Springer Theses
Recognizing Outstanding Ph.D. Research

Christopher Race

The Modelling
of Radiation Damage
in Metals Using
Ehrenfest Dynamics

=
e
.
—

Springer



Springer Theses

Recognizing Outstanding Ph.D. Research

For further volumes:
http://www.springer.com/series/8790



Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent
field of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series
will provide a valuable resource both for newcomers to the research fields
described, and for other scientists seeking detailed background information on
special questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria.

e They must be written in good English.

e The topic of should fall within the confines of Chemistry, Physics and related
interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering,
Complex Systems and Biophysics.

e The work reported in the thesis must represent a significant scientific advance.

o If the thesis includes previously published material, permission to reproduce this
must be gained from the respective copyright holder.

e They must have been examined and passed during the 12 months prior to
nomination.

e Each thesis should include a foreword by the supervisor outlining the signifi-
cance of its content.

e The theses should have a clearly defined structure including an introduction
accessible to scientists not expert in that particular field.



Christopher Race

The Modelling of
Radiation Damage 1in Metals
Using Ehrenfest Dynamics

Doctoral Thesis accepted by
Imperial College, London, UK

@ Springer



Author Supervisor

Dr. Christopher Race Prof. Adrian Sutton

Department of Physics Head of Condensed Matter Theory
Imperial College Physics Department

London Imperial College

UK SW7 2AZ London

e-mail: chris.race06 @imperial.ac.uk UK

ISSN 2190-5053 e-ISSN 2190-5061

ISBN 978-3-642-15438-6 e-ISBN 978-3-642-15439-3

DOI 10.1007/978-3-642-15439-3

Springer Heidelberg Dordrecht London New York

© Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcast-
ing, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: eStudio Calamar, Berlin/Figueres

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



For my Mum and Dad



Supervisor’s Foreword

Over the past 50 years atomistic simulations of metals have progressed from
empirical pair potentials to solving the Schrodinger equation, at least for the
electrons, within the usual approximations of practical implementations of density
functional theory. Throughout this time the overwhelming majority of these
simulations have made use of the Born—-Oppenheimer approximation. This
assumes that the electrons remain in their ground state whatever the configuration
of the metal ions. For many phenomena in metals this is an excellent approxi-
mation, but there are some very significant cases where it breaks down with far-
reaching consequences. For example, electrons become excited when a particle
travels at very high speeds inside the metal, and this becomes the principal means
by which the particle loses energy. In addition to conducting heat away from the
region disturbed by the particle, excited electrons may also alter the forces acting
between atoms in ways that cannot be described by the Born—Oppenheimer
approximation. Electronic excitation also plays a key role in laser treatments of
metals, and in the passage of high electron current densities along metallic
nanowires, and there are many other examples.

How does one allow for electronic excitation in a simulation of a metal? It is
clear that this is a quantum mechanical problem involving the time-dependent
Schrodinger equation for the electrons. The electronic wave functions have to be
coupled to the positions of the ions: this is electron-phonon coupling. Electronic
screening has to be treated dynamically as well. The instantaneous forces acting on
ions are still determined by the Hellmann—Feynman theorem, but the electronic
charge density that appears in the theorem is now dependent on the history of the
ionic motion since it is no longer determined by the instantaneous positions of the
ions as it is in the Born—Oppenheimer approximation. The simplest approach is
semi-classical, with the ions treated as classical objects and the electronic degrees
of freedom solved through the quantum Liouville equation coupled to the positions
of the ions. This is the Ehrenfest approach and it describes well the transfer of
energy from hot ions to cold electrons, but interestingly not the reverse process
from hot electrons to cold ions. It is thus well suited to describing electronic
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excitations in irradiation damage, ion implantation and channeling in metals but
not current-induced Joule heating or laser treatments of metals.

In this thesis Chris Race describes a number of Ehrenfest simulations of metals
in which highly excited ions transfer energy to electrons. The models used to
describe metals are significantly better than the “jellium” models of early work on
irradiation damage of metals in that the ions are not smeared out into a uniform
positive background charge density, and the atomic structure is allowed to evolve
dynamically under the influence of excited electrons. Although the electrons are
treated quantum mechanically the models are much simpler than current imple-
mentations of time-dependent density functional theory (TDDFT), and this has
allowed tens of thousands of metallic atoms to be treated dynamically for up to 1 ps.
Unlike TDDFT simulations the results are not chemically specific but they reveal
new generic physics, which more accurate TDDFT methods will eventually be able
to treat with chemical specificity.

It will probably be quite some time before TDDFT simulations will be able to
treat billions of metal atoms dynamically for up to 1 ns, but this is now quite
routinely done with classical interatomic potentials. In these classical molecular
dynamics simulations excited electrons are assumed to provide only a frictional
force opposed to the atom velocity and proportional to its speed. The work
described here by Chris Race has tested this assumption. It turns out that while this
provides a reasonably accurate description of the average energy transfer from ions
to electrons, the additional forces caused by excited electrons have directions and
magnitudes that depend on the local atomic environment, the local electronic
temperature and the crystallographic direction in which the particle is moving.
A simple model, suitable for very large scale (billion atom) classical molecular
dynamics simulations of irradiation damage in metals, which captures this much
richer physics, is developed and validated using the Ehrenfest simulations. This is
an example of the power of the approach taken here of using simple models to
explore the generic physics of the problem. There are further examples, including
the discovery of a resonance in the charge transferred to a channeling ion, and an
anti-resonance in the stopping power it experiences. The time-periodic potential
experienced by the channeling ion, which is perforce absent in the earlier jellium
models, excites electrons into states localized on the channeling ion and its
immediate transitory neighbours.

The simple tight binding models described by Chris Race in this thesis have
opened up a new chapter in the simulation of irradiation damage of metals. They
have shown that electronic excitations have a much more interesting and signifi-
cant role than has hitherto been assumed. It is hoped that this work will stimulate
more accurate studies in future using TDDFT methods.

United Kingdom, September 2010 Adrian Sutton
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Introductory Material



Chapter 1
Introduction

1.1 Why Simulate Radiation Damage?

We will begin with a current and major challenge to materials science, raised by a
current and major challenge to society. The need for low carbon sources of energy
has created new interest in nuclear power, both fission and fusion, and reinvigo-
rated research into materials for application under irradiation. Each square metre
of the first wall of any functioning future fusion reactor will be bombarded every
second by over 15 x 10'® 14 MeV [1] neutrons. This radiation causes significant
damage to the materials—the order of the lattice will be disrupted by the creation
of vacancies and interstitial defects, the distribution of alloying components and
microstructural inclusions will be disturbed and the transmutation of the very
nuclei that make up the materials will change alloy compositions and may give rise
to helium filled voids (see Figs. 1.1 and 1.2). All these types of damage will, over
time, change the mechanical properties of the materials and potentially lead to
their catastrophic failure. Our motivation here is to gain a better understanding of
the initial damage processes as a first step to improving our understanding of the
long term behaviour of materials under irradiation.

To gain a feeling for the size of the materials science challenge at hand we
might consider one of the current best candidate materials for use in a future fusion
reactor. Table 1.1 shows the alloy composition for Eurofer steel. In addition to this
complex composition, carefully designed microstructures are necessary to obtain
the desired mechanical properties in the harsh operating environment of a fusion
reactor. And yet, we can see from the transmutation rates given in Table 1.1 that
the neutron irradiation will have a huge effect on the initial composition.

The practical need for a better understanding of radiation damage processes is
intimately bound up with the economics of nuclear power. If cost were not an
issue, the brute force solution to the problem of material degradation might be
simply to replace components with precautionary frequency. However, fusion
power and next generation fission reactors may be of only borderline economic

C. Race, The Modelling of Radiation Damage in Metals Using Ehrenfest 3
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Fig. 1.1 TEM images of intragranular fission gas bubbles. (Reprinted from
Olander, D.R., Wongsawaeng, D.: Re-solution of fission gas—a review: part I. Intragranular
bubbles. J. Nucl. Mater., 354(1-3), 94-109 (2006), Copyright (2006), with permission from Elsevier)

IRRADIATION - INDUCED SWELLING|

Fig. 1.2 Photograph of 316 stainless steel rods before and after irradiation at 533°C to a fluence
of 1.5 x 10 nm~2. Swelling is caused by the accumulation of fission gas or by the formation of
less dense phases. (Reprinted from Mansur, L.K.: Theory and experimental background on
dimensional changes in irradiated alloys. J. Nucl. Mater., 216, 97-123 (1994), Copyright (1994),
with permission from Elsevier)

viability and so the confidence to eke out another year of safe life from a given
component is of huge significance.

The sceptical reader might raise several objections to the above discussion.
First, they might question the viability (or even possibility) of efficient fusion
power. They would be far from alone in doing so. We will not consider this
question here, but simply point out that should nuclear fusion power become a
reality it will do so only after the materials science challenges outlined above have
been addressed.

Second, they might point out that nuclear fission power is a proven technology
and presents no major new challenges. For an answer to this objection we can look
to the projected 60% decline in output of fission power generation in the United
Kingdom (UK) over the next decade [4]. Given that many people believe that
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Table 1.1 Elemental composition in atomic parts per million (appm) of Eurofer steel and
transmutation rates in appm per full power year (fpy) for irradiation simulations in the high flux
test module (HFTM) of the International Fusion Material Irradiation Facility neutron source and
the first wall of a typical fusion power reactor (FPR) employing helium cooled lithium lead
(HCLL) and pebble bed (HCPB) blankets

Element  Content (appm) HFTM (appm/fpy) HCLL (appm/fpy)  HCPB (appm/fpy)

H - 1408 +1051 +951
He - +299 +249 +230
Li - +0.3 +0.9 +5.3
Be - +2.3 +2.3 +2.2
B 51 +3.6 +0.5 —-2.9
C 4860 -72 —4.6 —4.4
N 1191 —4.4 3.5 —-2.9
(0] 347 —0.20 —-0.8 —-0.7
Mg - +1.6 +1.4 +1.2
Al 206 +0.54 +0.2 +0.1
Si 990 -2.3 —1.2 —1.1
P 90 —0.01 —0.01 —0.02
S 87 —-0.42 —-0.3 —-0.3
Ti 116 +32 +19 +17
\% 2183 +216 +164 +155
Cr 96 240 +211 +74 +55
Mn 4048 +1111 +601 +502
Fe 885 880 —1956 —752 —738
Co 47 —-0.02 —0.02 +3.1
Ni 47 —-0.13 —-0.3 +0.3
Cu 44 +0.02 —-0.3 —04
Nb 6 <0.01 <0.01 <0.01
Mo 29 —0.06 —0.07 —-0.1
Hf - +1.5 +1.1 +0.8
Ta 215 +6 +1.3 —46
w 3327 —-16 —19 —191
Re - +7.0 +17 +206
Os - +0.01 +0.2 +32

The steel alloying elements are italicized. Reprinted from Fischer, U., Simakov, S.P.,
Wilson, P.P.H.: Transmutation behaviour of Eurofer under irradiation in the IFMIF test facility
and fusion power reactors. J. Nucl. Mater., 329-333(Part 1), 228-232 (2004), Copyright (2004),
with permission from Elsevier.

nuclear power must play a significant role in the UK’s power generation if we are
to meet our CO, reduction targets then extending the life of existing nuclear power
plants acquires a high importance. Any arguments to push reactor components
beyond their currently defined safe operating windows will have to rely on a sound
scientific understanding of the behaviour under irradiation of the materials of
which they are composed.

A third objection that the sceptic might raise would question the role of the
theorist in solving the above problems. Can we not simply test candidate materials
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by exposing them to the radiation that they must endure? Unfortunately we cannot
determine the effect of 20 years exposure to a high fluence of 14 MeV neutrons
on, say, a sample of Eurofer without having a functioning fusion reactor to provide
the correct radiation source and 20 years to wait. Exposing a sample to a higher
energy, more intense source for a shorter period might produce a degree of damage
that is equivalent in some way—in terms of the number of displacements per atom,
for instance, but the differences in the detail of damage produced by different
radiation spectra are subtle and understanding them will require a concerted effort
by theorists and experimentalists. In addition, even if a perfect experimental
testing methodology existed, a combinatorial problem would remain: we would
need to test a daunting number of samples of many different materials at different
temperatures, pressures and radiation doses.

In the above discussion we have focussed on the example of nuclear power
generation. Radiation damage is of much wider technological and theoretical
interest, however. Further motivation for the study of radiation damage is provided
by fields such as materials modification by ion implantation, medical imaging,
medical treatments, and cosmic ray damage.

1.2 Semi-classical Simulation as a Link in the Multi-scale Chain

The study of radiation damage is inherently a multiscale endeavour. The processes
at work span time- and length-scales from the electronic to the geological and their
full treatment requires the consideration of quantum mechanical electrons, of
individual atomic motion, of dislocation dynamics and of macroscopic mechanical
properties. We must consider processes that are intrinsically non-adiabatic, such as
the excitation of electrons on attosecond timescales, through to quasi-static
behaviour over the course of many years.

In the work described in this thesis we have focussed on one particular aspect of
modelling radiation damage: we consider the role played by electrons in deter-
mining the initial damage caused by the impact of high energy particles on
metallic materials. To do this we have employed a semi-classical' simulation
method that couples the evolution of a set of classical ions and a system of
quantum mechanical electrons. By choosing a simple tight-binding representation
of our electronic system we can achieve simulations on sufficiently large time- and
length-scales to directly investigate the evolution of a variety of radiation damage
phenomena. However, we also recognise that the relative complexity of our
method (compared, say, with classical molecular dynamics) is restrictive and so
the approach we take emphasises the fact that our model is a first link in a

! The term “semi-classical” is taken to mean different things in different fields. Throughout this
thesis we use it to describe a combined system of quantum mechanical electrons and classical
ions.
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multiscale modelling chain. We explicitly discuss how our findings can help to
evaluate and improve other models on longer time- and length-scales.

1.3 How to Read this Thesis

The work presented in this thesis formed part of a project at Imperial college
involving another doctoral student (J. le Page), in addition to the present author, a
post-doctoral researcher (D. R. Mason) and a number of academic staff (A.
P. Sutton, W. M. C. Foulkes, A. P. Horsfield and M. W. Finnis). Most of our
activities were undertaken collaboratively and so I have indicated the different
roles played by each of the three primary researchers (the present author, J. le Page
and D. R. Mason) in each piece of work presented. At the beginning of each
chapter I have noted the contribution of researchers other than the present author in
the following form:

Attribution: In the following the simulations...

The thesis is divided into two parts. The rest of the present part (part I) contains
background information useful in understanding the new work that will be pre-
sented in part II. Chapter 2 will introduce the context of our research by telling the
story of a radiation damage collision cascade. In doing so we will raise the
questions that our research seeks to answer and understand the limits of our
approach and how it must therefore work in concert with other techniques.

Fig. 1.3 A ‘schematic map’ Key content
of the thesis, summarising the I' Contents ! g Introduction I:l
type of content in each [T - 3 !
. . . ©
chapter and indicating the E
: S Ch.3 Literature review '
location of the key new g ;
results 3 '
£ :
; :
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& Ch.4 background v
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Introduction to
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preliminary results
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Core results
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In Chap. 3 we will review those parts of the vast body of radiation damage
literature relevant to our work. Chapter 4 introduces some important theoretical
concepts that form the basis for our model. Much of this material may be familiar
to the reader and so we emphasise that Sects. 4.5 and 4.6 are intended to form a
relatively self-contained theoretical introduction to our model and its dynamics.

In part II, the bulk of this thesis, we describe the new work that has been
undertaken by the present author, and the results achieved. Each chapter begins
with a brief summary and ends (where appropriate) with a summary of the
conclusions.

Because this thesis is long, and contains much background material, some
readers may wish to skip large sections (see Fig. 1.3). The review in Chap. 3 can
be omitted by the reader familiar with radiation damage theory. Readers familiar
with electronic structure theory might safely ignore most of the theoretical
background in Chap. 4, though Sects. 4.5 and 4.6 provide direct context for our
work. In part II, the most important results are presented in Chaps. 8—11. Of the
other chapters, 5 introduces our model, 6 presents some preliminary results that
help to establish its capabilities and 7 discusses the evolution of a cascade sim-
ulation within our model.
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Chapter 2
A Radiation Damage Cascade

To help us understand the nature of the problems that the work in this thesis will
address, we now consider the evolution of a typical radiation damage event. This
will allow us to highlight where the electrons are expected to play a major role in
the evolution of damage and introduce some of the commonly used terminology in
the radiation damage field. We will focus our discussion on the concept of a
radiation damage collision cascade and the various stages in its development. In
Fig. 2.1 we give schematic illustrations of these different stages.

2.1 The Early Stages

Our story begins when an energetic particle impinges on some target material (see
Fig. 2.1a). This particle, depending on its mass and on its charge, can penetrate a
significant distance into the target material before undergoing a collision with an
atom of the target. This collision will set the target atom (known as the primary
knock-on atom or PKA) in motion often with a very high velocity (see Fig. 2.1b).
The statistical distribution of the energy of the PKA (its spectrum) will vary
depending on the target material and on the type of irradiation [1]: a 14 MeV
fusion neutron can produce PKAs of up to 1 MeV in iron with half being above
10 keV; the slower neutrons from fission reactors produce PKA energies of up to
several hundreds of keV; and the recoiling ***U nucleus from the decay of ***Pu
will have an energy of around 100 keV.

2.1.1 Ion Channelling

When a PKA has a kinetic energy ~ 100 keV it will have a very low cross-section
for interaction with other nuclei of the target material and so is able to travel large

C. Race, The Modelling of Radiation Damage in Metals Using Ehrenfest 9
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distances without undergoing a significant collision. This process is known as
channelling after the open channels in the crystal structure down which such ions
move (see Fig. 2.1c) and can be responsible for dramatically changing the damage
distribution in crystalline materials. Experiments involving the implantation of

Fig. 2.1 Schematic representations of the stages of evolution of a collision cascade
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40 keV radioactive '>>Xe ions into crystalline tungsten revealed penetration to
depths of up to 107® m for particle beams directed along crystalline axes, com-
pared with a maximum depth in amorphous tungsten of 0.1 x 107° m [2].

Because the rapidly moving channelling ion interacts only fleetingly with the
surrounding ions it loses energy predominantly to the electrons of the target
material (see Fig. 2.1d) and so the rate of energy transfer into the electrons is a
significant issue. We investigate the influence of electrons on ion channelling in
Chap. 10. Experimental analysis of irradiated samples, particularly of insulators,
often reveals fracks of damage surrounding the paths traversed by channelling
ions. This damage to the lattice must be mediated by the electrons and several
mechanisms have been proposed. One possibility is that some electrons in the
channelling ion’s path become so excited that they are ballistically ejected from
the track region, which then experiences a build up of spatial charge. The cou-
lombic repulsion between the charged ions is then thought to be responsible for the
damage and this model is referred to as the coulomb explosion model. Alterna-
tively, the passage of the channelling ion might serve to rapidly heat the electrons.
The transfer of this heat energy into the ions in the track region would then be
responsible for generating the damage. This is the thermal spike model. A third
possibility is suggested by some of our work (see Chap. 9): the excitation of the
electrons implies a weakening of the bonding forces in the track region such that
the surrounding material is placed under an implied strain and the resulting out-
ward pressure may be directly responsible for the damage.

2.1.2 Sub-cascade Branching

Eventually our channelling ion will either slow to the point that its cross-section
for inter-ionic interaction becomes significant or it will encounter a defect in the
channel. At this point it will undergo a collision with another ion (see Fig. 2.1e).
Depending on the energies of the two ions emerging from the collision it may be
possible for them both to continue to penetrate a significant distance into the
target material, in which case we have sub-cascade branching (see Fig. 2.1f) or
no further channelling will occur and the next stage of cascade evolution will
begin.

The phenomenon of sub-cascade branching is important for anyone engaged in
simulating collision cascades. Any ion moving with a kinetic energy greater than
~ 10 keV will tend to impart enough energy to its collision partner to form a sub-
cascade. Hence, the behaviour of a collision cascade arising from a high energy
PKA will look very much like a set of several lower energy cascades. Provided a
simulator can reach length-scales large enough to contain cascades of up to
10 keV, they can claim to be able to capture much of the physics of collision
cascades up to much higher energies. (Though not all: phenomena arising from the
overlap of the effects of several sub-cascades will not be captured, of course.)
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2.2 The Displacement Phase

Once the kinetic energies of our moving ions (either a PKA or an ion in a sub-
cascade) get below ~ 10 keV then their interactions with surrounding ions will be
strong, collisions will be frequent and the displacement phase of the cascade
begins. Over the course of 1-10 ps the majority of ions in a region of 10-100 nm
in size will be displaced from their equilibrium lattice sites by a series of collisions
forming a displacement spike (see Fig. 2.1g).

The predominant mode of energy loss from a given moving ion during the
displacement phase will be to other ions, but the electrons will still have an
important role to play in the dynamics. At this stage of the cascade the initial
excess of energy imparted by the incoming radiation is still predominantly con-
tained within the ionic system and so there is a net energy flow from ions to
electrons. Thus the electronic system tends to damp the ionic motion and if this
damping is strong the evolution of a cascade can be curtailed and the damage
produced can be reduced. Understanding the precise nature of the damping is an
open problem, which we address in Chap. 11. As the cascade progresses the
electrons become increasingly excited. In Chap. 8 we investigate what form these
excitations might take and in Chap. 9 we consider how their accumulation might
affect the motion of the ions.

During the displacement phase we often see the formation of replacement
collision sequences (RCS) in which a series of collisions takes place along a close-
packed line of ions (see Fig. 2.1h). Each ion replaces the next along the close-
packed line until sufficient energy has been lost (to the surrounding atoms and to
the electrons) that the sequence is terminated and an interstitial defect atom results.
The RCS is an important mechanism for carrying defects large distances from the
centre of a cascade and we consider the possibility that their formation might be
affected by electronic excitations in Chap. 9.

2.3 The Thermal Spike

After the displacement phase there follows a brief relaxation phase during which
the cascade energy is rapidly shared amongst all the ions in the cascade region
forming a hot (and potentially molten) region sometimes referred to as a thermal
spike. At this stage an initial defect distribution will be evident, with many
interstitial atoms and vacancies (see Fig. 2.11).

There is then a cooling phase, lasting several hundred picoseconds, during
which the thermal spike gradually grows and cools and many of the interstitial and
vacancy defects recombine (see Fig. 2.1j) and a final damage distribution is
established (see Fig. 2.1k). This process of recovery takes place in a region of the
target material in which the ions will be interacting with excited electrons. The rate
at which energy exchange between the ionic and electronic subsystems takes place
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can have a significant impact on the final damage distribution. The presence of a
hot electronic system, acting as a heat bath in contact with the ionic system, can
help to anneal defects and reduce the amount of residual damage. Conversely, a
rapid transfer of energy from the ions to the electrons might quench in a higher
defect population. There is still much to discover about the role played by elec-
trons during the cooling phase and there are many open questions about the
so-called electron-phonon coupling (discussed in Sect. 3.3). However, the time-
scale of the cooling phase lies beyond the reach of our semi-classical simulations
and so we will have little to say about such matters here.
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Chapter 3

The Treatment of Electronic Excitations
in Atomistic Simulations of Radiation
Damage—A Brief Review

Attribution: The material of this chapter closely follows the contents of a review
article [1] written by the present author and submitted for publication in the
Institute of Physics journal Reports on Progress in Physics.

Having made the case for studying radiation damage phenomena via simulation, and
having drawn attention (in Chap. 2) to the variety of ways in which the electrons of a
target material are expected to exert an influence on the dynamics of the ions, we are
faced with the task of finding a robust scheme for incorporating electronic effects in
our simulations. Broadly speaking, there are two ways in which we might approach
this problem. The most straightforward way would be to incorporate a description of
the electrons within the dynamics of our model system. We will refer to such a
scheme as including the electrons explicitly. In formulating such models we will
have to choose some more or less approximate description of the electrons, of their
dynamics, and of their coupling to the ions. In doing so we hope to retain as much of
the relevant physics as possible in the usual trade-off between physical accuracy and
tractability (which we will discuss in detail in Chap. 4).

Alternatively, we can throw out the electrons and focus on evolving a
dynamical model of the ions only. We do, however, represent the electrons
implicitly via their effect on the ion dynamics. In this case, we hope to find a
simple, economical model, which though it places the physics of the electrons in
something of a “black box” nevertheless captures the effect of that physics to a
satisfactory degree.

In this chapter we present a brief review of the vast body of theory pertaining to
the problem in hand. To preempt our discussion a little we will say this: models that
incorporate an explicit description of the electronic system are computationally
expensive, too expensive, with present resources, to be applicable to the direct
simulation to conclusion of collision cascades. We would assert that in the short to
medium term the most productive approach to investigating radiation damage
phenomena via direct simulation will employ what we will term augmented classical
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molecular dynamics (MD) models incorporating electronic effects implicitly. So
why study, as we have, the use of more complex models in radiation damage? To
help us answer that question, and to provide a focal point for this review, let us
consider a putative augmented MD model. The form of this model is typical of such
models described in the literature (and later in this chapter).

Assume that we are concerned with a set of N, classical ions of masses {MI}I,V;l
with positions {R,}ﬁ\’;l evolving according to Newtonian equations,

‘R R
M,%chu—ﬁ,%ﬁ-mU). (3.1)
Here F¢; is the force on the /th ion derived within some classical force model (a
pairwise potential, perhaps). ff; gives rise to a drag like force. #,(¢) is some other
ion specific force, whose inclusion makes (3.1) completely general.

Now, in the models found in the literature, the #,(¢) are typically stochastic forces
designed to yield a physically reasonable approach to the long term steady state. The
bulk of the effect of electrons, at least early in a cascade, will be modelled by the drag
term f5; dR;/dz. This is the nub of the matter: the augmented MD models in the
literature assume that the primary effect of the electrons on the dynamics of high
energy ions is to reduce their kinetic energy via the action of forces directly opposed
to their motion. Most models go further than this and adopt a f3; that is a simple
constant. The resulting picture is beguilingly simple: the effect of #,;(¢) notwith-
standing, our ions now move as if immersed in a viscous soup of electrons.

So, again, why study more complex, more expensive models? Practitioners in
the radiation damage field sometimes assert that it is “well-established” that the
effect of electrons on ion dynamics is to provide a viscous drag; in other words,
that there exists some constant f§ that can be used in a model dynamics like that in
(3.1) to capture the effect of electrons. Such statements are subjective. A parallel,
objectively true statement would be that “there exists a large body of theoretical
literature, concerning so-called electron stopping theory, pointing almost unani-
mously toward a viscous drag model of electronic effects”.

How might we get from the latter objective statement to the former subjective
one, given that the theories in question are derived only within certain (well-defined)
approximations? First, we might argue directly for the validity of the approximations
employed: that they throw out no physics of significance. Below we will discuss the
various theories and their approximations. Second, we might appeal to experiment:
do the empirical data validate the hypothesis of a simple drag force? Do they refute
alternative hypotheses? We will also consider such questions later in this chapter.
Third, we might look for some sort of “physical convergence”, investigating a level
of theory in which the approximations that yield a viscous damping are relaxed to see
if any new behaviour of significance emerges.

Effectively, it is this last approach that we have taken in the work described in
this thesis. A model that treats the dynamics of a set of classical ions coupled to an
explicit model of the electronic system can go beyond the approximations made in
the theories that predict a viscous drag: it need neither treat the electrons as a
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homogeneous medium, nor need it reduce the ionic dynamics to a series of
independently occurring binary encounters.

3.1 The Theoretical Treatment of Radiation Damage

The body of literature on the subject of the theoretical treatment of radiation damage
is vast. The field stretches back over a century and has attracted the attention of a
wide range of researchers. An understanding of radiation damage processes has
variously been important across the spectrum from fundamental physics research to
application on an industrial scale. We cannot come close to a comprehensive
treatment,' and so our aim in this brief review will be to consider only the larger
themes. Most importantly we will focus only on those parts of the theory that have
something to say about the role of electrons. We will examine the types of theoretical
model that have been proposed to describe the process of energy exchange between
ions and electrons. We will discuss how they work, what questions they address and
how well they are able to answer them. We will also focus our discussion on
providing a context for the new work described in part II of this thesis.

Broadly speaking we will split the field of radiation damage theory into two
convenient segments. The first contains analytical models, which attempt to pro-
vide a concise description of particular radiation damage phenomena and either
offer insight into them or provide a means of making quantitative predictions
about them. The second contains simulation models, which begin with some
description of a system in which a radiation damage event is to occur and then
provide insight or predictions via dynamic evolution of that system.

Radiation damage theorists also typically divide the role of electrons into two
regimes, the electronic stopping regime and the electron—phonon coupling regime.
The distinction is most often drawn in terms of the mode of ionic evolution
characteristic of each regime. In the electron stopping regime the ions are assumed
to have relatively high kinetic energies and to move ballistically through the host
material, with the interaction with other ions being well described by a series of
binary collisions. In terms of the interaction of the ions with the electrons, energy
transfer from the excited ions fo the relatively cool electrons will be the dominant
process. The earliest stages of collision cascade evolution, such as channelling and
sub-cascade branching, are those that lie most obviously in this regime. By con-
trast, in the electron—phonon coupling regime the ions have lower energies and
oscillate around their equilibrium positions, and a many-body description of the
ionic system becomes necessary. Also, the exchange of energy between ions and
electrons in both directions will be important. The system is then well described as
a collection of phonons and electrons exchanging energy with one another. The
later stages of cascade evolution, such as the recovery phase, seem most suscep-
tible to such a description.

! See references [2-8] for details of various aspects of radiation damage.
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It is important to note that the boundary between the two regimes is both ill-
defined (theoretically) and indistinct (in reality). For example, once many ions are
in motion in the displacement phase of cascade evolution then a treatment in the
mode of electronic stopping is inadequate: the ions certainly don’t spend much
time in free flight and their interactions are often many-body in nature. Equally,
however, it is clear that the ions are excited way beyond oscillation about some
equilibrium positions and so a description in electron—phonon coupling terms is
neither appropriate. In fact the distinction is largely one of practical convenience,
allowing the development of different treatments at each extreme of cascade
evolution. This may be partly responsible for the unfortunate tendency of the
literature to focus on those problems that most firmly lie within the scope of one
approximation or the other, to the relative neglect of some of the more complex
phenomena in between; much of the evolution of a cascade, after all, clearly
involves physics which falls between the two regimes.

We also emphasise that the underlying physics of the energy exchange between
ions and electrons is the same in both regimes [9]: it is fully described by the time-
dependent Schrodinger equation acting on a state vector describing a set of
quantum mechanical ions and electrons. This somewhat obvious point can become
obscured by the convenience of the artificial and conventional distinction between
the electron stopping and electron—phonon coupling regimes.

3.2 The Electronic Stopping Regime

We will begin our review of radiation damage theory by considering the electronic
stopping regime. The subject of how a fast particle is slowed down, or stopped, by
its interaction with some stopping medium is one of broad interest. Particulate
radiation can play the role of an experimental probe of fundamental physical laws,
can form the basis of manufacturing processes in which materials are modified by
ion implantation and can function as a diagnostic and therapeutic tool in medical
applications. And damage to functional materials exposed to radiation in power
generation demands a sound understanding of the particle stopping process.

3.2.1 General Concepts

If we consider the case of some particle, our projectile, penetrating a stopping
medium that is a solid made up of ions and electrons (either bound to the ions or
part of an electron gas), then the processes by which the projectile might lose
energy can be classified into five basic types:

1. Changes in the internal state of the target ions, such as electronic excitation and
ionization, or excitations of the electron gas;

2. Changes in the internal state of the projectile such as electronic excitation,
ionization and electron capture;
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Fig. 3.1 The classification of electronic stopping behaviour into various regimes based on
projectile atomic number and kinetic energy per atomic mass unit. A sample of applications is
indicated on the chart according to their corresponding regimes. (Reprinted figure 1 with
permission from Race, C.P., Mason, D.R., Finnis, M.W., Foulkes, W.M.C., Horsfield, A.P., Sutton,
A.P.: The treatment of electronic excitations in atomistic models of radiation damage in metals.
Rep. Prog. Phys. 73, 116501 (2010). Copyright (2010) by the Institute of Physics Publishing Ltd.)

3. Transfer of energy to the motion of the target ions in collisions or in the
generation of phonons;

4. Emission of radiation (e.g. Bremstrahlung and Cerenkov radiation); and,

5. Chemical or nuclear reactions.

The physics of these processes is varied and complex and which of them are
significant depends most strongly on the velocity and on the charge of the projectile.
So, to help simplify the process of modelling electronic stopping, practitioners
conventionally classify the variety of projectile species by atomic number, Z;, into
light (Z; < 2), heavier or intermediate (3 < Z, < 18) and heavy (Z; 219) ions,
and by kinetic energy per atomic mass unit, into fast (E/W 2 10 MeV), intermediate
(100keVSE/W<10MeV) and slow (1keVSE/W<100keV) ions. Figure 3.1
illustrates this classification scheme and shows how different applications of stop-
ping theory fall into the different categories.

From our point of view, concerning ourselves with how the theoretical literature
might inform simulation work, the key concept is that of a stopping power. A
stopping power, which we shall denote S, is defined as the rate of loss of projectile
kinetic energy Ex per unit length x along its path,’

dEx

S= (3.2)

2 Such quantities have the dimensions of a force, and, indeed, the term ‘stopping force’ is
gaining currency. But historically ‘stopping power’ has been prevalent and we shall use it here.
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The energy lost by the projectile to the stopping medium is transferred to both the
centre of mass motion of the ions of the target medium and to electronic excita-
tions of its electrons. It is conventional to divide the total stopping power into a
sum of nuclear (n) and electronic (e) contributions,

S=8+38., (3.3)

a separation which relies on the two types of loss mechanism being uncorrelated
(and which becomes increasingly invalid with reducing projectile velocity).

We need not concern ourselves with the nuclear stopping power, because in our
work, and in closely related classical molecular dynamics (MD) simulations, the
transfer of energy between ions is handled explicitly. However, we will note a
useful general property of the two terms. Figure 3.2 shows the predicted stopping
powers of an iron target for intruding iron projectiles (the results are derived from
the SRIM code [10], which we shall discuss later in Sect. 3.2.4.3) and we can see
that at low velocities, nuclear stopping is the dominant effect, with electronic
stopping coming to the fore at higher speeds.

We can understand the origin of this different behaviour of the two terms if we
consider a collision between a projectile particle of mass m; and charge ¢; moving
with speed v and a stationary target particle of mass m, and charge g,. If the
collision takes place such that the initial distance between the projectile and target
perpendicular to the projectile path, the impact parameter, is b, then the Ruther-
ford formula predicts an energy transfer to the target of,

7o 2 1 (3.4)
(47e0)*mav2b? \ 1 + (q1q2 /Ameou?b)* )’

where the reduced mass p=mymy/(m; + m,). Assuming that the target particle
remains stationary and that the projectile path is unchanged by the collision allows
us to simplify the above result:
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If the number of particles per unit volume in the stopping medium is n, then
integrating over a range of valid impact parameters yields a stopping power,

bmax

S(q1,q2,v) = 2mn / dbbT(b)
b (3.6)
_ 4nqiqs Binax
T (4neo)’m? Buin

Because this stopping power is dominated at high velocities by the prefactor to the
logarithm, the factor of 1/m, will determine the relative magnitude of the stopping
powers due to electrons and to ions. Electronic losses thus dominate at high
projectile speed.

The basic aim of electronic stopping theory is to provide predictions of the
electronic stopping power of an arbitrary target for an arbitrary projectile across the
full range of kinetic energies. The theories of electronic stopping given in the
literature take many and varied forms. Some formalisms are classical, others
quantum mechanical; some consider the interaction of the projectile with the target
as a series of binary collisions, others treat the target electrons as a continuum; some
start from first principles, whilst others attempt a completely empirical fitting.

Different approaches are appropriate to the different ranges of projectile energy
and atomic number, depending on what simplifying assumptions may be made.
The easiest case to treat (and the one that has attracted most attention) is that of
fast, light particles. Such projectiles are likely to be stripped of all electrons and so
may be treated as simple point charges. The dominant energy loss mechanism will
be via excitations of the target electrons, or via radiative processes at relativistic
velocities. The higher nuclear charges of heavier particles mean that we must
consider the possibility of bound electronic states on the projectile and the addi-
tional energy loss mechanisms that thus become available. For slower particles,
screening of the projectile charge by the target electrons becomes significant and
few of the simplifying assumptions used for fast, light particles can be made. We
will discuss each of these different levels of complexity in turn.

3.2.2 Models of Fast, Light Particle Stopping

3.2.2.1 Early Models

The earliest theories of electronic stopping, due to Thomson [11] and Darwin [12]
and dating from the 1910s, consider a point charge projectile losing energy to the
electrons of a target medium made up of atoms of atomic number Z, and atomic
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density n,. The electrons are assumed to be free and the collisions are treated
within the approximation of (3.5) and so the resulting stopping powers take the
form,

4n72e* 1. Tha
7122”;114&6, Liee = z1n =

S(Zy,v) =
( : ) (47T80)2meV2 2 Tmin

(3.7)

Lo i1s known as a stopping number and many of the theories of fast particle
stopping take the form of (3.7), but with different expressions for the stopping
number. The use of (3.7) requires values for the maximum and minimum kinetic
energy transfers. Ty,.x is determined by considering a head-on collision with
b=0,

Toax = —— 2~ p02, (3.8)

but T,;, must be set artificially to a non-zero value to prevent divergence of the
stopping power. This divergence is essentially due to the long range nature of the
Coulomb interaction and can be overcome by choosing a maximum impact
parameter, such as the atomic radius in the case of Darwin’s theory.

3.2.2.2 The Bohr Formula

In reality the divergence in S is prevented by the fact that the electrons of the
target medium are not free, but are bound to the target ions. Bohr undertook a
treatment of electronic stopping [13] that considers the collision between a charged
projectile and classical electrons bound harmonically to the target ion with angular
frequencies ;. Like those of Thomson and Darwin, Bohr’s theory is classical and
perturbative, in that it assumes that the projectile trajectory is unaffected and that
the target electron remains stationary for the purposes of calculating the energy
transfer. Bohr’s result is then,

4nlee4

(47rs())2mev2
Cmev?
o= 200G,

in which C is a constant (C = 1.1229) and the relative contributions of different
frequencies w; are given by the values of f;, subject to ) ; f; = 1.

An important new feature appears in Bohr’s theory: the binding of the electrons
sets a natural upper limit to the impact parameter. If b becomes too large, the
collision takes place so slowly that the electron moves appreciably over the course
of the interaction and no energy is transferred. Alternatively, we can say that at too
large an impact parameter, the Coulomb interaction of the electron with the

S(Zla V) = naLBonr,

(3.9)
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projectile becomes insignificant when compared with the binding forces. We thus
have,

1%
Binax ~ o (3.10)

The quantity b/v is known as the collision time.

3.2.2.3 The Bethe Formula

Another much quoted theory of electronic stopping is due to Bethe® and yields a
stopping number,

2mev?
LB he = f1n<—6> (311)
e =S5

We will not have much to say about Bethe’s formula, since it applies only to very
fast particles. It is similar in spirit to Bohr’s treatment, in that it is fundamentally
perturbative, but it is quantum mechanical, rather than classical. The frequencies
w; are those associated with excitations of the electrons of the target ion and the f;
are generalized oscillator strengths [15], again giving the relative contributions of
the different excitations.

Figure 3.3 shows the behaviour of the Bohr and Bethe stopping powers along
with some experimental stopping data. At high energies the stopping power drops
away as 1/v* as a consequence of the physics embodied in the Rutherford scat-
tering formula. The impulse imparted to a target electron is proportional to the
duration of its interaction with the projectile, measured by the collision time b/
v. The energy transfer will vary as the square of this. Both the Bohr and Bethe
formulae exhibit a strong peak at approximately the correct energy. This is known
as the Bragg peak and being able to predict its location is important experimentally
because the depth resolution of experimental probes is maximized at the peak.

3.2.3 Expanding the Realm of Stopping Power Theory

The treatments of stopping power in Bohr’s and Bethe’s theories make some fairly
restrictive simplifying assumptions. In this section we will discuss the implications
of those assumptions and detail some corrections that can be made to relax the
assumptions somewhat. Later we will go on to consider alternative theories with
complementary realms of applicability.

* The original derivation is in German [14]. Sigmund [5] has provided a thorough English
language treatment.
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Fig. 3.3 Sample electronic stopping power data for oxygen projectiles in a gold target.
Experimental data (red crosses) from the database of Paul [16] are shown, along with stopping
powers calculated via the Bohr (green long dashed line) and Bethe (blue short dashed line)
theories. Various velocity thresholds discussed in the main text are indicated. The average
excitation energy in the theoretical expressions, In7 =3, fiIn(hay), is calculated using a

commonly used scaling relation I ~ Z, x (10eV) [17]. (Reprinted figure 2 with permission from
Race, C.P., Mason, D.R., Finnis, M.W., Foulkes, W.M.C., Horsfield, A.P., Sutton, A.P.: The
treatment of electronic excitations in atomistic models of radiation damage in metals. Rep. Prog.
Phys. 73, 116501 (2010). Copyright (2010) by the Institute of Physics Publishing Ltd.)

In Bohr’s theory, the perturbative treatment means that the energy transfer to a
bound electron diverges for small impact parameters. This divergence is elimi-
nated by treating close collisions, with impact parameter below some threshold
value b" as being between free particles. This treatment is valid because at small
enough b the collision time is much shorter than the period of the electron’s
oscillatory motion and so the binding can be ignored. Hence we have,

*
» < i (3.12)
1% j
We also recall that the treatment of more distant collisions is perturbative and this
implies a further restriction on »". The full Rutherford formula predicts an energy
transfer,

272 1
T(b) = 1 a (3.13)
(4meg) mev?b? \ 1 + (Z,€* /4dnegmev2b)

in this case, and so for the approximate form to be valid we require that the
correction term (for the effect of the deviation of the projectile path and the
particle position) in the denominator of the second factor be small. This must still
be true at the lower limit of the impact parameters treated in this perturbative limit
and so we arrive at a second condition,
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Since both conditions on " must be satisfied, we arrive at a validity condition for
the Bohr formula of,

4meomev?

Z o, > 1. (3.15)
Bohr’s treatment is classical and so we must be able to describe the projectile as a
well-confined wave packet throughout the collision. For a projectile beam with a
spread in transverse momentum Jp; there will be a corresponding uncertainty in
impact parameter Ab~h/20p,. This gives rise to a spread in the transverse
component of the momentum transferred in the collision of dp, ~ (2|Z;€?|/
b*v)éb [from (3.5)]. If we minimize ((3p;)> + (dp,)*)""* as a function of b and
assume that this uncertainty in the transverse momentum must be much smaller
than the total momentum transfer if the classical approximation is to be valid, then
we obtain the condition,

2|Z1 62 |
4menhv

(3.16)

Though this criterion seems to imply that Bohr’s formula becomes more valid with
decreasing projectile velocity (below some high threshold), we must remember
that we have also assumed that the target electron remains at rest during the
collision, so that,

v > v, (3.17)

where our measure of a typical electron velocity is the Bohr velocity
vo = €2 /4negh = ¢/137. Hence the formula is only valid over a small range of
high velocities,

vy L v L 2Z)vy. (318)

These validity criteria, along with others to be discussed below, are illustrated in
Fig. 3.4.

The assumptions made in Bethe’s stopping power theory imply similar
restrictions on its applicability. Once again, we will not go into detail and refer the
interested reader to Sigmund’s book [5] for more information. Essentially, Bethe
applies the same trick as Bohr and separates the collisions for different treatment
in close and distant cases. In the case of the Bethe formula, this separation is made
at a threshold momentum transfer ¢, rather than at some particular impact
parameter. For consistency between energy and momentum transfer in close col-
lisions we must ensure,

q'v > wy, (3.19)
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Fig. 3.4 The projectile kinetic energy and atomic number regimes of electronic stopping theory
in an iron target (Z, = 26) showing order of magnitude thresholds for various effects and
corrections. Bohr’s classical threshold v<2Z; vy is shown, along with the thresholds for screening
(VSZIZ/ *0) and Barkas (polarization) effects (vg(ZlZz)l/ 3v0). The velocity at which shell effects
become important (VSZ? 3vo) and the Bohr velocity, vo, below which the projectile ion will have
very low charge with many bound states, are also indicated. (After Sigmund [3].) (Reprinted
figure 3 with permission from Race, C.P., Mason, D.R., Finnis, M.W., Foulkes, W.M.C.,
Horsfield, A.P., Sutton, A.P.: The treatment of electronic excitations in atomistic models of
radiation damage in metals. Rep. Prog. Phys. 73, 116501 (2010). Copyright (2010) by the
Institute of Physics Publishing Ltd.)

where o, is a typical excitation frequency. For Bethe’s approximate perturbative
treatment of distant collisions to hold, the kinetic energy transferred to the electron
must be small compared with a typical excitation frequency. Hence, a second
condition emerges,

w(q")*

fieg. 3.20
2me < hedo ( )

Combining the above conditions, we arrive at a validity criterion,

hwo
[0 3.21
V> e’ (3.21)

restricting the use of the Bethe theory to high velocity projectiles. This criterion is
once again illustrated in Fig. 3.4.

There are refinements and corrections corresponding to the key simplifying
assumptions in the Bohr and Bethe theories. Ziegler [18] provides a detailed
review, but here we will simply list them along with brief explanations of the
underlying physics.

The Bloch formula: A revised stopping formula was proposed by Bloch to
correct for the most glaring defects in the theories of Bohr and Bethe (see [19] for a
derivation). For distant collisions, the errors in Bohr’s classical model of electron
binding become significant, whereas Bethe’s quantum mechanical treatment is
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more realistic. At the other extreme of impact parameter, the perturbative quantum
mechanical treatment applied by Bethe (the Born approximation) does not give a
good account of close collisions. In contrast, with fair justification, Bohr explicitly
treats such collisions as being between free particles. Because the Rutherford
formula is equally correct for both classical and quantum mechanical particles, the
classical nature of the Bohr model is not an issue for small b. The formula pro-
posed by Bloch converges to the Bohr model for close collisions and the Bethe
model for distant ones.

Shell corrections: So-called shell corrections have been given for the Bohr [13]
and Bethe [14] models and account for the motion of electrons during collisions, in
violation of the assumptions in the basic models. If we use a Thomas—Fermi model
[20] of typical electron velocities (Z3”v,) then the threshold for the importance of

shell effects will be v<Z2/*v,

Barkas effect: The Barkas or Barkas—Andersen effect refers to a difference in
the stopping powers of positive and negatively charged particles. The effect was
first observed in the differing ranges of positive and negative pions by Smith et al.
[21] with further investigation by Barkas et al. [22] and Andersen et al. [23]. The
underlying cause of the effect is the polarization of the electron density of the
target by the charge on the projectile particle, which leads to positively and
negatively charged projectiles experiencing a different electron density. For this
reason the Barkas effect is sometimes also referred to as the polarization effect.
The impact of polarization is assessed for the Bohr and Bethe models in references
[24] and [25] respectively. The necessary corrections vary as Z; and can be viewed
as higher order terms in a perturbative expansion in the projectile atomic number.

Screening: Use of the Thomas—Fermi model for typical electron velocities
suggests that the effect of screening of the projectile charge by electrons in the

target medium should become important for nglz/ Vo
The thresholds for each of these effects are illustrated in 3.4.

3.2.4 Models of Fast, Heavy Particle Stopping

In the previous section we considered some of the corrections that can be made to
the Bohr and Bethe theories; relaxation of the underlying assumptions resulted in
considerable extra complexity. In fact, such complexity arises even in the simplest
case of a projectile with very low charge (Z, < 2). If we wish to consider pro-
jectiles with higher atomic numbers then a perturbative treatment will no longer be
valid: the interaction of the highly charged projectile with the target electrons is
simply too strong. In other words, the unperturbed evolution of the system (e.g. the
straight projectile path or the initial quantum state of the projectile-target system)
is not a good approximation for the correct evolution under the perturbation.

In this section we will consider some more recent models designed to capture
the physics of fast, heavy particle stopping using non-perturbative treatments.
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The new physics emerging in this regime is a result of the attraction of electrons of
the target medium to the intruding projectile. These electrons will act to screen the
projectile charge and may occupy bound states on the projectile, which will
become a complex compound object, whose internal excitations will open new
channels for energy exchange. In addition, the charge on the projectile will no
longer be Z,e and will generally change along the ion path due to various charge
changing processes, which also may contribute to energy exchange.

3.2.4.1 The Effective Charge of the Projectile

The fact that the charge on an intruding particle can change as its bound states are
ionized by or capture electrons from the target medium gives rise to the concept of
the effective charge of the projectile, which we will denote Ze. Rather than
formulate new models of stopping power for heavy ions, we might then be tempted
simply to replace Z; with Zje in the perturbative models for light ions. Quite apart
from objections based on the new physics associated with the possibility of bound
projectile states and screening, we cannot assume that the charge on a projectile
ion will be constant during its flight. Even if it achieves some steady state with a
well-defined mean value, this will be the result of repeated charge-changing
processes. Writing the fluctuating number of bound electrons as Npgung, the
varying effective charge will be Zje = (Z; — Nyouna)¢ Whose mean value we will
denote (Z))e.

Remarkably, effective charge based models of electronic stopping have
achieved some success (the empirical model in the SRIM code discussed in
Sect. 3.2.4.3 is partly based on effective charge concepts), but there are limits to
their usefulness, as we shall see.

If we assume that the idea of introducing an effective charge into a simple
stopping theory is valid, then, writing a stopping power S(Z;,Z,,v) dependent on
the projectile and target atomic numbers and on the projectile velocity, we can
define an empirical effective charge (Z))emp [26, 27],

(Z)eny| = S(21.229)/5(1. 220, (3.22)

relative to the proton stopping power in the same target. This definition makes
sense in the light of the Z7 dependence in the stopping equation (3.6). Experi-
mental stopping data for protons compared with carbon and iodine projectiles in a
range of targets up to Z, = 79 (Au) suggest that (Z})emp/Z; is independent of Z, to
within 10% [28]. This points towards some validity for the use of effective charge
and suggests the possibility of treating the projectile and target as separable
variables of the stopping problem.

Effective charge can also be defined theoretically, most commonly via so-called
stripping models. These arrive at an equilibrium charge by assuming that electrons
whose orbital velocities are lower than the velocity of the projectile ion are
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stripped away by collisions with electrons of the target medium. With a Thomas—
Fermi model of the atom, the electron orbital velocities are v, ~ Z%/ 3vo and we can
write a much used stripping criterion [3],

(Z})gip = (1 = exp(—v/Z{*w)) Z1. (3.23)

Clearly the effective charge concept is overly simple. One possible complication,
analysed by Brandt and Kitagawa [29], is that the charge felt by an electron of the
target interacting with a projectile carrying with it a distribution of bound charge
will depend on its impact parameter with the nucleus. This leads us to expect that,
even for a given net charge (Z; — Nyouna)e, the stopping power will still have a Z;
dependence: it should increase with increasing atomic number. Experimental data
for ions of boron through to fluorine of fixed charge in (111) channels in gold
reveal the expected effect [29]: for example, S(N°*) > S(C3") > S(B>"). The
variations in these data are also well captured by a theoretical model proposed by
Brandt and Kitagawa and incorporating the effect of a spatial distribution to the
effective charge [29].

A valid effective charge theory would be able to provide estimates of heavy ion
stopping powers. This would be done by multiplying some reference stopping
power (normally taken to be that of a proton or alpha particle in the same target
medium, for which comprehensive data are available) by the velocity dependent
effective charge predicted by the model. Alternatively the effective charge could
be used as an input to a theoretical model of stopping power. Both these
approaches will be complicated by the fact that the stopping power as a mean over
the fluctuating charge state of a projectile ion, (S(Q)), will not in general be equal
to the stopping power at the mean charge, S({Q)).

A more important point is highlighted by Sigmund [30]: the utility of an
effective charge theory is dependent on the stopping of heavy ions and the stop-
ping of the projectile in the reference data-set being governed by the same physics.
Yet we have no reason to expect that a singly ionized gold ion will behave in the
same way as a proton. Where effective charge theories have been validated by
experiment [28, 29] attention tends to have been focused on the high velocity
regime. In this case the projectile particles will be highly ionized and poorly
screened and the problem of almost bare particle stopping is most susceptible to an
effective charge treatment. At lower velocities, where the effects of screening and
bound states become significant, any attempt to incorporate these effects in an
effective charge model is likely to result in a model so clumsy that a direct
calculation of heavy ion stopping powers, ignoring any reference data-set, will be
at least as straightforward [3].

3.2.4.2 Non-Perturbative Models of Heavy Ion Stopping

As discussed previously, the key differences in moving from light to heavy particle
stopping arise because of the much stronger interaction between the projectile
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particle and the electrons of the target medium. Models attempting to capture these
effects must move beyond the perturbative treatments of the Bohr and Bethe
theories. Much work has been done over the last decade on models of fast, heavy
ions, with the result that there now exists a varied class of models that have the
ability to make predictions of stopping powers in good agreement with experi-
mental data. Once again, we will not attempt a comprehensive survey of these
models, but rather discuss their general nature, the information that they require to
function and the results that they predict. More information can be found in the
discussion and references in Sigmund’s book [5].

Broadly speaking, the aim of all the models considered in this section is to take
data derived from experiment or from other theoretical calculations and to use
these to predict stopping powers as a function of projectile energy for a given
combination of projectile and target species. The aspiration is that this should be
achieved without the use of any adjustable parameters. The approaches taken by
different researchers are diverse: both classical and quantum mechanical models
exist; some rely on straight analytical calculations and others incorporate an ele-
ment of dynamical simulation.

Sigmund and Schinner [31, 32] have developed what they call the Binary
Theory, which uses Bohr’s classical approach to calculate energy transfer in col-
lisions between the projectile and electrons bound to the target ions. The approach
is extended beyond the perturbative regime by using a screened interaction
potential to mimic the effect of the electronic binding. There is intuitive sense to
this approach; the principal effect of the binding of electrons is to reduce the
energy transfer at larger impact parameters and similar behaviour occurs when the
interaction potential itself is screened. Information concerning the binding fre-
quencies {w;} of the electrons is thus encoded in screened potentials,
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V() = -2~

e, (3.24)
and the stopping cross-section due to each electron is calculated independently. In
the above expression we can identify the adiabatic radius v/w; acting as a decay
length in the potential. Various of the corrections discussed in Sect. 3.2.3 can be
included in the Binary Theory. The Barkas correction is automatically included,
because the scheme is non-perturbative. Screening of the projectile charge with a
radius ay, (not to be confused with the screening in (3.24), used to represent the
effect of binding) can be added to the interaction potentials,

2 2
V(r) = 7M67rwj/v — Meﬂ/u’
r r
I (wj>2+ ! (3.25)
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Sigmund and Schinner have also implemented quantum mechanical corrections at
higher velocities and shell corrections and they give an approximate treatment of
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projectile excitations by repeating calculations with the roles of projectile and
target exchanged.

To produce predictions of stopping power, the basic Binary Theory requires
data on the atomic binding frequencies w; of the target electrons and their relative
strengths (occupations) f;. Significantly it also requires knowledge of the effective
charge (Z; — Nyound)e-

With all the corrections included, the model compares well with experimental
data (from the database of Paul [16], discussed in Sect. 3.2.4.3, below) for a range
of projectiles (3 < Z; < 18) in N, Al, Ni and C targets over a range of energies
from 1 keV/amu to 100 MeV/amu.

Griiner et al. [33] present a second classical scheme in which the classical
trajectory Monte Carlo method is used to model the interaction of a small number
of target nuclei, a projectile nucleus, and their associated electrons. Classical
equations of motion are used to calculate the evolution of the system of electrons
and nuclei for a statistical sample of starting conditions. This model requires
knowledge of the binding energies and occupations of the electronic orbitals, but
unlike the Binary Theory it provides information about the charge state of the
projectile as an output rather than needing it as an input. Another feature of the
model is that, because all the constituent particles are treated explicitly, infor-
mation about the relative contribution of various energy exchange processes to the
stopping power is available. In a simulation of a 1 MeV/amu Ni ion in a gaseous
Ar target [33], 80% of the energy loss is attributable to target ionization, 12% to
target excitation and 20% to electron capture by the projectile. Projectile excitation
is found to have a contribution of —13% (an accelerating effect) due to polari-
zation of the projectile electrons by the ionized target. Like the Binary Theory, the
model of Griiner et al. gives good predictions. Simulations of a 1 MeV/amu Ni
projectile in solid carbon agree with experiment to within 2.8% and 3.7% for the
steady state charge and steady state stopping power respectively.

Some other stopping models have a quantum mechanical foundation. Grande
and Schiwietz [34] developed the Pertubative Convolution Approximation (PCA)
in an effort to obtain stopping power predictions with the accuracy of full quantum
mechanical calculations, but with much less computational effort. The PCA takes
the form of an integration over the electron density p of the target to give the
energy transfer AE from the projectile to the target electrons as a function of
impact parameter,

AE(b,v) :/dz/dzrlK(b—rhv)p(m,z). (3.26)

The integral is carried out in cylindrical polar coordinates about a z-axis through
the target nucleus and parallel to the projectile velocity. The function K(b, v) gives
the energy transfer to an electron at impact parameter b from a projectile with
velocity v. The form of K(b, v) is given in [34] and treats close collisions as free
and distant collisions within the perturbative approximation (as for the Bethe
theory). To make predictions, the model requires the projectile screening function,
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the electron density of the target and the oscillator frequencies and oscillator
strengths of the target as inputs.

The original method is perturbative, but Schiwietz and Grande [35] have also
developed an extension to the PCA called the Unitary Convolution Approximation
(UCA), which extends the applicability of the scheme to high Z;. Comparisons of
AE as a function of b and of Z; with intensive quantum mechanical calculations
[36] show good and very good agreement respectively. Data for the stopping of
oxygen in Al and Si across an energy range from 0.1 MeV/amu to 100 MeV/amu
show good agreement with experiment [37].

The above models stand or fall on their ability to make accurate predictions of
stopping powers, that being the reason for their construction. Two important
experimental studies by Blazevic et al. [38, 39] have provided data for testing the
predictions of the models. Blazevic et al. separated out the initial charge states of
Ne ions before firing them through thin carbon films and measuring their final
charge state and energy. They were then able to determine the charge-dependent
stopping power of carbon for neon and the cross-sections for charge changing
processes. In reference [38] Blazevic et al. compared their results for charge-
dependent stopping against predictions from the Binary Theory of Sigmund and
Schinner and the UCA method of Schiwietz and Grande amongst others. The UCA
agrees almost to within experimental error. The Binary Theory performs less well,
because it shows too weak a scaling with projectile charge when compared with
the experimental results.

In this section we have discussed a selection of the sort of models currently
being used to calculate stopping powers for fast, heavy ions. All of these models
require input concerning the excitation spectrum of the target and focus their
efforts on processing this information through some model of the collision
dynamics to work out how these excitations will be stimulated. As such, none of
the models can be considered as ab-initio in character. A more damning charge,
perhaps, is that most modern stopping models (that of Griiner et al. being a notable
exception) also require specification of the effective charge of the projectile. As
we discussed in Sect. 3.2.4.1, this concept is ill-defined and represents at best some
sort of average of the real fluctuating charge. Moreover, at least in principle, much
physics could be hidden within a carefully chosen velocity- and target-dependent
effective charge. In that case it would be hard to determine just how much of the
job of predicting the detailed variation of the electronic stopping power was falling
to the model and how much was already embodied in the input parameters.

If we are to evaluate these stopping models on their ability to make predictions
alone (and the inherent complexity of many of them makes it difficult to see how
they could be used as tools to obtain much insight into the physics of the stopping
process) then they should perhaps be considered to be in competition with
empirical fitting and interpolation methods to be discussed in the next section.

One final point about stopping models for fast particles is worth making. Data
on their performance against experimental results shows that they can routinely
calculate electronic stopping powers across an energy range from tens of keV/amu
up to tens of MeV/amu for projectile ions in the “light” and “heavier” ranges
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(see Fig. 3.1 for the classification) in a wide variety of targets to within experi-
mental error (which can be as good as 2% at 50 MeV/amu, but as bad as 20% at
5 keV/amu [40]). Given this fact, and given that the stopping models’ primary role
is as predictive, rather than exploratory, tools, then we can perhaps regard the
problem of predicting the stopping powers of fast and intermediate velocity ions as
solved, at least for the time being. The practical justification for further refining
stopping power predictions for fast ions is not immediately clear and the appli-
cations shown in Fig. 3.1 suggest that more work on the stopping of slower and
heavier projectiles is needed. In this regime the physics is more complicated and
the theoretical and experimental literature much more sparse.

3.2.4.3 Empirical Models of Stopping Power

If all we desire is predictions of stopping powers for arbitrary projectile speeds and
projectile and target species, then, rather than develop analytical models of the
stopping process, a more direct approach is to take the range of experimental data
and develop a robust scheme to interpolate and extrapolate from them. Such an
approach sacrifices much opportunity for physical insight, but is not significantly
worse off in this respect than some of the more complex and obscure analytical
models considered above. Empirical fitting schemes are still much used to provide
parameters for other calculations or for molecular dynamics simulations.

We can see how an empirical fitting scheme might be plausible if we examine
some useful scaling relations in experimental stopping power data. Figure 3.5
illustrates how data-sets for different targets and projectiles can be superimposed
via some simple transformations. The fitting process then needs only to capture the
underlying shape of the stopping power curve as a function of projectile energy
and any structure in the data not dealt with by the scaling relations.

We will briefly consider two of the most widely cited fitting schemes. First, that
of Ziegler et al. [2], implemented in the SRIM code* [10]. Their approach begins
with proton stopping powers, S(Z; = 1,Z,,v), and scales them by an effective
charge fraction y such that,

S(Z1,2,v) = Z39*S(Z) = 1,25, v). (3.27)

The proton stopping powers are calculated using the local density approximation
of Lindhard and Scharff [41], in which the stopping power of a target medium is
written as an integral over the electron density of the medium, n(x),

S(Zi = 1,2,,v) = /dxne(x)S(Z] = 1,n), (3.28)

* SRIM stands for ‘the stopping and range of ions in matter’.
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Fig. 3.5 A demonstration of
how simple scaling
relationships (b) can capture
much of the behaviour of the
electronic stopping power
(a) for a variety of projectile
and target combinations. The
scaling of stopping power by
1/73 is informed by the pre-
factor in the fast particle
stopping theories (3.7),
(Sect. 3.2.2.2) and (3.11) and
the normalisation of the
particle velocity by 1/Z7> is
suggested by the Thomas—
Fermi scaling of electronic
velocities. (Data are from the
database of Paul [16].)
(Reprinted figure 8 with
permission from Race, C.P.,
Mason, D.R., Finnis, M.W.,
Foulkes, W.M.C., Horsfield,
A.P., Sutton, A.P.: The
treatment of electronic
excitations in atomistic
models of radiation damage
in metals. Rep. Prog. Phys.
73, 116501 (2010). Copyright
(2010) by the Institute of
Physics Publishing Ltd.)
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where S(Z; = 1,n,), the stopping power for a proton of a free-electron gas of
constant density n., is calculated using dielectric stopping theory (see
Sect. 3.2.5.2). To achieve good agreement with experimental proton stopping
powers, an empirically fitted multiplicative factor varying between 1.0 and 1.2 is
included in the model. A second empirical function is used to provide the ioni-
zation state of the projectile as an input to a calculation of the effective charge.

The second scheme that we will consider is due to Paul and Schinner [42, 43]
and is implemented in the MSTAR code [16]. The model uses stopping data for
helium as the experimental reference and fits the quantity,

S 5(217227v)/212
rel — 5
S(Zy =2,2,,v)/(2)*

(3.29)

as a function of Z; and v. A three parameter fitting function is used to fit data at
each value of Z; and then the parameters are themselves fitted as functions of Z;.
This results in a universal fitting scheme.
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Paul and Schinner [44] have compared experimental data for the stopping of
carbon projectiles in amorphous carbon targets with the predictions of several
empirical fitting and theoretical models. The fitting models of Ziegler et al. and Paul
and Schinner give an understandably good match. Sigmund and Schinner’s Binary
Theory [31, 32] shows a similarly good performance for projectile energies from
1 keV/amu to 100 MeV/amu. The UCA (Unitary Convolution Approximation), of
Grande and Schiwietz [37], though performing well at higher energies, significantly
underestimates the stopping power for projectiles with energies below 1 MeV/amu.

3.2.5 Models of Slow, Heavy Particle Stopping

When we considered the subject of effective ion charge, we remarked that strip-
ping models of the degree of ionization of the projectile work reasonably well at
high velocity, lending support to the concept of an effective charge. However,
when projectile velocities fall below the Bohr velocity, vy = e?/4negh, we start to
see the effects of atomic structure in experimentally measured stopping powers.
The observed oscillation in the stopping power as a function of projectile atomic
number is referred to as Z;-structure and predicting its behaviour requires a dif-
ferent class of analytical models

We will now turn our attention to just such models: designed to predict the
stopping powers of slow, heavy ions (i.e. those with kinetic energies significantly
below 1 MeV/amu). First we will consider three of the earliest models to tackle this
problem, two of which treat the stopping problem within the framework of binary
collisions and the third of which considers the electrons as a continuous stopping
medium. Later, we will go on to consider more recent efforts in this area.

3.2.5.1 Binary Models of Slow Particle Stopping

Two models that calculate the electronic stopping power by considering the
excitation of electrons during binary collisions between the projectile and a target
ion are those due to Firsov [45] and Lindhard and Scharff [46]. Both models
continue to be much cited up to the present day.

Firsov’s model considers the target and projectile ions to form a quasi-molecule
during the period of their interaction. The inelasticity of the collision is then
attributed to the exchange of electrons between the two ions. An electron swapping
association from the (initially stationary) target atom to the (moving) projectile
atom must receive an impulse to increase its momentum. The associated increase
in kinetic energy is assumed to come from the colliding ions. Firsov [45] used a
Thomas—Fermi model of the ions to predict an energy loss during a collision of

i 7 7 5/3
AE =035 — &+ 2)1/3 :
a0 1 +0.16(Zy + Z2)"° Fmin /a0

(3.30)
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where rp;, is the distance of closest approach and ay is the Bohr radius i /mee?.
The energy loss is proportional to the relative velocity of the two ions, v, because
the momentum change associated with electron exchange is proportional to v.
Lindhard and Scharff [46] published an alternative formula, once again based
on a Thomas—Fermi model of two colliding ions, but never gave a derivation. A
similar, more general result, derived by considering the scattering of the electrons
of the target atom by the screened field of the projectile, has been given by Tilinin
[47]. If a Thomas—Fermi model is used then Tilinin’s model predicts an electronic
stopping power,
2
S— 8mnee aOZIZf3/Zr(E7Z1/Zz)17 (3.31)
(212/3 +Z§/3) Vo

where the function t is the result of an integral over the electronic densities
experienced during the collision. Lindhard and Scharff’s original formula [46] is
equivalent, except that 7 is replaced by an empirical constant £, ~ 1 — 2. As long
as v is not too small, then t© ~ 1 and Tilinin’s formula (3.31) approaches that of
Lindhard and Scharff. The most important feature of (3.31) (and the one most
often made reference to in recent literature) is the proportionality of the stopping
power to projectile velocity. This feature is shared with the stopping power
implied by Firsov’s formula (3.30).

Neither Firsov’s model nor that of Lindhard and Scharff predicts any Z;-
structure, because they make use of a simple model for atomic structure. They also
fail to take account of a similar fluctuation in stopping power with the atomic
number of the target, known as Z,-structure, though in principle, with a suitable
atomic model, both effects could be accounted for.

3.2.5.2 Electron Gas models of Slow Particle Stopping

An alternative approach to the modelling of slow particle stopping, and one that
seems particularly well suited to handle metallic targets, treats the electrons of the
stopping medium as a continuous system through which the projectile moves. An
early discussion of such models by Fermi and Teller [48] pointed out that since the
maximum energy transfer to an electron will correspond to the case of a head-on
collsion with the projectile, only those electrons with velocities within v of the
Fermi velocity vg will be permitted by exclusion to take part in the stopping
process. The final result of their analysis is a stopping power

2meetv hvg

once again proportional to the projectile velocity.

A little later, Lindhard [49] gave a more general treatment. His model attributes
the stopping power to the electrostatic force exerted on the projectile by the shift
in the target electron density caused by the electric field of the projectile charge. The
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total electric potential ¢(x, t) at any point x and time 7 is allowed to depend on the
potential due to the projectile ¢p.o;(X', ) at points X and times 7' in the past via,

o(x,1) / dr /dxe X =X, 1= 1) po; (X', 1), (3.33)

! is a linear operator. In Fourier space, this relationship is,

where ¢~

¢(q7 w) = d)Proj (q7 (U) (334)

1
€(q, »)
and the response of the electron system to the intruding projectile is characterized
by a frequency- and wavevector-dependent dielectric constant €(q, w). Such a
dielectric constant introduces a history dependence into the system that allows for
a finite response time of the electron gas to the potential due to the projectile. The
model predicts that the centre of the screening cloud around an intruding charge
will tend to lag behind, giving rise to a retarding force on the charge.’ Lindhard’s
[49] expression for this retarding force is

£ [ Wf) oo

in which §{-} indicates the taking of the imaginary part. Ritchie [50] has published
an alternative derivation of (3.35) in which he treats the problem of finding the
induced charge density directly within first order perturbation theory, without
introducing a classical electric field. Lindhard [49, 51] has given results for lim-
iting cases of low and high projectile velocities. At high (but non-relativistic
velocities) the stopping power reduces to the Bethe formula (3.11) and at low
velocities to the Fermi-Teller formula (3.32).

3.2.5.3 Non-Linear Calculations of Electron Gas Stopping

Lindhard’s stopping power formula (3.35) arises from a perturbative treatment of
the effect of the charged particle on the electron gas of the target. Unfortunately, at
typical metallic densities, and particularly at lower projectile velocities a non-
perturbative treatment is necessary. We will consider this issue only briefly; a
detailed account of electron gas stopping theories is to be found in the review by
Echenique et al. [7]

Calculations of the screening of a stationary proton in a free-electron gas
carried out by Almbladh et al. [52] using Kohn-Sham density functional theory
(DFT) [53] highlight the deficiencies of a linear (perturbative) treatment. When
the DFT calculations are compared to linear response calculations using the Kohn—
Sham DFT form of the dielectric function the latter are found to underestimate the

3 At higher velocities v > vy, this simple picture of a retarded screening response becomes much
more complicated. For instance, strong oscillations appear in the induced charge density. A full
discussion of these so-called wake effects is included in the review by Echenique et al. [7].
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Fig. 3.6 Results of calculations for a proton in a free-electron gas of varying density, indicated
by the one electron radius r, = (3/47m n.)"">. The screening length is indicated for linear response
(orange vertical crosses) and non-linear DFT calculations (red diagonal crosses). Distances are
given in atomic units, ag = 0.529 A. Also plotted, on the right-hand axis, are the ratio of the
charge density at the proton position to the background density for linear response (purple
squares) and non-linear DFT calculations (blue circles). (Data from Almbladh et al. [52].)
(Reprinted figure 4 with permission from Race, C.P., Mason, D.R., Finnis, M.W., Foulkes,
W.M.C., Horsfield, A.P., Sutton, A.P.: The treatment of electronic excitations in atomistic models
of radiation damage in metals. Rep. Prog. Phys. 73, 116501 (2010). Copyright (2010) by the
Institute of Physics Publishing Ltd.)

extent to which charge piles up around the proton and overestimate the variation in
the screening length (see Fig. 3.6).

Time-dependent DFT calculations (see [54] for a review of the relevant theory)
of the stopping power for slow (v < vg) hydrogen and helium nuclei in an electron
gas [55] reveal the difference between a linear and a non-linear treatment. The
results are shown in Fig. 3.7: the non-linear calculations show a more rapid
decrease in stopping power as the electron density is reduced, due to the formation
of bound states that screen the nuclear charge. At high densities, the electron gas
screens the nuclear charges so efficiently that no bound states may form and the
results of the linear and non-linear calculations converge. At lower electron gas
densities the stopping power for helium is predicted by the non-linear calculations
to be lower than that for hydrogen. This feature would never be predicted by a
linear theory and arises because the higher nuclear charge of a helium atom is
more effective at producing bound states.

Similar non-linear calculations for higher atomic number projectiles by
Echenique et al. [55] reveal Z;-structure. Figure 3.8 shows the effective charge,
defined here as the ratio of the calculated stopping power for a particular value of
Z, to the calculated stopping power of a proton, as a function of projectile atomic
number. The results show strong oscillations with troughs at Z; = 2, 10, 18,
corresponding to stable filled shells of bound states. Higher density electron gases
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Fig. 3.7 Stopping powers as 10’
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screen the nuclear charges more effectively, making it harder for bound states to
form, and the pattern shifts upwards in atomic number.

As a final demonstration of the importance of a non-perturbative treatment,
Fig. 3.9 shows results of calculations by Arista [56] of the Z; dependence of the
stopping power for bare ions of a free electron gas with a density equivalent to that
in carbon. These results show strong oscillations with atomic number for v < vy,
but they are all but gone by the time v = 2vy, as the increasing velocity makes it
harder for bound states to form. A comparison of Arista’s results with those from
the linear dielectric theory shows good agreement in the case Z; = 1. For Z; = 7,
however, the non-linear theory overestimates the stopping power by 60%. This
tendency to overestimate stopping is typical of perturbative theories.

3.2.6 The Gaps in Stopping Power Theory

From the point of view of informing classical models of electronic effects on the
evolution of radiation damage phenomena, stopping power theory, as reviewed
above, has several major gaps. We list them here to provide context for our own
work, described in part II of this thesis.
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Fig. 3.8 The effective
charge Z; of point charge
projectiles as a function of
atomic number Z; in a free
electron gas. Results are from
non-linear DFT and are
shown for several electron
densities indicated by the one
electron radius r; = (3/4n
ne)'. (Reprinted figure 8
with permission from
Echenique, P.M., Nieminen,
R.M., Ashley, J.C., Ritchie,
R.H.: Phys. Rev. A 33(2),
897-904 (1986). Copyright
(1986) by the American
Physical Society.)
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Fig. 3.9 The Z,-structure in the stopping power for bare ions in a free electron gas of density
equivalent to that in carbon at several projectile velocities (given in units of vy). (Reprinted from
Arista, N.R.: Energy loss of ions in solids: non-linear calculations for slow and swift ions. Nucl.
Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 195(1-2), 91-105 (2002),
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The concept of effective charge: Almost all the stopping models require some sort of
effective charge as an input. This is highly unsatisfactory for the reasons discussed in
Sect. 3.2.4.1. The charge on a projectile, to the extent even that it is well-defined, given
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the nature of screening and bound states, will tend to fluctuate constantly. Attempting
to capture all of this complexity in a single quantity might obscure some important
behaviour. It would be far more satisfactory if the charge were an output of a stopping
model or simulation (as it is in the model of Griiner et al. [33], discussed on page 49).

All the models predict a drag force: All of the stopping models examined above
predict that the electrons will remove energy from the ions through the action of a
drag force, directly opposed to the ion velocity. Such a drag is predicted directly
by those models that treat the electrons as a continuum. In the case of models that
examine binary collisions, a drag force emerges from a statistical treatment of a
series of collisions (particularly when one allows the inelastic nature of the col-
lisions to affect only the energies of the participating ions and not their directions
as in the binary collision approximation to be discussed in Sect. 3.4.1).

At lower velocities, the commonly applied stopping models also predict that the
drag effect will be proportional to the speed of the projectile. This proportionality
can be seen to arise fairly directly out of the form of the models, particularly in the
case of the collision based models of Firsov [45] and Lindhard and Scharff [46].

Certainly the drag force (possibly proportional to ion speed) emerges naturally
out of the models themselves, rather than being deliberately imposed and so
whether or not we believe the form of the force comes down to whether we accept
the validity of the approximations made in the various models. Experimental
validation of the predictions is difficult because they can only really be compared
against ion range distributions and stopping measurements in thin films. Such
validation thus involves comparison with average quantities and with statistical
distributions and we can perhaps imagine that a fairly broad class of stopping
models could, if appropriately parameterized, prove valid in such tests. A model of
electronic stopping that relaxed those assumptions that lead to the prediction of a
simple drag force would allow us to determine the size of the errors in the simpler
models. Whilst the plausibility of the assumptions in those simpler models sug-
gests that such errors will be small, we cannot be sure. Nor can we be sure of the
effects they will have on, for example, cascade dynamics, unless we look.

The models lack an environmental dependence: All of the stopping models that we
have examined treat the stopping medium as basically homogeneous. This is explicit
within the electron gas models and emerges in the case of the collisional models when
we consider their application in a simulation of a radiation damage process. Impor-
tantly, many-body effects (here classical many-body effects) are ignored, because
atoms are either entirely absent from the description or are treated only two at a time as
they take part in collisions. Such an approximation might well be valid for fast moving
ions (for example in the case of ion channelling), but seems unrealistic in the case of a
collision cascade displacement spike.®

® Note that some more recent work with time-dependent DFT (Campillo et al. [57] and Pitarke
and Campillo [58]) and a linear combination of atomic orbitals approach (Dorado and Flores [59])
is capable of predicting the stopping force on a channelling ion as a function of the distance of the
ion from the central axis of the path. Such models fall short of incorporating a full dependence on
the surrounding atomic environment, though.
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Overall, from the point of view of anyone attempting to incorporate electronic
effects into atomistic simulations of radiation damage events, stopping power
theory provides only a small part of the information required and leaves open most
questions about the more subtle effects.

3.3 The Electron—Phonon Coupling Regime

In the later stages of a collision cascade, when the initial PKA energy is shared
amongst many ions, the target system might resemble something between a molten
region and a system of phonons in a near perfect lattice, depending on the energy
distribution. A system in such a state seems inappropriate for a description in terms of
stopping powers and the radiation damage community has traditionally separated out
these lower energy problems into the so-called electron—phonon coupling regime.

Much of the vast literature on the subject of electron—phonon coupling is
concerned with the concept of the electron—phonon coupling in general (see for
example [60] or [61] for excellent accounts). In a radiation damage context, the
notion of electron—phonon coupling is best considered to refer to the interaction of
electrons and ions below some particular energy threshold. The electron—phonon
coupling regime seems to be defined more as that set of circumstances in which
electronic stopping theory does not apply than as that set of circumstances in
which the ionic system is well modelled by a set of phonons. Hence, here we will
focus on the work that directly addresses or informs atomistic simulations of
radiation damage and has been heavily cited in the radiation damage literature.

A further problem with applying results from the electron—phonon coupling lit-
erature to radiation damage studies is that it is not at all clear how to incorporate the
electronic effects into an atomistic simulation. A representation in terms of a drag
force has been argued for (see Sect. 3.3.3) and has been incorporated into simulations
within a Langevin framework (see Sect. 3.3.4), but such matters are far from settled.

Finally, even if it were clear how to implement the effects of electron—phonon
coupling within an atomistic simulation, extraction of data from the literature to
parameterize the model would remain fraught with ambiguity. Theoretical esti-
mates using different models and experimental measures of electron—phonon
coupling range across several orders of magnitude in a given material (as we shall
see in Sect. 3.4.2.2). Most radiation damage simulators therefore tend to consider a
broad range of parameterizations to cover the ambiguity.

3.3.1 The Importance of Electron—Phonon Coupling in Radiation
Damage

Despite the complexities discussed above, a sound understanding of the process of
energy exchange between ions and electrons in the electron—phonon coupling



3.3 The Electron—Phonon Coupling Regime 43

regime is very important if we wish to capture the evolution of a radiation damage
process correctly. Once a thermal spike has formed and most atoms over a large
region (~ 1,000 A) are significantly excited but few are moving ballistically, it is
reasonable to model the system as an excited ionic subsystem interacting with a,
likely initially much cooler, electronic subsystem. In such a model, the electrons
will act as a heat sink for the ions and, because of their relatively high thermal
conductivity, will provide an efficient means of removing energy from the cascade
region. The strength of the interaction between the ions and electrons can thus
have a significant effect on the cascade dynamics: rapid removal of energy from
the ions might inhibit production of defects in the displacement phase or it might
quench in defects in the relaxation phase. Alternatively, return of energy from the
electrons (acting as a heat reservoir) during the relaxation phase might serve to
anneal out defects and reduce the residual defect population.

The extent to which the role played by the electronic system might vary in real
materials was investigated by Flynn and Averback [62] in a simple model. Con-
sider a thermal spike formed by depositing an energy Q into a spherical region of
the target of radius r. The energy per ion will be Q(ro/r)3, where ry is the Wigner—
Seitz radius.” In terms of an ionic temperature T, the energy per ion can be written
as 3kgT,. The evolution of the thermal spike as it grows and cools will then be
described by,

1/3
r(t) (W%(ﬂ) ro- (3.36)

Turning to the process of energy exchange between ions and electrons, Flynn and
Averback consider the scattering of electrons from state to state by imperfections
in the crystal lattice, with the emission or absorption of phonons. The electron
mean free path, Jmg, (the distance travelled by an electron between scattering
events) is a measure of the rate of this scattering, and, when the ions are not much
displaced from their equilibrium lattice sites, this can be written

roTo

Jamfp = .0 where Ay < 1o, (3.37)

where Ty is the ionic temperature at which Ayg, = ro. In effect, the parameter 7
measures the strength of the electron—phonon coupling: a low value corresponds to
a strong coupling (a high rate of energy exchange).

If we compare the mean free path to the size of the thermal spike we have,

}“mfpz<3kB>l/3 To 3.38
W \e) 7 (338)

7 The Wigner—Seitz radius is defined as the radius of a spherical volume equivalent to the

volume per atom in the solid, i.e. %nrg = 1/n, for a number density of atoms n,.
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we can see that beyond some point in the evolution the cascade will have cooled
sufficiently that A.¢ > r. The electrons will then be heated only very ineffectively
by their interaction with the cascade.

Exactly when this qualitative change in the behaviour of the electrons takes
place will depend on the value of T,,. We can obtain values for this parameter from
the electrical resistivity using the formula [63] Zmg = (92 x 107'® Ohm m?)(rg/
pe(Trer) ad), where pe(T) is the electrical resistivity at a reference temperature
Trer and ag is the Bohr radius. If T is low (a high coupling), the electrons will tend
to heat into equilibrium with the ions throughout the evolution of a thermal spike.

Flynn and Averback consider the case of electrons diffusing out of a thermal
spike via a random walk involving (r//s,)” scattering events at each of which the
electrons acquire an energy kg®p, where ®p is the Debye temperature. These
electrons acquire a temperature T, = ®D(r/)»mfp)2. We can then define a critical
thermal spike temperature,

9k’

Torie = Q2—®B]33 Tg, (339)
above which the electrons will remain in equilibrium with the ions. Quoted values
for Ty of 4.5 x 10*and 1.5 x 10* K for copper and nickel respectively [62] imply
values for T, of 2 x 10° and 300 K, suggesting very different behaviours for the
two metals.

3.3.2 Two-Temperature Models

Another view of the potential importance of electron phonon-coupling can be
obtained if we consider a simple picture of interacting electron and ionic
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subsystems, each independently in equilibrium at their own temperatures, T, and
T, respectively, but out of equilibrium with one another. Such models are called
two-temperature models and form the basis of several atomistic simulation
schemes to be discussed in Sect. 3.3.4.

In a radiation damage thermal spike, the ionic subsystem will be initially hot
and we would expect our two-temperature picture of the evolution to have validity
as long as the rate of thermalization of the electronic subsystem is sufficiently high
when compared with the rate of energy transfer into the electrons. Often the
relevant time-scales are such that the picture should not remain valid (see the data
quoted in Sect. 8.1.3), but some of the work presented in this thesis (see
Sect. 8.1.3) suggests that the very nature of the electronic excitations can be such
that the validity condition can be considerably relaxed.

The evolution of a two-temperature model can be represented by heat diffusion
equations for the evolving spatial temperature distributions 7,(x, #) and T,(x, ) in
the two subsystems,

Ce(Te)gTe(Xa t) = vx[Ke(Te; Ta)vxTe] - gp(Tev Tﬂ)[Te - TﬂL (340)
Ca(Ta)%Ta(Xa 1) = VX[Ka(Ta)vXTa] + gp(Tev Ta)[Te - Ta}a (3.41)

where ¢, and c, are the electronic and ionic heat capacities per unit volume and .,
and «, are the electronic and ionic thermal conductivities, respectively. g,(Te, T,)
is the electron—phonon coupling (measured in W m> K~' or dimensionally
equivalent units).

Finnis et al. [64] extended the arguments of Flynn and Averback [62] to develop
a formula to estimate the value of g, in different metals (which will be discussed in
Sect. 3.3.4). They used such estimates to derive numerical solutions of (3.40) and
(3.41). These are shown in Fig. 3.10 and show a much more rapid cooling of the
ionic subsystem in nickel than in copper, again suggesting that the strength of the
electron—phonon coupling has a significant influence on cascade dynamics.

3.3.3 Representing the Electron—Phonon Coupling

We now turn our attention to how the effects of electron—phonon coupling might
be incorporated within an atomistic simulation. Finnis et al. [64] simplified the
two-temperature model, by noting that the ionic thermal conductivity will gen-
erally be small, to write,

dT. _ g

o o T, (3.42)
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This equation then tells us how quickly we need to remove energy from (or inject
energy into) the ions in an atomistic simulation to account for energy exchange
with the electrons. Exactly how that energy should best be removed (or injected) is
still an open question, but approximate methods, such as uniformly scaling down
(or up) the ionic velocities or applying a force parallel to the velocity, are gen-
erally used. In addition, a stochastic force is often used to represent energy transfer
from electrons to ions as part of a Langevin model.

If we follow Finnis et al. and elect to use a damping force, defined for the Ith
ion, with velocity v, as,

F[ = _ﬁlvla (343)

them this force will do work on the ion at a rate of —ﬁ,v%. If we introduce a
temperature per ion, T;, then this can be equated with the rate of energy transfer
due to the electron—phonon coupling 3 kgd7/df = (gp/c,)(T. — Ti). Identifying
the thermal energy due to the temperature 7; with the ionic kinetic energy, 3
kgT; = Mp; for ions of mass M,, allows us to write the drag coefficient

g, = S (T’;IT> (3.44)

Ca

When the ions are hotter than the electrons, a positive value for f5; will provide a
drag force, removing energy from the ions. In the opposite case of T, > Ty, f5; will
be negative and the ions will be accelerated.

3.3.4 Models of Electron—-Phonon Coupling

Once we have arrived at a model for incorporating the effects of electron—phonon
coupling within a simulation scheme we will require data to help parameterize the
model. Many analytical frameworks exist for calculating the electron—phonon
coupling g,. We will begin this section by considering the example due to Finnis
et al. [64], developed as an extension to the analysis by Flynn and Averback [62],
which is particularly physically transparent.

Finnis et al. [64] begin with an electron with mean free path Ang = roTo/T,
scattering from lattice distortions and acquiring energy kg®p in each event. If the
electronic velocity is assumed to be the Fermi velocity v, then the scattering rate
will be Vp/Amgp. Quantum mechanical exclusion means that only electrons close to
the Fermi level will be able to participate in scattering: ~ kgT.D(¢r) electrons will
take part if D(ep) is the electronic density of states at the Fermi level. We thus
arrive at a rate for energy acquisition by the electrons of,

dEe o kfzs @DD(SF)VFTaTe

3.45
dt roTo ( )
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Finnis et al. let T,— (T, — T,) in order to turn this into a net rate of energy
transfer. There is no physical argument for this substitution; it is simply an ad-hoc
change designed to give an energy transfer that vanishes when 7, = T,. We can
now write for the electron—phonon coupling,

k3 OpD(er)veT,
=3B "/"° 3.46
p = (3.46)
and a damping coefficient,
3®DCCVFM1 T[ — Te
= 3.47
bi 72roToca 7, ) (3:47)

where, again, c. and c, are the electronic and ionic heat capacities per unit volume
and the density of states D(&r) has been subsumed into ¢, = (7%/3)kgD(ep)Te.

Though the literature contains other, more formal, treatments of the electron—
phonon coupling [9, 65, 66], they all reduce to a form similar to (3.46), with
different numerical prefactors depending on how well they capture details of the
true electronic and lattice structures. They generally begin by considering a
quantum mechanical ionic subsystem with phonons of energy %Q,(q) and
momentum /q. These phonons are populated according to occupation numbers
N(q,s), in which s indexes the phonon branch, and coupled to a quantum
mechanical electronic subsystem. The electronic states have energy ¢,(k),
momentum %k and occupations f(¢,(k)), where v is a band-index. At equilibrium
f(e(k, v)) will be a Fermi-Dirac distribution and N(q, s) a Bose-Einstein distri-
bution. The electron—ion interaction will cause electrons to scatter from states
(k, v) to states (K, v') with the emission or absorption of phonons (q, s). These
processes must conserve energy &y (k') — ¢&,(k) = 71Q,(q) and momentum k' —
k = q. If we treat the lattice distortion due to the phonons as a perturbation then a
Fermi’s Golden Rule (FGR) analysis [67] gives, for the rate of scattering with
energy transfer iw and momentum transfer q from ions to electrons [9],

F(qv (U) X Z Z Z 5Q§(q),w 5k’—k,q

s ky KV
X O(ey(K') — &,(K) — Q(q))|Viewev (4, S)|2 (3.48)
1 —f(ev(K)N(q,s)

x {f (e (K)[
—f (e (K)[1 = f(&v(K)] [N (q, 5) + 1]},

where Vivk'v/'(q, s) is the coupling between electronic states (k, v) and (k’, v') by
the lattice distortion due to the phonon mode (q, s). Of the terms in braces, the first
corresponds to the stimulated absorption of a phonon and the second to stimulated
and spontaneous emission of a phonon. The rate of energy absorption by the
electrons is thus given by,

d(ie - / dwhw;r(q,w). (3.49)
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The various models of electron—phonon coupling basically differ in how they
approximate the formulae (3.48) and (3.49). As an example, Kaganov et al. [66] treat
the case of a free electron gas and find, if the electrons and ions are not too far out of
equilibrium (T,>>0®p, |T, — T.|<T,) an electron—phonon coupling constant,

nmenevf

8 = 6T, (3.50)

where 7. = Amg/VE is the electron—phonon scattering time and vy is the speed of
sound in the lattice. This has the same form as the result (3.46) due to Finnis et al.
[64]. In fact the two formulae are equivalent under the transformation,

2 [108x2\ '’ T2
€_><Z_2> o (3.51)

where z is the number of valence electrons per atom in the free-electron gas of
Kaganov et al. [66].

We remarked earlier about the considerable uncertainty involved in selecting a
numerical value of the electron—phonon coupling from the literature. To highlight
this, table 3.1 presents a selection of literature estimates of g,. It includes values
calculated by Finnis et al. [64] using (3.46) and values calculated using the same
formula by Gao et al. [68]. These differ by approximately a factor of 2 due to the
choice of values for Tj.

Theoretical values calculated by Wang et al. [69] and Qiu and Tien [71] using
the formula (3.50) due to Kaganov et al. [66] are also included. The large dif-
ferences in the values for chromium and vanadium are due to differing assump-
tions about the number of valence electrons contributing to the free electron gas
density: Wang et al. assume 7, = n,; Qiu and Tien assume a variable ratio 0.5
< nJn, < 2.0.

The large difference between the values for nickel calculated using (3.46) and
(3.50) is due to the presence of the electronic density of states at the Fermi level in
the former. This is particularly high in nickel (compared, say, to copper) and thus
implies a large electron—phonon coupling. This band structure dependent effect is
absent from the free-electron based formula (3.50).

Table 3.1 also shows examples of experimental values for the electron phonon-
coupling. These values are selected from those collected by Qiu and Tien [71].
They are derived from short pulse laser heating experiments (see [72, 73] for
examples, [74] for a review) in which the relaxation to equilibrium of an electronic
system is monitored following excitation by a laser pulse of ~ 100 fs duration.
These experimental values show better agreement with calculations using (3.50)
than with those using (3.46), despite the presence of more band structure depen-
dent effects in the latter formula.

For each method individually, the values of electron—phonon coupling vary by
several orders of magnitude between weakly coupled gold and strongly coupled
vanadium. We might thus expect any effects of electron—phonon coupling on
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Table 3.1 A sample of experimental and theoretical estimates of the electron—phonon coupling
gp from the literature

Theoretical Experimental
Equation (3.46) Equation (3.50)
Finnis et al. [64] Gao et al. [68] Wang et al. [69] Qiu and Tien [70] Qiu and Tien [70]
\% 4,803% 183 648 523 £ 37
Cr 179 45 42 +5
Fe 1815.0 119
Ni 3,164.1 1714.5 107
Cu 819 40.1 (36.4%) 12.7 14 4.8 +£0.7
Ag 9.4% 3.34 3.1 2.8
Au 14.2% 2.3 2.6 2.8 £ 0.5
W 27.6 27 26 + 3

All data given in units of 10'® W m™> K~' . See main text for a discussion of the trends and
variation in the values. (This table was prepared by the present author for inclusion in reference

[1].)

# Calculated by the present authors using the approach of Gao et al.

cascade development to be strongly material dependent. Equally importantly, for
any given material, the estimated values of g, vary by over an order of magnitude.
This fact makes it difficult to choose the values of the coupling parameters in a
simulation scheme.

3.4 Electronic Effects in Atomistic Models of Radiation Damage

In the previous two Sects. 3.2 and 3.3, we discussed various models for the
effect of electrons on ion dynamics in two distinct regimes of the evolution of
radiation damage events. In this section of our review we will introduce the
various approaches that have been taken to directly simulating such events and
discuss the ways that electronic effects have been incorporated. These methods
of incorporation are most frequently informed by and parameterized using the
models of electronic stopping and electron—phonon coupling that we have
considered.

3.4.1 The Binary Collision Approximation

The earliest computer simulations of radiation damage events were carried out in
the so-called binary collision approximation (BCA) (see Yoshida [75] for an
example). These treat a radiation damage cascade as a series of binary interactions
between ions in a target material. A typical BCA simulation begins with a PKA
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with some initial kinetic energy 7, moving through a simulation cell containing
other ions. This PKA moves with constant velocity until it comes within range of
another ion. At this point the two ions are assumed to collide and the resulting
velocities of the projectile and the target are calculated using simple scattering
theory under an assumed potential. After each collision the projectile and target
atom are treated differently depending on their kinetic energies. If 77, is the kinetic
energy transferred to the target and 7, is the remaining projectile kinetic energy
then there are four possible outcomes:

1. Ty > Eq,Tp > E¢y : The target atom joins the cascade and both atoms go on to
undergo further collisions.

2. T, > Ejy, Tp <E.: The target atom joins the cascade and the projectile
replaces the target at its lattice site.

3. T\<E4, Ty, > Eq : The target atom remains on its lattice site and the pro-
jectile proceeds on a modified trajectory to undergo further collisions

4. T <Eq,Tp<E, : The target atom remains on its lattice site and the projectile
becomes an interstitial atom.

The cut-off energy E., is an additional simulation parameter whose value is
selected in order to improve the results. It does not necessarily have the same value
as the displacement threshold energy Ey.

Beyond the basic form of the approximation, different BCA schemes show
considerable variety. Some treat amorphous materials (see the early work of Oen
et al. [76, 77]), in which case target ions for collisions can be efficiently generated
at random around the mean free-flight path. Others treat crystalline materials; a
more demanding task given that target ions must be found by searching the lattice
around the projectile path.

BCA simulations provided much early insight into the dynamics of collision
cascades; it was early BCA simulations in crystalline lattices [78, 79, 80] that
provided a means of exploring anomalies in experimental range data in crystalline
targets [81] and confirmed the role of ion channelling. What is more, the relatively
low computational cost of BCA simulations (because the target material is gen-
erated ‘on the fly’) has ensured that they remain in common use up to the present
day. Though molecular dynamics provides a more realistic description of cascade
dynamics, with BCA codes it is possible to simulate large numbers of damage
events up to very high PKA energies, and thereby gather good cascade statistics.
Two much used codes are the SRIM code [10] for simulations of amorphous
targets and MARLOWE [82] for the treatment of crystalline targets.

However, the BCA contains some major deficiencies. First, the model of the ion
dynamics is highly prescriptive and so does not allow for processes such as the
recombination of interstitial defects and vacancies. If the initial and final positions
of the ions are recorded [83, 84] then an initial defect population can be deter-
mined. It is then possible to add in a recombination phase, either by simply
assuming some interaction radius within which recombination will take place, or
by implementing a period of diffusive defect motion [385].
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A second, and much more significant, deficiency of the BCA is its represen-
tation of the cascade dynamics. There is ambiguity in how the evolution of a series
of binary collisions is to be followed; the question of which collision should be
considered next is tackled in various ways in the literature. Because the ‘true’
chronology of the cascade is uncertain, there is also no obvious way of deter-
mining how the developing cascade should be allowed to interact with existing
defects.

Third, there is the matter of how electronic effects are incorporated. The earliest
simulations took no account of energy loss to electrons, but later codes use models
like those of Firsov [45] and Lindhard and Scharff [46] (see Sect. 3.2.5.1) to
calculate an inelastic energy loss during the collisions. It is not immediately
obvious that this approach would be valid, particularly when the evolution is
dominated by glancing collisions (e.g. in channelling) or by head-on collisions
(e.g. in replacement collision sequences). The fact that ion range distributions
predicted by BCA simulations agree well with experimental data does not nec-
essarily confirm the validity of the electronic loss model, for similar reasons to
those given on page 61.

3.4.2 Molecular Dynamics Models

Classical molecular dynamics (MD) simulations achieve an improvement over the
BCA in terms of the realism of their modelling of cascade dynamics by including
an explicit representation of the ions. They represent a system undergoing radia-
tion damage as a set of point particles moving under some force model. Since the
1960s, computational power has been sufficient to allow the simulation of collision
cascades with MD (Gibson et al. [86] present an early example). We will not
discuss the use of standard MD to investigate radiation damage (various reviews,
such as references [87] and [88] provide details), but consider, rather, how the
effects of energy exchange between electrons and ions have been incorporated
within MD simulation schemes.

3.4.2.1 Molecular Dynamics with Electronic Drag

The form of the electronic stopping power predicted by various models in the slow
particle regime (Sect. 3.2.5) suggests an obvious way of incorporating the energy
loss from ballistic ions. Various MD models have explored the effects of a viscous
drag on cascade dynamics, and such a force has been used to represent not just the
electronic stopping power, but also the effect of the electron—phonon coupling,
consistent with the approach suggested by Finnis et al. [64] (see Sect. 3.3.3). Such
models consider ions moving under an equation of motion,

MR; = F; — BR;, (3.52)
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where F; is the force on ion I of mass M; due to the other ions under the chosen

interatomic potential. Ry, R1 and RI indicate the ion position and its time deriv-
atives and f5; is the drag coefficient. In the simplest models f3; is chosen to be a
constant for all ions.

Extensive studies by Nordlund et al. [89-92] using a constant drag coefficient
investigated the effect of electronic stopping power on the initial damage in col-
lision cascade simulations. The value of the drag coefficient was drawn from the
SRIM code [2] and assumed to act only on ions whose kinetic energy 7, exceeded
10 eV:

B, =PpT;>10eV

We will have more to say about such cut-offs in the electronic damping in
Sect. 11.1.1.

Based on their simulation results Nordlund et al. conclude that the electron—
phonon coupling has little effect on the initial damage distribution caused by a
collision cascade [89, 90]. This conclusion is based on comparisons between their
simulations and experimental data of the value of the mixing parameter, a high
level cascade statistic measuring the extent to which the original ionic configu-
ration has been disturbed. Nordlund et al. find that the variation between different
materials with very different predicted electron—phonon coupling strengths is well
reproduced by their model despite the fact that no effort is made to incorporate the
effects of electron—phonon coupling. Instead they attribute the variations in mixing
to differences in the inter-ionic potentials, leading to different elastic properties
and melting points and so to different cascade behaviour. The effects of such
material properties on cascade dynamics in MD simulations have been extensively
studied [89].

Zhong et al. [92] draw similar conclusions to Nordlund et al. They compare
defect yields in the self-bombardment of tungsten between simulation and
experiment, claiming agreement within ~30% for a model omitting electron—
phonon coupling effects.

The conclusions described above are, perhaps, too bold. Even if an MD model
without electron—phonon coupling were to replicate the experimental results per-
fectly, this would not necessarily indicate the unimportance of electron—phonon
coupling. For one thing, we would have to be careful about what aspects of the
cascade we were comparing; most cascade statistics are extremely high level and
represent the results of statistical averaging, and so it is plausible that they could
be accurately reproduced by a broad range of different models. Also, where
models contain free parameters, whose values are chosen with reference to
experimental data, it is possible for the fitting to compensate for the lack of a
model of electron—phonon coupling as far as the high level features of the cascade
are concerned, whilst perhaps giving very poor reproduction of the finer detail of
cascade evolution.
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Fig. 3.11 The evolution of the radius of the molten zone in cascade simulations in o-Fe.
Increasing the electron—phonon coupling strength dramatically increases the rate of cooling of the
cascade. (Reprinted figure 2 with permission from Gao, F., Bacon, D.J., Flewitt, P.E.J., Lewis,
T.A.: The effects of electron—phonon coupling on defect production by displacement cascades in
o-iron. Model. Simul. Mater. Sci. Eng. 6(5), 543-556 (1998). Copyright (1998) by the Institute
of Physics Publishing Ltd.)

Finally, the uncertainty in experimental results can be quite high (many tens of
percent) and so, given that the agreement with experiment claimed by Nordlund
et al. is in any case only to within 50%, there is ample room for electron—phonon
coupling to play a significant role even without quibbling with the logic behind the
conclusion.

Lending support to the potential importance of electron phonon-coupling is work
by Bacon et al. [68, 93]. In [68] they augment an MD model of a-iron with a
frictional force to represent the effect of electron—phonon coupling and examine the
differences in the later stages of cascade evolution (once a molten region has
formed) as the value of the drag coefficient is varied. They observe a dramatic
effect on the rate at which the molten zone shrinks (see Fig. 3.11) and a significant,
though less strong, effect on the number of Frenkel pairs produced (Fig. 3.12).

There is still considerable uncertainty about how electron—phonon coupling
should be treated in MD simulations. Given the scarcity of experimental data
against which to validate coupling models and the uncertainties in those data, more
realistic treatments of the interaction between electrons and ions could help to
resolve the issue.

3.4.2.2 Electrons as a Heat Bath

The electrons in a radiation damage process will do more than simply provide a
mechanism of ionic energy loss; we have already discussed how they will function
as a heat bath and how they can enhance energy transport out of the cascade
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Fig. 3.12 The number of Frenkel pairs produced in cascades with various PKA energies as a
function of electron—phonon coupling strength. (Reprinted figure 4 with permission from Gao, F.,
Bacon, D.J., Flewitt, P.EJ., Lewis, T.A.: The effects of electron—phonon coupling on defect
production by displacement cascades in a-iron. Model. Simul. Mater. Sci. Eng. 6(5), 543-556
(1998). Copyright (1998) by the Institute of Physics Publishing Ltd.)

region. In order to improve the modelling of electron—phonon coupling Caro and
Victoria [94] proposed modelling the electrons as a Langevin heat bath, in which
case the ions obey a new equation of motion,

MR, =F; +n,(t) — BRy, (3.54)

where f§; is a drag coefficient and #,(¢) is a stochastic force, distributed with
probability P()

(M) =0, (n(r)-n(t)) =2pkeTed(r - 1),
P(n) = 2n(n?)) " Pexp(—11? /2(n?)).

Since many of the models for electronic stopping power also predict a force
proportional to and opposed to the ion velocity, Caro and Victoria propose that
(3.54) could, in principle, capture the effects of electronic stopping and electron—
phonon coupling, provided that the differences in their magnitudes could be
accounted for. To achieve this aim they make the drag coefficient acting on a given
ion dependent on the local electronic density at its location. Since an ion under-
going an energetic collision will experience a much higher average electron
density than an ion oscillating about its equilibrium position, such a model is
plausible. It can also be implemented efficiently, since information about the local
electron density will be readily available in a simulation that makes use of
embedded atom model (EAM) potentials [95]. Caro and Victoria choose the form
of their f§ so that it matches the linear response theory of Kitagawa and Ohtsuki
[96] at high density and results derived from density functional theory by Eche-
nique et al. [97] at low density:

(3.55)
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By = Alog,o(ap;” +b), (3.56)

where p; is the electron density experienced by an ion at R; and A, o and b are
constants whose values are given in reference [94]. This fitting is entirely
empirical.

The model has been implemented by Pronnecke et al [98] and used to study
collision cascades in copper. Adding even a weak coupling is found to signifi-
cantly reduce the duration of 2.5 keV and 5.0 keV collision cascades.

A key deficiency of Caro and Victoria’s original model (and one acknowledged
in reference [94]) is the handling of the temperature dependence of the stochastic
force n(t). In Langevin dynamics at equilibrium we should have 7 o< /T,
according to the fluctuation dissipation theorem. For completeness, therefore, we
need some model for the evolution of the electronic temperature distribution. Caro
and Victoria avoid this requirement by assuming that the rate of heat transport by
the electrons is sufficiently high in comparison with the strength of the electron—
phonon coupling that the electronic system can function as a perfect heat sink,
remaining at some target temperature. However, excluding electronic heating
means the electrons cannot act to anneal out defects. Such an assumption also
makes it unlikely that the model will correctly describe cascades in metals with
strong electron—phonon coupling.

Duffy and Rutherford [99-101] have extended the model of Caro and Victoria
by representing the electrons as an inhomogeneous heat bath.® Once again the ions
obey a Langevin equation of motion as in (3.54),

MR, =F; +y,(t) — BRy,

but now the magnitude of the stochastic force #,(¢) is a function of a varying local
electronic temperature.

Duffy and Rutherford also adopt a different form for the damping coefficient f3;.
They represent the effects of electron—phonon coupling by a constant damping f,,
applied to all ions and the electronic stopping power by a second constant f

applied only to fast moving ions, R; > v, for some threshold velocity v,. Hence,

BI:ﬁp+ﬁs RIZVL;

. (3.57)
= ﬁp R] <.

B is derived from the SRIM code [2] (B/M; = 1 ps~" for bcc iron) and a variety
of values for f3, is explored (0.05 ps! < Bu/M; < 30 ps™'). v is set such that
%Mlvt2 is twice the cohesive energy.

Duffy and Rutherford coarse-grain the electronic temperature distribution into
cells of around 340 ions and evolve it according to a heat diffusion equation,

8 Similar models have been used by Ivanov and Zhigilei [102, 103] and Duvenbeck et al. [104—
106], but they include a less full description of the physics of energy exchange and so we will not
discuss them here.
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0T

Cepr = V(keVTe) — gp(Te — To) + &7,

(3.58)
where ¢, and x, are the electronic heat capacity and thermal conductivity. T, is an
average ion temperature over the N..; atoms of the coarse-graining cell,
3 1 1
—kpgT, = — —
) Bla

Ncell 7 2

MiR?, (3.59)

and T, is the equivalent average over only those N atoms with R, > vt. The
terms in g, and g, in (3.58) are source terms. The former corresponds to the work
done by the forces — ﬁpRl and #; and the latter arises because of the electronic

stopping force —ﬁSRl. The values of g, and g are dictated by energy conservation.

Rutherford and Duffy have explored the effect of electron—phonon coupling on
the development of 10 keV cascades in iron by varying f8, across the range of
literature values (see Sect. 3.3.4). Increasing the electron—phonon coupling ini-
tially increases the number of stable defect pairs formed (which can be attributed
to the freezing in of defects by more rapid quenching of the thermal spike), but at
higher values of f3, causes a decrease in the number of stable defects (which is due
to the reduction in the size of the cascade by the rapid removal of energy).

Duffy and Rutherford’s model also allows the effect of allowing the electronic
temperature to vary (in space and time) to be compared with the perfect heat sink
of Caro and Victoria. Use of the inhomogeneous heat bath tends to reduce the
stable defect yield at all values of f3, (see Fig. 3.13), but increase the maximum
number of defects formed at higher values of f, (see Fig. 3.14). Both the above
effects could be due to the return of energy from hot electrons to the ions in the
cascade. Such feedback would prolong the thermal spike, and so increase the
maximum number of defects formed, but also give prolonged annealing and so
reduce the final stable defect yield.’

The model due to Duffy and Rutherford and described above is a significant
improvement over earlier MD schemes with an electronic damping term. How-
ever, the effect of the electrons on the ion dynamics is still modelled only by a
simple damping force and the usual ad hoc distinction between the electron
stopping and the electron—phonon coupling regimes is still made. This distinction
is commonly drawn in terms of the character of the ionic motion: generally bal-
listic in the former regime and highly correlated and confined around the equi-
librium positions in the latter regime. However, molecular dynamics simulations
contain an explicit representation of the ionic system and so, at least in principle, it
should be possible to find some single framework that can account for the effect of

° Note that figures 3.14 and 3.13 cannot be properly interpreted at lower values of the coupling
(Bp/Mi <1ps~'). The electronic stopping power was not included in simulations using a
homogeneous thermostat (i, = 0) and so the impact of allowing the electrons to heat up is
entangled with that of a higher average damping unless f, > f.
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Fig. 3.13 The number of stable defect pairs at the conclusion of the cascade simulations as a
function of electron—phonon coupling. The plotted measure is related to the damping coefficient
by x = fpy/M;. The inhomogeneous thermostat, which allows for feedback of energy from the
heated electron to the ions, results in prolonged annealing and a reduced defect yield. Note that
the electronic stopping power (S/M; =1 ps") is only applied in the inhomogeneous case.
(Reprinted figure 6 with permission from Rutherford, A.M., Duffy, D.M.: The effect of electron—
ion interactions on radiation damage simulations. J. Phys. Condens. Matter 19(49), 496201
(2007). Copyright (2007) by the Institute of Physics Publishing Ltd.)

electrons across the whole range of ionic energies. The fact that a simple damping
force is used is a likely consequence of the fact that electronic stopping theory has
nothing to say about any additional subtleties that might exist.

One way that we might move forward, to develop a better model of electronic
effects going beyond a simple damping and no longer relying on an artificial
separation into “regimes”, might be to find a way to incorporate an explicit model
of the electronic system into radiation damage simulations. Part II of this thesis
describes work that begins this task. But first, the final section of this review will
consider some other, similar, attempts to move beyond simple augmented MD
models.

3.5 Improving the Models: Incorporating Electrons Explicitly

Although theoretical tools have recently been developed that allow for the simu-
lation of systems of quantum mechanical ions coupled to quantum mechanical
electrons (see references [107-111] for a discussion of correlated electron—ion
dynamics (CEID)), they are restricted by their computational complexity to the
treatment of only a few quantum mechanical ions. For the meantime they will
therefore be of only very indirect use to the study of radiation damage and we will
not consider them further here.
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Fig. 3.14 The peak number of (mostly unstable) defects measured during the cascade evolution
as a function of electron—phonon coupling (y = f,/M;). At high coupling, the use of an
inhomogeneous evolving electronic temperature distribution is seen to enhance the degree of
ionic mixing. The cascade is prolonged by the feedback of energy from electrons to ions. As in
Fig. 3.13 above, no simple interpretation of the data for y < 1ps~! is possible. (Reprinted figure 5
with permission from Rutherford, A.M., Dufty, D.M.: The effect of electron—ion interactions on
radiation damage simulations. J. Phys. Condens. Matter 19(49), 496201 (2007). Copyright
(2007) by the Institute of Physics Publishing Ltd.)

In contrast, currently available computational resources allow simulations of
quantum mechanical electrons coupled to classical ions in systems of hundreds of
atoms upwards, depending on the complexity of the model employed for the
electrons. Our own work, described in this thesis, is of this kind and we will
complete the current review by describing another piece of work in a similar vein.
A discussion of the differences between this and our own work will provide useful
context for later chapters.

Pruneda et al. [112] have undertaken time-dependent density functional theory
(TD-DFT)'® simulations of the channelling of protons and antiprotons in the
insulator lithium fluoride. Their aim is to investigate a threshold effect in the
electronic stopping power evident in experimental data [114-116]. The stopping
power is found to drop to zero below a certain velocity (0.1 vq for protons in LiF),
an effect attributed to the presence of a band gap, which imposes a minimum
energy on electronic excitations in the target.

Pruneda et al. [112] have run a series of simulations in a 4 x 4 x 4 unit cell
lattice of LiF (128 ions) using the Siesta TD-DFT code [117] with the adiabatic
local density approximation (ALDA) to the exchange-correlation energy. The ions
are held frozen at their perfect lattice sites and a proton or anti-proton is con-
strained to move down the centre of a [110] channel at a fixed velocity. Figure 3.15

10" See, for example, references [54] and [113] for details of the theory.
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Fig. 3.15 Electronic stopping power dE/dx as a function of particle velocity from time-
dependent DFT simulations of channelling in LiF. The results for protons are shown as filled
circles, anti-protons as empty circles. The crosses show results for protons when extra basis states
are added along the channelling particle’s path. (Reprinted figure 2 with permission from
Pruneda, J.M., Sanchez-Portal, D., Arnau, A., Juaristi, J.I., Artacho, E.: Phys. Rev. Lett. 99(23),
235501 (2007). Copyright (2007) by the American Physical Society.)

shows the results of the simulations for projectile velocities up to 0.6 vy and a
threshold effect is clearly evident at around the velocity suggested by experiment.

If the channelling particle is regarded as a periodic perturbation to the elec-
tronic system of the target, then its frequency will be determined by the rate at
which the projectile passes from one cell to the equivalent point in the next [118].
The threshold velocity can then be understood as corresponding to the minimum
possible excitation in the electronic system, in this case the band gap.

One potential problem with using TD-DFT to simulate radiation damage events
is that the high computational burden of the method restricts its application to
small systems of no more than a few hundred atoms. This high burden arises
because the calculation of the electronic forces on the nuclei requires that time-
dependent one-electron orbitals be calculated to high precision, which in turn
demands many basis states per atom. Also, calculation of the electronic Hamil-
tonian is inherently time consuming, requiring many three-dimensional spatial
integrals over the basis states.

The effect of finite system size effects on quantitative output from dynamical
simulations can be particularly severe (as we will discuss in the context of our own
work in chapter 6). Whilst Pruneda et al. state that their 128 atom super-cell (with
calculations at a single k-point) was chosen after “convergence tests” they also
make it clear that the values found for the stopping power were not converged.
Their results for the stopping power above the threshold are a factor of two smaller
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models. (Reprinted figure 21 with permission from Race, C.P., Mason, D.R., Finnis, M.W.,
Foulkes, W.M.C., Horsfield, A.P., Sutton, A.P.: The treatment of electronic excitations in
atomistic models of radiation damage in metals. Rep. Prog. Phys. 73, 116501 (2010). Copyright
(2010) by the Institute of Physics Publishing Ltd.)

than those found by experiment and the discrepancy is likely to be a finite size
effect. Indeed they find that adding extra hydrogenic basis states every 0.5 A along
the projectile’s path gives a ~75% enhancement in the stopping power.

This helps to illustrate that when simulating dynamical processes that depend
upon excitations of a quantum mechanical electronic system we must be especially
conscious of possible adverse effects of small system size. One great benefit of
Kohn—-Sham DFT is its ability to provide quantitatively accurate predictions, but
we should remember that the small system sizes used in DFT calculations are
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themselves an approximation. Convergence of the ground-state energy at a given
system size can in no way be taken as confirmation that predictions of dynamical
properties will be well-converged.

The fact that the effect of the approximation of small system size can easily
negate the accuracy of the electronic model in TD-DFT leads us to consider
making a different trade-off. In our work we adopt a more approximate model of
the electronic structure, thereby being explicit about our inability to produce
quantitative predictions. But this allows us to simulate much larger systems, giving
us greater confidence that we will have achieved true system size convergence and
that the conclusions of our gualitative investigations of radiation damage phe-
nomena will be sound. As a parallel and complementary endeavour to work such
as that of Pruneda et al. this has great appeal.
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Chapter 4
Theoretical Background

4.1 Overview

Our brief survey in Chap. 3 lays out the current state of the art in atomistic
simulations of radiation damage. The best models available for large-scale sim-
ulations, where by “best” we mean “having thrown away the least physics”, are
augmented classical molecular dynamics models. In classical MD only the nuclei
are treated dynamically, with positions and momenta evolved according to
Newton’s equations. The electrons are thrown away completely and their influence
on the ionic motion is added back in piecemeal to account for various effects of the
true electron—ion interaction.

Ordinary classical MD takes account of the largest of these effects: the action of
the electrons to provide bonding interactions between the nuclei is included in the
classical potentials in which the ions move. Models such as those of Bacon et al.
[1, 2, 3] and Nordlund et al. [4] include the additional effect of energy loss from
the ions to the electrons by adding a dissipative drag force to the ionic equations of
motion. Caro and Victoria [5] and Duffy et al. [6-8] go further still by allowing for
the reverse transfer of energy with a stochastic force term, thereby treating the
electrons as a heat bath, influencing ionic motion via the Langevin equations.

The alternative to throwing away the electrons and then imposing their effects
as some set of external influences on the ion dynamics is to leave them in the
dynamical system in the first place. Whether or not we can achieve superior results
with such an approach depends, of course, on the details of any proposed model.
But the potential for improvement is clear for four reasons:

1. The electrons are quantum mechanical;

2. The electronic subsystem has a detailed structure—the electronic structure;

3. This electronic structure depends in detail on the state of the ionic subsystem;
and,

C. Race, The Modelling of Radiation Damage in Metals Using Ehrenfest 67
Dynamics, Springer Theses, DOI: 10.1007/978-3-642-15439-3_4,
© Springer-Verlag Berlin Heidelberg 2010


http://dx.doi.org/10.1007/978-3-642-15439-3_3

68 4 Theoretical Background

4. The state of the electronic system depends on its own history and on that of the
ionic subsystem.

In accounting for the bonding effect of electrons, ordinary MD, in not too
extreme a circumstance, can do quite a good job. Potentials such as the Finnis—
Sinclair potential take account of the electronic structure in the second-moment
approximation and incorporate a dependence of the electronic structure on the
nearest-neighbour environment of each ion. Attempts to capture the exchange of
energy between ions and electrons do less well in addressing the above four issues.
In fact, only the local electron density dependent model of Caro and Victoria [5]
takes any account of electronic structure and its dependence on the atomic envi-
ronment in determining the strength of the drag force.

The first point, that the electrons are quantum mechanical, is the hardest to
interpret. There is no doubt that at typical metallic electron densities a ‘correct’
description of the electronic subsystem must be quantum mechanical, whereas a
classical description of the ionic subsystem will have broad validity. But ulti-
mately our interest in studying radiation damage is in the state of the ionic system,
specifically in the residual defect populations. We have no reason to expect in
advance that the full effect of the electrons on ionic motion cannot be adequately
represented via some set of classical degrees of freedom. Equally, however, we
have no reason to expect that it can.

Our intention in developing a more sophisticated model of coupled electronic
and ionic dynamics is therefore to explore the phenomena that arise due to energy
exchange processes in radiation damage simulations. Our results will allow us to
test the validity of the simpler classical models, to propose improved ways of
capturing electronic effects with classical degrees of freedom in an MD simulation
and maybe to predict new features in the system dynamics. In the rest of this
chapter we will describe the theory that underpins our chosen model. We will
explain what physics is thrown away at each point in the chain of approximations
that gives rise to the final form of the model. Only by understanding what is and
what is not accounted for in the dynamics of our system can we hope to correctly
interpret our simulation results.

We will begin by looking ahead with a brief description of our model system,
which we will define via a ‘recipe’, starting with a full quantum mechanical
description of the combined system of ions and electrons and gradually paring it
back via a series of approximations. Each stage in the process will be discussed in
full later in the chapter, whereupon the various approximations will be motivated
pragmatically (we need to arrive at a tractable set of equations for our chosen
application) and justified physically (we must not throw out the baby with the
bathwater):

1. We begin with a set of non-relativistic quantum mechanical nuclei and elec-
trons evolving via the time-dependent Schrodinger equation under a fully
interacting Hamiltonian.

2. We make the semi-classical approximation, choosing to treat the nuclei as
classical particles, interacting with quantum mechanical electrons.
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3. We make the single-particle approximation, treating a set of non-interacting
electrons.

4. We adopt a particularly simple tight-binding description of the electronic
system.

5. We adopt Ehrenfest dynamics as the description of the evolution of our semi-
classical system.

We will now discuss the above process in detail, and at the end of the chapter
we will consider what we are left with and what we might legitimately be able to
do with it.

4.2 The Semi-Classical Approximation

Let us begin by considering the participants in a radiation damage event: a set of
N, nuclei of masses {M;})" and atomic numbers {Z;})" and a set of N, electrons

of masses m.. The positions and momenta of the nuclei will be described by
position and momentum operators {R;}}", and {P;})", respectively and those of
the electrons by {&;}, and {p;}*, respectively. Within non-relavistic quantum

mechanics, such a system is fully described by a many-body state vector | ®(z) )

evolving under a Hamiltonian H via the time-dependent Schrodinger equation
(TDSE),

., 0 -
1h§| &(t)) =H| (1)), (4.1)

where we define H :

H=To({Pr}) + Te({B:}) + Vn ({Rr}) + Vee ({E:}) + Vie({Re}, {:}). (4.2)

The various operators are the nuclear kinetic energy,

ZP—A; (4.3)

the electronic kinetic energy,

=y 0
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the nuclear—nuclear interaction,’

R 1Sy zZ
Vn==Y (4.5)
211751 |R1 - RJ|
the electron—electron interaction,
N PO |
Vee = _Zﬁ7 (4-6)
ijAi ‘ [ r]|

Vie = — Z{: Zm (4.7)

The subscripts n and e indicate that an operator acts on the nuclear subspace W, or
electronic subspace W, of the Hilbert space W =W, ® W, of the combined
system, respectively.

Numerical solution of (4.1) for more than a few interacting particles is utterly
intractable and we must make approximations to proceed. It would be helpful if we
could reduce the size of the quantum mechanical problem that we need to solve.
The nuclei are relatively massive and so we might hope that we can treat them as
classical particles. We will follow the approach of Todorov [9] to derive the
equations of motion of a set of classical nuclei and quantum mechanical electrons.
The assumptions that we have to make along the way will quantify the validity of
this so-called semi-classical approximation.

4.2.1 The Ehrenfest Approximation
We will begin by considering the behaviour of the expectation of the nuclear

positions and momenta,

(Ry) = (2()|R| 2(1) ), (4.8)

(Pr) = ((1)[ 1| 0(1)), (4.9)

in anticipation of being able to identify these with the positions {R,}?’;l and

momenta {P;})" of a set of classical nuclei. The time derivative of the expec-
tation of a nuclear position is given by

' Throughout this chapter, we will leave factors of e*/4me, implicit in electrostatic terms.
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d 1~ . N

—(Ry) = —([R,H]) = (Vp H 4.10
LR} = (R, 1)) = (Vi 1), (4.10)
where the first equality is proved in Sect. 13.1.1 and the second in Sect. 13.1.2.
Here Vj represents 231 L(9/0P; ;) where Py, is the nth cartesian component of
the momentum operator of the /th nucleus and # is the unit vector in the nth

direction. The only term in H to depend explicitly on the nuclear momenta is T,
and so the evolution of the expectation of the nuclear positions is given by,

—(Ry) =—(P)). (4.11)

Similarly, the time derivative of the expectation of a nuclear momentum is given
by (see Sects. 13.1.1 and 13.1.3 for proofs),

d . 1 N
SAPy) = ([P, H]) = (Vi ), (412)

with Vg 22,1 (0/0R; ;). Whereas (4.11) admits an immediate classical

interpretation if we identify (R;) and (P;) with classical coordinates R; and P,
respectively, the more complicated dependence of H on <ﬁ1) obscures any such
correspondence in (4.12).

Taken together the exact equations (4.11) and (4.12) represent the Ehrenfest
theorem. To go further we must now make the Ehrenfest approximation. The idea
is as follows: we assume that the wavefunction | ®(z) ) is of such a form that the
spread in the positions of the nuclei is small enough that the approximation,

(F{RN} 1)) = (F{(R}, {F:}) (4.13)

is valid for a function F of the nuclear and electronic position operators. In that
case we can write

b)) = (v, HURND)). (4.14)

dr
Only the operators Vi, ({R;}) and Vi ({R;}, {¥}) depend explicitly on R;. Using
(4.14) we can clearly replace the expectation of the term in Van with the gradient
of a classical potential,

(Vigy Vn ({(R))})) = Vi, Van ({R}}), (4.15)
where,
Vi = & NZ _an (4.16)
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It is not possible to directly replace the term in Vi ({R;}, {¥;}) with a potential
Ve ({Ry}, {E;}) because of the dependence on the electronic position operators.
However, if we rewrite (4.7) as,

No  Ne

VR D =YY [drote-mWiir ), @1)
T i
where we have defined,
SR 7
)% l‘,R ==, 4.18
1(r,Ry) .y (4.18)
then,
A~ Nn A A~
(V) = > [ arlp(eyVie. k), (4.19)
=1
where p(r) is the electronic number density operator,
p(r) = Z d(r—1). (4.20)
Using (4.14) we then have,
(Vi Ve (RN} {T:}) = /drp(r)VR,Vz(r, R/), (4.21)

where p(r) = (p(r)) and we have written V,;(r,R;) = —Z;/|r — R,| to make clear
that V;(r, R,) is a simple function rather than an operator on the nuclear subspace.

If we identify the expectation of the nuclear position and momentum operators
with the coordinates of a classical particle, we can now write, from (4.12), (4.15)
and (4.21),

d

¥ = —Vr Vi ({R/}) — /drp(r)szvl(rle) (4.22)

and from (4.11)

&R, = MP,. (4.23)
These equations represent the Ehrenfest approximation for the motion of a set of
classical particles coupled to a set of quantum mechanical electrons via the
potentials V;(r,R;).

To complete our definition of the dynamics of a semi-classical system we need
an equation for the evolution of the quantum mechanical electrons. In the fully
quantum system this is obtained from the full state vector evolved under the full
Hamiltonian,
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0 .
iniz | @(1)) = H| 0(1)). (4.24)

For the semi-classical system, we might hope that the evolution of an electronic
state vector |W'(r)), defined on the sub-space W, and where ‘I’ indicates we are
dealing with a many-body state for interacting electrons, under an electronic

Hamiltonian A, ({t;}, {p;}, {R/}),
i [9(0)) = ] #'(0), (4.25)
would do the job. The most obvious choice for the form of I:Ie is,
He({t:}, (B}, {R1(1)}) = Te({i}) + Ve ({F:}) + Vi ({F:}, {Re(0)}),  (4.26)
where we have introduced an operator for the electron—nuclear interaction,

Na N. ZI

ne({rl} {RI E ZZ |f'l

i
Nn

— ZZ/dré r— 1)V (r,R)) (4.27)
_ Z / dro(r — £1)Vae(r, R),

which operates only on the electronic subspace V. and we have defined
Vie(r,R) = 37, Vi(r, R)). The desired property of |\W(7)) is that for any electronic
operator A.({F;}, {P;}), the expectation obeys,

(P (0)Ae| ¥ (1)) = (D(0)|Ac| @(1)), (4.28)

where we are necessarily assuming that at some initial time #,, |®(#y)) can be written
as a direct product of an electronic state | ¥ (#,)) and a nuclear state | (o)),

[D(10)) = [x(t0)) @ [¥"(10)), (4.29)
and,
[P (1) = |¥P(10)). (4.30)

That (4.28) holds is proved in Sect. 13.1.4 following Todorov [9].
We now have a closed set of equations for the evolution of a set of classical
ions and quantum mechanical electrons:

—R,=—P, (4.23)
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d
P = V(R — [ dep(6)VaVi(e.Ry), (422)
20 g £ |l
i |¥(1)) = He|¥'(1)), (4.25)

He({5:}, (B} {Ri(0)}) = Te({Bi}) + Vee ({F:}) + Vi ({F:}, {Ri(1)}). (4.26)

We will refer to the dynamics defined by the above equations as Ehrenfest
dynamics.

4.2.2 The Approximations in Ehrenfest Dynamics

In deriving the equations of Ehrenfest dynamics we made the Ehrenfest approx-
imation for the expectation of a function F({R;}, {#}) :

(F({R}, {1} = (F{(RD}, {F:})). (4.13)

If we make a parallel assumption about a function G({P;}) of the nuclear
momenta,

(G({P1})) = (GH{(P)}), (4.31)

then we can write down a semi-classical expression for the total energy of the
system,

Esc(t) = (W0 ¥(0) + Tu({P) + Veo((R), (432)
where,
Tu({Pr)) = > 57 (B (4.33)

We hope that this will remain a good approximation to the energy of the true fully
quantum system throughout a simulation,

Esc = (@(r)|H] &(0) ). (4.34)

Differentiating Esc with respect to time shows that the nuclear forces (4.22) in
Ehrenfest dynamics give energy conservation, dEsc/df = 0. We consider the
conservation of the semi-classical energy further in Sect. 4.5.

So in order to arrive at our semi-classical dynamics we have assumed:
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L (F{R.}, {t:})) = (F{(R)}, {#})), for F=Vp,V;, essentially that the
nuclear wavefunctions are narrow on the scale of the variation of V,,, and )V,
and

2. (GU{P;})) = (G({(P;)}), that the relative spread (the uncertainty) in the
momentum is small.

Since the spatial variation of the electron—nuclear interaction will be on the
scale of the atomic spacing, a, the first condition requires a spread in the nuclear

wavefunctions AR; = [(R?) — <R1>2]1/2 of
AR; K a. (4.35)

The second condition demands an uncertainty in the momentum, AP, that is small
compared to <f’1>. For an atom with kinetic energy 7, this implies

(AP, - h> < (P, - \/27\7,7) (4.36)

AR,

Hence,

ST K AR K a. (4.37)
Since a will typically be of the order of angstroms and a thermal estimate of the
kinetic energy, 7 ~ kg1, where T is the temperature of the nuclei, gives a lower
bound of 3.6 x 107" m at T; = 300 K for copper, a value of AR~10""" m
satisfies both conditions. Todorov [9] notes that Mittleman [10] gives an expression
for the growth in the spread of a nuclear wave-packet in time,

1/2
2 t2

AR(t) = (AR(IO))QJFMW

(4.38)

This predicts that the nuclear wave-functions will retain an initial spread ~10~"!
m on picosecond time-scales.

4.3 The Independent Electron Approximation

In Sect. 4.2 we demonstrated how a system of interacting quantum mechanical
electrons and nuclei could be approximated by a system of quantum mechanical
electrons interacting with classical ions. The ionic dynamics is now easy to handle,
but solving for the electronic dynamics is still a formidable task. In any case, we
must solve the electronic problem in order to calculate the electronic forces on the
ions. The electrons are still represented by a many-body state, |'\P'(7)), evolving
under the electronic Hamiltonian H., defined in (4.26),
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ih%wﬂ(t)) = H({R)(1)})|#'(1)). (4.39)

We would like some way of approximating |¥'(r)) and its evolution that doesn’t
involve solving for the dynamics of the interacting electron system. Ideally, we
would like to solve the considerably simpler non-interacting electron problem for a
set of independent electrons evolving under a suitable Hamiltonian. We will adopt
the approach of Kohn—-Sham density functional theory (DFT) to argue for the
plausibility of such an approximation.

It is not our intention to provide an explanation of DFT, but to outline those
parts of the theory that will help us to understand the nature of the approximations
made in working with non-interacting electrons. To assist in that understanding we
will temporarily take a step back from the time-dependent problem of an evolving
electronic state |''(¢)) and consider the time-independent problem. Much of the
physical content of the necessary approximations is the same. Another reason for
treating the time-independent case is that we will later use Kohn—Sham DFT as a
reference point for our discussion of the tight-binding approximation in Sect. 4.4.
At the end of this section we will briefly discuss the transferability to the more
complicated time-dependent case of what we learn. Much of the material in this
section is drawn from the book by Finnis [11].

4.3.1 Density Functional Theory

Consider again our system of interacting electrons in an external potential Ve, (r),
so that the electronic Hamiltonian is,

He({f'i}) = Te({f’z}) + Vee({f'i}) + ‘A/exl({fi})> (4-40)

where,
Ve ({E11) = D Veu (). (441)

In our system the external potential is provided by the classical nuclei,

Ve({F:}) = Vae({Fi}, {Ry}), (4.42)

but for now we will retain the more general notation. The aim of DFT is to express
the energy of the system (and other properties) as functionals of the electron
density. The central proposition, a generalization of the Hohenberg—Kohn theorem
[12], is that “ for any reasonable density p(r) there is an antisymmetric [electronic
state] | V") describing N, electrons with density p(r)” [11] where we recall that,
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p(r) = <avl| Zé(rf'i)|q'l>. (4.43)

The energy of the electrons in state |\P') is given by

Ee = (P'|Te + Vee + Ve | ), (4.44)

which we would like to write as a functional E.[p(r)]. Considering first the energy
due to the external potential, we can define

Vext[p(r)] = ( P Vst ‘ WI)

= <TI| (Z / dré(r — f'i)vexl(r)> |5UI> (4.45)
- /drp(r)Vex[(r),

because |P') is defined as corresponding to p(r).

No such definitions of functionals of the electronic kinetic energy and the
electron—electron interaction are possible because different states corresponding to
the same density can give different values of these energies. We can remove this
ambiguity by specifying that for a given p(r), |'[p]) is that state vector corre-
sponding to p(r) that minimises the sum of the electronic kinetic and electron—
electron interaction energies. We can then unambiguously define

Telp) = (¥ [p]|Te| ¥'[p]), (4.46)
and,

Veelp] = (#'[][Vee| ¥'[0]). (4.47)

To establish our ability to write a general property of the system as a functional of
the density, we must consider the ground state |'P'). Hohenberg and Kohn [12]
show that in this case the density unambiguously (up to an irrelevant constant)
determines the external potential Ve, (r). Once V., (r) is fixed then we have a full
description of the system via the Hamiltonian and hence all its properties,
including excited states, can in principle be written as functionals of py(r) =
(P!>, 8(r — ;)| Wg). What is possible in practice is a different matter.

So far we have established the usefulness of the density as a description of the
system and this insight will be valuable later. Now, however, we come to the key
point of our discussion of DFT. Kohn and Sham [13] found a clever way to side-
step the difficulty in determining 7,[p] and V..[p], which essentially involves
solving the interacting many-electron problem by considering a fictitious system of
N, non-interacting electrons. This is just the sort of system that we would prefer to
work with. We define a new electronic Hamiltonian,
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Hé({f'i}) = Te({b;}) + Ve ({1:}), (4.48)
ext {I‘, Z ext (449)

(r) such that the ground state |¥3") of
H! has the same density as the ground state |W{) of the interacting system

and assume that there exists a form of Véxl

Hamiltonian H.,

<W§D| > or— f,»>|?'8‘3> = po(r). (4.50)

We know how to solve the non-interacting problem via a set of one-electron
Schrodinger equations. The solution will be a Slater determinant (SD) of single-

particle states {|y,)} Y, satisfying
Hé|‘pz> = &ily;) (4.51)

for energy eigenvalues {¢;}2,. The equations (4.51) are the Kohn—-Sham equa-
tions. For our non-interacting system, we can easily calculate the kinetic energy in
a general Slater determinant state |\PS°) and if we make the additional stipulation
that for some density p(r), |¥SP[p]) is that state consistent with p(r) that mini-
mises the electronic kinetic energy (¥SP[p]|T.|¥SP[p]) we can define the kinetic
energy functional

Tilp] = (¥ [p)|Te|¥°°[p]). (4.52)

e

As before, we can also write,

V/

" o] = / drp(r)V., (1), (4.53)

Since the calculation of 7'.[p] is relatively easy we now attempt to write the energy
of the interacting system as

Ec[p] = T.Ip) + Vee[p] + Vaelp] + (Te[p] — Tip])- (4.54)

We don’t know the form of V,.[p], but we expect that the greater portion of it will
be accounted for by the Hartree energy,

Eulp] = %//drdr’%, (4.55)

and so we rewrite the energy,

Ec[p] = Tl[p] + Eulp] + Vaelp] + { (Te[p] — T.Ip]) + (Veelp] — Enlp])}. (4.56)
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The term in braces is usually called the exchange-correlation energy, which we
will write Exc[p],

Eclp) = T.[p] + Eulp] + Vaclp] + Exclo]. (4.57)

Exc includes a correction to the kinetic energy (note that 7'.[p]| is defined over a
restricted set of states | ¥SP) of Slater determinant form, whereas the set of |'\P")
over which T,[p] is defined is not thus restricted) and a correction for the bits of the
electron—electron interaction not included in the Hartree energy. We hope that
these corrections will be small and amenable to simple approximations.

The final part of the jigsaw is to find the form of V/, so that we can solve the
independent electron problem. To do this we recall that V', is defined to be that
potential which makes the ground state density of the non-interacting problem the
same as the ground state density for the interacting electrons, po(r). In each case we
can find the ground state density by functional differentiation (see Ref. [11] for
details). In the case of the non-interacting system, the ground state is found by

solving
g{u[y+%J] (/@m@y—m)}

where the chemical potential 1 is a Lagrange multiplier enforcing conservation of
the number of electrons. For the interacting system we have

%{Te[p] + Velp] + Vaelp] ﬂ</ drp(r) _Ne)}

Our stipulation that the ground state density is the same in both cases ensures
that &' = p, otherwise bringing the two systems notionally into contact would
result in a flow of charge from one to the other contradicting the stipulation.
Subtracting (4.58) from (4.59), we can then write

=0, (4.58)
Po

= 0. (4.59)

Po

5{ pl+ Vee[o] + Vaelp]) = (Telp] + Veulol) }| =0, (4.60)
2 {Val) = Vil + Ealp] + Exclal}| =0. o)
P Po
Now,
%vme 0] = Vie(D), (4.62)
and
%EH[,)] — / d"'rpﬂq = Va[p](r), (4.63)
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where we have defined the Hartree potential V4[p](R) and we define an exchange-
correlation potential,

Vielpltr) = 22, (464)
to write
V2al60)(8) = VaelF) + Virloo) 1) + Vicclpol(r): (4.65)

Provided we have the correct form for the exchange-correlation potential we have
found a formal way of calculating properties of our interacting electron system by
solving an independent electron problem. The process is formally exact and the
errors in any practical scheme have been helpfully collected together in the
approximation that will have to be made to Vxc[p](r). Note that the equality only
holds for p = po, the exact ground state density. This gives rise to the need for a
self-consistent solution of the Kohn—Sham equations (4.51), in which we make use
of a potential

Ve [PI(r) = Vae(r) + Vu[p](r) + Vxc[p](r), (4.66)

defined for an arbitrary density p(r). We will return to this point in Sect. 4.4.3.

Since our aim in this chapter is to justify our chosen approach to the dynamic
simulation of radiation damage we should consider the implications of the above
discussion of DFT for time-dependent problems.

4.3.2 Time-Dependent Density Functional Theory

The Runge-Gross theroem [14] is the time-dependent equivalent of the Hohen-
berg—Kohn theorem and states that for interacting electrons evolving under a time-
dependent external potential V., (r, ¢) there is a one-to-one mapping between the
evolving electron density p(r, ¢) and the external potential (up to a purely time-
dependent constant) provided that we specify an initial electronic state |\¥(zy)) at
some time ;. It is then possible to write down a set of time-dependent Kohn—Sham
equations for the evolution of a set of single particle eigenstates {[i;(r))}r:,
evolving under an external potential V' (r, 1),

0

ih§|wi(t)> = (Te + Ve ) i), (4.67)

where

Véxt = /drp(r, NV, (r,1). (4.68)
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We assume that a form of V' (r, ) exists such that

Ne

0i(i (D)6 (r — 1) Y;(1)) = p(r, 1), (4.69)

i=1

where {o0;} are the occupations of the single particle eigenstates and we recall that
p(r, 1) is the electron density in the time-dependent interacting electronic problem.
In this case the solution of the single particle problem will give us information
about the time-dependent interacting electron system. As before, we introduce an
exchange-correlation potential. This time, however, it is time-dependent and is
defined via,

Véxt(r7 t) = Vne(l', t) + VH[p](l‘, t) + VXC[P](L t)’ (4'70)
where
Valpl(r, 1) = / dr’r;_ (r_/’lf,)|. (4.71)

Approximation of Vxc is a much tougher task in the time dependent problem,
because the correct form is dependent on the entire history of the electronic
density. In practice a time-local form depending only on the instantaneous density
is used, most frequently the adiabatic local density approximation (ALDA).

4.4 Tight-Binding Models

Kohn—Sham density functional theory, as discussed in Sect. 4.3.1, presents the
very general possibility of solving an interacting electron problem via the solution
of the Kohn—Sham equations (4.51) for a suitably chosen electronic Hamiltonian
I:Ié The approach is in principle exact, although at least some degree of approx-
imation must be employed in practice in the form chosen for Vxc [p]. In order to
speed up our calculations of electronic structure we will make further approxi-
mations by representing the electronic system within a semi-empirical tight-
binding (SETB) model.

We will discuss our specific model later, and argue for the validity of the
approximations that it employs. For now, we note that the central feature of any
tight-binding model is the choice of a basis set for the electronic system of local
orbitals, centred on the atoms. We will write such a basis as {|¢,,,) }, ,, where | y,)
is the orbital of the uth type, centred on the Ith atom at R;. The wavefunctions
associated with these orbitals are

d)l,u(n RI) = <r|¢1u> = (]5#(1' - Rl)a (472>

where {¢,(r)} , is the set of orbital wavefuctions, which may, for example, be the
atomic orbitals of isolated atoms.
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4.4.1 Ab-Initio Tight-Binding

There is nothing to stop us working in such a local basis to solve the Kohn—Sham
equations (4.51).

H W) = eily), (4.51)

in which case we retain the exactness-in-principle of DFT. This approach is called
ab-initio tight-binding . If we consider the ground-state density” po(r) then we can
write the kinetic energy of the non-interacting electrons,

Té[ﬂo] = Zoi<‘//i| (I:Ié[l)o] - Vém[ﬂo]) ¥:)
’ (4.73)

= Yo~ [ drpy(o)Vilool o)
where {|¢;)} are the Kohn—Sham orbitals corresponding to po and {o,} are their

occupations. Given that we have assumed p(r) = po(r) we can use (4.65)

VeulPol (r) = Vae(r) + Via[po] (r) + Vxclpo (), (4.65)

and so (4.57) can be rewritten
Edlpo) = Y 0w~ Elpo] + Exclpo] = [ dro(o)Vielpol), (474)

since,

= [ dnpe)Vilool ) = ~2Eul). (4.75)

i.e. the Hartree energy is “double-counted” in the energy of the non-interacting
electron system. The key to solving the Kohn—Sham equations then lies in cal-
culating the matrix elements of the single particle Hamiltonian in the local orbital
basis,

<¢1MI:I</=,|¢JV>5 (476)

and solving the resulting matrix eigenvalue equation.

2 Local basis sets are often exploited in so-called linear-scaling or order-N DFT codes to obtain
efficient computations for large (~ 1,000 atom) system sizes.

3 Here we are again side-stepping the issue of how to find py(r). We will return to it in Sect.
4.4.5, but for now we will simply assume that it is known.
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4.4.2 Semi-Empirical Tight-Binding

Ab-initio tight-binding is too computationally taxing to be useful (at the present
time) for large-scale radiation damage simulations. This is mainly because the
calculation of the matrix elements (4.76) involves integrals over real space, which
must be carried out with very high precision, especially if calculations of forces
(involving derivatives of the matrix elements) are required. Additionally, for
satisfactory precision, large basis sets are required, increasing the number of
matrix elements that must be calculated. Instead, in our work, we choose to adopt a
semi-empirical tight-binding (SETB) model in which various approximations are
made in a trade-off between computational efficiency and the accuracy of the
calculated electronic structure. In this section we will consider how we can arrive
at a simpler model for the electronic energy E.[p].

4.4.3 The Harris—Foulkes Functional

In Sect. 4.3.1 we showed how the Kohn—Sham approach to DFT allows us to find
the ground state electron density of a set of interacting electrons by solving an
appropriate non-interacting electron problem. In order to formulate the non-
interacting problem correctly, we had to assume fore-knowledge of the ground
state density, i.e. we wrote (4.65),

Véalpol(r) = Vae(r) + Via[po](r) + Vxcpo] (r). (4.65)

This need to know pg in order to find py, means that Kohn—Sham DFT requires a
self-consistent solution.

To exemplify this, let us construct the more general external potential (4.66) for
the single particle problem from some assumed charge density pin(r) (our input
density),

Vet [0")(r) = Vae(r) + Vaa[p"](r) + Vxc[p"] (). (4.77)

We then solve,
HSW) = ey, HS =T+ VK v = vaxf ), (4.78)

for the single particle eigenstates {|y;)} and their energy eigenvalues {¢;}. If these
eigenstates are occupied according to occupations {o;}, then we can now construct
a new density,

r) = ZOi(lﬁilﬂ ;). (4.79)
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We will have found the ground state density if p = p™. Solving the Kohn-Sham
DFT problem then reduces to finding a successful algorithm for searching the
space of possible densities for the correct po. Most often this is done by starting
with a reasonable guess for p™™, solving for p and then generating a new input
density p™ from a mixture of p and the old p™.

We are not concerned here with particular solutions to Kohn-Sham DFT.
Instead we note that we can write the energy of the non-interacting system as*

ENp ZO& Zo, Wi HES )
(4.80)
= lo] + [ anpe)V o).

a functional of only p™, because p" determines p via the Kohn—Sham equations
(4.78). We can now define a new functional of the interacting system,

Ellp. ") = EVp") ~ [ drp)VAS[")(x) + Elp] + Vielp] + Exclol- (481

Given the definition of V&3[p](r),

/ drp(r) Ve [0")(r) = / drp(r)Vae(r) + [ drp(r)Vua[p"](r)

+ [ drp(e)vaclo) o). (4.82)

and we have,

El[p.p" = EN[p"] + Enlp / drp(r) Ve[ (r) + Exclp]

- [ drpte) vl (4.83)

Now if p(r) is not too different from p™(r), which will be the case if p™(r) is close
to the ground state density po(r), then we can consider writing,

p(r) = p™(r) + dp(r), (4.84)

where Jp(r) is some small variation in the density. Then we can show (see
Sect. 13.1.5) that

Bulp) — [ drp(e)Valge) = Eulo") + 5 [[arar L ass)

* The remainder of Sect. 4.4.3 is based on material in Ref. [11].
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exact to second order in dp(r) and (see Sect. 13.1.6) that

Exclp] — / drp(r)Vxc [Pin] ~ EXC[Pin] - / drPin(r)ch[Pm}

o

again to second order in dp(r). Our new functional thus becomes, to second order

(4.86)

n0p(r)op(r),

ECp. " =12p)+ [ drp()VESlp ](r)
i) 9p(r')p(r)
Bl 45 [ [arar 0

+Exclp™] —/drp r)Vxelp //drd , Exc /z]r)

Hence to first order in dp(r) we can define a new functional, the Harris—Foulkes
Sunctional [15],

5p(t')3p(r)

pin

(4.87)

B = EL[p") = B ~ Eulg") + Exclo®] ~ [ drp"(0)Vaclp".

(4.88)

The utility of this functional lies in the fact that it is a functional of one density
only, but is stationary at the correct ground state density po(r). Evaluated at this
density, the Harris—Foulkes functional gives the exact ground state energy. Finding
a stationary point of EL'F does not require a self-consistent solution and so in this
respect it presents a density functional view of the energy that is compatible with a
SETB model of electronic structure.

4.4.4 Towards Semi-Empirical Tight-Binding

We will now consider how a SETB model can approximate the value of the energy
of a combined system of classical nuclei and quantum mechanical electrons. We
will begin by adding in the classical nuclear-nuclear repulsion term V,, to the
Harris—Foulkes functional (4.88) to write,

E™[p]({Rr}) = E'[p] — Enlp] + Exclp] */drp(r)ch[p]+Vnn({R:}),
(4.89)

where we have dropped the unnecessary superscript ‘in’ from the electronic
density. Our hope is that this energy can be well approximated by an expression of
the form
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E™p]({R}) = Zo & + Viep({R7}), (4.60)

where {¢;} are the eigenvalues resulting from solution of a non-interacting electron

problem with a tight-binding Hamiltonian H™ dependent only on the nuclear
coordinates,

HTB({RI})W:'> = &Y, (4.91)

and {o,} are their occupations. V., is a repulsive potential that is a function of the
nuclear coordinates only. The two key approximations in writing this tight-binding
energy functional are as follows:

1. The sum over the eigenvalues is intended to represent the energy of the non-
interacting electron system,

Z 0i; ~ ENp (4.92)

Hence our tight-binding Hamiltonian A™ ({R;}) is an approximation to the non-
interacting electronic Hamiltonian flé and we choose to write its matrix elements
in the local orbital basis as pairwise functions of the inter-nuclear separations.,

<¢1/,L|I:IeTB|¢]V> <¢I;¢‘H |¢Jv> = (Rl - RJ) (493)

2. The repulsive term is intended to represent the remaining terms in the Harris—
Foulkes functional,

Viep({R1}) = Van({R/}) — En[p] + Exclp] — /drp(r)ch [pl(x).  (4.94)

Again, we choose a form that is a sum of pairwise functions of the nuclear
coordinates,

N

Vo ({R1}) =5 D u((R; ~ Ry ). (4.95)

1J#l

To argue for the plausibility of our SETB model functional ETB[p]({R;}), w:
must essentially demonstrate that all the terms in E™"[p]({R;}) can be approxi-
mated by a sum of pairwise contributions. The following arguments for such a
representation follow Foulkes and Haydock [16]

To begin, we choose to write p(r) as a sum of spherically symmetric atom-
centered densities corresponding to the occupied orbitals of some local basis. Let
pi(r) be the density due to the atom at R, then,
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p(r) =3 py(r). (4.96)

Taking each term in (4.89) in turn, we can see that the nuclear—nuclear interaction
energy (4.16) is pairwise by definition:

1S 7,7
Van == (4.16)
”2;1 IR, — Ry|

The contribution from the Hartree energy, negative because it is compensating for
a double-counting in the non-interacting electron system, is,

e iffest

:_%//drd Zpl _l./| (4.97)

1// pi(r // pi(r
— [/ drdr ; drdr p
2 ”Zﬂ r| Z r|

The first term in the last line has a pairwise representation and the second term will
be a constant. If we further assume that no charge transfer occurs, such that each
atom remains strictly neutral then the pairwise representation of the sum V,,, — Ey
will be short-ranged.

The exchange-correlation terms are more difficult to deal with, but we can start
by assuming that the exchange-correlation energy can be written in the local
density approximation (LDA). We introduce the funtional Vipa[p](r) to write,

Exclo) = [ drple)Vioalol(r). (4.98)

The energy of interest in the Harris—Foulkes functional (4.89) then becomes,

Lﬂmmmmm—MM} (4.99)

Whilst this term cannot be exactly represented by a sum of pairwise contributions,
the approximation will be good provided that the overlap of three or more atom-
centered densities is insignificant [16]. This is often the case.

Having argued for the representation (4.95) in terms of pairwise functions of
the inter-nuclear separation, we must now consider the similar representation

(4.93) of the matrix elements of the non-interacting Hamiltonian I:Ié We have,

<¢IH|I:I</3|¢JV) = <¢)1;1|T€ + V§(§|¢JV>

. 4.100
= <¢1y|Te|¢JV> <¢1M|Ve1§§|¢1v>- ( )
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Considering the first term, we have,

(GralTelon) = / S v2<r|¢h>

K2
2m

(4.101)
dro, (r— R,)qu’),(r -Ry),

which depends only on R; — R; (or on |R; — Ry| for our choice of spherically
symmetric orbitals) and on u and v as required. The potential term is more dif-
ficult to handle, but if we make the local density approximation (LDA) and
assume that Vi pa[p](r) is linear in p(r) then our choice of p as a sum of atom-
centred densities allows us to write Vi3 [p] as a sum of atom-centred contributions
(see Sect. 13.1.7),

KS
Vexl Z ext I (4102)
We can now write our matrix elements as

Dl VES L) = 3 / dr g, (r — R)VES ¢, (R)). (4.103)
K

For the case I # J the above expression can be reduced to a pairwise form
provided we neglect the so-called three-centre integrals, which are those terms in
which neither K = I nor K = J. This gives us the approximation,

<¢I;L|Ve1§§|¢]1> <¢Iﬂ| eXtJ|¢]\> <¢1y| extl‘¢]1> (4104)

and we can write our Hamiltonian in the form (4.93) of pairwise contributions.
It is worth recapping the approximations that were necessary to reach our form
of SETB model:

1. We assume that the electron density can be decomposed into spherically
symmetric atom-centred contributions (4.96),

2. We neglect the simultaneous overlap of three or more orbitals,

3. We assume that the Kohn—Sham potential VES can be written as a sum of atom-
centred contributions. To show this we must assume that the exchange-corre-
lation energy can be written not only in the LDA, but also with an LDA
functional linear in the density, and,

4. We ignore three-centre integrals in the calculation of the Hamiltonian matrix
elements.

Foulkes and Haydock [16] demonstrate that the errors in the form of SETB
model that we have examined are dominated by the neglect of the three-centre
integrals. Such integrals are not negligible and this final approximation is poorly
justified. To mitigate the severity of this neglect we can make an appeal to the
empiricism inherent in an SETB model. That is to say that in fitting the functions
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y(|R; — Ry|) and u(|R; — Ry|) (see (4.93) and (4.95), respectively) in order to
match various properties of our model with some target values, we hope that some
of our errors will be compensated for. So whilst we have argued for the physical
reasonableness of a simple SETB model, the final demonstration of its validity lies
in its success in application.

4.4.5 Self-Consistent Tight-Binding

In Sect. 4.4.3 we derived the Harris—Foulkes functional, which is a functional of a
single electron density and is stationary at the correct ground state density. Because
this functional does not require a self-consistent solution it was a useful starting
point for discussing SETB. However, the corresponding approach to SETB, namely
parameterizing the Hamiltonian matrix elements and the other terms in the total
energy, is not always appropriate. It works well in cases where we expect strict
charge neutrality, for example when we wish to find a model for a perfect crystal,
but not so well in situations where significant charge transfer might occur.

We could imagine taking the case of a perfect crystal with a self-intersitial
defect. We might expect some deviation from perfect neutrality in the region of the
defect, but the question is how to ensure our SETB model gets the charge on the
defect correct. If we are using a model that was parameterized to reproduce various
physical properties of a perfect lattice then we cannot expect it to reproduce the
correct defect charge. There is nothing in the derivation of the Harris—Foulkes
functional that precludes a parameterization that gets the correct defect charge (we
made no assumption of local charge neutrality) and indeed we could imagine
making such adjustments to our pairwise functions at short range that the charge
on our defect state was correctly reproduced. But this approach is not physically
persuasive and certainly does not produce a model that is transferable to say
another type of defect or a general lattice distortion.

Instead, we will bite the bullet of self-consistency and introduce terms into our
functional that account for the energy associated with charge transfer. If we
consider the functional E{*[p,p™| (4.87), the Harris—Foulkes functional plus
second-order terms in dp, and consider minimizing with respect to p(r) we obtain
the equation

6T¢p] KS iny , 1 )1 5" Exclp]
[ V n _ d
PR RACTRRE T E e ey

| }5p(r') —0, (4.105)

which corresponds to the solution of a new set of Kohn—Sham equations

7 KST .in 1 / 1 62EXC[p] / _
(Te + Vex?[p ] + 5/ dr {|l‘ — r/| + 5p(r)5p(r/) pin}ép(r )) ‘lrbz> - ¢°z|'»01>
(4.106)
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From an SETB perspective we can then imagine that we are adding in corrections
to our basic model that make it applicable in situations other than the ones for
which it was parameterized. Specifically, in our case, we assume we are starting
with a model parameterized for a perfect crystal with charge neutral atoms and
introduce terms to account for the energy of deviations from that neutrality.

We augment our original tight-binding model functional E™[p]({R;}):

E™ [pJ({R;}) = E™[p]({R/}) + Elp]({R7}). (4.107)

The new term E[p]({R,}), dependent on the state of the electronic system and the
ionic coordinates is intended to represent the second-order correction to the
Harris—Foulkes energy, E'[p], defined via,

Ellp, o = E" [0 + E"[o], (4.108)
, 1 1 O’E
E'lp=p"+dp] = E/dr'{ + xclp) » } (4.109)
plﬂ

r—r] " 5p(r)on(r)
The simplest approximation to this energy, the self-consistent charge transfer
model, can be written [11],

pl({R;}) = Z UiAq? + Z Uy Aq1Aqy, (4.110)
1];61

where Ag; is the deviation in the number of electrons on atom / from that implied
by the density p™. The first term can be interpreted as an energy penalty associated
with localising charge on a single atom. The second term is an inter-site Cou-
lombic interaction energy between charges on different atoms and U;; most
commonly takes a form like 1/|R; — Ry| or similar.

Just as the inclusion of the second order energy shift £'[p] in the functional
implied a change to the effective external potential in the Kohn—Sham equations,
so we must also augment our tight-binding expression for the Hamiltonian oper-
ator to account for £[p]({R;}). In fact, the Hamiltonian must become,

A = A8 4 VSC, (4.111)
where,

V€ = /dr|r>%£d<r|, (4.112)

but we will postpone further discussion of this adjustment until the next section
when we discuss the dynamical evolution of a simple tight-binding model.
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4.5 Time-Dependent Tight-Binding

So far, our theoretical discussion has focussed mainly on the case of time-inde-
pendent electronic structure. In this section we will derive the dynamical equations
that govern the evolution of a set of classical ions coupled to a quantum
mechanical electronic system described by a tight-binding model.

The tight-binding model that we use in our simulations is exceedingly simple. It
consists of a single spherically symmetric (s-like) atomic orbital centred on each
atom. In addition, these orbitals are assumed to be orthogonal to one another. In
the rest of our theoretical discussion we will specialize to consider a model of just
such a simple form. We do this because we require no further complexity and
because the simple model will help us illuminate and pull together some of the
preceding theory in the most readily comprehensible way. We intend, therefore,
that this section should provide a fairly self-contained description of our dynamical
semi-classical system. Inevitably this will involve some repetition of material
discussed above, but we hope that this repetition will be useful in clarifying the
nature of the model that we use in our work.

4.5.1 The Description of the System

Our simulation system consists of a set of N, classical ions of masses {MI}ZI\’;1 (all
of which will be the same) with positions {R;()}"",, which we denote collec-
tively by the 3N, dimensional vector R(z). We will denote the velocity of ion I by
R;(t) = 2Ry(r). Each ion is assumed to carry with it a positive charge of egy such
that the overall system of ions and electrons is charge neutral.

The electronic system will be described by a density matrix p(¢) evolving in
time under the influence of our tight-binding Hamiltonian, H1®, or H™" in the case
of a self-consistent charge transfer (SCCT) model. We can write p(¢) in terms of a
set of time-dependent state-vectors {|y;(¢))}~", with occupations {0;}",, which
are permitted to take any value in the range 0 < o0; < 1, but which remain fixed at
their initial values in our dynamical evolution. Hence,

Pl = D ol ()W (1) (4.113)

We will account for spin degeneracy (i.e. up to double occupation of each state)
with explicit factors of 2 where required.

Our tight-binding Hamiltonian is defined in the basis of atomic orbitals
{[R)}™ , where |R)) is the orbital associated with the Ith atom, at position R;.
These orbitals are assumed to be orthonormal,
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(R/[R) = dyy. (4.114)

The basic, non-self-consistent, Hamiltonian is defined in this local basis as,
H™ = " IR)y(|R; — Ry |)(Ry], (4.115)
7

where the function y(R) gives the hopping integrals as a function of inter-ionic

separation. The on-site terms (R;|H™®|R;) of this Hamiltonian are zero in our
model. In the SCCT model, the Hamiltonian includes additional terms,

H™ =A™ 4 VSC¢, (4.116)

which we will derive later.

4.5.2 The Evolution of our System

The state of our semi-classical system, then, is characterised by the classical
coordinates R(7) and R(r) and by the density matrix p(z). We now need to derive
expressions for how these entities evolve under the influence of the tight-binding
Hamiltonian. Our starting point will be the total energy of the system, which we
write,

E™ [p](R,7) = 2Tr{(p(r) — p")H™(R)} + E[p — 1°)(R) + Viep(R),  (4.117)

where we have included the repulsive classical potential V.,(R) and the factor of
2 accounts for spin degeneracy. £[p — p°](R) is a self-consistency energy
dependent on the state of the electronic system and the ionic positions.

In contrast to our previous discussions, the above energy is defined relative to a
reference density matrix p°, which is diagonal in the local orbital basis. This
definition of the energy is consistent with the tight-binding bond model (TBBM)
of Sutton et al. [17]. It does not materially alter any aspect of the behaviour of the
model, but it does make a difference to what the repulsive potential is implied to
represent (and can strengthen the arguments for the SETB approximation). Fol-
lowing the TBBM approach, p° is taken to represent the density matrix of the free
atoms at infinite separation. As such it can be written,

. q
P = Z [R))Z(R,| (4.118)

and so
2Tr{(p(t) — p*)H™(R)} = 2Tr{p(t) H™ (R)}, (4.119)

since the onsite terms in H'® are zero.
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To obtain the equations of motion for R, R and p we will adopt a Lagrangian
formalism (the following derivation follows that given by Todorov [9]). The
Lagrangian for our system will be [18],

72175201 Vi) — E™ [p](R) + Tu(R). (4.120)

To proceed, we expand the state-vectors |¢;(¢)) in the local orbital basis,

) =Y au(n)|Ry), (4.121)
1
(which defines the expansion coefficients {a;}) so that the Lagrangian becomes

L({ail}v {Cl;}}, {ail}v {a?l}v R, R) = 2ih Z Z Oiazﬁlail

(4.122)
—~ ZZZOal,a,J R/|H™R)) — Z—M,
Lagrange’s equations [19] are then
oL doL
b 4.123
Oa;  drlaj ( )
oL d oL
————=0 4.124
aa” dr Oay; ( )
d
VgL — aVRIL =0. (4.125)
The gradient operator is defined in cartesian coordinates as
0o 0 0
VR = | 555555 4.126
K <6Rx’ R, aRZ) (4.126)
with a similar definition for Vg .
From (4.123) we obtain
0
Zlhol —20; Zau (R,|H™R;) — aadg[p - °I(R). (4.127)
From (4.124),
2ihoi ai = 20; Za,, (R;|H™|R;) [p P°](R). (4.128)
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And from (4.125),

MR, = =20 Za;ail (Ri|Vr,H™R;) — Vr,E[p — p°)(R) = Vg, Viep(R).
T

(4.129)
4.5.2.1 The Evolution of the Density Matrix
We can write the evolution of a state-vector |;(¢)) as
. d ..d
1hd_tWi(f)> = 1ha (Z a,-,R,})
1 (4.130)

iny " aulRy),
1
since the local orbital basis is fixed in time. Using (4.128) this becomes (see

Sect. 13.1.8)

..d N 1 0
inig (1) = A W) + 5~ XI: e PIR)). (4.131)

dr

The effect of the charge self-consistency energy £[p](R) in the second term is to
introduce additional terms into the tight-binding Hamiltonian

H™(R) — H™ [p](R) = H™(R) + V5[p](R). (4.132)
We adopt a form of the self-consistent charge transfer model, so that,
1 1
Elp = p’I(R) = EZ Urdqi + 3 Z Ui (R)4q;4qy, (4.133)
7 LJAL

where U; is a constant and Up(R) is a function of the ionic coordinates. The
quantity Ag; is the excess number of electrons on the /th ion and is given by,

Aqr = 2(Ry[p|R;) — qo
_ ZZ owd’sair — o (4.134)

The corresponding form for V€ is,

VSC=>"IR)) <U,Aq, +) U,,(R)Aq,> S (R, (4.135)

1K JA

such that equation (4.131), for the evolution of a state-vector, becomes (see
Sect. 13.1.9),
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. d - . g
i) = (H™ + V) ) = H™P ), (4.136)
i.e. the time-dependent Schrédinger equation.

The equivalent equation for the evolution of the density matrix is the quantum
Liouville equation (see Sect. 13.1.10)

d A !
ih—p = [H™, p]. (4.137)
dr
4.5.2.2 The Evolution of the Ionic System
The third of the Lagrangian equations (4.125) gave us (4.129)
MR, = 20 Zafjaﬂ(RﬂVR,HTBmJ) — VrE[p — P°](R) — VR, Viep(R),
7

(4.129)

which defines the forces acting on the ions. The first term in this equation is simply
—2Tr(pVg,H™) = —2Tr((p — p°) VR, H™). (4.138)

We have thus arrived at a set of coupled equations for the evolution of our ions at
positions {R;(#)} and our electronic system described by p(7),

MR, = —2Tr(pVg H™) — Vg,E[p — p°](R) — Vg, Viep(R), (4.139)
d R X
ihyp = [(H™ +V59), p]. (4.140)

The coupling exists because the Hamiltonian H™ is parameterized by the ionic
coordinates R and because the force on the ions is dependent on p(#). In Sect. 13.1.11
we show that the above equations conserve the total energy of the system,

d U l .
dt( D 2M,R2> =0. (4.141)
1

4.6 Ehrenfest Dynamics
4.6.1 Ehrenfest Dynamics versus Surface Hopping

Having derived a set of equations for the evolution of coupled quantum
mechanical electrons (4.140) and classical ions (4.139) we will now give some
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Fig. 4.1 A schematic representation of the difference between Ehrenfest dynamics and surface
hopping for a simple two level system. a The eigenvalues as a function of the ionic coordinate
under study. b The variation of the occupations of the eigenstates in the Ehrenfest evolution of the
system. ¢ The weighted average electronic potential energy surface on which the system evolves
in Ehrenfest dynamics. d and e correspond to b and ¢ respectively, but for a sample system
evolving under a surface hopping algorithm in which hops are implemented at times 7 and 7’ as
indicated. See the main text for discussion

thought to how realistic a dynamics they give rise to. To help draw out some of the
possible difficulties with Ehrenfest dynamics we will compare it to another widely
used implementation of semi-classical dynamics known as (trajectory) surface
hopping [20].

Let us begin by considering the evolution of a simple system with two elec-
tronic eigenstates |¢;(R)) and |¢p,(R)) varying as a function of a single ionic
coordinate R. The energies of these eigenstates & (R) and &(R) define two
potential energy surfaces on which R will evolve. Let us assume that our system is
initialized such that the upper eigenstate is fully occupied (a»(tp) = 1) and the
lower state initially unoccupied (a,(fy) = 0). We then allow the system to evolve
from ¢, to t;. Figure 4.1a shows the evolution of the eigenstate energies as a
function of R(f), which we will assume varies monotonically from R(#) to R(t,).
Importantly, we have chosen to consider a case in which the shapes of the two
potential energy surfaces & (R) and &(R) are significantly different.

Figure 4.1b shows the evolution of the occupations of the eigenstates under
Ehrenfest dynamics. The occupations vary continuously as the density matrix
evolves,

ar2(t) = (¢12(R)p(1)|¢12(R))- (4.142)

In Fig. 4.1c we show the effective potential energy surface on which the ionic
system evolves. The important thing to note is that the shape of this surface is an
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average of the individual eigenstate surfaces, weighted by their occupations, and it
is representative of neither surface individually. This can be a significant source of
error in Ehrenfest dynamics.

The (trajectory) surface hopping method of Tully and Preston [20] solves the
above problem by forcing the ionic system to always evolve on a potential energy
surface due to a single eigenstate (or more generally on a set of fully occupied
eigenstates). The details of the implementation of the method vary, but we can
understand the underlying aim by considering a large number of equivalent copies
of our semi-classical system all with the same initial conditions. The ionic coor-
dinate R(z) is evolved on the occupied electronic potential energy surface up to
some time 7. Meanwhile, the electronic system is evolved under the electronic
Hamiltonian according to the Liouville equation. Now, at time ¢, the occupations
of the eigenstates are reset probabilistically based on the transition probabilities
implied by the evolved density matrix, but such that each eigenstate remains either
completely occupied or completely unoccupied. The evolving eigenstate occupa-
tions for a single copy of the system are illustrated schematically in Fig. 4.1d. In
Fig. 4.1e we show the effective electronic potential on which the ionic system
evolves for this sample system and we see that, in contrast with the Ehrenfest
system, it is always representative of a single eigenstate surface.

Clearly there is some considerable latitude in the precise specification of a
surface hopping implementation. Any implementation must ensure that across a
sample of trajectories the average occupation of the eigenstates agrees with the
density matrix

(@i(1)) sampie = (¢:(R(1))|p(1)|d:(R(2)))- (4.143)

The frequency with which the occupations are resampled (i.e. the frequency at
which hops between potential energy surfaces are made) is a significant variable.
Often the chosen approach is to implement the minimum number of switches
across an ensemble of trajectories that maintains the correct average occupations
(the fewest switches approach [21]).

The key difference between Ehrenfest dynamics and the surface hopping
method is in the implied treatment of coherence in the evolution of the electronic
system. This difference is highlighted in our example in which the two eigenstate
energies imply very different ionic evolutions. In the Ehrenfest case, the evolution
of the electrons is fully coherent, with interference between the quantum
mechanical amplitudes persisting over infinite time-scales. In our semi-classical
system this manifests itself in a trajectory for the ionic system evolving on a
weighted average potential energy surface. In “reality”, we would expect that a
fully quantum mechanical electron-ion system would evolve so that the ions end
up on one or the other of the divergent ionic trajectories, because we would expect
the superposition of the two possible evolutions to undergo decoherence as the
overlap between the ionic wavefunctions for the trajectories decayed [22]. The
surface hopping method attempts to account for this decoherence process within a
semi-classical framework. In effect we can regard the classical ionic system as
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enforcing a “measurement” of the quantum mechanical electrons on a time-scale
set by the hopping frequency. The evolution of the electronic system is then
coherent on the short term, but is forced to be consistent with a single ionic
trajectory representative of one of a set of possible outcomes on the longer term.

Given the above discussion, why have we chosen to adopt Ehrenfest dynamics
rather than a surface hopping approach? First, there are a number of somewhat
arbitrary choices to be made in the implementation of surface hopping. As already
mentioned, we must choose how to implement the hops. Also, in order to conserve
the total energy of the semi-classical system we must adjust the ionic kinetic
energy whenever a hop is made. There is considerable ambiguity in how to achieve
this, particularly in the case of large hops when there may be insufficient kinetic
energy in the modes selected by our method of choice (i.e. in so-called classically
forbidden transitions). Ambiguities such as these do not appear in Ehrenfest
dynamics.

Second, the surface hopping method is defined in the space of instantaneous
eigenstates of the Hamiltonian and the electronic forces on the ions in terms of the
gradients of the eigenvalues. Such quantities are expensive to obtain for large
systems and so our Ehrenfest dynamics in a local orbital basis (in which the
Hamiltonian is sparse) is considerably more efficient.

Third, in a metallic system we would not expect to see large differences in the
shape of potential energy surfaces corresponding to eigenstates close in energy and
so the ionic trajectory on the average potential energy surface might remain rep-
resentative of the “true” dynamics.

4.6.2 Energy Transfer in Ehrenfest Dynamics

Having arrived at a set of equations for evolving a set of classical ions coupled to a
tight-binding model of quantum mechanical electrons we will now consider a key
feature of the dynamics of our system. Our aim in simulating radiation damage
with our semi-classical system is to understand the effects of non-adiabaticity on
the ionic evolution: that is to say the effects of energy exchange between the ions
and electrons.

It is well known that Ehrenfest dynamics does not correctly reproduce the full
physics of electron-ion energy exchange. The ions in our semi-classical system are
explicitly represented at the individual level and so the electronic system is able to
identify the ionic temperature. However, the ions experience the electrons only as
a structureless fluid and so cannot correctly determine the electronic temperature
[23, 24]. This flaw in Ehrenfest dynamics, a result of the mean-field approximation,
means that our semi-classical system will never achieve thermal equilibrium
between the ions and the electrons.

The failure to equilibrate is due to the fact that Ehrenfest dynamics does not
reproduce the effect of spontaneous phonon emission. However, a typical radiation
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damage event will begin with an initially unexcited electronic system and an ionic
system with a large excess of energy, and so we can safely neglect the effects of
spontaneous phonon emission in our simulations. Because of the computational
complexity of our semi-classical method our simulations never reach time-scales
at which we would need to be concerned about the failure of Ehrenfest dynamics
to achieve electron-ion equilibrium. J le Page has explored these issues thoroughly
in the context of radiation damage [25, 26]. In Sect. 13.2.3 a simple treatment of a
quantum mechanical oscillator is presented in an attempt to illuminate the nature
of the failure of Ehrenfest dynamics.

4.7 Conclusions

In this introductory chapter we began by considering a fully quantum mechanical
system of ions and electrons. We applied various approximating assumptions to
arrive at a description of a semi-classical system of classical ions and quantum
mechanical electrons, in which the electrons are described by a simple tight-
binding model. We derived a set of energy conserving equations for the evolution
of this semi-classical system, which will form the basis of our simulations of
radiation damage phenomena. We considered the dynamics described by those
equations, highlighting their key physical failings, but explaining why they should
prove adequate for our purposes.
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Part 11
Simulating Radiation Damage in Metals

In Part I of this thesis we reviewed past efforts to include the effect of electronic
excitations in simulations of radiation damage and gave the theoretical background
to the approach that we have taken to the problem. In Part I, we will now examine
the simulations that we have undertaken and the results of those simulations.
We will begin by describing the software that we have used for our simulations (
Chap. 5) and then consider the results of an investigation into the response of our
model system to a simple periodic perturbation (Chap. 6). These results establish
the applicability (and the limits of applicability) of our model to radiation damage
phenomena. We will then move on to consider simulations of radiation damage
events, focussing mostly on the behaviour of collision cascades. Chapter 7 presents
the results of a single cascade simulation with the aim of introducing the types of
information that are accessible in our Ehrenfest simulations.

Chapters 8 to 11 present the key results of this thesis. Chapters 8, 9 and 11 contain
a detailed analysis of the nature of the electronic excitations and electronic forces
in collision casades. Chapter 10 considers simulations of an entirely different
radiation damage phenomenon—that of ion channelling.
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Chapter 5
A Framework for Simulating Radiation
Damage in Metals

Summary: In this chapter we introduce the simple tight-binding model and the
simulation software that we have used for our simulations of radiation damage.

5.1 A Simple Model Metal

When compared with classical molecular dynamics (MD), simulations with Eh-
renfest dynamics, incorporating an explicit model of quantum mechanical elec-
trons, are computationally expensive. So that we can still simulate radiation
damage events on realistic time and length scales despite this extra expense we
have chosen to use a particularly simple model of a metallic system.

We have adopted the single s-band tight-binding model of Sutton et al. [1], in
which the electrons are represented by a set of s-like atomic orbitals anchored, one
each, at the positions of N, ions. We denote the basis state on the ion at position R,
by |R;). The set of these atomic orbitals {|R;)} is assumed to be orthonormal.

The basic non-self-consistent electronic Hamiltonian for the model is defined as'

H= ;|R1>V(|RIJ|)<RJ|7 (5.1)

where R;; = R; — R;and y(R) gives the hopping integrals as a simple function of
the inter-ionic separation. The hopping integral function is defined as

' From now on, since we will only be discussing the case of classical ions and quantum
mechanical electrons, we will write a Hamiltonian for a system of non-interacting electrons

simply as H rather than H™. We will write the Hamiltonian for the self-consistent charge
~SC ~
transfer model as H  rather than H™'.
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Rl = =5 () (52)

It is a specification of the model that the hopping integrals are truncated between
the second- and third-nearest-neighbour distances in the perfect crystal. €, ¢, a and
q are parameters of the model: a is a length scale, € an energy scale, ¢ is a measure
of the spatial extent of the s-orbitals and c is a constant determined by the desired
equilibrium. These parameters are set using conditions defined below. Note that
the on-site (diagonal) terms in the Hamiltonian defined above are zero.

The electronic system is represented by a single-particle density matrix p. If we
also define a density matrix p° for the corresponding free atoms (i.e. Ryy— oo for
all 1, J) then we can define a binding energy for our model metal®:

Ep = 2Tr[(p — p°)H] + Erep, (5.3)

where

B =52 () (54)
rep 2 [J#[ |R[J| .

is a repulsive energy due to repulsive pair potentials between the classical ions.
Again, p is a parameter of the model. The factor of 2 in (5.3) accounts for spin
degeneracy: we have chosen a form for the density matrix such that its eigenvalues
are in the range 0-1.

An important parameter of the model is the band-filling, denoted v. This is
allowed to take a fractional value in order to best fit certain desired properties of
real metals. The number of electrons associated with each of the N, ions is 2v and
since the free atoms (and the whole system) are assumed neutral, each ion is
assumed to carry a positive charge of +2ve. The excess of electrons on the /th ion
we will denote Ag; and write

Agqr =2(py — P?l) =2py —2v, (5.5)

where
P = <R1|,5\R1>- (5-6)

As we defined it in (5.1), H has zero onsite elements so that even non-zero charges
will not affect the binding energy. In most of our simulations, the charges on our
ions will remain close to zero and we will not have to worry about how to capture
the energy associated with charge localization. However in some simulations (see
Chap. 10) charge transfer is significant and we must introduce charge self-con-
sistent terms to our Hamiltonian as discussed in Sect. 4.5.2.1. The charge self-
consistent version of our model takes the form

2 This approach conforms to the tight-binding bond model. See Sutton et al. [2] for details.
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H = H + Z |R;) <UA611 + ZZIJAQJ> (Ry[, (5.7)
I J

where,

2 2 12 ~1/2
=— | IRy 5.8
o 471'60 <| ”‘ + |:4TE€0V:| ) ’ ( )

and U and V are parameters controlling the strength of the charge interactions on a
single site and between sites respectively. The most physically realistic choice for
these parameters® is U = V = 7 eV. The onsite elements of A5C are such that they
give a self-consistent binding energy

Ep = 2Tr[(p— p°)H] + = UZAq, += Z 2wAGIAG) + Erep. (5.9)
117»&1

5.1.1 The Parameters of the Model

The six parameters of our non-self-consistent tight-binding model are
€, a, p, ¢, ¢ and v, and are chosen to reproduce certain properties of a real metal. In
our case, we use the parameterization for copper given in reference [1]. The length
scale a is chosen freely to be equal to the lattice parameter a; of face-centred cubic
(fcc) copper at room temperature. For a given choice of the powers p and ¢, we
can then determine c by stipulating that the binding energy per atom,

%:EZ(RM) ZPU(RI |) (310)

J#I

must be minimized when the lattice parameter is equal to ay This condition

implies,
:%@ (W) ;”"(m,) ) 510

The energy scale for a given choice of p and ¢ is chosen to give the correct value
of the binding energy per atom,

3 From now on we will leave the units of U and V implicit.
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Table 5.1 The values of the

. ; Parameter Fitting constraint

parameters of our tight- =

binding model, chosen to a 36A Chosen to efll.lal_“f

reproduce certain properties € 112.35 Ensures equilibrium at ay

of fcc copper metal. Values € 0.012611 eV Fixed by binding energy Eg

taken from reference [1] P 9 H Product pg set by bulk modulus
q 3 P, g chosen as integers
v 0.24304 To fit elastic constants

v %)
kA S | , 5.12
N, 2\gq ; |RIJ| ( )

and the values of p and g, restricted to be integers for numerical convenience, are
chosen to fit the bulk modulus,

_ Eppg

= 5.13
9NaVcell ( )

where V. is the volume of a primitive unit cell. Finally, the band-filling v is
chosen to give the best possible fit to the elastic constants of copper. Table 5.1
gives a summary of the fitting constraints for the model parameters and their
values (as given in reference [1]).

5.1.2 The Electronic Structure of the Model

Because our tight-binding model takes such a simple form, we can easily calculate
the band structure. In a perfect crystal the energy eigenstates will be Bloch states
with wave-vectors k. Writing these states as |k) we have

b -

The band structure is given by,
E(k) = (k|H|K), (5.15)

where we do not need to consider the charge self-consistent terms because all the
ions in the perfect crystal will be neutral. Hence,

1 k(R —
E(k) :ﬁzelk R=Ri)y (IR )
| i (5.16)
_ ik-(Ro—R1). (|R
NaZe 7(IRpol),
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Fig. 5.1 Schematic diagrams of (left) the face-centred cubic (fcc) unit cell and the shells of
(centre) nearest- and (right) next-nearest-neighbours about a sample ion (shown in blue)

Fig. 5.2 A schematic
diagram showing an example
of a pair of nearest-
neighbours (shorter (orange)
arrows) and a pair of next-
nearest-neighbours (longer
(green) arrows) about an
atom of interest

where R is the position of any atom, chosen as a reference. We then divide the
atoms around the one at Ry into two shells of neighbours and next-nearest
neighbours (no other atoms contribute because of the truncated hopping integrals
in our model). We index the shells by b and then further divide the atoms in each
shell into pairs such that the reference atom lies exactly between each pair
(see Figs. 5.1 and 5.2). If we write the positions of the ath pair of atoms in the bth
shell of neighbours in terms of a displacement + dZ from the reference atom, then
the band structure can be written

E(k) = D7 (% e ™ )y (1)
b a
=237 cos(k - )y (je).
b a

If we write k in terms of its cartesian components k = (k,, k,, k;) then the six
second-nearest neighbours lying at a(100) and the twelve nearest neighbours lying
at (a/2)(110) give a band energy

(5.17)
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Fig. 5.3 The band structure eV Band Structure DOS
and density of states (DOS) 10 - T S P
of our simple model metal | _;___//"'“——\

=
\ I,r’/' il

T

Fig. 5.4 The Fermi surfaces Cu
of (a) our model metal, and -
(b) real copper (from
http://www.phys.ufl.edu/
fermisurface/)

(a) (b)

Elky, ky k;) = —49(a/2) [cos(% kea) cos <% kya>

1 1 1 1 5.18
+ cos (E kya> cos (E kza) + cos (E kza> cos (5 kxa> ] ( )

— 2y(a)[cos(kya) + cos(kya) + cos(k.a)].

This expression and the above notation will be useful in the next chapter when we
examine some preliminary simulation results.

The band structure and density of states of our model metal are illustrated in
Fig. 5.3. Figure 5.4a and b compare the model Fermi surface and that of real
copper.

5.1.3 A Note on the Truncation of the Hopping Integrals

The truncation of the hopping integrals in the original model of reference [1] is
accomplished with a fourth-order polynomial tail. Because our simulations use a
fourth order integrator for the system dynamics we have found it necessary to use a
smoother tail matching the function and first four derivatives to the hopping
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Fig. 5.5 The 10th order
polynomial tail used to
truncate the hopping integrals
in our tight-binding model 0.8

0.6 \
0.4 \
0.2

0.0

Ritaper

Tail factor

3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4

lon separation (A)

integral at the inside of the smoothing region and to zero at the outside. This
requires the 10th order polynomial tail* illustrated in Fig. 5.5.

5.2 Ehrenfest Dynamics

Our simulations proceed under Ehrenfest dynamics as described in Sect. 4.5.2. The
electrons are represented by a single particle density matrix of dimension N, x N,,
where N, is the number of ions and also the number of atomic orbitals. This
density matrix is evolved under the tight-binding Hamiltonian (with or without the
charge self-consistent terms) described above, using the quantum Liouville
equation,

d_ ..
ih—p = [H, p. 1
i p = [H, p] (5.19)

The ions are represented as a set of classical particles of mass M whose positions
{R;} evolve under Hellmann-Feynman forces due to the electrons and repulsive
forces corresponding to the repulsive term in the binding energy (5.4)

d2
M_
ds?

R; = —2Tr(pVg,H) — Vi, Erep- (5.20)
Because the hopping integrals and repulsive potential take simple power law
forms, these forces can be written down analytically and calculated very
efficiently,

* Details of this tail were worked out by D. R. Mason.
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1 p+1
gec Ry a \7" pe Ry ( a )
E 2R —_— —E —_— [ —— . 5.21
toud = a Ryl <|Ru|> — a |Ry| \|Ry| (5:21)

Because of the way we define our density matrix, with eigenvalues between 0 and
1 and not accounting for spin degeneracy, the quantity

pu + P =2R{py} (5.22)
is the bond-order between orbitals |R;) and |R;). Similarly,
—i(py = pu) = 23{py} (5.23)

will be the bond-current from |R;) to |R;) and 2p;; and —2(p;; — v)e will be the
number of electrons in orbital |R;) and the net charge on the Ith ion respectively.

5.3 spICED: Our Simulation Software

All of the simulations of radiation damage cascades and ion channelling docu-
mented in the remainder of this thesis were performed using the sparse parallel
Imperial College Ehrenfest Dynamics code, or spICED. This software was spe-
cially written for the project by D. R. Mason and comprises some eighty thousand
lines of Fortran 95 code. spICED is parallelized with MPI with good scaling up to
128 cores on HeCTOR (see Fig. 5.6). Though the code has been designed spe-
cifically for flexibility and robustness, it is fast enough that simulations of ten
thousand atoms over picosecond time-scales can be routinely performed. These
time- and length-scales make possible the direct simulation of radiation damage
events.

Fig. 5.6 The scaling of scaling on HeCTOR
processing time on HeCTOR. :
o —e— message passing
Timings are broken down by 1000+ —s— wait
process (Figure produced by —=+— commutator
—&— integration
D. R. Mason.) h~ —o— force
It - —e— total (HeCTOR)

100

+ ideal
total (cx1)

10

time per step (s)
f/
/
| J ]!
/
/
/

<

PS>
w4
~
&)

0.1

log, processor cores



5.3 spICED: Our Simulation Software 111

The parameters for simulations are specified via flexible xml input files that
allow the control of all the model parameters and output data. A wide range of raw
and processed output data is made available by spICED, including raw density
matrix output, force histogram output, densities and local densities of states, eigen-
spectra and full atom-by-atom details of positions, velocities, energies, charges
and forces. We will introduce various features of spICED throughout the
remainder of this thesis as they are made use of.
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Chapter 6
The Single Oscillating Ion

Summary: In this chapter we describe the results of simulations of a single
oscillating ion in a perfect lattice designed to probe the response of our system to
various perturbations and determine its suitability for simulations of radiation
damage phenomena. We find that the rate of energy transfer from the oscillating
ion to the electrons of our system is dependent on the frequency of oscillation, on
the local atomic environment and on the electronic temperature. We explain this
behaviour using time-dependent perturbation theory.

Attribution: The Ehrenfest simulations of a single oscillating ion discussed in this
chapter we carried out by D. R. Mason. Much of the general perturbation theory
analysis was worked out by J. le Page, as indicated in the relevant sections. The
detailed perturbation analysis of the transition spectrum within our tight-binding
model was conducted by the present author.

The underlying aim of our work is to study the effect of energy exchange between
electrons and ions on the outcome of radiation damage events. Before we
undertake simulations of complex damage processes we need to be confident that
our model can capture the physics of that energy exchange. This is about more
than just the physics included in our model: we must also be sure that the system
sizes that we are able to simulate are adequate for our purposes.

To help build confidence in our approach we will begin by examining the
results of simulations of a highly idealized scenario: we will take a block of perfect
crystal and force a single ion to undergo sinusoidal oscillations. With this simple
set-up we can probe the response of our system to ionic motion across a range of
simulation parameters. The simplicity of this scenario also means that it can be
treated analytically within time-dependent perturbation theory.

C. Race, The Modelling of Radiation Damage in Metals Using Ehrenfest 113
Dynamics, Springer Theses, DOI: 10.1007/978-3-642-15439-3_6,
© Springer-Verlag Berlin Heidelberg 2010
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Fig. 6.1 A schematic
illustration of the set-up for
our oscillator simulations.
The (blue) oscillating atom is
shown within a shell of its
(red) nearest neighbours.
Rj,i 1s its initial displacement
from its perfect lattice site
and A gives the direction and
amplitude of its oscillation.
The (yellow) cube indicates
the face centred cubic unit
cell

6.1 Simulations of a Single Oscillating Ion

Our oscillator simulations begin with a block of around 1,000 atoms of our tight-
binding copper model with periodic boundary conditions. Because charge transfers
in these simulations are negligible we use the simpler version of the Hamiltonian,
omitting the charge self-consistent terms. All the ions of the simulation cell are
held fixed at their perfect lattice sites except for one ion, which is forced to
undergo sinusoidal oscillations at angular frequency (2 such that its position is
given by

Rosc (1) = Rint + A sin(Qr). (6.1)

Ry, gives an initial fixed displacement of the ion from its perfect lattice site (and
may be zero) and A gives the direction and amplitude of the oscillation (see
Fig. 6.1). The electronic density matrix is initialised at a temperature T, so that if
{|¢.)} are the eigenvalues of the initial electronic Hamiltonian H(r = 0) with
eigenvalues {¢;} then

plr=0) = [ (e Tes p) (b (62)

fle; Te, p) is the Fermi-Dirac distribution

1

F& Teo ) = mmr (6.3)
at temperature 7, and with chemical potential x. We shall have more to say about
this initialization in Sect. 7.2.

Our simulations are designed to test the response of the electronic system to the

oscillating ion as we vary the following simulation parameters:
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Angular frequency of oscillation, €;
Initial electronic temperature, 7;
Direction of oscillation, A/|A|; and,
Initial position of oscillator, Ry,

To measure the response of our system we will keep track of the irreversible
energy transfer to the electrons AE(¢). In Sect. 7.2.4, we will discuss the definition
of this variable in more general circumstances, but in this present case, because the
electronic Hamiltonian is strictly periodic in time, we can easily determine the
energy transfer whenever the ion returns to the centre of its oscillation. The
electronic energy is

E.(1) = Tr(p(1)H (1)), (6.4)
and so the irreversible energy transfer will be given by
AE(t = mt) = E.(t = mt) — E.(t = 0), (6.5)

For integer m and

(6.6)

2n
‘T a
the period of the oscillator.

In our review of the radiation damage literature in Chap. 3, one prominent
feature stood out: the concept of a viscous damping force on the ions due to the
electrons. Our oscillator simulations can provide a first test of the validity of this
concept within Ehrenfest simulations of radiation damage. We begin by assuming
that the irreversible energy transfer to the electrons can be represented by a viscous
force on the oscillating ion

F(1) = —B(m)Ros(1). (6.7)

For generality, we have allowed the damping constant ,B to vary from cycle to
cycle. We now expect the energy transfer over the mth cycle to be

(m+1)t (m+1)t
A‘E(m) = / th(t) 'Rosc(t) = / dlﬁ(m)RgSC(t) (68)

where we assume that B varies slowly enough that it can be treated as constant
over a cycle. So for our oscillator we have

(m+1)t
AE(m) = / dtﬁ(m)|A\zQ2cos2(Qt):%B(mﬂA\ZQZI. (6.9)

mt
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In fact, as our results will show, the energy transfer varies little from cycle to
cycle while ever the response of our finite system is valid, and so we can define an
effective damping constant

_ 2AE(mr)

B(Q,Te) = m (6.10)

where we have indicated a possible dependence on the oscillator frequency and the
initial electronic temperature.

Now, the theories of slow particle stopping (Sect. 3.2.5) predict that the
damping force on a particle (the electronic stopping force) should be proportional
to its velocity,

dE

pl? (6.11)

i.e. they suggest a rate of energy loss
dE
T e (6.12)
For our oscillator, the velocity is proportional to AQ and since we have
AE(m7)
mt

:%\Aﬁﬁ(g, T.) 2, (6.13)

the theories of slow particle stopping correspond to a damping coefficient
independent of frequency.

6.2 Simulation Results

Figure 6.2 shows the function AE(r)/Q as a function of time expressed in oscillator
periods Q#/2n for a range of frequencies for low amplitude oscillations around a
perfect lattice site (i.e. Ry = 0). Our expression (6.13) suggests that for a fre-
quency independent damping all the plots in Fig. 6.2 should coincide. They clearly
do not. Also, if  were unchanged from cycle to cycle, all the plots would be linear
in time. Only the case of Q@ = 10 rad fs~' appears to conform to this expectation.
In the case of Q = 1 rad fs~', there is very little energy transfer to the electrons at
all and AE(r) oscillates around a fixed average.

Finally, Fig. 6.2 actually shows AE(f) calculated at many points within each
cycle (using the approach detailed in Sect. 7.2.4 rather than equation (6.5) and we
can see that at some points during each cycle energy is returned from the ions to
the electrons. This is inconsistent with the existence of a simple damping force and
so we should be clear that our effective damping constant is defined as an average
over an oscillator period.

Compared with the simple damping model, then, our results contain three
features that require explanation:
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Fig. 6.2 Sample results for

the heating of the electronic 0.15 -
subsystem as a function of

time, at several oscillator

frequencies. (results from /\/m
simulations by D. R. Mason.) |
(Reprinted figure 4 with |
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1. The frequency dependence of f§
2. The failure of the expected relationship AEe<t
3. The absence of long term energy transfer at some frequencies

6.2.1 Frequency and Temperature Dependence of Energy
Transfer

Before we undertake a theoretical analysis of the system we will examine the
results in more detail. Figure 6.3 shows the dependence of the effective damping
coefficient on the frequency of the oscillator and on the initial temperature of the
electronic subsystem. We note the following features for later explanation:

1. There is significant variation in § with frequency at low temperature.
2. f is frequency independent at very high temperature.

3. The effective damping decreases with increasing temperature.

4. The effective damping decreases rapidly at high frequency.

6.2.2 Position and Direction Dependence

Figure 6.4 shows the effective damping for a series of simulations at a fixed
frequency of Q = 1 rad fs~', but for different directions of oscillation A/|A| and
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Fig. 6.3 The variation of the effective damping coefficient with oscillator frequency and initial
electronic temperature. (results from simulations by D. R. Mason.) (Reprinted figure 1 with
permission from Mason, D.R., le Page, J., Race, C.P., Foulkes, W.M.C., Finnis, M.W., Sutton,
A.P.: Electronic damping of atomic dynamics in irradiation damage of metals. J. Phys. Condens
Matter 19(43), 436209 (2007). Copyright (2007) by the Institute of Physics Publishing Ltd.)
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Fig. 6.4 The variation of the effective damping coefficient for Q = 1 rad fs™' with oscillator
position Ry, and direction A/|A|. (results from simulations by D. R. Mason.) (Reprinted figure 3
with permission from Mason, D.R., le Page, J., Race, C.P., Foulkes, W.M.C., Finnis, M.W_, Sutton,
A.P.: Electronic damping of atomic dynamics in irradiation damage of metals. J. Phys. Condens
Matter 19(43), 436209 (2007). Copyright (2007) by the Institute of Physics Publishing Ltd.)

for different mean positions of the oscillating ion R;,;;. The lattice vectors on the
horizontal axis show the values of R;,;; and in general these are not points of stable
equilibrium. We note the following features of the results for consideration:
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5. The effective damping is strictly isotropic for oscillations about the equilibrium
lattice site.

6. For oscillations about other points there is significant directional dependence.

7. There is a significant dependence of the effective damping on the mean position
of the oscillator within the unit cell.

The seven features of the results listed above suggest that an effective damping
model that aimed to capture all the features of the energy transfer from ions to
electrons would have to go well beyond a simple constant.

6.3 Theoretical Analysis of the System

Because the phenomena in our oscillator simulations are so simple, involving a
single moving ion in a perfect lattice, we can undertake a perturbation theory
analysis of our results. In Sect. 13.2, we derive the result for the energy transfer
due to a sinusoidally varying perturbation V(t) = V9sin Qr. This expression is, to
first order and neglecting oscillatory contributions [see equation (B.54) in
Sect. 13.2.2.3],

1
AE(r) = ﬁZOi(l —0))(; — &) |V Ps(ei — 6, ;1) (6.14)
7

s(e, ;1) = £ (sinc?[(e/h — Q)t/2] + sinc*[(e/h + Q)1/2]), (6.15)

where {|¢;)} are the eigenstates of the unperturbed Hamiltonian H°, with energies
{&:}, {o;} are their initial occupations and w;; = (& — &) /h.

Because our unperturbed system is a perfect lattice, the eigenstates of the
unperturbed Hamiltonian will be Bloch states,

k) = \/IJVZ|R> (6.16)

for wave-vector k. If we initially occupy these eigenstates according to a Fermi-
Dirac distribution at temperature T, chemical potential y then we can write,

0; :f(Eki;TfH#)7 (617)

where Ey = (kH°|Kk). Our expression for the irreversible energy transfer is then

AE() = 23 FE —f (BB — B Vi Po(owe @0, (618)
KK’

where we have adopted the notation V},, = (kVO|K') and wge = (Ex — Ex)/h-
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This form of the energy transfer expression has an intuitive interpretation in
terms of transitions from occupied states of energy Ey to unoccupied states with
energy Ej. The Fermi factors account for exclusion, the factor [Ey — Ex| gives the

energy change of the transition and |ka/ gives the strength of coupling between
the two states. The function s(E(k") — E(k), Q; t) then gives the relative rates at
which transitions of different energies are stimulated by the oscillator perturbation:
it determines the sampling of the transition spectrum. The concept of the transition
spectrum, the set of all possible energy changes E(k') — E(k) for all k, K/, will be
important in understanding the oscillator results.

Before we return to discuss our simulation results, a few more analytical
expressions will be useful. If we consider the case of an infinite sample of our
tight-binding model (N,—o0) then the sums over Bloch states will become inte-
grals over k-space,

AE(t) :% (&ﬁ) /d3 /d*kf Ex)[1 — f(Ex)][Ex — Ex] (6.19)
Ek’ Ex, Q; t).

’ KK’

We will then transform each of the three-dimensional k-space integrals into a
product of an energy integral and an integral over a two-dimensional isoenergetic
surface in k-space.' Indicating the surface of energy ¢ by S(e), writing Ej as e and
the transition energy Ey — Ex as ¢ gives,

AE(t d d d*k / dzk"k—k’
1) = 2h2<8n3) / e/ 8/ ) IViEx|[ViEx| (6.20)

band S(e+e
% fle)[1 —fle+ o) s(e, 2 r>.
We can now define a new (dimensionless) function

dk a2k kk’ 6.21
) / / |VkEk| |ViEy| ( )

S(e+e)

|‘7(€7e+6)| = (

that determines the transition spectrum density of the infinite system where terms like

N 1

— = 6.22
877.'3 |VkEk‘ ’ ( )

are the densities of states in k-space. We then write the energy transfer as a
sampling from this function governed by s,

! The details of this transformation were originally worked out by J. le Page and are discussed in
reference [1].
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Fig. 6.5 Examples of the form of s (&, Q; 1) (solid red lines) for Q = 1 rad fs~" at a 0.35 fs,
b 0.6 fs and ¢ 4.0 fs. The pair of functions in the form f?sinc?[(e/h + Q)t/2] (dashed blue lines)
each increases in height as ~7* and narrows as ~ 1/¢

AE(I)ZZ%2 / de / de|V(e,e + &)’ f(e)[1 —f(e+ &) es(e, Q7). (6.23)
band —00

We must also consider the time dependence embodied in the function s(e, Q; 1),
s(e, Q1) = 2 {sinc*[(¢/h — Q)t/2] + sinc*[(e/h + Q)t/2]}. (6.24)

Each term in %sinc?[(¢/h & Q)t/2] represents a sampling function in the space of
the energies of possible electronic transitions, one centred on A2 and one on —hQ.
Fig. 6.5a illustrates the form of s for a frequency of 1 rad fs~' at time of 0.35 fs
after the beginning of the oscillation. As time passes the height of the terms in
’sinc” grows as 7* and their width narrows as 1/¢ such that the area under each
function is proportional to ¢ (see Fig. 6.5b). Broadly speaking, then, the energy
transfer should be proportional to .

Figure 6.5c illustrates the situation in which Q and ¢ are such that there is very
little overlap between the two r*sinc® functions. Now, for a given pair of eigen-
states | ;) and |¢;) such that |¢; — | ~ Q2 only one of the sinc” will contribute
significantly to the energy transfer. If & < ¢(w; > 0) then only the term in
1?sinc®[(e/h — Q)t/2] will contribute and we can view this as representing exci-
tations into state |¢;) from states |¢; lower in energy. Conversely, for & > ¢
(wj; < 0), only the term in r*sinc?[(e/h + Q)1/2] contributes and we can view it as
representing the decay into state |¢;) from states |¢;) higher in energy.
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This is made even clearer if we consider the long term limit of s(e, Q; ¢) by
making use of the result [2],

lim|r sinc?(ut)] = no(u), (6.25)
to obtain,
lim s(e, Q;1) = 2nt[6(e/h — Q) + d(e/h + Q)]. (6.26)

1—00

Then the energy transfer will be

thm AE(t _ / de / de |V (e,

band —00

+¢)| f(e)[l —fle+¢)]eld(e/h— Q)+ d(e/h + Q)]. (6.27)

We can go one step further by incorporating the integration over the band within a
new function

q(s;Te):% / de|V(e,e+ &) PF(e)[1 — fle+ ). (6.28)

band

q(&; T,) now determines the rate at which transitions of energy ¢ can occur in our
system given the crystal structure, the oscillator direction and the electronic
temperature (which determines the occupations). With this new notation, the
energy transfer is written

1 o0
AE(r) =5 / deq(e; Te) es(e, 25 Te), (6.29)
which in the long time limit becomes,
o0
Tt
lim AE(t) = — / deg(e; Te) e[d(e/h — Q) + 6(e/h + Q)],
fim AE) =5 [ drq(uT)eRle/ -+ oe/n DL

= nhQt[q(hQ; Te) — q(—h; Te)].

Because our simulations make use of a particularly simple tight-binding model,
we can also develop analytical expressions for the energy transfer for the system
we are studying. In Sect. 5.1.2, we introduced a notation that allows us to write the
electronic Hamiltonian of our perfect crystal as a sum over pairs of atoms in
nearest and next-nearest neighbour shells about each ion,

B335 ST R R ]+ R+ ) R

+|R1><R1 - dZ| + [R —dg) Ry},

(6.31)
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where 4d?is the position of the ions in the ath pair in the bth neighbour shell relative
to the Ith ion at R,. y(|d2|) is the value of the hopping integral at the neighbour
separation and the factor of % accounts for the double counting of each atom pair.

We will restrict our analysis to the case of a single ion oscillating about its
perfect lattice site. Without loss of generality we will specify this to be the ion
indexed by 7 = 0 and initially at the position Ry(z = 0) = (0, 0, 0). In the nota-
tion of (6.1), then, R;y;; = 0 and the oscillator position will be,

Ryse = Rp = Assin(Qr). (6.32)

For this simple system, the operator for the perturbation due to the oscillator
will be

V(t) = Vsin(Qr), V0= Vg H- A (6.33)

to first order in the displacement. In the notation used for H , above, this is
dh

-d? dy(
( — sin(Qr ZZ( |db| )()iR ’R_
—[Ro)(Ro — dg| — [Ro — dg)(Ro|}. (6.34)

To calculate the energy transfer we will require the matrix elements ka,

Viae = = sin(€) ZZ<A!d’:i| dth - ){e“"“oeik’-<Ro+dz>

_,r_efik(Roerfj) oK Ro _ o—kRy elk'-(Rofd”) _ efik(Rofdfj) eik’-Ro}

){Ro><Ro +d2| + |Ro + d2)(Ry|

(6.35)

ka/ —sin(Qr)e ik kROZZ( dh| dR

! !
% { ol Al _ ikl ikd] eﬂk-dﬂ}

% A-d’ dy(R)
kk’: stt i kROZZ<|db’

X {sm (k-d?) —sin(k' -d%)}.

R= dﬁl) (6.36)

R-|az> (6.37)

6.4 Explaining the Results

We now have all the analytical tools required for an explanation of the features of
the results of Figs. 6.2, 6.3 and 6.4 listed above.
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6.4.1 High Frequency Cut-off

Figure 6.3 shows a rapid fall off in the damping coefficient at high frequency. This
is easily explained in terms of the finite band-width of the tight-binding model that
we are using. The maximum possible energy change in any transition in the
electronic system will be that corresponding to a transition from the bottom of the
band to the top of the band or vice versa. No higher energy transitions exist and so
we can see that g(e; Te) will be zero for |¢| > band-width. Since for all reasonable
times s(¢, iQ; r) will be significant only for ¢ ~ +/iQ we can see the origin of the
cut-off.

The existence of a finite band-width is an anomaly in a model of a metal, but
will not necessarily cause problems in our work. If our simulations involve only
ionic motions with characteristic frequencies such that Q2 < band-width then the
finite band-width will not have any effect. If we needed to deal with higher
frequencies (i.e. we needed to accommodate higher energy electronic transitions)
then we would need to consider augmenting the model, most obviously perhaps by
adding further orbitals to each lattice site. For a 10 keV copper atom passing at a
distance b = 0.5 A from a second atom, the maximum frequency characteristic of
the motion will be 27 v/b = 21 rad fs~'. This is within our model bandwidth.

6.4.2 Isotropic Damping About Equilibrium Lattice Site

We found that the effective damping for oscillations about the equilibrium lattice
site was isotropic. This is consistent with our perturbation theory result in which
all the crystal structure dependence is within the squared coupling matrix elements

0 |2
Vil
2. . . . .
note that |Vﬁk,| is only isotropic because we have evaluated it to first order in the
oscillator displacement. For higher amplitude oscillations this approximation is

invalid and we would expect anisotropic coupling even about the equilibrium
lattice site.

and from (6.37) we can see that these are isotropic. However, we should

6.4.3 Absence of Energy Transfer at Some Frequencies

First-order time-dependent perturbation theory suggests that in an infinite system
in the long-time limit we should see an energy transfer that is linear in time.
Figure 6.2 clearly shows that at some oscillator frequencies this behaviour is not
observed. We must ask ourselves when we expect our single oscillator simulation
results, taken over only a short time and for a finite system, to reproduce the linear
transfer result. Because of the simplicity of the system under study we can write
down an exact expression for the squared coupling matrix elements,
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(6.38)
where the index # labels the cartesian components and is modulo 3. ¥} and v} give
the gradients of the hopping integral function at the nearest- and second-nearest-
neighbour separations respectively. Armed with this expression for the coupling
matrix we can compute the energy transfer from an oscillating ion as a double sum
over Bloch-like states |k) sampled with a density corresponding to an arbitrarily
large crystal. We can determine the energy transfer as a function of time, oscillator
direction, oscillator frequency and electronic temperature and probe the behaviour
of |(k|VO|K')|* in detail.

Given that the perturbation theory result for the energy transfer involves a
sampling of the spectrum of possible transitions within a pair of *sinc? functions
narrowing with time, we might guess that the failure of our simulations to show
linear energy transfer at certain frequencies could be due to the finite size of our
system. We can test this conjecture by considering the density of possible tran-
sitions within the electronic subsystem. A good approximation to this transition
density, obtained by producing a histogram from calculations on a system of large
size, is shown in Fig. 6.6. The strongly peaked line is the density of all transitions
within the system. This function is simply the convolution of the density of states
with itself and so we can see that the sharp peak is made up mostly of low energy
transitions between states in the peak of the density of states (see Fig. 5.3). The
second line shows the density of transitions permitted by Fermi statistics at
T. = 0K, i.e. it includes only those transitions |k)—|k’) for which f{Ey)[1 —
fEW)] > 0. We refer to this as the density of available transitions and we can see
that, because the Fermi energy is some way below the peak in the density of states,

!
72
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Fig. 6.7 a The spectrum of available transitions in a 8 x 7 x 5 unit cell block of our tight-
binding model at an electronic temperature of 0 K. Superimposed is that part of s(e, Q; ¢)
corresponding to electronic excitations at various times and for Q = 1.0 rad fs~'. b The heating
function AE(¢) calculated via first order time-dependent pertubation theory for the same system

the effect of Fermi statistics at low temperature is to exclude most of the low
energy transitions in addition to the negative energy transitions.

In the case of a finite system the density of available transitions will become a
discrete spectrum of transitions. The relative contribution of each of these tran-
sitions to the energy transfer AE(¢) will be partly determined by the Fermi
occupancy functions and by the coupling matrix element, but the strongest effect
will be that of the function s(e, A€Q;¢), which samples from this spectrum. Fig-
ure 6.7a shows part of the spectrum of available transitions for a system of the
same size as the one used in the simulations, at a temperature of 0 K. Also shown
is the term of s(e, iQ;t) corresponding to upward energy transitions® for an
oscillator at Q = 1.0 rad fsfl, hQ = 0.659 eV at various times. Clearly the
spectrum of available transitions is very sparse within the sampling functions at
this oscillator frequency and we should not expect well-behaved heating. Fig-
ure 6.7b shows the calculated heating function (which should be compared with
the actual simulation output in Fig. 6.2).

It is interesting to compare the results at zero temperature with those at 10° K.
At high temperatures the large number of low energy transitions between states at
the top of the band is no longer excluded and so the discrete spectrum around
Q = 1.0 rad fs~' is much denser. Figure 6.8a shows the large number of available
transitions over even a narrow energy range and we can see from Fig. 6.8b that we
obtain good heating results at this higher temperature.

It is clear that we must take care that the results of any simulations are not
spuriously affected by finite size effects. For any given system size there will be
some time beyond which the sinc functions of s are too narrow to sample a

2 The downward term plays no part at low temperature and the oscillatory cross term is
insignificant at longer times.
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Fig. 6.8 The spectrum of available transitions in a 8 x 7 x 5 unit cell block of our tight-binding
model at an electronic temperature of 10° K. Superimposed is that part of s(e, Q; 1)
corresponding to electronic excitations at various times and for Q = 1.0 rad fs~'. The heating
function AE(¢) calculated via first order time-dependent pertubation theory for the same system

significant number of transitions. This sets a maximum time constraint for our
oscillator simulations and we can obtain an estimate of this upper limit via the
following argument: If we assume an even distribution of transitions in
two-dimensional energy space then the number of energy transitions sampled at
time ¢ will be

N\ 2
Pyrans A2 ( = ) (Energy range of available transitions)(width of s)  (6.39)
band

where Ey,,q is the band width and N, is the number of atomic orbitals. In the case
where 71Q > kgT. (i.e. low temperature) only excitations of the electronic system
will be significant and the energy range of available transitions will be 2kg T, + hQ2
up to a maximum of Ep,ng — Q2. The width of the sinc? function will be 47/ /t and
so the number of transitions sampled will be

AR Anh
Misans ( > min(2ksTs + hQ, Evang — HiQ) % (6.40)
band

The upper time limit will then be determined by some minimum number of
transitions Ag,,s, Which must be sampled in order to obtain a valid estimate of
energy transfer.

Our results suggest that a system size of 1,000 atoms would be a minimum
required to obtain results free of finite size effects. Our chosen simulation method
will certainly allow us to model systems significantly larger than 1,000 atoms, but
this lower bound on system size would prove problematic for techniques such as
time-dependent density functional theory.

At first sight it might seem that the finite system size problem could be cir-
cumvented via k-point sampling of the eigenstates of the system. However the
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energy transfer depends on the system size not via the density of states but via the
density of transitions. Sampling at multiple k-points would merely produce mul-
tiple equally sparse transition spectra unless there was some way of coupling
together eigenstates from different k-points. It seems unlikely that any method of
achieving this would scale better computationally than N2, which is the scaling
achieved via the most obvious means of increasing the density of the transition
spectrum, namely increasing the system size.

The minimum system size and maximum simulation time constraints derived
by considering our simple oscillator simulations are probably harsher than nec-
essary. In a “real” simulation of a radiation damage process the ionic motion will
include components at all frequencies over a wide range and so the effect of any
particularly sparse regions of the transition spectrum will be reduced. Also, since
all the ions will be in motion, the transition spectrum will change with time,
weakening any constraints on system size.

6.4.4 Frequency Independence of B at High Temperature

An explanation of why the effective damping becomes independent of frequency
at high temperature will require a detailed look at the coupling matrix, but we
should first ask what condition must be satisfied to obtain frequency independence.
Recall that in the long time limit and for an infinite system we have an expression
for the heating,

lim AE(t) = nhQtlq(hQ; T.) — q(—hQ; T.)]. (6.30)

—00

We also have our definition of 8 from (6.10),

2AE(7)
QT.)=—5—5, 6.41
p(Q,T) N (6.41)
so we will have a frequency independent damping if,
[q(hw; T.) — g(—hw; T,)] x Q. (6.42)

Given the complexity of g(e; T,) it might seem unlikely that this condition will be
satisfied.

At high temperatures all possible transitions within the electronic system will
be available as shown in Fig. 6.9a. We can also see from this figure that the
function ¢(e; T.) is much less strongly peaked than the density of available
transitions. Figure 6.9b shows the ratio of the two functions in Fig. 6.9a and we

. . 2. .
can see that the effect of the coupling matrix factor |Vﬁk, is to dramatically

reduce the weight of low energy transitions in g(&; T.). Figure 6.9¢ illustrates the
function of interest [q(iQ;T.) — q(—%Q; T.)] and we see that it has the required
linear behaviour up to ¢ & 6 eV. We should note that because of the logarithmic
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Fig. 6.9 Exploring the coupling matrix at high temperature. a The density of available
transitions and ¢g(¢) at T, = 10° K; b the ratio of the two functions in the previous chart, showing
how the low energy transitions receive a low weight; ¢ the function of interest, g(¢) — g(—¢)
displaying the required linearity with frequency at low Q; d the behaviour of the damping with
frequency at 7. = 10° K showing where the samples in the previous chart occur

frequency scale in Fig. 6.3 the majority of the simulation results lie in this range
0-6 eV and so the range of linearity in [¢(hQ;T.) — q(—hQ; T.)] is sufficient to
explain the observed behaviour. The points (1)—(4) in Fig. 6.9c are marked on the
experimental plot in Fig. 6.9d to illuminate this fact. To understand why f is
frequency independent up to Q2 ~ 6eV we will need insight into the coupling
matrix ‘Vﬁk,|2

We can eliminate the effect of the Fermi factors in g(&; T,) by considering an
infinite electronic temperature

Tlim q(gT,) = Q / deV(e,e+e) (6.43)

band

where v is the band-filling parameter of the tight-binding model. This function
is plotted in Fig. 6.10 and it takes a simple, almost triangular form. If we
consider only low energy transitions, |¢| < 6 eV, we are confined to the peak
of g(e; T. » o0) around which the relative variation is small and we can
approximate
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Fig. 6.11 The coupling matrix elements for transitions between states |k;) and |k). Transitions
along three paths in k-space are shown: a I'=X, (k;, 0, 0)— (ks 0, 0); b I'=K, (k; k;, 0)—
(ks, kr 0); ¢ T—L, (k;, ki, k;)— (kg kg ky). The unshaded areas indicate the first Brillouin zone

q(e;Te — o0) =~ q(0; T, — 00) (6.44)

i.e. as a constant. At a finite but high temperature the product of the Fermi
occupancy factors will be

1 €
1 - - (14+— 6.45
e ~se+ o~ (1+ 57 (6.45)
so if the Fermi factors dominate the behaviour of ¢(g; T.) for small ¢ we expect
&
q(&Te) — q(—&Te) T (6.46)

which, since ¢ = hi€2, is proportional to Q as required for frequency independent
damping.

The frequency independence is thus a consequence of the relatively flat peak in
q(&; T.), as shown in Fig. 6.10. If we contrast this with the sharply peaked density
of available transitions in the same figure then we can see that the coupling matrix
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ng, must be suppressing (weighting down) the low energy transitions in the sharp
peak, which are predominantly those between pairs of states in the peak of the
density of states at the top of the band. Figure 6.11 confirms this property of Vﬁk,:
the figure shows the value of V},, for transitions between states |k;) and |K;) along
three paths in k-space and we can see that the effect of the coupling is to strongly
enhance low energy transitions across the band whilst suppressing low energy
transitions between states close together in k-space. Sect. 13.3 considers this
behaviour in more detail. The effect of V(llk, in weighting down certain transitions
is critically important in obtaining a frequency independent damping at high

electronic temperature.

6.5 Conclusions

Our simulations of a single oscillating ion have revealed the richness of the
behaviour of the coupling between electrons and ions via the environment, frequency
and temperature dependence of the effective damping of the oscillator. A time-
dependent perturbation theory analysis has allowed us to explain these dependencies
and establish the suitability of our simulation framework for the treatment of radi-
ation damage events. In particular, we have found that finite system size effects can
severely alter energy transfer behaviour, but that systems of = 1,000 (achievable
with our simple model) should be large enough to mitigate such effects.
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Chapter 7
Semi-classical Simulations of Collision
Cascades

Summary: In this chapter we will describe in detail a simulation of a collision
cascade using our time-dependent tight-binding model as implemented in the
spICED software. We will consider how to determine the initial conditions of the
ionic and electronic subsystems and look at a typical example of the ionic evo-
Iution. We will also take a detailed look at the electronic subsystem, how it evolves
and how excitations occur. Finally, we propose a method by which the adiabatic
evolution can be determined in our cascade simulations and define a measure of
the non-adiabatic (irreversible) energy transfer from the ions to the electrons.

Most of the results presented in the remainder of this thesis are derived from
Ehrenfest dynamics simulations of radiation damage collision cascades. We have
already discussed the evolution of such cascades in detail (in Chap. 2), but in this
chapter we will consider some examples of cascade simulations carried out with
our simple tight-binding model metal using our Ehrenfest dynamics code, spICED.
This will give us the opportunity to discuss some of the types of information
available within semi-classical simulations. We will also consider some of the
many subtleties that arise in undertaking such simulations, all of which must be
borne in mind when interpreting our results.

We will first consider the ionic subsystem, its initialization and its evolution.
The rest of the chapter will be devoted to a detailed discussion of the character and
the evolution of the electronic subsystem, that being the aspect of our work which
differs most from previous research in radiation damage simulation.

7.1 The Evolution of a Cascade

7.1.1 Thermalization of the Initial Distribution

Before we even begin a cascade simulation, typically by giving a primary knock-
on atom (PKA) some initial kinetic energy, we must consider the initial state of the

C. Race, The Modelling of Radiation Damage in Metals Using Ehrenfest 133
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ionic subsystem. In some of our simulations we start with a perfect lattice (see
Sect. 11.1.1), sometimes even keeping the positions of all but one atom fixed (see
Chap. 10), in which case the initial conditions are easily defined. More often,
however, we would like to commence our simulations with the ions in a more
realistic state, having a position and momentum distribution characteristic of some
ionic temperature.

In classical molecular dynamics simulations, such a thermalized state is rela-
tively easy to achieve. Prior to imparting kinetic energy to the PKA, the simulation
cell can be evolved for a burn-in period to give the ions chance to equilibrate.
Achieving a given temperature is then just a matter of ensuring the correct amount
of internal energy is present in the ionic system at the start of the burn-in period.
Implementation of an analogous process in our Ehrenfest dynamics simulations is
complicated for two reasons:

1. First, Ehrenfest dynamics is much more computationally expensive than clas-
sical MD and we would prefer not to expend precious simulation time in a long
burn-in period. In fact, in the system sizes of several thousand atoms typical of
our simulations, equilibration would take longer than the simulations
themselves.

2. Even if we could equilibrate our ions in a burn-in period, the motion of the ions
would stimulate excitations in the electronic system making it difficult to
establish our choice of initial conditions for the electrons.

In our earliest simulations at finite ionic temperature we adopted a simple
initialization scheme in which the ions were randomly assigned kinetic and
potential energies according to a Maxwell-Boltmann distribution at the chosen
temperature. Figure 7.1 shows the flaws in this scheme. We see a significant
repartitioning of energy between ionic potential, ionic kinetic and electronic
potential energy on a time-scale that is long compared to the several hundred
femtosecond typical duration of our simulations. We thus require a way to prop-
erly burn-in an equilibrium temperature distribution, overcoming the computa-
tional problems listed above.

To mitigate the first problem we begin our simulations with a relatively long
period (typically a picosecond) of classical molecular dynamics using a Sutton—
Chen potential [1] fitted to the inter-ionic forces within our tight-binding model.
This does a good job of partitioning the initial energy appropriately at a very low
computational cost. However, if we immediately commence our Ehrenfest simu-
lations after the classical MD phase, then we still see a slow repartitioning of
energy when the Sutton—Chen interactions are exchanged for the tight-binding
model. To correct for this, we also include a further short burn-in period, typically
100 fs long, using our tight-binding model. We must thus also address the second
problem, that of irreversible energy transfer into the electronic subsystem, listed
above.

Ideally we would like our second stage burn-in period to be conducted using
Born-Oppenheimer dynamics within our tight-binding model. This is perfectly
possible (we simply need to return the electrons to their ground state at every
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Fig. 7.1 The behaviour of the ionic kinetic, ionic potential and electronic energies in the early
stages of the Ehrenfest evolution of a 2,016 atom block of our tight-binding model initialized to a
given ionic temperature by allocating displacements and momenta according to a Maxwell-
Boltzmann distribution. a Ionic temperature of 1,000 K. b Ionic temperature of 5,000 K

time-step), but not feasible in practice: to find the electronic ground state we must
directly diagonalize the electronic Hamiltonian, a costly process that scales as the
third power of the number of tight-binding orbitals. However, because the rate of
transfer of energy to electrons is relatively slow, it is possible to implement a
dynamics that is a compromise between the need to maintain the ground state and
the requirement of computational tractability. We run Ehrenfest dynamics for the
100 fs burn-in period, but return the electrons to their ground state periodically
(typically every 10 fs proves to be sufficiently frequent). The excess energy
removed from the electronic system is disposed of. This does not significantly
damage the integrity of our initial conditions and avoids the problem of how the
energy should be returned to the ions that we would have if we aimed for perfect
energy conservation.

Figure 7.2 shows sample data from a cascade simulation initialized using the
above scheme. We still see a significant oscillation in the potential energy when
the tight-binding model is introduced, but this is mainly due to a repartitioning of
the potential energy between the classical potential energy in the repulsive ion—ion
interaction and the potential energy in the newly introduced tight-binding bonds.
The fluctuation in the kinetic energy is a better guide to the success of the scheme
and this can be seen to be much reduced when compared with Fig. 7.1 (and it is
reduced by several times more than the amount that we would expect simply
because in Fig. 7.2 we are considering a lower temperature).

7.1.2 The Evolution of the Ions

Figures 7.3 and 7.4 show some snapshots of the evolution of the ionic coordinates
from a sample cascade simulation. A PKA at the centre of a 3,840 atom simulation
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Fig. 7.2 The behaviour of the ionic kinetic, ionic potential and electronic energies in a cascade
simulation initialized to an ionic temperature of 300 K using the simulation scheme described in
the text. The data are divided by vertical lines into three stages. The first stage shows 1 ps of
thermalization with classical MD with a matched Sutton—Chen potential. The second stage shows
100 fs of Ehrenfest dynamics in which the electrons are periodically returned to their ground
state. Note the change in the time-scale on the plot axis. The final stage shows the beginning of a
1 keV cascade. The data for this stage are re-indexed to zero and shown on the right hand axis

cell with periodic boundary conditions (thermalized at 300 K) is given 1 keV of
kinetic energy in a low symmetry direction. Snapshots are shown at 10, 50, 70,
100, 160, and 260 fs into the cascade and in each case those ions that have been
displaced by more than 1.0 A from their perfect lattice site are shown on the left
hand side along with a (blue) vector indicating their velocities. On the right hand
side are shown all the ions that begin the simulation within a slice of material
centred on the PKA.

The series of snapshots shows a typical cascade evolution. Damage rapidly
spreads out in all directions from the location of the PKA. The apparent atomic
density at the centre of the slice reduces as the ions tend to have velocities directed
outwards from the PKA. We also see a clear example of a replacement collision
sequence (shown by a grey vector) carrying energy out of the cascade centre
relatively quickly.

7.2 The Electronic Subsystem

We will now give detailed consideration to the electronic system in our simula-
tions, to how we initialize it and to how it evolves. As discussed in Chap. 5 and
Sect. 4.5 we represent the electrons with a single-particle density matrix p.
Typically, we wish to initialize this density matrix so that it represents an
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electronic system in equilibrium at some electronic temperature, often the same as
the initial ionic temperature. We do this by setting the initial occupations {o;} of
the instantaneous eigenstates {|¢;(R;7=0)),&(R;7=0)} of the electronic
Hamiltonian at zero time according to a Fermi—Dirac distribution,

1
1 1 e(@®a=0)—p)/kaT’ (7.1)

0;

at the chosen temperature 7., where u is the chemical potential necessary to give
the correct total number of electrons. The initial density matrix is then,

p(t=0) = Z |¢:(R; 2 = 0))oi( d;(R;1 = 0) |. (7.2)
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Fig. 7.4 Cascade evolution
(cont.). As for figure 7.3 but
with snapshots at 100, 160
and 230 fs

A density matrix of this form, at finite temperature, can be regarded as repre-
senting a statistical mixture of pure electronic states." An alternative approach to
setting up the electronic system would be to use the probabilities given by the
Fermi—Dirac distribution to construct a density matrix with eigenstate occupations
that were all either O or 1. An average across an ensemble of such density matrices
would give the same density matrix as our chosen method.

We might ask whether there is any material difference between adopting the
statistical mixture versus a probabilistically constructed density matrix. By adopting

! Strictly it might also represent a coherent mixture of states or some combination of statistical
and coherent mixing, but it seems overly pedantic to worry about this: we have already done more
significant violence to our representation of the electrons by adopting the single-particle picture.
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the mixed state we are evolving a single set of ionic positions under the influence of
forces due to electrons in several states at the same time. This seems odd, but we
must remember that as with all atomic simulations we are not interested in the fine
detail of the ionic motion. We only require that the ionic motion be ‘representative’
in the sense that when we analyse it in order to answer carefully chosen questions we
get ‘valid’ answers. So we need only worry about the difference between the two
approaches to initialization if it were possible that the evolutions that would occur
under the effects of the electronic systems in the mixture would somehow interfere
with one another if they were to be treated separately.

An example, albeit a highly speculative one, will clarify this idea. Imagine that
we form a density matrix as a statistical mixture of two density matrices, each with
a different electron-hole excitation (we can also imagine that this mixture yields a
set of occupations in accordance with some finite temperature Fermi—Dirac dis-
tribution, if we wish). Now imagine that the evolution under each of these density
matrices treated separately gives rise in each case to a localized electronic charge,
but on a different ion in the two cases. Next consider the evolution of the system
with the mixed density matrix. It might be that in this case, interference between
the two component matrices cancels out the charge localization effect. Or it might
be that both localized charges form, in which case there will be an interaction
energy between them that never arises in the separate treatments.

In the case of our simulations we do not expect that the difference between the
two approaches will be significant. We are working with a metal, in which the
eigenstates are all delocalized and charge localization phenomena are strongly
screened. It therefore seems unlikely that different patterns of electron-hole pair
excitation close to the Fermi level at low initial temperatures would give quali-
tatively different patterns of ionic evolution.

7.2.1 The Evolving Electronic System

Having thermalized our ions and then subsequently initialized our electrons we
will commence a simulation. In the case of a collision cascade we will do this by
imparting some kinetic energy to a PKA. The ions will then evolve under a set of
classical repulsive forces and Hellmann—Feynman forces due to the electrons,
whilst the electrons in turn evolve according to the Liouville equation under a
Hamiltonian parameterized by the ionic positions.

We can consider the evolution of the electrons from several viewpoints. In the
real-space picture of our tight-binding model, with local atomic orbitals
{IRy), |R2), ...} we will see bonds between atoms forming and breaking as the
magnitudes of the bond-orders, 2R{(R;|p|R;)}, in the density matrix vary in time
due to the movement of the ions. We will see charge flowing on and off the
different ions quantified by the bond-currents 23{(R;|p|R;)}. And as energy is
irreversibly transferred into the electronic subsystem we will see a gradual
weakening of the attractive bonding interactions.
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Alternatively we can adopt the viewpoint of wavefunction Ehrenfest in which the
initial eigenstates {|¢;(R;#=0))} evolve according to the time-dependent
Schrodinger equation under the electronic Hamiltonian. We refer to these evolv-
ing states as the Ehrenfest wavefunctions, {|y;(t))}, where |y;(r=0)) =
|¢:(R;t = 0)). The occupations of these wavefunctions remain fixed throughout the
simulation and so we can always represent the density matrix as,

p(t) = Z Wi()oilbi(1)l,  0i = (d:;(R;1 = 0)[p(r = 0)|;(R; 1 = 0)). (7.3)

A third view of the evolution is afforded by examining the instantaneous eigen-
states {|;(R;t))} of the electronic Hamiltonian and monitoring their energies
{&i(R;t = 0)} and occupations {¢;(R;?)|p(7)|¢;(R;t)). This is only a partial rep-
resentation of the electrons since a density matrix constructed out of the above
information,

o(r) = Z |:(R; 1)) (¢;(R; 1) | (1) | (R; 1)) (s (R; 1)) (7.4)

omits the dynamical information contained in the full density matrix. Such a view
is useful, however, because it allows us a clear view of excitations to the electronic
system via the changing eigenstate occupations. We will return to this topic in
Chap. 8.

7.2.1.1 The Non-crossing Theorem

Figure 7.5 shows the evolution of part of the eigenvalue spectrum in a typical
simulation. The energy of the eigenvalues varies strongly with time and a curious
feature of the plot is the apparent crossing of pairs of eigenvalues. Such crossings,
or accidental degeneracies, should be ruled out by the so called non-crossing
theorem [2]. Simply expressed, this theorem argues that the evolution of two
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Fig. 7.6 Details of the highlighted apparent crossings in Fig. 7.5. When we examine the
evolving eigenvalue spectrum more closely we see that the crossings are, in fact (narrowly),
avoided, as predicted by the non-crossing theorem

eigenvalues through a putative crossing point can at best be reduced to the problem
of the variation of those eigenvalues as a function of two collective coordinates of
the system. A successful crossing then requires that the evolution of the system be
such that the pair of collective variables passes exactly through a given point in
their phase-space. If the system trajectory misses by any finite amount, as it almost
certainly must, then the crossing does not occur: it is an avoided crossing. The
concept of avoided crossings is important in analysing electronic excitations and
we will return to it in Sect. 7.2.2.

Figure 7.6a, b show more detailed views of the eigenvalue data in Fig. 7.5 and
if we extract information about the eigenstates with a high enough temporal
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resolution we can see that the apparent crossings of eigenstates are actually nar-
rowly avoided crossings.

Eigenvalue crossings certainly can occur in model systems, in situations of high
symmetry, but the argument runs that this is normally a failure of the model to
include all relevant effects in the Hamiltonian. Moving to the next better
approximation to reality tends to break the accidental degeneracy and convert a
crossing into an avoided crossing.

From the point of view of our simulations, we sometimes need to be careful to
avoid the high degrees of symmetry that can give rise to accidental degeneracies
and cause spurious effects. In our early studies of the single oscillating ion
described in Chap. 6 we initially employed a cubic simulation cell with a perfect
lattice. This generated high degeneracies in the system with the oscillating ion at
its equilibrium site which were broken as soon as the oscillator was displaced.
When the initial density matrix was set up such that only some of a group of
degenerate states were occupied, the splitting of the degeneracy as a function of
oscillator position produced a double well in the potential energy surface traversed
by the oscillating ion.

7.2.2 Adiabaticity, Non-Adiabaticity and Electronic Excitations

Since the whole point of introducing into our simulations the considerable extra
complexity of an explicit model of quantum mechanical electrons is to study non-
adiabatic effects we will now take some time to define what would be meant by
adiabatic evolution and to study some simple cases of non-adiabatic behaviour.

The adiabatic theorem of quantum mechanics (see references [3] and [4]) states
that a stationary state |¢(z)) of a time-dependent Hamiltonian H(z) will evolve
into the corresponding stationary state |¢(#;)) at some later time ¢#; if the changes
to the Hamiltonian occur infinitely slowly.

In terms of the preceding discussion of our system, infinitely slow evolution of
the electronic Hamiltonian (i.e. of the ion positions) would mean that the evolving
Ehrenfest wavefunctions coincide with the instantaneous eigenstates at all times
and the resulting adiabatic density matrix could be written,

pr(r) = Z i (R; 1)) 0i(i(R; 1)) (7.5)

7.2.2.1 A Toy Model of an Avoided Crossing

To help make the above ideas more concrete we can examine the evolution of a
simple toy model of an avoided crossing in a two level system. We begin by
considering a pair of basis states |1) and |2), and an initial Hamiltonian in this
basis,
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H(R) = <“§ _ZR), (7.6)

parameterized by a single system coordinate R which we will imagine to be an
inter-ionic separation. The eigenvectors of our basis are then fixed, with eigen-
values varying linearly with R and crossing at the point R = 0. We now introduce
a small coupling ¢ between the basis states so that the Hamiltonian becomes,

e = (5 %) 2.9
where we define,

3(R) = dpcos?[(R — Ro)m/2], —Ro<R<Ry

. 7.8
otherwise. (7.8)

The elements of H are illustrated in Fig. 7.7 for values o = 1.0 eV A~' and
50=0.01 A, Ry=1.0 A.

We will write the instantaneous eigenstates of this new Hamiltonian as, |¢;(R))
and | $»(R)). In Fig. 7.8b we plot the projections of these eigenstates into the basis
states and in Fig. 7.8a we plot their eigenvalues.

We see that, when R — — o0,|¢;(R))— |1) and |¢p>(R))— |2). We now
consider changing the variable R at a finite rate characterized by a velocity v so
that R = vt for a time variable ¢ and monitor the evolution of two time-dependent
state vectors |y(7)) and |,(¢)) whose initial values are specified as,

Y1 (t = —00)) = |1 (R = —00)), [t = —00)) = [¢o(R = —00)). (79)

Imagine that at + = — oo we occupy only the state |Y(t= — o0)) =
|¢p(R = — o)) = |1) and then evolve the system to R = + oo at a particular
fixed velocity v. Figure 7.9 shows the results of such evolutions. When the
coordinate R is changed very slowly (see Fig. 7.9a) the evolution of |y(r)) is
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Fig. 7.8 The eigenvalue energies (a) and basis state projections (b) for the eigenstates of the
Hamiltonian in a toy model of an avoided eigenstate crossing
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Fig. 7.9 The projection of the evolving state |i(z)) into the lowest eigenstate |¢;(R)) in
simulations using a toy model of an avoided eigenvalue crossing. The results for several
velocities (indicated in the captions) are shown

almost adiabatic and the system remains on the lower eigenstate |¢;) as predicted
by the adiabatic theorem. As we increase the velocity (Fig. 7.9b, ¢) |y(7))
becomes less able to adapt itself to follow the lower energy state, retaining more of
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its initial character |1) and acquiring a significant projection into the higher
eigenstate |¢,). At very high velocities (Fig. 7.9d) we approach the sudden
approximation and |y(r)) remains ‘locked-in’ to the basis state |1) switching its
character to that of the higher eigenstate |¢,). Figure 7.10 shows the extent to
which the system is able to remain on the lower eigenstate as a function of the
velocity v.

7.2.3 Achieving Adiabatic Evolution by Altering
the Electron-Ion Mass Ratio

At times in our work it will be useful to compare the evolution of a system of ions
and electrons with the corresponding adiabatic evolution for the same set of initial
conditions. We would therefore like to have a simple means of determining this
adiabatic evolution. The most straight forward approach, guided by the adiabatic
theorem, would be to repeatedly diagonalize the electronic Hamiltonian A and
reconstruct the electronic density matrix from the instantaneous energy eigenstates
in the adiabatic form,

P =D 18i(R)oi(hi(R)], (7.10)

where {o;} are the (fixed) initial occupations of the initial eigenstates. This will
give us the adiabatic evolution, in which no electronic excitations occur and the
forces experienced by the ions are those consistent with keeping the electrons in
their ground state. Unfortunately, diagonalization of the Hamiltonian is a com-
putationally costly operation that scales as the third power of the number of atomic
orbitals in the tight-binding model. For systems of thousands of atoms it would be
impossible to diagonalize the Hamiltonian sufficiently frequently to obtain the
adiabatic evolution over a useful time period.
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Instead we have found it useful to exploit a numerical trick to find the adiabatic
evolution. We can understand the basis of this trick by noting that the Born-
Oppenheimer approximation essentially exploits the large difference in mass
between the ions and electrons: the much lighter electrons, under certain condi-
tions, such as not too fast movement of the ions, can be regarded as responding
instantaneously to changes in the ion positions. If we undertake a simulation in
which we artificially reduce the electron mass then the electrons will evolve more
quickly and the evolving wavefunctions will follow the instantaneous eigenstates
more closely. To see how this works, we recall that our electronic density matrix is
evolved according to the quantum Liouville equation,

& hl0) =~ [A(R:), (1) 7.11)

In a numerical integration of this equation, /i appears as a parameter that scales the
size of the changes made to the density matrix at each time step. If we reduce the
value of 7 these changes become larger and the electronic evolution is accelerated.
Reducing 7 is, in fact, equivalent to reducing the electron mass. This is because in
our model’s description of the electrons, % also appears implicitly in the hopping
integrals between tight-binding orbitals. If we hold these (the off-diagonal ele-
ments of the electronic Hamiltonian in the atomic orbital basis) fixed then we are
effectively maintaining a constant value for the quotient 7> /m, (cf. the expression
for the free-electron band structure Ej(k) = A°k?/2m,). If at the same time we
reduce the value of 7/ in the integration of the Liouville equation then we are
implicitly reducing the electron mass.

Figure 7.11 shows the results of simulations using a simple Fortran 90 code to
implement the integration of the quantum Liouville equation in a 500 atom chain
of our tight-binding model, in which one atom is forced to oscillate parallel to the
chain and the other atoms are held fixed. The figure shows the electronic energy
(which will be strictly periodic in the adiabatic case) as a function of oscillator
cycles at different rates of evolution (different values of % or, equivalently, of
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electron mass). As the value of 7 is decreased the evolution of the electronic
system approaches the adiabatic value and the heating clearly evident in the
normal evolution is eliminated. Reducing 7 by a factor of 100, i.e. reducing the
electron mass by a factor of 10*, appears to be sufficient to achieve convergence in
this simple system.

In fact, for practical purposes it proves easier to increase the ion mass, rather than
to decrease the electron mass (i.e. than to change 7). This has the effect of scaling the
speed of the ions whilst leaving the magnitude of the forces they experience
unchanged (except for those parts of the forces due to non-adiabatic effects, of
course!). Thinking in terms of excitations as the electronic system passes through
avoided eigenvalue crossings, we see that slowing the evolution of the ions reduces
the rate at which avoided crossings are traversed, making it more likely that the
evolving wavefunctions will follow the instantaneous energy eigenstates. Fig-
ure 7.12 demonstrates the exact equivalence between slowing the evolution of the
Hamiltonian (by reducing the oscillator frequency in this example of a forced
oscillator in a tight-binding chain) and increasing the rate of electronic evolution.

Clearly, slowing the ionic motion means that our simulations will run pro-
portionately more slowly, but if we had taken the alternative route of speeding up
the electronic evolution then we would have had to use a smaller time-step to
maintain a valid evolution and the increase in computational time would have been
the same. This increase in computational time is significant, but for larger systems
it will be much more efficient than direct diagonalization of the electronic Ham-
iltonian. For even the largest systems, we can achieve some reduction in non-
adiabatic effects by scaling the ionic mass.

7.2.3.1 Some Cascade Simulations at High Ion Mass

We will now examine the effect of increasing the ion mass on some simple
dynamical simulations using the spICED code. In Figs. 7.13 and 7.14 we show the
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irreversible energy transfer into the electronic system during the first 5 fs of a
500 eV replacement collision sequence in the [3] direction in a 240 atom super-cell
of our tight-binding model. The figures show that the evolution of the energy
transfer is converged for a mass increase of 1,000 x, corresponding to a penalty in
simulation time of 101/10 = 36.

Notice that the energy transfer does not converge to zero as we would expect.
This effect is due to a subtlety of the evolution that we will return to below, but for
now we note that the expected behaviour can be achieved with a careful choice of
the band-filling parameter for our tight-binding model (see Sect. 5.1 for an
explanation of this parameter). Figure 7.15 shows the energy transfer in similar
simulations of an RCS with just such a careful choice of the band-filling. We see
that for a mass multiple of 10* x the evolution converges to the adiabatic result of
zero energy transfer.
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So why do we see convergence to the adiabatic evolution only with certain
choices of band filling? The answer lies in the interaction of nearly degenerate
states early in the simulation. As we saw in Sect. 7.2.2, the concept of adiabaticity
is not really an absolute one: adiabaticity will be achieved to a greater or lesser
extent depending on the rate of change of the Hamiltonian compared with energy
level spacings in the electronic system. Excitations between closely spaced energy
levels will remain likely even for very slow evolution, whereas systems with wider
energy spacings will behave more adiabatically. It is for this reason that semi-
conductor and insulator systems are more obvious candidates for treatment within
the Born-Oppenheimer approximation.

Figure 7.16 shows the initial eigenvalue spectrum and its occupation at 0 K in
the simulations showing imperfect convergence to adiabaticity in Figs. 7.13 and
7.14. We can see that at the Fermi level we have one fully filled energy level and
one partially filled level that are very close together in energy. The partial filling of
the highest occupied level is a result of the standard choice for our band-filling
parameter. Note that the failure to converge to adiabaticity is not a result of this
partial occupation, rather it is due to incomplete occupation of one of a pair of
nearly degenerate states; the same result would occur if one state were completely
filled and the other completely empty. Figure 7.17 shows the occupation of the
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instantaneous energy eigenstates after 25 fs of evolution. Even for a mass multiple
of 106, slowing the ionic evolution by a factor of 1,000, we can see that for the
initially nearly degenerate states, the occupations evolve from one completely
filled and one partially filled level to being two partially filled levels.

Figure 7.18 shows the eigenstate energies and the evolution of their occupa-
tions in the case of very high ion mass (x 10°) and for the normal ion mass. There
is a significant transfer of occupation (electron-hole excitation) between these
closely spaced levels even in the case of very slow evolution. Only once the
eigenvalues are separated by around 3 x 107> eV does the slowed evolution
diverge from the normal evolution and become effectively adiabatic. Figure 7.19
shows the rate of transfer of occupation as a function of the changing eigenvalue
spacing during the simulation. The convergence to adiabaticity shown in Fig. 7.15
is achieved by adjusting the band-filling parameter to place the Fermi level in the
gap around —2 eV so that both of the nearly degenerate levels are completely
filled and are well separated from the nearest unfilled eigenstate.
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What the above discussion shows is that adiabatic evolution is in general dif-
ficult to attain, but that in specific cases it may be possible with computationally
achievable increases in ion mass. In general, any increase in ion mass will at least
act to move us towards adiabaticity to some extent. We should also bear in mind
that increasing our system size will shrink the average eigenvalue spacing pro-
portionately and will thus make the adiabatic evolution harder to achieve.

7.2.4 The Irreversible Energy Transfer

An important quantity for measuring the effect of electron—ion interactions in our
simulations will be the irreversible energy transfer AE(¢). This energy transfer will
be equal to the work done by the non-adiabatic forces and so corresponds to the
effects of electronic stopping power in the theories considered in Sect. 3.2. We
introduced a simple definition of AE(¢) when we discussed the single oscillating
ion in Chap. 6. For a cascade simulation, when the ionic configuration is not
periodic in time, we would like a more general expression.

Our fundamental definition of irreversible energy transfer will be that it is the
difference between the electronic energy embodied in the evolved density matrix
in our simulations and the density matrix that we would have if the ions had
traversed the same paths infinitely slowly. We denote this latter adiabatic density
matrix p*%(r) and it will take the same form discussed in Sect. 7.2.3,

P =D 19i(R))oi(i(R)], (7.10)

diagonal in the instantaneous eigenstate basis with fixed occupations. The irre-
versible energy transfer is thus defined,

AE(t) = Tr[(p(1) — pM(R; 1)) H(R;1)]. (7.12)
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In terms of the evolved Ehrenfest wavefunctions (see Eq. 7.3 in Sect. 7.2.1) and
the instantaneous eigenstates, this is

AE(r) = S Ll () 0; — 0,03 b (7.13)

7
For complete clarity we point out that pA¢ is not the same thing as the density
matrix that results from adiabatic evolution (e.g. in the infinite ion mass limit),
because this latter evolution would involve different forces and so different ion
paths from those in our finite rate Ehrenfest dynamics simulations used to calculate
pAd. Nor is pAY the same as the canonical density matrix,

PENR 1, To(r = 0)) = > |6 (R; 1))f (e:(R; 1); Te(r = 0)) (¢ (R; 1),

1

(7.14) in which the occupations change to maintain a constant electronic tem-
perature (although p“*(R; ¢, T.(t = 0)) = p”Y when T.(t = 0) = 0 and assuming
that the non-crossing rule holds).

7.3 Conclusions

We have considered various aspects of the simulation of radiation damage colli-
sion cascades using time-dependent tight-binding in Ehrenfest dynamics. We
outlined our approach to initializing the combined electron—ion system to some
chosen temperature and examined some typical features of the ionic evolution in a
cascade simulation.

We then considered the evolution of the electronic system in detail, from
several different viewpoints. We presented the results of a toy model of an avoided
eigenvalue crossing to illuminate some aspects of non-adiabaticity and explored a
way to obtain the adiabatic evolution.

Finally, we gave a general expression for the non-adiabatic energy transfer from
ions to electrons, a quantity of high importance in the results discussed in the
following chapters.
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Chapter 8
The Nature of the Electronic Excitations

Summary: In this chapter we examine the nature of the electronic excitations
stimulated during collision cascades. We find that these excitations are well-
characterized by an elevated electronic pseudo-temperature and develop a simple
temperature fitting algorithm. We explain the emergence of a pseudo-temperature
despite the absence of thermalizing electron—electron interactions or a correct
treatment of the electron—phonon interaction in our Ehrenfest dynamics by con-
sidering the spectrum of frequencies in the ionic motion in a typical cascade.
Identifying an inconsistency between a rising electronic temperature and the fixed
entropy of the electronic density matrix, we briefly consider an alternative defi-
nition of the electronic entropy.

If we wish to understand the effect of electrons on ion dynamics then we need to
understand how electronic excitations affect the electronic force. As we will
discuss in more detail in Chap. 9 these effects can be divided into two types: short
term effects due to the finite response time of the electrons to ionic motion and
longer term effects due to the accumulation of excitations in the system. To
properly understand the second of these effects, we need to study the nature of the
electronic excitations stimulated by the ionic system. As we shall see, in the case
of collision cascades these excitations take a particularly simple form, a result of
significance for anyone attempting to account for such excitations in a classical
simulation framework.

8.1 Patterns of Excitation in Collision Cascades

To gather a representative sample of excited electronic spectra we have performed
a set of 44 simulations of collision cascades with a PKA energy of 2 keV. The
electronic Hamiltonian does not include the charge-self-consistent terms as charge
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transfer effects in low energy cascades are small. Each cascade takes place in a
simulation super-cell of 2,016 atoms (9 x 7 x 8 fcc unit cells) with periodic
boundary conditions and the initial PKA direction is uniformly distributed over the
47/48 steradian irreducible solid angle of the fcc unit cell (for details of the
calculation of the directions see reference [1]). Prior to the knock-on event the
simulation cells are thermalized to an ionic temperature of 300 K with 1 ps of
classical MD and 100 fs of quasi-Born—-Oppenheimer dynamics, as described in
Sect. 7.1.1. The electronic density operator is initialized at an electronic temper-
ature of 300 K and the simulations are allowed to evolve under Ehrenfest
dynamics for 225 fs, by which time around 45 eV, or 22 meV per electron, is
transferred irreversibly into the electronic system. Every 10 fs the electronic
Hamiltonian H(R;7) is diagonalized to obtain the electronic eigenstates
{|$:(R;r))} with energies {e;}. We can then calculate an occupation of each
energy eigenstate as

0i(1) = (dilp(1)[ ;). (8.1)

A plot of such occupations after 225 fs of a representative simulation is shown in
Fig. 8.1.

A striking feature of Fig. 8.1 is that the electrons appear to have a Fermi—Dirac
distribution at an elevated temperature (a best-fit is shown in the figure). This is
unexpected because our electronic Hamiltonian does not include the direct elec-
tron—electron interactions that could thermalize a non-equilibrium electronic
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Fig. 8.1 The occupations o; of the instantaneous eigenstates around the Fermi level as a function
of eigenstate energy ¢ for a typical simulation after 225 fs. A Fermi-Dirac distribution
corresponding to the original temperature of 300 K is shown, along with a Fermi—Dirac function
corresponding to a temperature of 6055 K as a best-fit to the excited occupation distribution
(Reprinted figure 2 with permission from Race, C.P., Mason, D.R., Sutton, A.P.: Electronic
excitations and their effect on the interionic forces in simulations of radiation damage in metals.
J. Phys. Condens. Matter 21(11), 115702 (2009). Copyright (2009) by the Institute of Physics
Publishing Ltd.)
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distribution. In a real system we would also expect the electron—ion interaction
(the electron—phonon coupling) to act to thermalize the electrons, but as discussed
in Sect. 4.6.2, Ehrenfest dynamics does not correctly reproduce this electron—ion
interaction because it omits spontaneous phonon emission. For these reasons we
will refer to the apparent electronic temperature as a pseudo-temperature.

8.1.1 Fitting a Pseudo-temperature

Having identified the approximately thermal nature of the excited electrons in our
collision cascade simulations it will be useful to have a means of fitting a pseudo-
temperature to a set of eigenstate occupations. In this section we will briefly
outline a simple algorithm for finding the best fit temperature. More details of the
method and some of the subtleties involved can be found in Sect. 13.4.

To make the fitting process as simple as possible we will consider the Fermi—
Dirac distribution f(g; T) in a form in which it is linear in the energy ¢,

(g~ 1) | = e - WL (52)

where u(7) is the chemical potential, which will depend on the temperature 7. We
have taken the absolute value of both sides for numerical convenience. By
applying a similar transformation to a set of eigenstate energies {¢;} and occu-
pations {o;} we can use simple linear regression to fit |In[(1/0;) — 1]| against
|e; — u(T)| to obtain an estimator for the inverse temperature 1/7. Figure 8.2
shows transformed data from a sample simulation.

Two particular difficulties arise in the fitting process. First, because the
chemical potential used in the transformation of the occupation data is itself a
function of temperature, our algorithm must incorporate a self-consistency loop.

Fig. 8.2 The linearized form
of the occupations o; of the
instantaneous eigenstates as a
function of eigenstate energy
g for a typical simulation
after 225 fs
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We begin by calculating an initial best-fit temperature 7;(uy) using an initial
estimate of the chemical potential yuy. We can then calculate a revised esti-
mate p;(7;) based on the requirement of fixed electron number and use this to
calculate a new best-fit temperature 7,(u;). This procedure is repeated until
consecutive estimates of the temperature are in agreement to within a single
degree. In practice, because p varies only slowly with temperature the loop tends
to converge within three iterations (see Fig. 8.3).

The second difficulty is caused by high frequencies present in the characteristic
spectrum of hopping integral variations early in the cascade. These are due to fast
moving ions in the brief period when the initial PKA energy is shared between
only a few ions. These high frequencies can stimulate excitations across the full
electronic band width which appear as a deviation from linearity at high and low
energies that persists throughout the simulation, even when many lower energy
excitations have given rise to a well-defined pseudo-temperature closer to the
Fermi level. These features are visible in the sample data shown in Fig. 8.2 and are
discussed in more detail in Sect. 13.4.1. To prevent these unrepresentative early
excitations from corrupting the temperature estimate we choose to fit only against
those data which fall within an energy window around the Fermi level.

The final temperature fitting algorithm works as follows. We begin by finding a
best-fit temperature (with a self-consistent value for u(T)) to those data that lie
within an initial energy window |&; — p(T)| <é&max- A value of en,x = 0.2€V tends
to include enough data to achieve a good fit. Next, we gradually increase the value
of emax, repeatedly finding a new best-fit temperature. This process continues while
ever Emax is such that |f(emax;T) — 0.5 <Omax Where Opax is a bound on the
eigenstate occupations chosen to include as many data as possible without intro-
ducing the corrupting influence of high energy excitations from the early stages of
the cascade. A good value seems to be O,,,x = 0.49. Figure 8.4 shows the result of
the fitting process for the data shown in Fig. 8.2. Having calculated a temperature
for a range of values of emay, We select the result with the highest value of the R*
goodness-of-fit measure. Figure 8.5 shows the R” values achieved for our set of
forty-four 2 keV cascade simulations as a function of simulation time. Typically
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Fig. 8.4 The linearized form of the occupations o; of the instantaneous eigenstates as a function
of eigenstate energy ¢; for a typical simulation after 225 fs. The best fit is achieved by exploiting
the maximum fitting window in this case. Excluded data points are shown in blue and the 228
included data points in red. Also shown is a best-fit temperature line with 7' = 6055 £+ 48 K, u
(T) = — 3.226 eV (Reprinted figure A.1 with permission from Race, C.P., Mason, D.R., Sutton,
A.P.: Electronic excitations and their effect on the interionic forces in simulations of radiation
damage in metals. J. Phys. Condens. Matter 21(11), 115702 (2009). Copyright (2009) by the
Institute of Physics Publishing Ltd.)

L

+

-
b+
b+
FRe S
+ b+
+

1.00 e 0.490
// ) 0.485
0.95 bbbttt 0.480
/ /}/M/"" 0.475
0.90 0.470

0.465

L

Omax

R2
?k

0.85 0.460
V N 0.455
0.80 0.450

0.445

L

,7
L

0.75 . - - - 0.440
0 50 100 150 200 250

Simulation time (fs)

Fig. 8.5 The R? fitting measure for the temperature fitting algorithm for a set of forty-four 2 keV
cascade simulations as a function of simulation time. Red circles show the mean of the
distribution of R? across all simulations at a particular time. The error bars show the standard
deviation and the red vertical crosses indicate the maximum and minimum R? within the set of
simulations. The blue diagonal crosses show how the value of the parameter O, for the
optimum fit varies with time (Reprinted figure A.2 with permission from Race, C.P., Mason,
D.R., Sutton, A.P.: Electronic excitations and their effect on the interionic forces in simulations
of radiation damage in metals. J. Phys. Condens. Matter 21(11), 115702 (2009). Copyright
(2009) by the Institute of Physics Publishing Ltd.)
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Fig. 8.6 A plot of the irreversible energy transfer into the electronic system against the best-fit
temperature using our fitting algorithm. Data are shown at 10 fs intervals over 200 fs for each of
forty-four 2 keV cascade simulations. The red line shows the predictions of the Sommerfeld
model for the electronic heat capacity as discussed in the text (Reprinted figure 3 with permission
from Race, C.P., Mason, D.R., Sutton, A.P.: Electronic excitations and their effect on the
interionic forces in simulations of radiation damage in metals. J. Phys. Condens. Matter 21(11),
115702 (2009). Copyright (2009) by the Institute of Physics Publishing Ltd.)

we find 0.94<R*<0.965. Also shown is the optimum value of Oy, and we can see
that after about 35 fs of simulation the best fit is achieved by using the maximum
fitting window. In Sect. 13.4.2 we present data that give us confidence that a
window of this size is large enough to capture 98% of the changes in eigenstate
occupations due to electronic excitations within the system.

In Fig. 8.6 we show a plot of the non-adiabatic energy transfer AE into the
electronic system as a function of our fitted temperature at 10 fs for each of our
forty-four 2 keV cascade simulations (a total 880 data-points). Also shown is the
temperature—energy relation predicted by the Sommerfeld model for the heat
capacity of a free electrons gas parameterized to match our tight-binding model
(see Sect. 13.4.3 for a derivation). Except at low temperatures, the agreement
between the theory and our simulation results is remarkably good. The deviation,
which occurs in the fitted temperatures over the first 30—40 fs of cascade evolution
is essentially the result of there being too little time for a well-defined electronic
temperature to be established. Further discussion of this point can be found in
Sect. 13.4.4.

8.1.2 Why do We Obtain Hot Electrons?

If the interactions in our semi-classical system are not expected to thermalize the
electrons then why do we apparently obtain a well-defined temperature? Such
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behaviour could also be explained if the interactions between the electrons and
ions were such that the excitations generated in the electronic system were thermal
in the first instance, rather than being non-equilibrium excitations that were sub-
sequently thermalized. We can imagine that something like a Fermi—Dirac dis-
tribution would arise if our initial occupation distribution (a sharply defined,
almost step-like distribution) were to evolve as if it were diffusing down the
‘concentration gradient’. Such a diffusive evolution is plausible if the excitation of
the electrons is the result of many ‘jumps’ in energy, all small on the scale of the
width of the Fermi—Dirac distribution.

Imagine an initial occupation distribution f(¢) evolving in time as a result of
many small jumps of energy /i and subject to Pauli exclusion. The rate of change
of the occupation distribution will be given by,

—f({[1 = f(e+ho)] +[1 - f(& - ho)]},

where the first term corresponds to transitions into the state at energy ¢ from states
ho either side and the second term corresponds to transitions out. Cancellation
gives

(8.3)

df(e
) e (e + o) — £(6)) - [£(6) — (e~ o). (8.4
If the characteristic frequency o is small enough that the jumps are small on the

scale of variation of f(¢) then we can write

df(e) . |df _df , (8.5)
dt de e+ /2 de e—hw/2
and
df(e) » &f
- x (fiw) 7 8 (8.6)

The evolution of f(¢) is thus governed by a one-dimensional diffusion equation in
energy space.

In our cascade simulations the diffusional ‘jumps’ correspond to the electron-
hole excitations stimulated by the motion of the ions in our cascade. The size of
the jumps will be determined by the characteristic frequencies of the changes in
the hopping integrals in the electronic Hamiltonian. We might expect that a cas-
cade would contain some very high frequencies: a 2 keV PKA, with velocity
Vmax = 780 A ps™', passing a nearest neighbour at an impact parameter of half the
close-packed distance, by, = 1.28 A, will have a characteristic frequency,

® = 27 ™% _ 3 8 PHy, (8.7)

min
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Fig. 8.7 Distribution of ion speeds at various stages in a set of forty-four 2 keV cascades
simulations: a histogram, b ascending cumulative distribution. To gather statistics, the
correspondence between different simulations has been made on the basis of the irreversible
energy transfer to the electrons during the cascade (AE is indicated in the key). An indication of
the approximate time at which each energy transfer occurs is also given in the key

corresponding to an energy of around 2.5 eV, certainly not small on the scale of
the width of our initial Fermi—Dirac distribution. However, the initial PKA kinetic
energy is rapidly shared amongst a large number of ions in the collision cascade
and so a more typical ion velocity would be <20Aps~!, as we can see from
Fig. 8.7. This corresponds to excitations of frequencies <0.1 PHz and energies
<0.06 eV, making a diffusional evolution more plausible.

So far, all we have done is argue that it is plausible that the evolution of the
electronic occupation function in a collision cascade will take the form of a one-
dimensional diffusion in energy space. This will only give apparent heating of the
electrons if diffusional evolution takes the occupation function from a lower
temperature Fermi—Dirac distribution into a higher temperature one. Starting with
the Fermi-Dirac distribution f(e) = [1 + e¥/ kBT]fl, where we have assumed the
chemical potential is zero, we can compare the rate of change with increasing
temperature,

daf &/kT
(&) __e — (8.8)
dr (1 + e?/kT)? KT?
with the rate of change under the diffusion equation,
df  &f
ar a2
n ez»:/kT ea»:/kT 1
( ) (8.9)

T KD (e 1)
n sinh(¢/kT)
 2(KT)? (cosh(e/kT) + 1)*
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where # is some diffusion coefficient. A comparison of the shapes of these two
curves is shown in Fig. 8.8 where they can be seen to be very similar.

We can take the analysis a little further if we return to Eq. 8.4 but do not make
the approximation of small . Then we have,

) e 1o+ ) — (6]~ [1(6) — £ — )]

sinh(e/KkT) sinh(&/KT) (8.10)
cosh(¢/kT) +1  cosh(e/kT) + cosh(fiw/kT)"

Note that in the case of low frequencies cosh(fiw/kgT) ~ 1 and this becomes

df(e) 1 sinh(e/KT)
dr " 2(kT)? [cosh(e/KT) + 1]

(8.11)

which has the same form as the diffusional result (8.9) as expected. In Fig. 8.9 we
compare the exact expression for the effect of finite energy jumps of %iw (8.10)
with the diffusional result (8.9). We can see that at the typical cascade frequency
of <0.1PHz the effect of discrete jumps is very similar to a diffusive evolution of
the Fermi-Dirac distribution. This in turn (as shown in Fig. 8.8) gives an evolution
close to that corresponding to a rise in temperature and we can see how an
apparently thermal excited electronic system can arise in cascade simulations
where no obvious thermalization mechanism exists.

8.1.3 The Importance of the Result

In the preceding sections we presented results that show that in our Ehrenfest
dynamics cascade simulations the electrons are excited in such a way that they
appear to acquire an elevated temperature. We also showed that this can be
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understood, in the absence of any obvious thermalizing mechanism, to be the result
of the cumulative effect of many single-particle excitations, small on the scale of
the width of the Fermi—Dirac distribution. However, in real metallic systems, both
the direct electron—electron interactions and the electron—ion interactions will act
to thermalize a non-equilibrium excited electronic system. It thus seems that our
result may be peculiar to the (in this respect defective) Ehrenfest dynamics in our
simulations and so of limited importance.

To see why our result might have broader significance, we will consider a
particular situation in which it might be useful. The work of Duffy et al. [3-5]
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Fig. 8.10 Data from semi-classical DFT simulations of femtosecond laser experiments on a
graphene bilayer. a The electronic occupation function for a double layer of graphene before and
after excitation by a 45 fs laser pulse. The electronic system is driven far from equilibrium. b The
electronic occupation function after 200 fs of simulation under semi-classical dynamics. A best-
fit Fermi-Dirac distribution with a temperature of 20 880 K is shown (Reprinted figures 1 and 3
with permission from Lin, Z., Allen, R.E.: Ultrafast equilibration of excited electrons in
dynamical simulations. J. Phys. Condens. Matter. 21(48), 485503, (2009). Copyright (2009) by
the Institute of Physics Publishing Ltd.)
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discussed in Sect. 3.4.2.2 can be viewed as an early step in attempting to incor-
porate the effects of electronic excitations into classical MD simulations of radi-
ation damage phenomena. One of the key underlying assumptions of their model is
the existence of a well-defined electronic temperature throughout a radiation
damage event.

Furthermore, one deficiency of the current model of Duffy et al. is that no
account is taken in the classical potentials of the effect of the cumulative excitation
of the electronic system. As the electrons are excited by the ionic motion, the
bonds between atoms will weaken. We have investigated just this effect using our
Ehrenfest dynamics model (the results are presented in Chap. 9), but for now we
will note that in theory it could be accommodated in a classical simulation scheme
via an excitation-dependent potential.

In general such a potential would be difficult to formulate, but matters are
simplified significantly if we can assume that the electrons always have a well-
defined temperature. The potential can then be defined as a function of temperature
and the simulation need only keep track of the electronic temperature in order to
describe the degree of excitation. Khakshouri et al. [6] have produced just such a
potential for tungsten for use in the model of Duffy et al. [3-5].

The validity of the assumption of a well-defined electronic temperature is then
key. Femtosecond laser experiments by Del Fatti et al. [7] suggest that electron—
electron interaction time-scales are of the order of a few hundred femtoseconds
(they find time-scales of 350 fs in silver and 500 fs in gold). This is certainly not
short on the time-scale of a typical collision cascade, in which the displacement
phase is over within several picoseconds. What is more, the time-scale of the
electron—phonon interaction is of a similar order of magnitude (Qiu and Tien [8]
use experimental data to find values of 650 fs in copper and only 64 fs in vana-
dium). We might thus expect the ionic motion to be driving the electronic system
away from equilibrium at least as fast as the electron—electron interaction can act
to re-establish a well-defined temperature. The fact that the ionic motion actually
tends to excite the electronic system through a series of increasing temperatures, as
revealed by our simulations, is thus critically important in validating the simpli-
fying assumption of a well-defined electronic temperature in work such as that
described in reference [6].

8.1.4 Thermalization or Thermal Excitation?

In the foregoing discussion we have made a distinction between thermalization of
the electronic system, which we take to mean the action of mechanisms of elec-
tron—electron and electron—ion interaction to produce an equilibrium electronic
distribution in a real metal and the processes taking place in our Ehrenfest sim-
ulations of collision cascades which give rise to an approximately thermal dis-
tribution as a direct result of the pattern of excitations stimulated by the ionic
motion. In this latter case, since it is the interaction with the ions that yields a well-
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defined electronic temperature, we might be tempted to regard our findings as
evidence of thermalization by the electron—ion interaction.

In a recent paper [9], Lin and Allen draw just such a conclusion from semi-
classical simulations of femtosecond laser experiments with a DFT model of the
electronic system. They simulate the effect of a 45 fs laser pulse on the electrons
of a 224 atom model of a graphene bilayer with four orbitals per atom. Fig-
ure 8.10a shows the initial 300 K electronic occupation function and the effect of
excitation by the laser pulse. The ions are also given an initial temperature of
300 K. After 200 fs of the simulation the electrons appear to have a well-defined
temperature (see Fig. 8.10b) and Lin and Allen attribute this result to thermali-
zation by the motion of the ions via the electron—ion interaction.

A comparison with our cascade simulations is instructive. In the case of a
collision cascade we start off with a well-defined low electronic temperature. This
is a highly ordered state of the electronic system and so the effect of any set of
excitations will tend to drive the electronic system to a higher entropy state. When
these excitations are all small, their cumulative statistical effect is such that those
higher entropy states are approximately the maximum entropy equilibrium states
and the electrons appear to acquire an elevated temperature. In the case of Lin and
Allen’s simulations, the electrons are excited far from equilibrium by the laser
pulse and so the above argument seems like it should not apply. However, a closer
look at Fig. 8.10a reveals that, though the laser pulse generates disorder in the
electronic occupations, this disorder is highly localized in energy space and
superimposed upon an underlying occupation distribution that remains highly
ordered. The ionic motion appears to thermalize the electrons only once the
cumulative effect of many excitations has generated a high enough pseudo-tem-
perature to swallow the initial disruption to the occupancy function.

The important point is that Ehrenfest dynamics does not treat the electron—ion
interaction correctly because it ignores spontaneous phonon emission. As shown
by le Page et al. [10] and discussed in Sect. 4.6.2, this should not cause significant
problems when treating systems in which energy transfer is predominantly from
hot ions to cool electrons. However, when spontaneous phonon emission is a
significant effect we should be careful about drawing conclusions from Ehrenfest
dynamics simulations. Such simulations will certainly not give equilibration
between ions and electrons and will not give a correct treatment of the electron—
ion interaction whenever the electrons are hotter than or at a similar temperature to
the ions.

To emphasise this point we have carried out a series of very simple numerical
simulations within a toy model. In each case we start with a model electronic
occupation function in a set of states evenly distributed between 0 eV and
1,000 eV and implement a series of random jumps of size 10 eV, obeying Pauli
exclusion. We are thus implementing the simple diffusional model for the effect of
the ionic motion on the electronic system. Figure 8.11a shows the effect of random
jumps on an initially cold occupation distribution. The jumps take the system
through a series of increasing pseudo-temperatures. In Fig. 8.11b we have chosen
an initial occupation distribution that mimics the effect of laser heating in the
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Fig. 8.11 The results of numerical simulations of a diffusive excitation model. In each case the
initial occupation function is shown along with the occupations after a series of small random
jumps of 1/100th the total width of the distribution. The simulations are implemented in loops of
1,000 jumps and the number of loops corresponding to each distribution is indicated in the key.
a Heating of an initially cold electronic system. b An initial excitation pattern designed to mirror
the effect of laser heating in the simulations of Lin and Allen [9]. ¢ A more extreme, but still
localized initial excitation. d An initial infinite temperature distribution. e A very broad excitation
(see main text for further discussion of these results)

0 200 800

simulations of Lin and Allen [9]. After 50 loops of 1,000 jumps each the disorder
in the initial excitation spectrum is swallowed by the appearance of a sufficiently
high pseudo-temperature. When more disorder is introduced in the initial



166 8 The Nature of the Electronic Excitations

excitations, but still confined to a narrow range of energies, as shown in Fig. 8.11c
we still see a pseudo-temperature emerging, but only after a longer time. When the
initial excitations span the whole band width, as shown in Fig. 8.11d, the diffu-
sional model cannot yield thermalization. The long-term steady state is the same as
that given by Ehrenfest dynamics (when sufficient ionic energy is present) and the
system fluctuates around an infinite temperature. Similar behaviour is seen in
Fig. 8.11e when excitations are introduced over a very broad energy range.
What the above results show is that even a very simple model of the electronic
excitation process, and one which most definitely does not incorporate a ther-
malization process or the possibility of a finite temperature long-term steady state,
can still act to produce an apparently well-defined electronic temperature even in
an initially excited system. We should thus be very careful when referring to
‘thermalization’ processes that there is a genuine approach to some sort of equi-
librium. In particular, quantitative conclusions that rely on the flawed represen-
tation of the electron—ion interaction in Ehrenfest dynamics can be questionable.

8.2 Electronic Entropy in Ehrenfest Simulations

In discussing the appearance of an elevated pseudo-temperature in our cascade
simulations we remarked that the excitations stimulated by the motion of the ions
drove the electronic system from an initially ordered low temperature state
towards a more disordered state with an elevated pseudo-temperature. Unfortu-
nately, the corresponding notion of increasing electronic entropy is inconsistent
with the fact that the electronic density matrix undergoes unitary evolution under
the quantum Liouville equation and so its entropy remains fixed.

If we initialize our density matrix according to Fermi-Dirac occupations
{fi(¢(R;t =0))} chosen based on the initial energy eigenvalues {e} of the
electronic Hamiltonian then we can write

ple=0) =D fi(ai(Rir = 0))[¢,(Rir = 0))(,(R; 1 = 0)], (8.12)

where {|¢;(R;t = 0)} are the initial eigenstates of the electronic Hamiltonian. In
the wavefunction view of Ehrenfest dynamics (see Sect. 7.2.1) in which the initial
eigenstate |¢;(R;t = 0)) evolves into a state |y;(¢)) at time 7 under the action of
the electronic Hamiltonian, then the density matrix can always be written

pt) = Zﬁ(ai(R;t = )i () (Wi(1)]. (8.13)

In other words the density matrix is diagonal in the basis of Ehrenfest wave-
functions evolved from the initial energy eigenstates. Its eigenvalues {4,} are fixed
at the values

A = filei(R; 1 = 0)) = (i (0)[p () [1;(1))- (8.14)
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8.2.1 Two Definitions of Electronic Entropy

A natural definition of the electronic entropy is

S(p) = —ks > (A2 + (1 = Z) In(1 — ), (8.15)

1

which, because of the unitary evolution of p(¢), remains constant.

However, simulation results like those presented in Fig. 8.1 show a relationship
between the eigenstate occupations o; and their energies ¢; that is highly suggestive
of some process of heating of the electronic system. This is inconsistent with an
isentropic unitary evolution and motivates us to define an alternative pseudo-
entropy

S(p) = —ks Y _(0;Ino; + (1 — 0;) In(1 — 0)), (8.16)

i

where o; is the occupation of the instantaneous eigenstate |¢;) of the evolving
Hamiltonian: o;(t) = (¢;|p(?)|¢;). If we choose to write the density matrix in the
basis of instantaneous energy eigenstates,

p= Z 19:(R; 1)) py (1) (¢ (R; )|, py (1) = (di(R; 1)[p];(R; 1)), (8.17)

then we can introduce a new truncated density matrix
pre = Z |d:(R; 1)) pii (1) (¢ (R; 1)]. (8.18)

The natural entropy of this new density matrix will be equal to the pseudo-entropy
of the full density matrix,

S(p) = S(p™¢). (8.19)

This is an attractive property of S since the truncation of the density matrix defined
above preserves both the particle number and the electronic energy of the full
density matrix:

Tr(p) = Tr(pP2e),  Tr(pH) = Tr(p"H). (8.20)

S has two further desirable properties for a density matrix:

1. It tends to increase with time (see Sect. 13.1.12).
2. Ttis extensive (additive) if we consider the extension of our system to be via the
introduction of multiple equivalent copies of the original evolving system.
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8.2.2 Reconciling the Two Entropies

We now have two, apparently very different, definitions of the entropy of our
electronic system: S which is fixed throughout our simulations and S which

increases. As we noted above S(p) = S(pP2) and so understanding the relation-
ship between the two entropies will require an understanding of the meaning of the
off-diagonal elements of the density matrix in the eigenstate basis. Given that
S(p) <S(p) we might say that these off-diagonal elements have an ‘ordering’
effect on the system; they contain information that tends to lower the entropy.
Since the diagonal density matrix contains all the information about the energy and
number of the electrons, the information in the off-diagonal terms must concern
the dynamics, past and present, of the electron system. Our full density matrix has
a ‘memory’ extending all the way back to t = 0, keeping track of the correlations
between the instantaneous eigenstates. This long memory is a consequence of the
(fully coherent) unitary evolution of our closed electronic system embodied in the
quantum Liouville equation.

Landau and Lifshitz [11] point out that the concept of entropy only makes sense
when considered as an average over some finite time interval. Entropy is an
equilibrium property and so can only be well-defined over a period of time that is
long compared with the relaxation time of the system under study, but short when
compared with the time-scale of its interactions with any environment. This directs
us to consider a time-averaged density matrix

1 t
p(t; Ar) = —/ p(s)ds. (8.21)
At J,
Our two definitions of the entropy might be reconciled if

lim S(p(t; A1) = S(p(1)) = S(p"*(1)), (8.22)

At—00

or if, more strongly,

lim p(t; Ar) = pP2e(z). (8.23)

At—00

We will now consider a thought experiment that gives us some confidence that the
above limits make sense.

8.2.3 A Thought Experiment

Imagine that we initialize a density matrix at time 7, and allow it to evolve under a

time varying Hamiltonian A (f) up to a time #,. We then suddenly freeze the
Hamiltonian and carry out a further evolution to time ¢ under the time-invariant
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Hamiltonian H(t,). The time evolution operator under this constant Hamiltonian is
simply

f](t; 1) = e*ﬂq(h)[l*tl]/ﬁ7 (8.24)

and so we can write down the elements of the density matrix p(f) in the instan-
taneous eigenstate basis:

plt=n)= Ze*i“’i”’j)("“)/h\<i>,-(f1)> pyi(t) (¢ (01)]- (8.25)

We can see that the diagonal elements (eigenstate occupancies) remain fixed
whilst the off-diagonal elements have a fixed amplitude and an oscillating phase. If
we now form the time-averaged density matrix p(t; At =t — t1), it will have off-
diagonal elements

1 P
py = (l‘ : / el(sisj)(ttl)/h> pii(t), (8.26)
— i Jny

which clearly decay with time.

It is important to note that the decay in the off-diagonal elements is entirely due
to the effect of averaging over a larger and larger time window. In the picture in
which the non-adiabatic energy transfer to the electrons is due to the inability of
the density matrix to keep up with the changing Hamiltonian, one might think that
stopping the Hamiltonian would give the electrons chance to ‘catch up’. We can
see from the above discussion that this is not the case; the density matrix elements
continue to oscillate with fixed amplitudes in perpetuity. The density matrix is thus
periodic in time, with some (likely large) period determined by the mixture of
eigenvalue separations in the energy spectrum.

8.3 Conclusions

We have exploited the information about the electronic system available within
our semi-classical simulations to study the nature of the electronic excitations
stimulated by the motion of the ions in low energy collision cascades. We have
found that these excitations are well-characterized by an increasing pseudo-tem-
perature (Sect. 8.1) and have developed an algorithm to fit such temperatures
(Sect. 8.1.1). The emergence of a pseudo-temperature can be explained using a
diffusive picture of excitation within the occupation distribution (Sect. 8.1.2).
That the excited electrons in a collision cascade can be described using an
elevated temperature is of significant importance to anyone attempting to develop
an excitation-dependent classical potential for use in radiation damage simulations
(Sect. 8.1.3). If the excitations generated by the ionic motion in the cascades
were not nearly thermal in the first instance then the relative time-scales for
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electron—electron and electron—phonon interaction suggest that the electrons would
tend to acquire a thermal distribution, complicating any efforts to build an exci-
tation-dependent potential.

In Ehrenfest dynamics the electronic entropy is fixed, which seems to be
inconsistent with the notion of an increasing electronic temperature. However, by
noting that the historical “memory” of the system evolution is contained in the
off-diagonal elements of the density matrix in the instantaneous energy eigenstate
basis and defining an alternative entropy based only on the diagonal elements we
obtain a more consistent picture.
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Chapter 9
The Electronic Forces

Summary: In this chapter we will begin a detailed analysis of the electronic
forces acting on ions during collision cascades. We will first break out the
non-adiabatic aspects of the force into components due to the accumulation of
excitations in the electronic system and components due to the finite response
time of the electrons to motion of the ions. We then focus our attention in
this chapter on the first of these (the latter will be considered in detail in
Chap. 11). We find that the reduction in the magnitude of the attractive
electronic forces between ions can be significant at high electronic
temperatures, ~ 10000 K. We analyse the effect of high electronic temperatures
on the lengths of replacement collision sequences and consider the effect of
bond-weakening in terms of the implied volume strain on electronically hot
regions of the target material.

The primary purpose of simulations of radiation damage is to determine and
understand the damage caused to the target material. Essentially, this damage is
fully determined by knowledge of the ionic positions at the conclusion of the
radiation damage event. When we consider the effect of electronic excitations on
radiation damage we are really asking how the electrons affect the positions of the
ions, or, in other words, we wish to know how electronic excitations affect the
forces on the ions.

In this chapter we will consider the electronic force on the ions in our Ehrenfest
simulations in detail. We will develop a way of breaking down this force into more
easily understandable components and present the results of simulations that
answer some key questions about the behaviour of the forces in radiation damage
events.
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Dynamics, Springer Theses, DOI: 10.1007/978-3-642-15439-3_9,
© Springer-Verlag Berlin Heidelberg 2010


http://dx.doi.org/10.1007/978-3-642-15439-3_11

172 9 The Electronic Forces

9.1 Understanding the Electronic Force

Classical molecular dynamics can successfully incorporate much of the effect of
the electrons on the forces felt by the ions: a well designed classical potential
should capture the electronic bonding forces between ions under the assumption
that the electrons remain in their ground state (i.e. the Born—-Oppenheimer
approximation is made). But, because such potentials treat the ions as quasistatic,
they fail to include potentially important non-adiabatic effects. These will be of
two main types:

1. The finite response time of the electronic system to changes in the electronic
Hamiltonian (i.e. to the positions of the ions) will give rise to non-adiabatic
forces. These forces should depend only on the relatively recent history of the
cascade evolution. The drag forces included in the simulation frameworks [1-4]
discussed in Sect. 3.4.2 are an attempt to incorporate the effects of these non-
adiabatic forces.

2. Over the course of a cascade evolution, the ions will do work against the non-
adiabatic forces discussed above. This work will manifest itself as excitations in
the electronic subsystem. As these excitations accumulate the electrons will
gradually heat up (with a well-defined pseudo-temperature as we saw in
Chap. 8) and the bonding forces between ions will weaken. Temperature
dependent classical potentials (as discussed in Sect. 8.1.3) are an attempt to
incorporate this effect.

We would like to make the above distinction more concrete and so we begin by
considering the Hellmann-Feynman force (4.129) for our non-charge-self-con-
sistent model given in Sect. 4.5.2,

F. = —Tr(pVH). (9.1)

If we choose to work in the basis of instantaneous eigenstates of H, denoted
{|#:(R;r))} with eigenvalues {&;(R;f)} (from which we will from now on omit the
dependence on the ionic coordinates R and the parametric dependence on time, f,
then the Hamiltonian takes a particularly simple form,

H= Zgiéij|¢i><¢i|' (9-2)
ij
We can write the density matrix as
p= Z |¢i>pij<¢j|> Pij = <¢i|i)‘¢j>a (9.3)
iy

and the Hellmann—Feynman force is written (see Sect. 13.1.13),

F. = — Z PiVe — Z(?z - g_i)pij<¢j|v¢i>' (9.4)

ij#i
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The first term in (9.4) represents motion on a collection of potential energy
surfaces defined by the instantaneous eigenvalues {¢;} occupied according to the
diagonal elements {p;;}. The second term gives the effect of non-adiabaticity.
The factors (¢;|V ¢;) are often referred to as the non-adiabatic coupling vectors [5]
and are frequently denoted d;. Note, however, that there is nothing inherently
non-adiabatic about these quantities; they are entirely determined by the positions
of the ions and the non-adiabaticity is introduced by the finite response time of the
matrix elements p;; to changes in H. The vectors d;; do, however, give the direction
of the non-adiabatic forces.

We can carry this analysis further by splitting out the density matrix into its
adiabatic form and a component due to the accumulated excitations. Under the
assumption that the ions have traversed their paths infinitely slowly, the density
matrix takes the adiabatic form (see Sect. 7.2.3, Eq. 7.10),

P =D ldafile(t = 0): Telr = 0))(d, (9-5)

where {f;(e(t =0);T.(t =0))} are the initial occupations of the instantaneous
eigenstates, which we have assumed to be a Fermi-Dirac distribution at an initial
temperature T, (1 = 0). As we saw in Sect. 8.1, the electronic excitations occurring
during a collision cascade are close to thermal, and so we introduce a third density
matrix,

Pr= Db (e(n): Te(0) (] (9-6)

where the occupations {f;(&(¢); Te(¢))} are distributed according to a Fermi-Dirac
distribution at a best-fit pseudo-temperature T.(¢). By also defining a truncated
density matrix that omits the off-diagonal elements,’

pre = Z |D:)pic(bil. (9.7)

we can now express the full density matrix as,
p=p" (07— M)+ (P — pT) + (b — pP). (9.8)

The first term is then the unexcited density matrix, the second term represents a
set of thermal excitations, and the third term gives ‘corrections’ to those thermal
excitations. The fourth term contains all the dynamical information concerning
correlation between and the rate of change of occupation of the eigenstates.
Combining this splitting of the density matrix with the force expression (9.4)
allows us to further split out the electronic force,

F.=f +f,+f;+1f,4 (9.9)

' This density matrix also appears in Eq. 8.18 in our discussion of electronic entropy.
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where,

fi ==Y file(t =0);T(t = 0))Va;, (9.10)

f5= = _lpy —fie(0): T(0)] Ve, (9.12)

f,=- Z(ei - gj)pij<¢j|v¢i>' (9.13)
ijAi

We will now consider each contribution in turn:

f,, the adiabatic force: This force is analogous to the one captured by the
potentials used in classical MD simulations. It represents motion on a mixture of
adiabatic potential energy surfaces in which the occupations are fixed in time. This
force is fully conservative.

f,, the force due to thermal excitations: This force represents motion on a
mixture of adiabatic potential energy surfaces with occupations that vary
according to a time-dependent pseudo-temperature. It is conservative provided the
additional variable T(f) is also taken into account. The results presented in
Sect. 8.1 suggest that f, should capture most of the effect of cumulative excitations
on the electronic force. Temperature dependent classical potentials correspond to
the combination f; + f,

f3, the force due to athermal excitations: This force represents a correction to
the force f; + f, required to fully capture the effect of cumulative excitations.
The results of Sect. 8.1 suggest that it should be small in comparison to f,. This
force is also conservative in the sense that it does not generate excitations in the
electronic system. It is conservative if the occupations {p;} are taken into account.

f4, the non-adiabatic force:f, is the force against which the ions do work to
generate the excitations that give rise to the forces f, and f3 (see Sect. 11.2.1 for
further discussion of this point). In contrast to the other three components, it is not
immediately obvious that f4 is real. Sect. 13.1.14 shows that f; is indeed real, as
required. In the adiabatic limit, f; will tend to zero because p will become diagonal
in the instantaneous eigenstate basis.

We can easily calculate the above components of the electronic force within our
simulations provided that we have access to the instantaneous eigenstates of the
electronic Hamiltonian. The spICED software incorporates a facility to output
such force information and in the rest of this chapter we will consider the results of
simulations designed to investigate the behaviour of the various components.
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9.2 The Effect of Electronic Excitations on the ‘Conservative’
Force

As we have discussed above, we expect that the accumulation of excitations in the
electronic subsystem during the course of a collision cascade will act to weaken
the bonding forces between ions. It would be useful to have information on the size
of this effect as a measure of the scale of one source of error in the Born—
Oppenheimer approximation assumed to hold in classical molecular dynamics.
Such information would also help determine the need for excitation- (or electronic
temperature-) dependent potentials in classical simulations.

To address the above issues we have run a set of forty-four cascade simulations
in a 9 x 7 x 8 fcc unit-cell block of our tight-binding metal with periodic
boundary conditions. 2 keV of kinetic energy is given to a PKA in directions
distributed evenly over the irreducible 1/48th of the fcc unit cell. More details of
these simulations can be found in Sect. 8.1. The spICED software gives us access
to each of the force components f;—f, on a per atom basis whenever a direct
diagonalization of the electronic Hamiltonian is performed. In these simulations
we have obtained the force information every 10 fs over the 225 fs duration of
each simulation. To help analyse the large volume of data generated in the sim-
ulations we have aggregated the information on the forces in a double histogram
for each simulation and for each data output step. Every pair of ions I, J is
assigned to a histogram bin according to the distance |R;| = |R; — R;| and the
bond order p;; + p;; between the atoms. Because the electronic Hamiltonian is a
simple function of ion—ion separation, we can then calculate the average electronic
force for each bin in the two-dimensional histogram:

dy(R)
¥yl =—5- (o +pu) (9.14)
dR [Ry|

where p(R) is the hopping integral between ions at separation R. The binning
process is repeated for both the full density matrix p(¢) and the adiabatic density
matrix p*%. This gives information about the distribution over pairs of atoms in the
simulations of the forces’F, = f; + f, + 5 + f; and f;.

Figure 9.1 illustrates the the sort of information that we can extract from our
double histogram data. The surface plot shows the frequency data for the histo-
gram for the full evolved density matrix minus that for the adiabatic density
matrix. It thus provides a view of the average change in bond strength at a given
separation (shown in the right-hand vertical panel of Fig. 9.1) and allows us to

2 At the time that the simulations documented in this section were carried out, spICED was not
able to directly output data associated with the thermal density matrix p? or with the diagonal

density matrix pP% and so these matrices had to be calculated off-line. This facility was added
at a later date.
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Fig. 9.1 A sample of the data resulting from the double histogram binning process discussed in
the text. Each ion pair in our simulations is assigned to a bin based on the separation of the ions
and the bond-order between them. The surface shows the difference in the frequencies for the
histogram constructed using the full evolved density matrix and that constructed using the
adiabatic density matrix constructed from the instantaneous eigenstates of the Hamiltonian.
The blue line indicates the nearest-neighbour separation in the perfect lattice, the red line the
next-nearest-neighbour separation. By averaging over the bond-order bins we can calculate the
average change due to non-adiabatic effects in the attractive electronic force as a function of
separation (rear vertical panel). We can also examine the shift in the bond-order distribution at a
given separation (right-hand vertical panel)

calculate the change in the average electronic bonding force as a function of
separation (the left-hand vertical panel in Fig. 9.1).

If we average our double histogram data over the bond-order bins then we can
obtain the average attractive electronic force as a function of inter-ionic separa-
tion. In Fig. 9.2 we show the average excited force (F.) averaged over all the
simulations at the point, towards the end of our simulations, when the irreversible
energy transfer into the electrons is AE ~ 43 eV (around 0.02 eV per electron).
We also show the percentage reduction in this bonding force in comparison with
the mean adiabatic force (f), i.e. the quantity ((f;) — (F.))/(f). The excitations
clearly cause a weakening of the inter-ionic bonds, but the effect is only around
0.4% at this level of excitation.

In fact, Fig. 9.2 does not show the exact comparison that we require: rather we
would like to exclude the non-adiabatic force (f;) from the comparison. However,
we can also obtain force data corresponding to the density matrices p’ and pP*
and hence obtain the force curves for the average forces (|f; + f|) and
(|f; + £, + £3]) respectively.’ Figure 9.3 shows the absolute contribution to the
reduction in the bonding force when each additional force component f,, f3 and f,

3 Calculation of these additional density matrices had to be performed separately at the time that
this analysis was undertaken (see previous footnote).
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Fig. 9.2 The strength of the attractive electronic force between ion pairs as a function of the
interionic separation. The data are shown for the full density matrix p corresponding to
(|f; + £ + £5 + £4]) (crosses). The force curve for the adiabatic density operator p™¢
corresponding to (|f;|) would be indistinguishable at this scale. Variations in the local atomic
environments give a spread in the bond orders between ion pairs with a given separation and the
error bars show the standard deviation of the corresponding spread in the force. The right-hand
vertical axis shows the percentage difference between the expectations of the two forces (circles).
(Reprinted figure 1 with permission from Race, C.P., Mason, D.R., Sutton, A.P.: Electronic
excitations and their effect on the interionic forces in simulations of radiation damage in metals.
J. Phys. Condens. Matter 21(11), 115702 (2009). Copyright (2009) by the Institute of Physics
Publishing Ltd.)
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Fig. 9.3 The reduction in the mean attractive electronic force as a function of pairwise
separation when various components of the electronic force are ignored: The effect of thermal
excitations, (|f; + £5|) — (|f1|) (vertical crosses), the effect of excitations not captured by the
thermal model, (|f; + f, + f3]) — (|f; + f2|) (diagonal crosses) and the effect of the non-
adiabatic forces, (|f; + £, + f5 + f4]) — (|f; + £, + £3]) (circles). (Reprinted figure 4 with
permission from Race, C.P., Mason, D.R., Sutton, A.P.: Electronic excitations and their effect on
the interionic forces in simulations of radiation damage in metals. J. Phys. Condens. Matter
21(11), 115702 (2009). Copyright (2009) by the Institute of Physics Publishing Ltd.)
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is taken into account. It is clear that the reduction in force is dominated by the
effect of the changing occupation of the instantaneous eigenstates. The non-adi-
abatic forces make very little contribution and, in fact, the thermal model for the
electronic excitations is so good that the residual excitations in ﬁDiag
have little further effect on the average bonding force.

We need to be careful in interpreting the small effect of the non-adiabatic force
f, on the bonding forces. In fact this force has a similar magnitude to the force f,
that dominates the reduction in bonding. However, unlike f5, the direction of f; has
no strong correlation with the direction of the bonds and so has a reduced effect in
the aggregate averages presented above.

Whilst the reduction in the bonding forces observed in our simulations and
plotted in Fig. 9.2 is only small, we should bear in mind that the 2 keV PKA energy
in our cascade simulations is relatively small. Because of the computational
complexity of Ehrenfest dynamics it is not possible to undertake large numbers of
simulations in the larger simulation cells required to contain more energetic
cascades. However, because a thermal model for the electronic excitations captures
the majority of their effect on the bonding forces we can explore the higher degrees
of excitation by simply elevating the electronic temperature in our system. We have
adopted three methods of extrapolating our results to higher excitation energies:

—p" also

1. We have taken the atomic positions from the end of our 2 keV cascade simulations
and generated force histograms corresponding to density matrices with a range of
elevated temperatures. For these calculations the simulations have simply served
as a means of generating a representative set of distorted atomic configurations.
Figure 9.4a and b shows the effect of elevated electronic temperature on the
average forces between ions at two typical inter-atomic separations.

2. By extracting information from our tight-binding model of the bond-orders
between nearest and next-nearest neighbours in a perfect fcc lattice as a
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Fig. 9.4 The effect of increasing the electronic temperature on the average attractive force
between ions in a lattice distorted by the evolution of a cascade. The forces are shown at two
representative inter-ionic separations. a The relative strength of the attractive force shown as a
function of electronic temperature. b The absolute size of the attractive force shown as a function
of the electronic energy per electron
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Fig. 9.5 The results of three methods of extrapolation of the effect of electronic excitation on the
attractive electronic force: (1) Imposing the electronic temperature on ionic configurations taken
from our 2 keV simulations (crosses). (2) Calculations from data for the effect of electronic
temperature on the bond orders in a perfect crystal (circles). (3) Results from higher energy
cascade simulations up to 50 keV (boxes). (Reprinted figure 5 with permission from Race, C.P.,
Mason, D.R., Sutton, A.P.: Electronic excitations and their effect on the interionic forces in
simulations of radiation damage in metals. J. Phys. Condens. Matter 21(11), 115702 (2009).
Copyright (2009) by the Institute of Physics Publishing Ltd.)

function of electronic temperature we can calculate the corresponding
percentage reduction in force.

3. We have run further sets of cascade simulations in 2016 atom simulation cells
at PKA energies of 1, 5, 10, 20 and 50 keV. Although the higher energy cas-
cades will rapidly cross the simulation cell boundaries, they provide a means of
injecting larger amounts of energy into the electronic system within a
dynamically distorted ionic system. By fitting temperatures to the resulting
excited eigenvalue occupation spectra and calculating the average forces from
our double histogram output we obtain a third measure of the reduction in
attractive electronic force as a function of electronic temperature.

The results of these various approaches to extrapolating our data are combined
in Fig. 9.5 and all tell a similar story. They suggest significant reduction of order
10% in the strength of the attractive electronic force for electronic temperatures
above 3 x 10* K.

9.2.1 The Importance of the Reduction in the Attractive Electronic
Force

The practical importance of the results presented above depends on the sorts of
electronic temperatures likely to be generated in real radiation damage events.
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Real events will involve higher PKA energies, but they will also take place in open
systems, in contrast to our small, closed simulation cells.

The model of Duffy et al. [4, 6] makes predictions about the evolution of the
spatial distribution of the electronic temperature in collision cascades. They find [6]
maximum electronic temperatures of up to 7000 K in 10 keV collision cascades in
iron, although their results are highly sensitive to the choice of value for the electron-
phonon coupling (something very much open to debate as we saw in Sect. 3.3.4). At
these temperatures, reductions in bonding forces of ~0.5% are possible.

9.2.1.1 The Effective Strain Due to Electronic Heating

We have seen that the effect of a collision cascade is to heat the electrons in the
cascade region and that this heating can lead to significantly weakened bonds.
In turn, the weakened bonds will imply an increase in the equilibrium lattice constant
for the material in the electronically hot region. However, because the surrounding
material will prevent the expansion of this region, it will be placed under an effective
strain. Because the electronic thermal conductivity is relatively high, the region in
which the electrons are heated will generally extend significantly beyond the borders
of the ionic disruption caused by the cascade. We therefore suggest that a reasonable
model for the effect of electronic heating would be a strained spherical inclusion
within the surrounding material. This spherical inclusion will exert an outward
pressure on its host medium. Whilst this pressure will be relatively short lived, it may
persist for long enough to cause an outward propagating elastic wave, which might
then influence the evolution of the pre-existing defect distribution in the material
surrounding a cascade. In this section we will briefly present some preliminary
calculations designed to investigate the above phenomenon.

We must begin by estimating the effective strain of an electronically hot
inclusion. By extracting data from spICED for a perfect lattice at a range of
electronic temperatures we can obtain the nearest- and next-nearest-neighbour
bond-orders as a function of electronic temperature. A cubic spline fit to these data
is shown in Fig. 9.6. The decrease in bond-orders with increasing temperature
implies an increase in the equilibrium lattice parameter. Within our tight-binding
model we can find the new equilibrium lattice parameter by minimising the
binding energy per atom given by Eq. 5.10

Eg € ar \? ar !
— == — | —ec — 5.10

Na ZJZ#,(RIA) Jzﬂplj <|RIJ|> 7 ( )
with decreased bond-orders. This task is made more difficult because at finite
electronic temperature the bond-orders also vary with lattice constant. However,
because of the power-law scaling of the hopping integrals in our model, we can
exploit an exact equivalence between the effects of volume and electronic tem-
perature changes to obtain a minimization condition that is a simple function of the
bond order variations with temperature.
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Fig. 9.6 The variation with electronic temperature of the ground state bond-orders in our tight-
binding model. Data were obtained at the temperatures indicated by the green lines and the solid
red and blue lines show the results of a cubic spline fit to these data
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Details of the analysis are given in Sect. 13.5 and the effect of electronic
heating on the implied strain is shown in Fig. 9.7. Electronic temperatures of
10000 K, then, imply volume strains of ~ 1% on the heated region. Such strains
could have a significant effect on the evolution of the damage distribution if they
persist for long enough to give rise to an outward propagating elastic wave.

9.2.2 Replacement Collision Sequences

Having established that the accumulation of electronic excitations generated by a
cascade can cause significant weakening of the bonding forces between ions we
will now examine how these changes affect cascade evolution. A key mechanism
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Fig. 9.8 A schematic representation of the different modes of behaviour exhibited when the
kinetic energy of an ion is directed along a close-packed row in the crystal lattice. At the lowest
energies a phonon propagates along the row and each atom returns to its equilibrium position. At
higher energies it is possible for each atom to displace the next in the row and replace it at its
lattice site: an RCS forms. At higher energies still, small misalignments due to thermal vibration
of the ions prevent an RCS from forming and a collision cascade forms. If sufficient energy is
dissipated by this cascade an RCS may then emerge along a close-packed row leading out of the
cascade region

of damage creation is the replacement collision sequence (RCS) introduced in
Sect. 2.2. A sequence of collisions proceeding along a close-packed line of ions in
a lattice is able to carry a resulting interstitial atom a long way from the corre-
sponding vacancy, increasing the probability that the defects will fail to annihilate
and will form part of the residual damage distribution.

The phenomenon of replacement collision sequences has been extensively
explored via classical simulations [7, 8] and it is well established that there is an
upper kinetic energy threshold, beyond which a replacement collision sequence
will not form and a lower threshold, below which a phonon-like behaviour is
observed. Three modes of behaviour are shown schematically in Fig. 9.8 and can
be observed in our simulation data in Fig. 9.9. The lattice temperature has a strong
effect on the stability of an RCS: at elevated temperatures the ions are not gen-
erally well aligned, making it more difficult for an RCS to progress.

We have investigated the effect of electronic temperature on the formation of
replacement collision sequences. This is something that cannot be established using
classical simulations and will be a useful test of the importance of accumulated
electronic excitations in affecting the ionic dynamics in collision cascades. We have
run 1029 separate simulations of replacement collision sequences in which a PKA is
given kinetic energy ranging from 10 to 100 eV in a [9] close-packed direction. The
simulations take place in a 1120 atom lattice of our model metal with periodic
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Fig. 9.9 Sample data showing the paths taken by ten ions along a close-packed row during the
course of an RCS simulation. The PKA is at the left and the horizontal axis shows the position of
the ions parallel to the close-packed direction. The vertical axis indicates the distance of the ions
from the close-packed line in a perpendicular direction. Data for four different PKA energies are
shown. a At 10 eV all the ions return to their original lattice sites. No RCS is initiated and a
phonon can be seen propagating along the close-packed row. b At 50 eV the first four ions move
on to the next lattice site in the row as part of an RCS. After this, sufficient kinetic energy has
been dissipated and the energy transferred to the fifth ion is below the displacement threshold
energy. The remaining atoms take part in a phonon-like behaviour, returning to their original
lattice sites. ¢ At 100 eV there is sufficient energy to continue the RCS for the full length of the
ten ion row. d At 2000 eV an RCS cannot form and the PKA initiates a small collision cascade.
However, once the majority of the initial kinetic energy has been redistributed an RCS or a
phonon can be seen emerging towards the end of the close-packed row

boundary conditions, with a lattice temperature of 300 K established via 1 ps of
classical molecular dynamics and 100 fs of thermalized Ehrenfest dynamics as
described in Sect. 7.1.1. The electronic temperature of the simulations is chosen to
be one of the values 1 x 10%, 10 x 10°, 20 x 10°, 50 x 10° and 100 x 10’ K.
The simulations are run for between 300 and 500 fs depending on the PKA energy

To characterise the behaviour of the RCS in each simulation we classify each of
ten atoms along a close-packed line, including the PKA, as having either returned
to their lattice site, moved to the next lattice site along the line or left the close-
packed row entirely by the end of the simulation. An ion is associated with a
particular site along the close-packed row if it lies within half the close-packed
separation (1.27 Ain copper). Figures 9.10 and 9.11 show the percentage of the
ten ions in the close-packed row included in the RCS at each energy for each
electronic temperature.

From Figs. 9.10 and 9.11 we can see that the displacement threshold energy for
our model metal lies somewhere between 20 and 30 eV. For PKA energies below
this threshold the PKA always returns to its original lattice site and no RCS is
initiated. As the PKA energy is increased, the replacement collision sequences
lengthen, apparently reaching a plateau by 80 eV. As for the question that the
simulations are designed to address, whether the electronic excitations have a
significant effect on RCS behaviour, we can see that only at very high electronic
temperatures is the length of the RCS affected.

As the electronic temperature is increased the attractive bonding forces
are weakened and the repulsive inter-ionic forces become more significant.
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Fig. 9.10 The number of ions displaced to the next lattice site along a close-packed row of 10
atoms as a function of PKA energy in simulations of replacement collision sequences. Data are
presented for a variety of electronic temperatures. The data points indicate mean averages taken
across all simulations (approximately 20 for each point) at a given energy and temperature. The
error bars indicate the standard error in this estimate of the mean. The lines are to guide the eye.
In effect, the figure shows the average length of the RCS as a function of energy and temperature
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Fig. 9.11 The number of ions returning to their original lattice site along a close-packed row of
10 atoms as a function of PKA energy in simulations of replacement collision sequences. Data are
presented for a variety of electronic temperatures. The data points indicate mean averages taken
across all simulations (approximately 20 for each point) at a given energy and temperature. The
error bars indicate the standard error in this estimate of the mean. The /ines are to guide the eye

This makes the inter-ionic collisions ‘harder’ and the replacement collision
sequences are more likely to be broken. We can just discern the onset of this
effect at 50 x 10° K and by 100 x 10° K it significantly reduces RCS length.
These temperatures are ludicrously high; way beyond anything likely to be seen
in a collision cascade, and so we can reasonably conclude that our results
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Fig. 9.12 A plot of the ion paths in an RCS with a PKA energy of 200 eV. The data are plotted
as described in Fig. 9.9. The different plots show simulations with equivalent starting conditions
but different values for the ion masses: a Normal ion mass. b Ten times normal ion mass. ¢ One
hundred times normal ion mass

indicate that accumulated excitations should not significantly affect RCS length.
Certainly the electronic temperature is a much less significant factor than the
ionic temperature.

9.2.2.1 Does the Non-adiabatic Force Have an Effect on RCS Dynamics?

We might also consider the other potential effect of electronic excitations on
RCS dynamics: does the non-adiabatic force f; (defined in Eq. 9.13), which
arises because of the finite response time of the electrons to changes in the
electronic Hamiltonian, affect the evolution of a replacement collision sequence?
We do not expect it to do so, because an RCS is an inherently low speed
phenomenon, which will not form much above 100 eV in typical metals. We
have confirmed this expectation using the method outlined in Sect. 7.2.3 and
running equivalent simulations with increased ionic mass to slow down the
development of the cascade and eliminate most of whatever non-adiabatic force
is present. The results of such simulations are shown in Figs. 9.12 and 9.13
where we show the evolving position of the tenth atom in a replacement col-
lision sequence. We can see that |f;|] must be very small indeed for the ion
dynamics at different ion masses to mirror one another so closely even at the end
of the simulation. In Chaps. 10 and 11 we discuss some work in which the non-
adiabatic force does play an important role.
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Fig. 9.13 Detail of the evolution of the position of the tenth ion in the RCS shown in Fig. 9.12:
a The ion path. b The ion position parallel to the close-packed RCS direction. ¢ The ion position
perpendicular to the close-packed direction

9.3 Conclusions

In this chapter we began a detailed analysis of the electronic forces on ions in
collision cascades that we will conclude in Chap. 11. We analysed the electronic
(Hellmann—Feynman) force in the basis of instantaneous eigenstates of the elec-
tronic Hamiltonian and split the force into four components (Sect. 9.1). We then
focussed our attention on the bond-weakening effects of accumulating electronic
excitations on the conservative forces on the ions (Sect. 9.2). At levels of electronic
excitation corresponding to temperatures of ~ 10000 K there was significant
weakening of these forces (~1%) and a thermal model of these excitations was
able to capture 95% of this weakening. Calculations of the effective volume strain
in our tight-binding model as a function of electronic excitation suggest significant
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strains, perhaps high enough to influence defect dynamics (Sect. 9.2.1.1). Simu-
lations of replacement collision sequences at a range of electronic temperatures
suggest that their lengths should not be significantly reduced at temperatures below
~50000 K (Sect. 9.2.2).
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Chapter 10
Channelling Ions

Summary: In this chapter we examine the results of simulations of ion channelling
at kinetic energies of up to 1.3 MeV in our tight-binding model metal. Our explicit
treatment of both the ionic positions and of the electronic system allows new
features to emerge that are not predicted by simpler models employing a spatially
invariant stopping medium. So, whilst we find that at velocities of less than
6 A fs~! the stopping power is proportional to velocity, we also find a suppression
of the stopping power at higher speeds. This suppression is significant and
becomes very large when high values of the on-site charge self consistency
parameter U are employed. We also find a resonant enhancement of the steady
state average charge on the channelling ion over a well-defined range of velocities.
We explain all of our results within a tight-binding picture of bonds between
neighbouring atoms and using perturbation theory analysis.

Attribution: The large scale simulations of ion channelling used to map out the
stopping power and charge behaviour were performed by D. R. Mason.

The simulations that we have discussed so far in this thesis have all been confined
to relatively low energies. The computational complexity of our simulation
method is the key reason behind this: higher energy processes would tend to need a
large simulation cell and a smaller time-step and would quickly get beyond the
reach of our resources. However, the phenomenon of ion channelling (see
Sect. 2.1) does lend itself to smaller scale simulations. A swift ion passing down
an open channel in a crystalline material (see Fig. 10.1) loses very little energy to
the surrounding ions and so there is little disruption of the simulation cell. This
means that not only can the cell be kept relatively small, but also the evolution of
the ionic system retains a high symmetry, reducing the need to gather statistical
results by running multiple simulations with similar initial conditions.

In this chapter we will describe some results of Ehrenfest dynamics simulations
of the channelling of ions in our model metal with energies of up to 1.3 MeV.
The key quantities of interest are the steady state charge and stopping power of the

C. Race, The Modelling of Radiation Damage in Metals Using Ehrenfest 189
Dynamics, Springer Theses, DOI: 10.1007/978-3-642-15439-3_10,
© Springer-Verlag Berlin Heidelberg 2010


http://dx.doi.org/10.1007/978-3-642-15439-3_2#Sec1
http://dx.doi.org/10.1007/978-3-642-15439-3_2#Sec1

190 10 Channelling Ions

Fig. 10.1 A schematic
illustration of a [100] channel
in a face-centred cubic lattice

channelling ion. We will see that both quantities display an unexpected resonant
behaviour and we will explain this behaviour using time-dependent perturbation
theory.

10.1 Semi-Classical Simulations of Ion Channelling
10.1.1 The Simulation Set-Up

Our simulations were performed in a7 x 9 x 32 unit cell block (8064 atoms with
periodic boundary conditions) of our tight-binding model metal with all the ions
held rigidly fixed at their perfect fcc lattice sites." An additional ion was intro-
duced at a tetrahedral interstitial site (no relaxation of the surrounding ions was
permitted) and given some initial kinetic energy in the long [100] direction. This
initial set-up is illustrated in Fig. 10.2. Simulations were performed at kinetic
energies from 1 keV up to 1334 keV. The ions were held fixed to simplify the
cascade dynamics so that our chosen output variables could be more easily cal-
culated; there would have been no great increase in computational cost if we had
allowed all the ions to move. The approximation of a fixed lattice is physically
reasonable (certainly at the higher velocities) because the fast ion interacts only
fleetingly with the ions forming the channel wall and so imparts only a small
impulse to them.

At the high velocities used in our channelling simulations, it becomes possible
for ions to come into unusually close proximity with one another and so the
possibility of large charge transfers arises. To improve the modelling of such
charge transfers, the charge self-consistent form of our tight-binding model

! These simulations were carried out by D. R. Mason. Some smaller scale channelling
simulations, discussed later, were carried out by the present author.
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Fig. 10.2 A schematic
illustration of the fcc lattice
in the vicinity of a [100] ion
channel. The channelling ion
is shown (in red) with its
velocity indicated by an
(orange) arrow. A cage of
four atoms around a
tetrahedral interstitial site is
also indicated

(see Sect. 5.1) was used in these simulations. In this model the basic electronic
Hamiltonian (5.1),

H=""R)7(Ruy) (R, (10.1)

is augmented with charge self-consistent terms (5.7),

B =i+ Z IR;) (UQI + ZZIJCIJ> (R], (10.2)
7

1

where,

2 27 “1)2
=— [ |Ry 10.3
w 41e <| wl”+ [4neoV] ) ’ ( )

As we will see when we examine the simulation results, such terms can have a
significant effect on the system behaviour. The electronic density matrix was
constructed with an initial electronic temperature of 7, = 1000 K,

p= Dl (e Tes W) (b, (10.4)

where {|¢,)} are the eigenstates of the initial self-consistent Hamiltonian.

10.1.2 The Evolution of a Channelling Simulation

At the beginning of the simulations the channelling ion (effectively an unrelaxed
tetrahedral interstitial defect) has a significant negative charge. This is because the
bonds between the channelling ion and its nearest neighbours are unusually short.
These short bonds, and their unusually large hopping integrals, give rise to a low
energy bonding state, highly localized on the channelling ion. Occupation of this
bonding state leads to an excess of electronic charge on the channelling ion.
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Fig. 10.3 Snapshots of the

ionic charge distribution in : 1t ) &
the steady state for 3 B
channelling ions at a sample 1
of kinetic energies. The
various features of the plots 4
are discussed in the main text S
(image created by D. il 800888
R. Mason) 0 keV 365 keV
21111 # 2401
-
3 .
b
b4 4 ; +
10 keV : 1 MeV Hitts

As the projectile ion moves down the channel, its charge, the electronic energy
and the electrostatic energy all oscillate with the frequency at which the ion passes
between equivalent lattice positions. Over the first 4-6 fs of a simulation transient
behaviour is observed, but after this period a steady state emerges. The charge on
the ion continues to oscillate, but it does so about a well-defined mean value.
The rate of energy loss with distance (the stopping power) also stabilizes to a steady
average. Figure 10.3 shows the distribution of electronic charge in the steady state
at a sample of ion velocities. The negative charge on the channelling ion is clearly
visible in all cases, as is a sphere of compensating positively charged ions
surrounding it (a screening effect). At higher ion velocities we can see the finite
response time of the electronic system manifest in a lagging of this screening cloud,
which is now centred some way behind the projectile. This response is analogous to
the stopping mechanism in the Lindhard dielectric stopping theory of slow particles
(see Sect. 3.2.5.2) and we shall return to this point later. At the highest velocities a
streak of negative charge can be seen behind the channelling ion; the localized
charge is unable to “keep up” with the ion and slowly decaying localized states are
left behind.

10.1.3 Challenges in Simulating Ion Channelling

Ehrenfest simulations of ion channelling represent a considerable challenge.
In order to get well-converged results it is necessary to use simulation cells
no smaller than those employed in the simulations described above. Lateral
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dimensions of around 8 unit cells are needed to give good convergence of the
Hartree energy of the system. The long dimension is dictated by the need to achieve
a steady state behaviour before the ion crosses the boundary of the periodic sim-
ulation cell. This requirement is not an obvious one: with all the other atoms held
fixed, why not allow the channelling ion to pass back through the same region of
lattice? One might think that the relevant time-scale for the interaction of the
channelling ion with its own past effects would be set by the time taken for a
disturbance in the electronic system to travel the width of the cell. However, such
disturbances do not seem to have a significant effect on the stability of our results.
What matters more are the slowly decaying states shed by the fastest channelling
ions; when such ions are allowed to wrap around the periodic boundaries they
experience significant disruption due to these larger disturbances in their own wake.

This need for a large simulation cell places a severe restriction on the
sophistication of the electronic model that can be used. Anything much
more complicated than the simple single s-band tight-binding model employed
here could put well-converged channelling simulations beyond reach. A more
realistic model, from the point of view of accuracy of electronic structure, could be
achieved in a time-dependent density functional theory approach. Pruneda et al. [1]
have carried out TD-DFT simulations of ion channelling in the insulator LiF. They
were restricted to 100 atom cells by the computational complexity of their method
and so their channelling ion wraps the simulation cell boundary multiple times.
Whether this wrapping has any adverse effect on their results is difficult to tell
because their simulation cell is so small that the stopping power that they measure
is not converged with cell size within the range of sizes they were able to simulate.
We have discussed these results in more detail in Sect. 3.5.

Because calculation of the instantaneous energy eigenstates requires direct
diagonalization of the electronic Hamiltonian, which is prohibitively time
consuming for simulation cells as large as ours at the best of times and made
considerably more so by the effects of charge self-consistency, it would in general
be difficult to monitor the irreversible energy transfer from the channelling ions to
the electronic system. However, because we hold all the other ions fixed, the ionic
configuration is strictly periodic in time and so the adiabatic electronic density
matrix will be so also. Hence, by monitoring the fotal electronic energy or,
alternatively, the ionic kinetic energy, at equivalent points along the channelling
path, we can easily determine the non-adiabatic energy transfer.

10.2 Steady State Charge
10.2.1 Results for a Non-Self-Consistent Model

In this section we will present the results of our channelling simulations. Before
we do so, it is worth considering how these results have been extracted. Simulation
data are output at regular, but discrete, intervals and, since our calculations rely on
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using the periodicity in the ionic configuration, we must be able to compare values
in equivalent atomic environments. To facilitate this the raw data were spline fitted
to extract the envelopes of the periodic variation in our variables of interest. From
these fits, the amplitudes of oscillation and mean values of the variables are
determined.” Figure 10.4 shows examples of the data and the fitted envelopes.

Figure 10.5 shows the variation of the steady state charge on the channelling
ion as a function of the initial velocity for a non-self-consistent electronic Ham-
iltonian (we will consider the effect of the self-consistent terms later, but the
results show similar behaviour to the non-self-consistent case). At low velocities
the electronic charge remains close to its value in the stationary unrelaxed tetra-
hedral interstitial case. At high velocities electrons are shed by the ion: they are
unable to keep up with the ion and so are stripped away with increasing velocity.
At intermediate velocities we see an unexpected feature. With relatively rapid
onset, which looks much like a resonance, the negative electronic charge experi-
ences a significant enhancement. It is this feature that we now seek to explain.

Our explanation begins with the local density of states on the channelling ion.
The full density of states is defined,

D(e) = Niz o — &), (10.5)

for a system with eigenstates {|¢,)} of energy {¢;}. Then, if |o.) is the tight-
binding orbital on our channelling ion, we can write the local density of states as,

% This fitting and data extraction was carried out by D. R. Mason.
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Fig. 10.5 The mean steady lon kinetic energy (keV)
state charge on a channelling 0 82 329 741 1317
ion as a function of its initial 0.0
velocity (data provided by D. & _g 1
R. Mason) :c; /

L2 -0.2

o /

= 03 g

2 /

S -0.

<

5 Nl

c -05 ~

: \ ./

o

o -0.6

5 N

<

o -0.7

-0.8
0 5 10 15 20

lon velocity (A/fs)

Fig. 10.6 The full density of Local DoS
states for our perfect lattice | e Full DoS
plus channelling ion and the
local density of states on the
channelling ion when at a
tetrahedral interstitial
position

_30 -20 -10 0 10 20
Energy (eV)

D, (&) = Z [ (ot i) 23 — &) (10.6)

Figure 10.6 shows a histogram of the local density of states on the channelling
ion (at a tetrahedral interstitial position) along with the full density of states for
comparison. There are several key features to consider in the local density of
states. First, there is a group of low energy states at the bottom of the band with a
large projection onto the channelling ion. These are the bonding states that we
mentioned earlier and whose occupation accounts for the negative charge on the
channelling ion whilst stationary at an interstitial position. Second, at high energy,
above the top of the bulk density of states, there is a single excited state, highly
localized on the channelling ion (in Fig. 10.6 this state is broadened into a peak by
the Gaussian binning process used to construct the histogram). This state is anti-
bonding in character and is initially unoccupied.

The form of the local density of states on the channelling ion provides us with
everything we need to explain the resonance feature in Fig. 10.5. We begin by
considering the effect of the motion of the channelling ion on the electronic
Hamiltonian. We can regard this as providing a periodic perturbation to the
electronic system whose dominant frequency will be determined by the rate at
which the ion moves between equivalent positions in the lattice. If the distance
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Fig. 10.7 A schematic

illustration of how the . . . . .
channelling velocity v and the ) d

periodicity of the lattice ;E >

determine the dominant . . . . .
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perturbation due to the
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separating such points is d = 1.805 A as shown in Fig. 10.7 and the ion moves
with speed v, then this dominant frequency will be,

Q=" (10.7)

The effect of the perturbation will be to stimulate electron-hole excitations in the
electronic system of corresponding energy %€),. At low channelling velocities,
only transitions close to the Fermi level will be stimulated. Such transitions are
between occupied and unoccupied states with similar (relatively low) projections
onto the channelling ion orbital and therefore have no effect on the ion charge.
At higher speeds transitions become possible between occupied states close to the
Fermi level and the unoccupied anti-bonding state at high energy. Such excitations
take electrons from states with a low projection onto the channelling ion into the
highly localized state. They thus have the effect of increasing the negative
electronic charge on the channelling ion. In Fig. 10.8 the charge localizing tran-
sitions are indicated and labelled (A).

Our explanation suggests that the velocity at which the charge feature appears
should be related to the distance above the Fermi level of the high energy defect
state, an energy that we will denote Aeg,, by the relation

Ag,d

Vonset = h

From our density of states we have Ag, = 17.8 ¢V, so that vyye; = 7.8 Afsl.
In Fig. 10.9 we show once more the charge as a function of channelling speed,
this time marking the predicted speed for this onset of the charge enhancement
feature.

Thus far, our explanation of the charge feature suggests that its onset should
occur sharply at voneer. This is not the case for our results and the reason lies in the
fact that as the ion moves down the channel its atomic environment varies. Hence
the local density of states changes with ion position and, importantly, the position
of the localized anti-bonding state will oscillate with angular frequency Q,.
This variation in the position of the defect state, and hence of the energy Ae, has
the effect of smearing out the onset of the resonance.

A similar explanation to the one advanced above accounts for the finite width of
the charge enhancement feature. At a second critical velocity vog = 10.2 A fs™!
(also marked in Fig. 10.9), transitions from occupied states into the localized anti-

(10.8)
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Fig. 10.8 The density of states for our tight-binding model (dashed (blue) line) and the local
density of states on the channelling ion (solid (red) line). In the latter case, highly localized
defect states are apparent at the bottom of the band and above the top of the band. The initially
occupied states are shown shaded (green) and the Fermi level is at —2.83 eV. At the bottom of
the figure, four types of transition are indicated schematically. Transitions of type (A), from
occupied bulk states into the defect state, will localize charge on the channelling ion. Those of
type (B) will delocalize charge. Transitions of type (C), from the low energy defect states into the

high energy defect state, will have a small charge localizing effect and those of type (D), between
delocalized bulk states, should have little effect on charge
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bonding state will no longer be possible. The only transitions stimulated by the
channelling ion will be from the localized bonding states at the bottom of the band
into unoccupied states above the Fermi level. These transitions, being from
localized states to states with a much smaller projection onto the channelling ion,
will therefore tend to pump electrons off the channelling ion, reducing its net
negative charge. Transitions of this type are marked (B) in Fig. 10.8.
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Fig. 10.10 A schematic

illustration of the set-up for 0 ov 0
our oscillating interstitial
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10.2.2 A Perturbation Theory Analysis

Nothing in the foregoing explanation of the charge feature makes reference to the
ballistic motion of the channelling ion through the lattice. Indeed, the explanation
relies explicitly on the periodicity in time of the atomic environment of the ion.
This suggests that the charge feature should be present whenever we have local-
ized defect states of the kind in the channelling simulations and when the correct
frequencies are present in the variation of the electronic Hamiltonian. To verify
our explanation and to allow us to explore the response of the system more deeply,
we will undertake a time-dependent perturbation theory analysis of the analogue
system of an oscillating unrelaxed tetrahedral interstitial atom (see Fig. 10.10 for a
schematic illustration).

We consider a block of perfect lattice of our tight-binding model with an
additional ion at a tetrahedral interstitial position. This ion is forced to undergo
small amplitude oscillations at a fixed frequency Q in the [100] direction. This
defines a periodic perturbation V(t) to the electronic Hamiltonian H of the perfect
lattice plus tetrahedral interstitial ion.

V() =V'sinQr  V'=VgH-A, (10.9)

where R, is the position of the oscillating ion relative to the tetrahedral site and
A gives the direction and amplitude of the oscillation.

The analysis follows in a similar way to that given for the single oscillating
atom and discussed in Chap. 6. Full details of the derivation of the following
formulae can be found in Sect. 13.2. The key result is an approximate expression
for Ag., the change in the number of electrons on the oscillating interstitial atom as
a result of the action of the perturbation,

Aqapprox S S s(05: 0.0 ) (1 5 (a)) {1l — (2l i V101

(10.10)
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V is the perturbation: the change in the non-self-consistent electronic Hamiltonian
due to moving the interstitial atom away from its tetrahedral position and s(i, j;
Q, 1) is the usual time-dependence for a sinusoidal perturbation,

s(i,j; Q1) = 2mt{S[(8 — &) /i — Q] — O[(; — &)/l + Q] }. (10.11)

The J-function terms correspond to transitions of Q) upward and downward in
energy. We see that the charge transfer is given by a sum over all possible
transitions in the system between states i and j, restricted by exclusion and
weighted by the matrix elements of the perturbation V. The term in braces gives
the change in charge associated with each transition. The level of approximation
involved in (10.10) is greater than that in the corresponding expression for the
non-adiabatic energy transfer considered in Chap. 6: in (10.10) we have
neglected the effect of (albeit oscillatory) off-diagonal terms in the density
matrix that do not come into the energy transfer expression. This issue is dis-
cussed in detail in Sect. 13.2.2.3.

Figure 10.11 shows the results of calculating Ag. for a 3600 + 1 atom system
using (10.10) along with the data from the Ehrenfest channelling simulations.
The correspondence between channelling velocity and the frequency of the
perturbation is made using (10.7) and the onset and shape of the charge locali-
zation feature clearly agree well. The effects of the two types of excitation (A) and
(B), discussed above and indicated schematically in Fig. 10.8 are shown sepa-
rately in Fig. 10.11, confirming the details of our explanation. The agreement
between perturbation theory and simulation is less good above 25 eV: an

0 T T
Perturbation theory
---------- Localising transitions
6 Delocalising transitions ° L4
~ @ Simulation )
c
Re]
()]
£
T:: o
) °
€ °
©
=
Q o
c
o
(0]
o
=
©
Kt
O
0 10 20 30 40 50

Energy (eV)

Fig. 10.11 Results of a simple perturbative calculation (solid (red) line) of the charge on an
oscillating interstitial atom (described in the main text) compared to the steady state charge found
in a non-self-consistent channelling simulation (U = V = 0) (black circles). The onset and width
of the charge enhancement feature are correctly reproduced. The (blue) short dashed and the
(purple) dotted line show the contributions from the two types of transitions illustrated in
Fig. 10.8. The vertical scale is arbitrary as the FGR calculation does not yield a steady state
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oscillating interstitial becomes an increasingly poor analogue of a channelling ion
at high velocities, when the localized electrons are actually left behind in the wake
of the moving ion.

We should note that the vertical scale of the perturbation theory and simulation
results in Fig. 10.11 is chosen independently and arbitrarily. This is because no
steady state exists in the perturbation theory view. In contrast, the large variation
of the hopping integrals between the channelling ion and its nearest-neighbours
means that the variation of the electronic Hamiltonian in the case of the simula-
tions lies far beyond the perturbative regime. Excitations occur at a high rate and a
steady state is established fairly rapidly. In the case of the resonance, this steady
state arises when the occupations of the eigenstates are such that there is a balance
in transitions up and down in energy between the high energy localized state and
those lying 7€), below it.

10.2.2.1 A More Detailed Look at the Perturbation Theory Expression

To get a better understanding of the behaviour of the charge on our oscillating
interstitial atom, and so on our channelling ion, we will now examine the various
terms in Eq. 10.10 in more detail. Figure 10.12 shows plots of the factors
contributing to Ag.. The left hand panels (a, c, e, and g) show the average values
of the contributions to (10.10), i.e. the number of transitions, the effects of
quantum mechanical exclusion, the coupling due to the perturbation and the charge
difference between states, as a function of the energy of transitions. The right hand
panels (b, d, f, and h) show the effect of adding in these terms cumulatively to
arrive at the full expression for the charge enhancement (10.10). In each panel,
three particular energies are indicated by vertical lines. These are (in order, from
low to high energy),

1. The separation of the anti-bonding defect state from the Fermi level. This is the
minimum energy for charge localizing transitions of type (A) in Fig. 10.8.

2. The separation of the Fermi level from the top of the bonding state. Above this
energy, charge delocalising transitions of type (B) in Fig. 10.8 become possible.

3. The separation of the anti-bonding state from the top of the bonding states.
At this energy transitions of type (C) become possible.
In addition to marking these particular energies, each panel contains plots for
the four classes of transition shown in Fig. 10.8 (though not all are visible in
every panel). These are:

Orange: Charge localizing transitions of type (A).

Blue: Charge delocalizing transitions of type (B).

Purple: Transitions of type (C) with a small charge localizing effect.

Light blue: Transitions of type (D) with no significant effect on the charge on
the channelling ion.
The red lines in each case plot the total effect of all transitions.
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Fig. 10.12 The behaviour of various terms in the expression for the excess charge on an
oscillating interstitial (10.10). The details of the figures are discussed in the text. The lines
represent a histogram with Gaussian smoothing. Points, where present, give the results with
simple, unsmoothed binning. The horizontal axis shows the energy of transitions & = Q)
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We will now treat each panel in turn:

(a) and (b): The density of transitions, effectively a histogram of the energy
differences between all pairs of states in the system. We define it as,

T, (hQ) = C(hQ) NZZ& - —hQ)NW/deD(s)D(HhQ), (10.12)

where D(¢) is the density of states of the lattice plus oscillator, and note that it is
dominated by the large number of low energy transitions within the peak of the
density of states.

(c): The average occupation factor:

ETNZZfSJ V(1 —f(&))o(e — & — hQ)

Vo L [ de(e)ie-+ 1)1 e+ 7)),

(10.13)

Note that the orange and blue lines for transitions of type (A) and (B) show the
expected behaviour, becoming active at the energies indicated by the vertical lines
(defined above).

(d): The density of allowed transitions,

2Zf81 f(&))o(ej — & — hQ)
N (10.14)

Na—voo

deD(e)D(e + FQ)f () (1 — f (e + FQ)).

Here the large central peak, consisting mostly of transitions from unoccupied to
unoccupied states, is suppressed.
(e): The average coupling factor:

T3(hQ) = T NZZ| Gil V)0 (e; — & — Q). (10.15)

The perturbation due to the oscillating ion is only strong between pairs of states in
which at least one has a strong projection onto the channelling ion. Transitions into
the anti-bonding state (orange line, type (A)) and out of the bonding state (blue
line, type (B)) are relatively strongly coupled. The right most peak is due to
transitions of type (C) from the bonding to the anti-bonding state (purple line).
The coupling between other pairs of states (type (D)), neither of which is localized
on the oscillator, is too weak to show up on this scale. Note that overall, the
average coupling strength for all transition types (shown in red) is dominated at
lower energies (<30eV) by the large number of these weakly coupled transitions
between delocalized states.
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(f): The density of coupled, allowed transitions,
ZZf &) (1 = f (&) [(d:l VId) S (e — & — hCQ). (10.16)

We can understand the behaviour of C; with reference to T35, noting that C3 now
takes into account the underlying density of transitions at each energy and the
effects of exclusion. The peak in 75 above 40 eV is now suppressed, since tran-
sitions of type (C) are small in number. Transitions of type (D) dominate C; at low
energies, but the relatively high average coupling for the relatively rare transitions
of types (A) and (B) still gives them a significant contribution.

(g): The average charge transfer:

(g — 4:)d(¢j — & — ). (10.17)

Again, only transitions of types (A), (B) and (C) show up with any significance,
and again, as an average across all transitions, their effects are dwarfed by the
large number of transitions of type (D). Only at the highest energies, where no
type (D) transitions are possible, do we see a large charge transfer on average.
(h): The charge transfer spectrum,

4(hQ) = sz &) (1 — £(e) (il V1)) [* (g — 4:)3(5) — & — hQ).  (10.18)

Now adding into T, the effects of transition density, exclusion and coupling
strength, the full picture emerges, with the overall charge transfer behaviour
dominated by transitions of types (A) and (B). A tiny enhancement in negative
charge due to transitions of type (C) is just visible at around 43 eV.

10.2.2.2 A Toy Model

To highlight the important features of our perturbation theory expression for the
charge transfer we will briefly consider a toy model of our oscillator system.
We imagine a system with a rectangular density of states as shown in Fig. 10.13a.
The system consists of a set of N delocalized bulk states lying between energies ¢,
and ¢ and two groups of localized states. At high energy, between &, and
ea + Aes, we have one set of initially unoccupied states highly localized on our
channelling ion. At low energy, between ¢g — Agg and &g we have a second set of
localized states, initially occupied and responsible for the initial negative charge
on the channelling ion. We denote the Fermi level by eg. The density of states for
our system can thus be written,
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Fig. 10.13 a The density of states and b the local density of states on the channelling ion for our
toy model compared with those for our tight-binding model

D(e) =[H(e —eg + Aeg) — H(e — 83)]L+ [H(e—ea) —H(e—é&a — AsA)]L

A8B ASA

N-2

+[H(£—sb)—H(8—st)]< >7

& — &

(10.19)
where H is the Heaviside step function,
H(e) =0, &e<0

(¢) (10.20)

=1, &>0,

and we have assumed that each of the groups of localized states has unit total
weight. If we define the total projection of the low energy localized states onto the
channelling ion as ag and that of the high energy localized states as a,, then we
obtain for the local density of states on the channelling ion (illustrated in
Fig. 10.13b),

De(e) = [H(e — &5 + Aeg) — H(z — e5)~2 + [H(e — ea) — H(e — £a — Aey)| 2

ASB ASA

N-2

+[H(ssb)H(8£[)]a,~( ),

St - gb

(10.21)
where
1— (aA + ClB)
= 10.22

a N_2 ( )

is the projection of a general bulk state onto the channelling ion. We now wish to
calculate the steady state charge in our toy model as a function of the perturbation
frequency Q,
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8. = 73 [[ 460 DEDE 1 ~))Ag0oI V0~ 0/ - ),
(10.23)

where Ag,_.¢ is the change in charge associated with a transition between states at
¢ and ¢ and |V|fﬁs, is the square of the coupling matrix element.
Only three types of transition will result in a change in charge on the chan-

nelling ion in our model:

1. For transitions of type (A), Ag.—» = aa — a; and we will write the coupling as
|V|%_ a. Then the contribution to the change in charge will be,

&g +hQ — e if SA—8F<hQ<8A+A8A—8F
A if Aep — ep<hQ<ep —

Agi = A, x eA oA At — o AT (10.24)

en +Aep —hQ —eg if ep —eg<hQ<ep + Aep — ¢

0 otherwise
where,
nt 1 N-—2

A — (an —a)|V[7 . (10.25)

NN

2. For transitions of type (B), Ag,—.» = a; — ag and we will write the coupling as
|V|?g—i. Then the contribution to the change in charge will be,

e —ep +HQ if ep — e <hQ<ep — (e — Agp)

Aeg ifep — (ep — Aeg) <hQ<e —¢p
Agy = A 10.26
% 2% e —NhQ —¢eg+ Aeg  if g —e<hQ<g — (e — Acp) ( )
0 otherwise
where,
nt 1 N-—2
A, — (a; — ap)|V]5_.,. (10.27)

" hAege — e

3. For transitions of type (c), Ag.—« = aa — ap and we will write the coupling as
|V|?’s—A. Then the contribution to the change in charge will be,

Agz = Az
hQ —ep + ep if ea —ep <NQ<(ea + Aes) —ep
Aea if (ea + Aep) —ep<hQ<en —ep + Acp
ea +Aca —ep +Aeqa — hQ if e —eg + Asg <hQ<ep + Acp — e + Asp
0 otherwise

(10.28)
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where,

nte 1 5
Ay =——1— — Vv . 10.29
3 hz A8AASB (aA aB)' |B—>A ( )
We now pick parameters to correspond to our tight-binding model as illustrated in
Fig. 10.13a, b:

eg = —24eV
Aeg = 8eV
eg = —3eV
g=7eV
eg = 12eV
Aeg = 5eV
apn =0.3
ag = 0.35
ai =3.51 x 1074,

where the width Aega of the high energy localized states represents a statistical
spread due to the periodic variation in the local atomic environment of the
channelling ion. With these parameters we obtain the results shown in Fig. 10.14
in which we see that the features of our simple model are sufficient to reproduce
the pattern of behaviour in the channelling simulations.

10.2.3 The Effect of Channelling Direction

One way that we can seek more supporting evidence for our explanation of the
charge accumulation feature is to vary the channelling geometry. In Fig. 10.15 we

Fig. 10.14 Steady state
charge predicted by the toy
model described in the text

. c
and compared with results 8
from our simulations and our ~ &
perturbation theory analysis. ©
. . . c
The vertical scaling is 8
H o
arbitrary o
o
[
<
©
<
o
° Simulation  ©
Perturbation theory
. . . Toy p\odel
0 10 20 30 40 50

Energy (eV)
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Fig. 10.15 a The steady state charge and b stopping power for two different channels. In the

left-hand panel the two vertical lines are marked at velocities that differ by a factor of v/2 equal
to the ratio of the periodic repeat distances along the two channels (data provided by D.
R. Mason)

show the results of channelling simulations with U = V = 0 for an ion moving
down a channel in the [110] direction. We compare the steady state charge and
stopping power as a function of velocity with the equivalent simulations for the
[100] channel. Given our explanation for the behaviour of the data in the [100]
channel we expect to see the charge response in the [110] channel at velocities a
factor of v/2 higher, since the periodic repeat distance of the atomic environment
of the projectile is a/+/2 in the latter case, compared to a/2 in the former. Lines are
marked in Fig. 10.15 at two velocities differing by this factor of v/2 to aid in
reading the plots and suggest that the behaviour is as expected. The geometry of
the [110] channel is such that the variation in the nearest-neighbour hopping
integrals to the channelling ion is larger and so we should expect to see a less well
defined resonance. This too is confirmed by the data in Fig. 10.15.

10.2.4 The Effect of Charge Self-Consistency Parameters U and V

So far we have been considering only the case of the charge on our channelling ion
in the case of a non-charge-self-consistent model (i.e. the parameters in the charge
self-consistent Hamiltonian (10.2) and (10.3) are U =0 and V = 0). In this
section we will examine and explain the effect of adding in a non-zero energy
associated with charge localization. In Fig. 10.16 we see the effect of increasing
V first to its most realistic value of V = 7 and then to a high exploratory value of
V = 50. In neither case do we see much effect on the charge response. Introducing
an energy penalty for localizing charge simply reduces the magnitude of the
charge response, as we might expect, though not dramatically.
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Fig. 10.16 The mean steady
state charge on a channelling
ion as a function of its initial
velocity for a variety of
values of the inter-site charge
self-consistency parameter

V (data provided by D.

R. Mason)

Fig. 10.17 The mean steady
state charge on a channelling
ion as a function of its initial
velocity for a variety of
values of the on-site charge
self-consistency parameter

U (data provided by D.

R. Mason)
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In Fig. 10.17 we show the effect of increasing U, first to its realistic value of
U = 7 and then to two exploratory values of U = 20 and U = 50. Various strong

features are apparent:

1. The steady state negative charge at low velocity (essentially the value for a
stationary tetrahedral interstitial) is reduced with increasing U. This is exactly
what we would expect given that we are imposing an energy penalty for
charge localization. An alternative interpretation would be to consider the low
energy localized states on the channelling ion. These are fully occupied and
are responsible for the excess electronic charge in the quasi-static case.
At zero U these states form a resonance right at the bottom of the band of our
tight-binding model. The effect of a finite U is to increase the energy of these
states and bring them further into the band, reducing the strength of
the resonance and making the states less highly localized, pushing charge off

the channelling ion.
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Fig. 10.18 A schematic
view of the change in the
position of the high energy
defect state as it becomes
occupied in the case where
U > 0. The diagrams show
the local density of states
with occupied states indicated
by (green) shading.The
separation of the defect state
from the Fermi level is
increased for higher U,
increasing the velocity at
which the maximum charge
response occurs
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2. The position of the charge resonance moves upwards in velocity with

increasing U. As the localized high energy defect state becomes occupied its
energy will increase if U > 0. Hence the minimum velocity at which electrons
can be excited from the Fermi level into the localized state increases as the state
becomes occupied and the position of the maximum will depend on U.
This process is illustrated schematically in Fig. 10.18. If we assume the high
energy defect state is entirely localized on the channelling ion, then given the
form of the charge self-consistent energy in our model we would expect the
velocity at which the maximum charge enhancement occurs, v,,,y, to be related
to the maximum charge enhancement Ag,.x by,

2TV
Qe = % = U+ (Ao, (10.30)

max

where (Agg) is the separation of the high energy defect state from the Fermi
level in the case of U = 0 (or, equivalently, in the uncharged state) as an
average over the varying local environment of the channelling ion. The data
from our simulations can be seen in Fig. 10.19 to adhere to this relationship.

. The depth of the charge response, measured as the difference between the
charge at low velocity and that at maximum response, first increases with
increasing U and then decreases again. This behaviour is once again due to the
dependence of the position of the high energy defect state on its occupation (i.e.
on the charge on the channelling ion) that exists at finite U. The steady state of
our system arises when excitations into and out of the high energy defect state
become equally likely, which will occur when the defect state and those
a distance 7€), below it are equally occupied. Because the energy of the defect
state fluctuates with the local atomic environment it receives electrons excited
from states in a finite range of energy below the Fermi level. If there is addi-
tional variation in the energy of the defect state with its charge, because of
a finite U, then the electrons excited into the defect state will come from
a broader range of states below the Fermi level and so the balance in
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Fig. 10.20 A schematic view of the states contributing electrons to the high energy defect state
in the steady state. For U > 0, fluctuation in the energy of the defect state with its occupation
means that excitations from a broader range of states below the Fermi level are possible

occupations will occur at a higher occupation of the defect state. This situation
is illustrated schematically in Fig. 10.20.

10.3 Electronic Stopping Power for a Channelling Ion
10.3.1 Results

In addition to recording the steady state charge on the channelling ion we also have
data on the irreversible energy transfer into the electronic system as the chan-
nelling ion moves down the channel. This energy transfer corresponds to the
electronic stopping power of our tight-binding model for the channelling ion.
Figure 10.21 shows how the steady state stopping power varies with the initial
channelling ion velocity. Figures 10.22 and 10.23 show the effect of the charge
self-consistency parameters V and U respectively on the variation of the stopping
power. The following patterns emerge in the data:
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Fig. 10.21 The steady state
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1. The stopping power at low velocities increases approximately linearly with

velocity in accordance with theories of the stopping of slow particles (see
Sect. 3.2.5). The best-fit effective damping coefficient is f = (dE/dx)/
v =044 £ 0.0l eV A fs for U = 0.

. The inter-site charge self-consistency parameter V has no significant effect on
the stopping power (see Fig. 10.22).

. When U = V = 0 the stopping power curve exhibits a pronounced ‘knee’ at
around the velocity corresponding to the resonant charge accumulation phe-
nomenon (compare Fig. 10.21 with Fig. 10.5).

. When U > 0 this knee becomes a significant dip in the stopping power over the
range of velocities in which we see the charge resonance (compare Fig. 10.23
with Fig. 10.17).In particular, we would like to explain the last two of these
features.
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10.3.2 The Origin of the Stopping Power: A Tight-Binding
Perspective

Before we attempt to explain the behaviour of the stopping power in our simu-
lations data, we will consider how the stopping power arises within a tight-binding
model of the electronic structure. All the forces on our ions can be attributed to
bonds between ion pairs. The expression for the Hellmann-Feynman force,

F. = —2Tr{pVrH}, (10.31)
gives for the force acting on the ion at R, due to the ion at R,,

Fap = =2(ppa VR, Hav + Pap VR, Hpa)
10.32
= 2R{p )T/ (R o2 (1032
|Rab|

where Pap = <Ra|lb|Rb>’ Hyp, = <R0|H|Rb>? Ry, =R, — R, A/,(R) = d))(R)/d

R and y(R) is our hopping integral. So the force acting on an ion due to each

neighbour will be a product of the bond-order 2R{p;,} and the gradient of the
hopping integral.

Now let us consider our channelling ion moving past an ion in the channel wall
as illustrated schematically in Fig. 10.24a. As the two ions get closer together the
hopping integral becomes more negative, becoming a minimum at the point of
closest approach (see Fig. 10.24b), and so its gradient behaves as in Fig. 10.24c.
Now, as the ions move closer together, an increasingly strong bond forms between
them and the bond-order increases. If the channelling ion were moving infinitely
slowly, the bond-order would become a maximum at the point of closest approach,
but if the ion is moving with finite velocity, the electronic response will lag behind
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Fig. 10.24 A schematic view of the mechanism of stopping in ion channelling. a the channelling
ion passing a nearest-neighbour, with the point of closest approach indicated by a grey dashed
line. b the variation of the hopping integral between the channelling ion and its nearest neighbour,
which shows a minimum at the point of closest approach. ¢ the negative of the gradient of this
hopping integral. d the variation of the corresponding bond-order. Because of the finite response
time of the electronic system, the maximum of the bond-order occurs only after the channelling
ion has passed the point of closest approach. e the component of the bond force parallel to the
direction of motion of the channelling ion and f the cumulative work done by this force as the ion
passes its neighbour. It is this work that corresponds to the stopping power

this adiabatic response. Hence, at finite channelling velocity we will see the bond-
order form a maximum only after the channelling ion has passed the point of
closest approach (see Fig. 10.24d). If we now consider the variation of the force
due to this lagged bonding response (see Fig. 10.24¢) and the work done by it on
the channelling ion (see Fig. 10.24f) then we can see that the asymmetry of the
bond-order about the point of closest approach is what gives rise to the stopping
power. At higher and higher channelling velocities, the lag in the bonding response
will get larger and larger, increasing the net work done by the asymmetric force
and implying a larger stopping power.

10.3.2.1 Bond-Orders in Channelling Simulations

In order to explain the features in our stopping power data we have performed
some additional channelling simulations and extracted information about the bond-
orders between the channelling ion and its neighbours. These simulations used
smaller (2016 ion) simulation cells than those used to obtain the main stopping
power and charge data and a less sophisticated method of identifying the steady
state was employed. To give confidence that the data from these smaller simula-
tions will be valid (at least for analysis purposes), Fig. 10.25a, b compare the
charge and stopping power results for the two sets of simulations with different
cell sizes. Figure 10.26a, b shows examples of the raw data and a fitted trend line
(calculated as a moving average over two periods of the channelling environment)
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Fig. 10.25 A comparison of, a the steady state charge on a channelling ion and b the stopping
power, as a function of speed between the original large simulation cell (8064 atoms) and results
obtained with a smaller simulation cell (2016 atoms) and a simpler fitting process. The smaller
cell results show the same behavioural trends as those from the larger cell
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Fig. 10.26 Examples of the results of the moving average fitting process used to extract
information from small cell simulations of ion channelling. The U = 0 data are for 237 keV and
the U = 50 data are for 562 keV, within the charge resonance in each case. Shown are a ion
charge and b loss in ion kinetic energy

for the charge and loss in kinetic energy (corresponding to stopping power) in
sample simulations in the smaller cells. The data fitting methodology is sufficiently
stable and the overall trends in the results sufficiently similar to those derived from
the larger simulations for us to be able to use the bond-order data from the smaller
simulations in our analysis.

10.3.3 The ‘Knee’ in the Stopping Power for U =V = 0

We now return to explain the behaviour of the stopping power in our simulations,
making use of the data from the simulations described above. First we consider the
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‘knee’ that appears in the stopping power at the charge resonance when
U = V = 0. This can be explained if we consider the nature of the localized states
on the channelling ion.

Because the channelling ion comes into unusually close proximity with its
neighbours in the channel wall, it interacts very strongly with them and forms
highly localized states. The lower energy localized states will be strongly bonding
in character (occupation of them will make a large positive contribution to the
bond-order) and the higher energy states will be strongly anti-bonding in character
(making a large negative contribution to the bond-order). We can see this more
clearly if we note that the magnitude of the hopping integrals between the chan-
nelling ion and its neighbours are unusually large and so we can imagine an
extreme case in which the channelling ion and its neighbouring ion are effectively
decoupled from the rest of the lattice. This situation gives rise to a pair of states,
one bonding, one anti-bonding as the ions form a dimer. In our simulations the
situation is less extreme, but of similar character.

Now, when the high-energy defect state becomes occupied as we enter the
resonance feature and electrons are pumped onto the channelling ion, the bond-
orders between the channelling ion and its neighbours will be reduced. The
asymmetry in the bond-force due to the lag in the response of the density matrix
will remain the same, but the absolute size of the forces will be reduced due to the
lower bond-order. Hence the net work done by the force on the ion and so the
stopping power will be reduced.

Data from our small-scale channelling simulations support the above interpre-
tation. In Fig. 10.27a we show how the bond-order between the channelling ion and
a series of its neighbours at equivalent points along its trajectory is reduced as the
high energy defect state (the anti-bonding state) becomes occupied. Note also the
clear lag in the bond-order relative to the point of closest approach, marked by a
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Fig. 10.27 aThe bond-order between the channelling ion and a nearest-neighbour at a saddle point
as a function of the channelling ion position. The bond-order is shown for a series of equivalent
neighbours along the ion path (shifted by an appropriate multiple of lattice vectors so that they
coincide). The results displayed correspond to the maximum charge response for a non-self-
consistent simulation (U = 0) at 237 keV. b The variation of the charge on the channelling ion as a
function of its position in the same simulations. The saddle points are marked by vertical lines
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vertical line. Figure 10.27b shows the increasing excess of electrons on the chan-
nelling ion, resulting from occupation of the anti-bonding state, for comparison.
In Fig. 10.28a we show the variation of the bond-order as the channelling ion
passes a nearest-neighbour (the point of closest approach is marked by a vertical
line) after the steady state has been established. Data are shown for a simulation
below the charge resonance, at the peak charge response and at a high velocity
beyond the resonance. We can see that the bond-order is significantly suppressed
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at the peak charge response, recovering at the higher velocity. Note also that the
higher the velocity, the greater the lag in the bonding response; it is this increasing
lag that gives an increasing stopping power even as the bond-order decreases into
the charge resonance. Also shown are the component along the velocity of the
force between the channelling ion and its neighbour (Fig. 10.28b) and the work
done by this force (Fig. 10.28¢c).

One final feature remains to be explained: in Fig. 10.25a we see that the
enhancement of the charge on the channelling ion has a well-defined finite width.
In contrast, the bond-orders in Fig. 10.28a are reduced at the onset of the charge
enhancement but recover only slightly at the highest velocities. To explain this we
recall that the finite width of the charge feature is defined by the velocity at which
charge delocalizing transitions (of type (B) in Fig. 10.8) become active. Whilst these
transitions act in opposition to those charge localizing transitions of type (A) in
respect of the charge on the channelling ion, they have the same effect on the stopping
power. Transitions of type (B) involve excitations out of the localized low energy
defect state and into delocalized states above the Fermi level. Because the low energy
defect state is bonding in character, the effect of transitions of type (B), like those of
type (A) is to reduce the bond-orders between the channelling ion and its neighbours
(though the effect of type (B) transitions is less strong than those of type (A), because
the low energy defect state is less localized than the high energy defect state).

10.3.4 Effect of Onsite Charge Self-Consistency

Now we will consider the effect of the on-site charge self-consistency parameter
U on the variation of stopping power with channelling ion velocity, as depicted in
Fig. 10.23. The main feature that we wish to explain is the large drop in stopping
power coincident with the charge accumulation feature that occurs in the case of
large U. This is different in character to the ‘knee’ in the stopping power in the
case of U = 0, in that it has a finite width.

Once again, since the forces in our tight-binding model can always be written in
terms of products of bond-orders and gradients of hopping integrals, an analysis of
the bond-orders from our small-scale channelling simulations should be infor-
mative. Figure 10.29a shows the bond-orders between the channelling ion and a
series of equivalent nearest neighbours along the channel as the steady state charge
is approached for a simulation at the maximum in the charge resonance for
U = 50. Comparing this with Fig. 10.27a, we can see that the suppression of the
bond-orders when the high energy defect state becomes occupied is much more
dramatic at high U.

In Fig. 10.30a we show the variation of the bond-order as the channelling ion
passes a nearest-neighbour in the steady state. Once again data are shown for a
simulation below the charge resonance, at the peak charge response and at a high
velocity beyond the resonance, and as in the U = 0 case there is a significant
suppression of the bond-order at the resonance. In contrast with the U = 0O case,
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Fig. 10.29 a The bond-order between the channelling ion and a nearest neighbour at a saddle
point as a function of the channelling ion position. The bond order is shown for a series of
equivalent neighbours along the ion path (shifted by an appropriate multiple of lattice vectors so
that they coincide). The results displayed correspond to the maximum charge response for a
charge self-consistent simulation (U = 50) at 749 keV. b The variation of the charge on the
channelling ion as a function of its position in the same simulations. The saddle points are marked
by vertical lines

however (see Fig. 10.28a) the recovery of the bond-order at velocities beyond the
charge feature is much more complete. This suggests that some extra mechanism is
leading to an extra suppression of the bond-orders over a finite range of velocities,
in addition to that proposed to explain the stopping power ‘knee’ at U = 0. Fig-
ure 10.30b, ¢ shows the component of the force acting on the ion parallel to its
velocity and the work done by that force respectively.

In Fig. 10.31 we have aggregated information about the nearest-neighbour
bond-orders in our simulations, to highlight the effect of velocity and of U on the
stopping power via the mechanisms discussed above. At the charge resonance we
can see that the maximum value of the bond-orders is suppressed and much more
strongly so in the case where U = 50. In both cases we see the underlying mech-
anism for the increase in stopping power with velocity: the position of the maxi-
mum bond-order relative to the point of closest approach shows an increasing lag
with increasing velocity, giving a greater asymmetry in the bonding force and
increasing the net work done by the atom against this force in passing its neighbour.

10.3.4.1 A U-Dependent Mechanism for Suppressing the Bond-Orders

To see how a large U could affect the bond-orders we will consider a simple model

system as an analogue of our channelling ion. We define a Hamiltonian H° to
represent the channelling system before any charge has been excited into the high-
energy defect state,

H =3 |yU]+ n)Te| + [e)T{n + [e)U(g°)*(cl, (10.33)
IJ£I
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where |I), |J) are the atomic orbitals on the ions of the lattice, |c) is the orbital on
the channelling ion and |n) is the orbital on the nearest-neighbour of the chan-
nelling ion (we represent only one neighbour explicitly, though in reality there will
be several near-neighbours). 7 is the hopping integral in the lattice and T is the
much larger hopping integral between the channelling ion and its neighbour. ¢° is
the quasistatic excess charge on the channelling ion. We will denote the eigen-
states of this Hamiltonian by {|¢;)} except that we consider two special states,
|¢B) and |¢4), the bonding and anti-bonding localized defect states respectively.
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Fig. 10.31 An analysis of the behaviour of the bond-order between a channelling ion and its
nearest neighbour at a saddle point in the channel in the steady state. Data are shown as a function of
velocity for U = 0 and U = 50. On the left-hand axis we plot the maximum value of the bond-order.
On the right-hand axis we show the position of this maximum relative to the point of close approach
(the ‘lag’). Lines are to guide the eye and we omit the guideline for part of the lag data for U = 50
where the bond-order is so heavily suppressed that the position of its maximum is ill-defined

These states appear in our model because I' > y. Initially we assume that the
bonding state |¢g) is fully occupied, some lowest lying fraction of the states
{|¢:)} are occupied and the anti-bonding state |¢,) is unoccupied.

Now we consider what happens at the resonance. First we assume Jq electrons
are excited from states {|¢;)} into the anti-bonding state |¢ ). This has the effect
of localizing charge on the channelling ion, which, because of the finite U,
increases the onsite term in the Hamiltonian and gives us an effective perturbation,

V=l)all, A= U[q,2 - (qO)Z] (10.34)

where ¢ is the new charge on the channelling ion. We are going to ignore the
subtlety that arises because this perturbation will then affect the projections of the
eigenstates onto the channelling ion which will in turn affect the charge, requiring
a self-consistent solution and instead claim that the new charge ¢ is the one
resulting from a self-consistent solution (we are about to make harsher approxi-
mations than this, in any case).

Now we will assume that ¢ — ¢° is sufficiently small that V can be treated
perturbatively. The essence of our model is that the additional onsite energy on the
channelling ion will now cause a ‘mixing’ of the eigenstates of H. From time-
independent perturbation theory we can say that the bonding state will become

) = (g + 3 PIIRCND) )  (OaIIRCIDS) 1 (1035)

Now we will assume that since only the bonding and anti-bonding states have a
significant projection onto the channelling ion we can write the perturbed bonding
state as,
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+ (Palc)Alc|pp)

EB — €A

|¢;3> ~ |¢p) |Pa)s (10.36)

and by similar reasoning, the perturbed anti-bonding state as,

(dplc)Alc|da)

EA — EB

|3) ~ [da) + |¢p)- (10.37)

The onsite perturbation due to the localization of charge on the channelling ion
thus mixes the bonding and anti-bonding states together. This will cause a change
in the bond-order between the channelling ion and its neighbour given by,

(¢lc)Alc|d)

EA — EB

2

Apen = z\ (el da)2(dIn) + (c|d)ogldplnd),  (10.38)

where we have assumed for notational simplicity that the eigenstates are real. Since

¢ is strongly anti-bonding we can write {c|¢pA){¢pa|n) = — 0.5 and since ¢p is
strongly bonding, (c|¢g)(pg|n) = 0.5. Hence we have a change in bond-order,
bglc)Alc|p )|
Apm-—’ijﬂ_LJLLJQ_(gq__ZL (10.39)
EA — EB

a negative change as required.

10.4 Conclusions

We have undertaken simulations of ion channelling in our simple tight-binding
model metal to investigate the non-adiabatic electronic effects. We found that at
lower velocities (v <6 Afs™!) the stopping power (the non-adiabatic electronic
force) on the channelling ion is roughly proportional to velocity in accordance
with theories of slow ion stopping.

We also examined the steady state average charge on the channelling ion and
found a resonant enhancement of the negative charge over a finite range of
velocities. We attributed this enhancement to the velocity-dependent excitation of
electrons into a high energy defect state localized on the channelling ion. First order
time-dependent perturbation theory verifies our explanation (Sect. 10.2.2) and a
simple toy model demonstrates that the features of the resonance are dependent on a
few well-defined characteristics of the local density of states on the channelling ion
(Sect. 10.2.2.2). We were able to extend our explanation of the resonance to
explain the changes in the size and position of the charge enhancement with var-
iation of the charge self-consistency parameters U and V (Sect. 10.2.4).

When we examined the stopping power at higher velocities, we found a ‘knee’
in the linear relationship when U = 0. This ‘knee’ coincides with the onset of the
charge resonance and we explained its existence by noting that the high energy
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defect state that is occupied over the width of the resonance is anti-bonding in
character and so suppresses the bond-orders (Sect. 10.3.3). This accounts for the
reduction in stopping at higher velocities given the nature of the stopping mech-
anism within the tight-binding approximation (Sect. 10.3.2).

At high U we found a significant trough in the stopping power over the width of
the charge resonance (Sect. 10.3.4) and we attributed this to a further suppression
of the bond-orders between the channelling ion and its neighbours due to the action
of the significant onsite energy that arises when the negative charge on the
channelling ion is enhanced. This onsite addition to the Hamiltonian causes a
mixing of the defect states localized on the channelling ion, reducing the bonding
character of the fully occupied lower energy state and hence reducing the bond
orders (Sect. 10.3.4.1).

How significant are our results? What we have found are some interesting effects
at low channelling velocity. The emergence of these effects in a simulation requires
both an explicit treatment of the ionic positions (so that the extreme nature and
periodic variation of the local environment of the channelling ion is captured) and a
quantum mechanical model of the electrons (so that the required features of the local
density of states are present) and so our time-dependent tight-binding approach is one
of the few ways currently available to explore such phenomena. We are, however,
using only a simple model metal and so we must question the transferability of our
results to real materials. Calculations using the density functional theory code VASP
[2] carried out by D. R. Mason for unrelaxed tetrahedral defects in a number of
transition metals suggest that the required localized defect states might exist. The
position of such states relative to the Fermi level would then determine whether we
would expect to see a resonant enhancement or depletion of the number of electrons
on a channelling ion and over what velocity range it would occur.

Certainly ion channelling is an important mechanism in radiation damage both
where it is undesirable (such as in nuclear reactor environments) and where it is
intended (such as in processes of materials modification by ion implantation). Our
results suggest that any simple damping model of the stopping power acting on a
channelling ion will tend to over-estimate the stopping over a range of velocities
when resonant charge effects are possible. Any simulations making use of such a
damping model will then tend to under-estimate the range of such ions. Whether
such mis-estimation is of consequence will, of course, depend on the magnitude of
the phenomenon and the sensitivity to error in the application of the model.
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Chapter 11
The Electronic Drag Force

Summary: In this chapter we return to our study of non-adiabatic effects on the
forces in collision cascades. In this case we examine the behaviour of the non-
adiabatic force on the moving ions. Various attempts have been made to capture the
effects of such forces in classical MD simulations by adding a drag force to the
ionic dynamics. Our time-dependent tight-binding simulations give us direct access
to information about these forces and so we use a set of cascade simulations to
assess the validity of simple drag models. By considering the origin of the non-
adiabatic force within a tight-binding picture we are able to propose a new classical
model for the non-adiabatic force; one which can be easily incorporated within a
classical MD scheme at near zero computational cost. We evaluate the performance
of our model using simulation data and find that it is a significant improvement over
simple damping models. In particular, it is able to replicate the non-adiabatic
energy loss from ions at the individual ion level and over times that are short on the
time-scale of individual collision events, and able to capture the variation of the
individual cartesian components of the non-adiabatic force. This should be con-
trasted with the simple damping models, which can only replicate the average
energy loss at the level of a whole cascade and over much longer time-scales, and
which are explicitly constrained to apply forces in opposition to the ionic velocities.

Attribution: The simulations discussed in Sect. 11.1.1 undertaken by J. le Page and
analysed by J. le Page and D. R. Mason in collaboration with the present author.

At the beginning of Chap. 9 we identified two possible effects of electronic
excitations on the forces between the ions. The second effect, the tendency of
accumulated excitations to weaken the bonding-forces between the ions, we dealt
with in that chapter. Now we will consider the first identified effect: that of the
finite response time of the electronic system to changes in the electronic Hamil-
tonian (i.e. in response to the movement of the ions). We will refer to the cor-
responding forces on the ions as non-adiabatic forces.
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Dynamics, Springer Theses, DOI: 10.1007/978-3-642-15439-3_11,
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Attempts to capture within classical MD simulations the effect of the retarded
response of the electrons rely on the introduction of additional forces. Such models
were discussed in the introductory review in Sects. 3.4.2.1 and 3.4.2.2, but in
general the non-adiabatic force on the /th ion can be written

F/I:*ﬁlRI+'h(t), (11.1)

where R; = dR;/dr is the velocity of the Ith ion. The term n,(z), if present,
normally takes the form of a stochastic force [1], which may be dependent on some
local measure of electronic excitation [2, 3], and is designed to represent the return
of energy from ions to electrons. The first term, —f§ IR,, represents a drag force on
the ions. This force is explicitly opposed to the velocity of the ions. Furthermore,
though we have indicated that the damping coefficient f;; may vary from ion to ion,
it is normally taken to be a constant [4-7] or at most to have a dependence on some
measure of the local electron density [1].

11.1 Is a Simple Drag Model Good Enough?

The choice of a simple drag force to represent the non-adiabatic electronic force on
the ions essentially derives from the theory of the stopping of slow particles (see
Sect. 3.2.5). Such theories predict that the rate of energy loss of slow particles
moving through some stopping medium will be proportional to the square of the
velocity, consistent with a force on the particles proportional to and directly
opposed to their velocities. These stopping power theories are strongly supported
by the available experimental data, but we must bear in mind the nature of those
data. Experimentalists only have access to fairly high level information about the
development of cascade events and so the experimental validation of any model
for the non-adiabatic forces will be very much on an average basis, commonly as
an average over the path of an individual ion down an ion channel or through many
collisions in a damage cascade. Experiment can give us no microscopic details of
the behaviour of the non-adiabatic force.

If we look again at the results of our simulations of a single-oscillating ion in
our tight-binding metal (see Fig. 6.4), we see that the rate of energy transfer to the
electrons (here expressed as an effective damping coefficient consistent with the
simple classical models) is strongly dependent on the position and direction of the
oscillator. We therefore expect that the non-adiabatic force will, in detail, have a
complex structure, dependent on velocity and local atomic environment.

11.1.1 An Investigation of Damping Models for Total Energy Loss
in Collision Cascades

Our framework for time-dependent tight-binding simulations gives us the oppor-
tunity of examining the non-adiabatic force in detail and of assessing the validity
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of simple damping models from a theoretical perspective. Before we undertake a
more detailed analysis we will briefly discuss the results of some simulations
undertaken by J. le Page and analysed by J. le Page and D. R. Mason in collab-
oration with the present author. More details can be found in [8, 9].

A set of 240 cascades in 2,016 atom zero-temperature super-cells with PKA
velocities in 24 different directions for each of ten PKA kinetic energies evenly
distributed between 100 eV and 1 keV were simulated for 200 fs and the non-
adiabatic energy transfer, which we will denote AEgy,(t), recorded every 5 fs. By
taking the histories of the ion positions and velocities, we are able to calculate the
energy transfer,

AEmodel(t) = Z[)l dr ﬁ[(t/)|R1(l/)|2 (112)

that would have been predicted by various classical models for f5; in the literature
for each cascade if the ions had followed the same trajectories. The final quali-
fication is important, because, of course, any force model that differed even
slightly from the Ehrenfest forces within our simulations would give rise to a
different set of ion trajectories. By comparing AFEg;, (f) and AEqqq0(f) We can
obtain a measure of the plausibility of the various models that we test.

We have chosen to test three models:

1. A simple damping constant applied to all ions at all velocities, f,(r) = f,
equivalent to the zero electronic temperature limit of the model due to Finnis
et al. [10] and applied in [11] for example.

2. A simple damping constant applied only to ions with a kinetic energy greater
than 10 eV:

1 .
1) = —M;|IR;|* >10eV
B =B SMIR[ > 10¢ ",
=0 otherwise.

Nordlund et al. [5] have implemented a scheme of this kind. No thorough justi-

fication for the cut-off is given in the literature, but it is generally understood to

ensure that the damping force does not cool the ions to 0 K.

3. A model in which the damping coefficient is a function of the local electron
density within an embedded atom model. This model was proposed by Caro
and Victoria [1] and made use of, for example, in [12].

Figure 11.1 shows our results at two PKA energies for the energy transfer in the
three classical models compared to that in our Ehrenfest simulations as a function
of time. If a model perfectly replicated the effect of the non-adiabatic force in our
simulations all the data-points would lie on a line of gradient 1. Models 1 and 3
perform well, but the data for model 2 clearly show that the cut-off in the
application of the damping force is not helpful; our simulations suggest significant
energy transfer from ions with kinetic energies below 10 eV.

Our simulation data allow us to calculate the best-fit damping coefficients
within each of the models under test, corresponding to the non-adiabatic force in
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Fig. 11.1 Scatter plots of the irreversible energy transfer calculated by three different classical
models against the energy transfer found in simulations with Ehrenfest dynamics. a Data for all
24 initial PKA directions for a kinetic energy of 100 eV. b The same for initial kinetic energy
1,000 eV. The data are scaled by the energy transfer found by each method at 200 fs, so that a
perfect match between a classical method and the Ehrenfest results would appear as a straight line
of gradient 1. Models 1 (simple damping—top panels) and 3 (density-dependent damping—
bottom panels) are closest to linear, indicating that they best reproduce the Ehrenfest energy
transfer. Model 2 (damping with cut-off—middle panels) fails to capture the energy loss from
slow moving ions

our time-dependent tight-binding simulations. Figure 11.2a shows the average
damping coefficient at each PKA energy with the standard deviation across the
different PKA directions indicated by the error bars. We note the following:

1. The absolute values of the damping coefficient should not be compared
between models, because of the different nature of each model.

2. At each energy we have treated the simulations in which the PKA initial
velocity is directed along the close-packed (110) direction separately. As the
computed damping coefficients for model 1 show, the energy transfer to
electrons when the ions form a replacement collision sequence (RCS) is
enhanced by a factor of between 2 and 3. The density dependent damping
(model 3) does a much better job of capturing this difference automatically.
Note that the apparent good performance of the damping model with a cut-
off (model 2) in this respect is simply fortuitous: because the model ignores
the energy transfer from slower ions, the average damping coefficient is
pushed up closer to the value required to capture the energy transfer from an
RCS.

3. The damping coefficient does not vary much as a function of PKA energy. This
might be taken as an indication that the damping coefficient has at most a weak
dependence on particle velocity (the models assume velocity independence),
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Fig. 11.2 a The damping coefficient as a function of PKA energy calculated for each of the three
classical models under test. The larger solid symbols are an average across all PKA directions
except for the (110) direction. Best-fit damping coefficients for the simulations in the (110)
direction are shown by smaller open symbols. Lines are included as a guide for the eye. b R?
measures of goodness of fit for the three classical models under test. Each data-point represents
one cascade simulation. The lines join the averages of the R values for each model at each PKA
energy (simulations in the (110) directions are excluded) and provide a guide for the eye

but we must remember that the initial PKA energy is rapidly distributed
amongst many ions in a cascade and so the moving ions in a cascade may have
similar velocity distributions at all PKA energies explored.

In Fig. 11.2b we have applied the mean best-fit damping coefficient to the data
from each simulation to calculate the R* goodness of fit statistics for each of the
models. Each data-point represents a single simulation. Once again, we see that
our results do not justify the use of a kinetic energy cut-off in the application of the
damping (model 2 shows the least good fit) and that they indicate that a density
dependence (model 3) improves the fit.

11.2 The Microscopic Behaviour of the Non-Adiabatic Force
11.2.1 The Non-Adiabatic Force in Ehrenfest Dynamics

The results above suggest that simple damping models can do a good job of
capturing the irreversible energy transfer from ions to electrons over the course
of a collision cascade. This energy transfer is equal to the work done by the
non-adiabatic forces and so we can reasonably conclude that a simple damping
is a valid model for the average non-adiabatic force as an average over all
atoms and over the duration of a cascade. This validation of the models on
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average reflects the extent to which stopping power theories are validated by
experimental data.

But with our Ehrenfest dynamics simulations we can go further. In Chap. 9 we
took the electronic force,

F. = —Tr(pVrH), (11.4)

where R = {R;} represents the position coordinates of all the ions, and wrote it in
the basis of instantaneous eigenstates {|¢,)} of the electronic Hamiltonian, with
energies {¢;}, to obtain (9.4),

Fe=— ZpiiVRsi - Z(&' — &) pij<¢j|vR¢i>' (9.4)
i i

pi = (¢;]p(t)|};) and we have split out the forces due to the diagonal and off-
diagonal elements of the density matrix. The rate at which work is done on the
electrons by this force as a result of the ionic motion is,

dw .
“C - _F.-R
d (11.5)
= Zpii(ngl Z PU ¢I|VR¢ >
i ij#i
where R = dR/dr. Since,
. dSi
VRsi-R:E, (11.6)
and,
. d
Ve R = 19) (11.7)

this power into the electrons can be rewritten,
d
Jaél

In Sect. 13.1.15 we show that we can rewrite the second term to give a final
expression for the power,

dw de; dp;;
45=Zm$+i$m (11.9)

This result makes clear the origins of the two terms in the expression for F.
above. The first term represents the forces due to motion on a collection of adi-
abatic energy surfaces defined by the instantaneous eigenvalues {¢;(R)} weighted
by the diagonal elements of the density matrix in the instantaneous eigenstate
basis, p;. The non-adiabatic force in the second term is what gives rise to the
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irreversible transfer of energy into the electrons. It is the work done by this term

that appears in excitations, manifest in the instantaneous eigenstate basis as
changes in the diagonal elements of the density matrix.

11.2.2 The Character of the Non-Adiabatic Force

The latest version of our simulation software spICED is able to output the non-
adiabatic force, which we will henceforth denote FNAd,

FNAG = *Z(Si — &) pii (¢ Vr i), (11.10)
ijAi
on a per ion basis. Obtaining data on FN*9 can be computationally costly, because

it requires a direct diagonalization of the electronic Hamiltonian (an N® operation),
but it is possible to get such data with reasonable frequency for small simulation
cells. Much of the remaining analysis in this chapter is based on data obtained
from a set of 24 cascade simulations carried out in 2,016 atom super-cells, with a
1 keV PKA given an initial velocity in 24 evenly distributed directions. The
simulations were carried out in a perfect static lattice in order to isolate the effects
of energy transfer from cascade atoms from the excitations due to the thermal
motion of ions outside the cascade. At the chosen system size, it is possible to
obtain the non-adiabatic force every 0.05 fs for ~25 fs of simulation time in 72 h
on a single processor. Even this short simulation time is enough to generate a
statistically valid sample of collision events and ion trajectories over our set of
cascade simulations.

But first, as a simple demonstration of the behaviour of the non-adiabatic force,
we will examine data from a set of 24 cascade simulations with 1 keV PKA
energies running for 200 fs. Considering each ion in each simulation once every
femtosecond to provide a separate data-point, we can bin the data according to the
ion kinetic energy and the cosine of the angle between the non-adiabatic force on
the ion and its velocity, i.e.

NAd | 13
cosf— R (11.11)
[FNAYR]

Figure 11.3a shows this information. We can see that at higher kinetic energies
the non-adiabatic force has a tendency to oppose the velocity, but that there is
certainly a significant variation in the direction and the correlation between the
directions is all but gone for ions below 10 eV. For comparison, Fig. 11.3b shows
the same plot but for the adiabatic force (i.e. that force that the ions would expe-
rience if they traversed their paths infinitely slowly). The fact that strong correlation
also exists between the direction of this force and the velocity suggests that even
such correlation that we do see for the non-adiabatic force may be a consequence of
the pattern of ionic motion in a collision cascade rather than because of some
fundamental physical reason for the non-adiabatic force to oppose the velocity.
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Fig. 11.3 Histogram data for the angle between electronic forces on the ions and their velocities.
Data are broken out by ion kinetic energy. Shown are data for a the non-adiabatic force and b the
adiabatic force, as discussed in the text. The symbols against the right-hand axis indicate the
number of data-points in each line in the plots

11.3 An Improved Model of the Non-Adiabatic Force

The above discussions clearly show that the non-adiabatic force acting on an ion
does not, in general, directly oppose its motion. This suggests that it might be
possible to find a classical model for the non-adiabatic force that improves on the
simple damping models examined in Sect. 11.1.1. At a minimum, we might hope for
amodel that improves the predictions of the irreversible energy transfer from ions to
electrons. But we might also hope to capture some detail of the direction and
magnitude of the non-adiabatic force at the atomic level and on the time-scale of
individual inter-atomic interactions within the cascade. Our aim should not be to
reproduce the Ehrenfest trajectories exactly, since that would be to focus incorrectly
on the microscopic details of our simulations, but we should be concerned to ensure
that any model of the non-adiabatic force reproduces the correct statistical behaviour
of a cascade. As such, a model that correctly captured some details of the Ehrenfest
non-adiabatic force might do a better job by, for example, ensuring that the relative
rates of energy loss from different modes of ionic motion (such as replacement
collision sequences as compared to glancing collisions) were correctly captured.

In this section we will take our expression (11.10) for the non-adiabatic force
and derive a new classical model that we hope will improve upon a simple
damping coefficient.'

' A derivation of this model is given in [13].
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11.3.1 A “Non-Adiabatic Bond Model”

The central concept of our proposed model is that the non-adiabatic force on an ion
arises because of a lag in the bonding response of electrons to ionic motion. When
two ions move into close proximity it takes a finite time for a bond to form. We
discussed just this phenomenon when we considered the stopping force on a
channelling ion in Sect. 10.3.2. Our derivation of our model will include some
“arm-waving” arguments, but we hope that it remains plausible and, in any case,
we will test it against data from our Ehrenfest dynamics simulations.
We start with the non-adiabatic force

FNA = = (ilpldy) (e — )9, Vrby), (11.10)
ij£i

and write it (see Sect. 13.1.16)

FNA = = (il pl o) (] VR | ). (11.12)
ij#i

Recall that R denotes the collective position coordinates of all the ions in the
system and we write the coordinates of the /th ion as R;. For clarity we will now
consider the non-adiabatic force on the zeroth ion at position Ry. We write this
force,

fo == > _{dilld) (& VR, | b)) (11.13)
i

To obtain a force model suitable for inclusion in a classical MD simulation we
must tackle two major issues with the above expression for the non-adiabatic
force. The first is that it is non-local in time: the off-diagonal elements of the
density matrix, evolving under Hamiltonian dynamics, retain a long-term
“memory” of the entire evolution of the system. However, we might reasonably
expect that the contributions to the off-diagonal elements from different segments
of the evolution would not add constructively to the non-adiabatic force at a future
time. We are thus motivated to introduce a correlation time-scale 7, over which the
history of the system contributes to the non-adiabatic force.”

So we will now assume that the information in the off-diagonal elements in the
density matrix relevant to calculation of the non-adiabatic force builds up over a
time 7, and so to calculate the force at time ¢ we assume that we can make use of a
diagonal density matrix at an earlier time

2 In any case we might also regard the long-term memory as a spurious result of the fact that our
electronic system is closed in a quantum mechanical sense. In reality there would be some
decoherence time-scale, which would also limit the build up of historical information in the
density matrix.
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Pt —1) Z|¢k or (] (11.14)
for some set of occupations {o;}. We then write fo(z) as a Taylor series expansion

df()
f =fo(t — 1) +—
o() ot — 1) dr |

T+ 0(7%), (11.15)

where fo(r — t) will be zero given the assumed form for p(z — 7).
Now, the total time derivative can be written

df, dfy . . dR
— = fo-R R=— 11.1
dr dr +VR 0 ) dr ) ( 6)

and from Eq. 11.13 we obtain,

dd_f;):_z<¢t j><¢j|VR0FI|¢t>
ijAi
=D R Vr((ildle)) (9| Vr,H i) (11.17)
ij#i
= (ilpld) R Vr((¢;|VR,H|)).
ijAi

For diagonal p(r — ), this gives (see Sect. 13.1.17)

= rZOJ (6] VrH|$,) - R) (¢ Vi, H:)- (11.18)
ij#i &

We now have a time-local force, but the second major issue has become
apparent. In the first matrix element in Eq. 11.18 the gradient is taken with respect
to the position of all atoms in the system and so our force is not spatially local.
This reflects the non-local nature of the density matrix. However, if our correlation
time 7 is small compared to a typical electron hopping time //(H), where (H) is
some typical value for the hopping integral in our tight-binding model, then we can
hope that a spatially local form of Eq. 11.18 will capture the majority of the non-
adiabatic force.

We will now attempt to rewrite the factors in VgH and Vg H in the basis of
local orbitals {|R;)} where |R;) is the orbital on the ion at position R;. For the
second factor we write

(&) Vr,H|$:) = > (¢;[R)) (Ri[Vr, HIR) (Ry[ ;). (11.19)

u

Because only elements of H involving |IRo) depend on Ry, this becomes
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(| VR H$i) = > (¢5R1) (Re| Vi, H[Ro) (Ro| ;)

Ieng

+ > ([ Ro) (Ro| Vi, R, ) (Ry [ ;) (11.20)

Jen,

= Ve, 7(Ror){ (R} (Ro|;) + (;[Ro) (R [;) },

Iengy

where ng is the set of neighbours of the ion at Ry and y(Ry;) is the hopping integral
between the orbitals |Ry) and |R;), written as a function of their relative positions,
Ry; = R; — Ry. This second factor, then, is explicitly local and involves a sum
over all the bonds between the ion at Ry and it neighbours.

For the first factor we write

<¢i|VR1:1\¢j> ‘R= Z(<¢i|R1><R1WRI:1|RJ><RJ|¢/‘>) ‘R

I

=> > ((&:R)(R/| Ve, H[R,)(R;|¢)) - Ry
= {(¢ilR)) (R VR, H[R))(R,|¢;) - R,

+(¢i[R) (R [V, HR) ) (Ry | ;) - Ry }
=) (¢iR){Vr,7(Ry) - R, + Vi, 7(Ryy) - R/} (Ry[ ;)

1,Jeny

= > ($ilR) Ve, 7(Ry) - Ry (Ry|¢y),

I.Jen

(11.21)

where we have used Vg,y(R;;) = —Vg,y(Ryy). This factor, reflecting the non-
adiabaticity in the density matrix, takes the form of a sum over all the bonds in the
system. Now we will make our assumption of spatial locality and state that with
each term in the sum in Eq. 11.20 we will associate a single term from the double
sum in Eq. 11.21. We are then assuming that the non-adiabaticity in the density
matrix corresponding to each bond depends only on the rate of change of that same
bond. To obtain a final expression for the non-adiabatic force we now make the
following assumptions:

1. The eigenstates involved in the excitations corresponding to the work done by
the non-adiabatic force are delocalized and have no particularly strong pro-
jection onto any ion. We will thus absorb all factors like (R;|¢;) into a constant
of proportionality.

2. The state of the electronic system is well-characterized by a low temperature so
that 0; = 1 if ¢; <ep, for some Fermi energy ¢f, and o; = 0 otherwise.

3. The non-adiabatic forces will be dominated by pairs of states close to the Fermi
level because of the factor of 1/(g; — ¢;). We will choose to write ¢ — & = 4,
some characteristic eigenvalue spacing.
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4. The correlation time t will be proportional to the local density of states, which
in turn is inversely proportional to a typical eigenvalue spacing. We choose to
write tec 1/A.

Our expression for the force becomes
A2 Z (VRy7(Ror) - Ror) Vry, 7 (Roy), (11.22)
Iengy

where x is a constant of proportionality. In our tight-binding model the hopping
integrals between our s-like orbitals are a function of the inter-ionic separation
only and so we can write

> R R
fo ~ 22‘7’ ([Ro/ )] =" Ror, (11.23)
A Ieng |ROI|
where
dy(R)
7' (R) = : 11.24
V(R) =—4r (11.24)

If we choose to make a second moment approximation so that

A= Z[V(\ROJ|)]2» (11.25)

Jeny

then we obtain a final model for the non-adiabatic force,

Ry - R
" X( ) >V (R )| =" Ror. (11.26)
> senolV (|R01| [Roy|

leng
This model has several appealing characteristics:

e It is local and could be calculated within a classical simulation with very little
cost and no change in the scaling of the simulation time with system size.

e It has intuitive appeal in that it takes the form of a sum over the bonds on a given
atom with each bond having a “non-adiabaticity” related to its instantaneous
rate of change.

e It bears a clear relationship to the underlying tight-binding model, the effects of
whose semi-classical evolution it is intended to mimic. The lack of rigour with
which we derived this correspondence not withstanding, this means that a more
quantitatively accurate model could in principle be derived from a more
sophisticated tight-binding model. Of course, we have made no effort to
determine a value for the constant y, but if we desired a quantitatively accurate
model this constant could be fitted to some high level experimental measure of
the non-adiabatic energy loss, much as the damping coefficients in existing
simple drag models are.
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e The force given by our model is not in general opposed to the direction of
motion of the ion. There is at least some hope, then, that it might reproduce
some important detail within the behaviour of the “true” non-adiabatic force.

11.3.2 The Performance of Our Proposed Model

In this section we will present the results of some simulations designed to evaluate
the performance of our proposed model for the non-adiabatic force (11.26). We
have run 24 cascade simulations for approximately 25 fs, calculating the eigen-
spectrum and the non-adiabatic force every 0.05 fs. The PKA energy is 1 keV in
every simulation and the PKA direction is distributed evenly over the irreducible
1/48th fraction of the fcc unit cell. The simulations take place in an initially perfect
super-cell of 2,016 atoms (9 x 7 x 8 unit cells) with periodic boundary condi-
tions with zero initial ionic kinetic energy. We choose this static lattice condition
to eliminate the effects of thermal ions from our results. Figure 11.3 suggests a
different behaviour for the lowest energy ions and we would like to investigate
them separately.

11.3.2.1 The Irreversible Energy Transfer

Our analysis of the results of these simulations will be the analogue of that dis-
cussed in Sect. 11.1.1 where we evaluated some existing classical damping models
from the literature. Now, however, we have access to detailed information about
the non-adiabatic force and so our data-points for a statistical analysis will be
individual atom trajectories rather than whole simulations.

We begin by calculating the work done by the non-adiabatic force in the
Ehrenfest simulation over the course of the simulation for each atom individually.
We call this AEgy,,. We also calculate the work done by the non-adiabatic forces
predicted by our proposed model and a simple drag along the same atomic tra-
Jjectories. We will denote these by:

® AFE04er: Our proposed non-adiabatic bond model for the non-adiabatic force in
Eq. 11.26.

® AEgy,,: A simple drag model in which a constant drag coefficient is applied to
all moving ions. To calculate this we integrate the kinetic energy of each ion
along its path so that our force model in the following analysis is effectively,

1 .
fo = =5 BaragMiRo. (11.27)

Considering only those ions whose maximum kinetic energy exceeds 1 eV
during the simulation (again to focus on non-adiabatic effects on cascade atoms),
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Fig. 11.4 Scatter plots of the work done by the non-adiabatic force calculated for each model,
scaled by a best-fit damping coefficient, against the work done by the non-adiabatic force in our
Ehrenfest simulations: a The non-adiabatic bond model of Eq. 11.26. b A simple constant drag
coefficient. In each case each data-point represents the work done over 25 fs of the trajectory of
each of 831 atoms drawn from our 24 cascade simulations
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we carry out a linear regression analysis to calculate the constant of proportionality
for each model. We find>:

Damping constant Value R? goodness of fit
w/(eV A ps™h 14.81 + 0.07 0.9806
Barag!/(ps ™) 0.246 + 0.003 0.8790

Comparison of the fitted values of the constants of proportionality is uninfor-
mative, but we will use them to scale the data in the analysis that follows. Fig-
ure 11.4 shows the fitted data for the 831 atom trajectories from our 24 simulations
for each model scaled by the best-fit damping constant. Our newly proposed model
is a significant improvement over a constant drag model.

11.3.2.2 The Non-Adiabatic Force

A potentially attractive feature of our non-adiabatic bond model is that it predicts
not just the magnitude of a drag force, but also a direction for a much more richly
structured non-adiabatic force. What we would like to know is how well the
predicted force matches that found in our Ehrenfest simulations, given the many
approximations introduced in order to arrive at a tractable model. In Fig. 11.5 we
show detailed information for two atoms involved in a glancing collision at the

3 Note that the equivalent value of Parag from the analysis in Sect. 11.1.1is 0.386 £ 0.002 ps™".
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Fig. 11.5 The work done by the non-adiabatic force (top panels) and the cartesian components
of the non-adiabatic force (lower triplets of panels) for our Ehrenfest simulations and for the
models under test. The left hand set of panels are for the PKA in a typical simulation and the right
hand set for the first atom with which it collides (in a glancing collision)

start of one of our simulations. The detailed shape of the evolving work done by
the non-adiabatic bond force closely follows that of the Ehrenfest simulation force,
although the absolute level does not match perfectly (as we would expect from the
scatter in Fig. 11.4a). Also shown in Fig. 11.5 are the cartesian components of the
non-adiabatic forces and there is once again a remarkably good match in the detail
of the non-adiabatic bond model and the simulation results.

In Fig. 11.6 we show the work done by the forces on the primary knock-on
atom and the first ion with which it collides in a simulation in which the PKA
kinetic energy is directed along a close-packed line of ions, initiating a replace-
ment collision sequence (RCS). We recall from Sect. 11.1.1 that the simple drag
models coped particularly badly in the case of an RCS. In contrast, the more
sophisticated form of our non-adiabatic bond model seems to do a much better job
of capturing the enhanced energy transfer. It again captures much of the detail in
the variation of the force in the Ehrenfest simulation.
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Fig. 11.6 The work done by the non-adiabatic force (top panels) and the cartesian components
of the non-adiabatic force (lower panels) for our Ehrenfest simulations and for the models under
test. The left hand set of panels are for the PKA in a simulation of a replacement collision
sequence and the right hand set for the first atom with which it collides (in a head-on collision)

Figure 11.7 shows data for some more atoms. The right hand sequence show
the work done and the non-adiabatic force for the next atom displaced in the RCS
simulation considered in Fig. 11.6. The non-adiabatic bond model continues to
perform well in reproducing the simulation data. The left hand sequence of panels
in Fig. 11.7 shows data for an ion displaced later in the cascade of Fig. 11.5.
Again, the non-adabatic bond model gives satisfactory results, but we can see new
features emerging in the simulation data. The variation of the components of the
non-adiabatic force has become much more “noisy”, showing fluctuations on a
time-scale that is short compared to that of the collision. We speculate that these
fluctuations are due to non-local non-adiabatic features in the density matrix in our
simulations. Variation of the off-diagonal elements of the density matrix in the
energy eigenstate basis due to variation of bond lengths other than the one under
consideration was explicitly excluded in our non-adiabatic bond model when we
made our localizing assumption to obtain Eq. 11.22. In theory, a less local for-
mulation of the model is possible, in which the non-adiabaticity of the density
matrix is allowed to depend on the motion of more than a pair of ions at a time.
There would be an increased computational cost to such a model, but it might not
be prohibitive if the summations remained reasonably local and an efficient
neighbour-list were available.

As an alternative view of the behaviour of the different force models, Figs. 11.8
and 11.9 show snapshots of the evolving positions and forces on the ions con-
sidered in Figs. 11.5 and 11.6 respectively.

Figure 11.10 shows histogram data for the angles between the non-adiabatic
forces predicted by our proposed models and those found in our Ehrenfest
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Fig. 11.7 The work done by the non-adiabatic force (top panels) and the cartesian components of
the non-adiabatic force (lower panels) for our Ehrenfest simulations and for the models under test.
The left hand set of panels are for an atom involved later on in the cascade simulation considered in
Fig. 11.5 and the right hand set for the third atom in the RCS considered in Fig. 11.6

simulations. We can see that the non-adiabatic bond model considerably improves
the prediction of the direction of the non-adiabatic force over the drag model (in
which the non-adiabatic force is constrained to oppose the ion velocity).

11.3.2.3 Model Performance at the Cascade Level

As a final piece of analysis of our simulation data-set we will calculate the total
work done by the non-adiabatic force on all atoms for each of our 24 simula-
tions. This gives us data that are directly comparable to those used in the
analysis in Sect. 11.1.1 and in [8, 9]. In the earlier analysis we found that even a
simple damping did a good job of reproducing the total irreversible energy
transfer (equivalent to the work done by the non-adiabatic force) over the course
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Fig. 11.8 Graphical
depiction of the evolution of
the ion positions of the PKA ) ) )
and its target atom in a )

glancing collision and the ¢ ¢ /
non-adiabatic forces as also
shown in Fig. 11.5. . .
Snapshots are taken at 0.5 fs - G - z /'\
intervals. The light blue S : ;
arrow indicates the velocity
and the small red dots show
the past and future positions
of the participating ions. The
red arrow shows the
magnitude and direction of :
the non-adiabatic force from / :
the Ehrenfest simulations and J
the dark blue arrow shows
the non-adiabatic bond model
force. The scaling of the

magnitudes of both forces is 7 . f\
the same X :

%

of 200 fs of cascade evolution at a range of PKA energies in the same 24
directions used for the above analysis and in the same simulation cell with the
same initial conditions.

Figure 11.11 compares the irreversible energy transfer calculated by our non-
adiabatic bond model and using a simple damping with the results of the Ehrenfest
simulations using spICED. Each data-point represents a single simulation. Our
proposed models does a good job of capturing the variation exhibited by the
simulation data. What is interesting is that the energy transfer in the simple drag
model (essentially the integral of the ionic kinetic energy) shows hardly any
variation between simulations. This should not be particularly surprising, since
over the 25 fs of our simulations there is very little variation in the total ionic
kinetic energy, but it appears to contradict the conclusions of the earlier analysis of
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Fig. 11.9 As for Fig. 11.8,
but for the PKA and first
target atom in the RCS also

illustrated in Fig. 11.5 T 3 X

Sect. 11.1.1. In fact, these earlier simulations showed very similar behaviour and
the spread in the simulated irreversible energy transfer for simulations at a PKA
energy of 1 keV is similar in both sets of simulations. The apparent usefulness of a
constant damping coefficient emerges in the earlier analysis when data from a
range of PKA energies are considered, but it should not be so surprising that the
Ehrenfest energy transfer should scale with the total excess kinetic energy intro-
duced to initiate the cascade.

11.4 Conclusions

In this chapter we have used our semi-classical simulation framework to test
various models for the non-adiabatic force acting on ions in collision cascades. In
Sect. 11.1 we examined data from our simulations and found that the non-adia-
batic force predicted by Ehrenfest dynamics has a complex dependence on local
atomic environment and on ion velocity.
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Fig. 11.10 Histograms of the angle between the non-adiabatic force in our Ehrenfest simulations
and those predicted by our force models, split by ion kinetic energy. The left-hand panels (a and
c) are for the non-adiabatic bond model. The right-hand panels (b and d) are for the simple drag
model. The lower panels show the same data as the upper panels, but on a log scale. The symbols
against the right hand axis indicate the number of data-points in each line of the plots

The effect of the non-adiabatic force in removing energy from the ionic sub-
system during radiation damage cascades is believed to have a potentially
important effect on the final damage yield. Several classical MD models in the
literature (discussed in Sects. 3.4.2.1 and 3.4.2.2) attempt to capture such effects
by adding a drag force to the ions, opposed to their motion and proportional to
their velocities. The choice of a drag force is often justified by reference to various
theoretical models for the stopping force experienced by slow light ions (see
Sect. 3.2.5 for a discussion), which predict just such a drag force. Such justifi-
cation is, however, spurious.

The stopping power theories are derived in very particular, highly idealized
scenarios. The models of Firsov [14] and Lindhard and Scharff [15] (see
Sect. 3.2.5.1) consider isolated binary collisions in a simple classical model and
predict that the non-adiabatic force between atoms during a collision will be
proportional to the relative velocity of the two atoms. Other models, such as that of
Lindhard [16] (see Sect. 3.2.5.2) consider the effects of an electron gas and so
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Fig. 11.11 Comparison of the work done by the non-adiabatic forces on all the atoms in our
cascade simulations. Our force models are compared with the forces from the Ehrenfest
simulations and each data-point represents a single simulations. The rightmost points (note the
split axis) are for the RCS in the (110 ) direction. Data for a second replacement collision
sequence initiated by a PKA fired in a (100 ) direction are indicated by filled symbols

explicitly treat a homogeneous medium. Such simple models are clearly at odds
with the complex many-atom interactions occurring in a typical cascade, in which
the non-adiabatic force is a result neither of isolated inelastic collisions nor of an
interaction with a homogeneous medium. Additionally, whilst the concept of a
drag force proportional to velocity is supported by experimental data, such veri-
fication only really exists for ions moving at velocities approaching 10° m s~'. In
the case of a copper ion this corresponds to a kinetic energy of ~0.3 MeV, which
should be compared to cascade PKA energies of <10keV.

So to claim that the use of a drag force in a classical MD simulation is moti-
vated by stopping power models is to take those models beyond the limits of their
underlying assumptions and to apply them in a situation in which no experimental
verification is possible. The use of such drag forces is perhaps better to be regarded
as a simple means of extracting energy from the ions in a cascade in such a way
that the energy is preferentially removed from the most energetic ions. The value
of the drag coefficient is then determined by the need to remove energy from the
cascade at the correct rate on average. In Sect. 11.1.1 we evaluated some of the
drag models made use of in the literature on just such a basis.

Because we can obtain detailed information about the adiabatic force on a per
atom basis from our semi-classical simulations, we were motivated in Sect. 11.3 to
attempt to find an improved model for the non-adiabatic force. Such a model, we
hoped, would be able to better reproduce the details of the non-adiabatic force, in
particular its direction. Our hope is that such a model will then act to extract
energy from the ionic motion in a more correct way, overcoming problems in
simpler models such as the significant under-damping of RCSs.
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We proposed a model, the non-adiabatic bond model, based on the reasoning
that the non-adiabatic forces in collision cascades arise because of a lagged
response of the electrons in forming and breaking bonds between ions. This
picture is not only consistent with our tight-binding simulation framework, but
also has intuitive appeal and results in a model with the local character nec-
essary for implementation in a classical molecular dynamics code. Testing our
model, we found that it significantly out-performed simple drag models of the
adiabatic force and was able to closely replicate the direction of the non-adia-
batic force from our Ehrenfest simulations (and hence the individual cartesian
components).
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Chapter 12
Concluding Remarks

12.1 Our Aims

As we discussed in our introduction in Chap. 1, an understanding of radiation
damage is important to technological progress in many diverse areas as well as
being of intrinsic scientific interest. Non-adiabatic effects, in which energy
exchange between the ionic and electronic subsystems is significant, are widely
acknowledged to have an important influence on the evolution of damage distri-
butions (in Chap. 2 we drew attention to some of those effects in a typical collision
cascade). But, our review of the treatment of energy exchange processes in the
radiation damage literature in Chap. 3 served to highlight a significant gap: the-
ories of the effects of electronic excitations on ion dynamics deal only with highly
idealized situations, such a binary collisions or homogeneous electronic systems,
and predict a simple electronic drag force opposing the ionic velocity. Attempts to
incorporate non-adiabatic effects in dynamic simulations of radiation damage have
adopted these theoretical models, often on spurious grounds, by adding a drag term
to the equations of motion of classical ions.

The work documented in this thesis aims to go beyond earlier, simple treat-
ments of non-adiabatic effects in radiation damage simulations. By adopting a
simple time-dependent tight-binding model, evolving under Ehrenfest dynamics,
we have perhaps the simplest possible simulation framework that incorporates
both an explicit set of classical ions and an explicit model of quantum mechanical
electrons. The theory behind this model was introduced in Chap. 4 (in particular in
Sect. 4.5) and the model itself in Chap. 5. We discussed how Ehrenfest dynamics
is able to give a good account of electron—ion energy exchange processes in a
typical radiation damage scenario and in Chap. 6 we established the suitability of
our simulation framework for the simulation of radiation damage events. We thus
have a means of exploring the effect of non-adiabatic processes on the evolution of
radiation damage in metals by direct simulation.
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Dynamics, Springer Theses, DOI: 10.1007/978-3-642-15439-3_12,
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12.2 Our Results

In Chap. 6 our preliminary investigation of the energy transfer to the electrons
from a single oscillating ion in a sample of perfect metallic crystal of our tight-
binding model showed a rich structure. When analysed in terms of an oscillator
damping force, analogous to stopping power theories in common usage, we found
that such a force would need to be dependent on the direction and frequency of
oscillation, on the local atomic environment and on the electronic temperature in
order to correctly capture the energy transfer predicted by our semi-classical
simulations. These preliminary results suggested the importance of a more in-
depth analysis of non-adiabatic processes in radiation damage.

Chapter 7 illuminated some important features of the evolution of a semi-
classical system during a radiation damage collision cascade, and Chaps. 8—11
contain details of the results of our investigations. The key results of our work are
given in the following sections.

12.2.1 The Nature of the Electronic Excitations

In Chap. 8 we used the results from a set of cascade simulations to investigate the
nature of the electronic excitations stimulated by the ionic motion. We found that
the electronic system tended to evolve through a series of very nearly thermal
distributions at a gradually increasing temperature. We remarked that such a
behaviour should not necessarily be expected, because our system dynamics does
not include the thermalizing effects of direct electron—electron interactions or a
correct treatment of the full electron—phonon interaction. Instead, we explained the
emergence of a well-defined electronic pseudo-temperature by considering the
characteristic frequencies of the ionic motion and noting that these would stimu-
late electronic excitations of energies small on the scale of the width of the Fermi
surface. The statistical effect of many of these small excitations is to give rise to an
almost thermal eigenstate occupation distribution.

We considered the importance of the existence of a well-defined electronic
pseudo-temperature throughout a cascade. In particular, we noted that a useful way
of accounting for the effect of electronic excitations on the forces within a classical
molecular dynamics (MD) simulation would be to make use of an electronic
excitation dependent potential. The development of such a potential would be
considerably simplified if the electronic excitations could be assumed to be ther-
mal. However, a comparison of typical time-scales for electron—electron and
electron—phonon interaction processes (discussed in Sect. 8.1.3) does not suggest
that such an assumption would generally be valid. Demonstrating that the elec-
tronic excitations in a cascade are in the first instance (almost) thermal, and
therefore require very little thermalization, is thus a necessary step in the justifi-
cation of the use of an electronic temperature dependent potential to capture the
effect of accumulating excitations.
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We discussed a number of details of the excitation spectrum and some corre-
sponding subtleties in the development of a simple temperature fitting algorithm
(treated in more detail in Sect. 13.4). We also briefly considered two alternative
definitions of the electronic entropy and suggested that by neglecting the off-
diagonal elements of the density matrix in the instantaneous energy eigenstate
basis it might be possible to define an entropy consistent with the apparently rising
electronic pseudo-temperature despite our electronic system being closed (in the
quantum mechanical sense) and so evolving without a change in entropy.

12.2.2 The Effect of Electronic Excitations on the Conservative
Forces

In Chap. 9 we began a detailed analysis of the non-adiabatic effects on the elec-
tronic forces in collision cascades. We identified two key effects of non-adiaba-
ticity: the accumulation of electronic excitations resulting in weakening of the
electronic bonds between ions and the non-adiabatic forces arising from the finite
response time of the electrons to changes in the electronic Hamiltonian. We
focused first on the effect of accumulating excitations (the latter point to be
addressed in Chap. 11).

By running a set of low energy collision cascade simulations we found that the
electronic bonds would be significantly weakened (by ~1%) at high degrees of
electronic excitation (equivalent to a pseudo-temperature of ~ 10,000 K). We
pointed to evidence from augmented classical MD simulations [1] that such
temperatures might well occur in collision cascades, depending on the strength of
the electron—phonon interaction (a quantity poorly determined both theoretically
and experimentally). We found that the bond-weakening effect was almost com-
pletely (94%) accounted for by a thermal model of the electronic excitations,
consistent with our previous identification of a well-defined electronic pseudo-
temperature.

We also considered the implications of the weakened bonds for a region of
lattice bathed in hot electrons. Such a region would be under an effective
compressive strain and we undertook a brief analysis of this strain, noting that
if it persisted for long enough it might give rise to an outward propagating
elastic wave, which might influence defect dynamics in the surrounding
material.

Finally, we examined the results of a large number of simulations of replace-
ment collision sequences (RCS) in lattices at different electronic temperatures.
The RCS is an important mechanism of damage production and so any change on
electronic excitation to the ability of an RCS to propagate might be significant. We
found no significant effects below electronic temperatures of ~ 50,000 K, and at
higher temperatures the weakened electronic bonds (and so ‘harder’ inter-ionic
interactions) make an RCS less likely to propagate.
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12.2.3 Non-Adiabatic Effects on Channelling Ions

In Chap. 10, by simulating the passage of fast ions down open channels in rela-
tively large cells of our tight-binding model we were able to investigate the effects
of electronic excitations on various aspects of the channelling process. Our key
simulation results were the behaviour of the steady state ion charge and the steady
state electronic stopping power as a function of initial ion velocity and the charge-
self-consistency parameters in our model.

First, we found an enhancement of the negative electronic charge on the
channelling ion over a range of velocities. We attributed this behaviour to the
resonant occupation of a defect state, highly localized on the channelling ion,
whenever the frequency corresponding to the rate at which the ion moved
between equivalent points in the periodic lattice matched a possible excitation
from an occupied bulk state into the defect state. We verified this explanation
using time-dependent perturbation theory and by considering a simple toy
model.

The variation of the width, depth and position of the resonant charge
enhancement with changes to the self-consistency parameters U and V was
explained within the same conceptual framework.

When we examined the steady state stopping power we found that at low
velocities it was roughly proportional to the ion speed as predicted by simple
stopping power theories. However, we found that at higher speeds, in the case
when U =V =0, there was a ‘knee’ in the increase of the stopping power
with increasing velocity corresponding to the resonant charge feature. Having
explored the mechanism of electronic stopping from a time-dependent tight-
binding perspective, we attributed the reduction of the stopping power below
the linear trend to the occupation of the defect state. This state will be strongly
anti-bonding in character and so its occupation will weaken all the bonding
forces on the channelling ion. Since the stopping power results from an
asymmetry in these bonding forces, it too will be reduced.

We also found that at high values of the on-site charge self-consistency
parameter U, the ‘knee’ in the stopping power became a pronounced dip,
extending over the range of velocities corresponding to the resonant charge
enhancement. We explained this behaviour by noting that occupation of the
high energy defect state and the accompanying localization of charge would
give rise to a significant on-site perturbation to the electronic Hamiltonian on
the channelling ion. This perturbation would have the effect of mixing together
the bonding and anti-bonding defect states (which both have large projections
onto the atomic orbital on the channelling ion) thereby reducing the bonding
character of the fully occupied low energy defect state. This, in turn, reduces
all the bonding forces acting on the channelling ion and suppresses the stopping
force.
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12.2.4 The Non-Adiabatic Force in Collision Cascades

In Chap. 11 we returned to our study of the effects of electronic excitations on the
electronic forces in radiation damage collision cascades. In this case we examined
the effects of the finite response time of the electronic density matrix to changes in
the electronic Hamiltonian (i.e. to changes in the ionic positions). We identified a
non-adiabatic force corresponding to this lagged response and showed that it is the
work done by this force that is manifest as excitations in the electronic system.

By running a set of short cascade simulations, gathering data on the excitation
spectrum with high frequency, we were able to calculate the non-adiabatic force
acting on each atom throughout the cascades. A preliminary examination of the
direction of this force showed that it is not, in general, opposed to the ionic motion,
contradicting the application of simple electronic stopping power theory in aug-
mented classical MD simulations. We were thus motivated to attempt to develop
an improved classical model of the quantum mechanical non-adiabatic electronic
force.

By beginning with an expression for the non-adiabatic force in the basis of
instantaneous eigenstates of the electronic Hamiltonian (as one part of the Hell-
mann-Feynman force) we derived a spatially and temporally localized form,
written entirely in terms of quantities readily accessible within a classical MD
simulation. In deriving our simplified form we were guided by a conceptual picture
of the stopping force as arising from the lagged response of bond-orders between
neighbouring atoms to changes in the corresponding bond lengths.

We tested our new model on data from our set of cascade simulations and found
that it significantly outperformed a simple drag model in capturing the energy loss
due to the non-adiabatic force at an individual atom level. More than this, we
found that our new model did a remarkably good job of capturing the variation in
the individual Cartesian components of the non-adiabatic force and was thus
reproducing much of the microscopic detail in the direction and strength of the
force in the semi-classical simulations. Finally, we repeated a simple analysis of
the total work done by the non-adiabatic force as an average over all the atoms in a
given cascade. On the short time-scales of our data-set we found that a simple
damping force captures none of the significant variation of the effect of the non-
adiabatic force with initial PKA direction. In contrast, our new model does a very
good job of reproducing the variation.

12.3 Possible Directions for Further Research

In the work documented in this thesis we have established the value of using semi-
classical time-dependent tight-binding simulations under Ehrenfest dynamics for
the study of radiation damage phenomena. We have seen that with currently
available computational resources it is possible to reach simulation time- and
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length-scales necessary for the simulation of small, low energy collision cascades
and of ion channelling. We have witnessed the emergence of new phenomena in
our simulation results and seen how the wealth of information about the semi-
classical system available to us illuminates the physics behind these phenomena.

However, as discussed in Sect. 4.1, the method of choice for simulating radi-
ation damage on more realistic time- and length-scales will continue to be classical
molecular dynamics for some years to come. Only classical MD can cope with the
millions of atoms and hundreds of picoseconds of evolution necessary to probe the
residual defect distribution arising from collision cascades. For this reason, we
have viewed our work as part of a multi-scale materials modelling chain, and have
aimed to use our simulation results to inform the building of better forms of
augmented classical MD models.

Our simulation results make it clear that there is much more to the non-adia-
batic effects of electron—ion energy exchange on the ion dynamics than can be
captured by a simple drag force. In fact, the simplifying assumptions used in the
theories that predict such forces mean that their application in an augmented MD
model should only ever be regarded as an attempt to effect the correct energy loss
rate from the ions on an average basis across the whole cascade and over times of
hundreds of femtoseconds. The fact that the drag forces are, however, applied at
the microscopic level might cause us concern: are we over- or under-damping
certain modes of ionic motion and could this have significant consequences for the
predicted damage?

Two obvious ways of improving classical molecular dynamics models suggest
themselves and our work has something to say about both of them. First, the
accumulation of electronic excitations and the implied gradual weakening of the
inter-ionic bonding interactions might be taken into account using an excitation-
dependent potential. We have seen that such a potential could reasonably make the
assumption of a well-defined electronic temperature. We have also seen that it
should not capture any significant effects at electronic temperatures less than
around 10 000 K. Such temperatures may well arise in some high energy cascades
and are likely to exist around the paths of channelling ions. Only by applying such
potentials can their implications for damage production be explored.

Second, the use of a more valid model of the non-adiabatic force in classical
MD is desirable. We have used our semi-classical simulation framework to suggest
just such a model; one that captures much of the microscopic behaviour of the non-
adiabatic force. An obvious next step would be to incorporate our new force model
in a classical MD code to assess its impact on the production of damage in
cascades.

A third improvement to classical MD would be the correct treatment of the
return of energy from hot electrons to cooler ions. This phenomenon is particularly
important in the later stages of cascade evolution and defect recovery. We have
been unable to say anything on this issue because of a fundamental failure of
Ehrenfest dynamics: it does not include the effects of spontaneous phonon emis-
sion. To explore these effects we would have to reintroduce some quantum
mechanical features of the ions. A productive line for future research in this
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direction might be to apply the correlated electron ion dynamics (CEID) for-
malism of Horsfield et al. [2, 3].
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Chapter 13
Appendices

13.1 Appendix A: Selected proofs

13.1.1 Proof of Equation (4.10)-(i)

We wish to prove that the expectation of an observable A for a state |D(r))
evolving under a Hamiltonian A changes with time according to

ih 4 (@()IAIR() = (@()][A, H][0(0). (A1)
We write
%@“) Ale() = (% <<D(t)>f\|<1>(t)> +(@(n)|A (% |<1>(z)>>. (A2)

From the time-dependent Schrodinger equation we have,

. d .

ifi-|®) = A|2), (A.3)
. d .

~ifi (0] = (I, (A.4)

since H is Hermitian (I:IJr = H), and so the result Sect. 13.1.1 is proved. Note that
as always we are working in the Schrodinger picture. In the Heisenberg picture, in
which the state vectors are stationary and the observables evolve, Eq. A.1 becomes
the Heisenberg equation of motion.
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13.1.2 Proof of Equation (4.10)-(ii)

We wish to prove that for a function F(P) that can be expanded in powers of a

momentum operator P, then if R,, is the #nth cartesian component of the corre-
sponding position operator, we can write

[Ry, F(P)] = ih (A.5)

where f’,, is the nth cartesian component of P. We write,

F(P) =) a(PY, (A.6)

J

for some set of coefficients {;};7, so that,

RysFl = 3 iRy, (PY). (A7)

Ry Fl = 3 a{ 1Ry, BIBY " + PIR,, (Y]}

~.

B o (A.8)
= Zaj{ih(P)Jilﬂ + P[Rna (P)jil]}7

where we have used the commutation relations [Rn, IBH] = ihd,, and x is the unit
vector in the nth cartesian direction. Repeating the above step j times for the jth
component in the expansion of F gives,

Ry F = iy ag(®)~'n, (A9)

proving (A.5)

13.1.3 Proof of Equation (4.12)

If we follow the procedure in Sect. 13.1.2, but consider instead a function G(R)
expandable in powers of a position operator ﬁ, then use of the commutation

relations [P,, R,| = —ifd,, leads to the required result

. N oG

[Py, G(R)] = _iha_ie,,’ (A.10)
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13.1.4 Proof of Equation (4.28)

We want to prove that for an arbitrary electronic operator A({#;}, {p;}) the
expectation values satisfy

(@()|A@(1)) = (¥ (D)IAIP (1)), (A.11)

with |®()) defined as in Sect. 4.2 and |W/(¢)) defined as in Sect. 4.2.1 such that it
satisfies (4.25). Hence we have by definition:

(@(10) A|®(10)) = (¥ (10)|A|¥ (10))- (A.12)

We follow Todorov [1] by splitting the time interval #, to 7 into N— co time steps and
define 1, = 1y 4+ ndt, n = 0, 1, 2, ..., N, 3t = (t — 10)/N, so that (D(z)|A|D(r)) =
(®(ty)]A|®(ty)). From the TDSE (4.1) we have

[@(in)) = |D(ty-1)) (1 +%H> (A.13)
(@) = (0ol (1), (A14)

so that,

(O AID(0) = (@I (4 + Ao + 06 )01 (415

Because A is an electronic operator and all the position and momentum operators

of the electrons commute with those of the nuclei we have [A, Vyn] = 0, [A, T,] = 0
and so,

(@A) = (@tw-)I(A-+ AT+ Ve + Tlf + 00OP) ) 00v-1),
(A.16)

to first order in J0r. We can then use the assumption (4.13) that the nuclear
wavefunctions are highly spatially confined, to write

(@(tn-1)[[A, Voe ({Rs}, {ED][@(tn-1)) = (@(tn-1)][A, Ve ({Re(ty-1)},
{EPI[@(tn-1)), (A17)
where the correct time must be specified for the classical ionic coordinates.

(@) A10(0) = (@] (4 + 4 Al I )10 ). (A1)
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Now by defining Ay = A and Ay_; = Ay + [Ay, H.(ty_1)]0t/ik we have,

(@ (1) |AN|D(1y)) = (D(ty—1)|An—1|®(ty-1)).

Iterating backwards gives,

(@(1n)|An|® (1)) = (®(10)|Ao|D(10))
= (¥ (10) | Ao] ¥ (10)),

by the definition of | (z)). We can also consider,

(P! (o)A (1) = (¥ (1y-1)] (A +1

since
d N
ih £ W'(0)) = He(lY' (1)),
which on iteration gives,

(P! (ow) A ¥ (1)) = (¥ (10)|Ao ¥ (10)),

thereby proving the result (4.28)

13.1.5 Proof of Equation (4.85)

We need to calculate

Enlp] — / drp(e) Vap"](r),
for p = p'™ + dp. Now,

. . OF
Eulp + o) = Eulo") + [ dré—H op(r)
,0 ﬂ"‘(l‘
‘“(l‘)

drdr’
// 5p r’ 5p 3p(r')dp(r)
P! (r’)
— Eulp"] Lop(r)p" (r')
EH //dl'd ‘ — l‘/l

3p(x')3p(r)

o ff a2 //dd' |—r/|)

— Eulp") + [ drdp(o)val //dd’

i) )m"(m ),
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(A.19)

(A.20)

(A21)

(A.22)

(A.23)

(A.24)

(r')

3

(A.25)
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but,
in 1 in in
En[p"] =5 [ drp™(r)Vu[p"](r), (A.26)
SO,
Bl + op] = [ arp? + 30)Valo")(0) - Bl + 5 [ arar 2 F20)

(A.27)

and hence,

Eilo] — [ arp(e)Valp*I(6) = ~Eulp") + 5 [[ arar 20 25)

13.1.6 Proof of Equation (4.86)

We need to calculate
Exclp) ~ [ drp(e)Viclp™)(r), (A29)
for p = p™ + dp. We write,

0Exc
op

Exclp™ + 8p] = Exclp™] + / dr

5 0"Exclp]
drdr’
pin(r) // p(r')op r) o ))
— Exclp"] + [ drvxclp"lép(r

1 , *Exclp]
+ E//drdr 5p(c)dp(r)

p.in (l‘)
pin(r’)

3030 (x). (A30)

,5EXC Exclp]
//dd r’5pr)
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and so,

Exclp] - / drp(r)Vxc[p™"](r) = Exclp"] - / drVxc[p™]p" (r)

, 8Exclp]
//dd 3p(r')3p(r) lp

0
"(r)
m (r/)

13.1.7 Proof of Equation (4.102)

We want to show that if we assume the local density approximation for the
exchange-correlation functional and that Vy pa[p] is linear in p(r) and we write the
density as a sum of atom-centred contributions p(r) = >"; p;(r) then the external
potential in the Kohn-Sham equations can be written as a sum of atomic
contributions,

VES[p] Z VES Iy (4.102)

Now,

Vet [P](r) = Vie(r) + Va[p] (x) + Vxclp)(r). (A.32)

Taking each term in turn we have,

Z = R1| (A.33)

which can clearly be written as a sum over atom-centred terms.

Vilolr) = [ar =37 [ark (A34)
again a sum of atom-centred contributions.
For the final term, we are assuming the local density approximation,
Exclplv) = [ arVioslo@)lp(r). (A.35)

If we further assume that Vip, is linear in p(r), i.e. Vipa = Cp(r) for some
constant C, then,

Vaelpl(r) = 222 = Coplr) = Y- Cpo) (A36)
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Again a sum of atom-centred contributions, this proves (4.102) and we have

—Z pi(r')
Vg(? ngfl Veliil = |I'—R1‘ /d ,| . ‘+Cp ( )

(A.37)

The error in this form due to the approximations made to Vxc will be [2],

p= Zm] : (A.38)

Z Vxclpr] = Vxe
1

13.1.8 Proof of Equation (4.131)

.. d
ih i) = H™ ) + Z ) (4.131)
T
We start with Eq. 4.128
2ihoi5ai, =20y ay(Ry|H™[R)| + a Elp — P°)(R). (4.128)
dt g Oaj
Now,
d
1Fz 1EZ air|Ry)
(A.39)

— Z (Z a; (Ry|H™B[R;) + [p Po]) IR;).

by the symmetry of A" and the completeness of the local basis, 3, |R;)(R;| = 1,
we have,

d
ih Wil Za,,HTB\R, +—Za : Elp = pol|Ry), (A.40)

but,

> ayRy) = ¥y) (A.41)
J

and so the result is proved.
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13.1.9 Proof of Equation (4.135)

We wish to show that,

1 0 0 _ {sSC
20,‘2661* g[p p]|Rl>_V |lpi>7

Ji il
where,
V€ = Z IR/) (U,Aq, + Z Uy (R ACIJ) ok (Rg|.
IK J#L
Now,
_ 0 04qr

Oaj  4~0Aq aj

and

ZUKAC]K+ Z UKJ AqKAqfv

K J#K

S0,

o&
m Urdqr + = <Z Ur(R)Agy + Z Uk(R AQK)

J#L K#L

= Urdqr + Z ULi(R)Agy,
TAL

Appendices

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

where we have used the fact that U;; = Uy;. Given the definition of Agy,

Aq =2 ojdyai — qo.
J
04q.

oa" = 20ia;.0;L.
a;;

So we have for the left-hand side of (A.42),

%0, Za - Elp = IR = ZazL51L<ULAQL+ZULJACIJ>|Rl>

J#L

= Z air (UIAQI + Z UIJA‘IJ> R;).

J£I

(A47)

(A.48)

(A.49)
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And for the right-hand side of (A.42),

V€I, Z R;) (UIA‘ZI + Z UIJA!IJ> Orx (Rk]| (Z air|R) >

JAI
(A.50)

= Z ajr (UIAQI + Z UIJAQJ> R;),

TA

since (Rg|R;) = Okz, proving the result.

13.1.10 Proof of Equation (4.137)

We wish to show that the quantum Liouville equation for the evolution of the
density matrix,

d
i p = [H™ p] (4.137)
is equivalent to the time-dependent Schrodinger equation

d
ih—

dt|‘//i> :HTB/|%>- (A~51)

Because H™ and V5C are Hermitian we have,
—lﬁ Wil = (s \H™. (A.52)

Hence,
d d
i p() =i <Z oillﬁi)wil)

=i Yo () ol 1 (G0 ) |

= S o (E ) — ) ™)

(A.53)

_ I:ITBIﬁ o ﬁHTB/

= (™).
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13.1.11 Proof of Equation (4.141): The Conservation
of Total Energy

We wish to show that our time-dependent tight-binding dynamics preserves the
total energy of the semi-classical system:

d TB/ 1 2
— —M;R” | =0. 4.141
dr ( * z,: 2 (4-141)
Writing
d 0
—=_1R- A.54
- w VR, ( )

we must then consider,

. N . 0 .
2Tr{%—’;HTB} +2Tr{pVrH™} - R+ 5, TR VREHR: ViV,

+%{Z%M,R2}. (A.55)

1

Using the quantum Liouville equation (4.140), the first term becomes,

2Tr{2—pﬁTB} = —%Tr{[f{TB + V€, plH™ }
g (A.56)

= 2 (T[T, P} + Te{[75C, pJA™)).

In general Tr([A,B]A) = 0 and so we are left with a total time derivative of the
system energy,

i N N N . 0 . .
f%Tr{ [VSC, pIH™} + 2Tr{pVRH™} R+ — + R - VRE + R VR Viep

ot
d 1o
+at{ZI:ZM1R }
(A.57)

Now,

0 1. L
5 (Z EM,Rf> = ZM,R, Ry, (A.58)
1 1
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which from (4.139) becomes
ZMIRI ‘R =R, Z{—ZTr(f)VR,FITB) — VRE[p = p°J(R) = VR, Viep(R) }
1 1
(A.59)

Thus the 6th term in (A.57) cancels the 2nd, 4th and 5th terms and we are left with
a total energy derivative,

2i ASCAp 20 (. oscr o€
= T{VEPH™ |+ ST {pV a4 = (A.60)
Now,
o0&
i , A.61
o a,, ’+Za; i (A-61)
since a;; and a;; must be treated independently. From (4.124) we have,
o€ o€ i - i o€
by = — J(RJIHBR)) — —— A.62
7 aaﬂ it 7 aaﬂ{ h;a‘l< J‘ | 1> 2h0i 60?1}7 ( )
and from (4.123) we have,
o€ . o€ | i TR i o€
1= 1= ’ —_— A.63
 day ?} l T O {hzj:alj<Rj|H R+ 2ho, aail}’ (A3
and so
of i o& o€ .
i ﬁZ{a a ag (Ry|H™R;) — o aiJ<RJ|HTB|R1>}7 (A.64)
We can also write,
VSCh =" 0V (i
1 o&
=—3 — IRy
22 aa;}| (Wil (A.65)
o€
= 6 * lJ‘R1><RJ‘
iy il

where to get the final line we used the result proved in Sect. 13.1.9. Hence,

o&

21116*

Tr{VSCpH™} = a;, (Ry|H™|R). (A.66)
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We also have,

pvse = Z 0i|lpi><lpi|‘7$c

1 o0&
_E%:|Wi><RI‘aa”

1 o€
— 5" IR R,
22 Gagaj‘ 1) (R

(A.67)

where we have used the result proved in Sect. 13.1.9 and the fact that VSC s
hermitian. Hence,

L oSCE 1« 08 R
Tr{pV> H™} = 32 5w (Ry|H™|R)). (A.68)
ar Odil

From Egs. A.64, A.66 and A.68 we can see that,

2i . . NP
_El (Te{ VSCHA™ ) — Te{pVSCA™}) + % =0, (A.69)

proving that the total system energy is conserved by our dynamics.

13.1.12 Proof of Increase of Pseudo-Entropy (8.16)
We wish to show that our pseudo-entropy
S(p) = —ks Y (0;lno; + (1 — 0;) In(1 — 0)), (8.16)

will tend to increase with time. Taking the time derivative we have

——58(p) ==Y _6i(Ino; — In(1 - 07)). (A.70)

i

If we assume that excitations from state i to state j take place at an underlying rate
where w;; = wy, then, given the constraints of exclusion,

bi = iji(oj — 0,'). (A71)

Wijs ij>
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Hence we have,

=Y wiloi ) [m( 1 iio,-) - 1n<1 f"ojﬂ (A72)
T (0/0’7_0)

I—Oi

where to get the second line we paired terms in i, j and j, i. All of the terms in the
double sum, whether o; > o; or 0; > 0; must be greater than or equal to zero and so
our pseudo-entropy must increase with time.

13.1.13 Proof of Equation (9.4)

We wish to show that we can write the electronic (Hellmann-Feynman) force on
the ions in our simulations can be written

Fo=— piVei—Y (6= &)py (V). (9.4)
i i
where {|¢;)} are the instantaneous eigenstates of the non-self-consistent Hamil-

tonian H with eigenvalues {¢;}. We start with the general expression for the
Hellmann—Feynman force,

F. = —Tr{pVrH}, (A.73)
and write it in the eigenstate basis,

Fe=— Z<¢i|lb|¢j><d)j‘vRH|¢i>' (A.74)

7
We then split out the contribution from the diagonal elements of p,

Fe=— Zpii<¢i|VRH|¢i> - Zpij<¢j|vRH|¢i>, (A.75)
i ij£i
where we have written p; = (¢;|p|¢;). Next we consider,

VR(<¢J‘|FI|¢[>) = <VR¢j|H|¢i> + <¢j|H|VR¢i> + <¢j|VRI:I|¢i>

; (A.76)
= &(VRj|d;) + &(0;|VrR;) + (¢;|VRH|¢;),
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but since the orthonormality of the eigenstates must be preserved,

Vr((9;1¢:) = (VrO;1¢:) + (d;|VR;) =0, (A.77)
and so
VR (($1H| b)) = (&5 — &)(d;|Vr:) + (&) VRH| ;). (A.78)
For i = j we have,
<¢j|vRH|¢i> = VR(<¢:’|H|¢1’>) = Vgéi. (A-79)
For i # j we have,
VR(<¢]"I:I|¢1'>) =0 (A.80)

since H is diagonal and so,

and our result is proved.

13.1.14 Proof that Im{fy = 0

We wish to show that the force

fs=— Z(gi = )p{¢;IV i), (9.13)
i

is real. We begin by considering the pair of terms in i, j and j, i
t,]yﬁt

where the factor of 1/2 corrects for the double-counting. Now we note that
VR(<¢j‘¢i>) =0 and so <VR¢j‘¢i> = _<¢j|VR¢i>- Hence,

<¢i‘VR¢j> = (<VR¢j|¢i>)*: (<¢j|vR¢i>)*' (A-83)

The density matrix is anti-Hermitian, p; = — pj; SO,

_ —‘Z {py &;IVrey) + 05 ((d;|Vr)) }
2 (A.84)

== > (e = &)R{py(;| VR },
ijAi

as required.
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13.1.15 Proof of Equation (11.9)

We wish to show that we can write

> (e = o)yl (1) = S L. (A85)

i

We begin by considering

dp _d -
dr dt<¢i|p|¢i>

. . . (A.86)
= (5 @ )olod + (50 )00 + @i (100 ).
The quantum Liouville equation gives us the evolution of p,
il = = 216006~ )yl (A.87)
and so,
i) 0. (A88)

Hence, exploiting the completeness of the eigenstate basis, Y ;|$;)(¢;|, we can
write,

dp;i d d
T ;(a@ﬂ) ;) pji + (9] (E|¢i>)ﬂg

(A.89)
= S2@(5160 )0~ @ (5160 o
To obtain the second line we used d (¢;|¢;)/dr. Now,
dpu d d
S =S (G190 )o@ (G o
(A.90)

= Z{ (5100 a0 (190 ) s

proving the result.
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13.1.16 Proof of Equation (11.12)

We wish to show,

> ABilpld) (e — )y Vre) = > (dilbld) (| VRH|d). (A1)
ij#i ij#i
For a small change JR in R, first order perturbation theory gives us the change in
an eigenstate,

Vr|p:) - oR =) (¢x|VRH
k

& — €&

[P (A.92)

OR|¢;)
k

and so

|IVRH - 5R| o
(| Velgy) = DIVRH ORI} (A.93)

8,'—8]'

since R is arbitrary, proving the result.

13.1.17 Proof of Equation (11.18)

We wish to show that

df, dp .
-0 __ 11 Mo, Hlo.
i ;wﬁ,\ 1B VR )
- Z R- VR(<¢i|p|¢j>) <¢j|VRo[:I|¢i> (A.94)
ij#i
= (1pl)R - VR ((;| Ve, H| ),
ij#i
can be rewritten,
dfy(t) 0j — 0; - . .
T 2;‘ o (BIVREIG) - R) 6]V, Hld,). (A.95)
We have three terms to deal with, which we will take in turn. First,

d L lIE
py = — (il 7l|6)

i R A (A.96)
= == {(ilH|pe) (Dilpl ;) — (il Dlbe) (Dul H 1))},
h
X

by the completeness relation 3, |$.) (¢ = 1. Now, <q§i\131|¢>j> = ¢;0jj, SO,

d

ali = —%(Si = &)(dilpl ;) (A.97)
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Second, we consider,

Vrp; - R = ((Vrilpl¢)) + (:]p| V) - R. (A.98)

From first order perturbation theory,

. ViH - RS
aldy) o = 3 LA g (299
we obtain,
VrH
iy R = Z{%w 9 + m'@%<¢| |¢k>}
(A.100)
And third we must consider,
VR(<¢,“VR0FI|¢1‘>) ‘R= (<VR¢J’|VROI:I|¢I'> + <¢1WROH|VR¢1'> (A101)
+(| VR (Vr,H)|0)) - R '
\%
=Z{—<¢' RO R, 1w 1)
3 k&
1. - R A.102
Vet ‘j:” /<z>,-|vR0H|¢k>} (102

+ (i Ve(Veo)[¢:) - R

With these three terms rewritten as above we have

O S e — ) (6410l (| V. )
1/#1

- ZZ{ (9 'VRH'(/”‘ R 651
ij#i k

(| VrH|;) R
T &

Sj—

<¢i|ﬁ|¢k>}<¢,|vnoﬁ|¢i>

Sl [Z{W@mﬁw

ey & — &

I (¢|VrH|$,) - R

& — &

¢j|vmff|¢k>} (IR Vr(Vr, DI¢)|.  (A.103)
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Now, the first and last terms including a summation ) ;; . ; are zero because of
the condition j # i. This leaves,

% =— Z{<¢ | :_'j’> 0; + (@i ;_'jj> 0i}<¢j|VRoH|¢i>
i,/‘;oéi g 7o (A.104)
= Z ! ((¢:| VRH|d;) - R) (¢ Vi H ;)
1,];61

13.2 Appendix B: Perturbation Theory

In this appendix we will derive some useful results in time-dependent perturbation
theory. We will begin with a fairly general presentation of the theory, before going
on to consider the effect of a sinusoidal perturbation on an electronic system
represented by a single particle density matrix. We will then specialize even
further to derive an analytical expression for the effect of a single oscillating ion in
our single s-band tight-binding model. In a further section we derive basic results
for a quantum mechanical oscillator.

Our approach to time-dependent perturbation theory will consider the effect of
adding a time-dependent perturbation V() to a time-independent Hamiltonian H°
on the evolution of a quantum mechanical system. We will work in terms of fime
evolution operators, U (t; 1), whose action is to carry a state of our system at time

to, [¥(t0))s (1)) 3, pp- 69-71],
U(t;10) W (10)) = (1)) (B.1)
We will work in the basis of eigenstates, {|¢;)} of H® with eigenvalues {;},
H0|¢i> = &il¢;). (B.2)

We can define an evolution operator for the unperturbed system, U°, by its action
on an eigenstate,

0O(1)] ) = e by), (B.3)

where from now on we will assume, without loss of generality, that f, = 0 and
leave it implicit in our notation for time evolution operators. U°(¢) satisfies,
d

ih U'r) = U (1). (B.4)

! Our notation here will be the one that we have been using for our independent electron system.
The derivation is, though, more general.
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We will want to compare this evolution operator with the one that gives the
evolution of the system under the full perturbed Hamiltonian H(r) = H° + V(1).
This evolution operator, U (1), will satisfy,

L d o PP
1h§ U(t) = H()U(z). (B.5)

We now use the effect of U(z) on the eigenstates of H° to define a set of evolving
wavefunctions {|y;(1)) }:

Wi(1)) = U(0)]¢y). (B.6)

Our perturbation theory is fundamentally about comparing the evolution given by

U(r) with that given by U°(r). So an important object will be the projection of an
eigenstate evolved under the perturbed Hamiltonian onto one evolved under the

Hamiltonian A° :
(& U°0) ;1)) = (BT ()T ()| ). (B.7)
From now on, to aid readability, we will leave the time dependence of U°, U and
H implicit
We now define an evolution operator,
U =00 (B.8)

whose effect on the eigenstates will be small if the perturbation V(z) is small
compared with H°. We differentiate U’ :

do, (doo\s  rorfds
Q- (< 2 B.
U (dIU >U+U V) (B.9)

which from (B.4) and (B.5) becomes,

d . 1, Agiror  roran
U= —%(—UOTHOU + UOHD)
! i (B.10)
= Lo (i - )0
Now H—H° =V, and U’ = U°'U = U = U°U, since U° is unitary,so,
o~ Lo (B.11)
dr h ' '
We now integrate this expression to obtain,
. t
U't) - U(0) = _% / d (O () O\ U (B.12)
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Since U’(O) =1, the identity operator,

- (—%)2 / ar (0°1(1)V / ar" (OO ("YW () DO () U
0

(B.13)

(=]

We can repeat the above process of expanding U'(r) to obtain the Dyson series,

t

U@)=1+ (_%) /d, S ()t

0
[ . (B.14)
N\ 2
+ (_%) /dt ehH I V( ) ——Flot’/dt//e%Hot”V( //) —i0r +oan
0 0
where we have used the fact that,
U0(t) = e ", (B.15)

13.2.1 A Periodic Perturbation

We will now consider the case of a perturbation that varies sinusoidally in time,
with angular frequency Q :

V(1) = VOsinQx, (B.16)

and derive expressions for the terms of the Dyson series (B.14). We will write the
matrix elements of U as an expansion,

(@ U'y) = (@l (O + TV + T 1)@y, (B.17)

where the terms U'() correspond to the terms in (B.14). Immediately we can see
that the zeroth order term will be,

<¢i|f]/(0)‘¢j> = <¢i|¢j> = 5ija (B.18)
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by the orthonormality of the eigenstates. For the first order term,

S
wmﬂW@w>i/dﬂ@w“v%#”wmmm

(B.19)
= ——<q5 [V|o; )/ dr'eis=o) sinQy’ .
Writing ¢ — ¢ = liwj;, we have,
77/(1) _ 71 (70 ' ! Jiwjit o /
(DilUT71¢y) = = (il Vi) | dresinQr
— _i<¢|‘70|¢]> /l dr (ei(Qerji)t’ _ ei(wa,»,ﬂ)t’)
' A
: ) i(Q+w;)U 7! i(Q—w;)t 1!
:L<¢5|VO|¢J'> [e J ] _{e J }
2h Q—l—wﬁ 0 Q—wj,» 0
_ _L<¢|‘70|¢> ei(Q+wji)t -1 B ei(Q—wji)t -1
2hi ! J Q + Wji Q— ji
1 o ei(Q—u)ji)t/2(1/2i) (ei(Q—mji)t/Z _ e—i(Q—wji)t/Z)
= —{(:|V0] b,
e i(Q+wji) t/2(1/21)( (Q+w;)t/2 _ (Qerj;)t/Z)
3(Q+ o)
= V01 { @ sine [(Q — y)r/2]
—e (Q+wji)t/zsinc [(Q 4 w]l)t/z] }’
(B.20)

where, sinc(x) = sin(x)/x.
All of the results that we make use of in this thesis require only the terms of the

Dyson series up to first order in V°. We will therefore simply quote the second
order terms without giving a derivation.

(9| U p;) = ZZ AVO D) (el VOl y)
[(1,1) (1,1)+I(1,—1)+I(—1,—1)], (B.21)

where

1 (o +p2)t/2 o ; t/2
o =it sinl(oy + 1Q)t/2)

iwjk —+ Q Wi + tuQ
el 2gin {[wy; + (v + ,U)Q]t/z}}
wj; + (V + :u)Q .

(B.22)

Later we will return to consider the behaviour of the term (¢, ()| ¢;) in more detail.
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13.2.2 The Effect of a Sinusoidal Perturbation
on an Electronic System

To make use of the above theory, we need to develop expressions for some
quantities of interest in terms of the matrix elements <¢i\0’|¢j). To make our
discussion more concrete, we will focus on the effects of a sinusoidal perturbation
on a single-particle density matrix p(z), representing an electronic system. We will
consider two density matrices, p°(¢) and p(¢) chosen to be initially equal at time
¢ = 0 and diagonal in the basis of eigenstates of H°, now defined as an operator
acting only on the Hilbert space of the electrons,

P =0) = plr =0) = 3 [d)oits (B.23)

{o;} is the set of initial occupations restricted to be between 0 and 1. p°(z) is
defined as that density matrix evolving from p°(0) under the unperturbed Ham-
iltonian HO, which we can write,

(1) = U (0p(0) 0 (1) = Y U°(1)|pi)oit gi| U (1)) = D ldi)oi(dil, (B.24)

i.e. independent of time.
p(1) is the density matrix evolved under the perturbed Hamiltonian H(r),

p(1) = U0 (1) =Y U(1)di)o(¢il U (1). (B.25)
k

For t # 0, p(¢) will, in general, have non-zero off-diagonal terms and so we must
consider the general matrix element,

<¢i\ﬁ(t)|¢>*z< ¢ Uldi)on( 9 U'|y)
= Z b, \e“ t/huld)k 0k<(bk|UT ujt/h|¢> —e)t/h

=D (DilUTUIg) o (e UTT°|gy)el T (5:26)

Z $il U | pi)ox ¢k|U|¢> R
3

13.2.2.1 The Irreversible Energy Transfer

In Sect. 7.2.4 we define the irreversible energy transfer into the electronic system
in a radiation damage event as the excess energy in the electrons compared with
the adiabatic evolution. This precise definition is examined in more detail in


http://dx.doi.org/10.1007/978-3-642-15439-3_7#Sec11
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Sect. 7.2.4, but here we consider a parallel definition of AE(z). For our current
purposes, the energy transfer will be defined as the excess energy in p(t) as a result

of the action of the perturbation V(r), when compared with that in p°. Hence,
AE(t) = 2Tr(p(1)H(r)) — 2Tr(p°HY), (B.27)

Where the factor of two accounts for spin degeneracy (i.e. double occupancy of
each electronic eigenstate). From (B.24) we have

Tr(p°H') = Z¢|Z|¢ (il HO|y)
—Z ¢ |Z|¢ {Pild))e (B.28)
:Zoigia

and,
Te(pH) = Tr(pH®) + Te(pV)
= > aldilplg) + Tr(pV). (B.29)
In general the second term,
Tr(pV) = > (dilpld) (1 VI0), (B.30)

i

is complicated, but for a sinusoidal perturbation it will return periodically to zero
and so we can choose to ignore it. Using (B.26) to rewrite the diagonal elements of
0, we have,

E(t) =2 ao[($|U' )P =2 zio; + 2Tr(pV). (B.31)
ij i

Because U is unitary,

(@l0'T" 1) = (il i) = O (B.32)
and so by the completeness of {|¢;)}
D AGlU 1o (10" ) = (il 1) = Sk, (B.33)

J
and,

Y liltlgnl =1, (B.34)

J
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Hence we can write,

—22 Deil (| U'|)) > + 2Tr(pV). (B.35)

13.2.2.2 Charge Transfer

We will now consider how the electronic charge on an ion is affected by our
perturbation. We will denote the number of electrons on the o«th ion, i.e. the
occupation of the local orbital |R,) on the ion at R, in our single s-band tight-
binding model, as g,. The excess electronic charge generated by the perturbation
will be given by,

Agqy = 2{o|(p(r) — p°(1))]%), (B.36)

where the factor of two accounts for spin degeneracy. Unlike the case of AE(z), in

which, by ignoring the contribution form Tr(,bV), we could focus on the diagonal
elements of p in the eigenstate basis, here the off-diagonal elements contribute to
Ag,. Substituting for p and p° we have,

Ags = 2D (Ruld NG U3k (9071 (s | R =1/

ijk

23 Ralb)o (bR (B.37)
Using the identity >, \<¢i|f]’|q§j>|2 = 1 we have,

Ag, = 22 |(Ro16:) P (1101 (o
*01) > (Rl di) (Dl U'[dr)or{ el U7 1)) (;Ro)e =", (B.38)

ik j#i

Now, the terms in the second summation, arising from the off-diagonal ele-
ments of p(r) have significant magnitude. However, we can show (see Sect.
13.2.2.3) that their contribution is strictly oscillatory and so we can write, from
(B.37),

Mgy =2 (Rl (il U'de) Por =2 |(Rald) o, (B.39)
ik i
and from (B.38),

Agy =2 [(¢i]U'|de) [ (0k — o)) | (Ro|h:) . (B.40)
ik
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13.2.2.3 First-Order Perturbation Theory Approximations

We will now derive approximate expressions for AE(#) and Ag,(t) to first-order in the
expansion of the time evolution operator U/’ (). We need to deal with quantities like,

(il U'| i) (i U | y).- (B.41)

To second order in the perturbation V, these are,
(bil O i) (el U by) = (410" 1) (b | 0" )

(b 0" ) (el UV )
+ (@] U ) (Dl U )
(@il 11 (9| U )
(b 0" ) (el U y)
(@il 0"V 1) (i UV

Given that (¢;|U"|¢,) = Oy, this becomes,

¢
B.42
N 5 (B.42)
+ ¢
+ ¢

(01 0'16) (Bl 071,) = 0oy + 02 (&1 0V 1) | + 0x2R{ (#1102 |) }
+ (il 0" V[1) (bl U119y,
(B.43)

For the energy transfer AE(¢) and for our approximations (B.39) and (B.40) to
Aq,(t) we need only the diagonal elements of p(¢) and so we can focus on,

(@D 180 = o + 02 R (S0 VM) b + a2 (9] 0"V 5) |
+1@NT Dl (B.44)

Expressions like (B.35) and (B.40) both contain factors of (o, — 0;) and so we
can ignore terms involving factors of d; and we need only go to first order in the

expansion of U’ to capture all terms up to second order in V. If we let g stand for &
in (B.35) and |(R,|¢;)|* in (B.40) then we can write

> (07— 0))ail(¢i|U'| ) ’*Z(Oj—ot)ai\(w(ﬁ/( + UM (B.4S)

i i

The Time Dependence of the Energy and Charge Transfer

The time dependence of the energy and charge transfer as expressed in (B.45) is
all contained in the squared matrix elements |(¢;|(U"(! )|¢j>\ . Using (B.20) we
can write these as,
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2
|<¢i|(0/(1>)|¢j>|2:4h2|<¢ VO] * {sinc? [(Q — ;)1/2] + sinc?[(Q + ;)1/2]

—sinc [(Q — w;)t/2]sinc[(Q + w;;)1/2] (e iQr —19[)}.
(B.46)

We can regard |(¢;|(U"" )|q5j>| as a measure of the extent to which an
eigenstate |¢;) has “evolved into” the eigenstate |¢;) by time 7. Probabilistically
speaking we would say that |(¢;| (U )|¢ )|* gives the probability that the system
has undergone a transition from state |¢;) to state |¢$;) as a result of the action of

the perturbation V(). Before we consider (B.46) further we will introduce some
simplifying notation and write
Vi = (¢ V] 9y), (B.47)
and
s(e, ;1) = £ (sinc*[(e/h — Q)t/2] + sinc®[(e/h + Q)t/2] (B.43)
—sinc[(e/h — Q)t/2]sinc[(e/h + Q)t/2](e'¥ + e7Y)). '

We thus write,

(il (T )g))I* = ol Vi sy, 1), (B.49)

h2|

All the time dependence in the matrix elements (¢,|(U'"))|¢ ;) is contained within
the function s(g, Q; 7). We will often be interested in the behaviour of the energy
and charge transfer at long times when we will make use of the limit,

11m s((c Q1) =2nt[o(e/h — Q) + 6(e/h + Q)] (B.50)

= 2mht[8(e — hQ) + 8(e + hQ)], (B.51)

where we have used the identity lim, . [tsinc? (ut)] = n6(u)

Interpreting the Perturbation Theory Expressions

To help us understand the physics captured in our first-order time-dependent
perturbation theory expressions for the energy and charge transfer we will first
write them in a more intuitive form. We start with the energy transfer expression

(B.35), but ignore the term 2Tr(f)\7),

= 22 0j — 01)eil (] U'| ) |- (B.52)



13.2  Appendix B: Perturbation Theory 281

To first order this is,

2;;22 0| Vi s(er — &, Q1)

hzz 0(1 = 07) = 0,(1 = 0)) ]l Vj s — &, 1)

(B.53)

Now, since s(e, Q;1) = s(—¢,Q;1) and |V§|*> = |V§|* we can swap summation
indices on half the terms to write

1
= ﬁZO,(l - 0]')(8]' - 81)|Vz(j) 2S(8i - Sj,Q; l). (BS4)
ij

We can now interpret Eq. B.54 as representing a sum over all possible transitions
|$:) = |¢;) in our system. The factor of o,(1 — 0;) accounts for the effects of
quantum mechanical exclusion, the matrix element |V2|2 determines the strength
of the coupling of a given pair of states by our perturbation and the function
s(ei — &,€;1) can be regarded as determining a time-dependent sampling of the
possible transitions.

The equivalent expression for the charge transfer making the same assumptions
as in Eq. B.40 is,

= 27#2”‘ — o) [[{Rl)) = | (Rl IV PsCer — 5, 1),

(B.55)

Can We Neglect the Off-Diagonal Elements of p in our Expression for Ag,?

We would now like to show that our simple expression (B.40) for the charge
transfer is a valid approximation. In (B.40) we neglected the contribution of
elements <¢i|f]’\¢k><¢k|0’w¢j> for i # j. These terms are certainly not zero, but
we might hope that they are oscillatory and so will not contribute to the average
charge transfer. Because in our consideration of the importance of the second-
order terms U above we considered only the diagonal elements of p, we must

show oscillatory behaviour up to second order. To simplify the notation we will
define,

AAU/ =y + 9% +oey (B.56)

and write the contribution to the charge transfer of the off-diagonal elements of the
density matrix as AqOD We have,
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AG2 = >~ (Rl )y RS { (4]0 ) e 0O

ik j#i
+ (D] 0O ) (G| AU ) + (S AT | ) (| TV gy (BT)
H(BIAU |6) (818U 8,) |

AGY = > (Ruleby) (R { e + O (b |AU" )
i (B.58)

O IAV | 60) + (AU |6 (4| AU" )},

AGZP =3 (Rl i) (5[ Ra)e™ {fi( 1] U1, + 1 4il Ul )}
v | ) o (B.59)
) (R ()RS (B AU | by ) (| AU [ ),

ik j£i

since, AU' = U’ for i # j.

We will now take the two summations in the above expression separately. In the
case of the first, consideration of the sum of the term in i, j and its twin in
J, i shows that the contribution is real, as we would hope. Furthermore, we are left
only with the problem of determining the time dependence of <¢i|0/”¢j> for
i # j. The first order contribution (B.20) contains only terms like fsinc (wt) for
some frequency . In the long time limit ssinc (wf) —>nd(w), such terms have only
a zeroth-order time dependence and are oscillatory. The same is true for the second
order terms of form (B.21).

We now need to consider the second summation term,

T= (R (iR (| AU'|6) (| AU | ), (B.60)

ik j#i

in which we need only expand AU up to the first order term. We will write this out
explicitly,

T = (Ri¢;) (IR, >fke“”" <fl5 Vi) (x| V1))
ik j#i
{0 gine (0, — @)1/2) — SO D gine (g + /2] }
X {e_i<“’kj_9)t/zsinc [(wy — Q)1/2] — e @Ot 2ginc [(wg +Q)1/2] },
(B.61)
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T=7Y (Rid;){dR,)fie™ <¢|V\¢k><¢k|V|¢>

ik j#i

s {0 sine (e, — Q)1/2sine (s, — Q)1/2]

+ ei((uji)t/zsinc[(wki + Q)I/Z]sinc [(O)k] + Q>t/2}

— el 2D 2sinc (g + Q)t/2sinc [(wy — Q)t/2]
_ei<“’.ff*29)f/2Sinc[(wki — Q)t/2]sinc [(wkj + Q)t/Z] }

4h2

(B.62)

In the long time limit this becomes,

T=> (Ry¢;)( <Z>,\R>fke““"’/2 < VI (6l VId;)

ik j#i
x { [0(wn — Q)0(an — Q) + d(wni + Q)d(wy + Q)]
— [ (con + Q)a(wk,» — Q) + e 5wy — Q)S(wy + Q)] ).

(B.63)

Again, pairing terms in i, j and j, i shows that the contribution is real. The terms
in the second square brackets involving factors of e™'* will again give an oscil-
latory contribution. The term in the first square brackets is only non-zero in the
case of degeneracy ¢ = ¢ and gives a constant contribution. However, even in an
infinite system this term along with the others in the second summation in (B.59)
will be small compared to those in the first summation (the latter are proportional
to the density of states cubed, the former to the density of states squared).

Some Numerical Results

As a check on the above algebraic argument, we have made some direct calculations
of the behaviour of the off-diagonal terms in the energy transfer. FGR calculations
were carried out for a small (5 x 6 x 7 unit cells) block of our tight-binding model
with a single oscillating tetrahedral interstitial (we must consider a system with some
sort of defect in order to obtain a non-zero charge transfer). The results are shown in
Figs. B.1, B.2and B.3. All the data only include terms from the expansion of U’ up
to first-order and comparison is made between the expression including off-diagonal
elements of p and the approximate expression (B.40).

13.2.3 A Quantum Mechanical Oscillator

To help illuminate our discussion of the behaviour of the electron-ion energy
exchange in Sect. 4.6.2 we will now undertake a perturbation theory analysis of a
simple quantum mechanical oscillator.


http://dx.doi.org/10.1007/978-3-642-15439-3_4#Sec21
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Fig. B.1 The charge transfer
after 5 fs as a function of
oscillator frequency Q

Fig. B.2 The charge transfer
as a function of time for an
oscillator frequency

Q =20radfs™!

Fig. B.3 The charge transfer
as a function of time for an
oscillator frequency
Q=30radfs”!

Charge transfer (e) Charge transfer (e)

Charge transfer (e)
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We consider a combined system of an electronic system described by a
Hamiltonian H,, acting on a Hilbert space W,, with eigenstates {|¢,)} of energies
{&} and a single quantum mechanical oscillator described by a Hamiltonian H,,
acting on a Hilbert space W,, with eigenstates {|N)} of energies {Uy =
(N + )hQ} where Q is the oscillator frequency. The Hamiltonian for the com-

bined system will be H = H, + H, with eigenstates in the product space

W =W, ® Wy
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|p:N) = |¢;) @ [N). (B.64)
We then introduce a perturbative coupling between the oscillator and the
electronic system
0H.
= X
Ox

A

(B.65)

where X is the position operator of the oscillator and x is a parameter of the
electronic Hamiltonian corresponding to the oscillator position.

If we assume that our system is initially in the state |$N) with energy ¢ + Uy
then the energy transferred from the oscillator to the electrons will be given by

AEqn =23 (¢ — &) (6N |0V M) P (B.66)
M

From (B.19) we have

0H,

(N0 lgp) = (6

t
j><N|fc|M> / dreonit(B.67)
0

where hiwiy jy = (& — &) — (Uy — Uy). Using the standard results for a quantum
mechanical oscillator of mass m [3, pp. 89-97]:

h

%= zmg(awa), (B.68)
af[INy=VN+1N+1),  aN)=+VNIN —1), (B.69)

we obtain

(BNIT M) = [ g,

X s1nc(w,-N,,~Mt/2) (\/N + 5M,N+l + vN + 15M,N+1)a
(B.70)

> iy jmt/2

by the orthonormality of the oscillator eigenstates. The J-functions constrain the
change in the energy of the electronic system to be +7€ and so select two terms in
the sum over |M) for each electronic eigenstate |¢;). In the long time limit (see Eq.
B.50) this gives an energy transfer,

ABow =552 (&
]

- 8:’) <¢l % ¢j>

2
{(N+ 1)5(8,’ — & — h.Q) +N(3(8,' — & + h.Q)}

(B.71)
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If we compare the equivalent expression for a classical oscillator V = Vosin(Qt),

AECI Nn; : (Sj — 8i)|<¢i|‘70|¢j>|2{N5(8i — & — h.Q) +N5(8, — & —+ h.Q)},
(B.72)

then we can see that the quantum mechanical nature of our oscillator changes the
prefactor N—N + 1 in the term corresponding to de-excitation of the electronic
system (i.e. to the emission of phonons). This change corresponds to the effect of
spontaneous phonon emission. If we identify the oscillator occupation number
N with an ionic “temperature” then we can see that the difference between the
quantum mechanical and the semi-classical treatments will be insignificant when
N is large. In our radiation damage simulations the ionic system is initially highly
excited and so a semi-classical treatment, neglecting spontaneous phonon emis-
sion, should be valid.

13.3 Appendix C: The Coupling Matrix for a Single
Oscillating Ion

In this appendix we consider the effect of ng, in suppressing low energy transi-
tions in more detail. Equation 6.37,

A-dd)R)
kk’: Sm (e’ kRUZZ( d’| dR |R—Idﬁi>

X {sm (k-d’) —sin(k' - d2)}.

(6.37)

gives some insight into this behaviour. Each pair of atoms symmetric about the
oscillating atom site acts to couple together pairs of states |k) and |k’) with a
strength which depends on the change in the phase difference of the states across
the pair of atoms as given by the term sin(k-d3) — sin(k’-d%). States which have
very large changes in phase difference across a given pair of atoms will be strongly
coupled by that pair. Hence we can see that states at the top of the band, where
phase changes only slowly with position (or equivalently with k) will be relatively
weakly coupled.

The equivalence of changing an atom’s position and changing the wave vector
suggests a more physical interpretation of the coupling matrix. If we simplify our
tight-binding model to include only nearest-neighbour interactions then we can
rewrite the coupling matrix as,

VAP ;(ﬁf)z(é)z(ﬁl(vgk’)vg<k>)|f, )
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where we have written the group velocity of an electron in state |k) as,
1
Vg(k) = gvkEk (C2)

We can see that the effect of the perturbation is to couple pairs of states with a
strength proportional to the square of the change in group velocity. It is not
possible to rewrite the coupling matrix in terms of the change in electron group
velocity when we include more than one neighbour shell in the Hamiltonian, but
the situation is not drastically changed. Figure C.1 shows the ratio of the coupling
matrix to the change in group velocity for our original Hamiltonian for a variety of
initial states |k;) and changes in the wave vector Ak along the line I' —X in k-
space. There is only moderate variation in this ratio for most values of Ak with
divergence only when v, (k') — v,(k) goes to zero (see Fig. C.2).

q(e; T.) depends on ViK' through the function V(e,e + ¢) which additionally
includes the effect of the density of states at Ey and Ey . It is the combined effect of
the coupling matrix and the density of states that gives the correct form of g(s; T¢)
for frequency independent damping at high temperature. Figure C.3 illustrates the
point. Figure C.3a shows part of the band structure with four examples of low
energy electronic transitions. Each of these transitions is also marked on a contour

plot of the coupling matrix (Fig. C.3b) and the function |V(e,e + ¢)|* (Fig. C.3c)
and we will consider each in turn:

1. Transitions between states at the top of the band with small |Av,| are weakly
coupled but large in number because of the strongly peaked density of states.
Hence they are strongly weighted by V(e, e + ).

Fig. C.1 The ratio of the 20— —T - 2
coupling matrix to the change : /2a

in group velocity for our i : GRS,

In group v Yy N ; ; 3n/2a

original Hamiltonian for a
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N
&l
o

(indicated in the key) and :
changes in the wave vector i
Ak along the line I' —X in k- '%
space ° -

4

=

>

0.5 0.5

0 - - 0
-4n/a  -8n/a -2n/a -m/a 0 n/a 2n/a 3m/a  4n/a
Ak
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Fig. C.2 The coupling matrix and the change in group velocity as a function of the change in
wave vector Ak along the line I' —X in k-space for initial states |k;) = O (left plot) and |k;) = n/
2a (right plot)

2. Transitions of large |Av,| across the middle of the band are very strongly
coupled but are between states in the tail of the density of states and so are
moderately weighted by V(e, e + ).

3. These transitions are large in number but very weakly coupled and are mod-
erately weighted by V(e, e + ¢).
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Fig. C.3 Examples of low energy transitions shown against (a) the band structure; (b) the
coupling matrix (k|V°[k’) and (c) the function |V (e, e + £)|*. See main text for details
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4. Transitions of small |Av,| around the middle of the band are few in number and
weakly coupled and so are weakly weighted by V(e, e + ¢).

13.4 Appendix D: Some Features of the Electronic
Excitation Spectrum in Collision Cascades

13.4.1 Anomalous Excitations Early in the Cascade

In Sect. 8.1.1 we saw that there appears to be a larger degree of excitation out of
the lowest energy states and into the highest energy states than we would expect
given that the ionic motion in our cascade simulations contains only relatively low
frequencies. These anomalous excitations might originate from errors in the RK4
integrator or from high frequencies in the initial ionic motion at the start of the
cascade. By running a few 2 keV cascade simulations with diagonalization of the
Hamiltonian and calculation of the excitation spectrum every femtosecond, we can
shed some light on this issue. Figure D.1 shows the occupancy distribution over
two 3 fs periods during the thermalization stage of a sample simulation. In each
case the earliest sample corresponds to the point at which the density matrix is
returned to its ground state (see Sect. 7.1.1 for an explanation of our thermali-
zation scheme). The tails in this case are therefore characteristic of the numerical
precision of the simulation. One femtosecond later the tails have changed, but
change no further over the next femtosecond. We might reasonably ascribe this
change, then, to the integrator rather than any actual excitation.

Figure D.2 shows what happens once the PKA is in motion. In Fig. D.2a and
enlarged in Fig. D.2b we can see that in the first femtosecond the behaviour is as in
the thermalization phase. Over the next few femtoseconds we can see the effect of
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Fig. D.1 The linearized occupation distribution at various times during the thermalization phase
of a sample simulation. The negative times are relative to the point at which the cascade is
initiated by imparting 2 keV to the PKA. a Samples over 3 fs. b Samples over a further 3 fs
period
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Fig. D.2 The linearized occupancy distribution at various times during the early cascade phase
of a sample simulation. The horizontal lines indicate occupancies of 0.01 and 0.99, the bounds of
our maximum fitting window. The interpretation of these figures is to be found in the main text

excitations appear. In Fig. D.2c we can see the effect of excitations on the tails is
largely established after only 12 fs. Subsequent excitations appear only to affect
the central thermal portion of the distribution (shown enlarged in Fig. D.2d).

We might reasonably conclude, therefore, that both suggested mechanisms are
at work in generating the anomalous tails of the occupation distribution.

13.4.2 The Width of the Temperature Fitting Window

Given that there is some excitation of electrons occurring outside our maximum
chosen fitting window, we should be concerned to ensure that the portion of the
excitation spectrum to which we fit a pseudo-temperature contains the majority of
the effect of electronic excitations. We can use data from the simulations intro-
duced in Sect. 13.4.1 in which we obtain the excitation spectrum every femto-
second to study how the change in occupation and total electronic energy is
distributed across the eigenspectrum. We calculate for each eigenstate at each
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timestep the following quantities, where #; is the time of the ith timestep, o; is the
occupation of the jth eigenstate and g; is its energy:

e The absolute instantaneous change in occupation over the last femtosecond

|0j(t:) = 0j(ti-1)]. (D.1)
e The absolute total change in occupation over the course of the simulation
|0(ti) — 0j(10)]- (D.2)

e The instantaneous change in energy over the last femtosecond”

(81(1:) — o) (0 (1) — 0j(ti-1)), (D.3)

where iy = 2.83 eV is a rough estimate of the chemical potential over the
course of the simulation (it does not change much on the scale of the energy
range we are examining).

e The total change in energy over the course of the simulation

(i(t:) — o) (05(t) — 0j(10)). (D.4)

Figure D.3 shows the cumulative excitation (in terms of occupation and
energy) as we sweep up the energy scale. The effect of electronic excitation is
mostly confined to a narrow energy range of a few eV and we see that an occu-
pation range from 0.01 to 0.99 will accommodate 98% of the effect of excitations
in terms of the changes in occupation and 87% of the irreversible energy transfer
after 49 fs.

13.4.3 The Sommerfeld Expression for the Heat Capacity
of Our Model

The Sommerfeld expansion [4] allows us to write an integral of some function
H(¢) of electronic energy and the Fermi-Dirac distribution f(¢) as an expansion in
even powers of temperature. To second order the expansion is,

[e'e] u n2
/ H(e)f (e)de ~ / H(s)derg(kBT)zH’(e). (D.5)

2 This is not very well defined because the eigenstate energies move around and so we have
chosen to use the current energy of the eigenstate as the reference.
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Fig. D.3 The fraction of the total excitation in the occupation spectrum shown cumulatively for
all eigenstates up to the energy indicated and at various times in a typical simulation. The /left-
hand panels show data for only those changes in occupation taking place over the most recent
femtosecond of cascade evolution, the right-hand panels show data for all excitations up to the
indicated time. The upper panels show the change in occupation and the lower panels show the
irreversible energy transfer attributable to the changes in occupation. The horizontal lines mark
the region containing 80% of the excitation. The vertical lines show energy bounds roughly
corresponding to an occupation range from 0.01 to 0.99 at 49 fs (i.e. the bounds of our maximum
fitting window)

We can thus write the electronic energy as,

oo 1 7'52 ,
E= [ e [ o+ LT W o) (DO

where g(¢) is the density of states. p will differ from the Fermi energy Eg by terms
of order 72 so we can write,

Ep
7[2 71:2
Ex~ / eg(e)de + Er(u — Er)g(Er) + g(kBT)zEFg'(EF) + g(kBT)Zg(EF)-

(D.7)
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Fig. D.4 A plot of the irreversible energy transfer into the electronic system against the best-fit
temperature using our fitting algorithm. Data are shown at 10 fs intervals over 200 fs for sets of
cascade simulations with PKA energies of (a) 2 keV, (b) 0.5 keV, and 20 keV. The red line
shows the predictions of the Sommerfeld model for the electronic heat capacity as discussed in
the text

The number of electrons is constrained to N and so,

00 Ep n2
V= [ saree [ go)et (n- ErleE) + T (Er), (D)

—00 —00

giving,

7.[2 / F
p=Er— g(kBT)zi((gF))- (D.9)

This form for the chemical potential gives cancellation of the second and third
terms in the expression for E and we have,

Er 2
E =~ [ eg(e)de + g(kBT)zg(EF). (D.10)

oo
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Hence the heat capacity (dE/dT) is simply,

2
c= %kéTg(EF). (D.11)
Using the values for our simple tight-biding model (Exp = — 2.83 eV, g(Er) =

0.026 erl) gives a formula for the electronic energy,

E=Ey+79T?, 7=635x10"""¢VK™2. (D.12)

13.4.4 Behaviour of the Fitted Temperature Early
in the Cascade

In Fig. D.2 in chapter 8 we noted that at low temperatures, corresponding to early
times in our 2 keV cascade simulations, the fitted temperature deviated signifi-
cantly from the theoretical predictions of the Sommerfeld model (this figure is
reproduced in Fig. D.4a for convenience). Given our explanation for the appear-
ance of a well-defined electronic temperature (see Sect. 8.1.2) we can see that this
deviation could be due to the fact that early in a cascade only a small number of
individual electronic excitations will have occurred and so a new elevated tem-
perature will not have been established by the statistical mechanism that we
propose. This explanation is supported by the data in Fig. D.4b, ¢ showing fitted
temperature data for simulations of 0.5 keV and 20 keV cascade simulations
respectively. In the case of the lower energy cascades (Fig. D.4b), we can see that
it is perfectly possible to establish a well-defined thermal excitation distribution at
lower temperatures, provided enough excitations have occurred (i.e. provided that
the cascade has evolved for long enough. Conversely, for the higher energy cas-
cades (Fig. D.4c) significant excitation of the electronic system occurs before a
well-defined temperature is established. The relatively high energy transfer AE
early in the cascade is the result of only a small number of high energy excitations
due to the rapidly moving ions at this high PKA energy.

13.5 Appendix E: The Strain on an Inclusion
due to Electronic Heating

The effect of increasing the electronic temperature of a block of our tight-binding
model will be to reduce the bonding interactions between the ions and therefore
increase the equilibrium lattice parameter. For a volume constrained portion of
material this will imply a volume strain and hence a pressure on the surface of the
portion.
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The lattice parameter of a tight-binding slab with an elevated electronic tem-
perature will be determined (as in the zero temperature case) by minimisation of
the cohesive energy E,. (the binding energy per atom),

s s

JA JA

E. is easily minimised at 7= 0 as the elements of the density matrix p,; are
independent of volume scaling. Heating the electrons weakens the bonds and will
cause thermal expansion of the crystal. We allow for this by introducing a linear
strain e and writing,

R_]] = XRFI(I)) (EZ)

where x = 1 + e. Now we write,

€ a \ /1\" a \ 1\
() O () ) e
Si) O -egolip) €

where

=3 (). 9

and

o(T) =" py <ﬁ> (E-6)
RJI

J#I

is written as a function of temperature because the bond-order terms p,; are
temperature dependent. We can easily obtain o(7) at a fixed lattice parameter, but
we note that the density matrix at 7 # 0 will depend on the lattice parameter and
so ¢ will also have a dependence on x. This makes the minimisation of E. more
complicated, but we can proceed by noting that there is an equivalence between
dilating the crystal (narrowing the eigenvalue spacing) and heating the electrons
(broadening the Fermi surface). Figure E.1 illustrates this equivalence.

We assume we have access to data which tells us a(T(O)) as a function of
temperature 7 for the undilated crystal (x = 1). We expect the heated crystal to
dilate so that any initial eigenvalue spacing Ae(®) will become smaller as the
hopping integrals decrease (Ae®) — Ae’ as x—x). In particular we can see that Ae’
is smaller on the scale of the variation of the Fermi function, kT 1t is this ratio
A /kT®) on which ¢ depends and so we can also obtain the same value of ¢ by
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(a)
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(b) (d)

Fig. E.1 The equivalence of volume and temperature changes on the density matrix elements
illustrated by a schematic diagram of the Fermi function and a typical eigenvalue spacing Ae.
a shows the cold crystal. b shows the crystal heated to some new temperature 7*) but with the
same lattice parameter (X(O) = 0). c illustrates the effect of allowing the heated crystal to dilate to
a new equilibrium lattice parameter x'"). d shows the equivalent effect form the point of view of
eigenfunction occupations, brought about by a further heating of the undilated crystal to some
temperature 7!

considering an unstrained crystal x = 1, A¢®) at a new temperature 7 = T’ such
that

Ad A0 . A0 0

N
kT0) kT T A

(E.7)

We know that the hopping integrals scale according to a power law and so

we (). e

T = xiT (E.9)

Hence

is our equivalent temperature. Making this scaling identification allows us to write

o(TO,x) = o(T,x0) if T:(%)qT(O). (E.10)
X

Now we can return to consider,

E. = gs G)p_eca(n (}-i)q (B.11)

and differentiate to find the equilibrium at D, 7 from

dE.
dx

= 0. (E.12)

0,70
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) e )

and we require

Now

T
oy _doy 4Dy (E.14)
dx [x0,70) dT 1xo, 7 dx 1x©
But
T =xi7" (E.15)
and so
dT
= gxt 7). (E.16)
Then
dEC pEs 1 Pt 1 1 g+l (1) .(0) a7(0) do
dx Lo _7{ (?c) o1 o\x o x) =T 57 Lo o
(E.17)
So the equilibrium condition is
X~ do
1+ o(1.0) [xqr@ 37 b = J(T(l),x(o))} =0. (E.18)

Given data on the variation of the bond orders with temperature for the undi-
lated crystal we can implement a cubic spline fit to o(7x¥ = 1) (see Fig. 9.6)
and hence determine the equilibrium linear and volume strain for the crystal with
hot electrons from the equilibrium condition. Figure 9.7 shows the results from the
fitted data.
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