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Intensive investigation of lymphocyte trafficking has revealed the key role of
chemokines and adhesion molecules in the regulation of lymphoid organ develop-
ment and lymphocyte homeostasis [1]. Lymphocyte development takes place in
primary lymphoid districts within bone marrow and thymus, where lymphoid
progenitors differentiate before emigrating to the peripheral tissues. After com-
plete maturation, naïve lymphocytes continuously recirculate from the blood to
lymph nodes and back to the blood. In lymph nodes, naïve T cells scan local den-
dritic cells (DC) that present processed antigens in the context of appropriate cos-
timulatory molecules. The engagement of the T cell receptor induces clonal expan-
sion and maturation into effector T cells, which are then able to exit lymph nodes
and preferentially home to inflamed tissues, where they are needed to eliminate
antigens in the effector phase of adaptive immune responses. The selective ability
of naïve T cells to enter lymph nodes through high endothelial venules relies on
the expression of an appropriate combination of adhesion molecules and
chemokine receptors, namely CD62L and CCR7. Similarly, the ability of T effec-
tor lymphocytes to home to the proper tissues is dependent on the expression of
appropriate combinations of adhesion molecules and chemokine receptors: the
addressins. Tissue origin of DC determines the homing of elicited T cells [2]. For
instance, only DC present in Peyer’s patches induce T cells to home to the small
intestine. Similarly, DC present in skin draining lymph nodes permit the subse-
quent localization of effector T cells to the skin [3]. Similar rules apply for the
migration of central and effector memory cells to lymph nodes and peripheral tis-
sues, respectively [4].

The study of genetically determined defects of immune system, which are com-
monly known as primary immunodeficiencies, have provided substantial support
for these findings [5]. In this perspective, the investigation of the pathogenesis of
primary immunodeficiencies constitutes a powerful tool to reveal or define the
normal mechanisms that regulate generation of hematopoietic cells from bone
marrow or from thymus, and their trafficking between blood, secondary lymphoid
organs and peripheral tissues. Some immunodeficiencies are characterized by
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impaired maturation of lymphocytes that prevents their emigration into the blood
from the primary lymphoid organ. This is observed in diseases characterized by
lymphopenia, such as severe combined immunodeficiencies or X-linked agamma-
globulinemia [6]. In other diseases, lymphocytes are able to differentiate into
mature cells, but cannot migrate in response to chemokines, which are required for
their proper trafficking to peripheral blood or secondary lymphoid organs. This
condition is observed in Wiskott-Aldrich syndrome (WAS) patients, where a defect
in cell migration is associated with an impaired delayed-type hypersensitivity
response, with bacterial and viral infections, and with abnormalities in both cel-
lular and humoral immune responses [7].

Chemokines and adhesion molecules such as integrins are implicated in the
process of mobilization of mature hematopoietic cells from bone marrow to blood
and in the subsequent migration to inflammatory tissues. Patients affected by type-
I leukocyte adhesion deficiency (LAD-I) have a selective defect in the expression
and/or functional activation of beta2-integrins, one of the major subfamily of inte-
grins expressed by neutrophils, monocytes and DC. This defect results not only in
a defect in innate immune responses, but also in a reduced ability of myeloid DC
in the activation of T and B cells. Other rare defects of leukocyte migration are
observed in type-II LAD (LAD-II), which is characterized by defective rolling of
leukocytes on endothelial cells, due to lack of fucosylated glycoconjugates, such as
CD15A, and type-III LAD, which is a genetically undefined defect in the activa-
tion of beta1 and beta2 integrins avidity following chemokine receptor activation
[8].

All the immunodeficiences mentioned so far are characterized by general
defects in cell migration due to abnormal activation of the cytoskeleton machin-
ery or impaired functioning of adhesion molecules. However, also the exagger-
ated chemotactic response of leukocytes results in compromised functioning of
the immune system. This is the case in the primary immunodeficiency character-
ized by recurrent infections, hypogammaglobulinemia, myelokathexis and
leukopenia known as WHIM syndrome [9]. In WHIM patients, lymphocytes dis-
play an exaggerated response to CXCL12/SDF-1 that prevents the emigration of
mature cells to the blood circulation, and interferes with the correct positioning
and recirculation of neutrophils and lymphocytes in and out lymphoid organs
[10].

This book offers a series of contributions which deal with the most challeng-
ing aspects of lymphocyte migration in homeostasis and pathological conditions.
The reviews presented here range from the current knowledge on the molecules
involved in lymphocyte extravasation to the recent advances in the understand-
ing of the molecular basis of immunodeficiencies. In some of these areas excit-
ing progress has been made very recently, and the content of this book reflects
these new concepts and presents new perspectives of future immune interven-
tion.
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Physiology of lymphocyte trafficking



Chemokines and their receptors

The chemokine superfamily consists of cytokine-like, low-molecular-mass proteins
(8–12 kDa) that are critical for cell migration, and also promote other activities
such as inflammation, angiogenesis, spread of tumor metastasis, anti-microbial
effects, T cell activation, development and organogenesis. Members of this super-
family share structural similarities, including four conserved cysteine residues that
are crucial to the tertiary structures. Based on the location of the first two cysteines
in their protein sequence, the chemokine family can be divided into four subfami-
lies, the CC, CXC, C and CX3C chemokines. To date, the official nomenclature
accounts for 43 human chemokines, including 24 CC (CCL1-CCL28), 16 CXC
(CXCL1-16), 2 C, and 1 CX3C subfamily member. Chemokines interact with spe-
cific receptors that belong to the superfamily of seven-transmembrane-domain G
protein-coupled receptors (GPCRs). So far, ten CC-, six CXC-, and one each of
CX3C- and C-chemokine receptors have been described. Since the search for new
chemokines and receptors has almost been completed, these numbers may remain
largely unchanged for the years to come. Table 1 lists the human chemokines and
receptors identified so far. We have distinguished the homeostatic from the proin-
flammatory chemokines. Although this does not represent an absolute distinction,
the homeostatic chemokines are largely involved in lymphoid organogenesis, vas-
culogenesis and brain development, while proinflammatory chemokines regulate
the traffic of leukocytes, endothelial cells (ECs), and other somatic cells involved in
host defense and repair processes. Of note, Table 1 does not include information
concerning the isoforms, polymorphism, splice variants, enzymatically processed
forms of human chemokines, nor the chemokines encoded in viral genomes. For
more detailed information, we refer our readers to the comprehensive reviews on
this subject [1, 2].

7

Biology of chemokines

Gao Ping, Ji Ming Wang, O. M. Zack Howard and Joost J. Oppenheim

NCI-Frederick, Center for Cancer Research, Laboratory of Molecular Immunoregulation,
Frederick, MD 21702-1201, USA

Lymphocyte Trafficking in Health and Disease, edited by Raffaele Badolato and Silvano Sozzani
© 2006 Birkhäuser Verlag Basel/Switzerland



8

Gao Ping et al.

Table 1 - Human chemokines and their receptors

Systemic names Original names Receptors

CXC chemokines
CXCL1 GROα/MGSAα CXCR2, CXCR1
CXCL2 GROβ/MGSAβ CXCR2
CXCL3 GROγ/MGSAγ CXCR2
CXCL4* PF4 CXCR3b
CXCL5 ENA-78 CXCR2
CXCL6 GCP-2 CXCR1, CXCR2
CXCL7 NAP-2 CXCR2
CXCL8 IL-8 CXCR1, CXCR2
CXCL9** MIG CXCR3
CXCL10** IP-10 CXCR3
CXCL11** I-TAC CXCR3
CXCL12* SDF-1α/β CXCR4
CXCL13* BCA-1 CXCR5
CXCL14* BRAK/bolekine Unknown
CXCL15 Unknown
CXCR16** CXCR6

C chemokines
XCL1** Lymphotactin/SCM-1α XCR1
XCL2** SCM-1β XCR2

CX3C chemokine
CX3CL1** Fractalkine CX3CR1

CC chemokines
CCL1 I-309 CCR8
CCL2 MCP-1/MCAF/TDCF CCR2
CCL3 MIP-1α/LD78α CCR1, CCR5
CCL4 MIP-1β CCR5
CCL5 RANTES CCR1, CCR3, CCR5
CCL7 MCP-3 CCR1,CCR2,CCR3
CCL8 MCP-2 CCR3, CCR5
CCL11 Eotaxin CCR3
CCL13 MCP-4 CCR2, CCR3
CCL14 HCC-1 CCR1, CCR5
CCL15 HCC-2/Lkn-1/MIP-1γ CCR1, CCR3
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Table 1 (continued)

Systemic names Original names Receptors

CCL16 HCC-4/LEC/LCC-1 CCR1, CCR2
CCL17** TARC CCR4
CCL18* DC-CK1/PARK/AMAC-1 Unknown
CCL19* MIP-3β/ELC/exodus-3 CCR7
CCL20** MIP-3α/LARC/exodus-1 CCR6
CCL21* 6Chine/SLC/exodus-2 CCR7
CCL22** MDC/STCP-1 CCR4
CCL23 MPIF-1/CKβ8/CKβ8-1 CCR1
CCL24 Eotaxin-2/MPIF-2 CCR3
CCL25** TECK CCR9
CCL26 Eotaxin-3 CCR3
CCL27 CTACK/ILC CCR10
CCL28 MEC CCR3/CCR10

Abbreviations: AMAC, alternative macrophage activation-associated CC chemokine; ATAC,
activation-induced, chemokine-related molecule; BCA, B cell-attracting chemokine; BRAK,
breast and kidney-expressed chemokine; CK, chemokine; CTACK, cutaneous T cell-activat-
ing chemokine; DC-CK1, dendritic cell-derived CC chemokine; ELC(Ebl-1), EBL-1-ligand
chemokine; ENA, epithelial neutrophil activating; GCP, granulocyte chemotactic protein;
GRO, Growth-related oncogene; HCC, human CC chemokine; I-309, a nameless human
chemokine; ILC, IL-11 receptor alpha-locus chemokine; IP, IFN-γ-inducible protein; I-TAC,
IFN-γ-inducible T cell chemoattractant; LARK, liver- and activation-regulated chemokine;
LD78, macrophage inflammatory protein-11; LEC, liver-expressed chemokine; Lkn, leuko-
tactin; MCAF, monocyte chemotactic and activating factor; MCP, monocyte chemoattractant
protein; MDC, macrophage-derived chemokine; MEC, mucosae-associated epithelia
chemokine.; MGSA, melanoma growth stimulatory activity; MIG, monokine-induced by
IFN-γ ; MIP, macrophage inflammatory protein; MPIF, myeloid progenitor inhibitory factor;
NAP, neutrophil-activating peptide; PARC, pulmonary and activation-regulated chemokine;
PF, platelet factor; SCM, single C motif; SDF-1, stromal cell-derived factor 1; SLC, secondary
lymphoid tissue chemokine; STCP, stimulated T cell chemoattractant protein; TARC, thymus-
and activation-regulated chemokine; TDCF, tumor-derived chemotactic factor; TECK, thy-
mus-expressed chemokine.
The unstarred chemokines are all proinflammatory.
*Homeostatic chemokines characterized by being constitutively produced and involved in
leukocyte trafficking under physiological conditions.
**Chemokines that have both homeostatic and proinflammatory inducible properties.



Chemokine signaling

Although substantial progress has been made in our understanding of chemokine
signal transduction, the pathways involved are yet too complicated for us to provide
a detailed and comprehensive model. The challenge is that we know too many of
players, but not the complex relationships between them. Moreover, it is obvious
that multiple interdependent networks, rather than a linear pathway, must be
involved in signaling cascades following chemokine stimulation. Thus, in this sec-
tion, instead of attempting to provide a comprehensive model, we will highlight sev-
eral points of interest in the field that we believe are critical for chemokine signal-
ing (Fig. 1). For more details on this subject, we refer our readers to excellent recent
reviews [3–7].

Activation of chemokine receptor-associated G proteins

Chemokines initiate intracellular signaling through seven-transmembrane domain
GPCRs. Binding of a chemokine to its receptor results in changes in the tertiary
structure of the receptor, allowing the intracellular part to bind and activate het-
erotrimeric G proteins [8]. The activated G proteins exchange guanosine diphos-
phate (GDP) for guanosine triphosphate (GTP) and dissociate into α- and βγ-sub-
units. Chemokine receptors can couple to several different Gα isotypes; however, for
most chemokines, only the functional coupling of the receptor to Gαi is required,
because migration is completely inhibited by treatment of the cells with pertussis
toxin, a specific Gαi inhibitor [9, 10]. The βγ-subunits released from Gαi mediate
chemokine-induced signaling pathways by activating multiple downstream effec-
tors. Although precisely how this is achieved is currently unclear, the recent evidence
points to a critical role for lipid signaling and PH domain-containing proteins in
molecular relays leading to chemotaxis.

Relevance of phosphotidylinositide-3 kinase pathways

It is documented that the βγ-subunits released from the heterotrimeric G proteins
mediate chemokine-induced signals, at least partially, by activating the phospho-
tidylinositide-3 kinases (PI3Ks). Numerous reports implicate PI3Ks as central media-
tors linking early chemoattractant signals with downstream components of the
chemotaxis response [6, 11]. Pharmacological inhibition of PI3Ks in D. discoideum
amoebae and in a variety of mammalian cell types causes inhibition of cell migration
to varying degrees. Myeloid leukocytes derived from mice lacking PI3Kγ have defects
in polarity and show impaired chemotaxis. However, lymphocyte chemotaxis is not
so severely compromised in PI3Kγ-deficient mice [12–14]. This implies the existence
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of compensatory mechanisms that prevail in chemokine-induced lymphocyte migra-
tion, or that other PI3K isotypes could play a more important role. The roles of PI3K
are multifold, but principally, it functions as a lipid kinase by generating phospho-
tidylinositol-3,4,5-trisphosphate (PIP3), which recruits and activates multiple PH
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Figure 1
Graphic view of the chemokine signal cascade 
G-protein α-, β-, γ-heterotrimeric G-proteins are composed of α-, β- and γ-subunits; RGS,
regulators of G-protein signal; GRK, G-protein coupled receptor kinase; β-arrestin, scaffold
protein associated with G-protein coupled receptors; Rab, small GTPases associated with
transportation and fusion; DOCK, 2-downstream of Crk-180 homolog-2; PLC, phospholi-
pase C; PKC, protein kinase C; Rho, Rac and cdc42, small GTPases associated with cell adhe-
sion; PI3K, phosphoinositide 3-kinase; Rap, small GTPase associated with integrin-mediated
cell adhesion; PKA, cAMP-dependent protein kinase; Src and Lyn, tyrosine kinases; ZAP-70,
Zeta-associated protein of 70 kDa a tyrosine kinase; Ras, small GTPase associated with cell
adhesion; MAPK, mitogen-activated protein kinase; MEKK, MAPK/ERK kinase (MEK)-extra-
cellular regulated kinase (ERK) kinase; Akt, phosphatidylinositol-3-OH kinase is also known
as protein kinase B (PKB); NF-κB, nuclear factor kappa B



domain-containing substrates to the leading edge of the cells, generating the intracel-
lular molecular gradient that is essential for cell movement.

Small GTPase connection

Leukocytes stimulated by chemoattractants assume a polarized morphology. They
become elongated and develop a wide lammellipod (pseudopod) at the leading edge
and a tail-like projection at the trailing end (uropod). The generation of filamentous
actin at the pseudopod leads to its extension, which together with uropod retraction
drives cell locomotion. Small GTPases of the Rho family, Rac, Cdc42, and Rho, are
pivotal regulators in these processes [15]. It is generally assumed that the major way
to activate Rho GTPases is via activation of specific guanine nucleotide exchange
factors (GEFs), most notably Tiam1, Sos and Vav, that have been known to bind via
their PH domain to PIP3 [16–20]. Different GTPases may play distinct roles, col-
laborating in cellular locomotion. Rac was reported as indispensable for cellular
polarization prior to migration [21]. Its downstream effectors include p21-activat-
ed kinase (PAK) and the Wiskott-Aldrich syndrome protein (WASp) homologue,
WAVE, which stimulate actin-related protein 2/3 (ARP2/3). This induces focal actin
polymerization, responsible for the development and forward extension of the
pseudopod. Cdc42, on the other hand, is required for the establishment of orienta-
tion machinery at the pseudopod [22, 23]. Without Cdc42, leukocytes exhibit a ran-
dom walk, rather than directed migration, when placed in a chemoattractant gradi-
ent. The events that lead to Cdc42-mediated orientation and Rac-mediated actin
polymerization explain what happens in the pseudopod, i.e., the front part of cells,
although the specific mechanism has not been determined. In parallel to the
sequence leading to Rac and Cdc42 activation at the pseudopod, another small
GTPase Rho was activated by Rho GEFs at the uropod, the trailing end of the cells.
The activated Rho, through its effector p160ROCK, a serine/threonine kinase,
induces focal activation of myosin II, and formation and contraction of actin-
myosin complexes, thereby leading to retraction of the uropod [24–26]. In addition,
Rho prevents the formation of lamellipodia at the trailing end. Together, these two
alternative signaling pathways involving Rac, Cdc42, or Rho induce and maintain
functional and morphological cell polarity and drive locomotion.

Activation of the mitogen-activated protein kinase cascade

It is well known that the mitogen-activated protein kinase (MAPK) cascade is acti-
vated following chemokine stimulation, although the exact consequence is current-
ly unclear. As MAPK can phosphorylate and activate various transcription factors
[27], it is assumed that chemokines may be involved in regulation of gene expres-
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sion through this pathway. Indeed, the activation of NF-κB, a multifunctional tran-
scription factor, was also observed concomitantly with MAPK activation by
chemokine stimulation [28, 29]. Richmond et al. [30] demonstrated that GROα
activates NF-κB through a pathway involving Ras, MAP/ERK kinase kinase-1
(MEKK1), and p38. MAPK was also reported to phosphorylate and activate cyto-
plasmic phospholipase A2 (cPLA2), leading to release of arachidonic acid and phos-
pholipids [31]. Arachidonic acid-induced leukotriene production is essential for
actin polymerization. These data also indicate a chemokine-induced pathway
involving MAPK and cPLA2 that may regulate cytoskeletal changes necessary for
cell migration. However, this function may not be critical, as the p38-MAPK
inhibitor SK&F 86002 and MEK inhibitor PD98059 have no significant effect on
chemokine-mediated chemotaxis [32].

Receptor dimerization and JAK/STAT pathway activation?

The involvement of receptor dimerization and JAK/STAT pathway activation in
chemokine signaling has been a controversial issue [33, 34]. A number of reports
suggested that chemokines, like cytokines, induce receptor dimerization, which
results in the activation of the JAK-STAT pathway [35, 36]. However, these obser-
vations, although interesting, have not been supported by other groups. O’Shea’s
group [37] recently reported that lack of JAK2 or JAK3 had no effect on CXCL12
signaling or its receptor mediated chemotaxis, nor did overexpression of wild-type
versions of the kinases, strongly arguing against CXCL12 signaling being dependent
on JAK2 and JAK3, as previously reported.

Receptor desensitization and internalization

It is intriguing that the mechanism of chemokine receptor activation contains a built-
in shut-off sequence, thus providing additional opportunities for antagonizing
chemokine signaling pathways. To date, little is known of the down-regulatory
mechanisms in the cellular response to chemokines. Molecules called regulators of G
protein signaling (RGS) can modify the GTPase activity of the Gα subunits and
thereby initiate inhibitory mechanisms of chemokine signaling [38, 39]. Additional
mechanisms inhibiting chemokine receptor signaling include G protein-coupled
receptor kinase (GRK) family members, which cause rapid receptor desensitization
by inducing receptor phosphorylation upon chemokine stimulation, and β-arrestin or
adaptin-2, which result in down-regulation of receptors by sequestration and inter-
nalization through clathrin-coated pits or caveolae [40–42]. Rab, a small GTPase
family member, has been shown to be critical for determining the fate of chemokine
receptors, degradation or recycling, following their internalization [43, 44].
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GPCR undergo two types of ligand-mediated inactivation; phosphorylation and
internalization. Endocytosis can proceed through clathrin-dependent and -indepen-
dent pathways [45], but other factors regulating receptor internalization remain
poorly understood [46]. It appears that a higher concentration of ligand is needed
to trigger internalization than is required to induce signal transduction [47]. Subse-
quent to ligand binding to the receptor, beta-arrestin relocates to the cell membrane
and interacts with C-terminal domains of activated chemokine receptors, followed
by recruitment of chaperone molecules that leads to receptor localization in endo-
somes [41, 48, 49]. Several researchers have proposed that internalization is likely
to be a means to fine tune the local immune response since it is the first step toward
determining if receptors are recycled or proteolyzed [44, 47]. In addition to the ulti-
mate fate of a receptor, clearance of a ligand-receptor complex from the cell surface
has the effect of removing ligand from the local environment [50], resulting in a
diminished chemokine gradient and inhibition of cellular migration. Thus, receptor
internalization, like phosphorylation, is a stop signal for migration.

Chemokines in development and organogenesis

One of the homeostatic chemokine receptors, CXCR4, participates in morpho-
genetic processes beginning with the earliest stages of development. Perhaps the
most convincing data supporting a role for CXCR4/CXCL12 in mammalian
embryogenesis are that mice deficient in either CXCL12 or CXCR4 die in utero or
shortly afterwards due to extensive abnormalities in cerebellar and vascular devel-
opment, including failed cardiogenesis, and limited hematopoietic cell development
[51–53]. Further, transfer of CXCR4-deficient murine hematopoietic progenitor
cells from fetal liver to adult bone marrow does not support long-term reconstitu-
tion of T or B cells in adult hematopoietic organs. There are fewer B cell progeni-
tors in the liver of CXCR4-deficient embryos, which could contribute to the failed
reconstitution [54]. However, CXCR4 also contributes to the retention of progeni-
tor cells in the bone marrow and progenitor survival [55, 56], suggesting that these
activities may also contribute to B cell development in primary lymphoid tissues.
While the population of T cell progenitors found in the thymus of CXCR4- and
CXCL12-deficient mice is comparable to that found in wild-type mice, the number
of double-positive thymocytes was reduced fivefold, suggesting that the CXCR4 sig-
nal is required for T cell expansion in the thymus [57, 58]. Thus, CXCR4 and its
select agonist, CXCL12, participate in many stages of lymphocyte development. In
addition, plt mice, which have mutated hypo-functional variants of both CCL19
and CCL21 chemokines, exhibit defective lymphoid organogenesis and have an
immunosuppressed phenotype [59–62]. Deletion of other chemokines or their
receptors does not interfere with gross development, but often results in impaired
host defense against infectious challenges as will be discussed.
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Chemokines and lymphocyte development

While the initial stages of T and B precursor cell development occur in the bone
marrow, T cell precursors are recruited to the thymus for selection and differenti-
ation into a diverse T cell population exhibiting self tolerance. These CXCR4+

and CCR9+ precursors are attracted to the thymic cortex by CXCL12 and CCL25
(TECK), respectively [63–65]. Following entry into the thymus, CCR9 expression
is decreased, while CCR4 expression is increased, which enables the T cell pre-
cursors to migrate into the thymic medulla [66]. This step is likely to be redun-
dant with other chemokine receptors since CCR4-deficient mice do not show a
defect in thymocyte development [67]. Following selection to the single-positive
stage, either CD4 or CD8, the mature but naïve lymphocytes express CCR7 [66,
68], and are ready to move to secondary lymphoid tissue expressing CCL19 and
CCL21. In the case of extrathymic differentiation of T cells that reside in the
intestine, either CCR6 or CCR9 expression is required for T cell homing to the
gut [69]. However, unlike other naïve lymphocytes, these extrathymic-derived
cells are unlikely to recirculate from peripheral blood to other tissues in search of
antigens.

The importance of CCR7 in the trafficking of lymphocytes into and out of sec-
ondary lymphoid tissue has been demonstrated using CCR7-deficient [70, 71] and
plt mice, which are deficient in CCL19 and CCL21 [62]. Following their activation,
dendritic cells (DCs) are also induced to express CCR7, and can then migrate to the
draining lymph nodes, in response to CCR7 ligands [72]. Activated DCs present
antigen and costimulatory molecules to naïve T cells in the T cell zone, which leads
to persistent interaction of DC and antigen-specific T cells for at least 15 h prior to
their proliferation and differentiation into effector T cells [73, 74]. Th1 and Th2
effector T cells express distinct patterns of chemokine receptors, e.g., Th1-polarized
cells express CXCR3 and CCR5, while Th2-polarized cells express CCR4 and
CCR8 both in vivo and in vitro. Thus, chemokines and their receptors coordinate
lymphoid development from the initial embryonic hematopoietic cell stage to the
mature polarized lymphocytes.

CXCR5 and its ligand, CXCL13, are essential for the organogenesis of periph-
eral lymph nodes and Peyer’s patches along with splenic architecture [75, 76].
CXCR5, in combination with CCR7 is essential for efficient development and
maintenance of secondary lymphoid tissue and lymphocyte migration through
these tissues [76, 77]. B cells move into secondary lymphoid tissue through high
endothelial venules (HEVs), where they mature into long-lived follicular B cells
[78] and, with T cell help, will generate antibody responses. T cells also enter sec-
ondary lymphoid tissue through HEVs, but they are segregated into T cell zones
where they may encounter antigen-presenting DCs. Activated T cells rapidly up-
regulate CXCR5, which allows a small fraction of them to move to the B cell fol-
licle border [79]. Activated B cells rapidly up-regulate CCR7, which allows them
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to also move to the border of the B cell follicle near T cells [80]. Thus, through a
poorly understood but closely choreographed process, both B and T germinal cen-
ter cells are produced.

Surprisingly, several tumor necrosis factor (TNF) family members also con-
tribute to the generation of secondary lymphoid tissue. Lymphotoxin (LT)-α, LT-β,
and LT-β receptor-deficient mice lack CXCL13 expression and are deficient in
peripheral lymph nodes and Peyer’s patches [81]. TNF and TNFRI-deficient mice
lack Peyer’s patches. Further, splenic architecture is disrupted in all these animals.
Thus, several cytokines, by inducing chemokines and their receptors, participate in
secondary lymphoid tissue development and recruitment of naive lymphocytes.

Chemokines and angiogenesis

Chemokines also regulate the vascularization of lymphoid organs and inflammato-
ry tissues because ECs express many proinflammatory chemokine receptors. Robert
Strieter and colleagues [82] first reported that the ELR+ CXC chemokines induced
migration and proliferation of ECs and were angiogenic, while those ELR– CXC
chemokines that interact with CXCR3 inhibited the proliferation and chemotaxis of
ECs and were anti-angiogenic. More recently, a variant CXCR3B receptor was
reported to be responsible for the anti-angiogenic effects of CXCR 9, 10, 11 and
platelet factor 4 (PF4/CXCL4) [83]. Furthermore, ELR– CXCL12 interactions with
CXCR4 were proangiogenic, as were some CC chemokines (MCP-1/CCR2 and
eotaxin/CCR11) and fractalkine CX3CL1 [84]. Thus, the processes of chemokine-
induced lymphoid organogenesis and leukocyte infiltration of inflammatory sites is
enabled by the capacity of many of the proinflammatory chemokines to promote the
development of supportive tissue vascularization. Presumably, the anti-angiogenic
effects of platelet-derived CXCL4 inhibits capillary formation within the vascular
compartment, while the interferon-induced CXCR3 ligands down-regulate inflam-
matory vasculogenesis.

Virally encoded modifiers of chemokines

Several classes of large DNA viruses circumvent the host immune system by target-
ing the chemokine system. Viruses utilize three approaches to co-opting the host by
chemokine mimicry, chemokine receptor mimicry and by encoding chemokine-bind-
ing proteins as reviewed [85–88]. The broadly reactive nature of these virally encod-
ed biological modifiers suggests that they are likely to influence all aspects of the
host immune response, and can therefore be utilized to elucidate the role of
chemokines in immune function and develop more targeted therapies.
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Chemokine mimics

One of the most extensively studied viral chemokines is vMIPII (viral-monocyte
inflammatory protein-2). It is encoded by human herpes virus 8 (HHV8) and pos-
sesses both agonist and antagonist activity due to its interaction with at least six
chemokine receptors [85]. The migration of monocytes induced through activation
of CCR1 or CCR5 is inhibited by vMIPII, while migration of Th2 lymphocytes and
eosinophils is enhanced by vMIPII binding to CCR3 and CCR8. The in vivo effect
of vMIPII during the initial stages of infection is to inhibit the recruitment of Th1-
polarized cells to sites of infection [89]. Additional studies indicate that vMIPII actu-
ally enhanced IL-10 expression and reduced costimulatory molecule expression
[90], suggesting that vMIPII can suppress host Th1 responses and enhance Th2
responses. Limited studies of HHV8-encoded vMIPI and vMIPII indicate they bind
to CCR8 and CCR4, respectively [91]. The CD4+CD25+ regulatory cell population
uniquely expresses both CCR4 and CCR8 [92], leading to the speculation that viral
chemokines may guide regulatory cells to sites of infection and inflammation to sup-
press lymphocyte activation. In contrast, the CCR2 agonist encoded by human her-
pesvirus 6 (HHV6) [93], U83, and the CXCR2 agonists encoded by
cytomegaloviruses (CMV), human vCXCL1, murine MCK-1 and MCK-2, appear
to promote host granulocyte and lymphocyte migration to sites of infection [94]
potentially providing more infectable cells. Thus, viruses have successfully purloined
chemokines to shape their environment.

Chemokine receptor mimics

A second approach to subvert the chemokine system by viruses is to encode
chemokine receptors. For example, the human β herpesvirus CMV encodes four
chemokine receptor-like genes, of which only US28 has been extensively studied
[86]. US28 is a constitutively active seven transmembrane receptor that signals
through three heterotrimeric G-proteins; Gαq, Gαi and Gα16 [95]. US28 binds CC
and CX3C chemokines with the highest affinity being for CX3CL1 [96]. US28 has
been implicated as being causative in atherosclerosis and restenosis [97]. While sev-
eral components of the US28 signal cascade are constitutively actively, especially
NF-κB and phospholipase C (PLC) [95], others, including calcium flux [98], and
chemotaxis [97], can be induced by host-produced CC chemokines. The rapid
internalization of US28 suggests it also acts as a chemokine scavenger [50]. Thus,
CMV-encoded US28 has several signaling and trafficking approaches by which it
can condition the local immune environment to the viruses’ advantage.

In addition to vMIPI-III, HHV8 also encodes ORF74, a constitutively active
seven transmembrane receptor, that has been implicated as causative in Kaposi’s sar-
coma, primary effusion lymphoma and multicenter Castleman’s disease [99]. The

17

Biology of chemokines



clearest indication that ORF74 can condition the host response to HHV8 comes
from transgenic mouse studies, where the ORF74-expressing mouse develops
Kaposi’s sarcoma-like lesions [100].

An additional approach used by viruses to exploit the chemokine system is reg-
ulation of host chemokine receptors. Human γ herpesviruses, Epstein-Barr virus
(EBV) and HHV6a, HHV6b, HHV7, up-regulate CCR7. Although it remains to be
proven, this appears to be a mechanism used by these viruses to ensure that infect-
ed cells and uninfected cells localize to lymphoid tissues, thus providing more cells
to be infected [101]. In conclusion, several large DNA viruses both encode consti-
tutively active seven transmembrane receptors and/or regulate host chemokine
receptor expression to condition the host.

Chemokine-binding proteins-vCKBP

Virally encoded chemokine binding proteins (vCKBPs) can be subdivided based on
their mechanisms of action. The so-called T7 chemokine-binding proteins compose
the first class. They are expressed by some but not all poxviruses and structurally
resemble soluble interferon gamma receptor. vCKBP-1 is thought to incapacitate
CXC, CC and XC chemokines by binding to the glycosaminoglycan (GAG) bind-
ing site found in the C-terminal domain of most chemokines, as reviewed in [102].
A member of the vCKBP-1 class has been shown to block inflammation in vivo
[103].

The second class of chemokine-binding proteins are 35-kDa proteins expressed
by many poxviruses, including some vaccinia virus strains [87]. This class of pro-
teins appears to bind to the same molecular surface of CC chemokines that binds to
CC receptors blocking chemokine-receptor interactions. Infection of mice with
strains of vaccina virus expressing vCKBP-2 resulted in lower chemokine levels in
bronchoalveolar lavage fluids (BAL) compared to BAL from mice infected with vac-
cina virus not expressing vCKBP-2.

The third class of chemokine-binding proteins has only one member. M3 is
expressed by murine γ-herpes virus (MHV-68), and has been shown to bind human
and murine CXC, CC and CX3C chemokines [87]. The mechanism employed by
M3 to inhibit chemokines is very unique. An asymmetric dimer of M3 becomes
symmetric when it has bound two chemokine monomers blocking their N-terminal
amino and 40s loop structures [104]. Thus, M3 blocks receptor and GAG binding
by chemokines. M3 has been shown to block CCL19 (ELC) and CCL21 (SLC),
which are essential for lymphocyte trafficking through secondary lymphoid tissue.
Selective expression of M3 in the pancreas of transgenic mice blocked lymphocyte
recruitment [105].

The fourth class of chemokine-binding proteins are expressed by ungulate α-
herpes-virus, but not by human herpes simplex viruses or varicella zoster virus
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[106]. These glycoproteins are anchored in the host cell membrane through their
C terminus, potentially acting as chemokine receptor decoys. Additionally, solu-
ble forms are found in the serum of infected animals. These proteins bind to
CXC, CC and CX3C chemokines potentially blocking heparin and receptor bind-
ing [106].

Overall, regardless of the mechanism by which chemokine-binding proteins
block chemokine function, they appear to broadly disrupt chemokine-mediated
innate and adaptive lymphocyte-dependent immune functions. Thus, these proteins
provide tools to dissect the role of entire classes of chemokines in the immune sys-
tems of intact adult animals and fetal development.

Chemokine decoy receptors

In addition to microbial subversion of the host immune system by chemokine recep-
tor mimicry, the host expresses decoy or scavenger receptors to regulate the immune
response. Currently, three of these receptors have been identified, D6, Duffy antigen
receptor for chemokines (DARC) and CCX-CKR [107–110]. These chemokine
receptors are even more promiscuous in their ligand binding than functional recep-
tors, but ligand binding does not induce chemotaxis nor signal transduction. Many
tissues express these receptors, but the highest expression in the case of DARC is
found on the surfaces of red blood cells and ECs, including HEVs. DARC binds
proinflammatory chemokines CXCL1, CXCL5, CCL2, CCL5 and CCL7, but does
not bind the lymphoid chemokines CXCL12, CXCL13, CCL18, CCL19, CCL20 or
CX3CL1 [107]. Similarly, D6 binds proinflammatory chemokines, but only CC
chemokines. D6 is rapidly internalized and recycled to the cell surface following lig-
and binding [107]. DARC and D6 are both highly expressed by ECs, suggesting that
this serves to regulate inflammatory responses by removing proinflammatory
chemokines from the circulation. The rather novel decoy receptor CCX-CKR is also
expressed on lymphoid tissue ECs, but unlike DARC and D6, this receptor binds to,
and leads to the degradation of, homeostatic lymphoid chemokines, CCL19, CCL21
and CCL25 [108, 109]. The consequences of failing to remove these lymphoid
homeostatic chemokines is under evaluation [108, 109].

Chemokines and innate immunity

In mammals and many other species, innate immune responses are initiated by the
recognition of molecular patterns commonly associated with invading pathogens,
including bacterial lipopolyssacharide (LPS), lipoproteins, peptidoglycan (PGN),
and CpG containing un-methylated DNA. These pathogen-derived molecules inter-
act with Toll-like receptors (TLR) and nucleotide-binding site leucine-rich repeat
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proteins (NOD), which, upon activation, promote the release of proinflammatory
cytokines and chemokines by a variety of host cells. Proinflammatory cytokines
such as IL-1 and TNF in turn are also potent inducers of proinflammatory
chemokine at sites of inflammation and microbial infection [111]. Proinflammato-
ry chemokines, as listed in Table 1, are largely generated in response to infections
and injurious stimuli, and should be distinguished from homeostatic chemokines
that are more involved in development and organogenesis. A prominent feature of
the innate immune response is the initial recruitment by chemokines of granulocytes
followed by monocytes to sites of infection or injury, where these cells phagocytose
and degrade the invading pathogens or damaged tissues. Neutrophils infiltrate at the
early stage of innate immune responses, through interaction of ELR+ CXC
chemokine ligands such as CXCL8, CXCL5 and CXCL1 with cell surface
chemokine receptors, mainly CXCR1 and CXCR2 [5]. This is followed by infiltrat-
ing mononuclear phagocytes, including monocytes/macrophages and DCs, which
are largely recruited by proinflammatory CC chemokines (i.e., CCL2, CCL3 and
others).

Chemokines and natural killer cells

Chemokines and their receptors are also vital in regulating the trafficking and acti-
vation of natural killer (NK) cells. NK cells do not undergo genetic recombination
during development, and therefore are considered cells of the innate immune sys-
tem. These cells provide early protection of the host against viral infection. Resting
CD56dim NK cells fail to express the chemokine receptor CCR7, which is respon-
sible for lymphocyte homing and DC migration to secondary lymphoid organs
[112]. Thus, NK cells instead traffick to non-lymphoid tissues. Reports concerning
the pattern of chemokine receptor expression by NK cells are inconsistent. While
high level expression of CXCR1, CXCR4 and CX3CR1 and low levels of CXCR2
and CXCR3 have been reported [113], purified resting human NK cells were found
to express only CXCR4 [114]. Nevertheless, resting human NK cells are chemoat-
tracted by CXCL9-11 (acting on CXCR3), CXCL12 (acting on CXCR4), XCL1
(acting on XCR1) and CX3CL1 (acting on CX3CR1), suggesting that chemokine
receptors for these ligands are expressed by NK cells, but at a relatively low cell sur-
face level [114]. On the other hand, activated NK cells express increased levels of
CC chemokine receptors including CCR2, CCR4, CCR7, and CCR8, and are able
to migrate in vitro in response to a variety of CC chemokines. In vivo, CCL3 (MIP-
1α) mediates the recruitment of NK cells to the liver in mice infected with CMV,
leading to exacerbated inflammation, and increased resistance to infection [115].
Thus, although more studies of the chemokines and receptors of NK cells are need-
ed, the available data indicates that chemokines are clearly involved in NK cell infil-
tration and activation at sites of inflammation.

20

Gao Ping et al.



Chemokines and adaptive immunity

Although T and B lymphocytes are responsible for adaptive immunity, antigen-pre-
senting cells (APCs) and in particular DCs play a central role in the activation of T
lymphocytes [74]. Consequently, chemokines play crucial roles in adaptive immuni-
ty based on their effects in directing the migration of APC that deliver antigenic sig-
nals as well as of specific antigen-responsive T lymphocytes. Precursors of Langer-
hans cells are attracted by ligands for CCR6 such as MIP3α/CCL20 to peripheral
epidermal sites, while precursors of myeloid and plasmacytoid DCs (mDCs and
pDCs, respectively), which express many chemokine receptors, are attracted to
inflammatory sites by MCP-1 (CCL2), MIP1α (CCL3) and other chemokines. For
example, pDC also respond to the CXCR3 ligand CXCL9 [116, 117]. The proin-
flammatory cytokines produced at such sites induce immature (iDC) to mature and
express comitogenic cell surface markers such as CD80, CD83, CD86 and CD40,
and in addition induce the production of proinflammatory cytokines such as IL-12,
IL-1 and TNF [118]. These mDCs are also induced to express CCR7, and to
decrease their expression of CCR6 and other chemokine receptors for proinflam-
matory chemokines [119]. Gradients of SLC/CCL19 produced by lymphatic ECs
and ELC/CCL21 produced within the lymph node interact with CCR7 and direct
the migration of mDCs from peripheral inflamed tissues via the lymphatics into the
draining lymph nodes [118]. An analogous scenario results in the attraction of
CCR7+ T lymphocytes and CXCR5+ B lymphocytes into the appropriate lymph
node compartments [120]. There the mDCs and specific T lymphocytes find one
another, resulting in T cell activation, which generates central memory and effector
memory T cells, each with their characteristic combinations of chemokine receptors
[121]. The T cells in turn produce “helper” cytokines that enable the B lymphocytes
to respond to the intact antigens.

Chemokines, however, can also promote T cell activation and adaptive immuni-
ty by three additional non-chemotactic mechanisms as follows:
1. Chemokines based on their cationic charges can non-covalently bind to antigens

provided they have a net anionic charge. The interaction of this chemokine-anti-
gen complex, analogous to the chaperone functions of heat shock proteins, can
facilitate the delivery and uptake of antigen based on interactions with
chemokine receptors on APCs. Evidence in support of this scenario has been
established by covalently linking chemokines or β defensins with antigen [122].
The fused antigens bind to the chemokine receptors of APCs and are internalized
along with the ligand. Presumeably, the antigen is delivered to the antigen-pro-
cessing pathway, because administration of these linked antigens to mice results
in much better immune responses, than if they are delivered in an unlinked man-
ner as a mixture of antigens and chemokines or defensins [123]. Furthermore,
the nature of the chemokine or defensin determines whether Th1 or Th2 immune
responses are generated. Thus, chemokines such as IP10/CXCL9 and
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MIP1α/CCL3 or murine β defensin-2 linked to antigens favor induction of Th1
immune responses, whereas MDC/CCL22 (CCR4 ligands) and murine β
defensin-3 favor polarization to Th2 humoral antibody responses [122].

2. A number of self antigens are chemotactic and have been shown to be capable
of interacting directly with chemokine receptors such as CCR5, CXCR5,
CXCR3 and CCR2 [124]. These chemotactic self antigens, although frequently
intracellular in origin, are usually associated with the pathogenesis of various
autoimmune reactions, or have been identified as differentiated tumor antigens
associated with various neoplasias. Presumably, the capacity to interact directly
with chemokine receptors also facilitates the uptake, processing and presentation
of these antigens, accounting for their greater immunogenicity. A subsequent
chapter in this monograph will document and discuss some of these issues more
elegantly and in greater detail.

3. Finally, chemokines rapidly up-regulate the cell-cell interactions mediated by cell
surface adhesion proteins. Induction of chemotaxis by chemokines and presum-
ably defensins rapidly results in changing the configuration of cell surface inte-
grins on target cells so as to increase their adhesion to other cell types [125]. This
increase in adherence promotes the interaction between mDCs/APCs and T lym-
phocytes, and results in a chemokine-dependent comitogenic effect [125]. Fur-
thermore, some chemokines (e.g., ligands for CCR7) have recently been report-
ed to also promote the maturation of iDCs to mDCs [126]; another means of
augmenting the immunostimulatory effect of APCs/DCs and promoting their
comitogenic capabilities.

Consequently, ligand chemokine receptor interactions can dramatically promote
adaptive immunity as follows:
1. by promoting the development and organogenesis of lymphoid tissues based on

the directed migration of cells to appropriate tissue sites and the angiogenic
induction of blood vessel formation in the lymphoid tissues;

2 by promoting the uptake and internalization of antigens by APCs;
3. by directing the migration of APCs and lymphocytes and promoting their inter-

actions in lymphoid tissues;
4. by enhancing the adhesion of APCs to T cells resulting in comitogenic effects.

Unique contributions of chemokines to immunity

Since a number of chemokines may share a common surface receptor and one
receptor may interact with multiple chemokines, it has been hypothesized that
functional redundancy of chemokines may exist in the immune system. However,
gene depletion studies thus far have failed to prove any single chemokine or recep-
tor as being completely redundant. Virtually all chemokine ligand or receptor
knockout mice exhibited either a defective spontaneous phenotype or abnormal
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responses to challenge with microorganisms, antigens or other injurious insults.
Tables 2 and 3 summarize some observation derived from mice depleted of select-
ed chemokines or receptors. Studies of these mice have revealed many predictable
as well as strikingly unexpected results. As predicted, mice lacking a certain
chemokine or receptor, which specifically mediates the chemotaxis of certain leuko-
cyte populations, show defects in the trafficking of such leukocytes either to their
normal resident organs and tissues, or failure to infiltrate sites of microbial infec-
tion and inflammation. Such an impairment of leukocyte trafficking and infiltra-
tion in chemokine- or receptor-deficient mice inevitably results in compromised
innate and adaptive immune responses mediated by phagocytic leukocytes, DCs
and T or B lymphocytes (Tabs 2 and 3). Many such mice more readily develop, or
are resistant to, artificially induced autoimmune diseases. In this regard, inflam-
matory chemokines and their receptors have been clearly shown to be essential for
innate immune responses and also adaptive immune responses that require cross-
talk between DCs and lymphocytes in secondary lymphoid tissues. On the other
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Table 2 - The impact of depletion of selected chemokine ligands on immune system

Eotaxin (CCL11) Impaired eosinophil trafficking to the gastrointestinal tract
Decreased eosinophil recruitment into intestine in a gastrointestinal
allergy model 
[131, 132]

JE (CCL2) Reduced peritoneal macrophage exudation after thioglycollate 
injection
Reduced recruitment of macrophages (F4/80+) in a DTH model
Reduced granuloma formation in a Schistosoma model
Resistant to Leishimania major and unable to mount Th2 responses
Protection from EAE, with decreased Th1, but increased Th2 responses
Delayed wound healing
[127, 133–135]

MIP-1α (CCL3) Reduced myocarditis following coxsackie virus infection
Reduced lung inflammation after influenza A infection
Reduced liver inflammation after cytomegalovirus infection
Reduced herpes simplex virus type I-induced herpes stromal keratitis
[115, 136, 137]

ELC/SLC (CCL19, Lack of CCL19 and CCL21 have impaired lymphoid organogenesis,
CCL21) (plt/plt mice) impaired T cell adhesion to HEVs, reduced T cell entry into lymph 

nodes, decreased DC number in lymph nodes, and failure of T cells 
and DCs to organize normally in T cell zones in the spleen
[59–61]
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Table 3 - Altered immune system in mice depleted of chemokine receptors

Receptors Phenotype

CC receptors
CCR1 Defective neutrophil chemotaxis

Reduction of myeloid progenitors in the spleen and blood under steady state
Reduction of myeloid progenitors in the spleen but increase in blood after LPS
stimulation
Impaired proliferation of myeloid progenitors in spleen after LPS treatment
Increased susceptibility to Aspergillus fumigatus
Resistant to pancreatitis-induced acute lung injury
Decreased granuloma size and altered cytokine production in Schistosonia
mansoni
Susceptible to Toxoplasma with decreased blood and liver neutrophil influx
Impaired neutrophil infiltration in pancreas and less lung injury in caerulein-
induced pancreatitis
Enhanced Th1 responses and severe nephrotoxic nephritis
Decreased airway remodeling in A. fumigatus-induced allergic airway disease
Suppression of acute and chronic cardiac allograft rejection
[138–144]

CCR2 High cycle rate of bone marrow myeloid progenitors
Reduced leukocyte firm adhesion, extravasation and impaired recruitment of
macrophages to inflammatory sites
Decreased clearance of Listeria monocytetogenes
Protection and decreased macrophage recruitment in influeza A infection
Defective monocytes trafficking and Th1/Th2 balance in Crytococcus neofor-
mans infection
Decreased number and size of liver and lung granuloma and altered cytokine
production
Defective skin DC migration and spleen DC relocation following L. major
Protection from EAE
Attenuated airway hyper-reactivity in cockroach antigen-induced allergic air-
way inflammation
Reduced atheroma formation
[113, 129, 130, 145–155]

CCR4 Resistance to LPS-induced endotoxin shock
Decreased peritoneal macrophage recruitment and production of TNF-α, IL-
1β, and MIP-1α after LPS treatment
[67]

CCR5 Resistant to HIV-1 infection in humans with ∆32 mutation 
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Table 3 (continued)

Receptors Phenotype

CC receptors
CCR5 Susceptible to Listeria, influenza A, C. neoformans and enhanced DTH reac-

tion
Protection from colitis with Th2 cell activation
Resistant to LPS-induced endotoxemia
Lower early, but increased late, antigen-specific IFN-γ response to Leishmania
[156–159]

CCR6 Impaired humoral immune response to oral antigen and rotavirus
Increased T cell subsets in mucosa, absence of subsets of DCs in Peyer’s patches
Higher contact sensitivity
[160]

CCR7 Abnormal architecture in secondary lymphoid organs
Impaired T cell and DC trafficking and homing
Impaired antibody production, DSH and DTH reaction
[161]

CCR8 Defective Th2 responses
[162]

CCR9 Impaired early T and B cell development 
Reduction in T cell receptor γδ(+) gut intraepithelial lymphocytes
Reduced number of IgA+ plasma cells in the lamina propria of the small intestine
[163]

CXC receptors
CXCR2 Increased neutrophils in blood

Lymphadenopathy and splenomegaly
Reduced neutrophil recruitment at inflammatory site
Susceptible to candida and bacterial infection
Impaired peripheral tolerance
Delayed wound healing
Decreased atherogenesis progression
[128, 164–167]

CXCR3 Resistance to acute allograft rejection
[168]

CXCR5 Lack of Peyer’s patches
Defective formation of primary follicules in spleen
Increased B cell number in circulation
[161]

CXCR6 Reduced influx of activated CD8 cells in GvHD-induced hepatitis
[169]



hand, depletion of homeostatic chemokines and their corresponding receptors such
as CXCR5, CCR6 and CCR7 severely disrupt lymphoid organ structures due to
impaired or disrupted trafficking and homing of DCs, T and/or B lymphocytes. The
resultant abnormalities in lymphoid organ structure become the basis for defects in
T or B cell-mediated adaptive immune responses, which are dependent on synaptic
contact of these cells with APCs in a normal lymphoid microenvironment (Tabs 2
and 3) as reviewed in [127].

Gene depletion studies also have revealed that a chemokine or receptor, may also
mediate important unexpected cellular functions in vivo. For instance, in an anteri-
or chamber-associated immune deviation model, CXCR2 was found to mediate
immunologic tolerance of the mice [128]. In mice, the functional homologue of
human CXCL8 is thought to be MIP-2 (KC or CCL1, 2 or 3), which is selectively
up-regulated in tolerance-conferring APCs and serves to recruit NK T cells to the
splenic marginal zone to form clusters with APCs and T cells. In the absence of the
CXCR2, or in the presence of a blocking antibody to MIP-2, peripheral tolerance is
prevented without generation of antigen-specific T regulatory cells. Another exam-
ple of an unexpected role of a chemokine receptor in vivo is the active participation
of CCR2 in the initiation and progression of experimental autoimmune encephali-
tis (EAE). CCR2–/– mice are resistant to induction of EAE with peptide 35–55
derived from myelin oligodendrocyte glycoprotein (MOG) [129, 130]. The mice
have neither mononuclear phagocyte infiltrates, nor an increase in chemokines
MCP-1 (CCL2), RANTES (CCL5) and IP-10 (CXCL10) as well as chemokine
receptors CCR1 and CCR5 in the central nervous system. Additionally, T cells from
immunized CCR2–/– mice showed decreased production of IFN-γ on antigen stimu-
lation. In adoptive transfer experiments, CCR2–/– mice failed to develop EAE,
despite the administration of MOG-specific CD4+ T cells from wild-type or CCR2–/–

donors. These observations suggest that CCR2 is necessary for the initiation of EAE,
in addition to its role in directing infiltration of mononuclear phagocytes and, in the
host, clearance of microbial infection. Thus, chemokines and receptors constitute
the building blocks of the immune system, and lacking a single molecule can be suf-
ficient to unbalance the immune system and impair responses.
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The multistep paradigm of lymphocyte recruitment

Lymphocyte recruitment is a highly controlled process that is critical in immune sys-
tem regulation. Lymphocyte tissue-specific vascular recognition and extravasation
from blood into tissues relies on the functional interplay between adhesion mole-
cules, expressed by lymphocytes and endothelial cells, and chemoattractants, pre-
sented by the endothelial cells to rolling lymphocytes [1–3]. Numerous molecular
components of this system have been identified and their mode of action investigat-
ed in detail at molecular level (see next sections).

Leukocyte vascular recognition is commonly described to involve three steps,
each mediated by a distinct protein family (Fig. 1) [4]. Selectins control initial teth-
ering and rolling of free-flowing white blood cells on carbohydrate moieties present
on endothelia [5]. Tethering or capture consists of the initial transient adhesion con-
tacts of leukocytes with the endothelium or an adhered leukocyte or platelet. The
slow motion of rolling leukocytes then facilitates sensing of chemoattractants
exposed on the endothelial surfaces. Subsequently, chemoattractants rapidly deliver
intracellular signals via seven transmembrane domain G protein-coupled receptors
(GPCRs) which, in turn, promote firm leukocyte adherence and transendothelial
migration by up-regulation of integrin’s adhesiveness (avidity) to a family of
immunoglobulin-like endothelial ligands [6]. Starting from this simple, and elegant,
schema, in recent years a number of important advances has been made, leading to
continuous revision of specific, but important, details of the model. For instance, a
better distinction between tethering and rolling was clarified, with integrins, and not
only selectins, involved in the rolling process. Notably, the dogma implying that
rolling was an activation-independent process was challenged by the discovery that

4 integrins (and in certain condition also 2 integrins) may also support rolling
upon chemokine triggering [7, 8]. A clearer distinction between “fast” and “slow”
rolling was also formulated, including the possibility that selectin-triggered, and not
only chemokine-generated, signal transduction could also play a role in integrin
activation under flow [9]. This observation led to the proposal that, during rolling,
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selectin-triggered signaling events, although unable to fully trigger integrins, partic-
ipate in priming integrins to a subsequent full activation induced by chemokines.
Moreover, in the last few years the modality of integrin activation induced by
chemokines and responsible of lymphocyte arrest under flow was definitively iden-
tified (see below). Finally, important advances in describing the signaling events con-
trolling the entire process have been also achieved (see below).

As diverse members of selectins, integrins, chemoattractants and their receptors
were identified, and found to possess leukocyte- as well as tissue-specific expression
patterns, the concept of a tissue-specific 'area code' for leukocyte trafficking was
developed [3, 10, 11]. In such a model, selectins, chemoattractants and integrins
were proposed to generate a great combinatorial diversity depending on the type of
selectin-carbohydrate, chemoattractant-receptor and integrin-immunoglobulin lig-
and pairs displayed on the leukocyte and on the endothelium, respectively. The com-
binatorial logic of the multi-step model illuminated how, by combining a relatively
small set of address signals, it was possible to generate a variety of leukocyte area
codes for different tissues. It was postulated that each leukocyte subtype would be
equipped with a specific combination of receptors allowing its entry into those tis-
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Figure 1
The three-step model of leukocyte recruitment
The diagram shows the phases of lymphocyte recruitment. Lymphocytes freely flow in the
blood until the endothelium locally expresses adhesion molecules (for example E-selectin,
P-selectin, PNAd or VCAM-1) able to support tethering and rolling of interacting lympho-
cyte expressing L-selectin, PSGL-1 or VLA-4. Activation by locally expressed chemokines
triggers, in rolling lymphocytes, rapid intracellular inside-out signaling events, leading to
integrin affinity triggering and subsequent immediate arrest. Finally, directional motility con-
trolled by chemokine gradients and integrin outside-in signaling leads to trans-endothelial
migration and extravasation.



sues that displayed the appropriate counter-receptors. This mechanism would gen-
erate an unambiguous tissue-specific molecular code. Thus, the multi-step paradigm
not only models the leukocyte extravasation process at mechanistic level, but also
provides a conceptual framework for the exquisite specificity of leukocyte vascular
recognition.

The adhesion molecules and their specificity

In lymphoid organs, PNAd and MAdCAM-1 adhesion molecules, together with
their lymphocyte ligands and chemokine/chemokine receptors, create a specific area
code for the migration of naïve lymphocytes [2]. However, no area code with spe-
cific molecules for the migration of lymphocytes in distinct sites of inflammation has
yet been characterized. Some mucins, selectins, VLA-4 and LFA-1 integrins have
been implicated in the migration of leukocytes in different inflamed organs. How-
ever, the combination of unique hemodynamic characteristics of the blood vessels
(for instance high versus low shear stress) and the level (low or high) of adhesion
molecule and chemokine receptors expression, as well as the specific time point of
the inflammation process (early versus late) may specifically select lymphocyte sub-
populations during inflammation. The main adhesion molecules implicated in the
first steps of lymphocyte homing in lymphoid organs or in the recruitment of lym-
phocytes in extralymphoid organs and in sites of inflammation are introduced
below.

Selectins and their ligands

Selectins are adhesion molecules involved in tethering and rolling of lymphocytes
during the migration into lymphoid or non-lymphoid organs. Three selectins have
been identified: L-, P- and E-selectin. All three selectins are type I transmembrane
glycoproteins that bind sialylated carbohydrate structures in a Ca2+-dependent man-
ner. Each selectin has a lectin-like domain and various numbers of consensus repeat
domains, which show homology to complement regulatory proteins. The lectin
domains of the three selectins share about 60% homology, which results in subtle
differences in carbohydrate binding and confers selectin specificity.

L-selectin (CD62L) is expressed on the microvillae of naïve lymphocytes and
central memory T cells, and is important for lymphocyte homing and adhesion to
high endothelial cells of post capillary venules of peripheral lymph nodes and Peyer’s
patches [3]. L-selectin is critical to the capture/tethering during the migration
through the endothelial lining. It interacts with endothelial mucin MAdCAM-1 in
Peyer’s patches. In addition, L-selectin binds to endothelial ligands, most of which
are characterized by MECA-79 reactivity and are collectively known as peripheral
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node addressins (PNAds). The glycoprotein structure(s) that express the MECA-79
antigen are not completely known, but include CD34. It has been also reported that
L-selectin might interact with mucin P-selectin glycoprotein ligand-1 (PSGL-1)
expressed by adhered leukocytes, and this may help to deliver L-selectin-bearing
lymphocytes in sites of inflammation [12].

P-selectin (CD62P) is constitutively expressed on the endothelium of lung and
choroids plexus microvessels and on the platelet surface after activation, while E-
selectin is constitutively expressed in normal skin vessels. Both E- and P-selectin are
up-regulated by inflamed endothelium in most organs during inflammatory diseases
[13–17]. PSGL-1 is considered the main lymphocyte ligand for P-selectin and is also
able to bind E- and L-selectin. Although PSGL-1 mucin is expressed by all T cells,
it is not always glycosylated properly for selectin binding, and this explains why
naïve T cells cannot bind P- and E-selectins.

All selectin ligands are carbohydrate-containing molecules, and several glycosyl-
transferases have a role in the biosynthesis of selectin ligands [18]. These include
two α1,3-fucosyltransferases, FucT-IV and FucT-VII, the O-linked branching
enzyme core 2 β1,6-glucosaminyltransferase-I (C2GlcNAcT-I), a β1,4-galactosyl-
transferase-I (b1,4GalT-I), and at least two sialyltransferases of the ST3Gal family
that add sialic acid to galactose in a 2-3 linkage. In addition, at least one of two
tyrosine sulfotransferases must be active to produce high-affinity P-selectin binding,
and the sulfated tyrosine residues of PSGL-1 directly participate in P-selectin bind-
ing.

PSGL-1 is a dimeric, mucin-type glycoprotein ligand originally identified as a
ligand for P-selectin. PSGL-1 is expressed on the surface of all lymphocytes and is
a ligand for E- P- and L-selectin [19]. Much attention has been given to the N-ter-
minal region of PSGL-1 as it contains binding regions for the selectins. P-selectin
binds to the extreme N terminus of PSGL-1 by interacting stereospecifically with
clustered tyrosine sulfates and a nearby core 2 O-glycan with a sialyl Lewis x (sLex)
epitope (C2-O-sLex). Similarly, L-selectin binds with high affinity to the N-termi-
nal region of PSGL-1 through cooperative interactions with three sulfated tyrosine
residues and an appropriately positioned C2-O-sLex O-glycan. E-selectin-PSGL-1
binding seems to be sulfation independent, requiring sLex and glycosylation of
PSGL-1 by alpha-(1,3)-fucosyltransferases. Expression of cutaneous lymphocyte
antigen (CLA), a fucosyltransferase VII (FucT-VII)-dependent carbohydrate modi-
fication of PSGL-1, is closely correlated with interactions between PSGL-1 and E-
selectin. It has been previously demonstrated that FucT-VII expression is high in
Th1 cells, while Th2 lymphocytes expresses high levels of FucT-IV, but not FucT-
VII [8]. Moreover, Th1 cells, but not Th2 cells, are able to bind to P-selectin and
E-selectin. Experiments performed in mice with targeted deletions of the FucT-IV
and FucT-VII loci have established that absence of FucT-VII yields a severe attenu-
ation of lymphocyte migration to secondary lymphoid organs and to sites of cuta-
neous inflammation [20]. Moreover, it has been recently shown that efficient
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recruitment of activated lymphocytes to the brain in the contexts mimicking EAE
is controlled by FucT-VII and its cognate cell surface antigen CLA expressed by
PSGL-1 [21, 22].

PSGL-1-mediated tethering and rolling in vivo depends on the interactions with
E- and P-selectin expressed by the endothelium or by P-selectin presented by
adhered platelets on the vessel wall. Moreover, it has been shown that also the inter-
actions between the leukocyte adhesion receptor L-selectin and PSGL-1 play an
important role in vivo in regulating the inflammatory response by mediating leuko-
cyte tethering and rolling on adherent leukocytes. In the last few years, it has been
well documented that inhibition of PSGL-1 using different approaches has a benefi-
cial effect in various pathologies in experimental animal models, thus PSGL-1 is
emerging as a new promising therapeutic target to be explored in the future also in
humans [23].

Integrins and their ligands

Integrins are a large family of heterodimeric transmembrane glycoproteins that
attach cells to extracellular matrix proteins of the basement membrane or to ligands
on other cells. Integrins contain large (α) and small (β) subunits of sizes 120–170
and 90–100 kDa, respectively.

αLβ2 integrin (CD11a/CD18, lymphocyte function-associated antigen-1 – LFA-1)
is the most prominent member of the β2 integrin family, and is expressed by all lym-
phocytes [1–3]. Although it has been implicated in some rolling interactions, LFA-1
mainly mediates firm adhesion/arrest of lymphocytes in blood vessels of lymphoid
organs or in sites of inflammation by binding its ligands from the immunoglobulin
family, intercellular adhesion molecule-1 (ICAM-1) and ICAM-2, expressed by the
vascular endothelium [1–3, 8, 21].

The most important member of the β1 integrin subfamily on lymphocytes is the
very late antigen-4 (VLA-4, CD49d/CD29, α4β1 integrin). VLA-4 binding to its lig-
and vascular cell adhesion molecule-1 (VCAM-1) expressed by the endothelium has
been implicated in lymphocyte rolling and firm arrest in inflamed vessels [21].

A particular role in lymphocyte homing is ascribed to the interactions between
α4β7 integrin with its vascular ligand MAdCAM-1, which act as a brake during
naïve lymphocyte interactions in the high endothelial venules (HEVs) of the Peyer’s
patches [4]. α4β7 is expressed at low levels on naïve T cells, so that L-selectin is
required for efficient tethering. In fact, α4β7 integrin is required to slow L-selectin-
initiated rolling sufficiently to allow activation and engagement of LFA-1 for firm
arrest [4]. In contrast, on gut homing, memory/effector cells and plasmablasts, α4β7
is highly expressed and may mediate tethering, rolling and arrest on its own.

Immunoglobulins are plasma proteins that include all antibody molecules. Mem-
bers of the immunoglobulin superfamily share structural and genetic features with
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immunoglobulin molecules and contain at least one immunoglobulin domain. An
immunoglobulin domain is made of two β-pleated sheets held together by a disul-
fide bond. The vascular endothelium expresses molecules of the immunoglobulin
superfamily, which act as counter-receptors for leukocyte integrins. Two
immunoglobulins that are particularly important in the migration of lymphocytes
are ICAM-1 and VCAM-1 [11].

ICAM-1 (CD54) is a member of the immunoglobulin superfamily of adhesion
molecules, and contains five immunoglobulin-like domains. It is one of the princi-
pal ligands for the leukocyte β2-integrins CD11a/CD18 (LFA-1). VCAM-1, or
CD106, contains six or seven immunoglobulin domains and is expressed on both
large and small vessels only after the endothelial cells are stimulated by cytokines.
The sustained expression of VCAM-1 lasts over 24 h. Primarily, VCAM-1 is an
endothelial ligand for VLA-4 of the β1 subfamily of integrins and for integrin α4β7.
VCAM-1 promotes the adhesion interactions of lymphocytes and other leukocytes
in inflamed vessels [21].

Chemokines and the modalities of integrin activation

The critical role of integrin activation in cell regulation is well established and a
complete discussion of this topic is beyond the purpose of this chapter. In this sec-
tion, we only focus on those aspects of integrin activation that are crucial to rapid
lymphocyte arrest under flow conditions.

The importance of in situ rapid integrin triggering as a critical regulatory event
of lymphocyte homing was originally established by a seminal work by Butcher’s
group [24]. In this study, pretreatment of lymphocytes with pertussis toxin, a spe-
cific inhibitor of Gαi-heterotrimeric GTP-binding protein, was able to completely
prevent integrin-mediated lymphocyte adhesion to HEVs in secondary lymphoid
organs. These data demonstrated that lymphocytes express specific receptors capa-
ble of fully triggering integrins through a Gαi-heterotrimeric GTP-binding protein-
linked intracellular signaling pathway. Importantly, this observation clearly implied
the in situ expression of pro-adhesive agonists, presented by HEVs and able to trig-
ger, in rolling lymphocytes, rapid integrin activation. This study was a “big bang”
in this field as it encouraged the research for the pro-adhesive agonists, expressed by
HEV and other endothelia, that are able to selectively trigger integrins in different
leukocyte subtypes. Furthermore, the definition of the intracellular signaling mech-
anisms controlling rapid integrin triggering became a major goal in the field. Nowa-
days, we know that a particular sub-family of chemotactic cytokines, called
chemokines, is responsible of rapid integrin triggering (and of several other events)
in circulating lymphocytes (see chapter 1) [25]. To date about 45 human
chemokines (classified in four sub-families) have been identified, and more than 18
chemokine receptors, all Gαi-linked, have been cloned and variably associated to
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different chemokines, thus generating a regulatory network of chemokine-
chemokine receptor interactions characterized by specificity and robustness, and
involved in regulating the diversity of leukocyte recruitment [26]. Although all were
characterized by chemotactic activity on different leukocyte sub-types, and thus
were shown to be involved in microenvironmental positioning, some chemokines
have been clearly shown to be expressed by the endothelium [25, 26] and to be able
to fully activate lymphocyte integrin under flow [27]. Considering that lymphocytes
(and more generally leukocytes) operate in a high shear stress environment repre-
sented by the blood flow, pro-adhesive chemokines really accomplish an amazing
task. Accurate studies have shown that chemokines can trigger full integrin activa-
tion and dependent lymphocyte arrest under flow within a few milliseconds [27]. De
facto, chemokines are considered the most powerful physiological integrin activa-
tors.

However, what does “full integrin activation” mean? The capability of lympho-
cytes to modulate their own adhesiveness for a substrate by changing integrin avid-
ity for the ligand was established a long time ago [28]. On the other hand, it was
only recently that the modality of integrin activation induced by chemokines and
responsible for almost all immediate lymphocyte arrest under flow was definitively
identified. The most studied integrin involved in lymphocyte adhesion is the β2 inte-
grin LFA-1 (CD11a/CD18). Structural studies show that LFA-1 may exist in three
different headpiece-conformational states, each corresponding to a different affini-
ty for ICAM-1 (Fig. 2) [29–31]. The low-affinity state (folded conformation) is the
resting state, a conformation basically incapable of mediating adhesion. Cell activa-
tion triggers the transition from low to intermediate state (extended conformation)
and from intermediate to high-affinity state (extended but further rearranged con-
formation), with the last two able to support binding to soluble ligand and rapid
adhesion under flow. Thus, “full LFA-1 activation” basically means modification of
the equilibrium between the three different conformers, thus allowing LFA-1 to
acquire the capability to bind the ligand with increasing energy. We now know that
chemokines are able in milliseconds to trigger LFA-1 conformational changes cor-
responding to heterodimer intermediate- and high-affinity states for ICAM-1 [32,
33]. Importantly, studies focused on the definition of the signaling events control-
ling this complex phenomenon provided a formal demonstration of the critical role
of triggering LFA-1 to a high-affinity state in lymphocyte homing to secondary lym-
phoid organs [34]. Interestingly, it seems that soluble chemokines may trigger the
complete state transition from low to high affinity, whereas immobilized
chemokines trigger only the transition from the low- to intermediate-affinity state,
with high affinity induced upon ICAM-1 binding [33]. This finding allowed propos-
ing a cooperative model between pro-adhesive signaling mechanisms, in which
inside-out and outside-in signaling cooperate to trigger full lymphocyte arrest under
flow [35]. Moreover, evidence show that chemokines may also trigger lateral mobil-
ity of LFA-1, leading to cluster formation and increase valency [32, 34] (although
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this possibility was recently challenged by studies showing that LFA-1 clustering
may occur only in presence of immobilized ligand [36]). In summary, chemokines
presented to rolling lymphocytes trigger, through Gαi-linked receptors, an intracel-
lular signaling network capable of triggering LFA-1 conformational changes corre-
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Figure 2
The equilibrium between LFA-1 conformers corresponding to different heterodimer affinity
states
In resting state, LFA-1 is in a bent, folded, conformation corresponding to a low-affinity
state. In resting state LFA-1, the affinity for ICAM-1 is in µM range. Upon chemokine acti-
vation, LFA-1 undergoes a transition to an extended conformation displaying an affinity for
ICAM-1 in the mM range. A further transition to a high-affinity state corresponds to extend-
ed conformation with further heterodimer rearrangement and increased affinity in the nM
range. The intracellular activity of RhoA and Rap1 small GTPases mediates chemokine-
induced LFA-1 transition from low- to intermediate-, and from intermediate- to high-affin-
ity state. Soluble chemokines may trigger the complete transition from low- to high-affinity
conformers, whereas, in contrast, immobilized chemokines trigger only partial LFA-1 transi-
tion to intermediate affinity, with high affinity induced upon interaction with immobilized
ICAM-1. Interaction with cytoskeleton components is essential to induce LFA-1 affinity trig-
gering. The picture was modified from Laudanna C., Nat Immunol. 2005, 6: 429–430.



sponding to intermediate- or to high-affinity states, deepening on some, still unde-
fined, quantitative signaling aspects. Immediate arrest under flow needs transition
to a high-affinity state conformer, which allows binding of immobilized ICAM-1
with high energy.

Signaling mechanisms in integrin activation

A rather complex, still incompletely defined, aspect of this process is the nature of
the intracellular signaling mechanisms triggered by chemokines and controlling
rapid integrin activation. In recent years, a few important discoveries allowed a bet-
ter definition of this biochemical mechanism (Fig. 3). Several signaling events trig-
gered by chemokines have been implicated in the regulation of integrin activation,
yet it appears that not every pathway is operative in every cell type and integrin.
Here we describe only signaling events whose role has been validated under physi-
ological conditions.

Small GTP-binding proteins play a central regulatory role in the modulation of
both integrin affinity and mobility. The small GTPase, RhoA, was originally shown
to be involved in rapid integrin activation by CXCL8 (IL-8) [37]. Pretreatment of
lymphocytes with the Rho inhibitor C3 transferase was shown to prevent rapid
leukocyte adhesion to VCAM-1, suggesting the involvement of Rho in the GPCR
activation of the β1 integrin VLA-4. More recently, RhoA was demonstrated to have
a rather complex role in LFA-1 activation in lymphocytes. Using trojan peptides
derived from three distinct effector regions of RhoA, able to block RhoA-dependent
signaling in a domain-selective manner, it was shown that RhoA controls the trig-
gering of both LFA-1 affinity as well as lateral mobility [34]. Importantly, it was
demonstrated for the first time that RhoA-controlled triggering of LFA-1 to an
increased affinity state is critical to lymphocyte in vivo homing to secondary lym-
phoid organs [34]. Moreover, the permeable RhoA peptide corresponding to the
23–40 domain of the GTPase, which was shown to block high LFA-1 affinity stim-
ulated by soluble chemokines, also dramatically attenuates the ability of these
chemokines, when surface bound, to trigger extended β2 integrin conformations
(corresponding to intermediate affinity) under shear flow (Shamri, Alon and Lau-
danna, unpublished). Thus, the RhoA-dependent signaling pathway is critically
involved in triggering LFA-1 conformational changes required for abrupt lympho-
cyte arrest under shear flow.

Another small GTPase, the ras-like small GTPase Rap1, has recently emerged as
an important regulator of rapid integrin activation by chemokine signals [38].
Transfection of lymphocytes with Rap1 dominant negative mutants prevents LFA-
1- as well as VLA-4-mediated adhesion induced by chemokines. The role of Rap1
in integrin triggering also emerges from the recent description of a human genetic
defect, called LAD III, in which a deficiency in lymphocyte adhesiveness correlates
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with impairment of Rap1 activation by chemoattractants [39]. Interestingly, a
potential effector of Rap1 to LFA-1 activation was recently identified in a yeast two-
hybrid screen, and called RAPL [40]. RAPL is highly expressed in lymphocytes and
dendritic cells, and is able to bind Rap1-GTP and to the tail of the α chain (CD11a)
of LFA-1. This suggests that RAPL may be a key effector linking activated Rap1 to
LFA-1, and possibly to VLA-4 activation. This hypothesis is supported by recent
data on RAPL-deficient lymphocytes, in which a partial reduction of chemokine-
triggered integrin-mediated adhesion was observed [41]. Notably, Rap1 seems to
control both affinity triggering and clustering of the β2 integrin LFA-1, although a
direct demonstration, under physiological conditions, of the capability of Rap1 to
control distinct LFA-1 conformers changes is still lacking.

In addition to RhoA and Rap1, several other effectors triggered by chemokine
signaling have been implicated in rapid integrin activation processes in various cel-
lular and animal models. A more detailed description of these pro-adhesive molec-
ular events has been already provided [6]; here, we only briefly describe them. The
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Figure 3
Signaling events triggered by chemokines and leading to integrin activation
The diagram shows the major signal transduction events involved in rapid integrin activation
by chemokines. RhoA, Rap1 and RapL have been shown to regulate integrin affinity trigger-
ing. The role of Rac1, although suggested by DOCK2 involvement, has still not been for-
mally demonstrated.



ARF-guanine-nucleotide exchange factor (GEF), cytohesin-1, may induce LFA-1
activation by direct interaction with the β2 chain [42, 43]. Chemokines may modu-
late rapid LFA-1 activation by triggering, via the cytohesin-1 PHc domain, mem-
brane targeting of cytohesin-1, thus allowing a direct regulatory interaction with the
β2 chain of LFA-1 [44].

DOCK2, a hematopoietic specific member of the CDM family of proteins, has
GEF activity for Rac1-2, and was recently shown to regulate lymphocyte recruit-
ment in vivo. Interestingly, DOCK2 is involved in B but not in T lymphocyte inte-
grin activation by chemokines as well as in in vivo recruitment to secondary lym-
phoid organs [45]. Although the role of DOCK2 suggests the involvement of Rac1
in rapid integrin triggering by chemokines, the formal demonstration of the involve-
ment of this small GTPase in integrin affinity or lateral mobility triggering by
chemokines in B cells is still lacking.

The lipid kinase phosphatidylinositol 3-OH kinase [PI(3)K] is also involved in
lymphocyte integrin activation. PI(3)K inhibition prevents chemokine-induced rapid
lymphocyte binding to immobilized ICAM-1, but only if ICAM-1 is expressed at a
very low site density [20]. PI(3)K, whose activity is rapidly triggered by chemokines,
is involved in the rapid induction of heterodimer lateral mobility induced by
chemokines likely leading to increased valency. In contrast, PI(3)K activity is not
required for the rapid induction of the LFA-1 high-affinity state. Together, the
PI(3)K requirement for rapid adhesion at limiting ICAM-1 densities suggests that
rapid PI(3)K activation by chemokines may function to facilitate integrin mobility
in the cell membrane, and thereby enhance the probability of encounters between
the activated heterodimers and the disperse ligand. PI(3)K activity is not implicated,
however, in chemokine stimulation of VLA-4 avidity, suggesting that the lipid prod-
ucts of this kinase activate only specific subsets of integrins and under limited avail-
ability of ligand. Notably, the γ isoform of PI(3)K was shown to be involved in inte-
grin activation in T but not B lymphocytes [45], further highlighting cell and inte-
grin-type specificity in PI(3)K signaling to integrins.

Another example of a chemokine-triggered effector that regulates integrin valen-
cy rather than affinity is the atypical protein kinase C isoform, PKC ζ, apparently
acting downstream of RhoA. The PKC family includes at least three categories of
isozymes: the classical, novel and atypical sub-families. Neither classical (DAG- and
Ca2+-dependent) nor novel (DAG-activated but Ca2+-independent) PKC isotypes
play an essential role in rapid β2 integrin activation by chemokines [32, 34]. In con-
trast, the atypical isoform, PKC ζ, which is not activated by DAG and Ca2+, appears
to be a critical participant in rapid β2 integrin activation by chemokines. Indeed,
PKC z-selective inhibitory peptides (myristoylated peptides with sequence identical
to the pseudosubstrate inhibitory region of PKC ζ) efficiently block chemokine-
induced rapid adhesion of lymphocytes to surfaces presenting a low density of
ICAM-1 [34]. Importantly, PKC ζ inhibition does not prevent chemokine-induced
triggering of LFA-1 to high-affinity state, but blocks the lateral mobility of the het-
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erodimers [34]. Notably, PKC ζ is activated and rapidly translocated to the plasma
membrane upon chemokine stimulation, and this is prevented by pretreatment with
RhoA-derived trojan inhibitory peptides, indicating that PKC ζ may be a down-
stream effector of RhoA-stimulated integrin mobility [34].

Diversity generation: qualitative and quantitative control

Despite the increased knowledge gathered in the last two decades, the bewildering
complexity and redundancy of the molecular system controlling lymphocyte-
endothelial cell interaction still defeats our ability to accurately describe and predict
the functional outcome of the lymphocyte recruitment process.

Accumulating evidence shows a rather high degree of promiscuity and redun-
dancy in ligand-receptor interactions [46]. Most leukocytes possess largely overlap-
ping patterns of receptors and multiple overlapping series of chemokines are often
found expressed on endothelial cells from distinct tissues. Furthermore, at the sig-
nal transduction level, data are emerging suggesting the existence of cell- and inte-
grin subtype-specific regulatory mechanisms [6]. These findings are blurring the
ability of the original multi-step model to predict how a specific combination of pro-
adhesive molecules may control selective leukocyte vascular recognition. Overall, it
appears that a purely qualitative combination of different parameters controlling
lymphocyte recruitment is no longer adequate to account for the observed diversity.

One of the most important aspects, not really accounted for by the original for-
mulation of the multi-step model, is the regulatory significance of quantitative vari-
ations of pro-adhesive parameters, including variation in site density (expression
level per area) of adhesion molecules and chemokines, and variation in the amount
and topological distribution (compartmentalization) of intracellular signaling
events. Recent studies show the importance of quantitative variation of pro-adhe-
sive parameters regulating lymphocyte recruitment under flow. For instance, quan-
titative variation of the site density of ICAM-1 presented to rolling lymphocytes
determines the relative importance of the distinct modalities of LFA-1 activation
triggered by chemokines. Indeed, if affinity triggering seems always required for
rapid arrest under flow [34], lateral mobility of the heterodimer, leading to increased
valency, seems relevant only to facilitate adhesion to a disperse integrin ligand [32].
Thus, the amount of integrin ligand expression dictates the usage of a specific
modality of integrin activation responsible for rapid adhesion. This dichotomy may
assume a specific regulatory significance when endothelium expresses variable
amount of integrin ligands during the immune responses.

Another example of the importance of quantitative variation of pro-adhesive
parameters was recently provided in the context of the chemokine network. Here,
different expression levels of chemokine receptors, combined with variation of the
binding affinities of the chemokines for the cognate receptors, determine quantita-
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tive variations in the intracellular signal transduction triggered by the chemokine
presented to rolling lymphocytes. This variation in signaling efficiency was shown
to affect the specificity of the lymphocyte recruitment process, altering the capabil-
ity to direct specific recruitment of Th1 versus Th2 lymphocytes [47]. This obser-
vation clearly suggests that maintaining of stability in quantitative parameters con-
trolling lymphocyte recruitment is critical to maintain diversity in the immune
response. Thus, it appears that lymphocytes are able to decode quantitative, and not
only qualitative, environmental information.

These preliminary findings emphasize the great importance of quantitative
aspects in the overall regulation of lymphocyte recruitment and, finally, of the
immune response. In this context, an updated version of the original three-step par-
adigm, including the mathematical concept of concurrency, was recently proposed.
This model provides a conceptual framework necessary to the development of pre-
dictive computer modeling of lymphocyte recruitment process [48]. In this model a
transition form of qualitative to quantitative area code for specific lymphocyte
recruitment is envisioned. For such a vision, of course, experimental quantitative
data need to be obtained to allow effective computer modeling and to improve our
capacity to precisely predict the long-term dynamics of an immune response.
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T cell priming and generation of Th1 and Th2 responses

Clearance of infection involves the interaction of several cells of the immune system
that, scattered throughout the body, have to be recruited and interact together in a
precise place at a precise time. During a primary response, the rare antigen-specific
naïve T lymphocytes continuously recirculate through secondary lymphoid organs.
This strategy allows them to maximize their chance to encounter professional anti-
gen-presenting cells, i.e., dendritic cells (DCs), presenting on their surface the anti-
gen sampled at peripheral sites. Upon engagement of their T cell receptor (TCR)
with antigenic peptides presented in association with molecules of the major histo-
compatibility complex (MHC) on the surface of DCs, naïve T cells proliferate and
differentiate to effector cells [1]. While naïve T cells are functionally undifferentiat-
ed and capable of secreting mainly IL-2 upon stimulation [2], effector cells produce
inflammatory cytokines such as IFN-γ and IL-4. Classically, two types of effector
CD4+ T cells can be distinguished in mouse and man based on the cytokines they
produce [3, 4]. T helper 1 (Th1) cells are characterized by the secretion of IFN-γ and
the induction of cell-mediated responses against intracellular pathogens whereas
Th2 cells produce IL-4, IL-5 and IL-13 and mediate protection against extracellular
parasites.

The balance between production of Th1 and Th2 cytokines determines whether
specific immunity against invading microorganisms is successful, whereas unbal-
anced Th1 and Th2 responses can lead to pathological manifestations. In particular,
excessive Th1-type cytokines have been associated with tissue destruction found in
autoimmune diseases such as rheumatoid arthritis and multiple sclerosis [5], where-
as overproduction of Th2-type cytokines has been implicated in atopy and allergic
asthma [6, 7].

Th1 and Th2 differentiation is dependent on several factors. Besides DC type,
antigen dose and costimulatory interactions between cell surface molecules, the
most critical role is played by cytokines. The cytokines that control Th1 and Th2
differentiation are IL-12 and IL-4, respectively, which act primarily through the
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induction of the master transcription factors T-bet and Gata-3 [8–10]. Mature DCs
represent the major source of IL-12, which is secreted at high amounts after stimu-
lation with lipopolysaccharide (LPS) and CD40 ligand (CD40L) [11, 12]. Although
several cell types can produce IL-4, the physiological source of this cytokine remains
elusive. Mast cells produce IL-4, but they reside in peripheral tissues, while the T
cell differentiation process takes place in secondary lymphoid organs. NK-T cells
can also produce IL-4, yet the Th2 response is intact if NK-T cells are deleted [13].
There is evidence indicating T cells themselves as a possible source of IL-4. Indeed,
it has been shown that naïve T cells express IL-4 at low levels upon activation [14,
15].

Regulation of cytokine gene expression in Th1 and Th2 cells

In the last few years, a big effort has been made to try to elucidate the mechanisms
that lead to the cell type-specific production of the signature effector cytokines in
Th1 and Th2 cells. The body of work that has been done in this field suggests that
the regulation occurs at least partially at the chromatin level [16]. In naïve T cells,
the IFN-γ and IL-4 genes are targeted by chemical modifications in the DNA and its
associated proteins – the histones –, which leads to a compacted (“closed”) confor-
mation inaccessible to transcription factors. During differentiation, the Th1- and
Th2-specific transcription factors T-bet and Gata-3 cause remodeling events at the
relevant cytokine genes, such as DNA demethylation and histone acetylation, which
lead to an “open” chromatin conformation followed by transcriptional activation
and gene expression [17–19]. The chromatin modifications are transmitted epige-
netically to the progeny, thereby ensuring a faithfully transmission of the imprinted
phenotype through cell divisions in memory T cells [19]. Regulation of cytokine
gene expression does not merely occur through a “closed” or “open” state of chro-
matin. Rather, distinct histone modifications (acetylation, methylation, phosphory-
lation) can generate synergistic or antagonistic interaction affinities for chromatin-
associated proteins, which in turn dictate dynamic transitions between transcrip-
tionally silent or transcriptionally active chromatin state. Thus, different histone
modifications can be arranged in a combinatorial way that establishes a “histone
code”, thereby extending considerably the information potential of the genetic code
[20].

Chemokine receptors in Th1 and Th2 cells

Naïve T cells recirculate within secondary lymphoid organs, while antigen-primed
T cells exiting these organs are able to enter peripheral inflamed tissues, indicating
that T cell differentiation is tightly coupled to the acquisition of new migratory
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capacities (Fig. 1). There is growing evidence that the accumulation of different
types of effector cells in inflammatory lesions is a dynamic process orchestrated by
the regulated expression of chemokines and chemokine receptor. The chemokines
produced during an inflammatory process contribute to determine the extent, the
quality and the duration of the cellular infiltrate. There are indications that this net-
work may fit into a classification according to type 1/type 2 regulation. For
instance, IL-4 and IL-13 stimulate the production of CCL11 and CCL22 (two
chemokines involved in Th2-type immune reactions), an effect that is counteracted
by IFN-γ [21, 22]. Conversely, IFN-γ induces CXCL9 and CXCL10 and up-regu-
lates CCL5 (all of them major type 1-chemokines), and this effect is antagonized by
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Figure 1
Naïve T cells exit the blood and enter into lymph nodes using the chemokine receptor CCR7.
In lymph nodes they are activated by antigen-presenting DCs and differentiate to IFN-γ-pro-
ducing Th1 (red) or IL-4-producing Th2 (blue) cells depending on environmental factors
including polarizing cytokines. From the lymph nodes effector cells re-enter the circulation
and, by virtue of expression of new chemokine receptors (as outlined in the red callouts),
migrate to inflamed tissues. At these sites, Th1 and Th2 cells coordinate the effector
response through activation of cells of the innate immune system such as macrophages (MΦ)
and neutrophils (N) in Th1-type inflammation or eosinophils (Eo) and basophils (Ba) in Th2-
type inflammation. The integrins and selectins, which are also involved in these migratory
pathways, are not depicted.



IL-4 [23]. On the other hand, TNF, a cytokine that is associated with both Th1 and
Th2 responses, costimulates the production of both type 1 and type 2 chemokines.

A significant example of the role played by chemokines in the orchestrated
recruitment of cells in polarized responses is shown by the C-C chemokine receptor
CCR3 and its ligand CCL11. CCL11 is abundantly present in mucosal tissues
undergoing allergic inflammation [21, 24–26]. CCR3 is expressed on eosinophils
[27] and basophils [28] , as well as in vivo and in vitro polarized Th2 cells [29, 30].
The sharing of CCR3 expression may allow these different cell types to colocalize
at sites of CCL11 production. Here the cells produce IL-4, IL-5 and IL-13, which in
turn activate eosinophils and basophils and boost production of CCL11 and
CCL22, thus amplifying the inflammatory reaction.

Besides CCR3, there are other inflammatory chemokine receptors expressed on
Th2 cells. These include CCR4 [31–33], the receptor for CCL17 and CCL22, which
is also expressed on basophils [34], and CCR8 [35], the receptor for CCL1 [36]. The
relative importance of CCR3 and CCR4 as markers for Th2 cells has been debated.
While CCR3 expression does not identify all IL-4-producing Th2 cells, CCR4 is also
expressed on activated Th1 cells, on non-polarized T cells primed in the presence of
TGF-β, and on skin-homing T cells (see below), which are mainly of the Th1 type.
The presence of CCR4 on these different functional subsets may reflect the multiple
roles of CCL17 and CCL22, which are expressed in a variety of lymphoid and non-
lymphoid tissues and may behave as inflammatory, constitutive, or tissue-homing
chemokines in different circumstances.

An unambiguous marker to identify T cells that produce IL-4 (as well as IL-5 and
IL-13), but not IFN-γ, is the chemoattractant receptor CRTh2 [37], which binds
prostaglandin D2 (PGD2), a prostanoid that has long been implicated in allergic dis-
eases [38, 39]. CRTh2-expressing T cells are increased in the peripheral blood of
patients suffering from atopic dermatitis [40]. Moreover, the vast majority of CD4+

and virtually all CD8+ T cells infiltrating the skin of atopic dermatitis patients are
CRTh2+. Thus, CRTh2 may represent a reliable marker for the identification of
both CD4+ and CD8+ type 2 cells in health and disease. CRTh2 is also expressed on
eosinophils and basophils, and all three cell types migrate in response to PGD2 [38],
providing further evidence for a model of coordinate recruitment of cells partici-
pating to the same polarized immune response.

Four receptors are preferentially expressed on Th1 cells: CCR5, CXCR3,
CXCR6 and CCR1 [31, 32, 41, 42]. In rheumatoid arthritis and multiple sclerosis,
two diseases associated with type 1 responses, virtually all T cells in the lesions
express CCR5 and CXCR3, in contrast to the 5–15% of T cells that normally
express these markers in peripheral blood [43, 44]. CXCL10 (the ligand of CXCR3)
is induced by IFN-γ and is expressed abundantly in Th1 lesions [23, 45]. The pres-
ence of CCR1 and CCR5 on macrophages and monocytes enables them to colocal-
ize with Th1 cells. However, it should be pointed out that CCR5 and CXCR3 are
expressed, although at lower level, on activated T cells and on Th2 cells, so that to
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date a chemokine receptor associated with the selective expression of IFN-γ (i.e., the
Th1 counterpart of CRTh2) is still missing.

Human T cells activated in the presence of IFN-α and mouse T cells stimulated
with IL-23 up-regulate CCR1 [31, 46]. IL-23 is one of the essential factors required
for the expansion of a pathogenic CD4+ T cell population characterized by the
expression of IL-17 (hence called Th17) and able to confer organ-specific autoim-
mune inflammation upon adoptive transfer [46–48]. Expression of IL-17 has been
linked to a growing list of autoimmune and inflammatory diseases such as rheuma-
toid arthritis, lupus, asthma and allograft rejection. Mechanistically, IL-17 is
believed to contribute to the pathogenesis of these diseases by acting as a potent pro-
inflammatory mediator [49]. The molecular mechanisms that govern the develop-
ment of Th17 cells have remained unclear. Two recent reports provide evidence that
Th17 cells are a separate and early lineage of effector CD4+ T cells derived directly
from naïve cells and completely independent from Th1 and Th2 lineages [50, 51].
If a correlation between IL-17 production and CCR1 expression is confirmed, the
presence of this receptor could represent a helpful tool to identify this novel popu-
lation of pathogenic T cells involved in autoimmune inflammation.

The model that emerges from these data is a complex and flexible regulation of
chemokine receptor expression, where several cytokines can influence the set of
receptors that is present on the surface of T cells. In line with these observations, IL-
2 (a critical survival factor for activated T cells) together with TCR triggering have
been shown to modulate the expression of some chemokine receptors [52]. In addi-
tion, antigenic stimulation of Th1 and Th2 cells leads to a rapid switch in the set of
chemokine receptors expressed [53]. Within the first hours after TCR triggering the
receptors for inflammatory chemokines, i.e., CCR1, CCR2, CCR3, CCR5, CCR6,
and CXCR3 are down-regulated, while CCR7, CCR4, CCR8 and CXCR5 are up-
regulated. The original set of receptors is then regained when the cells go back to
their resting state after a few days. As a result, T cells that are activated by antigen
in tissues may either recirculate to draining lymph nodes or migrate to nearby sites
of organized ectopic lymphoid tissues.

Regulation of chemokine receptor expression in Th1 and Th2 cells

The mechanisms underlying the coordinated expression of cytokines and chemokine
receptors in developing Th1 and Th2 cells are beginning to be unraveled, at least in
Th1 cells. Mice deficient for T-bet (the master Th1-differentiation factor) are resis-
tant to a wide range of autoimmune diseases, including type I diabetes, inflamma-
tory colitis and arthritis, lupus nephritis and experimental autoimmune
encephalomyelitis in vivo [54–56]. While impaired cellular effector function due to
the absence of T-bet is most likely playing a role, a common finding in the above
models is the reduction in cellular infiltration to inflammatory sites, suggesting a
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role for T-bet in cellular trafficking. Indeed, recent studies have elucidated a role for
overexpressed T-bet in the induction of CXCR3 (a chemokine receptor preferential-
ly present on Th1 cells) on polarized Th2 cells, and demonstrated an associated
increase in chemotactic function [57, 58]. In addition, deletion of T-bet leads to a
reduction in CXCR3 expression with the subsequent abrogation of multiple func-
tions, including lymphocyte arrest on activated endothelium and chemotaxis [59].
These findings provide evidence that the transcription factor specifying the Th1 pro-
file in developing T cells imprints a migratory program to ensure appropriate hom-
ing to inflammatory sites.

Chemokine receptors identify memory T cells with different functional
properties

After pathogen clearance, the massively expanded effector T cells that have been
generated become unnecessary, and their number must be reduced to provide some
“space” necessary for the development of a subsequent immune response. To cope
with this problem, the vast majority (>90%) of effector T cells are eliminated at the
end of the primary immune response and only few cells persist for years as memo-
ry cells [60].

Memory T lymphocytes are heterogeneous, and two distinct subsets can be iden-
tified in the human CD4+ and CD8+ compartments by combining two distinct cri-
teria, namely (i) the absence or presence of immediate effector function, and (ii) the
expression of homing receptors that allow cells to migrate to secondary lymphoid
organs as opposed to non-lymphoid tissues [61]. Human central memory T cells
(TCM) are CD45RO+ memory cells that constitutively express CCR7 and CD62L,
two receptors that are also present on naïve T cells, which are required for cell
extravasation through high endothelial venules (HEVs) and migration to the T cell
area of secondary lymphoid organs [62, 63].When compared to naïve T cells, TCM
have higher sensitivity to antigenic stimulation and are less dependent on costimu-
lation, i.e., they possess a lower activation threshold. Also, they are able to up-reg-
ulate CD40L to a greater extent, thus providing more effective stimulatory feed-
back to DCs and B cells. Following TCR stimulation, TCM produce mainly IL-2, but
only little IFN-γ and IL-4.

Human effector memory T cells (TEM) are memory cells that have lost constitu-
tive expression of CCR7, are heterogeneous for CD62L expression and display
characteristic sets of chemokine receptors and adhesion molecules that are required
for homing to inflamed tissues. When compared with TCM, TEM are characterized
by a rapid effector function, which is achieved through the prompt secretion of large
amounts of cytokines such as IFN-γ, IL-4 and IL-5. Moreover, in the cytoplasm of
CD8+ TEM, granules containing perforin – a protein that mediates killing of virus-
infected target cells by forming pores in their membranes – can be visualized. These
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granules are particularly visible in a population of TEM cells that express CD45RA
(defined as TEMRA), representing a terminally differentiated subset. From these
observations one can say that in humans the TEM pool contains bona fide Th1, Th2
and cytotoxic T cells (CTLs).

The existence of TCM and TEM subsets has also been well documented in mice
[64–66]. In this experimental system it has been possible to directly follow the kinet-
ics of memory cell generation and the capacity of effector and memory populations
to reconstitute long-term memory [67]. The indications that come from these stud-
ies support the idea that TCM have higher reconstitution potential. Indeed, effector
Th1 cells, defined by their secretion of IFN-γ, were shown to be short-lived and
unable to reconstitute T cell memory. In contrast, a population of activated Th1 lin-
eage cells, which did not secrete IFN-γ after primary antigenic stimulation, persist-
ed for several months in vivo and developed the capacity to secrete IFN-γ upon sub-
sequent stimulation [68]. Consistent with these results, the expansion potential of in
vitro stimulated human memory subsets decreases from TCM to TEM, and is very low
in CD8+ TEMRA [69].

The relative proportions of TCM and TEM in blood differ in the CD4+ and CD8+

compartment (TCM are predominant in CD4 and TEM in CD8). Within the tissues,
however, TCM and TEM show characteristic patterns of distribution. Indeed, TCM are
enriched in lymph nodes and tonsils, whereas lung, liver and gut contain more TEM
[70].

In antigen-primed individuals, CD4+ T cells specific for tetanus toxoid can be
detected in circulating TCM and TEM up to 10 years after antigenic stimulation [61],
and their frequencies increase in both subsets after booster immunization. Analo-
gous examples can be found in the CD8 compartment, where antigen-specific T cells
can be found in both TCM and TEM subsets [71]. A detailed TCR repertoire analy-
sis was performed by spectra-typing memory CD8+ T cells using CD62L to dis-
criminate between TCM and TEM [72]. The analysis of six influenza-specific T cell
clones showed that two clonotypes were shared between TCM and TEM, whereas
four were detected only in the TCM pool. These data indicate that the same expand-
ed clone can be present in both TCM and TEM subsets, and support the model of intr-
aclonal functional diversification [73].

One important issue to be understood is how these different memory subsets are
maintained over several years. Proliferation of memory T cells can be driven not
only by antigenic stimulation, but also by cytokines. Indeed, under steady-state con-
ditions, memory T cells slowly turn over in the absence of antigen [74]. In particu-
lar, IL-7 and IL-15 have been shown to regulate mouse CD8+ memory T cell sur-
vival and self-renewal in the absence of antigen, whereas naïve and CD4+ T cells
require IL-7 and TCR, but do not respond to IL-15 [75–77]. Conversely, human
CD4+ memory T cells proliferate in response to IL-15 in a TCR-independent fash-
ion and with slow kinetics [78, 79], suggesting different roles for IL-15 in mouse
and human CD4+ T cell homeostasis.
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Heterogeneity of TCM and TEM

Since the first description of TCM and TEM, it became evident that these two broad
subsets were heterogeneous in expression of chemokine receptors, adhesion and cos-
timulatory molecules. The TEM pool can be subdivided according to the expression
of chemokine receptors characteristic for Th1 and Th2 cells. Thus, within TEM,
CXCR3, CCR5 and CXCR6 discriminate Th1 cells and CTLs, whereas CCR3,
CCR4 and CRTh2 identify Th2 cells. CXCR3 and CCR4 are, however, expressed
also on some TCM cells. These cells represent pre-Th1 and pre-Th2, respectively
[80]. CXCR3+ and CCR4+ TCM spontaneously differentiate to Th1 and Th2 effec-
tor cells in response to homeostatic cytokines IL-7 and IL-15 and independently of
conventional Th1- or Th2-inducing stimuli. In contrast, TCM lacking these receptors
and expressing CXCR5 are uncommitted precursors, and their differentiation to
Th1 or Th2 cells is dependent on TCR triggering and polarizing cytokines [19, 80].
Pathogen-specific CD4+ T cells have characteristic distributions in the TCM cell sub-
sets, reflecting the Th1/Th2 polarization induced by the pathogen. Thus, tetanus
toxoid-specific cells are detected in all subsets, consistent with the notion that vac-
cination to tetanus induces a mixed Th1/Th2 response. Conversely, cytomegalovirus
and vaccinia virus promote Th1 polarization and virus-specific T cells are conse-
quently detected in the CXCR3+ but not in the CCR4+ TCM pool [80]. These results
suggest that immune responses generate heterogeneous populations of memory cells
that belong to different subsets and include a broad spectrum of differentiation
stages.

In addition to circulating non-polarized CXCR5+ TCM cells, a population of ton-
sil-resident CCR7– CD57+ T cells also express CXCR5 [81–83]. These cells, which
have been defined as follicular B-helper T cells (TFH), secrete IL-2 and IL-10, express
CD40L and ICOS and provide spontaneous help to B cells.

Homing of memory T cells to skin and gut

The existence of subsets of memory T cells that preferentially migrate to gut or skin
is well documented. Skin-homing T cells can be identified by their expression of
cutaneous lymphocyte-associated antigen (CLA) [84]. CLA binds to E-selectin on
endothelial cells of inflamed skin. However, E-selectin expression is not restricted to
inflamed cutaneous endothelium, suggesting that there must be other elements
determining skin tropism. This specifying element is CCR4. In fact, CCR4 is co-
expressed together with CLA on a subset of memory/effector T cells, and its ligand
CCL17 on endothelial cells of inflamed skin but not of inflamed gut [85]. CCL17
has been shown to induce integrin-dependent firm adhesion of CLA+ T cells consis-
tent with its role in the extravasation process. Besides its role in extravasation in
skin vessels, CCR4 may drive cell migration within several types of inflamed tissues,
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wherever CCL22 and CCL17 are produced by resident cells, for instance in lung or
in liver [86, 87]. Another skin-expressed chemokine, CCL27 [88], may also promote
migration of memory T cells to the skin through CCR10 binding [89]. CCR10 is
expressed on skin-derived Langerhans cells, melanocytes, dermal fibroblasts and
dermal endothelial cells, which suggests a broader role for this chemokine receptor
in numerous dermal cell interactions. The majority of human T cells in healthy
(non-inflamed) skin were shown to express CCR8 [90]. CCL1 (I-309, a ligand of
CCR8) was found to be constitutively expressed in skin, principally in dermal
microvessels and epidermal antigen-presenting cells, suggesting that CCL1/CCR8
may function in homeostatic T cell traffic through normal skin.

Gut-homing T cells express high levels of α4β7 integrin that mediates L-selectin
independent rolling on MAdCAM-1, a vascular addressin that is expressed on lam-
ina propria venules and Peyer’s patch HEVs, but also in the marginal zone of the
spleen and in areas of chronic inflammation [91]. The crucial role of chemokine
receptors in leukocyte migration has been demonstrated also for homing in the gut.
In this case the receptor involved is CCR9, which binds CCL25, a chemokine selec-
tively expressed in the endothelial cells of gut-associated tissues and in the thymus
[92]. CCR6 is also expressed on subsets of memory T cells and may drive their
migration in response to CCL20 to both skin and gut [93]. A significant conclusion
can be drawn from these examples: selectivity of homing is achieved via the expres-
sion of different receptors that define a combinatorial code addressing cells to the
right place.

Concluding remarks

We have seen examples of how chemokines allow the selective migration of func-
tionally specialized subsets of T cells to particular tissues. The recruitment of cells
plays a central role in the development of an immune response against microorgan-
isms as well as under conditions of uncontrolled pathological immune responses.
Given the high selectivity of this process, several attempts have been made to inhib-
it specific chemokine receptors with the aim to block one type of immune response,
while leaving other unaffected. Indeed, there is experimental evidence showing that
chemokine antagonists block inflammatory diseases in animal models [94]. Howev-
er, while selective adhesion molecules and chemokine receptors expression have per-
mitted the identification of novel T cell subpopulations, the signals that direct the
differentiation of these subsets, their relationship and their development are still
poorly characterized. Moreover, while T cell homing into tissues has been exten-
sively studied, unraveling the mechanisms and regulation of T cell exit from tissues
is equally important for a complete understanding of T cell trafficking, and may
result in novel therapies for treating atopic, inflammatory and autoimmune disor-
ders. Two recent studies addressing this issue suggest that CCR7 is an important
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regulator of effector memory T cell exit from the periphery [95, 96], challenging the
commonly held opinion of a passive T cell transit from the periphery into the affer-
ent lymphatic vessels. In this view, T cells may constantly change the repertoire of
chemokine receptors to migrate into specific areas. Clearly, a better understanding
of the intricate relationship between T cell function and localization holds great
potential for the therapeutic manipulation of T cell responses.
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Introduction

The original observation made by Ralph Steinman and coworkers in 1974 [1] has
dictated the leading concept of dendritic cells (DC) as key elements in the afferent
arm of the adaptive immune response. DC are hematopoietic, bone marrow-
derived, professional antigen-presenting cells (APC), capable of both priming an
immune response, and efficiently stimulating memory responses [2, 3]. DC are
closely related to other cells of the myeloid lineage, but they are unique in term of
morphology and functional properties and differ from other conventional leuco-
cytes [4]. Within the past few years, it became possible to generate DC in vitro using
defined growth factors, which has shown that DC are not a single cell type, but a
heterogeneous population of cells [5–7].

In both mice and men, at least two major subsets of DC exist, myeloid-related
DC (M-DC) and plasmacytoid DC (P-DC) [8]. In the peripheral blood, M-DC pre-
cursors express CD11c but lack CD123, while the P-DC precursors display the
CD11c–CD123+ phenotype. Both subsets are immature, since they are negative for
co-stimulation molecules CD80, CD86 and CD40 [9, 10]. Based on in vitro data,
there are different pathways for the development of mature DC from bone mar-
row CD34+ precursors. Each pathway differs in terms of progenitors and inter-
mediate stages, cytokine requirements, surface marker expression and, most
importantly, biological function [5–8, 11]. M-DC are distinguished by at least two
distinct pathways of maturation from CD34+ progenitors since, after 5 days in cul-
ture with granulocyte-macrophage colony-stimulating factor, stem cell factor and
tumor necrosis factor (TNF)-α, cells are sorted into either CD14+CD1a– or
CD14–CD1a+ populations [5]. In addition, it is likely that under certain conditions
mature monocytes migrate from blood into tissues and differentiate into DC
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[12–14]. Substantial diversity exists between M-DC and P-DC, supporting the
possibility of different functional roles. M-DC have several features that allow
them to capture antigens, exploiting a complex array of uptake mechanisms,
including phagocytosis, micropinocytosis and receptor-mediated endocytosis [15],
while P-DC have very limited phagocytic capacity [8, 11]. M-DC represent the
classic T cell-priming subset, but this function in P-DC is less clear, although there
is definite evidence that P-DC play an important role in the defense against
pathogens and neoplasms [16]. Despite the experimental evidence that circulating
and tissue P-DC can acquire the morphological and functional features of DC in
vitro [17, 18], the existence of fully mature P-DC in vivo is still controversial [16,
19]. Furthermore, M-DC and P-DC show marked disparity in tissue distribution
and migration pathways. Immature M-DC are constitutively distributed in periph-
eral tissues, especially in the skin and mucosal surfaces, which represent the areas
of entry of exogenous antigens, where they are responsible for antigen capture and
processing. Following antigen capture, M-DC undergo maturation into competent
APC, bearing high levels of MHC and costimulatory molecules (e.g., HLADR,
CD80, CD83, CD86, DC-LAMP/CD208), and migrate to lymphoid tissues,
acquiring potent immunostimulatory activity [4, 6, 11, 20], to become mature
APC (e.g., interdigitating DC, IDC). In contrast to M-DC, P-DC are scarce or
totally absent in skin, mucosae and other non-lymphoid tissues, while they typi-
cally occur in lymph nodes and tonsils, in close association with high endothelial
venules (HEV) [19, 20]. The topographical association between P-DC and HEV
reflects the migration pathway of this subset of DC, which leave the circulation
and enter lymphoid tissue through HEV [21–23]. Alternative ways, however, exist
of migration of M-DC into lymph nodes. Even in the absence of inflammation,
some DC are found in afferent lymph, suggesting that DC continuously traffic
from normal tissues to lymph nodes [24]. These rare steady-state migrating DC
from skin to lymph nodes are phenotypically mature [25] and might be important
for immune tolerance, eliminating T cells with specificity for self antigens that
have escaped the thymus during thymic selection [26, 27]. Recent evidence further
suggests that under certain conditions a pathway may exist whereby M-DC can
migrate into lymph nodes via HEV [28]. Finally, monocytes may undergo differ-
entiation to DC upon migration to the lymph nodes [8].

It should be noted that during chronic inflammation, such as in autoimmune dis-
eases, or tumors, an active recruitment of circulating M-DC and monocytes into
inflamed tissues occurs [8]; the increased number of tissue M-DC supplies the con-
tinuous antigenic stimulation of regional lymph nodes by transporting antigens, but
may also contribute to the maintenance of the local inflammatory process, under-
going local maturation and activation of T cells [20]. Similar to M-DC, P-DC are
also recruited into inflamed peripheral tissues (such as allergic nasal polyps, skin in
lupus erythematosus, lichen planus, and infections) [29–32] and tumors [33, 34],
thus contributing to the local immune response.
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Morphological identification of non-lymphoid tissue DC

M-DC include intraepithelial Langerhans cells (LC) and interstitial DC (IN-DC).
The skin and mucosae contains a prominent supply of LC, which have typical DC
morphology and contain characteristic Birbeck granules (BG) seen on electron
microscopy. LC are easily recognizable on tissue sections due to their reactivity for
HLA-DR, S-100 protein, CD1a, E-cadherin and the LC-specific marker langerin
(CD207), while they lack CD68 and factor XIIIa, and most antigens expressed by
dermal IN-DC (Fig. 1). Moreover, LC lack several maturation antigens, such as
DCLAMP/CD208, while expression of CD83 can be variable [35–37]. The cuta-
neous lymphocyte activation (CLA) antigen recognized by the antibody HECA-452,
which is expressed by LC precursors, is down-regulated by intraepithelial LC [38].
In conditions associated with an increase or activation of intraepidermal LC, such
as contact dermatitis, cells expressing a hybrid monocyte-LC phenotype
(CD1a+CD11b+CD36+CD68+) can be observed [36]; this observation supports the
evidence that LC may derive from monocytes in vivo [12].

With the notable exceptions of the cornea and central nervous system [4], DC
have been identified within the interstitial space of most human tissues, including
the dermis and many solid organs (heart, lung, kidney, liver); these IN-DC express
CD11c, CD68, factor XIIIa, macrophage-mannose receptor (CD206), along with
the c-type lectin DC-SIGN (CD209) (Fig. 1). In analogy with LC, IN-DC lack DC
maturation antigens [34] and, as with LC, dermal and mucosa IN-DC are strategi-
cally localized at the interface with the external surfaces where they can take up
pathogens [39, 40] and transport them to lymph nodes.

The migration of DC from peripheral tissues to lymph nodes is associated with
changes in their phenotype. LC adhere to keratinocytes via homophilic interactions
with E-cadherins, and down-regulate this adhesion molecule to leave the epidermis
[41]. In the lymph vessels and nodal sinuses migrating LC are identified as veiled
cells, because of their sheet-like lamellipodia [41]; similar to LC, veiled cells express
CD1a, S-100 protein and langerin/CD208, and are mostly immature [42] (Fig. 1).

Morphological identification of lymphoid tissues DC

DC have been largely studied in lymph nodes and tonsils [42–45], where their dis-
tribution is rather complex, reflecting the occurrence of different subsets of DC,
diversity of activation and maturation stages and pathways of migration (lymph ver-
sus blood borne). The lymph node parenchyma is compartmentalized into func-
tional areas, which include cortical B follicles and paracortical T nodules. In addi-
tion, an indistinct area located between B follicles (and corresponding to the inter-
follicular area) and at the periphery of T nodules in the paracortex (where it has also
been identified as the “outer paracortex”) runs along intermediary lymphatic sinus-
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es and surrounds HEV (Fig. 1). This area is partially delimited by fibroblastic retic-
ulum cells, stromal cells expressing actin filaments and occasionally cytokeratins,
which form conduits that facilitate the migration of cells [46]. The high rate of cell
migration and cell-to-cell contacts occurring in this part of the lymph node justify
the term ‘traffic’ area [19, 47]. M-DC-related IDC, represent the majority of mature
DC within the lymph node, showing bright expression of HLADR and DC-
LAMP/CD208 (Fig. 1). IDC occur in the traffic area, but they are predominantly
found in paracortical T nodules, where they are intimately admixed with T lym-
phocytes [48]. IDC are considered to descend for the most part from LC, and main-
tain the positivity for S-100 protein (Fig. 1). However, antigens usually negative on
LC (such as CD11c) are expressed by IDC [42, 43, 45], while langerin and CD1a
are generally lost [42, 44]. Nevertheless, probably on the basis of different stages of
maturation, minor subsets of IDC have been described, which either maintain
CD1a, or lack CD11c, or do not display a full-blown mature phenotype [25, 43,
45].

In the special condition defined as to ‘dermatopathic lymphadenitis’, character-
ized by massive migration of LC into lymph nodes, resulting from inflammatory or
neoplastic skin disorders, the IDC largely preserve LC antigens (CD1a+, S100+, Lan-
gerin+) [34, 44]; moreover, they remain immature [49], but express de novo the
interferon (IFN)-γ-dependent molecule class 6 semaphorin, which defines an activa-
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Figure 1
Distribution and phenotype of DC subsets in peripheral tissues (skin) and lymph node
In the skin, langerin+ LC are typically confined to the epidermis (A, A1), while IN-DC, here
stained for macrophage mannose receptor, are found in the dermis (B, B1). In C and D, a
drawing and the corresponding picture of a reactive lymph node is shown (cap: capsule; B-
fol: B follicle; T-nod: paracortical T nodule; Ta: traffic area). Sinus vessels are illustrated with
dotted lines, HEV as full lines; nodal DC are shown as star-shaped cells and include imma-
ture DC (red), mature DC (blue), and GCDC (yellow); P-DC are shown as round cells (yel-
low). In the marginal sinus some S-100 protein+ veiled cells are present (E); F shows stain-
ing for DC-SIGN, which identifies macrophages within the marginal sinus (sin), as well as
the sinus lining cells and numerous IN-DC along the traffic area (Ta); in the inset a double
immunofluorescence for DC-SIGN and DCLAMP shows that the DC-SIGN+ cells (green) do
not express DCLAMP (red). In G, the traffic area at the periphery of B follicles and T nod-
ules is clearly depicted by HECA-452 antibody, which stains P-DC and HEV; in the inset a
double immunofluorescence for CD123 and DCLAMP shows that the CD123+ P-DC (red) do
not express DCLAMP (green). The paracortical T nodule shown in H contains large numbers
of DCLAMP+ mature IDC (blue), that form close contacts with surrounding T cells (H1);
CD123 in red (H) stains the HEV and scattered P-DC mainly localized at the periphery of the
T nodule. In a secondary B follicle, CD11c stains GCDC (I).
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tion status [50]. It has been postulated that the IDC in dermatopathic lymphadeni-
tis may also derive from langerin+ cells migrating from blood, since not all cells pos-
itive for langerin are epithelial LC [51, 52]. These data indicate that IDC in der-
matopathic lymphadenitis differ from IDC observed in common reactive conditions,
and should be utilized with caution as a study model of normal IDC.

In the ‘traffic area’ of lymph nodes, several spindle cells or DC can be found;
most of them are CD11c+ and express DCSIGN/CD209, macrophage mannose
receptor or factor XIIIa [34, 53–55]. The vast majority of these DC do not express
DC-LAMP (Fig. 1) [34], and there is controversy as to whether these cells derive
from IN-DC along lymph vessels, or if they derive from circulating DC precursors
or monocytes [8]. Recently, the true “dendritic” nature of the DC-SIGN+ cells of
lymph nodes was questioned, and it has been suggested that they may represent
macrophages [56]. This hypothesis is supported by the observation that DC-SIGN
is strongly expressed on sinus macrophages [34, 55], and that it is found on
macrophages but not on DC generated from monocytes by Toll-like receptor (TLR)
activation triggers [56].

The enigmatic cell type occurring in lymph nodes and previously referred as to
plasmacytoid T cells or plasmacytoid monocytes [45] represents the major subset of
DC (P-DC) that under the influence of various stimuli, such as viruses, IL-3,
CD40L, and non-methylated bacterial DNA (CpG-ODN) [16, 19] secrete high
amounts of IFN-α [18]. P-DC are typically found in the ‘traffic area’ of lymph nodes
[47] (Fig. 1). Despite they typical morphology (medium-sized cells, with round-oval
nucleus and moderately abundant eosinophilic cytoplasm), they are better identified
with the help of immunostains that show strong reactivity for CD68, CLA/HECA-
452, CD123, BDCA2 and TCL-1 [19] (Fig. 1). In addition to IFN-α, P-DC also
express granzyme B [57]. A direct role of granzyme B as cytotoxic mediator in P-
DC seems unlikely, since they do not express other cytotoxic molecules such as per-
forin or TIA-1 [57, 58], and also contain the granzyme inhibitor PI-9 [59]. Recent-
ly, however, it has been found that P-DC are capable of inducing apoptosis via
TRAIL [60]. In addition, in mice, a hitherto unrecognized cell secreting IFN-α and
showing both potent anti-tumor cytolytic capacity and antigen-presenting functions
has been described [61, 62]; it remains to be investigated if similar cells exist in
humans and if they belong to a P-DC subset.

Cortical B follicles contain two main DC, the germinal center DC (GCDC) and
the follicular DC (FDC). GCDC express CD4, CD13 and CD11c (Fig. 1), are strong
APC for T cells [63], and can directly regulate B cell responses, producing IL-12 and
inducing germinal center B cell expansion, plasma cell differentiation, and IL-10-
independent isotype switching toward IgG1 [64]. The origin of GCDC is poorly
studied; they might be related to the subset of dermal DC that express CXCR5 and
traffic to B cell zones in lymph nodes [65]. FDC do not represent bona fide DC,
since they are non-hematopoietic in origin, but mesenchymal. In addition, they are
not capable of activating naïve T cells, do not display a capacity for antigen capture
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and presentation, but do express preformed antigen-antibody complexes (antigen-
carrying cells) on their surface. FDC are typically located within primary and sec-
ondary B follicles, and interactions between CXC ligand 13 (B lymphocyte chemoat-
tractant; CXCL13) expressed on FDC and CXCR5 expressed by B cells and acti-
vated T cells play a role in B follicle development and organization [66, 67]. FDC
express complement and Fc receptors, as well as a series of antigens that are useful
for revealing them on sections, such as CD21, CD23, CD35, CNA.42, KiM4p,
DRC1, nerve growth factor receptor, and clusterin [68] (Fig. 1). The functional role
of FDC is still controversial [69–71]. The close association with germinal center B
cells has fostered the idea that B cell recognition of retained antigen on the surface
of FDC is important for affinity maturation and memory B cell development. How-
ever, it is possible that FDC support B cell proliferation and differentiation in a non-
specific manner [70].

The major subsets of M-DC and P-DC observed in lymph nodes are also found
in the spleen, along the route of blood-borne antigens, and in the thymus. In the
spleen, CD11c+ DC accumulate in the marginal zone at the periphery of the periar-
teriolar lymphoid sheath and in the T cell area (represented by IDC), as well as in
the germinal center (as GCDC) [72, 73]; in contrast to M-DC, splenic P-DC are usu-
ally scant and are placed in the marginal zone area of both human [19] and mouse
spleen [74].

In the thymus, DC are predominantly found in the medulla or at the cortico-
medullary junction; they include immature and mature M-DC, the latter corre-
sponding to IDC, and P-DC [75, 76]. In addition, CD11c+CD11b+ DC related to
GCDC have been described [77]. The different subsets of thymic DC may have a
diverse functional potential, including induction of central tolerance (for IDC),
transport and presentation of peripheral antigens (for GCDC), and IFN-α produc-
tion (for P-DC) [78].

Chemokines and chemokine receptors

During their life span, DC migrate form the bone marrow through blood to periph-
eral tissues and to lymphoid tissues. DC migration and their capacity to orchestrate
the migration of other effector leukocytes are fundamental for the induction of
adaptive immunity. Optimal immune response requires the proper localization of
DC to the sites of inflammation and subsequently to secondary lymphoid organs
[79, 80]. Migration of DC into tissues depends on a cascade of discrete events that
include the activation of chemokine receptors and the regulation of adhesion mole-
cules [20].

Chemokines are a superfamily of small proteins that play a crucial role in
immune and inflammatory reactions and in viral infection [81, 82]. Based on a cys-
teine motif, CXC, CC, C and CX3C subfamilies have been identified. Chemokines
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interact with seven-transmembrane-domain, G protein-coupled receptors. At least
ten CC (CCR1–10), seven CXC (CXCR1–7), one CX3C (CX3CR1) and one XCR
(XCR1) receptors have been identified. Receptor expression is a crucial determinant
of the spectrum of action of chemokines, and dictates most of the differences
observed in the chemotactic response of immature versus mature DC [20]. Emerg-
ing evidence indicates that regulation of receptor expression during cellular activa-
tion or deactivation is as important as regulation of chemokine production for tun-
ing the chemokine system.

Immature DC express a unique repertoire of inflammatory chemokine receptors
(e.g., CCR1, CCR2, CCR5, CCR6) that are responsible for the recruitment of
immature DC, or their precursors, to the inflamed tissues [8, 20]. These receptors
bind a pattern of ‘inflammatory’ chemokines, including CCL2, CCL3, CCL4, CCL5
and CCL20. DC also express a wide variety of receptors for chemotactic agonists
different from chemokines (Fig. 2). These include receptors for bacterial compo-
nents, bioactive lipids and for signals of ‘tissue danger’. These chemotactic stimuli
are rapidly produced (within minutes) at the site of inflammation and represent an
early signal for the recruitment of DC, or their precursors, that can precede
chemokines action.

For instance, myeloid immature DC, but not mature DC, express functional
receptors for formylated peptides (fMLP) and for chemotactic components of the
complement cascade (i.e., C5a) [83]. The formyl peptide receptor family includes
multiple proteins, two of them FPR and FPRL2 were found to be expressed by
immature DC [84]. FPR is the fMLP receptor, whereas FPRL2 is activated by the
WKYMVm hexapeptide and F2L, a highly conserved acetylated 21-amino acid pep-
tide derived from the cleavage of the N terminus of the intracellular heme-binding
protein (HBP) [85, 86]. DC express functional receptors for platelet-activating fac-
tor (PAF), a bioactive phospholipid that derives from the activation of phospholi-
pase A2 [87, 88]. PAF plays a crucial role in the retention of DC in peripheral tis-
sues, and may thus be relevant in the accumulation of DC observed at pathological
sites, such as in atherosclerotic plaques [88].

Recent work has also shown that DC may have a pivotal function in the induc-
tion of autoimmunity [89]. Histidyl-(HisRS) and asparaginyl-(AsnRS) tRNA syn-
thases, two cytoplasmic proteins involved in protein synthesis that function as
autoantigens in myositis, were shown to induce the migration of immature DC
through the interaction with CCR5 [90]. Furthermore, S-antigen and the interpho-
toreceptor retinoid binding protein (IRBP), two self antigens involved in autoim-
mune uveitis, were shown to bind and activate CXCR3 and CXCR5 on immature
DC [91]. Therefore, self antigens may promote autoimmunity also through the
recruitment of APC at sites of tissue injury. In systemic lupus erythematosus, a sus-
tained production of IFN-α represents the ‘cytokine signature’ of the disease [92,
93], and supports the pivotal role played by the P-DC/IFN-producing cells in this
autoimmune disorder [94]. Circulating immunocomplexes containing unmethylated
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CpG motifs trigger IFN-α release from P-DC [95, 96] through the binding to TLR9
and CD32 [97]. Furthermore, apoptotic cells containing hypomethylated CpG DNA
might be recognized and taken up by P-DC, using the scavenger receptor CD36 [45,
98, 99].

A dramatic change in the repertoire of chemokine receptors is promoted by DC
activation. This change is functional for the migration of DC from the periphery to
the draining lymph nodes. The signals that promote this process include a variety of
maturation factors, such as IL-1, TNF and LPS [100–102]. DC activation is associ-
ated with the acquisition of a mature phenotype comprising an up-regulation of cos-
timulatory and MHC molecules. Activation of DC is also associated with down-reg-
ulation of inflammatory chemokine receptors and the de novo expression of CCR7,
the receptor for CCL19 and CCL21, two chemokines that are expressed at the lumi-
nal side of high endothelial cells and in the T cell-rich areas of secondary lymphoid
organs, like tonsils, spleen and lymph nodes [101, 103, 104]. The crucial role of
CCR7 and its ligands is documented in vivo in mice deficient for these proteins [80,
105]. CCR7 expression by DC is also required also for the entry of DC into lym-
phatic vessels at peripheral sites both in steady state and inflammatory conditions
[106, 107]. During inflammation, the entry of DC into lymphatic vessels is boosted
by the up-regulation of CCL21 on lymphatic endothelial cells. Therefore, inflam-
matory stimuli not only promote the recruitment of immature DC into tissues, but
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Figure 2
Chemokine receptor distribution in circulating M-DC and P-DC
Functional receptors for DC subsets. CXCR3 in P-DC is active in synergism with CXCR4 and
when engaged by substrate-bound ligands. CCR7 is expressed at low levels also by circulat-
ing immature P-DC, but it becomes active only after DC maturation.



also initiate their maturation process and boost the recruitment of maturing DC into
lymphatics [107]. The relevance of chemotactic receptors in DC migration in vivo
has been clearly documented in mice lacking the gamma isoform of phosphoinosi-
tide-3 kinase (PI3Kγ) [79]. PI3Kγ is located downstream of seven-transmembrane
chemotactic receptors and plays a non-redundant role in cell migration in response
to chemotactic agonists [108]. DC generated from PI3Kγ-null mice show a profound
defect in the migration in response to both inflammatory and constitutive
chemokines. A defect of DC migration was also observed in vivo in PI3Kγ –/– mice,
and most importantly, this defect was associated with a defective ability of PI3Kγ –/–

mice to generate a specific immune response [79].

Interaction of DC with endothelial cell barriers

Migration is a multistep process that involves the adhesion of DC with endothelial
cells and the interaction with physical obstacles, such as basement membranes and
collagen meshwork. Subsequently, DC leave peripheral tissues to migrate into sec-
ondary lymphoid organs through the lymphatics [109]. As mentioned above, CCR7
expression of maturing DC is required for their efficient entering into lymphatic ves-
sels [107]. In addition, a recent study proposed that CCR8 and its cognate ligand
CCL1 are involved in the emigration of mouse monocyte-derived DC from the skin
[110].

Circulating DC first need to tether to endothelial cells through the interaction of
E- and P-selectins with their respective ligands [111]. Firm adhesion between DC
and endothelial cells is dependent on the engagement of chemotactic receptors and
subsequent integrin activation on DC [112–114]. In vitro, DC express CD31, the b2
integrins LFA-1, Mac-1 and p150,95, the β1 integrins VLA-4 and VLA-5 that medi-
ate their binding to both resting and activated endothelial cells and to endothelial
cell-derived extracellular matrix [113]. Transmigration of DC across an endothelial
cell monolayer, unlike adhesion, involves the engagement of CD31. Activation of
endothelial cells by oxidized low-density lipoprotein, TNF-α, or hypoxia strongly
increases DC adhesion and transmigration [113, 115]. Of interest, endothelial cell
apoptosis also markedly enhance DC adhesion [116]. In vivo, mice defective in β2
integrin function [117] and α6 integrin [118] showed a reduced ability in the migra-
tion of cutaneous DC to the draining lymph nodes. An accumulation of DC was
reported in atherosclerotic areas [119] and in vascular regions prone to develop ath-
erosclerosis [120, 121]. Furthermore, modulation of the endothelial nitric oxide
synthase (NOS) is involved in DC-endothelial cell interaction [122]. Release of NO
by activated endothelial cells inhibits DC adhesion and transmigration, whereas
inhibition of NOS increases DC-endothelial cell interaction [115]. This evidence
provides new insight into the DC-endothelial cell interaction, which plays an emerg-
ing role in inflammation and atherogenesis.
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Recent work has outlined a crucial role for junctional adhesion molecule A
(JAM-A) in DC-endothelial cell interactions. JAM-A is a 32-kDa transmembrane
glycoprotein, which belongs to an immunoglobulin superfamily of proteins
expressed at the intercellular junctions of epithelial and endothelial cells in close
proximity to the tight junction components [123, 124]. The extracellular domain of
JAM-A binds several ligands including JAM-A itself [125, 126], the leukocyte inte-
grin αLβ2 [127] and the reovirus protein σ-1 [128]. Being localized at tight junc-
tions, JAM-A may have a role in binding leukocytes and in directing their transmi-
gration through endothelial junctions, both by homophilic binding and by linking
integrin αLβ2 [127]. Recent work as shown that JAM-A is involved in DC transmi-
gration across lymphatic endothelial cells. JAM-A–/– mice showed increased local-
ization of skin DC to lymph nodes, and an exaggerated response in a contact hyper-
sensitivity model, which directly related to an increased migration of DC [129]. No
difference in DC migration across blood endothelial cells was observed. One possi-
ble reason for the different DC response across lymphatic and blood endothelia may
be ascribed to the fact that lymphatics present weak intercellular junctions with a
specific molecular organization, compared to blood vessels [130, 131].

Selective recruitment of DC subsets

Blood DC includes two main subsets, M- and P-DC. The expression of chemokine
receptors on blood M-DC and P-DC is, in general, fairly similar [132]. Both subsets
express relatively high levels of CC chemokine receptor CCR2 and CXCR4. Where-
as CCR1, CCR3, CCR4, CCR6, CXCR1, CXCR2, and CXCR5 are very weakly, or
not expressed, on both circulating M-DC and P-DC. Conversely, CCR5 and CXCR3
expression is clearly divergent in the two subsets, being low on blood M-DC, but high
on P-DC [132, 133] (Fig. 2). In contrast with the overall similar pattern of chemokine
receptor expression, circulating M-DC and P-DC exhibit a profound difference in
their capacity to migrate in response to chemokines, with CXCL12 being the only
chemokine active in a classic chemotaxis assay [132] or in transmigration assays
across an endothelial cell monolayer [134]. In classic chemotaxis assays, the ligands
of CXCR3, i.e., CXCL9, CXCL10 and CXCL11, are inactive in inducing P-DC
migration, but can promote P-DC migration in response to CXCL12 [135, 136].

DC subsets also differ for their ability to interact with endothelial cells, in vitro.
M-DC were shown to vigorously migrate across endothelium in the absence of any
chemotactic stimuli, whereas spontaneous migration of P-DC was limited [134]. In
contrast, the interaction with an endothelial cell monolayer greatly favored trans-
migration of P-DC in response to CXCL1 and CCL5 [134], ChemR23 (see below)
[30] and in response to CXCR3 ligands [133].

P-DC are normally absent from peripheral tissues and they are believed to
migrate constitutively from the blood into lymph nodes through HEV [21-23].
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This migration is mediated by L-selectin and is increased by an E-selectin-depen-
dent mechanism when lymph nodes are exposed to inflammatory conditions [18,
23, 137]. Accordingly, P-DC express high levels of CD62 ligand and the HECA-
452+ isoform of P-selectin glycoprotein ligand-1 (PSGL1), the counter ligands of
P- and E-selectins [21, 47, 133]. Recruitment of P-DC to non-lymphoid tissues is
observed in some pathological conditions, such as autoimmune diseases (i.e.,
lupus erythematosus disease, psoriasis and rheumatoid arthritis) [19, 29, 138],
allergic diseases (i.e., contact dermatitis and in nasal mucosa polyps) [139] and in
tumors [34, 140, 141]. However, the mechanisms leading to the recruitment of P-
DC to inflammatory sites remain unresolved. Recently, chemerin, a new chemo-
tactic factor was proposed as a key signal for the recruitment of P-DC into patho-
logical tissues [30]. Chemerin is a novel chemotactic protein identified as the nat-
ural ligand of ChemR23, a previously orphan G protein-coupled receptor
expressed by immature DC and macrophages [142]. Chemerin is expressed by
many tissues, including spleen and lymph nodes, and is secreted as prochemerin,
a poorly active precursor protein. Extracellular proteases involved in the coagu-
lation cascade [143] or released by leukocytes convert prochemerin into a full
agonist of ChemR23 by proteolytic removal of the last six amino acids [144].
ChemR23 is expressed by blood P-DC, and chemerin was found active in induc-
ing their transmigration across an endothelial cell monolayer. In vivo, ChemR23
has been shown to be expressed by P-DC localized in reactive lymph nodes and in
skin lesions of lupus erythematosus patients. Of note, chemerin was selectively
expressed by HEV in lymph nodes and by dermal blood vessels in lupus skin
lesions. These results strongly suggest that the ChemR23/chemerin axis is likely to
play a key role in regulating the trafficking of P-DC to lymph nodes and to patho-
logical tissues [30].

Concluding remarks

DC are professional APC. To accomplish their biological functions, they need to go
through a complex pattern of migration, which includes their localization to both
peripheral non-lymphoid tissues and secondary lymphoid organs. In the absence of
correct tissue localization, DC fail to promote proper immune responses. DC traf-
ficking includes the interaction with both blood and lymphatic endothelium and the
response to chemotactic signals. In the past few years many chemokines have been
reported to regulate DC migration in vitro and in vivo; however, more recent find-
ings strongly support the role of a considerable array of non-chemokine chemotac-
tic signals and adhesion molecules in this complex process. A better understanding
of the signals involved in the migration of DC subsets in vivo constitutes a valuable
basis for the development of new strategies for the control of DC migration and
function under pathological conditions.
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Introduction

Natural killer (NK) cells belong to a distinct lineage of lymphocytes that play an
important role in the early phase of immune responses against certain microbial
pathogens by exhibiting cytotoxic functions and secreting a number of cytokines
and chemokines.

NK cells develop from a common lymphoid precursor resident in the bone mar-
row (BM) that is considered the main site of their generation. The BM microenvi-
ronment provides a rich source of cytokines and growth factors and allows an inti-
mate contact between developing NK cells and stromal cells, which is required for
their full maturation [1]. However, final maturation of BM-derived NK cell precur-
sors has been suggested to occur also at the periphery [2].

Mature NK cells mainly circulate in the peripheral blood, but are also resident
in several lymphoid and non-lymphoid organs such as spleen, tonsils, liver, lungs,
intestine and uterine decidua. In addition, homing to lymph nodes of a particular
subset of activated NK cells has been described both in human and mouse [3, 4].

During viral infections, inflammation, tumor growth and invasion, NK cells are
rapidly recruited from the blood and accumulate in the parenchyma of injured
organs [1, 5, 6], where activated NK cells can kill target cells and release inflam-
matory cytokines and chemokines, thus participating in the recruitment and activa-
tion of other leukocytes and in the modulation of dendritic cell (DC) function.

Unlike B cells and T cells that express a single antigen-specific receptor, NK cells
are endowed with a multiple cell surface receptor system encoded by genes that do
not undergo recombination or sequence diversification. This complex receptor sys-
tem is acquired during NK cell development, and consists of both activating and
inhibitory receptors [7, 8].

The best studied among the activating receptors is the low-affinity Fc-receptor γ
IIIA (CD16) that is responsible for antibody-dependent cellular cytotoxicity
(ADCC) and allows NK cells to participate in the elimination of antibody-coated
target cells [1]. Among the receptors capable of triggering natural killing, recent evi-
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dence underscores the relevance of the C-type lectin family NKG2D receptor that
recognizes the MHC class I-related A and B proteins (MICA and MICB) and the
members of a family of proteins named UL16-binding proteins (ULBP) [9]. These
ligands are mainly expressed on the surface of tumor cells of different histotypes,
and infected or stressed cells, and are induced in response to DNA damage [10].
Other activating receptors, i.e., NKp46, NKp44, and NKp30, are Ig-like molecules
and belong to the natural cytotoxicity receptor family, but their ligands are still
unidentified [11].

In addition, NK cells express a number of receptors acting as activating or cos-
timulatory molecules such as CD2, CD244 (2B4), NKp80, β1 and β2 integrins and
DNAM-1 (CD226). Interestingly, DNAM-1 is associated with the β2 integrin LFA-
1 and binds to the poliovirus receptor (PVR, CD155) and the nectin-2 (CD112),
two members of the nectin family involved in the regulation of cell-cell interaction
and leukocyte extravasation [12, 13].

NK cell functions are tightly regulated by inhibitory receptors that specifically
interact with MHC class I antigens. In the human, they belong to two distinct
groups: the killer cell Ig-like receptor (KIR) family that comprise molecules binding
to groups of human leukocyte antigen (HLA)-A, -B, -C alleles, and the C-type lectin
receptors (i.e., CD94/NKG2A) specific for the widely expressed non-classic HLA-
class I molecule, HLA-E. Both receptor families include activating counterparts with
similar specificity, but different ligand affinity. The functional role of these activat-
ing receptors as well as the identity of their ligands are at present, quite obscure.

Based on the receptor complexity, NK cell functions are thus the result of con-
comitant engagement of various activating and inhibitory receptors by the particu-
lar set of ligands on target cells. However, in most instances the inhibitory signals
override the triggering ones [14].

All the receptors expressed by NK cells are not unique to this cell type, but are
also present on cells of other lineages such as T cells or myeloid cells. The expres-
sion on NK cells is highly regulated, and some receptors are oligoclonally distrib-
uted or expressed on subsets of NK cells. Unlike peripheral blood human NK cells,
some tissue-resident NK cells do not express CD16, but show high levels the NCAM
adhesion molecule, CD56; in addition, CD16 and CD56 receptors can be expressed
at different density on circulating blood NK cells.

Based on the receptor repertoire and surface receptor levels, phenotypically dis-
tinct NK cell populations have been identified, and suggested to represent special-
ized subsets capable of performing different functions and endowed with distinct
migratory properties. Two major subsets of human peripheral blood NK cells have
been described: the majority (about 90%) are CD56lowCD16high, whereas about
10% of NK cells are CD56highCD16low. It has been proposed that CD56high NK cells
have a unique functional role in the innate immune response as primary source of
NK cell-derived immunoregulatory cytokines, whereas the CD56lowCD16high subset
represents the principal cytotoxic population [15].
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It is still matter of debate as to whether these different NK cell populations rep-
resent functionally distinct subsets of mature NK cells, or whether CD56high NK
cells are terminally differentiated cells indistinguishable from mature NK cells
recently activated in response to cytokines such as IL-12 [16].

NK cell adhesion molecules and chemokine receptors

The ability of leukocytes to traffic coordinately throughout the body is an essential
requirement for the maintenance of immunosurveillance. NK cell migration across
endothelium, as for other leukocytes, is a spatially and temporally integrated multi-
step process regulated by a plethora of chemoattractants and adhesive molecules
belonging to the selectin, integrin, and Ig families, as well as chemokines [17, 18].

Among adhesion molecules, both selectins and integrins contribute to the initial
leukocyte tethering and rolling along vessel endothelium, while firm adhesion of the
leukocyte to vascular endothelium and subsequent diapedesis into the underlying
extravascular tissue is mainly mediate by integrins. The various steps of migration
are tightly regulated; in fact, for migration to be effective, adhesion receptors must
undergo cycles of attachment and detachment from their endothelial ligands.

Chemokines are a superfamily of inflammatory mediators that properly guide
leukocyte recruitment and positioning into healthy or diseased tissues by interacting
with seven-transmembrane-domain receptors and initiating complex signaling
events that govern leukocyte migration, not only by eliciting a chemotactic response
but also through a dynamic regulation of integrin adhesiveness for endothelial and
extracellular matrix ligands [19–21]. Integrins can also regulate cell migration by
initiating similar intracellular signal transduction pathways [22, 23].

Adhesion molecules

In regard to selectin receptor family, human NK cells express L-selectin (CD62L), a
molecule involved in the initial adhesion of leukocytes to peripheral lymph node
high endothelial venules (HEV) [24, 25]. L-selectin has been found to be uniquely
expressed on the CD56high subset of peripheral blood human NK cells at a density
higher than that of all other peripheral blood leukocytes, including CD56low NK
cells. NK cell activation results in modulation of L-selectin expression depending on
the stimulus: phorbol esters, IL-2, IL-15, and TGF-β down-regulate L-selectin on
CD56high NK cell subset, whereas increased levels can be observed on both NK cell
subsets in response to IL-12, IL-10, and IFN-α. In accordance with these observa-
tions, CD56high NK cells bind to the physiological L-selectin ligands on peripheral
lymph node HEVs with higher efficiency as compared to the CD56low subpopula-
tion, thus resulting in a selective advantage of this population in extravasation
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across HEV [26]. There is also evidence from Uksila et al. [25] showing that a por-
tion of CD16+ NK cells express L-selectin, and that IL-2 treatment diminishes the
expression of this molecule and concomitantly increases the levels of α4 integrin and
CD44, two major receptors involved in lymphocyte binding to mucosal HEV. Thus,
IL-2 activation of NK cells decreases adherence to peripheral LN HEV, while
increasing adherence to mucosal HEV.

NK cells can also express selectin ligands such as the sialyl stage-specific embry-
onic antigen 1, sialyl-Lewisx (sLex) ligand and P-selectin glycoprotein ligand-1
(PSGL-1), which can bind to E- and P-selectin under static and flow conditions; this
binding is up-regulated by IL-12 [27–30]. There is also evidence indicating that the
sulfated lactosamine epitope expressed selectively on CD56lowCD16+ NK cells,
PEN5, is a carbohydrate decoration of PSGL-1 that confers to PSGL-1 the ability of
binding to L-selectin [31]. These results suggest that PEN5-L-selectin pair may pro-
mote cell-cell interactions and amplify the accumulation of NK cells at site of
inflammation.

On the NK cell surface, another carbohydrate modification of PSGL-1, CLA has
been also found, which is a marker for tissue infiltrating leukocytes. Notably,
expression of PEN5 and CLA on NK cells is mutually exclusive, suggesting that dis-
tinct NK cell subsets exhibit different trafficking properties [31].

In regard to integrins, human NK cells express various members of the β1, β2 and
β7 families. Among the β1 integrins, freshly isolated peripheral blood NK cells
express α5β1 and α4β1 as fibronectin and VCAM-1 receptors, and α6β1 as laminin
receptor [32]. The pattern of β1 integrin expression changes upon NK cell activa-
tion, in that activated NK cells acquire α1β1 and α2β1 integrins, and down-regulate
the expression of α6β1 [24, 33–35]. α4β1-VCAM-1 adhesive pathway is involved in
the adhesion and migration of resting or IL-2-activated NK cells across IL-1β-, IFN-
γ-, TNF-α-activated, but not resting, endothelial cells. Integrin-mediated NK cell
interaction with endothelial cells is characterized by a peculiar structural feature: the
formation of podosomes that represent dot-shaped protrusions of the cellular ven-
tral membrane provided with adhesive properties and formed by particular
cytoskeletal architecture [36]. Recent evidence indicates that the interaction of α4β1
integrin with VCAM-1 on porcine endothelial cells is also required for both rolling
and firm adhesion of human NK cells to porcine endothelial cells [37].

α4 integrin subunit can also associate with another β chain, the β7, to give a func-
tionally distinct integrin receptor capable of binding the mucosal vascular addressin
MAdCAM-1. α4β7 is expressed on NK cells and mediates NK cell binding to mucos-
al HEV [25, 38, 39]. Functional evidences indicate, however, that NK cells express-
ing both α4β7 and α4β1 bind well to VCAM-1 but poorly to MAdCAM-1, suggest-
ing that regulation of MAdCAM-1 versus VCAM-1 expression might critically con-
trol the recruitment of NK cell subsets to distinct tissues [40].

NK cells express all members of the β2 integrin family (CD11a–d/CD18), which
are leukocyte-associated adhesion molecules mainly involved in the regulation of
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cell-cell interactions [41]. The leukocyte function-associated antigen 1 (CD11a/
CD18 also known as LFA-1) is the receptor for the intercellular adhesion molecules
(ICAM-1, 2, 3), and plays a crucial role in mediating NK cell adhesion to target cells
as well as NK cell binding and transmigration across endothelial cells [36]. The
expression and function of β2 integrins on NK cells is highly regulated. In this
regard, it has been shown that the levels of LFA-1 are higher on the CD56low sub-
set compared with the CD56high, while αMβ2 (CD11b/CD18 also known as Mac-1)
and αXβ2 (CD11c/CD18) integrins are expressed on all and one-half of NK cell pop-
ulation, respectively [25, 26]. NK cell activation by cytokines, such as IL-2 or IL-12,
results in up-regulation of LFA-1 expression and function, while CD11b and CD11c
are down-regulated [24, 42] (Tab. 1).

The differential expression of adhesion molecules on NK cells together with
quantitative and qualitative regulation of integrin expression and function occurring
following NK cell activation, can be responsible for the recruitment of specialized
NK cell subsets during inflammation.

Chemokine receptors and chemokine-induced in vitro NK cell migration

A large body of evidence indicates that NK cells can express several receptors for
CXC, CC, C and CX3C chemokines, with a great heterogeneity in the chemokine
receptor repertoire among different NK cell populations and between resting versus
activated NK cells.

With respect to the CXCR and CX3CR families, it has been previously reported
that human peripheral blood NK cells express both CXCR1 and CXCR2 as CXCL8
(IL-8) receptor [43–45] and CX3CR1 as CX3CL1 (fractalkine) receptor [46, 47].
These observations have been further extended by Campbell and colleagues [48]
who provided the first evidence that distinct (CD56+CD16+ and CD56+CD16–)
peripheral blood NK cell subsets have a unique repertoire of chemokine receptors.
CD16+ NK cells uniformly express high levels of CXCR1 and CX3CR1, low levels
of CXCR2 and CXCR3 and no detectable levels of CXCR5. By contrast, CD16–

NK cells express high levels of CXCR3, low levels of CX3CR1, and are negative for
CXCR1, CXCR2 and CXCR5; moreover, both NK cell subsets express high levels
of CXCR4, the receptor for CXCL12 (SDF-1α/β). With respect to the CC
chemokine receptor family, these authors found that the majority of NK cells lack
the expression of CCR1-7 and CCR9, and only the CD16– NK cell subset express-
es high levels of CCR5 and CCR7, the latter molecule mainly involved in the hom-
ing of lymphocytes to secondary lymphoid organs [48].

Consistent with this expression profile, CXCL8 (IL-8) and soluble CX3CL1
(fractalkine) preferentially attract the CD16+ NK cell subset which can also respond
moderately to the CXCR3 ligands, CXCL11 (I-TAC) and CXCL10 (IP-10); by con-
trast, CD16– NK cells respond more dramatically to the CCR7 ligands, CCL19
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(ELC/MIP-3β) and CCL21 (SLC), as well as to the CXCR3 ligands, CXCL11 (I-
TAC) and CXCL10 (IP-10), and poorly to a CCR2 ligand, CCL2 (MCP-1), or
CCR5 ligands, CCL4 (MIP-1β) and CCL5 (RANTES). Both NK cell subsets strong-
ly migrate in response to the ligand for CXCR4, CXCL12 (SDF-1α/β) [48, 49].

Moreover, Kim et al. [50] have found that CD56high CD16– cells respond more
than CD56low CD16+ cells to CCL21 (SLC) and CCL19 (ELC) when used at high
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Table 1 - Adhesion molecules and chemokine receptor expression on peripheral blood NK
cell subsets

CD56lowCD16high CD56highCD16low

CD62L (L-selectin) +a ++b

PSGL-1/PEN5 + –c

PSGL-1/CLA – +
CD49dCD29 (α4β1) + +
CD49eCD29 (α5β1) + +
CD49fCD29 (α6β1) + +
CD49dβ7 (α4β7) +/–d +
CD11aCD18 (αLβ2) ++ +
CD11bCD18 (αMβ2) + +
CD11cCD18 (αXβ2) +/– +/–

CXCR1 ++ –
CXCR2 + –
CXCR3 + ++
CXCR4 ++ ++
CCR1 – –
CCR2 – –
CCR3 – –
CCR4 – –
CCR5 – ++
CCR6 – –
CCR7 – ++
CCR9 – –
CX3CR1 ++ +

aindicates intermediate levels of expression
bindicates high levels of expression
cindicates undetectable levels of expression
dindicates low levels of expression



concentrations, although they observed that the two NK cell subsets express equal
levels of CCR7mRNA.

As above mentioned, the expression of chemokine receptors on NK cells may be
modulated upon cytokine stimulation. A significant decrease of CXCR3 expression
on NK cells treated for 6 or 24 h with IL-2 and IL-12 alone or in combination has
been reported, and the decreased expression was associated with reduced chemo-
taxis to CXCL10 (IP-10). The same treatment did not affect the expression of other
chemokine receptors such as CCR1, CCR2 or CXCR4 [51]. However, previous
reports have shown that short-term exposure of freshly isolated NK cells to IL-2 can
positively modulate CCR2 mRNA expression [52], and long-term (8–10 days) stim-
ulation of NK cells with IL-2 results in increased expression of CCR1, CCR2,
CCR4, CCR5 and CCR8 [53]. In agreement with these observations, IL-2-activat-
ed NK cells can migrate in response to many CC chemokines, such as CCL2 (MCP-
1), CCL8 (MCP-2), CCL7 (MCP-3), CCL3 (MIP-1α), CCL4 (MIP-1β), CCL5
(RANTES), and CCL22 (MDC) [53–56].

A recent report indicates that NK cell treatment with IL-18, differently from IL-
2, results in selective induction of CCR7 expression on the CD56low NK cell subset
but not affects CCR7 expression on the CD56high subset; increased expression of
CCR7 on CD56low NK cell subset is associated with reduced levels of CD16 and
enhanced capability to migrate in response to the lymph node-associated chemokine
CCL21 (SLC) [57] (Tab. 1).

Signaling events controlling chemokine-induced integrin-supported NK
cell migration

Despite the increasing evidence on the prominent role of chemokines and integrins
in the dynamic regulation of leukocyte adhesion and migration, the signaling path-
ways responsible for the integrin-supported leukocyte migration elicited by
chemokines are not yet completely defined. The propagation of the migratory sig-
nals depends on a complex interplay among molecules that regulate actin, myosin
and other cytoskeleton components, and results in the formation of protrusive struc-
tures at the front of migrating cell and retraction at cell rear [58, 59].

Thus, NK cell migration, as for all leukocytes, depends on a highly integrated
signaling network culminating in coordinate activation and functional cooperation
between different pathways triggered by integrin and chemokine receptors.

Activation of protein tyrosine kinases (PTK) is a prerequisite event for leukocyte
migration, controlling both integrin adhesiveness and chemotactic response. The in-
volvement of tyrosine kinases belonging to the Src and Syk/Zap families in cell migra-
tion have been largely documented for T lymphocytes and cells of myeloid lineage.

In regard to NK cells, it has been reported that LFA-1 engagement results in both
Src and Syk kinase activation but these events have been associated with the cyto-

101

Migration of NK cells



toxic function rather than with the migratory ability of NK cells [60, 61]. Using
PTK inhibitors such as the general tyrosine kinase inhibitor herbimycin A, the spe-
cific Lck inhibitor damnacanthal, and the Syk inhibitor piceatannol, a role for the
Src kinase Lck but not for Syk in CXCL12 (SDF-1α/β)-induced NK cell chemotaxis
has been described. In accordance with these results, NK cell stimulation with
CXCL12 (SDF-1α) leads to tyrosine phosphorylation and activation of Lck [62].

More recently, a role for the focal adhesion kinases as cytoplasmic mediators of
motility events in multiple cell types has been reported. The focal adhesion kinase
family comprises two members that share an amino acid identity of almost 50%, the
p125 focal adhesion kinase (p125Fak) and the proline-rich tyrosine kinase 2 (Pyk-
2) also known as cell adhesion kinase-β (CAK-β), or related adhesion focal tyrosine
kinase (RAFTK). They are non-receptor PTK capable of coupling several receptors
including integrins and chemokine receptors, with a variety of downstream effec-
tors, such as small GTP-binding proteins belonging to the Ras and Rho families,
MAPK, PKC and inositol phosphate metabolism [63, 64].

The expression of Fak family members on NK is controversial. Rabinowich and
colleagues [65] have reported that p125Fak is expressed on NK cells and that β1
integrin engagement results in activation of this kinase and its association with Fyn
and Zap-70 PTK. By contrast, we demonstrated that human peripheral blood NK
cells express Pyk-2 that is constitutively associated with the cytoskeletal protein
paxillin, but not p125 FAK. Engagement of β1 or β2 integrins on human NK cells
results in rapid tyrosine phosphorylation of both Pyk-2 and paxillin. Moreover, we
demonstrated that Pyk-2 acts as an upstream mediator of β1 and β2 integrin-trig-
gered MAPK cascades, and controls the development of NK cell-mediated natural
cytotoxicity [66–68]. More recently, we have reported that NK cell binding to
endothelium activates Pyk-2 and the small GTP-binding protein Rac, a key regula-
tor of actin cytoskeleton dynamics. Both Pyk-2 and Rac activation are coupled to
integrins and chemokine receptors. Using recombinant vaccinia viruses encoding
dominant negative mutants of Pyk-2 and Rac, we demonstrated that both Pyk-2 and
Rac are functionally involved in chemokine-induced NK cell migration through
endothelium or ICAM-1 or VCAM-1 adhesive proteins. We also found that Pyk-2
is associated with the Rac guanine nucleotide exchange factor Vav, which undergoes
tyrosine phosphorylation upon integrin triggering, but not with PIX, another
exchange factor for Rac that is associated with paxillin through p95 PKL. Collec-
tively, these results indicate that Pyk-2 acts as a receptor-proximal link between inte-
grin and chemokine receptor signaling, and the Pyk-2/Rac pathway plays a pivotal
role in the control of NK cell transendothelial migration [68]. These results are con-
sistent with a report by Sancho et al. [69] indicating that Pyk-2 can colocalize with
the microtubule-organizing center at the trailing edge of migrating NK cells and in
the area of the NK cell membrane that faces target cells.

PI3K and its products are other signaling intermediates that play a crucial role
in cell migration. In this regard, evidence is available on the involvement of PI3K on
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chemokine-mediated NK cell chemotaxis. In particular, it has been reported that
wortmannin as well as antibody to PI3K-γ, but not PI3K-α, can inhibit C, CC, and
CXC chemokine-induced NK cell chemotaxis, suggesting that PI3K IB plays a cru-
cial role in chemokine-induced activation of NK cells. In agreement with these
results, recruitment of PI3K-γ into NK cell membranes in response to RANTES
stimulation has been reported [70].

In vivo NK cell migration

Although NK cells express several adhesion molecules and chemotactic receptors
that are involved in the control of NK cell migration across endothelium, and in
their correct positioning into different lymphoid and non lymphoid organs, very lit-
tle is known about the molecular events that govern NK cell trafficking in vivo
under physiological or pathological conditions.

It has been reported that during murine cytomegalovirus infection, NK cells
migrate through a CCL3 (MIP1-α)-dependent mechanism to the site of liver infec-
tion, where they contribute to antiviral defense [71]. The involvement of CCL3
(MIP1-α) in the recruitment of NK cells in the liver is further supported by the
demonstration that CCL3 (MIP1-α)-deficient mice show decreased resistance to
cytomegalovirus infection that is associated with a dramatic reduction of NK cell
accumulation and IFN-γ production in the liver [72].

A role for CCL3 (MIP1-α) in recruitment of NK cells has been also demonstrat-
ed by intrapulmonary transient transgenic expression of this chemokine that result-
ed in increased Klebsiella pneumonia lung clearance associated with NK cell activa-
tion and accumulation in this organ [73]. Accumulation of NK cells in the lungs has
also been observed in mice with invasive aspergillosis. In this model, however, NK
cell recruitment was mediated by CCL2 (MCP-1), as neutralization of this
chemokine resulted in reduced NK cell numbers in the lungs and impaired clearance
of the pathogen from this organ [74]. Among CXC chemokines, CXCL10 (IP-10)
has been reported to promote innate defense mechanisms following coronavirus
infection in the central nervous system by recruiting and activating NK cells [75].
The involvement of CX3CL1 (fractalkine) in supporting NK cell migration in vivo
has been provided by the evidence that CX3CL1-transfected tumor cells exhibit a
reduced growth capability that is mediated by an increased recruitment of activated
NK cells [76, 77]. In addition, using an in vivo model of NK cell-mediated lung
tumor cell clearance and blocking antibodies against CX3CL1 or CX3CR1, it has
been demonstrated that decreased clearance of tumor cells following perturbation
of CX3CL1/CX3CR1 interaction is attributable to defective NK cell recruitment to
the lung [78].

Defective recruitment of NK cells has been described in mice deficient for
chemokine receptors. Using a model of in vivo pulmonary injury in CXCR3-defi-
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cient mice, Jiang et al. [79] have reported that NK cells fail to migrate to the lungs.
Using CXCR3-knockout mice, recruitment of NK cells in the lungs has also been
shown to participate to the pulmonary host defense against Bordetella bronchisep-
tica [80]. In addition, a specific defect of NK cell recruitment to pulmonary granu-
lomas has observed in CCR1-deficient mice [81]. Recently, using selective depletion
and adoptive transfer experiments, Martin-Fontecha et al. [4] have reported that
DC-induced recruitment of NK cells into lymph nodes occurs in a CXCR3-, but not
CCR7-dependent manner.

These data strongly support the in vivo relevance of number of chemokine recep-
tor-ligand interaction, including CX3CR1-CX3CL1, CXCR3-CXCL10/CXCL11
(IP-10/I-TAC), CCR5-CCL3/CCL4 (MIP-1α/β), CCR5-CCL5 (RANTES), shown to
mediate human NK cell chemotactic response.

Uterine NK cells

NK cells are the predominant lymphocyte population present in the uterus. Their
number increases drastically in the late secretory phase during the menstrual cycle
and early pregnancy of humans, and at the implantation site in rodents [82, 83].
They accumulate as single cells or aggregates around endometrial glands and vessels
playing a crucial role for the normal development of placenta and/or its vasculature
[84].

Uterine NK cells exhibit a particular transcriptional profile [85], but their origin
is still unknown. It is debated whether they are recruited from blood and/or arise
from an NK cell progenitors found in the uterus or recruited from other tissues.

The analysis of the molecules potentially involved in the control of NK cell accu-
mulation in the uterus has shown that first trimester human decidual NK cells,
which are characterized by high levels of CD56 but fail to express CD16 (CD56high

CD16–), express a distinct repertoire of adhesion molecules and chemokine recep-
tors as compared to their peripheral blood counterpart [82, 85, 86]. In particular,
they exhibit high levels of αEβ7, α1β1, αXβ2, αDβ2, whereas they do not express α6β1
laminin receptor. In addition, uterine NK cells also display the β5 integrin subunit
and selectively express high levels of tetraspan 5, CD151, and CD9 tetraspanins that
are constitutively associated with integrins and modulate integrin function [87].

In regard to chemokine receptors, first trimester human decidual NK cells
express higher levels of CCR1, CCR3, CXCR3, CXCR2, and lower levels of CCR7,
CXCR4, CX3CR1 as compared with CD56highCD16low peripheral blood NK cells
[88]. This receptor profile is consistent with evidence showing the ability of uterine
NK cells to migrate in response to CXCL9, CXCL10 and CXCL12 that have shown
to be produced by the trophoblast or by the endometrial cells [88–90].

Evidence so far available in the mouse models has not allowed the identification
of a particular chemokine receptor-ligand system involved in the control of uterine

104

Angela Gismondi and Angela Santoni



NK cell accumulation. Indeed, no changes in NK cell localization and activation
have been observed in mice genetically ablated for CCR2, CCR5, and MIP-1α or
mice doubly deleted for CCL3 (MIP-1α) and CCR5 [91]. This may be attributable
to the known redundancy of the chemokine system as well to differences in the
human versus mouse pregnancy.

By contrast, at day 11 of gestation at implantation sites, altered size and fre-
quency of uterine NK cells have been observed in mice either lacking adhesion mol-
ecules such as P-selectin or β7-integrin or treated with blocking monoclonal anti-
bodies against MAdCAM-1 or α4β7 integrin [92, 93]. Whether this finding is relat-
ed to the absence α4β7

+ leukocytes other than NK cells involved in uterine NK cell
differentiation/accumulation is presently unknown.

Conclusions

NK cells were initially thought to be endowed with a particular migratory pattern
and to mainly circulate in the blood. The recent findings reviewed here highlight
that NK cells can exhibit different predilictions for tissue compartments, i.e., lymph
nodes, inflamed tissues, etc., where they can play an important role as active par-
ticipants in directing DC maturation and T cell response polarization and/or as cyto-
toxic effector cells.

The mechanisms regulating tissue-selective NK cell homing and functional spe-
cialization are just starting to be unraveled, but the importance of tissue microenvi-
ronment is becoming increasingly clear. An example is given by decidual NK cells
whose differentiation, accumulation and functional program are under hormonal
influence.
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Immunopathology of lymphocyte trafficking



Introduction

The localization of lymphocytes to tissue during immune/inflammatory responses
involves a series of complex mechanisms, including activation of integrin binding,
adhesion molecule expression, and tissue-based chemokine production. The regula-
tion of specific molecules and the expression of certain receptors on lymphocytes
during the progression of disease determine the type of T lymphocytes, Th1 or Th2,
which migrate into the tissue. Although there have been studies that have outlined
tissue-specific expression of certain chemotactic molecules, a more logical view may
be that the type of immune/inflammatory response induced within the affected tis-
sue would dictate the mediators that are expressed. The trafficking of naive lym-
phocytes from the blood to lymph nodes is pivotal to the maintenance of effective
immune surveillance; however, deciphering the mechanisms involved in lymphocyte
recruitment during inflammation may be more pharmaceutically attractive for reg-
ulation of chronic debilitating diseases. Functional diversity of T cells has been
demonstrated by the observation that naive T lymphocytes are activated and differ-
entiate into Th0 type cells that produce different combinations of cytokines. Subse-
quently, these cells can further differentiate into either Th1 type cells (IL-2 and IFN)
or Th2 type cells (IL-4, IL-5, and IL-13) depending upon the cytokine environment
to which the Th0 cells are exposed [1, 2]. Over the years, it has become clear that
certain diseases are characterized by the T helper (Th) cytokine phenotype that is
produced. In particular, allergy and asthma responses have been identified as a
largely Th2-type disease [3, 4]. The following review outlines some of the recent
concepts that may dictate how and why certain Th lymphocyte subsets migrate into
inflamed tissues and what contributions other disease mediators provide to worsen
the disease process.
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Chemokine and chemokine receptor patterns during Th1- or Th2-type
responses

The migration of lymphocytes into tissues appears to be dependent upon the expres-
sion of specific chemokines during the progression of the inflammatory disease.
Chemokines are a family of small molecular weight cytokines that are important for
localization of particular leukocyte populations during immune/inflammatory
responses [5–7]. Chemokines are primarily divided into two main groups, CxC and
CC, based upon the juxtaposition of the first two-cysteine residues in their sequence
(Tab. 1). The responses induced by the chemokines are initiated via specific G pro-
tein-coupled receptors on the surface of cells. Although not entirely characterized, it
appears that there are no less than six different CxC family receptors and ten dif-
ferent CC family receptors. In the context of allergy, members of the CC subfamily
have been implicated as potential mediators of the inflammatory response through
their ability to induce migration of eosinophils, T cells and monocytes. In addition
to playing a prominent role in the localization of leukocytes to tissue sites, these
activating factors are also involved in important biological events, such as
eosinophil and mast cell degranulation, differentiation of Th lymphocyte pheno-
types, and regulation of antibody isotype switching. Thus, these molecules have
important functions in multiple phases of the developing immune response.

Some of the initial studies in chemokine biology outlined the role of early
response cytokines, such as TNF and IL-1, for the activation of chemokines [8].
These early studies reported that chemokines could be induced in nearly every cell
type. Subsequently, investigators have begun to define the association of certain
chemokine profiles with particular types or phases of immune responses. In fact, the
preferential expression of certain chemokines during immune responses likely dic-
tates their function [9–11]. For example, the CC chemokine family members, CCL3
and CCL5, are induced by IFN and TNF, but regulated by IL-4, and appear to be
closely associated with Th1-type responses. Likewise, the production of CxCR3 lig-
ands, CxCL9, CxCL10, and CxCL11, are specifically activated by IFN and may
have critical roles in enhancing Th1-type lymphocyte recruitment and activation.
Along with the preferential expression of chemokines during Th1-type responses,
there is also the preferential expression of the associated chemokine receptors on
Th1-type lymphocytes. A number of studies have shown the preferential expression
of CCR1 and CCR5 (which binds CCL3 and CCL5) as well as CxCR3 (which binds
CxCL9, CxCL10, and CxCL11) on Th1-type lymphocytes. Thus, the chemokine
expression during a Th1-type response correlates directly with the specificity of the
chemokine receptors that are expressed on Th1-type lymphocytes.

As there are chemokines associated with Th1-type responses, there also appears
to be certain chemokines that are closely associated with Th2-type responses [9, 12,
14]. An extensive amount of work was performed on CC chemokines, and particu-
lar members of this family are specifically activated by IL-4 and IL-13 [15–19]. The

116

Nicholas W. Lukacs and Matthew Schaller



CC chemokines that are preferentially up-regulated by Th2-, but not Th1-, type
cytokines include CCL1, CCL2, CCL11, CCL17, and CCL22. Interestingly, these
IL-4- and IL-13-induced chemokines bind to a single chemokine receptor (see Tab.
1), which is fairly unusual among chemokine family members that tend to have a
promiscuous binding pattern to multiple chemokine receptors. Studies have indicat-
ed that CCL2 is involved in allergen-induced T lymphocyte accumulation in the
lungs of sensitized mice, whereas CCL11 is most closely associated with eosinophil
accumulation during allergic responses. Thus, the Th2 activation pathway, which
has been associated with allergen-induced airway hyperreactivity, likely induces
preferential chemokine production that is associated with allergic cell recruitment.
This area will be of particular interest since studies have previously shown that these
Th2-associated chemokines play significant roles in allergen-induced airway inflam-
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Table 1- Chemokine receptors, their ligands and diseases

Chemokine receptor Ligands Disease association

CC chemokines
CCR1 CCL3, CCL5, CCL6, CCL7, viral and fungal disease

CCL14, CCL15
CCR2 CCL2, CCL7, CCL12 asthma, viral, autoimmune
CCR3 CCL5, CCL7, CCL11, CCL24, CCL26 asthma, parasitic
CCR4 CCL17, CCL22 asthma, sepsis
CCR5 CCL3, CCL4, CCL5 HIV, MS 
CCR6 CCL20 asthma, RA
CCR7 CCL19, CCL21 IPF, neoplasia, IBD
CCR8 CCL1 asthma, atopy
CCR9 CCL25 IBD
CCR10 CCL27 atopic dermatitis

CxC chemokines
CxCR1 CxCL1, CxCL6, CxCL8 sepsis, pneumonia, RA
CxCR2 CxCL2, CxCL3, CxCL5, CxCL6, sepsis, pneumonia, COPD

CxCL7, CxCL8
CxCR3 CxCL9, CxCL10, CxCL11 viral, autoimmune, transplant
CxCR4 CxCL12 HIV, asthma, metastasis
CxCR5 CxCL13 lymphoma
CxCR6 CxCL16 sarcoidosis, RA

MS, multiple sclerosis; RA, rheumatoid arthritis; IPF, idiopathic pulmonary fibrosis; IBD,
inflammatory bowel disease.



mation and airway hyperreactivity. Furthermore, analysis of in vitro-derived Th2-
type cells indicates preferential expression of CCR3 (CCL11), CCR4 (CCL17,
CCL22) and CCR8 (CCL1) [12, 20–23]. This receptor expression pattern correlates
well with the type of chemokines that are induced by Th2-type responses discussed
above. In addition to lymphocyte migration, there is also preferential chemokine
receptor expression on effector cells that migrate into the airways and can induce
damage, leading to airway hyperreactivity. Overall, the recruitment of multiple cell
populations into allergic tissue is mediated by a combination of preferential
chemokine production within the inflamed tissue and the receptors expressed on the
marginated leukocyte populations.

Preferential patterns dictate chemokines utilized during asthmatic disease

The above correlations continue as researchers examine chemokines expressed in
samples from asthmatic patient populations. Chemokines previously identified in
the airways of asthmatics include CCL5/RANTES, CCL11/eotaxin, MIP-1a/CCL3,
CCL7/MCP-1, CCL13/MCP-4, CCL24/Eot-2, CCL17/TARC, CCL22/MDC,
CCL28 and CxCL10. The importance of individual chemokines and chemokine
receptors in allergic airway inflammation has been investigated using knockout mice
sensitized and challenged with allergens including ovalbumin (OVA) and cockroach
allergen (CRA) or with infectious challenges including Aspergillus fumigatus
[24–36]. The preferential expression of these chemokines within the airways is
believed to regulate recruitment and activation of a range of leukocyte subtypes
including eosinophils and Th2 lymphocytes to the lungs.

CD4+ T cells recruited to the lungs following allergen challenge secrete addi-
tional Th2 cytokines such as IL-4 and IL-13, and these cytokines are known to mod-
ulate chemokine expression in the lungs, resulting in elevated levels of CCL11,
CCL13, CCL22, CCL1 and CCL17 via regulation of signal transducers and activa-
tors of transcription 6 (STAT6)-mediated transcription pathways [15, 37, 38]. The
chemokine receptors expressed on lymphocytes skewed toward a Th2 phenotype
correspond to the expression of ligands that have been implicated in the pathogen-
esis of allergic airway disease. Recent studies have begun to elucidate the role of
individual chemokine receptors in directing Th2-type cell trafficking. Lloyd et al.
determined that recruitment of these cells in the initial stages of an allergic response
is dependent on expression of CCR3 ligands, but that repeated antigen stimulation
results in the predominant use of CCR4 pathways possibly due to a progressive
increase in recruitment of CCR4+ cells [39]. Studies utilizing neutralizing CCR3
antibody or CCR3–/– mice have demonstrated that there is a significant defect in not
only eosinophil accumulation but also the induction of airway hyperreactivity that
may be related to T cell accumulation [40, 41]. CCR4 has also been detected on the
majority of Th2 cells found in endobronchial biopsies collected from asthmatic
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patients after allergen challenge, while <30% of the cells co-expressed CCR8 [12].
CCR3 expression was detected only on eosinophils. In these patients, CCL17 and
CCL22 expression was strongly up-regulated in the airway epithelial cells following
allergen challenge further indicating a key role for CCR4 in mediating T cell traf-
ficking to the airways. Although the authors were unable to detect elevated levels of
the CCR8 ligand CCL1, CCL17 has been shown to induce migration of CCR8
transfectants in addition to CCR4. As indicated above, CCR8 is expressed predom-
inantly on Th2 cells and a recent study in CCR8–/– mice showed that, while the
development of a peripheral Th2 response was normal, the response to a localized
allergen challenge in the lungs was altered [14]. Allergen-challenged CCR8–/– mice
exhibited reduced levels of Th2 cytokines in the lungs possibly due to an inability to
recruit Th2-type lymphocytes to the lungs. The resulting alterations in the immune
environment also led to attenuation of eosinophil recruitment. Although the
cytokines and eosinophil accumulation was altered in allergic airway responses, no
alteration in airway physiology was observed. This latter observation has been con-
firmed in two independent studies in different CCR8–/– mice [42, 43]. Other studies
have shown that CCR8+ CD4+ T cells are directly associated with IL-10 production
and appear to be phenotypically similar to T regulatory cells [44, 45]. Thus, these
cells may have a significant role in maintaining or skewing the immune response
toward a Th2 environment. It is clear that T cells play a critical role in modulating
the immune environment within the lungs, and strategies that exploit the role of
chemokines in Th2 cell recruitment may prove extremely beneficial in the develop-
ment of new treatments for asthma.

Other chemokine receptors have also been implicated in mediating Th2 lym-
phocyte accumulation in the lungs of mice. In addition to their presence on naïve
lymphocytes, receptors, such as CxCR4, CxCR5, CCR6 and CCR7, have now been
identified on T lymphocytes that are of memory/activated phenotype as well as
skewed helper cell populations [46–52]. These receptors may therefore have a role
in recruitment of lymphocytes to the airways of asthmatic patients and lead to exac-
erbation of disease. This notion can already be supported in the existing literature
where targeting CxCR4 or CCR6 have had a beneficial effect within models of aller-
gic airway responses. In the case of blocking CxCR4, studies show that there is a
beneficial effect regardless of whether the receptor or ligand (CxCL12) is blocked
[24, 53]. In contrast to the CxCR4 results, studies with CCR6–/– mice demonstrat-
ed an altered migration of CD4+ lymphocytes to the lung, suggesting that tissue-spe-
cific migration was altered [32, 54]. There may be multiple explanations for results
from the CxCR4 and CCR6 studies including interruption of normal trafficking
patterns of memory/activated lymphocytes to lymphoid organs or target tissue as
well as reduced pulmonary recruitment and activation of eosinophils that express
these receptors. Further studies with other homeostatic receptors indicate that
CCR7 expression on T cells in both human and mouse studies is also important for
development of asthmatic responses [55, 56].
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Role of dendritic cells for lymphocyte activation

Chemokines influence the immune response at multiple levels. The presentation of
foreign antigen to T cells is the initiating step of the adaptive immune response, and
a number of leukocytes are effective antigen-presenting cells (APC). The dendritic
cell (DC) is particularly indispensable in this regard, expressing high levels of MHC
class II on its surface [57]. Thus, it is not surprising that work has been undertaken
to identify chemokines that mediate the trafficking of these highly motile cells from
the bone marrow to non-lymphoidal tissues and, following encounter with antigen,
to regional lymph nodes. Although differential expression of chemokine receptors
during their maturation has not been fully characterized, mature DC express
detectable levels of CCR1, CCR2, CCR5 and CCR6, as well as CXCR1, CXCR2
and CXCR4, and the respective ligands for these receptors are effective chemoat-
tractants [6, 58–60]. In particular, immature DC express CCR6, which is down-reg-
ulated during the maturation process as the DC migrates to the lymph node to par-
ticipate in its APC function. Using CCR6-deficient mice, studies have demonstrated
defects in DC positioning in the gut mucosa as well as defects in DTH responses cen-
tered on T lymphocyte accumulation [61–63]. Thus, CCR6 has the potential to par-
ticipate in a vast range of immunological responses and, therefore, may not be seg-
regated to only a homeostatic function. Recent data using CCR6–/– mice during
allergen-induced airways disease demonstrated a defect in the accumulation of DC
subsets in the lungs of challenged animals [54]. These latter data, which suggest that
CCR6 is important for DC accumulation in the lungs during allergic responses, have
been supported by previous studies. CCR6 is preferentially displayed on myeloid
DC populations, and allergen challenge invokes an influx of circulating myeloid DC
into the lung [64]. As CCL20 has been shown to be produced by airway epithelial
cells [65, 66], CCR6 might be required for localization of DC subsets to the airway,
become activated, and acquire antigen for transport back to the draining lymph
node. Furthermore, there may be specific defects in defined subsets of DC within the
airway and/or decreased accumulation within the draining lymph nodes attributed
to the CCR6 deficiency.

A number of chemokines have also been suggested to have a role in determining
DC function. DC can produce a number of chemokines that may aid in preferen-
tially recruiting specific T cell subsets to the DC for antigen activation. One of the
first chemokines described to be produced, CCL22, which binds to CCR4, has been
shown to have a role in allergen-induced airway disease [67–69]. Interestingly, stro-
mal cell-derived factor-1 (SDF-1), which binds CXCR4 and selectively attracts naive
T cells, is also an attractant for DC and may be an important mediator to attract
these cells for antigen presentation [70–72]. The macrophage is probably the best-
studied APC with respect to chemokines. Although they are highly phagocytic, they
also express MHC class II and can participate in antigen presentation. A number of
the CC chemokines (MCP 1-5, RANTES) were originally described as chemoat-
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tractants for monocytes/macrophages, and most CC chemokine receptors (with the
notable exception of CCR3) are found on the surface of these cells. Thus,
chemokines and their receptors likely play a crucial role in the recruitment and acti-
vation of APC, as well as in providing a source of chemokine for recruiting T cells
for antigen presentation.

Viral infection, chemokine production, and exacerbation of the lung disease

The causes of severe asthma exacerbations are poorly understood. While it is clear
that environmental levels of allergen can play a role, it is unlikely that this is sole
cause of exacerbated asthma. Clinical studies have shown that a decrease in the
CD4:CD8 T cell ratio in the bronchoalveolar lavage (BAL) of asthmatic patients is
correlated with increased asthma severity. In stable asthmatics the ratio of
CD4:CD8 T cells is 3:1; however, this ratio decreases to 1:1 in patients experienc-
ing acute asthma attacks. Additionally, in cases of asthma death the CD4:CD8 T cell
ratio is reversed to 1:2–1:6. A possible explanation for the increased recruitment of
CD8+ T cells to the BAL of exacerbated patients may be viral infection [73–75]. It
has been reported in adults that 80% of asthma exacerbations, as characterized by
a decrease in the peak expiratory flow rate, are associated with viral infection. There
are a number of respiratory viruses that may play an important role in the exacer-
bation of the viral responses. The clinical data clearly indicate that one of the com-
mon features of most pulmonary viral infections is the early and intense production
of chemokines [76–78]. The viruses that have been ascribed to producing
chemokines upon infection of target cells include rhinovirus (RV), adenovirus,
influenza virus, respiratory syncytial virus (RSV), as well as parainfluenza and
SARS. The one characteristic that these viruses have is an often intense inflamma-
tory response that initiates damage in the lungs of susceptible patients. Those most
at risk usually have underlying pulmonary diseases, such as asthma, chronic
obstructive pulmonary disease (COPD), or are transplant recipients, premature
infants, etc., and suffer the most severe disease from the initiation of the anti-viral
inflammatory responses [79, 80].

There are a number of chemokines that are initiated by respiratory viruses that
appear to be commonly induced, including CCL2, CCL3, CCL5, CxCL8, CxCL9,
and CxCL10. Although some of these chemokines are produced during Th2-type
allergic responses, many of these have primarily been associated with Th1-type
responses, such as those needed for anti-viral responses. A number of studies have
identified production of chemokines after viral infection of isolated cell populations
via PAMPs, which activate innate molecules such as Toll-like receptors [81–84]. The
early and intense up-regulation of these chemokines would normally play an impor-
tant role in the anti-viral responses. However, during asthmatic responses the over-
production of these chemokines leads to increased leukocyte recruitment and exac-
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erbated disease. As indicated above, the overproduction of these virus-associated
chemokines leads to the accumulation of CD8 T cells. The identification of
chemokine receptors on CD8 T cells has not been thoroughly investigated. Recent
data would indicate that CCR1 appears to be one of the receptors that mediate CD8
T cell recruitment ([85] and unpublished data). Other studies have indicated that
CCR2, CCR5, and CxCR3 may individually allow the accumulation of CD8 T cells
to a site of viral infection [86–89]. The overall effect of producing specific
chemokines that are induced during viral responses may be to elicit certain T cell
subsets during disease. Data from our laboratory using RSV infection has shown
that CCR1 specifically regulates CD8 T cells that produce Th2-type cytokines, espe-
cially IL-13 (unpublished data). This effect would bias the entire pulmonary
immune environment toward ineffective clearance of the viral response and lead to
enhanced Th2-mediated asthmatic reactions, especially mucus hypersecretion, as
illustrated in Figure 1. This mechanism may also operative in other diseases such as
COPD, where mucus overproduction is related directly to the intensity of the CD8+
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Figure 1
Viral exacerbation of asthma due to Respiratory virus infection.



T cell recruitment [90–92]. In contrast, other recent publications have identified an
important role for CxCR3 for the recruitment of cytotoxic CD8+ T cells for clear-
ance of MHV-68 during lung infection [93, 94]. While this subset may be important
with clearance of virus, it was also associated with development of chronic cough in
non-asthmatic children [95] and may be associate with post-viral syndromes. Thus,
there may be a preferential use of chemokine receptors during viral responses that
dictate the phenotype of the CD8+ T cell that is recruited to the airways.

Conclusion

Although a number of chemokine receptors that have been described that mediate
the accumulation of T lymphocytes to the lung during disease progression, there

123

Lymphocyte trafficking and chemokine receptors during pulmonary disease

Table 2- Potential chemokine receptor targets for asthma

Receptor Cellular distribution Aspect of asthmatic Ligands
targets response altered

CCR1 Monocytes, T cells Chronic stage remodeling, CCL3, CCL5, CCL6,
eosinophils, neutrophils infectious organism response, CCL7, CCL14, CCL15

mucus hypersecretion, 
IL-13 production

CCR3 Eosinophils, basophils, Eosinophil accumulation, CCL5, CCL7, CCL8,
mast cells, Th2 cells basophil recruitment, CCL11, CCL13,

development of AHR CCL24, CCL26
CCR4 Dendritic cells, Th2 cells T cell recruitment, airway CCL17, CCL22

remodeling, clearance of 
fungal spores

CCR6 Dendritic cells, T cells, CD4+ T cell recruitment, CCL20
B cells, eosinophils eosinophil accumulation, 

development of AHR, IgE
CCR7 T memory Cells, DC, Unknown CCL19, CCL21

naive T cells 
CCR8 Th2 cells, eosinophils, Th2 cytokines, eosinophil CCL1

dendritic cells accumulation
CxCR4 Naïve and Th2 cells, Th2 cytokines, eosinophil CxCL12

eosinophils, mast cells accumulation, development 
of AHR, T cell accumulation

AHR, airway hyperresponsiveness



continues to be a paucity of data regarding their specific function during certain pul-
monary diseases. Questions persist on whether the differential receptor display on
T cell subsets described in in vitro experiments, represent those that cause accumu-
lation during disease. The diversity of chemokine production and the promiscuous
pattern of chemokine-chemokine receptor interactions have made the identification
of individual chemokine or chemokine receptor targets for therapeutic intervention
extremely difficult. Interestingly, several of the "lead" candidates for targeting dur-
ing chronic asthmatic disease are receptors that appear to bind a single or at most
two chemokines, including CxCR4, CCR4, CCR6, and CCR8 (Table 2). Choosing
the proper targets for specific disease phenotypes will only occur after careful coor-
dinated animal modeling experiments coupled with translational research efforts in
human disease. 
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Introduction

The central nervous system (CNS) comprises the brain, spinal cord and cere-
brospinal fluid (CSF). Neurons are vulnerable non-renewing cells and require tight
regulation of their external milieu. Any event causing a major disturbance in CNS
homeostasis might result in neuronal cell death. Thus, inflammatory reactions in
the CNS, involving infiltration of leukocytes and production of inflammatory
mediators, and, particularly, edema, are potentially disastrous. In fact, the CNS
has been regarded an immune-privileged because of a large spectrum of experi-
mental results and descriptive phenomena, including: tissue graft survival [1]; lack
of constitutive major histocompatibility complex molecule expression and anti-
gen-presenting cells (APC); lack of lymphatic vessels; and the presence of barriers
between the blood and CNS. However, it has become clear that certain immuno-
logical events do occur in the brain: CNS tissue grafts induce peripheral immune
responses, are rejected eventually and delayed-type hypersensitivity as well as
autoimmune reactions do take place in the CNS. In addition, it is now more or less
accepted that, like all other organs, the CNS is also subject to immunosurveillance
[2]. Here, the mechanisms of lymphocyte migration into the CNS and its implica-
tion under normal and pathological conditions are discussed. Although the basic
principles for lymphocyte migration are similar, the molecular details differ for the
various inflammatory stimuli and affected CNS compartments. Most information
on this subject is derived from studies on multiple sclerosis (MS) and one widely
studied animal model, experimental autoimmune encephalomyelitis (EAE), both
of which are characterized by lymphocyte and monocyte infiltration in the CNS.
In this review, we focus primarily on lymphocytes, the focus of the majority of
experimental studies.
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Routes for lymphocytes to enter the CNS

The CNS is protected from a massive influx of inflammatory substances by various
barriers, present at different anatomical sites. Consequently, three key routes to
enter the brain can be identified based on CNS anatomy (Fig. 1). First, lymphocytes
can enter the brain parenchyma directly by crossing the endothelium of the blood-
brain barrier (BBB) into the perivascular spaces. Secondly, lymphocytes extravasate
across postcapillary venules at the pial surface into the subarachnoid space and Vir-
chow-Robin perivascular spaces, which are in direct contact with the CSF. Finally,
lymphocytes might simply enter the CSF directly at the place where CSF is being
produced, at the choroid plexus (CP) [3]. This summary represents a ‘minimalist’
view and the situation is more complex than implied by the ‘three pathways’ for-
mulation: it is evident that cell infiltration of the spinal cord parenchyma utilizes
specific mechanisms, and that cell entry directly into the CSF can occur across
meningeal spinal vessels.

The blood-CNS barriers

Anatomically, the BBB consists of capillary endothelial cells surrounded by astro-
cytic endfeet and a basal lamina. In addition, pericytes can be found at irregular
intervals within the basal lamina (Fig. 2A) [4]. The BBB is a low-permeable and
selective diffusion barrier, which normally prevents blood-borne elements from
entering the brain due to low pinocytic activity and the presence of inter-endothelial
tight junctions (TJs) [5]. It is assumed that selective diffusion across this barrier is
primarily determined by the endothelial features, while astrocytes are probably crit-
ical in development of the BBB. Pericytes are suggested to play a role in blood flow
regulation and induction and maintenance of barrier properties [4]. Microvascular
TJs are comprised of a complex of molecules including: junction adhesional mole-
cule (JAM)-A, occludin, accessory proteins like zonula occludins (ZO-1 and 2), and
claudins. The TJs at the BBB respond to various stimuli, regulated by multiple intra-
cellular signaling pathways [4, 5]. Although the characteristics of the brain and
spinal cord BBB endothelium appear similar, subtle differences between meningeal
(no astrocytic ensheathment) and parenchymal (no P-selectin storage) microvessels
have been reported [6–8].

Gross BBB disruption accompanies catastrophic events such as stroke or trau-
matic brain injury. Alternatively, more subtle and focal opening of the BBB coincides
with lesion formation in MS. Studies addressing TJ alterations in neuropathology
are rapidly accumulating. Hypoxia increases rat BBB permeability in vivo and
decreases occludin expression [9]. Inflammatory mediators affect BBB permeability
and MS lesions are associated with loss of occludin and ZO-1 [10]. Peripheral
processes such as shock may also alter BBB permeability [11].
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Similar to other circumventricular organs (characterized by absence of the BBB),
fenestration and gap junctions exist between the vascular endothelial cells at the CP
(Fig. 2C). The actual blood-CSF barrier is, therefore, at the level of the epithelial
cells and primarily created by the TJs between CP epithelial cells.

Mechanisms involved in crossing the vascular endothelium

Crossing vascular endothelium is a multi-step process supported by experimental
evidence from studies on peripheral vasculature [12]. Although different in details,
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Figure 1
The CNS compartments and blood-CNS barriers
Lymphocytes enter the brain or spinal cord parenchyma by crossing the BBB into the
perivascular spaces. Via postcapillary venules at the pial surface and the Virchow-Robin
perivascular spaces, lymphocytes extravasate into the subarachnoid space and CSF. At the
CP, lymphocytes may enter the CSF-filled ventricles by passing the fenestrated capillaries in
the CP stroma and the CP epithelium. Insets a, b and c are depicted in more detail in Fig-
ure 2 (adapted from [2]).
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the basic principles of crossing vascular endothelium in the CNS are similar and
thus include the following steps: tethering and rolling, activation and tight adhe-
sion of leukocytes to the endothelium and finally diapedesis (Fig. 2A, B). Recent
applications in neuroimmunology of techniques such as intravital microscopy
(IVM) using a cranial or spinal window or through the intact skull, have made it
possible to visualize the interactions of labeled lymphocytes with the cerebrovas-
cular endothelium, and study the different steps in more detail in vivo. Further-
more, the importance of specific molecules in each step of the extravasation process
has been explored by antibody-inhibition studies and experiments using knockout
mice.

Tethering and rolling: selectins

IVM studies using specific antibodies demonstrated that tethering and rolling of
lymphocytes in cerebral vessels is mediated by platelet (P)- and endothelial (E)-
selectins expressed on the activated endothelium and their carbohydrate ligands,
which decorate the P-selectin glycoprotein ligand-1 (PGSL-1) scaffold on lympho-
cytes. In addition, murine lymphocytes can roll via interactions of α4-integrins with
endothelial VCAM-1. Interestingly, injected fluorescence-labeled encephalitogenic
and activated T lymphoblasts were observed by IVM to cross the microvessels with-
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Figure 2
Cellular and molecular players in the multi-step recruitment of T lymphocytes across the
blood-CNS barriers. (A) For the superficial vessels of inflamed brain, E- and-P-selectin,
PSGL-1 and α4-integrin are involved in lymphocyte tethering and rolling. G protein-depen-
dent activation of LFA-1 on T lymphocytes, probably by chemokines (yet to be identified),
leads to their firm adhesion on endothelial ICAM-1. Lymphocytes migrate transcellularly
through the BBB endothelium, leaving TJs intact. In EAE, the inflammatory lymphocytes pre-
sent in brain (and spinal cord) parenchyma are Th1 effector memory cells with a character-
istic surface-marker phenotype. (B) In the spinal cord white matter, T lymphocytes arrest
immediately through α4-integrin. G protein-dependent increase in α4-integrin avidity on the
T lymphocytes is required for firm adhesion to endothelial counter-receptors. LFA-1 supports
T lymphocyte diapedesis, adjacent to TJs. (C) Molecular mechanisms in lymphocyte transit
across fenestrated CP microvessels, and subsequent migration across the CPE into the CSF
are relatively unknown, although α4-integrin is required. Endothelial P-selectin mediates T
lymphocyte recruitment into the CP stroma. Pathways of T lymphocyte traversal across CP
endothelial and epithelial barriers are equally mysterious. T lymphocytes in the CSF, both of
healthy individuals and MS patients, are predominantly central-memory CD4+ T lympho-
cytes, about half of which express the recent activation marker CD69 (adapted from [2]).



out rolling in the spinal cord [13]. Instead, these cells were captured immediately and
adhered tightly to the endothelium in an α4-integrin-dependent fashion (Fig. 2B).

Activation: chemokines

Canonically, activation of rolling leukocytes and strong adhesion to the endotheli-
um is mediated by chemokines. Chemokines are released into the bloodstream or
they are, in association with glycosaminglycans on endothelial cells, presented to
leukocytes in the microvessel [14]. Specific binding sites for the chemokine CCL2 on
the abluminal side of human brain microvessel in vitro, and the functional impor-
tance of CCR2 (on microvascular, not leukocytic elements) in transmigration across
murine cerebrovascular microvessels in vitro, indicate a possible specific mechanism
for transportation of chemokines to the lumen [15, 16], similar to CXCL8 in the
skin [17]. Nevertheless, the mechanism of chemokine translocation across endothe-
lium in the CNS in vivo remains largely unexplored. Chemokines activate leuko-
cytes after binding to specific – pertussis toxin-sensitive – Gαi protein-coupled
chemokine receptors (GPCRs) expressed on the leukocyte cell surface. Activated T
cells undergo programmed expression of cell surface molecules including chemokine
receptors [18] in vivo, enabling them to sense chemokine concentrations and recog-
nize sites for extravasation. It is clear from IVM studies that events during extrava-
sation are dependent on pertussis toxin-sensitive signaling [13, 19]. Contingent on
the experimental design and vascular bed, these events may include firm adhesion,
strengthening of adhesion, arrest or transmigration. Despite heroic efforts, unequiv-
ocal assignment of such functions to individual chemokines, for lymphocyte entry
into the CNS, has not occurred. In various neuropathologies, expresssion of
chemokines is induced in glial cells, endothelial cells, perivascular cells and neurons
[20]. Thus, many potential sources of chemokines are available within the CNS.

Adhesion

Stimulation of leukocytes by chemokines or other GPCR-activating molecules
induces activation of integrin molecules like leukocyte function-associated molecule-
1 (LFA-1) and α4 integrins. This is accompanied by an increase in the affinity for
their endothelial ligands: intercellular cell adhesion molecule-1 (ICAM-1) and vas-
cular cellular adhesion molecule (VCAM), respectively. These interactions are nec-
essary for tight adhesion and subsequent diapedesis [12, 21]. The tissue-specific dis-
play of adhesion molecules and chemokines by vascular endothelial cells provides
an excellent mechanism for targeting different leukocyte populations to different
organs [12]. It should be noted that there remains uncertainty about the human
cerebrovascular ligand for α4β1 integrin. This ligand is likely to be VCAM-1 in
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rodents, but detection of VCAM-1 in human CNS has not been consistent, and
alternatives, such as the CS1 domain on fibronectin, need also to be considered.

Diapedesis

There are two potential routes, paracellular and transcellular, by which lymphocytes
might cross the BBB. Both have been reported for BBB diapedesis. The first entails
of lymphocyte passage between adjacent endothelial cells, crossing the integrins and
molecules of the aherens/TJ complex [12]. The transcellular pathway involves
migration of cells through the endothelial cell body, leaving the TJs intact [22].
Although both routes seem to be applicable in peripheral tissues, in vitro and in vivo
studies on the BBB have demonstrated that lymphocytes cross this endothelium by
a transcellular pathway [23].

Lymphocytes trafficking into the healthy CNS

T lymphocytes in healthy CNS parenchyma and CSF

Initially, tracing studies showed that a limited number of encephalitogenic T cell
blasts migrate across the BBB into the non-inflamed CNS. In contrast, resting T
cells failed to enter the CNS, indicating that the activated state is a prerequisite [24,
25]. However, IVM studies have reported that non-activated brain endothelium
does not support lymphocyte interaction, irrespective of activation state and,
although lymphocytes are detected in the meninges and CP, they remain absent in
the parenchyma 2 h after injection [26]. Moreover, activation of endothelium and
subsequent up-regulation of selectins and adhesion molecules, by proinflammatory
cytokines such as TNF-α, appears to be necessary for lymphocytes to cross [19].
The contradiction is probably due to experimental approach: Injection of T lym-
phoblast possibly activated and preconditioned the microvascular endothelium
and, therefore, altered barrier function. After passing the BBB these cells reside in
perivascular spaces and, for persistence, they need to encounter cognate antigens
[27], which are most likely presented by dendritic cell (DC)-like macrophages pre-
sent in the same space [28].

T lymphocytes in the CSF

Normally, absolute numbers of T lymphocytes are higher in murine CP when com-
pared to brain tissue. Moreover, relative increases in T cells after peripheral immune
activation are many times higher than in the rest of the brain [29], suggesting pref-
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erential T cell migration to the CP, from which they enter the CSF. Entry of murine
T lymphoblasts into the meninges and CP is P-selectin dependent, as antibody treat-
ment or P-selectin-knockout mice show a reduced number of lymphoblasts in these
CNS compartments [26]. Yet, the presence of P-selectin on meningeal or CP
endothelial cells has not been demonstrated unambiguously by immunohistochem-
istry, possibly due to expression below detection level [26, 30, 31].

Healthy human CSF contains approximately 150 000 cells, of which more than
80% (compared to <5 % in blood) are CD4+CD45RO+CD27+CXCR3+/CCR7+/L-
selectinhi central-memory T lymphocytes. About 50% percent of these cells are
CD69+ (as contrasted with <5% in peripheral blood), indicating selective accumu-
lation of recently activated cells in the lumbar CSF. Consistent with the finding that
P-selectin is involved in lymphocyte entry into the meninges and CP in mice, is the
observation that P-selectin immunostaining is localized in stromal veins of CP and
in the bridging meningeal veins in brains of human individuals who died without
neurological disease [32]. Although the exact migration mechanisms remain to be
determined, these cumulative data suggest that CD4+ central memory T lympho-
cytes preferentially enter the CNS across the CP. Direct evidence supporting this
hypothesis came from demonstrating that the cellular composition of ventricular
and lumbar CSF in patients without CNS inflammation is similar, containing pri-
marily CD4+ central-memory T lymphocytes [33]. Moreover, these cells re-enter the
bloodstream or lymphoid organs, and are replaced by newly immigrating lympho-
cytes about twice a day [34], indicating there is a continuous flow of lymphocytes
with different specificities, making them good candidates for executing CNS
immunosurveillance [2, 35].

Under physiological conditions the number of extravasated lymphoblasts in the
CNS is small (estimated to be 105 per 24 h at maximum), and it is very unlikely that
they would encounter cognate antigen in the perivascular spaces containing single
DCs [28]. However, it is not unlikely that this represents the mechanism by which
inflammation in adoptive transfer EAE (AT-EAE) is initiated [2], since large num-
bers of cells are injected and a reasonable chance for encountering highly abundant
self antigens presented by perivascular DCs is present [36]. T lymphocytes can
induce neuroinflammatory disease without the presence of lymphoid tissue [28],
and perivascular DCs are responsible for re-activation and retention of neuroanti-
gen-specific T cells in the CNS [36, 37]. It is thus clear that leukocyte trafficking
mechanisms during immunosurveillance (into the CSF) and disease/host defense
(into the parenchyma) are different.

Lymphocyte trafficking into the inflamed CNS

Massive infiltration of leukocytes into the CNS is observed during neurodegenera-
tive and neuroinflammatory conditions. This is associated with increased expression
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of adhesion molecules and chemokines [38]. Despite a leaky BBB, T cell recruitment
remains tightly controlled during inflammation, as evidenced by expression of a spe-
cific adhesion molecule repertoire on infiltrating lymphocytes, distinct from lym-
phocytes infiltrating other organs [39].

Tethering and rolling during inflammation

Tethering and rolling is observed with IVM in inflamed superficial brain and
meningeal microvessels. IVM through the intact skull demonstrated that activated
brain endothelium expresses E- and P-selectins at the luminal side of venules, but
not arteries [19]. Interestingly, differential preference for molecules used to roll was
observed for CD8+ (P-selectin) and CD4+ T (α4-integrin) lymphocytes from MS
patients when injected into inflamed murine vessels [40]. Both α4-integrin and
PGSL-1 are involved in rolling during EAE [41], and lymphocyte rolling in inflamed
superficial brain vessels is mediated by E- and P-selectin [19].

EAE displays inflammation primarily localized in the spinal cord and here, as
mentioned previously, lymphocytes are captured immediately. Accordingly, L-
selectin is not involved in the development of EAE [42], and PGSL-1–/– mice or
PGSL-1 antibody-treated mice do not differ in developing EAE [43, 44], indicating
that selectin mediated rolling is not required. Instead, α4-integrin and CD44 seem
to play a more important role in EAE [42] (Fig. 2B, C).

Chemokine-mediated activation during inflammation

Chemokine-mediated signaling leading to integrin activation is required for firm
arrest of lymphocytes in CNS microvessels [13, 19]. Numerous chemokines (or
functionally equivalent GPCR agonists) are produced in inflamed CNS tissue and
activated lymphocytes express various chemokine receptors. EAE studies focusing
on CCL2 and its receptors CCR1 and CCR2 showed that mice lacking CCR1 or
CCR2 are relatively resistant to active-immunization EAE, mainly due to impaired
monocyte recruitment as CCR2–/– T cells still mediate AT-EAE [45]. Antibody-inhi-
bition and IVM showed CCL2 and CCL5 to be involved in leukocyte adhesion dur-
ing EAE [46], providing a consistent body of data regarding these receptors. Con-
versely, CXCL10 antibody inhibition studies in AT-EAE provided contradictory
results [47, 48]. Furthermore, CXCL10-deficient mice exhibited a reduced thresh-
old of EAE susceptibility [49]. Additionally, constitutive over-expression of astro-
cytic CXCL10 resulted in CNS leukocyte infiltration, primarily of neutrophils and
not lymphocytes, without neurodegenerative consequences [50].

Two chemokines, CCL19 and CCL21, were reported in BBB endothelial cells
during EAE [51, 52]. Although both chemokines trigger adhesion of CCR7+
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encephalitogenic T cells to inflamed brain vessels in vitro [52], their role in BBB
transmigration in vivo is unknown. Over-expression of CCL21 but not CCL19 in
murine CNS resulted in development of neurological disease associated with leuko-
cytic infiltrates consisting primarily of neutrophils and eosinophils, but not lym-
phocytes [53]. Further, immunohistochemical analysis of human MS tissue has
failed to identify CCL19 and CCL21 in lesional vasculature [54]. Although it is
regarded as axiomatic that chemokines should play a role in immune-mediated CNS
inflammation by promoting lymphocyte infiltration, the specific ‘players’ in this sce-
nario remain undefined.

Adhesion molecules: roles in CNS inflammation

Studies in EAE consistently demonstrated up-regulation of endothelial adhesion
molecules ICAM-1 and VCAM-1 [55, 56]. Ligands for these adhesion molecules,
LFA-1 and α4β1-integrin, respectively, were identified on perivascular inflammatory
cells surrounding ICAM-1+ and VCAM-1+ murine vessels. Ultrasound using target-
ed microparticles demonstrated ICAM-1 and VCAM-1 in the BBB of rats with AT-
EAE. Strong ICAM-1 signals were observed in periventricular regions, the brain-
stem, cerebellum and spinal cord, whereas VCAM-1 expression was of lower inten-
sity and confined to major sites of inflammation [57]. Findings using human tissue
have been inconsistent, with one study showing vessel-associated VCAM expression
[58], while others detected VCAM expression on activated microglia [32, 59]. Sim-
ilarly, contradicting results were reported for mucosal addressin cell adhesion mol-
ecule-1 (MAdCAM-1) in BBB endothelium during EAE [55, 60].

Antibody-inhibition studies [56, 61] and (frozen section) adhesion assays [55,
62] clearly implicated α4β1-VCAM-1 and probably also LFA-1-ICAM-1 interac-
tions during EAE. The involvement of α4β7-MAdCAM-1 in EAE is controversial
since α4β7 antibodies do not [61], while MAdCAM-1 antibodies do [63], inhibit
EAE, even though MAdCAM-1 is not detected on CNS endothelium in C57BL/6
mice. Moreover, β7-integrin–/– mice exhibit mild EAE [64].

In clinical MS trials, anti-α4 integrin antibodies were very successful in reducing
disease activity [65]. Unfortunately, ongoing trials were recently suspended, due to
an increased risk of developing progressive multifocal leukoencephalopathy [2, 66].

Due to contradictory results [67–70], the contribution of LFA-1-ICAM-1 in
leukocyte recruitment during EAE remains to be elucidated. Nonetheless, in vitro
studies demonstrated LFA-1 and ICAM-1 to be crucial in lymphocyte-cerebrovas-
cular endothelial interactions and migration across brain endothelium [71–73].
Moreover, ICAM-1 is consistently found to be up-regulated on inflamed vessels in
MS lesions and essentially all infiltrated leukocytes here are LFA-1+ [74].

Inflamed CP epithelium (CPE) expresses ICAM-1 and VCAM-1 [75], which
mediate adhesion of inflammatory cells [31]. In EAE, up-regulation of VCAM-1 and
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ICAM-1 mRNA and protein and de novo expression of MAdCAM-1 was reported
on the apical surface of CPE, but not on fenestrated endothelial cells [76]. Extend-
ing the proposed immune functions of the CP [2], DCs are recruited across the CPE
during EAE [77].

Diapedesis during inflammation

LFA-1 and ICAM-1 were recently shown to be involved in transendothelial migra-
tion of leukocytes in vitro. Although TJs appear to remain intact, the role of junc-
tional molecules like platelet-endothelial cell adhesion molecule-1 (PECAM-1) and
JAMs need to be addressed as PECAM-1–/– mice have larger CNS infiltrates and
prolonged exaggerated BBB permeability during EAE [78]. Conflicting results have
been reported on the involvement of JAM-A in leukocyte migration across CNS
endothelium [79, 80].

Besides, CD99, an unique highly O-glycosylated protein expressed on leukocytes
and in endothelial cell-cell contacts [81] was found to be important in encephalito-
genic T cell migration across endothelial cells in vitro. Since CD99 antibodies inhib-
it this migration, involvement in BBB diapedesis in vivo is plausible [82].

Conclusion

Lymphocyte migration to the CNS is a tightly regulated process, which involves
many cellular signaling cascades and molecules. Under normal conditions, lympho-
cyte migration to the CNS is limited and restricted to the perivascular spaces and
CSF, but is thought to be important for CNS immunosurveillance. Here, the CP is
most likely the “port of entry” for CD4+ central-memory T cells. Under pathologi-
cal conditions, traffic signals are altered and expression of many adhesion molecules
and chemokines permit lymphocytes to enter the CNS parenchyma where they need
interaction with APCs to persist. The specific molecular mechanisms differ, depend-
ing on CNS site and stimuli, and need further exploration for better understanding
and novel treatments of neuroinflammation.
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Introduction

The interactions of activated infiltrating cells and resident renal cells are actively
involved in the pathogenesis of renal inflammation. The trafficking of immune com-
petent cells from peripheral blood into the kidneys is an indispensable inflammato-
ry event that is encountered in the early phases of most renal diseases [1]. Proin-
flammatory molecules, through their interactions with receptors expressed on lym-
phocytes and resident renal cells, are capable of inducing a number of cytokines,
chemokines, adhesion molecules and growth factors, both by autocrine and/or
paracrine loops, during acute and chronic phases of various renal diseases [2]. Some
of these secreted molecules are not only involved in the inflammatory phase of the
disease, but also contribute to the development of subsequent renal fibrosis. Here
we review lymphocyte migration to the kidney, especially based on the pathophysi-
ological roles of chemokines. Further, we discuss the intervention of chemokine/
chemokine receptor systems as the particular immunotherapeutic strategies to com-
bat progressive renal diseases.

Cell infiltration to the kidney

Infiltration of immune competent cells to the kidney from peripheral blood is a hall-
mark of almost any kind of renal diseases [1] (Fig. 1). The main inflammatory cells
actively involved in renal diseases are neutrophils, monocytes/macrophages, and
lymphocytes. Neutrophils that have infiltrated into diseased kidneys via activation
of adhesion molecules induce the release of lysosomal enzymes and generation of
superoxide anions to initiate inflammatory events and subsequent tissue damage [3].
Monocytes/macrophages also have a scavenging role in the clearance of non-self
and/or altered-self materials, including glycated proteins and oxidized lipoproteins
[4]. Macrophages exert dual effects in renal injury, i.e., damaging and protective
effects. Therefore, infiltrated and activated macrophages play a crucial role in the
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pathogenesis of both inflammatory and fibrotic phases of the disease process.
Macrophage colony-stimulating factor (M-CSF) is actively involved in monocyte
and macrophage survival, proliferation, and chemotaxis [5]. Overexpression of M-
CSF by tubular epithelial cells is closely associated with the interstitial accumulation
and proliferation of macrophages, as demonstrated in experimental anti-glomerular
basement membrane nephritis and unilateral urethral obstruction models [6]. A cor-
relation between overexpression of M-CSF and accumulation of macrophages has
also been demonstrated in various human and experimental diseases, including
glomerulonephritis [7, 8]. Similarly, increased expression of macrophage migration
inhibitory factor (MIF) has been shown to be involved in human and experimental
models of tubulointerstitial injury, possibly by facilitating the interstitial accumula-
tion of macrophages and lymphocytes [9, 10]. Infiltration of inflammatory cells
including lymphocytes into kidneys exerts inflammatory responses by secreting cer-
tain proinflammatory cytokines and chemokines [11]. For instance, intrarenal M-
CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor
necrosis factor-α (TNF-α) were absent in T cell receptor (TCR) αβ- and CD4-defi-
cient MRL-Faslpr strains, and drastically reduced in class I-deficient MRL-Faslpr

compared with wild-type mice. In addition, the decrease in M-CSF, GM-CSF and
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Figure 1
Leukocyte migration to the kidney and renal inflammation



TNF-α was associated with a reduced kidney lymphocytic infiltrates and sponta-
neous autoimmune nephritis. Intrarenal ex vivo retroviral gene transfer of M-CSF
and GM-CSF failed to elicit nephritis in these T cell-deficient MRL strains (TCR αβ,
CD4, CD8/double negative) as compared with wild-type mice. Therefore, these
results suggest that MRL-Faslpr kidney disease is driven by a T cell-dependent ampli-
fication feedback loop dependent on multiple T cell populations [11].

Interaction of resident renal cells with infiltrates

Interactions between activated infiltrates and resident renal cells are thought to play
a crucial role in the pathogenesis of renal diseases from acute to chronic phases [2]
(Fig. 2). Cell-cell interaction has an enormous impact on lymphocytes migration to
the kidney, resulting in renal inflammation (Fig. 1). There are at least two groups of
resident renal cells that actively participate in the inflammatory phase of various
renal diseases; glomerular cells (mesangial cells, endothelial cells and epithelial
cells), and tubulointerstitial cells (tubular epithelial cells, interstitial cells and per-
itubular capillary endothelial cells). These intrarenal cells are capable of prolifera-
tion, differentiation, and synthesis of proinflammatory cytokines, chemokines, and
growth factors in response to various stimuli, which in turn augment inflammatory
responses.

Recent studies report that bone marrow cells migrate to the kidney, suggesting a
reservoir of repopulating mesangial cells during glomerular remodeling [12, 13].
Imasawa et al. [12] recently reported the potential of bone marrow-derived cells to
differentiate into glomerular mesangial cells. Similarly, Ito et al. [13] reported an
increased number of bone marrow-derived Thy1+ cells constituting about 7–8% of
glomerular cells during the remodeling phase of anti-Thy1 nephritis. Although the
role of lymphocytes among these bone marrow-derived cells remains unclear, these
reports are suggestive of the presence of bone marrow-derived mesangial cells in
nephritis. Further studies are required to determine the pathogenic role of these mar-
row-derived mesangial cells in various renal diseases.

Chemokine-mediated lymphocyte migration to the kidney

It is of note that detailed mechanisms of lymphocyte recruitment and activation via
chemokine/chemokine receptor systems have shed light on better understanding of
the pathogenesis of renal diseases [14, 15]. Chemokines expressed on the surface of
endothelial cells interact with their cognate receptors on specific infiltrates includ-
ing lymphocytes, a process that triggers activation of adhesion molecules and result
in firm adhesion of lymphocytes to the surface of endothelial cells. Once lympho-
cytes migrate to the kidney, chemokines and proinflammatory cytokines produced
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by both resident cells and infiltrated inflammatory cells exert a wide range of bio-
logical activities at the inflammatory sites. Selective expression of chemokine recep-
tors and adhesion molecules on specific cell populations determines the specific
types of infiltrating cells in inflamed kidneys.
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Figure 2
Interactions between activated lymphocytes and resident renal cells in the pathogenesis of
renal diseases from acute phases to chronic phases



Recent studies have documented a direct link between locally and systemically
produced chemokines and the infiltration and activation of lymphocytes in the kid-
neys. For instance, the infiltration of Th1 T lymphocytes in the interstitium in
human renal diseases is partly regulated by RANTES/CCL5, through its interaction
with its cognate receptors CCR1 and CCR5 [16]. RANTES is up-regulated in the
kidneys of a murine lupus nephritis model, MRL-Faslpr mice, prior to renal injury
and increased with progressive injury [17]. Moore et al. [17] explored whether
locally produced RANTES could cause renal injury with T lymphocyte infiltration,
and showed that tubular epithelial cells, genetically modified to secrete RANTES,
infused under the renal capsule were capable of inciting interstitial nephritis in
MRL-Faslpr mice. RANTES promoted the accumulation of a distinct subset of T
cells (CD4+ T lymphocytes), which is compatible with clinical findings. Supporting
this, circulating components, including CD4+ T lymphocytes, are required to incite
renal injury in MRL-Faslpr mice via both cellular and humoral immune responses
[11]. Further, Furuichi et al. [16] reported that the cellular infiltration, including
that of Th1 T lymphocytes, in interstitium in human renal diseases can be attributed
to the action of RANTES  via its cognate receptors, CCR1 and CCR5. These find-
ings suggest that locally expressed chemokines are capable of inciting lymphocyte
migration to the kidney.

Chemokine cascade, lymphocyte migration to the kidney, and renal fibrosis

In renal inflammation, the types of leukocytes that migrate to the diseased kidneys
depend on the types of insult, and include neutrophils in acute inflammation, and
macrophages, lymphocytes and plasma cells in chronic inflammation, resulting in
renal sclerosis/fibrosis. The presence of chemokine amplification has been reported
in which CXC chemokines induce both CC chemokines and CXC chemokines in
mesangial cells in vitro [18]. In this report, treatment of mesangial cells with low
levels of CXC chemokines macrophage inflammatory protein-1α (MIP-1α)/CCL3,
MIP-1β/CCL5 and interferon-inducible protein-10 (IP-10)/CXCL10 resulted in
higher levels of these CXC chemokines, suggesting that the subsequent expression
of CC chemokines followed by CXC chemokines may be responsible for switches
from acute inflammation to chronic inflammation, including lymphocyte migration
to the kidney.

Migration of mesenchymal stem cells to the kidney

A recent report suggests that mesenchymal stem cells, but not hematopoietic stem
cells, are renotropic, helping to repair the kidney and improve renal function in a
mouse model of acute renal failure [19]. Intravenously injected mesenchymal stem
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cells migrated to the injured kidney, underwent differentiation, and promoted struc-
tural and functional repair. However, the detailed mechanisms involved in migration
to the kidney are still ununknown. Stromal cell-derived factor-1 (SDF-1)/CXCL12
and its receptor, CXCR4, which are responsible for lymphocyte migration, prolifer-
ation and survival, may play a role in this mechanism. Although the relationship
between CD34+ cells and mesenchymal stem cells remains unclear, mobilization of
CD34+ cells into the circulation and their homing to the kidney in an acute renal
failure model may have renoprotective effects, which are dependent of SDF-1 and
CXCR4 [20]. Since it has been shown that mesenchymal stem cells can be encour-
aged to differentiate and contribute towards the formation of functional kidney
structures [21], further studies are needed to clarify the migration of mesenchymal
stem cells, with or without lymphocytes, to the kidney, where they could exert their
renotropic property and renal regenerative potential. 

Lymphocyte migration and renal diseases

Crescentic glomerulonephritis: Th1-type immune responses

Crescentic glomerulonephritis is usually associated with clinical features of anemia
and morphological features of crescent formation in glomeruli as well as tubu-
lointerstitial nephritis, which eventually lead to renal insufficiency. Macrophages
and T lymphocytes preferentially migrate to both glomeruli and interstitium in
crescentic glomerulonephritis. MIP-1α was mostly undetectable in urine samples
collected from healthy control subjects and in patients with renal diseases lacking
crescent formation [22]. However, urinary MIP-1α levels in patients with crescen-
tic glomerulonephritis correlated well with the percentage of cellular crescents and
the number of CD68+ infiltrating cells, and CCR1+ and CCR5+ cells in the
glomeruli [16]. Moreover, elevated urinary levels of MIP-1α and the number of
CCR5+ cells dramatically decreased during glucocorticoid therapy-induced conva-
lescence. MIP-1α+ cells were mainly detected in crescentic lesions. CCR1+ and
CCR5+ cells, preferentially expressed on Th1 T lymphocytes, were detected in dis-
eased glomeruli and interstitium [16]. It is therefore likely that MIP-1α plays a sig-
nificant role in crescentic glomerulonephritis, by recruiting and activating
macrophages and T lymphocytes. It has been recently shown that the p38 mito-
gen-activated protein kinase (MAPK)-chemokine cascade affects lymphocyte
migration to the kidney and contributes to progressive crescentic glomeru-
lonephritis in humans [23]. Therefore, this cascade may be an appealing thera-
peutic target for combating crescentic glomerulonephritis via the administration of
p38 MAPK inhibitor(s) [24, 25].

The beneficial effects of neutralizing antibodies and chemokine/chemokine
receptor antagonists in crescentic glomerulonephritis have been demonstrated. Anti-
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MCP-1 or anti-MIP-1α antibodies or MCP-1 deficiency resulted in less glomerular
accumulation of macrophages and lymphocytes (e.g., CD4+ lymphocytes), reduced
crescent formation, decreased interstitial damage, and, most importantly, less pro-
teinuria [26, 27]. In contrast, aggravated renal dysfunction and increased protein-
uria were detected in CCR1-disrupted mice, compared to wild-type mice [28]. The
inhibitory effects of the antagonist, Met-RANTES on crescentic glomerulonephritis
in CD1 mice was shown by Lloyd et al. [29]; although reduction in urinary protein
excretion, cell infiltration of T lymphocytes and mononuclear cells was seen, cres-
centic formation was not affected. In addition, the beneficial effects of blocking the
bioactivity of CXC chemokines have been reported in crescentic glomerulonephri-
tis. Neutralizing antibodies against cytokine-induced neutrophil chemoattractant
(CINC) ameliorated the cell infiltration, including neutrophils, and reduced urinary
protein excretion [30].

Lupus nephritis

The recruitment and activation of macrophages and T lymphocytes were augmented
by locally produced cytokines and/or chemokines both in human lupus nephritis [31]
and in mice, including New Zealand Black × New Zealand White (NZB/W) F1 mice
[32] and MRL-Fas lpr mice [11]. These findings were, at least in part, confirmed by
evidence that MRL-Faslpr kidney is not defective, but rather a circulating stimulant
in the MRL-Faslpr mouse can induce cytokines/chemokines and renal injury in a nor-
mal MRL-++ kidney via an experimental renal transplantation system [33, 34]. Fur-
ther, modulation of the biological activities of MCP-1 dramatically reduced the
recruitment of macrophages and T lymphocytes that not only reduced pathological
alterations in the kidney, lung, skin, and lymph node, but also diminished protein-
uria, and prolonged survival [35]. A very recent study demonstrated that MCP-1
activates a regional Th1 immune response in nephritis of MRL-Fas lpr mice [36].
Mononuclear cell infiltration has been demonstrated in the kidneys of MRL-Fas lpr

mice by weeks 10–12. At week 12, the expression of certain chemokines and
chemokine receptors, including CCR1, CCR2, and CCR5 was up-regulated in the
mouse kidneys, associated with morphological features of renal injuries and protein-
uria. These results are in accord with the notion that chemokine-mediated leukocyte
infiltration precedes proteinuria and renal damage in MRL-Fas lpr mice [37].

Recently, it was shown that aberrant high expression of B lymphocyte
chemokine (BLC/CXCL13) by myeloid dendritic cells in the target organs in aged
BWF1 mice may play a pivotal role in breaking immune tolerance in the thymus and
in recruiting autoantibody-producing B lymphocytes in the development of murine
lupus [38]. From the perspective of Th1/Th2 balance, CCR4+ but not CCR5+ T lym-
phocytes in peripheral blood, which represent Th2 cells, preferentially migrate into
the kidneys of patients with lupus nephritis. It is likely that the disproportionate dis-
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tribution of CCR4+ T lymphocytes might play an important role in the development
of subsequent renal injuries that are found in patients with lupus nephritis [39]. In
addition, the beneficial effects of modulating cytokines/chemokines in lupus nephri-
tis have been noted; it was recently shown that a novel potent fractalkine/CX3CL1
antagonist demonstrated an ability to delay the initiation and ameliorate the pro-
gression of lupus nephritis [40].

Diabetic nephropathy

Inflammatory events may be central to the pathogenesis of diabetic nephropathy.
Infiltration of inflammatory cells, including macrophages and T lymphocytes, into
diseased kidneys is an important histological feature that is associated with the pro-
gression of diabetic nephropathy [41, 42]. Angiotensin II-dependent up-regulation
of MCP-1 has been demonstrated to play a role in the pathogenesis of glomerular
and tubulointerstitial damage [43]. Therefore, activation of the renin-angiotensin
system is an important determinant of the macrophage population in diabetic
nephropathy, possibly by regulating certain chemokines. It is well accepted that, in
addition to their blood-pressure-lowering effects, angiotensin II receptor antagonists
are renoprotective in patients with type 2 diabetes mellitus with microalbuminuria
[44, 45]. In addition, combination treatment with an angiotensin II receptor antag-
onist and an angiotensin converting enzyme inhibitor was found to be more effec-
tive in retarding the progression of non-diabetic renal diseases, in comparison with
monotherapy [46]. These beneficial effects may be, at least in part, dependent on the
inhibition of chemokines [43]. Interestingly, a renoprotective effect of mycopheno-
late mofetil has been reported, which could have derived from its well-known anti-
inflammatory properties that include restriction of lymphocyte and macrophage
proliferation and modulation of the expression of adhesion molecules [47]. More
recently, Yozai et al. [48] reported the protective effects of methotrexate on diabet-
ic nephropathy, which are suggested to be mediated by its anti-inflammatory actions
through inhibition of NF-κB activation and consequent reduction of intercellular
adhesion molecule-1 expression and immune competent infiltration. Taken togeth-
er, these findings confirm that inflammatory responses are essentially involved in
diabetic nephropathy and that anti-inflammatory agents might be useful and bene-
ficial for the treatment of this disease.

Transplant nephropathy

Early nonspecific ischemic injury with leukocyte migration to the kidney has been
related to subsequent immunological injuries in renal transplant rejection [49]. Rat
models of transplantation have facilitated a functional study of the role of
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cytokines/chemokines with leukocyte migration to the transplanted kidneys in acute
and chronic renal rejection [50, 51]. In a rat model of acute renal transplant rejec-
tion, the expression of RANTES was up-regulated, at the mRNA level, by as early as
6 h, and this up-regulation was again noted at days 3–6 [52]. Increased expression
of RANTES in the early hours of engraftment may be related to ischemic injury, and
could, in part, induce subsequent immunological responses. In addition, lympho-
cytes, macrophages and their secreted products play important roles in the eventual
immune-mediated rejection process. Moreover, increased production of certain
cytokines (IL-8/CXCL8, IL-10, IL-15), chemokines (RANTES, MCP-1) and hepato-
cyte growth factor (HGF) by infiltrating immune competent cells, tubular epithelial
cells, and endothelium may have a determinant role in renal transplant rejection [52,
53]. In addition, we recently reported the amelioration of acute rejection with
reduced leukocyte migration and prolonged survival by combined therapy of
FR167653, a specific inhibitor of p38 MAPK, and cyclosporin [54]. Especially, for
chronic allograft nephropathy (CAN) should be possible to achieve an improvement
in the long-term outcome of renal allografts in the clinical setting of renal transplan-
tation. Met-RANTES not only reduced vascular and tubular damage in acute renal
transplant rejection [50], but also protected renal allografts from long-term deterio-
ration [55]. The expression of MCP-1 in acute renal transplant rejection correlated
with the number of infiltrating macrophages [56], and elevated urinary MCP-1
excretion during rejection episodes, which diminished after successful treatment. In
addition, FTY720 may be promising for the treatment of transplant rejection, since
FTY720 prevents renal T lymphocyte infiltration after ischemia-reperfusion injury
[57]. A recent study has shown for the first time a potential role of B lymphocyte
chemoattractant (BLC)/B cell-attracting chemokine 1(BCA-1)/CXCL13 and its spe-
cific receptor CXCR5 in recruitment of B lymphocytes in renal allograft rejection
[58]. In this report, a striking colocalization of CXCL13 expression with CXCR5+

and CD20+ B lymphocytes in renal transplants undergoing rejection was described.
Further, Kerjaschki et al. [59] demonstrated that numerous chemokine receptor
CCR7+ cells within the nodular infiltrates seemed to be attracted by secondary lym-
phoid tissue chemokine (SLC)/CCL21, which is produced and released by lymphatic
endothelial cells in a complex with podoplanin. They speculated that lymphatic
neoangiogenesis not only contributes to the export of the rejection infiltrate, but is
also involved in the maintenance of a potentially detrimental alloreactive immune
response in renal transplants, and thus provides a novel therapeutic target.

Expansion of chemokine universe beyond lymphocyte migration to the
kidney

Recent studies have demonstrated that chemokines and their receptors expand their
universe beyond lymphocyte migration to the kidney in health and renal diseases.
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For instances, IP-10, which was originally reported to be a chemoattractant to Th1
T lymphocytes, is a mitogenic factor for mesangial cells and possibly acts via the
cognate receptor, CXCR3 [60]. In human mesangioproliferative glomerulonephritis,
IP-10 may serve as a growth factor to promote and escalate mesangial proliferation
in addition to its effect in the recruitment and activation of Th1 T lymphocytes. The
constitutive glomerular expression of CCR7 and its ligand SLC by adjacent renal
cells suggests the involvement of this specific chemokine/chemokine receptor inter-
action in regulating glomerular homeostasis and regeneration [61]. In addition, the
regulation of IL-8 and MCP-1 is closely related to the urinary excretion of protein
in both experimental models [26, 62] and human nephrotic syndrome; the glomeru-
lar protein leakage is possibly due to increased permeability of the glomerular cap-
illaries. A recent report described the expression of CCR4, CCR8, CCR9, CCR10,
CXCR1, CXCR3, CXCR4, and CXCR5 in cultured podocytes; the expression of
CXCR1, CXCR3, and CXCR5 was also detected in podocytes of human kidney sec-
tions [63]. It is likely that the release of oxygen radicals that accompanies the acti-
vation of CCRs and CXCRs may contribute to podocyte injury and the develop-
ment of proteinuria [63]. Importantly, MCP-1/CCR2 signaling has been reported to
be involved in renal fibrosis with the infiltration of macrophages and T lympho-
cytes, which is supposed to be a strong determinant for renal fibrosis [64, 65]. These
results suggest that particular chemokines participate in renal homeostasis, and in
progressive renal diseases, resulting in renal fibrosis in addition to lymphocyte
migration.

Concluding remarks

The current concept of lymphocyte migration to the kidney that has resulted in a
better conceptual understanding of progressive renal diseases has been briefly sum-
marized. Our understanding of the molecules involved in the pathogenesis of vari-
ous renal diseases may provide new therapeutic choices, and lead to the discovery
of gene-based therapeutic options. It is likely that selective intervention of
chemokines, at the appropriate phase of a particular disease, may have the thera-
peutic potential for site- and phase-specific intervention of lymphocyte migration
and the progression of renal diseases.
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Introduction

Type 1 diabetes (T1D) is an autoimmune disease resulting from selective destruction
of insulin-producing beta cells in the pancreas by immune cells, including
macrophages, dendritic cells (DCs), T and B cells, which infiltrate the islets and
mediate a local inflammatory reaction. [1, 2]. A well-characterized model to study
T1D is represented by the non-obese diabetic (NOD) mouse, which spontaneously
develops an autoimmune insulin-dependent diabetes mellitus form closely resem-
bling human T1D [3–5].

Although the pathogenesis of T1D is still incompletely understood, a central role
for Th1 cells is well established [6]. As Th1 cells are not constitutive components of
normal islets, their recruitment to the pancreas represents an important prerequisite
for the occurrence of islet inflammatory immunopathology. In the NOD model, sev-
eral studies have demonstrated that the initial events leading to T cell priming occur
in the pancreatic lymph nodes, where antigen is presented by DCs to autoreactive T
cells [7, 8]. Thus, a critical point in the pathogenesis of T1D is the migration of
pathogenic Th1 cells from pancreatic lymph nodes to the pancreas, where they can
meet and contribute to destroy islet β cells [8, 9]. After the inciting priming event,
newly activated effector T cells modulate their homing pattern and gain access to
the pancreatic islets where their cognate antigen is expressed.

Chemokines, chemoattractant cytokines involved in leukocyte recruitment and
activation are key mediators of cell trafficking, and have been implicated in the
development of NOD and human T1D [10]. In this review, we examine how islet
chemokine production, leading to recruitment of pathogenic cells, could play an
instrumental role in the early events of T1D pathogenesis. In addition, the capacity
of vitamin D receptor agonists to inhibit chemokine production by islet cells, as a
mechanism preventing Th1 cell migration to the pancreas and T1D development, is
discussed.
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Chemokine production by pancreatic islet cells

Overt T1D is preceded by leukocyte infiltration into the pancreatic islets, implying
a key role for chemokines produced by islet cells in disease pathogenesis.
Chemokine genes are present within the diabetes susceptibility locus Idd4 in the
NOD mouse [11], one of the about 20 loci associated with T1D development. In
addition, a genetic association involving a polymorphism in CCR5 and CCR2
chemokine receptors has been described in T1D patients [12]. Interestingly, differ-
ent chemokines have been found to be produced by pancreatic β cells, including
CCL2 [13, 14], CCL5, CXCL9, and CXCL10 [14], suggesting a direct role of β cells
in leukocyte recruitment into the pancreatic islets. Chemokines have been implicat-
ed as recruiters of pathogenic [15–17] and regulatory [18] T cells to the pancreatic
islets, highlighting their important role in T1D pathogenesis.

Using real-time RT-PCR, we have shown basal ex vivo expression of several
chemokine transcripts in freshly isolated NOD.SCID islets [19]. Islets were obtained
from immunodeficient NOD.SCID mice to exclude the contribution of infiltrating
cells, detectable in the pancreas of NOD mice from about 4 weeks of age. Tran-
scripts encoding CXCL10 were prominently expressed, followed by CCL22,
CCL21, CCL3, CCL17, and CCL22. Copious amounts of CXCL10 were secreted
by islet cells in the supernatant during a 72-h culture without overt stimulation
(1034 pg/ml), as well as appreciable levels of CCL2 (451 pg/ml) and CCL5 (382
pg/ml), and low but detectable levels of CCL3 (5 pg/ml). Levels of CCL17 and
CCL21 were below the ELISA detection limits [19]. A comparison of chemokine
production by islet cultures from NOD.SCID, NOR, and BALB/c mice revealed that
NOR and BALB/c islets secreted, compared to NOD.SCID islets, about 50% lower
levels of CXCL10, CCL2, and CCL5.

These results demonstrate that pancreatic islets constitutively produce chemokines,
and notably relatively high levels of CXCL10, CCL2, and CCL5. Islets from the dia-
betes-resistant NOR mouse, characterized by negligible insulitis [20], as well as from
the BALB/c mouse, secrete lower levels of these chemokines compared to NOD.SCID
islets, suggesting that constitutive secretion of proinflammatory chemokines by islet
cells may represent a contributing factor in the development of T1D.

Pathogenic Th1 cells express on their surface predominantly two chemokine
receptors: CXCR3 and CCR5 [21]. Their role in T1D is highlighted by the obser-
vation that in CXCR3-deficient mice the onset of disease is delayed [14]. In addi-
tion, the critical role of CCR5 and CXCR3 in leukocyte trafficking to islets has been
shown by targeting these receptors and inhibiting islet allograft rejection [22].

Our work has established that constitutive and inducible production by mouse
islet cells of CXCL10, a ligand for CXCR3 expressed by Th1 cells, is most promi-
nent [19]. CXCL10 has previously been shown to be produced by the NOD β cell
line NIT-1 stimulated with inflammatory cytokines [14]. The highest constitutive
levels of this chemokine have been observed in the NOD background, compared
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with diabetes-resistant strains [19], further supporting its important role in the
pathogenesis of T1D. CXCL10 is also produced by human islet cells [19], and it
seems to be implicated in human T1D, as elevated serum levels have been observed
in diabetes patients and in autoantibody-positive subjects at risk of developing the
disease [23, 24]. The role of CXCL10 as a conductor of lymphocyte trafficking to
pancreatic islets has been recently supported by data indicating that islet-specific
expression of CXCL10 accelerates the autoimmune process by enhancing the migra-
tion of antigen-specific lymphocytes to their target site [25].

Islets also produce CCL2 and CCL3 [19], chemokines able to recruit CCR1+ and
CCR2+ macrophages [26] and immature DCs [27, 28]. These findings are consistent
with studies showing that macrophages and DCs predominantly populate the pan-
creatic islets during the early stage of insulitis [29]. Intriguingly, both macrophages
and CD11c+ DCs are present in pancreatic islets of NOD mice at 4 weeks of age, a
time point when T and B cells are just beginning to enter the pancreas [30, 31].
CCL2 has been shown to be produced also by human islet cells, and it appears to
play an important role in the monocyte recruitment to transplanted islets, as low
CCL2 secretion is associated with long-lasting insulin independence and good clin-
ical outcome of islets transplanted into T1D patients [32].

Thus, pancreatic β cells, as well as other islet cell types, produce chemokines
potentially able to attract all the pathogenic cells involved in β cell death.

Toll-like receptor ligands enhance islet chemokine production

T1D is a multifactorial disease, with a combination of genetic and environmental
factors contributing to β cell destruction [33]. The early events in the pathogenesis
of T1D are still poorly understood, but infectious agents, in particular viruses, have
been implicated in disease provocation [34]. The host defense against microbial
pathogens is triggered by the recognition of conserved motifs in infectious microor-
ganisms mediated by Toll-like receptors (TLRs), surface molecules able to recognize
distinct structural components of pathogens [35]. Activation of signal transduction
pathways by TLRs leads to up-regulation of different genes that operate in host
defense, including costimulatory molecules, cytokines and chemokines [36].

We have demonstrated, using real-time RT-PCR, the expression of mRNA tran-
scripts encoding TLR1 through TLR9 in islet cells from NOD.SCID, NOR, and
BALB/c mice [19]. All TLR transcripts examined were found expressed, with a rela-
tively higher abundance of TLR2. No major differences in islet TLR expression
among the different mouse strains tested were discernible. In addition, as shown in
Figure 1A, all TLR transcripts were expressed, although in some cases at a relative-
ly lower level, by NIT-1 cells, a pancreatic β cell line established from NOD mice
[37]. The expression of TLR transcripts by NIT-1 cells suggests their expression also
by wild-type pancreatic β cells. TLRs are also expressed on the cell surface, as indi-

169

Leukocyte migration to pancreatic islets: a critical step in the pathogenesis of type 1 diabetes



170

Nadia Giarratana et al.

Figure 1
TLR expression in pancreatic islets and NIT-1 cells
(A) Quantification of TLR mRNA expression by real-time RT-PCR in freshly isolated
NOD.SCID (filled bars), NOR (gray bars), BALB/c (stippled bars) pancreatic islets, and NIT-
1 cells (open bars). The levels of mRNA are shown as arbitrary units normalized to GAPDH
expression. Data are from one representative experiment out of three performed. (B) Stain-
ing for TLR4 expression by NOD.SCID islet cells and NIT-1 cells. No staining was revealed
in slides incubated with isotype-matched primary antibody controls (not shown). Magnifi-
cation, × 400.



cated by the strong staining of NOD.SCID islet cells and of NIT-1 cells with anti-
TLR4 mAb (Fig. 1B). All TLR transcripts are also expressed by human islet cells
[19]. Confocal microscopic analysis demonstrates that TLR3 and TLR4 are broadly
expressed by NOD.SCID and human pancreatic islet cells, including insulin-produc-
ing β cells, as shown by co-localization of insulin and TLR expression [19]. Thus,
TLRs are expressed, in addition to β cells, by other cell types in the pancreatic islets.

To determine if the TLRs expressed by islet cells are functional, we analyzed
chemokine production by NOD.SCID islets in response to TLR ligands. A marked
up-regulation of CXCL10, CCL5, CCL2, and CCL3 was found following islet stim-
ulation with specific TLR ligands, such as peptidoglycan for TLR2, poly I:C for
TLR3, LPS for TLR4, flagellin for TLR5, R848 for TLR7, and CpG for TLR9 [19].
Although a particularly marked enhancement of chemokine production was
induced by poly I:C, all the different stimuli tested induced a significantly higher
chemokine production, compared to basal levels. These results demonstrate that
TLRs expressed by islet cells are functional, and suggest that different microorgan-
isms can enhance chemokine production by islet cells, thereby potentially con-
tributing to T1D pathogenesis. The chemokines produced, either constitutively or
following TLR ligation, by islet cells are, among those tested, of proinflammatory
type: CXCL10, CCL2, CCL5, and CCL3. No production of the homeostatic
chemokines CCL17 and CCL19 could be detected.

The highest levels of chemokine production, among all the different TLR ligands
tested, was induced by the viral RNA mimic poly I:C, a ligand for TLR3. TLR3 is
a pattern recognition receptor that recognizes extracellular dsRNA released from
virus-infected cells [38]. A viral component triggering the development of T1D has
long been suspected, but persuasively implicated only in the case of B4 coxsack-
ievirus, cytomegalovirus, and rubella, although at least 14 different viruses have
been reported to be associated with T1D in humans and animal models [39]. Con-
troversial results have been reported on T1D modulation by poly I:C [40, 41], but
a viral component triggering the development of T1D is plausible, although viruses
can also protect from T1D, at least in animal models [42, 43].

Different mechanisms have been proposed to account for virus-induced autoim-
mune diabetes, including molecular mimicry [44], bystander activation of autoreac-
tive T cells [45], and direct cytopathic effects in virus-infected target cells [46]. In
addition to these possible mechanisms, we would propose that the association
between virus infection and T1D reflects the triggering by viral products of signal
transduction via TLRs expressed by islet cells, in particular TLR3 and TLR9, lead-
ing to production of proinflammatory chemokines by islet cells that contribute to
create the conditions for an autoimmune attack (Fig. 2). This pathogenetic mecha-
nism, in concert with genetic susceptibility and induction of adaptive immune
responses, may precipitate autoimmune diseases, as shown in the induction of
autoimmune myocarditis by a combination of TLR stimulation and CD40-mediat-
ed triggering of self peptide-loaded DCs [47]. Consistent with these findings, T1D
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can be precipitated by a combined treatment with poly I:C and insulin B9-23 pep-
tide [48], possibly via poly I:C-induced triggering of TLR3 [49]. Pancreatic β cells
are known to regulate responses to viral infections, as shown by their IFN-depen-
dent capacity to reduce permissiveness of infection and subsequent NK cell-depen-
dent β cell death, preventing diabetes development [50]. Intriguingly, infection with
lymphocytic choriomeningitis virus (LCMV) in NOD or in LCMV-RIP transgenic
mice can abrogate T1D development, and this is associated with LCMV-induced
expression of CXCL10 in draining pancreatic lymph node cells, creating a
chemokine gradient correlated with the rapid egress of pancreas-infiltrating lym-
phocytes [51].

Thus, our results indicate that innate immune responses to viruses and other
pathogens may contribute, via TLR triggering, to the pathogenesis of T1D by stim-
ulating cells of the target organ to recruit pathogenic leukocytes. This pathogenetic
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Figure 2
Pathogens provoke T1D onset: mechanistic explanations
A microbial component triggering the development of T1D has long been suspected, but the
interpretation of this association has been framed only within the context of epitope mim-
icry or bystander activation. Islet cells constitutively produce pro-inflammatory chemokines,
and up-regulation of chemokine secretion by islets, leading to leukocyte infiltration into the
pancreas and to T1D development, can be also provoked by triggering TLRs expressed on the
islet cell surface.



mechanism may not be restricted to islet cells, but TLR activation in target tissues
could represent a situation common to many organ-specific autoimmune diseases
[35], and also to systemic ones, as suggested for TLR9 in the pathogenesis of sys-
temic lupus erythematosus [52, 53].

Modulation of islet chemokine production by vitamin D receptor agonists
can affect effector and regulatory T cell recruitment in T1D pathogenesis

1,25(OH)2D3, the activated form of vitamin D, is a secosteroid hormone that has,
in addition to its central function in calcium and bone metabolism, important effects
on the growth and differentiation of many cell types, and pronounced immunoreg-
ulatory properties [54–56]. The biological effects of 1,25(OH)2D3 are mediated by
the vitamin D receptor (VDR), a member of the superfamily of nuclear hormone
receptors, functioning as an agonist-activated transcription factor that binds to spe-
cific DNA sequence elements in vitamin D-responsive genes, and ultimately influ-
ences the rate of RNA polymerase II-mediated gene transcription [57].

The vitamin D endocrine system is involved in a variety of biological processes
able to modulate immune responses [58], and. the tolerogenic properties of VDR
agonists render this class of compounds particularly interesting for the treatment of
T1D [59]. 1,25(OH)2D3 itself reduces the incidence of insulitis [60] and prevents
T1D development [61], but only when administered to NOD mice starting from 3
weeks of age, before the onset of insulitis. 1,25(OH)2D3 was found ineffective in
preventing progression of diabetes in NOD mice when given from 8 weeks of age,
when NOD mice present a well-established insulitis [62]. In contrast, we have iden-
tified a 1,25(OH)2D3 analog 1,25-dihydroxy-16,23Z-diene-26,27-hexafluoro-19-
nor vitamin D3 (BXL-219) that is able, as a monotherapy, to treat the ongoing type
1 diabetes in the adult NOD mouse, effectively blocking the disease course [63].
This property is likely due, at least in part, to the increased metabolic stability of
this analog against the inactivating C-24 and C-26 hydroxylations, and the C-3
epimerization [64], resulting in a 100-fold more potent immunosuppressive activity
compared to 1,25(OH)2D3 [59]. Our results clearly show that a relatively short
treatment with non-hypercalcemic doses of BXL-219 inhibits the ongoing pancreat-
ic infiltration of Th1 cells in adult NOD mice, arresting the immunological pro-
gression of T1D and preventing its clinical onset [63].

In both islet transplantation and type 1 diabetes models, treatment with VDR
agonists has a profound effect on the migration of effector T cells, preventing their
entry into the pancreatic islets [63, 65]. Thus, VDR agonist-induced down-regula-
tion of chemokine production by islet cells could represent an important mechanism
of action leading to inhibition of T1D development. We have found that transcripts
encoding all TLRs are expressed by mouse and human islet cells and they are func-
tional, as demonstrated by the marked up-regulation of chemokine production fol-
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lowing TLR engagement by specific agonists [19], suggesting that TLR-mediated
up-regulation of proinflammatory chemokine production like CXCL10, CCL2 and
CCL5 by islet cells plays an important role in the early events leading to leukocyte
infiltration into the pancreatic islets.

The VDR agonist BXL-219 significantly down-regulates in vitro and in vivo
proinflammatory chemokine production by islet cells, inhibiting T cell recruitment
into the pancreatic islets and T1D development [19]. The inhibition of CXCL10
may be particularly relevant, consistent with the decreased recruitment of Th1 cells
into sites of inflammation by treatment with an anti-CXCR3 antibody [66], and
with the substantial delay of T1D development observed in CXCR3-deficient mice
[14]. The inhibition of islet chemokine production by BXL-219 treatment in vivo
persists after restimulation with TLR agonists and is associated with up-regulation
of IκBα transcription, an inhibitor of nuclear factor κB (NF-κB), and with arrest of
NF-κBp65 nuclear translocation [19], highlighting a novel mechanism of action
exerted by VDR agonists potentially relevant for the treatment of T1D and other
autoimmune diseases. These observations expand the known mechanisms of action
exerted by vitamin D analogs in the treatment of T1D and other autoimmune dis-
eases, namely arrest of DC maturation, inhibition of Th1 cell responsiveness, and
enhancement of regulatory T cells [67].

Conclusions

Islet cells, including insulin-producing β cells, express all the TLRs and their trig-
gering markedly increases the secretion of proinflammatory chemokines. Thus, ini-
tial events in T1D development leading to leukocyte infiltration into the pancreatic
islets may be provoked by triggering of TLRs expressed by islet cells, which can
respond to microbial signals by up-regulating the secretion of chemokines able to
attract Th1 cells, macrophages, and DCs. Since these cell types are involved in the
pathogenesis of T1D, the TLR-mediated up-regulation of proinflammatory
chemokine production by islet cells appears to be an important element in the early
steps of T1D development. TLR3 and TLR9 appear to be particularly active in lead-
ing to production of proinflammatory chemokines by islet cells that can contribute
to create the conditions for an autoimmune attack. Our work has also shown that
vitamin D analogs can significantly down-regulate in vitro and in vivo proinflam-
matory chemokine production by islet cells, inhibiting T cell recruitment into the
pancreatic islets and T1D development. The inhibition of islet chemokine produc-
tion in vivo persists after restimulation with TLR ligands and is associated with up-
regulation of IκBα transcription, an inhibitor of NF-κB, and with arrest of NF-
κBp65 nuclear translocation, highlighting a novel mechanism of action exerted by
VDR ligands potentially relevant for the treatment of T1D and other autoimmune
diseases.
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Introduction

In the four-step paradigm of leukocyte homing (rolling, arrest, spreading, and dia-
pedesis), there are number of molecular events that could serve as points for inter-
vention: selectin interactions, integrin binding, and the chemotactic factors directing
diapedesis and migration. By far the best studied set of chemotactic factors are the
chemokine ligands and their receptors. The chemokine receptors belong to one of
the most pharmacologically exploited protein families, the G protein-coupled recep-
tors (GPCRs), and are therefore the focus of most of the efforts in therapeutically
controlling leukocyte trafficking in disease [1].

Chemokine receptor expression on hematopoietic cells displays a great deal of
redundancy and inflammatory lesions often express a large set of chemokines which
will then attract multiple cell types. Regardless, strategies at targeting single
chemokine receptors have shown great success in animal models of disease [2–4]. To
date this success has not been recapitulated in human clinical trials testing these
agents. Most of these trials have been based on the concept that antagonism of a
single receptor can generate a broad enough effect to elicit efficacy in disease. While
it is certainly too early to close the door on this targeted receptor approach, it is
worth exploring the potential for using more promiscuous targeting to control
leukocyte trafficking. In addition to the evaluation of promiscuous targeting, there
has been a heightened interest in harnessing the homeostatic trafficking of leuko-
cytes for therapeutic benefit. There are a number of recent reviews that provide a
detailed summary of the current activities in developing chemokine receptor small
molecule antagonists, and the reader is referred there for additional information on
specific receptor programs [4–8].

Inflammatory trafficking

The inflammatory chemokines are characterized by high expression within inflam-
matory lesions that often results in the attraction of multiple cell types. These have
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been the primary targets for drug development, as reduction of cellular infiltration
can lead to reduction of disease in chronic autoimmune disorders, chronic airway
disease, atherosclerosis and graft rejection [3, 4, 6, 7, 9].

T cells

Activated T cells shift from a homeostatic trafficking phenotype by down-regulat-
ing expression of lymphoid trafficking receptor CCR7 and up-regulating expression
of the inflammatory receptors [10]. Within this receptor class, CCR5 and CXCR3
are both expressed on effector T cells of the Th1 lineage, while Th2 cells express
CCR3, CCR4 and CCR8. All of these receptors, except CCR8, have extensive small
molecule drug development programs evaluating antagonists.

Early efforts to identify CCR5 antagonists stemmed from the recognition that
CCR5, along with CXCR4, is one of the primary coreceptors for HIV infection.
There exists a human CCR5 knockout-equivalent that is protected from HIV infec-
tion, where a 32-base pair deletion of this gene results in an inactive receptor
(CCR5∆32) [11–13]. This genotype also supports a role for CCR5 in leukocyte traf-
ficking, as renal transplant recipients that are homozygous for this allele show a dis-
tinct survival advantage over the heterozygotes or wild-type recipients [14]. As acti-
vated monocytes up-regulate expression of CCR5, antagonism of this receptor
would be expected to also show effects on monocyte adhesion and migration.

Pfizer, Schering Plough, Ono Pharmaceuticals, Takeda, Merck and AnorMED
are among the companies with ongoing programs developing non-peptide antago-
nists for CCR5. While most companies are evaluating HIV infection as the primary
indication for the CCR5 antagonists, Merck has presented preclinical data that a
CCR5 antagonist can prolong graft survival in cynomolgus monkey heart allografts.
Antagonism of CCR5 with one of their development compounds inhibited the
influx of CCR5+, CD68+, CXCR3+ and CD3+ leukocytes to the allografts (228th
ACS meeting in Philadelphia, PA, 2004). As the numerous CCR5-based HIV clini-
cal trials advance, more of these compounds should find their way into testing for
therapies related to leukocyte trafficking.

The other primary HIV coreceptor, CXCR4 is also the target of a number of clin-
ical trials. While CXCR4 antagonists are being evaluated for stem cell mobilization
and anticancer activities, there is less activity in evaluating CXCR4 antagonism for
blocking lymphocyte homing, as the receptor and its ligand CXCL12 are broadly
expressed both in the hematopoietic system and in other tissues [15].

A number of development programs exist that target CXCR3 in Th1-mediated
diseases (psoriasis) and CCR3 in Th2-mediated diseases (allergic rhinitis and asth-
ma). A CXCR3 antagonist (T-487) developed by Tularik/Amgen demonstrates
nanomolar potency in binding, and is able to inhibit lymphocyte migration to
CXCL9, CXCL10 and CXCL11. However, as reported at the Chemotactic
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Cytokine Gordon Conference in 2004, the compound did not meet efficacy end-
points when tested in Phase II clinical trials as a therapy for psoriasis.

Monocytes

Monocyte homing can be driven through activation of multiple receptors: CCR1,
CCR2, CCR5 and CX3CR1. CCR1 is expressed on many cell types, including neu-
trophils, T cells and NK cells, but much of the efficacy in these models has been
attributed to its expression on monocytes that are differentiating to the macrophage
lineage [16]. The most potent CCR1 antagonist reported is BX471, under develop-
ment by Berlex Biosciences. This compound is able to displace the binding of mul-
tiple CCR1 ligands (CCL3, CCL5 and CCL7) with high affinity, and can inhibit the
functional activation of CCR1 as demonstrated in calcium-release assays, increase
in extracellular acidification rate, inhibition of CD11b up-regulation and monocyte
adhesion and migration [17, 18]. Insight into the physiological and pathophysio-
logical roles of CCR1 has been gained through the use of this CCR1 antagonists in
animal models of multiple sclerosis and organ transplant rejection [17–19]. For
example, in a rat experimental autoimmune encephalitis (EAE) model of multiple
sclerosis, BX471 decreased the clinical score in a dose-dependent manner [17].
BX471 was evaluated in a phase II trial for multiple sclerosis, but did not meet effi-
cacy endpoints (ECTRIMS 2005). In addition to BX471, there are other CCR1
antagonists under development, including clinical compounds by Millenium and
Pfizer [5].

The CCR2 receptor and its ligands CCL2, CCL7, CCL8, CCL13 have been
shown to be involved in the trafficking of monocytes. Subsequent analyses with
knockout mice have shown a role for CCR2 and CCL2 in the pathogenesis of ani-
mal models of atherogenesis and multiple sclerosis [20–23]. Due to the strong cor-
relation with numerous diseases, a number of companies are developing non-pep-
tide antagonists. These programs are not as advanced as those for some of the other
receptors discussed above, with Merck, ChemoCentryx, Johnson and Johnson, Pfiz-
er, and Incyte all in the discovery phase [5].

Homeostatic trafficking

Efforts at targeting the chemokine receptors involved in homeostatic trafficking
have lagged those of targeting the inflammatory receptors. Our understanding of the
key chemokine players has resulted from detailed analysis of the microenvironment
of the secondary lymphoid organs, as discussed elsewhere in this book. The home-
ostatic chemokines and their receptors may not show altered expression in the dis-
ease state, but antagonizing their trafficking activity can nonetheless have significant
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impact on the state of the immune system in the organism. Because of the precise
control of homeostatic homing, in comparison to the “cytokine (chemokine) storm”
in diseased tissue, there might be the ability to more precisely affect this axis of
leukocyte trafficking with specific receptor antagonists.

Dendritic cells and T cells – CCR7

Naïve T cells and activated, mature dendritic cells (DCs) use a common mechanism
to reach the secondary lymph nodes. Here they come into contact, allowing the acti-
vation of the T cells by the antigen-loaded DCs. The CCR7 ligands expressed by
high endothelial venules (HEVs), secondary lymphoid organ chemokine (CCL21)
and EBV-induced molecule-1 ligand chemokine (CCL19), elicit entry of the leuko-
cytes through activation of the CCR7 receptor. Much of this knowledge was eluci-
dated through the use of a mouse strain that contains an autosomal recessive pauci-
ty of lymph node T cell (plt) mutation [24]. These mice lack the secondary lymphoid
HEV expression of CCL19 and CCL21, and have deficiencies in trafficking of lym-
phocytes to the secondary lymph nodes.

When fully allogeneic islets were transplanted into streptozotocin-treated plt
mice, they showed permanent survival of islets engrafted under the kidney capsule,
whereas controls rejected islet allografts in 12 days (p <0.001) [25]. These mice had
normal allogeneic T cell responses, but deficient migration of donor DCs to drain-
ing lymph nodes. These results compare favorably with the animal studies blocking
the inflammatory chemokine receptors CCR1 [18] and knockout models of CCR1,
CXCR3 and CX3CR1 [26–28]. CCR7 antagonists are all at early stages of devel-
opment. Compounds have been reported in patent literature with binding inhibition
potencies of <10 mM [29] and 3 nM by Pharmacopeia [30].

Researchers at Schering Plough are also exploring the potential of activating
CCR7 in adjuvant therapy. When CCL21 was expressed in a C26 colon carcinoma
tumor line, there was a reduced tumorigenicity of these cells that was correlated
with an increased number of tumor infiltrating DCs [31]. Although there are no
agonists under development, both Chiron and Schering Corporation have reported
using CCL21 as a means of enhancing the immune component of a DC response to
elicit an enhanced anticancer response [32, 33].

B cells – CXCR5

CXCR5, expressed on mature circulating B cells, is activated by the chemokine
CXCL13. This receptor-ligand axis is a critical component in the homeostatic traf-
ficking of B cells, as both CXCR5 and CXCL13-deficient mice lack B cell follicles
in the spleen and Peyer’s patches [34, 35]. While they do develop secondary lym-
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phoid organelles that are deficient in B cell zones, these mice are able to generate a
full spectrum of immunoglobulin responses, including antibody maturation [36].

A common feature of autoimmune disease is the formation of B cell clusters in
ectopic lymphoid structures: rheumatoid arthritis, acute renal transplant rejection,
Sjögren’s syndrome, autoimmune thyroid disorders, and multiple sclerosis [37–39].
These follicle-like structures contain germinal centers that are thought to participate
in the generation of autoreactive antibodies associated with pathogenesis. Given the
lack of phenotype seen with the knockout mouse, CXCR5 might be an interesting
target that could selectively affect the development of these disease-specific lymphoid
structures, while leaving the normal secondary lymphoid functions competent.

In addition to the expression on mature B cells, CXCR5 is also expressed on a
subset of memory T cells [10], and there are data tying CXCR5 to both T and B cell
migration to diseased tissue, in this case acting like an inflammatory chemokine.
CXCL13 is significantly up-regulated in actively demyelinating and chronic inactive
lesions of multiple sclerosis patients [40]. Demonstrating that CXCL13 is involved
in the pathology, neutralizing antibodies against CXCL13 or CXCL13–/– mice are
able to reduce disease progression and abrogate relapse in EAE, presumably through
a reduced infiltration of T cells in this model (Bagaeva, 6th World Congress on
Inflammation). Despite these interesting initial findings, there are no reports of
CXCR5-targeted therapies in development, although Bayer has a published patent
claiming methods related to screening for antagonists of CXCR5 [41].

FTY-720

The immunomodulatory drug FTY-720 is a prodrug that when phosphorylated in
vivo acts as an agonist on a subset of the members within the GPCR family of
sphigosine-1-phospate (S1P) receptors. Systemic administration of FTY-720 results
in a rapid lymphopenia that is lymphocyte selective, leaving monocytes and NK cells
unaffected. This is the result of sequestration of naïve and activated CD4 and CD8
T cells and B cells in lymph nodes and Peyer’s Patches [42, 43]. S1P gradients are
essential for the egress of lymphocytes from the lymph nodes, and part of the activ-
ity of FTY-720 may be attributed to its ability to cause internalization of S1PR, in
essence acting as a non-competitive agonist.

While much of the activity of FTY-720 is directly attributable to blocking the
SIP1R-induced migration [44], it is clear that there is also a component of the home-
ostatic chemokine system that is downstream of SIPR. Activation of S1PR was first
reported to sensitize the CCR7 receptor to signaling by its ligands (CCL19 and
CCL21) [45]. Additional chemokine receptors have since been implicated in FTY-
720’s affect on lymph node homing, including CCR2 and CXCR4 [45]. However,
the exact mechanism of how FTY-720 and the chemokines are acting in concert to
affect egress and recirculation of lymphocytes is not clear.
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Through these actions of lymphocyte sequestration, FTY-720 is able to prolong
human and murine allograft survival, without affecting T cell activation and prolif-
eration [46]. This mechanism of action is unique among immunosuppressive agents,
and could lead to an improved safety profile for chronic dosing. This compound is
being developed by Novartis AG and is in phase 3 clinical trials for transplant rejec-
tion [47]. There are also ongoing clinical trials for multiple sclerosis (Phase II) and
Crohn’s disease (Phase I). It may be that FTY-720, by moving upstream of the
chemokine receptor itself, is able to generate a broad activity profile that overcomes
some of the problems identified in clinical trials with antagonists on individual
chemokine receptors. In the next section we discuss this concept of promiscuous tar-
geting in more detail.

With the entry of chemokine receptor small molecule antagonists into clinical tri-
als, the hopes were high that these magic bullets would provide validation of the
concept that specific inhibition of leukocyte trafficking could show therapeutic
potential in humans. As previously mentioned, in the case of CCR1 and CXCR3,
these selective target antagonists have failed to show efficacy when transitioned
from animal models to disease in humans.

Promiscuous targeting

New complexities in the chemokine systems continue to emerge. As research dis-
covers new receptor-ligand pairs that are involved in leukocyte trafficking (RDC1-
CXCR4), or finding new uses for the usual suspects (CCR2 lymph node homing)
[45]. Often, this complexity can be understood with meticulous studies. In the case
of the homeostatic chemokines, individual chemokine gradients are set up within
the lymphoid systems that precisely arrange the cellular partners involved in the
required cellular dance (elsewhere in this book) [15].

In the chemokine system that regulates inflammatory trafficking, it is less clear
if the system involves a degree of complexity that we have yet to understand,
exhibits functional redundancy, or some combination of the two. Knockout studies
of murine atherosclerosis suggest functional redundancy in monocyte attraction, as
many different chemokine receptor knockouts (CCR2, CXCR1, CX3CR1) give par-
tial protection against diet-induced atherosclerosis [3]. However, it may be that we
simply do not understand the specific non-redundant contribution of each of these
to the pathology. Most importantly, as demonstrated by the growing number of fail-
ures of single-receptor antagonists in clinical trials, there are challenges in trying to
control the system of leukocyte trafficking by targeting a single receptor. Approach-
es are under evaluation that attempt to circumvent this problem, although they
mostly utilize systems that are quite different from the non-peptide antagonist
approach.
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Antibody and modified ligand based approaches

Often proof-of-concept research utilizes biological agents such as antibodies and
modified chemokines, rather than small molecule chemical compounds, to impact
the leukocyte trafficking system. Neutralizing antibodies against a broad range of
chemokines and chemokine receptors have been generated and tested in animal
models such as transplant rejection, rheumatoid arthritis and multiple sclerosis
(EAE), to name a few [27, 48].

The large number of studies demonstrating efficacy of neutralizing antibodies in
animal models continues to support this as a valid development approach. Human
Genome Sciences and Progenics have both humanized anti-CCR5 antibodies in
Phase I trials for inhibition of HIV infection. Cambridge Antibody Technology
Group is testing an anti-CCR3 antibody in Phase II trials in efforts to block leuko-
cyte trafficking in allergic rhinitis, allergy, and asthma. Another example currently
in the clinic is an anti-CCR2 antibody developed by Millennium (MLN-1202). This
is in Phase II trials evaluating efficacy in rheumatoid arthritis and other inflamma-
tory diseases including multiple sclerosis, chronic obstructive pulmonary disorder
and atherosclerosis.

There is certainly much hope that one or more of these trials will result in a mar-
keted therapy. However, as with the non-peptide antagonists described above, the
anti-receptor antibodies are by nature highly specific and do not generate promis-
cuous targeting. In contrast, anti-chemokine antibodies could affect the activity of
many receptors. For example, CCL5 neutralizing antibodies have demonstrated effi-
cacy in models of disease, presumably by blocking CCL5 activation of CCR1,
CCR5 and possibly CCR3 [49, 50]. However, few anti-chemokine antibodies are
under clinical development. Abgenix has tested ABX-IL8, a humanized anti-CXCL8
antibody in Phase II clinical trials for chronic obstructive pulmonary disorder, pso-
riasis and rheumatoid arthritis [51]. Although the therapy was well tolerated, none
of these studies demonstrated sufficient efficacy and there are currently no develop-
ment activities for this antibody.

Yet another approach is to take the natural promiscuity of some of the
chemokines and, by modifying them, use this to block multiple receptors. For
example modifications of CCL5 (RANTES) can affect the activity of CCR1, CCR3
and CCR5. AOP-RANTES, consisting of a chemical addition of aminooxypentane
to the N terminus of CCL5/RANTES, binds to CCR5 with subnanomolar affinity
[52]. It was initially investigated for its anti-HIV fusion activity, but has since
shown efficacy and reduced cellular infiltration in rat experimental glomeru-
lonephritis and an OVA-sensitized murine model of human asthma [53]. However,
AOP-RANTES is not acting purely as a multi-receptor antagonist, as it can cause
internalization and has full agonist activity on human CCR5, with partial activity
on CCR3 and CCR1 [54]. Despite this, it is apparently able to disrupt the endoge-
nous chemokine-regulated trafficking. Gryphon Technology was last reported to be
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investigating chemically synthesized AOP-RANTES as a therapeutic against HIV
infection.

Researchers at Serono are pursuing a novel strategy to affect chemokine signal-
ing whereby mutation of the essential heparin-binding site of CCL5 eliminates the
ability of the protein to form higher-order oligomers [55, 56]. This protein is still a
functional agonist at chemokine receptors, but by forming monomers with endoge-
nous CCL5, it inhibits the formation of higher-order oligomers. Therefore, this
mutant form [(44AANA47)-RANTES] acts as a dominant-negative inhibitor for
endogenous CCL5. The modified CCL5 can inhibit infiltration of inflammatory
cells to the peritoneal cavity and bronchoalveolar air spaces. Further studies demon-
strated an ability of this compound, when dosed intraperitoneally at 10 µg, to
reduce the severity of disease in a mouse model of chronic autoimmune
encephalomyelitis. After 14 and 21 days of treatment with the 10 µg dose, the area
under curve measurement of clinical score was significantly lower. Serono is inves-
tigating this technology for the potential treatment of multiple sclerosis and has a
compound (AS-839562) that entered preclinical studies in early 2004.

Protein based therapies – viral mimetics

Although a relatively new approach in the arena of chemokine antagonist drug
development, the use of viral proteins as a starting point for compound development
may prove to be a rich area. Large DNA viruses (poxviruses and herpesviruses) have
generated a veritable toolbox of proteins with the primary purpose of subverting the
efforts of the immune system. Many of these proteins have the ability to act as
promiscuous effectors of the chemokine system, not a surprise as they have gone
through ‘optimization by evolution’. There are three main classes of chemokine-
interacting proteins. The first two are chemokine and receptor mimics that the virus
has copied from the host genome and modified. The last class consists of secreted
proteins that bind to chemokines but share no homology with the natural
chemokines or their receptors. These may be the most interesting for drug develop-
ment as they represent proteins with no known mammalian homolog. The viral
receptor proteins are not discussed here. As they are multi-span membrane proteins,
they are less applicable for use as therapeutic agents. There are a number of excel-
lent reviews that provide a thorough overview of this interesting class of proteins
[57].

Viral chemokine mimics can exist as either agonists or antagonists. The agonists
might induce the migration and attraction of specific lymphoid subsets that are tar-
gets for viral replication, while the chemokine antagonists might interfere with anti-
viral immune responses. Human herpesvirus 8 (HHV-8) produces the chemokine
receptor antagonist vMIP-II. Glaxo reported in 1997 that vMIP-II blocked the pri-
mary coreceptors used by HIV to gain entry into cells (CCR5, CCR3, CXCR4 and
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the viral receptor US28). This vMIP-II antagonist activity has subsequently been
extended to also include CCR1, -2, -4, -10, CXCR3, and CX3CR1 [58–62].
Demonstrating the utility of this broad spectrum antagonist in vivo¸ vMIP-II has
shown efficacy in rat models of spinal cord contusion and glomerulonephritis [63,
64]. While there is no development reported for the clinical use of vMIP-II as a ther-
apeutic, there is research using this protein to assist in developing antagonistic
agents for example, against CX3CR1 and CXCR4 [65, 66].

The murine herpesvirus 68 (MHV-68) secretes the 44-kDa M3 protein that can
bind to both human and murine chemokines of all classes, despite the fact that it
has no homology to human chemokines or receptors [67, 68]. The chemokine bind-
ing by this viral protein has high affinity (Kd in the nanomolar range), and can inhib-
it binding to the receptor as well as the subsequent calcium signaling [68]. M3 has
the ability to block binding of chemokines to glycosaminoglycans as well, a proper-
ty unique among the viral proteins. Possibly through this mechanism, M3 can inhib-
it in vitro migration of CCR7-transfected cells to the homeostatic chemokines
CCL19 and CCL21. Further, transgenic mice co-expressing CCL21 and M3 in the
pancreas show a reduced recruitment of lymphocytes compared to the same mice
without M3 expression [69]. The M3 protein was previously under investigating by
Xenova for the potential treatment of inflammation and cancer (inhibition of angio-
genesis). In 2002, the protein was undergoing preclinical studies for the potential
treatment of autoimmune and inflammatory diseases. However, Xenova has since
been purchased, and there has no been further development reported.

CBP1 is a poxvirus (Parapoxvirus) secreted protein that also has the ability to
bind a wide range of chemokines. Viron is in preclinical development investigating
compounds based on CBP1 that have similar broad activities and show efficacy in
a number of animal models of inflammatory-based disease. In a presentation at the
18th International Congress of the Transplantation Society Meeting (2000), the
company reported that CBP1 could prevent chronic rejection in rat renal allografts.
In these models, CBP1 in conjunction with cyclosporin could significantly reduce
graft rejection.

Small molecule CKR antagonists

Approaches that utilize protein or peptide-based therapies will face challenges in
drug development as they can not be administered orally and there is the potential
for a humoral response against the administered agent. Therefore, the ideal promis-
cuous antagonist would be a non-peptide, orally available, small molecule. There is
a wealth of literature demonstrating that small molecule drugs can bind to multiple
GPCRs. Usually this is seen as an off target effect and improving specificity for the
target GPCR is part of the drug development process. However, if this receptor
promiscuity could be suitably harnessed in the design of dual inhibitors of GPCRs,
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it could be a very useful approach in a number of situations. For example, dual
CXCR4 and CCR5 inhibitors would be very useful therapeutically as fusion
inhibitors to prevent HIV infection. Although the idea is quite attractive, the ques-
tion remains whether the design of dual GPCR inhibitors is possible. There are
examples where efforts to design such dual inhibitors have met with success.

Given the current progress in the field of GPCR antagonist design, it is clear that
the design of dual receptor antagonists is possible if the binding pockets of the
receptors share some common determinants. A number of homology models of
chemokine receptors have been described. Of particular interest are the highly relat-
ed receptors CCR1 and CCR3, which share around 59% sequence identity [70, 71].
A 2-(benzothiazolylthio) acetamide compound from Takeda binds to both receptors
with high affinity displacing CCL3 with an IC50 of 450 nM for CCR1, and CCL11
with an IC50 of 33 nM for CCR3 [72]. Similarly, the antagonist UCB 35625 is a
potent antagonist for both receptors inhibiting chemotaxis by CCL3 in CCR1 with
an IC50 of 9.6 nM and CCL11 in CCR3 with an IC50 of 93.7 nM [73].

The receptors CCR2 and CCR5 may also have a binding pocket amenable to the
generation of dual receptor antagonists. Many of the non-peptide CCR5 antagonists
have reported some activity at CCR2. For example, Takeda’s TAK-779 has only a
15-fold specificity inhibition at CCR5 compared to CCR2 (IC50 of 1.4 and 27 nM,
respectively). This is despite no activity at CCR1, CCR3, or CCR4. Novartis is
exploiting this common binding pocket, and is developing compounds to antagonize
activity at both CCR2 and CCR5 to inhibit monocyte trafficking (Pacifichem 2005).

If the intent is to design promiscuous antagonists with maximum therapeutic
benefit, these will need to be designed to either: overcome the potential redundancy
of chemokine receptors on the same cell type (e.g., CCR1, CCR2 or CCR5 for
monocyte trafficking), or to target multiple receptors on multiple cell types involved
in the pathogenesis of a disease (e.g., CCR2 for monocytes and CCR5 or CXCR3
for T cells in inflammatory diseases) [74]. The design of such dual-receptor antago-
nists will provide a challenge to medicinal chemists as these are often structurally
unrelated receptors.

Conclusion

The pharmaceutical industry has made amazing progress in developing candidate
drugs against the chemokine receptors, bringing agents into clinical trials only a
decade after the cloning of the first target (e.g., CCR1 and BX471). These efforts
utilizing this strategy continue to expand with an increasing number of chemokine
receptor small molecule antagonists entering the clinic each year. Although none
have yet made the leap to marketed drug, there is hope that this will be seen soon,
especially in the therapeutic area of HIV. It may be that new strategies will be
required, however, to see optimum efficacy in preventing leukocyte trafficking.
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Many of these strategies, such as the viral proteins, are only now making their way
into clinical trials. The additional efforts that biologists and medicinal chemists are
now placing on promiscuous small molecule antagonists should only increase the
potential for market therapeutics that control human disease by controlling leuko-
cyte trafficking.
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Introduction

Leukocyte trafficking from bloodstream to tissue is important for the continuous
surveillance for foreign antigens, as well as for rapid leukocyte accumulation at sites
of inflammatory response or tissue injury. Leukocyte emigration to sites of inflam-
mation is a dynamic process, involving multiple steps in an adhesion cascade. These
steps must be precisely orchestrated to ensure a rapid response with only minimal
damage to healthy tissue [1, 2]. Leukocyte interaction with vascular endothelial cells
is a pivotal event in the inflammatory response and is mediated by several families
of adhesion molecules.

Several years after reporting the structure of the leukocyte integrin molecule, a
genetic defect in the subunit of the molecule (ITGB2) was discovered. This syn-
drome, now called leukocyte adhesion deficiency (LAD) I (OMIM 116920), has
been described in more than 300 children, and is characterized by delayed separa-
tion of the umbilical cord, recurrent soft tissue infections, chronic periodontitis,
marked leukocytosis, and a high mortality rate at early age (Tab. 1). Currently, the
only definite therapy is bone marrow transplantation. In vivo and in vitro studies
have shown a marked defect in neutrophil motility. Ten years later, in 1992, a sec-
ond defect, LAD II (OMIM 266265), was discovered in two children, and was
found to be due to defect in the synthesis of selectin ligands. Later on several more
cases were reported. While several adhesive functions of LAD II leukocytes are
markedly impaired in vitro, the clinical course with respect to infectious complica-
tions is a milder one than for LAD I. However, LAD II patients present other abnor-
mal features, such as growth and mental retardation, which are related to the pri-
mary defect in fucose metabolism, which are not observed in LAD I. The primary
defect is mutation in the specific fucose transporter to the Golgi apparatus (FUCT1).

Recently, a third rare LAD syndrome has been described. Patients with LAD III
suffer from severe recurrent infections, similar to LAD I, and a severe bleeding ten-
dency. Although integrin structure is intact, a defect in integrin activation is the pri-
mary abnormality in LAD III.
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LAD I

Clinical and laboratory findings

LAD-I is an autosomal recessive disorder caused by mutations in the common chain
(CD18) of the β2 integrin family. The prominent clinical feature of these patients is
recurrent bacterial infections, primarily localized to skin and mucosal surfaces. Sites
of infection often progressively enlarge, and they may lead to systemic spread of the
bacteria. Infections are usually apparent from birth onward, and a common pre-
senting infection is omphalitis with delayed separation of the umbilical cord. The
most frequently encountered bacteria are Staphylococcus aureus and gram-negative
enteric organisms, but fungal infections are also common. The absence of pus for-
mation at the sites of infection is one of the hallmarks of LAD I. Severe gingivitis
and periodontitis are major features among all patients who survive infancy.
Impaired healing of traumatic or surgical wounds is also characteristic of this syn-
drome [3].
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Table 1 - Leukocyte adhesion deficiency syndromes 

LAD I LAD II LAD III

Clinical manifestation
Recurrent severe infections +++ + +++
Neutrophilia

basal ++ +++ ++
with infection +++ +++ +++

Periodontitis ++ ++ ?
Skin infection ++ + ++
Delayed separation of the umbilical cord +++ – +++
Developmental abnormalities – +++ –
Bleeding tendency – – +++

Laboratory findings
CD18 expression ↓↓↓ or absent NL NL
SLeX  expression NL Absent NL
Neutrophil motility ↓↓↓ ↓↓ ↓↓
Neutrophil rolling NL ↓↓↓ NL
Neutrophil adherence ↓↓↓ ↓ ↓↓↓

Primary genetic defect +(ITGB2) +(FUCT1) ?



The recurrent infections observed in affected patients result from a profound
impairment of leukocyte mobilization into extravascular site of inflammation. Skin
windows yield few, if any, leukocytes, and biopsies of infected tissues demonstrate
inflammation totally devoid of neutrophils. These findings are particularly striking
considering that marked peripheral blood leukocytosis (5–20 times normal values)
is consistently observed during infections. In contrast to their difficulties in defense
against bacterial and fungal microorganisms, LAD I patients do not exhibit a
marked increase in susceptibility to viral infections [4].

The severity of clinical infectious complications among patients with LAD I
appears to be directly related to the degree of CD18 deficiency. Two phenotypes,
designated severe deficiency and moderate deficiency, have been defined [5]. Patients
with less than 1% of the normal surface expression exhibited a severe form of dis-
ease with earlier, more frequent, and more serious episodes of infection, often lead-
ing to death in infancy, whereas patients with some surface expression of CD18
(2.5–10%) manifested a moderate to mild phenotype with fewer serious infectious
episodes and survival into adulthood.

The defective migration of neutrophils from patients with LAD I was observed
in studies in vivo as well as in vitro. Neutrophils failed to mobilize to skin sites in
the in vivo Rebuck skin-window test. In vitro studies demonstrated a marked defect
in random migration as well as chemotaxis to various chemoattractant substances.
Adhesion and transmigration through endothelial cells were found to be severely
impaired [6]. With the use of an intravital microscopy assay, it was found that flu-
orescein-labeled neutrophils from an LAD I boy rolled normally on inflamed rabbit
venules, suggesting that they were capable of initiating adhesive interactions with
inflamed endothelial cells [7]. However, these cells failed to perform activation-
dependent, β2 integrin-mediated adhesion steps and did not stick or emigrate when
challenged with a chemotactic stimulus.

Patients with LAD I exhibit neutrophilia in the absence of overt infection with
marked granulocytosis with neutrophils in peripheral blood reaching levels of up to
100 000/µl during acute infections.

Integrin are also important in the optimal T cell response and indeed a wide vari-
ety of in vitro abnormalities of lymphocyte function have also been described in
LAD I, but their in vivo relevance remains unclear [8].

Early on, several lines of evidence supported an autosomal recessive pattern of
inheritance. Equal numbers of male and female patients were described, and family
studies showed heterozygous male and female carriers who expressed 50% of the
normal amount of the β2-integrin molecules on their neutrophils. Furthermore, a
frequent history of consanguineous marriages strongly supported the concept that
LAD I is inherited as an autosomal trait [9]. Early studies showed that patients with
this disorder were uniformly deficient in the expression of all three leukocyte inte-
grins (Mac-1, LFA-1, p150,95), suggesting that the primary defect was in the com-
mon β2-subunit, which is encoded by a gene located at the tip of the long arm of
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chromosome 21q22.3. To date, none of the reported affected individuals has
demonstrated a selective deficiency of a single β2-integrin heterodimer.

Subsequently, several LAD I variants were reported in which there was a defect
in β2-integrin adhesive functions, despite normal surface expression of CD18. A
child with classical LAD I features with normal surface expression of CD18 was
reported [10], in whom a mutation in CD18 was found to lead to a non-function-
al molecule. Another child with a moderate form of LAD I was found to have novel
point mutation in CD18, leading to the expression of dysfunctional β2 integrin
[11].

The molecular basis for CD18 deficiency varies [12]. In some cases, it is due to
the lack or diminished expression of CD18 mRNA. In other cases, there is expres-
sion of mRNA or protein precursors of aberrant size with both larger and smaller
CD18 subunits. Analysis at the gene level has revealed a degree of heterogeneity,
which reflects this diversity. A number of point mutations have been reported, some
of which lead to the biosynthesis of defective proteins with single amino acid sub-
stitutions, while others lead to splicing defects, resulting in the production of trun-
cated and unstable proteins [13].

Notably, a high percentage of CD18 mutations identified in LAD I is contained
in the extracellular domain of the CD18 (on exon 9), which is a highly conserved
regions. Domains within this segment are presumably required for association and
biosynthesis of precursors, and may represent critical contact sites between the α-
subunit and β-subunit precursors.

Thus, LAD I can be caused by a number of distinct mutational events, all result-
ing in the failure to produce a functional leukocyte β2-subunit. While in most cases
a point mutation, small insertions, or deletions in the CD18 (ITGB2) gene have been
reported, an infant with LAD I and gross abnormality in chromosome 21, repre-
senting a deletion of q22.1-3, was described [14].

Diagnosis and treatment

In any infant male or female with recurrent soft tissue infection and a very high
leukocyte count, the diagnosis of LAD I should be considered. The diagnosis is even
more suggestive if a history of delayed separation of the umbilical cord is present.
To confirm the diagnosis, absence of the α- and β-subunits of the β2-integrin com-
plex must be demonstrated. This can be accomplished with the use of the appropri-
ate CD11 and CD18 monoclonal antibodies and flow cytometry. Sequence analysis
to define the exact molecular defect in the β2-subunit is a further option.

As leukocytes express CD18 on their surface at 20 weeks of gestation, cordo-
centesis performed at this age can establish a prenatal diagnosis [15]. In families in
whom the exact molecular defect has been previously identified, an earlier prenatal
diagnosis is possible by chorionic biopsy and mutation analysis.
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Patients with the moderate LAD I phenotype usually respond to conservative
therapy and the prompt use of antibiotics during acute infectious episodes. Prophy-
lactic antibiotics may reduce the risk of infections.

Although granulocyte transfusions may be live saving, their use is limited
because of difficulties in supply of daily donors and immune reactions to the allo-
geneic leukocytes.

At present, the only corrective treatment that should be offered to all cases with
the severe phenotype is bone marrow transplantation [16]. The absence of host
LFA-1 may be advantageous in these transplants because graft rejection appears to
be in part dependent upon the CD18 complex.

The introduction of a normal β2-subunit gene (ITGB2) into hematopoietic stem
cells has the potential to cure children with LAD I [17]. Retroviral-mediated trans-
duction of the CD18 gene was shown to reconstitute a functional CD11a/CD18 in
lymphoblastoid cell lines derived from patients with LAD I [18]. With the future
development of gene therapy techniques that allow efficient gene transfer without
severe side effects, into true hematopoietic stem cells, severely deficient LAD I
patients will be ideal candidates for this procedure.

LAD II

Clinical and laboratory findings

LAD II syndrome (OMIM266265) results from a general defect in fucose metabo-
lism, causing the absence of SLeX and other fucosylated ligands for the selectins.
LAD II was first described in two unrelated Arabs with consanguineous parents
[19]. This is an extremely rare condition with only six patients reported [20].

Affected children were born after uneventful pregnancies with normal height and
weight. No delay in the separation of the umbilical cord was observed. They have
severe mental retardation, short stature, a distinctive facial appearance, and the rare
Bombay (hh) blood phenotype. From early life they have suffered from recurrent
episodes of bacterial infections, mainly pneumonia, periodontitis, otitis media, and
localized cellulitis. Several mild to moderate skin infections without obvious pus
have also been observed [21]. The infections have not been life-threatening events
and are usually treated in the outpatient clinic. Interestingly, after the age of 3 years,
the frequency of infections has decreased and the children no longer need prophy-
lactic antibiotics. At older age their main infectious problem is severe periodontitis,
as is also observed in patients with LAD I [22]. During times of infections the neu-
trophil count increases up to 150 000/µl.

Overall, the infections in LAD II appear to be comparable to the moderate rather
than the severe phenotype of LAD I. It is possible that the ability of LAD II neu-
trophils to adhere and transmigrate via β2-integrin under conditions of reduced
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shear forces [7] may permit some neutrophils to emigrate at sites of severe inflam-
mation where flow may be impaired, thereby allowing some level of neutrophil
defense against bacterial infections.

Indeed, while the neutrophils of the patients and their parents exhibit normal
levels of the integrin subunits, LAD II neutrophils were found to be deficient in
expression of the SLeX antigen [19]. In contrast to LAD I neutrophils, which fail to
flatten and spread on phorbol ester-treated glass coverslips, the majority of LAD II
neutrophils flattened and extensively spread with pseudopod formation [23]. The
poor migration toward chemoattractants in an under-agarose assay and the defec-
tive homotypic neutrophil adhesion could not be readily explained by the biochem-
ical deficiency of SLeX, and suggested a more global defect in cell activation or
adhesion. Nevertheless, LAD II neutrophils could be activated normally with up-
regulation of various adhesion molecules [23].

Neutrophils isolated from peripheral blood of one LAD II patient failed to bind
to purified platelet-derived P-selectin and recombinant E-selectin in vitro [23]. No
adhesion of LAD II neutrophils was observed when the endothelial cells were acti-
vated with IL-1β or TNF-α, both potent inducers of E-selectin, whereas normal neu-
trophils bound avidly. On the other hand, normal adhesion to endothelial cells was
observed after activation with PMA, an activating stimulus for β2-integrins.

Rolling, the first step in neutrophil recruitment to site of inflammation is medi-
ated primarily by the binding of the selectins to their fucosylated glycoconjugate lig-
ands. Using intravital microscopy, the in vivo behavior of fluorescein-labeled neu-
trophils from a normal donor and from LAD I and LAD II patients was investigat-
ed during their passage through inflamed microcirculation of rabbit mesentery [7].
The rolling fraction of normal donor neutrophils in this assay was around 30%, and
LAD I neutrophils behaved similarly. In contrast, LAD II neutrophils rolled poorly
(only 5%) and failed to emigrate.

To examine in vivo chemotaxis, the response of patient neutrophils to cutaneous
inflammation was assessed by both skin chamber and skin window techniques.
Neutrophil emigration was markedly diminished in both tests, the values being
approximately 1.5% and 6% of normal in the skin-window and skin chamber tests,
respectively [24]. Notably, neutrophils from a patient with LAD I, studied concur-
rently, showed the same magnitude of defect in these assays.

Since the first two LAD II patients identified were the offspring of first-degree
relatives, and since the parents were clinically unaffected, autosomal recessive inher-
itance was assumed. The basic abnormality in LAD II is a general defect in fucosy-
lation of macromolecules.

In addition to the Bombay phenotype (absence of the H antigen), the cells of
LAD II patients were also found to be Lewis a-and b-negative and the patients were
non-secretors. The three blood phenotypes (Bombay, Lewis a and b) have in com-
mon a lack of fucosylation of glycoconjugates. These facts suggested that the pri-
mary defect in LAD II must instead be a general defect in fucose production.
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After the observation that the defect in the Arab patients may be localized in the
de novo GDP-1-fucose biosynthesis pathway [25], the two enzymes involved with
this pathway, GMD and FX protein, were measured and were found to be normal
with no mutation in cDNA isolated from LAD II patients. Another child, from a
Turkish origin, was also described with LAD II in whom decreased GDP-1-fucose
transport into the Golgi vesicles was detected [26]. These studies were performed
also in the Arab patients, and indeed the same general defect in fucose transporter
to the Golgi vesicles was found. Still, marked kinetic differences were observed
between the Turkish and the Arab patients [27]. This may explain the different
response to fucose supplementation in the Turkish and the Arab children (see
below). Using the complementation cloning technique, the human gene encoding the
fucose transporter was found to be located on chromosome 11 [28]. The Turkish
child was found to be homozygous for a mutation at amino acid 147 in which argi-
nine is changed to cysteine, while the two Arab patients examined were found to
have a mutation in amino acid 308 in which threonine is changed to arginine [28].
Both mutations are located in highly conserved transmembrane domains through
evolution. LAD II is thus one of the group of congenital disorders of glycosylation
(CDG), and is classified as CDG-IIc [29]. Although only four mutations have been
described so far, some genotype-phenotype correlation can be observed [30].

From the biochemical aspect, once the primary defect was found, several studies
were done to clarify the defect. As growth and mental retardation are prominent
features in LAD II, and Notch protein, which is important in normal development,
contains fucose, Sturla et al. [29] looked at the fucosylation process in LAD II. Frac-
tionation and analysis of the different classes of glycans indicated that the decrease
in fucose incorporation is not generalized, and is mainly confined to terminal fuco-
sylation of N-linked oligosaccharides. In contrast, the total levels of protein O-fuco-
sylation, including that observed in Notch protein, were unaffected [29]. Indeed, it
was recently observed that the O-fucosylation process take place in the endoplasmic
compartment and not in the Golgi apparatus [31]. Thus, it is still unclear what leads
to the severe developmental delay observed in LAD II.

Diagnosis and treatment

LAD II is a very rare syndrome, described so far only in six children. As the clinical
phenotype is very striking, the diagnosis can be made based on the presence of
recurrent, albeit mild infections, marked leukocytosis, and the Bombay blood
group, in association with mental and growth retardation.

An analysis of peripheral blood leukocytes by flow cytometry using a CD15s
monoclonal antibody should be performed to determine SLeX expression. To con-
firm the diagnosis sequence analysis of the gene encoding the GDP-fucose trans-
porter should be performed.
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Prenatal diagnosis was made in a female fetus from one of the two affected, unre-
lated families. This fetus was found to have the Bombay blood phenotype and was
aborted. Now that the gene involved in LAD II has been cloned, prenatal diagnosis
can be done earlier using chorionic villus samples for DNA analysis.

Each of the patients described so far with LAD II suffered from several episodes
of infections, which responded well to antibiotics. No serious consequences were
observed, and prophylactic antibiotic is not needed. The patients' main chronic
problem has been periodontitis, a condition that is especially difficult to treat in
children with severe mental retardation [22]. The oldest LAD II patient is now 17
years and has a severe psychomotor retardation with only mild infectious prob-
lems.

Because of the proposed defect in fucose production, supplemental administra-
tion of fucose to the patients has been suggested. Indeed fucose supplementation
caused a dramatic improvement in the condition of the Turkish child [32]. A marked
decrease in leukocyte count with improved neutrophil adhesion was noted. Unfor-
tunately, while using exactly the same protocol, no improvement in laboratory data
or clinical features were seen in two Arab children [33]. This difference may be due
to the fact that the genetic defect in the Turkish child leads to a decreased affinity
of the transporter for fucose, and thus an increase in the cytosolic concentration of
fucose would be expected to overcome, at least in part, the defect in fucose trans-
port.

LAD III

Recently, a rare autosomal recessive LAD syndrome that is distinct from LAD I has
been reported [34]. Although leukocyte integrin expression and intrinsic adhesive
activities to endothelial integrin ligands were normal, in situ activation of all major
leukocyte integrins, including LFA-1, Mac-1 and VLA-4, by endothelial-displayed
chemokines or chemoattractants was severely impaired in patient-derived lympho-
cytes and neutrophils. Although LAD leukocyte rolling on endothelial surfaces was
normal, they failed to arrest on endothelial integrin ligands in response to endothe-
lial-displayed chemokines. G protein-coupled receptor (GPCR) signaling on these
cells appeared to be normal and the ability of leukocyte to migrate towards a
chemotactic gradient was not impaired. The key defect in this syndrome was attrib-
uted to a genetic loss of integrin activation by rapid chemoattractant-stimulated
GPCR signals [34]. This novel LAD shows significant similarities to three previous
cases commonly referred to as LAD I variants [35–37]. All four cases had similar
clinical symptoms, characterized by severe recurrent infections, bleeding tendency
and marked leukocytosis. In all cases tested, integrin expression and structure were
intact with a defect in integrin activation by physiological inside-out stimuli. As
these events cannot take place in LAD I leukocytes, it was proposed to designate this
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group of integrin activation disorders as LAD III [38]. The term LAD I variant,
which has been ascribed to these unique syndromes, is inaccurate because these syn-
dromes do not evolve from structural defects in leukocyte or platelet integrins.

In all of the LAD III cases, defects in GPCR-mediated integrin activation are also
accompanied by variable defect in non-GPCR-mediated inside-out activation of
leukocyte integrins. A growing body of evidence implicates the Ras related GTPase,
Rap-1, as a key regulator of integrin activation by these and other inside-out stim-
uli [39]. Rap-1 was also implicate in the activation of platelet and megakaryocyte
GpIIbIIIa, which is defective in LAD III. It is thus highly attractive that one or more
of the new LAD III cases involve either a direct or indirect defect in Rap-1 activa-
tion of leukocyte and platelet integrins. Although lymphocytes from two cases
expressed normal level of Rap-1, in one case studied an aberrant activation pattern
was observed [40].

However, the ubiquitous expression of Rap-1 in most tissues and its highly
diverse functions in non-hematopoietic cells [41], make it unlikely that Rap-1 is
structurally mutated in any of the new LAD III cases. It is thus possible that a
hematopoietic-specific effector of Rap-1 activity, or a specific hematopoietic adap-
tor that links this GTPase to cytoskeletal integrin partners regulating both inside-
out and outside-in integrin activation processes, is functionally deleted in these and
related LAD III cases.

These patients need prophylactic antibiotics as well as repeated blood transfu-
sion. The only curative treatment is bone marrow transplantation, which should be
performed as early as possible.

E-selectin deficiency

Another potentially inherited defect in the selectin system was described in a child
with moderate neutropenia and severe recurrent infections [42]. There was marked-
ly reduced expression of E-selectin on blood vessels of inflamed tissue with increased
levels of circulating soluble E-selectin, suggesting increased cleavage of surface E-
selectin. Notably, the E-selectin gene sequence was normal.
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Introduction

Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency with an esti-
mated incidence of 2–4 per million live births [1, 2] that results from mutations in
the WAS gene. The gene product, Wiskott-Aldrich Syndrome protein (WASp) is
exclusively expressed in non-erythroid hematopoietic cells [3–5] where it has an
important role in cytoskeletal regulation and thus WASp deficiency is linked to func-
tional defects in most blood lineages [5, 6]. Here we discuss the pathogenesis of
WAS-associated immune disease at the molecular and cellular levels as a model to
highlight the importance of the actin cytoskeleton for leukocyte function and gen-
eration of normal immune responses.

WASp is a key cytoskeletal regulator

WASp is a key cytoskeletal regulator, transmitting and integrating actin-regulating
signals essential for multiple cell functions including antigen uptake, cell migration
and immune cell-cell interactions. Other WASp family homologues are more wide-
ly expressed than WASp itself and in vertebrates these include neural WASp (N-
WASp) and three homologues of WASp family Verprolin-homologous protein
(WAVE), also called suppressor of G protein-coupled cyclic-AMP receptor cAR
(SCAR) [7, 8]. All family members are composed of modular domains identified by
sequence homology and binding interactions that serve to integrate signals for reg-
ulating WASp activity and subcellular localization (Fig. 1). WASp shares closest
sequence homology with N-WASp, with common domains in these proteins having
similar binding partners and functions. All WASp family proteins contain a charac-
teristic C-terminal tripartite VCA domain (verprolin homology, central, acidic)
capable of activating the actin-related protein (Arp)2/3 complex to initiate forma-
tion of new actin filaments (Fig. 2) [9]. A detailed discussion of WASp domain inter-
actions is outside the scope of this chapter but has been reviewed elsewhere [10, 11].
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Regulation of WASp activity

Regulation by Cdc42

Studies investigating the activation of WASp-mediated actin polymerization have
demonstrated a highly complex regulation involving several separate but co-opera-
tive pathways. Cytosolic WASp adopts an auto-inhibited configuration in which the
C-terminal VCA region is bound to a proximal GTPase-binding domain (GBD) [12]
(Fig. 2). Binding of the Rho-GTPase Cdc42, to the WASp GBD, via a complex
formed with Toca-1 (transducer of Cdc42-dependent actin assembly), induces a con-
formational change that exposes Arp2/3 and actin-binding sites, allowing actin
polymerization to proceed [12, 13]. Cdc42-GBD binding was recently shown to be
preceded by electrostatic interaction of Cdc42 with the adjacent WASp basic region
(BR) [14], a step not shared by other Rho family proteins but required for optimal
Cdc42 affinity and unfolding of auto-inhibited WASp. Other signaling molecules
synergize with Cdc42 for optimal WASp activation. These includes the Src family
kinase Lck which interacts with WASp through its SH2-SH3 module [15], and the
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Figure 1
Domain structure of WASp family proteins
Schematic diagram representing the WASp family proteins. The WASp family proteins are
organized into domains. The C terminus, which is critical for regulation of actin polymeriza-
tion, is highly conserved between members, but the N terminus is divergent. Members of the
SCAR family do not contain an EVH1 domain, but are homologous with each other at the N
terminus. The function of the N terminus is unclear, but may involve localization of the pro-
teins to membranes (EVH1, Ena Vasp homology domain; BR, basic region; GBD, GTP-ase
binding domain; V, verprolin homology domain; C, central domain; A, acidic domain; SH,
SCAR homology domain; NH2, N terminus; COOH, C terminus).



phosphoinositide phosphatidyl 4,5-bisphosphate (PIP2) [16], which may either
directly interact with WASp or exert its effects upstream of Cdc42 [17].

Regulation by phosphorylation

Phosphorylation provides a separate important mechanism for WASp activation
and occurs in response to a variety of physiological stimuli including T cell recep-
tor (TCR) stimulation, mast cell IgE receptor stimulation and collagen receptor
stimulation of platelets [18–21]. Reported as a target for Btk and Src family kinas-
es, Y291 was identified as a specific WASp residue, which when phosphorylated
leads to destabilization of WASp’s auto-inhibited configuration. This sensitizes
WASp to Cdc42 activation, enables further activation by SH2 domain-containing
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Figure 2
Regulation of WASp activity
Schematic representations of WASp. (A) Cytosolic WASp exists in an auto-inhibited confor-
mation in which the VCA region is bound to the proximal GBD. (B) WASp activation by the
Cdc42/Toca-1 complex or by phosphorylation disrupts auto-inhibition, exposing Arp2/3 and
actin binding sites.



proteins, and enhances actin polymerization both in vitro and in vivo [15, 22–24].
In vivo, Y291 phosphorylation occurs independently of Cdc42 binding and is
required to initiate WASp effector functions after TCR stimulation [18], indicating
that distinct routes of activation may direct specific WASp responses. Separately,
serine phosphorylation at sites in the VCA domain by casein kinase 2 enhances
WASp activity in vitro by increasing the affinity of the VCA domain for the Arp2/3
complex [25].

Regulation by WIP

An important binding partner for the Ena-Vasp homology 1 (EVH1) domain is
WASp-interacting protein (WIP) [26, 27], an ubiquitous actin regulator that binds
monomeric actin, stabilizes actin filaments and promotes filopodia and ruffle for-
mation [26, 28, 29]. The majority of inactive cytosolic WASp appears to be com-
plexed with WIP, and WASp levels are substantially reduced in WIP-deficient lym-
phocytes, suggesting that WIP protects WASp from proteolysis [30, 31]. Other
effects of WIP on WASP-mediated actin polymerization are complex, however, as it
appears that interaction of WIP with WASp/N-WASp retards Arp2/3-mediated actin
polymerization, possibly through stabilization of the auto-inhibited conformation
[29, 30]. On the other hand, WIP that is released during WASp activation may
enhance Arp2/3-mediated actin polymerization, and WIP activity itself can regulate
cytoskeletal rearrangement in a partially redundant fashion with WASp [31]. The
importance of WASp-WIP interactions for cell function is highlighted by the fact
that a significant proportion of WAS gene mutations result in expression of WASp
with amino acid substitutions in the EVH1 domain that would be predicted to inter-
rupt binding of WIP [32].

Regulation by other mechanisms

Other less well-defined molecular interactions also regulate the efficiency of WASp-
mediated actin polymerization in vitro. For example, the polyproline (P), BR and
EVH1 domains are all required for optimal actin polymerization by both WASp and
N-WASp [33–35], although the exact mechanisms remain unclear.

Localizing WASp activity

For normal cell functions, spatial as well as quantitative regulation of actin poly-
merization is essential. WASp localizes to areas of new actin polymerization, such as
phagocytic cups, specialized adhesion plaques in macrophages and dendritic cells
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(DC) and during assembly of the immunological synapses in T cells and NK cells
[36–39]. To date, the mechanisms spatially regulating WASp activity to discreet
intracellular compartments are largely unknown. WASp-WIP interaction is one pos-
sible mechanism as WIP recruits WASp for immune synapse formation in T cells
after TCR stimulation via a Zap70-CrkL-WIP-WASp complex [30]. Phosphoinosi-
tides such as PIP2 could also play a role, but although binding to the BR domain of
N-WASp has been reported [40, 41], direct interaction of PIP2 with WASp remains
to be demonstrated. In addition SH3 domain-containing proteins, such as the endo-
cytic proteins syndapin and intersectin, may facilitate localization to membrane sites
via polyproline domain interactions [42, 43].

Defective WASp function leads to clinical disease

Classical WAS is characterized by the triad of immunodeficiency, microthrombocy-
topenia and eczema, but in fact only the bleeding diathesis is uniformly present and
disease severity is highly variable [44]. As might be expected by the pattern of WASp
expression, defective function has been described in most immune cell lineages, lead-
ing to a combined cellular and humoral defect, which results in a susceptibility to
severe and life-threatening bacterial, viral and fungal infections [44, 45]. Abnormal
immunological laboratory parameters can include generalized lymphopenia, abnor-
mal T cell proliferation (especially in response to CD3 stimulation) and aberrant
immunoglobulin responses to protein and, more particularly, to polysaccharide anti-
gens, including isohemagglutinins [44, 46, 47]. Immune dysfunction additionally
manifests as autoimmunity, which was seen in 40% and 72% of WAS patients in
two independent studies [44, 47]. A wide range of autoimmune diseases can occur
even as early as infancy, with autoimmune cytopenias, arthritis and vasculitis being
the most common complications. Poorly understood at a cellular level, WAS-relat-
ed autoimmunity can be difficult to manage and is a poor prognostic indicator [45,
47]. Hematopoietic malignancies are an additional serious complication of WAS
that may result from defective immune surveillance, although, as with autoimmuni-
ty, the pathogenic mechanisms are presently unclear [45, 48, 49].

Without treatment, the prognosis for severely affected WAS patients is poor, with
bleeding and severe infections constituting the major causes of morbidity and mor-
tality in infancy and early childhood. At present, the only curative therapy for clas-
sical WAS is bone marrow or hematopoietic stem cell transplantation, but it is like-
ly that corrective gene therapy will be available in the near future [50, 51]. In con-
trast, X-linked thrombocytopenia (XLT), which results from mutations in the same
gene, has a milder phenotype generally restricted to microthrombocytopenia, and
consequently is associated with a much-improved prognosis [45, 52–54].

The clinical variability of the XLT/WAS spectrum is in part due to genotype, but
is also influenced by other factors that may include pathogen exposure and sec-
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ondary disease modifying genes. Approximately 300 unique mutations have been
reported throughout the WAS gene, with a predominance of missense mutations
located in the first four exons (WASpbase: http://homepage.mac.com/kohsukeimai/
wasp/WASPbase.html, and [45, 55]). Five specific mutations, three associated with
XLT and two with WAS, occur with high frequency and have been termed ‘muta-
tional hotspots’ (Fig. 3) [55]. The effect of the mutation on protein expression
strongly influences clinical phenotype, as mutations resulting in complete absence
of WASp are associated with severe disease while persistence of reduced amounts
of WASp correlate with a milder phenotype [45, 55, 56]. This likely results from
preservation of partial WASp function including WASp-Arp2/3-mediated actin
polymerization in a subset of patients. Once proteotype has been determined for
any given mutation, there is a strong genotype/proteotype association that is likely
to be clinically useful for prognostication and directing patient management [56].
Intriguingly, mutations which give rise to constitutively active WASp result in X-
linked neutropenia, a completely different disease characterized by congenital neu-
tropenia and severe bacterial infections [57, 57a], highlighting the importance of
WASp-mediated cytoskeletal regulation for normal cell function. Studies of the
effects of WASp deficiency in vivo have been assisted by the generation of two sep-
arate WASp-deficient mouse models, both of which provide good mimics for the
hematopoietic features of human WAS [58, 59], although neither express signifi-
cant autoimmune or malignant disease.

Importance of the actin cytoskeleton for generation of normal immune
responses

Effective host protection against invading pathogens requires continual immune sur-
veillance by tissue-resident leukocytes and rapid recruitment of blood-borne
immune cells. The actin cytoskeleton is crucial for both of these events at multiple
points. At the inflammatory site, phagocytosis of particulate antigens and uptake of
soluble antigens by endocytosis/pinocytosis require cytoskeletal reorganization for
protrusion or retraction of the plasma membrane [60, 61]. Capture of foreign anti-
gen initiates DC migration to draining lymphoid tissue via afferent lymphatics and
homing to lymphoid T cell areas for antigen presentation [62–64]. Dynamic
cytoskeletal rearrangement is mandatory for cell motility, cell-cell interactions and
for formation of an immunological synapse during T cell priming [60]. Cell motili-
ty is also essential for homing of blood-borne effector cells into inflamed tissue,
which occurs via a sequence of events that is often referred to as the multistep par-
adigm of leukocyte emigration [65]. During this process, cells tether, roll and firm-
ly adhere to the vascular endothelial surface before crawling through a junction
between adjacent endothelial cells (diapedesis) to enter tissue and migrate to inflam-
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matory sites [65]. Both the rigidity to sustain tethering and rolling forces and the
high flexibility required for physical migration are provided by dynamic regulation
of the cell’s actin cytoskeletal machinery.

WASp-mediated cytoskeletal rearrangements are essential for many immune
response events. The following sections detail the consequences of WASp deficiency
on the immune function of myeloid and lymphoid lineages and discuss how these
specific defects are likely to be important for disruption of normal immunity.
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Figure 3
WASp genomic organization and protein structure
(A) Schematic diagram of WASp genomic structure. The 12 exons are shaded and numbered.
Uncoded regions are shown as unshaded blocks. Numbers above the blocks indicate base
pairs. (B) Line diagram representing the WASp protein. Shaded regions correspond with
encoding exons and numbers indicate amino acids. (C) Schematic diagram representing the
WASp protein. The EVH1, basic (B), GBD (minimal high affinity Cdc42-binding site is
shown), polyproline (PPPP) and VCA domains/regions are shown. Amino acids are num-
bered below. The black line above the GBD indicates the VCA binding region (amino acids
242–310). Black circled numbers denote mutational hotspots [55] as follows: 1, T45M; 2,
R86S/G/C/H/L; 3, IVS6 (+5g>a); 4, R211X and 5, IVS8 (+1g>a/c/t). Mutations resulting in
constitutive activation are represented by black asterisks: these are (from left to right) L270P
[57], L272P [57a] and I294T [57a]. With permission adapted from [48].



The effects of WASp deficiency on individual immune cell lineages

Monocytes, macrophages and DC

Blood-borne monocytes respond to inflammatory stimuli by exiting the circulation
to populate inflamed tissues, where they differentiate into macrophages or DC
[66–69]. WASp-deficient monocytes demonstrate defective polarization and migra-
tion in response to inflammatory chemokines [70, 71]. Therefore, although stimu-
lated up-regulation of integrin expression is normal, diapedesis and subsequent
translocation through tissues are likely to be defective in vivo.

Similar defects of actin rearrangement are found in WASp-deficient macrophages
and immature DC, resulting in aberrant polarization and defective formation of
lamellipodial protrusions at the cell’s leading edge [36, 70, 72]. Additionally, there
is a striking lack of dynamic actin-containing adhesion structures called podosomes
[73, 74], which normally are assembled by cells of the monocytic lineage when in
contact with substratum [36, 75, 76]. Detailed analysis of podosomes using confo-
cal laser scanning microscopy has demonstrated that they comprise a core of F-actin
and actin-associated proteins (such as WASp) surrounded by a ring of integrins and
integrin-associated proteins (Fig. 4) [74]. The main function of podosomes appears
to be adhesion to substratum, and they have been implicated to be important for cell
migration as they localize close to the leading edge of migrating cells [74].
Podosome formation is severely impaired in macrophages and DC of both WAS
patients (Fig. 4) and WASp–/– mice [36, 73, 77, 78], and failure to normally recruit
β2 integrins to sites of podosome assembly results in reduced adhesion to ICAM-1
[77] with possible implications for transendothelial migration.

Together, these cytoskeletal defects significantly impair migratory responses. For
example in macrophages of WAS patients, chemotaxis (directional movement
towards a chemoattractant) is significantly impaired [78, 79]. DC translocation in
vitro is also severely abnormal in both human and murine WASp deficiency [36, 72,
80, 81]. In addition, DC migration from the skin to secondary lymphoid tissue and
homing to splenic T cell areas is defective in WASp-deficient mice [80, 81], suggest-
ing that DC migratory defects significantly contribute to failure of T cell responses
in WAS patients. Curiously, no motility defects have yet been described for mature
human DC (which do not normally polarize or assemble podosomes in contact with
substratum [48]), and this may reflect their major role as presenters rather than
transporters of antigen.

Identical morphological and migratory defects can be induced in normal DC by
down-regulation of WASp using lentiviral vector-mediated RNA interference [82],
indicating that WASp is directly responsible for the cytoskeletal defects observed in
WASp-deficient myeloid cells. Importantly, reconstitution of WASp by gene replace-
ment restores podosome formation in macrophages and DC of WAS patients [36,
78] and WASp–/– mice [83], and normal chemotaxis in WAS macrophages [78],
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demonstrating that myeloid functional defects could be corrected by gene therapy in
the future.

Phagocytosis for particulate antigen uptake and removal of apoptotic cells is a
separate function of monocytes, macrophages and DC that requires dynamic
cytoskeletal rearrangement. While uptake of soluble antigen by pinocytosis or endo-
cytosis, is not affected by WASp deficiency [58, 84, 85], FcgR-mediated phagocyto-
sis is impaired in macrophages of WAS patients and WASp–/– mice [37, 86]. Simi-
larly, phagocytosis (but not binding) of apoptotic cells by WASp–/– murine
macrophages is defective [86]. These observed defects result from a failure of phago-
cytic cup formation, which normally requires WASp recruitment for new actin poly-
merization [37, 86], and specifically lead to reduced DC-induced T cell responses to
particulate antigens in vivo [85].

Granulocytes

Despite the importance of granulocytes for innate immunity, WASp–/– neutrophils
have, to date, received relatively little attention. Surprisingly, granulocyte-mediated
phagocytosis has not been investigated in WAS patients, although this function is
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Figure 4
Immunofluorescence staining of podosomes in human DC
(A) Podosome formation directly behind the leading edge in a DC of a healthy subject. The
inset shows more detail at higher magnification. (B) DC of a WAS patient fail to form
podosomes or distinct leading edges. Arrows indicate podosomes. Bars represents 20 µm,
and 10 µm in inset.



defective in WASp–/– murine neutrophils [59]. Similarly, neutrophil migratory
responses are impaired in WASp–/– mice both in vitro and in vivo [81], but human
data are conflicting. While granulocytes isolated from patients with WAS [79]
demonstrate normal chemotaxis, there appears to be an inhibitory factor in WAS
patient serum which may impact in vivo neutrophil function by unknown mecha-
nisms [87]. Additionally, migration of normal human neutrophils, but not integrin
activation or adhesion, is inhibited by injection of the SCAR VCA domain and to a
lesser extent the WASp VCA domain [37]. These proteins exert a dominant negative
effect through competitive binding to Arp2/3 and actin, and therefore these results
suggest a role for WASp family proteins, if not WASp itself, in human neutrophil
migration. Clarification of the role of WASp and redundancy between WASp family
proteins for human neutrophil function is clearly an area that requires future study.

T lymphocytes

The role of WASp in TCR signaling and immune synapse assembly has been a major
focus of recent research. Formation of the immune synapse (comprising TCR, cos-
timulatory molecules and adhesion molecules) at the DC-T cell contact site is
required for optimal T cell activation, and its assembly normally involves clustering
of lipid rafts, actin polymerization and recruitment of signaling molecules including
talin, ZAP-70, PKC-θ and WASp [30, 88, 89]. In the absence of WASp, TCR-medi-
ated lipid raft clustering, actin polymerization and immune synapse assembly are all
impaired at the T cell-antigen-presenting cell contact site with resultant defects of
TCR signaling and TCR-mediated proliferation [38, 46, 58, 59, 90–92].

Other cytoskeletal defects in WAS-deficient T cells include abnormal morphology,
reduced expression of microvilli [46, 93] and reduced migration both in vitro and in
vivo [31, 81]. Resultant defects of homing and cell-cell interactions may partly
account for the poorly developed T cell areas observed in both WAS patients and
WASp-deficient mice [94, 95]. Additionally, impaired migration could contribute to
the reduced number of T cells in the blood of WAS patients [87, 96] and WASp-defi-
cient mice [58, 59], although WASp also appears to be required for normal T cell
development and survival [48]. As has been demonstrated for other cell types, gene
correction by viral transduction of murine WASp–/– hematopoietic stem cells or
human WAS T cells corrects many T cell defects in vitro, including WASp expression,
actin polymerization, TCR stimulated proliferation and IL-2 expression [83, 97–101].

B lymphocytes

Patients with WAS demonstrate humoral defects including reduced numbers of cir-
culating B lymphocytes and impaired specific antibody responses, particularly to
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polysaccharide antigens [44, 58, 96, 102]. It is not clear to what extent these
observations result from primary B cell dysfunction or from failure of appropri-
ate T cell help or changes in secondary lymphoid tissue architecture. There is
good evidence for a contributing primary defect, as both human and murine
WASp-deficient B cells demonstrate impaired actin polymerization [103, 104],
which can be corrected by restoration of WASp expression via retrovirus-mediat-
ed gene transfer [105]. In addition, defective cytoskeletal regulation results in
aberrations of morphology including polarization, spreading, microvilli expres-
sion and homotypic clustering [104, 106]. Furthermore, B cell migration is
abnormal in both WAS patients and WASp-deficient mice [38]. Inefficient hom-
ing may explain the paucity of postgerminal (marginal zone) CD27+ B cells [102],
and poor follicle formation found in the spleen of WAS patients [94, 95] and
WASp–/– mice [59, 80, 106, 107]. Reduced numbers of marginal zone B cells may
also provide an explanation for impairment of T-independent antibody respons-
es found in WAS patients.

As for other B cell functions, studies are incomplete. Uptake, processing and pre-
sentation of soluble antigen is apparently normal [85], but phagocytosis and pre-
sentation of particulate antigen remains to be investigated. In contrast with TCR
studies, evidence of a requirement for WASp in downstream signaling from the B
cell receptor (BCR) is contradictory. WASp–/– B cells proliferate normally in response
to mitogenic stimuli [58, 59] and BCR activation, although not to anti-IgM-medi-
ated BCR activation [58, 59, 108].
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Table 1 - WASp deficiency influences cellular function at multiple levels

Cell type Cytoskeletal rearrangements Migration Cellular function

Monocytes ↓ polarization ↓ Normal oxidative burst
Macrophages ↓ podosomes formation, ↓ ↓ phagocytosis

↓ polarization
Dendritic cells ↓ podosomes formation, ↓ ↓ phagocytosis,

↓ polarization normal maturation
Granulocytes Not documented ↓ ↓ phagocytosis
T cells ↓ microvilli on surface, ↓ ↓ TCR activation,

↓ immune synapse formation ↓ IL-2 expression
B cells ↓ membrane protrusions, ↓ Disrupted spleen 

↓ homotypic clustering architecture, normal 
isotype switching

For references see text



The impact of leukocyte homing defects in WAS

While WASp deficiency may exert its influence on innate and adaptive immunity at
multiple levels (see also Tab. 1), it is likely that a reduced migratory potential of
immune cells significantly contributes to the immunodeficiency seen in both WAS
patients and in WASp–/– mice (Fig. 5). Kinetic or quantitative defects of cell recruit-
ment to inflammatory sites, as have been demonstrated for WASp-deficient myeloid
cells [70–72, 78–81, 84], would be predicted to impair efficiency of pathogen clear-
ance [107] and timely antigen presentation. Additionally, aberrant DC and lym-
phocyte homing [31, 72, 80, 81, 84, 106] may in part explain aberrations of splenic
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Figure 5
Migratory defects in multiple immune cell lineages in WAS
Schematic diagram representing immune cell trafficking. Multiple cell lineages including
monocytes, macrophages, DC and B and T cells have been shown to exhibit migratory
defects in WAS resulting in dysregulated immune cell traficking and impaired immunity.
Arrows represent routes of trafficking and black crosses indicate those that have been report-
ed to be abnormal in WASp deficiency. For more detail see text.



architecture and adaptive immunity as seen in both WAS patients [95, 96] and
WASp–/– mice [106, 107]. For example, the chemokine CXCL13 is thought to be
crucial for attracting B cells to the follicles [109], and migration of B lymphocytes
to CXCL13 and CXCL12 is reduced in WAS [106]. Similarly CCL19 and CCL21
direct the homing of T cells to the T cell area of lymphoid tissue [110, 111], and
reduced migration of T lymphocytes to CCL19 may thus be responsible for abnor-
mal T cell areas in the spleen. Furthermore, DC migration to CCL19 and CCL21,
believed to direct DC to T cell areas of lymphoid tissue [63, 111–113], is impaired
in WASp-deficient murine DC [80, 81], providing a further possible mechanism to
explain abnormal lymphoid architecture and defective activation of antigen-specif-
ic lymphocytes in WAS.

Defective leukocyte homing may also significantly contribute to the pathogene-
sis of WASp-mediated autoimmunity. In particular, defective homeostatic trafficking
of DC, which normally takes place in the absence of inflammation and tolerizes T
cells to self-antigen [114–116], may be important. However, other cytoskeleton dys-
functions, such as impaired clearance of apoptotic cells or aberrant TCR signaling
could also play a role, and rigorous investigation is required, which will be impor-
tant not only for clarifying pathogenic mechanisms in WAS but also for under-
standing the basis of human autoimmune disease.
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Biology of CXCR4-CXCL12 interaction

Although the role of the CXCR4-CXCL12 has been extensively investigated for the
hematopoietic compartment, animals with genetic deletions of CXCR4 or of its lig-
and CXCL12 have multiple defects in heart, brain and vessel development [1–3].
CXCR4 is expressed on cell surface of a variety of immature and terminally differ-
entiated cells including adult and embryonic stem cells. Primordial germ cells, skele-
tal muscle satellite progenitor cells, neural stem cells, retinal progenitor cells and
fetal liver-derived hematopoietic stem cells express CXCR4 and are functionally
responsive to CXCL12, suggesting that CXCR4 and CXCL12 exert a general role
during organogenesis. Early studies of CXCL12 knockout mice have revealed that
this chemokine is secreted at early stages during embryogenesis by bone marrow
stroma to induce the colonization of bone marrow by hematopoietic stem cells
which are derived from liver [1–3]. In CXCR4–/– embryonic marrow, myelopoiesis
and B cell development are severely impaired, whereas erythropoiesis is not affect-
ed [4]. CXCL12 is expressed during ontogeny by bone marrow stromal cells to
induce proper homing of circulating hematopoietic progenitor stem cell (HPSCs) to
the site of hematopoiesis [5]. This precise role of CXCL12 in homing and retention
of stem cells in the bone marrow is still maintained in adult life, when the secretion
of the chemokine in the hematopoietic environment is essential to prevent the egress
of progenitor cells into peripheral blood. In contrast, reduced CXCL12 expression
or increased proteolysis of the chemokine by the action of neutrophil elastase
decrease adhesion of hematopoietic cells expressing CXCR4 to the stromal microen-
vironment of bone, which subsequently leads to their release to the bloodstream [6].
The role of CXCL12/CXCR4 axis in homeostasis of bone marrow is reinforced by
the observation that injection of pertussis toxin, the specific inhibitor of G protein
signaling, leads to long-lasting leukocytosis, and abolishes functional response of
mobilized cells to its ligand [7]. The recent discovery of CXCR4 antagonists and
their use to induce HPSCs mobilization and to increase the mobilizing effect to gran-
ulocyte colony-stimulating factor (G-CSF) have highlighted the importance of the
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critical balance between CXCL12 expression by stromal cells and CXCR4 levels for
normal hematopoiesis [8]. Subcutaneous administration of the CXCR4 antagonist
AMD3100 to healthy volunteers or to multiple myeloma patients have shown that
not only HPSCs, but also neutrophils and lymphocytes rapidly increase in the blood
following treatment [9–12].

Genetics and physiopathology of WHIM syndrome

Analysis of numerous pedigrees has shown that the disease is usually inherited as an
autosomal dominant trait in the majority of pedigrees, but an autosomal recessive
inheritance can be also observed [13, 14]. Hernandez et al. [13] have shown by posi-
tional analysis that heterozygous mutations of the chemokine receptor gene CXCR4
account for all cases of WHIM syndrome with autosomal dominant inheritance. In
contrast, CXCR4 mutations could not be detected in a minority of WHIM patients
and in a single family characterized by an autosomal recessive inheritance pattern
[13, 15].

All the mutations of CXCR4 that have been identified in WHIM patients affect
the intracellular tail of the chemokine receptor and cause a loss of the last 10–19
amino-acid residues [13–15]. Analysis of neutrophil and T cell chemotaxis in
WHIM patients has shown that truncation of CXCR4 intracellular tail confers
increased cell responsiveness to the CXCR4 ligand CXCL12 (the previous term for
CXCL12 was stromal derived factor 1, SDF-1) [14, 15]. Specifically, T lymphocytes
of WHIM patients display a striking increase of chemotaxis, endothelial adhesion
and protracted actin polymerization in response to CXCL12 [14, 15]. Upon ligand-
activation, CXCR4, like the other seven-transmembrane-spanning receptors
(7MSR), induces dissociation of G proteins into the active subunits Gα and Gβγ that
signal by activating phospholipases and ion channels, thereby leading to phospho-
inositide hydrolysis and increased intracellular calcium concentration. Study of
intracellular signaling in cell lines engineered to express a WHIM-associated form
of CXCR4 (that lacks the last 19 amino acid residues) have shown that the mutant
receptor displays a more efficient activation of G proteins and increased calcium
flux in comparison to the wild-type receptor [15, 16]. At the basis of the long-last-
ing response of cells expressing truncating mutations of CXCR4 to the ligand, there
is decreased internalization following stimulation of cells with CXCL12/SDF-1, and
a faster recovery of the receptor to the cell surface when the ligand is removed from
cultures [16].

Exposure of leukocytes to chemokines leads to agonist-stimulated desensitiza-
tion that is partially dependent on the removal of chemokine receptors from the cell
surface by internalization. In the case of CXCR4, lack of C-terminal tail prevents
normal receptor internalization, thereby leading to continuous activation (Fig. 1).
Study of CXCR4 signaling has revealed that after CXCL12 binding, the chemokine
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receptor is rapidly phosphorylated at the serine and threonine residues that are sit-
uated at the C-terminal tail [17]. CXCR4 phosphorylation is mediated by
serine/threonine kinases that are recruited to the receptor tail to start the signaling
cascade leading to receptor uncoupling from its cognate G proteins, and thereby to
endocytosis. Cytoplasmic tail deletion mutants of CXCR4 resembling mutations of
WHIM syndrome are less sensitive to chemokine-mediated endocytosis in response
to CXCL12, and are refractory to receptor phosphorylation after CXCL12 activa-
tion [17–20]. By analogy with other G protein-coupled receptors, CXCR4 desensi-
tization, induced by CXCL12, is mediated by G protein-coupled receptor kinases
(GRK) that phosphorylate the C-terminal tail, induce recruitment of beta-arrestin
and subsequent endocytosis [21]. It is likely that loss of the distal portion of CXCR4
may profoundly affect the mechanism of homologous desensitization, which is
strictly dependent on the ligand-mediated internalization of the receptor. However,
the analysis of beta-arrestin binding to CXCR4 mutants has shown that lack of the
intracellular tail does not abolish the interaction of beta-arrestin to truncated-
CXCR4, suggesting that other mechanisms are responsible for the impairment of
CXCR internalization in WHIM patients [22]. Coexistence on cell surface of trun-
cated and wild-type forms of CXCR4 may also affect internalization of the recep-
tor. In fact, experiments of co-expression of wild-type and truncated CXCR4
demonstrate that the presence of the mutated receptor on the cell surface prevents
the internalization of the wild-type receptor, probably acting by a trans-dominant
mechanism [15]. This is in accordance with the autosomal dominant inheritance of
WHIM syndrome and with a model of CXCR4 multimerization, in which C-termi-
nal tail mutant receptors interact with the wild-type form of CXCR4, preventing its
endocytosis [23]. The recent identification of CXCR7, formerly designated as
orphan receptor RDC1, as an alternative receptor for CXCL12 suggests that its
expression is mostly restricted to T lymphocytes and that this novel chemokine
receptor may affect the biological response of this cell type to CXCL12 and proba-
bly influence the pathogenesis of WHIM syndrome [24]. 

Immune features of WHIM syndrome

In the vast majority of WHIM patients, a simultaneous reduction of neutrophils and
lymphocytes is commonly observed, but neutropenia is usually more severe. It is
likely that increased responsiveness of WHIM leukocytes to CXCL12 may favor
their sequestration in the bone marrow, where the chemokine is expressed at the
highest levels [6] (Fig. 1). On the basis of this model, circulating neutrophils, which
are newly released from bone marrow and express CXCR4 at low levels on the cell
surface, are refractory to CXCL12 chemotactic activity. Senescent neutrophils,
which display high CXCR4 and increased sensitivity to CXCL12 migrate to the
bone marrow where they can be removed from circulation by tissue macrophages
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[25, 26]. In WHIM patients, the enhanced response of mature neutrophils to
CXCL12 may favor their migration from blood to the bone marrow compartment,
thereby accounting for myelokathexis and subsequent neutropenia. Moreover, in
the context of bone marrow, CXCR4 ligation by CXCL12 may induce expression
of both TNF-related apoptosis-inducing ligand (TRAIL) and of TRAIL receptors on
senescent neutrophils, thereby increasing their sensitivity to apoptotic stimuli [27].
This is in accordance with the increase in the number of apoptotic neutrophils
observed in the bone marrow of WHIM patients [28].

This hypothetical picture can be rapidly reverted during infections or after G-
CSF treatment of WHIM patients. Under these conditions, circulating neutrophil
numbers increase due to an acute release of cells from the bone marrow [29, 30].
This residual capacity of bone marrow to release neutrophils under inflammatory
circumstances is reflected in the mild neutropenia and the favorable outcome of
infections that has been reported for most WHIM patients.

Although the absolute number of lymphocytes is decreased, analysis of lympho-
cyte subpopulations may not reveal any obvious abnormality, because T cell per-
centages, including CD4 and CD8 subsets, are within the normal range [14, 30–32].
In addition, functional studies of T cell activation in response to mitogens and
delayed-type hypersensivity to antigens do not usually reveal any obvious defect of
cell-mediated immunity [32–34]. However, a careful analysis of naïve/memory sub-
sets of T cells in WHIM patients usually demonstrates a prevalence of effector/mem-
ory T cells, whereas naïve T cells are markedly reduced [14]. These abnormalities of
T cell subsets are associated with normal or even increased thymic output as mea-
sured by determination of T cell receptor excision circles (TRECs) levels, suggesting
that thymic function is probably normal in WHIM patients [14]. Indeed, WHIM
patients show neither susceptibility to common opportunistic viral infections nor
require special precautions for live viral vaccines, suggesting that the formation of
warts that is observed in some WHIM patients may arise from a specific mechanism
of selective susceptibility to human papillomavirus (HPV) infection. Nonetheless,
two cases of B cell lymphoma, following Epstein-Barr virus (EBV) infection, have
been reported, suggesting that EBV infections may also represent a potential threat
for WHIM patients [35, 36].

Analysis of the B cell compartment has shown that immunoglobulin levels are
subjected to frequent changes and, especially in adult patients, may be normal [30,
32, 34]. The study of antibody production has shown a normal increase of antigen-
specific immunoglobulins in children who were immunized with tetanus toxoid;
however, this response was followed by dramatic decrease of antibody titers in the
subsequent months, suggesting that memory B cells and plasma cells are unable to
maintain a normal antibody secretion [14, 30, 37]. This change in antibody levels is
reflected in the reduced circulating fraction of memory B cells (CD19+/CD27+ cells),
as compared to naïve B cells, suggesting that B cell homeostasis is also altered in
WHIM patients [14]. While CXCR4 is required for the generation of the early prog-
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enitors of B cells and for their retention in the bone marrow [4, 38], it becomes more
important for the migration of B cell subsets to the respective niches where CXCL12
and other homeostatic chemokines are expressed [38, 39]. Although CXCR4 is
expressed in B cells at many phases of their development in lymph nodes and spleen,
their chemotactic response to the ligand CXCL12 is tightly regulated at all these
stages. In fact, high expression of CXCR4 on memory B cells and plasma cells leav-
ing the lymph node allows them to recirculate among lymphoid organs and bone
marrow where resident plasma cells are responsible for maintaining long lasting
immunoglobulin production [40]. In WHIM patients, enhanced response to
CXCL12 of memory B cells and plasma cells may prevent their release from bone
marrow and their correct positioning in lymph nodes, resulting in deregulated B cell
homeostasis.

Clinical features and treatment of WHIM syndrome

In 1964, Zuelzer [31] and Krill et al. [41] independently reported a case of a 10-
year-old female who presented neutropenia associated to myelokathexis; since then,
at least 30 cases have been identified on the basis of clinical and/or genetic features
[13, 42, 43]. Analysis of the reported cases has shown broader variability in clinical
manifestations than originally suspected, and suggested multiple genetic causes.
While the majority of WHIM patients present hypogammaglobulinemia and neu-
tropenia, favoring the development of recurrent infections and warts from infancy,
in a minority of these patients, neutropenia is often moderate (PMN <1000 cells/µl)
and immunoglobulins are normal or slightly reduced. Warts are usually not
observed before 3 years of age but can rapidly increase in numbers and extension in
the following years. The lesions, which affect mainly the extremities and less often
the genitalia, are caused by common genotypes of HPV, and are usually refractory
to both medical and surgical treatments [32, 37]. WHIM patients who have multi-
ple disseminated warts located at the genitalia, may develop cervical and vulval pre-
malignant lesions, which require surgical ablation [29]. A few WHIM patients have
developed EBV-related lymphoma and Kaposi's sarcoma [35, 36, 42], but it is
unclear whether these tumors are caused by defective surveillance of immune sys-
tem, or by intrinsic susceptibility of lymphocytes to neoplastic transformation.

The recent identification of the pathophysiology of WHIM syndrome has
encouraged the search for novel treatment strategies targeted at the mechanism of
the disease which could improve its prognosis significantly. At this time, the treat-
ment of the disease is essentially based on use of G-CSF and/or immunoglobulin
infusions in patients with neutropenia or hypogammaglobulinemia, respectively.
However, the use of AMD3100 or of other CXCR4 antagonists, which are already
in clinical trial, might constitute a specific treatment of the homeostasis defect
observed in WHIM patients.
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