in 2005 [112], after earlier

attempts by Eriksen [116] and Kelly [117]. With a simple catalytic procedure using

Lewis acidic SnCl2 and SnCl4 salts (10 mol% on 0.625 M of triose) in different

alcohols they achieved yields above 80% of methyl, ethyl and butyl lactate, in a 1 h

reaction at 90�C. Later, Rasrendra et al. explored this reaction in water, and, there,

different catalytic trends were found [118]. Whereas Sn2+ and Sn4+ were clearly

superior to Cr3+ and Al3+ chlorides in Hayashi’s work in alcohol, in water Cr3+ and

Al3+ were better catalysts for LA synthesis. They showed a 90% yield in 1.5 h at

140�C using 5 mol% of Al3+ on 0.1 M of triose. In our experience, working with Sn

salts in water entails the formation of polymeric Sn-(hydr)oxide precipitate. With

AlCl3, the authors have assessed the activation energies for step 4, viz. the triose

dehydration to pyruvic aldehyde, and the concerted steps 5 and 6, viz. LA from

pyruvic aldehyde. Values of 93 and 58 kJ mol�1 were respectively calculated,

proving dehydration (step 4) to be the rate-limiting step under mild conditions. In

the presence of Al and Cr halides, the pH of the reaction medium was lowered to

about 3, and it was shown that the released protons assisted in the rate-determining

dehydration step [118]. Finally, alkaline earth metal hydroxides and especially Ca

(OH2) at 2:1 OH�:DHA ratio in water, were found to be very active for the

conversion of DHA to LA via the keto-enol route, with yields up to 59% at only

25�C for 1 h. However, such alkali approaches are corrosive and end up with lactate

salts instead of the free acid, and the advantage of Lewis acid catalysis over

fermentation in these basic conditions is thus lost [119]. Although these homo-

geneous studies are very informative, the search for heterogeneous catalysts has
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received increasing attention since Sels and co-workers reported the first hetero-

geneous catalyzed triose conversion based on H-USY zeolites [120].

The use of heterogeneous catalysts has many advantages, such as their easy

separation and reuse. Sels et al. have further unraveled the active sites of the USY

zeolite and they have noticed a clear connection between the ethyl lactate selectiv-

ity and the amount of extra-framework aluminum [110]. While most framework Al

in common zeolites delivers Brønsted acidity when counterbalanced with H+, steam

and acid treated zeolites like USYs also contain several types of extra-framework

Al such as AlO(OH) and Al(OH)2+ and they offer the required Lewis acidity. Thus,

Brønsted acidity is required to dehydrate the trioses, while Lewis acidity favors the

1,2-hydride shift. Too strong Brønsted acidity should be avoided since it favors the

formation of the di-alkyl acetals instead of lactates (see Fig. 7). High selectivity is

thus obtained in the presence of a medium density of (weak) Brønsted sites,

together with a high density of Lewis acidic sites. Such a balance was found by

investigating the commercial CBV USY-zeolite series. Figure 8a shows that the

optimal Lewis (extra-framework) vs Brønsted (framework) balance was present in

CBV 600 – with 27% of framework Al – leading to the highest lactate selectivity of

77% at 90�C. Independently, West et al. have confirmed the use of USY for lactate

synthesis from trioses, and also studied a continuous flow setup. Furthermore, they

unraveled the reasons for catalyst deactivation [121]. In alcoholic media, the

deactivation is nearly zero, but in water, the presence of LA (pKa 3.72) destroys

the zeolite structure. Another reason for deactivation is the deposition of carbona-

ceous cokes, which is said to derive from side reactions with methylglyoxal or LA.

Alongside the classic Si- and Al-containing zeolites, the design and catalytic use

of zeolites and other microporous materials with Lewis acidic heteroatoms has been

reported, with a focus on substituted heteroatoms in zeolite frameworks. In 2009,

Taarning et al. used Sn-Beta zeolites and reported LA and lactate yields of 90% and

99%, respectively, for the complete conversion of DHA in water and methanol,

respectively, at either 100�C or 80�C with an Si:Sn ratio of 125 [65]. The reaction

was near to completion after 6 h. The initial turnover frequency was calculated to be

45 mol molSn h
�1. In comparison, Hayashi’s soluble SnIVCl4.5H2O salt only

reached about 4.2 mol molSn h
�1. Since then, numerous reports have surfaced in

the literature studying (among other catalysts) the use of Sn-MCM-41 [113],

Sn-SBA-15 [122], Sn-MFI [123], Sn-montmorillonite [124], Sn-MWW [125],

Fig. 7 Cascade reaction from triose to LA/lactates in water/alcohol respectively
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gallium oxides [113], desilicated MFI zeolites [126], GaUSY as well as other post-

synthetic galliated-zeolites [127, 128], and novel Sn-Beta zeolites made via

dealumination and post-synthetic Sn incorporation [129]. A comparison of some

of the reported (metal-substituted) zeolites for the conversion of DHA in water or

alcoholic media is given in Table 1. Entries 1–4, reported by Taarning et al.,

compare different Lewis acid-containing Beta zeolites (BEA) and a classic

Fig. 8 Catalytic trends for the conversion of dihydroxyacetone at 90�C in ethanol. (a) Selectivities

of different USY zeolites with varying amount of framework aluminum. (b) Sn-containing carbon-

silica catalysts: correlation between n� of weak Brønsted acid sites (measured by COx release in

TPD-experiments) and initial conversion rate. Based on data from [110] and [66]

Table 1 Comparison of various reported heteroatom-substituted zeolite catalysts for the

conversion of DHA to LA or lactates

E Catalyst Solvent T (�C) Time (h) Yield % di-acetala Yield % lactateb References

1 Al-Beta MeOH 115 24 72 2 [65]

2 Sn-Betac MeOH 80 6 0 97 [65]

3 Ti-Beta MeOH 115 24 0 40 [65]

4 Zr-Beta MeOH 115 24 0 39 [65]

5 Sn-Betac H2O 125 24 – 90 [65]

6 Sn-Betad MeOH 90 24 0 99 [129]

7 Sn-MFIe H2O 90 3.5 – 65e [123]

8 Sn-MWW MeOH 120 24 0 99 [125]

9 desil-MFIf H2O 140 6 – 84 [126]

10 Ga-FAUg EtOH 85 24 10 80 [127]

11 Al-FAUg,h EtOH 90 6 18 59 [110]

12 Al-FAUg,h EtOH 120 3 9 91 [110]

E ¼ entry, Take note that the concentration of DHA varies between entries from different authors,

as well as the sugar:catalyst or sugar:active metal ratios
aOnly in alcohol can di-alkyl acetal side product be formed
bYields in mol% of LA when solvent is H2O and of alkyl lactate when solvent is alcohol
cPrepared via classic hydrothermal method using HF
dPrepared via dealumination of Al-Beta followed by solid state Sn ion-exchange
eWhen classic Sn-Beta was used under identical conditions, 54% of LA was analyzed
fDesilicated MFI zeolite with 0.6 M NaOH
gUltrastable Y zeolites of FAU topology
hFramework Al: 27% ¼ the most left point in Fig. 8a (at 90�C)
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Al-Beta for their activity in the conversion of DHA to methyl lactate in methanol.

Clearly, Sn is the most active Lewis acid for this conversion in comparison to Zr

and Ti. The Brønsted acidic Al-Beta mostly catalyzed the formation of the di-acetal

side product in line with the high framework Al in the USY series of Sels et al. (see

Fig. 8a) [110]. Not only is the conversion with Sn-Beta complete and the selectivity

near 99%, the zeolite with Sn is also able to perform this reaction at a lower reaction

temperature of 80�C, whereas the other metals required 115�C. A higher reaction

temperature is needed in water to compensate for the slower reaction, but the yield

remained high (entry 5, Table 1). Tsapatsis and co-workers compared hydrothermal

Sn-MFI (small pore zeolite) and Sn-Beta (large pore zeolite) for the title conversion

and noticed a higher yield for the MFI topology in their conditions (entry 7).

As hydrothermally synthesized Sn-BEA and Sn-MFI zeolites are difficult to

synthesize, other synthesis methods following post-synthetic metal incorporation or

modification were attempted. For a start, Hermans and co-workers have devised a

new synthesis route to Sn-Beta via complete dealumination in strong acid, followed

by solid state Sn exchange using SnIIacetate. They noticed a high productivity of

their catalyst due to the high Sn content (10 wt%, entry 6). Secondly, inspired by

Hermans et al., Hensen and co-workers have reported the full deboronation of

B-MWW and subsequent grafting with SnCl4.5H2O in the presence of hexamethy-

leneimine [125]. The choice for MWW was for reasons of accessibility in antici-

pation of converting more bulky substrates such as glucose and fructose (see later)

along with trioses. The MWW topology comprises a 10-membered ring interlayer

pore opening connected to a 12-membered ring supercage and an independent

intralayer sinusoidal 10-membered ring channel [130]. Sn-MWW exhibited com-

parable activities to Sn-Beta (entry 8). In light of avoiding Sn and inspired by the

extra-framework Al Lewis acidic results of USY, Dapsens et al. have investigated

the creation of Lewis acid sites from Al containing ZSM-5 (MFI) zeolites via

alkaline desilication [126]. They have demonstrated a highly selective Lewis acidic

site for making LA from trioses in water, but they also noted that the catalyst was in

need of a high reaction temperature (entry 9, Table 1) and that the catalyst stability

was limited. Their research showed leaching of Al species from the zeolite caused

by the low pH of the LA product solution. Dapsens et al. continued their effort by

working in ethanol and by creating gallium Lewis acid sites by metalation during

desilication in alkaline conditions in USY zeolites [127, 128]. These zeolites are the

most selective non-tin materials reported at temperatures below 100�C in alcoholic

media; one catalytic experiment is illustrated in entry 10. Entries 11 and 12 display

two entries of the CBV series of Sels and coworkers and the effect of temperature.

The importance of a balanced catalyst with appropriate number and strength of

Lewis and Brønsted acid sites has been demonstrated by de Clippel et al. They have

designed a porous carbon–silica composite with independently tunable mild

Brønsted acidic sites and Lewis acid Sn [66]. The catalyst was composed of an

Si-MCM-41, grafted with Lewis Sn sites (e.g., 0.5 wt%), and filled with intraporous

carbon by furfural impregnation and pyrolysis under helium. A schematic repre-

sentation of the catalyst structure is displayed in Fig. 9. The intraporous carbon

compound has weak surface acidic groups such as –COOH and phenols, which

could easily be tuned by changing the temperature in the pyrolysis or by a
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post-synthetic oxidization treatment in air, while the Sn content is easily changed in

the grafting step. In this way, for a given content of Sn, it was unambiguously

shown that the rate could be enhanced sevenfold simply by increasing the mild

Brønsted sites per Sn, in line with the acceleration of the rate-limiting triose

dehydration step (4 in Fig. 7). The figure of merit is shown in Fig. 8b. The rise in

initial reaction rate in function of the amount of Brønsted acidity, measured as the

release of COx species in separate TPD analysis, is apparent. Comparing the initial

turnover per Sn for the parent Sn-MCM, viz. 41 mol molSn h
�1, in close agreement

with that of Sn-Beta, with the record of 289 mol molSn h
�1 for the optimal hybrid

catalyst, validates the mechanistic proposal [66]. More information on the design

and synthesis of nanohybrid and nanocomposite catalysts for use in multi-

functional cascades – as often needed in selective catalytic approaches for biomass

conversion – is found in our recent review [131].

5.2 Hexose-Based Sugars: Sucrose, Glucose, Fructose

The conversion of hexoses to LA is one of the most atom efficient cascade trans-

formations out there, fully preserving (and even enhancing) chemical functionality

(F:C of 1.17 for hexoses, vs 1.33 for LA, see [23]). However, the reshuffle of O

atoms in the molecule and the selective C–C breakage requires multiple steps, and a

selective catalyst. There is currently good insight into the reaction network with the

details presented in Figs. 5 and 11.

5.2.1 Reactions in Alcoholic Solvents

Realization of high alkyl lactate yields from trioses in various alcohols is thus

possible. For hexoses this implies that steps 2 and 3 of the reaction cascade in Fig. 5

require extra attention, before the known triose chemistry can ensue. The

Fig. 9 Carbon silica composite catalyst design, based on Sn-grafted Si-MCM-41 and intraporous

carbon with mild Brønsted acid sites. Adapted from [66]
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isomerization in step 2 is not difficult, but one encounters the equilibrium situation

between glucose and fructose. As a consequence, the substrate selectivity in step 3

is probably most challenging since fructose, and not glucose, should be converted

via retro-aldol. Besides, other side reactions like sugar dehydration and sugar

alkylation (when performed in alcohol) are competitive as well. Lobo has pointed

out the resemblances of the glucose-to-lactate route with the natural glycolysis

pathway in living cells [132]. The conversion of trioses into LA via pyruvic

aldehyde in turn presents a biomimetic of the enzymatic glyoxalase system, as

suggested by Sels et al. [120].

The major breakthrough in lactate synthesis from hexoses was made in 2010 by

Holm et al., who applied Sn-Beta to convert sucrose at 160�C in methanol, yielding

64% methyl lactate. Figure 10 summarizes the key catalytic results in black. As

mechanistically proposed in Fig. 6, Sn4+ is capable of coordinating both a hydroxy

and the keto group of fructose, thereby facilitating retro-aldol cleavage in the

β position (between C3 and C4) to the carbonyl. This reaction is attributed to the

known tendency of Lewis acid SnIV to coordinate �OH bonds rather than to form

Sn–O–C bonds [133, 134]. Besides being active for this particular C–C scission,

equally important, Sn-Beta Lewis acid sites do not easily dehydrate hexoses or form

stable methyl glucosides, two competitive side reactions [135].

de Clippel et al. also tested their bifunctional carbon–silica composite material

(Sn-CSM) for this reaction with slightly lower methyl lactate yield (up to 45% from

sucrose), as seen in Fig. 10 in grey. They figured out that the Brønsted acidity,

which was beneficial to accelerate the triose reactions, caused multiple side reac-

tions such as methyl glucoside formation and dehydration towards levulinate esters.

The use of composites with less Brønsted acidity was necessary to obtain a high

methyl lactate yield. The presence of low amounts of these sites was, however, still

beneficial, as parent siliceous Sn-MCM only yielded 18% [66].

Hensen and co-workers have used the Sn-MWW zeolite (see above) to convert

hexoses to methyl lactate and they achieved identical results for glucose and

fructose as with Sn-Beta, but somewhat lower yields (50%) were analyzed for

reactions with sucrose (blue bars in Fig. 10) [125].

Fig. 10 Comparison of catalytic yields of methyl lactate for the conversion of hexose-based

sugars in methanol with different heterogeneous catalysts. CSM ¼ carbon silica composite.

Conditions: 160�C, 20 h, 22.5 mgsugar mL�1, 16 mgcatalyst mL�1 (slightly different for CSM:

respectively 155�C, 30 and 21 mg mL�1). All conversions >95%. Data from [66, 107, 125]
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In Fig. 10, two trends emerge: (1) the catalysts achieve higher yields for the

disaccharide sucrose when compared to that of the monosaccharides, fructose and

glucose; furthermore, (2) no difference is found in methyl lactate yields for the

Sn-zeolites, when the reaction is carried out with glucose or fructose, except in the

case of the composite Sn-CSM, which shows remarkable higher yields with fruc-

tose when compared to glucose (32% vs 17%), respectively. The latter effect is due

to the lower tendency of grafted Sn in mesoporous silica to isomerize glucose into

fructose. Indeed, in contrast to the Sn zeolites [99], low isomerization capacity of

the Sn-CSM was demonstrated for glucose in water at 100�C [66].

The notable difference in methyl lactate yield from sucrose or hexoses is likely

attributed to the higher thermostability and hydrolytic resistance of the disaccha-

ride. Sucrose is a non-reducing sugar with both carbonyl groups protected in the

α,β-(1 ! 2) glycosidic bond [136]. Consequently, the slow release of hexoses from

sucrose in solution prevents unwanted side reactions with the more labile glucose

and fructose. Such effects have also been witnessed in the conversion of cellulose to

sorbitol and ethylene glycol, for which the highest selectivity is obtained when

cellulose hydrolysis is rate-determining [72, 137]. An elegant solution to this

phenomenon is the use of a fed-batch reactor system with glucose feedstock,

mimicking the slow release of glucose from cellulose hydrolysis and thus minimiz-

ing side reactions [138, 139]. Such endeavors remain unexplored for lactate syn-

thesis, and one could envision the use of more recalcitrant inulin polymers

(containing anhydrofructose units) or a fed-batch reactor feeding hexoses.

Aside from the superior catalysts mentioned above, Osmundsen et al. have

reported the use of hydrothermally synthesized Sn-SBA-15, Sn-MCM-41, and

Sn-MFI for sucrose to methyl lactate in methanol, but their yields ranged between

20% and 30% [122]. A similar 18% yield was reported for the parent material of the

Sn-CSM catalysts. This mesoporous stannosilicate was made via Sn grafting

procedure [66]. Murillo et al. reported a yield of 43% of methyl lactate from

glucose, with a different hydrothermal Sn-MCM-41 [140]. Apart from

tin-catalysts, Liu et al. reported on the use of basic MgO in MeOH, but only 30%

of methyl lactate was formed for glucose and other hexoses at a high 200�C [141].

To conclude, 4 years of research since the original report still demonstrate the

superior activity of the original Sn-Beta to convert sucrose directly to methyl lactate

in methanol [107]. The catalyst is recyclable at least up to six times by intermittent

calcination, and the methyl lactate yield remains 60% at full conversion after 20 h,

even when more concentrated sucrose (10 wt%) was used, corresponding to a

volumetric productivity of 3.3 glactate Lreactor
�1 h�1. Since both this heterogeneous

and the fermentative approach mainly run the process on sucrose or hexoses, a

comparison is made in Table 2 for a set of parameters. It may be clear that the

heterogeneous route is clearly a less complex process with many advantages, but

mainly the lower selectivity and volume productivity need to be improved in order

to overtake the fermentation. Moreover, racemic lactates are produced which can be

seen as a disadvantage for direct L-PLA synthesis, but interestingly also provide an

equal source of D-isomer, given a successful enantioseparation, as explained in

Sect. 8.
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Despite the unique ability of Sn-zeolites, their performance in terms of activity

and selectivity is the main issue to improve before competing with the fermentation

route. In our belief, the race to search for better heterogeneous catalysts has just

started. A profound study of the formation of the side-products is the first step towards

the design of outstanding catalysts. All identified side products seen when using

Sn-CSM and Sn-Beta in methanol are incorporated in Fig. 11, with their respective

origins indicated in specific colors: red (methylation of sugars), blue (retro-aldol

derivatives of glucose), and black (dehydration products, usually via fructose).

To start with, in methanol – which always contains some water unless extreme

solvent drying is pursued – sucrose either undergoes hydrolysis or solvolysis. The

latter is indicated in red in Fig. 11 and usually yields methyl-D-glucopyranoside and

fructose from sucrose instead of methyl-fructoside and glucose. These methylated

sugars are non-reducing and chemically more stable; they are considered unreactive

to retro-aldol chemistry, since their ether bond should be hydrolyzed prior to be of

use in the lactate synthesis.

Second, the retro-aldol reaction applied to glucose (indicated in blue) is the

major side reaction, yielding C2 and C4 sugars, which in turn undergo multiple

chemical transformations. The most common products are 4-carbon backbone

α-hydroxy acid esters: methyl-4-methoxy-2-hydroxybutanoate (MMHB), methyl

vinyl glycolate (MVG), and methyl-2-hydroxybutanoate (MHB). The formation of

these intriguing and useful esters from tetroses was recently unraveled by Dusselier

et al., and the reaction networks are discussed in more detail in Sect. 7. Their

formation bears a close resemblance to that of the lactate system, but important

differences exist. Besides the four carbon products, the diose glycolaldehyde is

converted to methyl glycolate or its di-acetal GADMA. For instance, in the

conversion of sucrose with the optimal Sn-containing CSM composite, in total

10% of the input sugar was converted according to the blue pathway [66].

Table 2 Comparison of heterogeneous catalytic routes vs classic (bacterial) fermentation

Criterion Heterogeneous [107] Fermentation [55, 63]

Media Alcohol Aqueous broth

Feedstock Glucose, sucrose Glucose, sucrose

Concentration feed Up to 10 wt% Up to 15 wt%

Catalyst Sn-Beta zeolite Bacteria (yeast)

Co-reagents None Alkali + nutrients

Major product Alkyl lactates Ca-lactate salt

Stereopurity product Racemic L

Selectivity (mol%) Up to 65% Up to 95%

Productivity Up to 3.3 g Lreactor
�1 h�1 0.3–5 g Lreactor

�1 h�1

Gypsum co-product No 1 kg per kg of LA

Work-up Easy: filtration, distillation.

alcohol reuse

Complex: acidification,

two filtrations, purification,

esterification, distillation

Catalyst reuse Yes No (in a complex broth)
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Lastly, dehydration of hexoses produces side products (indicated in black). Both

di- and tri-methoxylated acetals of HMF, as well as methyl levulinate, were

analyzed and their formation is usually enhanced by the presence of Brønsted

acidity. de Clippel et al., for instance, noticed an increase in these products from

<1% with the optimal Sn-CSM composite to about 18% with an oxidized CSM,

bearing a high density of Brønsted acid sites. Excess of these sites was less

problematic in the case of triose conversion (see Fig. 8b), due to the lower process

temperature and the less complicated cascade. For Sn-Beta, alongside 8% of MVG,

no major side product was identified. The deficiency in carbon is probably due to

some humin formation, which can proceed from glucose as well as from HMF, as

recently demonstrated [142, 143]. Their presence indicates that the retro-aldol

reaction is not fast enough, thereby allowing the free aldehyde groups of the sugars

to undergo unwanted side reactions.

5.2.2 Reactions in Water

The conversion of sucrose to LA in water was assessed with Sn-Beta zeolite, but

only low yields of LA of less than 30% were encountered [107]. Besides LA, HMF

and levulinic acid were analyzed in the product mixture. One reason of the

significant change in product spectrum was related to the auto-catalytic effect of

LA. Its acidity lowers the pH of the medium, thereby enhancing the dehydration

rate with an increase of HMF and the likes in the product spectrum as a result

[107]. Pronounced carbonaceous deposits on the catalysts confirmed its deactiva-

tion by LA, similar to the triose reaction in water.

Fig. 11 Side products in the sucrose-to-lactate (green) conversion in MeOH and their origin: blue:
retro-aldol of glucose (see Sect. 7); red: methanolysis of sucrose or acetalization of glucose; black:
dehydration of sugars to HMF, furan ethers and humins. MMHB: methyl-4-methoxy-2-

hydroxybutanoate, MVG: methyl vinyl glycolate, MHB: methyl-2-hydroxybutanoate, GADMA:

glycolaldehyde dimethyl acetal. HG ¼ hydrogenation
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Besides the above-mentioned heterogeneous catalytic approaches in alcoholic or

aqueous media, the use of soluble Lewis acidic salts in water has recently been

investigated under catalytic conditions for glucose and fructose. Heeres and

co-workers explored the use of Al3+ and Cr3+ salts at 140�C in 2010, but they have

found only about 20% of LA with AlCl3 [144]. Lanthanide triflates such as Er(OTf)3
have been reported to yield around 50% of LA from the common hexose sugars. This

reaction was, however, carried out at a high 240�C [145]. A breakthrough for this

reaction in water was made very recently by Wang et al., who discovered the

remarkable catalytic nature of Pb2+ for the reaction of hexoses (and even cellulose;

see below) to LA. In the presence of 7 mM of PbNO3, for instance, a 25.5 mM

solution of glucose or fructose was transformed, respectively, into 65% and 74% of

LA at 170�C, with unparalleled selectivity [146]. Fructose was noticed as the

intermediate when reacting glucose, and the reaction mechanism was explained in

agreement with steps 2–6 in Fig. 5. Computational results indicated that the presence

of the lead ions significantly lowered the activation barrier for the retro-aldol reaction

of fructose. This research is considered an important result, as the group of very

active (at mild temperature) retro-aldol elements now contains an additional mem-

ber, albeit a very toxic one. Besides these mild hydrothermal catalytic approaches,

near critical water has been investigated as reactive medium for LA production as

well, both from sugars and cellulose, with several homogeneous and heterogeneous

catalysts. These often alkaline approaches, are not the scope of this review, but

noteworthy studies in high temperature flow setups have been reported by Bicker

et al., using ZnSO4, [170] and Esposito et al [171]. The latter reported LA yields up to

57 % on a 0.025 M glucose solution with 0.1 M of Ba(OH)2 at 250
�C for 3 minutes.

5.3 Other Carbohydrates, Pseudo-hemicellulose,
and Glycolaldehyde

Holm et al. further exploited Sn-Beta for the conversion of hemicellulosic sugars

such as pentoses in near identical conditions as in Fig. 10. For one, they obtained a

yield of 42% of methyl lactate for xylose [147]. Retro-aldol here evidently delivers

glycolaldehyde along with a triose and, therefore, 5% of GADMA (structure in

Fig. 11) was found, alongside 7% of MVG. Furthermore, a pseudo-hemicellulosic

model mixture was assessed, composed of 1/6 of each of following sugars: xylose,

arabinose, ribose, glucose, mannose, and galactose. Their conversion with Sn-Beta

yielded 43% of methyl lactate in methanol, in line with the linear combinations of

the yields attained for each sugar individually. Interestingly, the conversion of

glycolaldehyde resulted in 16% methyl lactate, 27% MVG, 7% GADMA, and 6%

MMHB. This is an intriguing result, as (1) the formation of 4-carbon backbone

esters MMHB and MVG from the C2 sugar implies Sn-Beta catalyzes aldol

reactions and (2) the formation of lactate implies that retro-aldol reaction occurs

simultaneously under these conditions (160�C, methanol). Both observations

indicate that hexoses were formed from subsequent aldol reactions with

glycolaldehyde. A detailed reaction pathway to convert glycolaldehyde to methyl
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lactate is presented in Fig. 12. The presence of the intermediately formed hexose

sugars was supported by the presence of trace amounts of HMF. Later, the selective

conversion of glycolaldehyde to the useful 4-carbon backbone α-hydroxy esters

MVG andMMHB instead of lactates was targeted by Dusselier et al. as discussed in

Sect. 7 [148].

6 Direct Catalytic Conversion of Cellulose into Lactic Acid

Despite promising results with sugars, the direct use of cheaper cellulose is of course

more appealing. A first attempt towards converting cellulose was made by feeding

cellobiose in presence of Sn-Beta [147]. Cellobiose is a disaccharide of glucose with

a β-(1-4) glycosidic linkage similar to that of cellulose. The authors have reported

that only 13% of methyl lactate yield was obtained after 44 h of reaction at 160�C.
Furthermore, in contrast to the near complete conversion for sucrose after only 20 h,

39% of unconverted sugars were recovered for cellobiose, resulting in a lactate

selectivity of only 21%. This points to a low hydrolysis activity of the Sn Lewis acid

sites (step 1 in the cascade in Fig. 5) or a limited accessibility to the glycosidic bond.

The direct use of cellulose in catalytic conditions has been reported as well, but

yields of LA (or esters) never exceeded 30% [149]. A first heterogeneous example of

this was given by Chambon et al., using AlW (tungstated alumina) with a yield up to

28% of LA with 60% selectivity at 190�C for 24 h [150].

In 2013, remarkable progress was made when two research groups indepen-

dently published on cellulose conversion, either in the presence of lanthanide

triflates [145] or Pb2+ ions [146], showing LA yields of 89% and 68%, respectively.

Soluble lanthanide triflates are famous Lewis acid catalysts because they retain

their pure Lewis acid property in H2O, in contrast to soluble Al and Sn salts (which

provide Brønsted acidity as well or decompose). Moreover, for homogeneous

catalyst standards, they are easy to recover. Wang et al. have screened a range of

triflates for the conversion of untreated cellulose at 240�C under an inert 2 MPa N2

atmosphere [145]. Despite the severe temperature, all triflates produced LA yields

above 50%. Lanthanides with the smallest ionic radius such as erbium, ytterbium,

and lutetium provide the best results (see Fig. 13). The authors stated that the

smaller cation radius of a metal explains its stronger ability to coordinate wih the

hydroxyl groups and that this lead to the higher catalytic activity.

The hydrolysis of cellulose was ascribed in this report to be promoted by

hydroxonium ions from water auto-protolysis. Since Wang et al. worked at

Fig. 12 Sn-Beta catalyzed conversion of glycolaldehyde to methyl lactate in MeOH
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240�C, this is in agreement with other reports showing Brønsted acid catalysis in

water above 200�C [86]. Moreover, the yield and conversion dropped to only 14%

and 25%, respectively, at 200�C, confirming the need for Brønsted acidity from the

hot water and thus the lack of hydrolysis capacity of the La triflates. In a search for

industrial relevance, the authors tested higher cellulose loadings. For 0.5 g cellulose

in 30 mL water, under the conditions of Fig. 13, they achieved a LA yield of 50%. A

quick calculation reveals a corresponding volumetric productivity of 17.7 gLA
Lreactor

�1 h�1. At 0.1 g cellulose, their yield mounted to 89% of LA, but at a

lower productivity of 6.3 gLA Lreactor
�1 h�1. These volumetric productivities are

considerably high when compared to those of the fermentation and heterogeneous

approach on hexoses in Table 2. Reactions with soluble catalysts are often more

laborious though: the lanthanide catalysts were recovered via vacuum distillation,

diethyl ether dissolution, and solvent evaporation, but could be reused several

times. The ether dissolution was needed to separate the catalyst from the humins

formed. This report is very interesting because it demonstrates high yields at short

reaction times, with the need for hot water to promote cellulose hydrolysis [145].

Direct conversion of cellulose to LA was also achieved under milder conditions

in the presence of Pb(II) ions [146]. As hydrolysis was too slow at 190�C for

crystalline cellulose, ball-milling was used to enhance its reactivity. Such mechan-

ical treatment is an effective way to decrease the biopolymer’s crystallinity and to

enhance the accessibility for chemicals (and catalysts) by increasing the surface

area [8, 9, 78, 151–153]. Here, ball-milling reduced the crystallinity from 85% to

33%, as ascertained by XRD analysis. Among a series of other ions (7 mM)

assessed at this temperature, Pb was highly selective to LA, yielding 68% after

4 h for 0.5 wt% cellulose solutions in water. Second best was Al3+, in line with the

catalytic results of Heeres et al. [144], showing 35% LA yield. Untreated cellulose

required 15 h at 190�C to reach complete conversion with a LA yield of 62%. This

reaction rate is quite fast, indicating that Pb2+ salt itself, in contrast to the previous

Fig. 13 Different lanthanide triflates for the conversion of cellulose to LA. 240�C, 2 MPa N2,

30 min, 0.3 g cellulose, 0.05 g triflate, 30 mL H2O. Adapted from [145]
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lanthanides, also assists the hydrolysis step (step 1 in Scheme 5). A more concen-

trated 2.5 wt% cellulose slurry of milled cellulose was converted in 10 h in the

presence of 6 mM of Pb2+ at 190�C, yielding 55% LA, corresponding to a volu-

metric productivity of 1.5 gLA Lreactor
�1 h�1. Besides purified cellulose, several

raw biomass feedstocks were converted and LA yields were always around 40%.

Interestingly, the authors demonstrated an autocatalytic assistance of LA to fasten

the hydrolysis of cellulose, as shown in Fig. 14. The intentional addition of LA

significantly shortened the reaction time (by a factor of 3) to achieve 60% yield of

LA in the conversion of microcrystalline cellulose.

Besides these experimental achievements, the authors have discussed the reac-

tion pathway thoroughly; their reaction network is in line with the reaction scheme

in Fig. 5. Thermodynamics were calculated and DFT calculations suggested that the

coordination of PbII with three oxygen atoms of fructose increases the positive

charge of the C4-OH, facilitating its proton transfer to C2 ¼ O, and thus the retro-

aldol of fructose. Apart from this, Pb(II)-OH was postulated to be the active species

in solution. Although Pb2+ could be completely recovered from the reaction, it is a

very toxic cation. Nevertheless, this research demonstrates the potential of

chemocatalysis to convert cellulose to LA and should therefore motivate the search

for more environmentally friendly catalysts [146].

Fig. 14 Enhancement of the rate of LA formation from microcrystalline cellulose in the presence

of Pb2+ with addition of LA. 190�C, 3 MPa N2, 30 min, 0.5 g cellulose, 7 mM PbIINO3, 100 mL

H2O. Adapted from [146]
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7 Catalytic Synthesis of Other Biomass Derived α-Hydroxy

Acids

7.1 C2: Glycolic Acid

Besides LA, other α-hydroxy acids (AHA) are very intriguing molecules as well,

because of their multifunctionality and their relevance for polyesters. For instance,

the biodegradable polymer polyglycolic acid is of commercial interest. Its mono-

mer, glycolic acid (or 2-hydroxy acetic acid, GA) is, however, not derived from

renewable resources at the moment, but via the carbonylation of formaldehyde with

H2SO4 [154]. A route via the hydrolysis of molten monochloroacetic acid with

NaOH is also known [155]. It is used in dyeing and printing and it acts as a Ca2+ ion

chelator and antibacterial agent. In 2011, about 40 ktons were produced worldwide

[154]. The synthesis of polyglycolic acid from glycolic acid is analogous to PLA

from LA (Fig. 4) and thus proceeds via ring-opening polymerization of glycolide,

its cyclic dimer [59].

As the current synthesis of GA is non-renewable, the development of biomass

derived and more efficient routes is an interesting topic. Two catalytic

carbohydrate-based approaches deserve some attention. In light of the valorization

of cellulose to LA discussed above, the approach by Zhang et al. is of interest as

they have reported the conversion of α-cellulose into GA in one pot over a

phosphomolybdic acid catalyst (H3PMo12O40). This reaction proceeded in water

at 180�C under light oxygen pressure (0.6 MPa) and is shown in Fig. 15 [156]. At

best, 0.2 g of cellulose was converted in 20 mL of water containing 15 mM of

heteropoly acid over the course of 1 h, yielding 49% of glycolic acid and 10% of

formic acid [156]. This is impressive, considering the conditions and the fact that

the cascade seen in Fig. 15 is as complicated as that in the formation of LA; it

involves not only hydrolysis of cellulose and multiple retro-aldols of many sugars,

but also the oxidation of glycolaldehyde and formaldehyde. The F:C index of

glycolic acid is 2, and this route from carbohydrates has a theoretical atom economy

of 100%, indicating a realistic alternative to the petrochemical route for GA [23].

Beside the direct approach from cellulose presented above, Dapsens

et al. recently proposed a route to convert glyoxal to GA under mild conditions

with heterogeneous catalysis in both batch and flow conditions [154]. Glyoxal is

currently obtained through oxidation of acetaldehyde or ethylene glycol [157], but

it is also present in pyrolysis bio-oil, albeit in low quantities ranging from 1 to

3 wt%. Some catalysts known for their LA synthesis from trioses were tested, such

as extra-framework aluminum containing USY zeolites and Sn-MFI. The latter, for

instance, produced about 91% yield of GA at 90�C after 6 h, using 0.2 g of glyoxal

in 3.8 mL H2O. The reaction mechanism was studied via deuterium labeling and

was found to proceed exclusively via a 1,2-hydride shift mechanism of the mono-

hydrate form of glyoxal as seen in Fig. 16. This is in complete analogy with the
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conversion of trioses to lactates [110]. The conversion of GA into alkyl glycolates

was demonstrated in alcoholic media as well [154].

7.2 C4: 4-Alkoxy-2-Hydroxybutanoates and Vinyl
Glycolic Acid

Inspired by the easy conversion of trioses to lactates, and determined to unravel the

faith of the retro-aldol products of glucose, viz. erythrose and glycolaldehyde (the

blue pathway in Fig. 11), Dusselier et al. set out to convert tetrose sugars with a

focus on 4-carbon AHA esters in order to present a mechanistic proposal

[114]. They have discovered the unique catalytic property of Sn halides to form

methyl vinylglycolate (MVG) and methyl-4-methoxy-2-hydroxybutanoate

(MMHB) from tetroses. For instance, in 1 h at 80�C, with 10 mol% of SnCl4.5H2O,

83% of MMHB and 2% of MVG were analyzed in a reaction using 0.63 M

erythrulose in methanol. In situ NMR spectroscopy, deuterium labeling, and control

experiments with intermediates revealed the individual pathways to both 4-carbon

AHA esters. The cascade, shown in Fig. 17, starts with two consecutive retro-

Michael dehydrations, of which the mechanistic details are visualized in the first

chapter of this volume [23]. They lead to the highly reactive proposed intermediate

Fig. 16 Path for the conversion of glyoxal into glycolic acid with Lewis acidic zeolites

Fig. 15 Proposed pathway for converting cellulose to glycolic acid. Adapted from [156]
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vinyl glyoxal. Its reactive aldehyde group quickly transforms into a hemi-acetal, as

seen in Fig. 17, identical to the case of pyruvic aldehyde in lactate synthesis. The

reactivity of this molecule is decisive for the reaction selectivity: either a

1,4-addition of MeOH or a Lewis acid catalyzed 1,2-hydride shift ensues. The

former leads to the in situ observed 4-methoxy-ethylglyoxal-hemi-acetal (MEGHA

in Fig. 17) intermediate, which then undergoes a 1,2-hydride shift into MMHB.

However, occurrence of the 1,2-hydride shift of the hemi-acetal of vinyl glyoxal

prohibits the 1,4-addition and MVG is formed instead. The kinetic competition

between the hydride shift and the 1,4-addition is thus key to the product outcome. In

methanol, the addition is fast and thus MMHB is found as the major product. In

isopropanol, the 1,4-addition is more hindered, whereas the intramolecular hydride

shift is not affected by the alkyl chain of the hemi-acetal and thus isopropyl vinyl

glycolate was found as the major product [114]. Hydrolysis of these ester mixtures

renders access to different 4-alkoxy-2-hydroxy-butanoic acids and/or vinyl glycolic

acid (VGA).

The fate of glycolaldehyde under similar conditions was the subject of another

study [148]. This 2-carbon sugar feedstock is of more relevance due to its pro-

nounced presence, up to 10 wt%, in cellulose pyrolysis oils [158–160]. The authors

proved that, under the same catalytic conditions, tin salts catalyzed the aldol

reaction of two glycolaldehyde units into tetrose sugars, as seen in grey in

Fig. 17, as well as the ensuing reactions. The rate-determining step of the entire

glycolaldehyde to MMHB and MVG cascade was, however, not found in the aldol

addition. Due to the alcoholic solvent, glycolaldehyde dimethylacetal (GADMA,

seen in Fig. 11) was formed immediately after dissolving the 2-carbon sugar. In

order to allow aldol, hydrolysis of GADMA to unprotect the active carbonyl group

is necessary and rate-determining. By adding small amounts of water to methanol

(1:7), the reaction rate was enhanced almost fivefold. Finally, Dusselier et al. also

Fig. 17 Path for converting tetroses and glycolaldehyde (glucose retro-aldol products) into

MMHB and MVG with SnClx in MeOH. Glycolaldehyde is found in pyrolysis bio-oils
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presented the first proof of the usefulness of these monomers by incorporating vinyl

glycolic acid (VGA, via hydrolysis of MVG) together with LA into a co-polymer by

polycondensation, as seen in Fig. 18. The resulting polymer had an enhanced

thermal stability, a function of the amount of VGA incorporated (denoted as x).
The vinyl side group was preserved during the polymerization. This PLA polymer

with vinyl side groups has tremendous potential, as it makes it easy for one to

modify or create more complex PLA-based polyesters. The vinyl group proved, for

instance, accessible to thiol-ene functionalization chemistry, which rendered a PLA

with enhanced hydrophilic properties with respect to identically made pure L-PLA

[148]. Moreover, VGA, with its F:C value of 1.25 and a theoretical atom economy

of 85% (via glucose, considering retro-aldol and C2-aldol coupling [23]) is an

excellent and viable biomass target chemical, which is difficult to prepare from

fossil resources.

7.3 C6: Furyl Glycolic Acid

The group of Dumesic recently reported on a novel and inventive route for the

renewable production of furyl glycolic acid (FA) [161]. This is a pseudo-aromatic

AHA, likely suitable for co-polymerization with LA. An inspiring combination of

both enzymatic and heterogeneous catalysis proved key in the new route (Fig. 19).

In short, glucose is converted into cortalcerone via glucosone using recombinant

Escherichia coli strains expressing pyranose-2-oxidase and aldos-2-ulose

dehydratase in whole cell catalysis. Cortalcerone is then dehydrated towards furyl

glyoxal hydrate over a Brønsted acidic Al-Beta zeolite. The final step in the hybrid

cascade is the 1,2-hydride shift turning the hydrate into FA with the Lewis acidic

Sn-Beta zeolite. The last two steps of this cascade were also attempted in one pot

using a methanol/water mixture in presence of an Al-containing Sn-Beta zeolite.

This material, possessing both Brønsted and Lewis acid sites, achieved 42%

selectivity to FA at 53% cortalcerone conversion at 85�C in 0.5 h [161].

This example nicely illustrates the integration of bio- and chemocatalysis in

creating novel added-value chemicals such as FA from biomass [162, 163]. FA has

a very high functionality index of 1.33 and the reaction runs at moderate atom

economy of 67% (see Chap. 1 of this volume [23]). Moreover, petrochemical-based

Fig. 18 Successful use of vinyl glycolic acid (VGA) as a monomer for PLA based co-polymers

(via hydrolysis of MVG). The vinyl containing polymer was active for thiol-ene
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routes to this compound seem highly unlikely. The co-polymerization of FA with

LA or GA should be looked into, as interesting polymer properties are bound to

surface due to the unique position of the furan ring as side group in the PLA based

co-polyester. Next to the aforementioned vinyl glycolic acid – with proven polymer

potential – this monomer could present new opportunities for functional PLA or

bio-derived polyesters.

8 Note on the Stereochemistry of Chemically Produced

Lactates

The above-mentioned chemical catalytic routes lead to racemic AHA mixtures. For

the direct use of LA (or its esters) as a solvent or platform molecule for achiral

molecules like acrylic acid and pyruvic acid, stereochemistry does not matter. The

properties of the polyester PLA, the major application of LA, however, suffer

tremendously if D and L isomers are built in irregularly [28]. This is exemplified

by atactic PLA, made from racemic LA, which is an amorphous polymer with low

performance and limited application. However, when L- and D-lactic acid are

processed separately into their respective isotactic L- and D-PLA, as discovered

by Tsuji et al., a stereocomplex is formed upon blending these polymers. This

polymer exhibits enhanced mechanical and thermal properties [28, 164]. A pro-

ductive route to D-lactic acid is, however, missing today. If the chemocatalytic

routes to LA are to become viable, enantiomer resolution of the racemate needs to

be performed. Given separation success, a cheap source of D-lactic acid will be

unlocked immediately, providing an additional advantage over the fermentation

route (cfr. Table 2).

The separation has proved to be difficult, although methods based on supported

liquid membranes with chiral selectors [165] and selective enzymatic oxidation to

pyruvic acid have been reported [166]. Either the enantiomer selectivity is too low

or the loss of one of the lactate isomers is limiting. To overcome this, our group

Fig. 19 Pathway for the conversion of glucose to furyl glycolic acid (FA), via enzymatic

cortalcerone synthesis, Brønsted acid, and Lewis acid catalysis. Based on [161]
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recently reported a very productive approach for enantioseparation, based on the

hydrolysis of racemic lactates with Candida rugosa lipase, as seen in Fig. 20. Van

Wouwe et al. reported volumetric productivities of about 18 g L�1 h�1 for ethyl

lactate hydrolysis at 45�C after only 2 h, with the molar enantiomeric purity of the

product at 95% (L-lactic acid divided by total LA). The separation of the D-ester

from L-lactic acid in water is straightforward. The hydrolysis of a series of alkyl

lactates and other AHA esters (based on GA or 4-carbon AHAs) was

demonstrated [167].

9 Summary, Conclusions, Outlook

α-Hydroxy acids (AHA) are very useful molecules with a wide applicability,

especially in the production of renewable and degradable polyesters, but also as a

platform chemical in the biorefinery approach and in the portfolio of green solvents

(e.g., ethyl lactate) and plasticizers (e.g., butyl glycolate). The F:C analysis in

Sect. 2 showed that these molecules retain the high functionality present in the

carbohydrate feedstock, and their synthesis proceeds according to a very high atom

economy (100 % for lactic acid). The great potential of AHAs is exemplified by

lactic acid, the most studied molecule of its kind. The rising demand for lactic acid

is driven by the need for the above-mentioned green applications and, in particular,

the ever-growing popularity of the commercial bioplastic PLA. This success,

however, stresses the current fermentative production route for its synthesis,

which requires long reaction times and costly purification steps, besides producing

gypsum waste. Novel routes for the chemical synthesis of lactic acid or alkyl

lactates starting from trioses, hexose sugars, and even cellulose are therefore

progressively under development, and this progress is usually based on the use,

design, and fine-tuning of Lewis and Brønsted acidic heterogeneous and homoge-

neous catalytic sites. The ultimate goal, the conversion of cellulose to lactic acid,

requires many individual reaction steps in a one-pot cascade fashion and these steps

face different catalytic needs. In this chapter we have reviewed and highlighted

some of the most promising chemocatalytic approaches and pointed out the greatest

bottleneck, namely combining a selective Lewis acid catalyzed retro-aldol of

hexose sugars with the Brønsted acidic hydrolysis of cellulose. Care has to be

Fig. 20 Integration of catalytic production of racemic lactates (Sects. 4–6) with an

enantioselective enzymatic hydrolysis as proposed by Van Wouwe et al. [167]
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taken with the latter acidic sites, as they usually also promote the dehydration of

hexoses to HMF and humin formation. Besides LA, other AHA of interest include

glycolic acid, vinyl glycolic acid, methoxy-2-hydroxy-butanoic acid, and furyl

glycolic acid. These mostly novel molecules with high functionality are only just

beginning to receive attention. Their bio-based production with inventive catalytic

approaches, perhaps incorporating enzymatic catalysis, for instance, for enantiose-

paration, harnesses great potential. Besides, their synthesis from carbohydrates

usually entails a high atom economy. The co-polymerization of vinyl glycolic

acid with lactic acid showed that the search for new AHA monomers is worthwhile,

as they are easily incorporated in PLA-based polymers, hereby leading to novel

functional polyesters. The great advantage of having an additional functional group

in the side chain of a PLA-type polyester was immediately proven, by its easy post-

synthetic functionalization, which allowed subtle tuning of the hydrophilic proper-

ties of the polyester. A multitude of variations are yet about to be discovered.
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80. Rinaldi R, Engel P, Büchs J, Spiess AC, Schüth F (2010) An integrated catalytic approach to

fermentable sugars from cellulose. ChemSusChem 3(10):1151–1153
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Selective Hydrogenolysis of C–O Bonds Using

the Interaction of the Catalyst Surface

and OH Groups

Keiichi Tomishige, Yoshinao Nakagawa, and Masazumi Tamura

Abstract Hydrogenolysis of C–O bonds is becoming more and more important for

the production of biomass-derived chemicals. Since substrates originated from

biomass usually have high oxygen content and various kinds of C–O bonds,

selective hydrogenolysis is required. Rhenium or molybdenum oxide modified

rhodium and iridium metal catalysts (Rh-ReOx, Rh-MoOx, and Ir-ReOx) have

been reported to be effective for selective hydrogenolysis. This review introduces

the catalytic performance and reaction kinetics of Rh-ReOx, Rh-MoOx, and Ir-ReOx

in the hydrogenolysis of various substrates, where selectivity is especially charac-

teristic. Based the model structure of the catalysts and the reaction mechanism, the

role of the oxide components is to make the interaction between the OH groups in

the substrates and the catalyst surface, and the role of metal components is to

dissociate hydrogen molecule heterolytically to give hydride and proton.

Keywords Alkane � Biomass � Conformation � Cyclic ether � Diol � Hydride �
Hydrogenolysis � Ir � Mo � Polyol � Re � Rh � SN2
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1 Introduction

1.1 Production of Biomass-Derived Chemicals

A lot of chemicals have been produced from petroleum-based raw materials such as

ethylene, propylene, benzene, p-xylene, and so on. The chemical composition of the

feedstock from fossil and renewable resources is plotted in Fig. 1. In addition, the

composition of some diols is also plotted as an example of the useful oxygen-

containing chemicals “oxygenates.” Since petroleum-based raw materials have

low oxygen content, oxygenates are produced by oxidation with air and hydration.

On the other hand, biomass-derived cellulose, hemi-cellulose, glucose, and glycerol

have very high oxygen content as shown in Fig. 1. Therefore, in the case of diols

being produced from biomass-related raw materials, it is essential to decrease the

oxygen content using reductive reactions [1]. The composition of the building blocks

for biomass refineries proposed by the USDepartment of Energy [2] is also plotted in

Fig. 1. The typical building blocks for the biomass refinery are 5-hydroxymethyl-

2-furaldehyde (HMF) and furfural, which can be derived from cellulose and hemi-

cellulose by dehydration. The dehydration reaction decreases both H/C and O/C at

the same time in the substrate. When HMF and furfural are converted to

1,6-hexanediol and 1,5-pentanediol, hydrogenation and hydrogenolysis are needed.

The biomass with high oxygen content can be completely converted to useful

chemicals by dehydration and subsequent hydrogenation/hydrogenolysis via inter-

mediates. Another example is the conversion of glycerol, which is derived from the

biodiesel production by the transesterification of vegetable oils with methanol [3].

A value-added target of glycerol conversion is propanediols by the hydrogenolysis

of C–O bonds. Hydrogenolysis is one of the important reactions for the conversion of

carbohydrates and sugar alcohols to platform chemicals [4].

This review focuses on the catalytic hydrogenolysis of C–O bonds in biomass-

derived substrates, in particular sugar alcohols and cyclic ethers including glycerol,

erythritol, xylitol, sorbitol, tetrahydrofurfuryl alcohol, and so on. The catalytic

hydrogenolysis of C–O bonds has been studied, recently, new catalyst systems

consisting of noble metals (Rh and Ir) and metal oxides (Re, Mo, and W) have been

reported to be effective in hydrogenolysis utilizing the interaction between the

catalyst surface and the substrate OH groups, and it is also suggested that the C–O
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hydrogenolysis reaction mechanism over the new catalyst systems is different from

the conventional mechanism.

1.2 Conventional Hydrogenolysis of Glycerol
and Tetrahydrofurfuryl Alcohol (THFA)

Hydrogenolysis of glycerol to 1,2- and 1,3-propanediols (PrD) seems to be simple

judging from the reaction formula as below (1, 2) because the hydrogenolysis of

C–O bonds apparently means the dissociation of C–O bonds and insertion of

hydrogen atoms.

HO OH

OH
+ H2

OH

OH
+ H2O

Glycerol 1,2-Propanediol
ð1Þ

HO OH

OH
+ H2 + H2O

Glycerol 1,3-Propanediol

HO OH ð2Þ

However, it is known that the glycerol hydrogenolysis actually consists of a few

reaction steps such as dehydration, dehydrogenation, hydrogenation, and so

on. Two reaction routes have been proposed [5]. One is the dehydration + hydro-

genation route and the other is the dehydrogenation + dehydration + hydrogena-

tion route, as shown in Fig. 2. Regarding the dehydration + hydrogenation route,

glycerol dehydration gives acetol and 3-hydroxypropanal, and the dehydration

proceeds preferentially under more acidic conditions. The consecutive
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hydrogenation of acetol and 3-hydroxypropanal gives 1,2- and 1,3-PrDs, respec-

tively. Here, the formation of acetol is more thermodynamically favorable than the

formation of 3-hydroxypropanal, and therefore the main product tends to be

1,2-PrD. It has been reported that the combination of Ru/C (a heterogeneous

hydrogenation catalyst) with an ion exchange resin (a solid catalyst) promoted

the formation of 1,2-PrD strongly in the glycerol reaction [6–9]. The dehydration +

hydrogenation route can be applied to other alcohols, including 1,2-PrD. Therefore

over-hydrogenolysis to propanols and even propane can proceed over the catalysts

that can work by the dehydration + hydrogenation route. Homogeneous Ru and Ir

complexes combined with external acid are typical catalysts for production of

propanols or propane from glycerol [10, 11] and 1,2-PrD [12–14].

In contrast, under more basic conditions over heterogeneous metal catalysts, the

dehydrogenation + dehydration + hydrogenation route is preferred to the dehydra-

tion + hydrogenation route. Glycerol dehydrogenation can give two products:

glyceraldehyde and dihydroxyacetone. Dehydration of glyceraldehyde can proceed

because the acidity of C–H neighboring C¼O is enhanced. On the other hand,

dihydroxyacetone is difficult to dehydrate. Therefore the reaction route via glycer-

aldehyde is possible and 1,2-propanediol is given by the consecutive hydrogena-

tion. It should be noted that retro-aldol reaction of glyceraldehyde can give the C–C

cracking products as unfavorable by-products. An important point is that both the

a

HO OH
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Fig. 2 Reaction mechanism of the glycerol hydrogenolysis [5]. (a) Dehydration + hydrogenation.

(b) Dehydrogenation + dehydration + hydrogenation. Reprinted from RSC [5]
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dehydration + hydrogenation and the dehydrogenation + dehydration + hydroge-

nation routes give 1,2-propanediol as a main product. In addition, glycerol is one of

the most important building blocks and various other conversion routes of glycerol

to useful chemicals have also been attempted over heterogeneous metal catalysts

[5, 15–17].

It should be noted that some homogeneous complex catalysts without acids

enable the double-dissociation of C–O bonds in polyols such as 1,2-hexanediol to

n-hexane with Ru complex/H2 [18, 19] and glycerol to allyl alcohol over CH3ReO3/

alcohol [20]. Different mechanisms from those shown in Fig. 2 have been proposed

for these systems, which are discussed in another chapter of this volume by

Boucher-Jacobs and Nicholas.

THFA can be synthesized by the total hydrogenation of furfural [21, 22], which

has been produced from hemicellulose, and, therefore, THFA is regarded as a

biomass-derived intermediate [23]. It has been reported that THFA hydrogenolysis

was not selective and both 1,2-pentanediol (PeD) and 1,5-PeD were formed

(3) [24]:

+ H2

- H2O

Tetrahydrofurfuryl
alcohol (THFA)

1,2-Pentanediol
(1,2-PeD)

1,5-Pentanediol
(1,5-PeD)

OH

OH
+

O
OH

HO OH ð3Þ

Therefore, in order to obtain 1,5-PeD selectively, the multi-step method has been

reported (4) [25]. This system is composed of three separated steps including

dehydration of THFA to dihydropyran, hydration of dihydropyran to

δ-hydroxyvaleraldehyde, and hydrogenation of δ-hydroxyvaleraldehyde to

1,5-PeD. The system requires the isolation and purification of the intermediates

and the overall yield was 70%. Hydrogenolysis of THFA to 1,5-PeD also seems to

be simple judging from the reaction formula (3), just like the case of the glycerol

hydrogenolysis; however, the selective synthesis of 1,5-PeD from THFA had not

been realized.

O
OH

+ H2

- H2O
O

HO O

+ H2O

HO OH

ð4Þ

As mentioned above, conventional hydrogenolysis reactions of glycerol and

THFA typically proceed by multi-steps, and this is why it is not easy to apply to

substrates with more complex structure such as carbohydrates. Carbohydrates,

including cellulose, are very important feedstocks, and reductive conversions of

carbohydrates have been heavily investigated in spite of difficulties [4, 26–28]. Typ-

ical products are sugar alcohols such as sorbitol, glycerol, and ethylene glycol.

1,2-PrD, which can be produced from glycerol, is also frequently observed as a
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product. Production of sugar alcohols from carbohydrates does not involve C–O

hydrogenolysis (hydrogenation and C–C hydrogenolysis, as well as hydration in the

case of polysaccharides, are involved instead), and therefore we excluded this

reaction from the scope of this review. On the other hand, direct C–O

hydrogenolysis, where the hydrogenolysis reaction proceeds as expressed in the

reaction equation, would be applied to a wide range of substrates, including those

with complex structure. This review introduces the development of catalysts for this

direct hydrogenolysis of C–O bonds, and explains the catalyst structure and pro-

posed reaction mechanism.

2 Hydrogenolysis of Glycerol and Tetrahydrofurfuryl

Alcohol (THFA) Using Rh-MOx Catalysts

It has been reported that supported Ru catalysts were effective for the glycerol

hydrogenolysis to 1,2-PrD. However, it is not easy to suppress the C–C cracking

reaction (degradation reaction) by the retro-aldol reaction to form ethylene glycol

and C1 products [7]. On the other hand, it has been reported that Rh/SiO2 exhibited

higher activity and higher selectivity to hydrogenolysis products such as

propanediols and propanols than Ru/C catalysts at low temperature (393 K) by

the suppression of the degradation reaction [29]. Based on these results, the

modification of Rh/SiO2 catalysts was attempted. Accidentally, at that time, our

group studied the catalyst systems with strong metal-support interaction and strong

metal oxide interaction, for example, Rh-VOx and Rh-MoOx [30–32], and these

catalysts were first applied to the hydrogenolysis reactions. It is found that the

addition of Re, Mo, and W to Rh/SiO2 enhanced the catalytic activity of the

glycerol hydrogenolysis (Fig. 3) [33–36]. It has also been reported that the combi-

nation of Re with Pd gave high hydrogenation activity of higher saturated carbox-

ylic acids to the corresponding alcohols [37].

The modification with Re gave the highest conversion and yield of

1,3-propanediol (1,3-PrD). The optimized Rh-ReOx/SiO2 (Re/Rh ¼ 0.5) catalyst

maintained high selectivity to propanediols and suppressed C–C bond breaking

even under low H2 pressure and high reaction temperature, where Rh/SiO2 is

relatively active in C–C bond breaking (Fig. 4). In the case of Rh-ReOx/SiO2

(Re/Rh ¼ 0.5) catalyst, the highest yield of 1,3-PrD was 11% (79.0% conversion,

13.8% selectivity to 1,3-PrD), not so high. In order to enhance the yield of 1,3-PrD,

the initial selectivity to 1,3-PrD should be increased and the consecutive

hydrogenolysis of 1,3-PrD to 1-propanol should be suppressed more.

An interesting point is that the catalysts effective in glycerol hydrogenolysis

were applied to the hydrogenolysis of THFA to 1,5-PeD. Silica- or carbon-

supported rhodium catalysts modified with Re, Mo, or W show high activity and

selectivity [38–44], while commercial hydrogenation catalysts such as Ru/C, cop-

per chromite, and Raney Ni show much lower activity and selectivity (Table 1). In
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the hydrogenolysis of THFA, Rh-ReOx/SiO2 (Re/Rh ¼ 0.5) gave 86% yield of

1,5-PeD (Table 1, entry 11), and this yield is clearly higher than that of the reported

multi-step method. In terms of the yield of 1,5-PeD, Rh-ReOx/C (Re/Rh ¼ 0.5)

gave 94% yield (Table 1, entry 13). High initial selectivity to 1,5-PeD at low THFA

conversion (>95%) and low activity of consecutive hydrogenolysis of 1,5-PeD to

1-PeOH enabled a high yield of the target product compared to the case of glycerol

hydrogenolysis.
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Rh-MOx/SiO2 (M ¼ Re, Mo, W) showed much higher performance than mono-

metallic Rh/SiO2 and MOx/SiO2 in both the glycerol and THFA hydrogenolysis.

The additive effect of the MOx on the activity was remarkable. Another interesting

point is the additive effect on selectivity. In the THFA hydrogenolysis on Rh/SiO2,

the main product is 1,2-PeD. In contrast, in the case of Rh-MOx/SiO2, 1,5-PeD was

selectively formed. These results suggest that the modification changes the product

selectivity. The reaction order with respect to the THFA concentration over

Rh-ReOx/SiO2 and Rh/SiO2 was estimated to be zero and 0.4, respectively

[39]. In particular, the reaction order indicated that Rh-ReOx/SiO2 adsorbs THFA

more strongly than does Rh/SiO2, and this suggests that ReOx addition is respon-

sible for the strong adsorption of THFA on Rh-ReOx/SiO2 [39]. In addition, the

reaction orders with respect to H2 on Rh/SiO2 and Rh-ReOx/SiO2 were determined

to be 0.5 and 1, respectively, and it is suggested that the modification can also

change the mechanism of H2 activation, as discussed in detail later. The indirect

process of the conversion of THFA to 1,5-PeD via dihydropyran and

δ-hydroxyvaleraldehyde is shown in (4). The reaction of dihydropyran was tested

on Rh-ReOx/SiO2 (Re/Rh ¼ 0.5) in order to evaluate the contribution of this

reaction route [39]. The result shows that the formation of 1,5-PeD dehydration

accompanies the tetrahydropyran formation (12% selectivity). However, the for-

mation of tetrahydropyran is actually below the detection limit in the THFA

hydrogenolysis over Rh-ReOx/SiO2 (Re/Rh ¼ 0.5). Therefore, the reaction route

over Rh-ReOx/SiO2 (Re/Rh ¼ 0.5) is different from the indirect route via

dihydropyran.

According to the previous report, the reaction time dependence of the THFA

conversion over Rh-ReOx/SiO2 (Re/Rh ¼ 0.5) is estimated to be proportional to

CTHFA/(CTHFA + 2C1,5-PeD) [39]. This equation means that the reaction rate at high

THFA conversion is suppressed by the presence of 1,5-PeD product and the

suppressing factor is second, which is interpreted by two primary OH groups in

1,5-PeD. Strong interaction between the primary OH group and the catalyst surface

can be connected to zero reaction order with respect to THFA at low conversion and

the suppressing factor due to 1,5-PeD at high conversion.

3 Structure of Rh-ReOx/SiO2 and Rh-MoOx/SiO2 Catalysts

The dependence of the activity on the additive amount of Re and Mo to Rh/SiO2 is

interesting [42]. Figure 5 shows the effect of the additive amount of Re and Mo to

Rh/SiO2 in the THFA hydrogenolysis, indicating that the optimum amounts of Re

and Mo were Re/Rh ¼ 0.5 and Mo/Rh ¼ 0.13, respectively.

According to the catalyst characterization by TEM and XRD, both Rh-ReOx/

SiO2 and Rh-MoOx/SiO2 with various additive amounts had similar Rh particle

sizes (Fig. 6a) [42]. On the other hand, according to the result of the measurement of

CO adsorption amounts by a volumetric method, the amount of CO adsorption

decreased steadily with increase in the additive amounts of Re and Mo. It should be

noted that the added Re and Mo exist in a low valence state like +2 to +4 judging

Selective Hydrogenolysis of C–O Bonds Using the Interaction of the Catalyst. . . 135



from the results of temperature-programmed reduction with H2. The Re and Mo

species in the oxidized state cannot adsorb CO at room temperature. Therefore it is

interpreted that the small amounts of CO adsorption on Rh-ReOx/SiO2 and

Rh-MoOx/SiO2 for the size of Rh metal particle can be due to the partial coverage

of the Rh metal surface with ReOx and MoOx species. In addition, the amounts of

CO adsorption on Rh-ReOx/SiO2 and Rh-MoOx/SiO2 were almost the same, indi-

cating that ReOx and MoOx species cover Rh metal surface in a similar way and one

Re or Mo atom covers one CO adsorption site on the Rh surface, particularly in the

range of M/Rh ≦ 0.13 (Fig. 6b) [42].

An important point is that the optimum amounts of added Re and Mo were

different in terms of the catalytic activity, although the CO adsorption amount on
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the same amount of added Re and Mo was almost the same. This tendency suggests

that the structure of ReOx and MoOx on Rh metal surface is different. Extended

X-ray absorption fine structure (EXAFS) is a useful tool for the determination of

local structure around the absorbing atoms. Based on Re L3- and Mo K-edge
EXAFS analysis, the proposed model structure of Rh-MOx/SiO2 (M/Rh ¼ 0.13,

M ¼ Re and Mo) is shown in Fig. 7 [42]. In the case of Rh-MoOx/SiO2 (Mo/Rh

¼ 0.13), all the surface Rh atoms are modified with isolated MoOx, and, as a result,

the optimum Mo/Rh is 0.13. In contrast, the surface Rh atoms without the modifi-

cation with ReOx clusters are present on Rh-ReOx/SiO2 (Re/Rh ¼ 0.13). Therefore,

more added Re is needed, and it is thought that all the surface atoms are modified

ReOx when the optimum Re/Rh (Re/Rh ¼ 0.5).

4 Glycerol Hydrogenolysis to 1,3-Propanediol Over

Ir-ReOx/SiO2

In the THFA hydrogenolysis, both Rh-ReOx/SiO2 and Rh-MoOx/SiO2 were effec-

tive; however, it is clear that Rh-ReOx/SiO2 was more effective than Rh-MoOx/

SiO2 in terms of the glycerol hydrogenolysis to 1,3-PrD [33]. Therefore we tested

various metals-ReOx catalysts supported on SiO2 in the glycerol hydrogenolysis

(Fig. 8) [46].

The Rh-ReOx catalyst gave higher activity than other catalysts, although its

selectivity to 1,3-PrD was far from the satisfactory. It is found that Ir-ReOx catalyst

showed much higher selectivity to 1,3-PrD and sufficient activity [46–50]. Another

interesting point regarding the high performance of Ir-ReOx/SiO2 is that monome-

tallic Ir/SiO2 and ReOx/SiO2 had almost no activity in the glycerol hydrogenolysis.

Rh with adjoining 
Re2+ or Mo4+

Top view

Re/Rh = 0.13 Mo/Rh = 0.13

Re2+

Mo4+

Rh without adjoining Re2+

Rh metal surface 
(1 1 1)

CNMo-Rh or Mo = 3CNRe-Rh = 3.8
CNRe-Re = 2

Fig. 7 Model structure of Rh-MOx/SiO2 (M/Rh ¼ 0.13, M ¼ Mo and Re) [42]. Reprinted with

permission from Elsevier [42]
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It is not easy to find excellent bimetallic catalysts consisting of two components

with almost no activity. This point is different from the case of Rh-ReOx where Rh

is a good component for the hydrogenolysis reaction. As a result, it is concluded

that the synergy between Ir and ReOx generates the catalysis of the glycerol

hydrogenolysis to 1,3-PrD.

Figure 9 shows the effect of the Re amount over Ir-ReOx/SiO2 in glycerol

hydrogenolysis. Glycerol conversion increased steadily with increasing Re amount

until the amount of Re was comparable to that of Ir [46]. Even small additions of

ReOx to Ir/SiO2 led to high selectivity to 1,3-PrD. No activity of unmodified Ir is

associated with high selectivity. If the unmodified part has some activity, the

selectivity can be decreased. High selectivity is related to the much higher activity

of Ir-ReOx than Ir and ReOx. It is characteristic of the higher molar ratio of MOx to

metal on Ir-ReOx/SiO2 than that on Rh-MoOx and Rh-ReOx. Characterization

results indicate that Ir metal particles and low-valence Re species are formed on
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Ir-ReOx/SiO2 [46, 49]. Table 2 lists the dependence of Ir metal dispersion from

XRD and CO adsorption on the additive amount of ReOx. The Ir metal particle size

determined from XRD analysis on Ir-ReOx/SiO2 decreased gradually with increas-

ing added Re. This tendency is different from that on Rh-ReOx/SiO2 and Rh-MoOx/

SiO2. It is thought that this difference could be due to the formation mechanism

during the reduction pretreatment. From the results of quick-scanning XAFS of

Rh-ReOx/SiO2 during the reduction treatment, it is found that the reduction of Re

species followed the reduction of Rh species, although a single peak was observed

in the TPR profile [43]. The presence of reduced Rh species promoted the reduction

of Re species, and this phenomenon is manifested by the hydrogen spillover effect

[51–54]. This behavior can explain the similar Rh metal particle size of Rh-ReOx/

SiO2. In contrast, from the results of quick-scanning XAFS of Ir-ReOx/SiO2 during

the reduction treatment, it is found that the Ir and Re species were reduced

simultaneously (Ir: +4 to 0, Re: +7 to +2), and the particle size of Ir metal can be

influenced by the suppression of the aggregation by the reduced Re species [46, 49].

Another important point is that the calculated dispersion from XRD was much

larger than that from CO adsorption on Ir-ReOx/SiO2. This suggests that Ir metal

particles can be partially covered with ReOx species. On the other hand, according

to the Re L3-edge EXAFS analysis of Ir-ReOx/SiO2 (Re/Ir ¼ 1), the Re–O and Re–

metal (Ir or Re) bonds were assigned, and the coordination numbers were deter-

mined to be 1.6 and 6.5, respectively [49]. However, the particle size of Ir metal is

about 2 nm, the ratio of surface Ir atoms to the total is about 50%, and the ratio

of the CO-accessible surface Ir atoms to the total is 16%. Based on the molar ratio

of the added Re to Ir (Re/Ir ¼ 1), this can be explained by the model structure of

Ir-ReOx with Ir metal particles covered with three-dimensional clusters of

low-valence Re species. Figure 10 shows the model structure of Ir-ReOx together

with Rh-ReOx and Rh-MoOx. Here, the MoOx species on the Rh metal surface is

isolated monomer, the ReOx species on the Rh metal surface is a two-dimensional

cluster, and the ReOx species on Ir metal surface is a three-dimensional cluster.

The structure of ReOx species on Pt metal particles has also been reported

[55, 56]. Later, the relation between the structure of oxides on metal surfaces and

the selectivity in the hydrogenolysis reactions is discussed.

Table 2 Comparison of

metal particle size and

dispersion on Ir-ReOx/SiO2

[46]

Re/Ir

Ir particle size Ir metal dispersion (%)

(XRD) (nm) XRD CO adsorption

3 1.9 58 19

2 1.9 58 15

1 2.1 52 16

0.5 2.7 41 16

0.25 3.0 37 20

0.13 3.4 32 �
0.063 3.4 32 �
0 3.6 31 23

The catalyst was reduced at 473 K (Ir-ReOx/SiO2) or 573 K

(Ir/SiO2) for 1 h. Reprinted with permission from Elsevier [46]
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5 Substrate Scope of Ir-ReOx/SiO2 and the Reaction

Kinetics in the Hydrogenolysis Reaction

Table 3 lists the results of the hydrogenolysis reaction of various substrates includ-

ing cyclic ethers over Ir-ReOx/SiO2 catalyst [57]. Ir-ReOx/SiO2 catalyzed the

hydrogenolysis of THFA and tetrahydropyran-2-methanol to 1,5-PeD and

1,6-hexanediol, respectively (Table 3, entries 1and 2). In addition, it catalyzed the

hydrogenolysis of 3-hydroxytetrahydrofuran and 3-hydroxytetrahydropyran to

1,3-butanediol and 1,4-pentanediol, respectively (Table 3, entries 3 and 4). These

four substrates are reactive and have a common structure of HO–C–C–O–, where

the underlined C–O bond is dissociated by the hydrogenolysis reaction. In partic-

ular, the substrates with different OH positions and no OH groups are much less

reactive and this tendency supports the role of the common structure (Table 3,

entries 5 and 6). Furthermore, Ir-ReOx/SiO2 also catalyzed the hydrogenolysis of

erythritol to 1,4- and 1,3-butanediols (Table 3, entry 7), and the details regarding

erythritol are introduced in another section. The hydrogenolysis of cis-1,2-
cyclohexanediol to cyclohexanol was also catalyzed (Table 3, entry 8); however,

the behavior of the reaction of cis-1,2-cyclohexanediol was rather different from
other reactive substrates.

Figure 11 shows the kinetics of the hydrogenolysis of various substrates regard-

ing the concentration of the substrates over Ir-ReOx/SiO2 [46–50, 57, 58]. It is

characteristic that the substrates with primary OH groups like glycerol, THFA,

and erythritol gave about zero reaction orders with respect to the substrate

concentration. In contrast, the substrates with secondary OH group like

3-hydroxytetrahydrofuran and cis-1,2-cyclohexanediol gave around 0.5 reaction

orders. One possible interpretation is that the interaction of primary OH groups

with the catalyst surface is stronger than that of secondary OH group, so that the

coverage of the substrates with primary OH groups can be high and be connected to

zero reaction orders.

Figure 12 shows kinetics of the hydrogenolysis of various substrates regarding

H2 pressure over Ir-ReOx/SiO2 [46–50, 57, 58]. The hydrogenolysis of the

Isolated monomer 2D-Cluster 3D-Cluster

Ren+

Ir

SiO2

a b c

Rh

SiO2

Mon+

Rh

SiO2

Ren+

Fig. 10 Model structure of Rh-MoOx/SiO2 (a), Rh-ReOx/SiO2 (b), and Ir-ReOx/SiO2 (c)
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Table 3 Results of the hydrogenolysis of various substrates over Ir-ReOx/SiO2 (Re/Ir ¼ 1) [57]

Entry Substrate Product t (h) Conv. (%) Selectivity (%) TOF (h�1)

1
O

HO
HO OH 2 58.2 95.8 609

8 100 82.0 –

2

O
HO

HO
OH 4 40.4 87.7 186

3

O

HO

HO

OH 6 23.9 81.1 96

4

O

HO HO
OH

6 35.0 76.4 122

5

O

OH

HO

OH 6 0.0 0.0 0

6
O

HO 4 2.7 90.5 18

7a
OH

HO

OH

OH

HO
OH

HO

OH
24 74.0 33.0 –

12.0

8 HO

HO

HO 1 9.3 64.3 170

Reaction conditions: substrate 1 g, water 4 g, Ir-ReOx/SiO2 0.15 g, P(H2) ¼ 8 MPa, T ¼ 373 K.

Dotted lines mean the position of C–O hydrogenolysis. aThe amount of Ir-ReOx/SiO2 is 0.3 g, and

H2SO4 (H
+/Ir¼1) is added. Reprinted with permission from Elsevier [57]
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Fig. 11 Kinetics of the hydrogenolysis of various substrates regarding the concentration of the

substates over Ir-ReOx/SiO2. Open circles: cis-1,2-cyclohexanediol; substrate 1 g, water 4–19 g,

Wcat ¼ 0.15 g, P(H2) ¼ 2 MPa, T ¼ 373 K, t ¼ 1 h. Filled circles: erythritol; substrate 1 g, water
0.67–19 g,Wcat ¼ 0.3 g, P(H2) ¼ 8 MPa, T ¼ 373 K, t ¼ 4 h. Filled triangles: glycerol, substrate
1–4 g, water 2–19 g,Wcat ¼ 0.15 g, P(H2) ¼ 8 MPa, T ¼ 393 K, t ¼ 4 h. Filled squares: THFA;
substrate 1 g, water 1–19 g,Wcat ¼ 0.15 g, P(H2) ¼ 8 MPa, T ¼ 373 K, t ¼ 1 h. Filled diamonds:
3-HTHF; substrate 1 g, water 4–19 g, Wcat ¼ 0.15 g, P(H2) ¼ 8 MPa, T ¼ 373 K, t ¼ 6 h
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substrates like glycerol, THFA, erythritol, and 3-hydroxytetrahydrofuran gave first

reaction order with respect to H2 pressure. An important point is that cis-1,2-
cyclohexanediol showed negative reaction order (�0.5) with respect to H2 pressure.

At present, it is thought that the trend of the reaction orders with respect to H2

pressure can be explained by the conformation of HO–C–C–O– structure [57].

Figure 13 shows the conformation around the C–C bond of HO–C–C–O– in the

reactive substrates in the hydrogenolysis over Ir-ReOx/SiO2. In the case of the

substrates giving first reaction order with respect to H2, the cleavage of the C–O

bond in the hydrogenolysis reaction can be located at the anti-conformation to the

OH group, which can contribute to the interaction between the OH group and the Re

species on the catalyst surface. In contrast, in the case of the substrates giving

negative reaction order with respect to H2 like cis-1,2-cyclohexanediol, the cleav-
age of the C–O bond cannot be located at the anti-conformation. This interpretation

can be connected to the reaction mechanism of the hydrogenolysis of the C–O bond.

6 Hydrogenolysis Reaction Mechanism Over Ir-ReOx/SiO2

Figure 14 shows the reaction mechanism of the hydrogenolysis of the above sub-

strates giving first reaction orders with respect to H2. On the basis that the strong

synergy between Ir metal and ReOx clusters generates the hydrogenolysis activity,

the catalytically active site can be the interface between Ir metal surface and

three-dimensional ReOx clusters as described in Fig. 14(I). Judging from the
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Fig. 12 Kinetics of the hydrogenolysis of various substrates regarding H2 pressure over Ir-ReOx/

SiO2. Reactant 1 g, water 4 g. Open circles: cis-1,2-cyclohexanediol; Wcat ¼ 0.15 g,

P(H2) ¼ 2 MPa, T ¼ 373 K, t ¼ 1 h. Filled circles: erythritol; Wcat ¼ 0.3 g, P(H2) ¼ 8 MPa,

T ¼ 373 K, t ¼ 4 h. Filled triangles: glycerol, Wcat ¼ 0.15 g, P(H2) ¼ 8 MPa, T ¼ 393 K,

t ¼ 4 h. Filled squares: THFA; Wcat ¼ 0.15 g, P(H2) ¼ 8 MPa, T ¼ 373 K, t ¼ 2 h. Filled
diamonds: 3-HTHF; Wcat ¼ 0.15 g, P(H2) ¼ 8 MPa, T ¼ 373 K, t ¼ 6 h
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Fig. 14 Proposed reaction mechanism of the hydrogenolysis reaction over Ir-ReOx/SiO2
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reaction orders with respect to the various substrates, the primary OH groups

interact with the catalyst surface more strongly than secondary OH groups. In the

case of 1,2-glycol structures, the primary OH groups can interact and can form the

corresponding alkoxide (Fig. 14(II)). First reaction orders with respect to H2

suggests that one active hydrogen species is given from one H2 molecule, and

one possible interpretation is that the active hydrogen species is formed from the

heterolytic dissociation of H2 to proton and hydride. If the active species is

hydrogen radical, the reaction orders with respect to H2 may be 1/2; however,

this is not true for the present hydrogenolysis. In the case that the proton is the

active hydrogen species, the proton can attack the oxygen atom of the secondary

OH group to give a secondary carbocation. However, the hydrogenolysis reactivity

of ethylene glycol to ethanol is much higher than that of glycerol to

1,3-propanediol, as shown later. This reactivity tendency indicates that the active

species is not proton, but hydride (Fig. 14(III)). Therefore, the hydride adsorbed on

the interface Ir atom can attack the carbon atom at HO–C–C–O– structure (Fig. 14

(IV)). This state can be supported by the interpretation regarding the anti-

conformation as described in Fig. 13 because the SN2-like hydride attacks from the

side of the catalyst surface, causing the dissociation of the C–O bond in the HO–C–

C–O– structure. It is thought that the proton can interact with the oxygen atom in

the HO–C–C–O– structure, promoting the desorption of H2O instead of OH�. This
proposed mechanism is different from the conventional hydrogenolysis mechanism

mentioned in Sect. 1.2, and it is regarded as the direct mechanism.

In order to verify the direct mechanism, a deuterium label study in THFA

hydrogenolysis was carried out [57]. Here, two different mechanisms are compared

(Fig. 15). One is the direct mechanism, which is featured by the attack of hydride

from heterolytic dissociation of H2 as mentioned above (Fig. 15a). The other is the

concerted mechanism, which is featured by attack of proton on Re species and
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Re Re

Re

Ir Ir Ir Ir

Re Re
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O

+

1 12 23

1 12 23

Fig. 15 Deuterium insertion position in the reaction of THFA hydrogenolysis. (a) Direct mech-

anism. (b) Concerted mechanism proposed in Chia et al. [45]
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subsequent intramolecular hydride shifts (Fig. 15b) proposed in Chia et al. [45]. The

different reaction mechanism can give the different deuterium position in the

product of 1,5-PeD. Before showing the details of the THFA reaction, we checked

the scrambling rate of 1,5-PeD in the deuterium experiments (Fig. 16) [57]. Fig-

ure 16a shows the scheme of the scrambling reactions. The rate in 1,5-PeD is rather

fast, and the rate at the 1-position was about twice as high as that at the 2-position.

Figure 17 shows the results of THFA + D2 reaction in D2O. Regarding the D

atom in unreacted THFA, about 0.5 of an atom of D was incorporated only to the

1-position of THFA at the initial stage. Based on this result, the THFAmolecule can

be described as C4H7O–CH1,5D0.5–OH. On the other hand, regarding the D atom in

the produced 1,5-PeD, about 1.5 atoms of D were incorporated in both the 1- and

2-positions of 1,5-PeD. Figure 18 shows the incorporation of D atoms in the

reaction of THFA + D2 in D2O by two reaction mechanism. In the case of the

direct mechanism, D� attacks to C at the 2-position and, as a result, 0.5 atom D is

incorporated to the 1-position and 1 atom D is incorporated to the 2-position.

Considering the scrambling rate of the 1- and 2-positions in THFA, the experimen-

tal results of 1.5 atom D at 1-position and 1.5 atom D at 2-position can be explained

by the direct mechanism. On the other hand, in the case of the concerted mecha-

nism, 1.25 atom D is incorporated to the 1-position and 0.25 atom D is incorporated

to the 2-position, which cannot explain the observed distribution of D atoms.

Overall, the deuterium label study supports the direct reaction mechanism.

a
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Fig. 16 (a) Mechanism of H–D Exchange (scrambling) between alcohols (substrates and prod-

ucts) and D2/D2O. (b) Measurement of the scrambling rate of 1,5-PeD. Reaction conditions: D2

2 MPa, D2O (2 g), Ir-ReOx/SiO2 (0.05 g), 373 K
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7 Hydrogenolysis of Erythritol Using Ir-ReOx/SiO2

A large number of studies on the fermentation of glucose and glycerol to erythritol

have been reported. The highest yield of erythritol from glucose is 61% [59]. More-

over, it has been already scaled up from laboratory scale to plant scale [60]. In

Fig. 17 Results of THFA + D2 in D2O over Ir-ReOx/ SiO2 [57]. Reprinted with permission from

Elsevier [57]

0.5 atom D to 1-position
1 atom D to 2-position 

Scrambling
(rate: 1-position/2-position=2/1)

1.5 atom D at 1-position
1.5 atom D at 2-position 

1.25 atom D to 1-position 
0.25 atom D to 2-position

X

“Direct” 
mechanism

“Concerted”
mechanism

D- attack

Observed data 
of 1,5-PeD:

D+

D2

D+ from Re-OD 
Intramolecular hydride shift

－D+

(to give 
Re-OD)

Fig. 18 Incorporation of D atoms in the reaction of THFA + D2 in D2O in two reaction

mechanisms
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addition, a 56% yield of erythritol can be obtained from glycerol [61]. Based on

these results, erythritol can be a candidate for a C4 building block in a future

biomass refinery. However, valuable chemicals derived from erythritol are very

limited. Therefore, the conversion of erythritol to 1,4- and 1,3-butanediols (BuD)

was attempted by using Ir-ReOx/SiO2 and the direct hydrogenolysis mechanism.

Figure 19 shows the reaction scheme of erythritol hydrogenolysis including side

reactions like dehydration and isomerization. The desired products can be produced

by C–O hydrogenolysis reactions [58]. These reactions lead to two primary prod-

ucts – 1,2,4- and 1,2,3-butanetriol (BuT). The hydrogenolysis reactions of BuTs

produce four BuDs, which are desired products as valuable chemicals. A problem is

that over-hydrogenolysis of BuDs produces 1- and 2-butanols, and butane, which

are less valuable. C–C hydrogenolysis reactions lead to many types of products

such as 1,2-PrD, ethanol, and methane. The value of most of the products obtained

by C–C hydrogenolysis reactions is not high except for that of 1,3-PrD. It has been

reported that Ru/C and Raney Ni catalyzed the hydrogenolysis of erythritol to

1,2-BuD, 1,2,4-BuT glycerol, and so on [62].

One of the side reactions is the dehydration to 1,4-anhydroerythritol, and this

reaction can proceed easily under acidic conditions [63]. It has been reported that

Re-Pd/C + Nafion/SiO2 gave 50% yield of tetrahydrofuran from erythritol via

1,4-anhydroerythritol in dioxane [64]. Another side reaction is the isomerization

to threitol. The reports on the hydrogenolysis of erythritol are so limited that the

selective hydrogenolysis to valuable BuDs is challenging.

Table 4 lists the erythritol hydrogenolysis on various catalysts including

Ir-ReOx/SiO2 catalyst. It is found that Ir-ReOx/SiO2 catalyzed the erythritol

Erythritol

1,2,4-BuT

1,2,3-BuT

1,4-BuD

1,3-BuD

1,2-BuD

2,3-BuD

1-BuOH

2-BuOH

Butane

C-C hydrogenolysis reactions of C4 compounds … C3, C2, C1 products

1,4-Anhydroerythritol

Threitol

HO
OH

OH

OH

HO
OH

OH

OH

O

HO OH

HO
OH

OH

HO
OH

OH

HO
OH

HO

OH

HO
OH

OH

OH

HO

OH

Fig. 19 Scheme of hydrogenolysis of erythritol and side reactions [58]. Reprinted from Wiley-

VCH [58]

Selective Hydrogenolysis of C–O Bonds Using the Interaction of the Catalyst. . . 147



T
a
b
le

4
R
es
u
lt
s
o
f
er
y
th
ri
to
l
h
y
d
ro
g
en
o
ly
si
s
o
v
er

v
ar
io
u
s
ca
ta
ly
st
s
[5
8
]

C
at
al
y
st

C
o
n
v
.
(%

)

S
el
ec
ti
v
it
y
(%

)

H
O

O
H

O
H

H
O

O
H O

H

H
O

O
H

H
O

O
H

H
O

H
O

O
H

O
H O

H
O

H
O

O
H

O
th
er
s

Ir
-R
eO

x
/S
iO

2
a

7
4

5
1
8

3
3

1
2

2
1

0
0

1
1

Ir
/S
iO

2
a
,b

3
4

1
8

0
0

0
0

7
0

9

R
eO

x
/S
iO

2
a
,b

1
1

0
0

0
0

0
9
9

0

R
u
/C

6
6

2
2
4

0
0

0
4
9

7
1
8

R
an
ey

N
ib
,c

5
7

3
1
6

0
0

0
7
9

0
2

R
h
/C

6
1
6

4
7

0
0

0
0

2
5

1
3

R
ea
ct
io
n
co
n
d
it
io
n
s:
E
ry
th
ri
to
l
1
g
,
W
at
er

4
g
,
W

c
a
t
¼

0
.3

g
,
P
(H

2
)
¼

8
M
P
a,
T
¼

3
7
3
K
,
t
¼

2
4
h
.
a
H
2
S
O
4
(H

+
/I
r
¼

1
).
R
ed
u
ct
io
n
co
n
d
it
io
n
s:
T
¼

4
7
3
K
,

t
¼

1
h
,
P
(H

2
)
¼

8
M
P
a.

b
T
¼

4
1
3
K
.
c
W

c
a
t
¼

1
.5

g
.
R
ep
ri
n
te
d
fr
o
m

W
il
ey
-V

C
H

[5
8
]

148 K. Tomishige et al.



hydrogenolysis to 1,4- and 1,3-BuDs, and Ir/SiO2 and ReOx/SiO2 had very low

catalytic activity, as in the case of glycerol hydrogenolysis. In addition, Ru/C,

Raney Ni, and Rh/C gave BuTs and/or threitol as a main product. Reaction time

dependence in the erythritol hydrogenolysis over Ir-ReOx/SiO2 is shown in Fig. 20.

At the initial stage, 1,2,4-BuTs was mainly produced, which is similar to the case of

the glycerol hydrogenolysis to 1,3-PrD. The maximum yield of 1,4- and 1,3-BuD

were 33% (24 h), and the yield of valuable products is not so high, and further

improvement is necessary; however, the present performance was much higher than

that of conventional hydrogenolysis catalysts such as Ru/C and Raney Ni.

The dehydration of erythritol to 1,4-anhydroerythritol proceeds much more

easily than that of glycerol because of the stability of the five-membered ring

[63]. The hydrogenolysis reaction via dehydration (indirect route) may thus also

proceed in the case of erythritol. The reactivity of 1,4-anhydroerythritol on Ir-ReOx/

SiO2 has been verified (Table 5). In the hydrogenolysis of 1,4-anhydroerythritol,

1,2,3-BuT and 1,3-BuD were mainly formed. The reaction scheme of the formation

of 1,2,3-BuT and 1,3-BuD from 1,4-anhydroerythritol are described below. The

different product distributions in the hydrogenolysis of erythritol and

1,4-anhydroerythritol indicate that 1,4-anhydroerythritol is not an intermediate in

the hydrogenolysis of erythritol, supporting the direct reaction mechanism as in the

case of glycerol. In the case of 1,4-anhydroerythritol, the formation route of 1,2,3-

butanetriol and 1,3-butanetriol is shown in (5) and (6).

O

HO OH
HO

OH

OH

+H2

1,2,3-Butanetriol

ð5Þ
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Fig. 20 Reaction time

dependence in the erythritol

hydrogenolysis over

Ir-ReOx/SiO2[58]. Reaction

conditions: erythritol 1 g,

water 4 g, Wcat ¼ 0.3 g,

H2SO4 (H
+/Ir ¼ 1),

P(H2) ¼ 8 MPa,

T ¼ 373 K. BuT
butanetriol, BuD
butanediol, BuOH butanol.

Reprinted from Wiley-VCH

[58]
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O

HO OH

O

HO

OH

OH

-H2O

+H2 +H2

1,3-Butanediol

ð6Þ

Table 6 lists the reactivity trends of various polyols on Ir-ReOx/SiO2 [58]. We

also investigated the hydrogenolysis of the intermediates1,2,4-BuT and 1,2,3-BuT

(Table 6, entries 2 and 3). The reactivity of 1,2,4-BuT was approximately equal to

that of erythritol. The main product was 1,4-BuD, which was mainly obtained by

the dissociation of the C–O bond neighboring the –CH2OH group. However, 1,2,3-

BuT showed very low activity (Table 6, entry 3), and its reactivity was much lower

than that of glycerol (Table 6, entry 10). At present, the reason is not clear.

Although the details are not shown here, the reactivity of threitol is much lower

than that of the erythritol. The low reactivity of threitol and 1,2,3-BuT is another

subject for the future. The reactivity of glycerol was comparable to that of

erythritol. The hydrogenolysis of BuDs was also tested (Table 6, entries 4–7).

The order of reactivity of the BuDs is as follows: 1,2-BuD � 1,3-BuD > 1,4-

BuD � 2,3-BuD. The very low reactivity of 2,3-BuD is explained by no primary

OH group, confirming that the interaction between the secondary OH group and the

Table 6 Reactivity trends of various polyols over Ir-ReOx/SiO2 [58]

Entry Substrate

Conv.

(%) Products (selectivity (%))

1
HO OH

OH

OH

26
OH

OH
HO

(37)

OH
HO

OH

(21)

OH
HO

(20)

HO

OH

(8)

Others

(14)

2
HO OH

OH 51 OH
HO

(73)

HO

OH

(12)

HO
OH

(7) Others

(7)

3
HO

OH

OH

1 HO

OH
(47) HO

OH

(11)

OH

OH
(20)

Others

(23)

4 HO OH 12 HO (97) (3)

5 HO

OH
17 HO (51) OH

(47) (3)

6
HO

OH 51 HO (88) OH
(10) (2)

7 OH

OH

1 OH
(71) (29)

8 HO 3 (>99)

9 OH 6 (>99)

10
HO OH

OH 27 HO OH

(66)
HO

OH
(7) HO (19) OH (7) Others

(0)

11
HO

OH 94 HO (98) Others (2)

Conditions: substrate 1 g, water 4 g, Ir-ReOx/SiO2 0.3 g, H2SO4 (H+/Ir ¼ 1), P(H2) ¼ 8 MPa,

T ¼ 373 K, t ¼ 4 h. Reprinted from Wiley-VCH [58]
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catalyst surface is weaker as mentioned earlier. Another important point is that the

reactivity of BuDs with primary OH group is strongly dependent on the distance

between the OH groups. This behavior is reflected in the probability of the hydride

attack to the adsorbed diols attached to the Re species through the primary OH

group. A greater distance means a lower probability of hydride attack. In the

hydrogenolysis of glycols, the order of reactivity of ethylene glycol > 1,2-BuD >
glycerol was observed (Table 6, entries 6, 10, and 11), confirming that steric

hindrance around the breaking C–O bond may reduce the reactivity in the SN2-

like hydride attack. In addition, the high reactivity of ethylene glycol suggests that

the reaction does not proceed via a carbocation intermediate. Low reactivity of

mono-ols is also explained by the direct mechanism (Table 6, entries 8 and 9) in

terms of the probability of the hydride attack.

8 Relation Between the Hydrogenolysis Selectivity

and Catalyst Structure of Rh-ReOx, Rh-MoOx,

and Ir-ReOx

As explained above, Rh-ReOx, Rh-MoOx, and Ir-ReOx catalysts had high C–O

hydrogenolysis activity of THFA, glycerol, and so on. On the other hand, the

selectivity in the glycerol hydrogenolysis was very different on these three cata-

lysts. Relation between the catalyst structure and the selectivity, in particular, in the

glycerol hydrogenolysis has been discussed. Figure 21 shows the formation rate of

the products in the hydrogenolysis of THFA, 1,2-PrD, and glycerol over the

optimized Rh-ReOx, Rh-MoOx, and Ir-ReOx catalysts, including monometallic Rh

and Ir catalysts. The tendency in the conversion rate per gram-catalyst of the three

substrates (sum of the formation rate of the products) was almost same: Rh-ReOx

> Rh-MoOx > Ir-ReOx � Rh > Ir. Based on the discussion on the reaction

mechanism, the concentration of the active hydrogen species (hydride at the

interface between the metal and the oxide species) can explain the rate tendency

considering the first reaction order with respect to H2 pressure. An interesting

behavior is selectivity of products. In the case of the THFA hydrogenolysis, all

the Rh-ReOx, Rh-MoOx, and Ir-ReOx catalysts showed very high selectivity to

1,5-PeD (Fig. 21a). In the case of 1,2-PrD hydrogenolysis, 1-propanol (1-PrOH)

was a main product and 2-PrOH a by-product. The selectivity to 1-PrOH on Ir-ReOx

was a little higher than that on Rh-ReOx and Rh-MoOx (Fig. 21b). In contrast, in the

case of glycerol hydrogenolysis, the selectivity to 1,3-PrD on Rh-MoOx was very

low, the selectivity on Rh-ReOx was a little higher, and the selectivity on Ir-ReOx

was much higher than Rh-MoOx (Fig. 21c).

Figure 22 shows the hydrogenolysis selectivity trend on various substrates over

Rh-ReOx, Rh-MoOx, and Ir-ReOx, suggesting that the structure of MOx (M ¼ Re,

Mo) can influence the selectivity in hydrogenolysis reactions. The tendency sug-

gests that higher selectivity in hydrogenolysis of the substrates with larger numbers
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of OH groups can be achieved by catalysts with more bulky MOx (3-D cluster >
2-D cluster > isolated monomer). One interpretation is depicted in Fig. 23,

showing the comparison of transition state in the glycerol hydrogenolysis based

on the proposed model structures of Rh-ReOx, Rh-MoOx, and Ir-ReOx, and the

Monomer

2D-Cluster

3D-Cluster

Rh-MoOx

Rh-ReOx

Ir-ReOx

THFA to 
1,5-PeD

1,2-PrD to 
1-PeOH

Glycerol 
to 1,3-PrDCatalysts

Ren+

Ir

SiO2

Rh

SiO2

Mon+

Rh

SiO2

Ren+

Fig. 22 Hydrogenolysis selectivity trend on various substrates over Rh-ReOx, Rh-MoOx, and

Ir-ReOx
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Fig. 21 Formation rate of products in the hydrogenolysis of (a) THFA, (b) 1,2-PrD, and (c)

glycerol over various catalysts [33, 36, 38, 39, 47, 57]. Reaction conditions: (a) THFA 1 g (5 wt

% eq.),Wcat ¼ 0.05 g (for Ir-Re, 0.15 g), P(H2) ¼ 8 MPa, H+/Ir ¼ 1 (for only Ir-Re), 393 K. Time

and conversion: Rh: 4 h, 5.7%; Rh-Mo: 4 h, 50.1%; Rh-Re: 4 h, 56.9%, Ir: 24 h,<0.1%; Ir-Re: 2 h,

43.9%. (b) 1,2-PrD 4 g (20 wt% eq.),Wcat ¼ 0.15 g (for Ir, 0.3 g), P(H2) ¼ 8 MPa, H+/Ir ¼ 1 (for

only Ir-Re), 393 K. Time and conversion: Rh: 24 h, 8.8%; Rh-Mo: 4 h, 18%; Rh-Re: 4 h, 26%; Ir:

48 h, 5.1%; Ir-Re, 24 h, 38.6%. (c) Glycerol 4 g (67 wt% eq.; for Ir-Re, 80 wt% eq.),Wcat ¼ 0.15 g

(for Ir, 0.6 g), P(H2) ¼ 8 MPa, H+/Ir ¼ 1 (for only Ir-Re), 393 K. Time and conversion: Rh: 5 h,

3.6%; Rh-Mo: 5 h, 38.9%; Rh-Re: 5 h, 79%; Ir: 240 h, 7.7%; Ir-Re: 12 h, 50.5%
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reaction mechanism. Primary OH groups have stronger interaction with secondary

OH groups, and the 1-alkoxide species of glycerol is considered. The six-membered

transition state can be described on the basis of the reaction mechanism for the

formation of 1,3-PrD (Fig. 14). An important point is that 1,2-PrD was observed in

the glycerol hydrogenolysis over Rh-ReOx and Rh-MoOx, which is thought to be

formed via a seven-membered transition state (Fig. 23). It is easy to imagine that the

C–O–M bond in the 1-alkoxide species on isolated MoOxmonomer can move much

more freely than that on 3-D clusters. Free movement of 1-alkoxide species on

isolated MoOx monomer can enhance the possibility of the seven-membered ring

transition state. On the other hand, steric hindrance due to 2-D and 3-D ReOx

clusters can decrease the possibility of a seven-membered ring transition state and

relatively enhance that of a six-membered ring transition state, increasing the

selectivity of 1,3-PrD formation.

9 Complete C–O Hydrogenolysis of Sugars and Sugar

Alcohols to Alkanes Using Ir-ReOx/SiO2

In the above sections, Ir-ReOx/SiO2 catalyzed hydrogenolysis reactions using the

interaction between OH groups and the catalyst surface, where the target products

have two OH groups. In this case, the reactions are regarded as the partial C–O

hydrogenolysis. In contrast, the target reactions in this chapter are complete

hydrogenolysis, which means that all the C–O bonds are converted to C–H bonds

by the hydrogenolysis reactions. Although the details are not shown in the previous
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Fig. 23 Comparison of transition state in the glycerol hydrogenolysis based on the proposed

model structures of Rh-ReOx, Rh-MoOx, and Ir-ReOx
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sections, the C–O hydrogenolysis reactions catalyzed by Ir-ReOx/SiO2 gave almost

no degradation products formed by C–C hydrogenolysis reactions. It is concluded

that Ir-ReOx/SiO2 catalyst showed very low activity of C–C hydrogenolysis reac-

tions. Therefore Ir-ReOx/SiO2 catalyst is applied to the complete hydrogenolysis of

sugars and sugar alcohols to alkanes without C–C hydrogenolysis. In this case, the

reaction temperature for complete hydrogenolysis became a little higher than that

for partial hydrogenolysis.

According to the previous reports on the conversion of sorbitol to alkanes, the

yield of n-hexane is not so high, which is caused by C–C hydrogenolysis reactions

[65–67], and low n-hexane yields were due to cracking and isomerization. In these

studies, combination of metal catalyst and solid acid co-catalyst were applied. It is

expected that Ir-ReOx/SiO2 can give high yields of alkanes because of high C–O

and low C–C hydrogenolysis activity. Based on the previous reports, the combina-

tion of Ir-ReOx/SiO2 (Re/Ir ¼ 1) and H-ZSM-5 was applied to the conversion of

sugars and sugar alcohols to corresponding alkanes [68].

Figure 24 shows the results of sorbitol hydrogenolysis using Ir-ReOx/SiO2 + H-

ZSM-5 at various reaction times. In this experiment, n-dodecane was used to catch

the product of n-hexane because of the decrease of loss to the gas phase, and it was
verified that the effect of n-dodecane on the catalytic performance was very small.

Regarding the result at 8 h, the composition of hexanediols and hexanols was also

described. From these data it is found that the hydrogenolysis of inner C–O bonds

proceeds preferentially, which can be explained by the behavior in the partial

hydrogenolysis reaction on Ir-ReOx/SiO2 as mentioned in the above sections. In

addition, at longer reaction time, 95% n-hexane yield was obtained and this yield

was much higher than those reported previously. Although the details are not shown

0 20 40 60 80 100
<C6 alkanes

HO
OH

OH

OH

OH
OH

OH

OH

HO OH OH
OH

HO

Sorbitol Hexanediols (HxDs) Hexanols

Yield / %

8  

24  

72

Hexanols Hexanediols Polyols etc.n-Hexane

n-Hexane

Other hexanes

Composition of diols and mono-

ols (%) after 8 h

HO

OH

1,6-HxD

1,5-HxD

1,2+1,3+1,4-HxDs

2,3-HxD

2,4-HxD

25

24

17

20

5

1-Hexanol                82
2-Hexanol                  6
3-Hexanol                12

T
im

e 
/ 

h

Fig. 24 Results of sorbitol hydrogenolysis over Ir-ReOx/SiO2 + H-ZSM-5 [68]. Reaction condi-

tions: sorbitol 1 g, water 4 g, n-dodecane 4 mL, P(H2) ¼ 8 MPa, T ¼ 413 K, Wcat ¼ 0.15 g,

H-ZSM-5 0.06 g. Reprinted from Wiley-VCH [68]
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here, the highest yield of n-hexane on Rh-ReOx/SiO2 (Re/Rh ¼ 0.5) + H-ZSM-5

was about 70% and this also demonstrates the superiority of Ir-ReOx/SiO2 + H-

ZSM-5.

Table 7 lists results of hydrogenolysis of sugar alcohols over Ir-ReOx/SiO2 + H-

ZSM-5. Ir-ReOx/SiO2 + H-ZSM-5 converted xylitol, erythritol, and glycerol to the

corresponding linear alkanes with very high yield [68]. It should be noted that

Ir-ReOx/SiO2 catalyst was very effective in the selective hydrogenation of unsatu-

rated aldehyde to unsaturated alcohol. Considering that sugar alcohols are synthe-

sized by the hydrogenation of sugars, the catalyst systems were applied to one-pot

conversion of sugars to corresponding linear alkane by hydrogenation +

hydrogenolysis reactions. Table 8 lists the results of the reaction of sugars over

Ir-ReOx/SiO2 + H-ZSM-5, demonstrating that Ir-ReOx/SiO2 + H-ZSM-5

converted sugars to the corresponding alkanes with very high yield [68].

Figure 25 shows the results of gas chromatography (GC) analysis of the aqueous

phase and n-dodecane for the reaction of cellobiose using Ir-ReOx/SiO2 + H-ZSM-

5. In the phase of n-dodecane, n-hexane was observed as a main product and

cracked products were also detected. In contrast, no products were detected in the

aqueous phase, indicating the complete C–O hydrogenolysis of cellobiose. As

mentioned above, under the reaction conditions for partial hydrogenolysis, the

reactivities of mono-ols such as 1-PrOH and 2-PrOH were much lower than that

of glycerol. H-ZSM-5 plays important roles in the complete hydrogenolysis.

Figure 26 shows the results of the hydrogenolysis of pentanols using Ir-ReOx/

SiO2, H-ZSM-5, and Ir-ReOx/SiO2 + H-ZSM-5. It is clear that Ir-ReOx/SiO2 is not

good at hydrogenolysis of secondary mono-ols. On the other hand, H-ZSM-5

catalyzed the dehydration of secondary mono-ols to alkenes efficiently. Therefore,

it is thought that hydrogenolysis of 2- and 3-pentanols proceeds via dehydration to

pentenes on H-ZSM-5 and hydrogenation of pentanes to n-pentane on Ir-ReOx in

Table 7 Results of hydrogenolysis of sugar alcohols over Ir-ReOx/SiO2 + H-ZSM-5 [68]

Substrate Temperature (K) Time (h) Conv. (%)

Yield (%)

Target alkane Other alkanes

Xylitol

HO
OH

OH

OH
OH

413 72 >99.9 95.9 2.6

Erythritol

HO
OH

OH
OH

393 144 >99.9 94.8 1.5

Glycerol
HO OH

OH

393 128 >99.9 98.0 0.8

Reaction conditions: substrate 1 g, water 4 g, n-dodecane 4 mL, Ir-ReOx/SiO2 (Re/Ir ¼ 1) 0.15 g,

H-ZSM-5 0.06 g, P(H2) ¼ 8 MPa. Reprinted from Wiley-VCH [68]
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Table 8 Results of the reaction of sugars over Ir-ReOx/SiO2 + H-ZSM-5 [68]

Substrate Time (h) Conv. (%)

Yield (%)

n-
Hexane Other hexanes Lower alkanes

Glucose
HO O

OH

HO OH
O
H

84 >99.9 94.4 0.8 3.0

O
OH

HO
HO

OH
O O

OH

HO OH
OH

Cellobiose 108 >99.9 94.8 0.8 3.3

Maltotriose
HO O

OH

HO
OH O

O
OH

HO OH O
O

OH

HO OH OH

108 >99.9 94.0 0.9 3.6

Maltopentaose

HO O
OH

HO
OH O

O
OH

HO OH O
O

OH

HO OH OH3

108 >99.9 94.0 0.9 3.6

Reaction conditions: substrate 1 g, water 4 g, n-dodecane 4 mL, Ir-ReOx/SiO2 (Re/Ir ¼ 1) 0.15 g,

H-ZSM-5 0.06 g, P(H2) ¼ 8 MPa, T ¼ 413 K. Reprinted from Wiley-VCH [68]

Fig. 25 Results of gas chromatography (GC) analysis of the aqueous phase and n-dodecane for

the reaction of cellobiose using Ir-ReOx/SiO2 + H-ZSM-5 [68]. Reprinted from Wiley-VCH [68]
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the dehydration + hydrogenation mechanism. In contrast, dehydration of 1-PeOH

is not catalyzed on H-ZSM-5, and therefore the reaction of 1-PeOH to n-pentane
proceeds on Ir-ReOx/SiO2. Here, the reaction mechanism can be the direct

hydrogenolysis mechanism, and the hydride at the interface between Ir and ReOx

can attack the carbon atom at the Re–O–C– structure.

10 Conclusions and Outlook

The catalytic hydrogenolysis of C–O bonds in sugar alcohols and cyclic ethers

including glycerol, erythritol, xylitol, sorbitol, tetrahydrofurfuryl alcohol, and so on

proceeds selectively over the catalyst systems consisting of noble metals (Rh and Ir)

and metal oxides (Re, Mo, and W). The catalytically active site can be an interface

between the surface of the noble metal and the oxide species attached to the noble

metal surface. The metal oxide species play an important role in the interaction

between the catalyst surface and the OH groups of the substrates by the formation of

the alkoxide species. The H2 molecule dissociates heterolytically at the interface to

give hydride and a proton. The hydride adsorbed on the interface noble metal atom

can attack the carbon atom in ReO–C–C–O– structure, and this SN2-like hydride

attack dissociates the C–O bond in ReO–C–C–O– structure with the promotion of

the desorption of H2O instead of OH� by the proton. This is a new reaction

mechanism denoted as the direct mechanism. Applicability of the direct

hydrogenolysis mechanism can be wider than that of conventional ones because

of the simplicity. In particular, the catalysts giving the direct mechanism were

highly active and can decrease the reaction temperature. This enables the
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conversion of thermally unstable substrates with complex structures. In addition,

recently, Rh-ReOx, Rh-MoOx, and Ir-ReOx catalysts have been applied to various

reactions including selective hydrogenation of unsaturated aldehydes to unsaturated

alcohols [69], selective dehydrogenation of vicinal alcohols to α-hydroxy ketones

[70], one-pot conversion of 2,5-tetrahydrofuran-dimethanol to 1,6-hexanediol [71],

one-pot conversion of furfural to 1,5-pentanediol utilizing metal-assisted catalysts

[72, 73], the dehydration of fructose to HMF [74], and so on. In the future, the

catalysts for direct hydrogenolysis will be used in wider applications, and the

findings will be utilized to the development of new catalyst systems.
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Deoxydehydration of Polyols

Camille Boucher-Jacobs and Kenneth M. Nicholas

Abstract The development of sustainable chemical processes for the conversion

of highly oxygenated biomass feedstocks to chemical products requires efficient

and selective processes for partial oxygen removal and refunctionalization. Here we

review the development of the deoxydehydration (DODH) reaction, which converts

vicinal diols (glycols) to olefins. Uncatalyzed deoxygenative eliminations were first

established. The catalyzed DODH reactions have largely employed oxo-rhenium

catalysts and a variety of reductants, including PR3, dihydrogen, sulfite, and

alcohols. A variety of glycol and biomass-derived polyol substrates undergo the

DODH reaction in moderate to good efficiency, regioselectively, and stereose-

lectively. Observations regarding selectivity, mechanistic probes, and computa-

tional studies support the general operation of a catalytic process involving three

basic stages: glycol condensation to an M-glycolate, reduction of the oxo-metal,

glycol condensation to produce a metal-glycolate, and alkene extrusion from the

reduced metal-glycolate. Recent practical developments include the discovery of

non-precious V- and Mo-oxo DODH catalysis.

Keywords Deoxydehydration � Oxo-metal complexes � Polyols � Reductants �
Rhenium
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Abbreviations

APR Ammonium perrhenate

Bn Benzyl

Cp Cyclopentadienyl

DFT Density functional theory

DODH Deoxydehydration

e.u. entropy

MTO Methyltrioxorhenium

TPB tris-Pyrazolylborate

TsOH para-Toluenesulfonic acid

1 Introduction

The highly oxygenated nature of biomass-derived feedstocks has stimulated the

discovery and development of chemical processes for the efficient and selective

deoxygenation and refunctionalization of these renewable chemical resources

[1–4]. Cellulose, carbohydrates, and hydrolyzed plant oils are polyhydroxylated

materials (polyols) and methods for their partial deoxygenation have largely

focused on their dehydration reactions (Scheme 1) [5–9]. More recently, reductive

processes for oxygen removal have garnered increasing attention. These

approaches include catalytic hydrodeoxygenation, which replaces C–O bonds

with C–H bonds [10–13], and deoxydehydration (DODH), which effects vicinal

OH removal with the formation of C–C unsaturation. It produces value-added

unsaturated products that have widespread use as laboratory and industrial inter-

mediates and end-products. The development of the DODH reaction is thoroughly

reviewed in this chapter (a mini-review of catalytic DODH was published

recently [14]).

2 Uncatalyzed Didehydroxylation of Glycols

The earliest reported methods for vicinal dehydroxylation of glycols involved a

two-stage process beginning with the acid-catalyzed condensation with ortho-esters

(Scheme 2) to form dioxolanes that are subsequently thermolyzed (180–200�C)
[15] or heated with acetic anhydride (140�C) [16] to produce olefins. These

reactions provide moderate to good yields of olefins (40–95%) for a variety of

glycols. The reactions are highly regioselective, locating the C–C unsaturation

between the hydroxyl-bearing carbons (i.e., no double bond isomerization) and

stereospecific, resulting from a syn-elimination process. Co-products of these

processes include carbon dioxide, alcohols, and, in the latter case, acetic acid;

hence the process is neither atom-economical nor carbon-neutral.
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A renewed interest in the glycol-to-olefin conversion was highlighted by the

Bergman–Ellman team who reported a single-stage process involving high temper-

ature reactions between glycols and polyols with formic acid as a reductant

(Scheme 3) [17–19]. Water and carbon dioxide are the co-products of these trans-

formations; hence the process is not carbon-neutral. When heated at 230–240�C
under a stream of nitrogen, unsaturated products were produced in high yields if

distilled as they are formed; 80–90% yields were obtained with simple glycols and

glycerol. Erythritol was converted to 2,5-dihydrofuran in moderate yield, presum-

ably via dehydration to 3,4-dihydroxyfuran followed by didehydroxylation

(Scheme 4). In their patent several other natural polyols were claimed as substrates;

the cyclohexane derivatives, quinic and shikimic acids, were both largely

converted to benzoic acid, the result of exhaustive dehydration/dehydroxylation.

Reactivity studies with diastereomeric decane-3,4-diols demonstrated a stereospe-

cific syn-elimination process. This feature, together with isotopic labeling

experiments, supports a proposed mechanism involving an intermediate

orthoester-carbocation.

HO OH

R1 R2

O O

R1 R2

H OR

pyrolysis

R1 R2

CO2 + 
ROH 

(MeOAc,
AcOH)

R3 R4 R3 R4

R3 R4
HC(OR)3

R'CO2H or
TsOH (cat)

(Ac2O)

(+  2 ROH)

Scheme 2 Non-catalytic glycol dihydroxy elimination

cellulose,
triglycerides

carbohydrates,
polyols alcohols

olefins,
unsaturated

alcohols

furan 
derivatives

hydrolysis

dehydrate

deoxydehydrate

deoxygenate

(hydrogenation)

Scheme 1 Hydrolysis/deoxygenation processes for biomass oxygenates

Deoxydehydration of Polyols 165



3 Oxo-Metal Promoted and Catalyzed Deoxydehydration

3.1 ReOx-Based Catalysts

3.1.1 Phosphine Reductants

The first transition metal-catalyzed deoxydehydration (DODH) reaction was

reported by Cook and Andrews [20] employing Cp*ReO3 (1, Cp*¼pentamethyl-

cyclopentadienyl) as the catalyst with PPh3 as the stoichiometric reductant

(Scheme 5). Typically, reactions were conducted with 2 mol% 1 at 90–100�C in

chlorobenzene as solvent for 1–2 days. Among the substrates evaluated were

1-phenyl-1,2-ethanediol (styrene diol), a 1,2:5,6-diketal of mannitol, glycerol, and

erythritol. The first two provided the corresponding alkenes in 80–95% yield, while

the latter largely produced butadiene (ca. 80%) with smaller amounts of the butene-

1,4- and 1,2-diols (6:1). Coordinating solvents were found to inhibit the reaction,

while TsOH was found to be a promoter. Catalyst deactivation, ascribed to over-

reduction to ReIII was noted. A three-stage catalytic cycle (Scheme 6) was proposed

involving (1) reduction of 1 to Cp*ReO2 (2), (2) condensation with the diol

OHHO

R R' R R'

HCOOH CO2

230 - 240oC

Scheme 3 Polyol substrates for formic acid-driven didehydroxylation

CnH2n+1

OH

HO

OH

HO

OH OH

OH

HO CO2H

OH

OH

HO

n = 5, 7, 8

OH

HO C2H5

OH

OH

OH

HO
OH

quinic acidxylitol

erythritolcyclooctane-1,2-diol

CO2H

OH

OH

HO

shikimic acid

OHHO

OH

CnH2n

glycerol

HO
OH

n = 1, 2, 4

OH

OH

Scheme 4 Formic acid-driven didehydroxylation
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with 2 to form the Re-glycolate 3, and (3) extrusion (retrocyclization) of the alkene

from 3. The rate of styrene formation from its glycol (1/TsOH co-catalyzed) was

independent of the concentrations of both reactants and comparable to its rate of

formation from the isolated Cp*ReO(glycolate) (see below), consistent with the

Re-glycolate retrocyclization being rate-limiting.

Several years after the initial catalytic DODH report by Andrews, the Gable

group reported that phosphine-driven glycol DODH and epoxide deoxygenation is

catalyzed by (tris-dimethylpyrazolylborate)ReO3 (Tp*ReO3) (4) (Scheme 7)

[21]. The sterically hindered and stronger donor TPB ligand provides a more robust

but somewhat less active catalyst. With the substrates styrene diol, glycerol,

erythritol, and threitol, reactions catalyzed by 4 (5 mol%) proceed at 120�C over

1–5 days in toluene. Yields were not reported for the diol or triol, but the tetrols

were converted in 20–40% yields to unsaturated products. For erythritol, with

O

'R R

R R'

HO OH

R R'

Cp*ReO3 (1)
PPh3

Tp*ReO3 (4)
PPh3

Cp'ReO3 (5)
PPh3

Scheme 5 Putative catalytic cycle for Cp*ReO3-catalyzed DODH by phosphines

HO
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Scheme 6 Phosphine-

driven DODH and
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1 equiv. of PPh3, moderate selectivity for the terminal ene-diol (7.2:1 vs internal)

was observed at 40% conversion, whereas threitol produced the terminal ene-diol

more selectively along with relatively more butadiene. These selectivities were

explained in terms of the distribution of intermediate Re-diolates produced from

each polyol. Kinetic studies again indicated that alkene extrusion is turnover-

limiting in this system.

A very recent report has revisited the Cp*ReO3/PPh3 DODH system, focusing

on the use of the sterically bulky (1,2,4-tri-tert-butyl-cyclopentadienyl)ReO3

(Cp0ReO3) complex 5 as catalyst with a range of glycols and polyols (Scheme 8)

[22]. The DODH reactions with 5 (0.05–2 mol%) are effective at 135–180�C
(chlorobenzene), producing alkenes from acyclic glycols in generally good yields

(80–95%), albeit with small amounts (2–8%) of isomerized olefins being detected.

The high turnover number achieved at low catalyst loading (ca. 1,600) indicates a

more robust catalyst than the original Cp*ReO3. cis-Cyclic diols gave relatively

poor yields (10–50%), perhaps a result of limited access to the sterically hindered

Cp0-catalyst. DODH reactions with meso- and d,l-dihydrobenzoin were stereospe-

cific, providing the cis- and trans-stilbenes, respectively, indicative of a syn-
elimination process via a stereoselective alkene extrusion from an Re-glycolate
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N N

N

N
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Scheme 7 (Tp)ReO3-catalyzed DODH
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Scheme 8 Cp0ReO3-catalyzed DODH reactions
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intermediate. Glycerol was efficiently converted to allyl alcohol (91%) but the

reaction with erythritol gave a mixture of butadiene and butene-diols in modest

yield. Although reactions with alternative reductants (other phosphines, H2,

sec-alcohols, Na2SO3) were generally much less efficient than with PPh3, with

3-octanol as solvent erythritol gave butadiene selectively in 67% yield.

Gable and co-workers have made valuable contributions to elucidating the

mechanism of oxo-Re-promoted DODH reactions, particularly regarding features

of the alkene extrusion from LReV(O)-glycolate species. It is interesting from a

historical perspective that their work on the Cp*ReV(O)(glycolate) (6a) reactions

actually preceded the report by Andrews and Cook of the Re-catalyzed DODH

reaction. Producing 6a by glycol condensation/PPh3-reduction of Cp*ReO3

(Scheme 9), the Gable group established: that (1) the addition/extrusion equilibrium

is dependent on the strain present in the alkene; (2) the rate dependence for alkene

extrusion is first-order in [6a] with a small ΔSact (�5 e.u.); (3) there is a significant

normal secondary kinetic isotope effect (1.3) with C–H(D)-labeled glycols; and (4)

the reaction rate for a series of Re-glycolates derived from 4-Z-ArCH(OH) CH2OH

correlated with σ- and gave a reaction parameter ρ ¼ 0.42 [23–25]. When taken

together with extended Huckel MO calculations, these results were interpreted in

favor of an early (reactant-like), slightly polar transition state with asynchronous

character with respect to the degree of C–O bond-breaking, favoring rate-limiting

formation of a metallaoxetane intermediate (7) over a concerted [3+2] transition

state (8).

Subsequently, the Gable group investigated the alkene extrusion process from

(tris-pyrazolylborate)Re(O)(glycolate) derivatives 6b. The probes and findings

from these studies were generally quite similar to those from their investigation

of the Cp*Re-derivatives. The Tpb-derivatives react with a slightly higher ΔHact

(2–4 kcal/mol) and lower rate (Scheme 9) [26, 27]. A later study focused on the

LMOx ML O

O
R

O
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R

HO OH

LMOx

R
+

1) alkene strain dependent

2) 1st order / ΔSact ~ 5 e.u.

3) secondary kie
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Scheme 9 Mechanistic probes of alkene extrusion from LReO(glycolate)
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kinetic isotope effects for derivatives separately labeled on the glycolate carbons,

substituent effects for a series of Z-ArCHOHCH2OH-derived glycolate complexes,

and DFT computational analysis, including transition state modeling. The differ-

ences in the measured kinetic isotope effects were small, but significant, the

Hammett substituent effect study showed dichotomous behavior, and the

DFT-calculated transition state showed significantly different C–O bond lengths,

consistent with an asynchronous extrusion process. On this issue we note that

fragmentation of M-glycolates derived from symmetrical or aliphatic glycols may

be more prone to concerted [3+2] cycloreversions (see below). This mechanistic

subtlety notwithstanding, the examples of stereospecific syn-eliminations observed

to date are indicative of a net syn-metalloglycolate cycloreversion, whether

concerted or step-wise.

3.1.2 H2 Reductant

The discovery of more practical, non-phosphine reductants for Re-catalyzed

DODH began with a report by the Abu-Omar group employing hydrogen with

the commercially available MeReO3 as catalyst (Scheme 10) [28]. Reactions

were conducted with epoxides and glycols at 150�C in THF at 5–20 atm H2 and

5–10 mol%MeReO3 over 1–16 h. Representative epoxides and glycols are converted

moderately efficiently to olefins with high selectivity at lower pressures and shorter

reaction times; alkanes, from over-reduction, were favored at higher pressures and

longer times. The deoxygenation of cis- and trans-stilbene oxides, exhibit good but

not complete stereoretentive selectivity; cis-cyclic glycols eliminate much more

effectively than the trans-glycols, consistent with the intervention and concerted

fragmentation of MeReVO(glycolate). A catalytic process for deoxygenation and

DODH was proposed involving initial hydrogenative reduction of MeReO3 to

MeReO2L (L¼THF or H2O), condensation of the latter with the glycol to form the

ReV-glycolate, and subsequent alkene extrusion.

Lin and coworkers reported a DFT-level computational study of the hydrogen-

driven epoxide deoxygenation and glycol DODH catalyzed by MeReO3 (MTO)

[29]. Very high enthalpic barriers were found for both the [2+3] and the [2+2]

R R'

HO OH

R R'MeReO3

(MTO)

R R'

O

H2

Scheme 10 Hydrogen-driven, MTO-catalyzed DODH and deoxygenation
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addition of hydrogen to MTO (ΔHact 61 and 43 kcal respectively), and was judged

not to be viable as a step in the catalytic process. Instead, reaction of MTO with the

epoxide or the glycol (not shown) to produce MeReVIIO2(glycolate) (9) is more

favorable (Scheme 11), followed by [2+3] addition of H2 to 9 to give the Re
V-glycol

derivative 10 (ΔHact 33 kcal). Extrusion of alkene from ReV-glycolate 11 was

calculated to proceed via a concerted [2+3] process with a barrier of 21 kcal.

Thus, in the H2-driven MTO reactions it appears that reduction of the glycolate

9 is likely turnover-limiting.

3.1.3 Sulfite Reductant

Soon thereafter the Nicholas group reported DODH and epoxide deoxygenation

reactions driven by sulfite salts and catalyzed by LReO3,4 derivatives (Scheme 12).

Sulfite is an inexpensive and thermodynamically strong reductant, comparable to

H2 and CO [30]. Several glycol substrates are efficiently transformed into olefins

(50–80% yields) with this system, operating most effectively with MeReO3 or

Bu4N
+ReO4

� (2–10 mol%) in aromatic solvents at 150�C; yields and reaction

rates are improved by the inclusion of the polyether, 15-crown-5, presumably by

increasing the solubility of the sulfite salt reductant. Selective syn-elimination of

the glycol was demonstrated by the preferential DODH of cis-1,2-cyclohexanediol

-

-

-

-

-

-

-

-

-

0

5

10

-5

-10

-15

-20

-25

-30

ΔH

Me
Re

OO
O

Me
Re OO

O

Me
Re

O
O

OO

kcal / mol

-

15

20

25

-

-

-

0.0

-5.3

28.3

-15.9

-19.5

14.6

-20.3

-28.4

O

Ph
+ H2

Ph

Me
Re

O
O

OO

Ph

H
H

Me

Re

O
O

OO

PhH
H

Me
Re

O
O
OO

Ph

Me
Re

O
O

OO

PhH

H

-19.7

Me

Re

O
O

OO

Ph
H

H

-24.5

-18.3

-3.2

-33.4

Me

Re

O
O

OO

Ph
H

H

Me
Re

O
O

OO

PhH

H

Me
Re

O
O

OO

PhH

H

H

Me
Re

O

OO
H

H O

Ph

Me
Re

O
O

OO

Ph

H

H

TS

TS

TS

TS
TS

9

10

11

Scheme 11 Calculated lowest energy profile for H2-driven, MTO-catalyzed DODH

Deoxydehydration of Polyols 171



and the stereoselective conversion of l-diethyl tartrate to (trans)-diethyl fumarate

(Scheme 13). In a limited study, erythritol was converted by Bu4NReO4/Na2SO3

largely to 1,3-butadiene along with 2,5-dihydrofuran and 2-butene-1,4-diol

(5:1:0.5). Representative epoxides were deoxygenated by MTO/Na2SO3 in moder-

ate yields. Lewis base additives (e.g., amines) and potentially coordinating solvents

(e.g., ethers, nitriles) were found to inhibit the MTO-based reactions, but had little

effect on the yields/conversions of those catalyzed by Bu4N
+ReO4

�. This may be

the result of the high Lewis acidity of MeReO3 [31–33], by which coordination of

donor ligands can inhibit both glycol association and alkene extrusion from the

metalloglycolate (see below).

A stoichiometric reactivity study with styrene-1,2-diol/MeReO3 demonstrated

the viability of a condensation/reduction/alkene extrusion pathway (Scheme 14) by

spectroscopically detecting [34]: (1) that MeReO3 reversibly forms MeReVII(O)

(glycolate) (9) from the glycol (Keq ca. 0.2) or more favorably from styrene oxide at

20�C; (2) the ReVII-glycolate 9 is reduced at 20�C by PPh3 or (Bu4N)2SO3 to a

mixture of ReV-glycolates 12/12a; and (3) the reduced Re-glycolates cleanly

produce styrene and MeReO3 upon heating at 60–100�C. These observations

indicate that the latter step is likely turnover-limiting.

The mechanism of the MeReO3-catalyzed deoxydehydration of glycols to

olefins by sulfite salts has been probed with Density Functional Theory (DFT)

O
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Scheme 12 Sulfite-driven Re-catalyzed DODH and epoxide deoxygenation
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calculations [35]. Potential intermediates and transition states were evaluated for

the three stages of reaction: (1) dehydration of the glycol by an oxo-rhenium

complex to form an Re-(O,O-glycolate); (2) sulfite-induced O-transfer (to sulfate

and a reduced oxo-Re); and (3) fragmentation of the ReV-glycolate to give the

olefin and to regenerate MeReO3. Various sulfite, sulfate, and Na-sulfite/sulfate

species were evaluated as reactants/products and as ligands, and solvation was

taken into account. Transition states and activation energies were calculated for

several of the key transformations, including the H-transfer glycol dehydration, the

LMeReVO(glycolate) fragmentations (L¼H2O, NaSO3
�, NaSO4

�), and NaSO3
�

attack on oxo-ReVII species. The lowest energy catalytic pathway identified

involves (Scheme 15) NaSO3
� attack on an oxo-oxygen of MeReO3 to produce

MeReVO2(OSO3Na)
� (13), glycol coordination by 13 followed by a series of

H-transfer steps to LRe¼O and/or LRe-OSO3Na
� to give MeReVO(glycolate)

(OSO3Na)(H2O)
� (14), concerted extrusion of olefin from the ReV-glycolate 14,

and dissociation of NaSO4
� from MeReO3(OSO3Na) (15) to regenerate MeReO3.

Fragmentation of the Re-glycolate 14 is turnover-limiting with a calculated activa-

tion free energy of 35 kcal, a value consistent with the typical operating tempera-

tures of these reactions. Coordination of H2O, the reductant or its oxidized form to

the Re(V)-glycolate is calculated to greatly affect the facility of the olefin extrusion.

The nature of the reductant, e.g., an O-transfer agent like PPh3 or SO3
2� vs the

H-transfer agents, H2, or sec-alcohols, thus likely affects both the thermodynamics

and the kinetics of the reduction step.
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3.1.4 Alcohol Reductants

The use of secondary alcohols as reductants for DODH was first reported by

Ellman, Bergman, and coworkers, who employed Re-carbonyl compounds, e.g.,

Re2(CO)10, as pre-catalysts under aerobic conditions (Scheme 16) [36]. Optimized

conditions used the glycol substrate with the mono-alcohol as the solvent,

e.g., 3-octanol, at 150–175�C, with 1–2.5 mol% Re2(CO)10 and TsOH as a

co-catalyst (2–5 mol%). Good yields of the olefin (50–84%) were obtained with

representative glycols. The syn-3,4-decanediol was converted highly selectively to

trans-3-decene, implicating a syn-elimination process in the diol to olefin conver-

sion (Scheme 17). Erythritol was converted moderately efficiently to

2,5-dihydrofuran (62% yield), presumably the result of initial 1,4-diol dehydration

followed by DODH of the THF-diol intermediate. The nature of the active catalyst

was unknown at the time, but was speculated to be an oxidized Re species.

The Abu-Omar group demonstrated that, in the absence of an added reductant,

MeReO (MTO) catalyzes redox disproportionation of glycols. Glycerol was shown

to serve as both substrate and reductant (165�C, 2 mol% MTO) in a reactive

distillation process, producing moderate yields of volatile allyl alcohol, acrolein,

and propanal (1.0: 0.22: 0.15), and non-volatile, reactive 1,3-dihydroxyacetone

(Scheme 18). Redox disproportionation of cis-cyclohexanediol catalyzed by

MTO was also efficient producing cyclohexene and 1,2-cyclohexanedione

[37]. The rate of the glycerol reaction was determined to be first-order in the diol

and first-order in MTO and a kinetic isotope effect of 2.4 was measured for
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d5-glycerol(OH)3, indicating turnover-limiting C–H(D) bond breaking. This was

interpreted in terms of a catalytic cycle in which the ReVII-glycolate intermediate

undergoes rate-limiting H(D)-transfer redox reaction by glycerol.

Other researchers have expanded the scope of alcohol-driven DODH reactions.

Shiramizu and Toste demonstrated that MeReO3 (MTO) was an effective catalyst

for the DODH using sec-alcohol reductants and they extended the substrate scope to
more complex polyols [38]. The alcohol reductant, preferably 3-octanol, was

generally used as the solvent with 2.5 mol% of MTO at 155–200�C in air; at the

higher temperatures the DODH reactions of glycols and polyols were complete in

1–3 h. The polyols glycerol, erythritol, and threitol were converted in high yields

(80–90%) to allyl alcohol and 1,3-butadiene respectively, with 11–13% of

dihydrofuran derivatives as minor products from the tetraols. The C5-sugar alcohols

xylitol, arabinatol, and ribitol were converted in moderate (33–61%) yields to the

OH

OH

C5H11 C5H11
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OH
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Scheme 17 Alcohol-driven, Re-catalyzed aerobic DODH
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same E-2,4-pentadienyl 3-pentyl ether derived from reaction with 3-pentanol as

solvent. Similarly, the C6-sugar alcohols sorbitol, and mannitol were completely

deoxygenated to the same E-hexatriene (54% yield). A series of stereoisomeric

inositols were converted in low to moderate yields to mixtures of benzene (from

exhaustive DODH) and phenol (from DODH and dehydration), with the former

generally predominating (ca. 1:1 to 3:1). Application of the alcohol/MTO protocol

on sugars provided moderate yields of furan (47–60%) from erythrose and threose,

while pentoses gave low yields of 2-alkoxymethylfuran, resulting from a combina-

tion of dehydration and DODH steps. Regarding the mechanism of the catalytic

process, it was found that reactions run in the presence of 3-hexyne resulted in

formation of isolable MeReVO2(alkyne), which reacted at room temperature with

glycol to form MeReVO(glycolate), and had comparable catalytic activity to MTO,

supporting MeReVO2 as the catalytically relevant species.

Shiramizu and Toste recently expanded the scope and utility of alcohol-driven,

MTO-catalyzed DODH by: (1) using MTO’s ability to promote allylic alcohol 1,3-

transposition to enable the conversion of 1,4-unsaturated alcohols to 1,3-dienes; (2)

including new polyfunctional natural substrates in DODH; and (3) carrying out a

OH
HO OH

O
OHHO HO

O

O H

H

Scheme 18 MTO-catalyzed, distillative disproportionation of glycerol
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one-pot tandem DODH-Diels–Alder reaction sequence (Scheme 19) [39]. Represen-

tative acyclic and cyclic ene-1,4-diols were converted in moderate to good yields to

1,3-dienes (18–70%) with α,β-unsaturated ketones as minor side-products. The C6

sugar acid, mucic acid, and its ester could be efficiently converted to the dienic

muconic ester 16 (71%) with the primary alcohol 1-butanol as solvent/reductant and

acidic HReO4 as the catalyst. Similarly the C6 gluconic acid was efficiently converted

to the E,E-dienic ester 16 (47%). The tandem DODH/Diels–Alder process was

demonstrated with tartaric acid and erythritol as the dienophile and diene precursors,

respectively. These were first heated with HReO4/2-methyl-1-butanol (170�C, 4 h) to
generate butadiene and the fumarate ester; continued heating at 120�C (42 h) provided

the Diels–Alder adduct in 70% yield from tartaric acid.

Although secondary alcohols have generally been found to be more effective

reductants in DODH reactions, Boucher-Jacobs and Nicholas showed that the

reactive primary alcohol, benzyl alcohol was also an efficient reaction partner for

DODH of representative glycols and polyols with less expensive NH4ReO4 (APR)

as the catalyst (Scheme 20) [40]. This system has practical advantages for facili-

tating separation of the alkene and aldehyde co-products via the insoluble bisulfite

adduct of the aldehyde (not effective with ketones) and also enabling efficient

recovery/re-use of the insoluble catalyst. Operating at 150�C in aromatic solvents

with 2.5 mol% APR, several glycols were converted to corresponding alkenes in

moderate to excellent yields (50–95%).

An experimental mechanistic study of the MTO-catalyzed, alcohol driven DODH

of hydrobenzoin to trans-stilbene was recently reported by Abu-Omar and coworkers

(Scheme 21; R¼Ph) [41]. Kinetic studies of the catalytic reaction in excess 3-octanol

(solvent) at 140�C revealed an induction period, a zeroth-order dependence on the

glycol and half order behavior in MTO; the rate dependence on the alcohol reductant

was not determined. The half-order catalyst dependence suggests the involvement of a

monomer–dimer equilibriumofRe-complexes. Stoichiometric reactivity experiments

with NMR monitoring showed that the MeReVO(glycolate) intermediate could be
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detected throughout the reaction and hence its conversion to product is probably rate-

limiting. The authors claim that this conversion requires further reaction with the

octanol to produce alkene and suggested that reduction to an ReIII-diolate precedes

alkene extrusion. A small primary kinetic isotope effect (1.4) with 3-D-octanol and a

large negative activation entropy (�37 e.u.) was taken as support for H(D)-transfer

from the alcohol to the Re(diolate) as the rate-limiting step.
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A recent computational study by Wang and coworkers analyzed the energetics

for various pathways in the alcohol-mediated DODH of glycols catalyzed by MTO

[42]. Free energies and enthalpies were calculated using DFT methods with the

MO6 functional and corrected for temperature and solvent. Three pathways A, B,

and C were compared, differing in the timing of the ReVII/V reduction and the glycol

condensation stage, and in the condensation intermediates. In pathway A the MTO

reduction precedes the condensation and the highest barrier (45/33 kcal for

ΔGact/ΔHact) was found for intramolecular H-transfer reduction of an

ReVII- alkoxide-OH species. Pathway B, involving initial condensation followed

by reduction, was found to have its highest barrier (53/38 kcal) in the H-transfer

reduction of an ReVII-H-glycolate by the alcohol. The lowest energy pathway,

C (Scheme 22), like A, involves initial MTO reduction followed by condensation,

but differed from A in finding a somewhat lower barrier H-transfer step (39/27 kcal)

for the eVII-alkoxide to form MeReO(OH)2. The possibility that these reactions

proceed through a ReIII-glycolate, as proposed by Abu-Omar, was not considered.
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3.1.5 Heterogeneous ReOx DODH Catalysts

In an initial effort to develop heterogeneous (supported) DODH catalysts potentially

suitable for industrial scale processes, Nicholas, Jentoft and co-workers reported on

the catalytic properties of a material prepared by treatment of activated carbon with

ammonium perrhenate [43]. This material was found to be active for the

hydrogenative DODH of representative glycols at 150–175�C in aromatic solvents

under 6–12 atm H2 (Scheme 23). Under these conditions, alkenes were produced

selectively in moderate to excellent yields (40–90%) with no over-reduction to

alkanes; l-diethyl tartrate was converted stereoselectively to diethyl fumarate.

From a preparative scale experiment, corresponding ketones, dimeric ethers, and

acetals were identified as minor by-products, apparently from acid-promoted dehy-

dration processes. Catalyst recovery and filtrate activity tests show partial loss of

activity by the recovered catalyst and suggest catalysis by both homogeneous and

heterogeneous components. Partial leaching of a catalytically active species appar-

ently occurs under operating conditions that is re-adsorbed at room temperature. The

ReOx/C material also catalyzes moderately efficient DODH reactions (40–52%)

with hydrogen transfer reductants, including 3-hexanol, benzyl alcohol, and tetralin.

3.2 Non-precious Metal Catalyzed DODH

Until recently, all the reported metal-catalyzed DODH systems have utilized

oxo-rhenium catalysts. The low natural abundance and high cost of rhenium and

its derivatives [44] provides an incentive for the discovery of non-precious metal

catalysts for deoxydehydration that could be practically applied to large-scale

biomass conversion processes.

Three brief notes of modest Mo-based DODH activity have appeared

(Scheme 24), the first with styrene oxide and styrene diol promoted by (dithiocar-

bamate)2MoO2/Na2SO3 (17, 10–30% yield); two examples employed (acylpyra-

zonolate)MoO2/PPh3 (18; 10, 55% yields); [45] and a survey of several oxo-Mo-

complexes with no reductant gave 35–45% olefin yields from tetradecanediol, with

(NH4)6Mo7O24 [46] and MoO2(DMF)2Cl2 (Maradur S, Nicholas KM (2012)

unpublished results) being the best. Molybdenum’s relative abundance [47] and

lower cost should stimulate more thorough investigations to evaluate the scope and

efficacy of Mo-catalyzed DODH reactions.
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Scheme 23 DODH catalyzed by ReOx/C with various reductants
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Recently, a more thorough study of DODH reactions catalyzed by non-precious

vanadium complexes [48] was reported by Nicholas and coworkers. Several inex-

pensive and readily available oxo-vanadium compounds, including metavanadate

salts (Z+VO3
�) and dioxo-vanadium complexes, were evaluated for their catalytic

activity with representative glycols (Scheme 25) [49]. Among these, Bu4N

[(2,6-pyridinecarboxylate)VO2] (19) was found to be the most effective with either

PPh3 or Na2SO4 serving as the reductant. Under optimized conditions (150–170�C,
aromatic solvent, 10 mol% 19, 24–48 h), high conversions and good yields of alkene

were achieved. Highly selective syn-elimination was observed in the conversion of l-
diethyl tartrate to diethyl fumarate catalyzed by PPh3/19 (Scheme 25c). This result

supports a proposed catalytic cycle involving a reduction/condensation sequence

(in either order) followed by stereoselective olefin extrusion from a VIII-glycolate

intermediate, (dipic)V(glycolate)�. The Na2SO3/19 combination is also highly

efficient for the deoxygenation of epoxides to olefins (Scheme 25b) [50].

VO O
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O O
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4 Conclusions and Future Prospects

A graphical summary of the catalytic glycol deoxydehydration and epoxide

deoxygenation reactions reported to date is given in Scheme 26.
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Since its discovery, the catalytic deoxydehydration reaction has seen rapid

development. A variety of oxo-metal catalysts (mostly of rhenium) and reductants,

including phosphines, hydrogen, sulfites, and alcohols, have been shown to be

effective. Numerous glycols and a growing set of biomass-derived polyol substrates

undergo the reaction with good efficiency. The reactions are typically regiospecific

and highly stereoselective. Results from experimental and computational mecha-

nistic studies suggest the general operation of a catalytic process involving three

basic stages: glycol condensation to an M-glycolate, reduction of the oxo-metal,

and alkene extrusion from the reduced metal-glycolate. The preferred sequence of

the condensation and reduction steps and which step of the catalytic pathway is

turnover-limiting depend on the catalyst and the reductant. Recent practical DODH

developments include the discovery of non-precious V- and Mo-oxo DODH

catalytic systems and supported oxo-rhenium catalysts.

There remain important needs for new, more active, economical deoxygenation

catalysts, reductants, and practical reaction media, to improve the efficiency and

extend the substrate scope to higher polyols. The development of reagent/catalyst

systems that achieve high chemo-, regio-, and stereoselectivity is another important

goal. Additional experimental and computational mechanistic studies are needed to

provide deeper insights into the catalytic pathways and the factors correlating

structure/reactivity. The development of other selective deoxygenation and

refunctionalization processes may also be anticipated. We look forward with

much anticipation to exciting developments in these and other, unforeseen aspects

of deoxygenation reactions of biomass-derived substrates.
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Polymerization of Nonfood Biomass-Derived

Monomers to Sustainable Polymers

Yuetao Zhang and Eugene Y-X Chen

Abstract The development of sustainable routes to fine chemicals, liquid fuels,

and polymeric materials from natural resources has attracted significant attention

from academia, industry, the general public, and governments owing to dwindling

fossil resources, surging energy demand, global warming concerns, and other

environmental problems. Cellulosic material, such as grasses, trees, corn stover,

or wheat straw, is the most abundant nonfood renewable biomass resources on

earth. Such annually renewable material can potentially meet our future needs with

a low carbon footprint if it can be efficiently converted into fuels, value added

chemicals, or polymeric materials. This chapter focuses on various renewable

monomers derived directly from cellulose or cellulose platforms and corresponding

sustainable polymers or copolymers produced therefrom. Recent advances related

to the polymerization processes and the properties of novel biomass-derived poly-

mers are also reviewed and discussed.

Keywords Biomass � Cellulose � Polymerization � Renewable monomer �
Sustainable polymer
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Abbreviations

βMMBL β-Methyl-α-methylene-γ-butyrolactone

γMMBL γ-Methyl-α-methylene-γ-butyrolactone
ATRP Atom transfer radical polymerization
nBA n-Butyl acrylate
BM Bismaleimide

CGC Me2Si(η
5-(Me4C5)(

tBuN)

CL Caprolactone

CLP Classical Lewis pair

Cp η5-Cyclopentadienyl
DA Diels–Alder

DIOP Diisooctyl phthalate

DMAP 4-Dimethylaminopyridine

DMF N,N-Dimethylformamide

DOE Department of energy

EBDMI C2H4(η
5-4,7-dimethylindenyl)2

EBI C2H4(η
5-indenyl)2

FLP Frustrated Lewis pair

Flu η5- or η3-Fluorenyl
FA Furfuryl alcohol

FMA Furfuryl methacrylate

GHG Greenhouse gas

GPC Gel permeation chromatography

GTP Group transfer polymerization

HMF 5-Hydroxymethylfurfural

ItBu 1,3-Di-tert-butylimidazol-2-ylidene

ICD β-Isocupreidine
ICD β-Isocupreidine
IMes 1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene

it Isotactic (mm)
LA Lactic acid or lactide

LPP Lewis pair polymerization

MBL α-Methylene-γ-butyrolactone
MEP 1,8-Bis(maleimido)-1-ethylpropane

MIMA Maleimide methacrylate

MMA Methyl methacrylate

Mn

(Mw)

Number (weight) average molecular weight

186 Y. Zhang and E.Y-X. Chen



MW Molecular weight

MWD Molecular weight distribution

NHC N-Heterocyclic carbene
OSA Oligo(isosorbide adipate)

OSS Oligo(isosorbide suberate)

PASA Poly(aspartic acid)

PDI Polydispersity index

PET Poly(ethylene terephthalate)

PFS Poly(2,5-furandimethylene succinate)

PGA Poly(glutamic acid)

PHBHV Bis-hydroxylated poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
oligomers

PHUs Polyhydroxyurethanes

PLA Polylactide

PMMA Poly(methyl methacrylate)

PP Polypropylene

REM Rare earth metal

ROP Ring-opening polymerization
RSKA Trialkylsilyl methyl dimethylketene acetal

RT Room temperature

st Syndiotactic (rr)
SA Succinic acid

SDH Isosorbide dihexanoate

SEM Scanning electron microscopy

Tg Glass transition temperature

THF Tetrahydrofuran

TOF Turnover frequency

TPT 1,3,4-Triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene

1 Introduction

The development and use of materials from renewable sources is not a new concept.

Besides providing food, feed, clothes, shelter, and energy, biomass has been

employed since ancient times to extract valuable products such as medicinal

drugs, flavors, and fragrances. With the development of civilization of human

society, in the nineteenth century various biomass resources were employed for

the large-scale industrial production of chemicals and durable materials, such as

cellulose esters (nitrate and acetate), oxidized linseed oil (linoleum), vulcanized

rubber, adhesives from starches, and so on. However, the widespread use of such

renewable materials diminished in the twentieth century since the development of

fossil fuel derivatives, leading to the polymer renaissance. Today commodity

polymers such as polyolefins are ubiquitous in our societies because they represent

the optimal choice based on several factors, including monomer cost and
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availability, high polymer production efficiency, and excellent properties. Nowa-

days, coal and petroleum-based polymers can be found in nearly every item we

touch, including clothing, packaging, paints, adhesives, and plastics. The world’s

primary sources of energy for the transportation and production of chemicals are

also fossil fuels. World demand is approximately 84 million barrels per day and is

projected to increase to about 116 million barrels per day by 2030 [1]. However,

fossil resources are finite and will begin to dwindle in the future. Many studies

surmise that all fossil resources will be depleted within a few centuries ([2], and at

the present utilization rate the first fossil resource anticipated to be depleted is oil,

followed by natural gas and finally coal, which is estimated to last for about another

200 years from now: [3, 4]). In addition, the emissions of greenhouse gases (GHG)

caused by usage and consumption of fossil resources are perturbing the Earth’s

climate [5]. Lastly, as the world begins to become much more aware of the need for

a sustainable future, there will be increasing pressure to search for sustainable

materials. With these concerns there is now a growing shift back to polymeric

materials derived from renewable sources. Intensive studies are ongoing to develop

new or improved products and processes based on sustainability.

Sustainability has many definitions. One way to think of it is “meeting the needs

of the present without compromising the ability of future generations to meet their

needs” (defined by the World Commission on Environment and Development held

by the United Nations in 1983). The concept of sustainability is that we should

synchronize our consumption of natural resources with the Earth’s production – in

other words, using up natural resources at the same rate at which they are produced.

Compared to traditional polymers typically made from petroleum and other fossil

resources such as natural gas, sustainable polymers are fully or partially biobased

and/or biodegradable or compostable. They are bioplastics made from renewable

resources (biomass) and can be broken down faster than traditional plastics. Sus-

tainable polymers could also protect our Earth by offering a reduced carbon

footprint, a reduced use of fossil resources, and improved end-of-life options.

Biomass is most likely to be the only viable alternative to fossil resources for

production of transportation fuels and fine chemicals, since it is the only carbon-

rich material source available on Earth besides fossil resources. There are a large

number of biomass sources that could be converted into fuels, fine chemicals, and

renewable monomers for production of sustainable polymers, including simple

sugars, starch, lignocelluloses, plant oils, and so on. Considering the fact that edible

biomass is extensively used in the food and feed industries, the nonfood plant

biomass, produced via photosynthesis utilizing solar energy, which exists in the

form of lignocellulosic materials such as grasses, trees, corn stover, or wheat straw,

will definitely provide ample biorenewable resources for production of fuels and

chemicals. The majority (60–90 wt%) of plant biomass are the biopolymer carbo-

hydrates stored in the form of cellulose and hemicelluloses. As cellulosic material is

the most abundant renewable biomass resource on Earth, it can potentially meet our

future needs if it can be efficiently converted into fuels and value added chemicals.

The cellulose can be depolymerized by hydrolysis of the β-1,4-glycosidic bond to

glucose. This C6 saccharide is the starting material for a large variety of fine
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chemicals and potential monomers. Accordingly, this review chapter focuses on

the recent advances on various chemical platforms derived from these nonfood

biomass resources, including ethanol, lactic acid or lactide, furfural,

5-hydroxymethylfurfural (HMF), levulinic acid, sorbitol, and several dicarboxylic

acids containing different numbers of carbons. These platforms can be further

employed to produce renewable monomers for sustainable polymer production.

2 Sustainable Polymers Based on Cellulose

2.1 Ethanol Platform

Currently, ethanol from renewable resources is mainly obtained by fermentation of

glucose derived from sugar cane or sugar beet with yeast. In the long run, the

nonfood biomass, cellulose, should be the best candidate for production of ethanol.

Cellulose is a major constituent of plants and may soon become an important

component in our mix of energy sources. Cellulosic ethanol is made from biomass,

including wood, grasses, agricultural residues, and municipal solid waste. By

producing ethanol, we can reduce our demands for petroleum, lower transportation

costs, reduce greenhouse gas emissions, and provide more economic stability. The

federal Energy Independence and Security Act of 2007 mandates that by 2022 the

U.S. produce 36 billion gallons of biofuel per year, of which 16 billion gallons

(nearly 10% of the total U.S. transportation fuel supply) must be cellulosic ethanol

(http://www.epa.gov/oms/renewablefuels/420f10007.htm).

Besides serving as transportation fuel, by means of dehydration ethanol can be

converted to ethylene which is mainly produced in the petrochemical industry by

steam cracking processes and is used in the production of polyethylene, polyethyl-

ene oxide, polyvinylchloride, and polystyrene. Vapor phase dehydration of ethanol

at 400�C affords 99.9% selectivity to ethylene at 99.5% conversion [2, 6]. Recently,

both the low price of sugar cane in Brazil and the increasing crude oil cost has

spurred the renewed interest in ethanol dehydration. Dow (http://news.dow.com/

dow_news/prodbus/2007/20070719a.htm), Braskem (http://www.reuters.com/arti

cle/pressRelease/idUS246273+05-Jun-2008+PRN20080605) (Brazil’s largest plas-

tics producer), and Solvay (http://www.solvinpvc.com/static/wma/pdf/1/2/1/0/0/

Press_release_Brasilian_SolVinPVC_EN_141207.pdf) have announced separate

projects for large-scale production of ethylene from renewable ethanol based on

sugar cane. Dow and Braskem will ultimately manufacture “green” polyethylene

while Solvay will use ethylene to supply its polyvinylchloride capacity. The pro-

jects of Braskem and Solvay, with production of 180,000 and 55,000 tons/year,

respectively, are underway. However, Dow (estimated polyethylene capacity of

320,000 tons/year) later announced a delay in their construction of their plant.

Today, Braskem is the world’s leading producer of green polyethylene (Green PE)

producing 200 ktons of ethylene per year from sugar cane ethanol. In addition to
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using renewable raw materials, the production process adopted for the Green PE

also has a lower environmental impact, because every metric ton produced removes

up to 2.5 tons of CO2 from the atmosphere. After inaugurating the world’s first

industrial-scale green ethylene plant, Braskem is now focusing on the development

of an innovative and economically competitive process for the production of green

polypropylene. In 2008, Braskem produced green polypropylene in its laboratories.

The samples were obtained at Braskem’s Technology and Innovation Center on a

pilot scale, where homopolymers and copolymers were produced and certified by

the U.S. laboratory Beta Analytic Inc., the world leader in carbon isotope analysis,

as being 100% from renewable raw materials. Now Braskem has been intensifying

its research to improve competitiveness on an industrial scale (http://www.braskem.

com.br/plasticoverde/eng/braskem.html, accessed Dec 23, 2013).

2.2 Lactic Acid Platform

Lactic acid (LA), or 2-hydroxy-propanoic acid, is one of the high potential and

versatile biomass-derived platform chemicals [7, 8], and has been widely utilized in

the food, cosmetics, pharmaceutical, and chemical industries [9–12]. LA could

serve as an active precursor and renewable feedstock for the production of a wide

range of useful intermediates[7, 13–15] and various polymers; through dehydration

(combined with other reactions) resulting in acetaldehyde, acrylic acid

(to polyacrylates), 2,3-pentanedione, and propionic acid; through reduction and

oxidation yielding propylene glycol (to polyester, polycarbonates, polyurethanes,

and polypropylene oxide) or pyruvic acid; through catalytic upgrading of LA via

propionic acid and acetaldehyde affording C5–C7 ketones; and through esterifica-

tion providing the synthesis of alkyl lactates, lactide (to polylactide or poly(lactic

acid), PLA) (Scheme 1). Among these, PLA has received the most attention due to

its intriguing physico-chemical and mechanical properties. PLA exhibits mechan-

ical similarities to poly(ethylene terephthalate) (PET) and poly(propylene) (PP).

It can be processed in most polymer processing equipment, which is a critical factor

for industrial use. However, more importantly, it appears to be the polymer with the

broadest range of applications, because of its ability to be stressed or thermally

crystallized, filled, and copolymerized [16, 17]. In addition, as a renewable poly-

mer, PLA has the potential to replace fossil-derived plastics in particular applica-

tions, and, based on its life cycle analyses, it has a more positive impact on the

environment [11]. Therefore, PLA is the most well-known biocompatible and

biodegradable polymer and is one of the most widely used bioplastics in packaging

and medical applications. PLA can be obtained either by direct polycondensation

[18, 19] of lactic acid or by ring-opening polymerization (ROP) [20] of lactide, a

cyclic dimer of lactic acid. With the polycondensation method, it is difficult to

obtain high molecular weight PLA due to the equilibrium between lactic acid,

water, and lactoyl oligomers, and the increasing viscosity during polymerization.

Currently, the most convenient and efficient production of PLA is mainly carried
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out by ROP of lactides, which involves multiple steps. First, lactic acid is produced

by sugar fermentation or by non-fermentative chemical synthesis starting from

various biomass resources such as triose [21–29], hexose [30–40], and even cellu-

lose [41–46], the most abundant and non-edible biomass on the earth, then followed

by preparation of lactide from lactic acid. After purification, lactide can produce

PLA via the ROP process.

Within the last decade, several ROP processes have been developed to meet the

high demand for PLA, including anionic [47–50], cationic [51–54], organocatalytic

[55–57], and coordination-insertion [58] methods. The coordination-insertion pro-

cess is now commonly regarded as the most efficient method for the well-controlled

synthesis of PLA with regard to composition, molecular weight, and microstructure

[10, 16, 17, 58–65]. The coordination-insertion mechanism of lactide polymeriza-

tion involves the coordination of the monomer to the metal center, followed by a

nucleophilic attack of the alkoxide on the acryl carbon atom and the insertion of

lactide into the metal-alkoxide species with retention of configuration [66]. A new

metal-alkoxide species is formed, which is capable of further insertion reactions. A

vast multitude of well-defined Lewis acid catalysts following a coordination-

insertion mechanism have been developed for this reaction, mainly based on tin

[67], zinc [68–71], aluminum [72–74], and rare earth metals [75–79]. Moreover,

organocatalysts [20, 55–57] have been successfully used in ROP and even some

heterogeneous catalysts such as tin-substituted mesoporous silicas [80] have been

proposed. It is very important to control the stereochemistry of PLA because it

plays a very important role in PLAs’ physico-chemical and mechanical properties,

and biodegradability. Remarkable progress has been made on the synthesis of

various stereo-controlled polymer architectures by ROP of enantiomerically pure
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monomer, racemic mixtures, or meso lactide. So far, highly isotactic and

heterotactic PLA materials have been formed from rac-LA, while highly

syndiotactic PLA is prepared from meso-LA (Scheme 2) ([66, 81] and reference

therein). Described below are the selected examples that allow the synthesis of

highly stereo-controlled polymers.

2.2.1 Formation of Isotactic/Stereoblock PLA Materials from rac-LA

Some of the most significant advances in stereocontrolled polymerization of lactide

have been demonstrated by using aluminum-based catalysts. In 1994, Spassky and

coworkers reported the first stereocontrolled example of Schiff base (SALEN type)

aluminum complexes (R, R)-1a [82], which selectively promote ROP of (R, R)-LA
from rac-LA to form isotactic stereoblock PLA and leave (S, S)-LA largely

unreacted (at 70�C, kRR/kSS ¼ 20:1). This material exhibited a melting-transition

temperature (Tm) of 187
�C, higher than that of the enantiopure isotactic (S)-PLA or

(R)-PLA (between 170 and 180�C). Since then, more aluminum Schiff base systems

have been developed and exhibit high stereoselectivity in the ROP of LA. For

example, Coates et al. found that complex rac-1b [83, 84] mediates ROP of rac-LA
to give a stereoblock PLA material with a Tm of 179�C, while complex (R, R)-2
[73, 74] reported by Feijen et al. has a moderate polymerization activity but a strong

preference for the polymerization of (S, S)-LA (kSS/kRR ¼ 14) from rac-LA.
In 2004, Chen and co-workers [85] reported that complex 3a exhibits high

isoselectivity in the ROP of rac-LA, generating a stereoblock PLA with a Pm

value of 0.90. Thermal analysis revealed that this stereoblock PLA has a Tm of

201�C. Replacing the ethyl group with the isopropyl group, complex 3b [86]

showed the same isoselectivity and polymerization rate constant as that of 3a. It
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is noted that complex 3b can maintain its high isoselectivity in ROP of rac-LA,
even at high temperature [87]. With increasing polymerization temperature, Tm and

isotacticity of the corresponding PLA materials decreased somewhat (at 130�C,
Tm ¼ 169�C, Pm ¼ 0.84; at 150�C, Tm ¼ 158�C, Pm ¼ 0.82; at 180�C, Tm ¼
155�C, Pm ¼ 0.80). In 2007, Nomura et al. reported the synthesis of Schiff base

aluminum complex 4 [88] with flexible but bulky tBuMe2Si substituents, which

exhibited the highest isoselectivity in the ROP of rac-LA to form isotactic

stereoblock PLA materials with a Pm value of 0.98 and a Tm of 210�C. More

recently, highly active yttrium phosphasalen initiators were reported for the

stereocontrolled ROP of rac-lactide [89]. Changing the phosphasalen structure

enables access to isoselectivities (Pm ¼ 0.84) or hetero-selectivities (Pr ¼ 0.87)

(Fig. 1).

Since the first report of the use of 4-dimethylaminopyridine (DMAP) for

the ROP of lactide in 2001 [90], the field of organocatalysts for ROP has received

much more attention since it provides an alternative to the metal-based catalysts

stereo-controlled ROP of lactides. In 2007 Wade et al. found that a dimeric

phosphazene base stereoselectively produced isotactic PLA from rac-LA
(Pm ¼ 0.95 at �75�C) [91]. Recently, Chen reported that β-isocupreidine (ICD)

was applied in stereoselective ROP of rac-lactide to form an isotactic-enriched

PLA (Pm ¼ 0.74) at room temperature [92].

2.2.2 Formation of Sydiotactic PLA Materials from meso-LA

In 1999, Coates and Ovitt reported the first example of highly syndiotactic PLA

(with syndiotacticity up to 96%) formation from the ROP of meso-LA catalyzed by

chiral aluminum isoperoxide complex (R, R)-1b [93]. Due to the high degree of

stereoregularity, this PLA has a high Tm of 152�C. When catalyzed by achiral metal

complexes through a chain-end-control mechanism, the ROP of meso-LA did not

produce highly stereo-controlled PLAs. For example, β-diketiminate zinc complex

5a [69] afforded syndiotactic PLA with a Pr value of 0.76 and yttrium amido

complex 6 [94, 95] yielded a moderate syndiotactic PLA material with a Pr value

of 0.76.
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2.2.3 Formation of Heterotactic PLA Materials from rac-LA

Coates et al. has developed a new class of β-diiminate zinc complexes 5 [69] for the

synthesis of highly heterotactic PLA (with heterotacticity Pr up to 0.94 at 0
�C) from

rac-LA by alternately incorporating (R, R)- and (S, S)-lactides. The substituents on
the β-diiminate ligand affected both the degree of stereoselectivity and the rate of

polymerization; at 20�C, changing the ligand substituent from isopropyl (5a) to

ethyl group (5b) or to n-propyl (5c) groups resulted in the heterotacticity decreasing
from 0.90 to 0.79 or from 0.90 to 0.76, respectively.

Achiral Salan-type Schiff base aminophenoxide aluminum complexes 7 [96]

reported by Gibson et al. also exhibited a high level of heteroselectivity in the

polymerization of rac-LA. The tacticity of these PLA materials is significantly

influenced by the substituents at the ortho and para positions of the phenol groups

in the complexes. In the presence of benzyl alcohol as an initiator, isotactic PLAs

were obtained when phenoxide groups are unsubstituted (for complexes 7a and 7b,

Pm is up to 0.79), whereas highly heterotactic PLAs were produced when phenoxide

units contain substituents in the ortho and para position (for complexes 7c and 7d,Pr

is up to 0.96) (Fig. 2). The tacticity is also significantly influenced by the substituents

R1 attached to the amino nitrogen donors. Switching from benzylamine derivative

7d to their methylamine analogue 7c decreased the heterotacticity from 0.96 to 0.88.

Exciting advances were made when rare earth metal complexes were applied in

rac-LA polymerizations. For example, lanthanoid complexes 8 [75, 76] reported by

Okuda et al. showed excellent heterotactic-control in rac-LA polymerization and

the heteroselectivity improved as the size of the bisphenolato ligand at the ortho
position increased. Most notably, incorporation of one more carbon atom into the

bridge resulted in the Pr value increasing from 0.78 to 0.95. Carpentier

et al. discovered that yttrium amido complexes 6 [94, 95, 97] also exhibit enhanced

heteroselectivity in the ROP of rac-LA by introducing bulky substituents at the

ortho and para positions of the phenol group and changing the donor group on the

pendant chain from methoxy ether to a dimethyl substituted amine group (Pr up to

0.90 at 20�C). In 2007, Cui et al. [98] also reported a series of THF-solvated achiral
lanthanide alkyl complexes 9 that displayed modest activity but high stereose-

lectivity in the ROP of rac-LA to give highly heterotactic PLA materials with Pr

values ranging from 0.95 to 0.99, the highest value reported to date. Unlike the

other sophisticated stereoselective catalyst systems, Hillmyer et al. developed a

simple but highly stereoselective robust system [99] with a combination of indium

trichloride, benzyl alcohol, and triethylamine to yield highly heterotactic PLA from

rac-LA under a variety of reaction conditions (0.86 < Pr < 0.94 at 25�C,
Pr ¼ 0.97 at 0�C) (Fig. 3).

Some organocatalysts were also shown to be highly heteroselective in the ROP

of lactides. For example, NHC 10a produced isotactic enriched PLA with a Pm

value of 0.83 from ROP of rac-LA at �70�C. With the more bulky phenyl sub-

stituents on the imidazol ligand, NHC 10b yielded a heterotactic PLAmaterial from

rac-LA with a higher Pr value of 0.90 at �70�C (Fig. 3) [100].
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2.3 Furfural and HMF Platform

As furan derivatives, both furfural and 5-hydroxymethylfurfural (HMF) are readily

prepared from renewable biomass. Furfural can be easily obtained from a variety of

biomass containing pentoses, mainly including corn cobs, oats and rice hulls, sugar

cane bagasses, cotton seeds, olive husks and stones, and wood chips. Furfuryl was

first produced in the early nineteenth century and right now the annual production is

300,000 tons [101]. On the other hand, HMF is another major promising furan

derivative due to its rich chemistry and potential availability from hexose carbo-

hydrates or from their precursors such as fructose, glucose, sucrose, cellulose, and

inulin [14].

As two non-petroleum chemicals readily accessible from renewable resources,

both furfural and HMF are suitable starting materials for the preparation of versatile

fine chemicals [14, 102–106] and can also serve as renewable monomers for

preparation of sustainable polymer products [107]. Schemes 3, 4, and 5 depict the

structures of the selected furan-based monomers [107–113]. As a typical precursor,

furfural can be converted to a vast array of furan-based monomers bearing a moiety

which can normally be polymerized by chain-growth polymerization mechanisms

[108–113]. As shown in Scheme 3, these monomers are all readily polymerizable

by chain-growth reactions. However, depending on their specific structure, the

nature of the polymerization mechanism is different, ranging from free radical,

cationic, anionic, to stereospecific initiation [108–113]. On the other hand, furfuryl
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alcohol (FA), which is in fact today the most important commercially available

furan compound, derived from furfural (Scheme 3), is not polymerized by chain-

growth reactions but by self-condensation [108–113]. Turning into materials, FA

has attracted considerable attention in recent investigations aimed at synthesis and

characterization of carbonaceous and other materials [114–129].

HMF is a suitable precursor for the synthesis of bifunctional furan monomers as

summarized in Scheme 4. All these monomers can be used to prepare

polycondensates by step-growth reactions with the other corresponding bifunc-

tional monomers derived either from petrochemical precursors or from renewable

resources. The polycondensates obtained, such as polyesters, polyamides, and

polyurethanes, etc. have been characterized [107–113]. Scheme 5 shows another

approach for the synthesis of bifunctional monomers through acid-catalyzed con-

densation of the corresponding mono-functional furan derivatives with an aldehyde
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or a ketone group. Those monomers can also be polymerized by step-growth

reactions and the corresponding polymeric materials have been explored

[108–113].

The transformation of furfural or HMF to selected fine chemicals and monomers,

as well as the characterization and polymerization of the corresponding renewable

monomers, have been well documented by several comprehensive reviews

[107–113, 130, 131]. Among these, Gandini et al. recently wrote reviews on this

topic almost every other year. Therefore the synthesis of the furan-based monomers

and the corresponding polymers are not covered in this review. With the presence of

the reactive furfuryl group, furan-based polymers can form thermally amendable

cross-linked polymers through the Diels–Alder (DA) reaction using a suitable

dienophile. Here we will concentrate our attention on bio-based furan polymers

with self-healing abilities prepared by DA reactions, a prosperous research area

which has been exploited recently.

The DA reaction is one of the most important reactions in organic chemistry.

The DA reaction between a diene and a dienophile forms covalent bonds which

could be cleaved upon heating due to the thermoreversibility of the DA reaction

(Scheme 6). Therefore, the DA reaction could be utilized for the preparation of

self-healing polymers with well-defined architectures and properties. The most

appealing part is that the healing process could be initiated simply by increasing

the temperature without addition of chemical or healing reagents and theoretically

the repetition number of such a healing process could be infinite. One of the most

frequently used systems involves the furan/maleimide pair [132–135].

In 1969, Craven reported the first example of the DA reaction with the furan/

maleimide system [136]. He synthesized polymers which consisted of chains of the

saturated condensation polymer backbone bearing the furan group reacted with

maleimides. Since then several patents and papers have been published, all

concerning the fabrication of a thermally reversible polymer network bearing

DA-reactive furan and maleimide units, either as pendant groups (for reversible

cross-linking) [137–147], or as part of the polymer backbone (for reversible

polymerization) [148–154].

Moreover, the DA chemistry was widely applied in polymer science as well as

materials science [138–143, 155]. Wudl et al. utilized a tetra-furan (4F) and a tris-

maleimide (3M) to produce a clear solid DA-step-growth polymer (3M4F)

[156]. The occurrence of the rDA reaction at ca. 120�C and the healed polymer

exhibited ca. 57% of the original polymer strength. Subsequently, an improved

system of 2MEP4F constructed from the DA reaction between 4F and 2MEP

(1,8-bis(maleimido)-1-ethylpropane) was developed, which exhibited crack-

healing with as much as 83% recovery of the polymer’s original strength [157].

O
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O N
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cooling (DA)

heating (rDA)

Scheme 6 Diels–Alder

equilibrium in furan/

maleimide system
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Singha et al. reported DA cross-linked products [158] using furan-modified

polymethacrylate (PFMA) as the polymeric precursor, which was prepared through

atom transfer radical polymerization (ATRP) and free-radical polymerization

(FRP). Furthermore, the self-healing behavior of a triblock copolymer (PFMA-

co-MMA) prepared by ATRP was demonstrated by means of scanning electron

microscopy (SEM). With the modification, an almost fully recovered surface from

knife-cut samples has been observed [159]. Chen et al. also reported the DA

polymer product of PFMA-BM possessing thermal reversibility, whereas the homo-

polymer was prepared from anionic polymerization [160].

Furthermore, Schubert et al. synthesized new monomer maleimide methacrylate

(MIMA) (Scheme 7), which can be copolymerized with MMA and FMA to form

linear self-healing polymers with a methacrylate-based backbone containing the

two corresponding functionalities, both furan and maleimide units, for the DA

reaction in the side chain. No additional crosslinker is required to obtain a self-

healing polymeric material, which represented the first one-component self-healing

material and the healing process could be repeated multiple times [161].

Most recently, Yoshie and co-workers reported the first example of room-

temperature-healable network polymers [162], prepared by the DA reaction

between a bio-based furan polymer, poly(2,5-furandimethylene succinate, PFS,

and a bismaleimide. The mechanical properties of these network polymers can be

controlled over a wide range by adjusting the bismaleimide content and self-healing

efficiency was as high as 74%, whereas in most of the previous reports, higher

efficiencies were achieved at higher temperatures. In a subsequent publication

[163], using a similar approach, a series of bio-based self-healing polymers were

prepared to investigate the effectiveness of molecular structure of the bismaleimide

on the DA reaction and the mechanical and healing properties of the resulting

polymers (Scheme 8).

The DA reaction has also been used in thermoreversible non-linear polymeriza-

tion and dendrimer chemistry [164] as well, for assembly [165, 166] or periphery

modification [167–169], representing a facile example of covalent structural mod-

ification. McElhanon et al. reported the first thermally labile-reassembling DA

dendrimer, which exhibited roughly 40% dissociation of the DA links after 1 h at

110�C and full restoration of the original structure upon cooling to 65�C over a

couple of days [170]. Adopting this approach, McElhanon et al. also prepared the

first through fourth generation dentrimers (Scheme 9), which were found to

undergo thermal degradation at 95�C and thermal reassembly at 60�C
[171]. Since then, a number of related polymer systems have been reported

[172–178].
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Most recently, the use of two click-chemistry mechanism was introduced to

build up thermally reversible dendronized step-polymers. In 2010, McElhanon

et al. reported the preparation and characterization of first through third generation
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linear AA–BB dendroid step-polymers [179] from monomers derivatized by the

azide-alkyne Huisgen 1,3-dipolar cycloaddition and then polymerized by the furan-

maleimide DA reaction. These materials represent the first examples of linear

covalent dendroinized polymers with thermal reversibility. In the following report,

AB dendronized step-polymers derivatized by the Cu(I)-catalyzed azide-alkyne

cycloaddition and polymerized by the furan-maleimide DA reaction were prepared

and characterized [180]. These materials represent the first example of thermally

reversible dendronized polymers originating from a single monomeric species.

2.4 Levulinic Acid Platform

Levulinic acid has been of interest for many years because it can be converted to

valuable chemicals [181]. The biorefining renewable process was developed on an

industrial scale for the production of levulinic acid from cellulose and hemicellu-

loses present in agricultural or forest residues [182, 183]. A kinetic study of glucose

conversion to levulinic acid in H2SO4 solutions was performed to study the

influence of various reaction parameters [184]. The biomass-derived renewable

monomer γ-methyl-α-methylene-γ-butyrolactone (γMMBL) can be readily pre-

pared via a two-step process developed by DuPont [181, 185] from levulinic acid,

which is produced at 450 tons/year [186]. Its homologous compound α-methylene-

γ-butyrolactone (MBL) is also a renewable monomer, so-called Tulipalin A, found

in tulips [187, 188]. Chemically, MBL can also be produced from biomass sugar-

based itaconic anhydride [189]. The β-methyl derivative, β-methyl-α-methylene-γ-
butyrolactone (βMMBL), is currently prepared by a multi-step synthesis [190, 191],

but can be potentially prepared from condensation of 3-methyl-γ-butyrolactone,
available from hydrogenation of the biomass-derived itaconic acid [192], with

formaldehyde [193]. In this context, renewable butyrolactone-based vinylidene

monomers, such as MBL, γMMBL, and βMMBL, are of particular interest in

exploring the prospects of substituting the petroleum-based methacrylate mono-

mers for specialty chemicals and polymers production [194, 195]. Structurally,

MBL can be described as the cyclic analogue of MMA (methyl methacrylate)

(Scheme 10); however, it exhibits greater reactivity in free radical polymerization
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[196] than typical methacrylate monomers such as MMA due to the presence of

both the nearly planar five-membered lactone ring, which provides a high degree of

resonance stabilization for the active radical species, and the higher energy exocy-

clic C¼C double bond, as a result of the ring strain and the fixed s-cis conformation

[197]. The cyclic ring in MBL also imparts significant enhancements to the

materials properties of the resulting PMBL (Scheme 10), as compared to PMMA,

thanks to the conformational rigidity of the polymer chain through incorporation of

the butyrolactone moiety. Thus, the Tg of PMBL produced by the radical polymer-

ization is 195�C [198], which is about 90�C higher than that of atactic PMMA.

Additionally, PMBL has improved optical properties as well as resistance to

solvents, heat, and scratching [199–201]. Some of these materials property

enhancements have also been observed for γMMBL [193, 202, 203].

Various types of polymerization processes have been adopted to polymerize

MBL to polymers with low to high molecular weight, proceeding through radical

polymerization [196–198, 204–207], anionic polymerization [198], group-transfer

polymerization [208], and coordination polymerization with metallocene com-

plexes [202]; MBL has been copolymerized with various comonomers [197] such

as MMA [209], styrene [206, 210], methoxystyrene [211], and vinyl thiophenes

[212]. The polymerization of γMMBL has not been studied as extensively as MBL;

nevertheless, it has also been polymerized by free-radical emulsion polymerization

[213, 214] as well as by radical, anionic, and group-transfer polymerization

methods [215]. Free radical copolymerizations of γMMBL with MMA and styrene

have been investigated in detail through photoinitiation using the pulsed laser

polymerization/size exclusion chromatography technique [216, 217]. Recently

reported literature for the polymerization of γMMBL included: coordination

polymerization with metallocene complexes [202, 203], half-sandwich indenyl

rare-earth metal dialkyls [218], ansa-rare-earth metal catalysts [193], and group

4 non-metallocene benzyl complexes [219], group-transfer polymerization with

bifunctional silicon propagators [220] and dinuclear silylium-enolate bifunctional

catalysts [221], anionic polymerization with potassium salts (KH/Al(C6F5)3) [222],

and zwitterionic polymerization with N-heterocyclic carbenes [223, 224] and alane-
based classical and frustrated Lewis pairs [225, 226]. Several patents were filed

based on MBL/γMMBL/βMMBL polymerization, copolymerization, and their

applications [201, 227–229], for example, as plastic optical fiber materials, due to

their excellent transparency and heat resistance [230]. βMMBL was initially poly-

merized radically to atactic materials [190] but more recently through metal-

catalyzed coordination polymerization to highly stereoregular (isotactic) materials

[191, 193, 203]. Stereoselective polymerization of βMMBL into stereo-defect-free

PβMMBL by single-site chiral metallocene catalysts [203] that are known to

promote stereospecific coordination polymerization of polar vinyl monomers

[231] has also been reported.

Based on the above overview, there is abundant research on the polymerization

of MBL-containing compounds including several comprehensive reviews

[81, 232]. Here we will focus on the recent advances in this field during the last

5 years.
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2.4.1 Polymerizations of MBL, γMMBL, and βMMBL by Rare Earth

Metal Complexes

The first metal-catalyzed coordination polymerization of MBL and γMMBL was

reported in 2010 [202] using neutral divalent lanthanocene(II) Cp*2Sm(THF)2 (11,

Cp* ¼ η5-C5Me5) [233] and trivalent non-lanthanocene(III) complexes Ln[N

(SiMe3)2]3 (Ln ¼ La, Nd, Sm, Er) [234] (Fig. 4). Samarocene(II) complex 11

catalyzes rapid, efficient, and controlled coordination polymerization of MBL and

γMMBL in DMF at RT, as demonstrated by its high turnover frequency (TOF) of up

to 3,000 h�1, typically near quantitative initiator efficiency, and its ability to control

the polymer MW with the monomer-to-catalyst ratio or monomer conversion.

The resulting atactic PMBL and PγMMBL exhibit high Tg of 194 and 227�C,
respectively, and PγMMBL also shows greatly enhanced thermal properties. More

remarkably, the Tg and onset decomposition temperatures of the PγMMBL are ~120

and 40�C higher than that of the atactic PMMA with comparable MW. Thanks to

the living/controlled characteristics of this polymerization, defined random and

block copolymers of MBL with MMA and MMBL can be readily synthesized

through statistical and sequential block copolymerization procedures.

Kinetic studies revealed that the polymerization by Cp*2Sm(THF)2 is zero-order

in [γMMBL] and second-order in [catalyst], as a result of two samarium centers

working in tandem to produce one polymer chain. This result, coupled with the

polymerization initiator efficiency result, which also pointed to the bimetallic

nature of the propagation, conforms to the proposed MMA polymerization mech-

anism by the same divalent catalyst involving a redox-then-radical-coupling initi-

ation process, with the true active species being the two trivalent samarocene

centers attached to the single growing polymer chain.

The MBL polymerization by non-lanthanocene(III) silylamides, Ln[N

(SiMe3)2]3 (Ln ¼ La, Nd, Sm, Er), is much slower (>130 times) than the poly-

merization by Cp*2Sm(THF)2. The polymerization by these lanthanide silylamides

is also ill-controlled and can involve more than one silylamide ligand in chain

initiation.

Subsequently, the characteristics of MBL, γMMBL, and βMMBL polymeriza-

tions were investigated by discrete half-sandwich rare-earth metal (REM, which

includes lanthanides and group 3 metals) dialkyl catalysts [191, 218] incorporating

the disilylated indenyl ligand, (1,3-(SiMe3)2C9H5)RE(CH2SiMe3)2(THF) [RE ¼
Sc, 12 [235]; Y, 13 [236]; Dy, 14 [236]; Lu, 15 [236]] (Fig. 4). All four half-

sandwich REM dialkyl catalysts investigated are extremely active for polymeriza-

tion of γMMBL in DMF. Specifically, these catalysts can achieve a quantitative

monomer conversion in DMF in <1 min with a catalyst loading of 0.20 mol%,

giving a high TOF > 30,000 h�1 for this catalyst system, which is at least ten times

higher than the sandwich REM catalyst Cp*2Sm(THF)2 [202]. The polymerization

in DCM is slower, but all catalysts can achieve a quantitative monomer conversion.

The activity trend of Dy � Y > Lu > Sc is the same for both MBL and γMMBL

polymerizations: the largest Dy and Y metals are most active, whereas the smallest
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Sc catalyst is least active, with the Lu catalyst lying somewhere in the middle. The

PγMMBLs produced are syndio-rich atactic materials with high Tg values ranging
from 217 (by Sc) to 222�C (by Lu).

Kinetic experiments using the Dy catalyst have revealed a first order dependence

on [γMMBL] but a second-order dependence on [Dy], indicating a bimolecular

propagation involving two Dy metal centers in the rate-limiting C–C bond-forming

step. Each metal center can carry more than one polymer chain and grow only one

at a time, which originated from initiation with both alkyl groups on the metal and

the first-order dependence on the monomer. The polymer has a structural formula of

Me3SiCH2-(γMMBL)n-H and has been characterized by MALDI-TOF mass spec-

trometry, whereas the more-than-one-chain-per-metal scenario has been evidenced

by the results of NMR studies and by typically greater or much greater than 100%

catalyst efficiencies.

Half-sandwich RE dialkyl complexes 12–15 also promote rapid polymerization

of βMMBL at ambient temperature [191]. The complex of Dy, the largest ion of this

Ln series, exhibits the highest activity, thus achieving nearly quantitative polymer

yield (97%) within 1 min of reaction that employs a low loading of catalyst

(0.25 mol%), corresponding to a high TOF of 390 min�1. More significantly, this

highly active coordination polymerization system also affords the highly stereo-

regular polymer βMMBL having an isotacticity of 91.0% mm, in contrast to the

atactic polymer produced by radical polymerization initiated by AIBN. Other half-

sandwich RE catalysts of the current series are also highly active and produce

polymers with a similarly high isotacticity. The resulting isotactic PβMMBL is

thermally robust, with a high Tg of 280
�C, and is resistant to all common organic

solvents at ambient or elevated temperatures.

Intriguingly, simple homoleptic hydrocarbyl RE complexes, RE

(CH2SiMe3)3(THF)2 (RE ¼ Sc, Y, Dy, Lu), also produce highly isotactic polymer

PβMMBL. However, their polymerization activity is much lower than that of the

corresponding half-sandwich dialkyl complexes, with the exception of the Lu

complex, which maintains its high activity for both types of complexes.

Computational studies [191] of both half-sandwich and simple hydrocarbyl

yttrium complexes have led to a stereocontrol mechanism that well explains the

observed high stereoselectivity of βMMBL polymerization by the current catalysts.

Concisely, in the proposed monometallic propagation mechanism, formation of an

isotactic polymer originates chiefly from interactions between the methyl groups on

11
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Fig. 4 Divalent lanthanide(II) and trivalent rare-earth (RE) metal complexes employed for initial

investigation of coordination polymerization of MBL, γMMBL, and βMMBL
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the chiral β-C atom of the five-membered ring of both the monomer and the last

inserted βMMBL unit of the chain, and the auxiliary ligand on metal exerts a

negligible contribution to the stereocontrol exhibited by the current half-sandwich

RE complexes. This mechanism is in good agreement with the current experimental

results and is further supported by the above-mentioned results in that the coordi-

nation polymerization of MBL and γMMBL, catalyzed by the same half-sandwich

RE dialkyl complexes under the same reaction conditions, yields essentially atactic

polymers.

Bridged ansa-REM complexes have also been employed for the coordination

polymerizations of MBL, γMMBL, and βMMBL [193], including ethylene-bridged,

NHC-functionalized half-sandwich C2H4(Flu-NHC)RE(CH2SiMe3)2 (RE ¼ Y, 16;

Lu, 17) [237] and C2-symmetric ansa-samarocene 18 [238]. Ansa-REM complexes

16, 17 exhibited exceptional activity for the polymerization of racemic γMMBL at

room temperature in DMF, achieving 100% monomer conversion in <1 min with a

high TOF of >24,000 h�1. This TOF value represents a rate enhancement, by a

factor of 8, 22, or 2,400, over the polymerizations by unbridged samarocene 11

[202], bridged ansa-samarocene 18, or the corresponding REM trialkyls without the

ansa-Flu-NHC ligation [202], respectively. Kinetic experiments have revealed the

first-order dependence on both [monomer] and [catalyst], thus establishing

unimolecular propagation for this coordination polymerization, which is in sharp

contrast to the bimolecular and bimetallic propagation mechanism for Cp*2Sm

(THF)2 and [η5-(1,3-(SiMe3)2C9H5)]-RE(CH2SiMe3)2(THF) systems, respectively.

More significantly, catalyst 16 is also highly active for the polymerization of

racemic βMMBL at room temperature. The resulting PβMMBL is highly stereo-

regular (91% mm). This material is thermally robust and resistant to common

organic solvents at ambient or elevated temperature, and exhibits an extremely

high Tg of 290
�C.

2.4.2 Polymerizations of MBL, γMMBL, and βMMBL by Group

4 Metallocene Catalysts

The polymerizations of MBL, γMMBL, and βMMBL by cationic group

4 metallocene and half-metallocene catalysts incorporating C2 and Cs symmetric

ligands [203, 210] were also investigated. Figure 5 depicts the structures of such

catalysts, including the C2v-ligated two-component catalyst system 19 consisting of

the neutral zirconocene Cp2ZrMe[OC(OR) ¼ CMe2] [239, 240] as initiator and the

cationic zirconocene Cp2ZrMe+MeB(C6F5)3
� [241] as catalyst, Cs-ligated titanium

complex {(CGC)Ti(THF)[OC(OiPr) ¼ CMe2]}
+ MeB(C6F5)3

� [20, CGC ¼
Me2Si(η

5-(Me4C5)(
tBuN)] [242], Cs-ligated zirconocene catalyst {[( p-Et3SiPh)2C

(Cp)(2,7-tBu2-Flu)]Zr[OC(O
iPr) ¼ CMeCH2C(Me2)C(O

iPr) ¼ O]}+[B(C6F5)4]
�

(21) [243], as well as C2-ligated zirconocenium catalysts, rac-(EBI)Zr+(THF)[OC
(OiPr) ¼ CMe2][MeB(C6F5)3]

� [22, EBI ¼ C2H4(η
5-indenyl)2] [244, 245],

and rac-(EBDMI)Zr+(THF)[OC(OiPr) ¼ CMe2][MeB(C6F5)3]
� [23, EBDMI ¼

C2H4(η
5-4,7-dimethylindenyl)2] [203]. Coordination-addition polymerization of
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acrylic monomers by cationic group 4 metallocenium catalysts is typically carried

out in hydrocarbons such as toluene and polar non-coordinating solvents such as

CH2Cl2, whereas polar coordinating solvents such as THF and DMF usually shut

down the polymerization [231]. Owing to the insolubility of P(M)MBL in toluene

or CH2Cl2, polymerization of (M)MBL by group 4 catalysts in such solvents

proceeds in a heterogeneous fashion, thereby negatively impacting the catalyst

activity and control over the polymerization. Compared to the REM catalysts the

MBL and MMBL polymerizations by group 4 metallocene catalysts show low

monomer conversion or need longer times to get quantitative yields. In addition,

unlike the precision polymerization of MMA by the various types of group

4 metallocene complexes, MBL and γMMBL polymerizations are neither con-

trolled nor stereospecific.

However, most remarkably, polymerization of βMMBL in CH2Cl2 produced a

highly isotactic polymer (mm ¼ 95.2%) by 23 or a perfectly isotactic polymer

(mmmm > 99%) by 22 [203]. It is striking that the same chiral catalysts MBL and

γMMBL into stereo-random polymers, but polymerized βMMBL into highly iso-

tactic or perfectly isotactic polymers. Computational studies on the competitive

monomer addition transition-state geometries have revealed that steric interactions

involving the monomer, the chain, and the catalyst ligand are responsible for

achieving or lacking the observed stereocontrol [203]. Calculations indicate that

for the R,R-ligated EBI catalyst the R chain clearly favors addition of another

R βMMBL molecule on the re-face of the chain, while the S chain clearly favors

addition of another S βMMBL molecule on the si-face of the chain. As the

calculation yielded a high re over si and R over S selectivity for an R chain, and a

high si over re and S over R selectivity for an S chain, the resulting PβMMBL should

display a high regularity in the sequence of the configurations of the chiral β-C atom

of the five-membered ring and should be highly isotactic. In fact, for both chains the

calculated ΔEstereo were about 4 kcal/mol, which corresponds to >99% of mmmm
pentads at 25�C, in agreement with the experimental results. In contrast, in the case
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of MBL or γMMBL addition such steric interactions become negligible, thus

rendering the polymerization non-stereoselective by these catalysts.

2.4.3 Living Polymerization of MBL and γMMBL by Ambiphilic

Silicon Propagators

A highly active bifunctional propagating species for efficient living/controlled

(meth)acrylate polymerization has been developed by instantaneous oxidative

activation of trialkylsilyl methyl dimethylketene acetal (RSKA, Me2C ¼ C(OMe)

OSiR3) initiators [246, 247], which are commonly employed in the conventional

GTP [208, 248, 249], but both chain initiation and propagation are fundamentally

different from those steps of GTP. This ambiphilic silicon catalyst system has

consequently been applied to the MBL and γMMBL polymerization [220]. Specif-

ically, the initiation is uniquely “monomer-less,” which involves vinylogous

hydride abstraction of RSKA by Ph3C
+, leading to the R3Si

+-activated MMA (i.e.,

activation of the initiator simultaneously generates the silylium catalyst and the

activated monomer); subsequent Michael addition of RSKA to the silylated MMA

generates the bifunctional active propagating species A (Scheme 11). The chain

propagation consists of a fast step of recapturing the silylium catalyst from the ester

group of the growing chain by the incoming monomer, followed by a rate-

determining step (r.d.s.) of C–C bond coupling via intermolecular Michael addition

of the polymeric SKA to the silylated monomer. Investigations into the effects of

SKA and activator structures found that the Me2C ¼ C(OMe)OSiiBu3/[Ph3C][CB

(C6F5)4] combination is the most active and best controlled system for MBL and

γMMBL polymerizations. The polymerization of MBL in CH2Cl2 is heterogeneous

and achieves typically low yields of polymers with bimodal MWDs. Thanks to the

solubility of PγMMBL in CH2Cl2, the living/controlled polymerization of γMMBL

is homogeneous with the quantitative yield obtained in 10 min even with a low

catalyst loading of 0.05 mol%. The controlled low to high (Mn ¼ 5.43 � 105 kg/

mol) MW and narrow MWDs (1.01–1.06) were obtained depending on the

[γMMBL]/[iBuSKA] ratio. The copolymerization approach of MBL and γMMBL

not only confirmed the living nature of this system but also solved the insolubility

and bimodality issue of PMBL, which successfully leads to the well-defined

MBL-containing copolymers.

In order to overcome some limitations of the bimolecular, activated monomer

propagation mechanism (Scheme 11), such as limitations on polymerizations under

highly dilute initiator or catalyst conditions and on the stereochemical control of

polymerization, two types of di-SKA compounds (24, 25) having different linkages

have been synthesized (Scheme 12) [221]. Their activation chemistry for the

generation of the corresponding dinuclear silylium-enolate active species 26 and

27 (Scheme 12) and investigation of their behavior in the polymerization of

γMMBL have been examined as well. The kinetics study identified that this
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polymerization system is consistent with an intramolecular Michael addition prop-

agation mechanism depicted in Scheme 12. Specifically, this unimolecular process

involves propagating intermediate C, formed by an intramolecular delivery of the

polymeric enolate nucleophile to the monomer activated by the silylium ion

electrophile in the same silylium-enolate active species B. The first-order depen-

dence on [M] also implies that the release of the silylium catalyst from its coordi-

nation to the penultimate ester group of the growing polymer chain (i.e.,

intermediate C) to the incoming monomer is a rate-determining step. Both the

ethyl-and oxo-bridged dinuclear species are much more active for the polymeriza-

tion of MMA than the mononuclear SKA-based active species. The oxo-bridged

silylium-enolate species is considerably more active and controlled than the ethyl-

bridged one. The activity difference between these two dinuclear systems is even

greater for the polymerization of γMMBL with the TOF of 27 being about 6.7 times

higher than that of 26.
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2.4.4 Conjugate-Addition Organopolymerization by N-Heterocyclic

Carbenes

N-Heterocyclic carbenes (NHCs), used as organocatalysts, have received great

interest due to their unique reactivity and selectivity observed in many different

types of organic reactions (for selected recent reviews see [250–261]. More

recently, NHC-mediated reactions have also been employed for polymer synthesis

([262–264]; for selected reviews see [20, 265–267]), especially in the ROP of

heterocyclic monomers, such as lactides [268–272], lactones [273–276], epoxides

[277–279], cyclic carbonates [280], cyclic siloxanes [281, 282], and N-carboxyl-
anhydrides [283, 284]. NHC-mediated step-growth polymerization has also been

reported [285–287].

Using three common NHCs of vastly different nucleophilicity as organocatalysts

– ItBu (1,3-di-tert-butylimidazolin-2-ylidene), IMes (1,3-di-mesitylimidazolin-2-

ylidene), and TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) – and

two representative acrylic monomers – the linear MMA and its cyclic analog,

biomass-derived renewable γMMBL – Chen et al. thoroughly investigated the

mechanisms of chain initiation, propagation, and termination of NHC-mediated

organocatalytic conjugate-addition polymerization of acrylic monomers [223,

224]. It is noted that there exists three types of reactions between different NHCs

and MMA (Scheme 13): dimerization (tail-to-tail) by TPT (A), enamine formation

(single-monomer addition) by IMes (B), and polymerization by ItBu (C). However,

for MMBL all three NHCs promote polymerization but no dimerization, with the

polymerization activity being highly sensitive to the NHC structure and the solvent

polarity. ItBu is the most active catalyst of the series and converts quantitatively

1,000–3,000 equiv. of MMBL in 1 min or 10,000 equiv. in 5 min at room

temperature to MMBL-based bioplastics with a narrow range of molecular weights

ofMn ¼ 70–85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed as long as

it is larger than 800. The ItBu-catalyzed MMBL polymerization reaches an excep-

tionally high TOF up to 122 s�1 and a high initiator efficiency value up to 1,600%.

The production of relative high molecular weight linear polymers and the catalytic

nature of this NHC-mediated conjugate-addition polymerization are attributed to

the unique chain-termination mechanisms. Computational studies have provided

mechanistic insights into reactivity and selectivity between two competing path-

ways for each NHC-monomer zwitterionic adduct, namely enamine formation/

dimerization through proton transfer vs polymerization through conjugate addition.

2.4.5 Zwitterionic Polymerization by Classical and Frustrated Lewis

Pairs

The seminal works [288–294] of Stephan and Erker uncovered the concept of

“Frustrated Lewis Pairs” (FLPs) to describe sterically encumbered borane Lewis

acid (most commonly B(C6F5)3) and base (e.g., tBu3P) pairs that are sterically
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precluded from forming classical donor-acceptor adducts. Instead, the unquenched,

opposite reactivity of FLPs can carry out unusual reactions or reactions that were

previously known to be possible only by transition metal complexes [295]. The first

polymerization of polar vinyl monomers such as MBL and γMMBL directly using

FLPs was reported in 2010 [225]. Highly active and effective LPP systems for

polymerization of MBL and γMMBL have been achieved with classical and

frustrated LPs based on the strong Lewis acid Al(C6F5)3. Subsequently, a full

account of combined experimental and theoretical study on Lewis Pairs polymer-

ization (LPP), including experimental investigations into LA, LB, and monomer

scopes and computational study of active species formation and polymerization

mechanism were presented [226, 296]. As showed in Scheme 14, the zwitterionic

phosphonium or imidazolium enolaluminate species are the active propagating

species because they rapidly polymerize the subsequently added monomer. The

structures of such active species derived from the stoichiometric reaction of the FLP

with MMA (28) and MBL (29) have been isolated, characterized by NMR, and

confirmed by X-ray diffraction analysis [226]. Both experimental and computa-

tional results indicated that the bimetallic mechanism involves addition of a LA

activated monomer to the zwitterions.

2.5 Sorbitol Platform

Sorbitol is a fine chemical with a wide range of applications, such as cosmetics,

food, medicine, and others [297–299]. It is derived from hydrogenation of glucose,

and industrial production is ca. 700,000 tons per year [300]. Most of the industrial
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processes rely on batch-type hydrogenation with Raney nickel catalysts [300].

A disadvantage of the use of skeletal nickel in the hydrogenation of glucose-

containing feedstocks to sorbitol is the fact that some of the nickel leaches.

To generate non-leaching catalyst systems, ruthenium on carbon catalyst systems

were developed and used for sorbital production in >99% yield [301, 302]. Very

recently, sorbitol was reported to be synthesized directly from cellulose via C–C

and C–O bond cleavage in so-called hydrogenolysis reactions over supported metal

catalysts [303].

Isosorbide, 1,4:3,6-dianhydro-D-glucitol, also attracted increasing research inter-

est due to its potential industrial applications such as the preparation of isosorbide

nitrates used in cardiac or vascular disease and the preparation of alkyl derivatives

used as solvents in pharmaceutical or cosmetic compositions. Several reports

described conversion of sorbitol to isosorbide through double dehydration from

sorbitol [304]. For example, the dehydration of sorbitol in the presence of acidic

zeolites afforded isosorbide in 50% yield [305] (Scheme 15). The sulfated copper

oxide was employed to convert sorbitol to isosorbide in 67% yield at 200�C
[306]. More recently, a two-step sequential process was developed, in that cellulose

was first depolymerized with Ru/NbOPO4-pH2 catalyst by hydrolysis, followed by

hydrogenation, and then the resultant sorbitol and sorbitan were directly converted

into isosorbide in 56.7% yield in the presence of the same solid acid catalyst

NbOPO4-pH2 [307]. Moreover, this system avoids using liquid acid and exhibits

excellent cycling stability, factors that are important for industrial isosorbide

production.

In addition, isosorbide and other 1,4:3,6-dianhydrohexitols (isomannide derived

from D-mannose, isoidide derived from L-fructose) are also attractive to serve as

monomers for polymer production due to their rigidity, chirality, and non-toxicity

(Fig. 6). Such features may introduce special properties into the polymers formed,

such as enhanced Tg and/or special optical properties. Their innocuous nature also
opens the possibility of applications in packaging or medical devices. As a bifunc-

tional monomer, isosorbide can be polymerized with other bifunctional monomers

via condensation polymerization. A recent review described various isosorbide-

based polymers synthesized, including polyesters, polyamides, poly(ester amide)s,

poly(ester imide)s, polycarbonates, polyurethanes, and so on [308], and the present
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review focuses on recent literature related to the use of isosorbide as a (co)monomer

for the synthesis of novel polymers with unique properties.

Oligo(isosorbide adipate) (OSA), oligo(isosorbide suberate) (OSS), and

isosorbide dihexanoate (SDH) were synthesized by reaction of isosorbide with

the corresponding diacids and evaluated as renewable resource alternatives to

traditional phthalate plasticizers. The blends plasticized with SDH had properties

almost identical to PVC/diisooctyl phthalate (DIOP) blends. Compared to the

PVC/DIOP or PVC/SDH blends, the blends containing OSA and OSS plasticizers

based on dicarboxylic acids had somewhat lower strain but higher stress at break

and better thermal stability. All the synthesized isosorbide plasticizers have been

developed as an alternative to replace phthalates [309].

Through a simple catalyst-free, one-shot polymerization, biocompatible

and biodegradable polyurethanes (Scheme 16) were prepared with a fixed aliphatic

diisocyanate level and varying ratios of isosorbide and PCL diol (Mw ¼
2,000 g/mol) [310]. In order to avoid the potential toxicity, catalysts were not

used. The mechanical properties, degradation rate, and cytocompatibility were

measured, which in general correlated with the isosorbide to PCL diol ratio.

It turned out that these biodegradable polyurethanes can serve as promising mate-

rials for cardiovascular, trachea, and bladder applications [311].

Besides aliphatic diisocyanates, an aromatic isocyanate was also used to prepare

polyurethanes. A new renewable copolymer (Scheme 17) was synthesized from

reactive bis-hydroxylated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) oligo-

mers (PHBHV-diol), isosorbide, and 1,4-phenylene diisocyanate. The molar

number-average molecular weights (Mn) of most of the copolyesters were about

10,000 g/mol with polydispersities (PDI) in the range 1.2–1.9. The incorporation of

isosorbide units into the PHBHV backbone increased the Tg from 5�C to

34�C [312].

However, isocyanate reactants are very toxic and could entail adverse health

effects such as asthma, dermatitis, conjunctivitis, and acute poisoning [313]. Hence,

the synthesis of isocyanate-free polyurethanes is of great interest. Accordingly, an

isocyanate-free method and new synthesis procedure has been developed to prepare
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isosorbide-based polyurethanes [314]. In this new procedure, isosorbide was

functionalized with glycidyl ether groups to produce functionalized oligoiso-

sorbides, which were carbonated using mild conditions with a total conversion.

Then polyhydroxyurethanes (PHUs) (Scheme 18) were synthesized by a

cyclocarbonate-aliphatic amine step growth polyaddition with different diamines.

This reaction was found to be very effective as the reaction of cyclocarbonate

groups is completed within 12 h. Linear and branched PHUs were obtained with Tg
values in the range �8 to 59�C, and low Tg PHUs are suitable for coatings

application. An acceptable thermal stability (Td between 234 and 255�C) was

determined via TGA for all PHUs. This work demonstrates the easy synthesis of

new biobased PHUs with ether bonds and with isosorbide as the hard segment.

Interestingly, the carbon dioxide and secondary amines were released by the

degradation of PHUs. Non-isocyanates were detected during thermal degradation.

Choices of other aliphatic biobased diamines, shorter ones like C5 or longer ones

like C36, will allow for preparation of harder or softer PHUs.

A combination of ROP and polycondensation in a “one-pot procedure” using the

same catalysts, such as SnCl2, ZnCl2, or Zn-lactate was proven feasible to produce

the copolymers of isosorbide, lactide, and isophthalic acid (Scheme 19). High

weight average molecular weights (Mws, in the range 60–95 kg/mol) were obtained

and Tg values were up to 160 or 199�C for copolyesters or homopolyesters from

isosorbide, respectively. Variation of the lactide content allows for systematic
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variation of the Tg over a broad temperature range (from 87 to 199�C). Differential
thermoanalysis demonstrated that the thermostability decreases with higher frac-

tions of lactide, but processing from the melt seems to be feasible up to tempera-

tures of 260�C without risking degradation [315]. The SnCl2-catalyzed ROPs of

isosorbide and L-lactide combined with polycondensation of terephthaloyl chloride

in a “one-pot procedure” were also reported by the same authors (Scheme 19)

[316]. Mw values in the range 80–130 kg/mol were obtained. On average, these

values were higher than those achieved under identical conditions with isophthaloyl

chloride [315]. This difference may be ascribed to a lower cyclization tendency of

the repeat units based on terephthalic acid. The Tgs were higher than those reported
for analogous polyesters of isophthalic acid, but the difference disappeared when

the isosorbide/L-LA ratio decreased to 2/8 [315]. The successful incorporation of

phenyl phosphate resulted in copolyesters of lower inflammability. Several authors

reported the syntheses of terephthalic acid from renewable resources

[317–319]. Hence, this type of copolyester could potentially be synthesized by

100% biomass derived monomers.
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2.6 Dicarboxylic Acids Platform

In 2004, the US Department of Energy (DOE) identified 12 building block

chemicals that can be produced from carbohydrates or sugars via biological or

chemical conversions [320]. Most of them are bifunctional dicarboxylic acids. The

structures of five dicarboxylic acids containing different numbers of carbon are

depicted in Fig. 7, including succinic acid, aspartic acid, glutamic acid, itaconic

acid, and glucaric acid. The following section presents the preparation and appli-

cation of such dicarboxylic acids as bifunctional monomers for polymer synthesis.

Nowadays, the bulk of succinic acid (SA) is produced at a rate of 25,000 tons

per year from maleic anhydride obtained by oxidation of the C4 fraction (n-butane
or butadiene) of crude oil [321]. However, the biotechnological production of

SA by fermentation of carbohydrates has attracted more recent attention (http://

www.dsm.com/en_US/downloads/media/12e_09_dsm_and_roquette_commercialize_

bio_based_succinic_acid.pdf, http://www.bio-amber.com/press_releases.php, [322–

326]). The economic and environmental analysis of a biorefinery producing SA

indicated that bio-SA is a promising intermediate provided that its production cost

could be lowered further [322].

SA is of great interest as a platform chemical for polymer production

[327]. Besides serving as monomer, SA could also be converted to other monomers

in the following four classes: (1) acyclic O-containing: 1,4-butanediol, SA esters;

(2) acyclic O,N-containing: 1,4-butanediamine, succinamide, succinonitrile;

(3) cyclic O-containing: tetrahydrofuran (THF), SA anhydride, dihydrofuran-2

(3H )-one (c-butyrolactone); (4) cyclic O,N-containing: pyrrolidin-2-one

(2-pyrrolidone) and derivatives, pyrrolidine-2,5-dione (succinimide). Of these

classes, the bifunctional acyclic compounds such as 1,4-butandiol and

1,4-butandiamine in combination with SA or other dicarboxylic acids are of interest

for the production of polyesters and polyamides. Methods for the production of

polyamides by polycondensation of aliphatic diamines and dicarboxylic acids or the

polyaddition of lactams were reviewed by Kabasci et al. [327]. The basic structure

of the polyamides is either on the basis of 1,4-butanediamine [323–325, 328] or on

the basis of SA [326, 329–331]. Up to now, only one polyamide based on both SA

and 1,4-butanediamine is manufactured on the laboratory scale. Both of monomers

are produced from biomass by fermentation as mentioned above. Mitsubishi Chem-

ical Corporation and Showa Denko have developed the polymers GS Pla®, a poly

(butylene succinate), and Bionolle®, a polyester based on ethylene glycol and

1,4-butanediol together with SA or adipic acid [327]. Both polymers are commer-

cially available now. More recently, the polycondensation of SA and 1,4-butanediol

HO
OH

O

O
HO

OH
O

ONH2

HO OH

O O

NH2

HO
OH

O

O

HO
OH

O

OOH

OH

OH

OH

Succinic acid Aspartic acid Glutamic acid Itaconic acid Glucaric acid

Fig. 7 Structures of dicarboxylic acids

214 Y. Zhang and E.Y-X. Chen

http://www.dsm.com/en_US/downloads/media/12e_09_dsm_and_roquette_commercialize_bio_based_succinic_acid.pdf
http://www.dsm.com/en_US/downloads/media/12e_09_dsm_and_roquette_commercialize_bio_based_succinic_acid.pdf
http://www.dsm.com/en_US/downloads/media/12e_09_dsm_and_roquette_commercialize_bio_based_succinic_acid.pdf
http://www.bio-amber.com/press_releases.php


was investigated. Both linear and cyclic ester oligomers were obtained in the

presence of immobilized Candida antarctica lipase B (Scheme 20) [332].

Co- and terpolyesters based on SA and isosorbide in combination with other

renewable monomers such as 2,3-butanediol, 1,3-propanediol, and citric acid have

been synthesized and characterized. Those copolymers are good candidates for

coating applications due to avoiding usage of aromatic monomers, which are more

susceptible to photodegradation [333–336] causing yellowing of the coating over

time. Copolyesters derived from isosorbide and 1,4-cyclohexane dicarboxylic acid

and SA were also synthesized. However, it is difficult to obtain the high molar mass

copolyesters by an inexpensive approach [337]. Copolymerizations of isosorbide,

SA, and isophthalic acid in the presence of SnCl2 or ZnCl2 led to the corresponding

copolymers with Mn in the range of 7,000–15,000 g/mol with PDI values in the

range 3–9. The Tg increased with the content of isophthalic acid from 75 to 180�C
and the thermostabilities also followed this trend [338].

Glutamic acid is a five-carbon α amino acid and occurs naturally in many foods.

As another platform chemical, glutamic acid is also a fermentation product of

glucose [320]. By reduction and/or hydrogenation, glutamic acid can be converted

to several bifunctional compounds such as 1,5-pentanedicarboxylic acid (glutaric

acid), 1,5-pentanediol, and 2-amino-1,5-pentandiol. These compounds can poten-

tially serve as monomers for the production of novel polyamides and polyesters.

Since the amino group exists at the α position, glutamic acid can undergo a self-

condensation polymerization to poly(glutamic acid) (PGA), which is naturally

formed by bacterial fermentation [339]. γ-PGA (the form where the peptide

bonds are between the amino group of GA and the carboxyl group at the end of

the GA side chain) is a major constituent of the Japanese food natto. This polymer is

soluble in water, biodegradable, and edible. γ-PGA has a large number of potential

applications including food, medicine, and water treatment. It is widely used as a

drug delivery system for cancer treatment [340].
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Aspartic acid is a four-carbon α amino acid. There are two forms or enantiomers

of aspartic acid. Of these two forms, only one, “L-aspartic acid,” is directly

incorporated into proteins. The biological roles of its counterpart, “D-aspartic

acid,” are more limited. Where enzymatic synthesis will produce one or the other,

most chemical syntheses will produce both forms, “DL-aspartic acid,” known as a

racemic mixture. The preferred method for producing L-aspartic acid currently is

the enzymatic route, reacting ammonia with fumaric acid, catalyzed by a lyase

enzyme [320]. As a homologous compound of glutamic acid, aspartic acid can be

polymerized with itself to produce poly(aspartic acid) (PASA). PASA and its

derivatives are environmentally friendly and biodegradable alternatives to tradi-

tional polyanionic materials, in particular as potential replacements for polyacrylic

acid [341]. PASA also has an ability to inhibit deposition of calcium carbonate,

calcium sulfate, barium sulfate, and calcium phosphate salts, and can be used as an

antiscaling agent in cooling water systems, water desalination processes, and waste-

water treatment operations [342]. In addition, due to its ability to chelate metal ions,

it provides corrosion inhibition [343]. It could act as a super-swelling material in

diaper/feminine-hygiene products and food packaging [344]. There is a broad

interest in this material from the biomedical and material research communities.

Itaconic acid is a C5 unsaturated dicarboxylic acid with one carboxyl group

conjugated to the methylene group [320]. It can be regarded as α-substituted
acrylic, methacrylic acid, or methylene SA. Hence, it can be readily incorporated

into polymers and may serve as a substitute for petrochemical-based acrylic or

methacrylic acid. It is produced by fermentation of carbohydrates such as glucose

by fungi (Aspergillus terreus) with a current market volume of about 15,000 tons

per year. Itaconic acid is primarily used as a co-monomer at 1–5% in the production

of resins, such as styrene-butadiene-acrylonitrile and acrylate latexes with applica-

tions in manufacture of synthetic fibers, in coatings, adhesives, thickeners, and

binders [345].

Glucaric acid is a C6 dicarboxylic acid with four hydroxyl groups. It can be

produced from glucose by selective oxidation of both the hydroxyl function of the

terminal carbon and the aldehyde function of the first carbon to carboxylic acid

functions by nitric acid [320]. Glucaric acid was used as a monomer for the

production of new hydroxylated nylons (polyhydroxypolyamides) by condensation

reaction with a variety of diamines (Scheme 21) [346, 347]. Glucaric acid (and its

esters) is also a potential starting material for new types of hyperbranched poly-

esters addressing markets of similar sizes to nylons with a similar value structure.

Finally, glucaric acid could also address the very large detergent surfactant market,

as it should exhibit useful chelating properties for cations [320].
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3 Conclusions

The utilization of cellulose as the raw material for production of monomers and

polymers is reviewed and discussed. As the most abundant nonfood biomass

resource on Earth, cellulose can be catalytically depolymerized to glucose, while

glucose is a versatile starting material for a large variety of platform chemicals

including ethanol, lactic acid, HMF, levulinic acid, sorbitol, succinic acid, aspartic

acid, glutamic acid, itaconic acid, glucaric acid, and so on. These platforms can be

used as monomers directly or further converted to polymerizable monomers for

polymer synthesis.

Ethanol, categorized as a supercommodity, can be converted to olefins such as

ethylene for the production of the commodity plastic polyethylene, which provides

a direct interface between the biorefinery and the conversion infrastructure of the

petrochemical industry. The Braskem company has established the product line for

biopolyethylene production.

Lactic acid is currently produced by fermentation of carbohydrates and is one of

the high potential and versatile biomass-derived platform chemicals, leading to

various useful polymer products. PLA is produced by ROP of lactide (derived from

lactic acid) and exhibits mechanical properties similar to poly(ethylene terephthal-

ate) and polypropylene. Representative examples discussed herein included the

synthesis of highly stereo-controlled PLAs, such as isotactic, heterotactic, and

syndiotactic PLA materials, rendered by different catalyst/initiator systems.

Furfural and HMF are readily prepared from various catalytic biomass conver-

sion processes. Both furfural and HMF can be readily converted to a large variety of

monomers for polymerizations by chain-growth and/or condensation mechanisms.

As the transformation of furfural and HMF to fine chemicals or monomers for

polymers has been well documented by several comprehensive reviews [107–113,

130, 131], this chapter has mainly focused on the bio-based furan polymers with

self-healing ability through thermally reversible Diels–Alder reactions, which is a

recently exploited prosperous research area. In addition, the furan-based DA reac-

tion has also been used in the thermoreversible nonlinear polymerization and

dendrimer chemistry.

The biomass-derived renewable monomer γMMBL can be readily prepared from

levulinic acid, another platform from cellulose or glucose, by a two-step process

developed by DuPont. Polymerization of γMMBL and its homologous MBL and

βMMBL can be achieved by various the polymerization methods, including coor-

dination polymerization by various metal catalysts, living polymerization by the

ambiphilic silicon catalyst system, zwitterionic polymerization by classical and

frustrated Lewis pairs, and conjugate-addition organopolymerization by NHCs.

These biomass-derived methylene butyrolactones offer a sustainable alternative

to their cyclic analogue MMA; significantly, these sustainable methylene

butyrolactone polymers exhibit superior materials properties to the PMMA mate-

rials such as much higher Tg (195, 225, and 290�C for PMBL, PγMMBL, and

PβMMBL, respectively) and enhanced resistance to solvents, heat, and scratching.
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Isosorbide, a double dehydration product derived from sorbitol, is an attractive

monomer due to its rigidity, chirality, and non-toxicity. Various isosorbide-based

polymers have been synthesized by condensation polymerization, including poly-

esters, polyamides, poly(ester amides), polycarbonates, and polyurethanes. Incor-

poration of isosorbide into polymers’ backbones will introduce special properties,

such as enhanced glass transition temperatures and/or optical properties.

Last, but not least, the application and polymerization of five biomass dicarbox-

ylic acids including succinic acid, aspartic acid, glutamic acid, itaconic acid, and

glucaric acid have been described. Carrying two carboxylic groups, they can be

readily transformed to other bifunctional compounds, such as diimines and

dialcohols. Therefore, these compounds can potentially work as monomers for

the production of polyamides and polyesters. In addition, there exist other func-

tional groups in such dicarboxylic acids which will induce unique reactions. For

example, itaconic acid has one carboxyl group conjugated to the methylene group;

thus, it can serve as a substitute for petrochemical-based acrylic or methacrylic acid

for conjugate addition polymerization. Glutamic acid with the amino group at the α
position can undergo self-condensation polymerization to poly(glutamic acid)

which is naturally formed by bacterial fermentation. In addition, the multiple

hydroxyl groups give glucaric acid (and its esters) the ability to form new types

of hyperbranched polyesters.

Overall, the recent developments highlighted in this chapter have documented

increasing academic and industrial efforts in the utilization of biomass-derived

renewable monomers for the production of synthetic polymers that offer sustainable

alternatives to the current petroleum-based polymers. Furthermore, some of the

sustainable polymers also exhibit enhanced or unique materials properties over

the polymers derived from the depleting resources. Such efforts will continue in the

future, with an emphasis being placed on making biomass-derived polymers not

only renewable but also technically and economically practicable and competitive.
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81. Tschan MJL, Brulé E, Haquette P, Thomas CM (2012) Polym Chem 3:836–851

82. Spassky N, Wisniewski M, Pluta C, LeBorgne A (1996) Macromol Chem Phys

197:2627–2637

83. Ovitt TM, Coates GW (2000) J Polym Sci Pol Chem 38:4686–4692

84. Ovitt TM, Coates GW (2002) J Am Chem Soc 124:1316–1326

85. Tang Z, Chen X, Pang X, Yang Y, Zhang X, Jing X (2004) Biomacromolecules 5:965–970

86. Tang Z, Chen X, Yang Y, Pang X, Sun J, Zhang X, Jing X (2004) J Polym Sci Pol Chem

42:5974–5982

87. Ishii R, Nomura N, Kondo T (2004) Polym J 36:261–264

88. Nomura N, Ishii R, Yamamoto Y, Kondo T (2007) Chem Eur J 13:4433–4451

89. Bakewell C, Cao T, Long N, Le Goff XF, Auffrant A, Wiliams CK (2012) J Am Chem Soc

134:20577–20580

90. Nederberg F, Connor EF, Moller M, Glauser T, Hedrick JL (2001) AIChE J 40:2712–2715

91. Zhang L, Nederberg F, Messman JM, Pratt RC, Hedrick JL, Wade CG (2007) J Am Chem

Soc 129:12610–12611

92. Miyake GM, Chen EY-X (2011) Macromolecules 44:4116–4124

93. Ovitt TM, Coates GW (1999) J Am Chem Soc 121:4072–4073

94. Amgoune A, Thomas CM, Roisnel T, Carpentier JF (2006) Chem Eur J 12:169–179

95. Amgoune A, Thomas CM, Carpentier JF (2007) Macromol Rapid Commun 28:693–697

96. Hormnirun P, Marshall EL, Gibson VC, White AJP, Williams DJ (2004) J Am Chem Soc

126:2688–2689

97. Cai CX, Amgoune A, Lehmann CW, Carpentier JF (2004) Chem Commun 330–331

98. Liu X, Shang X, Tang T, Hu N, Pei F, Cui D, Chen X, Jing X (2007) Organometallics

26:2747–2757

99. Pietrangelo A, Hillmyer MA, Tolman WB (2009) Chem Commun 2736–2737

100. Dove AP, Li H, Pratt RC, Lohmeijer BGG, Culkin DA, Waymouth RM, Hedrich JL (2006)

Chem Commun 2881–2883

101. Win DT (2005) Au J T 8:185–190

102. Thananatthanachon T, Rauchfuss TB (2010) ChemSusChem 3:1139–1141

103. Thananatthanachon T, Rauchfuss TB (2010) Angew Chem Int Ed 49:6616–6618

104. Werpy T, Petersen G (2004) In: U.S. Department of Energy (DOE) report: DOE/GO-102004-

1992 (ed) Top value added chemicals from biomass, vol I

105. Jacoby M (2009) C&EN July 6:26–28

106. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) Green Chem 13:754–793

107. Gandini A (2010) Polym Chem 1:245–251

108. Gandini A (1977) Adv Polym Sci 25:47–96

109. Gandini A (1990) ACS Sym Ser 433:195–208

110. Gandini A, Belgacem MN (1997) Prog Polym Sci 22:1203–1379

111. Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11–30

112. Gandini A (2008) Macromolecules 41:9491–9504

113. Gandini A, Belgacem MN (2008) Furan derivatives and furan chemistry at the service of

macromolecular materials. Elsevier, Amsterdam, pp 115–152

114. Kawashima D, Aihara T, Kobayashi Y, Kyotani T, Tomita A (2000) Chem Mater

12:3397–3401

115. Yao J, Wang H, Liu J, Chan KY, Zhang L, Xu N (2005) Carbon 43:1709–1715

116. Zarbin AJG, Bertholdo R, Oliveira MAFC (2002) Carbon 40:2413–2422

117. Wang H, Yao J (2006) Ind Eng Chem Res 45:6393–6404

118. Yi B, Rajagopalan R, Foley HC, Kim UJ, Liu X, Ecklund PC (2006) J Am Chem Soc

128:11307–11313

119. Hirasaki T, Meguro T, Wakihara T, Tatami J, Komeya K (2007) J Mater Sci 42:7604–7606

120. Cesano F, Scarano D, Bertarione S, Bonino F, Damin A, Bordiga S, Prestipino C, Lamberti C,

Zecchina A (2008) J Photochem Photobiol A 196:143–153

Polymerization of Nonfood Biomass-Derived Monomers to Sustainable Polymers 221



121. Bertarione S, Bonino F, Cesano F, Jain S, Zanetti M, Scarano D, Zecchina A (2009) J Phys

Chem B 113:10571–10574

122. Tondi G, Pizzi A, Pasch H, Celzard A, Rode K (2008) Eur Polym J 44:2938–2943

123. Tondi G, Pizzi A, Pasch H, Celzard A (2008) Polym Degrad Stab 93:968–975

124. Pizzi A, Tondi G, Pasch H, Celzard A (2008) J Appl Polym Sci 110:1451–1456

125. Yao J, Wang H (2007) Ind Eng Chem Res 46:6264–6268

126. Zhai Y, Tu B, Zhao D (2009) J Mater Chem 19:131–140

127. Grund S, Kempe P, Baumann G, Seifert A, Spange S (2007) Angew Chem Int Ed 46:628–632

128. Spange S, Grund S (2009) Adv Mater 21:2111–2116

129. Pranger L, Tannenbaum R (2008) Macromolecules 41:8682–8687

130. Tong X, Ma Y, Li Y (2010) Appl Catal Gen 385:1–13

131. Gallezot P (2012) Chem Soc Rev 41:1538–1558

132. Gandini A (2013) Prog Polym Sci 38:1–29

133. Liu Y, Chuo T (2013) Polym Chem 4:2194–2205

134. Syrett JA, Becer CR, Haddleton DM (2010) Polym Chem 1:978–987

135. Bergman SD, Wudl F (2008) J Mater Chem 18:41–62

136. Craven JM (1969) US Pat., 3,435,003

137. Stevens M, Jenkins A (1979) J Polym Sci 17:3675–3685

138. Kuster BFM (1990) Starch Stärke 42:314–321

139. Chujo Y, Sada K, Saegusa T (1990) Macromolecules 23:2636–2641

140. Imai Y, Itoh H, Naka K, Chujo Y (2000) Macromolecules 33:4343–4346

141. Canary SA, Stevens MP (1992) J Polym Sci Polym Chem 30:1755–1760

142. Laita H, Boufi S, Gandini A (1997) Eur Polym J 33:1203–1211

143. Gheneim R, Perez-Berumen C, Gandini A (2002) Macromolecules 35:7246–7253

144. Goiti E, Huglin MB, Rego JM (2001) Polymer 42:10187–10193

145. Goiti E, Huglin MB, Rego JM (2003) Macromol Rapid Commun 24:692–696

146. Goiti E, Huglin MB, Rego JM (2004) Eur Polym J 40:219–226

147. Goiti E, Huglin MB, Rego JM (2004) Eur Polym J 40:1451–1460

148. Tesoro GC, Sastri VR (1986) Ind Eng Chem Prod Res Dev 25:444–448

149. He X, Sastri VR, Tesoro GC (1989) Makromol Chem Rapid Commun 9:191–194

150. O’Dell R (1990). Ph.D. Thesis, Lancaster University, UK

151. Kuramoto N, Hayashi K, Nagai K (1994) J Polym Sci Polym Chem 30:2501–2504

152. Diakoumakos CD, Mikroyannidis JA (1992) J Polym Sci Polym Chem 30:2559–2563

153. Diakoumakos CD, Mikroyannidis JA (1994) Eur Polym J 30:465–472
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Approaches to the Selective Catalytic

Conversion of Lignin: A Grand Challenge

for Biorefinery Development

Joseph J. Bozell

Abstract Lignin comprises 15–25% of terrestrial biomass and is the second most

abundant source of renewable carbon after cellulose. However, its structural het-

erogeneity frustrates efforts for its selective conversion into biobased chemicals.

Catalyst design for lignin transformation offers an opportunity to improve selec-

tivity, and, hence, improve lignin’s utility as a raw material in chemical production.

Catalytic deconstruction and conversion of lignin has been examined using a

variety of thermochemical treatments, analogous to those used in the petrochemical

industry. However, the complex nature of these products limits their utility. More

recently, greater focus has been given to an understanding of lignin’s molecular

level structure, and designing catalysts that can be targeted to key individual

structural units within the biopolymer. This review gives a sense of the field by

providing a representative description of recent developments in some of the

primary technologies employed for lignin conversion and approaches that promise

to improve selectivity.

Keywords Biobased chemicals � Biomass � Biorefinery � Catalysis �Heterogeneous �
Homogeneous � Lignin � Lignin models � Selectivity � Thermochemistry
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xantphos 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

1 Introduction

Lignin is a source of great frustration for the biorefinery.

Within biomass, it exists as a barrier, barring the way of the pulp and paper

manufacturer or ethanol producer to the more valuable polysaccharides contained

within lignocellulosic feedstocks. To the chemist, it presents a seemingly intracta-

ble array of multiple functional groups exhibiting similar reactivity, spread over a

wide range of fragments bearing a similarly wide range of molecular weights. As a

raw material, its structure and reactivity varies as a function of its source and the

process used for its isolation. Large, dependable supplies of lignin could potentially

be available from kraft pulping, but because of the pulp industry’s reliance on the

lignin extracted from wood as fuel for the operation of chemical recovery boilers,

those with the greatest access to lignin have historically exhibited the least interest

in developing selective methodology for its transformation into higher value

chemicals. Moreover, the emerging biorefining industry, with its continued focus

230 J.J. Bozell



on converting carbohydrates to biofuels, has followed this lead and defaults to

burning lignin for process energy.

Nonetheless, lignin remains an exceptionally attractive biobased raw material

whose potential is lost when it is used simply as boiler fuel. After cellulose, lignin is

the second most abundant source of renewable carbon in Nature, comprising

15–25 wt% of lignocellulosic feedstocks. Projections show it to be an inexpensive

raw material that, if upgraded to high value chemicals, could provide a significant

economic boost to lignocellulosic biorefineries currently focused on ethanol

production [1]. Technology such as organosolv fractionation is realizing production

of lignin as a separate process stream that need not be integrated with the overall

steam and energy balance of the operation [2]. Moreover, lignin is cheap. Multiple

evaluations project an internal transfer cost for biorefinery lignin of $0.03–0.06/

lb [3–5].

Lignin’s primary disadvantage is a high level of structural heterogeneity that

arises from two sources. First, biosynthesis introduces heterogeneity as lignin is

manufactured in the plant cell wall (Fig. 1) [6]. Lignin biosynthesis uses the three

primary monolignols, p-hydroxycinnamyl alcohol, coniferyl alcohol, and sinapyl

alcohol, leading to the well-recognized p-hydroxyphenyl, guaiacyl, and syringyl

units, respectively, in the resulting lignin biopolymer. During biosynthesis, these

monolignols are converted into highly delocalized phenoxy radicals that undergo

radical–radical coupling and conversion to the lignin polymer. Softwoods are

primarily constructed of guaiacyl units, while hardwoods contain significant

amounts of both guaiacyl and syringyl units. Herbaceous feedstocks (grasses)

incorporate p-hydroxyphenyl functionality and offer additional complexity, as

their structure includes extensive crosslinking between lignin and hemicelluloses
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through ferulate ester linkages. Moreover, the ferulates themselves undergo dimer-

ization and trimerization, and can be introduced into the bulk lignin. The result of

these coupling reactions is the production of lignin as a complex aromatic biopoly-

mer [7]. Figure 2 provides a representation of lignin from poplar, a hardwood, and

shows many of the well-recognized substructural units that result from radical

coupling between monolignol building blocks.

The second source of lignin’s structural heterogeneity results when it is isolated

from the lignocellulosic matrix. Any process used to isolate lignin inevitably

induces structural changes in the native material through loss of some substructural

units and introduction of new interunit linkages. For example, switchgrass

organosolv lignin showed a marked change in the concentration of β-O-4 units as

the severity of the fractionation increased [8]. Quantitative 13C analysis of the NMR

spectral region between 88 and 77 ppm identifies lignin’s β-O-4 units, which can be
50% or more of the interunit linkages in native lignin. After organosolv fraction-

ation, NMR spectra revealed a dramatic reduction of these linkages to almost zero

at the highest fractionation severities. Other candidate processes for producing a

lignin process stream within the biorefinery result in similar changes. Dilute acid

pretreatment was reported to reduce β-O-4 units by 36% [9], and steam explosion

can nearly eliminate them under proper conditions [10]. In parallel, lignin’s struc-

ture realizes an increase in the number of free phenolic –OH groups as the

β-O-4 units are cleaved. The use of lignin as a chemical feedstock, therefore,

depends on identifying transformational processes able to accommodate multiple

functional groups introduced during biosynthesis as well as those that are present

after lignin isolation.

A further complicating factor is that the biorefining industry has not settled on an

optimum pretreatment/fractionation process, leading to investigation of both a wide

array of lignins as starting materials and multiple conversion processes. All lignins

are not created equal, and the functional group profile present in a given starting

material can vary markedly as a function of biomass source, pretreatment or

fractionation methodology, and isolation technique. This functional group profile

may be modified using methods such as sequential extraction [11–13] or selective
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precipitation [14, 15] to prepare fractions of differing molecular weight and hence,

different reactivity. However, despite the wide diversity in lignins available as

chemical feedstocks, there is a surprising tendency to use illustrations similar to that

in Fig. 2 as descriptors of lignin’s structure, especially in the more recent literature

examining new catalytic methodology for lignin conversion. It is important to

remember that these figures are only approximations (and indeed, possibly poor

approximations), as the actual structure depends strongly on the source and

handling employed for the lignin.

Achieving selectivity in transforming a heterogeneous starting material into a

single, low molecular weight structure thus becomes the grand challenge facing

lignin utility in the biorefinery. Catalysis and intelligent catalyst design are playing

a critical role in developing fundamental knowledge regarding the navigation of the

functional diversity of different biorefinery lignins needed for the emergence of

selective lignin conversion processes. This literature reflects this growing interest in

lignin, as evidenced by a number of excellent reviews on various processes used for

catalytic lignin valorization [16–24].

Nonetheless, truly selective lignin transformations remain elusive. Decades of
work have been carried out on the nonselective deconstruction of lignin in the pulp

and paper industry [25–27], its thermochemical transformation and upgrading to

liquid feedstocks positioned as fuels, or conversion to blends of materials enriched

in higher value chemicals. However, a greater focus is now being given to lignin’s

molecular level structure and how catalysts may be designed for attack on and

transformation of specific key structural units within lignin. Much of this work is

still being carried out on lignin model compounds in order to understand and better

control these processes on transformation of both specialized lignin samples and

actual biorefinery lignin.

Catalysis designed for lignin transformation has grown rapidly over the last

5 years, and this review attempts to give a sense of the field by providing a

representative, but not exhaustive, review of recent developments in some of the

primary technologies employed for lignin conversion. The review will focus

primarily on catalytic transformations of lignin as an isolated material, and thus

transformations that start with whole biomass are not covered, except for a few

pertinent examples. The review will begin with a brief initial examination of

catalyzed, but nonselective, thermochemical transformations to illustrate some of

the existing landscape for lignin conversion. More recent work will then be

presented, describing efforts based on understanding the molecular level structure

of lignin, and targeting specific interunit linkages to design selective processes for

the catalytic conversion of both lignin and lignin models. Although not covered

here, a potentially dramatic contribution to the biorefinery’s ability to convert lignin

selectively may result from ongoing work focused on modifying lignin’s biosyn-

thesis. The ability to use biotechnology and genetic engineering to define the

structure of a raw material before it reaches a refining process is unprecedented

in the petrochemical industry, and a critical advantage that renewable carbon

sources have over nonrenewable. Such work could have a significant impact on
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selective lignin transformations by reducing lignin’s heterogeneity and improving

its utility as a chemical feedstock [28–30].

2 Catalytic Thermochemical Transformations of Lignin

The complexity of lignin’s structure suggests comparison with nonrenewable feed-

stocks bearing similar complexity, such as coal or crude oil. Accordingly, a large

body of work exists for the thermochemical treatment and conversion of lignin

analogous to distillation or cracking processes carried out in the petrochemical

industry [31]. A wide range of general experimental processes has been employed,

and includes fast pyrolysis (both thermal and in the presence of catalysts), hydro-

thermal treatment (hydrolysis), hydrodeoxygenation (which can be a combination of

thermal lignin deconstruction and catalytic post-treatments), oxidation, gasification,

and hydrogenolysis (Fig. 3). However, as will be shown in the following examples,

this broad spectrum of processing technologies (which normally involve high

temperatures or harsh conditions), not surprisingly, produces a large number of

monomeric and oligomeric compounds in different product classes: gases,

aromatics, aliphatics, and, in many cases, a large amount of char. Although these

processes lead to lignin deconstruction, a reduction in lignin’s molecular weight, and

enrichment of the resulting condensable fractions in certain product classes, true

selectivity has yet to be achieved.

L
I
G
N
I
N

Process Product Use 

Pyrolysis 

Thermolysis

Hydrogenolysis 

Gasification 

Hydrolysis 

Oxidation 

Combustion 

Gas: CO, CO2, H2, 
CH4 

Liquid oil 

Phenols: phenol, 
catechol, guaiacol, 

syringol, cresols 

Aldehydes: vanillin, 
syringaldehyde 

Aliphatics: 
methane, ethane, 
branched alkanes 

Char 

Heat 

Chemicals 

Fuels 

Electricity 

Fig. 3 The matrix of thermochemical lignin transformation processes (from Pandey [31])

234 J.J. Bozell



2.1 Pyrolytic Transformations of Lignin

Pyrolysis is a process of rapidly heating a feedstock under anaerobic conditions to

induce depolymerization, and results in the production of a pyrolysis oil, normally

accompanied by gas and char fractions. The absence of air assures that the lower

molecular weight fractions do not undergo combustion. The complex nature of

lignin’s structure is reflected in its more complex pyrolytic behavior compared to

cellulose or hemicellulose. While biomass hemicellulose and cellulose pyrolyze at

220–315 and 315–400�C, respectively, lignin’s thermal conversion occurs over a

range of 150–900�C [32]. Moreover, an extensive study found that at bench scale,

isolated, purified lignin does not pyrolyze well in conventional reactor systems

designed for potential industrial use [33]. The mechanism of pyrolysis is complex,

and is dominated by multiple, parallel radical and rearrangement pathways

[34]. Thermogravimetric analysis of an oligomeric β-O-4 lignin model suggests

three separate stages for lignin pyrolysis, with the β-O-4 linkage being cleaved

between 250 and 350�C, formation of solid products at about 350�C, and eventual

conversion to polyaromatics between 350 and 550�C [35].

The portfolio of products obtained from pyrolysis can be modified when pyrol-

ysis vapors are passed over a heterogeneous catalyst. Catalytic pyrolysis of Alcell

(organosolv) lignin (a generally cleaner and lower molecular weight feedstock than

other lignin sources) in the presence of HZSM-5 zeolite gave a maximum 43 wt%

yield of liquid at 550�C. Of that liquid component, 78.1% was BTX. An interesting

feature of this process is that the solubility of organosolv lignin in organic solvents

allowed feeding of the material in solution [36]. The use of a zeolite with a larger

pore size (H-USY) allowed conversion of alkaline (kraft) lignin to a liquid in 75 wt%

yield with little char formation at a catalyst/lignin ratio of 4. Of that liquid,

approximately 40%was BTX [37]. Simple aromatic hydrocarbons are also observed

from pyrolysis of kraft lignin over Mo2N/γ-Al2O3. Pyrolysis at 850
�C gave a 14%

yield of condensable liquid fraction that was 70% benzene and 15% toluene.

Pyrolysis at 700�C gave a slightly lower selectivity to benzene and toluene, but

the overall yield of aromatic hydrocarbons was higher (17.5%). A two-stage mech-

anism was suggested, beginning with pyrolytic depolymerization of the lignin

followed by catalytic cracking and deoxygenation to afford aromatic hydrocarbons

[38]. Quantum chemical calculations have been used to correlate the selectivity of

zeolite catalysts for the production of various phenols and aromatics from the fast

pyrolysis of kraft lignin. The results suggest that a strict correlation between known

pore size of the zeolite and molecular dimensions of the substrate is not accurate as

the zeolite’s pore size can increase at elevated temperatures. Modeling allowed

estimation of the effective pore size of the zeolite and provided a tool for evaluating

the shape selectivity of a given catalyst [39].

Catalytic upgrading of pyrolysis oils or in situ catalytic upgrading of pyrolysis

vapors can be carried out to provide mixtures of potential value as chemical

feedstocks. Wheat straw lignin was converted to ethylbenzene in a two-step

sequence, first via pyrolytic depolymerization over a composite Re-Y/HZSM-5

(25) catalyst and subsequent conversion to ethylbenzene via treatment with EtOH
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in the presence of an HZSM-5(25) catalyst [40]. The first stage gave approximately

15 wt% yield of organic liquid, which contained 90% benzene. The selectivity to

ethylbenzene in the subsequent step was optimized at about 72%. Production of

coke in the initial pyrolytic step was high, approaching 25 wt%. Related work has

examined lignin as a feedstock in catalytic pyrolysis for the production of light

olefins. Treatment of a commercially available lignin with HZSM-5 impregnated

with 6 wt% La at 600�C afforded about 9% light olefins and 6 wt% aromatics,

spread over nine different products [41]. Pyrolysis of kraft lignin over anatase TiO2

at 550�C led to a 7.5 wt% yield of simple phenols, cresols, and xylenols via

catalytic defunctionalization of the more complex structures present in the

pyrolysis vapor [42].

2.2 Lignin Hydrodeoxygenation

Hydrodeoxygenation (HDO) of lignin is carried out catalytically as a means to

upgrade lignin primarily for fuel use, as lignin’s phenolic groups introduce

corrosivity and immiscibility with fuel supplies. The general process treats the

substrate with a catalyst and H2 (or alternatively, hydrogen donors such as formic

acid or tetralin) at high pressures and temperatures, analogously to HDO processes

originally targeted for deoxygenation of petroleum or coal based liquids. Consid-

erable investigation regarding optimization and mechanism of HDO processes has

been carried out on low molecular weight materials representing intermediate

structures formed during initial lignin depolymerization (phenols, cresols, etc.).

These model studies are valuable as they address compounds or compound classes

found in high proportion after lignin pyrolysis. Excellent overviews of this work

can be found in reviews by Laskar et al. [23] and Furimsky [43].

Early examples of HDO on isolated lignin illustrate how these processes are

often carried out, and the types of results obtained. The Noguchi process, developed

in the 1950s, found that lignin could be liquefied at 250–400�C using a co-catalyst

system such as sulfided iron/copper/zinc at H2 pressures between 15 and 46 MPa,

using phenol as the solvent [17]. Phenol yields as high as 21% were reported,

partially as a result of solvent consumption, but the process never proved econom-

ically viable [44]. The Hydrocarbon Research Institute Lignol Process converted

kraft lignin into a phenol-rich mixture using earth-abundant metal oxides as cata-

lysts at temperatures between 650 and 850�C and 3.4–17.2 MPa H2. The product

mixture was dominated by phenols, which were 37.5 wt% of the starting lignin

charged, and included p-ethylphenol (33%), p-propylphenol (20%), and m-cresol
(12%) [45]. The reaction of kraft pine lignin with hydrogen (7–10 MPa) using a

water soluble ammonium heptamolybdate catalyst for 60 min at 430�C afforded a

61 wt% yield of low molecular weight oil (based on the starting lignin charge).

Depending on the pyrolysis conditions, up to 74% of the oil had a measured

molecular weight range below 200, 22% of the material had a molecular weight

between 200 and 500, and a small amount ranged as high as 2,000. Analysis of the
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oil showed that low molecular weight materials included phenols (8.7%), cyclo-

hexanes (5.0%), benzenes (3.8%), naphthalenes (4.0%), and phenanthrenes (1.2%)

[46]. Expansion of this methodology to organosolv and hardwood kraft lignin using

commercial mixed metal oxide catalysts based on NiMo or Cr2O3 on different

supports gave similar results, with the oil yields (49–71 wt% of the starting lignin)

decreasing in the order organosolv>softwood kraft>hardwood kraft [47]. Between

13% and 39% of this oil was identifiable by GC, and included monocyclic and

polycyclic aromatics, as well as a phenol fraction. As with pyrolysis, these

processes are nonselective, and convert lignin into a mixture of low molecular

weight aromatics or more highly reduced derivatives potentially valuable as mixed

hydrocarbon feedstocks.

HDO can be carried out directly on lignin, or can be part of a two-stage process,

for example, pyrolytic treatment of lignin to generate pyrolysis oil followed by

upgrading via HDO. Pine organosolv lignin was pyrolyzed and the resulting oil was

subjected to a two-stage HDO using Ru/C and 14 MPa H2 at 300�C and 250�C,
respectively, for the two stages of hydrogenation. The overall carbon content for

each stage was 33% and 35% of the carbon content in the original pyrolysis oil and

afforded a mixture of materials suggested as a renewable gasoline [48]. Two-step

depolymerization/HDO has been carried out on organosolv and kraft lignin. Liquid

phase reforming of lignin in alkaline solution over a Pt/γ-Al2O3 catalyst at 5.8 MPa

Ar and 225�C afforded an extractable lignin oil composed of oxygenated mono-

meric species in about 12 wt% yield. In a subsequent step, the extracted oil was

treated under HDO conditions, using either a CoMo/Al2O3 or Mo2C/CNF catalyst

in dodecane at 300�C and 5.5 MPa H2. As expected, significant deoxygenation

occurred, leading to a mixture of arenes and oxygenated arenes. Under optimal

conditions, up to 9% aromatic products, 24% of which were oxygen free, could be

prepared from organosolv lignin [49]. Related work on the catalyst revealed that it

was unstable under the reaction conditions, forming crystalline regions and reduced

surface area. In parallel, the supported Pt underwent sintering, reducing the cata-

lyst’s activity. Interestingly, in the presence of lignin models or high concentrations

of lignin, substrate binding to the catalyst surface occurred and reduced these

catalyst deactivation pathways [50]. Two-stage pyrolysis/HDO was also carried

out on herbaceous and deciduous organosolv lignins. A large bench scale (up to

100 g lignin fed per hour) continuous pyrolysis fluidized bed reactor gave 13–21%

condensable organic oils containing 7–9% low molecular weight phenolics.

Subsequent HDO over a Ru/C catalyst and 10 MPa H2 at 350�C in dodecane

reduced most of the aromatic content and gave small amounts of cycloalkanes

[51]. Lignin isolated from corn stover residue after conversion of the sugars was

used as a feedstock for catalytic hydrogenolysis. Treatment of the lignin with

2 MPa H2 in the presence of a Ru/C catalyst at 275�C afforded 73 wt% liquid

products, which contained 4-ethylphenol and 4-ethylguaiacol at levels of 3% and

1.4%, respectively [52].

A more recent approach to HDO substitutes H2 gas with formic acid as the

hydrogen source and converts lignin into a mixture of hydrocarbons and phenols in

a single step. Treatment of lignin from enzymatic and weak acid hydrolysis of
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biomass with formic acid in either EtOH or i-PrOH solvent at 380�C for 24 h

affords a high yield of oil from these lignins, but, again, as a complex mixture of

materials [53]. A subsequent mechanistic study supports a radical formation/

recombination process leading to the final product mixture. Although the mecha-

nistic investigation used structurally-defined lignin model compounds as sub-

strates, the final HDO product mixtures were highly complex [54]. Treatment of

Alcell hardwood and wheat straw organosolv lignin under supercritical conditions

in the presence of formic acid afforded up to 45% of an aromatic enriched liquid

containing up to 12 wt% identifiable phenols [55]. However, as is often seen in

these transformations, a large amount of char (40–50 wt%) was also formed from

nonselective condensation of reactive intermediates formed under the reaction

conditions.

By changing the reaction medium to supercritical EtOH, a 92 wt% yield of liquid

was obtained at 98% conversion of organosolv lignin in a one-step process using

5% Ru/γ-Al2O3 as catalyst and 2 MPa H2 at 300
�C [56]. A blank reaction under the

same conditions afforded a 63% yield of oil at 70% conversion, but the presence of

the catalyst significantly decreased the O/C ratio, showing that HDO was taking

place. Again, GC/MS analysis of the resulting liquid showed a complex mixture of

materials, with propylsyringol being observed as 23% of the total GC peak area.

2.3 Lignin Hydrotreating (Hydrolysis)

Lignin can be depolymerized and liquefied hydrolytically through the use of water

at high temperatures and pressures. A recent review on hydrothermal treatment of

lignin has appeared and describes a number of different approaches and methodol-

ogies [57]. As with other thermochemical treatments, catalytic hydrothermal treat-

ment is inherently nonselective, despite its wide use in lignin conversion and

upgrading. As an example, subjecting pure vanillin (a derivative of lignin conver-

sion) to hydrothermal treatment at 200�C in water under O2 in the presence of

Co3O4 or Mn3O4 nanoparticles afforded a large number of water soluble mono-

meric acids and dimeric coupling products arising from multiple deconstruction

pathways [58]. The primary mechanistic transformations were suggested to include

simple oxidation of vanillin to the corresponding vanillic acid, formation of inter-

mediate radical species, and Fenton-like formation of hydroxylated intermediates.

Direct liquefaction of organosolv lignin was examined in hot compressed water,

both in the absence and presence of catalysts. Treatment of organosolv lignin at

250�C for 1 h afforded a 97% conversion of the lignin, approximately 53% of which

was an oil containing phenolics and neutrals. GC/MS analysis determined that

approximately 74% of this oil was phenolic material as part of a mixture containing

at least 20 components [59]. The process was also examined in the presence of

Ba(OH)2 and RbCO3 catalysts, which reduced the amount of oil production by 15%

and 23% respectively.
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To address some of the separation issues associated with nonselective conver-

sion processes, alkaline lignin treated under similar conditions (300�C in water)

was subjected to a more extensive post-purification sequence employing a designed

series of pH shifts and solvent extractions to classify the families of compounds

obtained from deconstruction. A 28% yield of lignin oil was obtained, and afforded

more than 100 compounds (identified by GC/MS) spread over 6 fractions [60].

A mechanism for lignin cleavage was presented and postulated the preferential

cleavage of side chain ether linkages. Kraft and organosolv lignin were also

hydrotreated at 374�C for 10 min and afforded 58–72% oil from the kraft lignin

and 79% oil from the organosolv, again demonstrating the strong dependence of oil

formation on the initial source of the lignin and its preparation. GC/MS analysis

indicated as many as 25 identifiable products in the reaction mixture [61].

A related two-step sequence treated organosolv lignin propionate in a 4:1 BuOH/

H2O mixture to depolymerize the lignin at 200�C over a silica/alumina catalyst.

This first step afforded greater than 90% liquid product, but only about 15% of the

mixture was identifiable by GC. Catalytic lignin depolymerization was suggested to

occur in the aqueous phase, and the lower molecular weight components were then

extracted into the BuOH phase. In comparison, similar treatment of kraft lignin also

gave about 90% liquid product of which 18% was identifiable by GC/MS. The

BuOH soluble fraction (which contained the great majority of soluble material) was

then cracked over a ZrO2/Al2O3/FeOx catalyst at 200�C for the preparation of a

mixture containing primarily phenol and cresol (~70% of the mixture). Under

optimized conditions, the amount of phenolic material reached about 6.6% for

organosolv lignin and 8.6% for kraft lignin [62].

Hydrothermal treatment has also been carried out in the presence of oxidizing

agents. Alkali (kraft) lignin was treated with 0.1% HOOH in hot compressed water

at temperatures between 150 and 200�C, leading to the formation of mixed organic

acids (formic, acetic, and succinic) in yields as high as 45 wt% (based on the

starting lignin), 19% CO2, and a high molecular weight lignin residue. In contrast,

organosolv lignin underwent a more effective depolymerization giving an oligo-

meric mixture with a molecular weight of about 300 and the production of 20 wt%

organic acids [63].

Kraft lignin was subjected to alkaline (NaOH) hydrolysis in the presence of

phenol (to cap and capture intermediate radical species from lignin depolymeriza-

tion) and ethanol. The process reduced the Mn and Mw from 10,000 and 60,000 to

440–480 and 900–1,200, respectively, and converted all the lignin with negligible

formation of char. Under optimized conditions (300�C) a combined phenol yield of

35% was observed, which was dominated by the phenol added at the beginning of

the treatment [64]. Alkaline hydrothermal treatment of lignin from corn stover

catalyzed by disodium tetraborate decahydrate gave a liquid product composed

mainly of phenols. The highest product yields were for 2,6-dimethoxyphenol

(8 wt%), guaiacol (8%), and phenol (7%) [65].
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3 Selective Catalytic Transformations of Lignin Models

An understanding of lignin’s gross chemical structure as an aromatic biopolymer

and an interest in demonstrating it as a viable industrial source of mixed phenols,

aromatics, and hydrocarbons have driven research into the thermochemical treat-

ment of lignin. Much less attention has been paid to lignin’s structure at the

molecular level and developing catalysts that target abundant functional groups

common to all lignins, regardless of source. However, recently, the organic

synthesis and catalysis community seems to have discovered the β-O-4 linkage.

As a result, catalytic methodology for cleaving aryl ethers is now prevalent in the

literature, as is work focusing on transformation of lignin-like model compounds.

While this work’s impact on selective transformation of whole lignin is still small,

the approaches being examined with lignin models are tackling the bigger questions

of mechanism, structure, and selectivity at the molecular level that will lead to

catalytic systems able to convert lignin more effectively.

3.1 Reductive β-Aryl Ether Cleavage

Hartwig has reported reductive cleavage of aryl ether bonds similar to those in

lignin. By using homogeneous Ni(COD)2 (20%) in the presence of an

N-heterocyclic carbene ligand (10–40%) and t-BuONa in xylene at 120�C,
diphenyl ethers were cleaved in excellent yield to afford a phenol and arene as

cleavage products with no formation of the corresponding arene reduction product.

When the process was applied to α-O-4 lignin model 1, nearly quantitative yields of

the corresponding cleavage products were obtained. Similar reaction with β-O-4
model 2 afforded a high yield of guaiacol, but the cleaved side chain unit reacted

nonselectively to give multiple products (Fig. 4) [66].

Hartwig’s group also reported the hydrogenolysis of simple benzyl aryl and

diarylethers representative of 4-O-5 units in lignin using a ligandless Ni

(CH2TMS)2(TMEDA) precatalyst. Reaction of the substrate with 1 atm of H2 and

as little as 0.25 mol% of the catalyst at 120�C in the presence of 2.5 equiv. t-BuONa
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affords excellent yields of the corresponding cleavage products. Preliminary mech-

anistic investigation suggests that the reaction is heterogeneous, proceeding

through the formation of Ni nanoparticles during the reaction. The t-BuONa is

thought to stabilize the nanoparticles [67].

An elegant redox neutral aryl ether cleavage catalyzed by Ru recognizes that

certain β-aryl ether cleavages can be represented by the formal dehydrogenation of

a C-OH bond at the α-position of the side chain and use of that H2 for subsequent

cleavage of the β-ether bond (Fig. 5). Treatment of 3 with 5% RuH2CO(PPh3)3 and

Ph-xantphos as a large bite angle external ligand afforded production of cleavage

products 4 and 5. When applied to synthetic lignin model polymer 6, cleavage to

acetophenone 7 occurred in 99% isolated yield. The proposed mechanism for the

process is thought to start with dehydrogenation of the benzylic alcohol to the

corresponding carbonyl group [68]. In contrast, models bearing a β-CH2OH

substituent (e. g., analogous to 2) undergoes cleavage in yields <20% as a result

of catalyst deactivation via formation of complex 8 [69]. DFT evaluation of

the process provided good agreement between calculated and measured kinetics,

offering support for the proposed mechanism [70].

A unique heterogeneous Pd/C/Zn catalyst also induces β-aryl ether cleavage in a
number of lignin models. Treatment of 9 with 5 wt% catalyst and 2 MPa H2 in

MeOH at 150�C produces propylguaiacol 10 and guaiacol 11 in 85% yield. A small

amount of alcohol 12 is also formed as a byproduct. Hydrogenolysis of a polymeric

lignin model under these conditions afforded 10 and 11 as major products in 56%

and 44% yield, respectively (Fig. 6) [71].

3.2 Oxidative β-Aryl Ether Cleavage

Highly simplified β-O-4 lignin models are also cleaved under oxidative conditions

using V(dipic) catalysts. Upon reaction of 13 with catalyst 14 in air at 100 ºC in

DMSO for 1 week, 95% conversion of 13 was observed, and afforded benzoic acid,
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phenol and formic acid in 81%, 77%, and 46% yield, respectively. A small amount

of the benzylic oxidation product 15 was also observed (Fig. 7).

Vanadium catalysts bearing a salen-like ligand also cleave the β-O-4 linkage in

lignin model dimers and trimers [72]. The nonphenolic β-O-4 model 16 was treated

with V catalyst 17 in CD3CN at 80�C in air, leading to the formation of 18 and 19 in

82% and 57% yield respectively (Fig. 8). The reaction exhibits several interesting

features. First, while the yield of cleavage products is enhanced in air, the reaction

may be considered as non-oxidative, as 18 and 19 are formed in 60% and 64%

yield, respectively, when the reaction is carried out under N2. Under anaerobic

conditions, the catalyst dimerizes to 20, which can be reconverted to the active 17

upon exposure to oxygen. The reaction fails in the absence of a free OH group on

the model’s side chain, and thus, a mechanism proceeding through initial ligand

exchange between the benzylic OH on the model and the OMe on the catalyst

followed by formation and cleavage of an intermediate benzylic radical is

suggested.
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The optimal V catalyst has been examined for its reactivity with whole

Miscanthus lignin. Although the very mild lignin extraction and isolation process

employed is likely not representative of a commercial biorefinery operation, treat-

ment of ethanol, acetone, and dioxane organosolv lignin with catalyst 17 led to

significant cleavage of the β-O-4 linkages as shown by 2D-HSQC evaluation and a

reduction in the lignin molecular weight. GC/MS analysis was also carried out to

identify any monomeric materials formed during the oxidation, and revealed the

presence of several aromatic monomers, including vanillin, syringic acid, and

syringaldehyde, albeit in low yield [73].

Selective reaction along the side chain of lignin is the basis of a proposed

two-step oxidative sequence for the conversion of lignin into low molecular weight

aromatics. Stahl describes a process for the selective oxidation of side chain alcohol

functionality to activate lignin for a subsequent cleavage via retro-aldol reaction

(Fig. 9). Selective oxidation of the 2� alcohol group in β-O-4 model 2 can be carried

out using a metal-free system and 4-acetamido TEMPO as an organocatalyst. High

yields of the corresponding ketone are observed (96% on a 5-g scale), affording an

intermediate susceptible to retro-aldol cleavage in the presence of a base. The

organocatalyst employs a well-recognized alcohol oxidation process mediated by

TEMPO derivatives. This process is made catalytic by the conversion of the

N-hydroxy TEMPO to the catalytically active N-oxo cation by NO2 generated

from the reaction of HNO3 and HCl.

The reaction was also applied to a sample of specialized cellulolytic enzyme

lignin. HSQC analysis of the oxidized lignin revealed that most S units and all G

units were converted to the corresponding ketone. Moreover, preliminary exami-

nation of the proposed retro-aldol cleavage of ketone 21 (2 M NaOH, HOOH in

1:1 THF/MeOH at 50�C) afforded an 88% yield of veratric acid and a 42% yield of

guaiacol [74].
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3.3 Oxidation of Lignin’s Phenolic Functionality

The recent increased interest in catalytic aryl ether cleavage has provided important

insight regarding methodology that might provide more selective transformations

of lignin. However, these studies have focused almost exclusively on the cleavage

of dimeric, non-phenolic β-aryl ether models, representative of lignin’s β-O-4
linkage. It is important to note that such processes are only effective if the starting

lignin actually bears the interunit linkages being targeted. Although it is accurate

that lignin as found in the plant may contain as much as 50–60% β-O-4 units,

commercially viable methodology may significantly reduce that percentage

[8–10]. Moreover, as these β-O-4 units are lost, lignin realizes a concomitant

increase in free phenolic hydroxyl functionality [75]. Thus, catalytic processes

targeting conversion of lignin-like phenols may provide a more realistic approach

for the use of lignin as a chemical feedstock. Because of their electron-rich nature,

such systems would be anticipated to undergo a wide range of oxidation processes.

Development of new oxidation catalysts would ideally employ environmentally

benign terminal oxidants such as O2 or HOOH, and would demonstrate reactivity

designed for the substructural units present in lignin as isolated by the biorefinery.

Co-Schiff base complexes catalyze the aerobic oxidation of para-substituted
phenols under mild conditions (Fig. 10). In the presence of an external ligand such

as pyridine, the Co catalysts [e.g., Co(salen), 22] bind molecular oxygen to form a

Co-superoxo complex 23 in solution [76]. Formation of 23 is significantly

improved by addition of pyridine as an external axial ligand because 22 itself

binds oxygen poorly [77, 78]. Complex 23 abstracts a phenolic hydrogen from

the substrate to generate phenoxy radical 24, and initiates a process that results in

the production of para-benzoquinones from para-substituted lignin model phenols.

Some of the first reported examples of this transformation converted S lignin

models to dimethoxybenzoquinone (DMBQ, 25) and G lignin models to

monomethoxybenzoquinone (MMBQ, 26) [79].
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Although the oxidation proceeded in good yield for the production of 25, catalyst

22 gave low yields of 26 from oxidation of G model phenols. However, the yield of

26 from G models was improved when the Co/O2/pyridine system was

supplemented with a catalytic amount of a sterically hindered, non-coordinating

aliphatic base [80]. By appending the hindered base to an aromatic ring of the

Schiff-base ligand (e.g., the piperazine in complex 27), improved yields, reaction

times, and catalyst loadings for the oxidation of both S and G model monomers and

dimers in the absence of an added external ligand were observed [81]. The results

suggested that the presence of a bulky aliphatic base in close proximity to the

Co-superoxo complex promotes the formation of the phenoxy radical 24 through

formation of an easily oxidized phenoxide intermediate 28. A computational

evaluation of the reactivity of 22 with a family of substituted imidazoles as axial

bases suggested that the steric environment around the Co could affect the geometry

of 22, and, thus, its reactivity [82]. When applied to biorefinery lignin samples,

Co-Schiff base catalyzed oxidation induced quinone formation and the production

of structurally related aromatics. Treatment of organosolv lignin isolated from

mixtures of switchgrass and poplar with Co(salen) and O2 affords roughly 10 wt

% yield of low molecular weight products, most of which is DMBQ. Interestingly,

oxidations of lignin are not improved by the addition of either an external basic

ligand or a non-ligating hindered base, suggesting that the lignin itself may be

acting in those capacities. Although the yields are still low, they are equivalent to

similar lignin oxidation processes reported in the literature.

The impact of using phenolic lignin models has also been observed with V

catalysts. The reactivity of two V catalysts was compared, and revealed a depen-

dence on the ligands within the complex (Fig. 11). Reaction of phenolic β-O-4
model 29 with the Toste catalyst 17 afforded the expected products of benzylic

hydrogen cleavage, 30 and 31. In contrast, reaction with vanadium quinolate

complex 32 under similar conditions induced the cleavage of the bond between

the Cα and Cβ carbons of the model’s side chain, affording dimethoxyben-

zoquinone (40%), acrolein derivative 33 (38%), and benzylic oxidation product 34
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(20%). The presence of a free phenolic OH group on the aromatic ring was

suggested as the source of the C–C bond cleavage via formation of an intermediate

phenoxy radical [83].

Recent work has examined the Co-catalyzed oxidation of several different

lignins in ionic liquid medium using a simple catalyst. Alcell (organosolv) and

soda lignin were treated with catalytic CoCl2·6H2O and NaOH in 1-ethyl-3-

methylimidazolium diethyl phosphate under 0.5 MPa O2 at 80�C. The lignin

samples did not demonstrate conversion to low molecular weight aromatics, but

infrared analysis showed an increase in the concentration of both –OH and aldehyde

functionality. Model compound studies suggested that certain subunits in lignin

were inert to these conditions, but that available –OH groups on the lignin side

chain were converted to the corresponding aldehyde [84]. Subsequent spectro-

scopic and mechanistic investigation demonstrated that the NaOH played a key

role in activating the Co precatalyst, and determining the distribution of products

after reaction. The ionic liquid solvent was thought to stabilize several reactive

intermediates, including a Co-superoxo complex analogous to 23 that is not

observed from CoCl2·6H2O in conventional media [85].

Phenolic lignin models are also converted to the corresponding benzoquinone

upon oxidation with stoichiometric NO2 [86] or catalytic NO2 in the presence of O2

[87]. Reaction of syringyl alcohol with 10% NaNO2 in MeOH and a small amount

of concentrated HNO3 or HCl (which generates NO2 in situ), gives an 80–90% yield

of DMBQ when carried out under 0.1 MPa of O2. Reducing the NaNO2 level to 5%

gives DMBQ in 70–75% yield (Fig. 12). The mechanism is similar to Co-Schiff

base catalyzed reactions, in that NO2 initiates reaction through formation of an

intermediate phenoxy radical, which is trapped by additional NO2 [88, 89].

4 More Highly Selective Lignin Transformations

4.1 Vanillin

Despite the challenges to selectivity presented by lignin’s heterogeneous structure,

scattered examples of more highly selective transformations have been reported.

The production of vanillin from lignin is perhaps the best example of an ongoing

industrial effort for selective transformation of lignin. Borregard has been a com-

mercial supplier of lignin-derived vanillin for decades, and carries out the conver-

sion through the metal catalyzed oxidation of lignosulfonates (from sulfite pulping
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MeO OMe
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Fig. 12 Oxidation of syringyl alcohol with catalytic NO2
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of wood) at high pH. The production of vanillin from lignin in the pulp and paper

industry has a long history, with an initial observation of vanillin in lignin wastes

appearing in 1875, and the first commercial scale production in the US starting in

1936 [90]. Yields are low (5–10%), but production has historically been used by the

paper industry to generate additional revenue. Although 85% of vanillin today is

now produced from guaiacol [91], production from lignin is still carried out on a

limited scale by industry [92]. A recent mechanistic study of this process using

sodium lignosulfonates and oxygen in the presence of a Cu+2 catalyst revealed the

complexity of the process, and showed that vanillin resulted both from lignin

hydrolysis in the absence of an oxidizing agent (~55% of the vanillin), while the

remainder was formed oxidatively (~45%) [93].

Efforts have been made to improve this process through development of new

oxidation catalysts. It has long been recognized that the yields of vanillin from

sulfite liquors can be increased by the addition of metal catalysts such as Cu(II).

Alkaline oxidation of sulfite waste liquor gave 22% vanillin in the presence of

CuSO4·5H2O, and 13.5% yield from sulfite waste liquor solids [94]. Organosolv

lignins have also been reported as starting materials for vanillin synthesis.

Organosolv lignin obtained from eucalyptus, sugarcane bagasse, and softwood

via the Acetosolv or Organocell processes was converted to vanillin by oxidation

in HOAc with O2 catalyzed by Co(OAc)2. The optimum yield reported for any of

these systems was less than 6% [95].

Kraft lignin can also be converted to vanillin, although the yields remain

uniformly low. Oxidation of black liquor from kraft pulping of Pinus pilaster
with oxygen in alkaline medium at ~135�C gave a maximum vanillin yield of

about 0.9 g of vanillin/100 g of black liquor solids. Catalyzed and uncatalyzed

oxidation of isolated kraft lignin from eucalyptus with oxygen, or oxygen and

added Cu(II) or Co(II) catalysts gave <5% yield of low molecular weight products

as a mixture of materials [96]. Catalysis of kraft lignin oxidation with O2 using a

polyoxometalate (H3PMo12O40) under acidic conditions in MeOH at 170� gave

vanillin and methyl vanillate in a combined yield of 7–8%. The isolated material

was accompanied by a large amount of oligomer, requiring additional purification

of the reaction mixture to obtain pure monomers [92, 97].

4.2 Other More Highly Selective Conversions

If the lignin is retained in whole biomass, direct hydrogenolysis can give production

of a relatively small number of lignin-derived phenols. The lignin in birch sawdust

was converted into propylguaiacol (10) and propylsyringol (35) in 97% selectivity

and a lignin conversion of 50% using a Ni/C catalyst in alcoholic solvents. The

reaction process was demonstrated to occur via solvolytic fragmentation of lignin

followed by hydrogenolysis to final products, with the alcohol solvents serving as

the source of hydrogen in the reaction [98]. In a similar reaction, birch sawdust was

treated with H2 at 4 MPa and 200�C with a Rh/C catalyst in 1:1 dioxane/H2O and
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1%H3PO4 to give a 46 wt% yield of total monomers, 35% of which was 35. Smaller

amounts of 10 and alcohols 12 and 36 were also observed [99]. The resulting

phenols were then transformed into a mixture of fuel-grade alkanes by hydrogena-

tion at 4 MPa over a 5% Pd/C catalyst at 250�C.

OMe
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OMe
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OMe
OH

OMe
OH

HO

MeO

HO

MeO

10 35 12 36

Catalytic oxidation of beech organosolv lignin in ionic liquid (1-ethyl-3-

methylimidazolium trifluoromethanesulfonate) at 100�C and 8 MPa air in the

presence of 20% Mn(NO3)2 formed DMBQ 25 in 11.5% isolated yield and 21%

selectivity. The amount of 25 formed under these conditions depended on the

catalyst level. At 2% catalyst, the product slate shifted to a mixture of

syringaldehyde, syringyl alcohol, and vanillin, with only trace amounts of DMBQ

observed. The authors propose that DMBQ results from syringaldehyde

oxidation [100].

An interesting deconstruction of lignin occurs upon thermolysis in a large excess

of a water/p-cresol mixture (1.8:2.5 g) at 400�C. Under these conditions, a single

product 38 is formed (Fig. 13), accounting for as much as 80% of the carbon present

in the starting lignin, and with no char formation being observed. The reaction is

suggested to proceed through an initial depolymerization of the lignin, and then a

rapid trapping of the reactive intermediates through reaction with the p-cresol
[101]. Further mechanistic investigation suggests the intermediacy of a benzylic

cation formed from the acid catalyzed lignin hydrolysis, and subsequent rapid

electrophilic capping by the p-cresol leading to 37 [102]. The cresol adduct

undergoes cleavage of the α,β-bond, affording 38 and the remainder of the lignin

polymer. Deformylation of the aromatic ring is suggested to occur through the keto

form of the phenol (39) via loss of formaldehyde.

Oxidation processes have been carried out on lignin models in the context of

improving pulp bleaching processes, but also suggest methodology that, if opti-

mized, might prove useful for transforming lignin into chemical products. Reaction

of a family of lignin models (veratryl and vanillyl alcohol, β-O-4 dimers, and

diphenylmethanes) with homogeneous and heterogenized methyltrioxorhenium

and HOOH as the terminal oxidant afforded moderate yields of corresponding

oxidation products. When applied to hydrolytic sugar cane lignin or red spruce

kraft lignin, moderate yields of new functionality (as determined by 31P NMR) in

the lignin were observed, but no specific single compounds were isolated or

reported. Interestingly, the heterogenized catalysts displayed significant reactivity

toward the lignin, suggesting that there was no appreciable kinetic barrier to the

interaction of two heterogeneous materials [16].
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Oxidation of lignin and lignin models was investigated using a well-recognized

industrial method based on aerobic oxidation catalyzed with metal bromide com-

plexes in acetic acid. A group of lignin models was converted to the corresponding

carboxylic acid upon treatment with Co/Mn/Br catalysts in HOAc solution under

O2 at 80–95�C. When an organosolv mixed hardwood lignin (Aldrich) was

subjected to these conditions, 5–11% of similar, monomeric oxidation products

were identified, and included vanillin, vanillic acid, syringaldehyde, and syringic

acid. The reactivity of organosolv lignin was considerably higher than the other

lignins tested in this study (acetylated organosolv lignin, sodium lignosulfonates,

and hydrolytic lignin from a sugar cane biorefinery operation) [103].

5 Conclusions

Until recently, catalytic lignin conversion has been used primarily for the

nonselective deconstruction of lignin into low molecular weight, easily removed

fragments that can be separated from cellulose. Even more challenging to an

effective coverage and understanding of the field is that much of this work remains

within the more specialized journals of the pulp and paper industry. The promise of
lignin conversion continues to be cited, but the reality, at least in the context of

organic synthesis, is that lignin conversion still leads to the formation of complex

mixtures enriched in certain functional groups representative of the starting lignin

structure. There is a vast difference between a valuable mixture of chemicals and a
mixture of valuable chemicals.

Nonetheless, the expanding interest in biorefining of lignocellulosics and full

exploitation of all the biopolymeric components of biomass is moving lignin

transformation more into the mainstream. Methodology for the selective transfor-

mation of lignin is beginning to emerge, but still faces several challenges inherent

to lignin as a source of renewable carbon:
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• Lignin’s structure as biosynthesized in plants is not the structure normally

isolated and available for conversion in the biorefinery.

• Lignin bears a large number of structurally different groups with similar reac-

tivity, rendering selective transformations difficult.

• Upon isolation, lignin affords mixtures of materials with different molecular

weight, further complicating its reactivity profile.

• Lignin’s structure and composition can vary widely depending on source. ETEK

lignin from dilute acid hydrolysis of biomass is actually about 46% cellulose and

29% lignin [104]. In contrast, organosolv lignins exhibit purities >95%.

• Accordingly, the reactivity of the lignin can also vary widely. In general,

organosolv lignins (often prepared under acidic conditions) appear to offer

greater reactivity and utility as raw materials than kraft lignins (prepared under

basic conditions).

New catalytic transformations are being developed and reported for lignin

models, and provide useful information regarding reactivity of specific functional

groups under reductive and oxidative conditions. The opportunity in this field is the

development of general, broad-based methodology that can accommodate multiple
functional groups and still afford high yields of low molecular weight aromatics.

By tailoring the tools of catalysis, long used for the selective transformation of

petroleum based hydrocarbons, to the more highly oxygenated lignin polymers and

substructures, and coupling this with new methodology for lignin fractionation and

isolation, the potential for using lignin as a viable source of renewable carbon is

increasing. Recognition that isolated lignin is available in a wide variety of forms,

and, thus, a wide variety of functional group profiles, will enable the most effective

catalyst design.
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