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Supervisor’s Foreword

Since the first discovery of an exoplanet orbiting around a Sun-like star, exoplanets
have been established as one of the most fascinating research areas in astronomy. In
particular, the Kepler mission has told us numerous surprising diversities of exo-
planetary systems, which are supposed to provide a variety of key clues to their
origin and evolution over the cosmological timescales.

In this thesis, the author presents several different approaches to the problem.
After a brief overview of the observed diversity of exoplanetary systems in Chap. 1,
he reviews the observational methodology to determine the obliquity of host stars
and describes possible channels to spin–orbit misalignment in Chaps. 2 and 3. The
following chapters correspond to his original published results: first determination
of the true (not projected) spin–orbit angle for the transiting multi-planetary system
of a main-sequence host star, Kepler-25, and that for HAT-P-7 from a combined
analysis of asteroseismology, transit photometry, and the Rossiter–McLaughlin
effect (Chap. 4). He was able to derive beautifully the spin–orbit misalignments for
Kepler-13Ab and HAT-P-7b from the precise modeling of gravity darkening effect
(Chap. 5). Finally, he successfully determined the architecture of the hierarchical
triple system KIC 6543674 from the Kepler photometry alone (Chap. 6).

The methodologies that he described in each chapter will find broader applica-
tions in future data, and promise to provide fundamental contribution to under-
standing formation and evolution of exoplanetary systems.

I am confident that this book serves as a good introduction for readers who are
interested in accurate modeling and characterization of exoplanetary systems.

Tokyo, Japan
January 2018

Yasushi Suto
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Chapter 1
Diversity of the Extrasolar Worlds

Abstract The solar system consists of three different types of planets located in
three distinctly separated areas. Their orbits are mostly circular and confined in a
plane perpendicular to the sun’s rotation axis. These regular features have led to a
standard scenario for the solar system formation through the collisional growth of
small rocky and icy particles (planetesimals) and subsequent gas accretion within a
rotating circumstellar disk of gas and dust (protoplanetary disk). Since then, a huge
diversity of exoplanets, planets orbiting stars other than the sun, has been discovered.
With the steady improvements in the observational technique and the advent of
new tools, we are beginning to obtain detailed information on the architectures and
physical properties of those distant new worlds. Such efforts have consequently
revealed that the properties of our solar system may not be the norm, and called
into question what we thought we knew about the solar system. One of the goals of
exoplanetary science is to understand the diversity in orbital and physical properties
in a comprehensive manner. More specifically, we wish to distinguish the features
of planetary systems that necessarily result from the law of Nature, from those that
are sculpted by accidents specific to each system. This thesis is to deal with one
aspect of those “nature and nurture” problems in exoplanetary science, which will
be described in the first three chapters.

Keywords Exoplanet populations · Detection methods · Orbital architecture

1.1 The Overall Occurrence

As of April 2016, about 2000 exoplanets have been confirmed around 1200 stars.
Their masses and orbital semi-major axes are shown in Fig. 1.1 by filled circles.
Their colors correspond to various methods used to identify each planet, which are
summarized in Sect. 1.2. The planets in our solar system are also plotted by filled
diamonds for comparison. Most of the currently known exoplanets are very different
from the planets in the solar system, simply because planets with similar masses
and orbits to them are difficult to detect with the current technique. Even taking into

© Springer Nature Singapore Pte Ltd. 2018
K. Masuda, Exploring the Architecture of Transiting Exoplanetary
Systems with High-Precision Photometry, Springer Theses,
https://doi.org/10.1007/978-981-10-8453-9_1
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2 1 Diversity of the Extrasolar Worlds

Fig. 1.1 Masses (0.1M⊕–13MJup) and orbital semi-major axes (0.01–100AU) of known exoplan-
ets as of April 14, 2016. The planets in the solar system are also shown with filled diamonds.
The exoplanet data are from the confirmed planet catalog at NASA Exoplanet Archive http://
exoplanetarchive.ipac.caltech.edu/index.html. The color of each circle shows a detection method
by which the planet was first identified. The plotted value of the planetary mass is the “minimum”
mass Mp sin i when the true mass is not available; this is usually the case for non-transiting planets
characterized with radial velocities (see Sect. 1.2)

account this detection bias, however, Fig. 1.1 already exhibits great diversity in the
exoplanet property.

Three distinct populations of exoplanets show up in Fig. 1.1, which are labeled as
“hot Jupiters,”“cold Jupiters,” and “super Earths.” Below we discuss the occurrence
andproperty of each population.Wealso comment on the eccentricities of exoplanets,
which also show far greater diversity than the near-circular orbits in the solar system.

1.1.1 Hot Jupiters

Hot Jupiters usually refer to Jupiter-sized planets with orbital periods less than
10 days, although the thresholds are not clearly defined. They are easiest to dis-
cover with major “indirect” detection methods (i.e., radial velocity and transit; see
Sect. 1.2), and the first exoplanet discovered around a Sun-like star, 51 Pegasi b, also

http://exoplanetarchive.ipac.caltech.edu/index.html
http://exoplanetarchive.ipac.caltech.edu/index.html
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falls into this category (Mayor and Queloz 1995). Radial velocity (RV) surveys show
that they exist around roughly 1% of FGK stars (Wright et al. 2012), and seem to
favor metal-rich hosts (e.g., Fischer and Valenti 2005). On the other hand, the transit
survey by Kepler (Sect. 1.2.3) found the occurrence rate roughly half of the estimate
from RV surveys (e.g., Howard et al. 2012). The origin of this possible tension is
currently unclear.

In the standard scenario, formation of a giant planet involves accumulation of
small particles of rock and ice into a core of ∼10M⊕, and subsequent accretion of
surrounding H/He gas that grows the core into a gaseous giant planet (e.g., Armitage
2010). Giant planet formation via this “core accretion” process is deemed unlikely at
the current location of hot Jupiters (∼0.05AU), where high irradiation from the host
star makes the protoplanetary disk too hot for enough amount of solid particles to
exist (e.g., Bodenheimer et al. 2000). The current paradigm of hot Jupiter formation,
therefore, assumes that they are formed far from the host star (beyond a few AU, like
Jupiter in the solar system), rather than in situ, and then “migrated” inward to their
current orbits.1

The mechanism for the migration has been an issue of intense discussions since
the discovery of the exoplanet, and is still under debate. Lin et al. (1996) proposed a
mechanism usually referred to as the “disk migration,” in which a giant planet opens
a gap in its natal protoplanetary disk and is transported inward with the viscous
diffusion of the disk over the timescale of ∼105 yr (see, e.g., Lubow and Ida 2011,
fordetails). This scenario, however, is unlikely to explain some of the known proper-
ties of hot Jupiters, such as the high eccentricity and spin–orbit misalignment, as will
be discussed later in this chapter. The fact motivated another channel of migration
including the violent few-body dynamical processes, sometimes referred to as “high-
eccentricity migration.” The details of this scenario will be discussed in Sect. 3.1 in
Chap.3.

1.1.2 Super-Earths and Mini-Neptunes

In the solar system, no planets between the sizes of Earth and Uranus (15M⊕, 4 R⊕)
exist. In exoplanetary systems, on the other hand, many have been found in this
mass and radius range (and slightly above, up to ∼30M⊕), as illustrated in Figs. 1.1
and 1.2. They are called “super-Earths” or “mini-Neptunes,”2 and actually the most
abundant among the known exoplanet populations, despite that they do not exist
in the solar system.3 The transit survey by the Kepler space telescope (Sect. 1.2.3)

1Note, however, that the possibility of in-situ formation is recently revisited (Boley et al. 2016;
Batygin et al. 2016), motivated by the discovery of many super Earths (Sect. 1.1.2) on close-in
orbits, which, if formed before the dispersal of the gas disk, could potentially grow into hot Jupiters.
2The two names are often used rather loosely without referring to their physical properties, as their
internal structures are usually not very well constrained.
3At least they are not known, or confirmed, to exist; the predicted mass of “Planet Nine,” a hypo-
thetical planet in the outer solar system, may be in this range (Batygin and Brown 2016).
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Fig. 1.2 Masses (1M⊕–13MJup) and radii (<2.2 RJup) of known exoplanets as of May 2, 2016.
The planets in the solar system are also shown with filled diamonds. The exoplanet data are from
the confirmed planet catalog at NASA Exoplanet Archive http://exoplanetarchive.ipac.caltech.edu/
index.html. The color of each circle shows adetectionmethodbywhich the planetwasfirst identified.
Note that planets with known radii are all transiting, although some of them may be first identified
with radial velocities (several blue circles in the plot). Thus the masses plotted in this figure are
basically the true masses without the ambiguity due to the unknown orbital inclination

has revealed that planets with 1 R⊕ < Rp < 4 R⊕ and periods �100 days exist
around ∼50% of Sun-like stars (e.g., Fressin et al. 2013), and are often found in
compact multi-planetary systems, where multiple planets reside in closely-packed
orbits (Lissauer et al. 2011b; Fabrycky et al. 2014).

Most of the currently known super-Earths have orbits smaller than that of Venus.
While this may indicate that super-Earths, like hot Jupiters, experienced smooth
inward migration through the interaction with the gas disk (e.g., Goldreich and
Tremaine 1980), in situ formation from a more massive disk than assumed in the
solar-system model (Hayashi 1981) is also discussed as a viable possibility (e.g.,
Raymond and Cossou 2014), given that they have relatively smaller masses and that
they do not need to be formed before the disk dispersal, unlike Jupiter-sized planets.

The planets in thismass/radius range are known to exhibit awide range of physical
properties, with their mean densities spanning over almost two orders of magnitudes,
from less than 0.1 g cm−3 (Masuda 2014) tomore than the value (5.5 g cm−3) of Earth

http://exoplanetarchive.ipac.caltech.edu/index.html
http://exoplanetarchive.ipac.caltech.edu/index.html
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(Carter et al. 2012). Some of them seem to be scaled-up version of Earth consisting
of an iron core overlaid with a silicate mantle (e.g., Weiss et al. 2016), while others
need significant fractions of gas envelopes to account for the observed mass and
radius (e.g., Lissauer et al. 2013). Both the statistical analysis of observational data
and theoretical modeling of interior structures suggest that the dividing line between
the rocky planets and planets with gaseous envelopes (i.e., “physical” distinction
between super-Earths and mini-Neptunes) exists around 1.6 R⊕ (Weiss and Marcy
2014; Lopez and Fortney 2014; Rogers 2015).

1.1.3 Cold and Warm Jupiters

Given the current precision of the radial velocity measurements (�1m s−1), Jupiter-
mass planets around several AU from the host star (i.e., Jupiter analogues) are readily
detectable (see Eq.1.4), if monitored for a sufficiently long (�10 yr) duration (e.g.,
Vogt et al. 2014). The Doppler surveys performed in the past decade showed that
the occurrence rate of such “cold Jupiters” is roughly 10% for FGK stars (see, e.g.,
Cumming et al. 2008, who found the occurrence rate of 10.5% for P < 5.5 yr and
Mp = 0.3–10MJup from eight-year measurements).

The same surveys (Udry et al. 2003; Cumming et al. 2008) have also reported
the lack of Jupiter-mass planets with intermediate orbital radii (often called “warm
Jupiters”), below the rise of occurrence around 1AU. Indeed, this so-called “period
valley” seems to make a natural distinction between hot and cold Jupiters in Fig. 1.1.
The origin of the period valley and warm Jupiters is not understood and still debated
actively (e.g., Dawson andMurray-Clay 2013; Dong et al. 2014; Dawson and Chiang
2014; Huang et al. 2016).

1.1.4 Eccentric Planets

Another notable feature of exoplanets, not captured in Fig. 1.1, is their eccentricity
distribution. While the orbits of solar-system planets are mostly circular, except for
Mercury with e = 0.21, exoplanets exhibit a far wider range of orbital eccentricities,
which are plotted against their semi-major axes in Fig. 1.3. For example, HD 80606b,
the planet with one of the largest eccentricities, resides in an almost parabolic orbit
with e = 0.93 (Naef et al. 2001). The possible origins for such high eccentricities are
the gravitational scattering between multiple planets (e.g., Lin and Ida 1997; Chat-
terjee et al. 2008; Jurić and Tremaine 2008) and long-term gravitational perturbation
from a companion star (e.g.,Takeda and Rasio 2005); these processes will be further
discussed in Sect. 3.1.

Figure1.3 shows that the maximum eccentricity increases with increasing semi-
major axis (e.g., Butler et al. 2006), with its upper envelope consistent with a constant
value of the orbital pericenter distance q = a(1−e). This suggests that tidal dissipa-
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Fig. 1.3 Orbital eccentricity versus semi-major axis of known exoplanets detected with radial
velocities. The exoplanet data are from the confirmed planet catalog at NASA Exoplanet Archive
http://exoplanetarchive.ipac.caltech.edu/index.html. The dashed line corresponds to the pericenter
distance of 0.03AU. The color of each circle corresponds the metallicity of the planet’s host star

tion plays a role; variation in the star–planet distance over an eccentric orbit causes
the time-dependent distortions of the two bodies, which are eventually dissipated
within them. The resulting loss of orbital energy leads to the orbital circularization,
whose timescale depends sensitively on the minimum star–planet distance q (e.g.,
Correia and Laskar 2010). In fact, the same mechanism may also be responsible for
the formation of hot Jupiters, as will be detailed in Sect. 3.1.

Figure1.4 illustrates another feature that larger planets are more likely to have
larger eccentricities (e.g., Wright et al. 2009). Wright et al. (2009) also found that
planets in multi-planetary systems tend to have smaller eccentricities; this trend may
be associated with the correlation with planetary size, as the smaller planets are
more often found in multi-planetary systems. In addition, Dawson and Murray-Clay
(2013) identified that giant planets with semi-major axes 0.1AU–1AU, i.e., warm
Jupiters, around metal-rich stars with [Fe/H] > 0 have higher eccentricities than
those around metal-poor stars with [Fe/H] < 0; the trend can be seen in Fig. 1.3
as the lack of blue circles in the corresponding regime. This trend, along with the

http://exoplanetarchive.ipac.caltech.edu/index.html
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Fig. 1.4 Orbital eccentricity versus mass of known exoplanets detected with radial velocities.
The exoplanet data are from the confirmed planet catalog at NASA Exoplanet Archive http://
exoplanetarchive.ipac.caltech.edu/index.html. The mass is basically Mp sin i but Mp is plotted if
available. The color of each circle corresponds to the metallicity of the planet’s host star

above eccentricity–mass correlation, may be the sign of eccentricity excitation due
to planet–planet scattering, as more giant planets could form around more metal-rich
stars.

1.2 Planet Hunting in a Nutshell

In the following,webriefly comment on each of themethods used to detect exoplanets
in Fig. 1.1. The “direct imaging” method is to capture the light from an exoplanet
directly, while the others infer the existence of planets by observing the radiation
from their host stars and hence are called indirect methods.

http://exoplanetarchive.ipac.caltech.edu/index.html
http://exoplanetarchive.ipac.caltech.edu/index.html
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1.2.1 Direct Imaging

Themost direct way to detect exoplanets around other stars is to actually image them,
as can be done for the planets in the solar system. This requires an extraordinary effort
to overcome the contrast between a planet and its host star.

Suppose, for example, that we try to detect the light reflected by a “second Earth”
around another star, with radius Rp and semi-major axis a. The flux ratio f between
the planet and its host star is then given by

freflection = Ab

πR2
p

4πa2
= 10−10

(
Ab

0.3

)(
Rp

R⊕

)2 ( a

1AU

)−2
, (1.1)

where Ab = 0.3 is the bond albedo of the Earth. The ratio corresponds to the
magnitude difference of about 25. To detect such a faint source even as an isolated
object, deep exposures are required.

A more promising approach is to observe the thermal emission from an exoplanet
at longerwavelengths.Assuming that both the planet and star are blackbody radiators,
the contrast in the thermal flux is given by

fthermal =
(
Rp

R�

)2 exp(hc/kBTpλ) − 1

exp(hc/kBT�λ) − 1
, (1.2)

where kB is the Boltzmann constant, h is the Planck constant, and c is the speed of
light in vacuum. For λ = 10μm, at which the planet at a = 1AU around a Sun-like
star is brightest, the contrast amounts to fthermal ∼ 10−6 � freflection for Rp = R⊕
and R� = R�. Even in the infrared, the problem of resolution needs to be overcome;
to resolve a = 10AU at the distance of 10 pc, a telescope with a diameter of ∼5m
is required.

For these reasons, the direct imaging method has mainly discovered young, self-
luminous planets far from the host star (Fig. 1.1). Themass of each planet is estimated
from the system age and planet luminosity via the cooling model of young Jupiters
and brown dwarfs (e.g., Baraffe et al. 2003). Basically, more massive planets are
brighter at a given age because they cool down more slowly. The planetary mass
thus estimated is usually more reliable for older systems because the model becomes
largely independent from the unknown initial condition (Kuzuhara et al. 2013).

1.2.2 Radial Velocity

The acceleration of the host star induced by its planet’s gravity can be detected by
measuring the stellar radial velocity (RV) with spectroscopy. The RV variation of a
planet-hosting star, with respect to the barycentric motion of the system, is given by
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v�(t) = K� (cos[ω + f (t)] + e cosω) , (1.3)

where e, ω, and f are the eccentricity, argument of pericenter, and true anomaly of
the planetary orbit relative to the star (cf.Appendix A), and the RV semi-amplitude
K� is given by

K� =
(

Mp

M� + Mp

)
na sin i√
1 − e2

=
(
2πGM�

P

)1/3 Mp/M�

(1 + Mp/M�)2/3

sin i√
1 − e2

= 28m s−1

√
1 − e2

Mp sin i

MJup

(
M� + Mp

M�

)−2/3 (
P

1 yr

)−1/3

, (1.4)

with i being the orbital inclination relative to the sky plane (cf.Appendix A).
The RV time series sufficiently sampled over the whole phase yields e, ω, orbital

phase, orbital period, and K�. The RV semi-amplitude, combinedwith P and e, trans-
lates into the constraint on Mp sin i/(M� + Mp)

2/3. Given the stellar mass, therefore,
one obtains a dynamical constraint on the planetary mass through the combination
Mp sin i . The quantity is usually called “minimum” planetary mass, since the true
planetary mass Mp is always larger than Mp sin i . Because the RV method alone is
not sensitive to the orbit direction at all, it is only possible for some special cases
(e.g., transiting planets with i � π/2) that the true planetary mass is obtained from
RVs. The masses of RV planets in Fig. 1.1 are either of this minimum mass or the
true mass if available.4

Equation (1.4) shows that the signal scales as MpP−1/3 or Mpa−1/2, and so the
technique is biased toward more massive and shorter-period planets (see Fig. 1.1).
While it is also true that K� is larger for more eccentric orbits, the sensitivity depen-
dence on eccentricity is more complex because the finer sampling around the peri-
center, where the RV (only) exhibits significant variations for a highly eccentric orbit,
is required to detect such a planet (Cumming 2004).

1.2.3 Transit

A planet, if viewed edge-on, periodically passes in front of the stellar disk to produce
periodic “dips” in the stellar flux. Such an eclipse by a planet, usually called “plane-
tary transit,” provides a way to detect exoplanets with the photometric observation.
Below we summarize its basic concepts and leave the more detailed discussion of
the method in Appendix B.

4Strictly speaking, it is always possible that the object with Mp sin i comparable to that of Jupiter
is actually a substellar object (e.g., Sahlmann et al. 2011). It should be noted, however, that the
minimum mass is a priori close to the true mass if the orbit direction is isotropic; for example, the
probability that the true mass is larger than the twice of the minimum mass is only 13%, and the
true mass is larger than the minimum mass only by a factor of 4/π on average.
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A great advantage of the transit is that it reveals the planetary radius, which is
inaccessible with any other detection methods. Since the planet can be regarded as
a dark disk in the usual photometry, the depth of the dip, or the transit depth δ, is
essentially given by the ratio of the area of the planetary disk to that of the star:

δ =
(
Rp

R�

)2

. (1.5)

The transit observation also yields an extremely precise orbital period, whose pre-
cision is improved linearly with the time baseline. As mentioned above, the RV
follow-up of transiting planets also leads to the true planetary mass, which is other-
wise difficult to obtain. In fact, the process is usually essential to confirm a transiting
object to be a genuine planet, because the transit light curve does not reveal the
mass of the object (but see below for exceptions). Transits also provide the precious
opportunity to study exoplanet atmosphere by analyzing the light that grazes, or is
emitted/reflected by, the upper atmosphere of the planet and reaches to us (transmis-
sion/occultation spectroscopy).

As such, transiting planets are advantageous targets for detailed characterization
inmany aspects. The problem is how to find them, because the transit can be observed
only for a short duration, and for systems with suitable geometry. For a randomly
oriented planetary orbit, the probability that a given planet transits as seen from an
observer on Earth is roughly R�/a; this is ∼10% for the most close-in planets, and
only 0.5% for an Earth-like planet around a Sun-like star. Moreover, even if the
system does have the geometry to exhibit transits, we need to observe the star at the
right time, since the transit lasts for a fraction R�/πa of the whole orbital period;
typical duration of the transit is given by5

T0 = R�P

πa
= 13 hr

(
P

1 yr

)1/3 (
ρ

ρ�

)−1/3

= 4 hr

(
P

10 days

)1/3 (
ρ

ρ�

)−1/3

. (1.6)

Combining all these together, the transit method is strongly biased toward short-
period planets, even more than the RV method. This drawback is overcome by the
continuous monitoring of a large number of stars from space, as has been made
possible by CoRoT (Baglin et al. 2006) and Kepler (Borucki et al. 2010) space
telescopes,which havebrought ample photometric datawith unprecedented precision
and time coverage.

This thesis is largely based on the data of transiting systems collected by Kepler.
Below we give a brief overview of the telescope and another detection and charac-
terization method made possible by Kepler.

5We use Kepler’s third law divided by the stellar radii cubed, 4π2(a/R�)
3/P2 = GM�/R3

� , to
derive this scaling. The relation shows that the timescale of the transit essentially fixes the density
of the system, which is the only physical dimension constrained from the light curve alone (see also
Appendix B).
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1.2.3.1 The Kepler Space Telescope

The Kepler space telescope is implemented with a differential photometer with a
115 deg2 field of view and continuously monitored the brightness of ∼160000 stars
located in the constellations of Cygnus and Lyra (Borucki et al. 2010). During the
main mission over four years between 2009–2013, Kepler has discovered more than
4000 transiting planet candidates, whose orbital periods and radii are estimated from
the transit light curve. Among these candidates, more than 1000 are “confirmed” to
be genuine planets as of April 2016, by determining their masses and/or showing that
they are highly unlikely to be astrophysical false positives: phenomena that mimic
the transit-like signal (mostly blended eclipsing binaries).

The preliminary stellar parameters of the target stars, including magnitudes in
different bands, effective temperature, surface gravity, and metallicity, are listed in
the Kepler Input Catalog (KIC, Brown et al. 2011) available at the MAST archive,6

and each star is given a KIC number. If the periodic dips are found in the light curve
of a star, the star is listed up as a Kepler Object of Interest (KOI, Coughlin et al.
2015), and given a KOI number of the form “KOI-xxxxx”. The source object of the
transit-like signal is also given a KOI name of the form “KOI-xxxxx.yy”, where yy
distinguishes multiple signals found for one star, and is assigned beginning from 01
in the order of detection. Finally, if the transit-like signal is confirmed to be due to
a genuine planet, the system is given a Kepler number like “Kepler-zzz,” and each
planet is assigned a lower-case letter beginning from “b,” basically in the order of
increasing distance from the host star.7

Kepler observes a target in two cadences, long cadence (LC; 29.4min) and short
cadence (SC; 58.35 s). The LC photometry has been obtained for all the targets, while
the SC data exist for a selected set of targets (mainly KOIs, and sometimes include
eclipsing binaries). The photometric precision integrated over 6.5 hr (comparable to
the typical transit duration; Eq. 1.6) is estimated to be better than 100 ppm (= 10−4)

for a V � 14 star typical in the Kepler target (Van Cleve et al. 2016). The value is
comparable to the transit depth expected for a Sun-Earth systemwith Rp/R� � 0.01.

The primary mission ended in the summer of 2013 due to the loss of two reac-
tion wheels. Adopting a tricky way of operating the spacecraft and maintaining its
pointing, however, the telescope has now been reused for the K2 mission to sequen-
tially observe different patches of the sky along the ecliptic for shorter (∼80 days)
durations (Howell et al. 2014) and is still in operation as of May 2016.

6https://archive.stsci.edu/index.html.
7The letter “a” is reserved for the central star. If the host star forms a multi-stellar system, the capital
letter follows after the Kepler number to specify the planet-hosting component (like “Kepler-16A
b”). The order of planet letters is sometimes irregular because inner planets may be found after the
outer one(s) in some cases.

https://archive.stsci.edu/index.html
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1.2.3.2 Transit Timing Variation

The long-term, continuous monitoring by Kepler has made it possible to detect grav-
itational interaction between multiple planets in the same system. The temporal
modulation of the orbital period of a transiting planet, measured very precisely from
the interval between the successive transits, allows for the detection of another non-
transiting planet and/or detailed characterization of the transiting ones. The method
is referred to as the transit timing variation (TTV, Miralda-Escudé 2002; Holman
and Murray 2005; Agol et al. 2005).

TTVs allow for the confirmation of transiting planet candidates identified by
Kepler, without (often demanding) RV observations. Indeed, the technique is often
the only option for many of the multi-transiting systems that are too faint to observe
RVs with a sufficient precision in a reasonable amount of time, and hence essential
for maximizing the scientific yield from the Kepler data. Moreover, TTVs serve as
a valuable probe of the diversity of low-mass planets (see Sect. 1.1.2) owing to its
sensitivity down to Earth mass or even smaller (Jontof-Hutter et al. 2015), and have
discovered planetary systems with unique properties (e.g., Lissauer et al. 2011a;
Sanchis-Ojeda et al. 2012; Carter et al. 2012; Masuda 2014). An attempt has also
been made to use such precise timing data for many planetary systems to constrain
the time-variation of a fundamental constant (Masuda and Suto 2016).

1.2.4 Microlensing

When a foreground star happens to pass very close to our line of sight to a more
distant background star, the foreground star acts as a lens to split the background star
into several images. The split images are typically unresolved and simply observed
as a temporal magnification of the background star (microlensing) because surface
brightness of the source is unaffected by lensing.8 If the lens object hosts a planet,
it causes an additional, short-lived magnification feature, which can be used to infer
the planet-to-lens mass ratio and sky-projected lens–planet distance (see, e.g., Gaudi
2010 for are view).

To significantly perturb the image, planets need to be located close to the Einstein
ring, whose angular radius is given by

θE =
√
4GML

c2

(
1

dL
− 1

dS

)
, (1.7)

where ML is the lens mass, and dL and dS are the distances to the lens and source,
respectively. The configuration typical for planet detection is that the source lies in the
Galactic bulge (with dS = 8 kpc), while the lens is in the Galactic disk (dL ∼ 4 kpc).

8See, e.g., Sect. 9.2 of Weinberg (2008).
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The corresponding angular and physical Einstein radii are

θE = 550μarcsec ×
(

ML

0.3M�

)1/2 (
dS

8 kpc

)−1/2 (
dS/dL
2

− 1

)1/2

(1.8)

and

θEdL = 2.2AU ×
(

ML

0.3M�

)1/2 (
dS

8 kpc

)1/2 [
dL/dS − (dL/dS)2

0.25

]1/2

. (1.9)

The lensed multiple images are therefore typically unresolved, as mentioned above,
and the microlensing method is typically sensitive to planets around the snow line. It
can also be shown that the duration and amplitude of the magnification of planetary
origin only weakly depends on the planetary mass (Gaudi 2010). For these reasons,
the microlensing provides a unique probe of the parameter region that is out of
reach of other methods; this is clearly illustrated by yellow circles in Fig. 1.1. On the
other hand, it is difficult to follow-up the planet found by microlensing for further
characterization. Hence this methodology is suited to discussing the statistics, rather
than detailed characterization of individual systems.

1.2.5 Timing

Suppose that a planet-hosting star has a “clock” that can be read by a distant observer
like us. Due to the finite speed of light, the gravitational acceleration induced by the
planet causes the temporal delay and speed up of the clock, whose amplitude �t is
given by

�t = a

c

Mp

M� + Mp
= 1.5ms ×

( a

AU

) (
Mp

M⊕

) (
M� + Mp

M�

)−1

. (1.10)

The estimate shows that planets as light as Earth can be detected if the host “star” is
an astrophysical object with an ultra-precise clock, i.e., a pulsar. This was indeed the
case for a planetary systemaround themillisecond pulsar PSRB1257+12 (Wolszczan
and Frail 1992). It is worth noting that the discovery prevails the detection of the
“first” exoplanet around a normal star in 1995.

If the companion is a stellar-mass object, less precise clocks are also useful. The
examples of such clocks include eclipsing binaries (see Chap.6), stars exhibiting
coherent pulsations (e.g., Shibahashi and Kurtz 2012), and inner short-period tran-
siting planets. In addition to the above “light-travel time” effect, the clock can be
physically delayed due to the gravitational tidal force. It is usually the latter effect
that is referred to as TTVs in the exoplanet literature, since the light-travel time effect
due to a planetary-mass object is hard to detect without such an ultra-precise clock
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as a pulsar. In Fig. 1.1, the planets detected with these methods, including TTVs, are
marked as “timing” altogether.

1.2.6 Other Methods

1.2.6.1 Astrometry

High-precision astrometry can directly observe the sky-plane stellar motion caused
by a planet. The angular resolution �θ required to detect a planet around a star at
distance d is

�θ = a

d

Mp

M�

= 5 × 10−4 arcsec
( a

5AU

) (
d

10 pc

)−1 (
Mp

MJup

) (
M�

M�

)−1

. (1.11)

The precision required for the exoplanet detection is currently hard to achieve, and so
the applications of this technique has so far been limited to sub-stellar mass objects
including brown dwarfs (e.g., Sahlmann et al. 2013). It is expected thatGAIAmission
by the European Space Agency will be able to detect planetary mass companions
with astrometry.

Astrometric detection of the sky-plane orbit as a function of time allows for the
reconstruction of the full orbit in three-dimensions. If successfully applied to planets
with RV measurements, therefore, the true mass of the companion can be obtained
without the ambiguity of orbital inclinations. Such analyses have been performed for
some “Jupiter-mass planets” detected with RVs to reveal their non-planetary nature
by showing that the orbit is close to face-on (e.g., Sahlmann et al. 2011).

1.2.6.2 Orbital Brightness Modulation

Close-in planets generate the brightness modulation of the star–planet system in
phase with the orbital motion, which is detectable only with high-precision space-
based photometry (e.g., Shporer et al. 2011). The modulation usually consists of the
ellipsoidal variation caused by the tidal distortion of the star (Morris and Naftilan
1993), Doppler beaming due to the stellar reflex motion (Loeb and Gaudi 2003),
and the phase modulation of the light emitted and/or reflected by the planet, among
which the first two can be used to constrain the companion’s mass. Several transiting
planets were confirmed by examining this orbital brightnessmodulation (e.g., Faigler
et al. 2013).
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1.3 Directions of Stellar Spin and Planetary Orbits

Another notable feature of exoplanets, which this thesis focuses on, is the misalign-
ment between the axes of stellar spin and planetary orbit (spin–orbit misalignment).
In the solar system, the equator of the sun and orbital planes of the eight planets
are aligned within 7◦. This regularity has been the basis of the standard paradigm of
planet formation from the rotating protoplanetary disk, which has a long history that
dates back to Nebular Hypothesis by Kant and Laplace.

Observations, however, have shown that it is not always the case in exoplanetary
systems, especially for hot Jupiters (Sect. 1.1.1), as illustrated in Fig. 1.5. In this
figure, each filled circle corresponds to each planetary orbit, where the distance from
the star is proportional to the logarithm of the orbital period or semi-major axis, and
the position angle shows the points where each orbit crosses the sky plane from this
side of the paper. The latter angle, denoted as λ, is equivalent to the sky projection
of the stellar obliquity, the angle between the stellar spin and planetary orbital axes,
and ismeasured spectroscopically via the so-calledRossiter-McLaughlin (RM) effect
(see Sect. 2.2 for more detail). While we do see some clustering of planets with spin–
orbit alignments comparable to the solar system, more than one third of the sample
systems have significantly misaligned orbits (see also the histogram in Fig. 1.6), and
some even revolve in the opposite directions to the stellar rotation (retrograde orbit).

Currently,most of suchmeasurements are for hot Jupiters, and themisalignment is
often attributed to their “violent”migration including few-body dynamical processes,
as will be discussed in Chap. 3. This scenario, however, is still incomplete in many
aspects, and a part of the observed misalignments may possibly be a generic feature

Fig. 1.5 Summary of the measurements of the sky-projected obliquity λ (Sect. 2.1) as of April
2016. The list of the systems is based on Holt-Rossiter-McLaughlin Encyclopedia by René Heller
(http://www2.mps.mpg.de/homes/heller/.), and the system parameters are retrieved from NASA
Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu.), although the spuriousmeasurements
of λ are omitted here in a spirit similar to Albrecht et al. (2012). Each filled circle corresponds to
the descending node of each planet, where the planetary orbit crosses the sky plane from this side
of the paper to the other. Distance from the central star (yellow circle at the origin) is proportional
to the logarithm of the orbital period. Blue diamonds are the values for some of the planets in
the solar system, with the blue-shaded region showing the entire range of the stellar obliquity for
the solar-system planets. Red circles are planets in multi-transiting systems, which will be further
discussed in Sect. 2.4.3

http://www2.mps.mpg.de/homes/heller/
http://exoplanetarchive.ipac.caltech.edu
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Fig. 1.6 Histogram of the λ
measurements in Fig. 1.5.
The vertical axis is
normalized so that the
integral over the entire range
of λ be unity

of exoplanetary system that is not related to the migration. If this is the case, the good
spin–orbit alignment in the solar system may not be the norm but simply an initial
condition. This thesis describes an effort to understand the origin of the spin–orbit
misalignment and its relationship to the dynamical history of diverse exoplanets.

1.3.1 Is the Obliquity Distribution a Simple Function?

The first question to ask may be whether the distribution of λ could be compatible
with a simple function of the true stellar obliquity ψ. For that purpose, the geometric
effect needs to be taken into account because λ is the sky projection of ψ (see
Fig. 2.1). Fabrycky andWinn (2009) answered this question negatively, showing that
the observed distribution of λ cannot be well described with an isotropic function
of ψ nor a Fisher distribution on a sphere with a constant dispersion. The failure
of a single distribution is essentially because the observed λ has both a significant
peak around λ = 0◦ and a long tail (see Fig. 1.6), which are difficult to be reconciled
simultaneously. The result hints a rather complex origin of the observed obliquity
distribution; that will be the main topic of discussion in the following chapters.

1.4 Plan of This Thesis

This thesis deals with the origin of the spin–orbit misalignment from an observational
viewpoint. While the measurements of stellar obliquities presented in Fig. 1.5 have
mainly been performed using a spectroscopic technique (i.e., the RM effect), here we
focus on the methods using high-precision photometric data obtained by the Kepler
space telescope. We will show how such methods help us to understand the origin of
the spin–orbit diversity in exoplanetary systems by providing the information com-
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plementary to the spectroscopic one and by extending the obliquity measurements
to systems that were beyond the scope of the RM effect.

We begin with summarizing the methods of obliquity measurements and cur-
rent observational results in Chap.2. Here we also examine the correlation between
the stellar obliquity and other system properties, especially the one with the stellar
effective temperature, which will give clues for understanding the origin of high
obliquities. Chap.3 describes two contrasting theoretical scenarios for the origin of
the spin–orbit misalignment. The first one is the “high-eccentricitymigration,” which
produces large spin–orbit misalignments, as well as large orbital eccentricities, in
the course of the migration of hot Jupiters. A great deal of discussion will also be
devoted to the interpretation of the trend with the effective temperature in the context
of this scenario, referring to its major drawbacks as well. We then comment on the
second scenario at the other extreme, that the observed spin–orbit misalignment is
of primordial origin, rather than the outcome of the violent dynamical migration
of hot Jupiters. The chapter is closed by listing important questions that need to
be addressed for settling this nature and nurture problem, emphasizing the need of
extending the obliquity measurements to planets other than hot Jupiters.

In Chaps. 4 and 5, we present measurements of stellar obliquities using the high-
precision photometric data obtained by the Kepler spacecraft. In Chap.4, we use
asteroseismology for the measurements of the true obliquity, rather than the sky-
projected obliquity usually obtained from the spectroscopic technique. We present,
for the first time, a consistent procedure for the joint analysis of spectroscopic and
photometric data, with the applications to two important systems. Chap.5 focuses
on another methodology of gauging the obliquity using gravity darkening exhibited
by fast-rotating stars. We present an updated analysis of this phenomenon in the
Kepler-13A system, where the gravity-darkening method and the spectroscopic one
was known to disagree. We provide a possible solution for this discrepancy and
propose a procedure to test this conclusion with future follow-up observations. We
also apply the same technique to the HAT-P-7 system for the first time, and give a
cross-validation of the result in Chap. 4.

In Chap.6, photometric data are used for characterizing a triple-star system in a
hierarchical configuration. Here the modeling of eclipse light curves is combined
with the dynamical modeling of the multi-body gravitational interaction to yield
precise masses and radii of three stars in the system essentially from the photomet-
ric data alone. The analysis presented here does not only expand the potential of
high-precision photometric data, but also serves as a useful test bed for characteriz-
ing hierarchical multi-planetary systems that would serve as direct evidence for the
dynamical interaction and migration scenario as discussed in Chap. 3.

Finally, Chap. 7 summarizes the results and concludes. Possible directions of
future studies are also presented.
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Chapter 2
Measurements of Stellar Obliquities

Abstract Asmentioned in Chap.1, stars hosting hot Jupiters exhibit a wide range of
obliquities. The knowledge comes from the spectroscopic technique, that is, model-
ing of the Rossiter-McLaughlin (RM) effect in the radial velocity (RV) times series.
While the RM effect is difficult to observe for planets with smaller radii or on wider
orbits than hot Jupiters, new methods based on the high-precision photometric data
have recently been developed to provide complimentary information on those plan-
ets. In this chapter, we review the methods to measure stellar obliquities and sum-
marize our current knowledge from observations. The implications for the formation
scenario of hot Jupiters will be discussed in the next chapter.

Keywords Stellar obliquity · Spin–orbit angle · The Rossiter-Mclaughlin effect
Photometric measurements of stellar obliquities

2.1 Definition and Terminology

The stellar obliquity, or the spin–orbit angle, is the angle between the stellar spin
and planetary orbital axes, defined between 0 and π. Throughout this thesis, we use
ψ to denote this angle. We call the orbits with ψ < π/2 prograde, and those with
ψ > π/2 retrograde.

It is usually difficult to measure ψ for individual systems. Instead, it is easier to
measure either one of the sky-plane or line-of-sight components of the true stellar
obliquity ψ, which are illustrated in Fig. 2.1. The former angle, denoted by λ (Ohta
et al. 2005), is called the sky-projected obliquity; it is the angle of the sky-projected
orbital axis measured counter-clockwise from the sky-projected spin axis. The line-
of-sight misalignment can be inferred from the stellar inclination i�, which is the
direction of the stellar spin axis relative to our line of sight. For transiting exoplanets
with their orbital inclination iorb close toπ/2, stellar inclination significantly different
from π/2 immediately concludes the spin–orbit misalignment, while the opposite
is not necessarily the case. Essentially, the two angles i� and λ serve as the polar
and azimuth angles to specify the direction of the stellar spin vector relative to the
orbital one in three dimensions, with Z -axis being our line of sight. The true stellar
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planet

sky-projected
stellar spin axis
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sky-projected
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planetary
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Fig. 2.1 Definitions of iorb, i�, λ, and ψ in this thesis. The orbital inclination, iorb, is the angle
between the planetary orbital axis (blue arrow) and the observer’s line of sight. In a transiting system,
iorb is usually very close to π/2 and hence the orbital axis almost coincides with its projection onto
the plane of the sky. Inclination of the stellar spin axis, i�, is similarly defined as the angle between
the stellar spin axis (red arrow) and the line of sight. The angle between the two axes (red and blue
ones), ψ, is the stellar obliquity or the spin–orbit angle. Its sky projection, λ, denotes the angle
between the sky projections of the same two axes

obliquity ψ is related to the sky-projected angle λ and the two inclinations iorb and
i�, via the law of cosines in spherical trigonometry:

cosψ = cos iorb cos i� + sin iorb sin i� cosλ. (2.1)

Note that the measurements of obliquities discussed in this thesis are all for
transiting systems. In fact, it is always advantageous to measure ψ in transiting
systems, because iorb, one of the three angles required to specify ψ, is already fixed
very precisely.

2.2 Obliquity from Spectroscopic Transit

Obliquities have traditionally been measured using the spectroscopic technique. The
two techniques described here, both based on the same phenomenon, allow us to
measure the sky-projected angle λ.

2.2.1 The Rossiter-McLaughlin Effect

Stellar rotation, which is usually faster than the planet-induced stellar motion by
an order-of-magnitude, does not usually affect RVs. This is because the rotational
velocity profile of a star is symmetric with respect to its sky-projected rotation axis;
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Fig. 2.2 Schematic illustration of the Rossiter-McLaughlin effect. The left panel illustrates a mis-
aligned prograde orbit, while the right one shows a retrograde case

half of the surface is moving toward us, while the other away, and their net contri-
bution is zero. In other words, stellar rotation only causes a symmetric broadening
of its absorption lines, which does not shift the center of the lines.

A transiting planet breaks this symmetry and results in anomalous RV variations,
known as the Rossiter-McLaughlin effect (Rossiter 1924; McLaughlin 1924). The
pattern of the velocity anomaly depends on the relationship between the stellar rota-
tion axis and orbit of the transiting planet, both projected onto the plane of the sky
(see Fig. 2.2). If the planetary orbit is prograde, for example, the planet first blocks
the approaching side of the star and then the receding side, and so the star apparently
moves away, and then toward us (left panel). If the orbit is retrograde, on the other
hand, the opposite pattern is observed (right panel).

As a first-order approximation, the RM effect can be simply described as a shift
in the intensity-weighted centroid of the absorption lines in the velocity space (Ohta
et al. 2005). Its amplitude �vRM is then given by

�vRM = v sin i�

(
Rp

R�

)2 √
1 − b2 = 100m s−1

(
v sin i�

10 km s−1

)(
Rp/RJup

R�/R�

)2 √
1 − b2, (2.2)

where v sin i� is the line-of-sight component of the stellar rotational velocity and b is
the impact parameter of the transit normalized to R� (cf. Appendix B). The formula
gives a useful order-of-magnitude estimate for the expected anomaly, although we
need to take into account other complicated effects for a more precise, quantitative
analysis. Note that the value of �vRM is comparable to or even larger than that of the
orbital RVs for a Jupiter-sized planet (cf. Eq.1.4), while the detection is challenging
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Fig. 2.3 Schematic illustration of the Doppler tomography method. a The bottom panel shows the
motion of the planetary shadow (i.e., radial velocity corresponding to the central wavelength of the
shadow) as a function of time, for the three different orbits illustrated in the top panel. b Illusrtation
of the planetary shadow in the absorption line profile

for smaller planets and/or stars with a rotation velocity similar to the sun (about
2 km s−1).

Precisely speaking, a transiting planet does not induce the net shift of the absorp-
tion lines, as is the case for the orbital motion. Rather, it distorts the line profile
(cf. panel (b) of Fig. 2.3), and fitting such distorted lines with a symmetric template
produces the anomalous velocity variations. The RM anomaly, therefore, depends
on the specific manner to derive the velocity shift from given absorption lines and
does not agree with the value computed as a centroid shift in general. Such devia-
tions from the value computed with the centroid formula by Ohta et al. (2005) was
first pointed out by Winn et al. (2005). The improved formulae taking into account
specific procedures of the analysis, as well as other minor but significant effects to
shape the absorption lines, have been developed by Hirano et al. (2010, 2011) for
the iodine-cell technique, and by Boué et al. (2013) for the cross-correlation based
method.

For a reliable measurement of the sky-projected obliquity λ with the RM effect,
it is essential to determine the time when �vRM becomes zero relative to the central
time of the transit. The two times are equal when λ = 0◦, while in the case of the left
panel in Fig. 2.2, the former time, when the planetary orbit crosses the sky-projected
stellar rotation axis, is earlier than the central time of the transit, i.e., the midpoint of
the transit chord. For this reason, a joint analysis with the photometric transit light
curve (which determines the transit center), along with a reliable determination of
the orbital radial velocity (which fixes the zero point of the RV anomaly), greatly
improves the precision and accuracy of the measurement (Winn et al. 2005 and
Chap.4 of this thesis). It is also ideal that the transit impact parameter is not too
close to zero, or the RM anomaly is always symmetric with respect to the transit
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center even for a spin–orbit misaligned case. The value of λ obtained in that case
totally depends on the prior constraint on v sin i� and needs to be taken with care.

2.2.2 Doppler Tomography

As explained in the previous section, the essence of the RM effect is the distortion,
rather than the shift, of the stellar absorption lines. The technique described here is
to directly detect the distortion as a function of time. The shape of the line distortion
is characterized as a “bump” in the absorption lines, whose position and width are
determined by the line-of-sight rotation velocity distribution under the planetary
disk, i.e., position and radius of the planetary disk (see panel (b) of Fig. 2.3). During
a planetary transit, the central wavelength of the bump thus moves accordingly to
the planetary motion. The range of wavelength/line-of-sight velocity over which the
bump, or the planetary “shadow”moves, depends on the transit impact parameter and
sky-projected obliquity λ, as illustrated in Fig. 2.3a. The method was first applied to
a transiting planet by Collier Cameron et al. (2010a).

While it is more demanding to extract the subtle planetary shadow from the noisy
spectra than to measure RVs, this technique, if applicable, allows for a more precise
measurement of λ with fewer assumptions than the RM measurement, without the
ambiguity of separating the orbital RVs and RM anomaly for instance (Albrecht
et al. 2013). Moreover, it provides a unique possibility to constrain obliquities of
fast-rotating planet-hosting stars, for which RVs (and hence the usual RM effect)
cannot be measured very precisely due to the significant rotational broadening of
the spectral lines (Collier Cameron et al. 2010b; Johnson et al. 2014; Bourrier et al.
2015). The same is also true for early-type stars that exhibit few absorption lines, for
which precise RV velocimetry is impossible.

2.3 Obliquity from High-Precision Photometry

High-precision, continuous photometry as obtained by Kepler opened up new pos-
sibilities to gauge ψ. As will be described in detail below, they basically constrain
i� and are often applicable regardless of the planet properties. They are therefore
complementary to the spectroscopic methods both in terms of applicable targets and
derived information.

2.3.1 Asteroseismology

The long-term, uninterrupted, and extremely precise data of the stellar brightness
provided by space-borne instruments, including MOST (Walker et al. 2003), CoRoT
(Baglin et al. 2006a, b), and Kepler (Borucki et al. 2010), have made it possible to
probe the internal structures of many stars through the detection of their oscillation
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modes with unprecedented precisions. The frequencies of oscillations, which are
determined by the internal structure of the star (i.e., property of the cavity), provide
precise knowledge about the stellar interior that is otherwise far out of reach. Such
information from asteroseismology is valuable for precise and accurate characteri-
zation of explanetary systems as well (e.g., Carter et al. 2012), not to mention the
stellar physics. More details on the recent development of asteroseismology may be
found in recent conference proceedings (e.g., Shibahashi et al. 2012; Shibahashi and
Lynas-Gray 2013; Guzik et al. 2014).

In addition to the fundamental stellar properties, asteroseismology also reveals the
direction of the stellar rotation axis (i.e., stellar inclination i� in Fig. 2.1) through the
amplitudes (rather than frequencies) of the oscillation spectrum (Gizon and Solanki
2003).As is exactly the case for energy eigenstates of a quantummechanical system in
a spherically symmetric potential, each oscillation mode is labeled by three quantum
numbers (n, l, m).While the (2l+1)-modes with the same (n, l) but differentm have
the same frequencies in the absence of stellar rotation, these degenerate modes can
be separated in the power spectrum once the stellar rotation breaks the degeneracy,
resulting in the typical splitting of 1/Prot with Prot being the stellar rotation period.
These split modes would usually have the same energy because we expect that the
pressure-modeoscillation observed for Sun-like stars is excited by turbulencewithout
any preferred direction. The disk-integrated strength1 of each mode with different m,
however, depends on the viewing angle; the modes with more angular nodes always
visible from the observer tend to be weaker, because the oscillations on both sides
of a node cancel each other. The relative heights of the modes with the same (n, l)
but with different m thus yields i� through the following simple formula:

E(l, m, i�) = (l − |m|)!
(l + |m|)!

[
P |m|

l (cos i�)
]2

, (2.3)

where P |m|
l is the associated Legendre function, and E integrated over 0 < cos i� < 1

is normalized by (2l + 1)−1.
For transiting systems with orbital inclination close to π/2, stellar inclination

gives a measure of the “line-of-sight” misalignment, which is complementary to the
“sky-projected” misalignment constrained from the RM effect (see Fig. 2.1). In fact,
if the stellar inclination i� thus obtained is combined with the RM effect, true stellar
obliquity ψ, which is usually hard to constrain, is obtained. In Chap.4 we discuss
the first attempt of such an application. For the planets not amenable to the RM
measurement due to their small radii or long orbital periods, on the other hand, the
constraint on ψ from asteroseismic i� alone is usually not very strong for Sun-like
stars. Rather it is better suited for statistical inference, given the advantage that the
method can be applied regardless of the property of the planets (Campante et al.
2016). Meanwhile, i� can be constrained more precisely for evolved stars, for which
asteroseismology led to an important discovery (Huber et al. 2013, see Sect. 2.4.3).

1Remember that the surface is not resolved for stars, unlike the case of asteroseismology for the
sun (i.e., helioseismology).
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2.3.2 Gravity Darkening

Centrifugal force due to rapid stellar rotation reduces the surface gravity around
the stellar equator and elongates it relative to the pole. The elongation expands the
intervals of the equipotential surfaces, and hence reduces the temperature gradient.
As a result, stellar flux becomes smaller around the equator than the pole. This is the
phenomenon known as gravity darkening, and the flux dependence on the surface
gravity g is given by

Teff ∝ gβ, β = 0.25 (2.4)

for a star with a radiative envelope (von Zeipel’s law; von Zeipel 1924).
If a planet transits such a “gravity-darkened” star, the above equator-to-pole bright-

ness contrast deforms the transit light curve (Fig. 2.4). Since the shape of this anomaly
depends on the position of the bright stellar pole relative to the planetary orbit, stel-
lar obliquity can be inferred from the gravity-darkened transit light curve (Barnes
2009). The method has been applied to several transiting planets (Barnes et al. 2011,
2015; Ahlers et al. 2015) and eclipsing binaries around fast-rotating stars (Philippov
and Rafikov 2013; Zhou and Huang 2013; Ahlers et al. 2014), for which obliquity
measurements with other techniques are challenging. In the only case where the
Doppler tomography was also applicable (Johnson et al. 2014), however, the result
from the gravity-darkening method was shown to disagree with the latter measure-
ment. Moreover, gravity-darkening measurements performed by different authors
sometimes report inconsistent results (Zhou and Huang 2013; Ahlers et al. 2014) for
some unknown reason. These issues will be further discussed in Chap. 5.

The theory of gravity darkening has been directly tested by imaging the surface
brightness distribution of nearby rapid rotators with interferometry (e.g.Monnier
et al. 2007), and more indirectly with the modeling of ellipsoidal variations of close

Fig. 2.4 Schematic illustration of the gravity-darkened transit. The transit is deepestwhen the planet
is closest to the bright pole of the star (white region). Note that here we only show the brightness
distribution due to the gravity darkening, while the actual brightness profile is dominated by the
limb darkening
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binaries (e.g.Djurašević et al. 2006). While the observed profile largely agrees with
the theoretical predictions, some observations report possible deviation from the
classical von Zeipel law. This may be due to the very rapid rotation close to the break
up (Espinosa Lara and Rieutord 2011) or may be due to the poorly-understood
processes including the convection or magnetic field (Rieutord 2015). Indeed,
gravity darkening of lower-mass stars with convective envelope seems far from being
understood.

2.3.3 Spectroscopic v sin i� and Stellar Rotation Period

The width of absorption lines yield v sin i�, the projected rotational velocity of the
star. If we have the independent knowledge on v = 2πR�/Prot, the stellar equatorial
rotation velocity, we can constrain i� and compare it to iorb � π/2 for transiting
systems. The stellar radius can usually be estimated by stellar modeling based on the
stellar atmospheric parameters obtained from spectroscopy, or by asteroseismology
if applicable. The problem is how to estimate Prot, for which two methods have been
proposed.

The first is to rely on the empirical relation between the stellar age and the rotation
period, which forms the basis of gyrochronology. In general, older stars tend to
rotate more slowly presumably due to the magnetic braking, which produces a good
correlation with the age and rotation period. While gyrochronology estimates the
stellar age from the rotation period, we could use the relation in an opposite way
to obtain the latter from the former, derived from spectroscopy or asteroseismology.
Schlaufman (2010) applied this method to 75 transiting planets and identified 10
systems exhibiting possible spin–orbit misalignments.

The second is to use photometric modulation of the star due to the star spots on
the stellar surface. The Kepler data made it possible to infer the rotation periods of
tens of thousands of stars in this way (McQuillan et al. 2013; Walkowicz and Basri
2013; McQuillan et al. 2014). Hirano et al. (2012a, 2014) applied the method to
∼100 transiting systems for which spectroscopic v sin i� and R� are obtained. While
they did not find any significant difference for single- and multi-transiting samples,
Morton and Winn (2014), who adopted a more sophisticated statistical approach,
presented a piece of evidence that planets in single-transiting systems may have
higher obliquities than those in multi-transiting systems.

Both methods do not give very strong constraints on individual systems due to
relatively large uncertainties in the spectroscopic v sin i� and R�. In addition, in the
first method the rotation period estimated from the gyrochronological relation is very
uncertain due to the inherent scatter in the empirical relation as well as the difficulty
in precisely estimating the stellar age. Nevertheless, this method can be applied to a
large number of systems and thus may benefit the statistical inference with a large
sample.
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2.3.4 Spot Anomaly

If a transiting planet crosses over a star spot, we observe an instantaneous increase
in the relative flux because of the smaller intensity within the spot. Such anomalies,
if observed multiple times via continuous photometric monitoring, also allow for
constraining stellar obliquities (Sanchis-Ojeda et al. 2011). While it is a priori likely
to observe such recursive spot crossings for lower-obliquity systems, the method
is also applicable, at least in principle, to the misaligned case as demonstrated by
Sanchis-Ojeda and Winn (2011).

In addition to the in-transit anomaly, star spots also induce out-of-transit fluxmod-
ulation over the timescale of stellar rotation period. The modulation, if continuously
monitored as well, greatly helps the above decoding, because the global modeling
of such out-of-flux modulations reveals the stellar rotation period and even the lon-
gitudinal phase of the spot at a given epoch (Nutzman et al. 2011; Sanchis-Ojeda
et al. 2012). The essentially same effect also manifests as the correlation between the
local derivative of the out-of-transit flux and shifts in the transit times induced by the
spot anomaly; the correlation can be used to distinguish the prograde and retrograde
motions (Mazeh et al. 2015a).

2.3.5 Spot-Modulation Amplitude

The methods discussed so far are, at least in principle, applicable to individual sys-
tems, while this method is statistical in nature.

Brightness modulation due to star spots tend to be weaker when the stars are
seen from the pole. For such a configuration, star spots around the stellar equator,
as observed for the sun, are located close to the limb of the stellar disk, and so
they produce only minor modulations due to geometric foreshortening and limb
darkening. Thus, if we compare the spot-modulation amplitudes of stars that host
transiting planets (where planetary orbits are close to edge on)with that do not,we can
evaluate correlation between the stellar inclination and planetary orbital inclination:
the stars hosting transiting planets should show the modulations of larger amplitudes
than those without transiting planets, if the stellar equatorial plane tends to be aligned
with the planetary orbital plane.

Mazeh et al. (2015b) applied this analysis to 993KOIs (i.e., stars hosting candidate
transiting planets) and 33614 Kepler stars with no known transiting planets. They
found that cool planet-hosting stars with Teff � 6000K exhibit a clear signature
of the spin–orbit correlation (i.e., alignment), while their hotter counterparts show
a weaker correlation and hence likely have higher stellar obliquities, assuming that
their spot distribution is similar to that of the cooler stars. Since the majority of
these KOIs are relatively small planets on wider orbits than hot Jupiters, the result
demonstrates that the high obliquity of hot stars identified in the RM sample is not
specific to hot Jupiters, as will be discussed in Sect. 2.4.1.
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More importantly, they found no sharp obliquity dependence on the orbital period
for the cooler KOI sample, as later confirmed by Li &Winn (2016) with a more elab-
orated analysis.2 The fact may argue against the scenarios that the current obliquity
distribution has been sculpted by the tidal star–planet interaction, as will be discussed
in the next chapter.

2.4 Correlations with the System Properties

As of April 2016, stellar obliquities have been measured for about 80 individual
systems.3 Since most of these constraints are from the spectroscopic transit obser-
vations, they are mainly Jupiter-sized planets and only the sky-projected obliquities
λ are constrained. As we have seen in Fig. 1.5, λ of exoplanetary systems distribute
broadly; about one third of the sample exhibit spin–orbit misalignments in terms of
λ at the three-sigma level.

In this section, we summarize our current knowledge on the obliquity, both on
λ from the RM measurements and statistical results from various photometric tech-
niques described above. We especially focus on the correlation with other properties
of the system, which will be an important clue to understand the origin of the spin–
orbit misalignment. The theoretical interpretation will be separately discussed in
Chap.3.

2.4.1 Hot Stars (with Hot Jupiters) Have High Obliquities

The most significant trend in the stellar obliquity known to date is the correlation
between the misalignment and the effective temperature of the host star (or whatever
else correlated to the latter). Winn et al. (2010) first pointed out that large spin–orbit
misalignments are preferentially found around hot stars with Teff � 6250K, which
was confirmed by Albrecht et al. (2012) with a larger sample. Similar trends can be
seen in terms of the stellar mass (Schlaufman 2010), stellar age (Triaud 2011), and
stellar rotation period (Dawson 2014), which are all well correlated with the stellar
effective temperature for main-sequence stars.

Figure2.5 shows the updated compilation of this λ–Teff relation for the same
sample as in Fig. 1.5. Here we choose Teff = 6100K as a dividing line following
Winn and Fabrycky (2015), who also discussed the latest statistics. The trend is still
clear except for the four systems in the upper left part labeled with the planet names.
It is worth noting that they all have relatively large a/R� > 10, and often have
smaller masses (Fig. 2.6), i.e., they are not hot Jupiters. These features support the
tidal origin of the trend, as will be discussed in the next chapter.

2Note that they did find a weak period dependence; see Sect. 3.2.1 for its implication.
3See, e.g., Holt-Rossiter-McLaughlin Encyclopaedia at http://www2.mps.mpg.de/homes/heller/.

http://www2.mps.mpg.de/homes/heller/
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Fig. 2.5 The values of λ as a function of effective temperatures of the host stars. The vertical
dashed line corresponds to Teff = 6100K. Filled circles denote close-in planets with a/R� < 10,
while planets shown by open ones orbit farther away from the star (a/R� > 10)

Until recently, the trend has been discussed mainly in the context of hot Jupiter
formation, as a natural consequence that obliquities have been measured only for hot
Jupiters. The statistical inference using the spot-modulation amplitude (Sect. 2.3.5),
however, recently showed that planets other than hot Jupiters are also likely to have
higher obliquities around hotter stars (Mazeh et al. 2015b). While the result may
indicate that the large spin–orbit misalignment is not specific to hot Jupiters and their
formation process, the interpretation is quite uncertain at this point. The statistical
nature of the spot-amplitude analysis only allows for the relative comparison between
hot and cool stars, and so it is difficult to quantitatively assess how the “higher”
obliquity found for planets around hotter stars compare to the high obliquity observed
for hot Jupiters. It may also be possible that the surface distribution of spots on hotter
stars is different from that on cooler stars, in which case the relationship between the
spot-modulation amplitude and stellar obliquity would not be straightforward.

2.4.2 Planetary Mass Cut Off for Retrograde Planets

Discovery of planets on retrograde (ψ > π/2) orbits (e.g.Winn et al. 2009) was one
of the most surprising outcomes of the RM measurements. Hébrard et al. (2011)
pointed out that such retrograde orbits are only found for hot Jupiters less massive
than ∼3MJup, as shown in Fig. 2.6. It may also be worth noting that the massive
hot Jupiters on prograde orbits are mostly found around hot stars, around which
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Fig. 2.6 The values of λ as a function of the planetary mass. The red and blue circles correspond
to planets around hot (Teff > 6100K) and cool (Teff < 6100K) stars, respectively, and the vertical
dashed line corresponds to Mp = 3 MJup. Note that masses of the planets in this plot are not the
minimum mass, since they are all transiting (or the RM effect cannot be measured). For clarity,
planetary masses are set to the minimum value of the horizontal axis when only the upper limit is
obtained

spin–orbit misalignments are more frequent. The fact may point to the effect of
tidal star–planet interaction, whose strength increases proportionally to the planet-
to-star mass ratio. Alternatively, it may simply suggest that these “super-Jupiter”
mass objects were formed in a different manner from hot Jupiters with Mp � 3MJup.

2.4.3 Single- Versus Multi-transiting Systems

So far the spin–orbit misalignment is “rare” among multi-transiting systems. This
supports the idea that the initial star–disk alignment as expected for the solar system
is common, because the planets in multi-transiting systems presumably have well-
aligned orbits and thus trace the plane of their natal protoplanetary disk.

Either the sky-projected obliquity or stellar inclination has been constrained for
seven multi-transiting systems. Among these, only one system, Kepler-56, exhibits
a clear spin–orbit misalignment (i� = 47◦ ± 6◦ from asteroseismology by Huber
et al. 2013), while the other six are consistent with the alignment at least in terms of
the sky-projected or line-of-sight component. The spectroscopic transits (Sect. 2.2)
have been observed for Kepler-89d (λ = −6◦+13◦

−11◦ and −11◦ ± 11◦ by Hirano et al.
2012b, Albrecht et al. 2013 respectively), Kepler-25c (λ = 7◦ ± 8◦ by Albrecht



2.4 Correlations with the System Properties 33

et al. 2013), and for WASP-47b (λ = 0◦ ± 24◦ by Sanchis-Ojeda et al. 2015);
asteroseismolgy (Chaplin et al. 2013, see also Sect. 2.3.1) points to alignments for
Kepler-50 (i� = 82◦+8◦

−7◦ ) and Kepler-65 (i� = 81◦+9◦
−16◦ ); and λ � 10◦ is obtained

for Kepler-30 (Sanchis-Ojeda et al. 2012) from the spot anomaly (Sect. 2.3.4). In
Chap.4, we will report on a new measurement of true obliquity ψ, rather than λ, for
Kepler-25c.

Statistical inferences for the line-of-sight misalignments (i.e., difference between
i� and iorb; see Sects. 2.3.3 and 2.3.1) also support the alignment in multi-transiting
systems, though only in a relative sense. Morton and Winn (2014) analyzed the
sample of v sin i�, R�, and Prot for 70 KOIs using a hierarchical Bayesian technique
and found marginal evidence that stars hosting single-transiting planetary systems
have systematically higher obliquities than those hosting multi-transiting systems.
The conclusionwas further strengthenedby adding asteroseismic samples (Campante
et al. 2016). The possible difference between single- and multi-transiting systems,
if real, does not only support the initial star–disk alignment, but also suggests that
(a part of) excess single-transiting systems as implied by the multiplicity statistics
(known as the Kepler dichotomy, e.g., Lissauer et al. 2011; Ballard and Johnson
2016)might actually represent the dynamically “hotter” (i.e.,mutuallymore inclined)
multi-planetary systems.
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Chapter 3
Origin of the Misaligned Hot Jupiters:
Nature or Nurture?

Abstract What produces the spin–orbit misalignment of hot Jupiters? One natural
speculationwould be that it is related to the specific formation channel of hot Jupiters,
i.e., their orbital migration. The “high-eccentricity migration” scenario, tidal migra-
tion following the eccentricity excitation through few-body dynamical processes,
can naturally produce the spin–orbit misalignment along with the highly eccentric
orbits as mentioned in Sect. 1.1.4. In Sect. 3.1, we describe this scenario in detail.
The challenge to this (and actually to any other) scenario is the correlation between
the obliquity and effective temperature of hot-Jupiter hosts discussed in Sect. 2.4.1.
A possible explanation is that the trend is attributed to the different timescales for
obliquity damping in cool and hot stars (Sect. 3.2). The subsequent studies, however,
show that it is difficult to reproduce the trend at least with the current theory of tides.
In addition, evidence against this “tidal realignment” scenario has recently been pre-
sented by new measurements of obliquities with the Kepler photometry. It has also
been pointed out that it may be difficult to produce the most misaligned hot Jupiters
within this framework of migration. Given the situation, another class of scenarios
without resorting to the violent dynamical events has also been proposed; this is the
topic of Sect. 3.3. These scenarios consider the misalignment to be of “primordial”
origin, that is, the misalignment between the stellar spin and protoplanetary disk.
They might consistently explain the obliquity dependence on the host star, as well
as the presence of counter-orbiting hot Jupiters. In this chapter, we review both of
these “nature” and “nurture” scenarios along with their strengths and weaknesses,
and discuss how the trend could be explained in each class of scenarios. We also
propose several important questions that need to be addressed to distinguish the two
scenarios.

Keywords High-eccentricity migration · Hot Jupiter · Star–disk misalignment
Tidal star–planet interactions
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3.1 High-Eccentricity Migration

This class of migration scenarios was proposed right after the first discovery of a hot
Jupiter and the proposal of disk migration scenario to explain its close-in orbit (Lin
et al. 1996). While this alternative was originally motivated by large eccentricities
observed for relatively short-period Jupiters discovered in the early days (cf. Figs. 1.3
and 1.4), the frequent spin–orbit misalignments observed for transiting hot Jupiters
later provided further support for this type of scenario.

3.1.1 The Scenario

While a variety of scenarios has been proposed for the high-eccentricity migration,
all of them consist of the common two processes described below.

First, the planetary orbit (usually assumed to be beyond ∼AU initially) acquires a
large eccentricity close to unity via some dynamical process. This causes the planet to
have a very small pericenter distance a(1 − e), which will eventually be comparable
to the final semi-major axis of the resulting hot Jupiter.1 For example, the eccentricity
as large as ∼0.99 is required for a Jupiter at a = 5AU to migrate to a = 0.05AU
via this process. It is usually during this process that the spin–orbit misalignment is
produced, because the process that excites eccentricity often involves the excitation
of orbital inclination that drives the orbit out of the original disk plane. The timescale
and condition for the eccentricity/inclination excitation significantly depends on the
specific scenario.

Next, tidal interaction enhanced around the close pericenter shrinks and circular-
izes the orbit. During a close encounter around the pericenter, tidal force from the
central star distorts the planet and excites its oscillation, whose energy is eventually
dissipated inside the planet. While the energy dissipation reduces the orbital semi-
major axis of the planet, the conservation of orbital angular momentum,2 which is
proportional to

√
a(1 − e2) (cf. Appendix A), requires that e is also reduced, i.e., the

orbit is circularized as well.
The final semi-major axis of the circularized hot Jupiter, af , is thus simply related

to the pericenter distance at the onset of circularization, qc, via

af = a(1 − e2) = qc(1 + ec) � 2qc, (3.1)

where ec ∼ 1 at the beginning of circularization. This implies that the semi-major
axis distribution of hot Jupiters formed via high-eccentricity migration should have

1As we will see below, the final semi-major axis is actually twice the pericenter distance.
2Assuming that the planetary spin is already synchronized with the orbit; this usually occurs on a
much shorter timescale than the orbit circularization by the ratio of the planetary moment of inertia
to Mpa2 (Correia 2009).



3.1 High-Eccentricity Migration 37

an inner edge twice the Roche limit aRoche of the central star. Rasio and Ford (1996)
actually showed that the observational data favor 2aRoche rather than aRoche as the
inner edge.

Below we describe several possible mechanisms for the eccentricity excitation in
the first step. Note that these mechanisms are not necessarily mutually exclusive.

3.1.1.1 Secular Interaction with a Stellar and Planetary Companion:
Kozai–Lidov Cycles with Tidal Friction

Let us consider a hierarchical three-body astrophysical system, where the inner semi-
major axis, ain, is much smaller than that of the outer orbit, aout.3 Even the weak
gravitational perturbation from such a distant outer object can gradually accumulate
to affect the long-term behavior of the inner orbit. Kozai (1962) found that, if the
inner orbit is inclined with respect to the outer one by more than icrit ∼ 40◦, the
inner orbit, even if initially circular, experiences the periodic excursion of orbital
eccentricity to a large value coupled with the oscillation of orbital inclination. This
is known as the Kozai cycle.

Because the timescale of such an evolution is much longer than the orbital one,
the long-term behavior of the system can be tracked by considering the potential
averaged over the inner and outer orbits, i.e., interaction between the two rigid “rings”
(Gauss’s method; Murray and Dermott 1999). In this “secular” approximation, the
orbital semi-major axis (i.e., orbital energy) is conservedbecause the potential is time-
independent. In addition, to the lowest order in ain/aout (quadrupole approximation),
the Kozai integral

H =
√
1 − e2 cos i (3.2)

is conserved during the eccentricity/inclination oscillation. This relation represents
the conservation of the semi-major axes and the angular momentum normal to the
outer orbit, the latter of which follows from the axisymmetry of the potential due
to the outer companion. Thus, if the value of H is sufficiently small (i.e., cos i
was small when the orbit was initially circular), the inner orbit can acquire a large
eccentricity (or a small 1 − e2) when i becomes small in the cycle. The timescale for
the oscillation is given by

PKozai = 2

3π

m tot

mout

P2
out

Pin
(1 − e2out)

3/2, (3.3)

wherem tot andmout are themasses of the whole system and outer object, respectively
(Kiseleva et al. 1998), and Pin/out are the orbital periodswith their subscripts denoting

3Formulti-stellar systems, such a hierarchy is a natural consequence of the requirement of dynamical
stability, while it is not necessarily the case for two-planet systems.
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the inner and outer orbits. The timescale is about 107 yr for a stellar perturber at
aout ∼ 1000AU, and depends a lot on the system parameters; note the strong a3out
dependence.

When combined with the tidal dissipation, this provides a natural mechanism
for producing the short-period binaries (Mazeh and Shaham 1979), which is the
scenario known as “Kozai cycles with tidal friction” (KCTF, Kiseleva et al. 1998;
Eggleton and Kiseleva-Eggleton 2001). Also for planetary systems, there are at least
two examples known for which the Kozai cycle is likely responsible for the observed
high orbital eccentricity (Holman et al. 1997; Wu and Murray 2003), although the
whole eccentricity distribution cannot be explained by the Kozai mechanism alone
(Takedo and Rasio 2005). Comprehensive studies of hot Jupiter formation via this
mechanism have been performed by Fabrycky and Tremaine (2007) and Wu et al.
(2007), who made predictions for the obliquity distributions of hot Jupiters produced
in this mechanism.

While the above studies consider the stellar object as an outer perturber, a sim-
ilar migration can also occur in a hierarchical two-planet system, where the outer
perturber is a planet (Naoz et al. 2011). In such a case, the Kozai integral (i.e., the
angular momentum normal to the invariant plane) is not necessarily constant due
to the higher-order terms of secular perturbation (e.g., Ford et al. 2000), and so the
inner orbit can even flip its direction. Such a higher-order term (mainly octupole) can
also play a significant role when the outer orbit is eccentric, in which case the large
mutual inclination is not necessarily required to produce a large inner eccentricity
(Li et al. 2014). That is, high-eccentricity migration is also possible for a copla-
nar system (Petrovich 2015), where the resulting close-in planet can be spin–orbit
aligned. Although this mechanism has been proposed as a viable path to produce
“counter-orbiting” planets with ψ ≈ 180◦, (e.g., Naoz et al. 2011; Li et al. 2014),
the most common outcome seems to be the tidal disruption (Xue and Suto 2016).
In addition to those higher-order term effects, it has also been pointed out that the
torque due to the rotationally-deformed quadrupole moment of the host star may add
a further complexity in the obliquity evolution (Storch et al. 2014).

3.1.1.2 Planet–Planet Scattering

When more than one giant planets are formed on sufficiently close orbits, the long-
term gravitational interaction can lead to the dynamical instability, which results
in the close encounter and scattering between the planets. Some of the scattered
planets acquire sufficiently large eccentricities for their pericenter distances to be
close enough to tidally migrate. The process often involves an ejection or excitation
of the outer planet’s eccentricity, as well as excitation of the orbital inclination (i.e.,
spin–orbit misalignment).
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While the semi-major axis after the scattering can only be about half of the original
value for the two-planet case (Rasio and Ford 1996),4 the outcome can be even more
diverse if three or more giant planets are involved (Weidenschilling and Marzari
1996). The typical outcome in the three-giant case is the ejection of one planet,
while the two survivors are left in well separated orbits one closer to the star and the
other farther away, often with significant eccentricities and a large mutual inclination
(Marzari and Weidenschilling 2002).

Even though the eccentricity of the inner planet does not reach a sufficiently large
value after one scattering, the secular interaction (i.e., the Kozai effect) due to the
scattered outer planet can further excite the innermost planet’s eccentricity to enhance
the chance of hot Jupiter formation. Especially, Nagasawa et al. (2008) pointed out
that the repeated Kozai cycles during the three-planet orbit crossing, rather than the
typical case of the two-survived planets, significantly contribute to the eccentricity
excitation and increase the formation probability of close-in orbits by a factor of a few
compared to the previous estimates (Marzari and Weidenschilling 2002; Chatterjee
et al. 2008).

3.1.1.3 Secular Chaos

Wu and Lithwick (2011) showed that secular interaction between two or more well-
spaced planets can lead to the chaotic diffusion of the eccentricity and inclination of
the innermost planet. While the process requires eccentricities/inclinations of O(1)
for a systemwith two planets, the threshold ismuch reduced for a systemwith three or
more planets, especially if the inner planet is the least massive. The scenario could in
principle produce retrograde hot Jupiters depending on the (largely unknown) initial
orbits of the system. It also predicts the presence of companions outside a few AU
of hot Jupiters, as well as the rise in their frequency with increasing stellar age.

3.1.2 Relevant Observational Issues

How does the high-eccentricity migration scenario compare to observations? So far,
observations seem to present both positive and negative results, as summarized below.

3.1.2.1 Existence of Highly Eccentric Planets

As mentioned in Sect. 1.1.4, the shear existence of highly eccentric planets seem to
argue for the past dynamical events at least in some systems. Indeed, the observed

4When all the planets have equal masses, energy conservation requires that the post-scattering
semi-major axis of the innermost planet, afinal,in, is bounded by 1/afinal,in = ∑N

j=1 1/ainitial,j <

N/min(ainitial,j) or afinal,in > min(ainitial,j)/N (Nagasawa et al. 2008).
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eccentricity distribution is well explained by the planet–planet scattering for the
sample with e � 0.2, largely regardless of the system configuration prior to the
scattering phase (Chatterjee et al. 2008; Jurić and Tremaine 2008). The fact implies
that the dynamical instability has played a universal role in sculpting the observed
architecture of exoplanetary systems.

3.1.2.2 Three-Day Pile up of Hot Jupiters

Radial velocity surveys reported a “pile-up” of Jupiter-sized planets around P =
3 days in their log-period distribution (Cumming et al. 1999; Udry et al. 2003).
While the presence of this pile-up was called into question by the following studies
of the Kepler data (e.g., Howard et al. 2012), Dawson and Murray-Clay (2013)
found that the peak is recovered even in the Kepler sample if only the samples with
super-solar metallicities are considered. In addition, comprehensive RV observations
of the Kepler giant planets recently reported by Santerne et al. (2016) also confirmed
the three-day pile-up. Indeed, this pile-up is the very feature expected from the high-
eccentricity migration scenario (Wu et al. 2007; Fabrycky and Tremaine 2007; Wu
andLithwick 2011), except for the casewhere a high eccentricity is excited by a single
strong planet–planet scattering (Wu and Lithwick 2011). It should be noted, however,
that the peak observed by Santerne et al. (2016) may be broader than expected from
the high-eccentricity migration scenario, and could be accommodated in the disk
migration scenario as well.

3.1.2.3 Hot Jupiters Are Not So Lonely

The “fact” that hot Jupiters are rarely accompanied by close siblings has often been
cited as evidence for the high-eccentricity migration scenario, which requires the
absence of close companions (e.g.,WuandMurray 2003) and/or clears away the close
companions during the process. A recent study by Schlaufman and Winn (2016),
however, showed that it is actually not the case. They computed the conditional
probability that Jupiter-sized planets with various orbital periods have another planet
in the same system and found that hot Jupiters are as likely as longer-period Jupiters
to have companions inside the snow line. This argues against the high-eccentricity
migration except for some of its variant including the scattering after the inward disk
migration (Guillochon et al. 2011).

As for the Kozai migration, detection of a distant stellar companion provides an
indirect support for the theory (e.g., Wu and Murray 2003). While the high observed
tertiary rate of spectroscopic binaries with periods less than three days (Tokovinin
et al. 2006) seems to support the KCTF as the formation scenario of shortest-period
binaries, no significant correlation has been found so far between the companion rate
and the occurrence of short-period giant planets exhibiting significant eccentricities
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and/or spin–orbit misalignments (Knutson et al. 2014; Ngo et al. 2015; Piskorz
et al. 2015). The fact may also indicate that the secular perturbation plays at most a
supporting role in the formation of hot Jupiters.

3.1.2.4 Paucity of Super-Eccentric Warm Jupiters

If hot Jupiters are mainly formed through the high-eccentricity migration from
beyond the snow line, there should also exist warm Jupiters on highly eccentric
orbits that are undergoing tidal migration (Socrates et al. 2012). Dawson et al. (2015)
showed that the expected population does not exist in the Kepler data based on the
transit duration statistics. This argues against the high-eccentricity scenario, at least
in its simplest form, as a dominant channel of hot-Jupiter formation. That said, some
of its variant are not necessarily excluded. For example, high-eccentricity migration
may have started interior to∼1AU after diskmigration (e.g., Guillochon et al. 2011);
warm Jupiters’ eccentricities may be currently undergoing secular oscillations due
to close companions (Dong et al. 2014) and they may be “super-eccentric” only
for a fraction of time; or tidal circularization might occur more rapidly at higher
eccentricities, reducing the number of planets in highly-eccentric orbits.

3.1.2.5 Difficulty in Producing Counter-Orbiting Hot Jupiters

As shown in Fig. 1.5, some hot Jupiters have λ close to 180◦. It has been shown that
even the high-eccentricity migration is difficult to produce such “counter-orbiting”
hot Jupiters with ψ ≈ 180◦ (Xue and Suto 2016). We should note, however, that λ is
a sky-projection of the true obliquity ψ, and λ for the retrograde orbit with ψ >90◦
tends to be larger than the true obliquity ψ (Fabrycky and Winn 2009). In other
words, the planets with λ ≈ 180◦ may actually have smaller ψ compatible with the
high-eccentricity migration scenario. We will show that it is indeed the case for at
least one of those systems, HAT-P-7, in Chap. 4.

3.2 Tidal Origin of the Obliquity Trend

Suppose that the high-eccentricity migration is responsible for the spin–orbit mis-
alignments, can it also explain the observed obliquity trends, especially the λ–Teff
correlation (Sect. 2.4.1)? No convincing arguments have been presented that explain
why the above mechanisms for the high-eccentricity migration could produce such a
steep dependence of stellar obliquity on the host-star property. Instead, the obliquity
trend may be attributed to the difference in the stellar property as follows.
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Even after the orbit circularization, tidal evolution continues. Tides raised on the
star by the planet, which are much weaker than the planetary counterpart, instead
start to play a role. As was also the case for planetary tides, stellar tides synchronize
the stellar rotation with the orbital motion, damp the spin–orbit misalignment if any,
and lead to the decay of the semi-major axis.

Winn et al. (2010) proposed that the observed λ–Teff relation may be explained by
this tidal damping. The scenario is based on the fact that the mass of the convective
envelope starts to drop significantly above Teff ∼ 6100K (Pinsonneault et al. 2001).
Since the turbulence in the convective layer is thought to greatly enhance the tidal
dissipation efficiency (e.g., Zahn 2008), the obliquity damping is also pronounced
around cooler stars. The magnetic field produced by the convective envelope, and
the resulting braking of the stellar rotation, may also explain why the stars with
low obliquities, if tidally aligned, are not synchronized with the planetary orbit but
rotates more slowly.5 Indeed, the same temperature also corresponds to the so-called
“Kraft break,” below which stellar rotation speed sharply decreases (Kraft 1967;
Gray 2005).6

Qualitatively, the trends we have discussed in Sect. 2.4 are in agreement with the
hypothesis. The correlationwith the stellar temperature or age, alongwith the outliers
with large values of a/R� (Fig. 2.5), are consistent with the tidal damping. The lower
obliquities observed for the most massive planets (Fig. 2.6) may also naturally arise
from the stronger tides raised by more massive planets.

An attempt was made by Albrecht et al. (2012) to establish a single quantitative
measure that explains these trends. Because the current understanding of the tidal
dissipation limits the realistic computation of this timescale from the first princi-
ples, they adopted simple scaling laws for the tidal synchronization timescales by
Zahn (1977) and showed that this timescale beautifully sorts the systems in order
of the degree of their spin–orbit misalignments (their Fig. 24), although the abso-
lute timescales are rather arbitrarily chosen.7 The argument suggests that the tidal
star–planet interaction plays an important role in sculpting the observed obliquity
distribution, whether the damping is indeed responsible or not.

3.2.1 Possible Evidence Against the Tidal Origin

Herewe discuss twomain difficulties of the tidal scenario for theλ–Teff trend.Neither
of them is decisive, though, mainly due to the unknown nature of tides.

5The orbital periods of hot Jupiters are less than a week, while the rotation periods of their host
stars are typically O(10) days.
6Dawson (2014) advocated that this rapid decrease in the stellar spin angular momentum, rather
than the efficiency of tidal dissipation, is responsible for the trend.
7The computed timescales, in their original forms, are by many orders of magnitudes longer than
the system age. This might be due to the difference in the timescales for spin–orbit synchronization
and circularization.
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3.2.1.1 Weak Dependence of Obliquity on the Orbital Distance Around
Cool Stars

If the obliquity is indeed damped by the tidal interaction, planets closer to their host
stars should exhibit better spin–orbit alignments. While this may be the case for
the Rossiter-McLaughlin (RM) sample around cool stars (blue circles in Fig. 3.1),
the analysis of spot-modulation amplitudes of Kepler stars (Mazeh et al. 2015,
Sect. 2.3.5) did not find any significant difference between the obliquity distribu-
tions of planets with periods 1–5 days and those with 5–50 days. Although the more
in-depth analysis based on the same technique (Li andWinn 2016) identified a statis-
tically significant correlation with the orbital periods that is qualitatively consistent
with the tidal damping (i.e., decreasing obliquity with the decreasing orbital period),
the trend is still quantitatively inconsistent with the tidal scenario; the trend they
found is rather smooth and extends up to the orbital period of ∼30days, while the
tidal scenario predicts a steep decrease in the obliquity at a much shorter period.

While these results may argue against the tidal realignment scenario, we should
note that the property of the sample in the above inferences is not the same as the RM
one. The former sample includes thewholeKOIs and somost of the planets discussed
here are much smaller than hot Jupiters (cf. Sect. 1.1). Thus, the tides raised on the
star, which are supposed to be responsible for the tidal damping, are also smaller, and
this weaker tide can be consistent with the weak signature of tidal interaction at least
qualitatively. In any case, the correlation found by Li and Winn (2016) indicates that
our understanding of the obliquity distribution still lacks some important process.

Fig. 3.1 The values of λ as a function of the semi-major axis divided by the stellar radius a/R�

(the same sample as in the previous figures). Blue circles correspond to planets around stars with
Teff < 6100K, while red ones are those around stars with Teff > 6100K
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3.2.1.2 Tidal Realignment Involves Tidal Orbital Decay

Winn et al. (2010) already pointed out that the planet must surrender such large
angular momentum to realign the star that it would be engulfed by the star when the
realignment is completed, at least according to the simplest tidal model. Lai (2012)
proposed a solution to this problem by presenting a new tidal model, where the
spin–orbit realignment occurs on a different timescale from the orbital decay. The
evolution simulations based on this model (Rogers and Lin 2013; Xue et al. 2014),
however, showed that even the revisedmodel is inconsistentwith the current observed
distributionofλ, at least in its simple form.Li andWinn (2016) performedaparameter
search and confirmed that it requires fine tuning for the spin–orbit realignment to
occur earlier than the orbital decay. Currently it is not clearwhether this inconsistency
is due to the incompleteness of the tidal model or simply indicates that the tidal
realignment scenario is wrong.

3.3 Star–Disk Misalignment

So far, we have discussed the scenarios that the spin–orbitmisalignment is “acquired”
due to the orbital evolution after the planet formation, implicitly assuming that the
stellar spin axis is initially well aligned with the axis of the protoplanetary disk,
and hence with the orbital axes of the planets formed in it. The initial star–disk
alignment indeed seems to be the case for our solar system, and conforms well with
a naive expectation from the simple theory of disk formation. In addition, good
spin–orbit alignments in multi-transiting systems (Sect. 2.4.3) also seem to support
the universality of the notion. Nevertheless, it would still be valuable to investigate
alternatives, given the several pieces of evidence that possibly argue against the high-
eccentricitymigration (Sect. 3.1.2) and the subsequent tidal realignment (Sect. 3.2.1).

Indeed, several mechanisms have also been proposed to produce the “primor-
dial” misalignment, that is, the misalignment between the axes of stellar spin and
protoplanetary disk. If this really happens, the high-eccentricity migration is not nec-
essarily required to explain the observed spin–orbit misalignment, and the formation
of hot Jupiters may entirely be explained by the smooth disk migration and/or in-situ
formation. In this section, we comment on this class of scenarios.

3.3.1 Possible Origins of Primordial Misalignment

3.3.1.1 Disk Torquing and Magnetic/Gravitational Star–Disk
Interaction

If a disk-hosting star has a companion star whose orbit is inclined by angle I with
respect to the initial protoplanetary-disk plane, the perturber’s gravity may torque the
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disk out of the stellar equatorial plane (Batygin 2012). Specifically, both stellar spin
and protoplanetary disk axes precess around the axis of the outer binary, whose orbit
dominates the angular momentum budget of the whole system, and the difference
in the precession rates periodically induces the spin–orbit misalignment by 2I at
maximum.

The subsequent study by Batygin and Adams (2013) considered the combined
effect of disk torquing, gravitational disk–star coupling due to the quadrupole
moment of the rapidly-rotating premain-sequence (PMS) star, disk accretion, and the
rotational evolution of the central PMS star due to gravitational contraction as well
as magnetic braking. They found that resonance between the precession frequen-
cies of disk-torquing and spin-precession makes it possible to excite the spin–orbit
misalignment even from an initially small value, unlike the previous case where the
torquing from a companion alone is considered.

Furthermore, Spadling and Batygin (2014) and Lai (2014) independently showed
that the torque due to the magnetosphere–disk interaction (Lai et al. 2011), if taken
into account in the above scheme, leads to even more diverse spin-axis evolution.
Spalding and Batygin (2015) proposed that the scenario possibly explains the λ–Teff
trend rather as the correlation with the stellar mass (Fig. 3.2). They pointed out that
the magnetic torques act to realign the stellar spin axis, and that massive T-Tauri
stars tend to have weaker magnetic dipole fields than their less-massive counterparts
(Gregory et al. 2012); hence the primordial misalignment is preserved for massive
stars while it is washed out for low-mass stars.

As was the case for the Kozai migration, this scenario also predicts the correlation
between the companion occurrence and spin–orbit misalignment, which appears to
contradict the observation (see Sect. 3.1.2). It is however possible that the companion
responsible for the primordial misalignment is lost before the planet formation, due
to the complex dynamics of stellar clusters that may sometimes lead to dissolution of
multi-stellar systems (Spalding and Batygin 2014). Additional computational efforts
are required to assess the validity of this explanation.

3.3.1.2 Chaotic Accretion

Due to the turbulence in the star-forming environment, the angular momentum of
the protoplanetary disk, which is usually dominated by the last-accreted gas, may
have different direction from that of the star, which is determined by the sum of the
accreted angular momentum (Bate et al. 2010; Fielding et al. 2015). These simula-
tions, however, do not take into account the star–disk interaction properly, because of
very different time scales to solve the stellar structure and the disk. Indeed, the semi-
analytic model incorporating this aspect shows that the protoplanetary disk, though
occasionally tilted away from the stellar equator due to turbulence, will eventually
be aligned with the stellar equator when the accretion ceases (Spalding et al. 2014),
questioning the viability of the mechanism.
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3.3.1.3 Internal Gravity Waves

Rogers et al. (2012) proposed8 that the angular momentum transport due to the
internal gravity waves (IGWs) modulates the surface rotation of the star to pro-
duce apparent spin–orbit misalignments. The mechanism works preferentially for
hot stars because the IGW is generated at the boundary of convective cores and
radiative envelopes of hot stars. This scenario, however, is not supported observa-
tionally because the radial differential rotation as predicted by this process has not
been observed for main-sequence stars exhibiting spin–orbit misalignments (Beno-
mar et al. 2014, 2015).

3.3.2 Obliquity Trends in the Primordial Misalignment
Scenario

Whether the spin–orbit misalignment is primordial or not, the tidal scenario can be
invoked to explain the observed obliquity trend. On the other hand, the disk-torquing
and IGW scenarios contain the internal mechanisms that produce the correlation.
These scenarios, if more thoroughly investigated, may well be appealing enough
given the difficulties in the current tidal scenario and fewer assumptions required.
Here let us make brief comments on the difference in interpreting the obliquity trend
as a part of the primordial misalignment scenario, rather than the tidal realignment
scenario in Sect. 3.2.

First, both disk torquing and IGW scenarios explain the correlation as that with
stellar mass, rather than with effective temperature. This does not affect the over-
all feature of the trend, as the two are well correlated for the main-sequence stars
(Fig. 3.2).

On the other hand, interpretation of the known “exceptions”, or the prediction
for the properties of exceptional cases, is different. In the tidal realignment scenario,
planets with large a/R� or small mass are allowed to be exceptions to the trend
because of the long timescale for the tidal damping. In the primordial scenarios,
the four clear exceptions need to be explained in a different manner. Spalding and
Batygin (2015) argued that the eccentricities of their orbits are the imprint of their
past dynamical interactions, and some spin–orbit misalignments would be due to the
dynamical origin, rather than primordial; this argumentmay be supported by Fig. 3.2,
in which we distinguish the planets with non-zero observed eccentricities by open
circles.9 Spalding and Batygin (2015) thus predict that the planets on circular orbits
should basically follow the λ–M� trend, while eccentric ones do not need to be the
case. As shown in Fig. 3.3, the correlation between λ and eccentricity is currently
unclear, and future observations will confirm or reject this hypothesis.

8Thismechanism is not exactly to produce the star–diskmisalignment, butwe discuss it here because
it does not alter the planetary orbit but tilt the stellar spin with respect to the initial disk plane.
9Kepler-63 has only an upper limit e < 0.43 for the eccentricity.
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Fig. 3.2 The values of λ as a function of the host-star mass. For planets drawn with open circles,
non-zero eccentricities have been detected at more than 1σ level. Planets shown with crosses have
non-zero upper limits on their eccentricities

Fig. 3.3 The values of λ as a function of the orbital eccentricity. Blue and red colors show that
their host stars are cooler and hotter than 6100K, respectively

Finally, the primordial scenarios have no mechanisms to produce the planetary-
mass cut off for the retrograde orbits, at least in their current forms. Additional
assumption, whether it is tidal interaction or different formation, therefore seems
necessary if this cut off is real.
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3.4 Summary and Outstanding Questions

In this chapter, we have discussed the possible explanations for the spin–orbit mis-
alignment of hot Jupiters and for the observed correlation(s) between the misalign-
ment and stellar properties. The discussions so far are summarized as follows:

• High-eccentricity migration, the excitation of a high eccentricity due to few-body
dynamical processes followed by the tidal orbit circularization, can explain the
existence of both hot Jupiters and eccentric planets.

• While it may not be a dominant mechanism to produce hot Jupiters given the
lack of observational supports, the scenario provides the most natural explanation
for the current architectures of at least a few systems. It is quantitatively unclear
to what extent the observed misalignments could be due to the high-eccentricity
migration.

• Tidal star–planet interactions seem to explain the known obliquity trends at least
qualitatively. The scenario is, however, still incomplete quantitatively, mainly due
to the uncertain nature of the tidal interaction.

• Given the situation, the scenarios that the spin–orbit misalignment is the remnant
of the primordial star–disk misalignment remain to be viable alternatives.

Below we address several questions for future studies that will be of importance
for solving the mysteries.

3.4.1 Are Hot Jupiters Special?

If the spin–orbit misalignment is indeed linked to the high-eccentricity migration, it
should be a property specific to hot Jupiters. If the misalignment is primordial, on
the other hand, it should be observed for any sort of planetary systems, not limited
to hot Jupiters.10 To distinguish the two scenarios, therefore, it is crucial to measure
obliquities for stars hosting planets other than hot Jupiters.

As mentioned in Chap.2, most of the current obliquity measurements for individ-
ual systems, which are mostly from the RMmeasurement, are for hot Jupiters. Some
of the 15 RMmeasurements made for planets with orbital periods longer than 7days
or with masses less than 0.3MJup exhibit spin–orbit misalignments (Fig. 3.4). It is,
therefore, not yet clear whether the high obliquity is indeed specific to hot Jupiters.
Especially, there are only few measurements for longer-period planets around hot
stars, for which most of the misaligned systems have been observed (Fig. 3.5). If
large obliquities are not common in this area, it becomes unlikely that the misalign-
ment is primordial, because there is no reason in the primordial scenario that only
the close-in planets are preferentially misaligned.

10If the latter is the case, the low stellar obliquity in our solar system turns out to be a coincidence,
rather than the norm.
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Fig. 3.4 Histogram of λ for a subset of the RM sample in Fig. 1.5 consisting of planets with orbital
periods longer than 7 days or with masses less than 0.3MJup

Fig. 3.5 Stellar effective temperature Teff versus scaled semi-major axis a/R� for systems with λ
measurements. The color of each circle corresponds to the value of λ, and its area is proportional
to the planetary mass
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Extending the RM observations to longer-period planets is difficult for two prac-
tical reasons. First, a long-period planet rarely transits, and even if it does, it is not
guaranteed whether the transit can be observed from a suitable ground-based facility.
Even if the transit is observable, it may not be enough; the second difficulty comes
from the long transit duration. While the whole shape of the in-transit RV anomaly
needs to be captured for a reliable measurement of λ, transit durations of planets
with period longer than 10 days are often comparable to the length of one night (cf.
Eq. 1.6). If the duration is too long, therefore, we may need to observe the transit
multiple times.

For this reason, it will be of great advantage if the transit data from the Kepler
space telescope can be utilized for the stellar obliquity measurements of longer-
period planets. The low transit probability and rareness of transits are compensated
by the long-term, continuous observations of a large number of stars, and the long
transit duration does not matter at all for the space-based observations. In this thesis,
such methodologies will be discussed in Chaps. 4 and 5.

3.4.1.1 Stellar Obliquities in Multi-Transiting Systems

The most crucial test for the primordial misalignment scenario would be the stellar
obliquity measurements for multi-transiting systems. Since the orbital planes of mul-
tiple transiting planets are likely well aligned a priori, these planes most likely trace
the original protoplanetary disks. Thus, if a high obliquity is found for any one of the
planets in multi-transiting systems, that can be evidence for the primordial star–disk
misalignment (Lai et al. 2011; Albrecht et al. 2012). As mentioned in Sect. 2.4, such
tests are already underway, and multi-transiting systems so far exhibit low obliqui-
ties. Nevertheless, we should note that the number of systems is still small (with one
out of seven systems exhibiting a clear misalignment) and that the alignments for the
other six systems are based on the two-dimensional (i.e., sky-projection or line-of-
sight component alone) measurements; the latter problem is revisited for Kepler-25
in Chap.4.

There still remain two important questions regarding the exception, Kepler-56,
which is the only multi-transiting system with strong evidence of a spin–orbit mis-
alignment. First, what is the origin of the misalignment in this system? The simplest
answer is the initial star–disk misalignment as discussed in Sect. 3.3. However, it
has also been proposed that an outer companion detected in the long-term RV trend
of Kepler-56 could have torqued the planetary orbits out of the stellar equatorial
plane, if the companion’s orbit is misaligned with the stellar equator (Huber et al.
2013). A more detailed investigation of the dynamical scenario that could produce
the spin–orbit misalignment in a multi-transiting system is thus crucial to find the
“smoking gun” for the star–disk misalignment.

Second, are systems like Kepler-56 indeed rare? To answer this question, we note
that the host stars of the other six “aligned” multi-transiting systems basically have
Teff aroundor below the threshold, 6100K, belowwhich spin–orbit alignments are the
norm (Sect. 2.4.1). In this regard, it is suggestive that the only exception Kepler-56 is
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a slightlymassive evolved starwithM� = 1.32 ± 0.13M� (Huber et al. 2013),which
would have belonged to the population of “hot” stars in its main sequence phase.
Thus it still seems possible that multi-transiting systems with significant spin–orbit
misalignments more frequently exist around hotter stars, as in the overall trend, and
that such systems currently look rare simply because we are focusing on cool stars,
as was the case in the history of the RM measurements (Winn et al. 2010). If such a
trend is confirmed in future, it will be strong evidence that supports the primordial
origin of the spin–orbit misalignment, as described in Sect. 3.3.

3.4.2 Are All Planetary Systems Flat?

So far, no multi-planetary system has been shown to have a significant mutual orbital
inclination with high confidence. This is partly due to its construction, because most
of the known multi-planetary systems are multi-transiting systems discovered by
Kepler, who are unlikely to be observed as such if their orbits weremutually inclined.

In contrast, the mechanisms involved in high-eccentricity migration scenario (i.e.,
planet–planet scattering, planetaryKozai effect, and secular chaos), if indeed atwork,
should produce multi-planetary systems with two planets on mutually inclined (and
possibly eccentric and widely separated) orbits. If the innermost planet obtains an
eccentricity close to unity, its orbit is circularized to become a close-in planet, as
described in Sect. 3.1, and decoupled from the outer planet. This also implies that the
innermost planet, if fails to obtain a sufficiently large eccentricity, may not become
a close-in planet but retain a modest hierarchy with the outer planet (e.g., Dong et al.
2014).

While indirect arguments suggest such “orbit–orbit misalignments” for several
systems (Dawson and Chiang 2014) with the modest hierarchy, no direct detection
has been presented so far. Although it is generally difficult to constrain the mutual
orbital inclination, the Kepler data continuously obtained for four years may reveal
such systems through the transit variations due to the gravitational interaction, as has
been made possible for hierarchical triple-star systems (e.g., Borkovits et al. 2016,
see also Chap.6). Such an architecture, if detected, could be an important clue to
understand the dynamical evolution of planetary systems.

3.4.3 Initial Distribution of the Star–Disk Misalignment

Evenwithout the perturbing companion, the star–diskmisalignmentmay be acquired
during the disk formation, as mentioned in Sect. 3.3.1. Eventually, the initial distri-
bution will be needed to give a complete answer to this nature and nurture problem.
It is currently controversial whether the star–disk misalignment is the norm or not,
mainly due to the difficulty in solving the disk formation and star–disk interaction
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(rotational evolution of the star) in a consistent manner. Such a simulation is still
computationally too heavy, and some breakthrough might be required for a realistic
one.

Another possible approach is to directly observe the star–diskmisalignment. Incli-
nation measurements for 18 debris disks using their resolved images suggest that the
star–disk alignment is the norm (Watson et al. 2011; Greaves et al. 2014), on the
basis of a presumably natural assumption that debris disks share the same plane with
protoplanetary disks. Even the planetesimal belts are resolved by recent observations
of HR 8799 with ALMA (Booth et al. 2016), in which orbits of four directly images
planets out to∼ 100AU (Konopacky et al. 2016), stellar equator (Wright et al. 2011),
and the disk are all co-aligned.

3.4.4 Efficiency of Tides

If the high obliquity is found to be specific to hot stars with hot Jupiters, it becomes
more likely to be related to their migration process. The next question is the origin
of the temperature dependence. Tidal realignment discussed in Sect. 3.2 is one pos-
sibility, but its plausibility is unclear mainly because efficiency of the tidal damping
is theoretically quite uncertain: even the timescale for tidal dissipation is not under-
stood from first principles. Any observational constraint on the tidal dissipation, or
the statistical inference based on the properties of existing systems, is therefore of
great importance.

One possible approach is to monitor the orbital period of a close-in planet with
small a/R� to detect the decrease in the orbital period due to tidal dissipation. Indeed,
if the efficiency of tides is close to the currently expected value or larger, such an
“orbital decay” could be observable over the timescales of a few years for the most
favorable targets, as recently claimed by Maciejewski et al. (2016).

In fact, if the tidal orbital decay and the resulting ingestion of the close-in planet
is common, that may be another explanation for the obliquity trend. Matsakos and
Königl (2015) pointed out that the angular momentum surrendered to the star by an
ingested planet is enough to realign the cool central star, which rotates rather slowly
and has smaller angular momentum, while hotter stars would hardly be affected by
the engulfed planet. This scenario is similar to the tidal realignment scenario dis-
cussed in Sect. 3.2, although the realignment is caused by the engulfment rather than
dissipation. An advantage of this scenario is that it is consistent with the universal-
ity of the λ–Teff correlation and the lack of strong period dependence of obliquity
around cool stars discussed in Sect. 2.4. This is because the degree of realignment
does not have to be related to the property of currently existing planets that survived
the engulfment. That feature could also be a weakness because we do see some corre-
lations between λ and the properties of current planetary systems, though they are in
general less clear than λ–Teff trend. This scenario, as is the case for the tidal realign-
ment, also relies on the picture that spin–orbit misalignments are initially universal;
both high-eccentricity migration or initial star–disk misalignment thus qualify.
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Chapter 4
Three-Dimensional Stellar Obliquities
of HAT-P-7 and Kepler-25 from Joint
Analysis of Asteroseismology,
Transit Light Curve,
and the Rossiter–McLaughlin Effect

Abstract Measurements of stellar obliquities for transiting systems are usually
two-dimensional: either the sky-projection λ of the true obliquity, or the difference
between orbital inclination (almost 90◦) and stellar inclination i�, is used to infer the
degree of the spin–orbit misalignment. In this chapter, we develop a methodology
for determining true stellar obliquityψ, combining the analyses of asteroseismology,
transit light curves, and the Rossiter–McLaughlin effect. We demonstrate the power
of such a joint analysis by applying it for the first time to two real systems, HAT-P-7
hosting a hot Jupiter and Kepler-25 with two transiting planets and another non-
transiting one. We also show that the joint analysis allows for an accurate and precise
determination of the numerous parameters characterizing the planetary system, in
addition to ψ.

Keywords Asteroseismology · The Rossiter–McLaughlin effect · Occultation
HAT-P-7 · Kepler-25

4.1 Introduction

4.1.1 A Historical View on Measurements of λ

While the measurement of ψ is not easy, its projection onto the plane of the sky,
λ, has already been measured for about 80 transiting planetary systems via the
Rossiter–McLaughlin (RM) effect (Winn 2011, see also Sect. 2.2), and is now estab-
lished as one of the most basic parameters that characterize transiting planetary
systems; see Fig. 1.5 for the summary of current observations.

The RM effect was originally proposed to determine the projected spin–orbit
angle of eclipsing binary star systems (Rossiter 1924; McLaughlin 1924). Queloz
et al. (2000) successfully applied the technique for the first discovered transiting exo-
planetary system, HD209458, and obtained λ = ±3.◦9+18◦

−21◦ . In the quest for improv-
ing the precision and accuracy, Ohta et al. (2005) presented an analytic formula to
describe the RM effect and studied in detail the error budget and possible degeneracy
among different parameters. This allowed Winn et al. (2005) to revisit HD209458

© Springer Nature Singapore Pte Ltd. 2018
K. Masuda, Exploring the Architecture of Transiting Exoplanetary
Systems with High-Precision Photometry, Springer Theses,
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with updated photometric and spectroscopic data, and to obtain λ = −4.◦4 ± 1.◦4,
improving the precision of the previous measurement by an order of magnitude.

In doing so, Winn et al. (2005) pointed out that the analytic approximation
adopted by Ohta et al. (2005) leads to typically 10 percent error in the predicted
velocity anomaly amplitude, while the estimated λ is fairly reliable. This motivated
Hirano et al. (2010; 2011) to take into account stellar rotation, macroturbulence,
and thermal/pressure/instrumental broadenings in modeling the stellar absorption
line profiles. Those authors derived an analytic formula for the velocity anomaly of
the RM effect by maximizing the cross-correlation function between the in-transit
spectrum and the stellar template spectrum, i.e., following the same procedure as
is actually used to derive RVs from the spectra. Their analytic formulae reproduce
mock simulations within ∼0.5 percent, enabling the accurate and efficient multi-
dimensional fit of parameters characterizing the star and planet(s) of an individual
system.

More importantly, Winn et al. (2005) clearly demonstrated the potential of the
RM effect to put strong quantitative constraints on the existing and/or future plan-
etary formation scenarios. Indeed, when HD209458 was the only known transiting
planetary system, Ohta et al. (2005) discussed that “Although unlikely, we may even
speculate that a future RM observation may discover an extrasolar planetary system
in which the stellar spin and the planetary orbital axes are anti-parallel or orthog-
onal. Then it would have a great impact on the planetary formation scenario, …”.
In reality, however, they were too conservative. Among the 80 transiting planetary
systems where the RM effect is observed, more than 30 exhibit significant spin–orbit
misalignments with |λ| > 22.◦5 (see Fig. 1.5). This unexpected diversity of the spin–
orbit angle is not yet properly understood by the existing theories and remains an
interesting challenge, as discussed in Chap. 3.

4.1.2 Aim: Determination of ψ

The main purpose of this chapter is to establish a methodology to determine ψ,
instead of λ, through the joint analysis of asteroseismology, transit light curve, and
the RM effect.We also present specific results for two interesting transiting planetary
systems, HAT-P-71 (KIC10666592) and Kepler-25 (KIC4349452). HAT-P-7 is the
first example of a system hosting a retrograde or a polar-orbit planet, while Kepler-
25 is a multi-transiting system with three planets. We show that joint analyses of
asteroseismology, transit light curve, and the RM effect provide stringent orbital
parameter estimates as well as true stellar obliquity ψ.

As we noted in Sect. 2.1 and Fig. 2.1, λ differs from the true stellar obliquity ψ
due to the projection onto the sky. Remember that, in addition to λ, ψ also depends

1Wewould like to emphasize the efforts made by LundM. N. and his collaborators for their work on
HAT-P-7. This system turned out to be studied simultaneously and independently by our respective
teams.
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Fig. 4.1 Schematic illustration of geometric configuration of a star–planet system. We choose a
coordinate system centered on the star, where the XY -plane is in the plane of the sky and +Z -axis
points towards the observer. The +Y -axis is chosen along the sky-projected stellar spin and the
X -axis is perpendicular to both Y - and Z -axes, forming a right-handed triad. Red and green arrows
indicate, on a unit sphere, the angular momentum vectors of the stellar spin and the planetary orbital
motion, respectively. The stellar and orbital inclinations, i� and iorb, are measured from the+Z -axis
and in the range of [ 0◦, 180◦]. The planetary orbital axis projected onto the sky plane is specified
by the projected spin–orbit angle, λ, which is measured from the +Y -axis and in the range of
[0◦, 360◦]. Note that λ is measured in the direction specified by the arrow. The angle AOC between
the stellar spin and the planetary orbit axis vectors, ψ, is derived from the law of cosines for the
spherical triangles ABC, as given by Eq. (4.1)

on the orbital inclination iorb and the obliquity of the stellar spin axis i�. These angles
are related by the law of cosines in spherical trigonometry,

cosψ = cos i� cos iorb + sin i� sin iorb cosλ, (4.1)

as best illustrated in Fig. 4.1. In the case of transiting planetary systems, iorb can
be estimated from the transit light curve, and in any case is close to 90◦. Given the
projected angleλmeasured from the RMeffect, themajor uncertainty forψ therefore
comes from the unknown stellar inclination i�. There are several complementary
approaches to estimate i�, and hence ψ, as we already described in Sect. 2.3. In this
chapter, we focus on asteroseismology (Unno et al. 1989; Aerts et al. 2010, see also
Sect. 2.3.1)

In fact, target stars for the exoplanet hunting are often good targets for asteroseis-
mology as well. In both transit and radial velocity surveys, low-mass, cool stars in
the main sequence are usually favored, because their small radii are advantageous
for the transit detection and because they have sharp and narrow absorption lines
essential for the precise velocimetry. As is the case for the sun, such a low-mass,
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cool star has a thick convective envelope that sustains pulsations; turbulent motion
as fast as the sound speed near the stellar surface stochastically generates acoustic
waves, which propagate inside the star until they are damped. The oscillations with
frequencies close to those of eigenmodes of the star are eventually sustained as many
acoustic modes. Therefore, host stars with Teff � 7000K should commonly exhibit
solar-like oscillations and allow for the application of asteroseismology.

4.1.3 Plan of This Chapter

This chapter is organized as follows. Section4.2 summarizes the previous RM mea-
surements and radial velocity (RV) data of the two systems. Section4.3 presents a
brief description on the procedure and results of the asteroseismology analysis, the
latter of which will be used in the following joint analyses. Sections4.4 and 4.5
analyze the Kepler transit light curves and the RV anomaly of the RM effect, using
the asteroseismology results as the prior information, and show how the joint anal-
ysis improves the estimates of the system parameters. Section4.6 is devoted to the
summary and further discussion, and Sect. 4.7 concludes the chapter.

4.2 Previous Measurements of Stellar Obliquities

4.2.1 HAT-P-7

The HAT-P-7 system comprises a bright (V = 10.5) F6 star and a hot Jupiter tran-
siting the host star with a 2.2-day period (hereafter P08 Pál et al. 2008). In addition
to the significant spin–orbit misalignment first revealed by the Subaru spectroscopy
(Narita et al. 2009; Winn et al. 2009), the fact that the system is in the Kepler field
makes it very attractive as an asteroseismology target.

Interestingly, there have been three independent measurements of the RM effect
for the HAT-P-7 system, which all indicate the significant spin–orbit misalignment,
but do not agree quantitatively. Winn et al. (2009) (hereafter W09) performed the
joint analysis of the spectroscopic and photometric transit of HAT-P-7b to obtain λ =
182.◦5 ± 9.◦4. For RVs, they analyzed 17 spectra observed with the High Resolution
Spectrograph (HIRES) on theKeck I telescope aswell as 69 spectra observedwith the
High Dispersion Spectrograph (HDS) on the Subaru telescope. Eight of the HIRES
spectra were from P08 and taken in 2007, while the other nine were obtained in 2009.
Among 69 HDS spectra, 40 were obtained on 2009 July 1 that spanned a transit.

On the other hand,Narita et al. (2009) (hereafterN09) determinedλ = 227.◦4+10.◦5
−16.◦3

(equivalently λ = −132.◦6+10.◦5
−16.◦3 ) based on the eight HIRES RVs from P08 and 40

HDS spectra spanning the transit on 2008 May 30. Although they fixed the transit
parameters in the analysis of the RM effect, the systematics from the uncertainties of
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these parameters do not seem to explain the mild discrepancy with the W09 result,
according to their discussion (see cases 1 to 4 in Sect. 4 of N09).

Later on, Albrecht et al. (2012) (hereafter A12) reported another measurement
of the RM effect, resulting in λ = 155◦ ± 14◦. They analyzed 49 HIRES spectra
spanning a transit on the night 2010 July 23/24 with the priors on transit parameters
and ephemeris from the Kepler light curves.

In this chapter, we use the same RV data published in each of the three papers.
Since the origin of the possible discrepancy in λ is not clear, we analyze each data
set separately instead of combining the three.

4.2.2 Kepler-25

The Kepler-25 system is one of the few multi-transiting planetary systems with
constrainedλ. It consists of a relatively bright (Kp = 10.7) host star, two short-period
Neptune-sized planets confirmed with transit timing variations (TTVs) (Steffen et al.
2012), and one outer non-transiting planet detected in a long-term RV trend (Marcy
et al. 2014). Albrecht et al. (2013) (hereafter A13) measured λ = 7◦ ± 8◦ for the
larger transiting planet Kepler-25c based on the HIRES spectra observed for two
nights (2011 July 18/19 and 2012 May 31/June 1). Since the signal-to-noise ratio of
the RV anomaly was small due to the relatively small radius of Kepler-25c, they also
analyzed the time-dependent distortion of the spectral lines directly (i.e., Doppler
tomographymethod in Sect. 2.2.2) and obtained a consistent result, λ = −0.◦5±5.◦7.

In this chapter, we analyze the RVs around the above two transits from A13 alone
because our focus is the determination of ψ.

4.3 Information from Asteroseismology Analysis

In Sects. 4.4 and 4.5, we complement the analysis of the RM effect and transit light
curve with the constraints on i�, ρ�, and v sin i� from asteroseismology to determine
true obliquity ψ. This section briefly summarizes how those constraints are obtained
from asteroseismic analyses; more detail is found in Sects. 3 through 5 of Benomar
et al. (2014).

4.3.1 Mode Identification and Frequency Measurements

In a convective envelope of a Sun-like star, turbulent motion stochastically generates
acoustic waves. While the waves gradually damp as they propagate, the oscillations
with frequencies close to the eigenmodes of the star are sustained as acoustic modes.
These oscillation modes can be observed in the power spectrum of the stellar light
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Fig. 4.2 Power spectrum of HAT-P-7 showing the three radial orders of modes with highest signal-
to-noise ratio. The spectrum is shown after a boxcar smoothing over 0.08µHz (gray) and 0.24µHz
(black). The best-fit model is the solid red line. The inset shows all the extracted modes

curves, as shown in Figs. 4.2 and 4.3 for HAT-P-7 and Kepler-25, respectively. Note
that the oscillation modes cannot be seen in the time-domain (i.e., light curves),
because they are not the coherent oscillations inherently to their stochastic nature of
excitation.

Assuming a spherical star, each mode is labeled with three quantum numbers
(n, l,m), in an analogous manner to the energy eigenstates of a hydrogen atom in
quantum mechanics. The shape of each oscillation mode is given by the Lorentzian
profile, whose height andwidth are determined by specificmechanisms of, e.g., mode
excitation and damping. The frequencies of each oscillation mode can be derived by
fitting this profile to the observed power spectra.

In the absence of stellar rotation, spherical symmetry assures that the frequency
of each eigenmode ν depends on n and l alone. For the low angular degrees of high
order modes near the surface, which satisfy n � l ∼ 1, ν is almost equally spaced
as

ν(n, l) = �ν

(
n + l

2
+ α

)
+ εn,l . (4.2)

Here �ν is a characteristic frequency of the oscillation called the frequency spac-
ing, α is a constant of order unity, and εn,l is the correction related to the detailed
interior structure of the star. Equation (4.2) assures that, if the power spectrum (as in
Figs. 4.2 and 4.3) is divided into the chunks of width �ν and lined up vertically after
aligning the central frequency of each chunk, the modes (or frequency peaks) with
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Fig. 4.3 Power spectrum ofKepler-25 showing the three radial orders ofmodeswith highest signal-
to-noise ratio. The spectrum is shown after a boxcar smoothing over 0.21µHz (gray) and 0.83µHz
(black). The best-fit model is the solid red line. The inset shows all the extracted modes

the same (n, l) should appear as nearly vertical lines, within the small correction of
εn,l . Figures4.4 and 4.5 created in such a way are called Échelle diagram and help
the mode degree identification.

4.3.2 Derivation of Fundamental Stellar Properties

The frequency spacing �ν in Eq. (4.2) is given by

�ν =
(
2

∫ R�

0

1

c(r)
dr

)−1

, (4.3)

where c(r) is the sound speed at radius r : that is, �ν is the inverse of the sound-
crossing timewithin the star. For a star in hydrostatic equilibrium, the latter timescale
is the same as the free-fall timescale, and so�ν scales as the square root of the mean
stellar density.2 The scaling allows for the estimate of mean stellar density by scaling
the solar values ρ� = (1.4060 ± 0.0005) × 103 kgm−3 and �ν� = 135.20 ± 0.25
µHZ (García et al. 2011) as

2 Since the pressure gradient supports the gravity, (1/ρ)(p/R�) ∼ c2/R� ∼ GM�/R2
� or c/R� ∼√

Gρ�.
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Fig. 4.4 (Left) Difference between the observed frequencies νobs of HAT-P-7 and the best model
frequencies νm. The modes with l = 0, 1, 2 are shown by orange, red, and black diamonds, respec-
tively. (Right) Échelle diagram showing the observed power spectrum (background), observed
frequencies (diamonds), and the frequencies from the best model (white circles)

Fig. 4.5 The same as Fig. 4.4 for Kepler-25
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ρ�,s = ρ�
(

�ν

�ν�

)2

. (4.4)

While the scaling law (4.4) is known to hold well, this assumes that the overall
internal property is similar to that of the sun, which is not the case in general. A more
physically motivated (though model dependent) constraint can be obtained by fully
modeling the stellar internal structure, computing the eigenfrequencies for themodel,
and directly comparing them to the observed oscillation frequencies. Such an analysis
does not only yield model-based mean stellar density, ρ�,m, but also gives precise
constraints on other fundamental properties of the star. They are listed in Table4.1.
In Table4.2, we list the atmospheric parameters of the star from spectroscopy, which
are also used in the above modeling of mode frequencies.

Table 4.1 Stellar parameters ofHAT-P-7 andKepler-25derived from themodelingwith the “astero”
module of the Modules for Experiments in Stellar Astrophysics (MESA, Paxton et al. 2011, 2013).
The mean stellar density derived from the scaling relation (4.4), ρ�,s, is also listed for comparison
with the value from the model, ρ�,m

Parameter HAT-P-7 Kepler-25

M� (M�) 1.59 ± 0.03 1.26 ± 0.03

R� (R�) 2.02 ± 0.01 1.34 ± 0.01

[Fe/H] 0.32 ± 0.04 0.11 ± 0.03

Teff (K) 6310 ± 15 6354 ± 27

Age (Myr) 1770 ± 100 2750 ± 300

αov 0.000+0.002
−0.000 0.007 ± 0.003

L� (L�) 5.84 ± 0.05 2.64 ± 0.07

log g (cgs) 4.029 ± 0.002 4.285 ± 0.003

ρ�,m (103 kgm−3) 0.2708 ± 0.0035 0.7367 ± 0.0137

ρ�,s (103 kgm−3) 0.2696 ± 0.0011 0.7356 ± 0.0030

Table 4.2 Non-seismic observables of HAT-P-7 and Kepler-25. All but v sin i� are used for stellar
modeling

Parameter HAT-P-7 Kepler-25

Teff (K) 6350 ± 80 6270 ± 79

[Fe/H] 0.26 ± 0.08 −0.04 ± 0.10

L� (L�) 4.9 ± 1.1 · · ·
log g (cgs) 4.070 ± 0.06 4.278 ± 0.03

v sin i� (km s−1) 3.8 ± 0.5 9.5 ± 0.5

Source Pál et al. (2008) Marcy et al. (2014)
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4.3.3 Geometry from the Rotational Splitting

So far we have focused on the frequency information of each mode. In contrast,
relative heights of the different modes tell us about the stellar rotation through the
geometric effect.

In the absence of stellar rotation, the modes with the same l but with different
m have the same oscillation frequencies. Stellar rotation breaks this (2l + 1)-fold
degeneracy by splitting these modes, again analogously to the Zeeman splitting.
Assuming a rigid rotation, the effect of rotational splitting is simply given by

ν(n, l,m) = ν(n, l) + m δνs(n, l), (4.5)

where the rotational splitting δνs(n, l) is the inverse of the stellar rotation period (e.g.,
Appourchaux et al. 2008; Benomar et al. 2009; Chaplin et al. 2013). Furthermore,
the relative heights of the 2l+1 split modes depend on the stellar inclination through
Eq. (2.3), as we described in Sect. 2.3.1. Thus, both stellar rotation and inclination
can be derived by fitting the spectrum with the sum of Lorentzians with different m,
weighted and shifted accordingly to Eqs. (2.3) and (4.5), respectively. The red solid
lines in Figs. 4.2 and 4.3 show the best-fit spectrum models obtained in this way.

Ideally, Eqs. (2.3) and (4.5) contain enough information to specify both rotation
period and stellar inclination separately. In reality, however, it is often the case for
Sun-like stars as analyzed here that the splitting of the modes is not clear (see the
power spectra in Figs. 4.2 and 4.3). For this reason, the amount of frequency splitting
and mode amplitudes are degenerate, which produces the strong correlation between
the resulting rotation frequency and inclination. This situation is clearly illustrated in
Figs. 4.6 and 4.7, which show joint probability distributions of the rotation frequency
and inclination of two stars.

In the joint analyses below, we use the joint probability distribution for i� and
v sin i� computed from the rotation period, i�, and R� from the stellar modeling,
because v sin i� is more directly related to the observable of the RM effect than the
rotation period. We also incorporate the constraint on ρ� as an independent Gaus-
sian. This treatment is justified because the constraints on geometric parameters are
essentially independent from those on the parameters describing the interior struc-
ture, which come from the frequency information alone.

4.3.4 Comments on the Results for Each System

In the case of HAT-P-7, splitting of the modes with different m is not clear at all, as
shown in Fig. 4.2. This means that the solutions including (i) relatively fast rotation
with the stellar inclination close to 0◦, and (ii) very slow rotation with an arbitrary
inclination are both allowed; this explains the correlation between rotation frequency
and inclination in Fig. 4.6. Since the solution (ii) has a larger volume in the param-
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Fig. 4.6 (Upper right) Joint posterior probability distribution of the stellar inclination and the
rotation frequency of HAT-P-7. The red and blue colors represent the regions of the highest and
lowest probabilities. The gray dotted line denotes the spectroscopic v sin i� from P08 with its 1σ
uncertainty intervals shown with the light-gray dotted lines. (Upper left) Marginalized probability
density function for the rotational splitting. (Lower right) Marginalized probability density function
for the stellar inclination. (Lower left) Marginalized probability density function for the v sin i�
inferred from those of the rotational splitting, stellar inclination, and stellar radius. Green and
orange lines in the marginalized probability densities show the median and 68.3% credible interval,
respectively

Fig. 4.7 The same as Fig. 4.6 for Kepler-25
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eter space, slow rotation (i.e., small rotation frequency) is more pronounced in the
marginalized posterior. In other words, it does not mean that the faster rotation is
clearly excluded by the data.

The situation is better for Kepler-25, for which the splitting is better observed,
though not clear, as perceived by the red solid lines in Fig. 4.3.

4.4 Joint Analysis of the HAT-P-7 System

In this section and the next, we combine i� from asteroseismology and λ from the RM
effect to constrain the three-dimensional spin–orbit angleψ. Since the seismic v sin i�
andρ� are also complementary to those from theRMeffect and transit photometry,we
reanalyze the RM effect and the whole available Kepler light curves simultaneously,
incorporating the constraints on i�, v sin i�, and ρ� described in the previous sections
as the prior knowledge. The method and results are presented in this section for
HAT-P-7 and in the next section for Kepler-25.

For the HAT-P-7 system, the combination of asteroseismology and Kepler light
curves provides a unique opportunity to tightly constrain the orbital eccentricity of
HAT-P-7b, especially because the occultation (secondary eclipse) is clearly detected
for this giant and close-in planet. Therefore, we first describe how the transit and
occultation light curves constrain the planetary orbit in Sect. 4.4.1, before reporting
the joint analysis for ψ in Sect. 4.4.2.

4.4.1 Analysis of Transit and Occultation Light Curves

4.4.1.1 Data Processing and Revised Ephemeris

In the following analysis, we use the Kepler short-cadence Pre-search Data Condi-
tioned Simple Aperture Photometry (PDCSAP) fluxes through Q0 to Q17 retrieved
from the NASA exoplanet archive.3

First, light curves are detrended and normalized by fitting a third-order polynomial
to the out-of-transit fluxes around±0.5 days of every transit center. Here, the central
time and the duration of each transit are determined from the central time of the first
observed transit calculated from the linear ephemeris, t0, the orbital period, P , and
the duration taken from the archive. We iterate the polynomial fit until all the outliers
exceeding the 5σ level are excluded. In this process, we remove the transits whose
baselines cannot be determined reliably due to the data gap around the ingress or
egress.

Second, we fit each detrended and normalized transit with the analytic light curve
model by Ohta et al. (2009) to determine its central time. We fix the planet-to-star

3http://exoplanetarchive.ipac.caltech.edu.

http://exoplanetarchive.ipac.caltech.edu
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radius ratio, Rp/R�, the ratio of the semi-major axis to the stellar radius, a/R�, the
cosine of the orbital inclination, cos iorb, at those values from the archive, adopt
the coefficients for the quadratic limb-darkening law, u1 and u2, from Jackson et al.
(2012), and assume zero orbital eccentricity (e). Since only the out-of-transit outliers
were removed in the first step, we also iteratively remove in-transit outliers using the
same 5σ threshold. The resulting transit times are used to phase fold all the transits
and to improve the transit parameters and orbital period P .

Using these revised transit parameters, we again fit each transit light curve for its
central time and total duration. Here we assume e = 0, fix the values of u1, u2, a/R�,
Rp/R�, and P , and float only central transit time and cos iorb. From these transit
times, we calculate the revised ephemeris t0(BJD) − 2454833 = 121.3585049(49)
and P = 2.204735427(13) days by linear regression. Since we find no systematic
TTVs, hereafter we assume that the orbit of HAT-P-7b is described by the strictly
periodic Keplerian orbit with t0 and P obtained above.

4.4.1.2 Orbital Eccentricity and Mean Stellar Density
from the Phase-Folded Transit and Occultation

The top and middle panels of Fig. 4.8 respectively show the transit and occultation
light curves stacked using the revised ephemeris. The light curves are averaged into
1-min bins and the uncertainty of the flux in the i-th bin, σi,MAD, is calculated as
1.4826 times median absolute deviation divided by the square root of the number
of data points in the bin (Bevington 1969). Solid lines are the best-fit light curves
obtained from the simultaneous fit to both light curves. We use the transit model by
Mandel and Agol (2002), and binned model fluxes are calculated by averaging fluxes
sampled at 0.1-min interval. In this figure, the transit and occultation are shifted in
time by tc, tra and P/2 + tc, tra, respectively, where tc, tra is the central time of the
phase-folded transit light curve. This parameter is introduced to take into account
the uncertainty in t0, and the best-fit value of tc, tra is indeed within that uncertainty
(see Table4.3). In the transit residuals (top panel), we reproduce the anomaly first
reported by Morris et al. (2013), who attributed it to the planet-induced gravity
darkening. We will analyze this anomaly in Sect. 5.5.

Since the asymmetry of the planetary orbit alters the relative duration of the transit
and occultation, as well as their time interval, one can tightly constrain the orbital
eccentricity from the combination of transits and occultations; see Appendix B.3.3.
The bottom panel of Fig. 4.8 illustrates this subtle effect by comparing the best-fit
transit and occultation light curves. Here the depth of the occultation is scaled by
δ, the occultation depth divided by (Rp/R�)

2, for ease of comparison. In this panel,
the egress of the occultation occurs slightly later than that of the transit, while the
difference is smaller for their ingresses. In other words, our best-fit model indicates
that the occultation duration is longer than the transit one and that the center of
occultation deviates from P/2. These are most likely due to the asymmetry of the
orbit introduced by the slight but non-zero eccentricity, as well as the time delay
of 4.5 × 10−4 days due to the finite speed of light (twice the orbital semi-major



68 4 Three-Dimensional Stellar Obliquities of HAT-P-7 and Kepler-25 from Joint …

 0.993
 0.994
 0.995
 0.996
 0.997
 0.998
 0.999

 1
 1.001

R
el

at
iv

e 
flu

x
Transit

binned flux
best fit

-3e-05

 0

 3e-05

R
es

id
ua

l

typical error size

 0.9999

 0.99992

 0.99994

 0.99996

 0.99998

 1

 1.00002

R
el

at
iv

e 
flu

x

Occultation
(shifted by P/2 in time)

binned flux
best fit

-3e-05
 0

 3e-05

R
es

id
ua

l

typical error size

 0.993
 0.994
 0.995
 0.996
 0.997
 0.998
 0.999

 1
 1.001

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

R
el

at
iv

e 
flu

x

Time since midtransit (days)

transit
occultation

(depth scaled)

Fig. 4.8 Phase-folded transit (top) and occultation (middle) light curves. Points are the binned
fluxes (1min) and solid lines show the best-fit model light curves. Vertical dashed and dotted lines
correspond to the four “contact points” where the planetary disk is tangent to the stellar limb. In the
bottom panel, we compare the durations and central times of best-fit transit and occultation light
curves. Occulation is shifted by P/2 in time in the middle and the bottom panels, and its depth is
scaled by δ in the bottom panel for ease of comparison

axis divided by the speed of light; calculated for M� = 1.59M�). In fact, with the
non-zero eccentricity and the above light-travel time included, the simultaneous fit
to the phase-folded transit and occultation light curves give tight constraints on the
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planet’s eccentricity, e cosω = 0.00026 ± 0.00015 and e sinω = 0.0041 ± 0.0022,
where ω is the argument of periastron measured from the plane of the sky.

Since e sinω and a/R� are degenerate in determining the transit durations, the
tight constraint on e sinω also allows for the accurate determination of a/R�, and
hence the mean stellar density ρ� independently from asteroseismology (Seager and
Mallén-Ornelas 2003). We obtain a/R� = 4.131 ± 0.009 from the above fit, and
then derive ρ� = (0.275 ± 0.002) × 103 kgm−3 from Kepler’s third law,

ρ� = 3π

GP2

(
a

R�

)3 (
1 + Mp

M�

)−1

, (4.6)

where G denotes the gravitational constant, and Mp/M� ∼ 10−3 can be neglected.
This value is larger than ρ�,s based on the seismic scaling relation by 2.4σ, but
consistent with ρ�,m from the stellar model at the 1σ level (see Table4.1). For this
reason, we adopt the constraints from the stellar model as the prior information in
the following joint fit. The choice of the prior, however, does not affect the spin–orbit
angle determination, but only slightly changes the values of a/R�, ρ�, cos iorb, and
e sinω. The slight discrepancy between ρ� from the seismic scaling relation (ρ�,s)
and that from transit and occultation implies that the current precision of the Kepler
photometry even enables an independent test of the seismic scaling relation for the
mean stellar density.

4.4.2 Joint Analysis

4.4.2.1 Method

In this subsection, we report the joint MCMC analysis of phase-folded transit and
occultation light curves (cf. Sect. 4.4.1) and RVs (cf. Sect. 4.2.1) making use of the
prior constraints on the mean stellar density ρ�, projected stellar rotational velocity
v sin i�, and stellar inclination i� obtained from asteroseismology in Sect. 4.3. As
discussed in Sect. 4.4.1, the precise constraint on ρ� (equivalent to that on a/R�)
helps to lift the degeneracy between a/R� and e sinω, thus resulting in improved
constraints on these two parameters. In addition, v sin i� is the key parameter for
the RM effect along with λ, and so the constraint on v sin i� helps us to better
determine λ from the observed RM signal. Finally, i� is crucial in determining the
three-dimensional spin–orbit angle ψ via Eq. (4.1), which is the major goal of this
chapter.

In order to properly handle the possible correlation among λ, v sin i�, and i�, we
adopt the joint probability distribution for v sin i� and i� as the prior in our MCMC
analysis and directly calculate the posterior distribution for ψ by floating i� as well.
It should be noted here that our observables do not determine the sign of cos i� or
cos iorb, due to the symmetry with respect to the plane of the sky. In order to take into
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account this inherent degeneracy, we randomly change the sign of the first term in Eq.
(4.1) in computingψ. Since the probability distribution of ρ� is almost independent of
those of v sin i� and i�, we include the constraint on this parameter as an independent
Gaussian with the central value and width of ρ�,m listed in Table4.1.

We adopt the same model (including non-zero eccentricity and light-travel time)
for transit and occultation as in Sect. 4.4.1. The observed RVs are modeled as

v�,model(t) = v�,orb(t) + v�,RM(t) + γi + γ̇(t − t0). (4.7)

Here,
v�,orb = K� [cos(ω + f ) + e cosω] (4.8)

is the stellar orbital RVs for the Keplerian orbit, where K� is the RV semi-amplitude
(cf. Eq. 1.4) and f is the true anomaly of the planet. The γi (i = 1, 2) are the
constant offsets for RVs from Keck/HIRES (i = 1) and Subaru/HDS (i = 2), and
γ̇ accounts for the linear trend in the observed RVs in the W09 data set (Winn
et al. 2009; Narita et al. 2012; Knutson et al. 2014). Finally, anomalous RVs due
to the RM effect, v�,RM, are modeled using the analytic formula by Hirano et al.
(2011). The parameters characterizing the RM model include v sin i� (projected
rotational velocity of the star),β (Gaussian dispersion of spectral lines),γ (Lorentzian
dispersion of spectral lines), ζ (macroturbulence dispersion of spectral lines),
u1RM + u2RM, and u1RM − u2RM (coefficients for the quadratic limb-darkening law
in the RM effect). We do not take into account the effect of convective blueshift
(Shporer and Brown 2011), as its typical amplitude (∼1m s−1) is smaller than the
precision of the RVs analyzed here.

We impose the non-seismic priors as well on some of the model parameters. For
the ephemeris, we use the Gaussian priors t0(BJD) − 2454833 = 121.3585049 ±
0.0000049 and P = 2.204735427±0.000000013 days obtained from the transit light
curves. The priors on the RM parameters (β, γ, ζ, u1RM + u2RM, and u1RM − u2RM)
are almost the same as in A12. Namely, we fix β = 3 km s−1 and γ = 1 km s−1,
and assume Gaussian prior ζ = 5.18± 1.5 km s−1. We fix the value of u1RM − u2RM
at −0.023 from the tables of Claret (2000) for the Johnson V band and the ATLAS
model. Thevalue is obtainedusing thejktld tool4 for the parameters Teff = 6350K,
log g (cgs) = 4.07, and [Fe/H] = 0.3. The value of u1RM + u2RM is floated around
the tabulated value of 0.70 assuming the Gaussian prior of width 0.10. In addition,
we impose an additional Gaussian prior on v sin i� based on the spectroscopic value
in Table4.2, because the seismic constraint on this parameter is independent of the
spectroscopic v sin i�. We assume uniform priors for the other 13 fitting parameters
listed in Table4.3 (top and middle blocks).

In the joint fit, we assume the same values of stellar jitter as used in the orig-
inal papers; 9.3m s−1 for the W09 set, 3.8m s−1 for the Keck/HIRES RVs of the
N09 set, and 6.0m s−1 for the A12 set. In order to prevent the transit and occulta-
tion light curves from placing unreasonably tight constraints compared to RVs, we

4http://www.astro.keele.ac.uk/jkt/codes/jktld.html.

http://www.astro.keele.ac.uk/jkt/codes/jktld.html
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also increase the errors quoted for photometric data (evaluated in Sect. 4.4.1.2) as

σi =
√

σ2
i,MAD + σ2

r . Here, σr = 5.8 × 10−6 is a parameter analogous to the RV

jitter and chosen so that the reduced χ2 of the light curve fit becomes unity. This
prescription is also motivated by the following two facts. First, σi,MAD tends to
underestimate the true uncertainty because it neglects the effect of correlated noise.
Indeed, when the number of data points is sufficiently large, uncertainties are dom-
inated by the correlated or “red” noise component (Pont et al. 2006). Second, the
systematic residuals of the best-fit transit model (top panel of Fig. 4.8) suggest other
effects that are not taken into account in our model (see Sect. 5.5 for the detailed
analysis of this feature). Placing too much weights on such features could bias the
transit parameters.

4.4.2.2 Results

Constraints on the system parameters from the joint analysis are summarized in
Table4.3. The corresponding joint posterior distributions are shown in Figs. C.1
through C.3 in Appendix C to elucidate the parameter correlations. The “parameters
mainly derived from light curves/RVs” are the model (fitted) parameters, while the
“derived quantities” are the parameters derived from the fitted parameters (along
with M� and R� in Table4.1 for Mp, Rp, and ρp). While our result is in a reasonable
agreement with previous studies (cf. Morris et al. 2013; Esteves et al. 2013; Van
Eylen et al. 2013), it provides two major improvements.

First, we determine the orbital eccentricity of HAT-P-7b essentially from the pho-
tometry (i.e., transit, occultation, and asteroseismology) alone. A similar method
has recently been employed by Van Eylen et al. (2014) to constrain the planet’s
orbital eccentricity using the seismic stellar density (see also Dawson and Johnson
2012; Kipping 2014), but here we show that this method is also useful for such a
low-eccentricity orbit. Furthermore, our result is even more precise and reliable
because it takes into account the independent constraint on ρ� and e from the occul-
tation light curve.

Second, we obtain the probability distribution for the true obliquity ψ, rather than
the sky-projected oneλ, in a consistentmanner. In the case ofHAT-P-7, the constraint
on ψ is not very strong because the modest splitting of the azimuthal modes only
allows aweak constraint on i� (see Fig. 4.6).Nevertheless,wefind that the peak values
of ψ shift towards 90◦ compared to those obtained from the “random” i� uniform
in cos i� (i.e., without the knowledge from asteroseismology) in all three data sets,
as shown in Fig. 4.9. Moreover, the methodology presented here can be applied to
other systems, for some of which asteroseismology may be able to tightly constrain
i� unlike HAT-P-7. We will show that this is indeed the case for the Kepler-25 system
in the next section.
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Table 4.3 Parameters of the HAT-P-7 System from the Joint Analysis

Parameter Value (W09) Value (N09) Value (A12)

Parameters mainly derived from light curves (transit, occultation, asteroseismology)

t0(BJD) − 2454833 121.3585049 ± 0.0000049

P (day) 2.204735427 ± 0.000000013

e cosω 0.00024 ± 0.00020 0.00024 ± 0.00020 0.00025 ± 0.00020

e sinω 0.0053+0.0022
−0.0021 0.0057+0.0025

−0.0026 0.0049+0.0026
−0.0030

u1 0.3540 ± 0.0034 0.3544+0.0033
−0.0034 0.3545+0.0034

−0.0035

u2 0.1670+0.0055
−0.0054 0.1663+0.0055

−0.0053 0.1661+0.0056
−0.0055

ρ� (103 kgm−3) 0.2736 ± 0.0016 0.2731+0.0021
−0.0018 0.2737+0.0024

−0.0018

cos iorb 0.12149+0.00056
−0.00057 0.12166+0.00063

−0.00068 0.12145+0.00061
−0.00081

Rp/R� 0.077589+0.000020
−0.000021 0.077593 ± 0.000020 0.077591+0.000020

−0.000021

δ 0.01171 ± 0.00010

tc, tra (day) −0.0000044+0.0000041
−0.0000042

i� (◦) 31+33
−16 33+34

−20 33+34
−20

Parameters mainly derived from RVs

K� (m s−1) 211.7 ± 2.3 213.2 ± 1.8 214.0 ± 4.6

γ1 (m s−1) −15.5 ± 3.0 −37.5 ± 1.5 10.4+1.5
−1.6

γ2 (m s−1) −9.7 ± 1.7 −16.9 ± 1.4 –

γ̇ (m s−1 yr−1) 21.5 ± 2.5 – –

λ (◦) 186+10
−11 220.3+8.2

−9.3 157+14
−13

v sin i� (km s−1) 4.15+0.38
−0.39 3.17 ± 0.33 3.17+0.33

−0.34

β (km s−1) 3.0 (fixed)

γ (km s−1) 1.0 (fixed)

ζ (km s−1) 5.3 ± 1.5 5.5 ± 1.5 5.5 ± 1.5

u1RM + u2RM 0.70 ± 0.10

u1RM − u2RM −0.23 (fixed)

Derived quantities

ψ (◦) 122+30
−18 115+19

−16 120+26
−18

a/R� 4.1269+0.0082
−0.0078 4.1245+0.0103

−0.0092 4.1277+0.0121
−0.0090

Impact parameter of
transit (R�)

0.4987 ± 0.0013 0.4989 ± 0.0013 0.4988+0.0013
−0.0014

T14,tra (day) 0.164301 ± 0.000022 0.164303 ± 0.000023 0.164300 ± 0.000023

T23,tra (day) 0.133042+0.000049
−0.000048 0.133034+0.000047

−0.000048 0.133037+0.000052
−0.000048

Ttra (day) 0.148672+0.000025
−0.000024 0.148668 ± 0.000024 0.148669+0.000025

−0.000024

Impact parameter of
occultation (R�)

0.5040+0.0022
−0.0023 0.5047+0.0025

−0.0028 0.5039+0.0024
−0.0033

T14,occ (day) 0.16555+0.00051
−0.00050 0.16566+0.00058

−0.00061 0.16547+0.00060
−0.00070

T23,occ (day) 0.13385+0.00034
−0.00033 0.13392+0.00039

−0.00040 0.13379+0.00041
−0.00046

Tocc (day) 0.14970+0.00042
−0.00041 0.14979+0.00048

−0.00051 0.14963+0.00050
−0.00058

(continued)
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Table 4.3 (continued)

Parameter Value (W09) Value (N09) Value (A12)

Derived quantities

Occultation depth
(ppm)

70.5 ± 0.6

Mp(MJ) 1.86 ± 0.03 1.87 ± 0.03 1.88 ± 0.05

Rp(RJ) 1.526 ± 0.008

ρp (103 kgm−3) 0.65 ± 0.01 0.66 ± 0.01 0.66 ± 0.02

Note The quoted best-fit values are the medians of their MCMC posteriors, and uncertainties
exclude 15.87% of values at upper and lower extremes. The Ti j (i, j = 1, 2, 3, 4) is the duration
between the two contact points i and j [see Fig. 2 of Winn (2011) for their definitions], and
T = (T14 + T23)/2. The subscript “tra” refers to transits and “occ” to occultations

4.5 Joint Analysis of the Kepler-25 System

4.5.1 Method

We repeat almost the same analysis for Kepler-25c as in Sect. 4.4. There are, however,
several differences in the light curve and RV analyses as described below, mainly
due to the multiplicity of the Kepler-25 system and relatively small signal-to-noise
ratio of the Kepler-25c’s transit:

1. We phase-fold the transits using the actually observed transit times rather than
those calculated from the linear ephemeris. This is because the transit times of
Kepler-25c (P = 12.7 days) exhibit significant TTVs due to the proximity to
the 2 : 1 mean-motion resonance with Kepler-25b (P = 6.2 days). This is why
we do not allow tc, tra, the central time of the phase-folded transit, to be a free
parameter. We adopt σr = 1.6 × 10−5 based on the χ2 of the light curve fit.

2. The occultation of Kepler-25c was not detected and not taken into account in
the following analysis.

3. As the quality of the transit light curve of Kepler-25c is not so good as that of
HAT-P-7b, we could not determine the limb-darkening coefficients very well.
For this reason, we impose the prior u1 − u2 = −0.0015 ± 0.50 based on the
tables of Claret (2000), and choose u1 + u2 and u1 − u2, instead of u1 and u2,
as free parameters. We made sure that the choice of the prior width for u1 − u2
does not affect the constraint on ψ.

4. In order to take into account the other planets in the RV fit, we allow the orbital
semi-amplitude K� and RV offset γ for each of the nights in 2011 and 2012 to
be free parameters, as in A13. RV jitters are fixed at 3.3m s−1.

5. We do not fit the orbital eccentricity but fix e = 0, because we do not analyze
the occultation nor RVs throughout the orbit (Marcy et al. 2014).

6. We assume the independent Gaussian priors u1RM + u2RM = 0.69 ± 0.10 and
ζ = 4.85 ± 1.5 km s−1 from A13, and fix u1RM − u2RM = −0.0297 from the
tables of Claret (2000).
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Fig. 4.9 Probability
distributions for the
three-dimensional spin–orbit
angle ψ of HAT-P-7b for the
W09 (top), N09 (middle),
and A12 (bottom) data sets.
Solid red lines show the
posteriors from the joint
analysis, while the black
ones are the probability
distributions obtained from
uniform cos i� and the
posteriors of λ and iorb from
the joint analysis (Table4.3).
The median, 1σ lower limit,
and 1σ upper limit for each
distribution are shown with
vertical dotted lines. A small
bump around ψ ≈ 95◦ in
each panel originates from
the fact that each posterior
shown here is the
superposition of the two
inherently degenerate
configurations with the
opposite signs of
cos i� cos iorb; see the
discussion in the second
paragraph of Sect. 4.4.2.1
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4.5.2 Results

In the case of the Kepler-25 system, the uncertainty in ψ is significantly reduced
by virtue of the seismic information. This situation is clearly illustrated in Fig. 4.10,
which compares the posterior probability distribution for ψ from the joint fit (solid
red line) to that based onλ and iorb from the joint fit and the uniform cos i� (solid black
line). The corresponding systemparameters are summarized inTable4.4, and the joint
posterior distribution can be found in Fig. C.4. They are basically consistent with
those obtained by A13, except for the increased precision in the transit parameters.

Interestingly, our result suggests a spin–orbit misalignment for Kepler-25c with
more than 2σ significance. In order to check the robustness of this result, we also
calculate the probability distribution of ψ for the seismic i� and an independent
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Fig. 4.10 Probability distributions for the three-dimensional spin–orbit angle ψ of Kepler-25c.
The solid red line shows the posterior from the joint analysis, while the black one is the probability
distribution obtained from λ and iorb in Table4.4 and uniform cos i�. The median, 1σ lower limit,
and 1σ upper limit for each distribution are shown with vertical dotted lines

Gaussian λ = −0.◦5± 5.◦7 from the Doppler tomography. We obtain ψ = 23.◦7+8.◦0
−11.◦3

in this case,which still points to the spin–orbitmisalignmentmarginally. If confirmed,
this will be the first example of the spin–orbit misalignment in the multi-transiting
system around a main-sequence star.5 The implication of this result will be discussed
in Sect. 4.6.2, along with some caveats in Sect. 4.6.3.

4.6 Summary and Discussion

4.6.1 HAT-P-7

From asteroseismology alone, we obtain i� = 27◦+35◦
−18◦ for HAT-P-7 (Fig. 4.6). This

constraint, combined with the Kepler light curves and the three independent RM
measurements, yields ψ = 122◦+30◦

−18◦ and i� = 31◦+33◦
−16◦ , ψ = 115◦+19◦

−16◦ and i� =
33◦+34◦

−20◦ , and ψ = 120◦+26◦
−18◦ and i� = 33◦+34◦

−20◦ for the RVs from W09, N09, and A12,
respectively (Fig. 4.9 and Table4.3). Although the resulting constraints are not very
strong due to the modest splittings of azimuthal modes (see Fig. 4.6), our results

5The first spin–orbit misalignment in the multi-transiting system was confirmed by Huber et al.
(2013) around a red giant star Kepler-56 using asteroseismology, as mentioned in Sects. 2.4.3 and
3.4.
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Table 4.4 Parameters of the Kepler-25 System from the Joint Analysis

Parameter Value (A13)

Parameters mainly derived from light curves (transit, asteroseismology)

t0(BJD) − 2454833 127.646558+0.000096
−0.000094

P (day) 12.7203724+0.0000014
−0.0000013

u1 + u2 0.550 ± 0.018

u1 − u2 −0.27 ± 0.44

ρ� (103 kgm−3) 0.733+0.013
−0.012

cos iorb 0.04788+0.00036
−0.00038

Rp/R� 0.03590+0.00054
−0.00046

i� (◦) 65.4+10.6
−6.4

Parameters mainly derived from RVs

K�,2011 (m s−1) −13 ± 22

K�,2012 (m s−1) −37 ± 30

γ2011 (m s−1) −3.5 ± 1.3

γ2012 (m s−1) 2.0 ± 1.4

λ (◦) 9.4 ± 7.1

v sin i� (km s−1) 9.34+0.37
−0.39

β (km s−1) 3.0 (fixed)

γ (km s−1) 1.0 (fixed)

ζ (km s−1) 4.9 ± 1.5

u1RM + u2RM 0.69 ± 0.10

u1RM − u2RM −0.0297 (fixed)

Derived quantities

ψ (◦) 26.9+7.0
−9.2

a/R� 18.44 ± 0.11

Transit impact parameter (R�) 0.8826 ± 0.0018

T14,tra (day) 0.11925 ± 0.00025

T23,tra (day) 0.08528+0.00065
−0.00069

Ttra (day) 0.10226+0.00036
−0.00037

Note The quoted best-fit values are the medians of their MCMC posteriors, and uncertainties
exclude 15.87% of values at upper and lower extremes. The Ti j (i, j = 1, 2, 3, 4) is the duration
between the two contact points i and j [see Fig. 2 of Winn (2011) for their definitions], and
T = (T14 + T23)/2. The subscript “tra” refers to transits and “occ” to occultations.

suggest that the orbit of HAT-P-7b is closer to the polar configuration rather than
retrograde as λ may imply.

It is worth noting that the suggested discrepancies in λ and v sin i� in three data
sets (cf. Sect. 4.2.1) still persist in our analysis. For a fair comparison with the A12
result, we repeat the same analyses for the W09 and N09 data only including RVs
taken over the same night, but the values of λ and v sin i� do not change significantly.
Since we have used the same model of the RM effect and the same priors from the
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Kepler photometry for the three sets of data, our results confirm that the discrepancy
comes from the RV data themselves. As A12 discussed, such a discrepancy may
originate from some physics that is not included in the current model of the RM
effect, but its origin is beyond the scope of this chapter.

As a by-product of the spin–orbit analysis, we have found that HAT-P-7b has a
small but non-zero orbital eccentricity, e = 0.005 ± 0.001 (weighted mean of the
three data sets), which is consistent with e = 0.0055+0.007

−0.0033 obtained byKnutson et al.
(2014). Our constraint on e comes from the duration and mid-time of the occultation
of HAT-P-7b relative to those of the transit, along with the constraint on the mean
stellar density ρ� from asteroseismology. This approach is justified by the fact that
ρ� from the transit and occultation alone shows a reasonable agreement with the
model stellar density ρ�,m derived independently from asteroseismology. The origin
of this non-zero emay deserve further theoretical consideration because the tides are
expected to damp e rapidly for such a close-in planet as HAT-P-7b.

4.6.2 Kepler-25

For Kepler-25, we obtain i� = 65.◦4+10.◦6
−6.◦4 from the joint analysis. The constraint is

slightly better than i� = 66.◦7+12.◦1
−7.◦4 from asteroseismology alone (Fig. 4.7), mainly

due to the prior on v sin i� from spectroscopy. The constraint on i� is better than
HAT-P-7 despite the lower signal-to-noise ratio of the oscillation spectrum, because
of the greater rotational splitting (see Fig. 4.7). This allows us to tightly constrain the
spin–orbit angle of Kepler-25c as ψ = 26.◦9+7.◦0

−9.◦2 (Fig. 4.10). Our finding is important
in two aspects: (1) this is the first quantitative measurement of ψ, instead of λ, for
multi-planetary systems, except for the solar system. (2) Kepler-25 is the first system
that exhibits a possible spin–orbit misalignment among the multi-transiting systems
with a main-sequence host star, while it is the second example if we consider the
system with a red-giant host star, Kepler-56.

The spin–orbit misalignment, if real, is particularly interesting because it may
be evidence for the initial star–disk misalignment, as discussed in Chaps. 2 and 3.
In this context, the orbital inclinations of the other two planets (Kepler-25b and
Kepler-25d) relative to that of Kepler-25c would be of interest to further test whether
the misalignment is primordial or not. They may be constrained from the analysis of
TTVs and transit duration variations, combinedwith orbital RVs to constrain the orbit
of the outer non-transiting planet d. In this chapter,wedid notmodel these phenomena
because our main concern is the determination of the spin–orbit misalignment.

It is also interesting to note that both HAT-P-7 and Kepler-25 are relatively hot
stars with Teff � 6300K and in line with the observed trend that the spin–orbit
misalignments are preferentially found around hot stars (Sect. 2.4). Although Rogers
et al. (2012) suggested that temporal variations of the stellar rotation due to internal
gravity waves could explain this empirical trend (Sect. 3.3.1), we found no evidence
to support this scenario for the two systems. Regarding HAT-P-7, we compared the
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rotational splitting from Fig. 4.6 with that from Q0 to Q2 (results from the study
of Oshagh et al. 2013), but found no evidence of significant variations. Although
results using only Q0 to Q2 have large uncertainties, this may indicate that the
rotation remains constant over time. Moreover, we tightly constrained the rotation
of Kepler-25 and showed that outer layers certainly rotate at constant velocity. This
is incompatible with the scenario suggested by Rogers et al., (2012), which predicts
the radial differential rotation.

4.6.3 Note on the Result for Kepler-25

After the results in this chapter were published in Benomar et al. (2014), Campante
et al. (2016) independently performed a similar analysis for the sample of Kepler
stars including HAT-P-7 and Kepler-25, but adopting a different procedure for gen-
erating the light curve from the original photometry data. While their results are
consistent with ours, they found i� peaked closer to 90◦ for Kepler-25, thus obtaining
ψ = 12.◦6+6.◦7

−11.◦0 rather consistent with a spin–orbit alignment. Campante et al. (2016)
also found an opposite shift for the multi-planet host Kepler-50; a slight misalign-
ment like we found for Kepler-25 is favored in their analysis, while the previous
study by Chaplin et al. (2013) found i� peaked around 90◦. These examples show
that the current asteroseismic inference of i� is susceptible to systematics associated
with the data processing, and the results of marginal significance, including ours for
Kepler-25, need to be taken with care.

4.7 Conclusion

The major purpose of the present chapter is two-fold. The first is to develop and
describe a detailed methodology of determining the three-dimensional spin–orbit
angle ψ for transiting planetary systems. The other is to demonstrate the power of
the methodology by applying it to the two specific systems, HAT-P-7 and Kepler-25.

We find a near-polar orbit for HAT-P-7b, rather than a counter-orbiting one as
naively expected from the observed λ ≈ 180◦. The result implies that the orbit
of HAT-P-7b could naturally be formed within the current framework of high-
eccentricity migration, as discussed in Sect. 3.2.1. It will be of interest to apply
similar analyses to systems with measured λ ≈ 180◦ to test whether any of them
indeed has ψ ≈ 180◦.

The true obliquity ψ of Kepler-25 is constrained for the first time in a multi-
transiting system. The determination of ψ is important for multi-transiting planetary
systems, where all the planets are supposed to share the same orbital plane; a large
ψ in such a system indicates that the stellar spin was significantly tilted with respect
to the protoplanetary disk plane, which would eventually become the orbital planes
of the planets. While we find tentative evidence for such a primordial misalignment
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(cf. Sect. 3.3), the asteroseismic inference is currently not robust for this system and
further investigation is required for a more decisive conclusion.

In addition to the determination ofψ, the joint analysis improves the accuracy and
precision of numerous system parameters of a specific target. In turn, any discrepancy
among the separate analyses points to a certain physical process that needs to be taken
into account in the detailed modeling. Such analyses would therefore open a new
window for the exploration of the origin and evolution of planetary systems.
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Chapter 5
Spin–Orbit Misalignments
of Kepler-13Ab and HAT-P-7b
from Gravity-Darkened Transit Light
Curves

Abstract In Sect. 3.4, we discussed the importance of individual obliquity measure-
ments for long-period planets around hot stars. Such measurements may be possible
by applying the gravity-darkening method (Sect. 2.3.2) to existing data of transiting
systems obtained by the Kepler space telescope. The methodology, however, is not
fully established, given the discrepancy between this method and the spectroscopic
one recently reported for the hot Jupiter system Kepler-13A. In this chapter, we dis-
cuss the origin of the discrepancy and present a possible solution. In addition, we
show that the solution can be tested by future follow-up observations, on the basis
of dynamical modeling of transit variations observed in this system. The revised
methodology is then applied for the first time to the HAT-P-7 system, providing a
useful cross-check between the gravity-darkening result and the measurement made
in Chap.4. The results presented in this chapter clarify the validity and limitation
of the gravity-darkening method, and also demonstrate the potential of space-based
photometry data to characterize exoplanets and their host stars.

Keywords Gravity darkening · Stellar oblateness · Spin–orbit precession
Kepler-13 · HAT-P-7

5.1 Introduction

Stellar obliquity or the spin–orbit angle, ψ, the angle between the stellar spin axis
and the orbital axis of its planet, serves as a unique probe of the dynamical history
of planetary systems. Especially, its connection with the hot-Jupiter migration has
been extensively studied, but the relationship between the observed samples and the
migration process is not straightforward for various reasons (see Chap.3 for more
detail). First of all, the initial distribution of the stellar obliquity is not known. Some
studies do suggest that the protoplanetary disk may have already been misaligned
with the stellar equator due to the chaotic gas accretion (e.g., Bate et al. 2010; Fielding
et al. 2015) or the magnetic star–planet interaction (e.g., Lai et al. 2011). In these
cases, the spin–orbit misalignment is primordial, rather than due to the migration.
Even after the disk dissipation or the completion of migration, stellar obliquity can

© Springer Nature Singapore Pte Ltd. 2018
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evolve due to the gravitational perturbation from the companion (e.g., Storch et al.
2014; Li et al. 2014). As suggested by the observed correlation between the spin–
orbit misalignment and stellar effective temperature (Winn et al. 2010; Albrecht et al.
2012, see also Sect. 2.4), spin–orbit angle may also be affected by the tidal star–
planet interaction (e.g., Xue et al. 2014), whose mechanism is not well understood.
To partially resolve these issues, it is beneficial to measure stellar obliquities for
systems with various host-star and orbital properties. For instance, planets on distant
orbits or around hot/young stars are valuable targets because we expect that tides
have not significantly affected the primordial spin–orbit configuration.

This chapter focuses on a relatively new method for the spin–orbit angle deter-
mination in transiting systems, which utilizes the gravity darkening of the host star
owing to its rapid rotation (Barnes 2009, see also Sect. 2.3.2). Stellar rotation makes
the effective surface gravity at the stellar equator smaller than that at the pole by a
fractional order of γ ≡ �2

�R
3
�/2GM� ∼ (Pbr/Prot)2, where��, R�, M�, Pbr, and Prot

are angular rotation frequency, radius, mass, break-up rotation period, and rotation
period of the star, respectively. According to von Zeipel’s theorem (von Zeipel 1924),
this results in the inhomogeneity of the stellar surface brightness through the relation
Teff ∝ gβ

eff . Here, Teff and geff are the effective temperature and surface gravity at
each point on the stellar surface, and gravity-darkening exponent β characterizes the
strength of the gravity darkening, which is theoretically 0.25 for a barotropic star
with a radiative envelope. When a planet transits a stellar disk with such an inho-
mogeneous and generally non-axisymmetric brightness distribution, an anomaly of
O(γδ) appears in the light curve, where δ is the transit depth. Since the shape of the
anomaly depends on the position of the stellar pole relative to the planetary orbit,
the stellar spin obliquity ψ can be estimated with the light-curve model taking into
account the effect of gravity darkening.

Indeed, this “gravity-darkening method” has many unique aspects. So far, it is
the only known method that is sensitive to both components of ψ, the sky-projected
spin–orbit angle λ and stellar inclination i� (cf. Eq. (5.2) and Fig. 2.1). Moreover,
obliquity analysis is possible essentially with the photometric data alone, and its
application is not necessarily limited to short-period planets, as far as the transit
is observed with sufficient signal-to-noise ratio (Zhou and Huang 2013). It is also
interesting to note that the method is (only) applicable to fast-rotating (i.e., young
or hot) stars, for which anomalies of larger amplitudes result. Since rapid rotators
are not suitable for the precise spectroscopic velocimetry because of their broad
spectral lines, this method is complementary to the conventional spin–orbit angle
measurement using the Rossiter-McLaughlin (RM) effect. All these properties make
the method suitable for sampling stars for which tidal effect is not so significant that
the primordial information is expected to be well preserved in the current spin–orbit
configuration.

Although the gravity-darkening method is valuable in many aspects, the proce-
dure for obtaining ψ may not be fully established. In a representative example of its
application, Kepler-13A, the constraint from the gravity-darkening method (Barnes
et al. 2011, hereafter B11) is known to be in disagreement with the later spectro-
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scopic measurement of λwith the Doppler tomography (Johnson et al. 2014, see also
Sect. 2.2). In addition, inconsistent results arise even within the gravity-darkening
analyses, depending on the choice of the limb-darkening coefficients or β (Zhou and
Huang 2013; Ahlers et al. 2014). For these reasons, it is worth revisiting the relia-
bility and limitation of this method more carefully, in order for this unique method
to be applied to more systems in future and provide credible results.

In this chapter, we reanalyze a well-known example of the gravity-darkened tran-
sit of Kepler-13Ab, with more data than used in the previous analysis by B11. We
investigate the systematic effects in the spin–orbit angle determination, and propose
a joint solution that may solve the discrepancy with the Doppler tomography mea-
surement (Sect. 5.3). We will also show that the spin–orbit precession observed in
this system can be used to test the validity of our solution, as well as to determine
the stellar quadrupole moment J2 (Sect. 5.4).

In addition, we apply the gravity-darkening method for the first time to an F-
type dwarf star, HAT-P-7, where the anomaly in the transit light curve has been
reported in several studies (e.g., Esteves et al. 2013, 2015; Van Eylen et al. 2013, see
also Chap.4). While the RM measurements (Winn et al. 2009a; Narita et al. 2009;
Albrecht et al. 2012) have established that λ > 90◦, suggesting a retrograde orbit,
the following asteroseismic inferences (Chap.4; Lund et al. 2014) have revealed that
a pole-on orbit is actually favored. In Sect. 5.5, we show that a similar conclusion is
also obtained from the gravity-darkening method and discuss the consistency of our
result with other constraints on the host-star properties.

5.2 Method

5.2.1 Model

We basically follow Barnes (2009) in modeling the gravity-darkened transit light
curve. The model includes the following 14 parameters, which are listed as “fitting
parameters” in Tables5.1 and 5.3:

1. mean stellar density, ρ� = 3M�/4πR3
� , which corresponds to the semi-major axis

scaled by the stellar equatorial radius, a/R�
1

2. limb-darkening coefficient for the quadratic law, c1 = u1 + u2,
3. limb-darkening coefficient for the quadratic law, c2 = u1 − u2,
4. time of the inferior conjunction (where the planet is closest to the observer), tc,
5. orbital period, P ,
6. cosine of orbital inclination, cos iorb,
7. planetary radius normalized to the stellar equatorial radius, Rp/R�

8. normalization of the out-of-transit flux, F0

9. stellar mass, M�,

1In this chapter, R� denotes the equatorial radius of the star.
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10. stellar rotation frequency, frot
11. stellar effective temperature at the pole, T�,pole

12. gravity-darkening exponent, β,
13. stellar inclination, i�
14. sky-projected spin–orbit angle, λ.

See also Appendix B.4 for the justification of these choices.
The first eight parameters are common with the light-curve model without gravity

darkening. We assume circular orbits for the two targets because the orbital eccen-
tricities are constrained to be very small, if any, from the occultation light curves
(Chap.4, Shporer et al. 2014).

Following the gravity-darkened model by Barnes (2009), the shape of the star is
approximatedby the spheroidwith theoblatenessγ = �2

�R
3
�/2GM� = 3π f 2rot/2Gρ�.

The surface brightness at each point is modeled as the blackbody emission of the
temperature T� = T�,pole

(
geff/geff,pole

)β
, where geff/geff,pole is the effective surface

gravity normalized by its value at the stellar pole. The surface gravity at point r on
the stellar surface is calculated by geff = −GM�r−2 r̂ + 4π2 f 2rotr⊥ r̂⊥. Here r and
r̂ are the norm and unit vector of the radius vector r , respectively. Similarly, r⊥
and r̂⊥ are those of r⊥, the projection of r onto the stellar equatorial plane. The
Planck function Bλ(T�) at each point is convolved with the “high-resolution” Kepler
response function2 using the table of the wavelength- and temperature-dependent
factor calculated prior to the fitting. The convolved flux is then multiplied by the
limb-darkening function

I (μ) = 1 − u1(1 − μ) − u2(1 − μ)2, (5.1)

with μ being the cosine of the angle between −geff and our line of sight,3 and
integrated over the visible surface of the star to give the total flux. We fix T�,pole at the
observed effective temperature assuming that the difference between T�,pole and the
disk-integrated effective temperature is small. Note that the gravity-darkened transit
light curve gives ρ� alone and cannot constrain M� and R� separately, as is the case
for the transit without gravity darkening (cf. Appendix B.4).

The configuration of the planetary orbit and stellar spin is specified by three
angles, iorb, i�, and λ, which are defined in Fig. 2.1 (see also Fig. 4.1). The orbital and
stellar inclinations, iorb and i�, are measured from the line of sight and defined to be
in the range [0,π]. The sky-projected spin–orbit angle, λ, is the angle between the
sky-projected stellar spin and planetary orbital axes. It is measured from the former
to the latter counterclockwise in the sky plane, and is in the range [0, 2π]. With these
definitions, the true spin–orbit angle, or the stellar obliquity, ψ, is given by Eq. (4.1):

cosψ = cos i� cos iorb + sin i� sin iorb cosλ. (5.2)

2http://keplergo.arc.nasa.gov/CalibrationResponse.shtml.
3Although this vector−geff is not exactly parallel to the surface normal of the spheroid we assume,
the difference is O(γ2) and thus negligible.

http://keplergo.arc.nasa.gov/CalibrationResponse.shtml
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Throughout the chapter, we restrict i� to be in the range [0,π/2] making use of
the intrinsic symmetry with respect to the sky plane. We do not lose any physical
information of the system with this choice because any of the relative star–planet
configurations with i� in [π/2,π] is the same as one of those with i� in [0,π/2]. In
other words, the configurations (i�, iorb,λ) and (π − i�,π − iorb,−λ) are equivalent.
This transformation corresponds to looking at the system from the other side of the
plane of the sky.

In the following, we also adopt the constraint on the stellar line-of-sight rotational
velocity v sin i� from spectroscopy, which is related to the above model parameters
by

v sin i� = 2π frot

(
3M�

4πρ�

)1/3

sin i�. (5.3)

This, in principle, allows us to break the degeneracy betweenM� and R�, enabling the
determination of the absolute dimension of the system. Nevertheless, the constraint
on M� is usually weak due to the M

1/3
� dependence, and so we fix M� at the observed

value.

5.2.2 Data Processing

We detrend and normalize the transit light curves of each target along with the
consistent determinationof the transit times and transit parameters.Wefirst normalize
the light curve of each quarter using its median, and then iterate the following two
steps (typically 10–20 times) until the resulting transit times tc and transit parameters
converge:

1. Light curve around each transit (±0.2 days for Kepler-13A and ±0.15 days for
HAT-P-7) is modeled as the product of a quadratic polynomial4 a0 + a1(t − tc) +
a2(t − tc)2 (t : time) and the analytic transit light-curvemodel byMandel andAgol
(2002). We use the Levenberg-Markwardt (LM) method (Markwardt 2009) to fit
a0, a1, a2, and tc iteratively removing 5σ outliers, while the other parameters
are fixed. The filtered data are then divided by the best-fit polynomial to give a
normalized and detrended transit light curve. We discard the transits with data
gaps of more than 50%.

2. Using the set of tc obtained in the first step, we calculate the mean orbital period
P and transit epoch t0 by linear fit and use them to phase-fold the normalized and
detrended transits. The phase-folded light curve is averaged into one-minute bin
and then fitted with the Mandel and Agol (2002) model using an LM algorithm.
We fit c1, c2, ρ�, cos iorb, Rp/R�, and F0, whose best-fit values are used in the

4Use of the quadratic polynomial helps the better removal of flux variation not due to the transit,
i.e., planetary light, ellipsoidal variation, and Doppler beaming.
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step 1 of the next iteration. In this step, the orbital period P is fixed to be the
value obtained from the linear fit and the central time of the phase-folded transit
is fixed to be zero.

In the following analysis, we use the one-minute binned, phase-folded light curve
obtained in the second step of the final iteration. For each bin, the flux value is given
by its mean and the error is estimated as the standard deviation within the bin divided
by the square root of the number of data points.

5.2.3 Fitting Procedure

In fitting the observed light curves, the likelihood L of the model is computed by
L ∝ exp(−χ2/2), where

χ2 =
∑

i

(
fi − fmodel,i

σi

)2

+
∑

j

(
p j − pmodel, j

δ p j

)2

. (5.4)

In the first term, fi , fmodel,i , and σi are the observed value, modeled value, and
error of the i th flux data. The second term is introduced to take into account the
constraints from other observations on some (functions) of the model parameters p j .
In the following analysis, p is read to be v sin i� and, in some cases, λ.5 For each p j ,
we assume a Gaussian constraint of the form p j ± δ p j and the value obtained from
the model is denoted by pmodel, j .

The maximum likelihood solution is found by minimizing Eq. (5.4) with the LM
method using the cmpfit package (Markwardt 2009). Since the complex depen-
dence of χ2 on i� and λ is expected, we repeat the fitting procedure from the initial i�
in [0, 90◦] and λ in [−180◦, 180◦] at 10◦ intervals. Initial values of the other param-
eters are chosen close to the best-fit values obtained from the model without gravity
darkening. We also try both positive and negative cos iorb as an initial value to search
the whole domain of iorb, which is now [0◦, 180◦].

5.3 Transit Analysis of Kepler-13Ab

In this section, we report the analysis of the gravity-darkened transit of Kepler-
13Ab. We first analyze the whole available data using the same stellar parameters
as in B11 to test the validity of our method (Sect. 5.3.1). Motivated by the recently
reported disagreement with λ from the Doppler tomography, we also investigate
the possible systematics in the spin–orbit determination arising from the choice of

5Only in Sect. 5.4.1, ρ�, c1, c2, Rp/R�, and frot are also included.
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stellar parameters.We show that the discrepancy can be solved by adjusting the value
of c2 and present a joint solution that is compatible with all of the observations made
so far.

5.3.1 Reproducing the Results by B11

In this subsection, we analyze the short-cadence (SC), Pre-search Data Conditioned
Simple Aperture Photometry (PDCSAP) fluxes fromQ2, 3, and 7–17. Note that only
the Q2 data were available when B11 analyzed this system. Given the clear transit
durationvariation (TDV) reportedbySzabó et al. (2012, 2014),we separately analyze
the transits from each quarter, rather than folding all the available data. Since we do
not detect significant temporal variations in the parameters other than cos iorb (see
Sect. 5.4), we report the mean and standard deviation of the best-fit values from the
above 13 quarters for each parameter.

First, we use the same stellar parameters as in B11 and obtain the results in the
second column of Table5.1. Namely, we subtract a constant value Fc = 0.45 from
the normalized flux to remove the flux contamination from the companion star, and
impose the constraint v sin i� = 65 ± 10 km s−1 based on Szabó et al. (2011). We
fix M� = 1.83M� and T�,pole = 8848K from Borucki et al. (2011), and c2 = 0. In
Fig. 5.1, the best-fitmodel is overplottedwith the data forQ2,which is to be compared
with Fig. 5.2 of B11.

Basically, we find a very good agreement with the result by B11 using about 12
times more data. Although the values of cos iorb, i�, and λ we report here appear
different from those in B11, that is simply because we choose i� to be in the range
[0,π/2]. This is physically the same configuration as theirs and corresponds to the
top-left situation in Fig. 5.3 of B11. That is,λ in our solutionswith cos iorb < 0 should
be read as −λ in the conventional definition, because λ is usually defined for the
orbit with cos iorb > 0 (see also the discussion after Eq. 5.2).

In addition to the solution in Table5.1, we also find a retrograde solution with
λ > 90◦ as noted in B11. Here we do not discuss this solution, however, because
the Doppler tomography observation has already excluded the retrograde orbit with
high significance (Johnson et al. 2014).

5.3.2 Systematics Due to Stellar Parameters

Although we find consistent values of λ and i� as obtained by B11, those of λ signifi-
cantly differ from λ = 58.◦6 ± 2.◦0, the value obtained from the Doppler tomography
(Johnson et al. 2014). Motivated by this discrepancy, we investigate the possible ori-
gins of systematics in the spin–orbit angle determination with gravity darkening in
this subsection.
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Fig. 5.1 Fitting the gravity-darkened model to the Q2 transit of Kepler-13Ab. (Middle) Black dots
are the phase-folded and binned fluxes from Q2. The thick red line shows our best-fit gravity-
darkened model, while the thin blue line is the best-fit model without gravity darkening. (Bottom)
Black dots are the residual of the best-fit gravity-darkenedmodel. Gray open circles are those for the
joint solution, where c2 is fitted with the constraint λ = 58.◦6 ± 2.◦0 from the Doppler tomography.
(Top) Black dots are the residuals of the best-fit model without gravity darkening. Thick red line is
the difference between the best-fit model with gravity darkening and that without gravity darkening.
Dashed red line shows the same result for the joint solution. The difference between the two gravity-
darkened solutions is only barely visible just after the ingress and before the egress

First, we examine the systematics due to the choice of M�, v sin i�, T�,pole, and
Fc, which are the stellar properties not derived from the light curve modeling.6

We perform the same analysis as in Sect. 5.3.1, but adopting the following param-
eters from the most recent photometric and spectroscopic study by Shporer et al.
(2014, hereafter S14): v sin i� = 78 ± 15 km s−1, M� = 1.72M�, T�,pole = 7650K,
and Fc = 0.47726. The corresponding results are shown in the third column of
Table5.1. We find that i� and λ can differ by as large as 10◦ due to the choice
of the above parameters, but the difference is not so large as to explain the disagree-

6We do not examine the dependence on β here because B11 have already shown that a different
choice of β = 0.19, suggested by the interferometric observation of Altair (Monnier et al. 2007),
does not change the result significantly.
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Fig. 5.2 Constraints on (λ, i�) from the gravity-darkened transit of Kepler-13Ab for the different
choices of c2. In this illustration, data fromQ2 are used and stellar parameters fromB11 are adopted.
The solid, dashed, and dotted contours respectively show 1σ, 2σ, and 3σ confidence regions for
(λ, i�) obtained from 200000 Markov Chain Monte Carlo (MCMC) samples for three fixed values
of c2 (0, 0.12, and 0.25). The shaded areas bounded by the vertical solid, dashed, and dotted lines
respectively denote 1σ, 2σ, and 3σ confidence regions for λ obtained from the Doppler tomography
(Johnson et al. 2014). The sign ofλ is opposite to their quoted value becausewe are nowdealingwith
the solution with cos iorb < 0 (i.e., π/2 < iorb < π); see also the discussion in the third paragraph
of Sect. 5.3.1

ment with the Doppler tomography. The main difference from the B11 case with this
new set of parameters is the different constraint on frot sin i�, which is proportional to
the combination (ρ�/M�)

1/3v sin i� (cf. Eq. 5.3). With smaller M� and larger v sin i�,
the stellar rotation rate slightly higher than the B11 case is favored. We find that
the difference in T�,pole is less important compared to the above effect. We also find
that larger Fc yields larger Rp/R�, which makes the impact parameter or | cos iorb|
smaller to give the same ingress/egress duration.

Next, we allow c2 = u1 − u2 to be free, and find that the resulting spin–orbit angle
is very sensitive to this parameter. When c2 is floated, the constraints on i� and λ
become much weaker than the c2 = 0 case, as shown in the fourth and fifth columns
of Table5.1. The strong dependence on c2 is illustrated in Fig. 5.2, which shows that
λ and i� vary by several tens of degrees depending on c2; see also the joint MCMC
posterior distribution in Fig. C.5 for the same data. In fact, the result indicates that
the gravity-darkened light curve is actually compatible with the Doppler tomography
solution if we choose c2 ∼ 0.25; such a solution will be discussed in Sect. 5.3.3.
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5.3.3 Joint Solution

In Sect. 5.3.2, we found that the gravity-darkened light curve is compatible with the
value of λ estimated from the Doppler tomography if c2 ∼ 0.25. Thus we repeat
the analysis treating c2 as a free parameter for both stellar parameters by B11 and
S14, but this time imposing additional constraint λ = 58.◦6 ± 2.◦0 from the Doppler
tomography. The results are summarized in the last two columns in Table5.1, and
the joint posterior distribution from the MCMC fitting to the Q2 data is shown
in Fig. C.6 for the B11 stellar parameters. The resulting value of i� = 81◦ ± 5◦
indicates that the star is close to equator-on, and ψ = 60◦ ± 2◦ is slightly larger than
the previous estimate. In terms of χ2

min, these solutions equally well reproduce the
transit anomaly as the solutions discussed so far, and still they are consistent with
the Doppler tomography result. Moreover, we obtain a slightly longer Prot, which
better agrees with Prot = 25.43 ± 0.05 h estimated by Szabó et al. (2012, 2014) than
the solution with the gravity darkening alone. For these reasons, the joint solution is
most favored from the current observations.

We note, however, that the likelihood for the joint solution is not so high as to
statistically justify the introduction of the additional free parameter c2. Furthermore,
the plausibility of the value of c2 in our joint solution is theoretically unclear. We
obtain the theoretical values of c1,th � 0.6 and c2,th � 0.0 from the table of Sing
(2010) if we adopt the effective temperature and surface gravity by S14. Hence the
value of c2 from our joint solution is discrepant from c2,th. Nevertheless, it is also
true that theoretical values often disagree with the observed ones (e.g., Southworth
2008); in fact, c1 in the light-curve solution with c2 = 0 is also different from c1,th.
Therefore, we do not consider the possible deviations from the theoretical values
crucial, and regard it as an open question.7 An alternative approach to independently
assess the validity of our solution is discussed in the next section.

5.4 Spin–Orbit Precession in the Kepler-13A System

The shape of Kepler-13Ab’s transit is known to exhibit a long-term variation, which
is likely due to the spin–orbit precession induced by the quadrupole moment of the
rapidly rotating host star (Szabó et al. 2012, 2014). Indeed, we find the monotonic
decrease in | cos iorb| from the quarter-by-quarter analysis in Sect. 5.3; the constant-
value model is rejected at the p-value of 0.5% for this parameter using a simple χ2

test. On the other hand, the other model parameters are found to be consistent with
the constant value using the same criterion. Therefore, our analysis confirms that
the observed TDVs are actually due to the variation in cos iorb,8 further supporting

7For reference, we find c2 = 0.1 − 0.2 if we adopt the model without gravity darkening (Mandel
and Agol 2002), which suggests that the choice of c2 = 0 is not indispensable.
8Note that, in Szabó et al. (2012), the degeneracy between a/R� (or ρ�) and cos iorb was not solved.
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the precession scenario with the more realistic model of the asymmetric transit light
curve.

In this section, we further examine this scenario with the gravity-darkened transit
model. Unlike the above previous studies (Szabó et al. 2012, 2014) that focused on
iorb, the gravity-darkened model allows us to additionally study the (non-)variations
in the other two angles, λ and i�, which should also be induced if the system is
precessing.9 By fitting the analytic precession model to the time series of cos iorb, λ,
and i� obtained from the light curves, we constrain the stellar quadrupole moment
J2 and its moment of inertia coefficient C. On the basis of these constraints, we
predict the future evolution of the system configuration and argue that the follow-
up observations of such a long-term modulation can distinguish the light-curve and
joint solutions discussed in Sect. 5.3. In the following, we mainly discuss the results
obtained with the stellar parameters from S14, though the conclusions remain the
same for the B11 parameters.

5.4.1 Model Parameters from Each Transit

To examine the temporal variations in cos iorb, i�, and λ, we fit individual transit light
curves, rather than the phase-folded ones, for these parameters. We use the same
two models (“light-curve solution” with c2 = 0 and “joint solution” with c2 fitted) as
discussed in Sect. 5.3. In order not to underestimate the errors in the three angles, we
fit all the other model parameters, ρ�, c1, c2 (for the joint model), tc, Rp/R�, frot, and
F0 as well, which should not vary temporally in our model. Using the best values
in Table5.1, we impose the constraints on these parameters except for tc and F0,
through the second term of Eq. (5.4). In fitting much noisier individual transits, this
prescription assures that the parameters converge to the values consistent with those
from the phase-folded light curves, while preserving their differences from transit
to transit. We also discard the transits for which the fit does not converge due to the
data gaps and/or short brightening features sometimes found in the light curves. The
resulting sequences of the transit parameters are plotted in Fig. 5.3.

Asmentioned above, we again find the clear linear trend in cos iorb from individual
transits. We fit the linear model to the time series of cos iorb using a Markov Chain
Monte Carlo (MCMC) algorithm and obtain the rates of change in the upper part of
Table5.2. Here we only report the slopes for absolute values of cos iorb because its
actual sign depends on the sign of cos i�, which can never be determined with the
current observations (we arbitrarily choose cos i� > 0 in this chapter, as discussed
after Eq.5.2). Comparing the light-curve solution and joint solution, we find that
the rate of | cos iorb| change is insensitive to λ or c2 because | cos iorb| is mainly

9If either of the angular momenta of the stellar spin or the orbital motion dominates, iorb or i� is
almost constant. In the Kepler-13A system, the two angular momenta have comparable magnitudes
and so all three angles modulate due to the precession. A similar case, the PTFO 8-8695 system,
has been studied by Barnes et al. (2013) and Kamiaka et al. (2015).
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Fig. 5.3 Best-fit model parameters from each transit. The left panels are the results for the light-
curve solution with c2 = 0, while the right ones are for the joint solution. Errors are from the outputs
of the cmpfit package. Parameters from even quarters (2, 8, 10, 12, 14, and 16) are shown in
black, while those from odd quarters (3, 7, 9, 11, 13, 15, and 17) are in gray. For the times of
inferior conjunctions, tc, the residuals of the linear fit (i.e., TTVs) are plotted for clarity. Solid lines
in cos iorb panels are the best-fit linear models
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determined from the transit duration. With a/R� calculated from ρ�, our value for
d| cos iorb|/dt is found to be consistent with db/dt = (−4.4 ± 1.2) × 10−5 day−1 by
Szabó et al. (2012), but our constraint is several times better.

Figure5.3 also shows the abrupt systematic changes in Rp/R�. These changes
occur exactly in phase with the border of different quarters indicated with different
colors (black and gray). For this reason, they are unlikely to be of physical origin,
but are probably due to the seasonal transit depth variations similar to those reported
by Van Eylen et al. (2013) for HAT-P-7. In addition, some of the parameters (most
notably ρ� and frot) show the long-termmodulation of the period∼400 days. Origins
of these systematics are beyond the scope of this chapter, and they are just treated as
the additional scatter in the data.

5.4.2 Fit to the Observed Angles and Future Prediction

Among the observed time series of transit parameters in Fig. 5.3, those of cos iorb,
λ, and i� are fitted using an MCMC algorithm to observationally constrain J2 and
C. We utilize the same analytic precession model as in Barnes et al. (2013), which
constitutes an analytic solution of the secular equations of motion derived by Boue
and Laskar (2009). In this model, the orbital and spin angular momenta precess
around the total angular momentum at the same angular rate given by

�̇ = �̇p

√(
L

S
+ cosψ

)2

+ sin2 ψ, (5.5)

where �̇p is the precession rate of the orbital angular momentum around the stellar
spin, and explicitly given by

�̇p = −3

2
J2
2π

P
cosψ

(
R�

a

)2

(5.6)

with J2 being the stellar quadrupole moment. In the Kepler-13A system, the spin
angular momentum, S, is comparable to the orbital one, L , owing to the small semi-
major axis and rapid stellar rotation. As a consequence, �̇ also depends on the ratio
of the two,

L

S
= 1

C

Mp

M�

1

P frot

(
a

R�

)2

, (5.7)

where C is the moment of inertia coefficient of the host star. Thus, the independent
model parameters are ρ�, frot, J2, C, P , Mp/M�, and three angles cos iorb, λ, i� at
some epoch (here taken to be BJD = 2454833 + 800). We do not relate J2 to the
other parameters like the stellar oblateness as done in Barnes et al. (2013).
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To realistically evaluate the credible intervals of J2 and C by marginalization,
uncertainties in ρ�, frot, P , and Mp/M� should also be taken into account. However,
these parameters are notwell determined from the data of cos iorb,λ, and i�. Thus, they
are floated with the following Gaussian priors. The first three are assigned the same
central values and widths as in Table5.1. For the mass ratio, we take the mean and
standard deviation of the results reported by S14, Esteves et al. (2015), and Faigler
and Mazeh (2015), which come from the amplitudes of the ellipsoidal variation and
Doppler beaming. We also impose the Gaussian prior on C centered on 0.0776 (the
value for n = 3 polytrope by Szabó et al. 2012) and with the width of 0.02, which is
chosen to enclose the solar value, 0.059.

The constraints from the MCMC fit are summarized in the middle and bottom
parts of Table5.2 and the best-fit models are plotted with the solid lines in Fig. 5.4.

Table 5.2 Results of the precession model fit to cos iorb, i�, and λ from each transit

Light-curve solution (c2 = 0) Joint solution (c2 fitted)

Ref. for Fc,
v sin i�, M�,
T�,pole

B11 S14 B11 S14

(Linear fit to cos iorb)

| cos iorb|a 0.0668 ± 0.0001 0.0581 ± 0.0001 0.0658 ± 0.0001 0.0560 ± 0.0002
d| cos iorb|

dt (day−1) (−5.9 ± 0.3) ×
10−6

(−6.8 ± 0.3) ×
10−6

(−6.0 ± 0.3) ×
10−6

(−7.0 ± 0.4) ×
10−6

(Precession model fit to cos iorb, i�, and λ)

ρ�, frot , P Same as Table5.1 (priors = posteriors)

cos iorba −0.0668 ±
0.0001

−0.0581 ±
0.0001

−0.0658 ±
0.0001

−0.0560 ±
0.0002

i� (deg)a 44.7 ± 0.3 54.2 ± 0.3 72.8 ± 0.3 81.8 ± 0.2

λ (deg)a −20.1 ± 0.2 −13.9 ± 0.1 −58.65 ± 0.09 −58.62 ± 0.09

Mp/Mb
� (3.4 ± 0.8) ×

10−3
(2.8 ± 0.8) ×
10−3

(4.1 ± 0.8) ×
10−3

(4.0 ± 0.8) ×
10−3

C
c 0.09 ± 0.02 0.10 ± 0.02 0.08 ± 0.02 0.08 ± 0.02

J2 (1.44 ± 0.07) ×
10−4

(1.66 ± 0.08) ×
10−4

(5.6 ± 0.3) ×
10−5

(6.1 ± 0.3) ×
10−5

(Derived from the precession model)

Precession period
(yr)

(5.7 ± 0.4) × 102 (4.3 ± 0.3) × 102 (1.6 ± 0.2) × 103 (1.5 ± 0.2) × 103

L/S 0.36+0.11
−0.09 0.25 ± 0.07 0.65+0.24

−0.17 0.54+0.19
−0.14

Note The quoted values and uncertainties are 50, 15.87, and 84.13 percentiles of the marginalized
MCMC posteriors
aValue at BJD = 2455633 = 2454833 + 800
bGaussian prior Mp/M� = (4.2 ± 0.8) × 10−3 is imposed. The value is based on the average and
standard deviation of the results by S14, Esteves et al. (2015), and Faigler and Mazeh (2015)
cGaussian prior C = 0.0776 ± 0.0200 is imposed. The central value is from the result for n = 3
polytrope by Szabó et al. (2012) and the width is chosen to enclose that of the sun
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Fig. 5.4 Simultaneous fit to the observed cos iorb, λ, and i�. (Left) light-curve solution with c2 = 0.
(Right) joint solution. Black points are from the light-curve fit (same as Fig. 5.3), and colored solid
lines denote the best-fit precession models, which are not the linear fits

Basically, the precessionmodel is compatiblewith the observations both for the light-
curve solution and the joint solution.Thevalueof J2 and the correspondingprecession
period, however, are different by a factor of a few, in spite of the similar observed
slopes in cos iorb. While J2 = (1.66 ± 0.08) × 10−4 for the light-curve solution is
consistent with the earlier estimate by Szabó et al. (2012), J2 = (2.1 ± 0.6) × 10−4

from observed TDVs and J2 = 1.7 × 10−4 from the stellar model, the joint solution
yields a smaller value, J2 = (6.1 ± 0.3) × 10−5.

The difference comes from the different three-dimensional architectures of the
system described by the two solutions. Since all of cos iorb, λ, and i� are constrained
from the gravity-darkened light curves, relative configuration of the stellar spin and
orbital angular momenta are completely specified in three dimensions. This means
that the phase of the precession during the Kepler mission, which corresponds to
the left end in the right column of Fig. 5.5, is observationally constrained; from the
top panel, we find that cos iorb is closer to the bottom of the sine curve for the light-
curve solution (blue dashed line), while that for the joint solution (red solid line)
resides in the phase of a rapid increase. For this reason, a larger precession rate
(i.e., shorter precession period) is required for the light-curve solution to match the
observed change in cos iorb. According to Eqs. (5.5) and (5.6), the larger precession
rate can be achieved by increasing either J2 or L/S. However, the larger precession
rate also induces faster variations in λ and i�, contradicting their almost constant
observed values (middle and bottom panels in Fig. 5.4). The only way to mitigate
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this conflict is to make J2 larger (i.e., increase the precession rate) while keeping L/S
small, making it more difficult to move stellar spin axis. With Eq. (5.7), this explains
why Mp/M� is smaller and C is larger for the light-curve solution than for the joint
solution in Table5.2. Accordingly, the bottom panel of the right column in Fig. 5.5
exhibits the smaller precession amplitude for i� in the former solution (blue dashed
line) than the latter (red solid line).

The approximately three times difference in the precession periodwould be appar-
ent even on the short time scale (left column in Fig. 5.5). As shown in the middle
panel, as large as ∼10◦ change in λ is expected within the next ∼10 yr for the
light-curve solution, which is well detectable given the current precision of the sky-
projected obliquity measurement with Doppler tomography (nominally down to a
few degrees). On the other hand, λ for the joint solution is almost constant. From this
point of view, the joint solution may slightly be favored even with the current data,
because the nearly-constant values observed for λ and i� are more natural for the
joint solution than for the light-curve one, for the reasons discussed in the previous
paragraph. This indication also manifests itself in the fact that the resulting Mp/M�

and C better agree with our prior knowledge in the joint solution.
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The more decisive conclusion will be obtained with the future follow-up observa-
tions of λ using Doppler tomography, as well as the transit duration observations to
better constrain cos iorb, and hence the precession rate. If our joint solution is correct,
variations in λ will not be detected in near future. On the other hand, if the light-
curve solution is actually correct and λ from the Doppler tomography is somehow
systematically biased, λ should change; this temporal variationwould be observable
with the Doppler tomography even if it were biased. Or, it may even turn out that the
precession scenario is wrong. In any case, tracking the future evolution of the system
configuration can be used for an independent test of our solution, not to mention for
better constraining stellar internal structure via J2 and C.

5.5 Anomaly in the Transit Light Curve of HAT-P-7

Armed with the methodology established using the distinct anomaly in Kepler-13A
(Sect. 5.3), we discuss another, more subtle anomaly in this section. Here themethod-
ology is further extended to include the information from asteroseismology as well
as from the RM effect, and applied to an F-type star.

It has been pointed out in several studies, including the one in Chap.4, that the
transit light curve of HAT-P-7 exhibits a small anomaly of O(10−5). Morris et al.
(2013), who reported this anomaly first, attributed it to the local spot-like gravity
darkening induced by the gravity of the Jupiter-mass companion HAT-P-7b. They
ruled out the gravity darkening of stellar rotational origin on the basis of the inspection
that the anomaly is localized in apart of the transit. Later analyseswithmoredata (e.g.,
Esteves et al. 2013, 2015; Van Eylen et al. 2013, and the one in Chap.4), however,
have shown that the anomaly is seemingly correlated over the whole transit duration,
as in the top panel of Fig. 5.7. Moreover, the amplitude of the observed anomaly
may be too large to be explained by the spot scenario. According to Jackson et al.
(2012), the planet’s gravity induces the surface temperature variation of “a few0.1K,”
which leads to the surface brightness variation of�F ∼ several 100 ppm. If a planet
crosses over a spot fainter by �F than the other part of the stellar disk, amplitude
of the expected anomaly in the relative flux is about �F × (Rp/R�)

2 ∼ O(ppm),
which is order-of-magnitude smaller than the observed one. We therefore analyze
this anomaly assuming that it is originated from the gravity darkening induced by
stellar rotation, whose effect should not be localized but manifest during the whole
transit duration.

Unlike the case of Kepler-13A, anomaly in the transit light curve is not clear on a
quarter-by-quarter basis forHAT-P-7. In addition, noTTVs/TDVs have been detected
for this planet. For these reasons, we deal with the light curve obtained by folding all
the available SC, PDCSAP fluxes (Q0–17) processed as described in Sect. 5.2.2. We
use the spectroscopic constraint v sin i� = 3.8 ± 1.5 km s−1 throughout this section.
This value is based on Pál et al. (2008), though its error bar is enlarged to take into
account other estimates for this quantity that give slightly different values (e.g.,Winn
et al. 2009a).
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5.5.1 Robustness of the Observed Anomaly

If the observed anomaly is really due to gravity darkening, it should be persistent over
all observation span, unlike the case of sporadic events including the spot crossing.
It is important to confirm the property because Morris et al. (2013) only reported
the bump before the mid-transit time. Thus, we divide the transits into four consec-
utive groups (Q0–4, 5–9, 10–13, 14–17), phase-fold and fit each of them with the
model without gravity darkening separately, and examine the shapes of the resid-
uals. Although fewer numbers of transits lead to noisier phase-folded light curves,
ten-minute binned residuals in the left column of Fig. 5.6 exhibit a similar feature
(brightening before mid-transit and dimming after it) in every span of data.

Besides, Van Eylen et al. (2013) reported seasonal variation in the transit depth
depending on the quarter, which is reproduced in our analysis with Q0–17 data.10

To confirm that the anomaly is not an artifact related to this seasonal variation, we
also perform a similar analysis as above but this time grouping the transits that have
similar depths. As shown in the right column of Fig. 5.6, we find that the same feature
is apparent regardless of the season and the anomaly is not affected by the systematic
depth variation. For this reason, along with its unconstrained origin, we do not try to
make corrections for this systematic in the following analyses.

5.5.2 Results

As in Sect. 5.3, we consider both light-curve solution and joint solution that takes
into account the constraints from other observations. First, the light-curve solution
is obtained with c2 fixed to be zero (Fig. 5.7, second and third columns in Table5.3).
In this case, we find two solutions with different signs of cos iorb, which are indis-
tinguishable in terms of the minimum χ2.11 The values quoted in Table5.3 are the
median, 15.87, and 84.13 percentiles of the MCMC posteriors sampled with emcee
(Foreman-Mackey et al. 2013).12 Our model reasonably reproduces the global fea-
ture of the anomaly (positive before the mid transit and negative after it), yielding
�χ2 � 166 for ∼420 degrees of freedom. We compute the Bayesian information

10We also reported a similar phenomenon in Kepler-13A; see Sect. 5.4.1 and Fig. 5.3.
11The existence of the two solutions in this case should be distinguished from the degeneracy
intrinsic to the gravity-darkening method. For each of the two solution listed here, there additionally
exists the model that yields exactly the same light curve, where cos iorb is replaced with − cos iorb
and λ with π − λ. These intrinsically-degenerate solutions are not discussed here because they are
in any case rejected in the joint solution, where λ is constrained by the prior. This is the same logic
as used in the last paragraph of Sect. 5.3.1.
12We also applied the residual permutation method described in Winn et al. (2009b) for another
estimate of the parameter uncertainties, and confirmed that they are not significantly affected by
the correlated noise component.
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Fig. 5.6 Robustness of the detected anomaly.Residuals of themodel fits (without gravity darkening)
to the phase-folded transit light curves are plotted. Gray dots are residuals for the one-minute binned
data, and black ones with error bars are the residuals averaged into ten-minutes bins. Vertical dashed
and dotted lines correspond to the beginnings and ends of the ingress and egress. (Left column)
Transits folded over different epochs. From top to bottom, light curves from Quarters 0–4, 5–9,
10–13, and 14–17 are folded. (Right column) Transits grouped by the CCDmodule used to observe
the target. From top to bottom, light curves taken with the modules 17, 19, 9, and 7 are folded

criterion (BIC) for the best-fit models with and without gravity darkening, and find
�BIC = 129, which formally indicates that the gravity-darkened model is strongly
favored.

Our solution points to a nearly pole-on configurationwith i� � 0◦. This conclusion
is consistent with the asteroseismic analyses in Chap. 4 (Benomar et al. 2014) and
by Lund et al. (2014), but the nominal constraint on i� from the gravity-darkened
model is much tighter. On the other hand, λ is not constrained very well with the
light curve asymmetry alone. The difficulty is inevitable in the pole-on configuration,
where the brightness distribution on the stellar disk is almost axisymmetric even in
the presence of gravity darkening. In such a case, ψ is always close to 90◦ regardless
of λ.

One remaining issue regarding our solution is that the resulting rotation frequency
may be too large. Given the age (�2Gyr) and B − V (= 0.495 ± 0.022; Lund et al.
2014) of the host star, the rotation frequency from the light-curve solution, frot =
7.7 ± 0.2mHz (equivalent to Prot � 1.5 days), is consistent with the gyrochronology



102 5 Spin–Orbit Misalignments of Kepler-13Ab and HAT-P-7b…

relation byMeibom et al. (2009); see Sect. 6 of Lund et al. (2014). However, our value
of frot is much larger than those from asteroseismology, 0.70+1.02

−0.43 mHz (68% credible
interval obtained in Chap.4) and< 0.8748mHz (1σ upper limit by Lund et al. 2014).
In fact, the prior used in these analyses, | frot| < 8mHz, does not fully cover the range
we investigate here with the gravity-darkened light curve. Still, the discrepancy is
only weakly reduced even with the new analysis adopting the prior range extended
up to 17mHz, which yields frot = 0.82+2.02

−0.50 mHz as the 68% credible interval (by
courtesy of Othman Benomar; see also Benomar et al. 2014).

To examine if the gravity-darkened model is compatible with the seismic analy-
sis, we then search for a joint solution including the constraints both from the RM
measurement and asteroseismology. From the RM effect, we incorporate the con-
straint λ = 172◦ ± 32◦, which comes from the average and standard deviation of
the analyses of the three different radial velocity data (Table4.3 in Chap.4). From
asteroseismology, we adopt the above updated posterior for frot as the prior, and
performed an MCMC sampling with emcee. To properly take into account the
uncertainty from the limb-darkening profile, c2 is also floated. The resulting cred-
ible intervals are summarized in the fourth and fifth columns in Table5.3, and the
model that maximizes the likelihood multiplied by the prior on frot is plotted with
a dashed line in Fig. 5.7. The corresponding joint posterior distributions are also

Fig. 5.7 Fitting the
gravity-darkened model to
the phase-folded transit of
HAT-P-7b. The meanings of
the symbols are the same as
those in Fig. 5.1, but this
time the joint solution
incorporates the constraints
on λ from the RM
measurement and on frot
from asteroseismology. The
light-curve solution and joint
solution are almost
indistinguishable in this
case, as expected from the
similar values of χ2

-3e-05
-2e-05
-1e-05

 0
 1e-05
 2e-05
 3e-05

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

R
es

id
ua

l
(w

/ g
ra

vi
ty

 d
ar

ke
ni

ng
)

Time since midtransit (day)

joint solution

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

R
el

at
iv

e 
flu

x

best fit (w/ gravity darkening)
best fit (w/o gravity darkening)

-3e-05
-2e-05
-1e-05

 0
 1e-05
 2e-05
 3e-05

D
iff

er
en

ce
 fr

om
 th

e 
m

od
el

 w
/o

 g
ra

vi
ty

 d
ar

ke
ni

ng

joint solution



5.5 Anomaly in the Transit Light Curve of HAT-P-7 103

shown in Figs.C.7 and C.8. We again find two equally good solutions, both of which
indicate nearly pole-on configurations with slightly prograde and retrograde orbits,
ψ = 101◦ ± 2◦ and ψ = 87◦ ± 2◦. Although the resulting frot still prefers a higher
rotation rate than that from asteroseismology, their difference is nowmitigated to the
2σ level: we construct the probability distribution for � frot, frot from out joint anal-
ysis minus frot from asteroseismology, using their posteriors and find its 2σ credible
region as � frot = 4.9+4.0

−5.0 µHz. We argue that the level of discrepancy is acceptable,
considering that the rotational mode splitting is not clearly detected in the power
spectrum for HAT-P-7.

Finally, it is also worth considering the case where β 	= 0.25, given the uncon-
strained nature of the gravity darkening in F dwarfs. Smaller values of β ∼ 0.08
are usually expected for solar-like stars with convective envelopes (e.g., Lucy 1967;
Claret 1998), while Lara and Rieutord (2011, 2012) argue that β is close to 0.25 in
the limit of slow rotation under several assumptions. We repeat the above joint anal-
ysis floating β with the prior uniform between 0 and 0.3, and obtain β = 0.26+0.03

−0.05
for both solutions in Table5.3. On the one hand, the fact may support the claims
by Lara and Rieutord (2011, 2012); on the other hand, it may simply indicate some
incompleteness in our gravity-darkening model, as also suggested by the tension in
frot and the still correlated residuals before the mid transit (bottom panel of Fig. 5.7).
Indeed, if β = 0.08 is adopted, we find that even higher rotation rate (>10mHz) is
favored, making the discrepancy with asteroseismology more serious. Although the
validity of β we obtain is beyond the scope of this chapter, we note that our con-
clusion for a pole-on orbit is robust against the adopted value of β; in both analyses
where β is fitted and β is fixed to be 0.08, the constraints on ψ differ less than 1σ
from the results in Table5.3.

5.6 Summary

5.6.1 Kepler-13A

First, we analyze the gravity-darkened transit light curve of Kepler-13A adopting the
same model and stellar parameters as in the previous study by B11. We reproduce
the spin–orbit angles obtained by B11 with more data (called “light-curve solution”
in this chapter) and also find that the choice of the stellar mass, stellar effective
temperature, v sin i�, or contaminated flux affects λ or i� by less than about 10◦. If
we fit c2 = u1 − u2 as well as c1 = u1 + u2 in the quadratic limb-darkening law,
on the other hand, a broader range of the spin–orbit angle is allowed. In fact, this
additional degree of freedom may explain the discrepancy between the solution by
B11 and the Doppler tomography result by Johnson et al. (2014). Our new “joint
solution” includes i� = 81◦ ± 5◦, λ = −59◦ ± 2◦, ψ = 60◦ ± 2◦, and Prot = 24 ±
2 hr. Although the joint solution is compatible with all of the observations made so
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far, introducing additional free parameter c2 is not statistically justified, nor is it clear
if the best-fit value for c2 is physically plausible.

To examine the above issues from a dynamical point of view, we also analyze
the spin–orbit precession in this system. By analyzing the light curves from each

Table 5.3 Results for the transit of HAT-P-7b

Light-curve solution (c2 = 0) Joint solution (c2 fitted)

Solution 1 Solution 2 Solution 1 Solution 2

(Constraints)

v sin i� (km s−1) 3.8 ± 1.5 3.8 ± 1.5 3.8 ± 1.5 3.8 ± 1.5

λ (deg) · · · · · · 172 ± 32 172 ± 32

(Fitted parameters)

M� (M�) 1.59 (fixed) 1.59 (fixed) 1.59 (fixed) 1.59 (fixed)

T�,pole (K) 6310 (fixed) 6310 (fixed) 6310 (fixed) 6310 (fixed)

ρ� (g cm−3) 0.2789 ± 0.0006 0.2789 ± 0.0006 0.2790 ± 0.0005 0.2784 ± 0.0005

c1 0.498 ± 0.003 0.498 ± 0.003 0.507+0.008
−0.016 0.508+0.007

−0.015

c2 0 (fixed) 0 (fixed) 0.07+0.06
−0.12 0.08+0.05

−0.11

tc (10−5 day)a −1.5 ± 0.4 −1.5 ± 0.4 −1.6 ± 0.4 −1.1 ± 0.4

P (day) 2.204735471 (fixed)

cos iorb −0.1195 ±
0.0004

0.1195 ± 0.0004 −0.1194 ±
0.0003

0.1198 ± 0.0003

Rp/R� 0.07757+0.00005
−0.00009 0.07757+0.00005

−0.00009 0.07759 ±
0.00003

0.07749+0.00003
−0.00004

F0 0.9999998 ± 0.0000005

frot (mHz) 7.7 ± 0.2 7.7 ± 0.2 6.1+2.6
−1.7

b
5.6+2.4

−1.7
b

i� (deg)c 3.3+1.2
−1.0 3.3+1.3

−1.0 5.3+3.3
−2.0 5.3+3.7

−2.1

λ (deg) 133+19
−88 49+92

−21 142+12
−16 136+16

−22

β 0.25 (fixed) 0.25 (fixed) 0.25 (fixed) 0.25 (fixed)

(Derived parameters)

Prot (day) 1.51 ± 0.03 1.51 ± 0.03 1.9+0.7
−0.6 2.1+0.9

−0.6

ψ (deg) 99+2
−4 81+4

−2 101 ± 2 87 ± 2

Impact parameter 0.496 ± 0.001 0.496 ± 0.001 0.496 ± 0.001 0.497 ± 0.001

Oblateness 0.0149 ± 0.0006 0.0149 ± 0.0007 0.009+0.010
−0.005 0.008+0.008

−0.004

χ2
min/dof 453/424 455/424 450/424 451/424

Note The quoted values and uncertainties are 50, 15.87, and 84.13 percentiles of the marginalized
MCMC posteriors. For the light-curve solution, χ2

min is the value of χ2 computed from Eq. (5.4) for
the maximum likelihood model. Eq. (5.4) is also used for the joint solution, but χ2

min in this case is
computed for the model that maximizes the likelihood function multiplied by the prior on frot
aMeasured from the transit epoch t0(BJD − 2454833) = 120.358522 ± 0.000005 obtained with
the transit model without gravity darkening
bPosterior from the seismic analysis is used as the prior
cWe impose the prior uniform in cos i�, rather than in i�, which corresponds to the isotropic distri-
bution for the spin direction
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quarter separately,we confirm that the variation in | cos iorb| causes the transit duration
variations first reported by Szabó et al. (2012), with more elaborate model taking into
account the gravity darkening. This variation is consistent with the precession of the
stellar spin and orbital angular momenta around the total angular momentum of the
system, induced by the oblateness of the rapidly rotating host star. We thus fit each
transit with the gravity-darkenedmodel to determine cos iorb,λ, and i� as a function of
time, and then fit them with the precession model to constrain the stellar quadrupole
moment J2. For the light-curve solution and the joint solution, we respectively find
J2 = (1.66 ± 0.08) × 10−4 and J2 = (6.1 ± 0.3) × 10−5, which are different by a
factor of a few. Our results predict detectable variations in λ on 10-yr timescale for
the light-curve solution, while it should be almost constant for the joint solution. The
difference suggests that the future follow-up observations can be used to confirm or
refute the joint solution we proposed, as well as to improve the constraint on J2.

5.6.2 HAT-P-7

Although the anomaly in the transit light curve is much more subtle compared to
Kepler-13Ab, we confirm that the asymmetric residual (not only the bump reported
by Morris et al. (2013) but also the dip) exists continuously in the transits of HAT-
P-7b. Thus, we perform the analysis assuming that the gravity-darkening is a viable
explanation for the anomaly. Gravity-darkened transit model favors a nearly pole-on
orbit (ψ = 101◦ ± 2◦ or ψ = 87◦ ± 2◦) and the gravity-darkening exponent β close
to 0.25, consistently with the asteroseismic inference in Chap. 4. The constraint on ψ
is insensitive to the choice of the limb-darkening parameters or the gravity-darkening
exponent.

On the other hand, the stellar rotation rate from the gravity-darkening analysis
is about 2σ higher than the value from asteroseismology. In addition, the value
of β � 0.25 we obtained may be too large for a star with a convective envelope,
although the theory of gravity darkening may not be full-fledged for that case. These
facts may suggest some incompleteness in the current modeling or other origins for
the anomaly, and should be addressed in future studies.

5.7 Conclusion

Our present analysis reproduces the results by B11 with more data and thus strength-
ens the reliability of the gravity-darkening method for the spin–orbit angle determi-
nation. In contrast, we also find that the spin–orbit angle obtained from the gravity-
darkened transit light curve strongly depends on the assumed limb-darkening profile.
Depending on its choice, the resulting spin–orbit angle can vary by several tens of
degrees. Thus, the reliable modeling of the limb-darkening effect is crucial for this
method.
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Nevertheless, if λ is constrained from other observations, i� is well determined
along with the limb-darkening parameters. Hence the gravity-darkening method still
provides valuable information on the true stellar obliquityψ, which is complementary
to λ from the RM effect or Doppler tomography. Indeed, such an example is already
seen in an eclipsing binary system DI Her (Philippov and Rafikov 2013). In addition,
synergy with asteroseismology is also promising because it constraints frot and i�,
which are both essential in the modeling of gravity darkening. The joint analyses
of these kinds may in turn help us to better understand the mechanisms of gravity
darkening itself, since they enable the measurements of β for stars not in close binary
systems and hence free from the strong tidal distortion.

If combinedwith continuous, high-precisionphotometry as achievablewith space-
borne instruments, the gravity-darkening method also provides a way to monitor the
angular momentum evolution in the system. Modeling of the spin–orbit precession
allows us to access the internal structure of the rotating star through its quadrupole
moment or moment of inertia. It is also possible to precisely determine the three-
dimensional configuration of the system from a dynamical point of view (cf. Philip-
pov and Rafikov 2013; Barnes et al. 2013). Such information will be valuable in
simulating the dynamical histories of individual systems to decipher the origin of the
spin–orbit misalignment.
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Chapter 6
Probing the Architecture of Hierarchical
Multi-Body Systems: Photometric
Characterization of the Triply-Eclipsing
Triple-Star System KIC 6543674

Abstract It is mainly due to the unknown initial distribution of stellar obliquities
that the spin–orbit misalignment cannot be immediately interpreted as a signature of
past dynamical interactions. In contrast, the misalignment between planetary orbits
in the same system will serve as more direct evidence for the past dynamical event
and may also complement the interpretation of obliquity measurements. Indeed, the
scenarios for the high-eccentricity migration discussed in Sect. 3.1 all involve the
excitation of themutual orbital inclination.Moreover, these processes themselves are
more generic than the hot Jupiter formation and their signature may also be observed
in systemswithout hot Jupiters. Such systems, if identified and characterized in detail,
will serve as direct evidence for the dynamical scenario and/or useful test beds for
studying how it works in real systems. The high-eccentricity scenario often involves
a hierarchical configuration (see Sect. 3.1), where the orbit of an outer planet/star
is much wider than that of the inner planet. For this reason, characterization of
hierarchical systems will be a key for the purpose described above. As the first step
of such an effort, this chapter presents the characterization of a hierarchical triple-star
system based on the Kepler photometric data. We determine the three-dimensional
orbits and physical dimensions of all three stars in the system by a joint modeling
of the eclipse light curves and mutual gravitational interaction: the technique also
applicable to a hierarchical planetary system with a massive outer planet. We also
discuss the implication for the very close inner orbit of this system, whose origin
may be similar to those of hot Jupiters.

Keywords Close binary · Eclipse timing variations
Kozai cycles with tidal friction · KIC 6543674

6.1 Introduction

Among over 2000 eclipsing binaries discovered in the Kepler mission (Prša et al.
2011; Slawson et al. 2011), more than 200 are suggested to host tertiary (third body)
companions through their eclipse timing variations (ETVs; Conroy et al. 2014).
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Many of them are hierarchical triples consisting of a short-period binary and an
outer third body on a wide orbit. The hierarchy is often attributed to the perturbation
from the third body, as in the KCTF (Kozai cycles with tidal friction) scenario (Kozai
1962; Kiseleva et al. 1998; Eggleton and Kiseleva-Eggleton 2001) described in Sect.
3.1.1. Indeed, recent ETV analyses (Rappaport et al. 2013; Borkovits et al. 2015)
have revealedmany hierarchical triples withmisaligned tertiary orbits, whosemutual
inclination distribution exhibits a suggestive peak around ∼40◦ as predicted by the
KCTF scenario (Fabrycky and Tremaine 2007).

On the other hand, at least 10 or more hierarchical triples seem to have well-
aligned orbits, as suggested by eclipses due to tertiary companions (Carter et al.
2011; Orosz 2015, Fig. 7). Three-dimensional geometry and absolute dimensions of
those systems are also of interest because their hierarchy may argue for mechanisms
of orbital shrinkage that do not require high mutual inclinations between the inner
and outer binary planes (e.g., Petrovich 2015).

In this chapter, we focus on a tertiary event observed only once in theKIC6543674
system, which involves three tertiary eclipses around a single inferior conjunction

(a)

(b)

Fig. 6.1 Tertiary event observed in the KIC 6543674 system and its interpretation. a Schematic
illustration of the system configuration during the event. b Fit to the Kepler light curve around the
tertiary eclipses (see Sect. 6.3). (Top) Black circles are the observed fluxes and red solid line denotes
our best-fit model. (Bottom) Residuals of our fit. Typical uncertainty estimated from our analysis
(� σLC,tertiary) is shown at the upper left
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of the third body (Fig. 6.1). Although this event has already been reported (Slawson
et al. 2011; Thackeray-Lacko et al. 2013; Conroy et al. 2014), it has not yet been
clarified whether it is indeed explained by the tertiary eclipse, nor what information
is obtained from its detailed modeling. Below we will show that the tertiary event
plays two crucial roles in determining the system configuration. First, it constrains
the mutual inclination between the inner and outer binary orbits very precisely, in
a similar way to the “planet–planet eclipse” known in the Kepler multi-transiting
planetary system(s) (Hirano et al. 2012;Masuda et al. 2013;Masuda 2014). Secondly,
and less trivially, it fixes the mass ratio of the inner binary and velocity of the third
body even without spectroscopy.

The present chapter reports precise geometry and absolute dimensions of the KIC
6543674 system. We combine the above information from the tertiary event with the
complementary constraints from ETVs and eclipses of the inner binary. To obtain
a consistent solution, we fit the three components simultaneously using a Markov
ChainMonte Carlo (MCMC)method. Section6.2 presents individual analyses of the
ETVs and eclipse curves of the inner binary. We then model the two components
jointly with the tertiary eclipses in Sect. 6.3 to determine the parameters of the whole
system. Section6.4 discusses the implication of the resulting system architecture
and the prospects for the follow-up observations to better understand this valuable
system.

6.2 Constraints from ETVs and Phase Curve of the Inner
Binary

The KIC 6543674 system consists of the inner eclipsing binary with the orbital
period of Pin � 2.39days and outer eccentric binary with Pout � 1100days; here
the “outer” binary refers to the “binary” system consisting of the third body and
the center of mass of the inner binary. In this section, we present individual MCMC
analyses of the phase curve and ETVs of the inner binary, which allow us to constrain
the orbital geometries of the inner and outer binaries, respectively. Since Pin/Pout is
small, both inner and outer binary orbits are approximately Keplerian. We adopt the
approximation throughout the chapter and define all the orbital elements in Jacobi
coordinates (with subscripts “in” and “out”), which are in this case constant over
time.

6.2.1 ETV Analysis

The inner binary exhibit ETVs, which were used to infer the existence of the third
body in this system (Conroy et al. 2014). They are caused by the finite light-travel
time (Rømer delay) and the variation in the line-of-sight distance due to the outer
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binary motion. Under our assumption, the i th eclipse time of the inner binary ti can
be modeled as (Rappaport et al. 2013)1

tmodel
i = t0,in + Pini + AETV

{√
1 − e2out sin Eout(ti ) cosωout + [cos Eout(ti ) − eout] sinωout

}
.

(6.1)

Here, t0,in is the eclipse epoch (time of inferior conjunction) of the inner binary,
and eout, ωout, and Eout are the eccentricity, argument of pericenter, and eccentric
anomaly of the third body. The amplitude of ETVs, AETV, is given by the projected
semi-major axis of the outer binary aout sin iout divided by the speed of light c:

AETV = (GMA)1/3

c(2π)2/3

(MC/MA) sin iout
(1 + MB/MA + MC/MA)2/3

P2/3
out , (6.2)

where M denotes the stellar mass, with the subscripts A, B, and C specifying the
primary, secondary, and tertiary stars, respectively. In such a hierarchical system as
KIC 6543674, dynamical effects that change Pin are sufficiently smaller than the
above effect and so are neglected (Rappaport et al. 2013).

We use Eq. (6.1) to model the primary eclipse times tobsi in table1 of Conroy et al.
(2014) obtained by fitting the light curve over the entire phase (flagged as “entire”).
The observed ETVs also exhibit short-termmodulations (see Fig. 6.2a), which can be
explained by star spots if the stellar rotation is nearly (but not exactly) synchronized
with the inner binary motion (see, e.g., Fig. 3 of Orosz 2015). Instead of modeling
them, we include an additional scatter σETV to the formal eclipse-time error σi in
quadrature to define the following likelihood for the ETV fit:

LETV =
∏
i

1√
2π(σ 2

i + σ 2
ETV)

exp

[
(tobsi − tmodel

i )2

2(σ 2
i + σ 2

ETV)

]
. (6.3)

By optimizing σETV along with the other physical model parameters and marginaliz-
ing over it, we can obtain more realistic constraints taking into account the additional
variation due to star spots. The likelihood in Eq. (6.3) is used to perform an MCMC
sampling (emcee by Foreman-Mackey et al. 2013) of the posteriors of the param-
eters in the second column of Table6.1. The best-fit model is compared with the
observed values in Fig. 6.2a.

1The sign is opposite to their Eq. (6) because we take +z-axis in the observer’s direction.
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Table 6.1 System parameters from the Kepler light curves

Parameter ETVs phase curve ETVs + phase +
tertiary

ETVs + phase +
tertiary (with the
prior on MA)

(Inner binary)

t0,in
(BJD − 2454833)

132.3070 ±
0.0002

· · · 132.3071 ±
0.0001

132.30704 ±
0.00009

tphase0,in
(BJD − 2454833)

· · · 132.30372 ±
0.00004

132.30372 ±
0.00003

132.30372+0.00002
−0.00003

Pin (day)
2.3910305 ±
0.0000003

2.3910305 (fixed) 2.3910305 ±
0.0000003

2.3910305 ±
0.0000002

ain/RA

· · · 5.49 ± 0.02 5.494+0.007
−0.006 5.494+0.006

−0.007

cos iin
· · · 0.021 ± 0.002 0.022 ± 0.002 0.022 ± 0.002

ein cosωin

· · · (0.2±3.3)×10−5 0 (fixed) 0 (fixed)

ein sinωin

· · · −0.0005+0.0021
−0.0020 0 (fixed) 0 (fixed)

RB/RA

· · · 0.781 ± 0.004 0.781 ± 0.002 0.781 ± 0.002

MB/MA

· · · · · · 0.93 ± 0.02 0.93 ± 0.02

Cphase

· · · 1.00259 ±
0.00002

1.00259 ±
0.00002

1.00259 ±
0.00002

TB/TA
· · · 1.012 ± 0.002 1.0107 ± 0.0004 1.0107 ± 0.0004

uA
· · · 0.45 ± 0.04 0.434 ± 0.009 0.434 ± 0.009

uB
· · · 0.46 ± 0.03 0.47 ± 0.02 0.46 ± 0.02

A0

· · · 0.041 ± 0.007 0.037 ± 0.006 0.037 ± 0.006

A1c

· · · 0.00034 ±
0.00005

0.00035 ±
0.00005

0.00035 ±
0.00005

A1s

· · · 0.00096 ±
0.00004

0.00096 ±
0.00004

0.00096 ±
0.00004

A2c

· · · −0.00720 ±
0.00007

−0.00716 ±
0.00006

−0.00716 ±
0.00006

RA (R�)
· · · · · · 2.1+3.2†

−0.8 1.8 ± 0.1†

RB (R�)
· · · · · · 1.6+2.5†

−0.7 1.4 ± 0.1†

(continued)
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Table 6.1 (continued)

Parameter ETVs phase curve ETVs + phase +
tertiary

ETVs + phase +
tertiary (with the
prior on MA)

MA (M�)
· · · · · · 1.8+27.5†

−1.4 1.2 ± 0.3

MB (M�)
· · · · · · 1.7+25.5†

−1.3 1.1+0.3†
−0.2

(Third body)

t0,out
(BJD − 2454833)

199 ± 10 · · · 191.246 ± 0.003 191.246 ± 0.003

Pout (day)
1086+8

−7 · · · 1090 ± 6 1090 ± 5

eout cosωout

0.13 ± 0.05 · · · 0.16 ± 0.03 0.16 ± 0.03

eout sinωout

0.58 ± 0.03 · · · 0.58 ± 0.02 0.572 ± 0.008

aout/RA

· · · · · · 345+15
−13 348 ± 2†

cos iout
· · · · · · 0.0030 ± 0.0003 0.0029+0.0001

−0.0002

�� (deg)
· · · · · · 3.2 ± 0.6 3.1 ± 0.6

AETV (s)
264 ± 6 · · · 266 ± 5 265 ± 5†

Ctertiary

· · · · · · 1.0070 ± 0.0003 1.0070 ± 0.0003

γtertiary (day−1)
· · · · · · 0.00004 ±

0.00021
0.00005+0.00021

−0.00022

RC/RA

· · · · · · 0.277 ± 0.003 0.277 ± 0.003

MC/MA

· · · · · · 0.4+0.3†
−0.2 0.43+0.04

−0.03

TC/TA
· · · · · · 0.84+0.03†

−0.04 0.84+0.03†
−0.04

RC (R�)
· · · · · · 0.6+0.9†

−0.2 0.50 ± 0.04†

MC (M�)
· · · · · · 0.7+3.3†

−0.4 0.50+0.07†
−0.08

mutual
inclination (deg)

· · · · · · 3.3 ± 0.6† 3.3+0.5†
−0.6

(Jitters)

σETV (s)
56 ± 3 · · · 56 ± 3 56 ± 3

(continued)
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Table 6.1 (continued)

Parameter ETVs phase curve ETVs + phase +
tertiary

ETVs + phase +
tertiary (with the
prior on MA)

σLC,phase

· · · 0.00048 ±
0.00001

0.00049 ±
0.00001

0.00049 ±
0.00001

σLC,tertiary

· · · · · · 0.0023 ± 0.0002 0.0023+0.0002
−0.0001

NoteThe quoted values and uncertainties are themedian and 68.3%credible interval of themarginal-
ized posteriors.Valuesmarkedwith daggers are derived from the posteriors of other fitted parameters

(a) (b)

Fig. 6.2 a Fit to the eclipse times. (Top) Black circles are the observed eclipse times and red
solid line denotes our best-fit model. Only the deviations from the linear ephemeris, i.e., variations
in the eclipse times, are shown for clarity. (Bottom) Residuals of our fit. Typical (jitter-included)
uncertainty is shown at the upper right. b Fit to the folded phase curve. (Top) Black circles are the
observed fluxes and red solid line denotes our best-fit model. (Bottom) Same as panel (a)

6.2.2 Phase-Curve Analysis

The linear ephemeris of the inner binary (t0,in and Pin) obtained in Sect. 6.2.1 is used
to phase-fold the light curve taken from the Kepler eclipsing binary catalog,2 whose
instrumental trend has been removed (“flattened”) using polynomials (Conroy et al.
2014). Since AETV is shorter than the data cadence (29.4min), we do not correct for
ETVs here and in the following light-curve fitting (Sect. 6.3). The folded fluxes are
averaged into three minute bins, and the flux value and error in each bin are estimated
as the median and 1.4826 times median absolute deviation divided by the square root
of the number of points in the bin.

2http://keplerebs.villanova.edu.

http://keplerebs.villanova.edu
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We model the flux over the entire phase as

fphase(t) = Cphase

1 + FB/FA + A0

[
fA(t) + FB

FA
fB(t) + A0 + A1c cosφ + A1s sin φ + A2c cos 2φ

]
.

(6.4)
Here, fA,B(t) is the normalized stellar flux computed with the analytic eclipse model
by Mandel and Agol (2002) for the linear limb darkening law. They are determined
from the orbital ephemeris, scaled semi-major axis ain/RA, cosine of the orbital
inclination cos iin, radius ratio RB/RA, and linear limb-darkening coefficients uA
and uB. The flux ratio, FB/FA, is computed by (RB/RA)2(TB/TA)4, where T is the
stellar effective temperature in the Kepler band. The constants A0, A1c, A1s, and
A2c are the phenomenological parameters to describe the phase-curve modulation,
and φ = 2π(t − t0,in)/Pin is the orbital phase.3 These amplitudes, in principle, can
be related to the masses of the two bodies with the physical model of ellipsoidal
variation and Doppler beaming (Morris and Naftilan 1993; Loeb and Gaudi 2003).
We do not use them for the mass estimates, however, because our quarter-by-quarter
analysis reveals the temporal variation in the shape of the phase curve. This variation
is also consistent with the star-spot modulation nearly synchronized with the orbital
motion. Finally, Cphase is the overall normalization. In fitting the observed data,
fphase(t) is averaged over 30 min around each time to take into account the long-
cadence sampling. The light-travel time effect is neglected in computing fphase(t)
because it is shorter than the data cadence.

As in Sect. 6.2.1, we use an MCMC algorithm to fit the phase-folded light curve
for the above parameters.We again include the “jitter” term σLC,phase in the likelihood
Lphase defined in the same way as in Eq. (6.3). The resulting constraints are in the
third column of Table6.1, and the best-fit light curve is shown in Fig. 6.2b. We also
try floating ein andωin, only to find that the inner orbit is very close to circular. Hence
we fix ein = 0 in the following analyses.

The residuals in the bottom panel of Fig. 6.2b exhibit an out-of-eclipse warp and
a larger in-eclipse scatter (similar to the one in Bass et al. 2012). The former does not
affect our analysis significantly because we do not extract any physical information
from the out-of-eclipsemodulation. On the other hand, the latter points to systematics
that affect the shape of eclipses and thus may bias the resulting system parameters.
While it may be due to the spot occultation, ETVs we neglected could also affect the
eclipse signal by a similar amount (AETV/(ingressduration) ∼ O(1%)). Although
unlikely to explain the random scatter, we also note that the Mandel and Agol (2002)
model is exact only for spherical stars and so neglects the tidal distortion of O(1%)

suggested by the value of A2c. In any case, the results of the following analyses could
suffer from that level of systematics, though themain conclusions remain unchanged.

3Since ETVs we neglected may shift the center of the phase curve, we allow t0,in used for the

phase-curve fitting (denoted as tphase0,in ) to be different from t0,in in Eq. (6.1). The resulting difference

(
∣∣∣tphase0,in − t0,in

∣∣∣ � 5min) is actually comparable to AETV and consistent with the ETV origin.
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6.3 Geometry and Absolute Dimensions from the Tertiary
Event

In this section, we analyze the light curve of the tertiary event jointly with the two
components in the previous section. The outer binary motion of the third body is
converted to the motions relative to the primary and secondary, which are used
to compute their normalized fluxes including the tertiary eclipses, fA,tertiary(t) and
fB,tertiary(t), with the Mandel and Agol (2002) model. This requires aout/RA, cos iout,
RC/RA,�� (difference in the longitudes of ascending node between inner and outer
orbits) and MB/MA in addition to the parameters in Sect. 6.2. They are incorporated
in the model flux during the tertiary event as

ftertiary(t) =Ctertiary + γtertiary(t − t∗)
1 + FB/FA + A0

×
[
fA,tertiary(t) + FB

FA
fB,tertiary(t) + A0 + A1c cosφ + A1s sin φ + A2c cos 2φ

]
,

(6.5)

where Ctertiary is the normalization, γtertiary models the residual instrumental trend
around the tertiary event, and we choose t∗(BJD − 2454833) = 191.25. The model
likelihood for the tertiary-event light curve Ltertiary is defined in the same way as in
Lphase, again including an additional jitter σLC,tertiary. We first seek for the solution
that maximizes Ltertiary with σLC,tertiary = 0 for various t0,out using the Levenberg-
Marquardt method (Markwardt 2009). Here the above seven new parameters are
fitted, while the others are floated within the 3σ boundaries from the ETVs and phase
curve (Table6.1). We then perform an MCMC run from the solution, fitting all the
model parameters simultaneouslywith the joint likelihoodL ∝ LETV ·Lphase ·Ltertiary.
The resulting constraints are summarized in the fourth column of Table6.1 along
with other derived parameters. As shown in Fig. 6.1, our model well reproduces the
observed tertiary eclipses. In the following subsections, we discuss the information
newly derived from the tertiary eclipses.

6.3.1 Mutual Inclination

Tertiary eclipses on both of the inner two stars suggest a good alignment between
inner and outer binary planes. This naive expectation is quantified by our modeling.
We obtain iout = 89.◦83 ± 0.◦02 and �� = 3.◦2 ± 0.◦6 (see Fig. 6.3b) as the line-of-
sight and sky-plane inclinations of the tertiary orbit. Combinedwith iin = 88.◦7±0.◦1,
these results indicate an extremely flat orbital configuration, with the 3 σ upper limit
on the mutual inclination being 5◦.
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6.3.2 Relative Dimensions

Another role of the tertiary event is to determine the mass ratio MB/MA and the
tertiary-to-primary velocity ratio VC/VA during the event, where V is the orbital
velocity relative to the center of mass of the inner binary. The constraints are invalu-
able because they allow us to determine the mass ratios of all three bodies. It is even
possible, in principle, to combine them with the ETV amplitude to fix the absolute
dimensions of the whole system from photometry alone.

The two quantities, MB/MA and VC/VA, are closely related to the timings and
durations of the three tertiary eclipses. The bottom panel of Fig. 6.3a shows the
approximately one-dimensional motion of the inner binary in the sky plane with
respect to its center of mass (red and blue sinusoidal lines). Here the motion of
the third body (green line) is represented by an almost straight line owing to its
long orbital period. For �� � 0◦, eclipses occur at the intersections of the two
lines in this diagram. Thus, the green line should cross either of the red or blue
sinusoids at the times of three tertiary eclipses (vertical dashed lines), roughly within
the primary/secondary radii (vertical error bars). The condition essentially fixes the
amplitude of the blue sinusoid and the slope of the green line, which correspond
to MA/MB and VC/VA, respectively. The ratio VC/VA is further constrained by the
relative durations of the first and third tertiary eclipses, where the relative velocities
between the two stars are VA − VC and VA + VC, respectively.

These ratios yield the relative mass of the third body as well. Using Pin, ain/RA,
t0,out, Pout, eout, and ωout we already derived, VC/VA is converted to aout/RA. Since
this aout should satisfy Kepler’s third law, we obtain

(
aout/RA

ain/RA

)3 (
Pin
Pout

)2

= 1 + MC/MA

1 + MB/MA
, (6.6)

which can be solved for MC/MA as

MC

MA
=

[(
aout/RA

ain/RA

)3 (
Pin
Pout

)2

− 1

] (
1 + MB

MA

)
. (6.7)

The mass ratios derived in this way are listed in Table6.1. These values indicate that
the system is dynamically stable, according to the criterion by Mardling and Aarseth
(2001).

In fact, the timings of the three eclipses alone allow for other configurations,
though they do not fit the eclipse shapes well and hence are rejected (Fig. 6.4).4

Those in panels (c) and (d) yield too short durations for the third eclipse due to the
head-on crossing with one of the inner binary.Moreover, the solutions are unphysical
because the values of aout/RA are so small that MC/MA < 0 is required in Eq. (6.6).

4Since these solutions include differentMB/MA, a radial velocity follow-up is also useful to confirm
our solution independently of the possible systematics discussed in Sect. 6.2.2.
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(a) (b)

(c)

Fig. 6.3 a Relationship between the timings of three tertiary eclipses and motions of three stars.
(Top) The black dots denote the detrended Kepler light curve. The red and blue lines are the best-fit
tertiary eclipse models for stars A and B, respectively. The vertical dashed lines denote the rough
central times of the tertiary eclipses. (Bottom) One-dimensional motion of the three stars (primary:
red, secondary: blue, tertiary: green) with respect to the center of mass of the inner binary. The
X -axis is defined to coincide with the line of nodes of the inner binary, with its positive direction
shown in panels (b) and (c). The amplitude of the primary motion is normalized to unity, while that
of the secondary depends on MB/MA (notice that only the relative scale affects the light curve).
The vertical bars denote the normalized radii of stars A (red) and B (blue). b Sky-plane view and c
bottom view of the system. Definitions of �� and X -axis are shown schematically

The solution in panel (b), which is the retrograde version of the best solution, fits the
light curve better than those in (c) and (d); however, large residuals remain around
the first and third tertiary eclipses because RB is slightly smaller than RA.

Similarly to FB/FA, the constant A0 could also be related to the third-body tem-
perature by TC/TA = A1/4

0 (RC/RA)−1/2, which is also listed in Table6.1. The value
of TC/TA thus determined, however, should be considered as a rough upper limit
because A0 includes contaminations from nearby sources and/or systematics in the
phase-curve modulation.

6.3.3 Absolute Dimensions

Combined with the ETV amplitude in Eq. (6.2), the mass ratios above can be further
used to determine the absolute masses of the system via

MA = 1.074 × 10−3M�
(
AETV

s

)3 (
Pout
day

)−2
(1 + MB/MA + MC/MA)2

(MC/MA)3 sin3 iout
. (6.8)
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(a) (b)

(c) (d)

Fig. 6.4 Comparison between the best-fit solution (panel a) and other solutions allowed from the
timings of the three eclipses alone (panels b, c, and d). The meaning of each panel is basically the
same as Fig. 6.3a, but this time the residuals are shown in the middle panels using the same scales

Correspondingly, absolute radii are obtained from ain = [P2
inGMA(1 + MB/MA)/

4π2]1/3 and ain/RA. The constraints on the absolute dimensions, however, are very
weak (see Table6.1) due to the strong correlationMA ∼ (MC/MA)−3 ∼ (aout/RA)−9

as implied by Eqs. (6.7) and (6.8).
The constraints are significantly improved with a better constraint on either MA or

MC/MA. To demonstrate this, we repeat the above joint analysis with the Gaussian
prior on the primary mass MA = 1.15 ± 0.28M� based on the value in the Kepler
Input Catalog (KIC). Here MA and MC/MA are chosen to be fitting parameters
instead of aout/RA and AETV, where the former two are converted to the latter using
Eqs. (6.2) and (6.6). The results are summarized in the last column of Table6.1,
and the parameter correlations for this fiducial solution are illustrated in the joint
posterior distribution inFigureC.9.While the constraints on thegeometry and relative
dimensions are almost unchanged, the absolute masses and radii of all three stars
are now determined to the precision similar to the prior constraint. If we also adopt
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the KIC effective temperature for the primary, we obtain TA = TB = 6100 ± 200K
and TC < 5000K. The dimensions are consistent with the Dartmouth isochrone
(Dotter et al. 2008) of∼7–8Gyr and suggest that the inner two stars have entered the
subgiant branch and that the third body is an M dwarf (Lépine et al. 2013), though
the conclusion is sensitive to the priors on MA and TA.

6.4 Summary and Discussion

In this chapter, we determine the geometry and physical properties of the hierarchical
triple systemKIC6543674using theKeplerphotometry alone. Especially, the tertiary
event analyzed here enables us to obtain (i) mutual inclination between the inner and
outer binary planes, and (ii) mass ratio of the inner binary and instantaneous orbital
velocity of the third body. Our analysis clarifies the value of the tertiary eclipses
in hierarchical systems with the clear and textbook-like example of the event. The
methodology presented here is basically applicable to other hierarchical systems
involving tertiary eclipses on both of the inner stars, though more sophisticated
models of the eclipse light curve and/or ETVs may be required to accurately model
those systems with smaller Pin and/or Pout/Pin. Here it is worth noting that the KIC
6543674 system has the longest Pout among the known triply eclipsing hierarchical
triples.

The flatness of the system we find (within a few degrees) may have interesting
implications for the the origin of the closest binaries, though it is not clear at this point
how it compares to the large sample of misaligned triples (Rappaport et al. 2013;
Borkovits et al. 2015) as predicted by the KCTF scenario. In this context, a large
eccentricity of the third body is intriguing because it may argue for the excitation
of the inner orbit’s eccentricity by the octupole-order effect e.g., Li et al. 2014 and
Petrovich 2015, see also Sect. 3.1.1). In any case, the relative/absolute dimensions of
the system as constrained here will be useful for testing those possible alternatives.

Although the absolute dimensions derived above are based on the KIC value,
which is of limited reliability, they can be made more accurate with the follow-up
spectroscopy to better constrain the stellar photospheric parameters and/or tomeasure
radial velocities, even if they only cover the inner binary orbit. In addition, follow-
up photometry of another tertiary event will pin down Pout far more precisely, and
can also give us some insight into the dynamical interaction in the system. In fact,
the non-detection of the second tertiary event in the Kepler data, which would have
occurred around BJD = 2456114±5 from our result, suggests that the actual period
is ∼2σ longer than our estimate and that the second event was hidden in the data
gap of about six days centered around BJD = 2456126. The fact also motivates the
ground-based observation of the next event, which would be around July in 2015.
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Chapter 7
Summary and Future Prospects

Abstract This chapter summarizes the key results presented in this thesis and dis-
cusses possible directions of future studies.We specifically highlight three issues that
are important to clarify the role of orbital evolution due to dynamical processes: (i)
obliquities of stars hosting long-period transiting planets, (ii) origin of intermediate-
period giant planets (warm Jupiters) on eccentric orbits, and (iii) possible difference
between single- and multi-transiting systems.

Keywords Warm and cold Jupiters · Single- and multi-transiting systems
Mutual orbital inclination

7.1 Summary

This thesis presented the measurements of stellar obliquities in transiting exoplan-
etary systems using high-precision photometric data obtained by the Kepler space
telescope. We also discussed various techniques to determine the architecture of
planetary systems not limited to stellar obliquity, which are made possible by, and
will expand the potential of, the space-based photometry data. The specific results
and achievements in each chapter are summarized as follows.

Chapter 4

• We established a self-consistent methodology to determine the true stellar obliq-
uity by combining asteroseismology, transit light curves, and the RM effect. The
methodology was applied for the first time to real systems.

• In the first system, HAT-P-7, the true obliquity of the hot Jupiter host was found to
be close to 90◦, rather than 180◦ as implied from the RMmeasurement. The result
relaxes the difficulty in the dynamical origin of this hot Jupiter and its spin–orbit
misalignment, because polar orbits are more easily formed than counter-orbiting
ones.

• The second system, Kepler-25, hosts two transiting planets with presumably
aligned orbits. The equator of the host star was estimated to be slightly tilted
with the orbits of two planets, though with a marginal significance, in contrast

© Springer Nature Singapore Pte Ltd. 2018
K. Masuda, Exploring the Architecture of Transiting Exoplanetary
Systems with High-Precision Photometry, Springer Theses,
https://doi.org/10.1007/978-981-10-8453-9_7
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to the RM measurements that concluded a spin–orbit alignment. The result, if
true, reveals the first spin–orbit misalignment in a multi-planetary system around
a main-sequence star, and points to the initial misalignment between the stellar
spin and the protoplanetary disk.

• The conclusion for Kepler-25 is not robust at this point, however, as the recent
study byCampante et al. (2016) showed that asteroseismology result of this system
(and some others) is rather sensitive to the difference in the light-curve processing.

Chapter 5

• We reanalyzed the gravity-darkened transit light curve of Kepler-13A with our
own model and obtained an updated solution. We provided a possible solution to
the known discrepancy between the gravity-darkening and spectroscopic methods
by fully taking into account the uncertainty of the limb-darkening coefficients.

• Wemodeled the transit shape variation caused by the spin–orbit precession taking
advantage of detailed information on the system geometry from gravity-darkened
transit model. The model allowed for the empirical determination of the gravita-
tional quadrupole moment of the rotationally deformed host star, and showed that
future follow-up observations of λ can be used to test, and even refine, our updated
solution.

• We analyzed a similar anomaly in the transit light curve of HAT-P-7b for the first
time with the gravity-darkened model. We found a near-polar orbit, independently
validating the result in Chap.4.

Chapter 6

• We showed that three irregular dips in the light curves of the short-period eclipsing
binary KIC 6543674 are due to the eclipses caused by the third star gravitationally
bound to the inner binary. The orbit of the tertiary star was found to be aligned
with the inner one within a few degrees, as expected from the occurrence of such
eclipses.

• We combined the modeling of the above tertiary eclipses with the analysis of
eclipse timing variations and eclipse light curves of the inner binary to determine
the relative and absolute masses and radii of all three stars in the system from the
photometric data alone. The system was found to consist of two F sub-giants and
outer M dwarf, roughly at the age of 8Gyr.

• The inferred configuration may be inconsistent with the standard scenario for the
close binary formation that involves the Kozai mechanism up to the quadrupole
order and tidal dissipation.

The methods of obliquity measurements established in Chaps. 4 and 5 allow us to
probe the spin–orbit misalignment of planets with qualitatively different properties
than ever explored. They also provide the information complementary to the tradi-
tional spectroscopy-based method. The analysis presented in Chap. 6 will be a useful
test case to identify and characterize multi-planetary systems that have experienced
violent dynamical events and/or experienced the tidal migration following such pro-
cesses. These efforts will eventually lead to the comprehensive understanding of the
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origin of the spin–orbit misalignment and its relation to the dynamical history of
exoplanetary systems. Indeed, the analyses presented here will also contribute to
the future space-based transit surveys planned in the next decade, including TESS
(Transiting Exoplanet Survey Satellite, Ricker et al. 2014; Sullivan et al. 2015) and
PLATO (PLAnetary Transits and Oscillations of stars, Rauer et al. 2014).

7.2 Future Prospects—Beyond Hot Jupiters

Originally, the spin–orbit misalignment was a problem specific to hot Jupiters, a
rare population of exoplanets. Throughout this thesis, however, we have seen that
the problem is beginning to be put in a more general context, motivated by recent
obliquity measurements for planets other than hot Jupiters using photometric tech-
niques. This change seems to remind us that the spin–orbit misalignment should
eventually be understood coherently with other properties of exoplanetary systems,
as an integral part of the comprehensive picture of planet formation and evolution.

We conclude this thesis with presenting possible directions of future studies. In
Sect. 7.2.1, we discuss how the methodologies established in this thesis can help to
address the key question raised in Chap. 3: is the observed spin–orbit misalignment
primordial, or due to dynamical evolution? InSects. 7.2.2 and7.2.3,we revisit another
problemdiscussed in Sect. 3.4.2, namely the flatness andmutual orbitalmisalignment
of multi-planetary systems. Here we pursue possible connections between this issue
and the stellar obliquity of more generic planetary systems not limited to hot Jupiters,
both in terms of characterization of individual systems and analysis of a statistical
sample.

7.2.1 Obliquity of Longer-Period Planets Around Hot Stars

To understand whether the high stellar obliquity of hot Jupiters is primordial or
acquired, the obliquity measurements of longer-period planets around hot stars (top-
right region of Fig. 3.5) will be crucial. If it is of primordial origin, such high obliq-
uities as observed for hot Jupiters around hot stars should occasionally be observed
in this region as well. Any difference in the stellar obliquity distributions of hot
Jupiters and more distant planets, on the other hand, indicates the important role of
dynamical evolution in sculpting the observed obliquity distribution. Note that hot
stars are more suited to this sort of inference than cool stars because the close-in
planets around hot stars already exhibit high stellar obliquities: the fact implies that
any star–planet interaction that damps the stellar obliquity (including tidal dissipa-
tion discussed in Sect. 3.2), if present, is less significant for hot stars than cooler ones,
for which close-in planets do not frequently exhibit large spin–orbit misalignments.

Currently, this region is almost empty due to the lack of a suitable technique; the
obliquity measurement is always challenging for longer-period planets. Moreover,
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hot stars often have broad spectral lines due to their rapid rotation, or even show no
absorption lines at all; these features of hot stars present additional impediments to
precise determination of RVs, and hence to the RM measurements. This situation
will be improved by systematically applying the gravity-darkeningmethod discussed
in Chap.5 to transiting systems observed with Kepler and future space telescopes.

The following estimate shows that the sample of long-period transiting planets
around hot stars observedwithKeplermay already be sufficient tomake ameaningful
comparison with hot Jupiters. Promising targets of the gravity-darkening analysis
should satisfy the following two conditions for a reliable obliquity measurement:

1. the transit signal-to-noise ratio (S/N) is large enough for the anomaly due to
gravity darkening, if present, to be detectable, and

2. the host star is not too faint and its rapid rotation can be confirmed with a spec-
troscopic measurement of v sin i�.1

We choose S/N > 100 for the first condition, considering that the typical anomaly
is O(1%) of the transit depth (cf. Sect. 5.1) and that the phase folding increases
the transit S/N by at least a factor of a few (i.e., square root of the number of
observed transits). The second condition would be satisfied by stars with Kp < 14.5,
with Kp being the magnitude in the Kepler band, which provide the spectrum of
roughly S/N ∼ 50 for a 30-min exposure with Subaru/HDS. Currently, 98 Kepler
transiting planet candidates (i.e., KOIs) that fall into the top-right region of Fig. 3.5
(i.e., Teff > 6100K and a/R� > 10) satisfy these criteria. On the basis of McQuillan
et al. (2014), we estimate the stellar rotation is rapid enough to exhibit significant
gravity darkening for about 20% of the sample.2 Thus, we expect that the stellar
obliquity measurement with the gravity-darkening method will be possible for about
20 Kepler planets in the top-right region of Fig. 3.5. The value is comparable to the
current number (�30) of hot Jupiters around hot stars (i.e., top-left region of Fig. 3.5).
Also considering the additional sample expected from future surveys, we conclude
that the statistical comparison between short- and long-period planets around hot
stars using this method could be plausible.

We emphasize that any detection of a large spin–orbit misalignment in the above
systematic analysis of long-period planets has a significant implication, if the system
exhibits no clear signature of the past dynamical interaction (e.g., orbital planes of
multiple planets are well aligned, and/or the orbit is circular; see also Sect. 3.4.1).
Such systems, if found, would provide the most direct evidence that the primordial
spin–orbit misalignment does exist. They can further be used to estimate the fraction
of the primordial spin–orbit misalignment, and thus will play an evenmore important
role if it turns out that the observed spin–orbit misalignment is actually caused by a
mixture of the dynamical evolution and initial condition.

1Note that such measurements are not time critical at all and thus far less demanding than the
measurement of λ by observing a spectroscopic transit.
2They measured the rotation periods of 34030 main-sequence stars in the Kepler field, including
2849 stars with Teff > 6100K. Among this “hot-star” sample, 569 were found to have rotation
periods less than two days; this yields the fraction of 0.2.
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We note that the same is also true for longer-period planets around cool stars,
whose obliquities can be probed with asteroseismology. Here it is interesting to
point out that the non-zero eccentricity and the large spin–orbit misalignment are
apparently correlated around cool stars (cf. Figs. 3.2 and 3.3), and that no planet on
a circular orbit around a cool star has yet been reported to exhibit a significant spin–
orbit misalignment. If such a system is identified by asteroseismology, combined
with the eccentricity measurement as performed in Sect. 4.4.1, it would also serve as
supporting evidence for the primordial misalignment.

7.2.2 Warm Jupiters as Failed Hot Jupiters?

Formation of warm Jupiters is another puzzle similar to the one presented by hot
Jupiters, since they are also closer to the host star than theoretically expected. At
least several warm Jupiters, such as Kepler-89d (Hirano et al. 2012; Masuda et al.
2013) and Kepler-30d (Sanchis-Ojeda et al. 2012), have other low-mass planets in
well-aligned orbits in the same system, and thus are likely to have experienced the
gentle disk migration or formed in situ (Huang et al. 2016). On the other hand, there
also exists observational evidence suggesting that some warm Jupiters are formed
through, or currently experiencing, the high-eccentricity migration as described in
Sect. 3.1.

As we mentioned in Sect. 1.1.4, warm Jupiters around metal-rich stars have larger
orbital eccentricities thanmetal-poor counterparts,which suggests the past dynamical
interaction (Dawson andMurray-Clay 2013). The same study also showed that three-
day pile up (see Sect. 3.1) that seemed absent from the Kepler sample is recovered
if only the metal-rich sample is considered; this may be a clue that the dynamical
interaction enhanced the hot Jupiter formation via the high-eccentricity migration.
Dawson and Chiang (2014) then presented a class of warm Jupiter systems whose
orbital signatures are consistent with what we expect from the Kozai migration
induced by the close companion planet on a misaligned orbit.

Another intriguing feature to note, though its interpretation is rather speculative,
is the paucity of warm Jupiters around evolved stars. The trend is clearly shown in
Fig. 7.1, in which planets detected with radial velocities (blue circles) are lacking at
a � 0.5AUaround starswith radii larger than a few R�. Given thatmanyplanetswith
larger semi-major axes are detected, this trend is unlikely to be an observational bias.
While the lack of hot Jupiters can be due to the tidal engulfment (e.g., Kunitomo et al.
2011), warm Jupiters seem to be too distant from the host star to be tidally distrupted,
unless the efficiency of tidal dissipation increases dramatically as the star evolves
(Schlaufman and Winn 2013). This conundrum may be solved if the warm Jupiters
are experiencing slow tidal migration due to the Kozai cycle: if their eccentricities
are frequently excited to a large value, tidal friction can be significant enough around
the pericenter at the high-eccentricity phase to pull the planet into the star (Frewen
and Hansen 2016).
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Fig. 7.1 Host star radius versus semi-major axis of known exoplanets. This is based on the same
sample as in Fig. 1.1, but stars without radius measurements are excluded

If the intermediate orbits of a warm Jupiter is due to the Kozai migration, it can be
shown that the companion must be close, or the orbit rapidly shrinks to become a hot
Jupiter as the general relativistic precession terminates the Kozai cycle as the orbit
shrinks (Dong et al. 2014). In this case, we expect a similar hierarchical architecture
to the one discussed in Chap.6. Because of their proximity, transiting warm Jupiters
may be easier targets to search for such companions responsible for the close-in
orbits, than hot Jupiters.

In fact, the systems presented by Dawson and Chiang (2014) are all this type of
systems, although they are non-transiting systems confirmed with radial velocities
and are not amenable to more detailed characterization (e.g., obliquity or mutual
orbital inclination). If the inner warm Jupiter is transiting, we could measure the
stellar obliquity and discuss its relationship with the system architecture, and could
even constrain the mutual orbital inclination. Such inferences are also applicable to
warm Jupiters that will be found more in future transit surveys.
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7.2.3 Stellar Obliquity Trend as the Difference
in the Planetary System Architecture

Any of the scenarios for the spin–orbit misalignment discussed in Chap. 3, including
the primordial ones, attributes the observed λ–Teff trend to the difference in the
stellar property. This seems to be a reasonable guess in the sense that the steep
change in the obliquity distribution around Teff = 6100K is associated with another
property (namely stellar interior structure) that also changes drastically at the same
threshold. Nevertheless, it would still be meaningful as well to hypothesize this trend
as something associated with the difference in the orbital architecture of planets,
given the generality of the trend and weak period dependence of obliquities around
cool stars (see Sect. 3.2.1).

In this context, the difference in the obliquities in single- and multi-transiting
systems may deserve a more in-depth study. Morton and Winn (2014) argued that
(some of) single-transiting systems may be parts of multi-planetary systems with
large mutual orbital inclinations, unlike the “pancake-flat” multi-planetary systems
observed as multi-transiting systems. The excess of single-transiting systems in the
Kepler multiplicity statistics, known as the Kepler dichotomy, may also originate
from the same “dynamically hot” population as discussed in Sect. 2.4.3.

If the fraction of dynamically hot systems increases with the stellar effective tem-
perature, that may explain both the weak period dependence and generality of the
trend resulting from the spot-amplitude analysis (Sect. 2.3.5). While this interpre-
tation is still speculative, Fig. 7.2 shows a suggestive trend: the fraction of multi-
transiting systems among the KOI sample starts to decrease for Teff � 6000K. The
trend is at least quantitatively consistent with the above speculation, because systems
with largermutual orbital inclinations are less likely to be observed asmulti-transiting
systems for the same number of planets.

The above result is still tentative in many aspects. For example, the detection
bias is not handled very carefully in this analysis; multi-planetary systems may
indeed be rare around early-type stars, in which case their decrease is not due to
the increasing mutual inclination; or false-positive rates may depend on the stellar
mass. A more decisive conclusion will be obtained if the trend is combined with
independent informationon thenumber statistics from radial velocity observations, or
with different statistics of multi-transiting systems including the period spacing and
multiplicity distribution. In any case, this working hypothesis illustrates the possible
advantage to study stellar obliquities as an integral part of the planetary system
architecture, which should eventually be understood coherently with the physical
properties of the planets. Indeed, such a link between the architecture and the physical
property has already begun to be pursued (e.g., Dawson et al. 2016).
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Fig. 7.2 Fraction of multi-transiting KOIs as a function of host-star temperature. The KOIs classi-
fied as false positives by theKepler team are all excluded. To attenuate the detection bias against the
small planets, the samples are limited to KOIs detected with sufficiently large (>15) signal-to-noise
ratios. We also exclude the KOIs with radii larger than 20R⊕ or with impact parameter b larger
than 0.5. The latter condition is to exclude the possible eclipsing binaries, which produce V -shaped
eclipses; they usually result in large b when fitted with the transit model. The blue filled circles
with error bars are the fractions averaged into 500K bins, where the number of samples in each
bin is shown next to each point and the error bars simply show the Poisson error. The blue dotted
line is the running median with the same window size. The black horizontal dashed line shows the
average fraction of multi-transiting systems in this sample
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Appendix A
Planetary Orbit

This appendix summarizes the basic property of the planetary orbit in the two body
problem, and specifies the definition of the orbital elements and coordinate system
adopted in this thesis.

A.1 The Two-Body Problem

Let us define the orbital elements for the two-body problem under the Newtonian
gravity. The equations of motion in this case are

m1 r̈1 = +G
m1m2

|r|3 r, (A.1)

m2 r̈2 = −G
m1m2

|r|3 r, (A.2)

where m j and r j are the mass and position vector of the j-th body, G is Newton’s
gravitational constant, and we define the relative motion

r = r2 − r1. (A.3)

The sum of Eqs. (A.1) and (A.2) implies the conservation of the total linear momen-
tum:

P ≡ m1 ṙ1 + m2 ṙ2 = const, (A.4)

and their difference gives the equation for the relative motion:

r̈ = −GM

r3
r, (A.5)
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where M ≡ m1 + m2 and r ≡ |r|. Since the right-hand side of Eq. (A.5) is parallel
to r , this equation leads to the (specific) angular momentum conservation:

h ≡ r × ṙ = const. (A.6)

This means that the relative motion is confined in a plane that is perpendicular to h
(orbital plane). Integration of Eq. (A.5) also derives the energy conservation:

1

2
|ṙ|2 − GM

r
= E, (A.7)

where E is a constant.

A.2 Shape of the Orbit

The trajectory in the orbital plane is obtained by integrating Eq. (A.7) in a polar
coordinate system (r, θ). Using r2θ̇ = h ≡ |h|, Eq. (A.7) reduces to

ṙ2

2
+ h2

2r2
− GM

r
= E . (A.8)

Below we only consider the case of E < 0, i.e., the motion is confined in a finite
range of r (bound orbit). Note that E also has a lower bound, −E ≤ 1

2

(
GM
h

)2
, below

which no r satisfies Eq. (A.8). Again with h ≡ |h| = r2θ̇, Eq. (A.8) is integrated as

θ =
∫

dθ =
∫

(h/r2)dr
√
2E + 2GM/r − h2/r2

= arccos

⎛

⎝
h
r − GM

h√
2E + (

GM
h

)2

⎞

⎠ + ω,

(A.9)
where ω is a constant. Defining

a ≡ −GM

2E , e ≡
√

1 + 2Eh2
G2M2

, (A.10)

Equation (A.9) reduces to

r(θ) = a(1 − e2)

1 + e cos(θ − ω)
. (A.11)

Since 0 ≤ e < 1, Eq. (A.11) denotes an ellipse with semi-major axis a and eccentric-
ity e. The angle ω, the argument of pericenter, specifies the point where r becomes
minimum (pericenter or periapsis). So far the reference direction for θ and ω is arbi-
trary; we will define it in Sect.A.4. The angle f ≡ θ − ω is called the true anomaly.
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A.3 Solution of the Kepler Problem

The motion as a function of time t is also obtained by directly integrating Eq. (A.8),
this time without converting dt to dθ:

t =
∫

dt =
∫

dr
√
2E + 2GM/r − h2/r2

=
∫

dr
√−GM/a + 2GM/r − GMa(1 − e2)/r2

=
√

a

GM

∫
rdr√[ae + (r − a)][ae − (r − a)] . (A.12)

Here we introduce the eccentric anomaly E via

r − a = −ae cos E . (A.13)

Then Eq. (A.12) can be integrated analytically:

t =
√

a3

GM
(E − e sin E) + τ , (A.14)

where τ is a constant.1 This means that the orbital period P , which is the time for E
to increase by 2π, is given by

P = 2π

√
a3

GM
, or n2a3 = GM, (A.15)

wheren ≡ 2π/P is usually called themeanmotion. This relation is knownasKepler’s
third law. Using the mean motion, Eq. (A.14) is rewritten as the Kepler equation,

M = E − e sin E, (A.16)

where
M ≡ n(t − τ ) (A.17)

is the mean anomaly. Note that τ is the time at which E = 0 or r = a(1 − e). Thus
τ actually denotes the time of pericenter passage.

The above discussion yields a procedure for specifying the motion for a given
orbital plane, total mass M , and elements (a, e,ω, τ ). At each time t , we compute M
using Eqs. (A.15) and (A.17). Then we solve the Kepler equation (A.16) numerically

1Since a(1 − e) < r < a(1 + e) from Eq. (A.11), we can define E in the range [−π,π). Note
that r is a decreasing function of E for E = −π → 0 (i.e., sin E < 0), while it is increasing for
E = 0 → π (i.e., sin E > 0). This distinction is required for correctly integrating Eq. (A.12).
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to determine E(t). The eccentric anomaly E(t) is related to r via Eq. (A.13), from
which θ or f can also be specified with Eq. (A.11). The explicit relationship between
E and f is simply given by

tan
f

2
=

√
1 + e

1 − e
tan

E

2
. (A.18)

A.4 Orientation in Three Dimensions

To completely describe the orbital motion in three dimensions, we also need to
specify the direction of the orbital plane, or vector h. Throughout the thesis, we
adopt right-handed coordinates (XY Z) with +Z -axis pointing toward the observer
and XY -plane being the sky plane (Fig.A.1).2 Directions of the XY -axes can be
defined arbitrarily. In this coordinate system, we need two angles corresponding to
the polar and azimuth angles to describe the direction of h. Let us define these angles
so that ĥ, the unit vector of h, is given as follows:

ĥ =
⎛

⎝
sin� sin i

− cos� sin i
cos i

⎞

⎠ , (A.19)

where� and i are called the longitude of the ascending node and orbital inclination,
respectively.

The meanings of i and � are also illustrated in Fig.A.1. The Z -component of
Eq. (A.19) shows that i is the angle between the orbit normal and our line of sight
(Z -axis); that is, it is the inclination of the orbital plane with respect to the plane
of the sky. The XY -components, on the other hand, indicate that � corresponds to
the direction of the ascending node, where the planet crosses the sky plane with
Ż > 0 (i.e., from Z < 0 to Z > 0), measured from the+X -axis. Conventionally, the
ascending node is used as a reference direction for θ and ω in Eq. (A.11).

In terms of ω, �, and i , the orbit in three dimensions is given by

⎛

⎝
X
Y
Z

⎞

⎠ =
⎛

⎝
cos� cosω − sin� sinω cos i − cos� sinω − sin� cosω cos i sin� sin i

sin� cosω + cos� sinω cos i − sin� sinω + cos� cosω cos i − cos� sin i

sinω sin i cosω sin i cos i

⎞

⎠

⎛

⎝
r cos f

r sin f

0

⎞

⎠

= r

⎛

⎝
cos� cos(ω + f ) − sin� sin(ω + f ) cos i
sin� cos(ω + f ) + cos� sin(ω + f ) cos i

sin(ω + f ) sin i

⎞

⎠ ≡
⎛

⎝
PX QX RX
PY QY RY
PZ QZ RZ

⎞

⎠

⎛

⎝
r cos f
r sin f

0

⎞

⎠ .

(A.20)

2Note that the coordinate system with +Z -axis pointing away from us is often used as well.
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node
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planetary orbit

orbital inclination
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Fig. A.1 Definition of the coordinate system in this thesis andmeanings of the longitude of ascend-
ing node �, orbital inclination i , and argument of pericenter ω

A.5 Summary and Remarks

The meanings of the six orbital elements (upper part of TableA.1) are summarized
as follows:

• The shape of the orbit is defined by the orbital semi-major axis a and eccentricity e.
The former is uniquely related to the orbital energy, while the latter is determined
by the energy and angular momentum of the orbital motion.

• The direction of the orbit in three dimensions is specified by three angles: argument
of pericenter ω, longitude of ascending node�, and orbital inclination i . The latter
two are essentially the azimuth and polar angles of the angular momentum vector.

• The position in the orbit at a given time is specified by the time of pericenter
passage τ . Equivalently, we can fix the values of the anomalies at any given time,
including M , E , and f .

The anomaly angles defined above are all referred to the pericenter. They are
therefore independent of the definition of the coordinate system. In contrast, � and
i , as well as ω referred to the ascending node, all depend on the specific definition of
the coordinate system, or the reference plane, to which all these angles are referred.
For example, it is often useful to define the ascending node with respect to the
invariant plane of the system (plane normal to the total angular momentum), instead
of the plane of the sky as we did above. In this case, the ascending node is the
intersection between the orbit and the invariant plane (reference plane in this case),
and i is the inclination with respect to this plane. For another example, if we define
+Z -axis away from the observer’s direction, as mentioned above, � and ω change
by π as the ascending and descending nodes are swapped.
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Table A.1 Symbols for the orbital elements and their relevant quantities

Symbol Definition

a Semi-major axis

e Eccentricity

i Inclination

ω Argument of periastron

� Longitude of ascending node

τ Time of periastron passage

E Eccentric anomaly

� = ω + � Longitude of periastron

f True anomaly

θ = f + � True longitude

M Mean anomaly

λ = M + � Mean longitude

Also note that the direction of the pericenter, to which all the anomalies are
referred, is not generally constant when the non-Keplerian forces (e.g., general rela-
tivity, aspherical star, perturbation from other planets) exist. In this case, the orbital
motion may be better represented by the longitudes, the angles referred to the axes
fixed in an inertial frame.3 The examples are the longitude of pericenter� ≡ ω + �,
mean longitude λ ≡ M + �, and true longitude θ ≡ f + �. They can also be useful
when the orbit is (nearly) circular and the pericenter is not well defined. Even so, the
ascending node, and hence longitudes, can always be well defined, unless the orbital
plane coincides with the reference plane.

3Remember that the longitude of ascending node � is defined with respect to +X -axis; this is why
we call � a longitude.



Appendix B
Summary of the Transit Method

This appendix provides a more detailed review of the transit method than in
Sect. 1.2.3. In observing a transit, we perform a differential photometry: all what
we observe is the variation in the relative flux of the star as a function of time, and
its absolute value does not matter. For this reason, all we can learn from the transit
light curve is the geometric properties (i.e., non-dimensional parameters) of a system
except for the timescale, from which mean densities of the bodies can be derived. In
fact, it is a fairly general conclusion that the mean density is the only dimensional
property of a system constrained from the relative flux alone, as long as we consider
Newtonian dynamics for point masses.

B.1 Terminology

FollowingWinn (2010), we define an eclipse as the obscuration of one celestial body
by another. When the obscuring object is much smaller than the obscured one, this
kind of eclipse is called a transit, and the opposite case is called an occultation.
We use the term grazing if the obscuration is partial, i.e., the path of a transiting
(occulted) object is not totally inside (behind) the larger body. Occultations are often
called secondary eclipses in exoplanet literatures.

B.2 Transit Geometry

Equation (A.20) gives the sky-projected star–planet distance rsky ≡ √
X2 + Y 2 as

rsky = a(1 − e2)

1 + e cos f

√
1 − sin2(ω + f ) sin2 i . (B.1)
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Note that rsky does not depend on � due to the rotational symmetry of the system
with respect to the line of sight.

The planetary transit, if visible, is centered on the minimum value of this rsky,
which we define as the transit center. The value of f that minimizes rsky is obtained
by solving drsky/d f = 0, and this equation reduces to

� = 1

2
arcsin

[
2e cos(ω + �)

(
1

sin2 i
− cos2 �

)
− e sin(ω + �) sin 2�

]
,

(B.2)
where we define � ≡ π/2 − (ω + f ). This can be solved by iteration to give
� = e cosω cot2 i − e2 sin 2ω cot2 i(1 + cot2 i) + O(e3), which is negligibly small
except for planets on highly eccentric (e is large) and close-in orbits with grazing
eclipses (i is far from π/2). The true anomaly at the transit center, therefore, is well
approximated by

ftra = +π

2
− ω, (B.3)

i.e., transits are centered at inferior conjunctions. In this approximation, the star–
planet distance in the sky plane at the transit center is given by

rsky
(
f = +π

2
− ω

)
= a cos i

1 − e2

1 + e sinω
≡ bR�, (B.4)

wherewe define the normalized impact parameter of the transit, b, in the last equality.
Using the impact parameter defined above, the condition for the transit to be

observable at all for a given observer is written as

b <
R� + Rp

R�

or | cos i | <
R� + Rp

a

1 + e sinω

1 − e2
≡ cos i0. (B.5)

Thus, the transit probability for a randomly placed observer is

ptra =
∫ cos i0
− cos i0

d cos i
∫ +1
−1 d cos i

= cos i0 = R� + Rp

a

1 + e sinω

1 − e2
. (B.6)

Note that the measure d cos i comes from the inclination dependence of the solid
angle (proportional to sin i). If ω is not known either, we also average over ω to
obtain

ptra = R� + Rp

a

1

1 − e2
� 0.005

(
R�

R�

)( a

1AU

)−1 1

1 − e2
. (B.7)

The corresponding formulae for the occultation can be derived in an analogous
manner. The true anomaly at the occultation center is replaced by −π/2 − ω in
Eq. (B.3), and so the signs of e sinω are all flipped in Eqs. (B.4) through (B.6) for
the occultation case. Equation (B.7) remains the same.
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B.3 Information from Eclipses

If the transit is observed, its depth reveals the planet-to-star radius ratio, which is
never constrained by other methods. In addition, the timings of the repeating transits
allow us to constrain the orbital phase of the planet, while the transit shape yields the
geometric parameters of the orbit including scaled semi-major axis a/R� and orbital
inclination i . We will see this using a simplified model of the transit in Appendix
B.3.1. We will also comment on how the mean stellar density and, in some cases,
orbital eccentricity can be derived from the time-domain information of the light
curve.

B.3.1 Constraints on Geometry from the Transit Shape

Here we describe the relationship between the shape of the transit and geometrical
parameters of the system. We adopt a simple “trapezoidal" model, where the shape
of the transit light curve is approximated by a trapezoid. In fact, the simple model is
enough to capture the essential property of the light curve, and the parameters that
can be constrained from the modeling is basically the same as obtained from a more
elaborate model (e.g., Mandel and Agol 2002, used in Chaps. 4 through 6).

B.3.1.1 Circular Orbit

Neglecting the effect of the stellar limb darkening, the shape of the extinction due to
a planetary transit is well approximated by a simple trapezoid as shown in Fig.B.1.
In this case, the shape of the light curve is characterized by

1. the transit depth: δ ≡ (relative decrease in the stellar flux),
2. the total duration of the transit: Ttot ≡ tIV − tI,
3. the duration of the full transit: Tfull ≡ tIII − tII,

where the durations Ttot and Tfull are defined through the four contact times illustrated
in Fig.B.1. We also define the durations of ingress and egress, τing = tII − tI and
τegr = tIV − tIII. When the orbit is circular, τing and τegr are equal and related to the
above durations as τ ≡ τing = τegr = (Ttot − Tfull)/2.

These parameters are simply related to the geometric parameters of a planet and
its orbit in the following manner. The transit depth δ is given as the fraction of the
stellar flux blocked by the planet to the whole stellar flux:

δ =
(
Rp

R�

)2

. (B.8)
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Fig. B.1 Illustration of the
transit (upper panel) and the
in-transit flux approximated
as a trapezoid (lower panel).
Four contact times are
defined

timetI tII tIII tIV

b

X

Y

T

star

planet

The angle the planet needs to travel during a transit, divided by its angular velocity,
yields the two durations as

Ttot = P

π
sin−1

[
R�

a

√
(1 + Rp/R�)2 − b2

sin i

]

, (B.9)

Tfull = P

π
sin−1

[
R�

a

√
(1 − Rp/R�)2 − b2

sin i

]

. (B.10)

In the limiting case that Rp/R� � 1 and R�/a � 1, these results are greatly simpli-
fied:

T ≡ Ttot + Tfull
2

� Ttot � Tfull � T0
√
1 − b2, (B.11)

τ � T0√
1 − b2

Rp

R�

, (B.12)

where T0 is a characteristic timescale given by

T0 ≡ R�P

πa
� 13 h

(
P

1 yr

)1/3 (
ρ�

ρ�

)−1/3

. (B.13)
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The above expressions for (δ, Ttot, Tfull) can be inverted to give a set of geometrical
parameters

Rp

R�

= √
δ, (B.14)

b2 =
(

a

R�

cos i

)2

= (1 − √
δ)2 − (Tfull/Ttot)2(1 + √

δ)2

1 − (Tfull/Ttot)2
� 1 − T

τ

√
δ, (B.15)

R�

a
= π

2δ1/4

√
T 2
tot − T 2

full

P
� π

δ1/4

√
τT

P
, (B.16)

where the last approximation holds when τ � T . In this way, the dimensionless
parameters that characterize the transit shape, (δ, T/P, τ/P), are related to the plan-
etary radius Rp and two orbital elements a and i in units of the stellar radius R� for
lengths. The same is true even when we use more detailed transit models such as
Mandel and Agol (2002).

B.3.1.2 Eccentric Orbit

If the orbit is eccentric, the durations (B.9) and (B.10) are calculated via

tβ − tα =
∫ tβ

tα

dt =
∫ fβ

fα

(
d f

dt

)−1

d f = P(1 − e2)3/2

2π

∫ fβ

fα

1

(1 + e cos f )2
d f,

(B.17)
where α,β = I, II, III, IV. Here we use r2 ḟ = h = na2

√
1 − e2 and Eq. (A.11) in

the last equality, and fα is the solution of

rsky( fα) = a(1 − e2)

1 + e cos fα

√
1 − sin2(ω + fα) sin2 i = R� ± Rp, (B.18)

where+ and− signs correspond to α = I, IV and α = II, III, respectively. Equation
(B.18) cannot be solved analytically for fα, but the solution to the leading orders of
e and R�/a can be obtained as

π

2
− (ω + fα) = 1

sin i

R�

a

1 + e sinω

1 − e2

√(
1 ± Rp

R�

)2

− b2 (B.19)

forα = I, II. As the first approximation, therefore, Ttot and Tfull for the eccentric case
are
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Ttot = P(1 − e2)3/2

2π
· 2

[π

2
− (ω + fI)

] 1

(1 + e sinω)2

= P

π

R�

a

√
(1 + Rp/R�)2 − b2

sin i

( √
1 − e2

1 + e sinω

)

, (B.20)

Tfull = P

π

R�

a

√
(1 − Rp/R�)2 − b2

sin i

( √
1 − e2

1 + e sinω

)

. (B.21)

These are different from the circular case by the factor in the parentheses, corre-
sponding to the difference of orbital velocity around the transit.

Since the non-zero eccentricity also introduces the velocity asymmetry with
respect to the transit center, τing and τegr are generally unequal. The difference is,
however, usually negligibly small. To the leading orders of R�/a and e, we have

τegr − τing

τegr + τing
∼ e cosω

(
R�

a

)3

(1 − b2)3/2 (B.22)

(Winn, 2010). This quantity is less than 10−2e for a close-in planet with R�/a = 0.2,
and even smaller for more distant planets.

Considering the possible non-zero eccentricity, therefore, only affects the estimate
of R�/a, while Rp/R� and b are unchanged. The modified formula for R�/a is

R�

a
= π

2δ1/4

√
T 2
tot − T 2

full

P

1 + e sinω√
1 − e2

≡
(
R�

a

)

circ

1 + e sinω√
1 − e2

� π

δ1/4

√
τT

P

1 + e sinω√
1 − e2

,

(B.23)

where (R�/a)circ is R�/a derived assuming e = 0. Correspondingly, the inclination
estimated from the transit shape is also modified as

cos i = b
R�

a

1 + e sinω

1 − e2
≡ cos icirc

(1 + e sinω)2

(1 − e2)3/2
�

[
1 − T

τ

√
δ

]1/2 π

δ1/4

√
τT

P

(1 + e sinω)2

(1 − e2)3/2
,

(B.24)
where cos icirc is cos i derived assuming e = 0. This means that the eccentricity
cannot be constrained from the transit shape alone without an independent constraint
on R�/a.4

B.3.1.3 Constraint on the Phase

Transit observations constrain the orbital phase of the planet, in addition to the
geometric parameters discussed above.

4In principle, the prior constraint on i could also be useful. However, it is usually impossible to
constrain i with a sufficient precision, independently from the transit.



Appendix B: Summary of the Transit Method 145

First let us consider the case of a circular orbit. Assuming that the transits are
observed repeatedly, the series of observed transit times fix the orbital period P and
the time of a transit center t0 (sometimes called transit epoch). For e = 0, Eqs. (A.16)
and (A.18) yield M = E = f , and now ω + f (t0) = π/2 from Eq. (B.3). Thus, ω +
f (i.e., orbital phase) at any time t is completely specified with t0 and P:

ω + f (t) = π

2
+ 2π

P
(t − t0). (B.25)

This is equivalent to fixing τ , although it is not uniquely defined for a circular orbit.
For e 
= 0, we use Eq. (A.16) to obtain

τ = t0 − E(t0) − e sin E(t0)

n
, (B.26)

where E(t0) is derived from Eqs. (B.3) and (A.18):

E(t0) = 2 arctan

[√
1 − e

1 + e
tan

(π

4
− ω

)]

. (B.27)

B.3.2 Constraint on the Physical Dimension

Dividing Kepler’s third law (A.15) by R3
� , we obtain

(
2π

P

)2 (
a

R�

)3

= GM

R3
�

= 4πG

3
ρ�

(
1 + Mp

M�

)
, (B.28)

where ρ� is the mean stellar density. Thus, neglecting Mp/M� � 10−3 for a star–
planet system, themean stellar density is obtained purely from the transit observables
(Seager andMallén-Ornelas 2003), as long as the eccentricity is already constrained.

Notice that Rp/R�, a/R�, and i derived in Appendix B.3.1 are determined solely
by the dimensionless shape parameters of the transit, δ, T/P , and τ/P , and that the
information on the absolute timescale (i.e., P) is used for the first time in Eq. (B.28).
As we will discuss in more detail below, ρ� (or mean density in general) is the only
dimensional quantity constrained from the light curve alone.

B.3.3 Constraints on Orbital Eccentricity

It is generally difficult to constrain the orbital eccentricity from the transit light curve
alone. Nevertheless, the orbital eccentricity is (partly) determined from the light
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curve when either of the following two information is available, as we demonstrated
in Sect. 4.4.

B.3.3.1 Timing and Duration of the Occultation

If the occultation (secondary eclipse) is observed for a close-in planet, the orbital
eccentricity is fully constrained from the light curve from the timing and duration of
the occultation relative to the transit. In this case, the mean stellar density is derived
from the light curve without ambiguity via Eqs. (B.28) and (B.23).

First, the time from the transit to the occultation, �ttra→occ, is computed in a
similar manner to Eq. (B.17):

�ttra→occ =
∫ focc

ftra

(
d f

dt

)−1

d f = P(1 − e2)3/2

2π

∫ −π/2−ω

3π/2−ω

d f

(1 + e cos f )2
,

� P(1 − e2)3/2

2π
(π + 4e cosω) = P

2

(
1 + 4

π
e cosω

)
+ O(e2). (B.29)

This means that �ttra→occ deviates from P/2 due to the asymmetry of the orbit with
respect to the line of sight, which is represented by e cosω.5 Second, Eqs. (B.21) and
(B.20) show that durations relevant to the transit and occultation, Ttra and Tocc, are
related by

Ttra
Tocc

= 1 − e sinω

1 + e sinω
, (B.30)

because the corresponding formulae for the occultation is obtained by replacing
e sinω with −e sinω.6 The difference in the durations comes from that in the veloc-
ities. Therefore the duration ratio is sensitive to the orbit asymmetry with respect to
the sky plane, which is represented by e sinω. Note that e cosω is more precisely
constrained than e sinω because �ttra→occ is longer than Ttra/occ roughly by a factor
of a/R�. These two effects are schematically illustrated in Fig.B.2.

B.3.3.2 Constraint on the Mean Stellar Density

As discussed in Sect. 4.3, asteroseismology can precisely constrain the mean stellar
density ρ�. Less precise constraints on ρ� can also be derived from the spectroscopic
observation. Such a constraint on ρ� allows us to determine a/R� via Eq. (B.28) inde-
pendently from the transit light curve. This a/R� can be combined with Eq. (B.23) to

5Remember that ω is measured from the sky plane, and so the major-axis of the orbit coincides with
the line of sight for ω = ±π/2.
6Note that the formulae for the occultation is the same as the transit formulae in the coordinate
system reflected with respect to the plane of the sky. As we noted in Appendix A.5, ω and �

changes by π in this case.
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occultation

transit

fast

slow

Fig. B.2 Schematic illustration of the effect of a non-zero eccentricity on the transit and occultation
light curves.When the system is observed from the direction of the left orange arrow, the occultation
is elongated due to a positive e sinω. When the observer is in the direction of the bottom arrow, on
the other hand, the occultation occurs later than P/2 because e cosω > 0

contrain (1 + e sinω)/
√
1 − e2. Since (1 + e sinω)/

√
1 − e2 ≤ √

(1 + e)/(1 − e),
the method (only) gives a lower limit on e (see, e.g., Van Eylen & Albrecht (2015)
and Uehara et al. (2016) for the application).

B.4 Remarks on the Similarity

Why is the transit light curve related to the mean stellar density, while the other
parameters are only obtained in a non-dimensional manner? This property is essen-
tially due to the similarity of the problem and hence applies fairly generally.

B.4.1 Stellar Intensity Profile

First, we note that the light curve is only sensitive to the planetary orbit normalized
to the stellar radius R� as long as the following conditions are satisfied.

Suppose that the stellar intensity profile depends on the position only through
r�/R�, where r� is a two-dimensional vector specifying a position on the stellar disk.
We write such a profile as I (r�/R�;α�), whereα� denotes the set of parameters that
describes the stellar intensity profile, and suppose that I = 0 outside of the stellar
disk. In addition, we assume that the planetary disk modifies the stellar intensity by a
factor of E([r� − rp]/R�;β�), where rp here is the position of the planet center on the
sky plane, and β� is the set of parameters that specify the shape and intensity profile
of the planetary disk. Then, the relative flux f , as an observable of the differential
photometry, is solely determined by r̃p(t) ≡ rp(t)/R�:
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f =
∫
I (r ′

�/R�;α�)
=0 E([r ′
� − rp]/R�;βp)I (r

′
�/R�;α�)d2r ′

�∫
I (r ′

�/R�;α�)
=0 I (r
′
�/R�;α�)d2r ′

�

=
∫
I (r̃ ′

�;α�)
=0 E(r̃ ′
� − r̃p;βp)I (r̃

′
�;α�)d2 r̃

′
�

∫
I (r̃ ′

�;α�)
=0 I (r̃
′
�;α�)d2 r̃

′
�

= f (r̃p(t);α�,βp). (B.31)

The above conclusion applies to broad situations. For example, the standard transit
model used in Chaps. 4 through 6 assumes the quadratic limb-darkening law and dark
planetary disk:

I (r�/R�; (u1, u2)) =
{
I (0)

[
1 − u1(1 − μ) − u2(1 − μ)2

]
, μ = √

1 − (r�/R�)2 for r�/R� < 1

0 otherwise
,

(B.32)

E([r� − rp]/R�; Rp/R�) =
{
0 for |r� − rp|/R� < Rp/R�

1 otherwise
, (B.33)

where u1 and u2 are constants called limb-darkening coefficients. While r̃p depends
on (P, a/R�, e,ω, i,�, τ ), the profile (B.32) is axisymmetric and so f does not
depend on �. Therefore, f = f (r̃p(t); (u1, u2), Rp/R�) is sensitive to (P, a/R�, e,
ω, i, τ , u1, u2, Rp/R�); this is indeed the set of parameters that can in principle be
constrained from the light curve, as shown in Appendix B.3.

The same property also applies to the gravity-darkened transit model discussed in
Chap.5. As described in detail in Sect. 5.2.1, the stellar intensity profile in this case
is solely determined by the temperature at the stellar pole T�,pole, gravity-darkening
exponent β, and the direction of the surface gravity vector at each point on the
stellar surface. Since the last one depends on the radius vector normalized by R�,
direction of the stellar spin axis, and a dimensionless parameter γ = 3π f 2rot/2Gρ�

with frot being the stellar rotation frequency, the intensity profile has the form of
I (r�/R�; (ρ�, frot, T�,pole,β, i�,��)), where �� is defined analogously to Eq. (A.19)
for the stellar spin vector. This explains the choice of the model parameters in
Sect. 5.2.1. Note that only λ = � − �� is constrained due to the arbitrariness in
choosing the reference direction (+X -axis), and that M� is not included in the light
curve model explicitly but only constrained through that on v sin i� in Eq. (5.3).

B.4.2 Newtonian Gravity

Wehave seen inAppendixB.3.2 that a/R� and P obtained from the transit light curve
can be combined to determine the mean stellar density ρ�, if we neglect Mp/M� � 1.
Why does the light curve give ρ� as the only absolute dimension of the system?
This is because the timescale of the motion, which is the only dimensional quantity
obtained from the light curve, is determined by the density in the Newtonian gravity.
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The dimensionless form of Eq. (A.5) explicitly shows this property:

d2(r/R�)

d(t/
√
R3

�/GM�)2
= − r/R�

(r/R�)3
, (B.34)

which means that the normalized motion r/R� is a function of t/tff , where

tff ≡
√

3

4πGρ�

. (B.35)

This property, along with the fact that the light curve only depends on rp/R�,
leads to the following conclusion: the observed transit light curve is invariant under
any scaling of the mass and radius that keeps the mean stellar density unchanged.
In other words, the transit light curve is only sensitive to the relative dimensions of
the system except for the mean stellar density. Chapter 6 deals with an exception to
this rule, where the timescale is related to another absolute dimension (i.e., size) of
the system via the speed of light c. Even in this case, the absolute mass is not well
determined because the system size depends only on the cubit root of the mass scale.

B.4.2.1 TTVs Constrain the Mean Densities of the Bodies Alone

Since the above property comes from the scaling of the Newtonian dynamics, it
can be generalized to the transit light curve of multi-planetary systems, where the
member planets gravitationally perturb each other to produce the deviation from
the two-body case (e.g., transit timing variations or TTVs; see also Sect. 1.2.3). In
this case, the equations of motion for the coordinates normalized by R� depend on
masses of the planets divided by M�, as well as ρ�. For transiting planets, we can
also constrain Rp/R�. In the ideal situation where the member planets are strongly
interacting and all transiting, therefore, TTVs allow for constraining the planetary
density ρp = ρ�(Mp/M�)(Rp/R�)

−3 purely from the light curve. On the other hand,
the absolute mass and radius scales are never constrained from the light curve alone,
as the same scaling property as discussed above holds even in the presence of planet–
planet interaction. Note that this is true even when the transit variations other than
TTVs (e.g., transit duration variations) are considered, as pointed out by Sanchis-
Ojeda et al. (2012).
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Appendix C
Joint Posterior Distributions for the Model
Parameters

This appendix shows the corner plots for the joint posterior distributions resulting
from the analyses in Chaps. 4 through 6. The two-dimensional and one-dimensional
histograms are plotted for selected model parameters to elucidate the nature of the
parameter correlations. The inner three contours in the two-dimensional histograms
correspond to 1σ, 2σ, and 3σ credible regions of the marginal posteriors. The plots
in this appendix are made using corner.py by Foreman-Mackey (2016).

C.1 Joint Photometric and Spectroscopic Analysis
in Chap. 4

FiguresC.1, C.2 and C.3 correspond to the results in Table 4.3 and Fig. 4.9 for the
HAT-P-7 system. FigureC.4 shows the result for the Kepler-25 system in Table 4.4
and Fig. 4.10.

C.2 Gravity-Darkened Model Fit in Chap. 5

FiguresC.5 and C.6 correspond to the results for Kepler-13Ab in the fourth and sixth
columns of Table 5.1: c2-fitted light-curve solution and joint solution for the B11
stellar parameters. These results are obtained by fitting the Q2 light curve alone, as
in Figs. 5.1 and 5.2. FiguresC.7 and C.8 correspond to the two joint solutions for
HAT-P-7b in Table 5.3.

© Springer Nature Singapore Pte Ltd. 2018
K. Masuda, Exploring the Architecture of Transiting Exoplanetary
Systems with High-Precision Photometry, Springer Theses,
https://doi.org/10.1007/978-981-10-8453-9
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Fig. C.1 (HAT-P-7) Joint posterior distributions for the most correlated 11 model parameters and
ψ for the W09 data set (Table 4.3)

C.3 Joint ETV and Light-Curve Fit in Chap. 6

FigureC.9 corresponds to the joint-fit result in the last column of Table 6.1.
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Fig. C.2 (HAT-P-7) Joint posterior distributions for the most correlated 11 model parameters and
ψ for the N09 data set (Table 4.3)
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Fig. C.3 (HAT-P-7) Joint posterior distributions for the most correlated 11 model parameters and
ψ for the A12 data set (Table 4.3)
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Fig. C.4 (Kepler-25) Joint posterior distributions for the most correlated 11 model parameters and
ψ (Table 4.4)
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Fig. C.5 (Kepler-13A) Joint posterior distributions for all the model parameters and ψ. This result
is for the Q2 transit light curve and adopts B11 set of parameters (Table 5.1, fourth column)
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Fig. C.6 (Kepler-13A) Joint posterior distributions for all the model parameters and ψ. This result
is for the Q2 transit light curve and adopts B11 set of parameters. Here the spectroscopic constraint
on λ is also imposed (Table 5.1, sixth column)
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Fig. C.7 (HAT-P-7) Joint posterior distributions for all the model parameters and ψ. This result is
for the solution 1 of the joint analysis (Table 5.3)
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Fig. C.8 (HAT-P-7) Joint posterior distributions for all the model parameters and ψ. This result is
for the solution 2 of the joint analysis (Table 5.3)
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Fig. C.9 Joint posterior distributions for the most correlated 12 model parameters. This result is
for the joint analysis that adopts the prior constraint on MA (Table 6.1, last column)
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