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Chapter 1
Introduction: Origin, Use and Interpretation
of Feynman Diagrams

1.1 A Tool for Organizing Calculations

“Like the silicon chip of more recent years, the Feynman diagram was bringing com-
putation to the masses.” Thus Julian Schwinger,! displaying a hint of both disdain
and admiration, appraises the enormous impact of Feynman diagrams as a mathe-
matical tool on the daily work of theoretical physicists. And indeed, since Richard P.
Feynman (1918-1988) invented them, around the year 1948, and Freeman J. Dyson
subsequently systematized them, these diagrams have undeniably become an indis-
pensable tool for performing calculations in modern quantum field theory. They are
omnipresent in the theoretical treatments of an important class of elementary parti-
cle phenomena, in particular quantum electrodynamics (QED). In modern textbooks
on quantum field theory—I will quote from one of them below—they take centre
stage, while the teaching of their use is one of the essential components in courses
on the subject.

Feynman diagrams enable one to find the relevant expressions in an approximate
solution (perturbative expansion) to the equations that describe the dynamics of a
quantum electrodynamic system. From the conception of the process as a sequence
of particle creations and annihilations, one can produce a schematic drawing that
relates these creation and annihilation events. The diagram thus obtained can then
be translated, element by element, into a complex mathematical expression, the
evaluation of which yields an observable quantity that characterizes the physical
system (amplitudes of transition probabilities).

At the beginning of their widely used textbook on quantum field theory, Michael
Peskin and Daniel Schroeder introduce Feynman diagrams in the following way:

The main purpose of Part I of this book is to develop the basic calculational method of quan-
tum field theory, the formalism of Feynman diagrams. We will then apply this formalism to
computations in Quantum Electrodynamics, the quantum theory of electrons and photons.
[...]

Feynman diagrams provide for this elegant theory an equally elegant procedure for
calculation: Imagine a process that can be carried out by electrons and photons, draw

I Schwinger (1983, p. 343).

A. Wiithrich, The Genesis of Feynman Diagrams, Archimedes 26, 1
DOI 10.1007/978-90-481-9228-1_1, © Springer Science+Business Media B.V. 2010
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a diagram, and then use the diagram to write the mathematical form of the quantum-
mechanical amplitude for that process to occur. (Peskin and Schroeder 1995, p. 3)

We know of no methods that can exactly solve the equations that supposedly
describe a quantum electrodynamic system, and no candidate for such an exact
method even exists. Therefore, one has to turn to approximate solutions, such as
the so-called perturbative expansion. For this method of solution Feynman provided
an appropriate tool:

The bad news is that even for this simplest of QED processes [eTe™ — utu~], the
exact expression for M [the quantum-mechanical amplitude for the process to occur] is
not known. [ ...] The best we can do is obtain a formal expression for M as a perturbation
series in the strength of the electromagnetic interaction, and evaluate the first few terms in
this series.

The good news is that Feynman has invented a beautiful way to organize and visual-
ize the perturbation series: the method of Feynman diagrams. Roughly speaking, the dia-
grams display the flow of electrons and photons during the scattering process. (Peskin and
Schroeder 1995, p. 5)

Besides organizing the calculations, Feynman diagrams also serve as a form of
shorthand for the terms that occur in the calculations. Each element of a Feynman
diagram corresponds to an elementary mathematical expression, while the Feynman
diagram as a whole corresponds to the entire mathematical expression in which one
is interested:

According to the Feynman rules, each diagram can be translated directly into a contribution
to M. The rules assign a short algebraic factor to each element of a diagram, and the product
of these factors gives the value of the corresponding term in the perturbation series. Getting
the resulting expression for M into a form that is usable, however, can still be nontrivial.
(Peskin and Schroeder 1995, p. 5)

As Peskin and Schroeder mention, the mathematical expression obtained by
using the diagrams is still hard to evaluate, and the evaluation of such integrals
can easily constitute a Masters or PhD thesis in theoretical physics.> Schwinger’s
analogy between the impact of the diagrams and that of the silicon chip should,
therefore, be treated with caution. The power of Feynman diagrams to perform cal-
culations is of a particular type: the diagrams do not aid us to evaluate integrals;
rather, they help us to obtain the relevant terms from the unstructured and complex
form of the approximate solution to the basic equations.

1.2 Tempting but Incorrect Interpretations

While Peskin and Schroeder (1995) aptly characterize Feynman diagrams as a tool
for organizing perturbative calculations, Rom Harré (1988, pp. 62, 64) writes of a
way of “parsing the amplitudes”. To perform the “parsing” process, one has first
to “imagine a process that can be carried out by electrons and photons”, as Peskin

2 See, for instance, Todtli (2004).
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and Schroeder state, and then draw diagrams that “display the flow of electrons and
photons during the scattering process”.

However, some textbooks explicitly warn the reader not to take too literally the
interpretation that these diagrams represent scattering processes. The diagrams rep-
resent the scattering process only in an extremely abstract way. For most authors
the safest way of using Feynman diagrams is, therefore, to consider them as nothing
more than an abbreviation of the mathematical expressions that one has to deal with
in the calculations:

Please understand: these Feynman diagrams are purely symbolic; they do not represent par-
ticle trajectories (as you might see them in, say, a bubble chamber photograph). The vertical
dimension is time, and horizontal spacings do not correspond to physical separations. For
instance, in Bhabha scattering [see Fig. 1.1] the electron and positron are attracted, not
repelled as the diverging lines might seem to suggest). All the diagram says is: “Once there
was an electron and a positron; they exchanged a photon; then there was an electron and
a positron again.” Each Feynman diagram actually stands for a particular number, which
can be calculated using the so-called Feynman rules. (Griffiths 1987, p. 59, emph. in the
original)

F. A. Kaempffer’s (1965) assessment of Feynman diagrams matches Peskin and
Schroeder’s introduction of the diagrams as an appropriate tool for keeping track of
all the relevant terms in a perturbative expansion. And like David Griffiths quoted
above, Kaempffer also emphasizes that it is easy to arrive at incorrect interpretations
using the diagrams. He compares them to Faraday’s field lines, which, according to
Kaempffer, incorrectly suggested the existence of an ether.’

After some contemplation of these drawings one is inevitably tempted to adopt, with Feyn-
man, a picturesque manner of speaking about them which conjures up for every internal
line the image of a particle propagation in a state of virtual existence between the vertices
of that line. [...]

One has to go back in the history of physics to Faraday’s concept of the field line if one
wants to find a mnemonic device which matches Feynman’s graph in propagandistic per-
suasiveness. This historical analogy may serve here as timely warning against all too literal
acceptance of mental images based mainly on a fabric of conventions, however consistent
that fabric may appear. Thus, Maxwell was led by all too literal acceptance of Faraday’s field
concept to an ether theory of vacuum which ultimately turned out to be abortive. Similar
temptations are lurking behind Feynman’s graphs [ ... ]

There are several kinds of arguments against giving Feynman diagrams a physi-
cal interpretation. Letitia Meynell (2008) classifies the arguments into two types of

Fig. 1.1 One of the Feynman
diagrams used in the
discussion of Bhabha
scattering (Griffiths 1987,

p. 58)

3 Kaempffer (1965, p. 209), emph. in the orginal; cf. Kaiser (2005, p. 369).
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objections: the first objection is that Feynman diagrams represent something that, by
definition, is unobservable, the so-called virtual particles referred to by Kaempffer
in the above quotation; the second type of objection is that the concept of trajec-
tories, which the lines in a Feynman diagram supposedly represent, is not, in fact,
applicable in quantum mechanics.

The first type of objection is related to the question concerning the reality of
the virtual particles. When a scattering process is described by the approximate
solution (perturbative expansion), the terms in the expansion can be interpreted as
the probability of transition from the initial to final states via various intermediate
states. Most or all of these states, depending on the energy of the initial state, are
unobservable because the energy of the initial state would not be enough to produce
them. Nevertheless, the fact that, if sufficient energy were available, these states
could be produced has to be taken into account when calculating the transition
probabilities. However, one refers to intermediate states only because a particu-
lar method of solution has been chosen. Thus it is clear to Nick Huggett (2000,
p. 629) that one should not attribute reality to these intermediate states: “[Vir-
tual particles] are artifacts of an approximation scheme not particulate elements of
reality.”

Robert Weingard (1988) also states that virtual particles are not, as their name
suggests, real after all. He points out that the intermediate states are superpositions,
even of states with different numbers and types of particles. Therefore, the elements
of the superposition do not represent real states of affairs as far as these charac-
teristics are concerned. The situation is comparable to a double-slit experiment: a
particle does not really pass through one or the other of the two narrow slits of a
screen, neither does it pass through both of the slits, nor, indeed, through neither of
them. Similarly, Weingard does not believe that virtual particles are really present
in the intermediate states of a scattering process: “We do not have good grounds for
thinking that Feynman diagrams picture real, albeit ‘virtual’, physical processes by
means of which elementary particles interact” (p. 54).

In the Feynman diagram associated with a term in the perturbative expansion,
the points of the creation and annihilation of a virtual particle are connected by
an (internal) line, which might be taken to be the trajectory of that particle. The
arguments to the effect that this is an incorrect interpretation belong to the second
type of objections mentioned by Meynell (2008).

The concept of a trajectory is at variance with one of the fundamental principles
of quantum mechanics. Only after measurements have been taken using particle
detectors—devices that fall within the domain of classical physics—can a trajec-
tory be associated with a quantum mechanical particle. The interaction with the
molecules of a gas in a bubble chamber, for instance, causes the particle to localize
repeatedly (its wave function collapses); the particle behaves, therefore, more and
more like a classical particle and leaves an observable track. It is the experimentally
produced patterns of tracks that may resemble Feynman diagrams. But one should
refrain from interpreting the lines of the diagrams as the theoretical trajectory of the
particles:
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Feynman diagrams look something like cloud chamber pictures, and they are often called
space-time diagrams. This leads to the confusion. In fact, the diagrams do not picture phys-
ical processes at all. Instead, they represent probabilities (actually, probability amplitudes).
The argument for this is very simple. In quantum mechanics (as normally understood), the
Heisenberg uncertainty relations imply that no particle could have a position and a momen-
tum simultaneously, which means there are no such things as trajectories, paths, through
space-time. So the lines in a Feynman diagram cannot be representations of particles and
their actual paths through space-time. (Brown 1996, pp. 265-267)

Thus, on the strength of such arguments, not only physicists such as Peskin,
Schroeder, Griffiths and Kaempffer, but also historians and philosophers of science,
such as James R. Brown, warn us against misinterpreting Feynman diagrams. Brown
does not even acknowledge that they have an abstract representational function.
He does not consider that they directly refer to any physical process in any way
whatsoever. Rather, according to Brown, the diagrams are simply the abbreviation
of complicated mathematical expressions and only the latter tell us something about
the physical process:

So what, then, is being visualized? I think the answer is simply this: Feynman diagrams are
geometric representations of probability functions. [ ...] They are not pictures of phenom-
ena. [ ...] [The] Feynman diagram geometrically represents (often brilliantly) a mathemat-
ical function which is linked to a physical process. We see the lines in the diagram; we do
not visualize the physical process itself, nor any sort of abstract version of it. (Brown 1996,
p. 267)

1.3 The Origin of Feynman Diagrams

The view that Feynman diagrams are simply a tool for organizing calculations and
the many warnings against making incorrect interpretations also have a bearing on
accounts of their origin. We already saw that Peskin and Schroeder (1995) consider
that “Feynman has invented a beautiful way to organize and visualize the perturba-
tion series” (my emph.). In the publication just cited, Brown also suggests that the
diagrams are the result of Feynman’s attempts to simplify the task of finding and
organizing terms in complicated perturbative calculations:

When Richard Feynman was working on quantum electrodynamics in the late 1940s, he
created a set of diagrams to keep track of the monster calculations that were required.
(Brown 1996, p. 265)

Some authors, such as S. S. Schweber and H. C. Baeyer, are more explicit in their
claims that Feynman’s preoccupations with complex mathematical expressions was
the driving force behind the development of the diagrams:

[Feynman] diagrams evolved as a shorthand to help Feynman translate his integral-over-
path perturbative expansions into the expressions for transition matrix elements being cal-
culated. (Schweber 1994, p. 434)
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Baeyer, though, seems to distinguish between the diagrams’ role as a form of short-
hand and their role as a tool for organizing the calculations; he associates only the
former to the context of their discovery:

To minimize errors and save time, Feynman invented an ingenious graphic shorthand for the
calculations, made up of little dots, lines and wiggles that can be thought of as plots of all the
ways two or more electrons can interact. The drawings, now known universally as Feynman
diagrams, look simple, but they stand for something very complicated. Feynman actually
introduced each line, dot and wiggle not to represent a particle or the path of a particle,
but to stand in for a complicated mathematical expression. Hence Feynman diagrams were
initially a kind of stenography, but they ultimately made computations much faster and
more reliable. Doing QED before Feynman was a bit like doing arithmetic with Roman
numerals.*

Even Feynman himself retrospectively maintains that he made diagrams to help
him “analyze perturbation theory quicker”.> To the best of my knowledge, even in
the retrospective account that most closely follows the development of the diagrams,
Feynman recalls that they served mainly as a form of shorthand for mathematical
expressions. The interview with Charles Weiner, to which I now refer, contains the
following dialogue®:

Feynman: I can’ttell you when I first wrote them. [...] I probably made diagrams
to help me think about [perturbation expressions]. [ ...] It was probably
not any specific invention but just a sort of a shorthand with which I was
helping myself think, which gradually developed into specific rules for
some diagrams. [ ...]

Weiner: For helping you think physically? In other words, you were seeing in
physical—

Feynman: No, mathematical expressions. Mathematical expressions. A diagram to
help write down the mathematical expressions.

Arthur 1. Miller (1984) is one of the few historians who does not believe that
Feynman diagrams were developed in order to find abbreviations for complex math-
ematical expressions. For him the development of Feynman’s theory is more closely
linked to physics than their function as a form of shorthand might suggest. Miller
proposes two routes that might have led to Feynman’s diagrammatic method. One
is that Feynman continued his quest for Anschaulichkeit (visualizability) as in the
later work of Werner Heisenberg on exchange forces in 8 decay.” Accordingly, he
sees that one of the origins of Feynman diagrams lay in transforming diagrammatic
representations of the exchange of quanta in nuclear physics. Miller emphasizes
that this was not about finding illustrations more pleasing to the eye but rather about
establishing different concepts of the physical phenomena:

4 Baeyer (1999, p. 14); cited in Meynell (2008)
5 Feynman (1966, p. 706).

6 Weiner (1966a, pp. 41-42), reprinted with permission. Copyright 1966, American Institute of
Physics.
7 Miller (1984, e. g., p. 159).
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[The] transition from Wentzel’s schematics of 1943 [(Wentzel 1943)] to the Feynman dia-
grams of 1949 required further transformations of what constitutes physical reality and its
accompanying mental imagery. (Miller 1984, p. 166)

The other possible route Miller proposes is Feynman’s attempt to interpret the
divergences in QED by renormalizing the theory’s parameters. However, Miller pur-
sues neither of these two routes; he decides not to try and retrace the steps that led
to the new and innovative representation of elementary particle phenomena because
of “the complexity of the route” (p. 257).

In the most recent and one of the most comprehensive studies on Feynman
diagrams, David Kaiser (2005) omits any discussion of their origin altogether.
“[Kaiser’s] project concerns instead what happened to the diagrams once they made
the leap out of Feynman’s head” (p. 5, emph. in the original). Kaiser describes how
physicists in different places adopted and transformed Feynman diagrams, adapting
them to their own uses so that the diagrams would satisfy their individual needs.

In most treatises on the subject, discussion on the origin of Feynman’s method
is clearly either cursory or entirely overlooked. And even Feynman’s retrospective
accounts are of little help: we learn from the interview with Weiner above that Feyn-
man himself could not remember when he first used the diagrams.

1.4 The Reasons for the Diagrams’ Success

When it comes to assessing the quality of the diagrams and finding reasons for their
success, most accounts presuppose them to be a calculational tool with no repre-
sentational function. Accordingly, weaker notions than “representation” have often
been put forward to explain why Feynman diagrams have proved so popular with
physicists, who clearly prefer them to alternative diagrams, such as the so-called
dual diagrams.® The most prominent notions are those of intuition or visualizability
and similarity, which are understood to share some but not all the characteristics of
what constitutes a “representation”.

1.4.1 Intuition and Visualizability

According to Miller (1984) the main appeal of Feynman diagrams is that they are
“intuitive” or “anschaulich”. In his discussion of them Miller refers to “visualizabil-
ity”, a concept that, according to him, is closely related but not identical to “intu-
ition”. Miller translates Anschauung as “intuition”, Anschaulichkeit as “visualizabil-
ity” and anschaulich as “intuitive” (p. 129). We encountered the verb “visualize”
earlier in this section in the citations from Peskin and Schroeder and Brown, while
Schweber (1986b) described “the power of visualization” and “impressive physical

8 The case of dual diagrams is discussed in Kaiser (2005, p. 366ff).
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intuition” of Feynman’s “style” as being the major characteristics of Feynman’s
“genius” (p. 504).

In the article featuring the first published Feynman diagram,” Dyson derives the
results that Feynman found in a less sophisticated manner from the principles of
quantum field theory. He tries to characterize the difference between Feynman’s
“Intuitive considerations” (p. 496) and his more rigorous derivations as follows:

In Feynman'’s theory the graph corresponding to a particular matrix element is regarded, not
merely as an aid to calculation, but as a picture of the physical process which gives rise to
that matrix element. For example, an electron line joining xj to x, represents the possible
creation of an electron at x| and its annihilation at x,, together with the possible creation of
a positron at x, and its annihilation at x;. (RadTh, p. 496)

Feynman described the dynamics of electrons and positrons in the framework
of single-particle quantum mechanics. In particular he used the Green’s functions
associated with the Schrodinger and Dirac equations to describe the propagation
of electrons forwards and backwards in time (see Chapter 5). On the basis of this
theory and the interpretation of the diagrams as the abstract representation of par-
ticle propagation, he was led to find a type of diagram that, when translated into
mathematical expressions, would contribute to a transition amplitude up to a given
order of approximation.

Dyson derived the same quantitative results from the principles of quantum field
theory and thus placed Feynman’s results on a more established theoretical footing
(see Chapter 6). He provided syntactical prescriptions for constructing the same
diagrams that Feynman had developed on the basis of the latter’s obsolete theory.
Dyson also established a one-to-one-correspondence between the field theoretical
quantities and these diagrams. Thus, once one had the diagrams, one also had the
correct field theoretical expressions. The method by which one constructs the dia-
grams therefore becomes irrelevant. Therefore, one can use either Dyson’s graphical
prescriptions or, proceeding with due caution and restricting oneself to unproblem-
atic cases only, Feynman’s obsolete theoretical considerations. In this sense one
can then obtain the correct quantum field theoretical expressions using Feynman
diagrams “intuitively”.

The problem with Feynman’s theoretical assumptions is that they are based on
equations for the wave function of electrons. By the 1940s it was generally agreed
that quantum systems, in particular relativistic ones, should be described by math-
ematical field operators and not by functions. In other words, the theory which
describes the system had to be quantized a second time.

Feynman’s method was disqualified as being “intuitive” because of his obsolete
theoretical assumptions. It was not the visual reasoning present in Feynman’s papers
that caused disagreement but the assumptions from which he derived his results
(either using formulae or diagrams). In a lecture Dyson gave at Cornell University
(Ithaca, NY)'? 2 years after the publication of the article featuring the first published

9 RadTh.
10 Dyson (2006).
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Feynman diagram, he is more explicit about his reasons for preferring his derivation
to Feynman’s'!:

The disadvantage of the Feynman theory is that it is constructed as a particle theory. The
fact that there are many particles, indistinguishable from each other and obeying quantum
statistics, has to be put into the theory as a special assumption. And the equations of motion
of the particles become quite complicated when interactions between several particles, not
to mention vacuum-polarization effects, are included. Thus the logical basis of the Feynman
theory is much less simple than that of the field theory, where everything follows from
general principles once the form of the Lagrangian is chosen.

In this course we follow the pedestrian route of logical development, starting from the
general principles of quantizations [sic] applied to covariant field equations, and deriving
from these principles first the existence of particles and later the results of the Feynman
theory. Feynman by the use of imagination and intuition was able to build a correct theory
and get the right answers to problems much quicker than we can. It is safer and better for
us to use the Feynman space-time pictures not as the basis for our calculations but only as
a help in visualizing the formulae which we derive rigorously from the field-theory. In this
way we have the advantages of the Feynman theory, its concreteness and its simplification
of calculations, without its logical disadvantages.

Thus, on closer inspection, “intuition” as a concept turns out to concern the the-
oretical assumptions and not the means of representation used in deriving results
from the theoretical assumptions. As such it cannot, therefore, explain the success
of the diagrams.

1.4.2 Similarity

Another explanation for the diagrams’ success is the notion of “similarity”.
Feynman diagrams closely resemble the tracks that particles leave in experimen-
talists’ detectors; to some extent, they have the same syntactic elements as the pho-
tographs produced by bubble chambers and nuclear emulsions, experimentalists’
principal detection devices. Harré (1988), whom I briefly mentioned in Section 1.2,
believes that the close similarity of Feynman diagrams to particle tracks explains
why they are physicists’ preferred choice for representing the scattering processes
described by quantum field theory.

Kaiser also singles out the similarity of Feynman diagrams to observed particle
tracks as their distinguishing feature and compares them with an alternative dia-
grammatic method, the so-called dual diagrams (Kaiser 2005, p. 366ff.). In contrast
to dual diagrams, which do not show this similarity, Feynman diagrams can be
more easily related to the reality that is quantitatively described by the results of
the calculations for which the diagrams are being used:

The association of “realism” with Feynman diagrams in the 1950s and 1960s, based on
their similarity to “real” photographs of “real” particles, helped Feynman diagrams stand
out for many physicists. Unlike dual diagrams, Feynman diagrams could be read as more
immediately related to real particles and processes, and hence less bound up with any

1 Dyson (2006, p. 100); see also Sakurai (1967, pp. 240-241).
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particular abstract formalism. No one had to proclaim that Feynman diagrams were “the
same” as nuclear emulsions, bubble-chamber photographs, or their stylized reconstructions
for visual affiliations to be made. (Kaiser 2005, pp. 372-373)

However, as Nelson Goodman (1968) points out, it is doubtful whether similar-
ity can be considered the basis for the realism of a representation. Which objects
resemble other objects depends on which aspects of the phenomena are judged to
be relevant. Along this line of thought it would be interesting to see how much of
the realism that Feynman diagrams may have acquired and their claimed similarity
to particle tracks are due to the appropriateness of the representation for the task
of renormalization rather than to any independently established resemblance to the
observable effects of the processes under study. Realism, as well as the perceived
similarity, would then be a consequence of the diagrams’ success, not a reason for
it.!> Their success would, in turn, then need to be explained by the appropriateness
of a representation to a particular task.!3

For all that, Kaiser leaves open the question of why “visual affiliations” to real
particles should be advantageous to a calculational tool. Given the fact that the sim-
ilarity between Feynman diagrams and the pictures of particle tracks incorrectly
suggests that the diagrams represent trajectories, the associations that Feynman dia-
grams evoke appear to be more of a disadvantage than an advantage. Remember,
for instance, Kaempffer’s caveats quoted above: rather than exploiting the similarity
between Feynman diagrams and real particle tracks, working physicists and teachers
were busy trying to prevent colleagues and students from making incorrect interpre-
tations on the basis of that similarity. They would probably have appreciated having
at hand a less suggestive but equally powerful tool. Thus Feynman diagrams must
have been adopted for other reasons.

1.5 The Ingredients of Modern QED

The theory of QED, as it stood in the 1930s and early 1940s, predicted the out-
comes of experiments pertaining to it extremely accurately in those cases when
the theory was applied in a rough approximation (perturbative expansion to first
order). However, when physicists attempted to obtain yet more accurate results by
applying QED in a more rigorous approximation (perturbative expansion to higher
orders), the predictions became not only less precise but completely unusable and
uninterpretable: they turned out to be infinite.'*

To remedy this situation, the infinite quantities were parsed into finite and infinite
parts, where the finite part could be argued as the physically relevant quantity. This
implied that the infinite part could be discarded. One of the difficulties encountered

12 Wiithrich (2007), cf. Goodman (1968).
13 Cf. Graphoff et al. (2002), Nickelsen (2002).
14 For a comprehensive account of the history of QED, see Schweber (1994).
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was finding a way to parse the quantities that was consistent with the theory of
special relativity; in other words, to parse the quantities in a covariant way.

Because the calculations involve notorious subtractions of infinite quantities
from infinite quantities, even a covariant equation could have solutions that were
not covariant. A method was, therefore, needed in which each intermediate result
was covariant. Such a method was proposed by Schwinger, Sin-Itiro Tomonaga and
Feynman at the end of the 1940s, although Ernst C. G. Stueckelberg (cf. Pais 1986,
p. 457f.) had, at least to some extent, put forward a method as early as 1934. The
procedure proposed by these men to eliminate the infinities was the renormalization
of the mass and charge of the electron.

1.5.1 Calculation Methods

Although he is one of its essential makers, Dyson does not regard the achievements
of modern QED as genuine progress in physics. He sees modern QED and Feynman
diagrams as a theory with the same physical assumptions as old QED; according to
him, only the calculation methods changed. He writes that:

Tomonaga, Schwinger, and Feynman rescued the theory without making any radical inno-
vations. Their victory was a victory of conservatism. They kept the physical basis of the
theory precisely as it had been laid down by Dirac, and only changed the mathematical
superstructure. By polishing and refining with great skill the mathematical formalism, they
were able to show that the theory does in fact give meaningful predictions for all observable
quantities. (Dyson 1965, p. 589)

Max Dresden (1993, p. 55), however, believes that the transition from old to
modern QED constitutes “a major technical advance with ramifications in many
parts of physics”, while Weinberg (1995, p. 37) describes the invention of Feynman
diagrams as being of “practical importance”. Feynman himself does not regard the
invention of his diagrams as a discovery. In published articles on the subject, he
sees them as a “mere re-expression of conventional quantum electrodynamics”.!?
Indeed, later Feynman even admits to regretting having only reformulated already
discovered theories.!® He claims that the so-called vector-axial vector law of weak

interactions was his only genuine discovery:

It was the first time that I discovered a new law, rather than a more efficient method
of calculating from someone else’s theory (as I had done with the path-integral method
for Schrodinger’s equation and the diagram technique in quantum electrodynamics) | ... ]
(Mehra 1994, p. 453)

Tomonaga, who shared the 1965 Nobel Prize in Physics with Feynman and
Schwinger, relates in his Nobel Lecture that Sidney Dancoff correctly formu-
lated all the assumptions from which the so-called Lamb Shift could have been

15 STQED, p. 776.
16 Feynman (1966, p. 707).
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calculated.!” So, had Dancoff not made a mistake in his calculations, the correct
results for the Lamb Shift would have followed and, according to Tomonaga, “the
history of renormalization theory would have been completely different”. In the light
of such events it seems plausible to conclude that suitable calculation methods were
the only thing that prevented modern QED from being created.

Abraham Pais (1986) agrees that the developments in modern QED concerned
mainly practical aspects. He also points out that such an assessment invites the
question as to why the breakthrough did not come earlier:

In later years, veterans of the 1930s battle with the infinite would occasionally and wistfully
remark that this change should already have occurred in prewar days. They would remind
themselves that, after all, the theory so masterfully developed further in the late forties was
based on the same dynamical equations, subject to the same rules of quantum theory and
relativity, with which they had struggled before. (Pais 1986, p. 455)

Some, like Victor Weisskopf, mention the work of the Swiss physicist Stueckel-
berg,'® who seems to have accomplished much of what would only later be accepted
as the correct method for treating the infinities:

[1t] seemed that a systematic theory could be developed in which these infinities were cir-
cumvented. At that time, nobody attempted to formulate such a theory, although it would
have been possible then to develop what is now known as the method of renormalization.

There was one tragic exception, and that was Ernst C. G. Stueckelberg [Stueckelberg
1934, 1938]. He wrote several papers in which a manifestly invariant formulation of field
theory was put forward. This could have been a perfect basis for developing the ideas of
renormalization. (Weisskopf 1983, pp. 73-74)

As Pais points out, “the delay (if one even wishes to call it like that)” can be
partially explained by physicists’ absorption in war-related work and their inter-
est in nuclear physics.'® Pais is not explicit about whar exactly physicists failed
to do. I assume that he means that physicists working in the 1940s simply did
not have the time to redo and cross-check the huge amount of calculations that
was required, lacking as they did the modern calculation method of Feynman
diagrams.

1.5.2 Correct and Justified Predictions

Weinberg (1995, p. 38) writes that “the missing element was confidence in renor-
malization as a means of dealing with infinities”, and puts forward the absence of
trustworthy experimental data as the principal reason for this lack of confidence.
J. Robert Oppenheimer, in his contribution to the Solvay Congress in 1948, that is

17 Tomonaga (1973, p. 411); Dancoff (1939); Schweber (1994, p. 90); Pais (1986, p. 455); Brown
(1993, p. 12).

18 Cr. Lacki, Ruegg and Telegdi (1999).
19 Pais (1986, pp. 455-456).
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when QED was in transition, was of the same opinion. In order to explain why the
Lamb shift was not correctly predicted earlier, he remarks:

In their application to level shifts, these developments, which could have been carried out at
any time during the last fifteen years, required the impetus of experiment to stimulate and
verify. (Oppenheimer 1950, p. 271, reprinted in Schwinger 1958, p. 146)

Weinberg (1995, pp. 37-38) points out that experimental evidence for the level
shifts mentioned by Oppenheimer was already available at the end of the 1930s.2°
However, the results only became reliable through the experiments of Willis Lamb
and his collaborators.?! The measured level shifts deviated from the values predicted
by the old theory of QED that was based on Dirac’s equation. Another deviation
from Dirac’s theory was encountered in the magnetic moment of the electron.??
Using the renormalization of mass and charge, which characterizes modern QED,
these values could now be accounted for.”3

However, the fit between theoretical predictions and reliable experimental data
does not completely justify the theory. Wolfgang Pauli, for one, is more concerned
with other types of justification for renormalization:

Even if one claims relativistic invariance and finiteness of the results this alone is not suffi-
cient to make the subtraction-rules unique. One has to search for additional physical point of
views. [ ...] The problem seems to be more to make the applied rules plausible and unique.
(Pauli to Rabi, 15 January 1948, letter 931 in Pauli, Hermann and Meyenn 1979)

Dancoff (1939, p. 963), who was, according to the accounts mentioned above, only a
calculational error away from the modern findings, tells the reader of “the fortuitous
nature” of his results!

1.6 Representing and Calculating

That Feynman diagrams were characterized as being the chief tool in quantum elec-
trodynamic calculations and that physicists warned others of incorrectly interpreting
them as representing the trajectories of particles and, even worse, of particles in
intermediate states, have been thoroughly examined. However, the inference from
these observations that organizing calculations is the only function of the diagrams
and that they cannot be consistently interpreted as representing physical processes
is not sound. Diagrams can function simultaneously as idealized representations
of the phenomena under study and as a tool for deriving statements about these
phenomena.

Meynell (2008) elucidates the problem of representation in the case of Feynman
diagrams by discussing accounts of different forms of representation mainly from

20 For instance Pasternack (1938).
21 See Lamb and Retherford (1947).
22 Kusch and Foley (1948).

23 Schwinger (1948a).
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Fig. 1.2 Abstract drawing of a sliding body on an inclined plane. The diagram rep-
resents the relevant aspects of the physical situation and is used to determine quan-
titative relations between characteristic features of that situation. Source: http://de.
wikipedia.org/wiki/Krafteparallelogramm, last visited 22 Jan. 2009

the fields of aesthetics and the history of art, for example those of Goodman (1968)
and Kendall Walton (1990). She also argues that the diagrams’ function as a com-
putational device does not preclude them from also being representations.

Familiar examples from the field of classical mechanics can act as cases in point,
such as the graphical representation of a massive body on an inclined plane (see
Fig. 1.2). Here, the abstract drawing serves to articulate the relevant aspects of the
physical situation and, at the same time, to derive relationships between the vector of
forces acting on the sliding object. As far as their principal functions are concerned,
Feynman diagrams are no different.

Quantitative results are not always derived from the mathematical formulae
obtained from the relations illustrated in the diagrams. At times the derivations are
conducted directly by means of the diagrams. In her study on Venn diagrams, Sun-
Joo Shin (1994) writes that diagrams can provide the means by which statements
can be derived from other statements just as well as formulae. The representation of
positrons in an early stage of the development of Feynman diagrams is an example
of a proof conducted, to a large extent, directly by diagrams (see Section 4.6.2)
in which Feynman performs what I like to call a diagrammatic induction. For
another instance of diagrammatic induction, using a more familiar example, see
Appendix A.

1.6.1 Developing Appropriate Means of Representation

If we acknowledge that diagrams can simultaneously fulfil the two principal func-
tions of representing and facilitating derivations, then the different steps in the devel-
opment and systematization process of Feynman diagrams can be better understood
than if we presuppose that they serve only as a calculational tool.
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Throughout the gradual process of their development, Feynman diagrams always
fulfilled the dual function of representing the phenomena in an idealized manner
and facilitating derivations of propositions concerning the idealization. In the early
stages of their development (Section 4), the diagrams represented the motion of
an electron in an abstract way. At the same time, Feynman used them to derive
the quantitative characteristics of the electron’s (and positron’s) motion. The incon-
sistencies Feynman encountered and his desire to generalize the theory to inter-
acting particles led him to modify his means of representation repeatedly. They
grew more and more abstract, and representational elements of propagating elec-
tromagnetic potentials in classical electrodynamics were also incorporated (see
Chapter 5). The interpretation of the graphical elements changed as the theoretical
background evolved in parallel. But the diagrams always referred to relevant aspects
of the phenomena and were used to derive quantitative results or other theoretical
statements.

Appropriate means of representation are not restricted to diagrams, although the
latter are the focus of my study. In Section 3 we will see that Feynman was already
preoccupied with devising alternative descriptions to obtain particular advantages
while working on his PhD thesis, in which the alternative representations concerned
mainly the mathematical formulation of the theory of quantum systems. The main
advantage of Feynman’s alternative mathematical formulation of non-relativistic
quantum mechanics is that it could be generalized to cases that had hitherto been
indescribable.

In my account of the origin of Feynman diagrams, Feynman’s preoccupation
with complicated mathematical expressions thus recedes into the background, while
his efforts to develop an appropriate way of representing quantum electrodynamic
phenomena comes to the fore. From the time of his PhD thesis (defended in May
1942) to the publication of STQED (1949), Feynman was often absorbed in devising
new means of representation with particular advantages.

Schwinger’s work also largely consists of finding an appropriate means of repre-
sentation. In contrast to Feynman, Schwinger did not (at least not in his published
work) use diagrams but rather kept to mathematical formulations. But mathematical
formulations, too, are a means of representing physical phenomena. Schwinger’s
main achievement was to find a mathematical formulation which showed, at every
step of the calculation, the relativistic covariance of the observables.?* To use such
an explicitly relativistic formulation was not only important because one was deal-
ing with infinite quantities; it was also necessary for identifying the terms that could
be interpreted as being contributions to the mass of the electron. Only relativistic
invariant terms allow for such an interpretation.?

24 Schwinger (1948b, abstract)

25 See, e. g., Feynman’s letter to Mr and Mrs Corben, cited in Schweber (1994, p. 426): “Actually,
the self-energy comes out finite and invariant and is therefore representable as a pure mass.”
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1.6.2 Features of Appropriateness

As previously mentioned, Weinberg describes the invention of Feynman diagrams
as being of “great practical importance”. But even though it may, therefore, appear
that Feynman diagrams only simplify the application of the theory, Weinberg also
points to the specificity of the simplification that Feynman diagrams provide: they
organize the terms in the calculations not just in a way which assures that every term
is taken into account but in more important theoretical respects:

One result of great practical importance that came out of Feynman’s work was a set of
graphical rules for calculating S-matrix elements to any desired order of perturbation theory.
Unlike the old perturbation theory of the 1920s and 1930s, these Feynman rules automati-
cally lumped together particle creation and antiparticles annihilation processes, and thereby
gave results that were Lorentz-invariant at every stage. We have already seen in Weisskopf’s
early calculation of the electron self-energy [Weisskopf (1934)], that it is only in such cal-
culations, including particles and antiparticles on the same footing, that the nature of the
infinities becomes transparent.

Similarly, Dyson also acknowledges in SM that, although “using no new ideas or
techniques” (p. 1754), he introduced

into the theory what is really a new physical hypothesis, namely that the electron—positron
field always acts as a unit and not as a combination of two separate fields. A similar hypoth-
esis is made for the electromagnetic field, namely that this field also acts as a unit and not
as a sum of one part representing photon emission and another part representing photon
absorption. (SM, p. 1754)

Clearly, one cannot claim that Feynman diagrams alone provide a theoretical
justification for the renormalization procedure. Nor could I sufficiently investigate
Pauli’s opinion of Feynman diagrams. But if the phenomena are analyzed using
Feynman diagrams, the corresponding mathematical formulation gave Dyson the
uniqueness of the “subtraction rules” involved in renormalization that Pauli insisted
was necessary:

Therefore it may be concluded that the rules of calculation of U(co) are not only
divergence-free but unambiguous. (SM, p. 1753).

Dyson (RadTh, SM) was able to isolate the problematic divergences using the
diagrams. He identified basic graphical elements, the repeated insertion of which
into a diagram that may already contain such elements describes the processes
that are responsible for the infinite values in quantitative predictions. The way that
quantum electrodynamic phenomena are represented in Feynman diagrams in turn
suggests an appropriate mathematical formulation of the calculations, in which “the
well-known divergences seem to have conspired to eliminate themselves”.2’

The specific appropriateness of this mathematical formulation explains, at least
in part, both the “delay” in the creation of modern QED and the success of the

26 Weinberg (1995, p. 37); cf. Sakurai (1967, p. 240).
27 SM, p. 1754.
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diagrams: modern QED could not be created as long as the formulation that came
with the diagrams did not exist.

1.7 Inconspicuous Conceptual Innovations

As we saw in the quotation from Dyson above, the development of appropriate cal-
culation methods can bring with it new physical hypotheses. Apart from the hypoth-
esis mentioned by Dyson, a new concept of the charge and mass of an electron
was created during the quest to eliminate the uninterpretable infinities from QED.
Despite its historical origin, renormalization consists of more than just a method
for removing uninterpretable infinite quantities. Even in a completely convergent
formalism of QED (if such were to exist) a renormalization of masses and charges
would be necessary.

Take an electron, for example. In its vicinity (virtual) electron—positron pairs
are created which screen the original electron’s charge (see Fig. 1.3). The “real”,
“bare” charge of the electron is thereby reduced to an “effective” charge, which
has the observed value. In QED the bare charge is infinite and so is the strength
of the screening. The two infinite values are such that their difference (or ratio,
depending on the details of the renormalization method) yields the observed value
of the charge. However, this renormalization of the charge would also be necessary
if the bare charge and the screening were not infinite.

The essential lesson we need to learn from the renormalization method is that,
for instance, an electron cannot be considered in complete isolation but is always
accompanied by virtual electron—positron pairs and photons. Thus one of the
implicit assumptions responsible for the uninterpretable infinities has to be revised.
For example, in 1939 Weisskopf formulated the problem of the infinite self-energy
of the electron with this flawed assumption in the background:

The self-energy of the electron is its total energy in free space when isolated from other
particles or light quanta. (Weisskopf 1939, p. 72)

Fig. 1.3 Screening of the @ @

electron’s charge by an
assembly of virtual
electron—positron pairs
(Peskin and Schroeder 1995,
p. 255)
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The isolated electron is a meaningless concept since its very existence implies the
creation of virtual photons, electrons and positrons. One has, therefore, to incorpo-
rate these effects into the definition of a “free” electron and distinguish between the
charge parameter that appears in the theory’s equations of motion (bare charge) of
the hypothetical isolated electron and the observed value of the charge. The observed
value is the difference between (or ratio of) the bare charge and the screening.

The same is true for mass renormalization. In renormalized QED it is under-
stood that the mass of the electron is the joint effect of a bare mechanical mass and
the coupling processes between the electron—positron field and the electromagnetic
field.

Schwinger is one of the few actors who, in retrospect, would see significant con-
ceptual advances in the development of renormalization. He emphasizes the afore-
mentioned fact that renormalization is not, in effect, connected to the problematic
infinities, and that the development of modern QED required a physical understand-
ing of the origin of these infinities. However, Schwinger does not attribute the con-
ceptual advances to Feynman diagrams; according to him, they concern only the
superficial calculation methods:

Topology (Feynman diagrams) is optional here; that is a matter of pedagogy, not physics.

[...]

What I have just described is all technique. Now, here is the music. It is probably a fairly
wide-spread opinion that renormalized quantum electrodynamics is just the old quantized
version of the combined Maxwell and Dirac equations, with some rules for hiding diver-
gences. That is simply not true. A theory has two aspects. One is a set of equations relating
various symbols. The other is, at some level, the physical interpretation to be associated with
the symbols. In the course of the development here being described, the equations did not
change, but the interpretation did. In the late 1930s, most people would not have challenged
these statements: e and m, as they enter the Dirac and Maxwell equations, are the charge and
the mass of the electron; an electromagnetic field operator creates or annihilates a photon; a
Dirac field operator creates an electron or annihilates a positron, and its adjoint field does the
inverse. And all this would be true if the two fields were uncoupled. But, in the real world,
the localized excitation represented by an electromagnetic field, for example, does not just
create a photon; it transfers energy, momentum and angular momentum, and then Nature
goes to work. And so, it may create a photon, or an electron—positron pair, or anything
else with the right quantum numbers.?® The various Green’s functions are the correlation
functions among such localized excitations, and the study of their space-time behavior is the
instrument for the identification of the physical particles and of their interactions. Renor-
malization, properly understood, is an aspect of the transfer of attention from the initial
hypothetical world of localized excitations and interactions to the observable world of the
physical particles. As such, it is logically independent of divergences. Could we construct
a convergent theory of coupled fields, it would still need to be renormalized. (Schwinger
1983, pp. 347-348)

When modern QED was in the making, Schwinger, in published articles of
the time, also seems to agree that he and other physicists did not come close to

28 Here Schwinger refers to particles like mesons which were not yet incorporated into a theory
together with electrons, positrons and photons at the end of the 1940s; or even not yet discovered
at that time.
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understanding the basic assumptions of the theory; this would have required “the
introduction of fundamentally new concepts” (Schwinger 1948b, abstract). I have
already quoted Dyson and Pais, who made similar comments (see Section 1.5.1).

In the same vein Peter Galison (1983) concludes that the attempted revolution
against old QED *“failed”. He sees the main reason for its failure in the discovery
of the muon, a particle similar to the electron but about 200 times heavier. Galison
believes that the doubts shed on the validity of QED by some of the properties
of cosmic radiation then began to dissolve. The need to revise the basic physical
assumptions of the theory seemed to disappear after the discovery of the muon.

Weinberg (1977, p. 17) considers that the development of modern QED consti-
tutes a strange type of progress:

[There] seems to be general agreement that the essential element of scientific progress is a
decision to break with the past.

I would not quarrel with this view, as applied to many of the major advances in the
history of science. It certainly seems to apply to the great revolutions in physics in this
century: the development of special relativity and of quantum mechanics. However, the
development of quantum field theory since 1930 provides a curious counterexample, in
which the essential element of progress has been the realization, again and again, that a
revolution is unnecessary. If quantum mechanics and relativity were revolutions in the sense
of the French Revolution of 1789 or the Russian Revolution of 1917, then quantum field
theory is more of the order of the Glorious Revolution of 1688: things changed only just
enough so that they could stay the same.

1.8 A comparison with Traditional Means of Representations

If one then compares Feynman diagrams with the diagrams used by authors who
did not yet know of them, one can see how much modern QED and the conceptual-
ization and representation of quantum electrodynamic phenomena changed with the
development and introduction of what appears to be a mere method of calculation.
The two cases I will discuss (in Section 2) are the treatment of the scattering of light
off light by Hans Euler (1936) and the renormalization methods proposed by the
Japanese physicists working around Tomonaga.?’

Euler did not know of Feynman diagrams simply because they had not yet been
invented, whereas the Japanese physicists knew almost nothing about them because
of their isolation from the community of physicists working in Europe and the
United States in the aftermath of the Second World War.

The conspicuous feature of Euler’s and the Japanese physicists’ treatment of
the problems of QED is that they relied on modified atomic level schemes. Their
graphical representations display the energy levels of the electron and the positron,
between which the particles made transitions by absorbing or emitting light quanta.
These physicists used these diagrams, as well as long tables in Euler’s case, to

29 RadReacl; RadReacll; RadReacllla; RadReaclIIb.
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organize the complicated calculations, much in the same way that one would later
apply Feynman diagrams.

Feynman diagrams and the representations that Euler and the Japanese physicists
used also have several features in common. In both cases the elements of the approx-
imate solution to the basic equations (the perturbative expansion) are interpreted as
being the most relevant physical aspects of the real process. And in both cases the
real process was thus parsed into elementary processes consisting of the emission
and the absorption of a photon by an electron or a positron.

However, Feynman diagrams analyze the phenomena in elementary processes in
a way that shows the renormalization procedure to be the incorporation of the net
effect of Schwinger’s “music” and the mass and charge of the hypothetical, isolated
electron. The unrenormalized description of the phenomena would correspond to a
fractal-like Feynman diagram into which ever more elementary parts are inserted
(cf. Fig. 6.3). These insertions represent the plethora of possible creation and anni-
hilation processes. The mass and charge parameters of the theory are calibrated in
the renormalization procedure so that these inevitable processes are included in the
inertial motion and unit interaction with the observed mass and charge.

Although term schemes may well have been the most appropriate form of repre-
sentation when it came to a traditional interpretation of the equations, Feynman
diagrams were more appropriate to the modern conception. For example, they
showed whether the same photon is involved in an emission or absorption process,
or whether two different photons are emitted or absorbed (see Section 2.3). This is
particularly relevant when it comes to finding a divergence-free, empirically ade-
quate QED, but irrelevant in the original context of term schemes that represent the
energy levels of atomic electrons in a surrounding electromagnetic field, conceived
of as a reservoir of photons.

The conceptual framework that Euler and the Japanese physicists presupposed by
using these graphical representations differs from that adopted by physicists using
Feynman diagrams, and so they would probably not have understood Peskin and
Schroeder’s later instructions (see Section 1.1). Physicists working with (modified)
term schemes considered “a process” to be a sequence of transitions between the
energy levels of electrons and positrons caused by the emission and absorption of
quanta of the surrounding electromagnetic field, which is reminiscent of atomic
physics; physicists working with Feynman diagrams, however, see “a process” as
the interruption, by the emission or absorption of a photon, of the electron’s or
positron’s free propagation, which is described by quantum field theoretical vacuum
expectation values. The statement “Imagine a process that can be carried out by
electrons and photons” differs, therefore, in meaning, depending on whether one is
working with Feynman diagrams or with the modified term schemes.

Feynman diagrams replaced the (modified) term schemes that were used in the
early treatment of quantum electrodynamic phenomena both as a means of represen-
tation of the phenomena and as a calculational tool. With hindsight, the development
of the former is easily overlooked. Schweber (1994, pp. 119, 122-123), for instance,
represents the processes to which he refers in his account of the theoretical develop-
ment of QED in the 1930s by Feynman diagrams, even though, at that time, they had
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not even been invented. Schweber does not and indeed, therefore, cannot identify the
conceptual advances from the old form of QED to the new theory of QED, which
the development of Feynman diagrams brought about. Rather, it becomes clear that
physicists like him*® had become so used to representing QED phenomena through
Feynman diagrams that the conceptualization they adopted appeared trivial to them
and thus unworthy of mention.

Whether the term “revolution”, which Thomas Kuhn (1962) prominently intro-
duced into the discipline of the history and philosophy of science, adequately char-
acterizes the development of modern QED is not my concern here. Significant
advancements did take place and “no revolution could have done more”.?! If the
transition from the old theory to the modern theory of QED is to be labelled a rev-
olution at all, it should not be described as a conservative, purely technical or even
failed revolution, as most accounts suggest; rather, it was a creeping revolution: a
series of inconspicuous but fundamental revisions to the foundations of QED that
can be unravelled by following the development and systematization of Feynman
diagrams and then comparing them with the traditional means of representing quan-
tum electrodynamic phenomena.

30 Although, since some time, mainly working in the field of the history of physics, Schweber was
long enough a practising physicist and made notable contributions also to this discipline (Bethe
and Schweber 1955, to mention but one of them).

31 Dresden (1993, p. 55).



Chapter 2
Quantum Electrodynamics Without Feynman
Diagrams

If one compares Feynman diagrams with other diagrammatic representations of the
same phenomena, one can discern the change in the conception and representa-
tion of the phenomena that silently occurred while Feynman diagrams were being
developed by Feynman and then systematized by Freeman J. Dyson. In some pub-
lications, diagrammatic representations occupy centre stage, which testifies to their
importance in the context of quantum electrodynamics (QED). In this section we
will see that some authors even explicitly mention that improving diagrammatic
representations was one of their principal goals.

The two cases that I will discuss in this section are the diagrams used by Hans
Euler (1936) and by Ziro Koba and Gyo Takeda (1948/49a, b).! In the first case
Feynman diagrams had simply not been invented. In the second case, the Japanese
authors were unaware of Feynman diagrams since they were isolated from the Euro-
pean and American scientific communities in the aftermath of the Second World
War. What both cases have in common, however, is the fact that the diagrams are
modifications of the term schemes used in atomic physics. The Japanese physicists
adopted the diagrams from Euler and then modified them further.

Euler employed modified term schemes in order to see how the classically impos-
sible scattering of light by light could come about, while Koba and Takeda, much
like Dyson (see Chapter 6), employed their version of the term schemes to show that
the various infinite terms occurring in the calculations cancel each other out.

2.1 Scattering: The Transition Between Energy Levels

From Halpern (1933) at the very latest, it was known that, in the absence of
any material obstacles, a light quantum could be scattered by another light quan-
tum, in other words that the “vacuum” has “scattering properties”.”> Maxwell’s
equations, which describe the propagation of light, are, therefore, not entirely
accurate. According to these equations, two light waves superpose without

1 RadReacl; RadReacll; RadReacllIb; RadReaclIIa.
2 Halpern (1933, p. 856.)

A. Wiithrich, The Genesis of Feynman Diagrams, Archimedes 26, 23
DOI 10.1007/978-90-481-9228-1_2, © Springer Science+Business Media B.V. 2010
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interacting; as such the scattering of light by light would, therefore, correspond to
the introduction of a non-linear term.

Compared with traditional electrodynamic and radiation problems examined at
the time, light-by-light scattering was also untypical, as it involves the quanta of
the radiation field and not material particles, such as electrons. Term schemes are
particularly suited to the latter case, since they represent the energy levels of the
material system as horizontal lines and the quanta, at best, as vertical lines or arrows
indicating the absorption or emission of a photon. Photons were, above all, a means
by which one could probe the structure of matter.

Despite the fact that light-by-light scattering is untypical of traditional radia-
tion problems, Euler (1936) employs a traditional means of representation—term
schemes—in his theoretical treatment of it (see Fig. 2.1), which indicates that, at
that time, there was no obvious alternative.

Hans Euler and Otto Halpern explain light-by-light scattering in the framework
of Dirac’s hole theory. Each of the two incident light quanta can, for instance, lift an
electron out of a negative energy state into a positive energy state, thereby leaving
a hole in all the negative energy states previously occupied by the electrons. This
process is observed as the formation of an electron—positron pair, the hole being
interpreted as the positron. The electron—positron pair can then annihilate again
to radiate a light quantum. Light-by-light scattering occurs if the two intermediate
events of pair creation and annihilation do not occur independently but as the result
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Fig. 2.1 The partial processes by which the perturbation V! can bring about light-by-light scatter-

ing (Figure 1 in Euler 1936)
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of the electron produced by one photon annihilating the positron produced by the
other photon.

Light-by-light scattering can even occur if the energy of the two incident photons
does not equal the energy of the two electron—positron pairs that have to be produced
for the scattering to take place. The hypothetical possibility of the creation of the
pairs does affect the cross section of the scattering, even if the possibility does not
actualize. This is comparable to the effect of the second slit in the double-slit exper-
iment: whether the second slit is open or not, that is, whether the electron can pass
through the second slit or not, affects the probability of the electron being detected
after having passed through the first slit.

The case where the energy suffices to produce “real” pairs can be treated by the
formulae provided by Gregory Breit and John A. Wheeler (1934). Euler provides an
adequate description and quantitative evaluation for the case in which the pairs are
only “virtual”3:

Either: the energies cg! and cg? of the two light quanta and the angle enclosed by their
momenta g', g are so large that the energy and the principle of momentum conservation
allow the creation of a real pair (g' g% —(g'g%) > 2(mc)?). Then, one obtains the scattering
probability of the light quanta off each other by multiplying the probabilities of pair creation
and annihilation and summing over all the possibilities. This has been done by Breit and
Wheeler.

Or: the energy and momentum of the two light quanta do not suffice to create a real pair
(g'g%*—(g'g?) <2(mc)?, i. e. in an appropriate reference system: g! <mc, g2 <mc). Then,
the light quanta g!, g2 may, because of the virfual possibility of pair creation, nevertheless
evolve into two light quanta, and a scattering of light by light must also occur in this case
(for instance, visible light). (Euler 1936, p. 399, emphasis in the original)

The interaction between the light quanta and the electrons is described in the first-
order perturbation theory by the term

vi= e/ Y (a)y dV, 2.1)

where e is the charge of an electron, 1 and ¥ * the electron’s (spinor) wave function
and its complex conjugate, o the vector of Dirac matrices, 2 the electromagnetic
vector potential and 4V the volume element for integration.*

3 My translation of the original German text:

“Entweder die Energien cg' und cg? der beiden Lichtquanten und der Winkel zwischen ihren
Impulsen g', g? sind so groB, daf Energie und Impulssatz die Erzeugung eines wirklichen
Paars erlauben (g' g2 — (g'g%) > 2(mc)?). Dann erhilt man die Wahrscheinlichkeit der Streuung
der Lichtquanten aneinander, indem man die Wahrscheinlichkeiten der Paarerzeugung und der
Wiederzerstrahlung multipliziert und iiber alle Moglichkeiten summiert. Dies ist von Breit und
Wheeler durchgefiihrt worden.

Oder aber Energie und Impuls zweier Lichtquanten reichen nicht zur Erzeugung eines wirk-
lichen Paares aus (g'g?—(g'g%) <2(mc)?, d.h. in geeignetem Bezugssystem: g' <mec, g2 <mc).
Dann kénnen die Lichtquanten g!, g2 doch durch die virtuelle Moglichkeit der Paarerzeugung in
zwei Lichtquanten iibergehen und auch in diesem Fall (etwa des sichtbaren Lichts) muss es eine
Streuung von Licht an Licht geben.”

4 Buler (1936, pp. 416/417).
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Such a term describes the annihilation of an electron—positron pair into a photon
or the creation of an electron—positron pair by the absorption of a photon. It does
not directly describe the transition of a state with two light quanta into a state with,
again, two light quanta, for which the energy is insufficient. However, since in the
transitions to intermediate states energy does not have to be conserved, the interac-
tion term above can, nevertheless, describe the scattering of light by light, but only
in the fourth order. A term, Vi‘;, introduced by Werner Heisenberg5 to circumvent
divergence difficulties does describe the transition from two light quanta (state i)
to two light quanta (state n) directly (even at low energy) and also needs to be
taken into account. The matrix element, Hl.‘;, describing low energy light-by-light
scattering is, therefore,®

viylyl yl
Hi‘tz — Z ik "ke"em "mn +Vii’ (2'2)
(E; — Ex)(E; — E)(E; — Ep)

kem

where the E's denote the energies of the intermediate states k, e and m.

Euler systematically lists the various possible sequences of “partial processes”
by which the perturbation V! can bring about light-by-light scattering in a table
complemented by a series of diagrams (see Fig. 2.1).

There are six different possibilities that can explain the behaviour of the inter-
mediate electrons and positrons. In every case an electron—positron pair has to be
created first and the last partial process has to be the annihilation of an electron and
a positron. Therefore, the six possibilities concern the behaviour of the electrons and
positrons between these two processes. The first possibility considered (u = 1) is:
initial creation (Paarerzeugung), then two changes of energy of the created electron
(Elektronensprung) through the emission or the absorption of a photon, and finally
the annihilation of the pair (Paarvernichtung). The second possibility (u = 2) is
that the penultimate partial process is not the change of energy of the intermediate
electron but of the positron (Positronensprung). Third (u = 3), the positron changes
its energy before the electron does. Fourth (i = 4), the positron changes its energy
twice. In the fifth and sixth possibilities (u = 5, 6), two pairs are first created
and the electrons and positrons are subsequently annihilated by crossing over, that
is, the electron from the first pair and the positron from the second pair annihilate
together and the positron from the first pair and the electron from the second pair
(Zerstrahlung ...) annihilate together; the difference between the fifth and sixth
possibilities is that either one or the other of the annihilations occurs first.

Each of these six possible sequences (Reihenf. = Reihenfolge in Fig. 2.1) has 24
possibilities as to which of the four photons is involved in the first partial process,
which photon is involved in the second, which photon in the third and which in the
fourth’:

5 Heisenberg (1934).
6 Euler (1936, p. 419).

7 My translation of the original German text: “Hierbei kann die erste Paarerzeugung statt unter
Absorption von g!, wie in der Figur (und als Reprisentant in den folgenden Rechnungen)
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Here, the first pair can also be created through the emission of —g?, instead of through the
absorption of g! as indicated in the figure (and as represented in the following calculations),
etc. L. e. the 4 headings of the columns of the table in the first row (and in all subsequent
formulae the 4 indices to the light quanta 1, 2, 3, 4), may be permuted if the remaining parts
of the table (and formulae) are left unchanged.

Depending on the behaviour of the created pairs, there are 6 different transition paths
denoted by ;=1 up to 6, and each of these 6 transition paths can be combined with all 24
permutations of the light quanta. (Euler 1936, p. 420)

The sum, in equation (2.2), over all the possibilities for the three intermediate
electron—positron states k, e, m, can now be grouped as the sum: over the six pos-
sible sequences of creation, annihilation and energy change of the electrons and
positrons; over the permutations of the involved photons; and as an integral over
all the momenta that the initially created pair can have (which is not determined
by energy conservation since we are examining virtual rather than real transitions
here):

6
z
Hii=Cfdp ZZN—‘;Hfiﬁ, (2.3)

Perm p=1

Z,, and N, being, up to constants, the numerator and denominator of (2.2) for each
possibility w. C is given by: the volume of the cube in which the electromagnetic
field is supposed to be periodic; the momenta of the four light quanta involved; and
some constant factors; p is the momentum vector of the initially created electron—
positron pair.®

Euler then goes on to evaluate the matrix element for two special cases in order
to compare the results with the field theoretical expression for the interaction energy
obtained in previous sections of his article. In this evaluation, Euler uses tables to
list systematically all the contributions and their numerical values (see Fig. 2.2). The
rows of the tables indicate the different permutations of the light quanta, while the
columns indicate the term of the perturbative expansion that is evaluated in the cell
of the table in the respective row and column.

Most studies on Feynman diagrams claim that the main achievement of Feyn-
man diagrams was that tedious calculations, such as Euler’s, could be avoided. For
instance, David Kaiser (2005, pp. 35-37) finds that Euler’s tables show that “by the
mid-1930s QED seemed an unholy mess, as calculationally intractable as it was con-
ceptually muddled”. The solution to the problems, however, is, according to Kaiser,

angegeben, auch unter Emission von —g> vor sich gehen usw. D. h. es konnen die 4 Uberschriften,
die iiber den Spalten der Tabelle in der obersten Zeile stehen (und in allen folgenden Formeln die
4 Lichtquantenindizes 1, 2, 3, 4) noch in beliebiger Weise permutiert werden unter Beibehaltung
aller iibrigen Tabellen- (und Formel-) Teile.

Je nach dem Verhalten der erzeugten Paare gibt es 6 verschiedene Ubergangswege, bezeich-
net durch & = 1 bis 6 und jeder dieser 6 Ubergangswege kann mit allen 24 Permutationen der
Lichtquanten kombiniert werden.”

8 Euler (1936, pp. 420/421).
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not to be found in a “sweeping conceptual revolution” or “great epistemological
upheavals” but by “focusing on the evaluation of specific integrals”.

Similar views are also shared in the first publications to use Feynman diagrams.
In one of the first treatments of light-by-light scattering using renormalized QED
and Feynman diagrams (see Fig. 2.3), Robert Karplus and Maurice Neuman Karplus
(1950, p. 380) emphasize that the new theory of QED provides researchers with
more powerful calculational tools:

Since the corrections we are discussing are necessarily at least of the order e*, their calcula-
tion has involved considerable complications both because the treatment of effects involving
virtual pairs has been traditionally accompanied by divergence and gauge-invariance diffi-
culties and because the expressions encountered were lengthy and tedious to manipulate.
With the promise the recent developments in quantum electrodynamics give of eliminating
the former and reducing the latter of these obstacles, it seemed worth while to re-examine
the problem in spite of the smallness of the effects and the consequent difficulties attending
their experimental detection.

It is undoubtedly true that Feynman diagrams help to sort out the various terms in
a perturbative calculation. They certainly make it much easier than Euler’s treatment
to recognize when terms are identical or zero. Nevertheless, it can still be hard to
evaluate the terms corresponding to a Feynman diagram, and long lists of formulae
and tables of various terms are not unusual in such evaluations.’

Rather than allowing one to do away with the need to carry out long calculations
using tables, Feynman diagrams change the way in which light-by-light scatter-
ing is explained. Feynman diagrams are the successors to Euler’s versions of term
schemes, and not the successors to Euler’s tables (as Kaiser’s account suggests).
Having replaced Euler’s term schemes with Feynman diagrams is evidence that the
theoretical model for the phenomena, for which one was calculating cross sections
and other characteristic quantities, has changed. Only to a lesser extent do Feynman
diagrams serve the same function as the systematic lists of perturbative terms; they
serve mainly to represent a new model.

The new concept of light-by-light scattering as a particular sequence of particle
creation, propagation and annihilation described by field theoretical vacuum expec-

N /
N /
\ ’
\\ //
X4 %2
Fig. 2.3 A Feynman diagram
used in the treatment of X4 X
light-by-light scattering P N
(Karplus and Neuman 1950, Jid N
Figure 1) Ve N

9 See, for instance, Devoto and Duke (1984).
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tation values is an innovative result and was clearly not invented with the primary
goal of facilitating calculations. It is not a model that researchers had in mind, and
only Feynman and Dyson find a set of rules to translate the graphical representation
of this supposedly well-known model into the correct field theoretical expressions.
Even then, Feynman, in a lecture he gives at Cornell University (Ithaca, NY) around
1948, mistakenly draws the wrong diagram to represent light-by-light scattering (see
Figs. 2.4 and 2.5, see also Kaiser 2005, p. 187).

Diagrams with the same kind of syntactic elements as Feynman diagrams are not
used to illustrate which intermediate processes might bring about the scattering of
light by light but only to display the kinematical relations of the studied phenomena
(see Fig. 2.6; cf. Fig. 2.7).

Another case in point is Compton scattering, the Feynman diagrams of which are
shown in Chapter 6 (see Fig. 6.6). Since Arthur Compton (1923) the interaction of
light quanta off electrons had been described as a scattering effect. Before, it had
not been entirely clear whether the light quantum could be treated as an ordinary
particle with respect to its kinematical properties such as energy and momentum.

The typical graphical representation of the kinematical characteristics of a situ-
ation such as that of the scattering of an electron and a photon displays the direc-
tion of the momenta of the particles (see Fig. 2.7). However, when it comes to the
description and theoretical treatment of such kinematical observations as certain
processes that bring these about, scattering diagrams are not used. Rather, the situ-
ation is conceived of as a sequence of transitions between the energy levels of the
electron caused by the absorption or the emission of a light quantum (see Fig. 2.8).

Looking back, it is hard to conceive that representations similar to Feynman dia-
grams were not being used by scientists working at the time to represent scattering
situations, particularly as, in today’s context, readers of textbooks seem tempted
to take Feynman diagrams to represent the scattering of an elementary particle in
an almost classical way (see Section 1.2). How you can then connect this repre-
sentation to the correct quantum field theoretical description remains mysterious.
It would seem that only someone as bold as Feynman would have dared to apply
this pre-quantum theoretical representation to quantum theoretical problems, and
be rewarded for his boldness with finding a one-to-one correspondence to field
theoretical expressions. Correct results could, it seems, be derived by using the
diagrams only as mnemonic devices. That the diagrams were misleading (because
they could easily be taken to represent quantum field theoretical scattering processes

N 7
N 7
N 7
N 7
N 7
Fig. 2.4 Feynman’s wrong
Feynman diagram! Detail of RERN
Fig. 2.5, adapted by the it AN

author (A. W.) , AN
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Fig. 2.5 Even Feynman drew the wrong Feynman diagrams!: a diagram in his lecture notes on
light-by-light scattering, ca. 1948 (Advanced Quantum Mechanics (at Cornell), folio 5, reprinted
with permission of Melanie Jackson Agency, LLC)

as processes of classical mechanics) seems to be the price to pay for their usefulness
in carrying out complex calculations.

However, it needs to be made clear that Feynman diagrams (certainly by the time
that Dyson systematized the diagrams) are not classical representations of scattering
events. They represent the latter’s relevant aspects in a more abstract way: they show
the connections between the creation and annihilation events, and these connections
are understood to be the vacuum expectation values of field operators. This highly
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Fig. 2.6 A scattering diagram
showing the dynamical
relationships in the
calculation of the
light-by-light scattering cross
section (Figure 3 in Euler
1936, p. 446)

Fig. 2.7 Graphical
representation of the
kinematical relations of the
scattering of an electron and a
photon (Compton scattering).
From Compton (1923, p. 486)

2 Quantum Electrodynamics Without Feynman Diagrams

9%2,/9-9%

Incident quantum,

momentum = hw/c

elaborate theoretical content was unknown at the time of the earlier theories, which
explains why, before Feynman diagrams came into use, diagrams displaying scat-
tering trajectories or the like were not used in theoretical explanations of scattering
events. The internal processes that brought about these phenomena were understood
to be the transitions between energy levels; only the kinematical relations classified
the phenomena as scattering situations.

Fig. 2.8 Diagrammatic
representation of the
scattering of an electron and a
photon by the adaptation of
term schemes (from the
standard textbook by Heitler
(1944, p. 190); this drawing
was withdrawn from the later
third edition (1954)
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2.2 Classifying Possible Transitions

Because of the Second World War, physicists working in Japan were isolated from
European and American physicists for some time and were only vaguely aware of
theoretical developments in the West. Within the Japanese community of physicists,
Euler’s diagrams survived long enough to be used in attempts to eliminate the unin-
terpretable infinities of QED. Koba and Takeda adopted and modified them in order
to classify the great many possible intermediate states, from an initial state to a final
state, through which certain processes can pass. The classification allows them to
show that the renormalization of the mass and charge of the electron is sufficient to
make the infinities cancel each other out.

Their method has much in common with what would eventually be Dyson’s gen-
erally accepted procedure. The reasons why Dyson’s and not their method became
the accepted procedure may be sociological or even political in nature. However,
I will point out some of the shortcomings of the Japanese transition diagrams that
might equally well explain the preference of the scientific community for Dyson’s
method. The Japanese transition diagrams were still too tightly rooted in the tra-
dition of representing the energy levels of material systems in order to be able to
articulate the relevant aspects of quantum electrodynamic phenomena.

In a series of three papers, Koba and Takeda (the first paper co-authored with
Sin-Itiro Tomonaga, not Takeda) calculate the radiative corrections to certain types
of scattering situations. They propose a “self-consistent subtraction method”, which
is essentially the same idea as renormalization. The divergences that occur in certain
terms of the perturbation expansion are incorporated into a redefinition of the mass
and charge parameter of the theory. A basic feature of their method is, accordingly,
to classify all the terms of the perturbative expansion into corrections of “mass type”
or “polarization type”.'0

In the first paper,'! Koba and Tomonaga begin by correcting the elastic scattering
of an electron in a potential (produced, for instance, by the electromagnetic field of
another electron). Their goal is to modify the Hamiltonian, describing the interaction
in such a way that the divergent terms cancel each other out. The divergent terms
occur in the expression for the self-energy of the electron and in the expression for
the polarization of the vacuum.

Koba and Tomonaga (RadReacl, p. 291) refer to Victor Weisskopf (1939), who
calculated the self-energy of the electron—manifesting itself in a correction, ém, to
the theoretical mass parameter, m, of the electron—as

32m [ dk .
dm = — + finite terms, (2.4)
2 [k]#£0 k

10 RadReacl; RadReacll; RadReacllla; RadReaclIIb. See also Sections 2.4.1 and 2.4.2.
1T RadReacl.
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where k are the momenta, or the “wave numbers” (Weisskopf 1939, p. 81), of the
electromagnetic field (they set#i = ¢ = 1).

“In accordance with Bethe’s [Bethe 1947] assumptions”, that is, assuming small
(non-relativistic) velocities and energies, Koba and Tomonaga (RadReacl, p. 291)
incorporate this infinite quantity into the definition of the observable mass of the
electron. That is, the observable mass m is the difference of two infinite contribu-
tions: the original mass parameter in the Hamiltonian m and the self-energy ém,
that is'?

m=m—ém. (2.5)

Then they modify the Hamiltonian describing the free electron and the free electro-
magnetic fields by replacing m with the mass parameter n2. They choose to maintain
the rotal Hamiltonian unmodified (p. 292); therefore, the interaction Hamiltonian
must be modified in order to compensate for the change in the free Hamiltonian.
This new interaction term gives rise to two new possibilities for intermediate tran-
sitions, or “connections” (p. 294), which the authors represent graphically (see
Fig. 2.9).

The perturbative expansion also contains an infinite term that describes the polar-
ization of the vacuum. The authors apply the same method to this type of infinity
that they applied to removing the infinities related to the mass of the electron. Other
methods of treating this type of infinity seem ad hoc to them:

Let us consider the right-hand side of (1-5) [a formula similar to (2.4)] which has been so
far ad hoc struck off as the vacuum polarization effect caused by the scattering potential.
‘We now try to apply our self-consistent subtraction method also to this type of divergence,
then we find that by this new method the same result—at least in the approximation under
consideration—is obtained, but with a more plausible reasoning for the subtraction proce-
dure. (RadReacl, p. 297, see also p. 292)

The infinite term is interpreted as arising from two processes, which are again rep-
resented by a graphical representation that displays the transitions from the initial
state to possible intermediate states and then to the final state (see Fig. 2.10).

The authors determine the interaction Hamiltonians that describe these two
processes. Incorporating these interaction Hamiltonians into the original Hamilto-
nian is tantamount to replacing the ideal potential V' with the observed potential
V=V+4V.

-— [ P

) (—omigByua .
K (omtgrpae)

Fig. 2.9 Two new transitions to intermediate states induced by a change in the interaction Hamil-
tonian to compensate for the change in the free Hamiltonian of replacing the “mechanical” mass
m with the observable mass m (RadReacl, p. 294; cf. Figure 4.4 (top) in Kaiser 2005, p. 137)

12 The original has a plus sign rather than a minus sign; see also page 293 of the paper. As far as I
can see, it should be a minus sign. Bethe (1947, p. 340) also says that one should “subtract”.
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i) [p]Eelemb, re g, (—l+p—q)+] —Y (4]

Fig. 2.10 The processes that cause the infinite polarization of the vacuum (RadReacl, p. 297).

In this first paper, the graphical representations, which display, by means of
arrows, the possible transitions from the initial to intermediate states (and to an
eventual final state) serve to identify a particular process. In the first case, the dia-
gram shows the new processes that are possible due to modifying the interaction
Hamiltonian by incorporating the self-energy of the electron. In the second case, the
diagrams show the two processes responsible for the infinite vacuum polarization.
Diagrammatic representations similar to these will become more important in their
later papers in which they consider more complex initial states and higher-order
corrections.

The authors do not claim to have resolved the difficulties of interpreting the diver-
gences that arise in the standard formulation of QED. But they are able to classify
the divergences, which allows them to subtract the infinities justifiably:

It is true that our method does by no means give the real solution of the fundamental dif-
ficulty of the quantum electrodynamics, but it has, at least, revealed the nature of various
diverging terms appearing in our scattering problem and reduced them into two quanti-
ties: the self-energy and the vacuum polarization. In this way it becomes possible in an
unambiguous and consistent manner to treat the field reaction problem without touching
the fundamental difficulty by employing the finite empirical values instead of the infinite
“theoretical” values for these two quantities. (RadReacl, pp. 301-302)

In the second paper of the series (RadReaclI), Koba and Takeda treat the next
more complex initial state: instead of one electron that is scattered by an external
potential, they now consider Compton scattering, that is, the scattering of an electron
by a light quantum. In this article, similar schemes as in the first are used, albeit
more intensively. Now they do not just identify the processes under discussion; they
try above all to “classify” the correction terms in order to find a justifiable way of
subtracting the infinite ones among them. They also consider higher-order correc-
tions, which makes the mathematical description significantly more complicated.
For the fourth-order corrections there are 1,080 “connections” to be considered
from the initial to the final states, via intermediate states. A classification of all
these possibilities into classes that will facilitate the elimination of the divergences
is carried out by graphical representations, as shown in Fig. 2.11. The authors can
easily write down the mathematical expression for the correction terms arising from
the processes systematically listed in these “connection” schemes. The resulting
expressions allow the authors to modify the interaction Hamiltonian in order to
eliminate the divergences:

Now that we have investigated the diverging terms thoroughly and have arranged them in
the forms of [the mathematical expressions obtained after having listed the processes by
connection schemes], it is not difficult to seek for a new interaction term to be introduced
in order to eliminate infinite terms. (RadReacll, p. 413)
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(I) Intermediate electron emits and reabsorbs virtual photon (—j7).
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Fig. 2.11 The graphical representation used to classify radiative corrections to Compton scattering.
Without giving any reasons, the authors warn the reader that the “titles should not be taken too
literally” (RadReacll, p. 411)

2.3 An Attempt to Improve the Representation

After having treated elastic electron—electron scattering (Mgller scattering) and
electron—photon scattering (Compton scattering) in the first two papers of their
series on ‘“radiation reaction in collision processes”, in their third paper (which
is divided into two parts) Koba and Takeda proceed to the general case. For the
complexities of the general case, the schemes used in the previous papers are no
longer sufficient to classify the possible sequences of initial, intermediate and final
states:

In order to dispose of all possible radiative corrections in a general case, it is essential to
analyze systematically the complicated chains connecting the initial and the final states not
only through the least necessary number of intermediate states, but also through certain
detours including the emission and reabsorption of a virtual photon or the creation and
annihilation of a virtual electron—positron pair, which just account for the radiation reaction.
For this purpose we have introduced a “transition diagram method,” which turns out an
effective tool for the discussion of higher order processes. The first half of the paper is
appropriated to the illustration of this method, as our later reasoning is based entirely upon
it. (RadReacllla, p. 61)

For a more appropriate representation, they find, among others, Euler’s dia-
grams employed in light-by-light scattering. They take up the main features of these
hole theoretical term schemes and adapt them for their purposes of identifying,
interpreting and eliminating the divergences of quantum electrodynamic scattering
processes.
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In order to command a view of a whole connection between the initial and the final states
which appears in the perturbation calculus of a certain complicated process, we propose
here an improved form upon its diagram expression heretofore in use [reference to Euler
(1936), among others]. (RadReacllla, p. 61)

As stated in the first citation of this section, the authors devote much of the third
article to introducing their diagrams, and they base their arguments on this repre-
sentation of the phenomena. First they introduce “notation and rules”. “Notation”
refers to the system of symbols used to explain which syntactical elements of the
diagrams represent which parts of the physical system. A transition diagram consists
of a connected sequence of line segments in a coordinate system of momentum
and time. Electrons and positrons are represented as horizontal line segments. The
presence or absence of photons is not explicitly represented but has to be inferred
from the order of emission or absorption events represented by vertical lines:

An electron with momentum p is represented as a horizontal line segment at the height p
with an arrow-head that points to the right [Fig. 2.12a] while a positron with momentum p—
we denote it by pT—is represented again by a horizontal segment, but at the height (—p)
and with an arrow-head directed to the left [Fig. 2.12b]. By the “height” in these figures is
meant, of course, a three-dimensional position in the momentum space. The meaning of the
arrow will be clarified later.

The existence of photons, real or virtual, need not be shown explicitly; only their emis-
sion or absorption is indicated by the “leaps”, i.e. vertical segments connecting the two
horizontal lines which correspond to the two momenta of electron or positron concerned.
The emission we denote by a ripple-line and the absorption by a dotted line. Here also an
arrow-head is affixed to indicate the direction, so that we may distinguish a photon with
momentum k—we denote it by k—from (712). (RadReaclllIa, pp. 61-62)

In a moment we will see that this inability to show the existence of photons is
one of the shortcomings of the Japanese transition diagrams. For, in order to reflect
certain relevant differences between the processes, one needs to be able to articulate
explicitly the presence or absence of photons as well as the process of their creation
or annihilation.

momenTum
momentum 0

Time
p|—>
. . - — e
Fig. 2.12 Representation of P
an electron and a positron time
with momentum p (Figure 1 0
in RadReacllla, p. 62;

cf. Figure 4.5, Kaiser 2005, .
p. 136) (a) electron P (b) positron p+
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Using this notation the authors can then represent eight “fundamental processes”,
which are described by the first-order term of the perturbative expansion. The
authors give the following list'3:

(a) anelectron p emits a photon k and goes over to p — k;

(b) apositron p* emits a photon k and goes overto (p — k)*;

(c) anelectron p absorbs a photon k and goes over to p + k;

(d) apositron p* absorbs a photon k and goes over to (p + k)*;

(e) an electron—positron pair p, g7 is created with the emission of a photon

(=P =)

(f) an electron—positron pair p, g is annihilated with the emission of a photon
(p+aq);

(2) an electron—positron pair p, ¢© is created with the absorption of a photon

(p+a);
(h) an electron—positron pair p, g™ is annihilated with the absorption of a photon

(=p—9q).

The graphical representation of these eight fundamental processes is shown in
Fig. 2.13.

Only diagrams in which the line segments are composed such that the direc-
tion of the arrows is always the same when following the line from one end to
the other are permitted. By following this rule only processes that satisfy momen-
tum conservation can be represented. It is unnecessary to take energy conservation
into account, since in transitions to intermediate states energy conservation may be
violated:
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Fig. 2.13 Koba and Takeda’s representation of the eight fundamental processes using transition
diagrams (Figure 3 in RadReacllla, p. 63)

13 RadReacllla, pp. 63—64
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One can see from [Fig. 2.13] at once that, with the conventions made in the preceding
section, the condition of momentum conservation is automatically fulfilled if one connects
the three segments, which represent a light quantum and two particles concerned, in a proper
order, i. e. in such a way that the arrows always follow one another. (RadReacllla, p. 64)

The “notation” interprets the graphical elements; the “rules” define what kind of
complex diagrams have a meaning. For instance, it would be impossible to ascribe a
meaning to the diagrams in which the flow of the arrow is inverted at least once; this
would correspond to a process violating momentum conservation and is, therefore,
not permitted.

All these explications of “rules” and “notation” are a preparation for an argument
to come:

It will be convenient for the later argument to call the arrow direction in the electron- or
positron-line the direction of the “proper time” of that particle—in contrast to the “field
time” ¢ (abscissa), which flow always from left to right, and according to which the sequence
of intermediate states should be traced. (RadReacllla, p. 64)

This arrow convention is similar to the one used in Feynman diagrams and is linked
to the possibility of understanding the positron as an electron going backwards in
time:
In this sence [sic] one might be allowed to regard a positron metaphorically as “an electron
whose proper time flows in the opposite direction to the field time”, and the pair creation

or annihilation as a sudden inversion of the direction of the proper time of one (not two!)
particle [sic]. (RadReacllla, p. 64)

This concept of the positron is reminiscent of, indeed is almost identical to,
Feynman’s concept in his “Theory of Positrons”, (see, e. g., p. 753), and in “Space-
Time Approach to Quantum Electrodynamics”, see, e. g., fn. 12), and to the ideas of
E. C. G. Stueckelberg.'* However, the Japanese authors cite a certain G. Zisman'?
and Mario Schonberg!® as originators of the idea. They knew very little of Feyn-
man’s work, as they explicitly state in an addendum at the end of their article.!”

One of the examples the authors give for representing a scattering situation in
their transition diagrams is Compton scattering (see Fig. 2.14; cf. Figs. 2.7, 2.8
and 2.11).

The transition diagram of a certain process can also be translated into a “repre-
sentation by sequences”. The two sequences of a transition diagram are obtained
as follows. For the first sequence follow the lines of the diagram in the direction
indicated by the arrows and note, in order of appearance, when a photon is absorbed

14 Stueckelberg (1941).

15 The authors give the following reference: “G. Zisman, Journ. Exp. Theor. Phys. (in Russian) 10
(1940), 1163.” This is an article in the Russian journal “Zhurnal eksperimental’noi i teoreticheskoi
fiziki”, which, between 1955 and 1992, is translated and published by the American Institute of
Physics as Soviet Physics—JETP and afterwards continued under the title Journal of experimental
and theoretical physics.

16 Schinberg (1946).

17 RadReacllla, p. 141.
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or emitted by writing down its momentum, marked with an asterisk in the case of
emission. The order of emission and absorption events so obtained is relative to
proper time. The second characteristic sequence is obtained by the emission and
absorption events according to field time. That is, one has to work through the dia-
gram from left to right and note, as before, whether a photon is emitted or absorbed
and with what momentum. For the transition diagram in Fig. 2.14 d, for instance, the
characteristic pair of sequences is (I*, k|k, [*): if one follows the line of the diagram
in the direction indicated by the arrows, the first vertical segment one encounters
is the wiggly line representing the emission of a photon with momentum /, which
changes the electron’s momentum from its initial value p to p — /. Therefore, the
first symbol we write down is “/*”. The second vertical element one encounters is
the broken line representing the absorption of a photon with momentum &, which
gives the electron its final momentum g = p — [+ k; we write down “k”. If we work
through the diagram from left to right, that is, if we follow the field time instead of
the proper time, we come across the vertical elements in the inverse order, such that
the second characteristic sequence is k, [*.

The representation by transition diagrams and the corresponding sequences of
the processes allow the authors to calculate the number of different ways in which a
certain transition, from a given initial to a given final state, can occur.

With the help of our diagram expression, one can classify any irreducible process including
electrons, positrons, and photons by two numbers N and L. By an irreducible process is
meant one that cannot be reduced into two or more simpler processes occurring at the same
time but independently one upon another. (RadReacllla, pp. 65-66)

Every transition (for example, Compton scattering) can be classified according
to the number of sets of connected line segments N and number of leaps L. Given
N and L, the number of possible transitions is determined. For the case of Compton
scattering, for instance, we have N = 1 and L = 2. The characteristic sequences
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have, therefore, two elements each; and there is only one line to follow (N = 1).
The number of possible transitions is determined by the number of possible pairs
of sequences. In the case of Compton scattering, we have two possibilities for each
sequence, giving four possibilities for pairs of sequences (therefore, also four possi-
ble transition diagrams; see Fig. 2.4). In fact, the authors start with the slightly more
general case where N = 1 and L is arbitrary:

For the given value of N, L [or total number of real photons in initial and final states Q],
one can now calculate the number of possible connections. First we treat the simple case
N = 1, L(= Q) =arbitrary. Here the diagram consists of only one set of segments as
in [Fig. 2.4] and we have seen [in the previous section] that to such a possible connection
always corresponds a pair of sequences each containing L elements. The converse is also
true, as can be verified by drawing a scheme actually. The one-to-one correspondence being
verified, the number of possible connections is nothing but that of possible ways of forming
two sequences out of given L elements (LY)2. (RadReacllla, p. 66)

By using similar combinatorial considerations concerning the possible compo-
sitions of graphical elements, the authors can calculate the number of possible
processes for more general cases. Throughout this introduction to their diagram-
matic method of classifying transition processes, the authors restrict themselves to
the lowest order that describes the transition in the perturbative expansion. These
terms, however, are unproblematic; they do not show any divergences. The latter
only appear in the next-to-leading term, in the so-called radiative corrections.

The authors provide graphical rules for constructing a new transition diagram that
corresponds to the first radiative correction to a given leading-order transition from
the old transition diagram. The diagram representing the correction is obtained by
adding two new leaps: an absorption and an emission of a virtual photon with arbi-
trary momentum j. The graphical constraints show that there are two first radiative
corrections:

Suppose that a certain process with its all possible connections is given. For simplicity we
assume N = 1, L = Q. In order to calculate the first radiative correction, we have to
construct connections with L + 2 elements, that is, the given Q and j* and j out of the
given connections with L elements. This can be performed in two ways: a) one can add the
two new elements j* and j to the existing line, so that the latter receives a swelling-like
correction [Fig. 2.15, left]; b) one can build apart from the existing one a new closed
line including j* and j, thus resulting in an island-like correction [Fig. 2.15, right]. It
will be seen in the following that the first kind correction is what we have called of the

J* vy
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Fig. 2.15 A “swelling-like correction” (left) and an “island-like” correction (right). Square well-
like corrections, and only those, are of the “mass-type”; island-like corrections, and only those, are
of the “polarization-type” (Figure 6 in RadReacllla, p. 68)
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mass-type [M], and the second what we have called of the polarization-type [P] in
[RadReacll]. (RadReacllla, p. 68)

Although the transition diagrams appropriately articulate the distinction between
types of mass and polarization corrections, they do not do so for the relevant dif-
ferences among the polarization-type corrections, not all of which have to be taken
into account. The only relevant polarization corrections are those in which a photon
of the uncorrected process is involved:

Out of the polarization type corrections the most general one is, using the notations of
[RadReacll], the process

A I R 2.6)
where both r and j are quite arbitrary. Such a process, however, cannot in general affect
the cross section at all, because similar contributions, which come from various distribu-

tion [sic] in field time, when summed, vanish on account of interference with the original
process, a result to be expected for any two independent events. (RadReacllla, p. 68/69)

The problem with these transition diagrams is that the independence of the graph-
ical elements within them (the “island” is independent of the line) does not corre-
spond one-to-one to the physical independence of the processes. Only some, not all,
of the processes represented by an independent island are physically independent
of the other partial processes. And this difference is relevant, since the physically
independent processes do not have an observable effect and do not have to be taken
into account when calculating observable quantities.

Feynman diagrams correctly articulate the dependence or independence of such
polarization processes (see Fig. 2.16). In RadTh, Dyson will prove that the dis-
connected parts of Feynman diagrams can be ignored in the calculations (see
Section 6.4.1). However, he immediately comments on his proof by saying that such
proof is hardly needed:
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Fig. 2.16 Two island-like corrections, (a) and (c¢), and the corresponding Feynman diagrams, (b)
and (d). Island-like corrections that represent independent processes are irrelevant. Disconnected
Feynman diagrams, and only those, represent independent processes; connected diagrams, and only
those, dependent processes. The difference between dependent and independent processes is not
articulated in Koba and Takeda’s momentum diagrams (details of Figures 6 and 7 in RadReacllla,
pp. 68/69; Feynman diagrams by A. W.)
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The elimination of disconnected graphs is, from a physical point of view, somewhat trivial,
since these graphs arise merely from the fact that meaningful physical processes proceed
simultaneously with totally irrelevant fluctuations of the vacuum. (RadTh, p. 496)

On a graphical level Feynman diagrams reflect these physical reasons in such an
appropriate way that, when using them, the irrelevant quantities are almost auto-
matically left out.

2.4 Cancellation of the Infinities

After having explained how to construct the transition diagrams for the first radiative
correction, Koba and Takeda can, using the same graphical and combinatorial meth-
ods as with the leading-order processes, calculate the number of correction terms. It
is important to know how many there are when it comes to avoiding leaving any of
them out: the systematic elimination of the divergences hinges on subtly accounting
for which terms cancel each other out.

The transition diagrams, however, do not only help one to calculate combinato-
rially the number of radiative corrections. They also help to classify the radiative
correction terms in groups that cancel each other out and to recognize when some
terms are equal. This is particularly important when the radiative corrections are
divergent, as is mostly the case. The diagrams even help one to find the terms in the
first place.

2.4.1 Mass-Type Divergences

Not all correction terms are divergent (RadReacllIa, p. 70). In the second half of
their third paper (RadReaclllb), Koba and Takeda identify the divergent terms and
show how they can be eliminated. The authors first treat the “mass type” diver-
gences. They give a synopsis of the “connections” that could possibly yield diver-
gent terms (see Fig. 2.17). Figure 2.18 shows the transition diagrams corresponding
to the first group of sequences.

This representation of the processes identifies them as describing the self-energy
of the electron in the intermediate state, since the diagrams are, apart from a horizon-
tal reflection, identical to the diagrams that represent the self-energy of an electron
in general—a “simple example” of the application of their transition diagrams con-
sidered earlier in their article (see Fig. 2.18b, their Fig. 2.2). The authors consider
the different cases of time-ordering of the emission and absorption events. For the
first case,

[the connections] (5.1), (5.2), (5.3) and (5.4) are represented by the diagrams of [Fig. 2.18a].
One will at once notice that this is the very figure of self-energy (Fig. 2 [should read Fig. 5!,
my Fig. 2.18b]). Indeed this process is to be interpreted as the self-energy or the mass
increase of the intermediate electron. (RadReaclllIb, p. 131)
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For a given process the quantitative contribution is a term in the perturbative
expansion and has a divergent part. The divergent parts of all four terms can be
eliminated by introducing a single correction term —8§m u*Bu into the interaction
Hamiltonian.

The remaining three groups of processes that lead to divergences contain pairs of
terms that all cancel each other out because the processes of each pair differ from
each other only by an inversion of the order of emission and absorption of the virtual
photon, which in the quantitative term manifests itself in a change of sign.
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Fig. 2.18 A comparison of transition diagrams for divergent radiative corrections and self-energy
(a) Transition diagrams (Figure 8 in RadReaclllb, p. 131) corresponding to the four divergent
sequences of Fig. 2.17. (b) Transition diagrams representing processes that contribute to the self-
energy of an electron (Figure 5 in RadReacllla, p. 65)
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2.4.2 Polarization-Type Divergences

The essential instances of the polarization-type divergences arise from the island-
like corrections that share one photon with the original process (see Fig. 2.16¢);
this type of correction is labelled [P, I]. The corrections can be obtained from
a new transition diagram constructed from the original transition diagram of the
uncorrected process:

Take an arbitrary connection of the original (uncorrected) process and fix your eyes upon
its certain step, the emission of a photon k, say. By virtue of the diagram method we can
easily construct [P, I] corrections with regard to this element in the following manner.
(RadReaclllb, p. 133)

A first possibility of an island-like correction is obtained by adding a closed rect-
angle (the “island”) before the square well of the uncorrected process with respect
to field time (the horizontal axis) and replacing the label k*, which indicates the
emission of a photon with momentum k in the transition diagram of the uncorrected
process, with (—k), the absorption of a photon with like momentum. There are two
possibilities for assigning the direction of the arrows to the lines forming the closed
rectangle: either clockwise or anticlockwise. The authors’ instructions read as fol-
lows and the transition diagrams of the uncorrected process and the two possible
corrections are shown in Fig. 2.19.

Put an island-like connection consisting of two elements k* and (—k*) into any position
before the original ¢ (k*) [i.e. field time of emission] and at the same time replace the ele-
ment k* on the main electron-line by (—k), which of course does not alter the configuration
of the original diagram for the uncorrected connection. There are two ways of building
the closed ilne [line] according to the direction of the proper time, as will be seen from
[Figs. 2.19b and 2.19c¢]. (RadReacllIb, p. 133)

After these first two types of island-like corrections, the authors introduce four
additional types that differ from the first two by the position of the island in field
time. Thus the “configurations of the [ P, ] corrections [are] clarified” (p. 135). The
position of the island, however, is not yet completely determined. In the first case,
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Fig. 2.19 An uncorrected process and two possible polarization corrections (Figures 10(i), (ii),
(iii) in RadReaclIlb, pp. 133/134)
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for instance, it is only specified that the island lies before the square well to which it
is a correction with respect to field time. As long as one meets this condition, one can
choose the position and width of the island. Depending on the choice that is made,
the degree of divergence of the corresponding quantitative expression differs. If an
island lies entirely in one intermediate state, in other words, if no square well of the
original process lies between its two vertical elements, the divergences are quadratic,
which is the strongest type of divergence that can occur in this context. For islands
that extend over two intermediate states of the original process, the divergences
are linear; for islands extending over three intermediate states, the divergences are
logarithmic—the weakest type of divergence. If the island extends over more than
three intermediate states, that is, between its two vertical elements lie two or more
square wells of the original process, the correction converges.

Quadratic divergences are denoted by [S] if the island lies between the
(S — 1)th and the Sth square well of the original process. Logarithmic divergences
can stem either from islands in one intermediate state, denoted by {S}, or from
islands over two intermediate states, {S, S + 1}. Linear divergences can arise from
these two types of islands—these divergences are denoted by (S), (S, S + 1)—or
from islands extending over three intermediate states, (S, S + 1, S + 2). All quanti-
tative expressions for the corrections have the same numerator, which is reflected in
the fact that the transition diagrams all contain an island separated from the rest of
the diagram:

As is suggested by the closed configuration, the polarization correction makes up a separate
“Spur” in the numerator of the transition matrix element and this is common to all the con-
nections above described. The only difference between them lies in the energy-denominator
to which the order in the field time is essential. (RadReacllIIb, p. 136)

By carrying out an “elementary calculation” (p. 136), the authors obtain the quan-

titative expressions for the corrections, which they have classified on the basis of
their transition diagrams, for instance:

= ez d
[n] — (3_ / r r)
Hg

(Eo— E1) - (Eo — En_1)(Eo — Eq)*(Eg — Epq1) -+ (Eo — Eg—1)’
Q2.7)

where r and k are the momenta of the photons and Hy abbreviates the numerator of
the uncorrected expression, which they have already calculated.
All the quadratic divergences cancel each other out if the term

&2
F/rarr/AZ(X)dv
T
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is added to the interaction Hamiltonian, “because the latter implies processes just
equivalent to the above mentioned ones”.!® A(X) is the transverse part of the elec-
tromagnetic potential at the point X.'°

As regards the linear divergences, the authors can identify groups of terms that
cancel each other out. Using their graphical classification scheme, they see that none
of the linearly divergent terms remains:

Between the terms we find the following relations:

1
{0} +5(0. 1} =0

1 1
S0 1+ {1HZ{1.2} =0

1 1 (2.8)
Fin—Lnfn}+ S{n,n+1} =0

1
S@-1.01+{0}=0

Therefore, when summed up the linear divergences entirely disappear.
Similarly, groups of logarithmic divergences cancel each other out; however, one
divergent term remains:

©0) =0
(D+(0,1)=0
2)+(1,2)+(0,1,2) =0

m-D+m-2,n—1)+m—-3,n—-2,n—1)=0
m+m—-1,n+m—-2,n—1,n)

(S D
~ \3rJ) r J(Eo—E))...(Eo— Eg-1)

m+D)+m,n+1H)+mn—-1,n,n+1)=0

DD+Q@-1.0)+((©Q-2,0-1,0)=0.
(2.9)

18 RadReacllIb, p. 137.
19 RadReacllla, p. 61.
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Fig. 2.20 The [P, I1]
correction to Compton
scattering (Figure 14 in
RadReaclllb, p. 140; =
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The remaining divergence comes from the integral (€2 /3m) f (dr/r). It is can-
celled out by a change in the elementary charge parameter, which describes
the coupling between electrons and the electromagnetic field. The observed cou-
pling does not correspond to the natural constant e but to a charge that devi-
ates from that value by a factor proportional to the mentioned diverging integral:
Se ~ — (&2 /3m) f (dr/r). The effect of “charge renormalization” (p. 140) therefore
cancels out the remaining linear divergence.

The [P, I] corrections considered so far are the island-corrections to a square
well in the transition diagram of the original process. The well is still present in the
corrected diagram but it has been turned from an emission into an absorption. With
[P, 1] corrections the original diagram appears modified in the corrected diagram.
To obtain a [ P, I I] correction, one island is constructed out of the two square wells
of the original process. A typical example is a correction to Compton scattering.
The transition diagram of the original process is shown in Fig. 2.14. The corrected
transition diagram is shown in Fig. 2.20 and the corresponding Feynman diagram in
Fig. 2.21.

The quantitative contribution of the correction is zero due to Furry’s theorem,
which states that any odd-order contribution in the perturbative expansion vanishes.
The Feynman diagrams of these contributions contain a closed polygon of electron
lines with an odd number of vertices (three in the case shown in Fig. 2.21), cf.
Section 6.6.1.

The diagram in Fig. 2.20 is immediately interpreted as the representation of a
physical process:

From this diagram one will at once recognize that the island-connection represents a process
of splitting up of a photon k into two, [ and k — /. (RadReaclIIb, p- 140)

Fig. 2.21 The Feynman : :

diagram (by A. W.) |
corresponding to the [P, I1] i

correction to Compton /\
scattering shown in Fig. 2.20
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Physicists accustomed to the representation of these processes by Feynman dia-
grams (see Fig. 2.21) would probably have some difficulty interpreting the transition
diagram, not “at once” seeing that it shows a photon split into two, while in the
corresponding Feynman diagram this would be evident for them.

Furthermore, the [P, I11] corrections contain an element that would, according
to the “rules” and “notation”, represent a “splitting” of a photon: a process that
actually does not occur, although:

‘We may remark by the way that [P, /1] corrections, when separately considered, should
not only converge but also vanish; otherwise a photon could spontaneously split up into
three photons. (RadReaclllb, p. 141)

The authors do not explain why they would find the splitting of a photon into three
photons impossible. However, it is certainly a shortcoming of their diagrammatic
method that no clear criterion is given to sort out the diagrams to which no physical
process corresponds.

Thanks to their classification of the correction terms, the authors know that now
they have completed their task:

It is from the outset obvious that all further corrections [P, I V], [P, V] ...[P, Q] can-
not contribute to divergence since the energy-denominator will contain more than 4 |r|s.
(E, ~ |r]| is the energy of a virtual electron, and one has to integrate with respect to |r|).
Moreover all [P, S] corrections with even S do vanish, if the presence of other electrons is
not taken into account, because of symmetry property. (RadReaclIlb, p. 141)

Thus they have showed that changing the interaction Hamiltonian proposed at the
beginning of the third part of their article (RadReacllla, p. 60) is indeed sufficient
to remove all the divergent quantities from the theory: the mass-type divergences
discussed in the previous section are eliminated by the introduction of a counter-
term containing a mass parameter, m—3m u* Su. The polarization-type divergences
are either cancelled out by other members of the same subgroup or removed by
counter-terms which contain the clzlarge parameter e, either in expressions such as

e .

“Se ~ —(e*/3m) [(dr/r)” or “3—2 [rdr [ A*(X)dV” (equations 4.9 and 4.13,
T

RadReacll, pp. 415/416).

2.4.3 Bookkeeping Versus Isolating the Infinities

It is striking how, despite knowing so little of the developments taking place
in Europe and the United States, these Japanese physicists nevertheless arrive at
remarkably similar conclusions concerning the removal of QED’s uninterpretable
infinities. However, their representations of the processes and the associated classifi-
cation of the problematic terms differ significantly from Dyson’s method employing
Feynman diagrams. In Chapter 6 we will see in more detail what Dyson’s method
consists of and the main function of Feynman diagrams. The method that would
eventually become established is based, to a large extent, on Dyson’s work and has
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less in common with the Japanese method.?” The question therefore arises as to the
reasons for this preference.

In Section 2.3 I pointed out a possibly crucial difference in the diagrams of the
two methods: only Feynman diagrams show whether an emission and an absorp-
tion process involve the same photon. Moreover, in contrast to the method of the
Japanese physicists, Dyson’s procedure yields finite results to any order of the per-
turbative expansion, not just to the first order.?! Indeed, Dyson’s identification of
the “self-energy” and “vertex” parts of Feynman diagrams enables him to define an
iterative procedure to eliminate the infinities to higher and higher orders.

How much the advantages of Feynman diagrams over the alternative Japanese
representations weighed in the actual evaluation of the two methods remains to
be investigated. It seems, however, that these advantages made Feynman diagrams
more appropriate for the task of justifiably and satisfactorily removing the infinities.
More effort needed to be expended on bookkeeping all the terms in the Japanese
method in order to assure that they were all taken into account. Indeed, to this end
the authors even introduced a “representation by sequences”?? in addition to the
transition diagrams. Dyson, however, is able to “isolate the virus”?? more effectively
than the Japanese physicists.

20 Cf., for instance, Mills (1993).

21 SM, abstract; RadReacllla, p. 61.
22 RadReacllla, p. 65.

23 Mills 1993, p. 77.



Chapter 3
Quantum Mechanics Without a Hamiltonian
Operator

But what does the quantum mechanician do if he cannot be
provided with a Hamilton operator? He goes on strike.
Heinrich Leutwyler
Lecture notes ‘Elektrodynamik und Optik™ (p. 21)
Translation A. W.

3.1 The Main Difficulties of QED

In the early 1940s, when Feynman was a graduate student, one of the most press-
ing problems facing theoretical physicists of the time was the fact that infinite
and, therefore, uninterpretable quantities arose from some of the principles of
electrodynamics—in both classical electrodynamics as well as in the early attempts
to establish a quantum theory.! Roughly, the problem was as follows: an extended
electron could not be stable because the charges distributed over its volume would
repel each other. On the other hand, a point-like electron would imply that the energy
contained in the electron’s electrostatic field would be infinite, since the field energy
e/r diverges in the limit of vanishing radius r of the spatial distribution of the charge
.2 In classical electrodynamics, the difficulties of divergences had been known for
some time, and it had been hoped that quantizing the theory would eliminate them.
The other strategy was that one should first remove the infinite quantities in the
classical theory before one should even attempt to quantize the theory.>

It is in this context that Feynman wrote his PhD thesis, with the removal of the
divergences in electrodynamics being his superordinate objective.* In his thesis, he
adopts the second strategy mentioned above of first trying to establish a divergence-
free classical theory of electrodynamics and then proceeding to quantize it. Indeed,
together with his supervisor John A. Wheeler, Feynman had already developed an

! For a comprehensive account of the history of QED, see Schweber (1994).
2 See, e. g., Shapere (1984); Frisch (2005).

3 See, e. g., Dirac (1938); Frenkel (1925).

4 Feynman (2005), Introduction.

A. Wiithrich, The Genesis of Feynman Diagrams, Archimedes 26, 51
DOI 10.1007/978-90-481-9228-1_3, © Springer Science+Business Media B.V. 2010
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alternative theory of electrodynamics with the desired feature that awaited quanti-
zation by the time he had started working on his thesis.’

The standard procedure for quantizing a classical theory was to interpret the clas-
sical Hamiltonian function as an operator in a Hilbert space of state vectors. This
operator would then determine the time evolution of the quantized system described
by a certain state vector. The problem with quantizing the Wheeler—Feynman theory
of electrodynamics was that it could not be formulated by specifying a Hamiltonian
function. Therefore, a method was needed to quantize physical systems, the classical
description of which could not be given by a Hamiltonian function.®

3.2 How the Classical Action Constructs the Quantum Theory

The solution to the problem of quantizing a system without a Hamiltonian consists
in recognizing that the Hamiltonian is not the only classical quantity that can be
used to determine the dynamics of a corresponding quantum system. Not only can
the classical action do so; it also has the advantage that it can construct the quantum
theory if the classical theory does not provide a Hamiltonian.

3.2.1 Using the Lagrangian to Represent the Wave Function

Feynman bases his quantization procedure on Paul Dirac’s considerations on how to
construct a quantum theory out of the Lagrangian formulation of classical mechan-
ics, rather than out of the Hamiltonian formulation. Systems that can be described
by a Lagrangian can also be described by a Hamiltonian: the two descriptions are
related by so-called Legendre transformations. This also means that a system that
has no Hamiltonian has no Lagrangian either: if it did have one, one could construct
a Hamiltonian of the system using Legendre transformations, which contradicts the
hypothesis that the system has no Hamiltonian. Therefore, Dirac’s quantization of
a Lagrangian formulation does not solve Feynman’s problem of how to quantize
a system without a Hamiltonian. However, it does enable him, as we will see in a
moment, to generalize to systems without a Hamiltonian.

In his thesis, Feynman quotes from Dirac’s 1935 The Principles of Quantum
Mechanics,” over almost two pages, starting with:

From the analogy between classical and quantum contact transformation ... we see that

(q[ |q’T) corresponds in the classical theory to €5/ where S is Hamilton’s principal function
[i. e. the action] for the time interval T to ¢, equal to the time-integral of the Lagrangian L,

5 Only a summary of a presentation of Wheeler and Feynman’s theory had been published by
the time Feynman started working on his thesis (see “Minutes of the Cambridge, Massachusetts,
Meeting, February 21 and 22, 19417, p. 683). The published accounts of the theory are Wheeler
and Feynman (1945, 1949).

6 Feynman (2005), Introduction.

7 Dirac (1935, pp. 124-126).
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1
s:/ Ldt. 3.1)

T

Taking an infinitesimal time interval ¢ to t + &¢, we see that (qt/ +8r|qt/) corresponds to

iLst
e . This result gives probably the most fundamental quantum analogue for the classical
Lagrangian function.®

In these passages, Dirac is rather vague about the exact nature of the relationship

iLét
between the exponential e 7 of the Lagrange function and the function (qt’ e |q,’)
that relates the state descriptions in terms of the coordinates g at two different times.

In his thesis, Feynman shows that (g;4s/|g;) not only “corresponds to” e% but
that it is actually proportional to it. According to Feynman’s reminiscences, he dis-
covered this after a beer party in Princeton, when Herbert Jehle, a visiting scholar,
called Feynman'’s attention to Dirac’s work on the role of the Lagrangian in quantum
mechanics. Feynman, so the story goes, was convinced that Dirac just meant *“is pro-
portional to” when he wrote “corresponds to”, but Jehle insisted that Feynman had
stumbled upon something that nobody else knew: “I [Feynman] didn’t realize—I
was only trying to interpret Dirac—but he [Jehle] realized that I had discovered
something that wasn’t known. He said, ‘You Americans, always trying to find a use
[for] something! That is a way [to] discover new things.”’9

However, in a section preceding the one from which Feynman quotes, and in
an article predating the publication of the book, Dirac himself states that the two
quantities are equal.'? Feynman most probably simply overlooked these passages or
felt the need to work out the relationship in more detail, using his own framework.

Feynman justifies the claim that these two functions are proportional by using
their proportionality to derive Schrodinger’s equation from a general relationship
between the wave function i at two infinitesimally close points in time, ¢ and
t+ 8t

¥ (g1 st +01) = / (@r450lar) ¥ (a/- 1) /¢ (a)) daj, (3.2)

where ,/¢(g/) dg; is the volume element for integration in the space of the variable
qy.-
The wave function is one way of specifying the state vector, and Schrédinger’s
equation describes the (non-relativistic) time evolution of the wave function. If
. (T,
(4/.5:19/) is indeed proportional to
alent to

), the above equation is equiv-

8 Quoted in Feynman (2005, p. 26).

9 Weiner (1966b, p. 148-149), reprinted with permission. Copyright 1966, American Institute of
Physics.

10 Dirac (1935), equation 68, p. 113; Dirac (1933), equation 7.
11 Feynman (2005, p. 28).
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@L(qt/-%tfqt/yql/ [) gdq/
w(q£+5,,t+8t)=feh o w(q{,r)%, (3.3)

where A(87) is a normalization constant.!?

This relationship (3.3) between the values of the wave function at different times
entails Schrodinger’s equation. Feynman proves this statement in the special case
of a particle of mass m moving in one dimension under the influence of a force
described by the potential V (x). In this case, the Lagrangian is L = 1m (’%)2 -
V(x) and we obtain (Feynman now uses ¢ instead of 6¢)

. SN2y
w<x,r+e>=/eﬁ{2( =) v ’}wy,r)%y. (3.4)

By using a substitution of variables and a Taylor expansion, Feynman shows that
the integral equation for the time evolution of the wave function is equivalent to the
Schrodinger equation:

hoy  h? 0%y
— e =SS V. (3.5)

Therefore, the two equations “serv[e] the same function” (Feynman 2005,
p- 29). Like the Schrodinger equation, the integral in (3.3) containing the classical
Lagrangian determines the time evolution of a quantum mechanical state.

To have a relationship between the wave function at two times infinitesimally
close to each other does not, however, solve Feynman’s problems, which include
calculating the probability of transitions from one state at time 7 to another state at
a later time, denoted by T', with no restriction on the difference 7' — #(. To extend his
result (3.3), Feynman divides the interval [fo, T'] into “a very large number of small
time intervals fy to ¢y, t; to to, ..., Ly tO 7713 and applies the formula (3.3) to each
time interval. In the passage quoted by Feynman, Dirac applies a similar division of
finite time intervals to expressions such as (q/T |q,’0).14 Then Feynman formulates a
proof “by induction”!? for the case that the relationship is valid for arbitrarily long
intervals of time.

Feynman’s inductive construction of the wave function goes as follows: use the
abbreviation ¢; for ¢;,, then the relationship (3.3) is approximately valid for the
small but still finite interval from #; to #;41, that is

12 Feynman (2003, p. 28).
13 Feynman (2003, p. 31).
14 Dirac (1935), equation 24, p. 125.
15 Feynman (2005, p. 31).
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dit1=9;i s V ) dg;
L »4:+1)(11+1 tl)l/f(Qi’t') g(qi)dq;

Lt ~ i (’i+1*’i . 3.6
Vit~ [ e DY )

By applying the same relationship to ¥ (g;, t;) and then again to ¥ (gi—1, ti—1)
in the newly obtained equation, and so forth, Feynman obtains (where Q = ¢;+1,
T = tm+1)16

v(0,T)~ // .../exp {lg Z |:L <%,C]i+l> (fit1 — ti)“
i—0 i i

V/80dq0/81dq: - .. /8m dqm
A(t] —t0)A(tr —11) ... A(T —t)°

x ¥ (qo, 10) 3.7

In the limit of infinitesimally small intervals, the approximate relationship is sup-
posed to turn into an equality and the sum in the exponential could supposedly be
replaced with an appropriate integral. The problem, however, is finding a definition
for the integration prescription dgo dq . .. dq, in the limit m — oo, that is, where
integrations over infinitely many variables, infinitely close to each other, should be
performed. Feynman is unable to define such a procedure precisely and to justify
rigorously replacing the sum with an integration. He does not consider himself to
be in a position to answer the “difficult mathematical question as to the conditions
under which the limiting process of subdividing the time scale, required by equa-
tions such as (3.7) actually converges”.!” He only gives a qualitative description of
the limiting process and points out the similarity between the sum in the exponential
and a definition of the corresponding integral:

In the limit as we take finer and finer subdivisions of the interval #y to 7" and thus make an
ever increasing number of successive integrations, the expression on the right side of [3.7]

becomes equal to ¥ (Q, T). The sum in the exponential resembles fmT L(q, q) dt with the
integral written as a Riemann sum. (Feynman 2005a, p. 31)

3.2.2 Application to Systems Without a Lagrangian Function

Supposing that the aforementioned sum can indeed be replaced with the correspond-
ing integral, then the exponential contains the classical action, S = fon L(q, q)dt,
along the path approximated by the sequence (qo, %), (g1, %1), ..., (Q, T). This
feature of expressions such as (3.7) will eventually allow Feynman to transgress the
limitations of the standard quantization procedure.

All the predictions made by a quantum theory can be deduced from the matrix
elements of its operators associated with measuring observable quantities. The
matrix elements are given by the scalar product of two state vectors, one of which is

16 Feynman (2005), equation 47.
17 Feynman (2005, p. 69).
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acted upon by the operator under consideration. According to the standard descrip-
tion of wave functions, the matrix element of an operator F acting at time 7y on a
system that at time 7> was in a state described by the wave function x and at time
Ty was in a state described by the wave function v is'®

(xX|Fy) = / 7 H(T=10) p o G0=TDH y gyo). (3.8)

where yx is obtained by a complex conjugation from y, d Vol is the volume element
for integration using the appropriate variables (which Feynman does not explicitly
give) and H is the Hamiltonian of the system. H appears here because, according to
the standard description, it determines the time evolution of the wave function. For
instance, the wave function v, at time #, of a system that at time #; was in a state
described by ¥, is'’

i

Y, = e 1Ty, (3.9)

Using Dirac’s work as his basis, Feynman has already found how the time evolu-
tion is given in terms of the Lagrangian L of the system instead of its Hamiltonian
(see (3.7)). Therefore, the matrix elements are given as follows20:

(XIFI¥) %//m/x*(qmﬂ,tmﬂ)

i qi+1 — qi
e Z, [L (ti+1——ti’qi+l) (tiv1 — ti)] F
V8dgm+1 ... \/8dqo/8dq1 ...\ /gdq
A(tm—i-] —tp) .. Alto—1-1) ... A(t—m’—H — ) .
(3.10)

i=—

X W(Q—m’, l—m’)

However, Feynman’s goal is to find a quantum theory for classical systems that
have no Hamiltonian and, therefore, as mentioned, no Lagrangian. To these systems,
equations such as (3.3) and (3.10), containing as they do L, cannot be applied.
An example of such a theory is the divergence-free classical electrodynamics of
Wheeler and Feynman. How can one determine the time evolution and the matrix
elements in the quantized versions of such theories?

Here we see clearly that the main purpose of Feynman’s alternative formulation
is neither to provide handy mnemonics to be used to calculate cases that can also
be described using standard formulations, nor just for the “pleasure in recognizing

18 Cf. equation 62 in Feynman (2003, p. 39).
19 Feynman (2005), equation 61.
20 Cf, equation 50 in Feynman (2005, p. 32).
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old things from a new point of view”.2! Rather, Feynman needs the alternative for-
mulation to be able to construct a description of important systems that cannot be
described using standard formulations; and standard formulations would require that
the Lagrangian be “simple”, that is, only a function of coordinates and velocities,
which is not always the case:

What we have been doing so far is no more than to reexpress ordinary quantum mechanics
in a somewhat different language. In the next few pages we shall require this altered lan-
guage in order to describe the generalization we are to make to systems without a simple
Lagrangian function of coordinates and velocities. (Feynman 2005, p. 39)

Feynman makes the generalization by divorcing the action from its exclusive
definition as the time integral of a Lagrangian, S = ftOT L(q, q) dt, thus allowing for
more general types of action functions. Classical theories without a Hamiltonian or
a Lagrangian might still be formulated by a principle of least action. If one ignores
the restriction that the action is the time integral of a Lagrangian, one can then insert
the classical action of such theories instead of the Riemann sum of a Lagrangian into
(3.3) and (3.10):

‘We now make the generalization to the case when the classical action need not be of the form
A= j L(q, q) dt, but is some other more general functional of ¢ (o). In equation [3.10], as
has already been remarked, the phase of the exponential is just 'ﬁ J L(q, q) dt written as a
Riemann sum due to our subdivision of the time into finite, but small, intervals. The obvious
suggestion is, then to replace this exponent by )% times the more general action. The action
must of course first be expressed in an approximate way in terms of ¢;, #;, in such a way that
as the subdivision becomes finer and finer it more nearly approaches the action expressed
as a functional of q(t).22

3.3 Interpretation: Microscopic Paths

After the Second World War, a condensed and revised version of Feynman’s thesis
was published in the Reviews of Modern Physics, but Feynman still had not solved
all the difficulties concerning defining the integration over infinitely many variables,
q, that are infinitely close to each other. In the article, he mentions these difficulties
as one of the “inadequacies of the formulation” (title of section 11, RMP48):

The formulation given here suffers from a serious drawback. The mathematical concepts

needed are new. At present, it requires an unnatural and cumbersome subdivision of the
time interval to make the meaning of the equations clear. (RMP48, p. 384)

In a footnote (fn. 10), he re-emphasizes the provisional nature of the definition of the
new type of integral occurring in his equations: “One feels as Cavalieri must have
felt calculating the volume of the pyramid before the invention of the calculus.”
However, although Feynman still does not have a precise definition of the math-
ematical expressions he is using, he can at this point interpret them physically. The

21 RMP48, p. 367.
22 Feynman (2005, p. 41); Feynman writes A instead of S for the action.
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two “postulates” of RMP48 state that the probability for a certain outcome of a
position measurement is determined by “the absolute square of a sum of complex
contributions, one from each path in the region”, and that “[the] paths contribute
equally in magnitude, but the phase of their contribution is the classical action (in
units of %), i. e., the time integral of the Lagrangian taken along the path” (p. 371).

So, what he described in his thesis as an inductive construction of the wave func-
tion is now interpreted as being a sum of contributions from every possible path
that a particle can take. In equations such as (3.3) and (3.10), the action (or, when
available, the time integral of the Lagrangian) is evaluated along a path ¢g(¢) of the
particle. Since one integrates over the g;s, which mark a sequence approximating the
path of the particle, the path is varied in every possible way, which is why Feynman’s
quantization procedure came to be known as path integral quantization.

Neither in his thesis nor in the published article does Feynman give a graphical
representation of the idea of a path integral. Only later (in the early 1950s), when he
was working on helium does he graphically represent the subdivision process (see
number 1, Fig. 3.1). Similar figures are used to introduce Feynman’s path integral
formulation in today’s textbooks (see Fig. 3.2).

Feynman investigates the characteristics of the paths that appear in his alternative
formulation and recognizes that they are the result of a familiar physical process,
namely Brownian motion. This interpretation is a consequence of one of the princi-
pal results of his thesis: that the time evolution of the wave function is determined
by the classical action. In the article, this result reads as follows:

Y(xXpg1,t+&) = /GXP [%S(Xkﬂ, Xk)} Y(xg, 1) dx/A. (3.11)

As in his thesis, Feynman proves that the above integral equation is equivalent to
the Schrodinger equation in the “simple case of a particle moving in one dimension
in a potential Vix)"2

After carefully defining the action S(xi1, xx) for one section of a path by per-
forming an adequate approximation and replacing xz41 — x; with & and xz; with
x, Feynman finds that

img? —ieV(x)
- eXp .
-2k hi

Y(x,t+e) = /exp W(x — £, 1) dE/A. (3.12)

g2
Since ¢ is small, the factor exp % oscillates rapidly with &, except where & is “of

order (he/ m)%”.24 Therefore, when one integrates over &, only the small values of
& have any effect on the results of the integration. The value of the wave function
Y(x,t + ¢) is, therefore, essentially determined by the values of the earlier wave

23 RMP48, p. 374.
24 RMP48, p. 375.
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Fig. 3.1 A graphical representation (number 1) of the subdivision of the time scale. Integrating
over each x; corresponds graphically to moving the “gates” (number 2) horizontally. Therefore,

the integration over each x; amounts to an integral over all possible paths, early 1950s (Helium,
folio 12, reprinted with permission of Melanie Jackson Agency, LLC)

function, which are “close to [x] (distant of order 8%)”. So, when one considers the
limit of vanishing ¢, the points at which the value of the earlier wave function is
relevant remain close to the point x at which the wave function is to be evaluated an
instant later. The relevant points thus lie on a continuous trajectory and the integral
equation (3.11) for ¥ can be replaced with a differential equation.
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Fig. 3.2 Introduction to Feynman’s path integral method: a reproduction of a figure by Peskin and
Schroeder (An Introduction to Quantum Field Theory, 1995, p. 278). The original caption reads:
“We define the path integral by dividing the time interval into small slices of duration &, then
integrating over the coordinate x; of each slice”

The relevant velocities, however, become infinite in the limit where ¢ tends to
zero. They are defined as the difference of the two space coordinates divided by the
difference of the two time coordinates over a piece of the sequence approaching the
continuous trajectory. Since this quotient diverges for infinitesimal time intervals
¢, the trajectories do not have a time derivative, which is the usual definition of
instantaneous velocity on a trajectory. Strange as these characteristics may sound,
such paths are well known to Feynman. They are typical of random motion, such as,
for instance, the thermal position fluctuations of molecules suspended in a liquid:

. . . . . 1
The “velocities”, (xx+1 — xx)/& which are important are very high, being of order (fi/me)2
which diverges as ¢ — 0. The paths involved are, therefore, continuous but possess no
derivative. They are of a type familiar from the study of Brownian motion.?

3.4 The Advantages of the Alternative Formulation

Feynman felt that if his thesis had contained nothing but an alternative formulation
of cases that can also be treated using the conventional formulation, it would have
lost much of its attractiveness:

[He] thought, “No, that’s not important at all, because that’s exactly equivalent to the regular
representation—it’s equivalent—so it’s just another way to write it, it doesn’t add anything.
What I really have to get is some contribution, make something different, which is this elec-
trodynamics.” (Weiner 1966b, p. 153, reprinted with permission. Copyright 1966, American
Institute of Physics)

Feynman wanted to arrive at a divergence-free form of quantum electrodynamics
(QED) by way of quantizing the Wheeler—Feynman theory. However, he did not

25 RMP48, p. 376.
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achieve this goal nor could he quantize any other relativistic system using his
methods:

The results of the application of these methods to quantum electrodynamics is [sic] not
included in this thesis, but will be reserved for a future time when they shall have been more
completely worked out. [ ...] All of the analysis will apply to non-relativistic systems. The
generalization to the relativistic case is not at present known. (Feynman 2005, pp. 5-6)

However, after withdrawing from war-related work some time in the first half of
1942 (see Gleick 1992, pp. 146ff.), he was, after all, able to include the generaliza-
tion to actions that are not integrals of a Lagrangian in his thesis (see Section 3.2.2).
Indeed, it is the possibility of this generalization that constitutes the main advantage
of Feynman’s alternative formulation. As described above, the recognition that the
Lagrangian is only used in the alternative quantization procedure as an intermedi-
ate to the action allows one to generalize the procedure to theories that have no
Lagrangian but do have an action. The advantage of the alternative formulation is
that it suggests how one can make generalizations to hitherto indescribable cases.

But even in the domain of problems that can be represented by conventional
methods, Feynman’s alternative formulation has a particular advantage. The exam-
ple he gives is the case of the forced harmonic oscillator, that is, a harmonic oscilla-
tor interacting with a (Lagrangian) system. The advantage of using Feynman’s alter-
native formulation for this quite standard problem is that it allows one to describe
the dynamics of the (Lagrangian) system without explicitly referring to the motion
of the oscillator; only its net effect is taken into account. The net effect can be
calculated once and for all, irrespective of the specificities of the interacting system:

[The problem of the forced harmonic oscillator], when the oscillator is interacting with a
Lagrangian system, can of course be handled by the usual methods of quantum mechanics.
We shall see, however, that the added power of looking at all times at once, so to speak,
which arises in such equations as [3.10], has some advantages. With a wave function, the
oscillator and the interacting system are so firmly interlocked, mathematically, that it is hard
to study the properties of the oscillator without, at the same time, solving for the motion of
the interacting system. We shall be able here, however, to solve that half of the problem
which involves the oscillator, without solving the entire problem. (Feynman 2005, p. 55)

From comparable classical cases, Feynman knows that the interaction mediated
by an oscillator is not instantaneous but delayed. The description that arises when
the oscillator’s coordinates are not used thus refers to various different times. As a
consequence, it cannot be cast into equations of motion of Hamiltonian form, nor
into a Lagrangian action:

[We] shall expect that the interaction will not be instantaneous, and hence not expressible
in Hamiltonian form. [ ...]

[We] shall expect that the system with the oscillator is not equivalent to the system
without the oscillator for all possible motions of the oscillator, but only for those for which
some property (e. g., the initial and final position) of the oscillator is fixed. These properties,
in the cases discussed, are not properties of the system at just one time, so we will not
expect to find the equivalence simply by specifying the state of the oscillator at a certain
time, by means of a particular wave function. It is for this reason that the ordinary methods
of quantum mechanics do not suffice to solve this problem. (Feynman 2005, p. 62)
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However, why would one want to describe the system without using an oscil-
lator? Fermi (1932, p. 131), who Feynman also cites in his thesis (p. 61), had
already eliminated the oscillators corresponding to the longitudinal component
of the relativistic electromagnetic field, and shown that their net effect is sim-
ply the classical (instantaneous) Coulomb interaction energy. For an electron in
its own field, this electrostatic energy diverges (see Section 3.1) and is, there-
fore, one of the sources of the problematic infinities in QED. Removing the
oscillators thus produces a description in which one of the problems of the
theory—the self-interaction of the electron—is more apparent than in the usual
description, which, therefore, gives a better indication as to how to solve the
difficulty.

In the RMP48 article, Feynman is slightly more explicit about his reasons for
removing the oscillators, stressing that, for doing so in compliance with the theory
of relativity, conventional quantum mechanics is an insufficient tool:

It is true that the oscillators representing the longitudinal waves may be eliminated. The
result is instantaneous electrostatic interaction. The electrostatic elimination is very instruc-
tive as it shows up the difficulty of self-interaction very distinctly. In fact, it shows it up so
clearly that there is no ambiguity in deciding what term is incorrect and should be omitted.
This entire process is not relativistically invariant, nor is the omitted term. It would seem to
be very desirable if the oscillators, representing transverse waves, could also be eliminated.
This presents an almost insurmountable problem in the conventional quantum mechanics.
(RMP48, p. 385)

The problem with the traditional method is that one can only refer to one time,
whereas the description resulting from the elimination of the oscillators necessarily
refers to a number of different times:

We expect that the motion of a particle a at one time depends upon the motion of b at a
previous time, and vice versa. A wave function ¥ (x,, xp; t), however, can only describe
the behavior of both particles at one time. There is no way to keep track of what b
did in the past in order to determine the behavior of a. The only way is to specify the
state of the set of oscillators at ¢, which serve to “remember” what b (and @) had been
doing.

The present formulation permits the solution of the motion of all the oscillators and their
complete elimination from the equations describing the particles. (RMP48, p. 385)

Feynman was not the only physicist to come up with a formulation of QED that
complies with the theory of relativity; in 1948 Julian Schwinger?® provided one,
too. As in the traditional formulation, he eliminated the longitudinal oscillators and
left the transverse oscillators, but in a covariant way. A thorough comparison of
Schwinger’s and Feynman’s formulations is not, however, within the scope of this
work.?’

26 Schwinger (1948b).

27 For a more extended account of Schwinger’s and Feynman’s biographies and their contributions
to QED, see Schweber (1994, chapters 7 and 8).
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3.5 The Unsatisfactory Integration of Spin and Relativity

The results of Feynman’s thesis were “non-relativistic throughout”. In the last sec-
tion of the RMP48 article, however, Feynman demonstrates how one can include
relativistic systems and particles with spin.

In the conventional formulation of non-relativistic quantum mechanics, phenom-

ena involving electron spin are described by the Pauli equation®®:
ho
- 75‘”()“’ 1) =Hpy(x,1) (3.13)
with
o — 1
"7 2m
/| hoa
) & D (@) D) _,40
DML (Fomm + 5a%) (G + 240 - ea®.
(3.14)

Feynman could introduce additional terms in his alternative formulation such
that it entails the Pauli equation. However, he could not justify the necessary terms
by interpreting them physically. The incorporation of spin into his formulation
remained “purely formal” (RMP48, p. 387):

Spin may be included in a formal way. The Pauli spin equation can be obtained in this way:
One replaces the vector potential interaction term in S(x;1, x;),

e e
(i1 — xi) - AG) + 5 (g — X)) - A(xign)
2c 2c

[...] by the expression

2%(0 (g1 — x)) (0 - AGx) + 2%(0 CAG (O - (gt — X))
(RMP48, pp. 386-387)

In a similar manner Feynman could include relativistic particles without spin
(for example, certain mesons), which are described by the Klein—-Gordon equa-
tion. Feynman could incorporate the content of this equation by defining a four-
dimensional path to meet the relativistic requirement that the time variable not be
singled out. In the article, Feynman presents a Lagrangian defined in terms of deriva-
tives of these four-dimensional paths. Using this Lagrangian to define the action,
Feynman claims to be able to construct a wave function that would automatically
satisfy the Klein—-Gordon equation.

The Dirac equation combines both spin phenomena and relativity. Feynman men-
tions that, by modifying the Lagrangian from which the Klein—Gordon equation can

28 pauli (1933, p. 237).
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be derived, the Dirac equation would follow, too. The modification is similar to the
aforementioned one that is needed to derive Pauli’s equation.

Feynman was not at all pleased with these treatments of spin phenomena and
relativistic particles. Tantalizingly, he let the reader know that he was working on
a more satisfactory treatment of these two subjects, which was not yet ready for
publication:

These results for spin and relativity are purely formal and add nothing to the understanding

of these equations. There are other ways of obtaining the Dirac equation which offer some

promise of giving a clearer physical interpretation to that important and beautiful equation.
(RMP48, p. 387)

In the next section we will learn what Feynman considers to be a more satis-
factory formalization of the Dirac equation as well as discover what he means by
“understanding”, in contrast to being merely able to “deduce”, an equation.



Chapter 4
The Dirac Equation: Feynman’s Great Struggle

In this chapter I will show how Feynman used diagrams to represent and modify
physical models of electrons (and later their interaction) and how he used these
representations to derive quantitative expressions that are “true of the model”.!

4.1 A Brownian Model of the Electron

From the notes and correspondence of Feynman, which I will now present and
describe, we will learn that what Feynman means by “understanding” the Dirac
equation is not the study of the mathematical properties of the Dirac equation or
the search for an ingenious method of solution required by the application of the
equation to complex problems. Rather, Feynman is looking for a physical system,
the appropriate description of which would satisfy the Dirac equation.

Since Gregory Breit (1928) and Erwin Schrodinger (1930) it had been held that
an electron described by Dirac’s equation oscillates at the speed of light around
a mean trajectory.” At first sight this consequence of Dirac’s equation seems at
variance with the constraints of the relativity theory to the effect that only mass-
less particles can move at the speed of light; for any massive particle such as the
electron, the kinetic energy required for such a motion would be infinite. In The
Principles of Quantum Mechanics, Paul Dirac® also shows how his equation leads to
this allegedly absurd consequence and immediately goes on to resolve the apparent
contradiction. Dirac demonstrates that the velocity associated with the electron’s
mean trajectory is smaller than the speed of light and thus consistent with the actual
measurements and (non-quantum) relativistic relations of momentum and velocity.

Absurd as the idea of a quivering electron might sound at first, Feynman rec-
ognizes that this feature of the electron would fit the extension of his alternative

! Cartwright (1983).

2¢ft. Weisskopf (1939, p. 72); cf. also Feynman and Hibbs (1965), problem 2-6, p. 34, where the
problem is presented as being made up for pedagogical purposes only and devoid of any relation-
ship to a real physical situation.

3 Dirac (1935, p. 260).

A. Wiithrich, The Genesis of Feynman Diagrams, Archimedes 26, 65
DOI 10.1007/978-90-481-9228-1_4, © Springer Science+Business Media B.V. 2010
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formulation to relativistic systems perfectly. In RMP48, Feynman found that the
mainly relevant paths are “of a type familiar from the study of Brownian motion”
(see Section 3.3). The quivering motion of the electron, or Zitterbewegung as
Schrodinger (1930, p. 7) called it, is of that type, too.

In his quest to interpret the Dirac equation, Feynman tries to invert the deductive
relationship between the Zitterbewegung and the Dirac equation. Based on his alter-
native formulation of non-relativistic quantum mechanics, he tries to find a descrip-
tion of the quivering electron, such that the Dirac equation necessarily remains valid.

4.1.1 The Dirac Equation in One Dimension

In the following, on the basis of manuscripts in the Feynman Collection held by
the Caltech Archives (see the Bibliography, p. 112), I will try to reconstruct Feyn-
man’s quest to find an interpretation of the Dirac equation. My reconstruction starts
with Feynman reducing the Dirac equation to a special version whereby the wave
function depends, with the exception of the time parameter, only on one spatial
dimension, instead of the usual three spatial dimensions.

In the one-dimensional version of Dirac’s equation, the wave function (or spinor),
to which the Dirac equation applies, has only two components instead of the usual
four in three spatial dimensions. The one spatial dimension is denoted by z and the
two spinor components are {1 and 3. Choosing x for the one spatial dimension and
index 2 for the second spin component would have been more natural, and indeed
Feynman would later use x to denote the one spatial dimension. Perhaps Feynman’s
decision to use z for the one spatial dimension and index 3 for the second spin
component was influenced by the (quite arbitrary) convention in discussions of spin
phenomena in ordinary three-dimensional space of singling out the z axis, that is,
the third spatial component, as a reference for measuring spin. Time is denoted,
as usual, by the parameter ¢; w is the mass of the particle. The one-dimensional
Dirac equation for the two components then takes the following form (see Fig. 4.1,
number 1):

oYy 93 .
SRLRNTLA £ 4.1
" + 22 iy 4.1
ovs 0y .
R . 4.2
o7 + 22 +ips 4.2)

When the interaction of the electron with an electromagnetic field, described
by the scalar potential ¢ and vector potential A, is taken into account, the terms
containing these potentials have to be added. In one spatial dimension, A has only
one component instead of the usual three. As is customary, the electric field is
given by the gradient of the scalar potential and the time derivative of the vector

potential. In one dimension, this is E = —% — aa—f (see number 2; “E”, in the



4.1 A Brownian Model of the Electron 67

il L F-09)t = (23N 1~
B+ (Fh-9) '-*(:-’5*)#*# 2

G G -ng

o (R DY G (PN rugy

¢ gt

X (Fg-a) ¥ tMpa L gz gfaj
K [-]
Hbx PF + X(p-8)f - puff 7 (2 (T
M- = e b-A -P= W I'EL/J' 1/
e s ;if: Br ot .
w o L u b ol

AW FYT p P ;-q-&;’-r-;%
Ci~0)11- gJt (b1-9)( )14y - o I~/
STXEH 4l 28 oy ostpon) b-o) - p-)

2Xx

D a1 81 2B) ot (Al - «Lb-Afpr puntbrry

A
L E Yk A ity
He Prulp-A)-JA Feilue-rt)r 3 [ Fous pastiely scloin
e e, = M,
gt o
—_— . ! o
ﬂ':&“zw;g-.-gg-; b Ve
;e IRAYO™
A camyx " _ | e
P <don-p) sp SV py-g) 20T fa 3
{;:_‘;} 275 | 8 = ME
. . .!..'; o ?I =_
4 I,Lf;?: st
A a :‘:4 o 314 { Ne ,[,".JM,M.F‘"
GG |t sfim [

Fig. 4.1 Notes showing the beginning of Feynman’s “struggle” to interpret the Dirac equation,
ca. 1946 (Dirac Equation b, folio 13, reprinted with permission of Melanie Jackson Agency, LLC)

lower half of the right-hand-side column, denotes, instead, the kinetic energy of the
particle).

Like the Schrodinger equation, the Dirac equation is a differential equation for
the wave function that provides a description of the quantum system under consider-
ation. In the simplest case, the system is a free electron. In the next to simplest case,
the electron is interacting with an electromagnetic field. The differential equation

and the Hamiltonian, the energy operator of the system, are related by
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By
i~ =HY. (4.3)

as in the Schrodinger equation; only the Hamiltonians differ in the Schrodinger and
Dirac equations (Feynman sets i = 1).

Feynman brings the one-dimensional Dirac equation into this form in order to be
able to read off the Hamiltonian of the system (number 3):

Hyr = ¢y +alp — Ay — Buy, (4.4)

where ¥ = (5;), a=(98).8=(}2) (number4), and p = ll%
Once the Hamiltonian has been identified, Feynman can derive several of the
system’s properties, for example, that the velocity operator is simply the matrix o

(number 5):
x=i(Hx —xH) = a. 4.5)

This means that every velocity measurement of the particle described by the Dirac
equation yields, as a result, one of the eigenvalues of the matrix o, which are +1.
Since Feynman is working in “natural” units, where 7 = ¢ = 1, this corresponds to
plus or minus c, the speed of light.

4.1.2 How Dirac’s Equation Describes Zigzag Paths

In the usual case of three spatial dimensions, the Dirac wave function has four com-
ponents, the first of which describes an electron with spin up, the second an electron
with spin down and the third and the fourth a positron with spin up or down, respec-
tively. Interpreting the two components in the one-dimensional case is not obvious
as they have “no spin” (see Fig. 4.1, number 6) in this case. Feynman interprets these
two components as the description of an electron moving, respectively, to the left
or to the right. Interpreted in this way, the wave function helps him to describe the
Zitterbewegung of the electron, which in one spatial dimension is a simple left-right
motion. However, the interpretation can only be given after the variables have been
changed and a suitable linear combination of the two components has been formed
(see Fig. 4.2).

We can call these “new variables” light-cone coordinates (see Louis Kauffman
and H. Pierre Noyes (1996)). The new variables are the coordinates in a system
rotated by 45° with respect to the x and ¢ axes. Therefore, the axes of the new
coordinate system take the same trajectories of a light ray starting or arriving at
the origin and moving to the right or left (with respect to the x coordinate). The
spinor components are also redefined: they are rotated by 45° with respect to a
“spinor” coordinate system that has as its axes the components 1 and 3. The two
new variables are u and v (see Fig. 4.2, number 1):
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Fig. 4.2 The two components of the wave function in the one-dimensional Dirac equation
describe an electron moving, respectively, to the right or left. The equations are expressed in
terms of the “new variables” and are solved “by path counting”, ca. 1946 (Dirac Equation b,
folio 10, reprinted with permission of Melanie Jackson Agency, LLC)

u=t+x, (4.6)
v="t—x, 4.7)

and the two new spinor components are g and ¥y (abbreviations for right and
left—why will become clearer as we proceed; see number 2):
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Y3+ Y1 = YR, Y3 — Y =Y. (4.8)

In terms of the new variables and new components, the (component-wise) Dirac
equation in one dimension reads (number 3):

0
(150 =)
R
(l% )VfL

where 2M = ¢ — A and 2N = ¢ + A, taking into account the external poten-
tials with which the particle interacts. However, in the following steps Feynman
neglects the interaction with external potentials and considers only “free particles”
(number 4).

To treat the case of free particles, Feynman again introduces new variables, this
time not by rotating the original variables but by rescaling them by the mass of
the particle. With this redefinition, Feynman arrives at a concise form of the Dirac
equation in which the mass parameter no longer appears explicit (number 5):

_7‘%, 4.9)

_TMWR’ (4.10)

R _ iy, @.11)
da

d

% — ivg. (4.12)

Feynman’s definition of the new variables is not consistent with this form of the
Dirac equation. Instead of ﬁ = a and ﬁ = b, he should have defined % =a

and & = b. This then leads to the correct relationship 2v/ab = v/t> — x2 1, which
Feynman uses when replacing the argument of the Bessel function Jy (number 6).
However, this rescaling is not essential in the following considerations.

Feynman understands the differential equation to be a limiting case of an equa-
tion of differences on a space-time lattice with spacing ¢ (cf. Fig. 4.3). For example,
(4.12) would explicitly read:

. VYr(a,b) —yr(a,b—c¢)
m

li =iYyr(a,b—e¢), (4.13)
e—0 &
which can be transformed into
VYr(a,b) =vyr(a,b—¢)+icpyra,b—e). (4.14)

This equation expresses the fact that the component, ¥/, describing the electron
moving to the left on the lattice point (a, b) is determined by the two components of
the wave function at the neighbouring point (a, b — ¢): it equals the sum of the “left”
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[ ]
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Fig. 4.3 A space-time lattice with coordinate system (a, b) and lattice spacing €. The solid and
dotted lines as well as the dashes show one path with one turn (at (a, b — 2¢)) and two paths with
three turns. (The path of dashes turns immediately at the point of origin)

component and the “right” component times ie. The contribution of the “right”
component to the “left” component at the next lattice point represents a change
in direction of the electron. Thus, in order to describe the quivering electron by a
wave function that would obey the one-dimensional Dirac equation, each change in
direction has to be described by a factor i¢.

4.1.3 Path Counting

Dirac’s differential equations in Feynman’s one-dimensional version provide Feyn-
man with the relationship of the wave function at a certain lattice point to the wave
function at a neighbouring point. This result is similar to the observations that Feyn-
man makes in his thesis and in RMP48 that the wave function at a certain space-time
point is determined by the wave function one instant earlier and by the classical
action. In both texts and in Feynman’s notes on the Dirac equation, the relationship
can then be applied successively until one arrives at the relationship between the
wave function at finitely separated coordinates, instead of at only infinitesimally
close coordinates (cf. Section 3.2.1).

As an example, Feynman considers the case where only the “right” component
of the initial wave function at the origin of the lattice differs from zero. What then is
the “left” component of the wave function at lattice point P ?: “starting right from O,
how many get L at P?” Feynman is about to solve this problem by “path counting”
(see Fig. 4.2, number 7).

Feynman graphically represents the situation in the diagram (see also left of
number 7) reproduced in Fig. 4.4. The point, P, and the origin, 0, are separated
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Fig. 4.4 Detail of Fig. 4.2,
adapted by the author (A. W.)

by M lattice spacings, €, in the b coordinate and N lattice spacings in the a coor-
dinate. M + N appropriate iterations of the difference formulae express 1 (a, b)
as the sum of contributions from lattice points that are M + N lattice spacings
away.

Some of the contributions come from the wave function at the origin; this is the
contribution which we want to determine. The successive application of the differ-
ence formulae defines several paths leading from P to the origin. The difference
equation also prescribes that each corner of a particular path is weighted by a factor
ig, as discussed in Section 4.1.2. The problem of determining the contribution from
the wave function at the origin then comes down to working out how many of the
paths have a particular number of corners.

That the “path counting” procedure is an iterative procedure akin to the “induc-
tive” method in Feynman’s thesis becomes more evident when a very coarse lattice
is considered. Let us suppose that the lattice is so coarse that the point, P, and the
origin are only separated by two lattice spacings in each direction. In that case, P
has the coordinates (a, b) and the origin is (¢ — 2¢, b — 2¢) (see Fig. 4.3). Four
appropriate iterations of the difference formulae express ¥ (a, b) as the sum of
contributions from lattice points that are connected to P by zigzag paths of a length
of four lattice spacings. Two of these contributions come from the particular point
(a —2e,b —2e):

Vi(a,b) =vyr(a,b—¢)+ieyra,b—e¢)
=vYr(a,b—2¢)+ieyr(a,b—2e)
+ie[Yr(a—e,b—e)+ieyr(a—e,b—e¢)]

=~--+i£1/fR(a—28,b—28)+-~-+2(is)31ﬁR(a—2£,b—28)+...

The two contributions come from one path with one corner, hence a factor ie, and
from two paths with three corners, hence a factor 2(i 8)3.
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Returning to the arbitrary fine lattice, which Feynman considers in his notes,
there is one path that starts on the “right” of the diagram and ends on the “left” of
the diagram (from O to P) with one corner, since there is only one point between 0
and P that is connected to O by a line that goes up to the right and to P by a line
that goes up to the left. This gives a contribution ie to ¥z (P) (see equation below
number 7 in Fig. 4.2).

No path (that starts on the “right” of the diagram and ends on the “left” from 0
to P) with an even number of corners exists, since, after an even number of changes
in direction, the particle beginning on the right would end again on the right, which
gives no contribution to the “left” component of the wave function.

There are (N — 1)(M — 1) paths with three corners, since there are (N — 1)
possible lattice points for the first corner and (M — 1) for the third, the second
corner being determined by the first and third corners.* In the continuum limit, that
is, in the limit of the vanishing lattice spacing lim,_.9, M¢ and N¢ tend to b and
a, respectively. In that limit, (N — 1)(M — 1) can be replaced with M N, since M
and N have to be much larger than 1. The contributions from the paths with three
corners are thus (i8)3MN.

By making similar combinatorial considerations, Feynman finds that there are
Ag—!z I;—,z paths with five corners. Accordingly, these give the contribution (i)’ 1\2/1_‘2 ]g—,z
Using the same construction, Feynman obtains ¥ g (P) as the sum of contributions
from paths with an even number of corners:

N? N3 M?
UR(P) = (ie)>N + (ie)*—M + (ie)°—— + ... (4.15)
2! 31 2!

Since Feynman is determining the relative contribution of ¥z (0) to ¥1 (P), he
is, in effect, determining 1 (P)/v¥g(0), or its equivalent ¥ g(0) = 1. The above
counting procedure does, therefore, determine a power series in M and N, which
does not contain ¥z (0). Feynman takes the factor ie common to all terms out of
brackets and uses Me = b and Ne = a, which are valid in the continuum limit.
Feynman then recognizes the series as the definition of the zeroth-order Bessel

function, Jy (2\/ ab), or Jy <\/ 12 —x2. M) in the original space and time variables
(w is the mass of the particle).

Using the same method of “path counting”, Feynman finds that, for the amplitude
to arrive at P moving to the right,

Vr(P) = —8@]1 (2«/%) +e8(b). (4.16)

The last term, £5(b), “comes formally from [the] derivative of Jy at b = 0, phys-

ically from no turn path=.""" (number 8). If the derivation is not performed, we
obtain (P = (a, b)):

4 Cf. Jacobson and Schulman (1984), Figure 1.
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9 9
Vr(P) = o= Jo (2\/ab> = i VL(P). (4.17)
Therefore,
9
% — YR (4.18)

“is automatic” (Fig. 4.2, number 9). That is, one component (4.12) of the Dirac
equation is satisfied. The only thing that still needs to be checked is the other com-
ponent of the Dirac equation (4.11), that is, one needs to determine %, which also
comes out “as required”: iy, (Fig. 4.2, number 10).

The Yg(a, b) and ¥y (a, b) thus defined are particular solutions to the Dirac
equation characterized by their initial values, that is, their values on those lattice
points that are the same number of lattice steps away from P as the origin. These
are the points on the same horizontal row in the lattice that can be reached by a
zigzagging or a straight line going left into P = (a, b). In Fig. 4.3, for instance, the
origin is (a — 2¢, b — 2¢), that is, it is four lattice steps away from P. Therefore,
to give an initial condition for the wave function in this case one needs to specify
the value of Y7 and yg at points (@ — 3¢,b — ¢), (a — 2¢, b — 2¢) (the origin),
(a —&,b—3¢)and (a, b — 4¢).

The boundary condition corresponding to “starting right from zero” is that vy, is
zero on any of the initial lattice points and ¥ is 1 at the origin and zero on any other
initial lattice point. Such an initial wave function is the discrete version of a wave
function describing a point source at the origin. Thus, the solution to Dirac’s equa-
tion to this particular initial condition is, in the continuum limit, “Green’s function”
(Fig. 4.2, number 11, and Fig. 4.6, number 1) associated with Dirac’s differential
equation.

If ¥ (P) and Y r(P) are Green’s functions of Dirac’s equation, then the wave
function at P with more general initial conditions is given by the integral over the
initial wave function weighted by the Green’s function. The first example Feynman
gives is (number 12):

d
vt =i [0 (V=07 = G =) veen S @19)

Here p was set to 1 for the sake of simplicity and ¥/;, was assumed to be zero for any
initial point, while “the factor ¢ just becomes de on integrating Green’s function”
(number 11).

For arbitrary initial conditions, {7 (P) and ¥ g (P) are given by (see Fig. 4.5)
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Fig. 4.5 The general solution to Dirac’s equation in one dimension, which is obtained by “path
counting”, ca. 1946 (Dirac Equation b, folio 11, reprinted with permission of Melanie Jackson
Agency, LLC)

YL(x2, ) = / Yr(xr, 1) dxy | 8(t — 1 +x2 — x1) — %h (V)
+i/1ﬁR(x1l1)dx110 (V)
wR(xz,rz)=/1/fR(x1,n)dx1 5(r— 1 —X2+X1)—t2_t12+%11 (V)

+i/1/fL(X1t1)Jo () dx1,

where /= Vit —11)2 — (xa — x1)2.

4.1.4 Explaining the Wave Function’s Time Evolution

As in his thesis and in RMP48, Feynman thus succeeds in defining the wave func-
tion at a certain coordinate by the wave function at an earlier coordinate as well as
defining a quantity, characteristic of the physical situation at hand, that determines
the evolution of the wave function from one coordinate to the other. In both texts,
the latter quantity was the integral of the exponential of the classical action that
characterizes the physical system along each possible path.

In RMP48, Feynman had also tried to obtain an appropriate action function for
the (relativistic) Dirac equation by modifying the action functions corresponding
to the Pauli and Klein—Gordon equations. Although the action thus obtained was
unjustified, it yielded, however, the Dirac equation. The construction of the action
was in that sense ad hoc and did not satisfy Feynman, who considered it to be
“purely formal” (see Section 3.5).

Now that Feynman has obtained the quantity that determines the evolution of the
wave function in a more satisfactory manner, he can interpret Dirac’s differential
equation in one dimension as the description of the accepted model of the zigzag-
ging electron. The contribution of each path is given by its number of corners (see
Fig. 4.6, number 2):
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Fig. 4.6 Summary of Feynman’s results for the Dirac equation in one spatial dimension, ca. 1946
(Harmonic Oscillators b, folio 3, reprinted with permission of Melanie Jackson Agency, LLC)

Prob = Squ. of Sum of contrib. each path

Paths zigzag at light velocity.

Contribute i& factor for each reversal

This new way of describing the zigzagging electron by i¢ factors for each change
in direction could be used to define the action in this case. Since the exponential of
the action, e'S, involved in Feynman’s alternative formulation of quantum mechan-

ics, is a complex number of constant absolute value (a unit in fact), it can be read as
describing oscillations (number 3):

Most important paths have /[ ?] left turns & right turns. Or turns occur about
every unit (compton wave length) length
.. oscillations at frequency about unit

eS8 = < proper time.
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Through the model of an electron zigzagging through an infinitesimally fine
space-time lattice, Feynman can now explain the time evolution of a relativistic
electron, though only in one dimension. And, unlike in the final section of RMP48,
Feynman can now justify the action function, since he has derived it from a descrip-
tion of the zigzagging electron.

Also new is the fact that Feynman explicitly refers to the quantity determining
the evolution of the wave function as “Green’s function” (see Fig. 4.2, number 11;
cf. Fig. 4.6, number 1). The use of this new term is evidence of the exposure
Feynman had to this type of problem, for instance while working on neutron dif-
fusion during the Second World War.?

4.2 Welton’s Input: Three Dimensions?

After having successfully treated the one-dimensional Dirac equation, the next step
that Feynman was to consider was the Dirac equation describing real electrons, that
is, electrons moving not just in one spatial dimension but in three spatial dimensions.
Feynman must have communicated his findings concerning the one-dimensional
case to his student friend Theodore Welton, who writes, in a letter to Feynman, that
he has taken up Feynman’s line of thought:

I was thinking a little about this attempt of yours to understand relativistic Quant. Mech.®

Welton had succeeded in treating the Klein—Gordon equation in three dimensions
in a way very similar to Feynman’s treatment of the one-dimensional Dirac equation
(see Fig. 4.7):

Suppose you make this rule. Given a wave-function ¥ (x/, ¢’) at some time ¢’ for all values
of x'. We obtain ¥ (x, ) at a later time from the recipe that we consider all paths from (x', ')
to (x, t) along which propagation is at light-velocity at all points. We do not introduce any
phase shift at a change in direction, but keep track only of the number of paths and their
lengths. The problem is clearly best formulated as an integral equation. We equate ¥ (X, )
to an alternative expression obtained for it by following back along every possible light path
to the last ‘scattering’:

2
W(x, 1) = /dx’ /dt’—K(S(sz)lI/(x’,t’)
4

K is a length to make the two sides have the same dimensions. If it is desired to consider
only forward going light paths, 8 (s?) can be replaced by a function with twice the singularity
on half the light cone & none on the other half. The above equation is obviously just the
Klein—Gordon equation:

1%,
~ a3z K v.

By modifying the treatment of the Klein—Gordon equation, Welton is investi-
gating a possible generalization of Feynman’s formulation of the Dirac equation to
three dimensions (see Fig. 4.8):

vZy

5 See, e. g., Galison (1998).
% Dirac Equation a, folio 27.
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Fig. 4.7 Third to last page of the letter that Theodore Welton wrote to Richard Feynman between

the end of 1946 and the beginning of 1947 (Dirac Equation a, folio 28, reprinted with permission
of Melanie Jackson Agency, LLC)

Now according to what you were telling me, the Dirac equation is to be obtained by intro-
ducing phase shifts upon each “deflection” of a “light path”: I believe you mentioned a
factor i for each reversal of direction. I would like to propose a continuous scheme by

taking a phase shift something like ¢7 where 6 is the “deflection angle” of the light,
so that no deflection gives a factor 1. I can’t give the complete formalism here, but we

need a generalization of the 8(s2) function which will contain an angular dependence
somehow.
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Fig. 4.8 Penultimate page of the letter that Theodore Welton wrote to Richard Feynman between

the end of 1946 and the beginning of 1947 (Dirac Equation a, folio 29, reprinted with permission
of Melanie Jackson Agency, LLC)

Welton sees that Feynman’s alternative formulation basically consists of pro-
viding an integral equation rather than a differential equation. It is by using this
equation that one can determine the wave function at one coordinate by an integral
over the quantity characterizing the paths, which takes the role of a Green’s function,
and the wave function at another (earlier) coordinate. Welton, therefore, looks for
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the integral form of the Dirac equation. Although Welton does not succeed in solv-
ing the problem, which is significantly more complex than the Klein—Gordon case,
completely, he does arrive at a formal expression, the evaluation of which would
yield the desired Green’s function (see Figs. 4.8 and 4.9):

The integral equation that must result can be written from the Dirac equation:
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Fig. 4.9 Last page of the letter that Theodore Welton wrote to Richard Feynman between the
end of 1946 and the beginning of 1947 (Dirac Equation a, folio 30, reprinted with permission of
Melanie Jackson Agency, LLC)
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iix = —ihca -V + ,Bmc2)(

l—}—a-VX = —ikBy
c

Take x = ( ;) where x1 + x» are each two component spinors. o = (U 2
B = ((1) 0 ), where each element in ¢ & 8 is a2 x 2 matrix.

% +0-Vyx=—ikx
% +o-Vxi=ixkx
Write:
X1+ x2 =

X1 — X2 =12

This gives:

1.
;1/[1 +o -V = —ikyn
1.
Zl/fz —0 -V = —ikyy

It is easily shown that these are equivalent to:

Yi(x, 1) = —i—K/dx’/dt’ (li —o- v) 5(s2) ¥ (X, 1)
47 c 0t

Yok 1) = — X / dx’ / dr (13 to. v) sy (K. 1)
47 c 0t

Once Welton has obtained the integral form of Dirac’s equation, he can go on to
interpret it in the same way that he interpreted the integral form of the Klein—Gordon
equation (Fig. 4.9):

It is then my suspicion that these integral equations give an analogous interpretation to the
Dirac eqn. as I gave for the Klein—-Gordon equation.

Welton ends his letter by suggesting a method of interpreting the spinors | and
Y, which is reminiscent of Feynman’s result (see Section 4.1.3) that, from a parti-
cle starting on the “right”, the “left” component at a later coordinate only receives
contributions from paths with an odd number of turns, and the “right” component
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only receives contributions from paths with an even number of turns. The proposed
generalization, however, still needs to be worked out more precisely (Fig. 4.9):

In the above, ¥ is something like the contribution from an even no. of deflections & ¥»
from an odd no. or something like that. Because of the spinor character of ¥; & ¥», they
have built into them a simple angular dependence which should suffice to fit in with your
idea. Boy, is this vague!

4.3 The Need for an Appropriate Symbol System

Feynman responds to Welton’s contribution in a letter by announcing a private
research programme:

I am engaged now in a general program of study—I want to understand (not just in a math-
ematical way) the ideas in all branches of theor. physics. As you know I am now struggling
with the Dirac Eqn.”

Despite their vagueness, Feynman recognizes that Welton’s ideas might very well
“fit in” with his own: “I was especially impressed by your intuition in guessing
just what the s would mean (I mean the odd & even deflections, etc.).”8 Indeed,
Welton’s ideas seem to be so similar that Feynman almost appears anxious about
whom should receive the credit for them:

The ideas which you outlined were, as you say, vague, but otherwise they are exactly right
in the sense that the way I now see the Dirac Eqn. is just a more precise formulation of your
(& of course my earlier) ideas.”

In his reply to Welton, Feynman takes up their discussion of how, in alternative
ways, to treat the Dirac equation. In particular Feynman elaborates on the problem of
generalizing the promising results found in the one-dimensional case to three spatial
dimensions and one time dimension. Welton’s line of attack (see Section 4.2) is to
adapt the three-dimensional result he obtains for the Klein—Gordon equation to the
Dirac equation. Feynman, however, sticks to Dirac’s equation and tries to modify
the model of the quivering electron and the quantitative description of the electron’s
change in direction. The fact that Feynman’s and Welton’s preliminary results and
ideas match might be promising, but Feynman recognizes that the cases where more
than one spatial dimension are involved will turn out to be particularly complex:

There are several ways I can explain it, all leading to the same answer but all not equally

precise. The one with the most shaky physical ideas at present, I think is closest to the
truth & I would like to explain it to you because (1) you may get nice ideas (2) I will learn

7 Dirac Equation a (1946/47a, folio 1), (Feynman’s page numbering: 1), see Fig. 4.10; cf.
Schweber (1994a, p. 406). Feynman’s letter was written on a “Monday February 10”. Around
the time in question, February 10 was a Monday in 1941, 1947 and 1958. The content of the letter
makes 1947 the most plausible date. This is also the date that Schweber assumes to be correct.

8 Dirac Equation a (1946/47a, folio 11 (page 10)), see Fig. 4.15.

9 Dirac Equation a (folio 1 (page 1)).
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Fig. 4.10 First page of Feynman’s response to Welton’s letter, “Monday, Feb. 10. (1947)” Dirac
Equation a (1946/47a, folio 1, reprinted with permission of Melanie Jackson Agency, LLC)

something by formulating it clearly. In this particular “model” paths do not necessarily go
at light velocity—altho I may change that later as you shall see.

The idea which I got too in 2 dimension, of loading each turn thru 6 by /2 does not
work well in 3 dimensions for the angles 6 are in different places [ ...]"°

19 Dirac Equation a (folio 1 (page 1)).
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4.3.1 Two Spatial Dimensions

Feynman uses diagrams to find the relevant aspects of the situation in two spatial
dimensions. He introduces auxiliary elements (arrows and a sphere) in his geomet-
rical descriptions to indicate the characteristic quantities describing the system. He
thus tries to determine a more appropriate factor than ¢'/2 to describe the particular-
ities of the three-dimensional case: two spatial dimensions and one time dimension:

What is needed is to keep track of 3 dimensional rotations, and to use a factor instead of
/2 which is capable of keeping track of a complete 3-dimensional rotation. To be more
precise, one model I had said this: go on any path at light velocity but consider only paths
that start from A & go to B entering B in the same direction as they left A. Then the factor
is €%/ where a is the solid angle enclosed by the tangent (velocity) vector in its gyrations
along the path. Now we at once ask what information must be kept by the time we reach
C. At C the area (solid angle) enclosed by the vector is not closed so we have simply to
keep track, sort of, of where we are on the sphere. But slightly more than that. When we
get back to A (at B) we have [an] enclosed area & that is what we have to keep track of.
One geometrical way we can keep track is to put up a small arrowhead at A & move it
parallel to itself as you go along the trajectory (differential parallelism). When it gets to B
([?] on the sphere surface [?]) it will have rotated, relative to its original position [crossed
out text replaced by “its original position”: the line drawn by the end of the large[?] velocity
vector (the indicatrix[?], lets [sic] call it)] by an angle 27 — a. Thus at C we need keep only
the axis of C and a direction for our little vector. This we can do by choosing a standard
direction arbitrarily at each pt of the sphere and saying that at C we have to rotate around
C by a given angle to define the angle of the little vector with the standard direction. Thus
we have at the point C in the path to keep track of a roration in three spatial (around the
axis of the tangent to the path). Thus the “wave function” (defined to be that quantity or
quantities which if known at C from all paths reaching C would permit calculation [of]
the same quantities at the next instant of time) must be a symbol representing a rotation in
space—which can be added & which, if the rotation is “a” around some particular axis (say
the z axis) must be represented by ¢'¢/2.!1

For the case of two spatial dimensions, Feynman finds a satisfying description
(and, incidentally, appeases Welton):

I don’t expect you to understand the above argument because it was a long time for me to
figure it out too. However, be that as it may, when I studied quaternions which I knew were
designed to represent rotations I realized that they were the mathematical tool in which to
represent my thoughts. To remind you: a quaternion ¢ is [ ...]'?

4.3.2 Three Spatial Dimensions

In contrast to the case of two spatial dimensions, when it comes to three spatial
dimensions, ordinary quaternions are an insufficient tool. Feynman, therefore, has
to find another way “to represent [his] thoughts”. Complex quaternions are one

Y Dirac Equation a, folio 2 (page 2), see Fig. 4.11, emph. in the original.
12 Dirac Equation a, folio 3 (page 3), see Fig. 4.12.
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Fig. 4.11 Second page of Feynman’s response to Welton’s letter (February 1947): The section of
Feynman’s letter to Welton in which he expounds the generalization to two spatial dimensions of
his treatment of the Dirac equation in one spatial dimension (Dirac Equation a, folio 2, reprinted
with permission of Melanie Jackson Agency, LLC)

possibility. However, he could use them to treat the case of four equivalent dimen-
sions. But according to the theory of relativity, the time dimension is singled out by
a negative sign of its contribution to the metric of space-time. Therefore, complex
quaternions do not quite serve Feynman’s objective. He again sympathizes with
Welton and then describes the situation in which he finds himself:
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Fig. 4.12 Third page of Feynman’s letter to Welton, February 1947 (Dirac Equation a, folio 3,
reprinted with permission of Melanie Jackson Agency, LLC)

Now, if you are still staggering but on your feet I will tell you more which is even harder
to understand. [ ...] We desire a symbolism, which by analogy works in 4 (3+1) space like
the quaternions do in 3. I shall show that this symbolism is furnished by quaternions using
complex numbers for components! I have trouble visualizing 3+1 space, but I have become
an expert at visualizing (really!) 4 dimensions with all dimensions equivalent. ds? = dx2 +
dy? +dz* + [d*].13

13 Dirac Equation a, folios 5 and 6 (pages 5 and 6) see Figs. 4.13 and 4.14.
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Fig. 4.13 Fifth page of Feynman’s letter to Welton, February 1947 (Dirac Equation a, folio 5,
reprinted with permission of Melanie Jackson Agency, LLC)

By “visualizing” Feynman does not mean here the ability to produce a mental
image of an abstract object. Rather, Feynman needs a “mathematical tool in which to
represent [his] thoughts”. He has to construct an appropriate symbol system through
which certain propositions can be expressed, and by means of which, like with an

instrument as it were, other symbols corresponding to entailed propositions can be
deduced.



88 4 The Dirac Equation: Feynman’s Great Struggle

WBHY Al WS o B il 7 s cthains avapsshidins, sulicl
.%/{rw/é//.&m»éﬁ {;;;44//45/‘4%@2;«@' ;/4, Pk /Mé/ I3
/ B . . /’“ - z : : &)
Sl b o e o

Zegrt Aot e y

Pz MW&% 3/ A/M’ ,a,/’;////w Loonsi s

4./{ ( ‘ //!&J(fy S ewitiatrvo unll all Leneasctss W Ly relede
W%J/W/% P %MM Py /ZZAJJ‘,{-{/ 2 F',uw./_.,, M)&J

/u/‘,é.."‘ ‘MMMm;@’éﬂd/M,&ﬁ;/sz "ﬂw/mw/ﬂomzm@
MM@W%A/ wre 2 forfrud. olinicliviss Aty & i, wm,)

Mowt %fmwf/ o sy fluck (17 fr70,) Harf 4 zﬁmﬁ@*ﬁéﬂ
(fw/»//fﬁ/; W»A/ﬂw/w%,?%/m’a;; J%/Lw//péw, Fht
(M'ym o ﬁ,twm//?xga// At 't er 1 Lot h d—;mé-wd
— . s ;E ,//.',(/dm ﬁ {4 ( ;.5
%Aﬂﬁfz w”&ffi bl L g e 7

wwM y ,u,-/{mu //éf/énm?m@éy‘

; %Aﬁ%%/&/ /tf}ma)) a/,-/x« d,%-«
bt o gl Gt s i
i f s sty (Bl <l
Z‘:Wb;;;w@ v 7 M"‘ o1 a ﬁw mﬂ;?{/;/:m/ Fr %] mmu«?fnmd D
it SNy 7 arir [l tixy plund)] i s bl S Sest

_/' . A e dt—m
A L4 call Lbient Wf.::{ /1(:::4 » %‘W/A“a' B -

/zﬁw ‘”"%Mé’//’;‘%"ﬁ‘m:

~ v ] L "L‘-‘O‘
: / 7@/ ., :' =) 2fe Auf suel 7L
9j'£z;z’ I,,I.Z}" I?x, I'W; 'I"';I"V 3 e

Yo $25- i fw “(.(!IMI I,, =Lax:-d,: Ly
it ,&wum/l%u i /5 rvLre 2x  "<re
et m’ ¢y / AA,/““A‘N“/;/,H wls ‘:.ﬁ/}:mf

T .

(W can < I,,:M’/I,.’sd/l'y:j)_‘ 7 é
”%9/@“/ ' F7° on MIJMW/{M-MZ}YI ; o
Vetbciin rifprscsnndoniy @ s eld of S Xy plat i1 @ T v e 2,

66/5,,&;4%4411 T //'M/I/M ,Jr)’/dén{ A.u/lo‘ ~ .:.ut’:v“//'l‘-‘):/cé«:

Fig. 4.14 Sixth page of Feynman'’s letter to Welton, February 1947 (Dirac Equation a, folio 6,
reprinted with permission of Melanie Jackson Agency, LLC)

There follows a long, detailed and complicated explication of his ideas about
an alternative formulation of the “four-dimensional” and the “3 + 1”-dimensional
Dirac equations. Feynman partially succeeds in achieving his goal of constructing an
appropriate symbol system out of the complex quaternions. He understands which
relevant aspects of the phenomena some of Dirac’s symbols “keep track of” and
compares these aspects with those of his alternative symbol system:
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Fig. 4.15 Tenth page of Feynman’s letter to Welton, February 1947 (Dirac Equation a, folio 11,
reprinted with permission of Melanie Jackson Agency, LLC)

For example, I’'m beginning to get a [m?]ild “understanding” of the place of Dirac[’]s «
matrices which were invented by him “to produce an equation of first order in the differential
coefficient in the time,” but by me in order “to keep track of the result of a succession of
changes of coordinate system.”!*

14 Dirac Equation a, folios 12 and 14 (pages 11 and 12), see Figs. 4.16 and 4.17.
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Fig. 4.16 Eleventh page of Feynman'’s letter to Welton, February 1947 (Dirac Equation a, folio 12,
reprinted with permission of Melanie Jackson Agency, LLC)

On the whole, however, Feynman is not satisfied with his results. Although the
mathematical relations do indeed come out correctly, he cannot physically interpret
the relationships. To proceed towards his goal of fully “understanding” the Dirac
equation, Feynman plans to re-use his “reformulation” panacea:
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Fig. 4.17 Twelfth page of Feynman’s letter to Welton, February 1947 (Dirac Equation a, folio 14,

reprinted with permission of Melanie Jackson Agency, LLC)

Still my stuff sounds mathematical—& insofar as it is, I still don’t understand it—but I
will try soon to reformulate in terms of seeing how things look to someone riding with the
electron.!d

15 Dirac Equation a, folio 14 (page 12).
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4.4 Feynman’s Programme

In the remainder of this section and in Chapter 5 we will see that the first Feynman
diagrams (i. e. before Dyson’s intervention that I will discuss in Chapter 6) are a
product of Feynman’s efforts, announced in his reply to Welton, to understand the
Dirac equation “not just in a mathematical way”.

Feynman was not searching for new mathematical methods or for a new equation
to describe the behaviour of electrons. Few physicists doubted that the Dirac equa-
tion correctly described the behaviour of a relativistic electron, including its spin.
Nor was the Dirac equation more difficult to solve than, for example, Schrédinger’s
equation. Of what then did Feynman’s struggle consist? What was he trying to find?

In fact, after the explication of his ideas about an alternative formulation of the
Dirac equation in different numbers of dimensions, Feynman has given a clearer
indication of his goals:

Now I would like to add a little hooey [nonsense]. The reason I am so slow is not that I
do not know what the correct equations, in integral or differential form are (Dirac tells me)
but rather that I would like to understand these equations from as many points of view as
possible. So I doitin 1, 2, 3, & 4 dimensions with different assumptions etc.10

Feynman’s aim is to try and describe Dirac’s well-known theory in alternative ways,
for he does not believe that a physical theory is completely specified by its equations.
The equations have to be completed by “pictures”, and several pictures are possible
for the same equations:

I find physics is a wonderful subject. We know so very much and then subsume it into
so very few equations that we can say we know very little (except these equations—Eg.
Dirac, Maxwell, Schrod[inger]). Then we think we have the physical picture with which
to interpret the equations. But there are so very few equations that I have found that many
physical pictures can give the same equations. So I am spending my time in study—in
seeing how many new viewpoints I can take of what is known.!”

The search for different viewpoints is not just an intellectual “pleasure”!®; it also

has a precise goal:

Of course, the hope is that a slight modification of one of the pictures will straighten out
some of the present troubles. !

Feynman’s objective is to be able to interpret the known equations in such a way
that it becomes clear which assumption in the theory is causing the inconsistent
conclusions in the troublesome cases. Once the culprit of the contradiction (between
the theory and more general physical principles or uncontested experimental data)
has been identified, it should then be possible to resolve the problem by “modifying”
the problematic assumption.

16 Dirac Equation a, folio 11 (page 10).
17 Dirac Equation a, folio 12 (page 11).
18 RMP48, p. 367.

19 Dirac Equation a, folio 12 (page 11).
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4.5 The Impossible “Picture”

So far so good, would it not be for the fact that this whole enterprise of devising
“pictures” of quantum mechanical phenomena clashes with the education in quan-
tum mechanics that Feynman had received. Like many other physicists of the period,
Feynman had learned much about quantum mechanics from the textbook written by
Dirac.?? Feynman recalls using Dirac’s book when he was an undergraduate, and
describes the “challenge” posed by its very last sentence: “Some essentially new
physical ideas are here needed.”?! Welton?? also remembers that Feynman consulted
Dirac’s book while he was an undergraduate.

Dirac maintained that physicists had to be satisfied with the theory of quantum
mechanics, even if it did not provide a full understanding of the mechanisms at work
behind the phenomena described by the theory’s equations:

The methods of progress in theoretical physics have undergone a vast change during the
present century. The classical tradition has been to consider the world to be an association
of observable objects (particles, fluids, fields, etc.) moving about according to definite laws
of force, so that one could form a mental picture in space and time of the whole scheme.
This led to a physics whose aim was to make assumptions about the mechanism and forces
connecting these observable objects, to account for their behaviour in the simplest possible
way. It has become increasingly evident in recent times, however, that nature works on a
different plan. Her fundamental laws do not govern the world as it appears in our mental
picture in any very direct way, but instead they control a substratum of which we cannot
form a mental picture without introducing irrelevancies. (Dirac 1935, p. vi)

Feynman most probably took another closer look at Dirac’s textbook around the
time that he wrote to Welton (that is, in 1947); after all, it was Dirac’s equation
with which Feynman was struggling. In addition, Feynman is very likely to have
consulted Dirac’s textbook when he wrote a critique on a paper presented by Dirac at
the Princeton Bicentennial Conference held in September 1946.2% Feynman was not
at all impressed with the paper, because, according to him, it did not address current
issues in electrodynamics. In particular, he did not appreciate the emphasis Dirac
placed on the Hamiltonian—the same Dirac who had inspired the young Feynman
to dispense with a Hamiltonian in his PhD work and to employ instead the Lagrange
function using the action principle.>*

Perhaps because Dirac’s supposedly shallow paper annoyed him, Feynman was
only too happy to ignore all of Dirac’s caveats. The following passage, again from
his letter to Welton, is probably a direct reaction to Dirac’s claim, in the preface
quoted above, that it is impossible to make a “mental picture in space and time” of
quantum phenomena:

20 Dirac (1935).

21 Dirac (1935, p. 297); quoted in Feynman (1966, p. 699).
22 Welton (2007, p. 46).

23 Dirac (1946).

24 Weiner (1966, p. 15), see also Schweber (1994, p. 405).
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I dislike all this talk of there not being a picture possible but we only need know how
to go about calculating any phenomena. True we only need calculate. But a picture is
certainly a convenience & one is not doing anything wrong in making one up. It may
prove to be entirely haywire while the equations are nearly right—yet for a while it
helps. The power of mathematics is terrifying—and too many physicists finding they
have correct equations without understanding them have been so terrified they give up
trying to understand them. I want to go back & try to understand them. What do I
mean by understanding? Nothing deep or accurate—just to be able to see some of the
qualitaztive consequences of the equations by some method other than solving them in
detail.

The “terrifying” power of mathematics does not intimidate Feynman, though.
He is determined to find “pictures” that help us “understand” the phenomena, rather
than just correctly describe them using mathematical equations. However powerful
a tool mathematics might be for deriving unanticipated mathematical expressions
from other mathematical expressions, it will not yield physical claims unless the
mathematical expressions are given a physical interpretation. Feynman’s emphasis
on the need to find a physical interpretation is also probably a response to Dirac’s
preface, in which Dirac states:

Mathematics is the tool specially suited for dealing with abstract concepts of any kind and
there is no limit to its power in this field. (Dirac 1935a, p. vii)

Feynman would not deny the usefulness of mathematics. However, this kind of
power is simply not appropriate when it comes to trying to “straighten out” the
conceptual problems of a physical theory.

The excerpt from Feynman’s letter quoted above is perhaps slightly ambiguous
on the subject of the importance of pictures and mathematical formulae. By using
terms such as “convenience” and clauses such as “yet for a while it helps”, Feyn-
man is hedging his claims about the necessity of pictures and does not attach too
much importance to them. His agenda, however, clearly shows the importance he
attributes to the quest for a physical interpretation of the equations. In Welton’s letter
to Feynman, Welton describes the progress he is making in devising a theory of elec-
trons and protons by means of the so-called second quantization (see Section 4.2).
Feynman kindly feigns interest, but he does not seem genuinely keen to study a
method that, by mathematical manipulations, gives correct results yet does not pro-
vide any physical interpretation of what the mathematical equations are supposed to
describe.

I will work on your 2nd quantization, when I get time. I really believe it is correct—but
is another example of the terrifying power of math. to make us say things which we don’t
understand but are true.?

25 Dirac Equation a, folio 12 (page 11), emph. in the original.
26 Dirac Equation a, folio 16 (page 13, last page) see Fig. 4.18.
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Fig. 4.18 Thirteenth and last page of Feynman’s letter to Welton, February 1947 (Dirac Equa-
tion a, folio 16, reprinted with permission of Melanie Jackson Agency, LLC)

4.6 Positrons: A Threat to Path Counting

In Section 4.3.2 we saw that the generalization to three spatial dimensions of
the description of the quivering electron did not satisfy Feynman. The treatment
remained too “mathematical” and did not help him get any closer to his quest to
“understand” the Dirac equation. As far as I can tell from the available source mate-
rial, Feynman abandons his attempts at generalizing to three spatial dimensions after
his correspondence with Welton ends.

Yet Feynman is preoccupied enough with the one-dimensional case. Up to now
he has completely neglected one of the Dirac equation’s most conspicuous features:
it allows for solutions that apparently describe states with negative energy. By the
time Feynman had begun to tackle the Dirac equation, the interpretation of these
states as “holes” in the “sea” of electrons was quite firmly established, these “holes”
describing positrons.?’ Feynman recalls that this established interpretation always
troubled him and that he preferred describing positrons as electrons going back-
wards in time rather than as “holes”:

But one step of importance that was physically new was involved with the negative energy
sea of Dirac, which caused me so much logical difficulty. I got so confused that I remem-
bered Wheeler’s old idea about the positron being, maybe, the electron going backward in
time.?8

27 See, e. g., Dirac (1935, p. 270ff).

28 Feynman (1966, p. 706) (middle column), see also p. 702 (middle and right column), p. 705
(right column); see also Schweber (1994, pp. 387/388) and Weiner (1966a, p. 31/32).
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Feynman usually attributes this state of confusion to his work on the article “The
theory of positrons” (ThPos), but one can certainly date it to the earlier stages of his
struggle, when he already wrote of trying to incorporate “negative times” into his
work (see Fig. 4.19).

4.6.1 Closed Loops

As far as the model of the zigzagging electron is concerned, the consequence of the
electron possibly going backwards in time is that many more, in fact infinitely more,
paths can connect two points on the lattice. This is because the paths can now have
the shape of loops by which the particle will be able to return to a certain point.
An infinite number of paths might turn out to be disastrous for Feynman’s “path
counting” solution. But it is not. Feynman can show that “any completely closed
loop” will not contribute to the wave function, since every loop is part of two paths,
one that goes “around [to the] left” and one that goes “around [to the] right” and
that these two contributions cancel each other out.

Let us see how Feynman proceeds (see Fig. 4.19). He starts with the observation
that, to solve the Dirac equation, corner turns, after which the path goes backwards
in time, have to contribute a factor —i ¢ instead of the i & for normal paths (number 1):

“Each turn to + time gives i&
- —ie.

”

Feynman draws the simplest of all loops, that is, one that goes “around [to the]
left” (number 2, reproduced in Fig. 4.20), and determines that it has first to make
a turn to + time, then two turns to — time and again a turn to + time, yielding a
contribution “+i(—i)(—i)(+i)”. The path going “around [to the] right” contributes
“+i(4+i)(—i)(+i)”. He writes one contribution over the other in order to compare
them more easily. The two contributions differ only by the sign of the second factor.
Feynman draws a line below the two contributions, as one usually does with an
addition of numbers. The sum of the two contributions is zero, because the only
difference is a sign. Feynman can, therefore, conclude below the horizontal line:
“cancels”.

The next drawing (see Fig. 4.21) makes the relationships more explicit. The loop
that goes “around [to the] right” is in fact a step that yields, first, two positive factors,
second, a negative factor and, third, a positive one. The absolute values of the right
and left loops agree, but the contributions have the opposite sign and, therefore,
cancel each other out.

4.6.2 Diagrammatic Induction

Any loop that Feynman can draw is only an instance of a closed loop for which the
cancellation he claims is correct. So how can he prove the general statement that
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Fig. 4.19 The incorporation of “negative times” into the model of the quivering electron and proof
that “any completely closed loop cancels” itself out, ca. 1947 (Space-time approach to quantum
electrodynamics, folio 5, reprinted with permission of Melanie Jackson Agency, LLC)
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Fig. 4.20 Detail of Fig. 4.19
(number 2), adapted by the
author (A. W.)

Fig. 4.21 Detail of Fig. 4.19
(number 3), adapted by the
author (A. W.)

“any completely closed loop cancels” (my emphasis) itself out on the basis of these
particular cases?

Indeed, Feynman considers that the next drawing of a loop (see Fig. 4.22) is a
counter-example to the tentative rule he is trying to establish, and observes: “NO
CANCEL”. However, this is wrong! As far as I can see, a loop that has both start
and end points in different directions also cancels itself out when circumscribed
once “around [to the] left” and once “around [to the] right”. In my view, Feynman
is too hasty in his judgement; he does not even go to the trouble of drawing the
“around [to the] left” and the “around [to the] right” loops.

In the next drawing (see Fig. 4.23) the first and last line segment of the loop
point towards the same direction, and therefore they overlap. Here Feynman exam-
ines the variations of the left-hand-side part of the loop, which (apart from the two
intermediate loops) points towards the direction of negative time. He considers how
the variations of this backwards part affect the loop’s overall contribution. Feynman

Fig. 4.22 Detail of Fig. 4.19
(number 4), adapted by the
author (A. W.)
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Fig. 4.23 Detail of Fig. 4.19
(number 5), adapted by the
author (A. W.)

draws the diagram in order to convince himself that the inset loops can be ignored,
since they contribute two minus signs (and two plus signs) and thus do not alter
the sign of the rest of the loop. In order to determine the sign of the loop, it is,
therefore, sufficient to consider the single backwards part (the curved arrow-headed
line), which gives a minus sign (annotation left of the curved arrow-headed line).

The proof of the general statement is a proof akin to mathematical induction. The
statement can be verified in some simple instances. Then a construction procedure
is defined by which all the instances can be constructed from another instance. It
then only remains to be shown that the construction procedure always leads from an
instance for which the statement is true to an instance for which it is also true.

A closed loop, such as the one in Fig. 4.23, has an odd number of left corners
and an even number of right corners or vice versa in its wavy backwards part,
irrespective of how many loops the backwards part contains (see Fig. 4.24). When
continuing “around [to the] left”, the left corners contribute a negative sign and the
right corners a positive sign. Therefore, the whole wavy backwards part with two
loops contributes a negative sign (to the left of the wavy backwards part) when
circumscribed “around [to the] left”. “Around [to the] right” is simply the opposite:
the left corners contribute a positive sign and the right corners a negative sign. Thus
there is an even/odd number of negative signs “around [to the] left”, while “around
[to the] right” there is an odd/even number of negative signs. This means that in one
case the overall sign is negative and in the other case it is not. Therefore, any closed

Fig. 4.24 The wavy
backwards parts of closed
loops contain an even number
of left corners and an odd

number of right corners. N AN
Every inset of a new loop V¢ ‘e
adds one left corner and one L’ N <7 ’
right corner. Therefore, either 4 N

the number of left corners is
even and the number of right
corners is odd or vice versa
(Drawing by A. W.)
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Fig. 4.25 Detail of Fig. 4.19
(number 6), adapted by the
author (A. W.)

-+

loop cancels itself out, since in the procedure of path counting any closed loop is
circumscribed once “around [to the] left” and once “around [to the] right”.

Feynman then returns to a more complex type of loop, that is, one whose initial
and final directions differ (Fig. 4.25). After having (erroneously) inferred that the
simplest form of such a loop does not cancel itself out (see above), he now (cor-
rectly) sees that this instance does indeed do so. However, he does not revise his
conclusion of the simplest case.

Judging from the layout of his notes, Feynman next reconsiders an instance of the
type with an overlapping segment (Fig. 4.26). Feynman still does not seem able to
judge whether the instance confirms the proposed rule that “any completely closed
loop cancels” itself out. Of this instance he first writes “NO CANCEL” but then
corrects himself and (rightly) concludes that it does.

Fig. 4.26 Detail of Fig. 4.19
(number 7), adapted by the
author (A. W.)
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Fig. 4.27 Detail of Fig. 4.19
(number 8), adapted by the
author (A. W.)

Then Feynman recognizes that the problem of determining the overall sign of
the “around [to the] left” and “around [to the] right” loops can be reduced to the
problem of determining the relative sign between the amplitude for describing a
U-turn in one or the other direction (see diagram annotated “to go” and the accom-
panying scribbles representing the more general case of a U-turn with intermediate
jagged lines [Fig. 4.27]). This is again a diagrammatic induction: the U-turn with
no jagged lines is the simplest instance for which the rule is verified. The drawing
of the jagged lines verifies that, in the inductive step, the truth of the statement is
preserved when going from one instance to the next complex one.

Feynman is now ready for a more specific formulation of the general statement:
the “Rule” (Fig. 4.19, number 9). With A and B denoting the two ends of the U-turn
(see Fig. 4.28), the amplitude for going from B to A through the U-turn is minus the
complex conjugate of the amplitude for going through it from A to B:

if a path from A to B is persued [sic] in one direction A — B, the amp([litude] is x4p. If
persued [sic] in other direction B — A itis ypa = —x}ip

Feynman then describes in words the diagrammatic proof of the rule. A left
or right turn contributes a factor 4i to the amplitude x when the turn travels
towards positive time (upwards) and —i when the turn travels towards negative time
(downwards). That is, if the direction in which the particle is following the path
is switched, these contributions will change sign or, what is the same for purely
imaginary numbers such as i, are replaced with their complex conjugates. If the
contribution from each turn were replaced with its complex conjugate, the reverse

Fig. 4.28 Detail of Fig. 4.19
(number 10), adapted by the
author (A. W.)



102 4 The Dirac Equation: Feynman’s Great Struggle

amplitude would be the complex conjugate of the original amplitude: xpa = x} 5-
However, the turns that make the path curve in the opposite time direction are turns
“to 4 time” or “— time”, whether they travel from A to B or from B to A. There-
fore, the contributions of these extremal turns remain the same in xp4 as in xap.
Since there is always an odd number of extremal turns in the loop (not counting
the extremal turn, which brings an around to the left turn back onto the path) and
their contribution is purely imaginary (=i), the fact that their contributions are not
replaced with their complex conjugates, unlike those of the left/right turns, results in
an additional overall minus sign (number 11), thatis xps = — ng 329; in Feynman’s
words:

Because Each [sic] turn for + is a turn for minus in reverse (.. *) except when it changes,
at a max or min of path. But the No. MAX + MIN is odd, hence the sign changes.

For the case of a loop inserted on a straight path, it then follows that the contri-
butions of going “around [to the] left” and going “around [to the] right” cancel each
other out, the reason being that this type of loop has an even number of turns. In
particular the number of extremal turns is even, since we now count the turn that
brings the around to the left loop back onto the path. There is, therefore, no addi-
tional minus sign and the reverse amplitude is just the complex conjugated original
amplitude: y4ap = xp4- Yet a product of an even number of purely imaginary
factors (as the is are) is real and since we now have to count the turns that bring the
loops back onto the path (see the + sign in the drawings near number 10), we have
an additional factor +i, which changes sign when it is replaced with its complex
conjugate: hence xap = —xpa. Therefore, these inserted loops can be ignored in
path counting, since the two contributions they would yield cancel each other out:

If we start & stop going in same direction, then xap = xj, because the no[.] of turns is
even. .. If there is an over lapping section there is no contribution.

4.7 Direct Interaction

After having discovered how to circumvent the self-inflicted difficulty of paths
going backwards in time, Feynman still needs to work out the essential features of
the model of the quivering electron. To “straighten out some of the present troubles”
of QED, he has to be able to describe not only a single electron but at least two
electrons and their interactions.

However, the interaction description of the Dirac equation does not fit into
Feynman’s programme. In the Dirac equation, as in classical electrodynamics,

29 In other words: let xop = ab, where a contains the factors that correspond to the extremal
turns and b the factors that correspond to the left/right turns. If each factor were replaced with its
complex conjugate we would have xpa = xj, = a*b*. Now, because the factors that correspond
to the extremal turns are, in fact, not replaced with their complex conjugates, we have instead
XBA = ab* = :ff* a*b*. Since a is a product of an odd number of is, we have a = ei%(z"“),

- . _ oim(2n+1 — ok
where n is an integer, and, therefore, xz4 = ™"+ Da*p* = —XiB-
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interaction is only taken into account indirectly: one of the charges generates an
electromagnetic potential and that potential acts on the other particle. Feynman
(and Wheeler) had to dispose of this feature in order to be able to eliminate the
uninterpretable divergences of the theory. So, although Feynman has, up to now,
been busy interpreting an equation that he had adopted from Dirac, he now has
to find a yet unknown equation—an equation, that is, that would describe the
direct interaction of two electrons, akin to the classical theory of Wheeler and
Feynman.’"

In order to continue tackling Dirac’s equation, which consists of interpreting
the differential equation for the quantum mechanical wave function that describes
the motion of a quivering electron, Feynman must obtain differential equations
from the classical action of his and Wheeler’s theory. This amounts to construct-
ing a Hamiltonian, which then yields the differential equations via IE% (With
a non-relativistic Hamiltonian this gives Schrodinger’s equation; with the Dirac’s
Hamiltonian Dirac’s equation.) In his thesis, Feynman tried to circumvent such a
procedure, since the Wheeler—Feynman theory had an action but not a classical
Hamiltonian.

In his thesis, Feynman had solved the problem of how to quantize a theory whose
“equations of motion of the particles are expressed classically as a consequence
of a principle of least action, and cannot, it appears, be expressed in Hamiltonian
form”.3! The alternative method of quantization that Feynman developed in his the-
sis can also be applied to systems of more than one particle. For these cases his
method has the particular advantage over canonical quantization in that “the form of
Schrodinger’s equation which will be arrived at will be definite and will not suffer
from the type of ambiguity one finds if one tries to substitute ?% for p, in the

classical Hamiltonian”.32

Feynman recalls having been aware of the fact that, in principle, it might have
been possible to express the theory by a Hamiltonian and to quantize it canonically.
But when he was writing his thesis, the advantages of not invoking a Hamiltonian
had made him not even attempt it:

The standard method of going to quantum mechanics from classical mechanics assumed
there was a Hamiltonian. Well, there wasn’t—in this form. If I expressed it in the terms of
fields or something, there might have been. I was very reluctant to do that, maybe incor-
rectly. There probably was another way around. But I insisted always to represent only
the particles. (Weiner 1966b, p. 146, reprinted with permission. Copyright 1966, American
Institute of Physics)

Now that he needs to find differential equations for the quivering electron, Feynman
reconsiders the possibility of constructing a Hamiltonian that would describe direct
particle interaction and then quantizes it using the canonical procedure.

30 “Minutes of the Cambridge, Massachusetts, Meeting, February 21 and 22, 1941” 1941; Wheeler
and Feynman (1945, 1949).

31 Feynman (2005, p. 5).
32 Feynman (2005, p. 31).
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Although Feynman is still using an action function that does not introduce any
fields but only describes the particles, he does now try to transform the action func-
tion into a classical Hamiltonian. The problem here is that, in the Wheeler—Feynman
theory, the action depends on different times. As we will see in the next section,
Feynman tries to circumvent this problem by introducing new variables, similar to
the “light-cone coordinates” introduced at the beginning of his struggle with the
Dirac equation (see Section 4.1.2).

4.7.1 An Attempt to Construct a Hamiltonian

Feynman adopted the action of the Wheeler-Feynman theory from Karl
Schwarzschild (1903), H. Tetrode (1922) and A. D. Fokker (1929).3% In order to
compare the known situation of classical electrodynamics with the situation with
which he is struggling, Feynman writes down how he would treat the interaction of
two particles in one (spatial) dimension in the classical framework (see Fig. 4.29,

number 1):
S = /\/ﬂ — ¥2da +/,/r‘2 —£24dp
+k /f §((r — 1) = (x — &) (it — x&) da dB. (4.20)

The coupling constant, which determines the strength of the interaction, is k , which
depends on the charges of the two particles: it is k = e, ep/c, where e, denotes the
charge of particle a, and ¢, that of b; c is the speed of light. (x, ¢) are the space-time
coordinates of the first particle, (£, 7) those of the second particle. « and 8 are the
respective proper times of the particles.>*

As already mentioned, the differential equation for the wave function is deter-
mined by the Hamiltonian system. Usually, the action is simply the time integral of
the Lagrange function of the system, and from the Lagrangian one can obtain the
Hamiltonian using a Legendre transformation. As Feynman emphasized in his thesis
(Feynman 2005a) and in RMP48 (and was also explicitly mentioned in, for example,
Tetrode 1922, p. 320), the problem here is that the action cannot be written as a
simple time integral and, therefore, “cannot be described directly in Hamiltonian
form” .3

As with the Dirac equation for a single particle (see Section 4.1.2), Feynman
introduces coordinates that are rotated by 45° with respect to the ordinary coor-
dinate system (x-¢ for the first particle, £-t for the second particle; see Fig. 4.29,
number 2):

33 See Wheeler and Feynman (1949, p. 425).
34 See Wheeler and Feynman (1949), equation (1).
35 Feynman (2005, p. 10).
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Fig. 4.29 The classical direct interaction of two particles in one spatial dimension, ca. 1947 (Dirac
Equation n, folio 5, reprinted with permission of Melanie Jackson Agency, LLC)

V2v=rt+x,  V2w=r1-x, 4.21)
Vau=t+& V2w =1-¢. (4.22)
The diagram (Fig. 4.29, number 4) recalls the classical framework from which

the action function was adopted. Similar diagrams are used, for example in Wheeler
and Feynman (1949, p. 431); see also Fig. 4.30. It displays the trajectories of two
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Fig. 4.30 Representation of
the retarded and advanced
potential mediating the
interaction between two
electrons, according to the
Wheeler—Feynman theory of
electrodynamics (Wheeler

and Feynman 1949, p. 431) TIME

DISPLACEMENT

particles (the curved lines) in a coordinate system with one spatial (x) and one
time dimension (¢). The straight line connecting the two trajectories represents the
advanced or retarded potential propagating backwards or forwards in time with the
speed of light, that is, on the light cone. Feynman also uses the diagrams to intro-
duce the two unconventional variables w and v, and this clarifies their relationship
with the standard coordinates x and 7. Borrowing a term from Kauffman and Noyes
(1996), I call w and v light-cone coordinates, since the coordinate axis v is parallel
to the light cone indicated by the straight line that represents the propagation of the
interaction potential.

By introducing the light-cone coordinates—uv and w, for the first particle, and u
and w’ for the second particle—and by restricting the description to the case where
a = B = w = w, that is, stationary particles (cf. Wheeler and Feynman 1949,
p. 430), Feynman succeeds in writing the action as an integral of only one parameter,
which is necessary when constructing a Hamiltonian (see number 3):

S:/(«/E}+@+ %) dw. (4.23)

The derivatives, indicated by a dot, are derivatives with respect to the variable w:

“Dot now means w derivative” (just above number 3), that is, i = g—;, V= g—;
Feynman can now read off the Lagrangian L from the action S, taking S as the

integral of L over w, instead of the ordinary one time parameter ¢ (the line just

below number 3):
kG 4§
L= V3o + 7 4 KD (4.24)
r

where r = |v — u|.
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Then Feynman can form the canonical momenta and construct the Hamiltonian
from them and the Lagrangian (the next two lines):

dL Lk
oL _ - kK 425
v p 21) V ( )
oL _p__ L K (4.26)
o _@ r’ ’
1 1
H=L—-—9p—iuP=—vi+—i. (4.27)

V2

V2

Finally, the Hamiltonian has to be expressed in terms of the canonical momenta p
and P, which is Feynman’s final and important (therefore boxed) result (number 5):

H—l 1 1 1
_E(p k/r)+ (P k/r)

The symbol “-.” indicates that the Hamiltonian is a derived result. Beneath the hori-
zontal line that he has drawn across the lower half of the page, Feynman generalizes
his findings to the case of “several particles” (number 6).

With this Hamiltonian in hand Feynman can now proceed to the canonical quan-
tization procedure by promoting the Hamilton function to the Hamilton operator
that characterizes a quantum system (see Fig. 4.31). Feynman follows the usual
procedure by which the canonical momenta (p and P) are replaced with a (spatial)
derivative, in terms, however, of his new variables u and v. These are the light-cone

S i3 - @ skl

T

(4.28)
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Fig. 4.31 The quantum system that corresponds to the Hamiltonian for classical direct particle
interactions, ca. 1947 (Dirac Equation h, folio 4, reprinted with permission of Melanie Jackson
Agency, LLC)




108 4 The Dirac Equation: Feynman’s Great Struggle

coordinates introduced earlier (see 4.21, 4.22), which mix space and time coordi-
nates. Thus Feynman’s canonical momenta read as follows (see number 1):

l

which would give, as the quantum Hamilton operator:

1 1 1 1
H=-|———— ]+ ——). (4.30)
2(7—-%—k/r) 2(’?—-%—k/r>

However, in this expression derivatives appear in the denominator, which makes
the definition of H as an operator unclear. One might try to define an operator by
developing the expression in a power series, such that the derivatives would appear
in an ordinary position. Feynman does not even write this Hamiltonian down but
tries to circumvent the difficulty by defining two new wave functions ¢ and x
(number 2):

1
— Y = ¢, 4.31)
(p—k/r)
— =y, 4.32
P —k/n) v =x (4.32)
where 1 is the wave function of the whole two-particle system and r = |v — u]

(see number 4). The resulting differential equations for v, x and ¢ are (number 3):

Feynman claims that “For k& = 0 they are Dirac’s onedimensional [sic] equations”
(number 5).

4.7.2 An Unsatisfactory Interpretation

On folio 2 of Dirac Equation h, (see Fig. 4.32), Feynman tries to interpret these
newly obtained equations.
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Fig. 4.32 Feynman’s interpretation of the “Dirac” equation for two non-interacting particles,
ca. 1947 (Dirac Equation h, folio 2, reprinted with permission of Melanie Jackson Agency, LLC)

If x is set to zero (and k = 0, no interaction), the resulting equations have
the same form as Feynman’s version of the Dirac equation for one particle, where
w = u, Yy =Yg and ¢ = Y. The diagram entitled “1 part[icle]” (see number 1)
again shows an interpretation of the right- and left-moving components of the wave
function. The second diagram (number 2), entitled “2 part.”, shows the interpretation
for two particles, that is, x # 0. In this case, ¥ is the contribution from all pairs
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of paths by which particle 1 reaches point v; and particle 2 reaches point v, both
particles moving to the right. Then ¢ is the contribution from all pairs of paths by
which particle 1 reaches point v; and particle 2 reaches point vy, particle 1 moving
to the right and particle 2 moving to the left. The same goes for x, except that
particle 1 moves to the left and particle 2 to the right.

At the bottom of the right-hand-side column of Fig. 4.32, Feynman again tries
to treat the case with interaction (k # 0). This, however, leads him to make false
statements: “[...] = 0. etc. N.G.[=no good?!]” (number 3).

Feynman’s attempts to incorporate interaction into his model of the quivering
electron causes him serious problems. He finds that he can only extend his inter-
pretation of the Dirac equation to interacting particles in a special case, which is
entirely unsatisfactory (see Fig. 4.33, number 1):

It is a bit hard to see how to define @ for path pair AB and C D, since there are some terms
from interaction at x from y which is unspecified. However if the interaction is zero beyond
P we are OK. Hence, at present, I can only specify @ for paths which are long enough that
they go beyond the time of interaction (this stinks).

After having interacted, the particles are free and the wave function of the two-
particle system is a straightforward generalization of the one-particle case (num-
ber 2):

(1] Jtas A ford b coe foiw £

P puii AB and €D, scunt .w;m
é““”/“"’““‘f’“‘*j’“ A far

Fig. 4.33 Feynman’s attempts to define the contributions of paths to the wave function for two
interacting particles causes him serious problems. He explains that he can only treat a special
case in this way, and this, he writes, “stinks”, ca. 1947 (Dirac Equation h, folio 3, reprinted with
permission of Melanie Jackson Agency, LLC)
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® = (iS)No.Turns on(iS)NolTurns of 1 (4.33)

However, this result is inadequate if one’s aim is to “straighten out” some of QED’s
“present troubles”. Feynman will, therefore, shortly abandon the model of the quiv-
ering electron. Clearly, not being able to treat interactions and free particles in three
dimensions makes it impossible for him to continue working on the model.



Chapter S
Free Propagation and Successive Scattering

5.1 Basic Solutions Not Basic Equations

From the time of his thesis and during his struggle to understand the Dirac equation,
Feynman is preoccupied with finding the quantity that will determine the evolution
of the wave function. While working on his thesis, he finds that the time evolution of
the wave function is determined by the classical action, which is integrated along the
possible paths that connect the start and end points of the particle. There is no clas-
sical action in the Dirac equation’s description of quantum electrodynamics (QED),
since the equation introduced a new degree of freedom: spin. In RMP48, Feynman
constructs an action that yields the Dirac equation using his quantization method.
However, because he cannot justify the action independently, Feynman considers
this treatment to be “purely formal” and unsatisfactory (see Section 3.5).

To find and justify an action for a system described by the Dirac equation, Feyn-
man adopts the model of the quivering electron (see Section 4.1). He looks for a
description of the paths of the electron’s Zitterbewegung' such that the Dirac equa-
tion will hold. That is, Feynman quantitatively describes the paths of the quivering
electron, so that the sum of the quantities of each path will yield the quantity that
determines the evolution of the wave function. Feynman is successful when work-
ing in one dimension without the interaction of particles. The description of each
change in direction of the electron by a factor i¢ yields the desired quantity, a Bessel
function in this case, when summed over all possible paths. He is even able to treat
positrons successfully when he conceives of them as electrons going backwards in
time (see Section 4.6).

Yet electrons in ordinary three-dimensional space and the interaction of electrons
in one dimension causes him so many problems that he abandons his search to jus-
tify the quantity that describes the evolution of the wave function (see Sections 4.3
and 4.7). So, while working on his “Theory of Positrons” (ThPos), Feynman begins
to consider the quantity as fundamental and tries to formulate an alternative theory
of quantum mechanics, non-relativistic and relativistic, that is based on that quantity.

! Schrodinger 1930.

A. Wiithrich, The Genesis of Feynman Diagrams, Archimedes 26, 113
DOI 10.1007/978-90-481-9228-1_5, © Springer Science+Business Media B.V. 2010
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Thus Feynman gives up trying to find a microscopic explanation of the quantity
that describes the evolution of the wave function. During the Second World War,
when Feynman was busy solving diffusion equations,” he learned that an alternative
description of differential equations does not have to be a microscopic derivation of
them. He learned (or, if he knew it already from his studies, he learned the impor-
tance of) how to describe diffusion phenomena not by a differential equation but by
the Green’s function associated with the equation.

As in classical mechanics, a Green’s function is a particular solution to the differ-
ential equation with which it is associated. It is the solution to the inhomogeneous
equation, where the inhomogeneity is given by a § function. Generally speaking, a
8 function has the value zero everywhere except in the case of one of its arguments,
where the value is infinite but in a way that the integral of the function over the whole
range of its argument is 1. For example, the § function is often used to describe
a “point source” of electricity or of a water wave. For the Schrédinger equation,
idy/0t = Hvr, the Green’s functions are defined as the solutions to

(i0/9t — H)y(x, 1) = i8(x — x0)8(t — to) (5.1)

(cf. equations (4) and (12) in ThPos). Usually there are several Green’s functions
associated with an equation and they are distinguishable from each other by their
boundary conditions. Important types of boundary conditions include whether the
Green'’s function vanishes for values of the variables that are greater or smaller than
a particular given value.

Using a Green’s function as the basic ingredient of a theory means placing the
solutions to the differential equations higher up in the axiomatic system than the
actual equations:

The main principle is to deal directly with the solutions to the Hamiltonian differential
equations rather than with these equations themselves. (ThPos, p. 749)

To establish a differential equation one usually derives it from a microscopic
model of the situation. For instance, the differential equations describing the waves
in a piece of string can be deduced from the considerations made of the stresses and
strains in an infinitesimal piece of the string. Similarly, Feynman tries, without suc-
cess though, to interpret Dirac’s equations using the model of the quivering electron.
However, from the time that he begins working on ThPos, he uses a relationship
between two or more Green’s functions (see, for example, 5.15) to describe the
physical system and to endow that relationship, and not the differential equation,
with a physical interpretation. The physical interpretation thus comes in at a more
abstract level of the description.

2 See, e. g., Galison 1998.
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5.2 Interpreting the Schrodinger and Dirac Equations

To introduce his alternative formulation through the solutions to equations rather
than through the equations themselves, Feynman applies the method first to
Schrodinger’s equation (of non-relativistic quantum mechanics)?:

i0y/dt = Hy. (5.2)

The general solution to Schrodinger’s equation can be written as an integral over an
initial wave function weighted by the Green’s function K (2, 1) associated with the
equation®:

Vi by) = / K@ Dy d. (53)

Rather than try to find a microscopic derivation of K, Feynman expresses K in terms
of the eigenvalues and eigenfunctions of the Hamiltonian H. The eigenfunctions of
the Hamiltonian H are those wave functions ¢;, for which

Ho¢, = E, ¢, 5.4)

holds. The Es are the eigenvalues of H and, if f Y*(x, HY(x, 1) d’x is finite, the
possible values for the energy of the system. K can be expressed by the eigenvalues
and eigenfunctions as explained in the following paragraph.

As it is a solution to the Schrodinger equation, ¥ (x2, ;) can be written as
Y(xa, ) = exp(—iH(tp — t1))¥(x2, t1), where ¥ (x3, 1) is the wave function
at some other time #;. Since the eigenfunctions, ¢,, form a basis for the space
of the wave functions, (x>, 1) can be expressed as a superposition of the (sta-
tionary, that is, time-independent) eigenfunctions: ¥ (x2, t1) = ), Cn(t1)¢n(x2).
This implies that v/ (x2, 12) = exp(—iH (2 — t1)) >, Cn(t1)$n(x2). Since ¢, (x2)
are eigenfunctions of H, H¢, can be replaced with E, ¢, (see (5.4)). The coeffi-
cients C,(#1) are given by the scalar product in the space of the wave functions:
Cu(t)) = f * ()Y (x2, t1) d3c;. Here x; is a dummy variable and can, therefore,
be replaced with any other variable, in particular with x;. We then obtain:

Vet = S exp(-iEy(ty = 1) [ Grw ) a6, ).

If we compare this equation with (5.3), we can read off K (2, 1) expressed in terms
of the energy eigenfunctions and eigenvalues of the physical system?:

3 Feynman uses units where / = 1.
4 See ThPos, equation (2).
5 ThPos, equation (3).
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K(2,1) = ¢r(x1)¢n(x2) exp(—i En(t2 — 11)). (5.5)

This equation is only valid for #, > f;. For t; > 1, it is “convenient™ to define
K@2,1)=0.

If the Schrodinger equation describes the behaviour of a single electron, the wave
function gives the probability amplitude for localizing the electron at a particular
space-time point. K (2, 1) can then be “[called] the total amplitude for arrival [of
the electron] at x», f, starting from x1, #;” (p. 750). However, K does not describe
a space-time path of the electron from (x1, #1) to (x3, £2), but “results from adding
an amplitude, exp i S, for each space time path between these points, where S is the
action along the path [RMP48, p. 750]”.

The relativistic quantum mechanics of electrons and their interaction, the central
phenomena of QED, is described by the Dirac equation. The by-then established
method for quantizing electrodynamics was a procedure that involved a “second”
quantization. That is, one took the quantum mechanical equation for the wave
function i that is supposed to describe the physical system and, in a second step,
declared 1 to be an operator that acts on a Hilbert space of states, rather than letting
the wave function itself describe a state of the system.

Feynman’s description of QED is different. He does not adopt the process of
second quantization but keeps to a description using wave functions. In contrast
to the traditional way of dealing with wave functions, which was superseded by
the method of second quantization, Feynman’s method allows him to treat the
Dirac equation in much the same way that he treated Schrédinger’s equation, where
second quantization was never claimed to be necessary:

By a suitable choice and interpretation of the solutions of Dirac’s equation the problem
may be equally well treated in a manner which is fundamentally no more complicated than
Schrodinger’s method of dealing with one or more particles. (ThPos, p. 749)

However, Feynman’s treatments of Dirac’s and Schrdodinger’s equations,
although similar, are not exactly the same. The Green’s function for the Dirac equa-
tion cannot be expressed in exactly the same way in terms of the eigenfunctions and
eigenvalues of the equation’s Hamiltonian as for the Hamiltonian in the Schrédinger
equation. The problem is’ that this type of Green’s function would describe elec-
trons scattered into negative energy states, which are hard to interpret physically.
However, the Green’s function for the Schrédinger equation (see (5.5)) is not the
only function that satisfies the definition of the Green’s function for the Dirac case.®
A Green’s function that would “give results equivalent to those of the positron hole
theory” is given by a sum similar to the standard form (5.5) but with summing

6 ThPos, p. 750.
7 ThPos, p. 752.
8 ThPos, equation (12).
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over only positive energy eigenvalues for #, > #; and over only negative energy
eigenvalues for 7| > 02

5.3 The Scattering of Probability Waves

The Hamiltonian H of a quantum mechanical system and the corresponding Green’s
function K are equivalent in the sense that the dynamics of a quantum mechani-
cal system is fully characterized by the specification of either of them. “For some
purposes the specification in terms of K is easier to use and visualize”,'0 writes
Feynman, without, though, being more explicit about its advantages. It is, however,
striking that he does not relate the advantage of that description to the interpretation
of a perturbative expansion, which is only introduced as a “simple” example “to gain
greater familiarity with the K function”.!!

For a non-relativistic free particle, the energy eigenvalues E are continuous. They
are related to the mass m and the momentum p of the particle by E = p?/2m.
Feynman defines the eigenfunctions of a non-relativistic free particle to be ¢ (x) =
exp(ipx) (fn. 4), and the sum ), over all eigenvalues and eigenfunctions in equa-
tions such as (5.5) is replaced with an integral over the momentum variable p.
Therefore, the Green’s function for the Schrodinger equation for a free particle is,

“as is well known” (fn. 4)

Ko, 1) = / expl—(ip - x1 — ip - x2) — ip*(t — 11)/2m] d*p Q)3 (5.6)
= Qrim™ Nt — 1) Texp(1/2 im(xy — x)*(t — 1)) (5.7)

for t > t; and zero for 1, < t;.

If the particle is not completely free but acted on by a potential U (x, t) during
the infinitesimal time interval [#3, 3 + At3], the evolution of the wave function from
the beginning to the end of that interval is given by

Y(x, 13+ Az) = exp(—i HARB) Y (x, 13). (5.8)

Since Atz is infinitesimal, the exponential is given by the first term of its perturbative
expansion in the time variable. Therefore,

Y(x3, 34+ At3) = (1 —i HoAtz — iU AB)Y(x, 13) (5.9)

9 ThPos, equation (17).
10 Thpos, p. 750.
' ThPos, p. 750.
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where H = Hy + U, Hy, denoting the Hamiltonian for the free particle ﬁ Zi i—;

In the case where the particle is free throughout, the difference in the wave function
is, to first order in U,

AY =(1 —iHyAts — iUAB)Y (x, 13) — (1 — i H)AB) Y (x, 13)
= —iUABY(x, 13). (5.10)

This quantity represents the effect of the potential. ““We shall call [it] the amplitude
scattered by the potential (ThPos, p. 751).”

The time 73 is supposed to lie between #; and #,. Therefore, between #; and #3
and again between #3 + Atz and 1 the particle is free and its wave function at these
moments is given by the free Green’s function, Ky, and the initial wave function,
¥ (x1, t1), or the wave function after scattering, ¥ (x3, 13 + Af3):

Vs 13) =ch)(xa,ra;xl,n)w(xl,n)d%q, 5.11)

Y(x2, ) = / Ko(x2, 2; %3, 13 + AB) Y (x3, 13 + Atz) dx3. (5.12)

At the end of the process, at time #,, because of the potential, the wave function
is not what it would have been had the particle propagated freely. “The change in
the wave function at 2 brought about by the potential is™:

AV (x2, 1) = —i/Ko(Z, 3)U (x3, 3)Ko(3, DY (x1, 11) dx1 dx3 Az, (5.13)

If the potential acts during a finite time interval, one replaces At3 with dz3 in the
above expression and integrates over f3:

In the case the potential exists for an extended time, it may be looked upon as a sum of
effects from each interval Azz so that the total effect is obtained by integrating over #3 as
well as x3. (ThPos, p. 751)

For the double integration over space and time, Feynman abbreviates d>x3 dts
to dt3.

The Green’s function, KV (2, 1), which represents, to first order in the potential,
the difference in the time evolution compared with the case of a free particle, can be
read off from (5.13) as the weighting function in the integrand:

KD2, 1) = —i/Ko(z, 3)U(x3, 13)Ko (3, 1)d3. (5.14)

One must integrate over all space-time. However, since the free Green’s function,
Ko(2, 3), is zero for t < t3 and K((3, 1) is zero for 13 < t1, the integration is
“automatically” (p. 751) restricted to the range between f; and 1.
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The Green’s function is “the total amplitude for arrival [of the electron] at x7,
1 starting from x1, #;” (see Section 5.2). In contrast to the case of a free particle,
the Green’s function for the case where a potential is present is hard to determine
exactly. Using the above expression, Feynman can take into account the effect of the
potential approximately: he obtains the first-order correction, K ('(2, 1), which has
to be added to the Green’s function of a free particle Ko(2, 1). Higher-order terms
will yield increasingly better approximations to the exact Green’s function for the
case where a potential is present:

K2, 1)=Ko2, )+ KP2, )+ K@2,1)+... (5.15)

Feynman proposes a physical interpretation for this approximate quantitative
solution in Figure 1 of ThPos (see Fig. 5.1) as well as in the text:

We can understand the result [(5.15), (5.14)] this way. We can imagine that a particle
travels as a free particle from point to point, but is scattered by the potential U. Thus
the total amplitude for arrival at 2 from 1 can be considered as the sum of the ampli-
tudes for various alternative routes. It may go directly from 1 to 2 (amplitude Ko(2, 1),
giving the zero order term in [(5.15)]). Or (see Figure 1(a)) it may go from 1 to 3
(amplitude K¢(3, 1)), get scattered there by the potential (scattering amplitude —iU (3)
per unit volume and time) and then go from 3 to 2 (amplitude K((2,3)). This may
occur for any point 3 so that summing over these alternatives gives [(5.14)]. (ThPos,
p.751)

The figure shows that Feynman interprets the processes described by the Green’s
function in the wave-mechanical tradition of quantum theory: an incoming proba-
bility wave is partly scattered off a potential, which produces an additional outgoing
wave that superimposes itself on the undisturbed part of the incoming wave.

In addition, Feynman’s physical interpretation of the first-order correction imme-

diately leads him to the second-order correction'?:

Again, [the particle] may be scattered twice by the potential (Figure 1(b)). It goes from
1 to 3 (Kop(3, 1)), gets scattered there (—iU(3)) then proceeds to some other point, 4,
in space time (amplitude K¢(4,3)) is scattered again (—iU(4)) and then proceeds to 2

SCATTERED
WAVE K (2,3)

mE—-—

Fig. 5.1 Interpreting
Schrodinger’s equation.
Figure 1 in Feynman’s

“Theory of Positrons’ SPACE
(ThPos) (a) FIRST ORDER,EQ (9) (b) SECOND ORDER, EQ (10)

INCIDENY WAVES

12 ThPos, p. 751.
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(Ko(2,4)). Summing over all possible places and times for 3, 4 find [sic] that the second
order contribution to the total amplitude K ® (2, 1) is

(—i)2// Ko(2,4)U4)Ko(4,3)U(3)Ko(3, 1) d13 d14. (5.16)

The possible scattering processes correspond to the possible combinations of
Green'’s functions of free particles in the perturbative expansion of the exact Green’s
function of a particle acted upon by a potential.

Feynman only hints at the mathematical derivation of higher-order corrections
from Schrodinger’s equation. And in his view this alternative way of obtaining the
quantitative corrections due to a potential to any order justifies the result:

[(5.16)] can be readily verified directly from [(5.2)] just as [(5.14)] was. One can in this way
obviously write down any of the terms of the expansion [(5.15)]. (ThPos, p. 751)

5.4 Waves Propagating Forwards and Backwards in Time

As Feynman writes in the caption to Figure 1 in ThPos, the Dirac equation can also
“be visualized as describing the fact that plane waves are scattered successively by
a potential”. Then, in the caption to Figure 2 (see Fig. 5.2), he points to a peculiarity
of the Dirac equation: that the appropriate Green’s function is, for negative time
intervals, a sum over negative energy states (see the end of Section 5.2, page 116).
To allow for negative time intervals also means introducing a new graphical ele-
ment into the representation of the processes as the scattering of probability waves.
The wave can now not only propagate forwards in time, which is what is usually

K,(2,3),POS €

T
|
M
E
K4(2,3),NEGE
(a) FIRST ORDER, EQ(I3)
2 2
MOTION OF
POSITRON
3,
o A3)
4)
43
conmug’éd& POS. E. Ke(4 3)
cmhms ONLY
A | NEG E
(b) VIRTUAL SCATTERING (c¢) VIRTUAL PAIR
Fig. 5.2 Interpreting Dirac’s 14>13 ta<ts

equation. Figure 2 in ThPos SECOND ORODER, EQ. (14)
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understood by propagation, but also backwards in time. This is represented by a
line pointing towards the direction of negative time. The probability wave scattered
towards the negative time direction is interpreted in Fig. 5.2c and in the text as the
motion of a positron. This interpretation allows Feynman to use a single mathemat-
ical expression to describe processes in which usually two particles are involved.
Thus, in his form of representation, processes such as the production of electron—
positron pairs are conceived of as the effect of one single electron.

5.4.1 Pairs in Intermediate States

For the Dirac equation, the Green’s function for a free particle is denoted by
K4 (2,1) and the perturbation of the free propagation may be brought about by
an external electromagnetic potential A. To obtain the perturbative corrections to
the free Green’s function when an external potential is present, Feynman can sim-
ply replace Ky with K in the corresponding expressions that he found for the
Schrodinger equation. Thus, for instance, he obtains for the second-order correction,
which has to be added to the Green’s function of a free particle K (2, 1) in order to
give an approximate description of the case where an external potential A is present
(cf. (5.16)):

—// Ki(2, HA@DKL @4, 3)AB)K, (3, 1) dr3 d1s. (5.17)

In the usual positron theory there are two physical processes that contribute quan-
titatively to such a second-order correction: the electron may be scattered twice by
the potential, or an electron—positron pair may be created in an intermediate state of
the process. Since the positron is annihilated again, only one electron arrives at the
final state, as required. The electron—positron pair is only virfual: it does not appear
in the initial or final states of the process. Particles that appear in the initial or final
states of a process are real (see Section 5.4.2).

In Feynman’s theory, there seems to be only one second-order correction: (5.17).
However, Feynman can show that his one expression in fact includes both contri-
butions, which traditionally are considered separately. Again, Feynman justifies his
claims by physically interpreting the equations as describing the successive scatter-
ing of a particle. He says:

That [(5.17)], for example, is the correct second order expression for finding at 2 an electron
originally at 1 according to the positron theory may be seen as follows (Figure 2). (ThPos,
p- 752)

and then explains his justification. He first observes that (5.17) is valid for #, < 11
as well as for r > f1; Feynman chooses to assume the latter case. Furthermore,
he assumes, as one would expect, that the potential is only acting in the inter-
val between #; and . Then (5.17) is taken to be the total quantitative effect of
two processes, the first one being similar to the ordinary scattering of an electron
according to Schrodinger’s equation considered above. Electrons with negative
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energy (see end of Section 5.2, p. 116) have no place in Feynman’s “reinterpre-
tation” (see the abstract of the article). His formula takes this correctly into account:

First suppose 74 > 13 (Figure 2(b)). [t3 and #4 are intermediate times between #; and #;.]
Then (since 13 > 1) the electron assumed originally in a positive energy state propagates
in that state (by K (3, 1)) to position 3 where it gets scattered (A(3)). It then proceeds to
4, which it must do as a positive energy electron. This is correctly described by [(5.17)]
for K (4, 3) contains only positive energy components in its expansion, as f4 > f3. After
being scattered at 4 it then proceeds on to 2, again necessarily in a positive energy state, as
ty > t4. (ThPos, pp. 752-753)

The second process, virtual pair production, which quantitatively contributes
to the second-order correction, is also included in the one expression (5.17). The
standard theory, in which the positron is viewed as the absence of an electron in a
negative energy state, that is, as a “hole”, describes the process in the following way:

In positron theory there is an additional contribution due to the possibility of virtual pair
production (Figure 2(c)). A pair could be created by the potential A(4) at 4, the electron
of which is that found later at 2. The positron (or rather, the hole) proceeds to 3 where it
annihilates the electron which has arrived there from 1. (ThPos, p. 753)

In Feynman’s theory, the process of virtual pair production is taken into account
if the Green’s function, including only negative energy states, is interpreted as the
description of the propagation of a positron:

This alternative [virtual pair production] is already included in [(5.17)] as contributions
for which #4 < 13, and its study will lead us to an interpretation of K (4, 3) for t4 < 13.
The factor K (2, 4) describes the electron (after the pair production at 4) proceeding from
4 to 2. Likewise K4 (3, 1) represents the electron proceeding from 1 to 3. K (4, 3) must
therefore represent the propagation of the positron or hole from 4 to 3. (ThPos, p. 753)

This interpretation of the Green’s function with negative energy states is, indeed,
consistent with Feynman’s earlier description of K (4, 3): “That it does so is clear,”
(page 753) he writes, and then explains in detail how K4 (4, 3), for 4 < t3, describes
a hole with positive energy, even though K, (4, 3) only includes negative energies
in its definition as a sum over energy values E.

Although the Green’s function of (5.17) may thus be used to describe two dis-
tinct hole theoretical phenomena—the scattering of a single electron and virtual pair
production—Feynman proposes an alternative interpretation. An interpretation, that
is, in which only one, not two, physical processes corresponds to the one quantita-
tive expression. If a positron is viewed not as a “hole” but as an electron moving
backwards in time, the creation of an electron—positron pair and the subsequent
annihilation of the positron can be described as the sequence of propagations of a
single electron:

The expressions such as [(5.17)] can still be described as a passage of the electron from 1
to 3 (K4(3, 1)), scattering at 3 by A(3), proceeding to 4 (K (4, 3)), scattering again, A(4),
arriving finally at 2. The scatterings may, however, be toward both future and past times, an
electron propagating backwards in time being recognized as a positron. (ThPos, p 753)
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5.4.2 The Production and Annihilation of Real Pairs

We have just seen that, by interpreting positrons as electrons “propagating back-
wards in time”, Feynman’s description, using the Green’s function of the propaga-
tion of a single electron, also correctly describes virtual pair production. But this is
not all. At the same time, the annihilation of pairs in the initial state of the process
and the production of pairs in the final state are also taken into account. Virtual pair
production was included in the second-order correction to the free propagation of
an electron. Real pair production is described by the first-order correction term,

kY21 = —i/K+(2, 3)A(x3, 3) K1 (3, Dd1s, (5.18)

supposing the interpretation of a positron as an electron propagating backwards
in time.

As in the expression for the second-order correction, no restriction is imposed
on the ordering of the times #1, 7, #3. In fact, the different possible orderings each
describe a different type of scattering and also real pair production and annihilation:

With this interpretation real pair production is also described correctly (see Figure 3
[Fig. 5.3]). For example in [(5.18)] if | < #3 < f, the equation gives the amplitude that if at
time 71 one electron is present at 1, then at time #, just one electron will be present (having
been scattered at 3) and it will be at 2. On the other hand if 7, is less than #3, for example,
if n = 1] < 13, the same expression gives the amplitude that a pair, electron at 1, positron
at 2 will annihilate at 3, and subsequently no particles will be present. Likewise if #, and
11 exceed 13 we have (minus) the amplitude for finding a single pair, electron at 2, positron
at | created by A(3) from a vacuum. If 1; > 13 > 1, [(5.18)] describes the scattering of a
positron. (ThPos, p. 753)

The figure (see Fig. 5.3) that accompanies the interpretation given in the text is
more abstract than the two preceding figures (see Figs. 5.1 and 5.2). The area where
the potential acts on the particles is no longer represented by a contour of the same
form, such as the supposed actual contour of the potential in space and time; it is now

Fig. 5.3 The annihilation
(b) and production (c) of
electron—positron pairs
represented as special cases
of the propagation and
scattering off the potential of
a single electron. Figure 3 in
ThPos
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only indicated by a hatched disc. The pattern of lines representing the incoming and
outgoing waves has been omitted. The lines perpendicular to the wave front have
been retained, although they now indicate the propagation of the particles and not
necessarily a wave vector. The figure shows the four possible initial and final states,
before and after interaction with a potential, which are, in Feynman’s representation,
an effect of the propagation of a single electron.

5.5 Generalization to Two Particles

In Feynman’s description, even real pair production/annihilation is not, strictly
speaking, a two-particle process. Rather, real pair production/annihilation is
described as the propagation of one single particle, although the propagation may
be backwards in time. In his next step, Feynman generalizes his description to situ-
ations with two (charged) particles. However, he still does not take into account the
interaction between the charges.

5.5.1 Automatic Inclusion of the Exclusion Principle

When there is no interaction, “each particle behaves independently of the other”
(ThPos, p 755) and the probability amplitude of their propagation therefore factor-
izes. For instance,

K3,4,1,2) =K+,(3, 1)K1,(4,2) (5.19)

is the amplitude of propagation of particle a from 1 to 3 and of particle b from 2 to 4.

However, attention has to be paid to the exclusion principle, which states that
no two electrons can be in the same state. In the case of propagation amplitudes,
this means that the amplitude with two particles that have interchanged has to be
subtracted from the original amplitude and that only the “net amplitude” describes
the physical propagation of the two particles, that is (cf. equation 27 in ThPos):

K3,41,2)—K#4,3;1,2) = K143, DK4p(4,2) =Ko (4, DK 453, 2). (5.20)

Again, in Feynman’s interpretation of positrons as electrons propagating backwards
in time, “this expression is correct for positrons also (Figure 4 [Fig. 5.4], p. 755)”.

Figure 5.4 (Figure 4 in ThPos) shows the different propagations of two electrons
that have the same observable effect, that is, the same initial and final states.

The first term [in (5.19)] represents the amplitude that the electron proceeds from 1 to 3
and the positron from 4 to 2 (Fig. 4(c)) [Fig. 5.4c], while the second term represents the
interfering amplitude that the pair at 1, 4 annihilate and what is found at 3,2 is a pair newly
created in the potential. (ThPos, p. 755)
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Fig. 5.4 Pairs of processes 3 4 3 4
that differ from each other in
the interchange of two '
electrons. E.g. in (¢) OR
electrons 3 and 4 are
interchanged. Because of the
exclusion principle, only the | 2 (0) ) 2
difference of the amplitudes
for the two processes is
observable. Figure 4 in ThPos
3 2 /4 3 2 )4
OR
1 (b)
3 2 3 2
OR
| 4 (o) ! 4

The diagrams articulate the unobservable but nevertheless theoretically important
distinction (because of the exclusion principle) of the processes, which differ only
in an interchange of the particles. Again, the diagrams are more abstract than the
first two figures in ThPos. In Figure 4 the potential takes the form of a circle and
not a hatched disc as in Figure 3 of ThPos (see Figs. 5.3 and 5.4). The patterns
representing probability waves have again been omitted as they are irrelevant when
the exclusion principle is incorporated into Feynman’s representation of positrons
as electrons propagating backwards in time.

In the standard description, the exclusion principle has further consequences
because it also needs to be taken into account in the intermediate states, where
virtual pairs may be produced or annihilated. According to Feynman, “no account
has to be taken of the exclusion principle in intermediate states” (p. 755) because the
exclusion principle, in the case of the two charges considered here, forbids two types
of processes. So neither of the two processes is left out in Feynman’s description.
However, their quantitative contributions to the amplitude cancel each other out.
Thus, ignoring the exclusion principle and accordingly including both contributions
amount to the same thing as applying the principle and accordingly omitting both
terms. Therefore, in Feynman’s description, unlike in the standard description, an
irrelevant complication is avoided:

As an example consider again expression [(5.17)] for f, > #; and suppose #4 < 3 so that the
situation represented (Figure 2(c)) is that a pair is made at 4 with the electron proceeding to
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2, and the positron to 3 where it annihilates the electron arriving from 1. It may be objected'?
that if it happens that the electron created at 4 is in the same state as the one coming from
1, then the process cannot occur because of the exclusion principle and we should not have
included it in our term [(5.17)]. We shall see, however, that considering the exclusion prin-
ciple also requires another change which reinstates the quantity. (ThPos, p. 755)

5.5.2 The Irrelevancy of Closed Loops

The other change to which Feynman refers at the end of the previous quote con-
cerns vacuum fluctuations. In the absence of (real) electrons or positrons, pairs of
virtual electron—positrons can be created and re-absorbed by the external potential.
The probability amplitude that a vacuum remains a vacuum is, therefore, not unity.
All the amplitudes that Feynman considers are relative to this total amplitude for
vacuum-to-vacuum transitions, which is the sum of all amplitudes for vacuum-to-
vacuum transitions via any possible intermediate state. To obtain absolute probabil-
ities, Feynman has to multiply the amplitudes he finds—for example, the amplitude
for the propagation of a single (real) electron, to which (5.17) is the second-order
correction—>by the total amplitude for vacuum-to-vacuum transitions.

In Feynman’s graphical description the virtual creation and subsequent absorp-
tion of an electron—positron pair in a vacuum-to-vacuum transition is a “closed loop
path” (p. 755; see Fig. 5.5). It is represented as the cyclic propagation of a single
electron.

When calculating the vacuum-to-vacuum amplitude, the exclusion principle
again applies. Suppose that we are interested in finding the probability amplitude
for the propagation of a single real electron. The exclusion principle dictates that,
where the (virtual) electron in the loop is in the same state as the real electron, the
contribution has to be omitted. In Feynman’s procedure this term is not excluded
but it is of exactly the same quantity (with the opposite sign) as the term in the
second-order correction for the propagation of a single electron, so they cancel each
other out:

Now one process that can be visualized as occurring in the vacuum is the creation of a pair
at 4 followed by a re-annihilation of the same pair at 3 (a process which we shall call a
closed loop path). But if a real electron is present in a certain state 1, those pairs for which
the electron was created in state 1 in the vacuum must now be excluded. We must therefore

Fig. 5.5 A closed loop path
representing the creation and
subsequent annihilation of a
virtual electron—positron pair,
in other words, the cyclic
propagation of a single
electron. Diagram by A. W.

13 An objection was actually made, probably by Edward Teller, at the conference held at Pocono
Manor, Pennsylvania, in 1948 (Weiner 1966, p. 35).
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subtract from our relative amplitude the term corresponding to this process. But this just
reinstates the quantity which it was argued should not have been included in [(5.17)] [...]
It is obviously simpler to disregard the exclusion principle completely in the intermediate
states. (ThPos, p 755)

However, the justification Feynman gives in his paper for disregarding the exclu-
sion principle is somewhat obscure: he does not explicitly specify the terms that
would have to be left out by the principle. The specification of the terms is indeed
difficult in Feynman’s description, since he hardly uses wave functions, which
describe general electron states. Feynman’s whole presentation applies to states
that are characterized by the position of a particle at a particular time. The Green’s
function describes the transition from one eigenstate of position to another. This
restriction to particular states makes it difficult to comprehend how the exclusion
principle applies in detail.

Maybe it is clear to Feynman that the two terms forbidden by the exclusion prin-
ciple will cancel each other out, because in the particular model of the processes
he is developing the two processes actually coincide. The graphical representation
of the terms (not included in the publication) shows this: if the electron virtually
created at 4 (cf. Fig. 5.2, Feynman’s sub-figure (c)) is in the same state as the
electron coming from 1, then points 1, 2, 3 and 4 come to lie on a straight line.
As aresult, the N-shaped line of electron propagation becomes a straight line going
from 1 to 2 with a superimposed closed loop (see Fig. 5.6). If, on the other hand, the
closed loop describing the polarization of the vacuum that can occur independently
of the propagation of the electron from 1 to 2 is such that the electron of the vacuum
fluctuation is in the same state as the propagating electron, the closed loop comes to
lie on the straight line again, which leads to the same diagram. Within a sign the two
diagrams correspond to the same amplitude. Thus the amplitudes corresponding to
the two diagrams cancel each other out.

Feynman recalls that he did have difficulties treating the virtual creation and
absorption of pairs in the vacuum-to-vacuum transition, the so-called polarization

2 2 )
3 3 3
R . O
4
4 4
1 1 )

Fig. 5.6 Graphical proof of the identity of the two terms forbidden by the exclusion principle.
Diagrams by A. W.
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of the vacuum.'* Feynman computes “all amplitudes relative to the amplitude that a
vacuum at #; will still be a vacuum at #,”. In a draft of ThPos, in which he discusses
the problem of the exclusion principle in intermediate states, he lets us understand
that vacuum polarization is only considered in the conventional, and not in his,
description (see Fig. 5.7, number 1)!:

According to present theory state 7 and S might be the same in 2[nd] term. Usual theory
says no because then at time between 7, t, can’t have 2 electrons in same state. We say it is
same electron so Pauli exclusion doesn’t operate. Old theory has such a term anyway, for it
contemplates pairs created by x anhillated [annihilated] by y (vac. polarization type)—one
of which is excluded if electron is in state S—namely the pair created at x (& destroyed
at y) whose electron is at S. So term is subtracted relative to (infinite) vacuum if electron is
at S. This is same term as we have so both theories give same result here.

It seems that Feynman is trying to find arguments to discount closed loops alto-
gether. In his model, the closed loops are disconnected from the observable physical
process and should, therefore, be irrelevant. Indeed, in his next paper, ‘Space-Time
Approach to Quantum Electrodynamics’ (STQED), Feynman does mention (albeit
in a footnote) that in his description closed loops do not have to be taken into
account:

There are loops completely without external interactions. For example, a pair is created
virtually along with a photon. Next they annihilate, absorbing this photon. Such loops are
disregarded on the grounds that they do not interact with anything and are thereby com-
pletely unobservable. Any indirect effects they may have via the exclusion principle have
already been included. (STQED, fn. 22, p. 780)

Even before Feynman’s ThPos and STQED papers are published in September
1949, Freeman J. Dyson proves (in a paper that appeared in February this year), by
way of a quantum field theoretic treatment based on Schwinger’s theory, that the
terms corresponding to closed loops in a graphical representation a la Feynman can
be left out (RadTh, see Section 6.4).

Vacuum polarization is one of the sources of the divergence difficulties in the
conventional theory. In Feynman’s graphical description, these processes are rep-
resented as closed loops, which are not connected to the part of the diagrammatic
representation of the process in which one is actually interested (the propagation of
one electron, for instance). His representation demonstrates that vacuum polariza-
tion is a process that does not affect the relevant features of the processes involving
electrons in the initial and final states. It only affects the amplitudes as an overall
constant. Therefore, Feynman computes all amplitudes relative to the vacuum and
thus circumvents the divergence problems:

Put in this form the theory is complete and there are no divergence problems. Real processes
are completely independent of what goes on in the vacuum. (ThPos, p. 756)

14 Weiner 1966, p. 32.

15 Theory of Positrons; Self-Energy in an Atom; Radiation Scattering; Spreading Dirac Packet,
folio 6; cf. Schweber 1994, p. 430f.
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Fig. 5.7 Notes (probably a draft) to ThPos, ca. 1948 (Theory of Positrons; Self-Energy in an
Atom; Radiation Scattering; Spreading Dirac Packet, folio 6, reprinted with permission of Melanie
Jackson Agency, LLC)

We need to bear in mind that Feynman has not yet considered the interaction
that takes place between the particles and, therefore, has not yet had to deal with
the divergences arising in these instances. When the interaction of electrons and



130 5 Free Propagation and Successive Scattering

positrons is to be described, then vacuum polarization does make a physical differ-
ence in certain types of processes:

When we come, in the succeeding paper [STQED], to deal with interactions between
charges, however, the situation is not so simple. There is the possibility that virtual electrons
in the vacuum may interact electromagnetically with the real electrons. (ThPos, p. 756)

In the electromagnetic interaction lurk some of those notorious divergences that
Feynman hopes to eliminate in his alternative description of the theory. The next
important step is then to incorporate the interaction of electrons and positrons in his
formulation using Green’s functions.

5.6 Interaction: Reinterpreting the Classical Representation

As promised in ‘Theory of Positrons’ (ThPos, p. 755), Feynman treats the descrip-
tion of interaction using Green’s function in a “succeeding paper”: the ‘Space-
Time Approach to Quantum Electrodynamics’ (STQED). After some introductory
remarks and a discussion of the relationship of his formulation to the more standard
formulation using a Hamiltonian, Feynman takes up the problem that was left open
in ThPos—*“the interaction between charges”:

We study by the same methods as in [ThPos], the interaction of two particles using the same
notation as [ThPos]. (STQED, p. 771)

The mathematical description of the propagation of electrons and positrons
using Green’s function has indeed been adopted from ThPos. The description using
Green’s functions, however, is now extended, such that the interaction is not taken
into account by an external potential but by the propagation of a quantum of the
electromagnetic field, a photon, from one particle to the other. The resulting inter-
pretation of the mathematical description, expressed in the text and figures, is,
accordingly, more abstract than in ThPos. The propagation from space-time point
to space-time point is the main feature that needs to be articulated in the graphi-
cal representations. No more wave scattering off a potential. The potential is now
represented as an effect of the propagation of a photon.

5.6.1 Scattering Situations Only

As in his preceding paper, Feynman first examines non-relativistic systems (obeying
Schrodinger’s equation) and recalls that in the case of no interaction the Green’s
function for a system of two particles simply factorizes into the product of the
Green’s functions of each individual particle (cf. (5.19)). The case becomes sig-
nificantly more complicated when interaction is involved.

Here again Feynman meets one of the problems that had made him abandon the
model of the quivering electron (see Section 4.7.2): he only had found a way to
define the wave function for two particles, “for paths which are long enough that
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they go beyond the time of interaction (this stinks)”. The problem does not go away
when he moves from trying to justify a Green’s function by providing an adequate
description of the electron’s zigzag paths to the more abstract level where Green’s
functions are fundamental. Feynman does recognize, though, that this complication
is not reason enough to give up the formulation of QED using Green’s functions:

‘When the particles do interact, one can only define the quantity K (3, 4; 1, 2) precisely if the
interaction vanishes between #1 and #; and also between #3 and #4. In a real physical system
such is not the case. There is such an enormous advantage, however, to the concept that we
shall continue to use it, imagining that we can neglect the effect of interactions between #
and #; and between #3 and 4. (STQED, p. 771)

Feynman has to restrict his description to situations where the interactions in the
initial and final states are negligible. Typically, these are scattering situations, where
two essentially free particles approach one another to interact and then separate,
ending up as free particles again. Although the standard formulation of QED is able
to describe systems interacting at any time, such as the nucleus of an atom and the
electron bound to it, the restriction is reasonable, since, according to Feynman, any
physical problem can be treated in this way. The price to pay for doing so without
applying the restriction is simply too high:

Inasmuch as any physical problem can be defined in terms of scattering processes we do not

lose much in a general theoretical sense by this approximation. [ ... ] Itis essentially to avoid

this approximation that the complicated structure of the older quantum electrodynamics has
been built up. (STQED, pp. 771-772)

Although, in footnote 9 of the same paper, Feynman retracts one of the assump-
tions of the theory of classical electrodynamics that Wheeler and he developed,'®
he still wants to quantize a theory of delayed electromagnetic interactions. And
although he was not able to include the quantization of such a theory in his thesis,
now he has found an appropriate description of it:

We wish to describe electrodynamics as a delayed interaction between particles. If we can
make the approximation of assuming a meaning to K (3, 4; 1, 2) the results of this interac-
tion can be expressed very simply. (STQED, p. 772)

5.6.2 Adapting the Classical Expression for Electrostatic
Interaction

In ThPos, Feynman found the first-order correction to the Green’s function of an

electron described by the Schrodinger equation, perturbed by the external potential,
U, during an infinitesimal time interval Ay to be (cf. (5.14)):

KV 1) = —i/Ko(Z, 3)U(x3, 13)Ko(3, 1) dxz Aty. (5.21)

16 Cf. Sauer (2008, p. 8).
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In STQED, Feynman applies this formula to the electrostatic interaction between
two particles, which is no longer described by an external potential. Feynman takes
for the potential U the classical expression for the Coulomb potential, ¢2/r, where r
is the distance of the two particles at a given moment in time and e their charges. In
fact, as we will see below, Feynman uses the distance r5¢ = x5 —xg between the first
particle at time #5 and the second particle at time ¢, but then restricts the integration
to the times where 5 = f¢ through the introduction of a é function, §(¢s — f¢). Thus
the potential now depends on two space-coordinates, x5 and xg, instead of on only
x3 as U does in the case of one particle acted upon by an external potential, which
he considered in ThPos. As in the one-particle case, one has to integrate over the
space-coordinates on which the potential depends.

In the above formula the Green’s functions describe the propagation of one elec-
tron. K (1)(2, 1) is the first-order correction, which has to be added to the Green’s
function of a free particle propagating from 2 to 1 when a potential is present.
Ko(3, 1) describes the free propagation from the initial space-time point (x1, #1)
to the space-time point where a unit interaction occurs, (x3, #3). Similarly, Ko (2, 3)
describes the free propagation from the space-time point where a unit interaction
occurs, (x3,13), to the final space-time point (x3, ). Now that two particles are
involved, these single-electron expressions have to be replaced by a description
of the propagation of two particles. The first-order correction to the propagation
of one particle from 1 to 3 and of the other from 2 to 4 is K(l)(?), 4;1,2). The
free propagation of one particle from its initial space-time point 1 to the space-
time point 5, where it interacts with the potential produced by the other particle,
and the free propagation of the other particle from its initial space-time point 2
to the space-time point 6, where it interacts with the potential produced by the
first particle, is Ko(5, 6; 1, 2). Similarly, Ko(3,4; 5, 6) describes the free propa-
gation of the two particles after interaction. Finally, the Green’s function for two
non-interacting particles factorize, such that Ko (5, 6; 1, 2) = Ko(5, 1)K (6, 2) and
Ko(3,4;5,6) = Ko(3,5)Kp(4, 6).

From this “obvious generalization to two particles” (STQED, p. 772) Feyn-
man feels justified to claim that the first-order contribution of the correction due
to a Coulomb potential mediating the interaction between the particles during the
infinitesimal time interval Aty is:

KNN3, 4;2,1) = —ié? // Ko(3, 5 Ko(4, 6)r3s Ko (5, D Ko(6, 2) dxs dxe At
(5.22)

If the potential is non-zero during a finite time, one also has to replace “Af#y” with
an integration over f.

The Coulomb potential describes an instantaneous interaction, so fy = t5 = f.
The integration over fy can, accordingly, be replaced with an integration over s and
16, weighted by a function § (5 — 6), making the integrand non-zero only for t5 = f¢.
Thus for the “first order effect of interaction” Feynman obtains:
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KV(3,4,1,2) = —ie? / / Ko(3,5) Ko(4, 6)rsg 8(ts6) Ko(5, 1)Ko (6,2) ds d,
(5.23)

where dt = dx dt and t5¢ = t5 — 15.

The Coulomb interaction in classical (relativistic) electrodynamics is the first
term in the multipole expansion of the exact interaction potential described by
Maxwell’s equations. This description by a Coulomb potential has the particular
drawback that it describes an instantaneous interaction, which is not well-defined
relativistically. The relativistic interaction between two particles is delayed by the
time that it takes the electromagnetic potential to travel—at the speed of light c—
from where it is produced to where it acts on a particle. For particles a distance
rs¢ away, the potential needs the time rs5¢/c to travel from one particle to the other.
Feynman sets ¢ = 1, such that the delay is simply r5¢ in appropriate units.

The only element in the above formula that contains the information that the
interaction is instantaneous is the § function, which restricts the integration to the
domain where 5 = #4. If the potential is delayed by rsg, those integrands contribute,
for which t5 = t5 £ r5¢. Feynman first considers the case where tg = 15 — rsq < t5.
The delay of the interaction by rs¢ “suggests simply replacing r5_618 (t56) in [5.23] by
something like 1*5761 8(ts6 — r56) to represent the delay in effect of b [second particle]
on a [first particle]” (STQED, p. 772).

5.6.3 Interpreting the Potential as the Propagation of Photons

A well-known feature of any electromagnetic field is that it can be treated as an
assembly of harmonic oscillators.!” This is evident from the so-called Fourier trans-
formation of the field. Feynman mentions this feature in an earlier article:

By taking the Fourier transform of [the field produced by one of the particles], one can

represent the fields as a superposition of the effects of harmonic oscillators in the usual
way. (CutOffCl, p. 942)

In that article, Feynman then proposes to “cut-off” the function that describes which
oscillator frequencies contribute to the interaction in order to arrive at a divergence-
free electrodynamics—classical as well as quantum. '8

In the quantum case, harmonic oscillators can take on discrete energy values,
each energy leap corresponding to the energy of a quantum of the electromagnetic
field. Feynman understands the interaction to be the effect of the “emission

17 See, e. g., Fermi 1932, Part III.
18 CutOffCl; CutOffQ.



134 5 Free Propagation and Successive Scattering

and absorption of a virtual quantum” or the effect of “quanta which can be
exchanged”.!”

Interaction by the “exchange” of a quantum is a concept that had already been in
use for some time, in particular in the case of nuclear forces.20 The problem with this
notion in the field of electrodynamics lay in the fact that the electrostatic (Coulomb)
interaction requires something like longitudinally polarized photons rather than
observable fransversely polarized photons. In a type of move that we saw him take
with the exclusion principle, Feynman recognizes that the difficulties can be avoided
simply by, as it were, not paying too much attention to them. For instance, on how
to calculate the self-energy of the electron, Feynman comments:

The treatment of the longitudinal self-energy is usually different, for the longitudinal oscil-
lators are first eliminated from the Hamiltonian, their effect being the term &2 /roo where
roo is the meaningless distance of the electron from itself. [ ... ] Fortunately, all these points
may be most easily circumvented by simply not eliminating the longitudinal oscillators
from the field Hamiltonian at all. (CutOffQ, p. 1431)

Thus Feynman is more prepared than other physicists to adopt the concept of
photon exchange as the mechanism of electromagnetic interaction. While working
on the cut-off papers (CutOffCl; CutOffQ), Feynman becomes used to representing
a classical electromagnetic potential as an assembly of harmonic oscillators and,
in the quantum case, to conceiving of the interaction as being brought about by
emissions or absorptions of the quanta of these oscillators—the photons. However,
when he applies this representation to the expression he has obtained in terms of
Green’s functions for the delayed version of the Coulomb interaction (5.23), he
encounters a problem:

This turns out not to be quite right,[footnote] for when this interaction is represented by
photons they must be of only positive energy, while the Fourier transform of (56 — 756)
contains frequencies of both signs. (STQED, p. 772)

In order to have quanta of only positive frequency, Feynman restricts the integra-
tion in the Fourier transform of §(¢56 — rs6) to positive values of the frequency w,
instead of all real values. The Fourier transform of §(x) is gTiox /7, which gives,
for the modified é function,

8y (x) = f e ' dw /7, (5.24)
0

which describes a delayed version of the electrostatic interaction by positive-
frequency photons.

So far only the effect of particle b on a has been considered, that is, the case
where t5 > t¢. For the opposite order of times, the appropriate interaction term is
r57618+(—t56 — rs56). Neither of the possibilities 75 > f¢ and t5 < t¢ is preferred,

19 CutOffQ, pp. 1434, 1437.
20 See, e. g., Carson (19964, b).
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both contributing equally to the integral in (5.23). Therefore, the terms from the
two possibilities have to be “averaged” (p. 772) in order to obtain the joint effect of
interaction. The averaging process gives another § function, one with the relativis-
tic space-time interval between the two points of interaction as an argument. The
division by distance r disappears:

1/ _ _
2 (r561 8.+ (156 = rs6) + rsg d+(—fs6 — rss)) =8y <t526 - r526) : (5.25)

As a result, to describe a delayed version of the electrostatic interaction, Feynman
replaces r5_618(t5 — 1), describing the ordinary instantaneous electrostatic interac-
tion, with 8 (s2), where s2, = 12, — rZ is the relativistic invariant space-time
interval between points (xs, #5) and (xg, #6).

Besides the electrostatic interaction described by the scalar potential, there is
also the interaction via the vector potential. In order to consider the vector potential,
the term —(v5 - vg)d4 (s526) needs to be added to 6(5526), taking into account the
scalar potential. In the relativistic quantum case described by the Dirac equation,
the velocities vs and vg correspond to the operators o, and «. The joint effect of
the interaction via the scalar and vector potentials of two electrons described by
Dirac’s equation is, therefore,

(1 — apap)ds (5526> , (5.26)

which, by using the relationships between the Dirac operators, can be written as:

BaBvYapVoud+ (3526> ) 5.27)

(see STQED, p. 772, between equations 3 and 4).

When, moreover, one replaces the Green’s function for an electron described
by Schrodinger’s equation with the Green’s function K for an electron described
by Dirac’s equation and absorbs the 8 operators in the definition of K, Feynman
finally arrives at his “fundamental equation for electrodynamics” (p. 772):

KV@3,4,1,2) = —ie? ff K1 (3,5 K4, 6)YauVou

X 84 (sgé) K. (5, 1)K, (6,2) dvs ds. (5.28)

This is equation (4) in STQED.
Feynman’s equation is “a consequence of conventional electrodynamics” (p. 772)
but his interpretation of it and the status he attributes to it are not so conventional:

It describes the effect of exchange of one quantum (therefore first order in e2) between two
electrons. It will serve as a prototype enabling us to write down the corresponding quantities
involving the exchange of two or more quanta between two electrons or the interaction of
an electron with itself. (STQED, p. 772)
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Feynman, thereby, reduces all electrodynamics to one single process, any process
being representable as a combination of that fundamental process.

The fundamental process of QED consists of two electrons and a photon the free
propagation of which is interrupted by the emission or absorption of the photon by
one of the electrons. Feynman does not deduce that the term “5 (s526)” describes
the free propagation of a photon in the same way that he has deduced that K repre-
sents the propagation of an electron. The function 4. is, first of all, not the Green’s
function associated with the photon wave equation as the Ks are with the Dirac
or Schrodinger equations. The § function is introduced as a term to represent the
potential energy between the two electrons. The interpretation of the 5 function is
determined by the interpretation of the other elements of the fundamental equation.

Only in a footnote (no. 8) of Feynman’s paper (STQED), in which he explains
how to treat real (rather than virtual) photons, does Feynman mention that the 6
function satisfies the photon wave equation with a § function (without the “+4!)
as the inhomogeneity and is, therefore, by definition, a Green’s function of that
equation (see Section 5.1):

— s, (sgl) — 4782, 1), (5.29)

where

2 82 B 82 B 82 B 32
oty 8x§1) 8x§2) 8x§3) ’

0% =

xéi) being the ith component of the space coordinate x;.%!

It is possible that it is Feynman’s correspondence with Welton that draws his
attention to this relationship. In his letter, Welton represents the Klein—Gordon equa-
tion in an integral form, which he interprets as being contributions starting from “the
last scattering” (see Section 4.2). The photon wave equation is simply the special
case of the Klein—-Gordon equation for a particle with zero mass. In the same letter
Welton also suggests that, in order to treat the Dirac equation in a similar way, “we
need a generalization of the 8(s?) function”. Feynman’s 8, might, in part, be the
result of the search for that generalization.

5.7 The Right ““picture”

Feynman’s interpretation implies that any quantum electrodynamic process can be
described as the composition of one basic process. The processes can be analyzed
as a more or less complex composition of the fundamental process. Quantitatively,
the compositions are described by the perturbative expansion of the Green’s function

21 Feynman has introduced this notation in his previous paper, ThPos, p. 757.
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(cf. (5.15)). If a process is analyzed as a more complex composition, the quantitative
predictions become more precise.

In order to establish the role of his “fundamental equation”, which describes the
basic process of QED, Feynman goes on to give a more detailed interpretation of
the “exchange of one quantum between two electrons’:

We shall now interpret Eq. [5.28] in a manner which will permit us to write down the
higher order terms. It can be understood (see Fig. 1 [Fig. 5.8]) as saying that the amplitude
for “a” to go from 1 to 3 and “b” from 2 to 4 is altered to first order because they can
exchange a quantum. Thus, “a” can go to 5 (amplitude K (5, 1)) emit a quantum (longi-
tudinal, transverse, or scalar y,,) and then proceed to 3 (K (3,5)). Meantime “b” goes
to 6 (K (6,2)), absorbs the quantum (y;,,) and proceeds to 4 (K (4, 6)). The quantum
meanwhile proceeds from 5 to 6, which it does with amplitude &+ (SSZG). We must sum over
all the possible quantum polarizations p and positions and times of emission 5, and of
absorption 6. Actually if 75 > f it would be better to say that “a” absorbs and “b” emits
but no attention need be paid to these matters, as all such alternatives are automatically
contained in [5.28]. (STQED, pp. 772-773)

The interpretation given in the text is complemented by a diagram that could
arguably be classified as being the first Feynman diagram. However, as I will discuss
in Chapter 6, the Feynman diagrams that became established are, in fact, Dyson’s
modified versions of them. The diagram here is tied to the context of wave mechan-
ics, while the Feynman diagrams modified by Dyson are interpreted in the context
of the field theoretical second quantization. The Feynman diagrams we use today
are understood either in the context of second quantization or in the context of a
modern version of path-integral quantization.

If one compares the diagrams in ThPos with the diagrams in STQED, one
sees that Feynman has introduced a new graphical element into the first Feyn-
man diagram: the wavy line which represents the propagation of the photon that
brings about the interaction. The wavy line is simply a modification of the lines that
indicate the propagation of the electromagnetic potential in the diagrams used in
classical theories of electrodynamics (see Figs. 4.29 and 4.30).

Feynman’s interpretation of his fundamental equation is not one of classical
trajectories of particles bouncing off each other. First of all, the forces described
in terms of the fundamental process of the emission or absorption of a photon by
an electron or a positron might also be attractive. This would be impossible in an

Fig. 5.8 Diagram that
Feynman uses to interpret his
“fundamental equation”.
Figure 1 in STQED
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interpretation akin to the scattering of billiard balls, where there is always recoil
and thus only repulsive forces. Feynman’s interpretation is much more abstract. The
Green’s functions K describe the propagation of a particle but not its trajectory in
the classical sense. Even though in the graphical representation K is represented as
a straight line, which might suggest a trajectory, it is rather a sum of contributions
from all possible trajectories (see Section 5.2).

Feynman’s interpretation is also abstract because, unlike in classical mechan-
ics, the sequence of emission and absorption events is not definite. However, this
is not a shortcoming but an advantage of the interpretation, which recognizes that
the sequence of intermediate events is irrelevant. As Feynman says in the passage
quoted above: “no attention need be paid to these matters, as all such alternatives
are automatically contained in (5.28).”

With this fundamental equation, Feynman’s “struggle” to understand the Dirac
equation comes to an end. He has now found the form of representation—the “pic-
ture” in Feynman’s words—a “slight modification” of which would “straighten out
some of the present troubles”.?? At various points in the ‘Space-Time Approach to
Quantum Electrodynamics’, Feynman emphasizes that his fundamental equation is
equivalent to the standard formulation of QED, at least as far as quantitative pre-
dictions are concerned. Therefore, Feynman’s formulation inherits all the diseases,
as it were, from the standard formulation: quantitative predictions for observable
quantities such as the energy of a single electron and a certain type of spectro-
scopic line shifts are infinite and thus at variance in the most extreme possible way
with experience and in fact completely uninterpretable as an observable physical
quantity:

These expressions are, as has been indicated, no more than a re-expression of conventional

quantum electrodynamics. As a consequence, many of them are meaningless. For example,

the self-energy expression [equation numbers] gives an infinite result when evaluated. The

infinity arises, apparently, from the coincidence of the § function singularities in K (4, 3)

and 84 (333). Only at this point is it necessary to make a real departure from conventional

electrodynamics, a departure other than simply rewriting expressions in a simpler form.
(STQED, p. 776)

However, Feynman has now reduced all QED to a fundamental equation that
describes the fundamental process from which all electrodynamic phenomena are
made up. If the whole of electrodynamics is essentially an exchange of photons
between electrons, then the uninterpretable divergences must have their roots in an
inadequate description of that process. No need, then, to search through pages of
complex calculations to find the infinities. All that one has to do is investigate the
fundamental equation.

Accordingly, Feynman identifies the singularities in the Green’s functions that
occur in the equation as the reason for the divergences. He can thus treat the disease
by replacing the §4 function with the smoother function f, an idea that Feynman
borrows from Fritz Bopp and a thesis written by H. McManus under the supervision

22 Dirac Equation a, folio 12, see Section 4.4.
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of Rudolf Peierls.”®> Feynman had already applied this idea in an earlier paper (Cut-
OffCl) in such a way that the resulting modified classical theory of electrodynamics
might be quantized (see Section 5.6.3). Of the quantization, however, Feynman only
published “some preliminary results” (CutOffCl, p. 939), since he still did not have
a “complete picture” (CutOffQ, p. 1430). The “complete physical theory may be
published in the near future”, he wrote (CutOffQ, p. 1430). In STQED, he then tries
to keep his word:

We desire to make a modification of quantum electrodynamics analogous to the modifi-
cation of classical electrodynamics described in a previous article [CutOffCl]. There the
) (3122) appearing in the action of interaction was replaced by f (s122) where f(x) is a func-
tion of small width and great height. (STQED, p. 776)

Feynman’s references in earlier papers such as CutOffCl to later (yet to be pub-
lished) results indicate that the development of his ideas is not necessarily reflected
in the order of publication. It is, therefore, hard to determine whether Feynman first
arrives at his fundamental equation and identifies the §4 function as the cause for
all the problems and then finds a replacement in the cut-off papers; or that, knowing
of a way to remove the divergences arising from the § functions in classical electro-
dynamics, he tries to mould QED into a formulation that will exhibit these types of
divergences.

23 Bopp 1940, 1942, cf. McManus 1948; see footnote 4 of CutOffCl.



Chapter 6
The Field Theoretical Systematization
of Feynman’s Theory

6.1 Widespread Misunderstanding: The Need
for Systematization

Feynman gave the first public presentation of his alternative formulation of quantum
electrodynamics (QED) at a “conference on physics” that was sponsored by the
National Academy of Sciences and held at Pocono Manor, Pennsylvania, United
States, from 30 March to 1 April 1948.! It proved to be a complete disaster! The
audience failed to understand how Feynman could possibly justify his results, even
if it was agreed that the results were correct.

Julian Schwinger gave the preceding presentation, which, despite the fact that it
lasted several hours, was largely appreciated on account of Schwinger’s mathemati-
cal deductions. However, when it came to Schwinger giving a physical interpretation
of his formulae, “the wolves were out, and it was terrible”.? Consequently, Hans
Bethe advised Feynman to restrict his presentation to the mathematical deductions
of his results from the principles of his theory rather than to try to justify those
principles by physically interpreting them. Feynman recalls Bethe saying>:

You’d better explain this thing mathematically and not physically because look how much
trouble Schwinger has every time he says anything physical. (Weiner 1966, p. 34)

Feynman, however, had most probably intended to present his fundamental equa-
tion ((5.28), see Sections 5.6.3 and 5.7) and its interpretation as the fundamental pro-
cess of the exchange of a photon between two electrons. Instead, he found himself
having to deduce his results from a relativistic version of his path integral action.*
This version differed from the one attempted at the end of RMP48 (see Section 3.5)
and would be published only 3 years later.’ At the time of the conference he had

I Wheeler (1948), see also Schweber (1994), Chapter 4 and Chapter 8 (section 10), p. 436ff.
2 Weiner (1966, p. 33); see also Schweber (1994, p. 436).

3 All quotes from Weiner (1966) are reprinted with permission. Copyright 1966, American Institute
of Physics

4 Weiner (1966, p. 34); Wheeler (1948), in particular p. 47; Schweber (1994), in particular p. 440.
5 Feynman (1951).

A. Wiithrich, The Genesis of Feynman Diagrams, Archimedes 26, 141
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probably not even worked out all the details. In any case, only at short notice did
Feynman decide to present his results as the consequence of an action principle and
path integrals.

Bethe’s intentions were surely honourable, but the conference participants failed
to appreciate the presentation. They wanted a justification of the action principle
and were not impressed by Feynman’s single fact that his theory gave the right
predictions. Feynman remembers conversations like the following®:

Feynman: This is a mathematical formula which I will now show you produces
all the results of quantum electrodynamics.

Audience: Where does the formula come from?

Feynman: Never mind where the formula came from, it works. It’s the right
formula.

Audience: How do you know it’s right?

Feynman: Because it gives all the right answers.

Even when Feynman showed, by way of examples, that correct results could,
indeed, be deduced from his formula, his audience demanded a physical justification
for it. This implied that Feynman would have to explain his alternative formulation
by way of path integrals, which would not have been necessary had he started with
the less idiosyncratic solution to Schrodinger’s and Dirac’s equations by Green’s
functions that led to his fundamental equation. Feynman recollects:

“What made you think the formula was right in the first place?” [asked the audience]. So
then I had to go with physical ideas. And then I was much deeper in the soup, because I'd
come at them in the wrong order, and everything was chaotic.

I started to explain about path integrals and all this stuff. [ ...]’

Here Feynman recalls that his physical justification was not appreciated since it
was given after he had presented the action principle. I find it implausible that a
good justification would lose its power to convince only because it was presented in
the wrong order. Rather, I take this episode as confirmation that Feynman’s initial
intention had been to present his fundamental process of photon exchange described
by Green’s functions as the principle of his theory.

During Feynman’s exposition of his formulation of QED by path integrals, the
criticisms did not cease. Edward Teller, for one, was concerned about the exclusion
principle (cf. Section 5.5)3:

Teller: What about the exclusion principle?

Feynman: It doesn’t make any difference in intermediate states.
Teller: How do you know?

Feynman: Iknow, I worked from a—
Teller: How could it be?

6 Weiner (1966, p. 34).
7 Weiner (1966, pp. 34-35).
8 Weiner (1966, p. 35).
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Paul Dirac worried about whether the total probability of all alternative processes
would add up to unity®:

Dirac: Is it unitary?
Feynman: Is what unitary?
Dirac: The matrix which carries you from the present position to the future
position.
Feynman: Ihaven’t got any matrix which carries me from the present position to
the future position, I go forwards and backwards and forwards in time.
So I don’t know.

And Niels Bohr was troubled by whether Feynman’s notion of paths was consistent
with the uncertainty principle. As Feynman recalls:

“Already in 19 something”—1924, *25, or something—*‘we know that the classical idea of
the trajectory in a path is not a legitimate idea in quantum mechanics” and so on. In other
words he [Bohr] [is] telling me about the uncertainty principle, you see, and so on. (Weiner
1966, p. 36)

All these criticisms, in particular Bohr’s, were, to a large extent, due to the fact
that the audience had misunderstood Feynman’s theory. This might not have been
the case had Feynman been able to start his presentation with his fundamental pro-
cess and its description by Green’s functions. These functions would surely have
been familiar to most of the audience, while the physical interpretation of his funda-
mental equation would certainly not have sounded absurd, since it involved familiar
processes of emission and absorption of quanta. The issues raised during Feynman’s
presentation can only to a small extent be seen as genuine criticisms of Feynman’s
theory. Referring to Bohr’s criticism, Feynman recalls:

I mean, it was no trouble. It’s just that he wasn’t understanding at all. And I simply got a

feeling of resignation. It’s very simple, I’ll have to publish this and so on, let them read it
and study it, because it’s right. (Weiner 1966, p. 36)

Later, at the same meeting, Bohr would apologize to Feynman, and Bohr’s son,
Aage, who was also present, would tell Feynman that his father had indeed misun-
derstood parts of Feynman’s exposition.'?

6.2 Dyson Intervenes
In February 1949, before, in September, Feynman’s STQED and ThPos are pub-

lished, a paper by Freeman J. Dyson appears (RadTh) in which he compares
Feynman’s theory to attempts by Schwingerand Sin-Itiro Tomonaga to remove

9 Weiner (1966, p. 35).
10 See Schweber (1994, p. 444).
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QED’s uninterpretable divergences.!! To eliminate the infinities they propose a
method based on the second quantized theory of conventional QED.!?

Although Feynman has not yet published his theory by the time that Dyson’s
paper appears, Dyson is already considerably knowledgeable about Feynman’s the-
ory.!3 Dyson was a visiting graduate student at Cornell University (Ithaca, NY),
where the young Feynman was a member of staff, and the two became close friends
for a time. And Dyson, unlike Feynman, was also familiar with the more conven-
tional method of second quantization (see also end of Section 4.5). Thus Dyson
was able to mediate between Feynman and the community of theoretical physicists,
which was, in general, familiar with second quantization. Feynman recollects:

So Dyson was there and he knew what I was doing. But at that time, I had not
proved in any way [the] relationship [of Feynman’s technique] to the standard quantum
electrodynamics—in other words, what was wanted by many people would have been this][:]
Start with the standard formulation of quantum electrodynamics, with operators, creation
and annihilation operators and all kinds of theoretic things, and you show that as a con-
sequence of that, these rules and these formulas of mine were right. Then you could be
perfectly satisfied. There was only one trouble. The author of the formulas, namely myself
didn’t know anything about creation and annihilation operators and all this correct formu-
lation of electrodynamics, because he never learned it. (Weiner 1966, p. 41)

In his paper, Dyson proves the equivalence of the three approaches taken by
Feynman, Schwinger and Tomonaga, which enables him to use Feynman’s less
complicated procedures to obtain the predictions but then justify the results using
the firmer theoretical foundation of Tomonaga’s and Schwinger’s theory. Feynman
considers such a justification to be superfluous and at best of pedagogical inter-
est to those who were, like most physicists, familiar with second quantization. He
recollects:

He [Feynman] was therefore considerably too impatient to learn all that stuff which he’d
done all this work to avoid, you see, in order to prove to people who happened to have
learned that, that they don’t need it, that the rules are easier, and I felt very strongly that
everything was simpler than the regular formulation, because even Schwinger was working
things out and would write a whole lot of stuff before he got to a point that I could write
down immediately with my diagrams. (Weiner 1966, p. 41)

6.2.1 The Most Appropriate State Vector

Basically the solution to all the problems in QED amounts to finding the solutions to
a Schrodinger equation describing the time evolution of a state vector @. The state
vector contains all the information one can have about the system. The dynamics of

11 Appendix B contains a chronological overview of the relevant publications.
12 See, e. g., Schwinger (1948b); Tomonaga (1946).
13 See, e. g., Schweber (1994, p. 502ff.) and Gleick (1992), sections “Cross-country with Freeman

Dyson” and “Oppenheimer’s surrender”. See also Kaiser (2005), section “The First Apprentice”,
pp. 65-74.
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the system is described by the Hamiltonian of the system. The Schrodinger equation
relates the two elements as follows:

ih[0/0t]® = {/H(r)dr} P, (6.1)

where H (r) is the total energy density of the system.'* The general solution to this
equation is given by an integral involving the Hamiltonian “with @ any constant
state vector”!”:

D(t) = exp {[—it/h] / H(r) dr} Dy. (6.2)

In the non-relativistic Schrodinger equation, which is a differential equation for
the wave function, the derivative is with respect to time. For a relativistic theory,
it is more appropriate to use a derivative with respect to a space-like surface o (r).
The “Tomonaga—Schwinger form of the Schrédinger equation” gives us this form
(RadTh, p. 487):

ihc[d® /3o (r)] = H(r)®. 6.3)

Again, the equation can be solved by multiplying a constant state vector with an
integral that involves the Hamiltonian containing the information on the system’s
dynamics. The definition of a “constant” state vector, however, must also be con-
sistent with relativistic principles. A constant state vector is, therefore, not one for
which “the results of measurements of field quantities at any given point in space are
independent of time” (pp. 487-488). This would be too strong a condition. Rather,
one should only stipulate that a constant state vector describes “a system [consisting]
of photons, electrons, and positrons, traveling freely through space without interac-
tion or external disturbance” (p. 488). To formulate such a definition, Dyson divides
the total Hamiltonian into a part Hp, which describes the energy-density of free
electrons and electromagnetic fields, and a part H, which describes the interaction
between the electrons and the fields:

H(r) = Ho(r) + Hi(r). (6.4)
If a constant state vector ¥ is defined to meet the aforementioned requirements,
the time evolution of a general state vector ¥ depends only on the interaction

Hamiltonian H;. The Schrodinger equation for ¥ thus reads:

ihc[dW/do (r)] = Hy(r)W. (6.5)

14 RadTh has dt instead of dr, the infinitesimal spatial volume element. I assume this to be a
misprint.
15 RadTh, p. 487.
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The Schrodinger equation for ¥ can be solved using a perturbative expansion:
¥ (o) = U(o0)¥, (6.6)

with
U(og) = 1 + (—i/hc)/ ’ Hy(x1) dx1 + (—i/hc)?
0o o(x1)
X / dxi / Hi(x1))Hi(x2)dxy + ... (6.7)

Yy is still not the most appropriate vector to describe the constant state of a
system in the context of electrons, positrons and their interaction with the electro-
magnetic field. This is because there are two relevant types of interaction, namely
the interaction between the particles through an electromagnetic field that they
themselves generate and the effect of an external electromagnetic field on the par-
ticles. To take into account this distinction, Dyson introduces a further division of
the energy density. This time he divides the interaction energy-density H; into an
internal and an external part:

Hi(x0) = H'(x0) + H®(x0). (6.8)

The internal part, H', is given by the electromagnetic current Ju» which corresponds
to the configuration of the electrons and positrons in the system, and the vector
potential A, which corresponds to the configuration of the photons in the system:

H'(x0) = —[1/c]ju(x0) Ay (x0). (6.9)

The external part, H®, describes the external forces, in most cases an external elec-
tromagnetic force described by the potential A}, (superscript “e” for “external”).

For “the most important systems, [those] in which only one particle is actually
present” (p. 489), the most appropriate definition of a constant state vector is a
vector that describes a system devoid of any external electromagnetic influences.
Such a system is not constant in the strict sense of the word because an electron,
say, will virtually create photons as described by H'. Although any observation will
always detect a single (real) electron, a system that contains a single electron at
all times does not exist. It is, therefore, appropriate to define the constant vector
20 as one that includes the effect of H'. The dynamics of a general vector £2 is
then determined by the influence of the external electromagnetic field alone. The
Schrodinger equation for §2 thus reads:

ihc[382/30 (x0)] = (S(0) " HE(x0)S(0)£2. (6.10)

The operator S is the same as U, with H' replacing Hj.
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By using S () VH®(x0)S(0) instead of H(r) in the Schrodinger equation, the
internal interaction or “radiation interaction” (RadTh, p. 489) is incorporated into
the state vector and no longer appears as a factor causing a change in the system’s
state. This definition of a state vector is the most appropriate for systems consisting
of a single particle because their internal interactions are not observable. Such a
state vector describes the interaction of an observable, or physical, electron with an
external electromagnetic potential.

For general systems, however, interpreting the state vector £2 is more subtle:

The elimination of the radiation interaction is hereby achieved; only the question, “How is
the new state vector §2 (o) to be interpreted?”, remains.

It is clear from [(6.10)] that a system with a constant £2 is a system of electrons,
positrons, and photons, moving under the influence of their mutual interactions, but in the
absence of external fields. In a system where two or more particles are actually present,
their interactions alone will, in general, cause real transitions and scattering processes to
occur. For such a system, it is rather “unphysical” to represent a state of motion including
the effects of the interactions by a constant state vector; hence, for such a system the new
representation has no simple interpretation. However, the most important systems are those
in which only one particle is actually present, and its interaction with the vacuum fields
gives rise only to virtual processes. In this case the particle, including the effects of all its
interactions with the vacuum, appears to move as a free particle in the absence of external
fields, and it is eminently reasonable to represent such a state of motion by a constant state
vector. Therefore, it may be said that the operator,

Hr(xo) = (S(0)) ' H(x0)S(0), (6.11)

on the right of [(6.10)] represents the interaction of a physical particle with an external field,
including radiative corrections. Equation [(6.10)] describes the extent to which the motion
of a single physical particle deviates, in the external field, from the motion represented
by a constant state-vector, i.e., from the motion of an observed “free” particle. (RadTh,
pp. 489-490)

However, this definition of state vector is still problematic. The energy-density
H' includes the energy of the electron in its own field and is, therefore, infinite.
Because of that, the operator S has an infinite expectation value in any state: (S)o =
(£2*, $£2) = oco. However, for a constant state vector £2y, it is S(00) 29 = £2¢, from
which the expectation value (S) o, = 1 follows. There is, therefore, no §2¢ that could
satisfy the definition of a constant state vector.'®

This inconsistency can be eliminated by distinguishing between the “bare” mass
of an electron, which it would have if no internal radiative interactions occurred,
and the mass of an observable electron. The inertia of a “bare” electron would be
determined by the mass parameter m implicitly contained in Hy. Such a “bare”
electron, however, does not exist, since internal radiative interactions are inevitable.
The electron always produces virtual electromagnetic fields, positrons and other
electrons, which modify the inertia of the electron; an electromagnetic mass has to
be added to the “bare” mass to describe an observable electron:

16 See RadTh, p. 490.
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The mistake that has been made occurred in trying to represent the observed electron with
its electromagnetic self-energy by a wave-field with the same characteristic rest-mass as
that of the “bare” electron. To correct the mistake, let 6m denote the electromagnetic mass
of the electron, i. e., the difference in rest-mass between an observed and a “bare” electron.
Instead of [(6.4)], the division of the energy-density H (r) should have taken the form

H(r) = (Ho(r) + 8m Y™ (r) By (r) + (Hy (r) — 8m Y™ (1) By (r)). (6.12)

The first bracket on the right here represents the energy-density of the free electromagnetic
and electron fields with the observed electron rest-mass [ ... ] (RadTh, p. 490)

The definition of 2, the state vector that already includes internal radiative interac-
tions, should, therefore, use

HY(x0) = H'(x0) + HS(x0) = H'(x0) — 8m P (r)yr (r), (6.13)

instead of H' alone (¥ (r) = ¥*(r)B).

With (6.10) and the definition and interpretation of the state vector 2, Dyson has
prepared the main ingredients for his presentation of Schwinger’s and Feynman’s
theories in the remainder of the article:

The important results of the present paper up to this point are [equation (6.10)] and the
interpretation of the state vector §2. The [ordinary quantum mechanical] state vector ¥ of
a system can be interpreted as a wave function giving the probability amplitude of finding
any particular set of occupation numbers for the various possible states of free electrons,
positrons, and photons. The state vector §2 of a system with a given ¥ on a given surface
o is, crudely speaking, the ¥ which the system would have had in the infinite past if it had
arrived at the given ¥ on o under the influence of the interaction H L(x¢) alone. (RadTh,
p- 490)

If there is no external force acting on the system, its state vector §2 remains con-
stant; it does not change from the infinite past to any other moment o in space-time:
£2(—00) = £2(0). The state vector ¥ ordinarily used to describe quantum mechan-
ical systems, however, would change, even in the absence of external forces. The
ordinary description would ascribe to the system a different state vector at o than at
—o0. Dyson’s alternative description ascribes the state ¥ (—o0) to the system for all
moments in space-time when no external forces are present.

Dyson’s definition and interpretation of 2 take the infinite past as reference
for a constant state vector. Therefore, his description singles out the time-direction
towards the future. To restore the symmetry between the past and the future, Dyson
defines £2’. The difference, however, is not of great relevance:

The definition of £2 being unsymmetrical between past and future, a new type of state vector
£2' can be defined by reversing the direction of time in the definition of £2. Thus the £’ of
a system with a given ¥ on a given o is the ¥ which the system would reach in the infinite
future if it continued to move under the influence of H(xo) alone. More simply, £2’ can be
defined by the equation

2/(0) = $(00)2(0). (6.14)
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Since §(00) is a unitary operator independent of o, the state vectors £2 and £2’ are really
only the same vector in two different representations or coordinate systems. Moreover, for
any steady state the two are identical [ ... ] (RadTh, pp. 490-491)

6.2.2 Green’s Functions Interpreted as Vacuum Expectation Values

After having defined a suitable state vector and introduced the electromagnetic con-
tribution to the mass of the electron, Dyson is ready to propose the “fundamental
formulas of the Schwinger and Feynman theories” (section V of RadTh). According
to Dyson these are the power series of the Hamiltonian operator Hr, the “effective
external potential energy” (p. 491), (see (6.11) and (6.10)). The Hamiltonian Hr
can be expressed in terms of the Hamiltonian H', which describes the interactions
between the electrons, positrons and photons of the system, and the H€, which
describes the effect of the external forces on the system.

In Schwinger’s theory (or, rather, Tomonaga’s; hence the subscript “7” is added
to the H), the said expression follows from (6.11) and the definition of S(o) and
reads

i o (xo) o(x1)
Hr(xo) = Y (i/hc)" / dx / dx; ...
n=0

—00 —00

U(anl)
x / dxa[H (), [ [H (x2), [H (x1), HE (o)1 .. 1.
(6.15)

Dyson mentions that, using the above power series, Schwinger succeeded in cal-
culating, for example, the magnetic moment of the electron, the results of which
were confirmed by experimental evidence.!” The drawback, however, was the com-
plexity of the formula:

The repeated commutators in this formula are characteristic of the Schwinger theory, and
their evaluation gives rise to long and rather difficult analysis. (RadTh, p. 491)

To obtain predictions from Schwinger’s theory, one has to calculate the matrix
elements of “Ht between states specified by their state vectors £2” (p. 491),
23 Hr$21. According to Dyson, in Feynman’s theory one uses a “mixed represen-
tation” (p. 491): an £2” and an £2 to specify the matrix elements of the Hamiltonian
(subscript “F” for Feynman’s version of the Hamiltonian):

25 Hp$2). (6.16)

17 Schwinger (1948a); RadTh, p. 491.
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Because of the relationship
.Qé* = .Q;S*(oo), (6.17)

which follows from equation (6.14), Feynman’s matrix elements are equivalent to
the matrix element

23 5% (00) Hp$21 (6.18)

between two £2s (no prime!). Feynman’s version of the Hamiltonian Hr and
Schwinger’s version are, therefore, related by

Hr(xo) = §*(00) Hr(x0), (6.19)

that is, Feynman’s Hamiltonian is (S is unitary, therefore SS* = 1)
Hg = $(00) Hr(x) = S(00)(S(0)) ™' H (x0) S(0). (6.20)
Feynman’s fundamental formula, according to Dyson, is the power series of H:

o0

Hr(x0) = Z(i/hc)”[l/n!]/oo dxi / dx,
n:() —00 —00

x P(HS(xg), H'(x1), ..., H'(xy)).

6.21)

P abbreviates the prescription of applying the operators H¢(x) and H'(x), not nec-
essarily in the order in which they appear in the above expression but in the order
determined by the time component of their argument.

Dyson did not intend to provide a close rendition of Feynman’s theory through
the above formula. Rather, it is a version of the Schwinger—Tomonaga theory that
incorporates Feynman’s equal treatment of positive and negative time directions:

In the Feynman theory the basic principle is to preserve symmetry between past and future.
Therefore, the matrix elements of the operator Hr are evaluated in a “mixed representation”.
(RadTh, p. 491)

For further information on Feynman’s theory, Dyson refers the reader to RMP48,
CutOffCl, CutOffQ and Wheeler and Feynman 1945 at the beginning of his article
(in footnote 3) and comments: “These articles describe early stages in the develop-
ment of Feynman’s theory, little of which is yet published.”

In Dyson’s paper, “the Schwinger theory will be carried no further” (p. 491).
Dyson’s aim is to derive Feynman’s results from the quantum field theory of
Schwinger (and Tomonaga). If this can be done, the two approaches are equivalent
as far as quantitative predictions are concerned. The proof consists of calculating,
in the Schwinger—-Tomonaga theory, the transition probabilities from one state to
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another, the aforementioned “matrix elements” of Hg, and showing that, like the
mathematical expressions in Feynman’s theory, they can be brought into one-to-one
correspondence to the diagrams Feynman developed for other reasons.
The ultimate aim is to obtain a set of rules by which the matrix element of the operator [ Hr ]
between two given states may be written down in a form suitable for numerical evaluation,
immediately and automatically. The fact that such a set of rules exists is the basis of the
Feynman radiation theory; the derivation in this section of the same rules from what is

fundamentally the Tomonaga—Schwinger theory constitutes the proof of equivalence of the
two theories. (RadTh, pp. 492-493)

Dyson restricts his proof to transitions from an initial state to a final state with just
one electron, “the most important systems” according to him (p. 489), and where the
interaction of the one electron with an external electromagnetic field is given by the
potential energy

HE(x0) = —[1/c]ju(x0)Aj, (x0). (6.22)
Az (xo) is the electromagnetic four-potential and j, (xo) the charge-current four-

vector. The charge and the current are produced by the electrons and positrons as
described by the relationship

Ju) = iecy )y (x) (6.23)
between the charge-current four-vector and the electron—positron field operators

&(x) and ¥ (x). These are the sums of creation and annihilation operators a and
a weighted by the spinor wave functions ¢ of free electrons and positrons:

Vo (X) =Y bua(X)atu, (6.24)
Vo () =D Pua (X)a. (6.25)

In a similar way the electromagnetic field operator A, (x), which describes the field
produced by the particles themselves, is a weighted sum of photon annihilation and
creation operators, b, and by:

Ap(x) =" (Auu )by + AT, (x)by) . (6.26)

v

The interaction of the particles with that field is taken into account by

H' (x0) = —[1/¢]ju (x0) A . (x0). (6.27)

P(H®(xp), H (x1), ..., HY(xy)) occurring in (6.21) is the sum of products of
the field operators, which are themselves the sums of the creation and annihilation
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operators according to the formulae above. The method Dyson proposes to evaluate
the matrix elements of

P(H®(x0), H'(x1), ..., H'(x,))

is to find a criterion according to which one can determine the products contained
in the sum that would yield zero as a value for the matrix element and consequently
leave them out. The terms giving non-zero matrix elements are then shown to be
expressible as the products of the two basic functions, Dr and Sf, and a factor
depending on the wave function of the initial and the final electron.

Let P, denote the P expression occurring in the nth term of the power series.
Inserting the expressions for H® and H' into P, reveals that it is the sum of prod-
ucts of the operators v/, ¥ and A. The As commute with the s and s and can,
therefore, be grouped together. The ¥s and ¥s have to be chronologically ordered
according to the time-component of their space-time argument x;. P, thus contains
products of type

On = Y (xi) ¥ i)V (i )Y (xi) - U e )Y (i, )Ax ) .- Axj,). (6.28)

In each of the field operators, i, 1} and A, creation and annihilation operators
are contained: the operators in ¥ and 1 describe the creation and annihilation of
electrons and positrons; the operators in A describe the creation and annihilation of
photons. Between two states containing exactly one electron, an operator such as
0, only gives non-zero matrix elements if one annihilation operator annihilates the
electron contained in the initial state, one creation operator creates the electron in
the final state and all the other creation and annihilation operators are paired in such
a way that each created particle is annihilated again. All other Qs appearing in the
sum P, can be dispensed with.

In the remaining Q,s, one can group into pairs the creation and annihilation
operators of an electron or a photon and the two operators creating or annihilating
the electron in the final or initial states without changing the value of the matrix
element, apart from a sign depending on whether the grouping consists of an even or
odd number of permutations. Since one member of each pair is a creation operator
and the other an annihilation operator, the first is contained in a ¥ and the other
in a ¥, or in two As if the particle created and annihilated is a photon. For the
two members of a Y— pair, the time-ordering has to be preserved because of the
prescription P(...). The non-zero matrix elements are, therefore, included in the
matrix elements of all possible products Q/, of paired s, ¥rs and As of Q,:

Q) = e P (x0), ¥ (xry)) . .. PO (xn), ¥ (x,))
x P(A(xs), Axy) ... P(A(xy,), A(xg,)): (6.29)

¢ = %1, depending on whether the permutations that are needed to obtain the pair-
ings are even or odd.

A pair of factors is the sum of products of a creation and an annihilation
operator. Only these terms will give a non-zero contribution to the matrix element in
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which the creation and annihilation operators refer to the same particle. These terms
represent the creation and subsequent annihilation of a particle out of the vacuum.
(The particles in the initial and final states are annihilated and created by two single
factors.) The matrix elements for the paired factors are, therefore, those between
two vacuum states. In other words, this is the “ ‘vacuum expectation value’ of the
operator and has been calculated by Schwinger” (p. 494). “It turns out” that the vac-
uum expectation values of the paired factors (ordered by the prescription P) are the
Green'’s functions K and § that describe electron/positron and photon propagation
in Feynman’s theory (see Sections 5.4.1 and 5.6.3 (5.24)). Dyson denotes K by Sg
and 64 by Dg. Apart from proportionality constants, they equal the time-ordered
vacuum expectation values of the field operators:

- 1

(P (o (x), Yp(yN)o = 5n(x, Y)Sppa(x = ¥), (6.30)
1

(P(Ap(x), Av(¥)))o = EhCSMVDF(x - ). (6.31)

The matrix elements that one needs to take into account are, therefore, of the
form

1 1 -
M=¢T] (Esm - w) I1 <5thF<xs, - xt,.>) VOV Gn)  (6.32)

ik j

with the two single factors, 1/7(xk) and v (x,, ), creating and annihilating the initial
and final electron. The matrix elements of these single factors cannot be given in
a general form since they differ according to the different wave functions of the
electron in the initial and final states. Pairs with i = i,, are not allowed, since in that
case the expression (6.23) for the charge-current operator is incorrect. However,
with the correct expression the vacuum expectation value for these pairs vanishes.
Therefore, one is not making an error by simply leaving them out.

The problem of finding the matrix elements of Hp between two one-electron
states is thus reduced to evaluating Sr and Dr and the matrix elements of the single
factors. One has to do this for all possible Ms, which are obtained by different
choices of pairings and single factors. However, the matrix elements of

P(H®(x0), H'(x1), ..., H'(x,)),

which appear in the expression (6.21) for Hg, other than those obtainable by these
pairing prescriptions, do not have to be considered, since they are zero. In the end
one has to insert all the M's into the expression (6.21) and perform the summation
and integrations. The summation is truncated at a certain value of n, which corre-
sponds to the nth order of approximation in perturbation theory.

This is a general procedure for obtaining the matrix elements of Hg, which,
according to Dyson, is the essential content of Feynman’s theory. However, Dyson’s
article does not end here:
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The problem of calculating the matrix elements of [6.21] is thus in principle solved. How-
ever, in the following section it will be shown how this solution in principle can be reduced
to a much simpler and more practical procedure. (RadTh, p. 495)

6.3 An Algorithm for Pairing Operators

For the “much simpler and more practical procedure”, Dyson introduces prescrip-
tions for translating the mathematical expression M into a symbol containing ver-
tices and two types of lines, such that one M corresponds exactly to one symbol:

Let an integer n and a product P, occurring in [6.21] be temporarily fixed. The points
X0, X1, . . ., X, may be represented by (n + 1) points drawn on a piece of paper. A type of
matrix element M as described in the last section will then be represented graphically as
follows. For each associated pair of factors WP (xp), ¥ (xy;)) with i # k, draw a line with a
direction marked in it from the point x; to the point x,, . For the single factors U (xp), Y (xr),
draw directed lines leading out from x; to the edge of the diagram, and in from the edge of
the diagram to x,, . For each pair of factors (A(xy; ), A(x;)), draw an undirected line joining
the points x;, and x;,. The complete set of points and lines will be called the “graph” of M;
clearly there is a one-to-one correspondence between types of matrix elements and graphs,
and the exclusion of matrix elements with r; = i for i # k corresponds to the exclusion
of graphs with lines joining a point to itself. The directed lines in a graph will be called
“electron lines”, the undirected lines “photon lines”. (RadTh, p. 495)

These prescriptions for translating M into a graph serve to find all the non-zero
matrix elements M to a given P, (RadTh, section IX). First

P, = P(H®(x0), H'(x1), ..., H'(xy))

has to be expanded in terms of s, ¥s and As. Next, “all possible graphs G with
(n 4 1) vertices are now drawn as described [above]”. Dyson is not very explicit
as to how exactly this should be done. Furthermore, when he considers a concrete
example (section X), he only laconically remarks:

Next, all admissable graphs with the three vertices xg, x1, x7 are to be drawn. It is easy to
see that there are only two such graphs, that G shown in Figure 1 [Fig. 6.1], and the identical
graph with x; and x, interchanged. (RadTh, p. 501)

The lack of explications obscures the main function of the diagrams in Dyson’s
procedure for calculating the matrix elements of Hg. A given P, determines a set of

Xo

>
>

Fig. 6.1 Example of a Feynman diagram, or “graph”, which Dyson uses to find the relevant matrix
elements of Schwinger’s and Tomonaga’s theories. Figure 1 of ‘The Radiation Theories of Tomon-
aga, Schwinger, and Feynman’ (RadTh, p. 501)
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vertices xg, . . ., X,. BEach x; is the argument of a ¢, a 1} and an A (A° for xq). There-
fore, on the graphical level, each vertex is the starting or end point of two electron
lines and one photon line. In the entire graph, one electron line has no starting point
(incoming line) and one has no end point (outgoing line). The other electron lines
and all the photon lines connect two vertices to each other. The electron lines “form
one open polygon” (p. 495) in which the direction of the line is never inverted.

From these rather inexplicit graphical prescriptions, a set of possible graphs is
defined. The elements of these graphs can then be translated into mathematical
expressions from which one obtains M:

First, for each photon line joining x and y in G, replace two factors A, (x)A,(y) in P,
(regardless of their positions) by [( %th Flx — y))]. Second, for each electron line join-
ing x to y in G, replace two factors &a(x)wﬁ(y) in P, (regardless of positions) by
[(%SF(X — y))]. Third, replace the remaining two factors P (¥, (z), ¥s(w)) in P, by
lﬁy (z)¥s(w) in this order. [ ...] (RadTh, p. 501)

That the mathematical expressions M can be reduced to a diagram, described by
Dyson as the “graphical representation of matrix elements”, might do away with
the need to write down a long integral expression in some cases, but this is not
at all the main function of the diagrams. This visualization of the mathematical
expressions is secondary. Rather, the most important function of the diagrams is
that the graphical rules of connecting vertices and the subsequent translation into a
mathematical expression form an algorithm to find all the non-zero matrix elements,
and these alone.

Let us now consider the example Dyson gives in the last section of his article.
There the “rules will be used for writing down the terms giving second-order radia-
tive corrections to the motion of an electron in an external field” (p. 501). As a
second-order correction the summation in (6.21) has to be performed up ton = 2.
The second-order correction, J>, is given by a double integral of the matrix elements
of Py:

b =i / dxi / dx P (Ve (0) (72 )ap Vi (x0) AS (x0),

Uy (D) (V) ys s (1) A (x1),
Ve (x2) (V)eg Ve (12) Ay (x2)) - (6.33)

There is one possibility for pairing the two non-external electromagnetic poten-
tials A, (x1) and A, (x2), and two possibilities for choosing a 1} and a ¢ as single
factors (xo cannot be chosen as the argument of a single factor). Thus there are
two “admissible graphs” but they only differ in that x| and x, are exchanged and
therefore yield the same quantitative contribution, so we only need to consider one
of the graphs and finally multiply the result by 2. By following the translation rules
presented above, one obtains the second-order correction in terms of the two single
factors 1/_/ (x1) and ¥ (x3), the external potential AZ (x0) and the Dg and Sg functions:
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L = —i[e’/8hc] / dxi / dxy D(x1 — x2) AS, (xo)
X Y ()Y SE(x0 — X1V SE(x2 — x0) N ¥ (x2). (6.34)

The expression obtained by the procedure involving diagrams of the second-
order correction has some advantages over the equivalent expression in Schwinger’s
theory, but Dyson still finds it hard to evaluate numerically:

The above expression L is formally simpler than the corresponding expression obtained by
Schwinger, but the two are easily seen to be equivalent. In particular, the above expression
does not lead to any great reduction in the labor involved in a numerical calculation of the
Lamb shift. Its advantage lies rather in the ease with which it can be written down. (RadTh,
p. 502)

Dyson tries to establish a fundamental difference in the use of the diagrams in
his and in Feynman’s procedures:

In Feynman’s theory the graph corresponding to a particular matrix element is regarded, not
as merely an aid to calculation, but as a picture of the physical process which gives rise to
that matrix element. For example, an electron line joining x| to x, represents the possible
creation of an electron at x| and its annihilation at x;, together with the possible creation
of a positron at x and its annihilation at xj. This interpretation of a graph is obviously
consistent with the methods, and in Feynman’s hands has been used as the basis for the
derivation of most of the results, of the present paper. (RadTh, p. 496)

Dyson claims that the diagrams are above all a means of practicably facilitating
numerical results. However, if one looks at the passage quoted before, it is clear that
this is only true in a limited sense. The diagrams do not help him to work out the
numerical integration required by L, and neither are the Dr and Sk functions, which
in turn are defined by an integral, more easily evaluated.

In a statement of Dyson’s in a lecture he would give at Cornell University 2 years
later, Dyson gets more to the point concerning the function of the diagrams:

[To calculate M] it is only necessary to pick out from [6.21] the terms which contain the
right combination of elementary emission and absorption operators to annihilate the par-
ticles in [the initial state] and to create those in [the final state]. We shall next describe
a general method of systematically picking out those terms, which is due originally to
Feynman. (Dyson 2006, p. 95)

The diagrams help in finding all the non-zero matrix elements in a way that
ensures that no possibility is omitted and that no possibility is included twice. The
diagrams one can draw starting from P, connect the vertices x; in exactly the same
way as when the operators are paired when expressing P, as the sum of vacuum
expectation values.

6.4 The Diagrams Reduced to Their Essentials

Translating the mathematical expressions into Feynman diagrams allows Dyson to
introduce two further simplifications into his algorithm for calculating matrix ele-
ments. The diagrams make this possible because they are an appropriate articulation
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of the relevant aspects of the phenomena. As such they were constructed by
Feynman. In the field theoretical context in which Dyson now places the diagrams,
the mathematical justification of the simplifications comes first, and the diagrams
become merely an aid for remembering the simplifications.

6.4.1 Disconnected Parts

First, Dyson proves that the disconnected parts of a graph can be dispensed with
when evaluating the matrix elements of Hr. A disconnected part of a graph is a set
of vertices that are connected to each other by at least one line (of any type) but are
not connected by any line to any other vertex of the graph. To prove this, Dyson
considers the simplest type of a disconnected graph, that is, a graph that consists
of two disconnected parts. The part, or subgraph, including the vertex xg, is the
“essential part” (p. 496), since it contains the space-time point where the external
potential acts. This subgraph is called G . The other subgraph, the “inessential part”,
is called G» (see Fig. 6.2).

Since the matrix element to be calculated can be expressed as a pure product (see
(6.32)), the contribution C(G) of the whole graph is the product of the contributions
of each subgraph, thus

C(G) = C(G1)C(G?). (6.35)

Dyson proceeds by showing that the contribution of all possible disconnected graphs
G with the same G is simply the contribution of G . He differentiates between two
cases: first, the vertices corresponding to the arguments x; and x,, of the two single
factors, creating and annihilating the particles in the initial and final states, lie in G,
(see Fig. 6.2a); second, they lie, instead, in G (Fig. 6.2b). The vertices correspond-
ing to the arguments of the two single factors must lie in the same subgraph; if not,
the two subgraphs would not be disconnected.

If the vertices of the two single factors lie in the inessential part G, (Fig. 6.2a),
G, contributes a part of the matrix element of the unit operator between the initial
and final states (see RadTh, p. 496). If one sums up the contributions of all possible
G s, one obtains the complete matrix element of the unit operator between the initial

Lo
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) /~\
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Fig. 6.2 Examples of disconnected graphs (by A. W.). (a) Disconnected graph with the “inessential
part”, G, containing the external lines that correspond to two single factors. (b) Disconnected
graph with the “essential part”, G, containing the external lines that correspond to two single
factors
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and final states. However, this matrix element is zero for the cases considered here
where a reaction takes place, that is, where the initial and final states are different.
Therefore, C(G) is zero for all Gs that have the arguments of the single factor in
the inessential part G.

For the other graphs, with the single factors in G (Fig. 6.2b), the contribution
of all possible G3s is the expectation value in the vacuum of the unit operator. This
is unity and therefore C(G) = C(G)) for all these graphs. Since in the first case
C(G) =0, itis proved that

C(G) = C(Gy) (6.36)

for all disconnected graphs. That is, only the essential part of a graph has to be
considered in quantitative evaluations.

By their graphical elements and the interpretation of these elements, Feynman
diagrams show that one part of the diagram is irrelevant:

The elimination of disconnected graphs is, from a physical point of view, somewhat trivial,
since these graphs arise merely from the fact that meaningful physical processes proceed
simultaneously with totally irrelevant fluctuations of fields in the vacuum. (RadTh, p. 496)

In Feynman’s ‘Space-Time Approach to Quantum Electrodynamics’ (STQED) the
non-inclusion of disconnected graphs only merits a footnote (see Section 5.5). The
example that Feynman cites therein is the “inessential part” of Fig. 6.2b.

6.4.2 Self-Energy Parts

Since Dyson has succeeded in translating the mathematical expressions into a more
appropriate articulation of the description in terms of Feynman diagrams, not only
can he do away with disconnected graphs altogether, he can also achieve yet another
reduction of the description to its essential elements. To this end Dyson defines a
“self-energy part” of a Feynman diagram: A self-energy part is connected to the rest
of the diagram by, roughly speaking, a single line. By deleting a self-energy part
from a Feynman diagram G, one obtains a “reduced graph” Gy; and to any given
Feynman diagram G there is a class of Feynman diagrams related to G¢ by the
addition of self-energy parts (see Fig. 6.3).

To calculate matrix elements, one should take into account all these Feynman
diagrams. Dyson can show, however, that it is sufficient to take into account the
“totally reduced graph” (p. 498) if the translation of the elements of the graph into
mathematical expressions is modified. Dyson explains the procedure as follows:

A “self-energy part” of a graph G is defined as follows; it is a set of one or more vertices not
including xo, together with the lines joining them, which is connected with the remainder of
G (or with the edge of the diagram) only by two electron lines or by one or two photon lines.
For definiteness it may be supposed that G has a self-energy part F, which is connected with
its surroundings only by one electron line entering F at x1, and another leaving F at x; [see
Fig. 6.3]; the case of photon lines can be treated in an entirely analogous way. The points
x1 and xo may or may not be identical. From G a “reduced graph” G can be obtained
by omitting F completely and joining the incoming line at x; with the outgoing line at
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(b)

(d

(€3]

Fig. 6.3 Some of the infinitely many types of graphs that do not have to be explicitly taken into
account if the “totally reduced” graph G (a) is translated into mathematical expressions according
to the modified translation rules of (6.37), (6.38), (6.39), and (6.40). Graphs (b)—(d) show the
insertion of self-energy parts into the incoming line of G, while (e)—(g) show the insertion of the
same self-energy parts into one of the internal lines of Go; graphs by A. W.

x2 to form a single electron line in Gy, the newly formed line being denoted by A [see
Fig. 6.3]. Given G and A, there is conversely a well determined set I" of graphs G which
are associated with Go and A in this way; Gy itself is considered also to belong to I". It
will now be shown that the sum C(I") of the contributions C(G) to the matrix element of
[(6.21)] from all the graphs G of I" reduces to a single term C’(Gy). (RadTh, p. 496)
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For the example that Dyson chooses as a representative case, the necessary mod-
ifications of the translation rules are

¥ (x3) = Ry (x3), (6.37)
¥ (x3) = RiY(x3), (6.38)
Sr(x3 — xq) > S;(xg — X4), (6.39)
Drp(x3 — x4) — D};(X3 — X4), (6.40)

where R; is a constant and S” and D’ are defined by a power series in terms of S
and D (see RadTh, equations 62 and 67). With these substitutions the contributions
of all graphs that differ only in the presence or absence of self-energy parts can be
obtained by following the procedure described in Section 6.2.2 to find the relevant
terms of the matrix element:

As a result of the foregoing arguments, the contributions C(G) of graphs with self-energy
parts can always be replaced by modified contributions C’'(Gy) from a reduced graph Gy.
A given G may be reducible in more than one way to give various Gy, but if the process
of reduction is repeated a finite number of times a G will be obtained which is “totally
reduced,” contains no self-energy part, and is uniquely determined by G. The contribution
C’(Gy) of a totally reduced graph to the matrix element of [6.21] is now to be calculated as
a sum of integrals of expressions like [6.32], but with a replacement [(6.37), (6.38), (6.39),
(6.40)] made corresponding to every line in G¢. This having been done, the matrix element
of [(6.21)] is correctly calculated by taking into consideration each totally reduced graph
once and once only. (RadTh, p. 498)

6.5 Interpreting the Reduced Symbols

Dyson introduces self-energy parts in order to eliminate the infinities related to the
self-energy of the electron. Up to now Dyson’s discussion has centred mainly on
the syntactical level of the two symbol systems: “Feynman diagrams” and “math-
ematical expressions”. Dyson constructs equivalence classes containing infinitely
many graphs: graphs that differ from each other only by disconnected parts and
self-energy parts belong to the same class. Dyson shows that it is sufficient to take
into account only one representative element of a class, the “totally reduced graph”,
instead of infinitely many of them. The mathematical expression that corresponds to
the contribution of the whole class is obtained by applying the modified translation
rules to the representative element. He then goes on to interpret the self-energy parts
of the graph as physical processes and the corresponding mathematical expressions
as a description of the quantitative contribution of those processes to the matrix
elements or, finally, transition probabilities.
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6.5.1 Mass Renormalization

Dyson first considers a particular type of self-energy part, namely those self-energy
parts for which the points x; and x> coincide. Dyson explicitly allows for this pos-
sibility in the passage, quoted above, in which he introduces self-energy parts: “The
points x| and x; may or may not be identical.” If the points coincide, the self-energy
part consists of just this one point (see Fig. 6.4). This type of self-energy part corre-
sponds to the mathematical expression

HS(x) = —8m > (x)¥ (x) (6.41)

(see (6.13)).

Dyson introduces these terms to let the state vector £2 describe a particle with the
observable mass and, as a consequence, finite self-energy (see end of Section 6.2.1).
Otherwise, a consistent definition of an appropriate state vector would have been
impossible. Together with the other terms arising from H' (superscript lower-case
“1”), these terms have, as a net result, an adjustment, or renormalization, of the mass.
One can, therefore, omit the self-energy parts corresponding to all these terms and
compensate the omission simply by replacing the bare mass parameter m with the
observable mass:

The elimination of the graphs with self-energy parts is a most important simplification of
the theory. For according to [(6.13)], H! contains the subtracted part HS, which will give
rise to many additional terms in the expansion of [(6.21)]. But if any such term is taken, say,
containing the factor HS(x;) in the integrand, every graph corresponding to that term will
contain the point x; joined to the rest of the graph only by two electron lines, and this point
by itself constitutes a self-energy part of the graph. Therefore, all terms involving HS are
to be omitted from [(6.21)] in the calculation of matrix elements. The intuitive argument
for omitting these terms is that they were only introduced in order to cancel out higher
order self-energy terms arising from H', which are also to be omitted; the analysis of the
foregoing paragraphs is a more precise form of this argument. In physical language, the
argument can be stated still more simply; since §m is an unobservable quantity, it cannot
appear in the final description of observable phenomena. (RadTh, p. 498)

6.5.2 Introducing a New Type of Vacuum Polarization
Dyson continues with his interpretation of the self-energy parts in section VIII of the

article (RadTh). Apart from the effect taken into account by mass renormalization,
other adjustments expressed by (6.38), (6.39), (6.40) are made to compensate for

/N

Fig. 6.4 Graph (by A.W.) with a self-energy part, with x; and x, identical. The corresponding
reduced graph is the graph of Fig. 6.3a
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the omission of the self-energy parts. According to Dyson, these adjustments take
into consideration the observable effects of the vacuum polarization that the omitted
graphs would represent:

The question now arises: What is the physical meaning of the new functions D, and S, and
of the constant R;? In general terms, the answer is clear. The physical processes represented
by the self-energy parts of the graph have been pushed out of the calculations, but these
processes do not consist entirely of unobservable interactions of single particles with their
self-fields, and so cannot entirely be written off as “self-energy processes”. In addition,
these processes include the phenomenon of vacuum polarization, i. e., the modification of
the field surrounding a charged particle by the charges which the particle induces in the
vacuum. Therefore, the appearance of D, S’F, and R in the calculations may be regarded
as an explicit representation of the vacuum polarization phenomena which were implicitly
contained in the processes now ignored. (RadTh, p. 498)

Dyson distinguishes between several types of vacuum polarization. First of all he
differentiates between external and internal vacuum polarization. For the moment
he is only concerned with the internal type, that is, the one produced without an
external field (p. 498).

Dyson first elaborates on the interpretation of Dy, which he borrows from the
original context of the D function. The D function, Feynman’s 64, is a modifica-
tion and reinterpretation of the mathematical expressions that describe the interac-
tion potential in classical electrodynamics:

To form a concrete picture of the function D', it may be observed that the function
Dp(y — z) represents in classical electrodynamics the retarded potential of a point charge
at y acting upon a point charge at z, together with the retarded potential of the charge at
z acting on the charge at y. Therefore, Dy may be spoken of loosely as “the electromag-
netic interaction between two point charges”. In this semiclassical picture, D, is then the
electromagnetic interaction between two point charges, including the effects of the charge-
distribution which each charge induces in the vacuum. (RadTh, pp. 498—499)

The example Dyson gives is Mgller scattering,'® that is, the scattering of two
electrons, which is, incidentally, the process represented by the “first” Feynman
diagram (see Fig. 5.8). A slightly more abstract form of the diagram is shown in
Fig. 6.5. The change from Dr to Dy, takes into account that the simple exchange
of one photon is not the only process involved. The exchanged photon may, for
instance, produce a virtual electron—positron pair (see Fig. 6.5b). By such processes,
represented by self-energy parts, the strength of interaction between two electrons
is modified. Replacing Dr with Dy in the calculation of the transition probability
amplitude takes into consideration this modification. The replacement compensates
for the omission of graphical elements that describe vacuum polarization processes,
which one usually should include in a description of Mgller scattering. The graphs
that would include the vacuum polarization processes are obtained from the reduced
graph shown in Fig. 6.5a by inserting the self-energy parts into the photon line (see,
for example, Fig. 6.5b).

18 See, e. g., Mgller (1931, 1932); Roqué (1992).
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(a) (b)

Fig. 6.5 The translation of graph (a) into the mathematical expressions for the probability ampli-
tude for Mgller scattering using D gives the amplitude when vacuum polarization is ignored. If
graph (a) is taken to be the “totally reduced graph”, representative of the class of graphs obtained
from it by the insertion of photon self-energy parts, it is translated using D and takes into account
the effects of vacuum polarization. Graph (b) is one of the infinitely many members of the men-
tioned class; graphs by A. W.

The example illustrates that (internal) vacuum polarization effects are entirely
taken into account by replacing Dr with Dy.. However, this and mass renormaliza-
tion were not the only adjustments necessary to compensate for the omission of
self-energy parts. For instance, we saw that Sg should be replaced with Si; when
omitting the self-energy parts. Which physical process does this replacement take
into account? In order to establish an interpretation for Sg, Dyson has to extend the
concept of vacuum polarization:

The complete phenomenon of vacuum polarization as hitherto understood is included in the
above picture of the function D,. There is nothing left for S to represent. Thus, one of the
important conclusions of the present theory is that there is a second phenomenon occurring
in nature, included in the term vacuum polarization as used in this paper, but additional to
vacuum polarization in the usual sense of the word. (RadTh, p. 499)

The symbol system “Feynman diagrams” shows how similar Mgller scattering
(Fig. 6.5) is to another process, namely Compton scattering (see Fig. 6.6). In Mgller
scattering, the function Dr can be readily interpreted as describing the interaction
between two electrons, drawing on the analogy to the function representing the
retarded potential in classical electrodynamics. No classical potential exists that
would suggest a similar interpretation for Sg. But the similarity in structure of the
Feynman diagrams representing Mgller and Compton scattering provides Dyson
with the necessary analogy. As Df in Mgller scattering, so Sg would represent the

(a) (b)

Fig. 6.6 Graphs representing Compton scattering: reduced graph (a) and graph with a self-energy
part (b); graphs by A. W.
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interaction energy in the case of Compton scattering. Since Sp corresponds to an
electron line in the graph, Sf; takes into account the effect of the alterations of the
interaction brought about by electron self-energy parts. Because of the similarity
between the representation of Mgller scattering and Compton scattering, Dyson
conceives of the effect as a type of vacuum polarization, too. Dyson’s representation
and interpretation of Compton scattering are new and have little to do with finding a
more convenient method of calculation. Rather, the new representation of what has
allegedly been known for some time leads him to recognize that he is representing
a new physical content:

The scattering of one electron by another may be represented as caused by a potential energy
(the Mgller interaction) acting between them. If one electron is at y and the other at z,
then, as explained above, the effect of vacuum polarization of the usual kind is to replace
a factor D in this potential energy by D).. Now consider an analogous, but unorthodox,
representation of the Compton effect, or the scattering of an electron by a photon. If the
electron is at y and the photon at z, the scattering may be again represented by a potential
energy, containing now the operator Sr(y — z) as a factor; the potential is an exchange
potential, because after the interaction the electron must be considered to be at z and the
photon at y, but this does not detract from its usefulness. By analogy with the 4-vector
charge-current density j,, which interacts with the potential D, a spinor Compton-effect
density u, may be defined [...]

These spinors are not directly observable quantities, but the Compton effect can be ade-
quately described as an exchange potential, of magnitude proportional to Sg(y — z), acting
between the Compton-effect density at any point y and the adjoint density at z. The second
vacuum polarization phenomenon is described by a change in the form of this potential from
Sr to Sf. Therefore, the phenomenon may be pictured in physical terms as the inducing, by
a given element of Compton-effect density at a given point, of additional Compton-effect
density in the vacuum around it. (RadTh, p. 499)

Through using Feynman diagrams, Dyson understands Compton scattering, that
is, the scattering of a photon off an electron, to be brought about by the absorption
and emission of the photon by the electron. The strength of interaction is modi-
fied by, for instance, the possibility that in the intermediate state the electron may
emit and re-absorb a virtual electron. Replacing Sk with Sj; takes into account this
modification quantitatively.

6.5.3 Charge Renormalization

What remains to be interpreted—after mass renormalization and replacing D and
Sk with Df and Sg—is the last adjustment: introducing the constants Ry, R» and
R3. R occurs when the modified translation rules, needed to take into account the
self-energy effects (see (6.37) and (6.38)), are used; R» and R3 occur when Dl/: and
S{;, which are also needed to take into account self-energy effects, are used instead
of D and S, (see (6.39) and (6.40) and RadTh, equations 62 and 67).

These constants take into account that omitting the self-energy parts does not
only alter the shape of the functions Dr and Sg but also changes their absolute
value. The functions are scaled by the factors Ry, Ry and R3. All three parameters
are infinite, which means that they cannot be interpreted as a physical quantity.
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However, similar to the way in which infinite self-energy effects are cancelled by
introducing an infinite mass parameter ém, the charge parameter e, occurring in the
Hamiltonian that describes the interaction (see (6.9) and (6.23)), is recognized as the
charge of an electron in the hypothetical case of no vacuum polarization (compare
the mass of the “bare” electron). A combination of the parameter e and the infinite
parameters R equals the finite observed charge of the electron. The trading in of the
“bare” charge for the observed charge is called charge renormalization:

In both sorts of internal vacuum polarization, the functions Dy and Sr, in addition to being
altered in shape, become multiplied by numerical (and actually divergent) factors R3 and
R»; also the matrix elements of [6.21] become multiplied by numerical factors such as
R R}. However, it is believed (this has been verified only for second-order terms) that all
nth-order matrix elements of [6.21] will involve these factors only in the form of a multiplier

l n
<€R2R32) ; (6.42)

[...] Here e is defined as the constant occurring in the fundamental interaction [6.9] by
virtue of [6.23]. Now the only possible experimental determination of e is by means of
measurements of the effects described by various matrix elements of [6.21], and so the

1
directly measured quantity is not e but eR; R;. Therefore, in practice the letter e is used
to denote this measured quantity, and the multipliers R no longer appear explicitly in the
matrix elements of [6.21]; the change in meaning of the letter e is called “charge renormal-
ization”, and is essential if e is to be identified with the observed electronic charge. (RadTh,
p. 499)

Dyson’s outlined procedure does not, of course, evaluate the functions Dl’; and
Sg» which will be necessary if the matrix elements of the operator Hg given in (6.21)
are to be calculated. However, by defining the equivalence classes of graphs that
differ only in the insertions of self-energy parts, Dyson has reduced the problem of
evaluating a plethora of mathematical expressions, one from each graph in the equiv-
alence class, to the evaluation of the two single expressions Dy, and Sf. that occur
in the mathematical expression corresponding to the one representative member, the
totally reduced graph. Moreover, the problem of evaluating Dy, and S is of the same
type as the superordinate problem of determining the matrix elements of H:

The determination of the [ D), and S’] is a problem of the same kind as the original problem
of the calculation of matrix elements of [6.21], and the various terms in the [operators of
which D/, and S}, are the vacuum expectation values] must again be split up, represented
by graphs, and analyzed in detail. However, since D). and S’ are universal functions, this
further analysis has only to be carried out once to be applicable to all problems. (RadTh,
p- 500)

6.6 The Removal of the Infinities

In his first paper, ‘The Radiation Theories of Tomonaga, Schwinger, and Feynman’
(RadTh), Dyson was mainly concerned with the proof of equivalence of Schwinger’s
and Feynman’s theories. Having thus clarified Feynman’s method and established its
validity, Dyson turns to a more comprehensive treatment of the problematic infini-
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ties of QED. It is in this second paper, ‘The S Matrix in Quantum Electrodynamics’
(SM), that Dyson clearly demonstrates the power of Feynman diagrams and their
crucial role in completely removing the uninterpretable infinities.

In SM, Dyson extends his systematization of Feynman’s methods to include the
treatment of problems with several particles in the initial and final states, instead
of only one as in RadTh. He also now explicitly presents Feynman’s theory as an
S matrix theory in the tradition of Werner Heisenberg,'® which makes it suitable
for treating scattering problems but not problems involving bound states. When
several particles are involved, the theoretical quantities which are of interest are
the matrix elements of the operator U (00), whereas in RadTh, where Dyson mainly
considered one-particle states, these were the matrix elements of the operator Hp
(SM, section II).

First, in a summary of the discussion of RadTh Dyson states that matrix elements
can be systematically calculated using a one-to-one correspondence between the
elements of a graph and mathematical expressions such as Dg and Sg. Translating
graphs into mathematical expressions is the essential part of the “Feynman rules for
the evaluation of U (00)” (SM, p. 1738).

Unlike in the first paper, in SM Dyson proceeds more systematically to the
problem of eliminating the infinities. While in RadTh removing the infinities and
introducing the new symbol system of Feynman diagrams were, to a large extent,
interlinked, Dyson now clearly separates the two tasks:

The above rules for the calculation of U (co) describe the state of affairs before any attempt
has been made to identify and remove the various divergent parts of the expressions. In
particular, contributions are included from all graphs G, even those which yield nothing
but self-energy effects. For this reason, the rules here formulated are superficially different
from those given for the one-electron problem in Section IX of [RadTh], which described
the state of affairs after many divergencies had been removed. Needless to say, the rules are
not complete until instructions have been supplied for the removal of all infinite quantities
from the theory; in Sections V=VII of this paper [SM] it will be shown how the formal
structure of the S matrix makes such a complete removal of infinities appear attainable.
(SM, p. 1739)

In SM Dyson also mainly uses momentum variables rather than space-time vari-
ables for the first time, an alternative that Feynman had introduced in ThPos and
STQED. However, Dyson’s choice of variables is not my concern here. My aim is
to describe and analyze the function of Feynman diagrams in Dyson’s method, to
which it makes little difference whether Dyson uses momentum or space-time vari-
ables. More important is the fact that Dyson introduces a new equivalence relation
between graphs, which enables him to make the algorithm for evaluating matrix
elements still more effective and allows for fewer redundancies in the diagrams’
articulation of the phenomena.

19 See, e. g., Heisenberg (1943) (cited in RadTh, fn. 5, p. 489).
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6.6.1 The Further Removal of Redundant Symbols

Vertex parts In RadTh, Dyson defines a class of graphs that differ only in the pres-
ence or absence of self-energy parts (see Section 6.4.2). To calculate the matrix
elements, it then suffices to consider the totally reduced graph, that is, the graph
in the class that does not contain any self-energy parts. Now (in SM) Dyson also
incorporates into the equivalence class of a graph all the graphs that differ from it
only by what he calls the vertex parts:

By a “vertex part” of any graph will be meant a connected part of the graph, consisting of
vertices and internal lines only, which touches precisely two electron lines and one photon
line belonging to the remainder of the graph. The central triangle of Fig. 2 [Fig. 6.7b] is
an example of such a part. In other words, a vertex part of a graph is a part which can be
substituted for the single vertex of Fig. 1 [Fig. 6.7a] and give a physically meaningful result.
(SM, p. 1741)

If a graph G’ is obtained from a graph G by inserting a vertex part V into one of
G’s vertices, the mathematical expression M’ corresponding to G’ is obtained from
the mathematical expression M corresponding to G by replacing the y,, associated
with the vertex in G with A, (V, ¢!, 3).

Dyson recalls the similar results implicit in RadTh concerning self-energy
parts: if a graph G’ is obtained from a graph G by inserting a self-energy part
W into one of its internal electron lines, the mathematical expression M’ corre-
sponding to G, is obtained from the mathematical expression M corresponding
to G by replacing the Sp associated with the internal electron line in G with
Se(tH X (W, tHSp(rY). If the electron line is external, a factor &(tl) has to be
replaced with a factor &(tl)Z’ (W, t")Se(t!). If the self-energy part is the special
case consisting of just one vertex (see Fig. 6.4), X (W, t!) is just —27i (8mc/h) =
—27idkg. For self-energy parts W’ inserted into photon lines, the replacements are
Dr(t)IT(W', ) Dp(t3) for De(t3); A, (t3)IT(W', ) Dp(t3) for A, ().

An important feature of these replacements is that they only depend on the type
of vertex part V or self-energy part W or W' inserted and on the energy-momentum
four-vectors ! or 3 associated with the concerned lines. The replacements are

[l
i
i
'
i
'
i
1
'
‘
.

(@ (b)

Fig. 6.7 Introducing the vertex part of a graph (Figures 1 and 2 of SM). (a) The vertex of a graph.
(b) The vertex part replacing the simple vertex of Fig. 6.7a
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universal in the sense that they are the same, irrespective of the graph into which
they are inserted.

Unlike self-energy parts, the treatment of disconnected parts (see Section 6.4.1)
cannot be adopted from RadTh without modifications being made, since, in the more
general case of several particles considered now, not all the disconnected parts can
be regarded as irrelevant:

It was shown in Section VII of [RadTh] that, for the one-electron processes there con-
sidered, only connected graphs needed to be taken into account. In constructing the §
matrix in general, this is no longer the case; disconnected graphs give matrix elements
of U (oo) representing two or more collision processes occurring simultaneously among
separate groups of particles, and such processes have physical reality. It is only permissable
to omit a disconnected graph when one of its connected components is entirely lacking in
external lines; such a component without external lines will give rise only to a constant
multiplicative phase factor in every matrix element of U (oco) and is therefore devoid of
physical significance. (SM, p. 1742)

Furthermore, in contrast to RadTh, Dyson now does not differentiate between an
external electromagnetic potential Aj, (xo) and the electromagnetic field produced
by the particles:

In evaluating U (co) we shall not make any distinction between the external and radiative
parts of the electromagnetic field; this is physically reasonable since it is to some extent
a matter of convention how much of the field in a given situation is to be regarded as
“external”. (SM, p. 1738)

With these provisos and the introduction of momentum variables and vertex
parts, Dyson is ready to extend his algorithm for finding relevant matrix elements to
the general case:

In Section VII of [RadTh], it was shown how self-energy parts could be systematically
eliminated from all graphs, and their effects described by suitably modifying the functions
Dr and Sr. The analysis was carried out in configuration space, and was confined to the
one-electron problem. We are now in a position to extend this method to the whole S matrix
formalism, working in momentum space, and furthermore to eliminate not only self-energy
parts but also the “vertex parts” defined in the last section. (SM, pp. 1742/1743)

As with the self-energy parts already defined in RadTh, Dyson shows that only
the graph without vertex parts has to be considered if the correspondence rules
between the graphical elements and the mathematical expressions are modified.
With self-energy parts this concerned the lines of the graph and the correspond-
ing Dr and Sg; now it is the vertex and the corresponding Dirac operator y,. If
the graphs that differ from the totally reduced graph only in their vertex parts are
omitted, the vertices of the totally reduced graph no longer correspond to a simple
Y, but to an operator A,. Similar to the modifications leading from D to Dy and
from Sk to SI’; (see (6.39) and (6.40)), the following modification is necessary if the
vertex parts are to be omitted":

20 gM, equation 38.
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where AM(tl, £2) is the sum of all AV, t1, 1?)s associated with the insertion of all
possible vertex parts V:

A 1) =" AV ). (6.44)
\4

The generalized replacement rule for the internal electron line is>!:

Se(p') — Sk = Sr(p)) + SF(P) Z(pHSE(p'), (6.45)

where X(p') = YwEW, p') and p' the energy-momentum four-vector associ-
ated with the line. For the internal photon line, the replacement rule is>*:

Dr(p') — D = Dr(p') + Dr(p) I (p') Dr(p), (6.46)

where I1(p') = Sow T (W, p'). For the external lines (ingoing or outgoing elec-

tron or photon), the replacement rules are>3:

kD) — ' (kD) = Sp()Z (DY (k) + ¥ (KD, (6.47)
Uk — 'k = PhH DR SEK) + P (KD, (6.48)
Aukhy —> Al () = Ay (KD IT(K )Y Dp (k) + Ay (kD). (6.49)

where k' is like ¢/ and p', the energy-momentum four-vector associated with the
lines.

In RadTh, Dyson gives a physical interpretation of Si; and Dy, which compen-
sates for the omission of self-energy parts (see Section 6.5). Now he also gives a
physical interpretation for I, which compensates for the omission of the vertex
parts:

The functions D} and S} of [(6.45)] and [(6.46)] are the Fourier transforms of the cor-

responding functions in [RadTh]. The interpretation of these functions in Section VIII of

[RadTh] can be extended in an obvious way to include the operator I,. Since ¥y, ¥ is

the charge-current 4 vector of an electron without radiative corrections, ¥ I, ¥ may be

interpreted as an “effective current” carried by an electron, including the effects of exchange
interactions between the electron and the electron—positron field around it. (SM, p. 1743)

Odd parts Dyson has still not eliminated all the redundancies in the Feynman
diagrams’ articulation of quantum electrodynamic phenomena. In the diagrams’

21 SM, equation 35.
22 §M, equation 36.
2 sM, equation 37.
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symbol system, a theorem proved by Wendell Furry?* is reflected in the omission of
graphs that have, what Dyson calls, “odd parts’:

An additional reduction in the number of graphs effectively contributing to U (0c0) is
obtained from a theorem of Furry [Furry 1937]. The theorem was shown by Feynman to
be an elegant consequence of his theory.

[...]

By an “odd part” of a graph is meant any part, consisting only of vertices and internal
lines, which touches no electron lines, and only an odd number of photon lines, belonging
to the rest of the graph. The simplest type of odd parts which can occur is a single odd
closed loop. Conversely, it is easy to see that every odd part must include within itself at
least one odd closed loop. Therefore, Furry’s theorem allows all graphs with odd parts to be
omitted from consideration in calculating U (c0). (SM, pp. 1743/1744)

The simplest type of even and odd parts are shown in Fig. 6.8.

Feynman had explained the theorem only in passing as being a consequence of
the fact that an electron propagating backwards has the same effects as a positron
propagating ordinarily:

Loops with an odd number of potential interactors give zero. Physically this is because for

each loop the electron can go around one way or in the opposite direction and we must add

these amplitudes. But reversing the motion of an electron makes it behave like a positive

charge thus changing the sign of each potential interaction, so that the sum is zero if the
number of interactions is odd. This theorem is due to [Furry 1937]. (ThPos, fn. 9)

6.6.2 Isolating the Infinities

Dyson has not yet removed all the irrelevant graphs as far as the isolation and even-
tual removal of the uninterpretable infinities are concerned. He shows that only four
types of graph need to be investigated for their divergence properties if one is to be
able to eliminate the divergences from all graphs.

|
I
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(@ (b)

Fig. 6.8 Closed loops with an even or odd number of interactions with a photon of an electro-
magnetic potential (internal or external); graphs by A. W. (a) Even closed loop: two interactions.
(b) Odd closed loop: three interactions

24 Furry (1937).
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To this end, Dyson introduces for the first time the notion of a primitive divergent
graph G and matrix element M:

A divergent M is called “primitive” if, whenever one of the momentum 4 vectors in its
integrand is held fixed, the integration over the remaining variables is convergent. Corre-
spondingly, a primitive divergent graph is a connected graph G giving rise to divergent M,
but such that, if any internal line is removed and replaced by two external lines, the modified

G gives convergent M. To analyze the divergences of the theory, it is sufficient to enumerate
the primitive divergent M and G and to examine their properties. (SM, p. 1745)

Figure 6.9 shows an example of a primitive divergent graph and the convergent
graph that results from replacing the internal electron line with an incoming line
and an outgoing external line. The convergent graph is identical to the first Feynman
diagram representing Mgller scattering (see Figs. 5.8 and 6.5a).

Dyson finds that the divergence properties of M are reflected in a fraction of the
momentum variables contained within it. Accordingly, a convergence condition for
M can be stated in terms of the degree of powers in which the momentum variables
occur in the numerator and denominator. For any primitive divergent graph G with
n vertices Dyson finds the following condition for convergence:

K=2F—-F,—4[F —n+1]>1, (6.50)

where 2 F is the degree of the denominator and F, the degree of the numerator.

The degrees of the relevant denominator and numerator are reflected in the struc-
ture of graph G. This, and the irrelevancy of graphs with odd parts, will allow Dyson
to sort out the relevant graphs:

Let E, and E, be the numbers of external electron and photon lines in G, and let n; be the
number of vertices without photon lines incident. It follows from the structure of G that

2F =3n—n, — E, — E,, 6.51)
Fo=n—}E,, (6.52)

and so the convergence condition [(6.50)]% is

(@) (b)

Fig. 6.9 A primitive divergent graph (a) and a convergent graph (b), which results from replacing
the internal electron line with two external lines; graphs by A. W.

25 The original text refers the reader to the wrong equation, that is, equation 52 instead of equa-
tion 54 in SM.
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3
K:EE9+Ep+n_g—4zl. (6.53)

This gives the vital information that the only possible primitive divergent graphs are those
with E, = 2, E, = 0,1, and with E, = 0, E, = 1,2, 3, 4. Further, the cases E, = 0,
E, =1, 3, do not arise, since these give graphs with odd parts which were shown to be
harmless in Section IV. (SM, p. 1746)

The graphs that Dyson thus identifies as problematic represent physical pro-
cesses that are well-known to physicists, for instance, light-by-light scattering (cf.
Section 2.1):

The possible primitive divergent graphs that have been found are all of a kind familiar to
physicists. The case E, = 2, E, = 0 describes self-energy effects of a single electron;
E, =0, E, = 2 self-energy effects of a single photon; E, = 2, E,, = 1 the scattering of a
single electron in an electromagnetic field; and E, = 0, E,, = 4 the “scattering of light by
light” or the mutual scattering of two photons. (SM, p. 1746)

The convergence condition (6.53) also shows that the divergences are of three
weak types, which assures Dyson that he is on the point of isolating the problematic
divergences. And if a way can be found to eliminate the latter, then all the possibly
occurring infinities in QED can also be removed:

Further, [(6.53)] shows that the divergence will never be more than logarithmic in the third
and fourth cases, more than linear in the first, or more than quadratic in the second. Thus it
appears that, however far quantum electrodynamics is developed in the discussion of many-
particle interactions and higher order phenomena, no essentially new kinds of divergence
will be encountered. This gives strong support to the view that “subtraction physics”, of the
kind used by Schwinger and Feynman, will be enough to make quantum electrodynamics
into a consistent theory. (SM, p. 1746)

The next step in isolating the problematic infinities is to rewrite the divergent
quantities as a power series using momentum variables. Then, according to the
degree of divergence, the infinities will be contained in the logarithmic, the con-
stant, or the linear term of the power series. The rest of the series will be a finite
quantity, and an unambiguous separation of the infinities from the finite parts of the
problematic expressions will be achieved.

The primitive divergent graphs representing light-by-light scattering are easily
done, since, on closer inspection, they are not divergent at all. The above proce-
dure to sort out the relevant graphs was thus not restrictive enough. Dyson provides
his own proof that the graphs representing light-by-light scattering to lowest order
are not divergent but mentions that this has been shown before by Hans Euler and
B. Kockel?® (cf. Section 2.1).

Dyson is also well-prepared to isolate the infinities in the other three types of
primitive divergent graphs:

The three remaining types of primitive divergent M are, in fact divergent. However, these

are just the expressions which have been studied in Sections III and IV and shown to be

completely described by the operators A, X', and IT.
[...]

26 SM, fn. 9; Euler and Kockel (1935); Euler (1936).
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[If] some means can be found for isolating and removing the divergent parts from A,
X, and [T, the “irreducible graphs” defined in Section IV will not introduce any fresh diver-
gences into the theory, and the rules of Section IV will lead to a divergence-free S matrix.
(SM, p. 1747)

Even after having separated the infinite from the finite parts in A,, X and IT,
the infinities cannot yet be satisfactorily removed. Omitting the infinities at this
stage would leave as finite only a very crude approximation of what is believed to
be the correct interpretable expression for I',, Si; and Dy, determined by A,, X
and I7 (see (6.43), (6.45) and (6.46)). To obtain increasingly better approximations,
the separation has to be conducted repeatedly, since self-energy or vertex parts can
be reintroduced into the lines and vertices of, for instance, the electron self-energy
parts, omitted and compensated by Sf, and in the lines and vertices of the newly
introduced parts again, and so forth. As the appropriate elements have been parsed,
the same steps can be repeated again and again and no new difficulties will arise:

The task remaining is to complete the formulas [ ... ], which show how the infinite parts can
be separated from the operators I, S/F and D}, and to include the corrections introduced
into these operators by the radiative reactions which they themselves describe. In other
words, we have to include radiative corrections to radiative corrections, and renormaliza-
tions of renormalizations, and so on ad infinitum. This task is not so formidable as it appears.
(SM, p. 1749)

The infinite parts of the operators I'y,, Sg. and Dy, are dropped at each stage of the
procedure, and the finite part will approach the exact solution more closely the more
frequently the steps are repeated.?” However, Dyson still needs to explain why this
procedure will end in a correct, as well as finite, result. After all, he is discarding
terms that were derived from the theory’s basic equations. Such a procedure could
be suspected of being arbitrary, and indeed similar methods came to be known pejo-
ratively as “subtraction physics” (a term that also Dyson uses in one of the above
quotations).

Dyson justifies his method of subtracting the infinities by pointing out that dis-
pensing with the infinities corresponds to replacing the mass and charge parameters
in the basic equations of the theory with their empirical values:

It is necessary finally to justify the dropping of the divergent terms. This will be done by
showing that the “true” I, Sf and D', which are obtained if the divergent terms are not
dropped, are only numerical multiples of those obtained by dropping divergences, and that
the numerical multiples can themselves be eliminated from the theory by a consistent use
of the ideas of mass and charge renormalization. (SM, p. 1750)

The exact expressions for I, Sl’: and Dy, that is, the modified operators that
would compensate for all omitted self-energy and vertex parts, are those expressions
that, in a further step of the approximation procedure, would no longer change their
values. These operators are infinite. The finite operators I',1(e), Slél (e) and Dl/:1 (e)

27 sM, p. 1750.

28 See, e. g., Miller (1995), Section 4.7 and Schwinger (1983, p. 330). The expression seems to go
back to Pauli’s “Subtraktionsphysik™ and “Limes-Akrobatik™ (quoted in Miller 1995, p. 66).
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are obtained by dropping the infinite parts at any stage of the procedure and stopping
the procedure after a finite number of steps. The difference between the finite and
infinite operators, however, is only one of the (infinite) multiplicative constants Z1,
Zy or Z329:

Iy=Z ' Tue, (6.54)
She = Z28h (e1), (6.55)
D = Z3D) (). (6.56)

Here e; is the “true” (SM, p. 1750) electronic charge and the Zs will be determined
such that their combination with the theoretical charge parameter e will give ey,
that is,3°

e1 = 77'2,7) . (6.57)

Dyson proves that by choosing the appropriate Zs and the mass parameter ém,
the I',, Sg and D of (6.54), (6.55), (6.56) do indeed “reproduce themselves”
(p- 1750) and are thus proved to be the correct expressions. The parameter m
had already been introduced in3! and been shown to correspond to a special type
of self-energy part (see Section 6.5.1). Dyson now uses §kp, which is the same
parameter in different units: 89 = &m c/h. The infinite parameters I,, Sg and
Dy; compensate for all the self-energy and vertex parts representing the myriad of
inevitable virtual processes in the unobservable intermediate state of any observable
process. The quantitative effect on matrix elements, or transition probabilities, of
these virtual processes are all contained in the Zs:

[If] Zy, Z2, Z3, 8k are defined by [...], it is established that [(6.54), (6.55), (6.56)] give
the correct forms of the operators I',, S and D', including all the effects of the radiative
corrections which these operators introduce into themselves and into each other. The exact
Egs. [(6.54), (6.55), (6.56)] give a much simpler separation of the infinite from the finite
parts of these operators than the approximate equations [i. e. the separation in one single
step in the procedure]. (SM, p. 1752)

Now Dyson can interpret the Zs that occur in the exact expressions for the infinite
quantitative effect of the virtual processes on transition probabilities as a replace-
ment of the theoretical charge parameter e by the empirical value of the charge. This
is possible since, as Dyson shows, the Zs occur only in the particular combination

1
z"Z Z32n, where n is the number of steps in the iterative procedure. Because of
(6.57) the inverse of this combination equals the nth power of the (infinite) ratio of
the theoretical charge parameter e to the empirical value e;:

29 SM equations 83-85.
30 SM, equation 86.
31 RadTh.
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By renormalizing the charge to its empirical value, the problematic infinities are
finally eliminated in a satisfactory manner:

If now e is identified with the finite observed electronic charge, there no longer appear any
divergent expressions in M. And since M is a completely general constituent of U (c0), the
elimination of divergences from the S matrix is accomplished. (SM, p. 1752)

The infinities of QED had, since its first versions, threatened to make the theory
uninterpretable, while how one should remove the infinities satisfactorily had been
a long-standing and seemingly unsolvable problem. So the ease with which Dyson
solves the problem can, therefore, come as a surprise:

The surprising feature of the S matrix theory, as outlined in this paper, is its success in

avoiding difficulties. Starting from the methods of Tomonaga, Schwinger and Feynman, and

using no new ideas or techniques, one arrives at an S matrix from which the well-known
divergences seem to have conspired to eliminate themselves. This automatic disappearance

of divergences is an empirical fact, which must be given due weight in considering the
future prospects of electrodynamics. (SM, p. 1754)

However, the ease with which Dyson finally removes the infinities is entirely
comprehensible if one takes into account the importance of providing an appropri-
ate symbol system: Dyson adopts and transforms Feynman’s diagrams so that they
articulate the elements and their combinations that are responsible for the infinities.
Consequently, once an appropriate symbol system has been formulated, the disap-
pearance of the divergences is, as Dyson rightly says, “automatic”. The divergences’
“conspiracy” is finally revealed and perceived so clearly that it appears to be “an
empirical fact”.



Chapter 7
The Development of a New Means
of Representation: Goals and Milestones

Two of the principal aims of this study were to reconstruct the route that led Feyn-
man, between approximately 1946 and 1948, to devise his new method of diagrams
and to evaluate what was achieved. In the preceding sections I showed how Feynman
developed his diagrams in a series of comprehensible steps, and that his primary
consideration was to solve important theoretical problems of the theory of quan-
tum electrodynamics (QED) as it then stood. This goal was finally achieved to a
satisfactory extent by Freeman J. Dyson’s systematization of Feynman’s results.

7.1 The Search for Solutions to Theoretical Problems

Feynman did not take his search for alternative means of representation and inter-
pretations of well-known equations to be an academic gimmick, nor was his main
aim to speed up calculation procedures. As he wrote in a letter to his former student
friend, Theodore Welton, Feynman hoped to find an alternative means of representa-
tion that would solve some of the theoretical problems of the time (see, Section 4.4):

Of course, the hope is that a slight modification of one of the pictures will straighten out
some of the present troubles. !

In this quote, Feynman was referring to the problematic divergences which had
so far beset all attempts at finding a relativistic quantum theory for electrons and
their interactions, that is, QED. Every time physicists had tried to use such a theory
to calculate observable quantities to a greater precision than the leading-order con-
tribution in the relevant quantities’ perturbative expansion, the results had proved
infinite and so could not, as intended, be interpreted as observable quantities.

Feynman’s strategy to solve this problematic state of affairs was to find an alter-
native means of representation, or “picture” as he called it, that would meet two
specific requirements: first, one should be able to identify the assumptions that were
responsible for the contradiction between the derived results and the observed values
or general theoretical principles by using the new means of representation; and, sec-

! Dirac Equation a, 12, see Fig. 4.16.

A. Wiithrich, The Genesis of Feynman Diagrams, Archimedes 26, 177
DOI 10.1007/978-90-481-9228-1_7, © Springer Science+Business Media B.V. 2010
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ond, it should also be possible to modify the theoretical content so that derivations
of such inconsistent results could be ruled out.

7.2 Elaboration of a Well-Known Interpretation

The central part of the pathway to the discovery of Feynman diagrams began with
Feynman’s representation of the quivering motion of the electron, which, according
to Gregory Breit (1928) and Erwin Schrodinger (1930), is the proper physical inter-
pretation of the Dirac equation. Feynman considered the one-dimensional case and
used the two components of the wave function to describe the quivering back and
forth motion of the electron in this one spatial dimension. By using his innovative
representation of the electron, Feynman showed that only electrons behaving in a
way that is allowed by the Dirac equation could be represented. This makes his
representation a model, or model system, of the Dirac equation, in the sense, albeit
roughly, of present-day philosophy of science (see, e. g., Cartwright 1983 and Giere
1996). Feynman’s model is an elaboration of Breit’s and Schrodinger’s interpreta-
tion of the Dirac equation.

Feynman described the aforementioned electron in much the same way as one
would usually use the wave function to describe the two spin degrees of freedom
of the electron. In Feynman’s description, the wave function is composed of the
contributions of all possible paths by which the electron can reach the end point
of its motion. The contributions of the individual paths depend on the number of
changes in direction that the electron makes between the starting and end points
of its motion. Feynman displayed graphically some representative cases of zigzag
paths and, using this graphical representation, uncovered a regularity that allowed
him to determine the contribution of all possible paths (see Section 4.1.3).

To make predictions about the model system of the quivering electron, one needs
to know the probability of the electron travelling from the origin of the coordinate
system to a given point P. In order to determine this quantity, it is important to
know what kinds of possible zigzag paths exist from the origin to P , and how many
reversals of direction occur in a given path. Feynman constructed the wave func-
tion of the electron by weighting each reversal by a factor i€ and by summing the
contributions of all the paths. The absolute square of the wave function yielded the
desired probability. Thus, Feynman solved the Dirac equation “by path counting”
(see number 1 in Fig. 7.1).

7.3 Problematic Attempts to Generalize First Results

The next step saw Feynman attempting to integrate positrons into his model of the
quivering electron. Positrons are the antiparticles of electrons, and their existence
provided a solution to the interpretational problems posed by the states of negative
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Fig. 7.1 Feynman’s interpretation of the one-dimensional Dirac equation as a superposition of the
zigzag paths of an electron (Dirac Equation b, folio 10, ca. 1946, same folio as in Fig. 4.2, reprinted
with permission of Melanie Jackson Agency, LLC)
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energy predicted by the Dirac equation.” Taking as his basis an idea that John A.
Wheeler, his PhD supervisor, had communicated to him in the autumn of 1940,
Feynman conceived of the positron as an electron moving backwards in time.> As
a consequence, Feynman also had to consider paths that are directed backwards in
time in his representation of the model, in particular paths that go twice through one
point, which Feynman called “closed loop[s]” (see Fig. 7.2).

Feynman justified the Dirac equation by pointing out that it results from the
superposition of the effects of the zigzag paths. Such a justification required that the
number of possible paths could be determined and the contributions of all possible
paths added to one another. The existence of closed loops made this impossible, at
least at first sight: there were infinitely many paths and their contributions would
not diminish in order to yield a finite value when added to one another. However,
Feynman recognized that the existence of a path featuring a closed loop implies
the existence of a path in which the closed loop is circumscribed in the opposite
direction and that the contributions of the two paths would cancel each other out:
“any completely closed loop cancels” (see Fig. 7.2, number 1). Therefore, it was
not necessary to take into account the paths featuring closed loops and the pro-
cedure for solving the Dirac equation by counting paths was applicable, just as
in the previously considered case of electrons and paths going only forwards in
time.

Feynman proved the irrelevance of closed loops by diagrammatic induction (see
Section 4.6.2 and Appendix A). Of course, he could not draw the abstract concept
of what, in general, constitutes a closed loop; he could only draw instances of the
“closed loop”. However, Feynman’s drawings show that every loop is always com-
posed of the same elements.

As far as an individual element is concerned, Feynman knew that the sign of its
contribution would change if the path is circumscribed in one or the other direction.
Using some examples, Feynman tested his claim that the contributions of a closed
loop that is circumscribed first in one direction and then in the other direction can-
cel each other out. Because in Feynman’s drawings it is clear that the individual
elements of a complex closed loop also yield contributions with the opposite sign
(depending on the direction of the path), the claim proved to be valid for the gen-
eral case, which is simply a composition of these individual elements (see Fig. 7.2
and 7.3, in particular number 2).

Feynman’s next goals were to generalize his model of the quivering electron to
more than one particle and also to describe their interactions. The Dirac equation
takes interaction into account only indirectly: an electron generates an electromag-
netic field, which acts on another electron. Again, Wheeler was influential in this
respect: Feynman based his ideas on earlier work that he had done with Wheeler

2 See, e. g., Dirac (1935, p. 271); cf. Dirac (1930).

3 Schweber (1986a, p. 460); Schweber (1994, pp. 387/388); Feynman (1966, pp. 702, 705, 706);
Weiner (1966, p. 32).
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Fig. 7.2 Incorporation of positrons, which are represented as electrons going backwards in time,
into the model of the quivering electron, as in the Dirac equation; and proof that closed loops do
not have to be taken into account. (Space-Time Approach to Quantum Electrodynamics, folio 5. ca.
1947, same folio as in Fig. 4.19, reprinted with permission of Melanie Jackson Agency, LLC)
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Fig. 7.3 A closed loop
composed of other closed
loops; identical to Fig. 4.24

on classical electrodynamics,* from which Feynman had learned that the mediation
of the interaction by a field might account for the divergence problems. It is then
easy to understand why Feynman gave up working with the Dirac equation and
instead tried to take into account the interaction directly, just as he did when working
on classical electrodynamics with Wheeler. However, he was dissatisfied with the
results, mainly because he was only able to extend his model to the special case of
an interaction that vanishes after a certain time; “this stinks” Feynman commented
(see Section 4.7.2).

7.4 Abandoning the Search for a Microscopic Justification

Because Feynman was unsuccessful in his attempts to incorporate interaction satis-
factorily, he did not continue working with the model of the quivering, backward-
and forward-moving, electron, the movements of which are unobservable, since
the area over which the electron moves is so small. Feynman’s published articles,
however, show that he did not completely give up his attempts to justify the Dirac
equation by constructing a model system. The difference is only that he now pursued
his goal on a less microscopic level. Instead of trying to explain the propagation of
an electron, which the Dirac equation describes, by a superposition of microscopic
zigzag paths, Feynman turned to a more abstract means of representation: Green’s
functions.

From his war-related work, Feynman knew very well how, using Green’s func-
tions, one can construct solutions to differential equations.> He now applied the
methods that he used during the war, to calculate, for instance, neutron diffusion,
to the Schrodinger and Dirac equations. In contrast to the treatment of the Dirac
equation described above, Feynman no longer tried to give a more detailed account
of the free propagation of an electron from one point to the other; this remained

4 Cf. Wheeler and Feynman (1945, 1949).
3 Cf. Galison (1998).
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unanalyzed. Rather, by means of the Green’s functions and the established method
of perturbative expansion, he was able to represent the interaction of an electron in
an electromagnetic field as a sequence of free propagations that are interrupted by
infinitesimal amounts of disturbance by the external potential. In order to determine
the total effect of the potential, Feynman integrated over all the space-time points
where an infinitesimal interaction with the potential occurs (see Section 5.3).

Feynman’s first published graphical representations were in the tradition of quan-
tum theoretical wave mechanics: an incoming probability wave is scattered off a
potential and produces a modified outgoing wave (see Fig. 7.4a). Even within this
first publication (ThPos), the graphical representations become increasingly more
abstract. In subsequent figures, the wave-mechanical elements are dropped, and
simple lines represent the propagation of electrons and positrons. A circle or disc
indicate the region in which the electromagnetic potential acts on the particles (see
Fig. 7.4b). This figure also shows that Feynman was including the case of more
than one particle in his considerations—though not yet with interactions. At this
stage in the construction of his theory, Feynman assumed that free propagation is
disturbed only by external potentials, not by potentials produced by other particles
in the system under consideration.

It is only in his next publication (STQED) that Feynman succeeded in adequately
(for him at any rate) describing the interaction between two electric particles. To
obtain such a description he took as his basis the classical mathematical expression
for the potential and reinterpreted it as a Green’s function describing a quantum of
the electromagnetic field: a photon. Feynman also adopted and interpreted innova-
tively not only the classical mathematical expression for the potential by which two
electric particles interact but also its graphical representations. Wheeler and Feyn-
man had used such representations in their alternative theory of electrodynamics
(see Fig. 7.5a), and Feynman had also used such representations in his first attempts
to incorporate the interaction between particles (see Fig. 7.6, number 1).

SCATTERED
WAVE K(2,3)
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Fig. 7.4 (a) shows the representation of the scattering of an electron in the tradition of quantum
theoretic wave mechanics (Figure 1 in ThPos); (b) the propagation of an electron and a positron
through a region where an electromagnetic potential is present (detail of Figure 4 in ThPos); cf.
Figs. 5.1 and 5.4
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Fig. 7.5 (a) shows the representation of the retarded and advanced potentials between two elec-
trons according to the Wheeler—Feynman theory of electrodynamics (Figure 3 in Wheeler and
Feynman 1949); (b) the fundamental interaction of QED (Figure 1 in STQED); see Figs. 4.30
and 5.8

7.5 The Successful Modification of the Theory

7.5.1 Feynman’s Proposal

With the innovative interpretation of the classical interaction as a propagation of
a light quantum, Feynman fulfilled his aspiration to find a “picture”, the “slight
modification” of which would remove the theory’s problematic infinities. He had
now reduced all QED processes to the propagation of electrons, positrons and
photons. All QED processes are composed of the fundamental process shown in
Fig. 7.5b. Feynman had thus found what he had been looking for ever since he
began his “struggle” to understand fully the Dirac equation: a means of represen-
tation that makes explicit which features of the theory can be held responsible for
its divergence problems. If the entire theory of QED is essentially made up of one
fundamental process, an appropriate modification of this process should suffice to
eliminate the problems. Again, Feynman’s knowledge of similar classical cases was
important: he knew from classical electrodynamics that the divergences could be
avoided if the & function, which represents the classical interaction potential and
which is centred around one of its arguments, was replaced with a more extended
function.®

6 Bopp 1940, 1942, McManus 1948, cf. see also footnote 4 in CutOffCl.
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Fig. 7.6 The classical interaction potential between two particles in one spatial dimension (Dirac

Equation h, folio 5, ca. 1947, same folio as in Fig. 4.29, reprinted with permission of Melanie
Jackson Agency, LLC)

7.5.2 Critique

The community of physicists working at the time received Feynman’s modified
theory of QED, with which Feynman intended to solve the problems of the then
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current theory, sceptically and had a hard time understanding what it was all about;
at least this is what we learn from an interview conducted with Feynman in the
1960s.” However, the main reason for the sceptical attitude of most physicists was
not Feynman’s extensive use of diagrams but rather the obsolete theoretical prin-
ciples on which Feynman had based his theory. For instance, Feynman understood
that, like in quantum mechanics, wave functions are probability amplitudes for the
position of a particle. However, the theory of QED of the time was a theory that
had been quantized a second time, that is, the wave function had been replaced with
an operator-valued field, the quanta of which are electrons and positrons (just like
photons are the quanta of the electromagnetic field). In a lecture he gave 2 years
after Feynman’s first two publications had appeared, Dyson pointed out that the
flaw in Feynman’s theory was that it was a “particle theory” (see Dyson’s quote in
Section 1.4.1, p. 10).

7.5.3 The Systematization of Feynman’s Method

It is Dyson who rescued Feynman’s diagrams from their obsolete theoretical con-
text. He began to interpret them in the context of 1940s state-of-the art quantum
field theory and eventually brought them to fruition. Dyson exploited Feynman’s
representation of all QED processes as complex combinations of the fundamental
element in order to remove the theory’s problematic divergences. However, unlike
Feynman, Dyson did not simply modify the description of the fundamental interac-
tion. He identified several basic elements and held their combination to be responsi-
ble for the divergences. Dyson was then able to show that the repeated introduction
of these problematic elements into the representation of a given but simpler process
led to the infinite quantities.

Furthermore, Dyson showed that these infinities disappear if one recognizes that
the elements of the simplest graphical representation of a process are meaningless.
For instance, a line and the corresponding Green’s function do not represent the
propagation of a free electron, since a “free” electron is always interacting with vir-
tual electrons, positrons and photons or even other types of virtual particles. These
virtual processes are represented by certain types of elements that are inserted into a
basic Feynman diagram (see Fig. 7.7). Dyson demonstrated that, in order to take into
account that a completely free electron does not exist, one must redefine the mass
and charge parameter used in the definition of the Green’s function. This method
became known as renormalization.

Through mass and charge renormalization, the inert, that is force-free, state of a
particle is redefined. For instance, one defines the energy of a free electron as the
observed (finite) energy of an electron, which necessarily includes the virtual pro-
cesses, such that the electron is not free in the strict sense of the word. Through the
renormalization of the mass and charge, the uninterpretable infinities are absorbed

7 Weiner (1966); see also Schweber 1994.
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(b)

(d)

Fig. 7.7 Insertion into the basic diagram (a) of elements that are responsible for the theory’s diver-
gences; identical to Fig. 6.3.
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into unobservable theoretical parameters, and thus no longer pose any interpreta-
tional problems.

7.6 The Explanatory Power of the New Means of Representation

Both Feynman and Dyson maintained that a large part of their work was a mere
reformulation of known theoretical content.® However, reformulating the problem-
atic theoretical content was essential to finding the solution to the theory’s theoret-
ical problems. The representation of QED phenomena that was eventually estab-
lished by Dyson revealed that the concept of a completely free electron is meaning-
less. Once this was taken seriously, the problematic infinities disappeared.

Drawing on the preparatory work undertaken by Feynman, but also by Julian
Schwinger and Sin-Itiro Tomonaga, Dyson was able to provide an adequate model
of QED’s well-known fundamental equations, a model, that is, “from which the
well-known divergences seem to have conspired to eliminate themselves” (see Sec-
tion 6.6.2).

Feynman provided the appropriate “parsing” of the QED processes into combina-
tions of a fundamental process. Dyson complemented Feynman’s parsing by intro-
ducing new types of elements: self-energy parts and disconnected parts. With these
elements in hand, Dyson could then explain the origin of the infinities: they arose
from the fact that QED processes are fractal-like combinations of these elements. In
order to remove the infinities, it then sufficed to redefine the interpretation of these
basic elements so that they already included the insertions, which were repeatable
ad infinitum. Physically, this corresponded to a redefinition of the theoretical mass
and charge of a free electron.

The whole of Dyson’s analysis, however, presupposes a specific and non-
traditional representation of QED processes. When one is using Feynman diagrams,
one implicitly claims that the QED phenomena have a certain structure. Only on the
basis of this specific structure could Dyson give reasons for the existence of infinities
and explain how to remove them. In that sense, the development of an appropriate
means of representation was part and parcel of the solution to the divergence prob-
lems.

Dyson did not subtract the infinities from the theoretical predictions with the sole
justification that the predictions should match the empirical data and be consistent
with theoretical principles. To some extent, the model of QED phenomena that he
provided using his specific representation explains why there were uninterpretable
divergences in the unmodified theory, while also explicating the physical content
inherent in the modification of the theory.

8 For example, “simply rewriting expressions in a simpler form” (STQED, p. 776); “using no new
ideas” (SM, p. 1754); “[Tomonaga, Schwinger, and Feynman] kept the physical basis of the theory
precisely as it had been laid down by Dirac, and only changed the mathematical superstructure”
(Dyson 1965, p. 589).
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It remains to be investigated in more detail to what extent Feynman diagrams are
an instance of a pattern that can be generalized to other cases in the history of science
in which problems are not solved in the usual sense of the word but are rather made
to disappear by using a symbol system that appropriately represents an adequate
model. I surmise that it should be possible to show, more explicitly than I have
done in this dissertation, that, using the symbol system of old QED, one can express
what could be seen as the force-free motion of a completely isolated electron. As
no physical system corresponds to such an expression, one could then conclude that
the symbol system of the new theory of QED is superior to the old symbol system
because it does not allow for such an expression and thus clearly reveals that the
concept of a completely isolated electron is meaningless. And because the mean-
ingless concept was eliminated through the use of the new means of representation,
the disappearance of the divergence problems, to which it gave rise, was, as Dyson
wrote, “automatic”.



Appendix A
Diagrammatic Induction

It might seem as though one of the limitations of diagrammatic proofs is that they
can only express specific statements, not general ones. If one wants to prove that the
sum of all the angles in a triangle is 180°, it does not suffice to draw one triangle and
to confirm (approximately) the statement. So how can one prove or even express a
general statement using a diagram?

One possibility is by inductive proof, much in the same way that inductive proofs
are carried out using mathematical formulae. An inductive proof does not need the
special features of mathematical or logical formulae and can therefore be performed
using other types of symbols as well. In fact, it is even not obvious how one should
distinguish mathematical or logical formulae from other types of symbols such as
diagrams (see, e. g., Goodman 1968, chapter IV, section 10).

In logic and mathematics one can, for example, prove by induction that a state-
ment is generally true when it has been explicitly verified only for a finite number
of special cases. This is possible by establishing a prescription of how all the special
cases, one after the other, can be constructed, such that at each stage of the construc-
tion the truth of the statement is preserved. If such a prescription is available, the
same inductive proof procedure should, therefore, be possible for any kind of sym-
bol, including symbols that one calls diagrams, graphs or drawings. For example,
the statement that the sum of the odd numbers up to 21 — 1 equals n2 can be proved
by induction using either mathematical formulae or diagrams. Brown (1996, p. 253)
also discusses this example; note, however, that he does not consider that the variant
of the proof using diagrams is a proof by induction.

The standard proof using mathematical formulae is first to verify the statement
for the firstn = 1:

1
sz—1=1:12. (A.1)
j

A. Wiithrich, The Genesis of Feynman Diagrams, Archimedes 26, 191
DOI 10.1007/978-90-481-9228-1, © Springer Science+Business Media B.V. 2010
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Fig. A.1 Diagram used to ._J oj®o |0 o o
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Next, one expresses the general sum up to 2n — 1 in terms of the sum with one term
less, thatisupto 2(n — 1) — 1:

n n—1
Y 2j-1=>"@Qj-D+2n—1. (A.2)
j j

Assuming that the statement holds for the sum with one term less, one obtains
m—1D2+22n—1=n*—2n+1+2n—1=n (A.3)

Thus one has proved that if the statement holds for a sum up to a certain n, it also
holds for the sum with one more term. Since the statement was verified for the
lowest possible 7, it holds for any 7.

Therefore, proof by induction essentially hinges on one being able to construct
one member of the class of objects about which one wants to derive a statement out
of the previous member, relative to a certain ordering of the members in the class.
Yet this can also be done using a graphical representation of the members of the
class, in our case the odd numbers up to 2n — 1. One can represent the sequence of
odd numbers as sectors in a quadratic array of dots containing n? dots (see Fig. A.1).
Then one can verify the statement Z;’ 2j — 1 = n? for the special case n = 1: one
dot is the same as a quadratic array made up of one dot. The next member of the
class is obtained by adding an L-shaped segment to the previous member in the
lower right-hand side of the diagram, since the L-shaped segment contains an odd
number of dots. Adding an L-shaped segment to a square results again in a square,
the side of which contains one more dot than the original square. Therefore, if the
statement is true for the previous member, it is true for the next member. Since any
member of the class can be constructed by adding L-shaped segments, the statement
is proved in its full generality.



Appendix B
Synopsis of Manuscripts and Principal
Publications

On the following page, I give an overview of the notes and the publications by
Feynman as well as the publications by Freeman J. Dyson, Hans Euler and the
Japanese physicists working around Sin-Itiro Tomonaga that I discuss in my disser-
tation. I also include some of the publications by Julian Schwinger and Ernst C. G.
Stueckelberg that might be of interest as regards the chronology of the development
of Feynman diagrams. For the published work, I give the date of publication; for
Feynman’s notes, I give the approximate dates that seem most plausible to me on
the basis of my reconstruction of the developments.
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Cross-References

The bibliography partially functions as an index: At the end of each entry the pages
on which the item is cited are indicated by the phrase “See p./pp. ...".

Classification of the Material from the Feynman Collection Held
by the Caltech Archives

The Papers of Richard Phillips Feynman held by the Caltech (California Institute of
Technology) Archives have been filed into labelled folders and boxes (91 in total).
A finding aid is available at the Archives and online.! The Feynman Collection was
processed by Charlotte E. Erwin, Carol Finerman and David A. Valone and com-
pleted on 1 July 1993. The finding aid was updated in September 2002. The Archives
kindly permitted me to take digital photographs of parts of those folders which con-
tained possibly relevant material for my area of investigation. Thus, from some of
the folders I selected several series of folios, which I labelled, for the purposes of my
research, a, b, c, etc., in the order that they appear in the folder. The particular folios
in a series are referred to as the first, second, third, etc., folio in the series in the order
that they appear in it, irrespective of any page-numbering system that Feynman may
have applied to his notes. Note that under normal circumstances the folios made
available to researchers are photocopies of Feynman’s original papers. Therefore,
Feynman’s notes on the verso of a piece of paper appear as separate folios in the
Archives. I have used the title given by the archivists to refer to a particular folder in
a box, the numbers of which are given in the references below. For example, “Dirac
Equation a, folio 117 refers to the 11th folio in series a from Folder 2 in Box 11,
which was given the title “Dirac Equation” by the archivists. If no series label is
given, then I have selected only one series of folios from the relevant folder (but the
whole folder is not necessarily made up of only this one series).

I was able to date only one of the folios precisely (Dirac Equation a, folio 1, see
page 80). Nevertheless, I indicate for each series of folios the approximate dates that
seem most plausible to me on the basis of my reconstruction of the developments.

For internal use only, I have stored my selection of 588 folios in jpeg format
in the digital library of the Institute of Philosophy of the University of Bern. On
request, and with the agreement of the Caltech Archives, the Institute of Philosophy
will grant interested researchers access to this material.

' The online finding aid is provided by the Online Archive of California, and is available at
http://www.oac.cdlib.org/findaid/ark:/13030/kt5n39p6k0, last visited 12 July 2010.
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