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Foreword

Twenty-Five Years of Springer Series in Synergetics

The year 2002 marks the 25th anniversary of the Springer Series in Syn-
ergetics. It started in 1977 with my book “Synergetics. An Introduction.
Nonequilibrium Phase Transitions and Self-Organization in Physics, Chem-
istry and Biology”. In the near future, the 100th volume of this series will
be published. Its success has been made possible by the contributions of
outstanding authors who presented their quite often pioneering results to the
science community well beyond the borders of a special discipline. Indeed,
interdisciplinarity is one of the main features of this series. But interdisci-
plinarity is not enough: The main goal is the search for common features of
self-organizing systems in a great variety of seemingly quite different systems,
or, still more precisely speaking, the search for general principles underlying
the spontaneous formation of spatial, temporal or functional structures. The
objects studied may be as diverse as lasers and fluids in physics, pattern
formation in chemistry, morphogenesis in biology, brain functions in neurol-
ogy or self-organization in a city. As is witnessed by several volumes, great
attention is being paid to the pivotal interplay between deterministic and
stochastic processes, as well as to the dialogue between theoreticians and
experimentalists. All this has contributed to a remarkable cross-fertilization
between disciplines and to a deeper unterstanding of complex systems. The
timeliness and potential of such an approach are also mirrored – among other
indicators – by numerous interdisciplinary workshops and conferences all over
the world.
An important goal of the Springer Series in Synergetics will be to retain

its high scientific standard and its good readability across disciplines. The
recently formed editorial board with its outstanding scientists will be a great
help.
As editor of this series, I wish to thank all those who contributed to

its success. There are the authors, but, perhaps less visibly though of great
importance, the members of Springer-Verlag, who over the past 25 years
indefatigably have taken care of this series, in particular Dr. Helmut Lotsch,
Dr. Angela Lahee, Prof. Wolf Beiglböck and their teams.

Stuttgart, June 2002 Hermann Haken



Preface

Research on the human brain has become a truly interdisciplinary enterprise
that no longer belongs to medicine, neurobiology and related fields alone. In
fact, in our attempts to understand the functioning of the human brain, more
and more concepts from physics, mathematics, computer science, mathemat-
ical biology and related fields are used. This list is by no means complete,
but it reflects the aim of the present book. It will show how concepts and
mathematical tools of these fields allow us to treat important aspects of the
behavior of large networks of the building blocks of the brain, the neurons.
This book applies to graduate students, professors and researchers in the

above-mentioned fields, whereby I aimed throughout at a pedagogical style.
A basic knowledge of calculus should be sufficient. In view of the various
backgrounds of the readers of my book, I wrote several introductory chap-
ters. For those who have little or no knowledge of the basic facts of neurons
that will be needed later I included two chapters. Readers from the field
of neuroscience, but also from other disciplines, will find the chapter on
mathematical concepts and tricks useful. It shows how to describe spiking
neurons and contains material that cannot easily be found in conventional
textbooks, e.g. on the handling of δ-functions. Noise in physical systems –
and thus also in the brain – is inevitable. This is true for systems in thermal
equilibrium, but still more so in active systems – and neuronal systems are
indeed highly active. Therefore, I deal with the origin and effects of noise in
such systems.
After these preparations, I will deal with large neural networks. A central

issue is the spontaneous synchronization of the spiking of neurons. At least
some authors consider it as a basic mechanism for the binding problem, where
various features of a scene, that may even be processed in different parts of the
brain, are composed to a unique perception. While this idea is not generally
accepted, the problem of understanding the behavior of large nets, especially
with respect to synchronization, is nevertheless a fundamental problem of
contemporary research. For instance, synchronization among neurons seems
to play a fundamental role in epileptic seizures and Parkinson’s disease.
Therefore, the main part of my book will be devoted to the synchroniza-
tion problem and will expose various kinds of integrate and fire models as
well as what I called the lighthouse model. My approach seems to be more
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realistic than conventional neural net models in that it takes into account
the detailed dynamics of axons, synapses and dendrites, whereby I consider
arbitrary couplings between neurons, delays and the effect of noise. Experts
will notice that this approach goes considerably beyond those that have been
published so far in the literature.
I will treat different kinds of synaptic (dendritic) responses, determine

the synchronized (phase-locked) state for all models and the limits of its
stability. The role of non-synchronized states in associative memory will also
be elucidated. To draw a more complete picture of present-day approaches to
phase-locking and synchronization, I present also other phase-locking mech-
anisms and their relation, for instance, to movement coordination. When we
average our basic neural equations over pulses, we reobtain the by now well-
known Wilson–Cowan equations for axonal spike rates as well as the coupled
equations for dendritic currents and axonal rates as derived by Nunez and
extended by Jirsa and Haken. For the sake of completeness, I include a brief
chapter on the equations describing a single neuron, i.e. on the Hodgkin–
Huxley equations and generalizations thereof.
I had the opportunity of presenting my results in numerous plenary talks

or lectures at international conferences and summer schools and could profit
from the discussions. My thanks go, in particular, to Fanji Gu, Y. Kuramoto,
H. Liljenström, P. McClintock, S. Nara, X.L. Qi, M. Robnik, H. Saido,
I. Tsuda, M. Tsukada, and Yunjiu Wang. I hope that the readers of my book
will find it enjoyable and useful as did the audience of my lectures. My book
may be considered complementary to my former book on “Principles of Brain
Functioning”. Whereas in that book the global aspects of brain functioning
are elaborated using the interdisciplinary approach of synergetics, the present
one starts from the neuronal level and studies modern and important aspects
of neural networks. The other end is covered by Hugh R. Wilson’s book on
“Spikes, Decisions and Actions” that deals with the single neuron and the
action of a few of them. While his book provides readers from neuroscience
with an excellent introduction to the mathematics of nonlinear dynamics,
my earlier book “Synergetics. An Introduction” serves a similar purpose for
mathematicians and physicists.
The tireless help of my secretary Ms. I. Möller has been pivotal for me in

bringing this book to a good end. When typing the text and composing the
formulas she – once again – performed the miracle of combining great speed
with utmost accuracy. Most of the figures were drawn by Ms. Karin Hahn.
Many thanks to her for her perfect work.
Last but not least I thank the team at Springer-Verlag for their tradition-

ally excellent cooperation, in particular Prof. W. Beiglböck, Ms. S. Lehr and
Ms. B. Reichel-Mayer.

Stuttgart, June 2002 Hermann Haken



Contents

Part I. Basic Experimental Facts and Theoretical Tools

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Brain: Structure and Functioning. A Brief Reminder . . . . . . . . 4
1.3 Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 How We Will Proceed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. The Neuron – Building Block of the Brain . . . . . . . . . . . . . . . . 9
2.1 Structure and Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Information Transmission in an Axon . . . . . . . . . . . . . . . . . . . . . 10
2.3 Neural Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Synapses – The Local Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Naka–Rushton Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Learning and Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 The Role of Dendrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Neuronal Cooperativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Structural Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Global Functional Studies.

Location of Activity Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Interlude: A Minicourse on Correlations . . . . . . . . . . . . . . . . . . . 25
3.4 Mesoscopic Neuronal Cooperativity . . . . . . . . . . . . . . . . . . . . . . . 31

4. Spikes, Phases, Noise:
How to Describe Them Mathematically?
We Learn a Few Tricks and Some Important Concepts . . . . 37
4.1 The δ-Function and Its Properties . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Perturbed Step Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Some More Technical Considerations* . . . . . . . . . . . . . . . . . . . . . 46
4.4 Kicks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Many Kicks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Random Kicks or a Look at Soccer Games . . . . . . . . . . . . . . . . . 52

∗ Sections marked by an asterisk are somewhat more involved and can be skipped.



X Contents

4.7 Noise Is Inevitable.
Brownian Motion and the Langevin Equation . . . . . . . . . . . . . . 54

4.8 Noise in Active Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8.2 Two-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8.3 Many Two-State Systems: Many Ion Channels . . . . . . . 58

4.9 The Concept of Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9.1 Some Elementary Considerations . . . . . . . . . . . . . . . . . . . 60
4.9.2 Regular Spike Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.9.3 How to Determine Phases From Experimental Data?

Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.10 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.11 Origin of Phase Noise* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Part II. Spiking in Neural Nets

5. The Lighthouse Model. Two Coupled Neurons . . . . . . . . . . . . 77
5.1 Formulation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Basic Equations for the Phases of Two Coupled Neurons . . . . 80
5.3 Two Neurons: Solution of the Phase-Locked State . . . . . . . . . . 82
5.4 Frequency Pulling and Mutual Activation of Two Neurons . . . 86
5.5 Stability Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6 Phase Relaxation and the Impact of Noise . . . . . . . . . . . . . . . . . 94
5.7 Delay Between Two Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.8 An Alternative Interpretation of the Lighthouse Model . . . . . . 100

6. The Lighthouse Model. Many Coupled Neurons . . . . . . . . . . 103
6.1 The Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 A Special Case. Equal Sensory Inputs. No Delay . . . . . . . . . . . . 105
6.3 A Further Special Case. Different Sensory Inputs,

but No Delay and No Fluctuations . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 Associative Memory and Pattern Filter . . . . . . . . . . . . . . . . . . . . 109
6.5 Weak Associative Memory. General Case* . . . . . . . . . . . . . . . . . 113
6.6 The Phase-Locked State of N Neurons. Two Delay Times . . . 116
6.7 Stability of the Phase-Locked State. Two Delay Times* . . . . . 118
6.8 Many Different Delay Times* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.9 Phase Waves in a Two-Dimensional Neural Sheet . . . . . . . . . . . 124
6.10 Stability Limits of Phase-Locked State . . . . . . . . . . . . . . . . . . . . 125
6.11 Phase Noise* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.12 Strong Coupling Limit.

The Nonsteady Phase-Locked State of Many Neurons . . . . . . . 130
6.13 Fully Nonlinear Treatment of the Phase-Locked State* . . . . . . 134



Contents XI

7. Integrate and Fire Models (IFM) . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.1 The General Equations of IFM . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 Peskin’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3 A Model with Long Relaxation Times

of Synaptic and Dendritic Responses . . . . . . . . . . . . . . . . . . . . . . 145

8. Many Neurons, General Case, Connection with Integrate
and Fire Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Basic Equations Including Delay and Noise . . . . . . . . . . . . . . . . 151
8.3 Response of Dendritic Currents . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.4 The Phase-Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.5 Stability of the Phase-Locked State: Eigenvalue Equations . . . 156
8.6 Example of the Solution of an Eigenvalue Equation

of the Form of (8.59) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.7 Stability of Phase-Locked State I:

The Eigenvalues of the Lighthouse Model with γ′ �= 0 . . . . . . . 161
8.8 Stability of Phase-Locked State II:

The Eigenvalues of the Integrate and Fire Model . . . . . . . . . . . 162
8.9 Generalization to Several Delay Times . . . . . . . . . . . . . . . . . . . . 165
8.10 Time-Dependent Sensory Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.11 Impact of Noise and Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.12 Partial Phase Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.13 Derivation of Pulse-Averaged Equations . . . . . . . . . . . . . . . . . . . 168

Appendix 1 to Chap. 8: Evaluation of (8.35) . . . . . . . . . . . . . . . . . . 173

Appendix 2 to Chap. 8: Fractal Derivatives . . . . . . . . . . . . . . . . . . . 177

Part III. Phase Locking, Coordination
and Spatio-Temporal Patterns

9. Phase Locking via Sinusoidal Couplings . . . . . . . . . . . . . . . . . . . 183
9.1 Coupling Between Two Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.2 A Chain of Coupled-Phase Oscillators . . . . . . . . . . . . . . . . . . . . . 186
9.3 Coupled Finger Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.4 Quadruped Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.5 Populations of Neural Phase Oscillators . . . . . . . . . . . . . . . . . . . 193

9.5.1 Synchronization Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.5.2 Pulse Stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.5.3 Periodic Stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



XII Contents

10. Pulse-Averaged Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.1 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.2 The Wilson–Cowan Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.3 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
10.4 Cortical Dynamics Described by Wilson–Cowan Equations . . . 202
10.5 Visual Hallucinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
10.6 Jirsa–Haken–Nunez Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.7 An Application to Movement Control . . . . . . . . . . . . . . . . . . . . . 209

10.7.1 The Kelso Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
10.7.2 The Sensory-Motor Feedback Loop . . . . . . . . . . . . . . . . . 211
10.7.3 The Field Equation and Projection onto Modes . . . . . . 212
10.7.4 Some Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Part IV. Conclusion

11. The Single Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.1 Hodgkin–Huxley Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.2 FitzHugh–Nagumo Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.3 Some Generalizations of the Hodgkin–Huxley Equations . . . . . 222
11.4 Dynamical Classes of Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
11.5 Some Conclusions on Network Models . . . . . . . . . . . . . . . . . . . . . 224

12. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241



Part I

Basic Experimental Facts
and Theoretical Tools



1. Introduction

1.1 Goal

The human brain is the most complex system we know of. It consists of
about 100 billion neurons that interact in a highly complicated fashion with
each other. In my book I will conceive the brain as a physical system and
study the behavior of large neural nets. Neurons are nonlinear elements. Most
of them are able to produce trains of individual spikes, by which informa-
tion between the neurons is exchanged. In addition, it is by now generally
believed that correlations between spike trains play an important role in
brain activity. One particular experimentally observed phenomenon is that
of synchronization between the “firing” of neurons, where Fig. 1.1 shows an
idealized case. A number of authors (see references) believe that synchroniza-
tion is a fundamental mechanism that allows us to understand how the brain
solves the binding problem. For instance, a lemon may be characterized by
its shape, colour, smell, its name in various languages, and so on. Though
all these aspects are processed in distinct parts of the brain, we nevertheless
conceive the lemon as an entity. Synchronization may also help to identify
individual parts of a scene as belonging to the same object. It must be noted,
however, that these interpretations of the significance of synchronization are
subject to ongoing critical discussions. On the other hand, synchronization
among large groups of neurons may also be detrimental to healthy behavior.
For instance, Parkinsonian tremor and epileptic seizures are believed to be
caused by such a mechanism. At any rate, understanding synchronization
and desynchronization are fundamental problems in modern brain research.

Fig. 1.1. Synchrony between two
spike trains (schematic). For more de-
tails cf. Sects. 1.1 and 1.3
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Studying networks of neurons means that we pick a specific level of in-
vestigation. In fact, each neuron is a complex system by itself, which at the
microscopic level has a complicated structure and in which numerous complex
chemical and electrochemical processes go on. Nevertheless, in order to model
the behavior of a neural net, in general it is possible to treat the behavior of
an individual neuron using a few characteristic features. The reason lies in the
different time and length scales of the various activities, a fact that has found
its detailed theoretical justification in the field of synergetics. Beyond that,
for many practical purposes, the selection of the relevant neuronal variables
and their equations largely depends on the experience and skill of the modeler
as well as on his/her ability to solve the resulting network equations. Clearly,
when we go beyond neural nets, new qualitative features appear, such as
perception, motor-control, and so on. These must always be kept in mind by
the reader, and in my book I will point at some of the corresponding links.

1.2 Brain: Structure and Functioning.
A Brief Reminder

A complete survey of what science nowadays knows about the brain would fill
a library. Therefore it may suffice here to mention a few relevant aspects. The
white-gray matter of the brain is arranged in the form of a walnut (Fig. 1.2).
As has been known for some time, through the effects of injuries or strokes,

Fig. 1.2. The brain seen from above
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there are localized areas in the brain that can be considered as centers for
specific processes, such as tactile sensations, movement control, seeing, hear-
ing, speech production, etc. These early findings by medical doctors could
not only be substantiated, but also extended by modern physical methods,
such as magnetoencephalograms, electroencephalograms, positron emission
spectroscopy, magnetic resonance imaging, and so on. Since I described these
approaches in my book “Principles of Brain Functioning”, and since they may
be found in other text books as well, I will not elaborate on these methods
here. By means of these methods, it has become clear, however, that there
are pronounced interconnections between the various regions of the brain,
whereby learning and plasticity may play an important role. For instance,
when a finger of the hand of a monkey is removed, the corresponding brain
area shrinks and is largely taken over by the neuronal endings (“afferent nerve
fibers”) corresponding to neighbouring fingers. Thus the concept of localized
areas must be taken with a grain of salt. As may transpire from what I have
just said, it must be left open what we consider as part of a neural network.
So in the following, taking a broad view, we may think of a neural network
as one that is contained in an individual area, but also as one that comprises
parts of different areas as well. I believe that here much has to be done in
future experimenal and theoretical research.
After having said this, I may proceed to a preliminary discussion of indi-

vidual network models.

1.3 Network Models

While the model of a single neuron is by now well established, being based
on the fundamental work by Hodgkin and Huxley, modern theoretical work
deals with the branching of the solutions of the Hodgkin–Huxley equations
and their modifications and generalizations under the impact of external and
internal parameters. In other words, an intense study of the bifurcations of
the Hodgkin–Huxley equations and related equations is performed. When
we proceed to two or few neurons, mostly computer models are invoked,
including numbers of up to hundreds of neurons, whereby highly simplified
dynamics must be used. Basically two kinds of couplings between neurons
have been treated in the literature. One is the model of sinusoidal coupling,
depending on the relative phase of two neurons. This theory is based on the
concept of phase oscillators, i.e. on devices whose dynamics can be described
by a single variable, the phase. Corresponding approaches have a long history
in radio-engineering and later in laser physics, where the coupling between few
oscillators is dealt with. The coupling between many biological or chemical
phase oscillators has been treated in the pioneering works by Winfree and Ku-
ramoto, respectively. An excellent survey of the development of this approach
can be found in the article by Strogatz (see references). Applications to neural
nets have been implemented by Kuramoto and others. More recent and more
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realistic approaches rest on the study of the interaction between neuronal
spike trains. A simple but equally important model has been developed by
Mirollo and Strogatz and further continued by Geisel and coworkers. This
model was originally introduced by Peskin to explain the self-synchronization
of the cardiac pacemaker. More recent work on this class of models, called
integrate and fire models, has been performed by Bresloff, Coombes and other
authors.
The central part of this book will be devoted to networks composed of

many neurons coupled by spike trains. Hereby I first develop what I call the
lighthouse model, which can be treated in great detail and rather simply and
yet allows us at the same time to take into account many different effects
including delays between neurons and noise. As we will see, under typical
initial conditions a steady synchronized state evolves, whose stability and
instability we will study in detail. Depending on the interactions between
the neurons, i.e. depending on their synaptic strengths, a change of modus
from long spike intervals to short spike intervals may happen. We allow
for arbitrary couplings with a special constraint, however, that allows for
synchronized states. We will elucidate the relation between the lighthouse
model and integrate and fire models in detail, whereby we perform in both
cases a rather complete stability analysis that goes far beyond what has been
known so far in the literature.
We will also discuss the mechanisms of associative memory based on

these models and include for the sake of completeness sinusoidal couplings at
various levels of biological organisation, i.e. both at the neuronal level and
that of limbs.
Finally, we will show how phase-averaged equations can be deduced from

our basic equations, whereby we recover the fundamental equations of Wilson
and Cowan as well as of Nunez, Jirsa and Haken. These equations have found
widespread applications to the understanding of the formation of spatio-
temporal activity patterns of neuronal nets. We illustrate the use of these
equations in particular by means of the Kelso experiments on finger move-
ments. This allows us to show how the present approach allows one to go
from the individual neuronal level up to the macroscopic observable level of
motion of limbs.

1.4 How We Will Proceed

We first give a descriptive outline on the structure and basic functions of
an individual neuron. This will be followed by the presentation of typical
and important effects of their cooperation, in particular the experimental
evidence of their synchronization under specific conditions.
In Chap. 4 we will be concerned with theoretical concepts and mathemat-

ical tools. In particular we show how to represent spikes, what is meant by
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phase and how to determine it from experimental data. Furthermore we will
show how the origin and effect of noise can be modelled.
Chapters 5 and 6 are devoted to the lighthouse model with its various

aspects.
Chapter 7 provides a bridge between the lighthouse model and the inte-

grate and fire models, where a broad view is taken.
In Chapter 8 we treat integrate and fire models of different kinds from

a unifying point of view and explore in particular their stability and instability
properties.
Chapter 9 is devoted to sinusoidal couplings and shows the usefulness of

this kind of model by means of applications to neurons as well as to movement
coordination.
As already mentioned, Chap. 10 deals with phase-averaged equations

for axonal spike rates and dendritic currents, whereas Chap. 11 gives, for
sake of completeness, an outline of Hodgkin–Huxley equations and related
approaches, that means that this chapter deals with the individual neuronal
level.
The book concludes with Chap. 12 “Conclusion and Outlook”.



2. The Neuron – Building Block of the Brain

2.1 Structure and Basic Functions

Though there are about 20 different types of neurons, their structure is
basically the same. A neuron is composed of its soma, its dendrites that
quite often form a treelike structure and the axon that, eventually, branches
(Figs. 2.1 and 2.2). Information produced in other neurons is transferred to
the neuron under consideration by means of localized contacts, the synapses,
that are located on the dendrites and also on the cell body. Electrical charges

Fig. 2.1. Examples of neurons. L.h.s.: Pyramidal cell, r.h.s.: Purkinje cell (after
Bullock et al., 1977)
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Fig. 2.2. Scheme of a neuron

produced at the synapses propagate to the soma and produce a net post-
synaptic potential. If the postsynaptic potential at the soma is sufficiently
large to exceed a threshold value, typically a depolarisation of 10–15 mV,
the neuron generates a brief electrical pulse that is called a spike or action
potential, at its axon hillock. The axon hillock is the point of connection
between the soma and the axon. The spikes run down the axon, finally reach
the synapses that, in a way to be discussed below, transfer the information
to another neuron. In order to be able to model the functioning of a neuron,
we have to deal with these processes in more detail. In this chapter we will
be satisfied by a qualitative discussion with only a few mathematical hints.

2.2 Information Transmission in an Axon

Information transmission in an axon is based on electrical processes that are,
however, rather different from those in metallic conductors involving electric
currents. While in metals the carrriers of electric charge are electrons, in
the axon they are ions. These electrically charged atoms are much heav-
ier than electrons. Furthermore, a nerve fibre is much thinner than a con-
ventional metallic wire. The diameter of an axon is only about 0.1–20µm
(1µm=10−9m). The longitudinal resistance of an axon of 1m length is as
high as the resistance of a copper wire more than 1010 miles long. Quite cleary,
electrical processes in an axon must be quite different from those in wires. In
order to understand the mechanism of information transfer, measurements
were made both in isolated nerve preparations and in living organisms. The
squid possesses particularly thick axons, the so-called giant axons. They are,
therefore, particularly suited for such studies and all basic insights into the
function of the nervous system were first found using these axons. In the
meantime we know that the kind of information transmission is the same
both within the same organism and for different organisms. Thus it does not
play a role, whether pain from a limb to the brain is transmitted or an order
from the brain to a limb is transmitted, for example. All animals and humans
use basically only one kind of information transmission along their axons.
Experimentally it can be shown that at a resting nerve fiber that does

not transmit information a small electric potential between its inner and
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outer side is present. This potential is called the resting potential. The inner
part of the nerve fibre is negatively charged as compared to the outer liquid
in which the nerve fibre is embedded. This potential is about 70mV. The
reason for this resting potential is the unequal distribution of ions within
and outside the axon and is due to special properties of the axon membrane,
which has different permeabilities for different ions. An energy-consuming
process, the sodium–potassium pump, maintains the unequal distribution of
ions. What happens at an active neuron that transmits information? This
can be understood by means of the following experiment (Fig. 2.3). If a small
current is injected into the axon via an electrode (v1), at the position (v3) the
resting potential is lowered, i.e. the potential difference between the inside
and the outside is decreased. This is called depolarization. As can be expected
from the electrical properties of the axon, this depolarization is only weakly
registered at an electrode (v2) that is further away. If the current through
the electrode (v1) is enhanced, the depolarization increases correspondingly.
At a certain polarization (threshold), a new phenomenon appears. Suddenly
a short reversal of charges occurs in a small area. In other words, for a short
time the outer side of the axon becomes negative as compared to its inner
side. Most remarkably, this change of potential is considerably larger than
expected for the level of the injected current. Also the duration of the reversal
of the potential is not influenced by the duration of the injected current pulse.
Quite clearly, we are dealing with an active process of the axon. If the pulse at
the electrode (v1) is increased further, the level and duration of this reaction
will not change. Thus, we are speaking of an all or nothing signal. In other
words, this signal does not occur at a subthreshold electric excitation, but
fully occurs at a superthreshold excitation. This change of potential can be
registered at a distant third electrode with the full level and with only a small
delay. Thus, the response migrates further, and with increasing distance no
decrease of the potential occurs. Clearly, this property is important in the
transfer of information from one neuron to another. The short reversal of
voltage is called a nerve pulse or action potential. Its duration is about one
thousandth of a second. Quite often, it is called a spike.

Fig. 2.3. Scheme of an experiment on the origin of a pulse
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How can the formation of such a nerve pulse be explained? With de-
polarization, the membrane is electrically excited and ion channels open.
Rapidly ions can migrate through these channels and thus cause the reversal
of charge. But then the opening of other channels and thus the migration of
other ions causes a decrease of this voltage reversal. The sodium–potassium
pump maintains the unequal ionic distribution. A nerve pulse migrates in
a nerve cell from the beginning of the axon, the axon hillock, in the direction
of a synapse. Its velocity can be up to 100 m/s, corresponding to 360 km/h.
In spite of the extremely high longitudinal resistance of an axon, the electric
pulse can thus be transmitted via the axon extremely rapidly. This is made
possible because the charge carriers, the ions, need not move along the axon,
but perpendicularly through a very thin membrane. With modern meth-
ods (patch clamp experiments), it is possible to study even the processes
at individual channels. We will not be concerned with these microscopic
processes here. How are electrical excitations of axons produced in nature?
Here, of course, no electrodes are introduced in the axon and no current will
be injected artificially. In many cases, electric excitations stem from other
nerve cells and are transferred via the synapses. Electric excitations originate
in the sensory organs at receptors, which are special cells that transform
external excitations into electrical excitations. For instance, light impinging
on receptors in the retina is finally transformed into electric excitations that
are then further transmitted.

2.3 Neural Code

How can information be transmitted by means of neural pulses? We have
to remember that in a specific nerve fiber all nerve pulses have the same
intensity and duration. Thus there is only one signal. In the nervous system,
sequences of spikes are used, whose temporal distance, or, in other words,
whose frequency, is variable. The stronger a nerve fiber is excited, the higher
the frequency. Note that the meaning of a piece of information, whether for
instance it is a piece of visual, acoustic or tactile information, cannot be
encoded using the frequency of the nerve impulse. The meaning of a piece
of impulse information in an organism is fixed by the origin and destination
of its nerve fiber. This means for instance that all action potentials that
are transmitted via nerve fibers stemming from the eye contain visual in-
formation. These nerve fibers finally lead, via several switching stations, to
a special part of the brain, the visual cortex. The same is true for other nerve
fibers. Also the quality of an excitation, for instance the color of an object, is
determined by the kind of nerve fiber. For instance, separate fibers originate
from different receptors for color in the eye. Sensory cells are specialized nerve
cells that convert external excitations, such as light, temperature variations,
sound, a.s.o. into electrical excitations. Sensory cells in a way are interpreters
between the external world and the nervous system, but they react only quite
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specifically to specific excitations. For our later modelling, these observations
are of fundamental importance, because they lie at the root of the possible
universality of network models.

2.4 Synapses – The Local Contacts

At most synapses information transmission is not achieved by means of
electrical pulses but by means of chemical substances, the so-called neuro-
transmitters. Figure 2.4 shows a highly simplified sketch of the structure of
a chemical synapse. Between the two nerve cells there is a small gap across
which information is transmitted by the migration of chemical substances. In
detail, the following processes go on. When an action potential reaches the
synapse, transmitters are released from small vesicles and proceed from there
to the synaptic gap. Here they diffuse to the other (postsynaptic) side and
dock on specific molecules, the receptors. The transmitter molecules fit to
the receptors like a key in a lock. As soon as the transmitter substances dock
at the receptors, this influences specific ion channels, causing a migration of
ions and thus a depolarization of the membrane. The higher the frequency
of the incoming action potentials (pulses), the more transmitter substance
is released and the larger the depolarization on the postsynaptic side. The
transmitter molecules are relatively quickly decomposed and the individual
parts return to the presynaptic side. There they are reconstructed to com-
plete transmitter molecules and stored in the vesicles. The now unoccupied
receptors can again be occupied by new transmitter molecules. If at the
presynaptic sides no action potentials arrive, no more transmitter molecules
are liberated from the vesicles and the receptors remain unoccupied. Thus the
depolarization decreases. The transmission of the excitation via the synapses
leads to a local potential at the cell body. Only if this potential exceeds
a certain threshold at the axon hillock are action potentials generated that are

Fig. 2.4. Scheme of
a synapse
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then transmitted along the axon. In general, the transmission of excitation at
a single synapse is not sufficient to produce a superthreshold depolarization.
But nerve cells are connected with many other nerve cells, because on the
dendrites and on the cell body of the nerve cell many synapses connecting
with other nerve cells are located. The excitations which come in across all
these synapses contribute to the local potential at the cell body. It is impor-
tant to note that not all synapses are excitatory, but there are also inhibitory
synapses that decrease the excitation of the local potential at the cell body.
The actions of excitatory and inhibitory synapses are thus processed in the
region of the cell body. As mentioned above, the corresponding nerve cell
transmits nerve pulses across its axon only, when at the beginning of the
axon, i.e. at the axon hillock, a superthreshold depolarization occurs. If the
potential remains under this threshold, no nerve pulses will be carried on. The
higher the superthreshold local potential, i.e. the higher the depolarization,
the higher is the frequency with which the axon potentials are carried on
from this nerve cell. Clearly, the threshold of the information transmission
ensures that small random fluctuations at the cell body don’t lead to in-
formation transmission via nerve pulses. The inhibitory synapses have an
important function also, because they impede an extreme amplification of
electric excitation in the nervous system.

2.5 Naka–Rushton Relation

For our models that we will formulate later, we need a quantitative relation
between the stimulus intensity P that acts at the site of spike generation
and the firing rate, i.e. the production rate of spikes. For quite a number of
neurons this relation has a rather general form provided the stimulus intensity
P is constant and we are considering the resulting steady state in which the
firing rate is time-independent (Figs. 2.5 and 2.6).
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The relation is the Naka–Rushton formula

S(P ) =

{
rPN/(ΘN + PN ) for P ≥ 0 ,
0 for P < 0 .

(2.1)

The meanings of the constants r and Θ become clear if we consider special
cases. If

P � Θ , (2.2)

we obtain

S(P ) ≈ r , (2.3)

so that r is the maximum spike rate. If we choose, however,

P = Θ , (2.4)

we obtain

S(P ) =
rPN

2PN
=
r

2
, (2.5)

i.e. (2.4) determines the point at which (2.1) reaches half its maximum. The
exponent N is roughly a measure for the steepness of the curve S(P ). Typical
values of N that match experimentally observed data range from 1.4 to 3.4.
In the literature, a number of similar functions S are used in describing the
spike rate. All of them have the following properties:

1. There is a threshold for P close to zero.
2. There is roughly a linear region in which

S(P ) ∝ P . (2.6)

3. For large enough values (see (2.2)), S becomes constant, an effect called
saturation.
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For our later model we will be satisfied with the phenomenological relation
(2.1). In order to penetrate more deeply into the mechanism of spike genera-
tion, the Hodgkin–Huxley equations are used (see Sect. 11.1). These equations
describe the generation of action potentials caused by the in- and outflux of
ions. Depending on the kind of ions and their channels, extensions of these
equations have also been developed and we will briefly represent them in
Chap. 11. There we will also discuss the FitzHugh–Nagumo equations that
allow us to get some insight into the nonlinear dynamics that produces spikes.
From a physicist’s point of view, neurons are by no means passive systems in
thermal equilibrium. Rather they may be compared to machines that perform
specific tasks, for instance the conversion of a constant signal into spikes,
whereby the spike rate encodes information. When speaking of machines, we
usually think of highly reliable performance; this is not the case with neurons,
however. Due to fundamental physical principles, we must expect them to be
rather noisy. We will study the generation of noise, both in dendrites and
axons, in Sect. 4.8.
So far, in this chapter, we have been dealing with a single neuron. In

Chap. 3 we will discuss some important aspects of their cooperation.

2.6 Learning and Memory

Though in our book we will not directly be concerned with processes of
learning, a few comments may be in order, because they are linked with
the existence of neurons. According to a widely accepted hypothesis due to
D.O. Hebb, learning rests on a strengthening of the synapses that connect
those neurons that are again and again simultaneously active, and similarly
on a decrease of synaptic strengths if one or both neurons are inactive at the
same time. In particular, Eric Kandel studied and elucidated the connection
between the learning of behavioral patterns and changes at the neural level,
in particular in sea slugs, such as Aplysia and Hermissenda.
Let us finally discuss the role of dendrites.

2.7 The Role of Dendrites

Dendrites are thin fibers along which ions may diffuse, thus generating an
electric current. Such diffusion processes in one dimension are described
by the cable equation. While it was originally assumed that the signal is
transmitted from a synapse to the soma, more recent results show that back
flows may also occur. Diffusion is a linear process. More recent theoretical
approaches also consider nonlinear effects similar to the propagation of ax-
onal pulses. Because of the transport of electric charges in dendrites, they
give rise to electric and magnetic fields. Such fields stemming from groups
of neurons can be measured using EEG (electroencephalograms) and MEG
(magnetoencephalograms).



3. Neuronal Cooperativity

3.1 Structural Organization

The local arrangements of neurons and their connections are important for
their cooperation. Probably the best studied neuronal system in the brain is
the visual system. Since a number of important experiments that concern the
cooperation of neurons have been performed on this system, we will briefly
describe it in this section. At the same time, we will see how this organization
processes visual information. So let us follow up the individual steps.
We will focus our main attention on the human visual system, but im-

portant experiments have been performed also on cats, monkeys and other
mammals as well as on further animals, which we will not consider here,
however. Light impinging on an eye is focussed by means of its lens on the
retina. The latter contains rods and cones, whereby the rods are responsible
for black and white vision, while the cones serve colour vision. In order to
bring out the essentials, we present basic results on the rods. At their top,
they contain membranes, which, in turn, contain a specific molecule called
rhodopsin, which is composed of two parts. When light hits the molecule
it decays, whereby a whole sequence of processes starts that, eventually,
changes the permeability of the outer membrane of the rod. In this way, the
potential between the inner and outer sides of the rod changes. Actually, even
in darkness, i.e. when the rod is at rest, there is already a potential present.
The inner side is slightly positively charged as compared to the outer side.
The voltage is about 30–40 mV. When light impinges on the rod, its voltage
is increased. Actually, this is in contrast to what is found in other sensory
cells, where this potential is diminished. The more intense the impinging
light, the stronger this voltage change, that continues until no more light
comes in. The intensity of the impinging light is translated into an electrical
excitation. This transformation requires energy that is delivered by chemical
energy stored in the cells. By means of that energy, the degraded rhodopsin
can be regenerated and is again available. Besides rods and cones, the retina
contains further types of cells. We will not deal here with them in detail; may
it suffice to mention that these cells interact with their neighbours both in
the lateral as well the vertical direction of the retina, whereby information is
carried on by means of voltage changes. The outer layer of the retina contains
the ganglion cells that convert voltage changes into pulses. A certain array of
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Fig. 3.1. Responses of on-center ganglion cell to different stimuli. On the l.h.s. the
receptive field that consists of the center and surround. The light stimulus is repre-
sented dark. The r.h.s. represents the response of the neuron to the corresponding
stimulus
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rods contributes to the activity of a specific ganglion cell. The corresponding
area covered by the rods is called the receptive field of the ganglion cell. The
receptive fields of these cells are of a circular shape. The receptive field is
a central concept that will accompany us through the whole visual system.
Readers interested in the details of excitation and inhibition of ganglions are
referred to Fig. 3.1 and its legend. While in the so-called on-cells the center
of the receptive field leads to an excitation of the cell and an inhibition at its
periphery, in off-cells just the opposite occurs.
The nerve pulses are conducted along nerve fibers to a change point,

where some of the nerve fibers change from one side of the brain to the
other (Fig. 3.2). Then they go on to the corpus geniculatum laterale. There
some kind of switching occurs and the nerve fibers further proceed to the
visual cortex at the rear part of the brain. Other fibers go to other parts of
the brain. Behind the change point one half of the ongoing nerve consists of
nerve fibers that stem from the right eye and the other half of nerve fibers
from the left eye. Nerve fibers that stem from the left parts of the retinas of
both eyes go on to the left brain, whereas nerve fibers that stem from the
right parts of the retinas go on to the right half of the brain. When we take
into account that the image that is perceived by humans on their retinas is
mapped upside-down and the sides interchanged, it follows that on the right
halves of the retinas the left part of the visual field is perceived and vice versa.
For instance, when on the left-hand side of a table there is a ball and on its
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Fig. 3.2. Schematic representation of the visual pathway of a human
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right-hand side a pencil, the pencil will be mapped onto both left retinas and
the information is transferred into the left part of the brain. The ball lying
on the right side is perceived by the right part of the brain. Both parts of the
visual field are thus processed separately in both halves of the brain. On the
other hand, each half of the brain receives information from both eyes. This
actually serves stereovision, because in this way each half of the brain is able
to process the images that stem from both eyes jointly.
It should be noted that the spatial order is conserved in the whole vi-

sual system; that is to say that nerve fibers that deliver information from
neighbouring regions of their retina always remain neighbours. The local
scales of these topological maps are not conserved, however. For instance,
the map of the “yellow spot” of the retina possesses a comparatively large
area in the corresponding part of the brain. The nerve fibers proceed from
the corpus geniculatum laterale (Fig. 3.2) to the primary visual cortex from
where connections exist to a number of layers. Numerous connections exist
to other brain areas, for instance to a reading center from where information
can be passed on to a speech center, and so on.
In the primary visual cortex a white stripe in the otherwise gray cortical

substance is particularly easily visible. The stripe is named the Gennari stripe
after its discoverer and the corresponding brain area is called the striped
cortex or area striata. The visual cortex is a sheet of cells about 2 mm thick
and with a surface of a few square centimeters. It contains about 200 × 106

cells. Neurologists distinguish between different subunits of the area of the
cortex that processes visual perception. The first station, where the fibers of
the lateral geniculate body terminate, is the so-called primary visual field.
This is also called area 17 or V1. This area is followed by areas that are
called 18, 19, etc. or V2, V3, etc. For our purposes it will be sufficient to
deal with a rough subdivision into a primary visual field and secondary or
higher visual fields. It is important to note, however, that each visual field
represents a more or less complete representation of the retina. In other words,
excitation of a certain area of the retina causes a response in a definite area
of this visual field. Thus, the visual field represents a map of the retina. Of
course, we must be aware that in each half of the brain each time only half
of the retinas of both eyes are mapped. Today it is estimated that the cortex
of monkeys contains at least 15 different visual fields and possibly in humans
there are still more. Only the primary visual field has been well studied up
to now and we will present some of the results here. The cortex in the region
of the primary visual field can be subdivided into six layers that differ with
respect to the types of cells they contain and also with respect to the density
of cells. These layers are numbered from I to VI with further subdivisions.
Nearly all nerve fibers from the lateral geniculate body terminate in layer IVc.
It must be noted that information is not only processed in one direction, but
there are also a number of back propagations.
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Let us discuss in which way neurons in the visual cortex react to receptive
fields. Actually, there are quite a number of different cells that react to
different excitations. Neurologists differentiate between simple and complex
cells. As these notations indicate, the receptive fields of different cells differ
with respect to their complexity. The receptive fields of nerve cells in the
visual cortex were mainly studied in cats and monkeys. Remember that in
each case the receptive fields refer to the retina, i.e. a small region of the
retina influences the corresponding neuron in the visual cortex. In it there
are cells that possess circular receptive fields with a center and an oppositely
acting surround. These cells are located exclusively in area IVc and are all
monocular, i.e. they are fed only from one eye. It is assumed that these cells
represent the first station in the visual cortex. But most of the so-called simple
cells don’t possess circular receptive fields, they are actually rectangular (see
Fig. 3.3). Basically, these cells are very sensitive to the direction of a bar.
Only bars with a specific direction cause an optimal response in the cell.
There are neurons for each direction, whereby, for instance, neither vertical
nor horizontal is preferred. It is assumed that the properties of these cells
are brought about by the cooperation of simpler cells with circular receptive
fields. The simple cells have in common that they possess well-defined exci-
tatory and well-defined inhibitory fields. In all cases excitations that don’t
change in time suffice to excite the simple cells.
The situation is quite different in complex cells. The receptive fields of

complex cells are larger that those of the simple cells and they can’t be divided
into clearly defined excitatory and inhibitory zones. The complex cells are
characterized by the fact that they react in particular to moving excitations,
especially to light bars that move perpendicularly to their extension. Complex
cells exhibit a specific orientation sensitivity, i.e. only a correctly oriented
bar that is moving in the corresponding direction leads to a response in the
corresponding cell.
So far we have got acquainted with the most important cells of the pri-

mary visual field. These cells are arranged in strict organization by means
of columns. Each column is about 30–100 µm thick and 2 mm high. Each
of these columns contains cells of the fourth layer with circular receptive
fields. Above and below each, simple and also complex cells can be found.
What is particularly interesting is the fact that all orientation-specific cells of
a column react to the same orientation of a light bar (Fig. 3.4). Neighbouring
columns differ with respect to their orientation specificities by about 10o.
Thus going from one side to the other of a column, we find a slight change
of orientation from initially vertical to finally horizontal orientation. We may
distinguish between columns that are mainly served from the left or from
the right eye so that they are called ocular dominance columns. Each small
section of the retina thus possesses a corresponding set of columns with all
possible directions and for both eyes. According to Hubel and Wiesel such
a set is called a hyper-column. Nearly similar to a crystal, in the visual cortex
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a) b) c)

stimulus response

time
strong excitation

weak excitation

inhibition

weak excitation

inhibition

d)

time of stimulus

Fig. 3.3. Response of a neuron with a specific receptive field to a light bar with
different orientations. The receptive field is shown in the upper left square. + marks
the region of excitation, − that of inhibitation in the case of illumination
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Fig. 3.4. Organisation of visual cortex in the form of columns

such hyper-columns are regularly arranged and can be attributed to a small
area of the retina. A similar orientation in the form of columns can also
be found in other parts of the cortex. Cells in still higher visual fields have
still more complex properties; that is why they are called hyper-complex.
Earlier hypotheses on brain functioning assumed that, eventually, there are
specific cells that recognize specific objects and jokingly such cells were called
grandmother cells. Now the conviction has won that such grandmother cells
don’t exist and that the recognition, say of a specific face, is the result of the
cooperation of many individual cells. It is here where the question of neuronal
cooperativity becomes especially important and we will discuss experiments
and some hypotheses later in this chapter.

3.2 Global Functional Studies.
Location of Activity Centers

There are a number of methods that allow us to study experimentally in which
regions of the brain specific mental tasks are performed. These methods rest
on the assumption that during increased mental activity, the blood flow in the
active region is increased. Clearly, the time constants are rather large and lie
in regions above seconds. This is a region that we are not interested in in our
later models, so we mention the corresponding methods only briefly. These are
positron emission tomography (PET), magnetic resonance imaging (MRI),
better known among physicists as nuclear magnetic resonance (NMR), and,
with a higher temporal resolution, functional magnetic resonance imaging
(fMRI). An interesting method that was introduced more recently by Grin-
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EEG

electro-encephalogram

potentials

V(1)
V(2)
V(3)

electrodes

Fig. 3.5. Scheme of EEG measurement. Po-
sitions of electrodes on scalp

Fig. 3.6. Scheme of representation of EEG measurement. Each box is a plot of
voltage V versus time, corresponding to the electrodes of Fig. 3.5 (after Lehmann,
private communication)

vald is optical imaging of the visual cortex that requires, however, the opening
of the skull of the animal. In view of the models we will discuss in our book,
we first mention other methods that allow us to study rhythmic or oscillatory
phenomena of large groups of neurons. These are the electroencephalogram
(EEG) and the magnetoencephalogram (MEG). In the electroencephalogram
electrodes are placed on the scalp and the voltages between these electrodes
and a reference electrode are measured and plotted in ways shown in Figs. 3.5
and 3.6. Such EEGs may be measured either with respect to specific parts of
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the brain, e.g. the sensory or the motor cortex, or with respect to the total
scalp. In general, specific frequency bands are filtered out and studied, for
instance the α-band in the region from about 8–12 Hz, or the γ-band, and
so on. In general, these bands are associated with specific global activities
of the brain, for instance sleep, attention, and so on. By means of squids
(superconducting quantum interference devices) it is possible to measure very
small magnetic fields.

3.3 Interlude: A Minicourse on Correlations

One of the most exciting developments in experimental brain research is
the discovery of pronounced temporal correlations between the activity of
neurons. Here it has been important that the experimental results can be
represented in a rigorous mathematical form. Thus, before we describe the
experimental results, we will have to discuss a number of basic concepts,
whereby we focus our attention on spikes. The occurrence of a spike is, in
a technical sense, an event. In the following, we will be concerned with the
statistics of such events. We may record events either by measuring many
neurons simultaneously or the same neuron in repeated experiments. Because
the experimental time resolution is finite, we consider discrete time intervals
∆ and define (Fig. 3.7)

tn = n∆−∆/2, n = 1, 2, ... (3.1)

Experimentally, we may count the number of events in the interval ∆ at
time tn (Fig. 3.8a) and call that number (Fig. 3.8b)

N(tn) ≡ Nn. (3.2)

Fig. 3.7. Measurement intervals of du-
ration ∆ with centers at discrete times
tn, n = 0, 1, 2, ...

Fig. 3.8. a) Events within a measurement interval with center at tn; b) Number
N(tn) = Nn of events within measurement interval with center at tn
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Fig. 3.9. Example of a histogram

The plot of (3.2) versus n is called a histogram (Fig. 3.9).
The number Nn is also called the frequency of events. When we divide it by
the total number of events

N =
∑
n

Nn , (3.3)

we obtain the relative frequency

pn = Nn/N . (3.4)

We now remind the reader of the concept of the average of a quantity x(t).
For example, x(t) may be the postsynaptic potential xj(t) measured at time
t at neuron j, j = 1, 2, ..., J . The ensemble average is defined by

Extracellular
Recording TriggerTime Amplitude

Window
Discriminator

Average

Intracellular
Recording

Glutamate

Fig. 3.10. A diagram illustrating the experimental arrangement for spike-triggered
averaging in slice preparations of the visual cortex (after K. Toyama, in Krüger,
1991)
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< x(t) >=
1

J

J∑
j=1

xj(t) . (3.5)

This definition, which may either be applied to many neurons or to repeated
experiments on the same neuron, leads to a difficulty in practical applications
in neural science, because the individual curves xj(t) may be time-shifted with
respect to each other so that the average is more or less wiped out, whereas
the curves are of quite similar shape but differ just by time-shifts. Thus we
need a marker, which can be given by a neuronal spike, so that the beginnings
of the individual tracks refer to the same initial signal (Figs. 3.10 and 3.11).
Such averages are called spike-triggered averages

< x(t) >=
1

J

J∑
j=1

xj(t− τtrigger) . (3.6)

Fig. 3.11. Simultaneous recording from two visual cortical cells and spike triggered
averaging.
A) Extracellular recording (upper trace) from juxta-granular (JG) layer; intracel-
lular recording of postsynaptic potentials from the other cell in the supragranular
layer (SG).
B) Extracellular impulses in a JG cell isolated by a time-amplitude window dis-
criminator.
C) Intracellular traces in a SG cell triggered by the JG impulses.
D) and E) Superimposed and averaged traces in JG and SG cells (after Komatsu
et al., 1988; reproduced by Toyoma, in Krüger, 1991)
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Fig. 3.12. Two synchronous spike
trains with equal spike intervals T
(schematic)

Fig. 3.13. Two time-shifted spike
trains with equal spike intervals
(schematic)

We now come to the central point of this section, namely how to deal with
correlations. Let us consider the example of two neurons 1 and 2, which both
produce spike trains (see Fig. 3.12). In the special case where the trains are
regular and coincide, we have perfect synchrony or perfect correlation. If, on
the other hand, the two spike trains don’t perfectly coincide or don’t coincide
at all, the correlation is diminished. Clearly, the number of coincidences of
spikes during the observation time tobs is a measure of the correlations. As
shown in Fig. 3.13, there may be no coincidences at all between the two time
series, but there are coincidences if the time series are shifted with respect to
each other by a time delay τ . Thus it suggests itself to consider the number of
coincidences as a function of τ and plot this number Ncτ against τ . In this way,
we obtain a histogram that is also called a correlogram. Such a correlogram is
evaluated according to the example of finite spike trains as shown in Fig. 3.14.
Let us study, as a further example, the correlogram that refers to a spike

train and a signal that consists of many uncorrelated spikes so that practically
a constant signal results. In the present context, this signal may stem from
a pool of neurons. If the spike train and the constant signal last over a time

Fig. 3.14. a) Two time-shifted spike trains with equidistant spikes and finite length
(schematic); b) Correlogram corresponding to a)
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a)

b)

c)

Fig. 3.15. a) infinite spike train with equidistant spikes (schematic); b) constant
signal; c) Cross-correlogram corresponding to the above signals

Fig. 3.16. a) Spike train of finite length with constant underground signal (mim-
icking noise) (schematic); b) (Auto-) Correlogram corresponding to a)

that is considerably larger than the delay τ , the number of coincidences is
practically constant and the correlogram looks like that of Fig. 3.15c. An
autocorrelogram is obtained if we correlate two timeshifted signals that stem
from the same pool. If the signal is composed of regular spikes and the same
background (Fig. 3.16a), the autocorrelogram of Fig. 3.16b results. Further
important concepts are those of the autocorrelation function and the cross-
correlation function. To pave a way to these concepts, we first show how we
can calculate the number of coincidences between two spike trains in a more
formal fashion. We divide the total observation time tobs into intervals ∆
so small that only one event (spike) or no spike falls into such an interval
(Fig. 3.17a). We then state

a) b)

Fig. 3.17. Correlation of two spikes with heights x(t) and y(t), respectively. For
details see text
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x(tn)
= 1 if event in interval∆ around tn ,
= 0 if no event .

(3.7)

If we observe a second spike train (Fig. 3.17b), we state correspondingly

y(tn)
= 1 if event in interval∆ around tn ,
= 0 if no event .

(3.8)

Clearly, in the case of a coincidence in ∆, we obtain

x(tn)y(tn) = 1 , (3.9)

and

x(tn)y(tn) = 0 (3.10)

otherwise. The total number of coincidences in observation time tobs = N∆
is then obtained by the sum over tn, i.e.

Nc =
N∑
n=1

x(tn)y(tn) . (3.11)

If y(t) is time-shifted by an amount τ , the total number of coincidences in
observation time tobs becomes

Ncτ =
N∑
n=1

x(tn)y(tn + τ) , (3.12)

where

y(tn + τ) = 0 if tn + τ outside observation interval . (3.13)

In (3.11) and (3.12) the variables x(tn), y(tn) can adopt only the values zero or
one. If we allow these variables to adopt arbitrary real values, and normalize
(3.11) and (3.12) properly, we arrive at the definition of the crosscorrelation
function for discrete intervals

C(τ) =
1

N

N∑
j=1

x(tj)y(tj + τ) . (3.14)

Using N = tobs/∆ and taking the limit ∆ → 0, we may convert (3.14) into
an integral

C(τ) =
1

tobs

tobs∫
0

x(t)y(t+ τ)dt . (3.15)

In the stationary case, (3.14) and (3.15) are independent of the position of
the time window. More generally, when the time window starts at time t and
extends to t+ tobs in the nonstationary state, we obtain
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C(t, τ) =
1

tobs

t+tobs∫
t

x(σ)y(σ + τ)dσ , (3.16)

where C explicitly depends on t. In (3.14)–(3.16) the correlation function is
defined by means of a time average, i.e. the sum or integral run over time. We
may equally well define an ensemble average in analogy to (3.5) by means of

C(t, τ) =
∑
j

xj(t)yj(t+ τ) . (3.17)

The auto-correlation function is obtained as a special case from (3.14)–(3.17)
by putting y(t) = x(t) or yj(t) = xj(t).

3.4 Mesoscopic Neuronal Cooperativity

In this section we want to present some of the fundamental experimental
results on the synchronization among groups of neurons. Such synchroniza-
tions were discovered by Walter Freeman in the olfactory bulb of rats, but
particularly striking experiments were performed by Singer et al. as well
as by Eckhorn et al. on the visual cortex of anaesthesized cats and later
on awake monkeys. Let us quote the discoverers. Singer (1991): “We have
discovered that a large fraction of neurons in the cat striate cortex engage
in oscillatory activity in a frequency range of 40 to 60 Hz when activated
with light stimuli to which the neurons are tuned (Gray and Singer, 1987;
Gray and Singer, 1989). This phenomenon is illustrated in Fig. 3.18. Units
close enough to be recorded with a single electrode, if responsive to the same
stimulus, always synchronize their respective oscillatory responses. In most
instances, oscillatory responses are also in phase for neurons aligned along the
vertical axis of a cortical column. Of particular interest in the present context
is the finding that the oscillatory responses can also synchronize over con-
siderable distances across spatially separate columns (Gray et al., 1989) and
even between cortical areas (Eckhorn et al., 1988). Thus far, three parameters
have been identified which determine the degree of synchrony within area 17:
the distance between the units, the similarity of their orientation preference,
and the coherence of the stimulus itself. When neurons are less than 2 mm
apart, in which case the receptive fields are usually overlapping, they always
synchronize their oscillatory responses when they show the same orientation
preference, and they often synchronize even if the orientation preferences
differ, as long as these differences are sufficiently small to allow activation of
both neuron clusters with a single stimulus. At larger distances, when the
receptive fields are no longer overlapping, cell clusters tend to synchronize
their oscillatory responses only when they have similar orientation preferences
and/or are activated by stimuli that have the same orientation and that move
in the same direction. In such cases correlation breaks down when the three
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Fig. 3.18. Time series of multiunit
activity (MUA) and local field poten-
tial (LFP) in the first and second row,
respectively. The lower two rows show
an enlarged section. The MUA and
LFP responses were recorded from
area 17 in an adult cat due to the
presentation of an optimally oriented
light bar moving across the receptive
field. Oscilloscope records of a single
trial showing the response of the pre-
ferred direction of movement. In the
upper two traces at a slow time scale
the onset of the neuronal response is
associated with an increase in high-
frequency activity in the LFP. The
lower two traces display the activity
of the peak of the response at an ex-
panded timescale. Note the presence
of rhythmic oscillations in the LFP
and MUA (35–45 Hz) that are corre-
lated in phase with the peak negativ-
ity of the LFP. Upper and lower volt-
age scales are for the LFP and MUA,
respectively (from Gray and Singer,
1989)

stimuli pass in opposite directions over the two receptive fields and reaches its
maximum when both neuron clusters are activated with a single continuous
stimulus (Gray et al., 1989).
This phenomenon is illustrated in Fig. 3.19. Under each of the three stimu-

lation conditions, the autocorrelations show a periodic modulation indicating
that the local responses are oscillatory. However, when the two stimuli move
in opposite directions, where they are perceived as two independent contours,
the cross correlation function is flat implying that the respective oscillatory
responses have no consistent phase relation. When the two stimuli move in
the same direction, where they are perceived as related, the cross correlogram
shows a periodic modulation indicating that the respective oscillatory re-
sponses are in phase. Synchronization improves further when the two stimuli
are replaced by a single bar of light. This can be inferred from the deep
modulation of the oscillatory cross correlogram in Fig. 3.19. Interestingly,
if cross correlograms are periodically modulated, they are always centered
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Fig. 3.19. Long range of oscillatory correlations reflect global stimulus properties.
A: Orientation tuning curves of neuronal responses recorded by two electrodes (1,2)

separated by 7 mm show a preference for vertical light bars (0 and 1800) at both
recording sides.
B: Post-stimulus time histograms of the neuronal responses recorded at each site
for each of three different stimulus conditions: (I) two light bars moved in opposite
directions, (II) two light bars moved in the same direction and (III) one long light
bar moved across both receptive fields. A schematic diagram of the receptive field
locations and the stimulus configuration used is displayed to the right of each
post-stimulus time histogram. C, D: autocorrelograms (C, 1-1, 2-2) and cross-
correlograms (D, 1-2) computed for the neuronal responses at both sides (1 and 2
in A and B) for each of the three stimulus conditions (I, II, III) displayed in B.
For each pair of correlograms, except the two displayed in C (I, 1-1) and D (I), the
second direction of stimulus movement is shown with unfilled bars. Numbers on the
vertical calibration correspond to the number of coincident events (spikes) in the
respective auto- and crosscorrelograms (from Gray et al., 1989)
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Fig. 3.20. The experiments by Eckhorn et al. were performed by showing a moving
grid instead of the moving bar. The authors distinguish between three types of
coupling dynamics, based on their observations of single cell spikes and oscillatory
population activity of LFP and MUA in cats (Eckhorn and Obermueller, 1993)
and monkey visual cortex (Frien et al., 1994) as well as on related neural network
simulations (Juergens and Eckhorn, 1997).
1) rhythmic states. Single cell spike patterns had significant rhythmic modulation
and spikes were significantly correlated with oscillatory population activity.
2) lock-in states. Rhythmic modulation was not present in single cell spike patterns,
while spikes were significantly correlated with oscillatory population activity.
3) non-participation states. Rhythmic modulation was absent in spike trains and
in addition the spikes were not correlated with the actually present oscillatory
population activity.
This figure shows the results for the three different states of single cell couplings
with oscillatory population activities in the primary visual cortex:
a) rhythmic;
b) lock-in;
c) non-participation states of three different neurons.
AC: autocorrelation histograms (correlograms) of single cell spikes (SUA), of mul-
tiple unit activity (MUA) and of local field potential (LFP). STA denotes spike-
triggered averages of multiple unit activity or local field potentials. According to
the classification, STAs have oscillatory modulations in the rhythmic and lock-in
states and lack such modulations in the non-participation state. Note that in the
rhythmic state (a) the single cell correlogram (top) is clearly modulated at 44 Hz,
while in the lock-in (b) and the non-participation states (c) rhythmic modulations
in the range 35–80Hz are not visible (by definition).
Lower row of panels: power spectra for the above row of correlograms (figure mod-
ified from Eckhorn and Obermueller, 1993)
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around zero phase angle. This indicates that oscillations tend to synchronize
in phase if they synchronize at all”.
Eckhorn (2000) describes his experiments as follows: “Our experimen-

tal evidence is based on multiple microelectrode recordings from the visual
cortex of anaesthesized cats and awake moneys. We have used local popu-
lation activities (multiple unit spike activity (MUA)) and local slow-wave
field potentials (1:150 Hz) (LFP)) for the analysis of cortical synchrony,
because they comprise the synchronized components of local populations
(e.g. Eckhorn, 1992). In particular, LFPs are a local weighted average of
the dendro-somatic postsynaptic signals, reflecting mainly the synchronized
components at the inputs of the population within approximately 0.5 mm
of the electrode tip (Mitzdorf, 1987). MUAs on the other hand, comprise,
in their amplitudes, the simultaneity of spikes occurring at the outputs of
a local population within approximately 0.05 mm of an electrode tip (Legatt
et al., 1980, Gray et al., 1995). Both population signals are more suitable for
detecting correlations among dispersed cortically recording locations than are
single unit spike trains (Eckhorn et al., 1988, 1990, Eckhorn, 1992, Gray et al.,
1989, 1990; Engel et al., 1990, 1991). Higher numbers of neurons contribute
to LFP and to MUA due to their shallow spatial decay (Legatt et al., 1980;
Mitzdorf, 1987)”.
Clearly, both from the experimental and theoretical point of view, it

will be ideal to measure the correlation between spike trains of two single
cells. Under present experimental conditions the probability of finding such
significantly coupled spike trains is, however, small. However, according to
Eckhorn, the easier finding of cooperating neural assemblies was dramatically
increased by recording neural mass signals, such as MUA and LFP in par-
allel with single unit spike trains. This triple recording from each electrode
opened up for the researchers the opportunity to investigate neural couplings
on different levels of organization and specificity, and analyze all possible
combinations of interactions between the different signal types. By these
means, the researchers can study the interactions between single neurons,
possessing well-defined tuning properties, the average mass activity of the
local dendritic slow-wave potentials (LFPs), and the spike activity of the
local assembly (multiple unit activity MUA). Thus, correlations between the
mass activities of the same or different types were evaluated. Using these
different signal combinations, the researchers generally found significant and
often strong signal correlations. Figures 3.18, 3.20 and 3.21 present typical
results of Gray et al. and Singer et al. on the one hand, and Eckhorn et al.
on the other.
After these fundamental discoveries, many further experiments were per-

formed by Eckhorn and Singer and their groups, as well as by other re-
searchers, but for our purpose it is sufficient to have characterized the basic
phenomenon.
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Fig. 3.21. Correlation between LFP oscillations and single cell spikes (SUA),
calculated as spike-triggered average (STA) of LFPs normalized to the number of
spikes and the energy of the respective LFPs. Negative LFP values plotted upwards;
average oscillation frequency about 45 Hz. Spikes and LFPs were recorded in area
17 with the same electrode (right STA), and LFPs with another electrode in area
18 (left STA); i.e. the right STA shows the correlation between a single area 17 cell
spike train and the LFPs from the direct neighborhood, while the left STA shows
the correlation between the same area 17 cell and LFPs from area 18. (A 17 cell and
A 18 receptive fields overlapped; stimulus: grating 0.7 cycles/◦ drifting at 8 ◦/s in
and against preferred direction of cells in the area 17/area 18 recording positions.)
(From experiments of R. Eckhorn, M. Munks, W. Kruse and M. Brosch quoted in
Eckhorn, 1991)

Before I present several models of neural nets in which synchronization
between the individual neurons may happen, I will outline important theo-
retical concepts and tools that will be needed in Part III in particular.



4. Spikes, Phases, Noise:
How to Describe Them Mathematically?
We Learn a Few Tricks
and Some Important Concepts

In this chapter we present the ingredients that we will need to formulate our
model on pulse-coupled neural networks. There are two ways of reading this
chapter. The speedy reader will read Sect. 4.1 that shows how to mathemat-
ically describe spikes (or short pulses). Section 4.4 deals with a simple model
of how the conversion of axonal spikes into dendritic currents at a synapse
can be modeled. Finally, we will need the fundamental concept of phase that
will be presented in Sects. 4.9.1 and 4.9.2. Combined with a knowledge of
Chaps. 3 and 3 the reader will then easily understand the lighthouse model
of Chap. 5 and its extensions. Later he or she may like to return to read the
other sections of Chap. 4.
I personally believe that there is another class of readers who appreciate

the systematic exposition and they will read all sections of Chap. 4. They
will find details on how to solve the model equations (Sects. 4.2 and 4.3), how
to model important phenomena of noise (Sects. 4.4–4.8), and how to extract
phases from experimental data (Sect. 4.9).

4.1 The δ-Function and Its Properties

In this section we want to find a way to describe short pulses or, to use
a different word, spikes. To this end, we will use an idealization that leads us
to the δ-function originally introduced by Dirac. Let us first consider a pulse
that has the form of a Gaussian bell-shaped curve (see Fig. 4.1). It is described

Fig. 4.1. The Gauss-functions

g(t, α) = 1√
πα
e−t

2/α for three differ-

ent values of α. The smaller α, the
higher the peak
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by the function

1
√
πα
e−t

2/α , (4.1)

where the factor in front of the exponential function serves for the normal-
ization of (4.1)

+∞∫
−∞

1
√
πα
e−t

2/αdt = 1 , (4.2)

i.e. the area under the pulse is equal to unity. Now let us try to make this
pulse shorter and shorter. Mathematically this is achieved by letting

α→ 0 . (4.3)

Clearly, then the pulse becomes so short that outside of t = 0 it vanishes,
whereas at t = 0 it still remains normalized according to (4.2). This leads us
to the definition of the δ-function

δ(t) = 0 for t �= 0 , (4.4)

ε∫
−ε

δ(t) = 1 , (4.5)

where ε may be arbitrarily small (Fig. 4.2). Whereas it does not make sense
to put α = 0 in (4.1), the δ-function defined by the limit (4.3) does make
sense, though only under an integral. Let us study a few properties of that
function. Instead of centering the pulse around t = 0, we can center it around
any other time t0 (Fig. 4.3) so that (4.4) and (4.5) are transformed into

δ(t− t0) = 0 for t �= t0 , (4.6)

Fig. 4.2. δ-function located at t = 0
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Fig. 4.3. δ-function located at t = t0

and

t0+ε∫
t0−ε

δ(t− t0)dt = 1 . (4.7)

To show the equivalence of (4.6) and (4.7) with (4.4) and (4.5), we just have
to introduce a new variable

t− t0 = s , (4.8)

and change the limits of the integral

t = t0 ± ε (4.9)

accordingly, which yields

s = ±ε , (4.10)

so that we finally transform (4.7)) into

ε∫
−ε

δ(s)ds = 1 , (4.11)

which is, of course, identical with (4.5). The particular properties of the δ-
function lead to a number of quite useful formulas. If h(t) is a continuous
function, then (Fig. 4.4)

Fig. 4.4. Illustration of (4.13)
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ε∫
−ε

h(t)δ(t)dt = h(0) , (4.12)

t0+ε∫
t0−ε

h(t)δ(t− t0)dt = h(t0) . (4.13)

We leave it to the reader as an exercise to derive these formulas. We can also
define temporal derivatives of the δ-function, again by means of an integral.
(In this book, in most cases we abbreviate temporal derivatives, such as
dh/dt, by ḣ.) The following formula holds

ε∫
−ε

h(t)δ̇(t)dt = −

ε∫
−ε

ḣ(t)δ(t)dt = −ḣ(0) , (4.14)

which may be easily proved by a partial integration of the l.h.s. of (4.14).
Another interesting property of the δ-function results when we consider the
integral

H(T ) =

T∫
−∞

δ(t)dt =

{
0 for T < 0
1 for T > 0

, (4.15)

which we may supplement if needed by the definition

H(T ) =
1

2
for T = 0 . (4.16)

The function H(T ) defined by (4.15) and (4.16) is a step function that is also
called Heaviside function (Fig. 4.5).
Let us now study the property of a δ-function in which its argument t is

replaced by ct

ε∫
−ε

δ(ct)dt . (4.17)

Fig. 4.5. The Heaviside (step-) function
H(T )
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Making the substitution

ct = s (4.18)

so that

dt =
1

c
ds , (4.19)

and replacing the boundaries of the integral

t = ±ε (4.20)

by

s = ±cε , (4.21)

we readily obtain

cε∫
−cε

δ(s)
1

c
ds =

1

c
. (4.22)

It is now a simple exercise to combine the properties (4.6) and (4.17) to study

T2∫
T1

δ(ct− t0)dt , (4.23)

where we will assume c > 0. Then we use the new variable s by means of

ct− t0 = s . (4.24)

It then follows that

T∫
−∞

δ(ct− t0)dt =

⎧⎨
⎩
0 for T < t0/c
1/c for T > t0/c
1/(2c) for T = t0/c .

(4.25)

The δ-functions in (4.6), (4.17) and (4.23) are special cases of a δ-function,
which itself depends on a function of time. We call this function φ(t), because
in our neural models it will have the meaning of a phase (see Sect. 4.9 and
Fig. 4.6). Let us study

T∫
t1

δ(φ(t))dt . (4.26)

We assume that

for t1 ≤ t ≤ T the only zero ofφ(t) is at t = t0 , (4.27)
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as also

dφ(t0)

dt
≡ φ̇(t0) �= 0 (4.28)

and

φ̇(t0) > 0 . (4.29)

These are actually conditions that are fulfilled in our later applications. How
to proceed further is now quite similar to our above examples (4.7), (4.17)
and (4.23). We introduce a new variable by means of

s = φ(t) (4.30)

so that

ds = φ̇(t)dt . (4.31)

We further obtain the correspondence

φ(t0)↔ s = 0 . (4.32)

By means of (4.30) and (4.31), (4.26) is tranformed into

φ(T )∫
φ(t1)

δ(s)
1

φ̇(t(s))
ds , (4.33)

where we note

φ̇(t(0)) = φ̇(t0) . (4.34)

We further assume (which actually follows from (4.27)–(4.29))

φ(t1) < φ(T ) , (4.35)

so that our final result for (4.26) reads

T∫
t1

δ(φ(t))dt =

{
0 for T < t0 ,

1/φ̇(t0) T > t0
(4.36)

and

=
1

2
·
1

φ̇(t0)
for T = t0 . (4.37)

Because of the occurrence of the factor φ̇ in (4.36), the δ-function depending
on φ(t) is rather diffcult to handle in our later applications. For this reason,
we define a new function
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Fig. 4.6. Example of variation of
the phases φ(t) and φ(t) + ξ(t) as
functions of time t

f(t) = δ(φ(t))φ̇(t) , (4.38)

which, when replacing the original δ-function, yields

t0+ε∫
t0−ε

f(t)dt ≡

t0+ε∫
t0−ε

δ(φ(t))φ̇(t)dt = 1 , (4.39)

and which, like the δ-function, represents a spike at t = t0. In our neural
models (see Chaps. 5 and 6), we will use (4.38) instead of the δ-function.

4.2 Perturbed Step Functions

As we will see later in our neural models, the generation of pulses may be
perturbed so that their phases are shifted, or in other words so that φ(t) is
replaced by φ(t) + ξ(t) (Fig. 4.6). We then will have to study how big the
change of the step function (4.15) (Heaviside function) is when we use the
spike function (4.38) instead of the δ-function in (4.15). To this end, we treat
the expression

G(T ) =

T∫
t1

δ(φ(t) + ξ(t))(φ̇(t) + ξ̇(t))dt−

T∫
t1

δ(φ(t))φ̇(t)dt . (4.40)

Repeating all the steps we have done before with respect to the two integrals
in (4.40), we readily obtain

G(T ) =

φ(T )+ξ(T )∫
φ(t1)+ξ(t1)

δ(s)ds−

φ(T )∫
φ(t1)

δ(s)ds ≡ I1 − I2 . (4.41)

By means of Figs. 4.7–4.10 we can easily deduce the properties of G(T ). Let
us start with the second integral in (4.41) and call it I2. We assume that its
lower limit is negative. Then I2 is a step function with its step at s = φ(T ) = 0
(Fig. 4.8).
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Fig. 4.7. Definition of the times t−0
and t0 as zeros of φ(t)+ξ(t) and φ(t),
respectively

Fig. 4.8. Upper part: I2 (see (4.41))
as a function of s = φ(T ); Lower
part: I2 as a function of T

Fig. 4.9. Upper part: I1 (see (4.41))
as a function of s = φ(T ) + ξ(T );
Lower part: I1 as a function of
T . Note the difference between the
lower parts of Figs. 4.8 and 4.9

Fig. 4.10. G(T ) = I1 − I2 results
from the subtraction of the ordinate
of Fig. 4.8 from that of Fig. 4.9

When we use the variable T instead of s, the step occurs at T = t0,
whereby

φ(t0) = 0 (4.42)
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(see also (4.27)). A similar consideration holds for the first integral in (4.40),
I1. Its plot against the variable s = φ(T ) + ξ(T ) is shown in the upper part
of Fig. 4.9; the jump occurs at s = 0. But when we use the variable T , the
jump occurs at t−0 , where

φ(t−0 ) + ξ(t
−
0 ) = 0 . (4.43)

The function G(T ), being the difference between I1 and I2, can be derived
from the lower parts of Figs. 4.7 and 4.8 respectively, and is represented in
Fig. 4.10. Thus

G(T ) =

⎧⎨
⎩
0 for T < t−0
1 for t−0 < T < t0 .
0 for T > t0

(4.44)

We now turn to the explicit determination of t−0 (see Fig. 4.7). This time
t−0 is defined by (4.43), whereas t0 is defined by (4.42). In the following we
will utilize the fact that in our practical applications the difference between
t0 and t

−
0 is small. Subtracting (4.42) from (4.43) yields

φ(t−0 )− φ(t0) + ξ(t
−
0 ) = 0 , (4.45)

and using the Taylor expansion of φ(t) up to the second term

(t−0 − t0)φ̇(t0) = −ξ(t
−
0 ) . (4.46)

Resolving (4.46) for the time difference yields

(t0 − t
−
0 ) = ξ(t

−
0 )/φ̇(t0) . (4.47)

If ξ(t) varies smoothly, we may use the further approximation

ξ(t−0 ) = ξ(t0) + (t
−
0 − t0)ξ̇(t0) . (4.48)

Inserting this approximation into (4.47) yields

(t0 − t
−
0 )(1− ξ̇(t0)/φ̇(t0)) = ξ(t0)/φ̇(t0) . (4.49)

Provided

| ξ̇(t0)/φ̇(t0) |� 1 (4.50)

holds, we arrive at our final result

(t0 − t
−
0 ) = ξ(t0)/φ̇(t0) . (4.51)

Let us now consider what happens when we perform an integral over the
function G(T ) over the interval

T1 ≤ T ≤ T2 . (4.52)
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In principle, we must differentiate between different cases, e.g.

T1 < t
−
0 < T2 < t0 , (4.53)

and further time-sequences. For many practical purposes it suffices, however,
to treat the case

T1 < t
−
0 ≤ t0 < T2 . (4.54)

Using (4.44), we obtain

T2∫
T1

G(T )dT =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 for T2 < t

−
0 ≤ t0

t0∫
t−
0

dT = t−0 − t0 for T1 < t
−
0 ≤ t0 < T2 .

0 for T1 > t
−
0 , t0

(4.55)

This result reminds us of the property of a δ-function with one basic differ-
ence. Whereas the δ-function vanishes everywhere except at the point where
its argument vanishes, the function G(T ) vanishes only outside the interval
t−0 ...t0, whereas within this interval it acquires the value unity. If the interval
t0 − t

−
0 is small, for many practical purposes we may replace the function

G(T ) by a δ-function, where we have to add a weight factor that yields the
same area. In other words, we replace the l.h.s. of (4.55) by

T2∫
T1

(t0 − t
−
0 )δ(T − t0)dT =

⎧⎨
⎩
0 for T2 < t0
(t0 − t

−
0 ) for T1 < t0 < T2

0 for T1 > t0

(4.56)

with the properties presented on the r.h.s. of this equation. If t0− t
−
0 is small

and the function h(T ) varies only a little in this interval, we may use the
following approximation

T2∫
T1

h(T )G(T )dT ≈ h(t0)

T2∫
T1

G(T )dT . (4.57)

This means, jointly with (4.55), that G(T ) has practically the properties of
the δ-function!

4.3 Some More Technical Considerations*

Readers who are not interested in mathematical details, can skip this section.
In some practical applications that will follow in later chapters, it turns out
that while

φ(t) is continuous at t = 0 (4.58)
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we must observe that

φ̇(t) is discontinuous at t = 0 . (4.59)

This leads us to the question of how to evaluate

δ(φ(t))φ̇(t)? (4.60)

To this end, we recall that the δ-function can be conceived as a specific limit
α→ 0 of√

1

πα
e−s

2/α . (4.61)

Therefore we consider√
1

πα
e−g

2(t)/αφ̇(t) : for
t < 0
t > 0

. (4.62)

Because we have to distinguish between positive and negative times, we
perform the following split

+∞∫
−∞

...ds =

0−∫
−∞

..ds+

∞∫
0+

..ds =
1

2
+
1

2
= 1 . (4.63)

Inserting (4.61) into the two parts yields the result as indicated on the r.h.s.
of (4.63). In complete analogy, we may also perform the following split with
the obvious result

ε∫
−ε

δ(s)ds =

0−∫
−ε

δ(s)ds+

ε∫
0+

δ(s)ds =
1

2
+
1

2
= 1 . (4.64)

With these precautions in mind, we can repeat the above evaluations of
Sect. 4.2. We need, however, some precautions in order to evaluate t−0 , because
in that evaluation the derivative φ̇ was involved. Repeating the above steps
for the two regions for t, or correspondingly ξ, we obtain

(t−0 − t0) = −ξ(t
−
0 ) ·

{
φ̇−(t0)

−1, ξ > 0

φ̇+(t0)
−1, ξ < 0

. (4.65)

We leave it as an exercise to the reader to derive this result. In order to find
a formula that combines the two cases of (4.65), we introduce the identities

1

2
(ξ+ | ξ |) =

{
ξ for ξ > 0
0 for ξ < 0

(4.66)

and

1

2
(ξ− | ξ |) =

{
0 for ξ > 0
ξ for ξ < 0

. (4.67)
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Thus we can write (4.65) in the form

t−0 − t0 = −φ̇−(t0)
−1

(
1

2
(ξ+ | ξ |)

)
+ φ̇+(t0)

−1

(
1

2
(ξ− | ξ |)

)
(4.68)

that can be rearranged to yield

t−0 − t0 = ξ(t
−
0 )
1
2

(
φ̇−(t0)

−1 + φ̇+(t0)
−1
)

+ | ξ(t−0 ) |
1
2

(
φ̇−(t0)

−1 − φ̇+(t0)−1
)
.

(4.69)

This relation can be considerably simplified if the second term in (4.69) is
much smaller than the first one, i.e. provided

φ̇+ − φ̇−

φ̇+ + φ̇−
� 1 (4.70)

holds. We then obtain our final result

t−0 − t0 = ξ(t
−
0 )
1

2

(
φ̇−(t0)

−1 + φ̇+(t0)
−1
)
. (4.71)

4.4 Kicks

Later in this book, we want to model the conversion of axonal spikes into
dendritic currents. At the molecular level, this is quite a complicated process.
But as discussed in Chap. 1, we want to study brain functions at and above
the level of neurons. What happens in a dendrite before an axonal pulse
arrives at a synapse? Clearly, there is no dendritic current; then the pulse
generates a current, which finally is damped out. To model this phenomenon,
we invoke the mechanical example of a soccer ball that is kicked by a soccer
player and rolls over grass, whereby its motion will be slowed down. In this
case, it is rather obvious how to describe the whole process. Our starting
point is Newton’s law according to which the velocity v of a particle with
mass m changes according to the equation

m
dv

dt
= force . (4.72)

In order to get rid of superfluous constants, at least for the time being, we
put m = 1 . The force on the r.h.s. consists of the damping force of the grass
that we assume to be proportional to the velocity v and the individual kick
of the soccer player. Because the kick lasts only for a short time, but is very
strong, we describe it by means of a δ-function. In this way, we formulate the
equation of motion as

dv(t)

dt
= −γv(t) + sδ(t− σ) , (4.73)
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where γ is the damping constant and s the strength of the kick. We assume
that at an initial time t0 < σ, the velocity of the soccer ball is zero

v(t0) = 0 . (4.74)

For the time interval t0 ≤ t < σ, i.e. until the kick happens, the soccer ball
obeys the equation

dv(t)

dt
= −γv(t) . (4.75)

Because it is initially at rest, it will remain so

v(t) = 0 . (4.76)

Now the exciting problem arises, namely to describe the effect of the kick on
the soccer ball’s motion. Since the definition of the δ-function implies that it
appears under an integral, we integrate both sides of (4.73) over a short time
interval close to t = σ

σ+ε∫
σ−ε

dv(t)

dt
dt =

σ+ε∫
σ−ε

−γv(t)dt+

σ+ε∫
σ−ε

sδ(t− σ)dt . (4.77)

Since integration is just the inverse process to differentiation, we may evaluate
the l.h.s. immediately. Assuming that ε tends to zero, the first integral on
the r.h.s. will vanish, while the second integral just yields s, because of the
property of the δ-function. Thus (4.77) is transformed into

v(σ + ε)− v(σ − ε) = s , (4.78)

and because before the kick the soccer ball was at rest, we obtain

v(σ + ε) = s . (4.79)

Now consider the time t ≥ σ. Then (4.73) reads again (4.75), which possesses
the general solution

v(t) = ae−γt , (4.80)

as one can immediately verify by inserting (4.80) into (4.75). a is a constant
that must be chosen appropriately, namely such that at time t = σ the
velocity becomes (4.79). This can be achieved by putting

a = seγσ (4.81)

so that the final solution to (4.75) with the initial condition (4.79) reads

v(t) = se−γ(t−σ), t ≥ σ . (4.82)
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Fig. 4.11. The Green’s function (4.83) Fig. 4.12. The Green’s function (4.84)

Setting s = 1, we obtain an important special case, namely that of a unit
kick. In this case, v is denoted by G(t, σ) and is called a Green’s function.
Obviously, this function is defined by

G(t, σ) =

{
0 for t < σ
e−γ(t−σ) for t ≥ σ

. (4.83)

In the context of our book, where we are concerned with the generation
of a dendritic current by a δ-pulse (spike), (4.83) provides us with a first
answer: A current is immediately generated and then damped (Fig. 4.11).
We will use this approach in Chaps. 5 and 6. A more refined approach takes
into account that the current first increases linearly with time until it reaches
its maximum after which it drops exponentially.
This behavior, shown in Fig. 4.12, is represented by

G(t, σ) =

{
0 for t < σ
(t− σ)e−γ(t−σ) for t ≥ σ

. (4.84)

Using the techniques we just have learnt, we can easily show that (4.84) is
the Green’s function belonging to(

d

dt
+ γ

)2
G(t, σ) = δ(t− σ) (4.85)

(see the exercise below). In the literature, often the normalization factor γ2

is added. The resulting function is called (Rall’s) α-function (where formally
α is used instead of γ). We will use this function in Chap. 7.

Exercise. Show that (4.84) satisfies (4.85).
Hint: Write(
d
dt
+ γ
)2
G ≡ d2G

dt2
+ 2γ dG

dt
+ γ2G = δ(t− σ) .

Convince yourself that (4.84) satisfies this equation for t < σ and t > σ. For
σ − ε < t < σ + ε integrate both sides of (4.83) over this interval. Show that
+∞∫
−∞
α2G(t, σ)dt = 1.
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4.5 Many Kicks

Let us start with the example of two consecutive kicks in which case the force
exerted by the soccer player on the ball can be written in the form

F (t) = s1δ(t− σ1) + s2δ(t− σ2) , (4.86)

where the kicks are performed at times σ1 and σ2 with strengths s1 and s2,
respectively. The equation of motion then reads

dv(t)

dt
= −γv(t) + s1δ(t− σ1) + s2δ(t− σ2) . (4.87)

Because (4.87) is linear, for its solution we make the hypothesis

v(t) = v1(t) + v2(t) . (4.88)

Using the indices j = 1, 2, we require that vj obeys the equation

dvj
dt
= γvj(t) + sjδ(t− σj) . (4.89)

We know already that its solution can be expressed by means of the Green’s
function (4.83) in the form

vj(t) = sjG(t, σj) . (4.90)

By use of (4.88), we obtain

v(t) = s1G(t, σ1) + s2G(t, σ2) (4.91)

as the final solution to (4.87). Now it is an obvious task to treat many kicks,
in which case the forces are composed of many contributions in the form

F (t) =
N∑
j=1

sjδ(t− σj) , (4.92)

and by analogy to (4.91) we obtain the final result (Fig. 4.13)

v(t) =
N∑
j=1

sjG(t, σj) . (4.93)

Let us make a final generalization in which case the kicks are continuously
exerted on the soccer ball. In this case, the force can be written as an integral
in the form

F (t) =

T∫
t0

s(σ)δ(t− σ)dσ ≡

T∫
t0

F (σ)δ(t− σ)dσ , (4.94)
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Fig. 4.13. The velocity v(t)
caused by δ-pushes at times
σ1, σ2, ... and damping

where we leave it as a little exercise to the reader to verify the second rep-
resentation. In the following we will assume that T goes to infinity when
the whole process is considered for an arbitrarily long time. The continuous
version of the solution (4.93) obviously reads

v(t) =

T∫
t0

F (σ)G(t, σ)dσ . (4.95)

Now it is useful to use the explicit form of the Green’s function (4.83), which
allows us to cast (4.95) into the final form

v(t) =

t∫
t0

F (σ)e−γ(t−σ)dσ . (4.96)

We leave it as an exercise to the reader to verify that the solution (4.96) must
be complemented by a solution of the homogeneous equation, i.e. with F = 0
if at the initial time t0 the velocity did not vanish.

4.6 Random Kicks or a Look at Soccer Games

Quite often we observe in soccer games that the players kick the ball entirely
at random as far as both the direction and timing are concerned. The reader
may wonder what the study of soccer games will have to do with our task
of modeling neurons, but I hope that will become evident in a few moments.
We now denote the times at which the kicks occur by tj and indicate their
direction in a one-dimensional game by (±1)j , where the choice of the plus
or minus sign is random, for instance, it is determined by throwing a coin.
Thus the kicking force can be written in the form

F (t) = s
∑
j

δ(t− tj)(±1)j , (4.97)
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where for simplicity we assume that all kicks have the same strength. When
we observe many games, then we may perform an average over all these
different performances. Let us denote this average by < ... >. To treat the
averaging procedure in detail, we consider

< F (t) >= s <
∑
j

δ(t− tj)(±1)j > . (4.98)

Since the direction of the kicks is assumed to be independent of the time at
which the kicks happen, we may split (4.98) into the product

(4.98) = s <
∑
j

δ(t− tj) >< (±1)j > . (4.99)

Because the kicks are assumed to happen with equal frequency in the positive
and negative directions, we obtain a cancellation

< (±1)j >= 0 . (4.100)

Thus the average of F (t) (4.98) vanishes,

< F (t) >= 0 . (4.101)

In order to characterize the strength of the force (4.97), we consider a quadratic
expression in F . For later purposes we evaluate the following correlation
function for two times t, t′, where by means of (4.97) we obtain

< F (t)F (t′) >= s2 <
∑
j

δ(t− tj)(±1)j
∑
k

δ(t′ − tk)(±1)k > , (4.102)

which in analogy with (4.98) can be split into a term that contains the
directions of the kicks and another term. In this way, we are led to study

< (±1)j(±1)k >=< (±1)j >< (±1)k > for j �= k , (4.103)

where we could split the l.h.s. into a product because of the statistical inde-
pendence of the kicks. Because of (4.100), the expressions in (4.103) vanish.
On the other hand, we obviously obtain

< (±1)j(±1)k >=< 1 >= 1 for j = k . (4.104)

Thus the sums over j and k in (4.102) reduce to a single sum and we obtain

< F (t)F (t′) >= s2 <
∑
j

δ(t− tj)δ(t
′ − tj) > (4.105)

instead of (4.102). Usually the r.h.s. of (4.105) is evaluated by assuming
a so-called Poisson process for the times of the kicks. For our purposes it
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is sufficient to evaluate the r.h.s. by taking an average over the time T of
a game, multiplied by the number N of kicks during T . Then we obtain

< ... >= N
1

T

T∫
0

δ(t− τ)δ(t′ − τ)dτ , (4.106)

which can be evaluated to yield

< ... >=
N

T
δ(t− t′) . (4.107)

Readers who are afraid of multiplying δ-functions and integrating over their
product (at different times!) may be reminded that δ-functions can be ap-
proximated for instance by Gaussian integrals and then the result (4.107) can
be easily verified. Putting T/N = t0, which can be interpreted as a mean free
time between kicks, and putting

s2/t0 = Q , (4.108)

our final result reads

< F (t)F (t′) >= Qδ(t− t0) . (4.109)

4.7 Noise Is Inevitable.
Brownian Motion and the Langevin Equation

The model we have developed above may seem to be rather arbitrary. In
this section we want to show that it has an important application to the
physical world. The phenomenon we have in mind is Brownian motion. When
a particle is immersed in a fluid, the velocity of this particle if slowed down
by a force proportional to the velocity of this particle. When one studies the
motion of such a particle under a microscope in more detail, one realizes that
this particle undergoes a zig–zag motion. This effect was first observed by the
biologist Brown. The reason for zig–zag motion is this: The particle under
consideration is steadily pushed by the much smaller particles of the liquid
in a random way. Let us describe the whole process from a somewhat more
abstract viewpoint. Then we deal with the behavior of a system (namely the
particle), which is coupled to a heat bath or reservoir (namely the liquid).
The heat bath has two effects:

1. it decelerates the mean motion of the particle; and
2. it causes statistical fluctuations.

In the context of the previous section, the modelling of the whole process is
rather obvious and was done in this way first by Langevin by writing down
the following equation of motion for the particle, where we put m = 1. F is
denoted as a fluctuating force and has the following properties:
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1. its statistical average, i.e. (4.98), vanishes; and
2. its correlation function is given by (4.109).

For what follows, all we need are these two properties and the form of the
solution to

dv(t)

dt
= −γv(t) + F (t) , (4.110)

which, quite generally, is given by (4.96). Let us determine the average ve-
locity < v(t) >, where the average is taken over all games. Because the
integration in (4.96) and this average are independent of each other, we may
perform the average under the integral, which because of (4.101) vanishes.
Thus,

< v(t) >= 0 , (4.111)

i.e. on the average the velocity vanishes, which stems from the fact that both
directions are possible and cancel each other. Thus in order to get a measure
for the size of the velocity as well as of its change in the course of time, we
consider the quadratic expression in

< (v(t)− v(t′))2 >=< v2(t) > + < v2(t′) > −2 < v(t)v(t′) > . (4.112)

As we will see later, the first terms are equal and even time-independent in the
steady state. The important term of physical interest is the third expression
in (4.112), which we now study. Using the explicit form of v, it reads

< v(t)v(t′) >=<

t∫
t0

dσ

t′∫
t0

dσ′e−γ(t−σ)e−γ(t
′−σ′)F (σ)F (σ′) > . (4.113)

Taking the averaging procedure under the integral, using the property (4.109)
and evaluating the integrals is now an easy matter (see exercise below). In
the steady state, we may assume that t+t′ →∞. In this case, the final result
reads

< v(t)v(t′) >= (Q/2γ)e−γ(t−t
′) (4.114)

and for equal times

< v(t)2 >=
Q

2γ
. (4.115)

So far we have put the mass m = 1; it is a simple matter to repeat all the
steps with m �= 1 starting from Newton’s equation. In such a case, the final
result reads

< v(t)2 >=
Q

2γm
. (4.116)
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Now the decisive step occurs, namely the connection with the real world.
Multiplying (4.116) by m/2 on the l.h.s. we obtain the mean kinetic energy
of the particle immersed in the liquid. Because of a fundamental law of
thermodynamics, this energy is given by

m

2
< v(t)2 >=

1

2
kT , (4.117)

where k is Boltzmann’s constant and T is the absolute temperature. Compar-
ing (4.116) and (4.117), we obtain the following fundamental result derived
by Einstein

Q = 2γkT . (4.118)

It tells us that whenever there is damping, i.e. γ �= 0, then there are fluctu-
ations Q. In other words, fluctuations or noise are inevitable in any physical
system, which, of course, also applies to neurons. This derivation is not limited
to our mechanical example. It is quite universal. An electric counterpart was
studied experimentally by Johnson and theoretically by Nyquist. In a resistor,
the electric field E fluctuates with a correlation function given by

< E(t)E(t′) >= 2RkTδ(t− t′) , (4.119)

where R is the resistance of the resistor. This is the simplest example of
a so-called dissipation–fluctuation theorem. If we Fourier analyse (4.119) and
denote the Fourier transform of E(t) by E(ω), (4.119) can be transformed
into

< E2(ω) >= RkT/π , (4.120)

which is the Nyquist theorem. Quite clearly, when we want to formulate an
appropriate theory of the action of neurons, we must take into account noise
effects. But things are still more difficult and are surely not finally studied,
because a neuron cannot be considered as a system in thermal equilibrium.
Quite the contrary, it is a highly active system with noise still more pro-
nounced.

Exercise. Evaluate (4.113) and verify (4.114).

4.8 Noise in Active Systems

4.8.1 Introductory Remarks

In the previous section we studied noise in systems that are in thermal equi-
librium. As we noticed, the strength of the noise forces is quite universal,
namely it depends only on the absolute temperature and on the damping
constant, be it in a mechanical, electrical, or any other physical system. While
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thermal noise is certainly present in neural systems, e.g. in dendrites, another
important aspect must be taken into account. In order to be able to process
information, neurons must be active systems into which energy is pumped.
This occurs, of course, by metabolism. In physics, there exists a detailed
theory of noise in active systems. It has been developed in the context of
lasers, nonlinear optics, and other devices, and is based on quantum theory.
It would be far beyond the scope of this book to present such a theory here.
Furthermore, a detailed theory of noise sources in neural systems is presently
lacking. For both these reasons, we present some basic ideas on how the
fluctuating forces can be formulated and what their properties are. For more
details we must refer the reader to the references.

4.8.2 Two-State Systems

As we have seen in Chap. 2, basic processes in neurons go on in particular at
the synapses and axons. In both cases, fundamentally we have to deal with
ion transport through channels in membranes. Let us consider a membrane
channel with an ion as a two-state system, where the ion may be either inside
or outside the membrane. We indicate these states by the indices 1 (inside)
and 2 (outside). While a precise treatment must be left to quantum theory, it
may suffice here to outline the basic concepts. The occupation number of the
states 1 or 2 will be denoted by n1 and n2, respectively. Because of transport
through the membrane channel, these occupation numbers change in time
and are described by the rate equations

dn1
dt
= −w21n1 + w12n2 + F1(t) (4.121)

and

dn2
dt
= w21n1 − w12n2 + F2(t) . (4.122)

Here the transition rates w12 and w21 do not only depend on the temperature
T , but also on the voltage across the membrane

w12(V ) , w21(V ) . (4.123)

As may be shown, in order to secure a quantum mechanically consistent
description, the fluctuating forces Fj(t), j = 1, 2, must be included in the
equations (4.121) and (4.122). As usual we may assume that the statistical
averages vanish

< Fj(t) >= 0, j = 1, 2 , (4.124)

because otherwise we would have to add a constant term to (4.121) and
(4.122). When we assume as usual that the fluctuations have a short memory,
compared to the ongoing processes, we may assume that they are δ-correlated
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< Fj(t)Fk(t
′) >= Qjkδ(t− t

′) . (4.125)

So far we have a formulation that is rather analogous to what we considered
in the context of Brownian motion. The important difference, however, occurs
with respect to the strengths of the fluctuations Qjk. As it turns out, these
quantities depend in a more intricate manner on the dynamics than in the
case of Brownian motion, where only a damping constant appeared. In fact,
as a detailed quantum mechanical calculation shows, the Qs are given by the
relations

Q11 = Q22 = w21 < n1 > +w12 < n2 > (4.126)

and

Q12 = Q21 = −w21 < n1 > −w12 < n2 > . (4.127)

The average occupation numbers < nj > obey the equations

d < n1 >

dt
= −w21 < n1 > +w12 < n2 > (4.128)

and

d < n2 >

dt
= w21 < n1 > −w12 < n2 > . (4.129)

Thus we note that the fluctation strengths depend on the averaged occupation
numbers, which may be time-dependent and which, as we have mentioned
above, may depend on the voltage V across the membrane. Obviously, the
noise sources of active systems are more complicated than those of systems
in thermal equilibrium. The transition rates w21 and w12 may be either
derived from a microscopic theory or can be introduced phenomenologically.
In reality, a membrane contains many ion channels. Therefore, we want to
study this case next.

4.8.3 Many Two-State Systems: Many Ion Channels

We distinguish the ion channels by an index µ so that we have to generalize
the notation in the following obvious way

nj → nj,µ, Fj → Fj,µ, j = 1, 2 . (4.130)

In practical applications we will be concerned with the properties of the total
fluctuating forces that are defined by

Fj(t) =
∑
µ

Fj,µ . (4.131)
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Because of (4.124), the average vanishes

< Fj(t) >= 0 . (4.132)

In general, one may assume that the fluctuating forces of the individual
channels are statistically independent. Therefore, if we form

< Fj(t)Fk(t
′) >=<

∑
µ

Fj,µ(t)
∑
ν

Fk,ν(t
′) > , (4.133)

we readily obtain

(4.133) =
∑
µ

< Fj,µ(t)Fk,µ(t) >=
∑
µ

Qjk,µδ(t− t
′) , (4.134)

where we made use of (4.125), then added to the fluctuation strength Qjk
of channel µ the corresponding index. In an obvious manner, the relation
(4.126) generalizes to

Qjj,µ = w21 < n1 >µ + w12 < n2 >µ . (4.135)

Introducing the total average number of the occupied states inside and outside
the membrane, respectively, by∑

µ

< nj >µ = Nj , (4.136)

we obtain the relation∑
µ

Qjj,µ = w21N1 + w12N2 , (4.137)

provided the transition rates of the channels under consideration can be
considered as independent of the channel index µ. The relations (4.134)
and (4.137) allow us to formulate our general result. The strength of the
fluctuating forces is given by the sum of the number of total transitions per
unit time out of the state 1 and the state 2, respectively. As we will see in
a later chapter, the neural dynamics is determined by currents across the
membrane. These currents are connected with the occupation numbers of
the ion channels as introduced above by means of the relation

J = e
dN1
dt
, (4.138)

where e is the electric charge of the ion and J the electric current. With these
currents also fluctuations are connected that can be determined by means of
(4.138), (4.121), (4.122) and (4.131)–(4.137).
These hints may suffice here to give the reader an idea in which way

fluctuating forces can be taken into account. For what follows, we need only
the properties (4.132), (4.134) and (4.137).

Exercise. Determine < J(t1)J(t2) >.
Hint: Solve (4.121) and (4.122) with n1 + n2 = 1. Use the results analogous
to (4.96) and (4.113).
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4.9 The Concept of Phase

The occurrence of (more or less) regular spikes in an axon can be considered
as a periodic event. Periodic or at least rhythmic events can also be observed
in electric and magnetic fields of the brain, as measured by EEG and MEG,
respectively. Rhythmic activity can be found in local field potentials. In order
to quantitatively deal with rhythms, the concept of phase is indispensable.
In this section, we will first present some elementary considerations, then
proceed to a more sophisticated treatment that will allow us to extract phases
from experimental data.

4.9.1 Some Elementary Considerations

Let us consider one of the simplest periodic events, namely the movement
of a pendulum (Fig. 4.14). If we displace a pendulum (a swing) and if there
is no friction, it will undergo a periodic movement forever. For not too high
amplitudes, the displacement can be written in the form

displacement x(t) = A cosωt . (4.139)

By differentiating x with respect to time, we obtain the velocity

velocity v(t) ≡ ẋ(t) = −Aω sinωt . (4.140)

In these relations, we use the circular frequency that is related to the period
of one oscillation T by means of

circular frequency ω = 2π/T . (4.141)

The displacement and velocity as described by (4.139) and (4.140) are chosen
in such a way that the following initial conditions at time t = 0 are fulfilled

x(0) = A (4.142)

and

ẋ(0) = 0 . (4.143)

By means of

ωt = φ , (4.144)

Fig. 4.14. Elongation x(t) of a pendulum
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Fig. 4.15. Movement of the point
(x(t),−v(t)/ω) on the orbit (here a circle) in
the phase-plane. Note that the word “phase”
has a double meaning: “phase-angle” φ as
indicated in this figure, and “phase-plane”
as “phase-space” in the sense of statistical
physics, i.e. a space spanned by coordinates
and impulses

we may define the phase φ so that the displacement can be written in the
form

x(t) = A cosφ(t) . (4.145)

The phase φ can be easily visualized in two ways, either by the phase shift
or by a plot in the so-called phase plane. Let us start with the latter. Here
we consider a two-dimensional coordinate system, where the abscissa is the
displacement and the ordinate the velocity (Fig. 4.15). In order to obtain
a particularly simple situation, instead of the velocity, we rather plot its
negative divided by the frequency ω. As one may easily deduce from (4.139)
and (4.140), at each time t, x(t) and −v/ω lie on a circle according to
Fig. 4.15. This plot allows us to read off the phase, or in other words, the
phase angle φ at each time instant. According to (4.144), the phase angle φ
increases uniformly with velocity ω. The significance of the phase φ can also
be explained by means of Fig. 4.16 and the concept of a phase shift. Thus
instead of (4.139), we consider

x(t) = A cos(φ(t) + φ0) (4.146)

which is plotted in Fig. 4.16 and compared with (4.139). The difference be-
tween the maxima of both curves is φ0, i.e. the phase-shift. In particular, we
find that for

φ0 > 0, maximum reached at earlier time, and

φ0 < 0, at later time . (4.147)

Fig. 4.16. Illustration of phase-
shifts: solid line: x = A cosωt,
dashed line: x = A cos(ωt− | φ0 |);
dotted line: x = A cos(ωt+ φ0)
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Fig. 4.17. Example of phase- (and
frequency-) locking between three oscilla-
tors: solid line: φ = ωt, dashed line: φ =
ωt− | φ0 |, dotted line: φ = ωt+ φ0

Fig. 4.18. Absence of frequency locking

Taking into account the phase-shift, we may write (4.146) more generally as
(4.145), where now

φ(t) = ωt+ φ0 . (4.148)

holds. The phase velocity is independent of φ0 and reads

φ̇(t) = ω = const. (4.149)

Plotting φ(t) versus time t provides us with a set of parallel lines (Fig. 4.17).
Such plots become useful when we compare the phases of two or several
pendulums or oscillators. In the case of two of them, we have

x1(t) = A1 cosφ1(t) (4.150)

and

x2(t) = A2 cosφ2(t) . (4.151)

Assuming that both φs proceed at a constant speed, the plot of φ(t) ver-
sus time t provides us with two lines, according to Fig. 4.18. We speak of
frequency locking if the two lines become parallel, i.e. if they have the same
slope (Fig. 4.19).
If the vertical distance, i.e. the distance at every moment of time, between

the two lines remains constant, we speak of phase locking. As we will see later,
the concept of phase-locking is more general: At every moment of time the
distance is the same, but the lines need not to be straight. Finally, we speak
of synchrony if the two lines φ1 and φ2 coincide.
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Fig. 4.19. Phase and frequency locking be-
tween two oscillators

4.9.2 Regular Spike Trains

While the example of the pendulum gives us a first insight into the significance
of the phase, such harmonic oscillations are not the only examples where the
concept of phase is highly useful. To illustrate this fact, let us consider regular
spike trains, where Fig. 4.20 represents an example. The individual spikes or
pulses may have a certain shape, but they may equally well be idealized by
δ-functions as we have shown in Sect. 4.1. Now let us consider two spike trains
that are plotted in Fig. 4.20. If both spikes occur with the same frequency ω
but at different times, we observe a shift φ0 between them, where φ0 quite
evidently plays again the role of a phase. If φ0 remains the same over all
pairs of spikes stemming from the two individual spike trains, we can again
speak of phase-locking. Now let us go a step further, namely let us consider
two spike trains, where the sequence of spikes is no more regular but may
change either systematically or randomly. Then we may consider two neurons
with such spike trains and observe that again the distance between two pairs
of such spikes remains constant (Fig. 4.22). Again we may speak of phase-
locking in spite of the fact that the frequencies vary.

Fig. 4.20. Equidistant pulses seen as
a function of phase φ

Fig. 4.21. Two equidistant time-
shifted pulses seen as a function of
phase φ

Fig. 4.22. Solid lines: An irregular
spike train; dashed line: The same
spike train, but time shifted. While
there is no frequency locking, there
is phase locking
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As we have seen in Chap. 3, phase-locking and more specifically synchrony
is an important issue in modern brain research. At the same time we realize
that the concept of phase may be useful in harmonic motions, but also equally
well in rhythmic motions in which the frequency varies but the relative phases
remain constant. Thus it becomes an important problem to define phases in
a general way and to devise methods for deriving them from experiments.

4.9.3 How to Determine Phases From Experimental Data?
Hilbert Transform

When we measure the axonal pulse of a single neuron, the local field potentials
of groups of neurons, or the EEG of still larger groups of them, in each case
we have to analyse a certain quantity x(t) that varies in the course of time,
and we have to compare such a quantity with a corresponding quantity of
another neuron, another group of neurons etc. in order to find out whether
phase-locking occurs. There are at least two difficulties: the amplitude A
that appears in (4.145) may be time-dependent and the signal x may be
corrupted by noise. How can we nevertheless define the phase and furthermore
extract it from experimental data? In this endeavour people have resorted to
a mathematical tool, namely to the use of the complex plane. This concept
is closely related to that of the phase plane used in Sect. 4.9.1. We start with
two real variables x(t) and y(t) (for instance displacement and the velocity of
a pendulum), use again x as the abscissa, but iy as ordinate, where i is the
imaginary unit defined by i =

√
−1. Each point in this complex plane can be

defined by means of the complex variable (see Fig. 4.23)

z(t) = x(t) + iy(t) . (4.152)

Introducing the distance r and the angle φ, we immediately find Fig. 4.24.
According to the elementary theory of complex functions, z(t) can be written
by means of the distance r and the angle φ in the form

z(t) = r(t)eiφ(t) , (4.153)

where e is the exponential function. The relation between (4.152) and (4.153)
(see also Figs. 4.23 and 4.24) is given by

x(t) = r(t) cosφ(t) (4.154)

and

y(t) = r(t) sinφ(t) . (4.155)

Equation (4.154) represents an obvious generalization of (4.145) to the
case where the amplitude r(t) is not necessarily constant and φ may change
in the course of time other than in the simple way of (4.148). So far, so
good; the difficulty rests on the fact that experimentally we know only x
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Fig. 4.23. The point z = x+iy ≡ (x, y)
in the complex plane

Fig. 4.24. Definition of phase φ and ra-
dius r in the complex plane of Fig. 4.23

but not y. Is there any way to construct, from the mere knowledge of x,
also y, and thus z, and thus the phase angle φ? As was found by the famous
mathematician Hilbert, this can, indeed, be done. For the experts, we mention
that x as measured experimentally must fulfill some specific preconditions,
namely in the mathematical sense it must be smooth, i.e. continuously and
piecewise differentiable. Let us consider a measurement interval T , which need
not be the periodicity interval, however, but must be large enough. Then it
is known that we may expand x(t) as a Fourier series

x(t) =
∞∑
k=0

ak cos(ωkt) +
∞∑
k=1

bk sin(ωkt) (4.156)

that can also be written in the form

x(t) =
∞∑
k=0

ck cos(ωkt+ φk) (4.157)

(see exercises below). Can we derive from this relation one for y,

y(t) =
∞∑
k=0

ck sin(ωkt+ φk) (4.158)

by which in each individual term of (4.157) the cos function is replaced by
the sin function? If we are able to do so, then we can form

z(t) ≡ x(t) + iy(t) =
∞∑
k=0

ck

[
cos(ωkt+ φk)

+i sin(ωkt+ φk)
]
, (4.159)

which can be written in the form

z(t) =
∑
k

cke
i(kωt+φk) (4.160)
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by using again the relationships between (4.153), (4.154) and (4.155). Taking
the real and imaginary parts of z, we then regain

x(t) = Re z(t), y(t) = Im z(t) . (4.161)

In particular, knowing z, for instance according to (4.160), we may construct
the phase angle according to (4.153) (see exercise below). Clearly, practically
all we need to do is to invent a procedure that allows us to convert the cos
function into the sin function

cos(Ωt+ φ)→ sin(Ωt+ φ) . (4.162)

Since it is sufficient to treat the special case

cos t→ sin t (4.163)

we treat that case here and refer the reader with respect to the general case
(4.162) to the exercises.
According to Hilbert, we consider

P

+∞∫
−∞

cos τ

τ − t
dτ , (4.164)

where the P in front of the integral refers to the principal value. Clearly, for
τ = t, the integrand diverges. According to the principal value, we cut that
singularity out by defining

P

+∞∫
−∞

..dτ =

−ε∫
−∞

..dτ +

∞∫
ε

..dτ , (4.165)

i.e. we cut out the immediate surrounding of the singularity taking finally
the limit ε→ 0. In (4.164) we introduce a new variable by means of

τ − t = σ (4.166)

so that we obtain

P

+∞∫
−∞

cos(σ + t)

σ
dσ . (4.167)

In it we use an elementary formula from trigonometry, namely

cos(σ + t) = cosσ cos t− sinσ sin t (4.168)

so that we can cast (4.167) into the form

P

+∞∫
−∞

cosσ

σ
dσ cos t− P

+∞∫
−∞

sinσ

σ
dσ sin t . (4.169)
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Because of symmetry (see exercises), the first integral vanishes. The integrand
of the integral in

P

+∞∫
−∞

sinσ

σ
dσ =

+∞∫
−∞

sinσ

σ
dσ = 2π (4.170)

remains finite at σ = 0. This integral can be found in mathematical tables
and is given according to (4.170). Putting the individual steps (4.165)–(4.170)
together, we obtain the decisive result

P

+∞∫
−∞

cos τ

τ − t
dτ = −2π sin t . (4.171)

This relation provides us with the “recipe” to transform a cos function into
a sin function! Taking care of the change of sign and of the factor 2π, we
obtain for each individual member of the series (4.157) and (4.158), and thus
for the whole series, also the relationship

y(t) =
1

2π
P

+∞∫
−∞

x(τ)

t− τ
dτ . (4.172)

This is the fundamental Hilbert transform that allows us to derive the addi-
tional function y if the function x is given. Making use of (4.154) and (4.155),
we may now determine the phase φ by means of

sinφ/ cosφ ≡ tgφ = y/x , (4.173)

or explicitly by

φ = arc tan(y/x) . (4.174)

Plotting φ versus t, for instance for two series of experimental data (see
Fig. 4.6), we may discuss phase locking, frequency locking and synchrony in
generalization of what we have discussed in Sect. 4.9.1. At least two diffi-
culties should be mentioned here when applying this procedure to realistic
experimental data:

1) The observation time T is only finite, whereas the Hilbert transform
(4.172) requires an infinite interval because of the integration in that
formula. Thus in concrete cases one has to study how well this formula
works in the case of a finite observation interval.

2) In general, the experimental data are noisy, which implies that in many
cases x(t) is not smooth. Therefore, it is important to use smoothing
procedures, which we will not discuss here, however.
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Exercise.

1. Show that (4.156) can be written as (4.157).
Hint: Use cos(α+ β) = cosα cosβ − sinα sinβ.

2. Extend the procedure related to (4.163) to one for (4.162).
Hint: Introduce a new variable t′ = ωt.

3. Show that

P
+∞∫
−∞

cosσ
σ
dσ

vanishes because of symmetry.
Hint: Make the transformation σ → −σ.

4. Convince yourself of the correctness of (4.172) using Exercise 2.
5. Discuss frequency locking, phase locking and synchrony by means of
Fig. 4.6.
Hint: Plot ξ(t) = φ2 − φ1 versus t.

4.10 Phase Noise

As we have seen earlier in this chapter, noise in any physical system including
the brain is inevitable. This implies also that phases are noisy. In this section,
we want to show how we can model the origin and important properties of
phase noise. In the most simple case, we may assume that by analogy with
the soccer game the phase is subjected to random kicks. As we will see later
in this section, the phase need not be damped so that the change of the phase
in the course of time is merely determined by a random force F (t) alone

φ̇(t) = F (t) . (4.175)

As usual we assume that the average over F vanishes

< F (t) >= 0 (4.176)

and that the correlation function is δ-correlated with strength Q

< F (t)F (t′) >= Qδ(t− t′) . (4.177)

Equation (4.175) can be immediately solved by integration over time on both
sides, yielding

φ(t)− φ(t0) =

t∫
t0

F (τ)dτ . (4.178)

Taking the statistical average over both sides of (4.178) and using (4.176),
we obtain

< φ(t) > −φ(t0) = 0 , (4.179)
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i.e. on the average the phase remains unchanged. In order to define a measure
telling us how far the phase deviates in the course of time, we form the
quadratic displacement, which can easily be evaluated according to

< (φ(t)− φ(t0))
2 >=<

t∫
t0

F (τ)dτ

t∫
t0

F (τ ′)dτ ′ > , (4.180)

=

t∫
t0

t∫
t0

< F (τ)F (τ ′) > dτdτ ′ , (4.181)

=

t∫
t0

t∫
t0

Qδ(τ − τ ′)dτdτ ′ = Q

t∫
t0

dτ = Q(t− t0) , (4.182)

where the individual steps are entirely analogous to what we have done in
Sect. 4.7 on Brownian motion. The result (4.182) is interpreted as phase
diffusion, where the mean square of the displacement of the phase linearly
increases in the course of time.
Let us consider the next simple case that is defined by

φ̇(t) = ω + F (t) , (4.183)

where, quite evidently, on the average the phase velocity is constant. Inte-
gration of (4.183) on both sides yields

φ(t)− φ(t0) = ω(t− t0) +

t∫
t0

F (τ)dτ , (4.184)

from which we immediately deduce

< φ(t)− φ(t0) >= ω(t− t0) (4.185)

as well as

< (φ(t)− φ(t0)− ω(t− t0))
2 >= Q(t− t0) . (4.186)

Equation (4.186) can be rearranged to yield

< (φ(t)− φ(t0)
2 >= ω2(t− t0)

2 +Q(t− t0) . (4.187)

Thus the mean quadratic displacement of φ in the course of time is determined
by two effects, namely the quadratic increase according to the deterministic
motion and a linear increase according to stochastic pushes.
As we will see later, in practical applications also a third case appears

that is defined by

φ̇ = ω − γ sinφ+ F (t) . (4.188)
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In applications quite often φ is the relative phase between two oscillators. To
study (4.188), we first assume that the random force F vanishes

F (t) = 0 (4.189)

and that there is a time-independent solution

φ̇ = 0 (4.190)

so that we have to solve

ω − γ sinφ0 = 0 . (4.191)

In fact there exists a solution provided

ω < γ (4.192)

holds. The solution is given by

φ0 = arc sin(ω/γ) (4.193)

and if φ is a relative phase, phase locking occurs. In order to study the impact
of the fluctuating force on this phase-locked solution, we make the hypothesis

φ(t) = φ0 + ψ(t) (4.194)

and assume that F is small so that also the deviation ψ will become small.
Using the well-known trigonometric formula

sinφ = sin(φ0 + ψ) = sinφ0 cosψ + cosφ0 sinψ (4.195)

and approximating cosψ and sinψ up to linear terms in ψ, (4.195) reduces
to

sin(φ0 + ψ) ≈ sinφ0 + ψ cosφ0 . (4.196)

Inserting (4.194) into (4.188) and making use of (4.191), we readily obtain

ψ̇ = ω − γ sinφ0 − ψ cosφ0 + F (t) . (4.197)

Using the abbreviation

cosφ0 = γ
′ , (4.198)

(4.197) can be cast into the form

ψ̇ = −γ′ψ + F (t) . (4.199)

This equation is an old acquaintance of ours provided we identify ψ with the
displacement of a particle x

ψ(t)↔ x(t) (4.200)
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that we encountered in the section on Brownian motion. Thus the phase
deviation ψ undergoes a Brownian motion in the case of phase locking. So far
we have assumed (4.192). If this condition is not fulfilled, i.e. if γ is small and
ω large, we are practically back to the case (4.183), and we will not discuss this
case here in more detail though there are some slight modifications because
of the additional effects of the small sin function in (4.188).

4.11 Origin of Phase Noise*

Later in this book we will be concerned with concrete models on the activity
of individual neurons or networks of them. In other words, we will study the
dynamics of such systems. A famous model that deals with the generation of
axonal pulses is provided by the Hodgkin–Huxley equations (see Chap. 11).
In order not to overload our presentation here, we mention only a few facts.
These equations describe how the membrane voltage changes in the course
of time because of in- or outflow of ions, for instance calcium ions. On the
other hand, they describe how the calcium flux changes in the course of time,
because of externally applied currents as well as of the voltage change. Thus,
in the simplest case, we have to deal with two variables x (membrane voltage)
and y (ion fluxes). But by means of two variables x and y we may form the
complex quantity z, and thus according to

z(t) = r(t)eiφ(t) (4.201)

determine a phase. Quite surprisingly, we can derive a few general properties
of the equation for φ without knowing details of, say, the Hodgkin–Huxley
equations. We need to know that a membrane voltage as well as the ion
currents change in the course of time, because of their present values. Thus,
quite generally, we have to deal with equations of the form

ẋ = g(x, y) + Fx (4.202)

and

ẏ = h(x, y) + Fy , (4.203)

where the first term on the r.h.s. describes the noiseless case. Fx and Fy
are the fluctuating forces, whose origin we discussed in previous sections on
Brownian motion and on noise in active systems. By multiplying (4.203) with
the imaginary unit i and adding this equation to (4.202), we obtain

ż +H(z, z∗) = F (t) , (4.204)

where the complex variable z is defined as usual (see (4.152)). We use the
abbreviations

H = −g − ih (4.205)
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and

F = Fx + iFy (4.206)

with the property

< F (t)F (t′) >= Qδ(t− t′) . (4.207)

For what follows, we decompose H into a linear and a nonlinear part

H(z, z∗) = cz + dz∗ +N(z, z∗) , (4.208)

where

c = γ − iω . (4.209)

Inserting (4.201) into (4.204) and using (4.208), we obtain after multiplying
the resulting equation by e−iφ

ṙ + riφ̇+ cr + de−2iφ + e−iφN
(
reiφ, re−iφ

)
= e−iφF (t) . (4.210)

The l.h.s. may be expanded into positive and negative powers of eiφ, which
yields

ṙ + riφ̇+ cr + h(r) + g1(r)e
iφ + g2(r)e

−iφ + .. = e−iφF (t) . (4.211)

In order not to overload our presentation, we consider a special case, namely
in which the coefficients of the powers of eiφ and e−iφ are small. In such
a case, (4.211) reduces to

ṙ + irφ̇+ (γ − iω)r + h(r) = e−iφF (t) . (4.212)

Splitting (4.212) into its real and its imaginary parts, we obtain

ṙ + γr + h(r) = Re F (t) (4.213)

and

φ̇ = ω +
1

ir
Im F (t) , (4.214)

where

Re F =
1

2
(F + F ∗) , Im F =

1

2
(F − F ∗) . (4.215)

Equation (4.214) represents the desired formula for the impact of noise on
the phase movement. If we were to keep powers of exp (iφ) in (4.211), cos
and sin functions would appear on the r.h.s. of (4.214) also. Because of the
function r that appears in (4.214), the noise force depends on r. In a number
of cases, r can be considered as practically constant so that (4.214) reduces
to the former case (4.183).
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Fig. 4.25. A trajectory starting from an
unstable “focus” and approaching a stable
“limit cycle”

For the sake of completeness, we present an example where r is time-
dependent, but relaxes towards a constant value. It must be stated, however,
that this case does not apply to the Hodgkin–Huxley equations, where we
rather have to expect a strong time-dependence of r because of the spikes!
Nevertheless the reader may enjoy this example.
We consider the noiseless case of (4.213), where the r.h.s. vanishes. The

simplest nontrivial example of this equation is provided by

ṙ + (r − a)r = 0, a > 0 , (4.216)

that possesses the solution

r =
ar0

r0 + (a− r0) exp[a(t0 − t)]
, (4.217)

where r0 represents the initial value

r(t0) = r0 > 0 . (4.218)

As one may easily verify, in the limit t → ∞, r(t) relaxes towards a, i.e.
to a constant value. Jointly with the movement of the phase this represents
what is called a stable limit cycle (Fig. 4.25). Readers who enjoy mathematical
exercises can derive (4.217) from (4.216) (see exercise).

Exercise. Derive the solution (4.217) to (4.216).
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Spiking in Neural Nets



5. The Lighthouse Model.
Two Coupled Neurons

5.1 Formulation of the Model

In this chapter the main part of our book begins. It will be our goal to develop
models that allow us to study the behavior of large neural nets explicitly.
Hereby we use essential properties of neurons. Both this and the following
chapter deal with what I call the lighthouse model for reasons that I will
explain below.
To model the behavior of a single neuron, we start from a few basic facts

(see Chap. 2). A neuron receives inputs from other neurons in the form of their
axonal spikes. At synapses these spikes are converted into dendritic currents
that lead to a potential change at the axon hillock. Such a conversion of
spikes into potential changes can also happen directly and will be contained
in our formalism as a special case. In response to incoming signals, the neuron
produces an output in the form of axonal pulses (spikes).
Let us begin with the conversion of a spike into a dendritic current

(Fig. 5.1). We label the dendrite under consideration by an index, m, and
denote the corresponding current at time t by ψm(t) (Fig. 5.2). The current
is caused by a spike that was generated at the axon hillock of another neuron,
labelled by k, at a somewhat earlier time, τ . The spike or pulse train is rep-
resented by a function Pk(t−τ) (Fig. 5.3). After its generation, the dendritic
current will decay with a decay constant γ (Fig. 5.4). We shall assume that
γ is independent of m. As we know, all physical systems are subject to noise,
whose effect we take into account by a fluctuating force that we call Fψ,m(t).

Fig. 5.1. Neuron k with its axon k con-
nected to a dendrite m of a different
neuron via a synapse

Fig. 5.2. A pulse train Pk in axon
k causes a dendritic current ψm via
a synapse



78 5. The Lighthouse Model. Two Coupled Neurons

Fig. 5.3. Visualization of a time-
shifted pulse-train Pk(t− τ) Fig. 5.4. The dendritic current ψm(t)

We discussed such forces in Sects. 4.6–4.8. Readers who haven’t read these
sections or are not interested in these forces at all can ignore them in most
parts of what follows. Using the results of Sect. 4.4 we are now in a position to
formulate the corresponding equation for the dendritic current ψ as follows:

ψ̇m(t) = aPk(t− τ)− γψm(t) + Fψm(t) . (5.1)

The constant a represents the synaptic strength. For the interested reader
we add a few more comments on Fψ. As usual we shall assume that the
fluctuating forces are δ-correlated in time. As is known, in the synapses
vesicles that release neurotransmitters and thus eventually give rise to the
dendritic current can spontaneously open. This will be the main reason for
the fluctuating force Fψ. But also other noise sources may be considered
here. When a pulse comes in, the opening of vesicles occurs with only some
probability. Thus we have to admit that in a more appropriate description
a is a randomly fluctuating quantity. While Fψm in (5.1) represents additive
noise, a represents multiplicative noise.
Since one of our main tasks is the study of synchronization between

neurons, it suggests itself to introduce a phase angle by which we describe
spike trains. The basic idea is this: Imagine a lighthouse with its rotating
light beam (Fig. 5.5). Whenever the beam hits a fixed target, we observe
a flash (Fig. 5.6). Depending on the beam’s rotation speed, we obtain more
or less rapid sequences of flashes. Using this picture, we introduce – formally

Fig. 5.5. Lighthouse with rotating
light beam

Fig. 5.6. The light beam of Fig. 5.5,
seen from above, hits a target at a spe-
cific angle φ
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– a phase φ of the neuron under consideration. This phase increases in the
course of time and whenever it equals 2π or an integer multiple of 2π, an
axonal pulse or spike is generated. In this way a spike train is brought about.
Each individual spike is modelled by means of a δ-function according to
Sect. 4.1. Hereby we have two choices. Either we consider δ as a function of
time t with its peak at

t = tn , tn fixed , (5.2)

or as a function of φ(t) with its peak at

φ(tn) = 2πn . (5.3)

In this latter case, the handling of δ(φ(t)− 2π) becomes more involved. We
therefore use a “peaked function” in accordance with Sect. 4.1

δ(φ(t)− 2πn)φ̇(t) . (5.4)

Both (5.4) and δ(t− tn) possess a single peak with “area”1, i.e.∫
δ(t− tn)dt =

∫
δ(φ(t)− 2πn)φ̇(t)dt = 1 . (5.5)

In order to represent all spikes in the course of time, we sum up over all
peaks, i.e. we form

P (t) ≡ f(φ(t)) =
∑
n

δ(φ(t)− 2πn)φ̇(tn) , (5.6)

where n runs over all integers, in principle from −∞ to +∞. When P and
the phase φ refer to a neuron with index k, we have to supplement P and
φ with the index k. So far, the introduction of the phase φ is just a formal
trick to describe spike-trains. The essential question is, of course, how can
we determine the time-dependence of φ? Here the Naka–Rushton formula
(Sect. 2.5) comes in. According to it, the axonal spike rate S is determined
by the input X to the neuron, i.e. according to (2.1) by

S(X) =
rXM

ΘM +XM
. (5.7)

But, at least under steady-state conditions, the spike rate is directly propor-
tional to the “rotation speed” φ̇. Absorbing the proportionality factor 2π into
a redefined constant r in (5.7), we may thus put

φ̇ = S(X) . (5.8)

Because (5.8) refers to a physical system, the neuron, fluctuating forces must
be taken into account. Furthermore, we must add the label k so that the
equation for the phase of neuron k reads

φ̇k = S(Xk) + Fψ,k(t) . (5.9)
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It remains to determine the input Xk that leads to the spike generation. As
we know, spikes are generated at the axon hillock at which the potentials
due to the dendritic currents are added. We may take time delays τ ′ into
account as well as coefficients c that convert ψ into potential contributions.
Also external signals, pext(t), stemming from sensory neurons must be taken
into account. Thus, all in all, we arrive at

Xk(t) =
∑
m

ckmψm(t− τ
′) + pext,k(t− τ

′′) . (5.10)

This concludes the formulation of our model in its most simple form.
To summarize, our model is defined by (5.1), (5.6), (5.7), (5.9) and (5.10).

In order to familiarize ourselves with it, we shall consider the case of two
neurons in the present chapter. In Chap. 6 we shall treat the general case
with an arbitrary number of neurons and dendrites, with different synaptic
strengths, and different delay times. Even in this rather general model, a few
limitations must be observed. The use of the Naka–Rushton relation (or
similar ones) implies steady states. Otherwise, the validity of our approach
must be checked in individual cases. More seriously according to (5.1), the
dendritic current is spontaneously generated (see Sect. 4.4). In reality, the
current first increases continuously until it starts its decay. This is taken care
of by Rall’s α-function that we mentioned in Sect. 4.4. Finally, we may try
to explore the physical meaning of φ and – as a consequence – to introduce
a damping term (5.9). These deficiencies will be remedied in Chap. 8, but
the treatment of the corresponding equations will become cumbersome and
we shall have to restrict ourselves to the most important aspects.
But now let us return to the lighthouse model for two neurons.

5.2 Basic Equations for the Phases
of Two Coupled Neurons

We consider two neurons, k = 1, 2, each with one dendrite, m = 1, 2, that
are mutually coupled (Fig. 5.7). We assume that the system operates in the
linear regime of S, which according to Sect. 2.5 is quite a good approximation
for inputs that are not too high. We neglect delays, i.e. we put τ = τ ′ = 0
and ignore fluctuating forces, i.e. we put Fψ = Fφ = 0. The model equations
introduced in the foregoing section become very simple!

neuron 1:

dendrite : ψ̇1(t) = af(φ2(t))− γψ1 ; (5.11)

axon : φ̇1(t) = cψ1(t) + pext,1 . (5.12)

neuron 2:

dendrite : ψ̇2 = af(φ1(t))− γψ2 ; (5.13)

axon : φ̇2 = cψ2(t) + pext,2 . (5.14)



5.2 Basic Equations for the Phases of Two Coupled Neurons 81

Fig. 5.7. Scheme of two coupled neu-
rons

Using (5.12), we express ψ1 by φ1 and insert the result into (5.11), thus
obtaining

φ̈1 + γφ̇1 = Af(φ2) + C1 (5.15)

for neuron 1, where

A = ca , C1 = γpext,1 + ṗext,1 . (5.16)

Similarly, we obtain for neuron 2

φ̈2 + γφ̇2 = Af(φ1) + C2 , (5.17)

where

C2 = γpext,2 + ṗext,2 . (5.18)

There is yet another, though equivalent, way of eliminating the dendritic
currents. Namely, the Green’s function method of Sect. 4.5 (see (4.83), (4.95)
and (4.96)) allows us to express the dendritic current ψ1 in (5.11) by the
phase φ2, i.e. the formal solution to (5.11) reads

ψ1(t) = a

t∫
0

e−γ(t−σ)f(φ2(σ))dσ . (5.19)

Inserting this into (5.12) yields

φ̇1(t) = ac

t∫
0

e−γ(t−σ)f(φ2(σ))dσ + pext,1(t) . (5.20)

This equation allows for a particularly simple interpretation: The rotation
speed φ̇1 is caused by the sum of the input from the other neuron and the
external signal. If we express f(φ2) by the emission times t2,n of the pulses
stemming from neuron 2, f can be replaced by a sum of δ-functions (see
Sect. 4.1)

φ̇1(t) = ac

t∫
0

e−γ(t−σ)
∑
n

δ (σ − t2,n) dσ + pext,1(t) . (5.21)
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The equation for φ2, which corresponds to (5.20), can be obtained by ex-
changing the indices 1 and 2.
In the following, we shall first base our analysis on (5.15) and (5.17).

5.3 Two Neurons: Solution of the Phase-Locked State

In this section we wish to derive the solution to (5.15) and (5.17) which
belongs to the phase-locked state. Since we do not yet know under which
conditions, i.e. for which parameter values of γ,A and C1, C2, this state exists,
we consider a case in which we surely can expect phase locking: When both
neurons are subject to the same conditions. This is the case if C1 = C2 = C.
Indeed, such a choice is suggested by the experimental conditions, when the
same moving bar is shown to the receptive fields to the two neurons. Phase
locking, and even more, synchrony occurs, if the phases φ1 and φ2 coincide,
i.e.

φ1 = φ2 = φ . (5.22)

Making this substitution in (5.15) and (5.17), the two equations acquire
precisely the same form, namely

φ̈+ γφ̇ = Af(φ) + C . (5.23)

Because the function f(φ) on the r.h.s. of (5.23) depends on φ in a highly
nonlinear fashion, the explicit solution of (5.23) might look hopeless.
So let’s first try to study what it will look like by means of an analogy.

To a physicist, (5.23) may be reminiscent of an equation in mechanics, to an
electrical engineer of that of an electrical circuit, and so on. Let’s adopt the
physicist’s view and identify the phase φ with the position coordinate x of
a particle. The equation coming to his/her mind reads

mẍ+ γẋ = F (x) , (5.24)

wherem is the mass of the particle, γ the constant of friction and F (x) a force
acting on the particle. In the present case we put m = 1 and identify F (x)
with Af(x) + C. But a physicist will go a step further. He/she remembers
that the force F (x) is nothing but the slope of a (mechanical) potential V (x)
multiplied by −1:

F (x) = −
∂V (x)

∂x
. (5.25)

Let us first consider an example where the force F is independent of x

F (x) = C . (5.26)

The potential V is plotted in Fig. 5.8. The movement of the particle,
i.e. the change of its position x in the course of time, can be understood as
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Fig. 5.8. Ball sliding down the poten-
tial curve V (x) = −Cx

follows: The particle behaves like a ball that rolls down the potential “hill”
being subject to friction. First the velocity will also increase until the friction
force γẋ compensates the constant force F = C so that

γẋ = C or ẋ = C/γ . (5.27)

Integrating (5.27) yields

x(t) = (C/γ)t . (5.28)

Equations (5.27) and (5.28) tell us that our ball is rolling down the potential
“hill” at constant speed.
Let us now return to our horrible-looking equation (5.23). So what is the

effect of

f(φ) = φ̇
∑
n

δ(φ− φn) (5.29)

where we return to our old notation of φ instead of x? Because f does not only
depend on φ, but also on the velocity φ̇, we cannot directly use the potential
V (φ) by analogy with (5.25). But we may, at least tentatively, assume that
in view of the effect of damping (see (5.27)), φ̇ is, at least on the average,
constant. The resulting function f(φ) consists of a sum over δ-functions, i.e.
of a sum over individual peaks. The corresponding potential function is shown
in Fig. 5.9. Roughly speaking, it looks similar to that of Fig. 5.8 except for
individual jumps. Each time φ (or formerly x) reaches such a position, the
“force” f gives a push to the phase (particle). Afterwards, because of friction,
it will slow down again towards its previous velocity until it will get a new
push, a.s.o.
We now want to show how our intuitive view can be cast into a rigorous

mathematical approach. To take the overall constant motion into account,
we put

φ =
1

γ
Ct+ χ = ct+ χ , (5.30)

where χ is a still unknown function of time. Inserting (5.30) into (5.23) yields

χ̈+ γχ̇ = Af(χ+ ct) . (5.31)
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Fig. 5.9. Ball sliding (and jumping)
down the potential curve corresponding
to (5.29) with φ̇ = const. Fig. 5.10. The function χ(t)

We expect that when the phase φ grows in time, it will receive pushes at
the peaks of the δ-functions, which happen at phase positions φ = φn or,
equivalently, times t = tn (Fig. 5.10). In between these times, the force in
(5.31) vanishes. Thus for the time interval tn + ε ≤ t ≤ tn+1 − ε, where ε is
arbitrarily small, we obtain

χ̈+ γχ̇ = 0 , (5.32)

which has the solution

χ̇(t) = χ̇ (tn + ε) · e
−γ(t−tn) . (5.33)

We are left with studying what happens at times t = tn. We note that due
to a general mathematical result, χ(t) is continuous for all t, i.e.

χ(t+ ε) = χ(t− ε) , ε→ 0 . (5.34)

To cope with the δ-functions occurring in f(φ), we integrate (5.31) over
a small time interval

(tn − ε, tn + ε) (5.35)

and obtain

tn+ε∫
tn−ε

χ̈(t)dt+ γ

tn+ε∫
tn−ε

χ̇(t)dt = A

tn+ε∫
tn−ε

f(φ(t))dt . (5.36)

Because of the derivatives under the integrals on the l.h.s. of (5.36), we can
perform the integration immediately and obtain

χ̇(tn + ε)− χ̇(tn − ε) + γ(χ(tn + ε)− χ(tn − ε)) , (5.37)

where the factor of γ vanishes because of (5.34). On the r.h.s. of (5.36),
because of the “peaky” character of f , we need to consider only a single
term,
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A

tn+ε∫
tn−ε

φ̇(t)δ(φ(t)− φn)dt . (5.38)

But as we have seen in Sect. 4.4, the expression under the integral is con-
structed in such a way that the integral yields one. Thus the relation (5.37),
eventually, reduces to

χ̇(tn + ε)− χ̇(tn − ε) = A . (5.39)

Using (5.33) in (5.39), we obtain the recursive relation

χ̇ (tn+1 + ε) = χ̇ (tn + ε) e
−γ(tn+1−tn) +A . (5.40)

We first assume that the times tn are given quantities. While we postpone the
general solution of (5.40) to the exercise at the end of the section, we focus
our attention on the steady-state solution of that equation. In this case, the
times tn are equidistant,

tn+1 − tn = ∆, independent of n , (5.41)

and

χ̇(tn+1 + ε) = χ̇(tn + ε) = χ̇ . (5.42)

Inserting (5.42) into (5.40) leads to the solution of (5.40),

χ̇ = A
(
1− e−γ∆

)−1
. (5.43)

So far we assumed the “jump times” tn to be given. In order to determine
them, we remember that from spike to spike, or from push to push, the phase
increases by 2π, which means

tn+1+ε∫
tn+ε

φ̇(τ)dτ = 2π (5.44)

holds. Because of (5.30), (5.33), we obtain

φ̇(τ) = c+ e−γ(τ−tn)χ̇(tn + ε) . (5.45)

Inserting this relation into (5.44), we arrive at

c(tn+1 − tn) + χ̇(tn + ε)
1

γ

(
1− e−γ(tn+1−tn)

)
= 2π , (5.46)

which is an equation for (5.41) provided χ̇(tn + ε) is known. But χ̇ has been
determined in (5.43), so that with (5.41) the relation (5.46) reduces to

∆ =
1

c

(
2π −

A

γ

)
. (5.47)
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Clearly, the coupling strength A must be sufficiently small, i.e. A < 2πγ,
because otherwise the pulse interval ∆ that must be positive would become
negative. (We shall study the situation with A > 2πγ in Sects. 6.12 and
6.13.) If A > 0, the mutual coupling between the neurons is excitatory and
the pulse intervals decrease, or, in other words, the pulse rate increases, and
for A < 0, inhibitory coupling, the pulse rate decreases.

Exercise. Solve (5.40) (a) for arbitrary times; and (b) for equidistant times.
Hint: (a) put χ̇(tn + ε) = e

−γtn · ηn ,
write the resulting equations in the form

ηn+1 − ηn = an+1, n = 0, 1, ..., N − 1,

and sum the l.h.s. and r.h.s., respectively, over n.

(b)
N−1∑
n=0
e−αn =

(
1− e−αN

)
(1− e−α)

−1
.

5.4 Frequency Pulling and Mutual Activation
of Two Neurons

In the preceding section we assumed that the external (sensory) signals, i.e.
C1 and C2, are equal. What happens if C1 �= C2? To study this case, we start
from (5.15), (5.17)

φ̈1 + γφ̇1 = Af(φ2) + C1 , (5.52)

φ̈2 + γφ̇2 = Af(φ1) + C2 . (5.53)

In analogy to (5.30) we make the substitution

φj =
1

γ
Cjt+ χj = cjt+ χj , j = 1, 2 (5.54)

and obtain

χ̈1 + γχ̇1 = Af(χ2 + c2t) , (5.55)

χ̈2 + γχ̇2 = Af(χ1 + c1t) . (5.56)

Because of the cross-wise coupling in (5.55),(5.56), the jump times of χ̇1 are

given by t
(2)
n and those of χ̇2 by t

(1)
n . Otherwise we may proceed as in Sect. 5.3
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and obtain for

t(2)n + ε ≤ t ≤ t
(2)
n+1 − ε , (5.57)

χ̇1(t) = χ̇1

(
t(2)n + ε

)
e−γ(t−t

(2)
n ) , (5.58)

and, correspondingly, for

t(1)n + ε ≤ t ≤ t
(1)
n+1 − ε , (5.59)

χ̇2 = χ̇2

(
t(1)n + ε

)
e−γ(t−t

(1)
n ) . (5.60)

Furthermore we obtain the recursive equations (compare to (5.40))

χ̇1

(
t
(2)
n+1 + ε

)
= χ̇1

(
t(2)n + ε

)
e
−γ(t

(2)
n+1

−t
(2)
n ) +A , (5.61)

χ̇2

(
t
(1)
n+1 + ε

)
= χ̇2

(
t(1)n + ε

)
e
−γ(t

(1)
n+1

−t
(1)
n ) +A . (5.62)

Under the assumption of steady-state conditions, where

t
(1)
n+1 − t

(1)
n = ∆1, t

(2)
n+1 − t

(2)
n = ∆2 , (5.63)

and

χ̇1

(
t
(2)
n+1 + ε

)
= χ̇1

(
t(2)n + ε

)
≡ χ̇1 , (5.64)

χ̇2

(
t
(1)
n+1 + ε

)
= χ̇2

(
t(1)n + ε

)
≡ χ̇2 , (5.65)

we obtain

χ̇1 ≡ χ1
(
t
(2)
N + ε

)
= A

(
1− e−γ∆2

)−1
, (5.66)

χ̇2 ≡ χ2
(
t
(1)
N + ε

)
= A

(
1− e−γ∆1

)−1
. (5.67)

We now have to determine ∆1 and ∆2, which, by analogy with (5.44), are
defined by

t
(1)
n+1∫
t
(1)
n

φ̇1dt = 2π , (5.68)

t
(2)
n+1∫
t
(2)
n

φ̇2dt = 2π . (5.69)
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When evaluating (5.68) and (5.69), we must observe that (5.58) and (5.60),
and thus φ1, φ2, are defined only on intervals. To make our analysis as simple
as possible (whereby we incidentally capture the most interesting case), we
assume

| γ∆1 |<< 1 , | γ∆2 |<< 1 . (5.70)

Then (5.68) and (5.69) read

c1∆1 + χ̇1∆1 = 2π , (5.71)

c2∆2 + χ̇2∆2 = 2π , (5.72)

respectively, which because of (5.66), (5.67) and (5.70) can be transformed
into

c1∆1 +
A

γ

∆1
∆2
= 2π , (5.73)

c2∆2 +
A

γ

∆2
∆1
= 2π . (5.74)

Let us discuss these equations in two ways:

1. We may prescribe ∆1 and ∆2 and determine those c1, c2 (that are essen-
tially the sensory inputs) that give rise to ∆1,∆2.

2. We prescribe c1 and c2 and determine ∆1,∆2. Since ωj = 2π/∆j are the
axonal pulse frequencies, we express our results using those

ω1 = 2π
(c12π + c2A/γ)

4π2 −A2/γ2
, (5.75)

ω2 = 2π
(c1A/γ + c22π)

4π2 −A2/γ2
. (5.76)

Their difference and sum are particularly simple

ω2 − ω1 =
c2 − c1

1 +A/(2πγ)
, (5.77)

ω1 + ω2 =
c1 + c2

1−A/(2πγ)
. (5.78)

These results exhibit a number of remarkable features of the coupled neurons:
According to (5.78) their frequency sum, i.e. their activity, is enhanced by pos-
itive coupling A. Simultaneously, according to (5.77) some frequency pulling
occurs. According to (5.75), neuron 1 becomes active even for vanishing or
negative c1 (provided | c12π |< c2A/γ ), if neuron 2 is activated by c2. This
has an important application in the interpretation of the perception of Kaniza
figures, and, more generally, to associative memory, as we shall demonstrate
below (Sect. 6.4).



5.5 Stability Equations 89

5.5 Stability Equations

An important question concerns the stability of the behavior of a system,
which means in the present case the stability of the phase-locked state that
we derived in the preceding section. To this end, we start with the equations
for the dendritic current and the phase of neuron 1 that are subject to the
impact of neuron 2. For reasons that will become clear below, we include the
fluctuating forces. Thus, we begin with the equations

ψ̇1(t) = −γψ1(t) + af(φ2(t)) + Fψ,1(t) , (5.79)

φ̇1(t) = cψ1(t) + pext(t) + Fφ,1(t) . (5.80)

We shall perform the stability analysis in two ways, namely in the con-
ventional mathematical way and in a physically or physiologically realistic
manner. Let us start with the first approach, in which case we put

Fψ,1 = Fφ,1 = 0 for all times . (5.81)

Then we assume that at time t = t0 a new initial condition

ψ1(t0)→ ψ1(t0) + η1(t0) (5.82)

is imposed on (5.79) and (5.80) so that in the course of time the dendritic
current, and via (5.80) the axonal phase, develop differently than before,

ψ1(t)→ ψ1(t) + η1(t) , φ1(t)→ φ1(t) + ξ1(t) . (5.83)

We may also introduce another new initial condition

φ1(t0)→ φ1(t0) + ξ1(t0) , (5.84)

which leads to a new time-development of the phase and dendritic current
according to

φ1(t)→ φ1(t) + ξ1(t) , ψ1(t)→ ψ1(t) + η1(t) . (5.85)

Also both new initial conditions (5.82) and (5.84) may be imposed simulta-
neously. We shall speak of an asymptotically stable solution to (5.79) and
(5.80) if

stable : η1(t) , ξ1(t)→ 0 for t→∞ , (5.86)

and of a marginally stable solution if ξ1, η1 remain small if they are ini-
tially small. Now let us consider the second approach that we may call
the physiological or physical. In this case, the perturbations are physically
realized and represented by specific fluctuating forces in (5.79) and (5.80).
Such a perturbation may be a δ-kick in (5.79)

Fψ,1 = η1(t0)δ(t− t0) , Fφ,1 = 0 . (5.87)
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The effect of a δ-kick can be dealt with in the by now well-known way, namely
by integrating both sides of (5.79) over a small interval around t = t0, which
leads to

ψ1(t0 + ε) = ψ1(t0 − ε) + η1(t0) . (5.88)

But (5.88) is nothing but the definition of a new initial condition in accor-
dance with (5.82). What does this result mean to the second equation, i.e.
(5.80)? Before the jump this equation reads

φ̇1(t0 − ε) = cψ1(t0 − ε) + pext(t) , (5.89)

whereas after the jump it becomes

φ̇1(t0 + ε) = c (ψ1(t0) + η1(t0)) + pext(t0) . (5.90)

A comparison between (5.90) with (5.89) tells us that a velocity jump of the
phase of neuron 1 has happened.
Let us consider the impact of a δ-kick on the phase φ1 according to (5.80).

Using

Fφ,1(t) = ξ1(t0)δ(t− t0) , Fψ,1 = 0 (5.91)

and integrating over the time interval around t = t0 leads to

φ1(t0 + ε) = φ1(t0 − ε) + ξ1(t0) , (5.92)

which means that (5.91) causes a phase jump. As can be seen from (5.80),
the same effect can be achieved if the external signal pext contains a δ-kick.
After these preparations, we are in a position to consider an equation from
which the dendritic currents have been eliminated. Differentiating (5.80) with
respect to time, inserting (5.79) and using (5.80) again, leads to

φ̈1 + γφ̇1 = Af(φ2) + C(t) + F1(t) . (5.93)

Note that this elimination only makes sense if c �= 0 and a �= 0. The quantities
occurring on the r.h.s. of (5.93) are defined by

C = γpext + ṗext (5.94)

and

Fj = γFφ,j + Ḟφ,j + cFψ,j , j = 1, 2 . (5.95)

The solution of (5.93) requires that the initial conditions are known. From
the physiological point of view, we assume that at the initial time t = 0 there
is no external input, i.e. pext(0) = 0, and that the neurons are at rest, i.e.

ψ1(0) = 0, φ1(0) = 0 . (5.96)
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Furthermore a look at (5.80) tells us that at that time also

φ̇1(0) = pext(0) + f(φ2(0)) = 0 (5.97)

holds. Equations (5.96) and (5.97) serve as initial conditions for the integra-
tion of (5.93). We assume pext is in the form

pext(t) = p
(
1− e−γt

)
, (5.98)

which guarantees that the external signal vanishes at time t = 0 and reaches
its steady-state value after times bigger than 1/γ. We integrate both sides of
(5.93) over time from t = 0 to t and obtain

φ̇1(t) + γφ1(t) = A

t∫
0

f(φ2(σ))dσ + γpt+B1(t) (5.99)

with the abbreviation

Bj(t) =

t∫
0

Fj(σ)dσ, j = 1, 2 . (5.100)

A different time constant Γ instead of γ in (5.98) will lead to an additive con-
stant in (5.99), which can be compensated by a time shift or correspondingly
by a shift of phase. Since (5.98) is used both in (5.99) and the corresponding
one in which the indices 1 and 2 are interchanged, this time is the same for
both neurons and does not change their relative phase but only the position
of the absolute phase. Thus, phase locking is preserved. Since we want to
study the behavior of deviations from the phase-locked state, we must also
consider its equation

φ̇(t) + γφ(t) = A

t∫
0

f(φ(σ))dσ + γpt . (5.101)

In the following we want to show how different kinds of perturbations
give rise to different kinds of stability behaviors. We study the combined
impact of (5.87) and (5.91). We now wish to derive the basic equations for
our stability analysis. To this end, we compare the perturbed time-evolution
of φ1(t) according to (5.99) with the unperturbed evolution of φ according
to (5.101). We insert the hypothesis

φj(t) = φ+ ξj(t) , j = 1, 2 , (5.102)

into (5.99) and substract (5.101), which yields

ξ̇1 + γξ1 = A

⎛
⎝ t∫
0

f(φ(σ) + ξ2(σ))dσ −

t∫
0

f(φ(σ))dσ

⎞
⎠+B1(t) . (5.103)
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Fig. 5.11. The sum (5.105) of Heaviside
functions

The following analysis is a little bit intricate, so we refer the reader who is
not interested in too many mathematical details to the final result which
is presented below in (5.116) and (5.117). On the other hand, the more
mathematically interested reader surely will have read Chap. 4 and in that
Sects. 4.1 and 4.2, so we can capitalize on his or her knowledge. The integrals
occurring on the r.h.s. of (5.103) are well-known to us. Using the explicit
form of f(φ), we obtain

t∫
0

f(φ)dt ≡

t∫
0

φ̇
∑
n

δ(φ− φn)dt =
∑
n

φ∫
δ(φ− φn)dφ = J(φ) , (5.104)

which is nothing but a sum over step functions or Heaviside functions (4.15),
which is depicted in Fig. 5.11,

J(φ) =
∑
n

H(φ− φn) , (5.105)

where

H(σ) = 0 for σ < 0 ,

= 1/2 for σ = 0 ,

= 1 for σ > 0 . (5.106)

We now can immediately use the results that we have derived in Sect. 4.2
starting from G(T ) defined in (4.40). In order to apply our former results to
the present case, we have to use the identifications

φ(t)→ φ(t)− 2πn , ξ(t)→ ξ2(T ) , (5.107)

t→ σ, T → t , (5.108)

and to sum (4.40) over the integers n. Thus, we have to make the substitution

G(t)→ Gtot(t) =
∑
n

( t∫
0

δ(φ(σ) + ξ2(σ)− 2πn)
(
φ̇(σ) + ξ̇2(σ)

)
dσ

−

t∫
0

δ(φ(σ)− 2πn)φ̇(σ)dσ
)
. (5.109)
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Furthermore in accordance with the definitions of the times defined the
Sect. 4.2, we use the identifications

t−0 → t
−
n : φ

(
t−n
)
+ ξ2

(
t−n
)
= 2πn (5.110)

t0 → tn : φ(tn) = 2πn . (5.111)

Since the time difference between tn and t
−
n is small, we may use the replace-

ment

ξ2
(
t−n
)
≈ ξ2(tn) . (5.112)

In this way, the relation (4.51) can be translated into(
tn − t

−
n

)
= ξ2(tn)/φ̇(tn) , (5.113)

where for the steady phase-locked state we may use

φ̇(tn) = φ̇(t0) . (5.114)

Finally we note that after (4.55) we recognized that G practically has the
properties of a δ-function provided the time interval (5.113) is small enough
and we take care of the corresponding area. Thus, our final result reads

Gtot(t) ≈
∑
n

δ(t− 2πn)ξ2(tn)/φ̇(t0) . (5.115)

It should be noted that the result (5.115) can be achieved in several ways,
but the present is probably the most concise approach. The reader who was
not so much interested in mathematical trickery can now resume reading this
section, namely inserting (5.115) into (5.103), and we arrive at our final result

ξ̇1 + γξ1 = aD(t)ξ2 +B1(t) , (5.116)

and by an exchange of indices 1,2

ξ̇2 + γξ2 = aD(t)ξ1 +B2(t) , (5.117)

where

a = Aφ̇−1 and D(t) =
∑



δ(t− t
) , (5.118)

where t
 is defined by φ(t
) = 2π�. Adding or subtracting the equations
(5.116) and (5.117) to or from each other, we obtain

Ż + γZ = aD(t)Z +B+ , (5.119)

where

Z = ξ1 + ξ2, B+ = B1 +B2 (5.120)

and

ξ̇ + γξ = −aD(t)ξ +B(t) , (5.121)

where

ξ = ξ2 − ξ1, B = B2 −B1 . (5.122)
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5.6 Phase Relaxation and the Impact of Noise

In the present section we want to bring (5.121) to life by studying the effects
of various perturbations B on the phase difference ξ = ξ2 − ξ1. To this end,
we evaluate B1, B2 (5.100) with Fj (5.95) for the combined impact of the δ-
perturbations (5.87) and (5.91). Because of the properties of the δ-functions,
we obtain

Bj(t) = γξj(t0)H(t− t0) + ξj(t0)δ(t− t0) + cη1(t0)H(t− t0) . (5.123)

This expression is the sum of two kinds of functions with different time-
dependencies, namely δ(t) and H(t). Let us discuss the corresponding terms
separately

1) B = ξ0δ(t− t0) . (5.124)

Such a B is caused by a fluctuation

Fφ,j(t) = ξj(t0)δ(t− t0) , (5.125)

and a correlated perturbation Fψ,j so that

γξj(t0) + cη1(t0) = 0 . (5.126)

If not otherwise stated, later in this book we shall assume that (5.126) is
fulfilled. The effect of (5.124) can be dealt with by solving (5.121) as an initial
value problem, whereby B may be dropped. As we shall show, ξ(t) → 0 for
t→∞, i.e. the phase-locked state is stable, at least for | a | small enough.

2) B =

{
0 for t < t0
B0 = const. for t ≥ t0 .

(5.127)

This behavior occurs if in (5.123) the fluctuation Fψ,j ∝ δ(t − t0) is used.
As a result, to be demonstrated below, the relative phase is changed by
a constant amount. This indicates neutral (marginal) stability.

3) B represents noise, where

< B(t) >= 0, < B(t)B(t′) >= Qδ(t− t′) . (5.128)

As a result, the relative phase shows finite fluctuations (i.e. no phase diffu-
sion).
Let us treat these cases in detail.

1) B = ξ0δ(t− t0).
In this case, we may treat (5.121) with B ≡ 0 subject to the initial value
ξ(t0) = ξ0 (and ξ(t) = 0 for t < t0)

ξ̇(t) + γξ(t) = −a
∑
δ(t− tn)ξ(t) , (5.129)
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where a is defined by (5.118). Because the phase φ refers to the steady state,
a is a constant. We first study the solution of (5.129) in the interval

tn < t < tn+1 (5.130)

and obtain

ξ(t) = ξ(tn + ε)e
−γ(t−tn) . (5.131)

At times tn we integrate (5.129) over a small interval around tn and obtain

ξ(tn + ε) = ξ(tn − ε)− aξ(tn − ε) . (5.132)

Since ξ undergoes a jump at time tn, there is an ambiguity with respect to
the evaluation of the last term in (5.132). Instead of tn − ε we might equally
well choose tn + ε or an average over both expressions. Since we assume,
however, that a is a small quantity, the error is of higher order and we shall,
therefore, choose ξ at tn−ε as shown in (5.132). [Taking the average amounts
to replacing (1 − a) with (1 − a/2)/(1 + a/2).] On the r.h.s. of (5.132), we
insert (5.131) for t = tn + ε and thus obtain

ξ(tn + ε) = (1− a)ξ(tn−1 + ε)e
−γ(tn−tn−1) . (5.133)

Since the tn’s are equally spaced, we put

tn − tn−1 ≡ ∆. (5.134)

For the interval

tN < t < tN+1 (5.135)

the solution reads

ξ(t) = ξ(t0 + ε)(1− a)
Ne−γ∆·N−γ(t−tN ) . (5.136)

Since for excitatory interaction, a > 0, and φ̇ sufficiently large the absolute
value of 1 − a is smaller than unity, (5.136) shows that the phase deviation
ξ(t) relaxes towards zero in the course of time. We turn to the cases 2) and
3), where B(t) is time-dependent and the equation to be solved reads

ξ̇(t) + γξ(t) = B(t)− a
∑
δ(t− tn)ξ(t) . (5.137)

In the interval

tn−1 < t < tn (5.138)

the general solution of (5.137) reads

ξ(t) = ξ(tn−1 + ε)e
−γ(t−tn−1) +

t∫
tn−1

e−γ(t−σ)B(σ)dσ . (5.139)
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We first treat the case that B(t) is non-singular. At time tn, the integration
of (5.137) over a small time interval yields

ξ(tn + ε) = ξ(tn − ε)− aξ(tn − ε) . (5.140)

We put t = tn − ε in (5.139) and thus obtain

ξ(tn − ε) = ξ(tn−1 + ε)e
−γ(tn−tn−1) +

tn∫
tn−1

e−γ(tn−σ)B(σ)dσ . (5.141)

We replace the r.h.s. of (5.140) by means of (5.141) and obtain

ξ(tn + ε) = (1− a)
{
ξ(tn−1 + ε)e

−γ∆ + B̂(tn)
}
, (5.142)

where we abbreviated the integral in (5.141) by B̂. Introducing the variable
x instead of ξ, we can rewrite (5.142) in an obvious manner by means of

xn = (1− a)
{
xn−1e

−γ∆ + B̂n

}
. (5.143)

To solve the set of equations (5.143), we make the substitution

xn =
(
(1− a)e−γ∆

)n
yn (5.144)

and obtain a recursion formula for yn,

yn − yn−1 = (1− a)
−n+1eγtnB̂n . (5.145)

Summing over both sides of (5.145), we obtain

N∑
n=1

(yn − yn−1) =
N∑
n=1

(1− a)−n+1eγtnB̂n , (5.146)

or, written more explicitly,

yN = y0 +
N∑
n=1

(1− a)−n+1
tn∫

tn−1

eγσB(σ)dσ . (5.147)

By means of (5.144), we obtain the final result in the form (with tn− tn−1 =
∆)

xN = y0
(
(1− a)e−γ∆

)N
+

N∑
n=1

(1− a)N−n+1e−γ∆N
tn∫

tn−1

eγσB(σ)dσ . (5.148)

So far our treatment was quite general. Now we have to treat the cases
2) and 3) separately.
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2) B = B0 for all times. B is time-independent, the integral in (5.148) can
immediately be evaluated

xN = y0
(
(1− a)e−γ∆

)N
+

N∑
n=1

(1− a)N−n+1e−γ∆NB
1

γ

(
eγtn − eγtn−1

)
. (5.149)

The sum is a geometric series, and we obtain

xN = x0(1− a)
Ne−γ∆N +

B

γ

(
eγ∆ − 1

)
·
1− (1− a)Ne−γ∆N

(1− a)eγ∆ − 1
. (5.150)

For N → ∞, xN acquires a constant value, i.e. the phase shift persists and
becomes for a� 1 particularly simple, namely xN = B/γ.

3) We now turn to the case in which B is a stochastic function with the
properties shown in (5.128). In the following we shall study the correlation
function for the case N large, and

| N −N ′ | finite . (5.151)

Using (5.148), the correlation function can be written in the form

< xNxN ′ >=
N∑
n=1

N ′∑
n′=1

(1− a)N−n+1e−γ∆N (1− a)N
′−n′+1

×e−γ∆N
′

tn∫
tn−1

tn′∫
tn′−1

dσdσ′ · eγσeγσ
′
< B(σ)B(σ′) > . (5.152)

We evaluate (5.152) in the case

N ′ ≥ N (5.153)

and use the fact that B is δ-correlated with strength Q. Then (5.152) acquires
the form

R ≡< xNxN ′ >=
N∑
n=1

(1− a)N−n+1e−γ∆N (1− a)N
′−n+1

e−γ∆N
′ 1

2γ

(
e2γtn − e2γtn−1

)
Q . (5.154)

The evaluation of the sum is straightforward and yields

R =
Q

2γ

(
e2γ∆ − 1

) {
(1− a)−2e2γ∆ − 1

}−1
(1− a)N

′−Ne−γ∆(N
′−N) , (5.155)

which for

a << 1 , (5.156)
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can be written as

R = e−(γ∆+a)(N
′−N) ·

Q

2γ
. (5.157)

The correlation function has the same form as we would expect from a purely
continuous treatment of (5.137), i.e. in which the δ-functions are smeared
out.

5.7 Delay Between Two Neurons

We treat the case in which the interaction between the neurons has a time
delay τ . We shall assume that both the deviation ξ from the phase-locked
state and φ are delayed by the same amount τ . The crucial interaction term
replacing that of (5.103) then reads

A

t∫
0

f(φ(t′ − τ) + ξ2(t
′ − τ))dt′ −A

t∫
0

f(φ(t′ − τ))dt′ . (5.158)

Its effect can be reduced to that without delay by using the formal replace-
ments

ξj(σ)→ ξj(σ − τ) , j = 1, 2, φ(σ)→ φ(σ − τ) . (5.159)

In this way we are immediately led to the equation

ξ̇(t) + γξ(t) = −a
∑
n

δ(t− tn)ξ(t− τ) (5.160)

by replacing ξ(t) with ξ(t − τ) on the r.h.s. of (5.121). In this section, we
ignore fluctuations, i.e. we put B = 0. Again we assume that φ undergoes
a stationary process. We write

tn = n∆ (5.161)

and assume that τ is an integer multiple of ∆ (in Chap. 6 we shall relax this
assumption),

τ =M∆, M integer . (5.162)

In the following we capitalize on the fact that we may convert the (delay)
differential equation (5.160) into a (delay) difference equation (see (5.165)
below). In a way that is by now well-known from the treatment of (5.121) in
Sect. 5.6, we obtain the jump condition

ξ(tn + ε) = ξ(tn − ε)− aξ(tn−M − ε) (5.163)



5.7 Delay Between Two Neurons 99

and the solution in between jumps

ξ(tn − ε) = e
−γ∆ξ(tn−1 + ε) . (5.164)

A combination of (5.163) and (5.164) yields

ξ(tn + ε) = e
−γ∆ξ(tn−1 + ε)− ae

−γ∆ξ(tn−M−1 + ε) . (5.165)

We use the notation xn = ξ(tn + ε) so that (5.165) reads

xn = e
−γ∆xn−1 − ae

−γ∆xn−M−1 . (5.166)

In order to solve this recursion equation, we make the hypothesis

xn = β
nx0 . (5.167)

Inserting (5.167) into (5.166) yields

βM+1 − e−γ∆βM + ae−γ∆ = 0 . (5.168)

Under the assumption that a is a small quantity, the roots of (5.168) can be
written in the form

β1 = e
−γ∆

(
1− aeMγ∆

)
. (5.169)

and

βj+1 = a
1/Me2πij/M , j = 1, ..,M . (5.170)

The general solution to (5.166) is a superposition of the solutions (5.167)
with the corresponding eigenvalues β, i.e.

xn = β
n
1 x01 + β

n
2 x02 + ...+ β

n
M+1x0M+1 , (5.171)

where the coefficients x0j are still unknowns. In order to determine them, we
must invoke the initial conditions. Without delay, a single value, x0 ≡ ξ0 will
suffice to start the iteration described by the recursion relation (5.166). With
M > 0 the situation is more involved, however. To illustrate it, let us consider
the recursion equation (5.166) for M = 1 and let us start with n = 1, 2, 3.

x1 = e
−γ∆(x0 − ax−1) , (5.172)

x2 = e
−γ∆(x1 − ax0) , (5.173)

x3 = e
−γ∆(x2 − ax1) . (5.174)

Obviously, to start the iteration, we must know both x0 and x−1. They
are fixed by the initial conditions x0 = ξ0, x−1 = ξ−1, where ξ0, ξ−1 are
prescribed. On the other hand, we know the general form of the solution

xn = β
n
1 x01 + β

n
2 x02 . (5.175)
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To determine the unknown x01, x02, we require

n = 0 : x0 = x01 + x02 = ξ0 , (5.176)

n = −1 : x−1 = β
−1
1 x01 + β

−1
2 x02 = ξ−1 , (5.177)

which are two linear equations for these. We are now in a position to present
the general case, M ≥ 1. Equations (5.172)–(5.174) are generalized to

n = 1 : x1 = e
−γ∆ (x0 − ax−M )

n = 2 : x2 = e
−γ∆ (x1 − ax−M+1)

...

n = M : xM = e
−γ∆ (xM−1 − ax−1)

n = M + 1 : xM+1 = e
−γ∆ (xM − ax0) . (5.178)

In this general case, to start the iteration, x0, x−1, ..., x−M must be given by
the initial values ξ0, ξ−1, ..., ξ−M , respectively. Using (5.171), this requirement
leads to M +1 linear equations for the M +1 unknowns x0j , j = 1, ...,M +1.
The solution is straightforward, but gives rise to rather lengthy formu-

lae, at least in the general case. Rather, what concerns us is the relaxation
behavior of the deviation ξ(tn) = xn. β1 is smaller than unity, and equally
all the other roots (5.170) have an absolute value that is smaller than unity,
though the roots (5.170) indicate oscillatory behavior. All in all we may state
that the absolute value of all roots is smaller than unity so that phase-locking
occurs even in the case of delay.

5.8 An Alternative Interpretation
of the Lighthouse Model

In Sect. 5.5 we derived a basic equation that allowed us to study the impact of
noise as well as phase relaxation. For later purposes, we mention that (5.99)
with (5.100) can be interpreted in quite a different manner. Let us again
study the linearized case; then one may readily convince oneself that (5.99)
can be considered as a result of the elimination of the dendritic currents ψ1
from the following equations

neuron 1 axon 1 : φ̇1 + γφ1 = cψ1 + Fφ1 , (5.179)

dendrite 1 : ψ̇1 = af(φ2) + (γp+ ṗ)/c+ Fψ1 . (5.180)

Indeed, (5.180) can be solved in the form

ψ1 =

t∫
0

af(φ(σ))dσ +

t∫
0

(γp+ ṗ)/cdσ +

t∫
0

Fψ1dσ , (5.181)
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which, when inserted into (5.179) yields our former (5.99). When the fluctu-
ating force Fφj is chosen as a δ-function and Fψj = 0 we have to deal with the
initial value problem for the phases φj . It is not difficult to find a nonlinear
version of (5.179), namely

φ̇1 + γφ1 = cS(ψ1) + Fφ1 . (5.182)

For neuron 2, the equations can be obtained by exchanging the indices 1
and 2. Clearly, the neural dynamics described by (5.179) and (5.180) differs
from that of Sect. 5.1. From the mathematical point, however, the impact of
initial conditions and their equivalence to a δ-function perturbation can be
more easily seen and utilized.



6. The Lighthouse Model.
Many Coupled Neurons

This chapter represents, besides Chap. 8, the main part of my book. Through-
out, Chap. 6 deals with an arbitrary number N of neurons, i.e. large neural
nets are treated. In Sect. 6.1 I formulate the basic equations that include
arbitrary couplings between neurons, consisting of dendrites, synapses and
axons. Both arbitrary delays and fluctuations are taken care of. The following
sections focus on the existence and stability of the phase-locked state. I adopt
a pedagogic style by stepwise increasing the complications. Sections 2–4 ne-
glect delays and fluctuations. They show under which conditions a phase-
locked state is possible. This requires, in particular, the same sensory inputs
for the neurons. I study also the impact of different inputs. This leads to
the concept of associative memory (Sect. 6.4). The following Sects. 6.5–6.10
include the effect of delays on associative memory, and, in particular, on the
phase-locked state, its stability and its stability limits. The example of two
delay times will be presented in detail, but general results are also included.
Spatial aspects, namely phase-waves, are dealt with in Sect. 6.9. The remain-
ing part of this chapter deals with two still more involved topics. Section 6.11
studies the combined action of fluctuations and delay. Sections 6.12 and 6.13
are devoted to the strong coupling limits where the formerly treated phase-
locked state becomes unstable.

6.1 The Basic Equations

Since the network equations are a straightforward generalization of those of
two neurons, formulated in Sect. 5.1, we can write them down immediately.
The generation of a dendritic current ψm(t) of dendrite m is described by

ψ̇m(t) =
∑
k

amkPk(t− τmk)− γψm(t) + Fψ,m(t) . (6.1)

The coefficients amk are called synaptic strengths, Pk(t−τ) are pulses of axon
k with delay time τmk, γ is the dendritic damping, and Fψ,m(t) is a stochastic
force. A more general relation between axonal pulses and dendritic currents
is given by
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ψm(t) =
∑
k

t∫
−∞

Gmk(t, σ)Pk(σ − τmk)dσ + F̃m(t) . (6.2)

The kernel Gmk may contain fluctuations that result, for example, from the
failure of the opening of vesicles. In this book, we will not pursue this version
(6.2), however. Again, by means of a periodic function f with δ-peaks, Pk
is expressed by a phase φk (see (6.9) below). The phase φk is subject to the
equation

φ̇k(t) = S

(∑
m

ckmψm(t− τ
′
km) + pext,k(t− τ

′′
km), Θk

)
+ Fφ,k(t) . (6.3)

S(X) is a sigmoid function that may be chosen in the Naka–Rushton form,
pext,k is an external signal, Θk is a threshold, and Fφ,k is a fluctuating force.
The coefficients ckm are assumed time-independent, and τ

′ and τ ′′ are delay
times.
In the following we assume that the neural net operates in the (practically)

linear regime of S, so S in (6.3) can be replaced by its argument. (A pro-
portionality factor can be absorbed in ckm, pext,k, respectively.) It is a simple
matter to eliminate ψm from (6.1) and (6.3). To this end we differentiate (6.3)
with respect to time, and replace ψ̇m on the r.h.s. of the resulting equation by
the r.h.s. of (6.1). Finally we use again (6.3) to eliminate ψm. The reader is
advised to perform these steps using paper and pencil. Changing the notation
of indices, we thus finally obtain a set of equations of a rather simple structure

φ̈j(t) + γφ̇j(t) =
∑

,m

Aj
 ;mP
 (t− τj
m)

+ Cj(t) + F̂j(t) . (6.4)

The reader must not be shocked, however, by the rather lengthy expressions
of the abbreviations. We will hardly need their explicit form.

Aj
;m = cjmam
 , (6.5)

τj
m = τ
′
jm + τm
 , (6.6)

Cj(t) = γ
∑
m

pext,j
(
t− τ ′′jm

)
+
∑
m

ṗext,j (t− τ
′′
km) , (6.7)

F̂j(t) = γFφ,j(t) +
∑
m

cjmFψ,m
(
t− τ ′jm

)
+ Ḟφ,j(t) . (6.8)

We will use the explicit form, already known to us,

P
(t) = f (φ
(t)) = φ̇
(t)
∑
n

δ(φ
(t)− 2πn) . (6.9)
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The initial conditions in (6.4) are

φ̇j(0) = φj(0) = 0 . (6.10)

6.2 A Special Case. Equal Sensory Inputs. No Delay

To get a first insight into the action of many coupled neurons, we first treat
a special case of (6.4). We assume that all sensory inputs are equal

Cj = C for all j , (6.11)

all thresholds equal

Θj = Θ for all j , (6.12)

and pext and Θj time-independent, i.e.

C(t) : constant . (6.13)

No delay implies (see 6.6)

τj
m = 0 . (6.14)

Equation (6.4) then reads

φ̈j(t) + γφ̇j(t) =
∑



Aj
P
(t) + C + F̂j(t) . (6.15)

Note that in the absence of time delays the index m is superfluous and has
been dropped.
Let us study the possibility of phase-locking (or more precisely, syn-

chrony). In this case

φj(t) = φ(t) for all j . (6.16)

In a first step, we ignore noise, i.e. we put F̂j = 0. Inserting (6.16) into (6.15)
and using (6.9) yields

φ̈(t) + γφ̇(t) =
∑



Aj
P (φ(t)) + C . (6.17)

This equation provides us with a necessary condition for phase locking: Since
the l.h.s. of (6.17) is independent of the index j, so must be the r.h.s.! This
implies∑




Aj
 = A independent of j . (6.18)

This condition might look rather restrictive, but below we will convince
ourselves that it can be fulfilled in realistic networks.
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When using (6.18) in (6.17), we discover that the resulting equation for
the phase-locked state is well-known to us and was solved in Sect. 5.3. Thus
we are left with the stability analysis of the phase-locked state, including the
effect of noise. By analogy with Sect. 5.5 we integrate (6.15) over time and
observe the initial conditions (6.10), and use the explicit form of Pk (6.9).
Because of

t∫
0

∑
n

δ(φk(t)− 2πn)φ̇k(t)dt =

φk(t)∫
0

∑
n

δ(φ− 2πn)dφ ≡ J(φk(t)) (6.19)

we obtain

φ̇j(t) + γφj(t) =
∑
k

AjkJ(φk(t)) + Ct+Bj(t) , (6.20)

where

Bj(t) =

t∫
0

F̂j(σ)dσ . (6.21)

The function (6.19) is plotted in Fig. 5.11. The equation of the phase-locked
state reads

φ̇(t) + γφ(t) = AJ(φ(t)) + Ct , (6.22)

where (6.18) is assumed.
To study the impact of noise and the stability of the phase-locked state,

we put

φj = φ+ ξj (6.23)

and subtract (6.22) from (6.20), which yields

ξ̇j + γξj =
∑
k

Ajk

⎧⎨
⎩
φ+ξk∫
0

∑
n

δ(φ− 2πn)dφ−

φ∫
0

∑
n

δ(φ− 2πn)dφ

⎫⎬
⎭

+Bj(t) , (6.24)

where we use the explicit form of J .
In order to study stability and/or if the noise sources F are small, we may

assume that ξj is a small quantity. According to basic rules of analysis, we
may evaluate the curly bracket by replacing the first integral by its argument,
multiplied by ξk. When proceeding from a δ-function containing φ in its
argument to one that contains time t, a correction factor φ̇−1 must be added.
This had been derived in Sect. 4.1 so that we can use those results here.
Thus, eventually, we obtain

ξ̇j(t) + γξj(t) = D(t)
∑
k

ajkξk(t) +Bj(t) , (6.25)
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where

D(t) =
+∞∑

=−∞

δ
(
t− t+


)
, (6.26)

where t+
 is defined by φ(t
+

 ) = 2π�, � an integer. The coefficients ajk are

defined by ajk = Ajkφ̇
−1, where φ̇(t+
 ) is independent of � because of the

stationarity of φ. Readers who have carefully read Sect. 5.5, surely noted
that here I just presented an alternative derivation of (5.116) and (5.117).
This may help to get more familiar with the δ-formalism.
The set of linear differential equations (6.25) can be solved by the standard

procedure. We introduce eigenvectors ṽµ with components vµj and eigenvalues
λµ so that∑

j

vµj ajk = λµv
µ
k (6.27)

and put∑
j

vµj ξj(t) = ηµ(t) , (6.28)

∑
j

vµj Bj(t) = B̃µ(t) . (6.29)

This allows us to transform (6.25) into the uncoupled equations for the col-
lective variables ηµ

η̇µ + γηµ = D(t)λµηµ + B̃µ(t) . (6.30)

We thus obtain the remarkable result that the whole net reacts to fluctuations
as if it is composed of independent, self-coupled neurons subject to collective
fluctuating forces B̃µ(t). Thus we may directly transfer the results of Sect. 5.6
to the present case. The stability of the phase-locked state is guaranteed
(sufficient condition) if the real parts of all eigenvalues λµ are negative.

6.3 A Further Special Case. Different Sensory Inputs,
but No Delay and No Fluctuations

The starting point of our considerations is again the set of (6.4) with τj
m = 0.
Thus we wish to deal with the equations

φ̈j(t) + γφ̇j(t) =
∑



Aj
P
(t) + Cj . (6.31)
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Note that in contrast to the preceding section we do not (yet) impose condi-
tions on the Aj
s. We put

φ̇j(t) = xj(t) + cj ≡ xj(t) + Cj/γ (6.32)

and use (6.9) to obtain equations for xj

ẋj + γxj =
∑



Aj
f(φ
) . (6.33)

Since (6.33) is, at least from a formal point of view, a linear equation in xj ,
we make the hypothesis

xj =
∑



x
(
)
j (6.34)

and require

ẋ
(
)
j + γx

(
)
j = Aj
f(φ
) . (6.35)

For the solution of these equations, we proceed by close analogy to Sects. 5.3
and 5.4. We first assume that the times at which the spikes of the δ-functions
in f(φ
) occur are given quantitites. We denote them by tN(
), because to
each f(φ
) there belongs a specific �-dependent time series. By analogy to
Sects. 5.3 and 5.4 we assume equidistant jumps, i.e.

tN(
)+1 − tN(
) = ∆
 (6.36)

and steady states. Then the solution of (6.35) reads (see (5.66))

x
(
)
j (tN(
) + ε) = Aj


(
1− e−γ∆�

)−1
, (6.37)

or for an arbitrary time with tN(
) + ε < T < tN(
)+1 − ε

x
(
)
j (T ) = e

−γ(T−tN(�))Aj

(
1− e−γ∆�

)−1
. (6.38)

Using (6.34), we obtain the final result

xj(T ) =
∑



e−γ(T−tN(�))Aj

(
1− e−γ∆�

)−1
. (6.39)

The jump intervals are determined by

tN(�)+1∫
tN(�)

φ̇
(σ)dσ = 2π . (6.40)

In order to evaluate the integral in (6.40), we use (6.32) and (6.39), where
under the assumption

γ
(
tN(
)+1 − tN(
)

)
<< 1 (6.41)
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(6.39) can be approximated by

xj =
∑

′

Aj
′/(γ∆
′) . (6.42)

Thus we obtain (generalizing (5.73) and (5.74))

c
∆
 +∆

∑

′

A

′/(γ∆
′) = 2π . (6.43)

These equations relate the axonal pulse frequencies ω
 = 2π/∆
 to the
strengths of the sensory inputs, c
. The corresponding equations for ω
 are
linear and read

c
 +
∑

′

[A

′/(2πγ)]ω
′ = ω
 . (6.44)

They can be solved under the usual conditions for linear equations. Here
we want to discuss two aspects of particular relevance for neural nets. In
general, we may expect that all pulse frequencies ω
 are different. Since equal
frequencies are a prerequisite for phase locking, this phenomenon will be
absent. On the other hand, we may derive from (6.44) a sufficient condition
for equal frequencies, ω
 = ω, namely

ω = c


(
1−
∑

′

A

′/(2πγ)

)−1
. (6.45)

This equation implies that its r.h.s. is independent of the index �. This is for
instance the case if

c
 = c, and
∑

′

A

′ independent of � . (6.46)

These were the conditions for the phase-locked state in Sect. 6.2.
A second important aspect is this: Depending on the coupling coefficients

A

′ , even those ω
 may become non-zero, for which c
 = 0. This may give
rise to (weak) associative memory as we will demonstrate in the next section.
Note that in all cases discussed here only those solutions are allowed for which
ω
 ≥ 0 for all �. This imposes limitations on c
 and A

′ .

6.4 Associative Memory and Pattern Filter

Let us first discuss what is meant by “associative memory”. Such a memory
serves the completion of data. A telephone book is an example. When we look
up the name “Alex Miller”, this book provides us with his telephone number.
Or when we see the face of a person whom we know, our brain tells us (or
should tell us!) his or her name. The results of the preceding section may
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Fig. 6.1. A Kanisza figure. A white
triangle seems to float above a black
triangle

Fig. 6.2. Mapping from sensory cells
of the retina onto neurons of the visual
cortex

serve as a model that allows us to understand a particular kind of associative
memory for which an example is provided by looking at Fig. 6.1. In spite
of the interruptions of the lines, we see a complete triangle! By means of
the results of the preceding section, this phenomenon can be understood as
follows, whereby we use a highly schematic representation: When we look at
a picture, our retina receives input signals that are eventually transmitted to
the visual cortex, where they act as sensory inputs Cj on neuron j. Because
of these inputs and their mutual coupling, the neurons “fire” with specific
axonal pulse rates, so that the input pattern C (cf. Fig. 6.2) is translated
into a “firing” pattern ω.
Let us assume that the neural net has learned preferred patterns, for

instance an uninterrupted line. To make things simple, consider a retina
consisting of only three sensory cells and the neural net also consisting of
only three neurons. An uninterrupted line will then be represented by the
activation scheme (1,1,1), whereas an interrupted scheme is represented by
(1,0,1). Can a network be constructed, i.e. can the Ajks be chosen in such
a way that the sensory input vector c = C/γ ≡ (c1, c2, c3) = (1, 0, 1)
is practically converted into a vector ω ≡ (ω1, ω2, ω3) whose components

Fig. 6.3. Same as Fig. 6.2, but only
three sensory cells and three neurons
are involved

Fig. 6.4. L.h.s.: stored prototype pat-
tern, an uninterrupted line; r.h.s.: pat-
tern received by retina
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are (approximately) equal, i.e. represent an uninterrupted line? We choose
Ã

′ = A

′/(2πγ) according to the following scheme:⎛

⎝ Ã11 Ã12 Ã13
Ã21 Ã22 Ã23
Ã31 Ã32 Ã33

⎞
⎠ =

⎛
⎝ 0, 9 0 0
0, 8 0, 1 0
0, 8 0 0, 1

⎞
⎠ . (6.47)

The solution of the corresponding equations (6.43) then reads

ω = (ω1, ω2, ω3) ≈ (10, 9, 10) , i.e.

ω ≈ 10 · (1, 1, 1) . (6.48)

In other words, the neural nets “sees” the middle point in spite of the fact
that its corresponding original cell on the retina is not excited. The way we
wrote down the matrix scheme so as to obtain the required result (6.48)
may seem rather mysterious. Therefore we present the general theory lying
behind that construction. The reader may easily check the general formulas
using our above explicit example. Thereby we use a few results from algebra.
We denote those patterns that are preferably recognized by the neural net as
prototype vectors vµ that are distinguished by an index µ. To be precise, we
write each vµ as a column vector

vµ =

⎛
⎜⎜⎜⎝
vµ1
vµ2
...
vµN

⎞
⎟⎟⎟⎠ . (6.49)

Similarly, the sensory input vector c is written as

c =

⎛
⎜⎜⎜⎝
c1
c2
...
cN

⎞
⎟⎟⎟⎠ . (6.50)

In our above example,

c =

⎛
⎝10
1

⎞
⎠ (6.51)

is such a vector, whereas

ω = v =

⎛
⎝11
1

⎞
⎠ (6.52)

is a prototype vector of the axonal pulse rates. We first assume that the
“synaptic strengths” Ã

′ are given, and that the prototype vectors vµ are

just the eigenvectors to the matrix
(
Ã



)
with eigenvalues λµ. (We assume



112 6. The Lighthouse Model. Many Coupled Neurons

for simplicity that all λµ values are different from each other.) Thus in vector
notation

Ãvµ = λµvµ . (6.53)

Now consider (6.44) that reads in vector notation

(1− Ã)ω = c . (6.54)

For our procedure we need one more step, namely the adjoint vectors v+ν , ν =
1, ..., N . They are defined as row vectors

v+ν =
(
v+ν1, v

+
ν2, ..., v

+
νN

)
, (6.55)

and must obey the relations(
v+ν vµ

)
= δνµ , (6.56)

i.e. the scalar product between the two vectors must equal the Kronecker δ,

δνµ =

{
1 for ν = µ
0 for ν �= µ

. (6.57)

By means of vµ,v
+
ν we can easily construct the relationship between ω and

c. We decompose ω and c into the vµ:

ω =
∑
µ

αµvµ , (6.58)

c =
∑
µ

βµvµ , (6.59)

where the coefficients αµ, βµ are given by means of (see the exercises)

αµ =
(
v+µω

)
, (6.60)

βµ =
(
v+µ c

)
. (6.61)

Inserting (6.58) and (6.59) into (6.54), using (6.53) and multiplying both
sides by v+ν (see the exercises) yields

(1− λν)αν = βν , (6.62)

αν = (1− λν)
−1βν . (6.63)

Inserting this result into (6.58) yields

ω =
∑
ν

(1− λν)
−1vν . (6.64)
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This means that, depending on the size of the eigenvalues λν , the vνs are
mapped onto the axonal pulse frequencies with quite different weights (1 −
λν)

−1. In our above simple example we made the choice

v1 =

⎛
⎝11
1

⎞
⎠ , v2 =

⎛
⎝01
0

⎞
⎠ , v3 =

⎛
⎝00
1

⎞
⎠ (6.65)

with λ1 = 0, 9, λ2 = 0, 1, λ3 = 0, 1.
But how were we able to choose the coefficients Ã

′? In fact, there is an

algebraic formula, namely

Ã

′ =
∑
µ

λµvµ
v
+
µ
′
. (6.66)

The v+µ that obey (6.56) can easily be calculated and are

v+1 = (1, 0, 0), v
+
2 = (−1, 1, 0), v

+
3 = (−1, 0, 1) . (6.67)

As we may note, we can construct pulse-coupled neural networks so that their
axonal pulse patterns come very close to specific, learned preferred patterns
– though there remains a residuum of other small patterns superimposed on
the preferred pattern. We call this effect weak associative memory. A number
of hypotheses on how the human brain learns patterns have been established.
These hypotheses imply, for instance, that our brain learns those visual pat-
terns that are frequently seen. There is, however, another important aspect
that relates to the concept Gestalt. Namely in interpreting forms, we prefer to
perceive “good Gestalts” (good shapes). But why are, for example, straight
lines, or triangles or circles “good Gestalts”? This is, in this author’s opinion,
an unsolved problem.
A last comment: Is the completion of a line just in our imagination, or do

neurons fire that correspond to the gap in the line. Experiments on monkeys
show that the latter is the case.
In this section our theoretical treatment of weak associative memory has

been based on a simplified model. In Sect. 6.5 we want to show that the
underlying model can be much more general.

Exercises. (1) Derive (6.60) and (6.61).
Hint: Start from (6.58) and (6.59) and use (6.56).
(2) Derive (6.62), (6.63).
Hint: Use (6.57), (6.60) and (6.61).

6.5 Weak Associative Memory. General Case*

In this section we will see that the basic equations (6.44) that relate the
pulse frequencies ω with the sensory inputs can be derived from the general
equations (6.4)
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φ̈j(t) + γφ̇j(t) =
∑

,m

Aj
;mP
 (t− τj
m)

+ Cj(t) + F̂j(t) , (6.68)

where all the quantities have been defined in Sect. 6.1. The initial conditions
in (6.68) are

φ̇j(0) = φj(0) = 0 . (6.69)

In spite of the highly nonlinear character of (6.68) because of P
, and the
delay times, we can derive an exact relationship between the pulse rates of
the axons j, where we use time-averaged pulse rates. We will assume that
Cj(t) is practically constant over an averaging interval of duration T and
that T is large enough to cover the delay times τ . We integrate (6.68) over
the time interval T and divide both sides by T

T−1
(
φ̇j(T + t0)− φ̇j(t0) + γφj(T + t0)− γφj(t0)

)

= T−1
∑

,m

Aj
;m

t0+T∫
t0

P
(t− τj
m)dt

+ T−1
t0+T∫
t0

Cj(t)dt+ T
−1

t0+T∫
t0

F̂j(t)dt . (6.70)

We discuss the individual terms in the mathematical limit T → ∞. (For all
practical purposes, T can be chosen finite but large enough.) We obtain

T−1(φ̇(T + t0)− φ̇(t0))→ 0 , (6.71)

because the phase velocity is finite. Since 12π (φj(T + t0)− φj(t0)) is the num-
ber of rotations of the phase angle φj ,

1

2π
T−1(φj(T + t0)− φj(T )) = ωj (6.72)

is the pulse rate. Since

t0+T∫
t0

P
(t− τ)dt (6.73)

contains δ-peaks according to (6.9), we obtain

(6.73) =

t0+T∫
t0

∑
n

δ (φ
(t− τ)− 2πn) φ̇
(t− τ)dt (6.74)
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=

t0+T−τ∫
t0−τ

∑
n

δ (φ
(t)− 2πn) φ̇
(t)dt (6.75)

=

φ�(t0+T−τ)∫
φ�(t0−τ)

∑
n

δ(φ
 − 2πn)dφ
 , (6.76)

which is equal to the number of pulses of axon � in the interval [φ
(t0 − τ),
φ
(t0 + T − τ)].
Thus when we divide (6.73) by T and assume steady-state conditions, we

obtain the pulse rate

T−1
t0+T∫
t0

P
(t− τ)dτ = ω
 . (6.77)

For slowly varying or constant Cj(t) ≈ Cj , we obtain

T−1
t0+T∫
t0

Cj(t)dt = Cj(t0) . (6.78)

Because we assume that the fluctuating forces possess an ensemble average

< F̂j(t) >= 0 , (6.79)

and under the further assumption that the time average equals the ensemble
average we find

T−1
t0+T∫
t0

F̂j(t)dt = 0 . (6.80)

Lumping the results (6.71), (6.72), (6.77), (6.78) and (6.80) together and
dividing all terms by (2πγ), we obtain the linear equations

ωj =
∑

,m

Aj
;m(2πγ)
−1ω
 + cj(t) , (6.81)

where

cj(t) = (2πγ)
−1Cj(t) . (6.82)

The equations (6.81) can be solved under the usual conditions. Depending
on the coupling coefficients Aj
 =

∑
mAj
;m, even those ω
 may become non-

zero for which c
 = 0. On the other hand, only those solutions are allowed
for which ω
 ≥ 0 for all �. This imposes limitations on c
 and A

′ . Putting∑
mAj
;m = Aj
, we recover (6.44) which formed the basis of our discussion

in Sect. 6.4.
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6.6 The Phase-Locked State of N Neurons.
Two Delay Times

In this section and the following we resume our study of the solutions of the
basic equation (6.4) (see also (6.68)), but without time averages. Our main
goal will be the study of the impact of delays on the spiking behavior of
the net. Since this section is more mathematical than the previous sections
(except Sect. 6.5), we summarize the essential results. In this section we
show how the phase-locked state can be calculated. More importantly, the
subsequent section shows that delays diminish the stability of the phase-
locked state. Furthermore, after a perturbation the phases of the individual
axonal pulses relax towards the phase-locked state in an oscillatory fashion.
In order to demonstrate our general approach, we consider N neurons,

two delay times τ1, τ2 and no fluctuations. The phase equations (6.4) acquire
the form

φ̈j(t) + γφ̇j(t) =
∑
k,


Ajk,
f(φk(t− τ
)) + Cj , (6.83)

where we assume

Cj = C = const. (6.84)

We assume the existence of the phase-locked state in which case φj = φ for
j = 1, ..., N . φ obeys

φ̈(t) + γφ̇(t) = A1f(φ(t− τ1)) +A2f(φ(t− τ2)) + C , (6.85)

where

A1 =
∑
k

Ajk,1, A2 =
∑
k

Ajk,2 (6.86)

are assumed to be independent of j. This condition is by no means unrealistic
as we will demonstrate below. We treat the case where φ is periodic in time
with a period ∆ still to be determined. The spikes of f(φ(t)) are assumed to
occur at times tn = n∆, n an integer. We thus have

t− τj = tnj = nj∆, j = 1, 2 , (6.87)

or, after solving (6.87) with respect to t,

t = nj∆+ τj = n∆+ τ
′
j = tn + τ

′
j , (6.88)

where τ ′ is assumed to obey the inequality

0 ≤ τ ′j < ∆. (6.89)
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We introduce the new variable x by means of

φ̇ = c+ x(t); c = C/γ (6.90)

so that (6.85) is transformed into

ẋ(t) + γx(t) = A1f(φ(t− τ1)) +A2f(φ(t− τ2)) . (6.91)

In the following we first assume that the r.h.s. is a given function of time t.
Because of the δ-function character of f , we distinguish between the following
four cases, where we incidentally write down the corresponding solutions of
(6.91)

I : tn + τ
′
1 < t < tn + τ

′
2 : x(t) = e

−γ(t−tn−τ1)x(tn + τ
′
1 + ε) , (6.92)

II : tn + τ
′
2 ∓ ε : x(tn + τ

′
2 + ε) = x(tn + τ

′
2 − ε) +A2 , (6.93)

III: tn + τ
′
2 < t < tn+1 + τ

′
1 : x(t) = e

−γ(t−tn−τ
′
2)x(tn + τ

′
2 + ε) , (6.94)

IV: tn+1 + τ
′
1 ± ε : x(tn+1 + τ

′
1 + ε) = x(tn+1 + τ

′
1 − ε) +A1 . (6.95)

Combining the results (6.92)–(6.95), we find the following recursion relation

x(tn+1 + τ
′
1 + ε) = e

−γ∆x(tn + τ
′
1 + ε) + e

−γ(∆+τ ′1−τ
′
2)A2 +A1 . (6.96)

Under the assumption of a steady state, we may immediately solve (6.96)
and obtain

x(tn+1 + τ
′
1 + ε) =

(
1− e−γ∆

)−1 (
A1 + e

−γ(∆+τ ′1−τ
′
2)A2

)
. (6.97)

The only unknown quantity is ∆. To this end, we require, as usual,

tn+1∫
tn

φ̇dt = 2π , (6.98)

i.e. that φ increases by 2π. In order to evaluate (6.98) by means of (6.91), we
start from (6.91), which we integrate on both sides over time t

tn+1∫
tn

(ẋ(t) + γx(t))dt =

tn+1∫
tn

(A1f(φ(t− τ1)) +A2f(φ(t− τ2))) dt (6.99)

Because of the steady-state assumption, we have

tn+1∫
tn

ẋ(t)dt = x(tn+1)− x(tn) = 0 (6.100)
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so that (6.99) reduces to

γ

tn+1∫
tn

x(t)dt = A1 +A2 . (6.101)

Using this result as well as (6.90) in (6.98), we obtain

c∆+ (A1 +A2)/γ = 2π (6.102)

which can be solved for the time interval ∆ to yield

∆ =
1

c
(2π − (A1 +A2)/γ) . (6.103)

We can also determine the values of x(t) in the whole interval by using the
relations (6.92)–(6.95). Because the time interval ∆ must be positive, we may
suspect that ∆ = 0 or, according to (6.103),

(2π − (A1 +A2)/γ) = 0 (6.104)

represents the stability limit of the stationary phase-locked state. We will
study this relationship in Sect. 6.10.

6.7 Stability of the Phase-Locked State.
Two Delay Times*

In order to study this problem, we assume as initial conditions

φ̇j(0) = φj(0) = 0 (6.105)

and integrate (6.4) over time, thus obtaining

φ̇j(t) + γφj(t) =
∑
k,


Ajk,
J(φk(t− τ
)) + Cjt+Bj(t) , (6.106)

where J has been defined in (6.19). We include the fluctuating forces, put

Bj(t) =

t∫
0

F̂j(σ)dσ , (6.107)

and assume that Cj in (6.7) is time-independent. The phase-locked state
obeys

φ̇(t) + γφ(t) =
∑
k


Ajk,
J(φ(t− τ
)) + Ct . (6.108)
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In order to study the stability of the state φ(t), we make the hypothesis

φj = φ+ ξj , j = 1, ..., N . (6.109)

Subtracting (6.108) from (6.106) and assuming

Cj = C , (6.110)

we obtain

ξ̇j(t) + γξj(t) =
∑
k


Ajk,
(J(φ(t− τ
) + ξj(t− τ
))

−J(φ(t− τ
))) +Bj(t) . (6.111)

A somewhat extended analysis analogous to that of Sect. 6.2 shows that for
small ξk these equations reduce to

ξ̇j(t) + γξj(t) =
∑
k


ajk;
D
(t)ξk(t) +Bj(t) . (6.112)

The quantities on the r.h.s. of (6.112) are defined as follows:

D
(t) =
∑
n

δ
(
t− τ
 − t

+
n

)
, (6.113)

φ
(
t+n
)
= 2πn , (6.114)

ajk;
 = Ajk;


[
φ̇
(
t+n + τ


)]−1
. (6.115)

To allow for a concise treatment of (6.112), we introduce the matrix (ajk;
)

Ã
 = (ajk;
)
j = 1, ..., N
k = 1, ..., N

(6.116)

so that we cast (6.112) into the vector equation

ξ̇(t) + γξ(t) =
∑



Ã
D
(t)ξ(t) +B(t) . (6.117)

Again, as before, we introduce the following times for � = 1, 2

τ
 = M
∆+ τ
′

; 0 ≤ τ

′

 < ∆; (6.118)

(n
 +M
)∆+ τ
′

 = n∆+ τ

′

; n
 +M
 = n; n
 = n−M
.

Under this definition we have the following regions for which we solve (6.117),
namely
I : n∆+ τ ′1 < t < n∆+ τ

′
2 :

ξ(t) = e−γ(t−(n∆+τ
′
1))ξ(n∆+ τ ′1 + ε) + B̂(t, n∆+ τ

′
1) , (6.119)
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where

B̂(t, t′) =

t∫
t′

e−γ(t−σ)B(σ)dσ , (6.120)

II : n∆+ τ ′2 ± ε :

ξ(n∆+ τ ′2 + ε)− ξ(n∆+ τ
′
2 − ε) = Ã2ξ((n−M2)∆) , (6.121)

III : n∆+ τ ′2 < t < (n+ 1)∆+ τ
′
1 :

ξ(t) = e−γ(t−(n∆+τ
′
2))ξ(n∆+ τ ′2) + B̂(t, n∆+ τ

′
2) , (6.122)

IV : (n+ 1)∆+ τ ′1 ± ε :

ξ((n+1)∆+ τ ′1+ ε)−ξ((n+1)∆+ τ
′
1− ε) = Ã1ξ((n+1−M1)∆).(6.123)

By means of (6.119)–(6.123) and eliminating the intermediate steps, we ob-
tain the fundamental recursion equation

ξ((n+ 1)∆+ τ ′1 + ε) = e
−γ∆ξ(n∆+ τ ′1 + ε) (6.124)

+e−γ(∆+τ
′
1−τ

′
2)Ã2ξ((n−M2)∆)

+Ã1ξ((n+ 1−M1)∆) + B̂((n+ 1)∆+ τ
′
1;n∆+ τ

′
1).

In order to express the solutions in between the time steps, we use

ξ(n∆+ τ ′1 + ε) = e
−γτ ′1ξ(n∆+ ε) . (6.125)

Inserting (6.125) into (6.124), we readily obtain

ξn+1 = e
−γ∆ξn + e

−γ(∆−τ ′2)Ã2ξn−M2 + e
γτ1Ã1ξn+1−M1

+eγτ
′
1B̂((n+ 1)∆+ τ ′1;n∆+ τ

′
1) , (6.126)

where we used the abbreviation

ξ(n∆+ ε) = ξn . (6.127)

Equation (6.126) is valid, if M2 ≥ 0 and M1 ≥ 1. If M1 = 0, a further
recursive step must be performed. To a good approximation we may replace

ξn+1−M1 by e−∆γξn−M1 . (6.128)

In order to solve the difference equations (6.126), we must observe the initial
conditions. As is well-known from delay differential equations, these con-
ditions must be defined on a whole interval. In the present case we may
capitalize on the fact that we are dealing with difference equations so that
we need to consider only a discrete set of initial conditions. On the other
hand, we need a complete set. In order to demonstrate how to proceed, we
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first treat the special case of only one delay time τ =M∆,M an integer, and
ignore the fluctuating forces. The equation to be discussed is of the form

ξn+1 = e
−γ∆ξn +Aξn−M , (6.129)

where A is a matrix. Since we want to consider the process starting at n = 0,
we need the M + 1 initial values

ξ0, ξ−1, ..., ξ−M . (6.130)

This then allows us to initiate the solution of the M + 1 recursive equations

n = 0 : ξ1 = e
−γ∆ξ0 +Aξ−M , (6.131)

n = 1 : ξ2 = e
−γ∆ξ1 +Aξ1−M , (6.132)
...

n =M : ξM+1 = e
−γ∆ξM +Aξ0 . (6.133)

In the general case of (6.126), we can proceed correspondingly where the
initial conditions are given by (6.130) where

M = max(M1 − 1,M2) . (6.134)

We make the hypothesis

ξn = β
nξ0 . (6.135)

Inserting it into (6.126) yields(
βn+1 − e−γ∆βn − e−γ(∆−τ

′
2)Ã2β

n−M2

− eγτ
′
1Ã1β

n+1−M1
)
ξ0 = 0 , (6.136)

or equivalently(
β − e−γ∆ − β−M2e−γ(∆−τ

′
2)Ã2 − e

γτ ′1Ã1β
1−M1

)
ξ0 = 0 . (6.137)

In order to discuss the solution of this equation, we consider a few examples.
(1) M1 = 1, M2 = 0. In this case, (6.137) reduces to(

β − e−γ∆ − e−γ(∆−τ
′
2)Ã2 − e

γτ ′1Ã1

)
ξ0 = 0 . (6.138)

We first study the following eigenvalue equation(
e−γ(∆−τ

′
2)Ã2 + e

γτ ′1Ã1

)
vµ = λµvµ, µ = 1, ..., N . (6.139)

Using its solution in (6.138) with ξ0 = vµ, we obtain the corresponding
eigenvalues

βµ = e
−γ∆ + λµ (∆, τ

′
1, τ

′
2) . (6.140)
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(2) Here we consider the case M2 =M,M1 =M +1. In this case we have to
solve the eigenvalue equation(

βM+1 − e−γ∆βM − e−γ(∆−τ
′
2)Ã2 − e

γτ ′1Ã1

)
ξ0 = 0 , (6.141)

which because of (6.139) can be transformed into

βM+1 − e−γ∆βM − λµ = 0 . (6.142)

Using the results of Sect. 5.7, we can easily solve this equation in the case
that λµ is a small quantity.
There are two kinds of solutions, namely

βµ = e
−γ∆ + λµe

M∆γ , µ = 1, ..., N (6.143)

and, for M ≥ 1,

βj,µ =
(
−λµe

γ∆
)1/M

e2πij/M ,
j = 0, ...,M − 1
µ = 1, ..., N .

(6.144)

Since β determines the damping of the deviations ξ from the phase-locked
state φ, and also the instability of φ (see below), the dependence of β on the
delay time τ =M∆ is of particular interest. According to (6.143), for λµ > 0
the damping becomes weaker when the delay time τ =M∆ increases. Since
for a stable solution | λµeγ∆ |< 1, the M -dependence of β indicates the same
trend even more. In other words: the larger the time delay, the less stable the
phase-locked solution is; it may even become unstable while in cases without
time delays it is still stable. It is also noteworthy that according to (6.144)
the solutions are oscillatory, because β is complex. We are now in a position
to perform the complete solution to (6.126) taking into account the initial
conditions (6.131)–(6.133). To this end we realize that the complete solution
is given by

ξn =
∑
µ

⎛
⎝cµβnµ +M−1∑

j=0

cj,µβ
n
j,µ

⎞
⎠vµ . (6.145)

To calculate the coefficients cµ, cj,µ, we have to insert this expression into

(6.126) (with B̂ = 0) for n = 0, 1, ...,M = max(M1 − 1,M2), which yields
equations that have been exemplified by (6.131)–(6.133). This yields M ×N
equations for the M ×N unknown coefficients cµ, cj,µ. The explicit solution
depends, of course, on the explicit form of Ã1, Ã2.
Let us finally consider the general case (6.137), but assume

M2 ≥M1 . (6.146)
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The case in whichM2 ≤M1−1 can be treated similarly. We then cast (6.137)
into the form(
βM2+1 − e−γ∆βM2 − e−γ(∆−τ

′
2)Ã2 − e

γτ ′1Ã1β
M2+1−M1

)
ξ0 = 0 . (6.147)

This relationship can be simplified if we assume that the matrices Ã1 and Ã2
possess the same eigenvectors vµ but possibly different eigenvalues λ1,µ, λ2,µ.
From (6.147) we then derive

βM2+1 + e−γ∆βM2 − d1λ1,µβ
M2+1−M1 − d2λ2,µ = 0 , (6.148)

where d1 = e
−γτ ′1 , d2 = e

−γ(∆−τ ′2). The discussion of the corresponding
eigenvalue equation for β must be left to a further analysis. Otherwise we
can proceed as before.

6.8 Many Different Delay Times*

For the interested reader and for the sake of completeness, we quote the
extension of the results of the preceding section to many different delay times.
We put

τ
 =M
∆+ τ
′

, 0 ≤ τ

′

 < ∆, M an integer and � = 1, 2, ...L . (6.149)

The relation (6.103) generalizes to

∆ =
1

c

(
2π − (1/γ)

L∑

=1

A


)
(6.150)

and (note (6.128)!) the recursive relations (6.126) become

ξn+1 = e
−γ∆ξn + e

−γ∆
L∑

=1

Ã
e
γτ ′�ξn−M�

+ eγτ
′
1B̂ ((n+ 1)∆+ τ ′1;n∆+ τ

′
1) . (6.151)

The eigenvalue equations for β become particularly simple if

M
 =M (6.152)

so that (6.141) generalizes to(
βM+1 − e−γ∆βM − e−γ∆

L∑

=1

eγτ
′
�Ã


)
ξ0 = 0 . (6.153)

The further steps can be performed as before.
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6.9 Phase Waves in a Two-Dimensional Neural Sheet

So far the index j as well as other indices simply served for an enumeration
of the neurons. In this section we want to use them to indicate the positions
of the neurons. To this end we consider a two-dimensional neural sheet in
which the neurons, at least approximately, occupy the sites of a lattice with
the axes x and y. These axes need not be orthogonal to each other. Along
each axis, the distance between neighboring sites be a. We replace the index
j by an index vector,

j → j = (jx, jy) , (6.154)

where jx = anx, jy = any, and nx, ny are integer numbers 1, 2, ..., Lx (or
Ly). Thus the extensions of the neural sheet in its two directions are Jx = aLx
and Jy = aLy. Since the coefficientsAj,
 or aj,
 contain two indices, we replace
the latter by two vectors j, �. We consider an important case in which the
coefficients aj,
 ≡ aj,� depend on the difference of the vectors j and �, for
instance on the distance between the neural sites. In other words, we assume

aj,� = a(�− j) .

To make things mathematically simple, we assume that a(j) is periodic
with periods Jx and Jy in the corresponding directions. We are now in a po-
sition to solve (6.139) in a very simple fashion. Using the vectors j and �, we
write (6.139) in the form∑

�

a(�− j)v(�) = λv(�) , (6.155)

where the vector v of (6.139) has the components v(� ). To solve (6.155), we
make the hypothesis

v(�) = Neiκ� , (6.156)

where N is a normalization constant and κ is a wave vector with components

κx, κy. Inserting (6.156) in (6.155) and multiplying both sides by e
−iκ� yields∑

�

a(�− j)eiκ(j−�) = λκ , (6.157)

where we equipped λ with the index κ, because the l.h.s. certainly depends
on κ. According to (6.155), the eigenvalues λκ are the Fourier transform of
a(�), whereby we use the new summation index � instead of � − j. Clearly
the vectors v = (v(�)) depend also on κ so that we write

v = vκ . (6.158)
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We can now interpret (6.145) in more detail. The displacements ξ of the
phases are a superposition of spatial waves. To bring out the time dependence
of the amplitudes of these waves more explicitly, we write the coefficients of
(6.145) in the form

βn = e(iω−γ)tn , (6.159)

where tn are the discrete times. Since β can become complex in the case of
delays, the frequencies ω become �= 0 in this case. Otherwise waves are purely
damped in time. The occurrence of excitation waves in brain tissue is known
both in vivo and in vitro, but further detailed studies are needed.

6.10 Stability Limits of Phase-Locked State

In Sect. 6.8 we established a general relation for the pulse interval ∆, namely
(6.150). Since this interval, because of its definition, cannot become negative,
something particular must happen in the limit ∆ → 0. We may suspect
that this has something to do with the stability of the phase-locked state.
Since (6.153) allows us to study the stability limit quite generally, we want
to establish a relation between (6.153) and (6.150). To present this relation
as simply as possible, we consider the case of no delay, i.e. (6.138) with
Ã2 = 0, τ

′
1 = 0. Because of (6.86) and (6.115), among the eigenvalues λµ of

(6.139) is the following one

λ = φ̇−1A ≡ φ̇−1
∑
k

Ajk,1 . (6.160)

It belongs to a vector v with equal components. According to (6.98), we may
make the estimate φ̇ = 2π/∆, so that

λ = ∆A/2π . (6.161)

Writing βµ ≡ β in the form exp(Λ∆), we note that the Lyapunov exponent
Λ is given by

Λ =
1

∆
lnβ . (6.162)

From (6.140) and (6.161) we obtain for ∆→ 0

Λ =
1

∆
ln
(
e−γ∆ +∆A/2π

)
≈
1

∆
ln (1 +∆(A/2π − γ))

≈ A/2π − γ . (6.163)

The vanishing of the Lyapunov exponent, Λ = 0, indicates instability. This
condition coincides with the vanishing of∆ (6.150). This coincidence of∆ = 0
with the instability limit holds, however, only, if the real parts of all other
eigenvalues λµ are not larger than λ, otherwise the instability occurs earlier.
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We assumed, of course, λ > 0, A1 > 0. While the “λ-instability” retains
the phase-locked state but leads to an exponential increase of the pulse rate
(see Sect. 6.12 below), the other “λµ-instabilities” lead to a destruction of
the phase-locked state, giving rise to spatiotemporal activity patterns of the
neurons. This can be seen as follows: The eigenvalue λ is connected with
a space-independent eigenvector v, whereas the other eigenvalues belong to
space-dependent eigenvectors, e.g. to exp(iκn) (or their corresponding real
or imaginary parts). These patterns may become stabilized if the saturation
of S (6.3) is taken into account.

6.11 Phase Noise*

After having explored the impact of delay on the stability of the phase-locked
state, we turn to the study of the impact of noise. In order not to overload
our presentation, we treat the example of a single delay time τ . It is hoped
that in this way the general procedure can be demonstrated. We assume
that a phase-locked state with φj = φ exists and we study small deviations
ξ = (ξ1, ..., ξN ) from that state, i.e. we put

φj = φ+ ξj . (6.164)

In a generalization of Sect. 6.7, for small noise and corresponding small de-
viations ξj , the following difference equations for ξ = ξn at times tn = n∆,
where ∆ is the pulse interval, can be derived

ξn+1 = e
−γ∆ξn + Ãξn−M + B̂n . (6.165)

Ã is a time-independent matrix proportional to A = (Ajk), and

B̂
,n =

tn∫
tn−1

e−γ(tn−σ)F̂
(σ)dσ . (6.166)

We measure the delay time τ in units of ∆, i.e. τ =M∆, M an integer. The
components B̂
,n of the fluctuating forces are assumed to obey

< B̂
,nB̂
′,n′ >= Q

′δnn′ . (6.167)

We first seek the eigenvectors and eigenvalues of the matrix Ã (assuming that
Jordan’s normal form has only diagonal elements)

Ãvµ = λµvµ . (6.168)

We decompose ξn according to

ξn =
∑
µ

ξ(µ)n vµ . (6.169)



6.11 Phase Noise* 127

We project both sides of (6.165) on the eigenvectors vµ and obtain

ξ
(µ)
n+1 = e

−γ∆ξ(µ)n + λµξ
(µ)
n−M + B̂

(µ)
n , (6.170)

where B̂
(µ)
n =

(
v+µ B̂n

)
. By means of a correlation matrix K we can express

correlations between the components of ξN , ξN ′ by means of correlations

between ξ
(µ)
N and ξ

(µ′)
N ′

< (ξNKξN ′) >=
∑
µµ′

(
vµKvµ′

)
< ξ

(µ)
N ξ

(µ′)
N ′
> . (6.171)

We evaluate the correlation functions on the r.h.s. of (6.171) and start with
µ = µ′. In order not to overload the formulas with indices, we drop the suffix
µ everywhere in (6.170) and put

λµ = a . (6.172)

We first study

ξn+1 = e
−γ∆ξn + aξn−M + δnn0 (6.173)

with the initial conditions

ξn = 0 for n ≤ n0 (6.174)

and

ξn0+1 = 1 . (6.175)

The general solution of

ξn+1 = e
−γ∆ξn + aξn−M , n > n0 , (6.176)

can be written in the form

ξn = c1β
n
1 + c2β

n
2 ...+ cM+1β

n
M+1 , (6.177)

where βj are the solutions of the eigenvalue equation

βM+1 − e−γ∆βM − a = 0 . (6.178)

Taking into account the initial conditions (6.174) and (6.175), we obtain the
following equations

n = n0 : ξn0+1 = 1 , (6.179)

n = n0 + 1 : ξn0+2 = e
−γ∆ξn0+1 + aξn0+1−M = e

−γ∆ , (6.180)

n = n0 + 2 : ξn0+3 = e
−γ∆ξn0+2 = e

−2γ∆ , (6.181)

...



128 6. The Lighthouse Model. Many Coupled Neurons

n = n0 +M : ξn0+1+M = e
−γ∆M , (6.182)

n = n0 +M + 1 : ξn0+2+M = e
−γ∆(M+1) + a . (6.183)

Inserting (6.177) into (6.179)–(6.183), we obtain the following equations

c1β
n0+1
1 + c2β

n0+1
2 + ...+ cM+1β

n0+1
M+1 = 1 , (6.184)

c1β
n0+2
1 + c2β

n0+2
2 + ...+ cM+1β

n0+2
M+1 = e

−γ∆ , (6.185)

...

c1β
n0+M+2
1 + c2β

n0+M+2
2 + ...+ cM+1β

n0+M+2
M+1 =e−(M+1)γ∆+ a . (6.186)

The solutions cj of these equations can be simplified by using the hypothesis

cjβ
n0+1
j = dj , (6.187)

which converts (6.184)–(6.186) into

d1 + d2 + ...+ dM+1 = 1 , (6.188)

d1β1 + d2β2 + ...+ dM+1βM+1 = e
−γ∆ , (6.189)

...

d1β
M
1 + d2β

M
2 ...+ dM+1β

M
M+1 = e

−Mγ∆ , (6.190)

d1β
M+1
1 + d2β

M+1
2 ...+ dM+1β

M+1
M+1 = e

−(M+1)γ∆ + a . (6.191)

The original hypothesis (6.177) can thus be written in the form

ξn,n0 = d1β
n−(n0+1)
1 + ...+ dM+1β

n−(n0+1)
M+1 , (6.192)

where, in order to make the dependence of ξn on n0 explicit, we used the
substitution

ξn → ξn,n0 . (6.193)

We are now in a position to deal with (6.170) that we recast into the form

ξ̃n+1 = e
−γ∆ξ̃n + aξ̃n−M +

∑
n0

δnn0B̂n0 . (6.194)

Since (6.194) is a linear equation, its solution can be found by means of the
solutions of (6.173)

ξ̃n =
n−1∑
n0=0

ξn,n0B̂n0 . (6.195)
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In the following we will use the index n′ instead of n0. Inserting (6.192) into
(6.195), we thus obtain

ξn =
M+1∑
j=1

dj

n−1∑
n′=0

β
n−(n′+1)
j B̂n′ . (6.196)

Having in mind the same index µ, we may now evaluate the correlation
function occurring in (6.171), namely

< ξNξN ′ > =
M+1∑
j=1

M+1∑
j′=1

djd
′
j

N−1∑
n=0

β
N−(n+1)
j

×
N ′−1∑
n′=0

β
N ′−(n′+1)
j′

< B̂nB̂n′ > . (6.197)

Assuming N ≥ N ′ and using

< B̂nB̂n′ >= Qδnn′ (6.198)

as well as (6.167), we readily obtain

< ξNξN ′ >=
M+1∑
j,j′=1

djdj′

N ′−1∑
n=0

β
N−(n+1)
j β

N ′−(n+1)
j′

Q . (6.199)

The sum over n can readily be performed so that we obtain

< ξNξN ′ >= Q
M+1∑
j,j′=1

djdj′β
N−N ′

j

(
1− βjβj′

)−1
. (6.200)

Under the assumption

| βjβj′ |� 1 (6.201)

and using (6.188), we obtain the very concise form

< ξNξN ′ >= Q
M+1∑
j=1

djβ
N−N ′

j . (6.202)

Provided

0 ≤ N −N ′ ≤M + 1 , (6.203)

the expression (6.202) can be considerably simplified by means of the former
relations (6.188)–(6.191). Thus we obtain, for instance

< ξNξN >= Q (6.204)
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and

< ξN+1ξN >= Qe
−γ∆ . (6.205)

By means of the substitutions

βj → βj,µ, dj → dj,µ , (6.206)

ξN → ξ
(µ)
N , (6.207)

Bn → B
(µ)
n , (6.208)

Q(µ,µ
′) =<

(
v+µ B̂n

)(
v+
µ′
B̂n

)
> , (6.209)

we can generalize the result (6.202) to

< ξ
(µ)
N ξ

(µ′)
N ′
>= Q(µ,µ

′)
M+1∑
j=1

dj,µβ
N−N ′

j,µ , N ≥ N ′ , (6.210)

which presents under the condition (6.201) our central result. As we can
see, in the case of a delay with the delay time τ = M∆, where ∆ is the
pulse interval of the phase-locked state, the correlation function is not only
determined by means of the strengths Q(µ,µ

′) of the fluctuating forces, but
also by the eigenvalues of (6.178). Since the eigenvalues may be complex,
the correlation function (6.210) may show oscillatory behavior as a function
of N − N ′. It is interesting that the index µ′ drops out provided (6.201) is
assumed. The case in which N ′ > N can be covered by exchanging the indices
µ and µ′.

Exercises. (1) Why does ξn,n0 play the role of a Green’s function for a set
of difference equations?

(2) Derive < ξ
(µ)
N ξ

(µ′)
N ′
> for arbitrary β values, i.e. without the assumption

(6.201).
(3) Denote the vector components of ξn by ξn,
. Derive a formula for
< ξN,
ξn′,
 >.
Hint: Use (6.171) with suitable K.
(4) Determine (6.210) for M = 1 explicitly.

6.12 Strong Coupling Limit.
The Nonsteady Phase-Locked State
of Many Neurons

Our solution of the basic (6.1) and (6.3) of the neural net relies on the as-
sumption that the system operates in the linear range of S. This requires a not
too strong coupling as expressed by the coupling coefficients Aj
;m (synaptic



6.12 Strong Coupling Limit 131

strengths) or a not too small damping constant γ. We also noted that in the
linear range of S the phase-locked state is only stable if the just-mentioned
conditions are satisfied.
In this section and the following we want to study what happens if these

conditions are violated. To this end we first study the case of phase-locking in
the linear range of S. While for weak enough coupling we obtained a steady
phase-locked state, for strong coupling a new kind of behavior will occur,
namely pulse-shortening until the nonlinearity of S leads to a shortest pulse-
interval. This nonlinear case will be treated in the following Sect. 6.13. In
that section, our goal will be to determine the pulse interval ∆ as a function
of the neural parameters. Hereby we treat the phase-locked case. In order not
to overload our presentation, we neglect time delays and fluctuations.
Our starting point is Sect. 6.2, where according to (6.17) and (6.18) the

phase-locking equation is given by

φ̈+ γφ̇ = Af(φ) + C , A > 0 . (6.211)

We make the substitution

φ̇ = C/γ + x(t) (6.212)

that converts (6.211) into

ẋ+ γx = Af(φ) . (6.213)

The solution of (6.213) proceeds as in Sect. 5.3, whereby we find the recursion
relation for xn ≡ x(tn) (see (5.40))

xn+1 = e
−γ∆nxn +A , (6.214)

where we assume, however, that the pulse intervals ∆n ≡ tn+1 − tn depend
on n in order to cover non-stationary cases. In an extension of Sect. 5.3, we
find the following equation for ∆n (with c = C/γ) (see (5.46))

c∆n +
1

γ
xn
(
1− e−γ∆n

)
= 2π . (6.215)

The coupled equations (6.214) and (6.215) for the dependence of the variables
xn and ∆n on n can be easily solved numerically. For our present purpose it is
sufficient to discuss the solution qualitatively. As we will see, ∆n decreases as
n increases. Therefore, for a sufficiently large n we may assume that γ∆n � 1,
so that(

1− e−γ∆n
)
≈ γ∆n . (6.216)

Equations (6.214) and (6.215) then simplify to

xn+1 − xn = −γ∆nxn +A (6.217)
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and

c∆n + xn∆n = 2π , (6.218)

respectively. Resolving (6.218) for ∆n yields

∆n =
2π

xn + c
, (6.219)

which can be inserted into (6.217) to yield

xn+1 − xn = A− 2πγ
xn
xn + c

. (6.220)

Figure 6.5 shows a plot of the r.h.s. of (6.220), i.e. of

R(xn) = A− 2πγ
xn
xn + c

, A > 0 (6.221)

versus xn. Figure 6.5a refers to the case of small coupling A,

A− 2πγ < 0 . (6.222)

In this caseR(xn) becomes zero at a specific value of xn = xs, and the solution
xn of (6.220) becomes independent of n, i.e. of time. In other words, xs is
a fixed point of (6.220). Thus we recover the solution obtained in Sect. 5.3.
Because of (6.219), the pulse intervals become equidistant.
Figure 6.5b refers to the case of strong coupling

A− 2πγ > 0 . (6.223)

Because R(xn) never crosses the abscissa, according to (6.220) xn+1 − xn
is always positive, i.e. xn increases forever. For large enough xn, (6.220)
simplifies to

xn+1 − xn = A− 2πγ , (6.224)

Fig. 6.5. a) The function R(xn) (6.221) versus xn for A − 2πγ < 0; b) Same as
a), but A− 2πγ > 0
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which possesses the solution

xn = (A− 2πγ)n+ const. (6.225)

as we may immediately verify. Bearing in mind that xn contributes to the
pulse rate φ̇ according to (6.212), we obtain our final result that φ̇ increases
linearly with n. Equivalently, the pulse intervals ∆n decrease according to
(6.219) and (6.225)

∆n =
2π

(A− 2πγ)n+ const.
. (6.226)

Because of the definition of ∆n ≡ tn+1− tn, we may now establish a relation
between tn and n. As a simple analysis (see the exercise at the end of this
section) reveals, tn increases logarithmically with n, i.e.

tn ≈
2π

(A− 2πγ)
lnn+ const. (6.227)

for n large. On the other hand, we may express n by tn to obtain

n = n0 exp [(A/2π − γ)tn] . (6.228)

This means that ∆n decreases exponentially with time, or that xn and thus
the pulse rate φ̇ increases exponentially. Let us now recall that the pulse rate
is directly given by the saturation function S according to (6.3), i.e. by

φ̇ = S . (6.229)

If φ̇ becomes large, the quasilinear range of S is abandoned and S becomes
a constant, i.e. it saturates,

S = Smax . (6.230)

Summing up the results of this section, we may state that in the strong
coupling case the pulse rate increases exponentially with time until it satu-
rates. Our derivation of the time dependence of ∆n and xn has been system-
atic, but a bit clumsy. A more direct way, based on the guess that ∆n decays
exponentially is this: In order to solve (6.215) we make the hypothesis

∆n = ∆0e
−Γtn (6.231)

with yet unknown ∆0 and Γ . Inserting this into (6.215) and neglecting the
small term c∆n in (6.218) yields

xn∆0e
−Γtn = 2π . (6.232)

We then make the hypothesis

xn = x0e
Γtn , (6.233)
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from which follows

x0∆0 = 2π . (6.234)

Inserting (6.233) into (6.214) yields

x0e
Γtn+1 = e−γ∆nx0e

Γtn +A . (6.235)

Using

tn+1 = tn +∆n , (6.236)

we obtain

x0e
Γ∆n = e−γ∆nx0 +Ae

−Γtn . (6.237)

Using the hypothesis (6.231) on both sides of (6.237) and expanding the
exponential functions, we obtain

x0(1 +∆0Γe
−γtn) = x0(1− γ∆0e

−Γtn) +Ae−Γtn . (6.238)

Comparing the corresponding terms on the left- and right-hand side of
(6.238), we obtain

x0∆0Γ = −γx0∆0 +A , (6.239)

from which we conclude, with the help of (6.234),

Γ = −γ +A/(2π) . (6.240)

This agrees with the results obtained using our “systematic” procedure above.

Exercise. (1) Prove (6.227)
Hint: Approximate ∆n ≡ tn+1 − tn by dt/dn. Solve the resulting differential
equation for large n.

6.13 Fully Nonlinear Treatment
of the Phase-Locked State*

Our approach has been nonlinear in so far as the phase angles φ appear under
a series of δ-functions. On the other hand, we linearized the sigmoid function
S. In this section we want to perform a fully nonlinear treatment in which
also the nonlinearity of S is maintained. In contrast to Sect. 6.12, where we
studied the transient phase-locked solution, here we deal with the steady-
state solution. Since the most important observable is the pulse interval ∆,
we will determine it here. The calculations are somewhat lengthy. Thus the
speedy reader may skip all the intermediate steps and proceed to the final
result that relates ∆ to the neural parameters, such as synaptic strengths,
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etc. These results are presented in (6.270) with its special cases for linear S
(6.271) and saturated S (6.276).
First we remind the reader of the basic equations for the dendritic currents

ψ̇m = −γψm +
∑
k

amkf(φk) (6.241)

and the axonal phases

φ̇k = S

(∑
m

ckmψm(t− τ
′
km) + pext,k, Θk

)
. (6.242)

The notation is the same as in our earlier chapters. By use of the Green’s
function of Sect. 4.4, we can express ψm directly by the last term in (6.241)
and insert the result into (6.242). In anticipation of the phase-locked state,
we put φk = φ and obtain

φ̇(t) = S

⎛
⎝Ak

t∫
0

e−γ(t−σ)f(φ(σ))dσ + pext,k(t), Qk

⎞
⎠ , (6.243)

where

Ak =
∑
k′

∑
m

ckmamk′ . (6.244)

Since the l.h.s. is independent of the index k, so must be the r.h.s. A sufficient
condition will be that Ak, pext,k and Qk are independent of k. Using the
explicit form of f and assuming a steady state, we first evaluate the integral
of (6.243), i.e.

t∫
0

e−γ(t−σ)
N∑
n=0

δ(σ − n∆)dσ . (6.245)

We use the definition

N = [t/∆] , (6.246)

where the square bracket means: Take the biggest integer number that is
smaller than or equal to t/∆. Using the property of the δ-function and
summing the resulting geometric series, we obtain in the limit of large times t

(6.245) = e−γt
N∑
n=0

eγn∆ = eγ((N+1)∆−t)
1

eγ∆ − 1
. (6.247)

We use the Naka–Rushton formula for S

S(X) =
rXM

QM +XM
, (6.248)
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where in the present case

X = Aeγ((N+1)∆−t)
1

eγ∆ − 1
+ p (6.249)

and

pext,k(t) = p . (6.250)

Using (6.245)–(6.250) in (6.243), we can immediately determine the phase
velocity φ̇, provided we know the pulse interval ∆. In order to fix the still
unknown ∆, we postulate

tN+1+ε∫
tN+ε

φ̇(σ)dσ =

tN+1−ε∫
tN+ε

φ̇(σ)dσ = 2π . (6.251)

In the following, we will evaluate the integral explicitly for M = 1 and
show in the exercise how it can be determined for integer M > 1.
We write (6.248) in the form

S(X) =
r(X/Q)M

1 + (X/Q)M
(6.252)

and introduce the abbreviation

X/Q = Ã · eγ(tN+1−t) + p̃ , (6.253)

where

Ã =
A

Q

(
eγ∆ − 1

)−1
,
p

Q
= p̃ . (6.254)

After shifting the limits of the integration, we have to evaluate

∆∫
0

(
Ãeγσ + p̃

)M
1 +
(
Ãeγσ + p̃

)M dσ . (6.255)

To this end we put

Ãeγσ + p̃ = y (6.256)

and accordingly

Ãγeγσdσ = dy . (6.257)

From (6.256) and (6.257) we deduce

dσ =
1

γ

1

y − p̃
dy , (6.258)
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so that we are, eventually, left with the evaluation of the integral

1

γ

y1∫
yo

yM

1 + yM
1

(y − p̃)
dy . (6.259)

We will determine the integration limits below. In order to perform the
integration, we use the decomposition

yM

1 + yM
1

y − p̃
=
g(y)

1 + yM
+
α

y − p̃
, (6.260)

where g(y) is determined by

g(y)(y − p̃) = yM (1− α)− α . (6.261)

The unknown coefficient α can be fixed by putting y = p̃ on both sides, which
yields

0 = p̃M (1− α)− α , (6.262)

and thus

α =
p̃M

1 + p̃M
. (6.263)

In the special case M = 1 that we will treat here explicitly, we obtain

g(y) =
1

1 + p̃
, α =

p̃

1 + p̃
. (6.264)

We are left with evaluating

1

γ

y1∫
y0

y

1 + y

1

(y − p̃)
dy =

1

γ

⎛
⎝ y1∫
y0

(1− α)dy

1 + y
+

y1∫
y0

αdy

(y − p̃)

⎞
⎠ , (6.265)

which immediately yields

(6.265) =

(
1

γ
(1− α) ln(1 + y) +

1

γ
α ln | y − p̃ |

) ∣∣∣∣y1y0 . (6.266)

Inserting (6.256) and the integration limits,

t = 0↔ y0 = Ã+ p̃ , (6.267)

t = ∆↔ y1 = Ãe
γ∆ + p̃ , (6.268)
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we find

(6.265) =
1

γ

1

1 + p̃

(
ln
(
1 +
A

Q

(
eγ∆ − 1

)−1
eγ∆ + p/Q

)
− ln

(
1 +
A

Q

(
eγ∆ − 1

)−1
+ p/Q

))
+
1

γ

p̃

1 + p̃

(
ln

(
A

Q

(
eγ∆ − 1

)−1
eγ∆
)
−ln

(
A

Q

(
eγ∆ − 1

)−1))
= 2π/r. (6.269)

After some elementary manipulations (using lnx+ln y = ln(xy)), we obtain

1

γ

1

1 + p/Q
ln

(
1 +

A/Q

1 + (A/Q) (eγ∆ − 1)−1 + p/Q

)
+
p/Q

1 + p/Q
∆

= 2π/r . (6.270)

This is the desired equation that allows us to determine the pulse interval ∆
as a function of the various parameters. This implicit equation can only be
solved numerically, but we are in a position to explicitly treat the limiting
cases of large Q, corresponding to a linearization of S, and of small Q, where
we expect saturation effects.
In the case Q → ∞, we expand the l.h.s. of (6.270) into powers of 1/Q,

where we obtain in the leading approximation

1

γ

Ar

Q
+
pr

Q
∆ = 2π , (6.271)

which corresponds to our learlier result (5.47) by identifying

Ar/Q with A (6.272)

and

pr/Q with c . (6.273)

We now consider the case of small Q, or, equivalently, the case in which either
the coupling between the neurons A or the external input becomes very large.
To treat the first case,

A→∞ , Q, p finite , (6.274)

we rewrite (6.270) in the form

1

γ

Q

Q+ p
ln

(
1 +

1

Q/A+ (eγ∆ − 1)−1 + p/A

)
+

p

Q+ p
∆ = 2π/r . (6.275)

In the limit (6.274) it readily reduces to the simple result

∆ = 2π/r . (6.276)
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The same result is obtained in the limiting case

p→∞ Q,A finite : ∆ = 2π/r . (6.277)

The results (6.276) and (6.277) mean that for large inputs saturation of the
neuron’s response sets in, in which case the pulse intervals become indepen-
dent of the size of the input. In the exercises, we will treat the case in which
S (6.248) is used with M = 2, and indicate how to deal with the general
case. So far, we determined ∆. With this parameter known, φ̇, and by mere
integration over time, φ can be determined by means of (6.243).

Exercises. (1) Perform the above steps for S with M = 2.

Hint: The integrand in
∫

x2

1+x2
1
x−ddx can be decomposed into

x2

1+x2
1
x−d =

g(x)

1+x2
+ α
x−d , where α =

d2

1+d2
and g(x) = 1

1+d2
(x + d). The integration

yields 1
1+d2

(
1
2 ln(1 + x

2) + d arctgx+ d2 ln(x− d)
)
. Insert the lower and up-

per limits and discuss the limiting cases corresponding to Q → ∞ and
A, p→∞.

(2) Evaluate (6.259) for arbitrary, but integer M ≥ 3.

Hint: Use (6.260) and g(y)

1+yM
=
∑M
j=1

αj
y−βj

, where βj = exp (i3πj/(2M)),

j = 1, 2, ...,M . Why is g(y) a polynomial of degree M − 1 ?

(3) Use the results following (6.243) to determine φ̇ and φ explicitly for M =
1. Why is there a jump of φ̇ at t = tn?

Hint: Observe (6.246).
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The lighthouse model belongs to the large and important class of models
that aim at studying phase locking and, in particular, synchronization among
spiking neurons. In this and the following Chap. 8 we will deal with integrate
and fire models (IFM) that serve the same purpose.
The basic differences between and commonalities of these models are as

follows: The lighthouse model uses phases φk and dendritic currents as basic
variables. The phases have only a formal meaning except that they determine
the spike rate. They may grow to infinity. IFMs are based on model equations
for the action potentials Uk of the neurons. These potentials are limited to
a finite interval and, after firing, are reset to their origin. The general equa-
tions of Sect. 7.1 give a first clue to the relationship between these two kinds
of models. Section 7.2 is devoted to a particularly simple example of an IFM.
At least the first part of Sect. 7.3 (till (7.24)) is of general interest, because
it shows how the relaxation of membrane potentials can be incorporated in
lighthouse models.

7.1 The General Equations of IFM

The action potential Uk of neuron k obeys the equation

dUk
dt
= −
Uk
τ
+ Ik + I

ext
k . (7.1)

The first term on the r.h.s. describes relaxation of Uk towards the resting
potential with a relaxation time τ . In most models, the resting potential
is set equal to zero and Uk is normalized so that it acquires its maximum
value 1, that means

0 ≤ Uk ≤ 1 . (7.2)

The next term in (7.1) is defined as follows:

Ik : input from other neurons . (7.3)

It consists of the sum of the postsynaptic potentials (PSPs) that are triggered
by pulses of afferent neurons at times t′ (see (7.6)). Iextk represents external
input stemming from sensory neurons

Iextk : external input . (7.4)
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A comparison between (7.1) and the equation of the phases as derived in
(5.20) reveals that these equations have the same structure except for the
first term on the r.h.s. in (7.1). Actually, the analogy between the models is
quite close. A minor difference is this: While Uk adopts its values according
to (7.2), φk runs in its first segment from 0 to 2π so that we arrive at the
relationship

φk = 2πUk . (7.5)

But in contrast to the integrate and fire models with (7.2), in the lighthouse
model φk may increase indefinitely. We will discuss the relation between Uk
and φk for φk > 2π, i.e. in its higher segments, in (7.24).
Our considerations on the lighthouse model have taught us how to model

the impact of the other neurons on the neuron under consideration by means
of the processes within synapses and dendrites. When we eliminate the dy-
namics of the synapses and dendrites, we arrive at the relationship between
the neuronal pulses and the input Ik. This relationship can be written in the
form

Ik =

t∫
0

K(t− t′)
∑
j �=k

wkjPj(t
′)dt′ (7.6)

(see also (5.20)). The kernel K stems from the dynamics of the synapses and
dendrites and will be specified below. wkj represents synaptic strengths. The
input in the form of pulses can be written as

Pj(t
′) =

∑
n

δ(t′ − tj,n) , (7.7)

where δ is the well-known Dirac-function and tj,n represents the arrival times
of the pulses of axon j. Because of the δ-functions, (7.6) reduces to

Ik =
∑
j �=k,n

wkjK(t− tj,n) , (7.8)

where, depending on the dynamics of dendrites and synapses, K is given by

K(t) =

{
0 for t < 0

e−γ
′t for t ≥ 0

}
. (7.9)

In this case, K is the Green’s function of (5.1), see also (4.3). A general
relationship for K that comes closer to physiological facts is given by

K(t) =

{
0 for t < 0
c(exp(−t/τ1)− exp(−t/τ2)) for t ≥ 0

}
, (7.10)

where τ1 and τ2 are appropriately chosen relaxation times. We leave it as an
exercise to the reader to determine a differential equation for which (7.10)
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is its Green’s function. As will be further shown in the exercises, if we let
τ1 → τ2, a new kernel K can be obtained that is given by

K(t) =

{
0 for t < 0
cα2t exp(−αt) t ≥ 0

}
. (7.11)

This K can be also obtained as the Green’s function of (4.85) and is called
Rall’s α-function.
After having formulated the basic equations, we may discuss a method

for their solution in the frame of IFM. The idea is to solve (7.1) with (7.8)
explicitly until Uk reaches the value 1. This time fixes the initial time of
a pulse from neuron k, whereupon the action potential of that neuron Uk is
reset to zero. In practical applications, these equations have been solved nu-
merically, which requires a considerable amount of computation time so that
only few interacting neurons have been treated. In order to treat larger nets,
considerable simplifications have been made. In the following, we will discuss
a model due to Peskin that has been extended by Mirollo and Strogatz.

7.2 Peskin’s Model

In the context of the synchronization of cardiac rhythms, Peskin derived
a model that was later adopted to deal with synchronizing neurons by Mirollo
and Strogatz. The activity of neuron k is described by a variable xk, which
obeys

dxk
dt
= S0 − γxk , k = 1, ..., N (7.12)

and assumes the values

0 ≤ xk ≤ 1 . (7.13)

At an initial time, individual values xk obeying (7.13) are prescribed. Then
when time runs, because we assume S0 > 0, according to (7.12) xk will
increase and reach the value 1, where a pulse is emitted by that neuron.
Thereupon at an infinitesimally later time, t+, the values x of all other
neurons are increased by an amount ε or the other neuron fires when reaching
xj = 1. Thus, in short,

xk(t) = 1→ xj(t
+) = xj(t) + ε if xj(t) + ε < 1

or fires : xj = 1 . (7.14)

Peskin and later, in a more general frame, Mirollo and Strogatz could show
that after some time all firings become synchronized. Let us try to make
contact between this model and the lighthouse model on the one hand and
the integrate and fire models on the other hand. Quite clearly, we have to
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identify

Iextk ↔ S0 (7.15)

and we will put

Iextk = I0 , (7.16)

i.e. all external signals are the same. Now we may use our knowledge about
first-order differential equations that contain δ-functions (cf. Chap. 4). As
we know, a jump of a variable can be caused by means of a δ-function. This
leads us to make the hypothesis

Ik = ε
∑
j �=k

δ(t− tj) . (7.17)

For the sake of simplicity we further put

γ′ = 1/τ . (7.18)

Clearly we will identify xk with the action potential Uk. Thus the processes
described by (7.12) and (7.14) are captured by

dUk
dt
= −γ′Uk + I0 + ε

∑
j �=k

δ(t− tj) . (7.19)

According to Chap. 4 we know how the solution of (7.19) looks like, namely

Uk(t) =

t∫
0

e−γ
′(t−σ)

⎛
⎝I0 + ε∑

j �=k

δ(σ − tj)

⎞
⎠ dσ , (7.20)

or, in a more explicit form,

Uk(t) = I0
1

γ′

(
1− e−γ

′t
)
+ ε
∑
j �=k

e−γ
′(t−tj)H(t− tj) , (7.21)

whereH is the Heaviside function introduced in (4.15). Since we will study the
synchronized solution of (7.20) and its stability in great generality in Chap. 8,
we will confine ourselves to one remark only, namely the determination of the
phase-locked state. In this case, the neurons emit their pulses at the same
time and according to the rule (7.14) their action potentials jump at the same
time. This leads to the condition

Uk(t) = I0
1

γ′

(
1− e−γ

′t
)
+ εN = 1 , (7.22)

from which the time t, i.e. the time interval between pulses, can be deduced.
Quite evidently, a sensitive result can be obtained only under the condition
εN < 1. As we see by comparing (7.19) and (7.1) with (7.8), Peskin’s model
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implies that the response via synapses and dendrites is without any delay,
or, in other words, that the kernel K is a δ-function (see Exercise 3).
In the next section, we will study a model in which that response time is

very long. This model has not yet been treated in the literature and those
readers who would have fun studying a further model are referred to the next
section.

7.3 A Model with Long Relaxation Times of Synaptic
and Dendritic Responses

This section is devoted to those readers who are particularly interested in
mathematical modelling. The first part of this section may also be considered
as a preparation for Chap. 8. Our model bridges the gap between the light-
house models that were treated in chaps. 5 and 6 and the integrate and fire
models that we discussed at the beginning of the present chapter. To bring
out the essentials, we again consider two interacting neurons. We describe
their activities using the phase angles φ1, φ2. First of all, we generalize the
lighthouse model by taking into account a damping of the rotation speed in
between two firings. This means we want to mimic the effect of the damping
term that occurs on the r.h.s. of (7.1) with (7.18). We are not allowed,
however, to use the corresponding damping term γ′φ alone, because with
increasing φ (> 2π) this expression would overestimate the effect of damping.
Rather we have to take into account the fact that U is restricted to the region
between 0 and 1, or correspondingly that the relaxation dynamics of φ in the
intervals [n2π, (n+1)2π] must be selfsimilar. In other words, we must reduce
φ after each rotation. This is achieved by replacing φ with φmod2π. In our
present context, this mathematical expression means: if φ > 2π, reduce it by
an integer multiple of 2π so that φ′ = φ− 2πn with 0 ≤ φ′ < 2π. As can be
seen by means of Fig. 5.11, this reduction can be achieved also with the help
of a sum of Heaviside functions, H introduced in Sect. 4.1

φmod2π = φ− 2π
∑
n≥1

H(φ− 2πn) . (7.23)

Thus when we “translate” the damping term on the r.h.s. of (7.1) into one
for φ, we must apply the rules (7.5) and (7.23). This explains the meaning of
the l.h.s. of the following

φ̇1 + γ
′φ1 − 2πγ

′
∑
n≥1

H(φ1 − 2πn)

=
∑
n≥1

A(H(φ2 − 2πn)−H(φ1 − 2π(n+ 1)) + p . (7.24)

The terms on the r.h.s. originate from the following mechanism: When
the phase φ2 of neuron 2 reaches 2πn that neuron fires and causes a change
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of the action potential of neuron 1. If the relaxation time γ of the synapses
and dendrites is very large, we may assume that the corresponding term Ik
in (7.1) does not decay. But then when φ1 reaches 2π and the neuron is
assumed to fire that influence on neuron 1 drops to zero. This is taken care of
by a second term in the second sum in (7.24). p describes the external signal.
A is a coupling coefficient. For neuron 2, we may write down an equation
that is analogous to (7.24), namely

φ̇2 + γ
′φ2 = 2πγ

′
∑
n≥1

H(φ2 − 2πn)

+
∑
n≥1

A(H(φ1 − 2πn)−H(φ2 − 2π(n+ 1))) + p . (7.25)

The phase-locked state obeys the

φ̇+ γ′φ = 2πγ′
∑
n≥1

H(φ− 2πn)

+
∑
n≥1

A(H(φ− 2πn)−H(φ− 2π(n+ 1))) + p . (7.26)

In order to find its solution, we first rearrange the terms in the second sum
according to∑

n≥1

AH(φ− 2πn)−
∑
n≥2

AH(φ− 2πn) , (7.27)

which yields

(7.27) = A(H(φ− 2π)) (7.28)

and finally

(7.27) = A for φ ≥ 2π . (7.29)

In this way, (7.26) can be transformed into

φ̇+ γ′φ = 2πγ′
∑
n′≥1

H(φ− 2πn′) + p′ with p′ = p+A . (7.30)

Let us briefly determine its solution with the initial condition

φ(0) = φ0, where 0 ≤ φ0 < 2π . (7.31)

For a first interval, we obtain

n = 1 : 0 ≤ t < t1 : φ(t) = p′/γ′ + α0e
−γt . (7.32)

The initial condition

t = 0 : p′/γ′ + α0 = φ0 (7.33)
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fixes the constant

α0 = φ0 − p
′/γ′ (7.34)

so that the solution reads

φ(t) = p′/γ′ + (φ0 − p
′/γ′)e−γ

′t . (7.35)

We determine the first firing time by the requirement

t = t1 ≡ ∆1 : φ(t1) = 2π , (7.36)

which yields

p′/γ′ + (φ0 − p
′/γ′)e−γt1 = 2π , (7.37)

or, explicitly,

eγ
′∆1 =

p′/γ′ − φ0
p′/γ′ − 2π

, (7.38)

whereby we have to observe the requirement of a sufficiently strong external
signal, namely

p′/γ′ > 2π . (7.39)

For the next interval, we obtain

n = 2 : ∆1 ≤ t < t2 : 2π ≤ φ < 4π , H(φ− 2π) = 1 . (7.40)

By complete analogy with the just-performed steps, we obtain

φ(t2) = 2π + p
′/γ′

(
1− e−γ

′(t2−t1)
)
, (7.41)

and for the interval

t2 − t1 = ∆2 (7.42)

the relation

1

γ′

(
1− e−γ

′∆2
)
= 2π/p′ . (7.43)

The time t2 is determined by

t2 = ∆2 +∆1 . (7.44)

For

arbitrary n > 2 : tn−1 ≤ t < tn (7.45)

we obtain

tn = ∆1 +∆2 + ...+∆n = ∆1 + (n− 1)∆, (7.46)
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where

∆n = ∆ for n ≥ 2 . (7.47)

The general solution reads

φ(t) = 2π(n− 1) + p′/γ′
(
1− e−γ

′(t−tn−1)
)
. (7.48)

With the requirements

t = tn, φ(tn) = 2πn , (7.49)

we obtain

1

γ′

(
1− e−γ

′∆n
)
= 2π/p′ . (7.50)

These simple considerations have allowed us to determine the explict form of
the phase-locked state φ(t). In order to study its stability, we use the usual
hypothesis

φ1 = φ+ ξ1, φ2 = φ+ ξ2 , (7.51)

which again in the usual way leads, for example, to the following equation
for ξ2(t)

ξ̇2 + γ
′ξ2 = 2πγ

′
∑
n≥1

(H(φ+ ξ2 − 2πn)−H(φ− 2πn))

+ A
∑
n≥1

(H(φ+ ξ1 − 2πn)−H(φ− 2πn))

− A
∑
n≥1

(H(φ+ ξ2 − 2π(n+ 1))−H(φ− 2π(n+ 1))) (7.52)

that originates from the substraction of (7.26) from (7.25). Making the as-
sumption that ξ2 is a small quantity, we may expand the Heaviside functions
occuring in (7.52) with respect to the arguments ξ2 so that the conventional δ-
functions appear. These δ-functions are formulated with arguments φ. When
we proceed from them to those with arguments tn, where the connection
between t and φ is provided by (7.49), we obtain in the by now well-known
way (cf. (5.112)–(5.115))

ξ̇2 + γ
′ξ2 = 2πγ

′
∑
n≥1

δ(t− tn)ξ2(tn)/φ̇(tn)

+ A
∑
n≥1

δ(t− tn)ξ1(tn)/φ̇(tn)

− A
∑
n≥1

δ(t− tn+1)ξ2(tn+1)/φ̇(tn+1) . (7.53)
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An analogous equation can be derived for ξ1 and we may then deduce equa-
tions for the sum Z(t) = ξ1+ξ2 and the difference ξ = ξ2−ξ1. The equations
read

Ż + γ′Z = δ(t− t1)(2πγ
′ +A)Z(t1)/φ̇(t1)

+
∑
n≥2

δ(t− tn)2πγ
′Z(tn)/φ̇(t1) (7.54)

and

ξ̇ + γ′ξ = δ(t− t1)(2πγ
′ −A)ξ(t1)/φ̇(t1)

+
∑
n≥2

δ(t− tn)(2πγ
′ − 2A)ξ(tn)/φ̇(t1) . (7.55)

The first term on the r.h.s. of (7.54) and (7.55), respectively, can be ignored
if we let the process start at t > t1. Then both equations bear a close
resemblance to our previously derived (5.119), (5.121) with B1 = B2 = 0,
where we may identify

a = 2πγ′/φ̇ and − a = (2πγ′ − 2A)/φ̇ . (7.56)

Quite clearly, these equations allow us to study the stability of the phase-
locked state by complete analogy with Sect. 5.6. Then, for t > t1, one may
show that

Z(tn + ε) = Z(tn−1 + ε) , ε→ 0 (7.57)

up to higher orders of γ′ in the frame of our approach, which neglects the
jump of φ̇(tn) at tn ± ε. If this jump is taken into account (see exercise),
(7.57) is even exact. Stability of the phase-locked is secured if A > 0.
Our results shed new light on the question of stability, or, in other words,

on the reasons why instability may occur. As we have seen above, there
are two processes, namely the build-up of the action potential because of
the terms with positive A in (7.24), (7.25) and then its decay caused by
the negative term originating from the firing. In other words, if the build-
up of the action potential cannot be compensated for strongly enough, an
instability occurs (see also Exercise 6). Note that the damping constants
γ, γ′ in (5.121), (7.55) have quite different origins: γ stems from the damping
of dendritic currents, while γ′ from that of the action potential. In Chap. 8
we will study their combined effects.
We leave it as an exercise to the reader to generalize this section to N

neurons.

Exercise 1. To which differential equation is

K(t) =

{
0 for t ≤ 0,
a (e−γ1t − e−γ2t) for t ≥ 0 , γ1 �= γ2

the Green’s function? Determine a!
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Exercise 2. Derive (7.11) from (7.10) for τ1 → τ2.
Hint: Put c ∝ (1/τ1 − 1/τ2) .

Exercise 3. Show that (7.17) results from the elimination of dendritic cur-
rents in the lighthouse model for γ →∞, ajk →∞, and ajk/γ finite.

Exercise 4. Prove (7.57) by means of Sect. 5.6.
Rederive (7.53), (7.55) taking into account the jump of φ(tn ± ε), ε→ 0.
Hint: Use (4.45)–(4.51) for (t0 − t

−
0 ) > 0, < 0 separately. Use Sect. 4.3.

Exercise 5. Extend (7.24), (7.25) to many neurons.

Exercise 6. Convince yourself that without the second term (with A > 0)
on the r.h.s. of (7.24) the driving force on φ1 will increase indefinitely.



8. Many Neurons, General Case,
Connection with Integrate and Fire Model

8.1 Introductory Remarks

The lighthouse model treated in Chaps. 5 and 6 had the advantage of sim-
plicity that enabled us to study in particular the effects of delay and noise.
In the present chapter we want to treat the more realistic model of Chap. 7
in detail. It connects the phase of the axonal pulses with the action potential
U of the corresponding neuron and takes the damping of U into account.
Furthermore, in accordance with other neuronal models, the response of
the dendritic currents to the axonal pulses is determined by a second-order
differential equation rather than by a first-order differential equation (as in
the lighthouse model). The corresponding solution, i.e. the dendritic response,
increases smoothly after the arrival of a pulse from another neuron. When the
dendritic currents are eliminated from the coupled equations, we may make
contact with the integrate and fire model. Our approach includes the effect
of delays and noise. We will treat the first-order and second-order differential
equations for the dendritic currents using the same formalism so that we
can compare the commonalities of and differences between the results of the
two approaches. The network connections of excitatory or inhibitory nature
may be general, though the occurrence of the phase-locked state requires
a somewhat more restricted assumption.

8.2 Basic Equations Including Delay and Noise

We denote the dendritic current of dendrite m by ψm and the axonal pulse
of axon k by Pk. The equations for the dendritic currents read(

d

dt
+ γ

)α
ψm(t) =

∑
k

amkPk(t− τkm) + Fψ,m(t) , (8.1)

where α = 1 refers to the lighthouse model and α = 2 to the integrate and
fire model. Below we shall also discuss the extension of our approach to non-
integer values of α. The constants and quantities in (8.1) have the following
meaning: γ, damping constant; amk, coupling coefficient (synaptic strength)
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τkm, delay time; Fψ,m(t), fluctuating forces. The pulses P are expressed in
the form

P (t) = f(φ(t)) , (8.2)

where f is a periodic function of the phase φ that is strongly peaked and
represented in the form

f(φ(t)) = φ̇
∑
n

δ(φ− 2πn) , (8.3)

or seen as a function of time t in the form

f(φ(t)) = f̃(t) =
∑
n

δ(t− tn) . (8.4)

The times tn are defined by

tn : φ(tn) = 2πn . (8.5)

φ is interpreted as a phase angle that obeys

φ̇j(t) + γ
′φj(t)mod 2π = S

(∑
m

cjmψm
(
t− τ ′mj

)
+ pext,j, Θj

)
+Fφ,j(t) . (8.6)

Depending on

γ′ = 0, or γ′ = 1 , (8.7)

we are dealing with the lighthouse model in the first case and with the
integrate and fire model in the second case, where we use the usual scaling
of γ′. The connection between the phase angle φ and the action potential U
is given by

φ(t)mod 2π = 2πU(t) . (8.8)

We present the sigmoid function S that is well established by physiologi-
cal experiments, e.g. Wilson [3], by the Naka–Rushton formula (5.7), or, in
a rather good approximation, in the following form

S(X,Θ) = 0 for X < Xmin , (8.9)

= X for Xmin ≤ X ≤ Xmax , (8.10)

= Smax for X ≥ Xmax . (8.11)

The quantities in (8.6) have the following meaning: cjm, coupling constants;
τ ′mj , delay times; pext,j , external signal; Θj , threshold; Fφ,j , fluctuating forces.
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8.3 Response of Dendritic Currents

In order to make contact with the more conventional representation of the
integrate and fire model, we eliminate the dendritic currents. Equation (8.1)
is of the form(

d

dt
+ γ

)α
ψ(t) = g(t) , (8.12)

which may be supplemented by the initial conditions

α = 1 : ψ(0) = 0 (8.13)

or

α = 2 : ψ(0) = ψ̇(0) = 0 . (8.14)

Using a Green’s function (see Sect. 4.4)

Kα(t− σ) = (t− σ)
α−1e−γ(t−σ) , (8.15)

the solution of (8.12) reads

ψ(t) =

t∫
0

Kα(t− σ)g(σ)dσ . (8.16)

The Green’s function possesses an important biophysical meaning: it repre-
sents the response of the dendritic current to a single spike – a δ-pulse – at
time t = σ. According to the different values of α, the rise of the response
may have various shapes (Figs. 4.11 and 4.12). In this way, the value of
α can be experimentally determined and seems to be about 1.5, i.e. non-
integer. Later we shall see how to deal mathematically with such non-integer
values of α. In principle, (8.16) is a special solution of (8.12), whose general
solution is found by adding to (8.16) a solution of the homogeneous equation
(i.e. (8.12) with g(t) ≡ 0). In this way, any admitted initial condition on ψ
can be realized. Because of (8.13) or (8.14) the solution of the homogenous
equation vanishes so that (8.16) is already the general solution. Applying the
relationship (8.16) to the general (8.1), and inserting the result into (8.6),
yields the basic equations for the phases φj

φ̇j(t) + γ
′φj(t)mod 2π = S

(∑
m

cjm

t−τ ′mj∫
0

Kα
(
t− τ ′mj − σ

)
{...}dσ

+pext,j , Θj

)
+ Fφ,j(t) , (8.17)
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where we abbreviated using the curly bracket

{...} =
∑
k

amkPk(σ − τkm) + Fψ,m(σ) . (8.18)

In the following we shall assume

amk time-independent, F = 0, S linear (8.19)

and put

S (pext,j , Θj) = Cj . (8.20)

Equation (8.17) can be rearranged to

φ̇j(t) + γ
′φj(t)mod2π

=
∑
mk

cjmamk ×

t∫
τ ′
mj

Kα(t− σ)Pk(σ − τkmj)dσ + Cj (8.21)

with

τkmj = τkm + τ
′
jm . (8.22)

In order not to overload our presentation, we make the following simplification

Kα → K . (8.23)

Furthermore we introduce a relabeling

τkmj → τ
 , (8.24)

and

cjmamk → Ajk,
 . (8.25)

Note that these replacements do not mean any restriction. Equation (8.21)
can be rewritten as

φ̇j(t) + γ
′φj(t)mod2π =

∑
k


Ajk,


t∫
0

K(t− σ)f(φk(σ − τ
))dσ + Cj . (8.26)

In the integral in (8.26) we replaced the lower limit by τ = 0, which has no
effect on our final results as may be shown by a more detailed analysis.
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8.4 The Phase-Locked State

The phase-locked state is defined by

φj = φ, j = 1, ..., N (8.27)

and has to obey

φ̇(t) + γ′φ(t)mod2π =
∑
k


Ajk,


t∫
0

K(t− σ)f(φ(σ − τ
))dσ + Cj , (8.28)

where we assume

Cj = C,
∑
k

Ajk,
 = A
 (8.29)

so that the r.h.s. of (8.28) becomes independent of j. As can be shown in
a self-consistent way, under steady-state conditions, φ is periodic

φ(tn) = 2πn , (8.30)

and we shall use the abbreviation

tn+1 − tn = n∆, n an integer. (8.31)

We establish the formal solution of (8.28) in the interval tn ≤ t ≤ tn+1 and
put

φ(t) = φ(tn) + χ(t) (8.32)

with

χ(tn) = 0 and χ̇ ≥ 0 . (8.33)

Using (8.32), (8.31) and (8.33), we may transform (8.28) into

χ̇(t) + γ′χ(t) = G(t) , (8.34)

where G is an abbreviation of the r.h.s. of (8.28). Using the Green’s function
(8.15) with α = 1 and replacing γ with γ′, the solution of (8.34) reads

χ(t) ≡ φ(t)− φ(tn) =
∑



A


t∫
tn

e−γ
′(t−σ′)dσ′

σ′∫
0

K(σ′ − σ)

×
∑
m

δ(σ − τ
 − tm)dσ +

t∫
tn

e−γ
′(t−σ′)Cdσ′ . (8.35)

In order to derive an equation for the interval ∆, we put t = tn+1. Because
of the δ-functions, we can easily evaluate the integrals (see Appendix 1). The
solution reads
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φ(tn+1)− φ(tn) =
∑



A
hα(∆, γ , γ
′, τ ′
) +

C

γ′

(
1− e−γ

′∆
)
, (8.36)

where in the case of the lighthouse model α = 1,

h1(∆, γ, γ
′, τ ′
) =

eγτ
′
�

γ′ − γ
·
e−γ∆ − e−γ

′∆

eγ∆ − 1
(8.37)

+
1

γ′ − γ

(
e−γ∆+γτ

′
� − e−γ

′∆+γ′τ ′�

)
,

τ ′
 = τ
mod∆. (8.38)

If

γ′∆� 1, γ∆� 1 (8.38)

hold, (8.37) reduces to

h1 =
1

γ
. (8.39)

Because the Green’s function K2 can be obtained by differentiating K1 with
respect to γ, up to a factor −1, also h2 can be obtained in this way,

h2(∆, γ, γ
′, τ
) = −

∂

∂γ
h1(∆, γ, γ

′, τ
) . (8.40)

In the case of (8.38) this reduces to

h2 =
1

γ2
. (8.41)

Because due to (8.30) the l.h.s. of (8.36) is equal to 2π, (8.36) is an equation
for∆, which in the cases (8.38), (8.39) and (8.41) becomes particularly simple
and coincides with our former results in Sect. 6.6. Also the case in which
Kα (8.15) is defined for non-integers, α can be included using the results of
Appendix 2 of Chap. 8. We thus obtain, again under the conditions of (8.38),
hα = (−1)1−α(dα−1/dγα−1)(1/γ), or, explicitly, hα = Γ (α − 1)γ−α, where
Γ is the usual Γ -function (which represents an extension of the factorial
n! = Γ (n) for an integer n to non-integer arguments (see Appendix 2)).

8.5 Stability of the Phase-Locked State:
Eigenvalue Equations

In order not to overload our formulas, we first treat the case of a single delay
time τ , where we put

τ =M∆+ τ ′, 0 ≤ τ ′ < ∆, M an integer , (8.42)
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and drop the index � everywhere. For a linear stability analysis, we make the
hypothesis

φj(t) = φ(t) + ξj(t) . (8.43)

Inserting it into (8.26) and subtracting (8.28), we obtain

ξ̇j(t) + γ
′((φ(t) + ξj(t))mod2π − φ(t)mod2π)

=
∑
k

Ajk

t∫
0

K(t, σ) · {f(φ(σ′) + ξk(σ
′))− f(φ(σ′))}dσ , (8.44)

where σ′ = σ − τ . The evaluation of the curly bracket in (8.44), with f(φ)
given by (8.3), in the limit of small | ξk | can be done by close analogy with
that of the r.h.s. of (5.109). Using the intermediate steps (5.110)–(5.115), we
obtain (see also Exercise 1)

ξ̇j(t) + γ
′ [(φ(t) + ξj(t))mod 2π − φ(t)mod 2π]

=
∑
k

Ajk

t∫
0

K(t, σ)
∑
n

d

dσ
δ(σ − τ − tn)dσξk(tn)φ̇(tn)

−1 . (8.45)

For a stationary phase-locked state, we may replace φ̇(tn) with φ̇(t0). It
remains to evaluate the square bracket on the l.h.s. of (8.45) for small | ξj |.
This was done in Sect. 7.3 with the result

[...] = ξj(t)− 2πφ̇(t0)
−1
∑
n=0

δ(t− tn)ξj(tn) . (8.46)

We are now in a position to write down an important first result of the
transformed (8.44). Incidentally, to arrive at a concise presentation, we use
on both sides of (8.44) the vector notation

ξ =

⎛
⎜⎜⎜⎝
ξ1
ξ2
...
ξL

⎞
⎟⎟⎟⎠ , (8.47)

and the matrix

Ã = φ̇(t0)
−1 (Ajk) . (8.48)

On the r.h.s. of (8.45), we make use of (8.42) and put

tn′ =M∆+ tn , (8.49)

or equivalently

n′ =M + n . (8.50)
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Correspondingly, we replace n by n′−M in (8.45). Finally, we drop the prime
of n′. With the abbreviation

γ̂ = γ′2πφ̇(t0)
−1 (8.51)

we obtain, after a slight rearrangement, instead of (8.45) our final equation

ξ̇ + γ′ξ = Ã

t∫
0

K(t, σ)
∑
n

d

dσ
δ(σ − τ ′ − tn)ξ(tn−M )dσ

+ γ̂
∑
n=0

δ(t− tn)ξ(tn) . (8.52)

We now turn to the solution of this equation and use, in a first step, the
Green’s function method to obtain

ξ(t) = Ã

t∫
0

e−γ
′(t−s)ds

s∫
0

K(s, σ)
∑
n

d

dσ
δ(σ − τ ′ − tn)ξ(tn−M )dσ

+γ̂

t∫
0

e−γ
′(t−σ)

∑
n

δ(σ − tn)ξn(tn)dσ + ξhom(t) , (8.53)

where ξhom(t) is a solution of the homogeneous (8.52). Clearly, to determine
ξ(t) as a function of time, we need only the values of ξ at discrete times tn.
Therefore on both sides of (8.53) we put t = tn. This converts (8.53) into
a set of linear equations with time-independent coefficients. For the solution
we can make the usual hypothesis

ξ(tn) = ξ0β
n . (8.54)

The evaluation of the first term (containing the double integral) on the r.h.s.
of (8.53) depends on the explicit form of K(t, σ). We first use (cf. (8.15) with
α = 1)

K(t, σ) ≡ K1(t, σ) = e
−γ(t−σ) . (8.55)

Because of the (derivative of the) δ-function, the integrals can easily be
performed and we obtain for t = tN = N∆, N an integer, 0 < τ

′ < ∆,

R1 ≡ first term r.h.s. (8.53) = − Ã
N−1∑
n=0

ξ(tn−M )
1

γ′ − γ

(
γe−γ(t−tn−τ

′)

− γ′e−γ
′(t−tn−τ

′)
)
. (8.56)

To evaluate the sum, we use the hypothesis (8.54), which yields

R1 = −Ãξ0β
−M

{
γ

γ′ − γ
· eγτ

′ βN − e−γN∆

βeγ∆ − 1

−
γ′

γ′ − γ
eγ
′τ ′ β

N − e−γ
′N∆

βeγ
′∆ − 1

}
. (8.57)
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The evaluation of the second term in (8.53) is still simpler and yields

γ̂
βN − e−γ

′N∆

βeγ
′∆ − 1

ξ0 . (8.58)

Using the results (8.57) and (8.58), we obtain for (8.53) our final result

ξ0β
N = − Ãξ0β

−M

{
γ

γ′ − γ
eγτ

′ βN

βeγ∆ − 1

−
γ′

γ′ − γ
eγ
′τ ′ βN

βeγ
′∆ − 1

}
(8.59)

+ γ̂
βN

βeγ
′∆ − 1

ξ0 + ξhom(tN ) + terms independent of β
N .

This equation has been derived using K = K1 in (8.53), as shown in (8.55).
The result for K = K2(t, σ) = −dK1/dγ can be immediately obtained by
replacing R1 with

R2 = −dR1/dγ . (8.60)

We leave it as an exercise to the reader to perform the steps explicitly. In the
case of non integer values of α in Kα, we can proceed correspondingly using
fractal derivatives (see Appendix 2 to Chap. 8).
In order to see how to extract the eigenvalues β from (8.59), we consider

a related example.

Exercise 1. Derive (8.45) in detail.

8.6 Example of the Solution of an Eigenvalue Equation
of the Form of (8.59)

The determination of the eigenvalues β (or equivalently Γ with β = eΓ ) is
somewhat tricky because we are dealing with an integral equation instead of
the original differential equations for ψ and φ. To elucidate the problem, let
us consider the differential equation

ẋ+ Γx = 0 (8.61)

with its solution

x = x0e
−Γt . (8.62)

We write (8.61) in a different form

ẋ+ γx = −γ′x (8.63)
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with

γ + γ′ = Γ . (8.64)

Using the by now well-known Green’s function, the formal solution of (8.63)
reads

x(t) =

t∫
0

e−γ(t−σ)(−γ′)x(σ)dσ + αe−γt , (8.65)

where αe−γt is the solution of the “homogeneous” (8.63). Because we are
seeking a solution of the form of (8.62), we make the hypothesis

x(t) = x̂0e
−Γ̂ t (8.66)

and insert it into (8.65). The resulting integral can be easily solved and we
obtain

x̂0e
−Γ̂ t = x̂0(−γ

′)
1

γ − Γ̂
e−Γ̂ t + x̂0

γ′

γ − Γ̂
e−γt + αe−γt . (8.67)

As the reader will note, the structure of this equation is entirely analogous
to that of (8.59), namely the r.h.sides contain terms βN (↔ eΓt) and terms
of a different type. Thus when solving the “puzzle” of (8.67), we know how

to deal with (8.59). Comparing the coefficients of eΓ̂ t or of e−γt in (8.67), we
obtain

1 = −
γ′

γ − Γ̂
(8.68)

and thus

Γ̂ = γ + γ′ , (8.69)

as well as

α = −x̂0
γ′

γ − Γ̂
(8.70)

and thus

α = x̂0 . (8.71)

In the context of (8.59), we are only interested in the eigenvalues β. Thus our
example provides us with the rule: The terms ξhom(t) and terms independent
of βN cancel each other, and we need only to take terms with powers of β
into account.
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8.7 Stability of Phase-Locked State I: The Eigenvalues
of the Lighthouse Model with γ� �= 0

Dropping the last two terms in (8.59) and dividing both sides by βN (N ar-
bitrary), we obtain our fundamental eigenvalue equations (for the lighthouse
model, α = 1, but γ′ �= 0)

ξ0 = − Ãξ0β
−M
{ γ

γ′ − γ
eγτ

′ 1

βeγ∆ − 1

−
γ′

γ′ − γ
eγ
′τ ′ 1

βeγ
′∆ − 1

}
+ γ̂

1

βeγ
′∆ − 1

ξ0 . (8.72)

The most elegant way to solve this is to choose ξ0 as the solution to

Ãξµ = λµξµ , (8.73)

where we distinguish the eigenvalues and eigenvectors by the index µ. Choos-
ing ξ0 this way, we can transform (8.72) into

1 = − λµβ
−M

{
γ

γ′ − γ
eγτ

′ 1

βeγ∆ − 1
−

γ′

γ′ − γ
eγ
′τ ′ 1

βeγ
′∆ − 1

}
+ γ̂

1

βeγ
′∆ − 1

. (8.74)

Putting γ′ = γ̂ = 0, we obtain the result for the original lighthouse model

1 = λµβ
−M eγτ

′

βeγ∆ − 1
, (8.75)

from which we deduce the equation

βM+1 − βMe−γ∆ = λµe
γτ ′−γ∆ . (8.76)

We discussed the solutions of this type of equation in Sect. 5.7. Let us turn to
(8.74). In order not to overload our discussion, we assume γ′ �= γ, τ ′ = 0, and

λµ is small. Because of the terms βe
γ∆−1 and βeγ

′∆−1 in the denominators,
we seek three types of solutions that use the resulting singularities for

β1 with β1e
γ∆ − 1 = ε1 , (8.77)

β2 with β2e
γ′∆ − 1 = ε2 , (8.78)

β3 �= β1, β2 . (8.79)

We assume ε1 is small and obtain in (8.74) up to order ε1

ε1e
−γ∆M = −λµ

1

γ′ − γ

(
γ −

γ′ε1

e(γ
′−γ)∆ − 1

)
+ γ̂

ε1e
−γ∆M

e(γ
′−γ)∆ − 1

, (8.80)
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or

ε1 =

(
e−γ∆M −

λµ · γ′ + γ̂e−γ∆M

e(γ
′−γ)∆ − 1

)−1
γλµ
γ − γ′

. (8.81)

We may determine β2 similarly and obtain

ε2 =

(
e−γ

′∆M + λµ
γ

e(γ−γ
′)∆ − 1

)−1(
λµ

γ′

γ′ − γ
+ γ̂e−γ∆M

)
. (8.82)

In order to obtain the third class of roots, β3, we assume that in a self-
consistent manner

| β3 | e
γ′∆ � 1, | β3 | e

γ∆ � 1 . (8.83)

Again for τ ′ = 0, we obtain from (8.74)

βM3 = λµ(1 + γ̂)
−1 , (8.84)

which possesses the M roots

β3 =
M
√
λµ(1 + γ̂)−1e

2πij/M , j = 0, ...,M − 1 . (8.85)

Because of these roots, oscillatory damping occurs. The above results can be
further simplified, for instance for

e(γ
′−γ)∆ − 1 ≈ (γ′ − γ)∆. (8.86)

It is interesting to study the impact of the damping of the action potential,
which is determined by γ′, and to compare the eigenvalues β for γ′ �= 0
with those for γ′ = 0. First of all, by γ′ �= 0 a new eigenvalue (connected
with new eigenvectors) is introduced, namely β2. At least for small | λµ |, it
leads to damping. The other eigenvalues β1, β3 correspond to (5.169), (5.170),
respectively. In β3, a γ

′ �= 0 increases the damping, while the changes of β2
due to γ′ �= 0 depend in a somewhat intricate way on λµ.

8.8 Stability of Phase-Locked State II:
The Eigenvalues of the Integrate and Fire Model

We now turn to the integrate and fire model, i.e.

α = 2 and γ′ �= 0 . (8.87)

As mentioned above (cf. (8.60)), we can obtain the eigenvalue equation by
differentiating the curly bracket on the r.h.s. of (8.74) with respect to γ,

multiplied by (−1). Since the eigenvalues β are only weakly influenced by eγτ
′

and eγ
′τ ′ , we put these factors equal to unity. After a slight rearrangement
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of terms, we obtain

1 = β−M+1λµ

⎧⎨
⎩ γ′

(γ′ − γ)2

(
eγ
′∆ − eγ∆

)
(βeγ∆ − 1)

(
βeγ

′∆ − 1
) (8.88)

−
γ

γ′ − γ

∆

(βeγ∆ − 1)2

}
+ γ̂

1

βeγ
′∆ − 1

.

In the cases M = 0 and M = 1, this is an equation of third order that
can be solved using Cardano’s formula. For M > 1, (8.88) must be solved
numerically. In all cases, for M ≥ 0, we can obtain the eigenvalues to a good
approximation, however, provided γ′ and γ are sufficiently far away from each
other and γ̂ � 1, | λµγ∆ | and | λµγ′∆ | � | γ′ − γ |. Since the resulting
expressions are still rather complicated, we first summarize the salient results.
Again, as in the foregoing section, we obtain three classes of eigenvalues
β1, β2, β3, corresponding to (8.77), (8.78) and (8.85). The main qualitative
difference consists in a splitting of β1 into two eigenvalues, cf. (8.99). While
β1 (8.77) implied pure damping, the new eigenvalues β1 (cf. (8.101)) imply
oscillations provided λµ < 0. Let us now derive and discuss the eigenvalues in
more detail. In order not to overload our treatment of (8.88), we approximate

eγ
′∆ − eγ∆ using (γ′ − γ)∆. (8.89)

Using this approximation in (8.88) and rearranging terms, we obtain(
1− γ̂

1

βeγ
′∆ − 1

)
βM−1 =

λγ′∆

γ′ − γ

1

(βeγ∆ − 1)
(
βeγ

′∆ − 1
)

−
λγ∆

γ′ − γ

1

(βeγ∆ − 1)2
. (8.90)

Incidentally, we drop the index µ of λµ and will add it only at the end. We
seek the first kind of eigenvalues β1 (for λ fixed) using the hypothesis

β1 = e
−γ∆(1 + ε1) , (8.91)

where ε1 is a small quantity. Inserting (8.91) into (8.90) yields(
1− γ̂

1

e(γ
′−γ)∆ − 1

)
e−γ∆(M−1)ε21

=
λγ′∆

γ′ − γ

ε1

e(γ
′−γ)∆(1 + ε1)− 1

−
λγ∆

γ′ − γ
. (8.92)

Because of (8.51) and φ̇ ≈ 2π/∆, we put γ̂ = γ′∆. With (8.89), the bracket
on the l.h.s. of (8.92) yields (up to higher order in γ′∆, γ∆)

−
γ

γ′ − γ
. (8.93)
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Under the assumption

ε1e
(γ′−γ)∆ <| e(γ

′−γ)∆ − 1 | ≈ | γ′ − γ | ∆ (8.94)

we may expand the r.h.s. of (8.92) up to ε21. After a rearrangement of terms
and multiplying the resulting equation by γ′−γ, we finally obtain a quadratic
algebraic equation of the form

aε21 − bε1 + c = 0 , (8.95)

where

a = λγ′
e(γ

′−γ)∆

(γ′ − γ)2∆
− γe−γ∆(M−1) , (8.96)

b =
λγ′

(γ′ − γ)
, (8.97)

c = λγ∆ . (8.98)

Inserting (8.96)–(8.98) into the standard formula for the solution of (8.95),
i.e.

ε1 =
b

2a
±

√
b2

4a2
−
c

a
(8.99)

yields rather lengthy expressions so that we prefer to discuss some general
aspects. We note that there are two branches, ±, of the solutions. Provided

γ′ � γ , (8.100)

(8.100) reduces in its lowest approximation to

ε1 = ±
√
∆λ eγ∆(M−1)/2 . (8.101)

Note that ε1 becomes imaginary for λ < 0, and thus the eigenvalue β1 be-
comes complex, leading to an oscillatory relaxation process. If, on the other
hand,

γ � γ′ , (8.102)

the evaluation of (8.99) and its discussion become rather involved. The case
M = 1, γ → 0, is, however, particularly simple and the quadratic equation
(8.88) for β can be easily solved, yielding

β = 1±
√
λ∆ e−γ

′∆/2 , (8.103)

which, for λ > 0, implies an instability.
Let us turn to the second class of eigenvalues, where we put

β2 = e
−γ′∆(1 + ε2) , (8.104)
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where ε2 is assumed to be small. Because of the kind of singularity, it suffices
to retain terms up to ε2 in (8.88). The straightforward result reads

ε2 =

(
e−γ

′∆(M−1) +
λγ

(γ′ − γ)3∆

)−1
×

(
∆e−γ

′∆(M−1) −
λ

(γ′ − γ)2

)
γ′ . (8.105)

Again, a number of special cases may be discussed, which is left to the reader
as exercise.
Finally, we discuss the third class of solutions β3. Under the assumptions

| β3e
γ′∆ | � 1 , | β3e

γ∆ | � 1 (8.106)

(8.90) reduces to

(1 + γ̂)βM−1 = λ∆ (8.107)

which possesses the by now well-known complex solutions

β = M−1
√
(1 + γ′∆)−1λ∆ e2πij/(M−1), j = 0, ...,M − 2 (8.108)

forM > 1. The casesM = 0 andM = 1 need not be considered here, because
they are covered by the solutions β1, β2 (cubic equations!). In all the above
results for β1, β2, β3, we must finally replace λ by λµ. At any rate, in all cases,
except (8.102), stability of the phase-locked state is guaranteed if | λµ∆ | is
small enough. This condition can be fulfilled if either the coupling between
the neurons or ∆ ∝ φ̇−1 is small enough. φ̇−1 small can be achieved if the
external signal is large.

Exercise. Derive the eigenvalue equation corresponding to (8.88) for the
kernel Kα(t, σ) with α = 1.5.
Hint: Start from (8.74) and use the formalism of fractal derivatives (Appendix
2 to Chap. 8).

8.9 Generalization to Several Delay Times

In order to generalize the fundamental eigenvalue (8.88), that we derived for
a single delay time to several delay times τ
, we have to start from (8.26). It
is a simple matter to recognize that all we have to do are two things:

1) We put
τ
 =M
∆+ τ

′

,M
 an integer, 0 ≤ τ

′

 < ∆,

and neglect τ ′
.

2) While in our derivation of (8.88) we considered only a single τ
 in (8.26),
we now take all terms of

∑

Ajk,
 ... in (8.26) into account. We introduce the

matrices
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Ã
 = (Ajk,
) φ̇(t0)
−1 . (8.109)

The general eigenvalue equation reads

ξ(0) =
[∑



Ã


{ γ′

(γ′ − γ)2

(
eγ
′∆ − eγ∆

)(
1− eγ

′∆β
)−1 (

1− eγ∆β
)−1

−
γ∆

γ′ − γ
eγ∆

(
1− eγ∆β

)−2 }
β−M�+1 − γ̂

(
1− eγ

′∆
)−1 ]

ξ(0) .

(8.110)

Since the vector ξ is high-dimensional, this matrix equation is high-dimen-
sional also and cannot be solved explicitly except for special cases or by
numerical procedures. A considerable simplification can be achieved, however,
if all matrices can be simultaneously diagonalized. This is, for instance, the
case if Ã
 depends on the difference of the indices j and k

Ãjk,
 = ã
(j − k) . (8.111)

In this case the eigenvectors of the corresponding matrix are plane waves
under the assumption of periodic boundary conditions (cf. Sect. 6.9). We
denote the eigenvalues of Ã
 by λµ
 and obtain from (8.110)

1 =
∑



a
,1

(
1− eγ

′∆β
)−1 (

1− eγ∆β
)−1
β−M�+1

−
∑



a
,2
(
1− eγ∆β

)−2
β−M�+1 − γ̂

(
1− eγ

′∆β
)−1

(8.112)

with

a
,1 = λµ

γ′

(γ′ − γ)2

(
eγ
′∆ − eγ∆

)
, (8.113)

a
,2 = λµ

γ

γ′ − γ
∆eγ∆ . (8.114)

The solution of (8.112) is equivalent to looking for the zeros of a polynomial.

8.10 Time-Dependent Sensory Inputs

In order to study the phase-locked state and its stability, we assumed that
all sensory inputs, i.e.

Cj(t) ∝ pext (8.115)

are equal and time-independent. Now we wish to discuss the case in which
all inputs are still equal but time-dependent

Cj = C(t) . (8.116)
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Then the eigenvalues of the stability analysis allow us to estimate what
happens if C varies in time. On general grounds we may state that if C(t)
changes slowly, compared to the time constants inherent in the eigenvalues,
we may assume that phase locking persists, i.e. that the common phase follows
adiabatically the changes of C. If C changes abruptly, complicated transients
will occur that require the knowledge of the eigenvectors, which is, however,
beyond the scope of the present book. If for some time all Cj have been equal
and then suddenly adopt different values,

Cj = C →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C1
C2
...
CN ,

(8.117)

phase locking will break down. This is actually observed in experiments on
phase locking between neurons of the visual cortex (cf. Chap. 3).

8.11 Impact of Noise and Delay

The combined influence of noise and delay was studied in detail in Chap. 6,
where we examined the lighthouse model. The treatment of the integrate
and fire model is basically the same, but the determination of the necessary
eigenvectors is far more complicated and beyond the scope of this book. A few
general comments may therefore suffice here.
By analogy with the result (6.202), we may expect that the time-

dependence of the correlation function between neurons at times tN and
tN ′ is essentially determined by a superposition of powers of the eigenvalues,
i.e. βN−N

′
. While such delays may be experimentally observable, the deter-

mination of the coefficients may present a major problem and shall not be
discussed here further.

8.12 Partial Phase Locking

In a complex neural network it may happen that only a subgroup of neurons
becomes phase-locked, whereas other neurons are unlocked. So let us consider
as an example a group of phase-locked neurons, whose indices we denote by
J,K, and the remaining neurons, whose indices we denote by j′, k′. In such
a case, the original equations of the full network (without time delays)

φ̇j(t) + γ
′φj(t)mod2π =

∑
k

AjkG (φk(t)) + Cj + F̂j(t) (8.118)
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can be decomposed into the two groups of equations

φ̇J(t) + γ
′φJ(t)mod2π =

∑
K

AJKG (φK) + CJ + F̂J(t)

+
∑
k′

AJk′G (φk′) , (8.119)

where

φJ = φK = φ , (8.120)

and

φ̇j′(t) + γ
′φj′(t)mod2π =

∑
k′

Aj′k′G (φk′) + Cj′ + F̂j′

+
∑
K

Aj′KG (φ) . (8.121)

Since the neurons with indices j′, k′ are not phase-locked, in (8.119) they act
as some kind of incoherent noise source on the phase-locked neurons. The
noise source is represented by the last sum in (8.119). On the other hand,
the last term in (8.121) acts as a coherent driving force. Depending on the
coefficients Aj′K , this force may or may not be important for the behavior
of the neurons with indices j′. If the latter force becomes too strong, one
may expect that also the hitherto unlocked neurons will become locked to
the first group and the last term in (8.119) will lose its character as a noise
term. Clearly, our approach can include time-delays.

8.13 Derivation of Pulse-Averaged Equations

Our starting point is the set of (8.1)–(8.6), from which we will derive equations
for quantities that are averages over a time interval T that contains several
pulses. For the convenience of the reader we repeat the basic equations but
drop the fluctuating forces Fψ,m, Fφ,j , because we assume that their time-
averages vanish. The equations for the dendritic currents for α = 2 (the
integrate and fire model) then read(

d

dt
+ γ

)α
ψm(t) =

∑
k

amkPk (t− τkm) , (8.122)

where the pulses are represented in the form

Pk(t) = f(φk(t)) =
∑
n

δ (t− tnk) , (8.123)

where tnk is the nth firing time of axon k. The equations for the phase angles
φj read



8.13 Derivation of Pulse-Averaged Equations 169

φ̇j(t) + γ
′φj(t) mod 2π

= S

(∑
m

cjmψm(t− τ
′
mj) + pext,j(t), Θj

)
. (8.124)

The average of the first term on the l.h.s. of (8.124) over time T yields

1

T

t+T∫
t

φ̇j(t
′)dt′ =

1

T
(φj(t+ T )− φj(t)) , (8.125)

or

Nj2π/T ≡ 2πωj , (8.126)

where Nj is the number of axonal pulses in interval T and ωj is the pulse
rate. The size of the second term on the l.h.s. of (8.124) can be estimated as
follows. Since, according to its definition,

φ(t) mod 2π , (8.127)

runs in the interval

(0, 2π) , (8.128)

we obtain as an order of magnitude of the phase average

φ(t) mod 2π = π . (8.129)

In the following we assume

γ′/2� ωj , (8.130)

which is fulfilled if the external input p is large enough, but S is not yet
saturated.
We turn to the evaluation of the r.h.s. of (8.124). If the pulse rate changes

only slowly, we may use the approximation

S(X) ≈ S(X) , (8.131)

where, in view of (8.124),

ψm(t− τ) =
1

T

t−τ+T∫
t−τ

ψm(t
′)dt′ =

1

T

t+T∫
t

ψm(t
′ − τ)dt′ (8.132)

and

pext,j(t) =
1

T

t+T∫
t

pext,j(t
′)dt′ . (8.133)
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It remains to establish an equation for ψm. To this end, using the Green’s
function Kα(t, σ), we transform (8.122) into

ψm(t) =
∑
k

amk

t∫
0

Kα(t, σ)
∑
n

δ(σ − tnk)dσ , (8.134)

over which we take the average

ψm(t) =
∑
k

amk
1

T

t+T∫
t

dt′
t′∫
0

Kα(t
′, σ)

∑
n

δ(σ − tnk)dσ . (8.135)

(For simplicity we first treat the case τkm = 0.) Because of the δ-functions in
(8.135), the integral over σ can be immediately evaluated so that we are left
with considering

1

T

t+T∫
t

dt′Kα (t
′, tnk) . (8.136)

We use the fact that Kα is a peaked function. Choosing T large enough and
neglecting boundary effects, we obtain

(8.136) =

{
Kα = const. if tnk ε (t, t+ T )
= 0 otherwise .

(8.137)

Making use of (8.135)–(8.137), we readily obtain

ψm(t) =
∑
k

amkKα
1

T
(number of pulses of axon k in (t, t+ T ))

=
∑
k

amkKαωk(t) . (8.138)

In order to correct for the neglect of τkm in (8.134), we finally have to replace
t with t− τmk on the r.h.s. of (8.138). This leads us to our final result

ψm(t) =
∑
k

amkωk (t− τkm) . (8.139)

In conclusion, we may formulate the equations for the pulse rates ωj , where
we use (8.125), (8.126), (8.130)–(8.133)

ωj(t) =
1

2π
S

(∑
m

cjmψm(t− τ
′
mj) + pext,j(t), Θj

)
. (8.140)

Equations (8.139) and (8.140) constitute our final result, which is a general
form of the Jirsa–Haken equation that we will discuss in Chap. 10. It is
an easy matter to eliminate the dendritic currents from (8.139), (8.140) by
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inserting (8.139) into (8.140)

ωj(t) =
1

2π
S

(∑
mk

cjmamkωk(t− τkm − τ
′
mj) + pext,j(t), Θj

)
. (8.141)

When properly interpreted, these equations lead to the Wilson–Cowan equa-
tions (cf. Chap. 10) under the assumption that the relaxation time of the
axonal pulse rates is small.
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In the following we will be concerned with the evaluation of (8.35) and here
with the first double integral for t = tn+1. We first note an important property
of the kernel

Kα(t− σ) = (t− σ)
α−1e−γ(t−σ) , (8.142)

which reads for α = 1

K1(t− σ) = e
−γ(t−σ) , (8.143)

and for α = 2

K2(t− σ) = (t− σ)e
−γ(t−σ) . (8.144)

Quite obviously, the kernel (8.144) can be obtained from (8.143) by means of
a differentiation with respect to γ,

K2 = −
∂K1
∂γ
. (8.145)

A similar relationship holds even if α is a non-integer number. In such a case,
by use of a fractal derivative (see Appendix 2 to Chap. 8), we may write

Kα = (−1)
1−α d

α−1

dγα−1
K1, α an integer or non-integer . (8.146)

Because of (8.143) and (8.145), it will be sufficient to first consider only the
following expression

tn+1∫
tn

e−γ
′(tn+1−σ

′)dσ′
σ′∫
0

e−γ(σ
′−σ)

∑
n′

δ(σ − τ − tn′)︸ ︷︷ ︸∑
n′′

δ(σ−τ ′−n′′∆)

dσ . (8.147)

In the second line in (8.147), we have chosen τ ′ and n′′ in such a way that
τ ′ lies within ∆. Exchanging the sequence of integrations and observing the
integration regions,

tn ≤ σ
′ ≤ tn+1 (8.148)
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and

0 ≤ σ ≤ σ′ , (8.149)

we may decompose (8.147) into

tn∫
0

dσ

tn+1∫
tn

dσ′ +

tn+1∫
tn

dσ

tn+1∫
σ

dσ′ , (8.150)

where the integrands are the same as in (8.147). We first evaluate the first
double integral in (8.150), namely

(I) =

tn∫
0

dσ

tn+1∫
tn

dσ′
∑
n′′

δ(σ − τ ′ − n′′∆)e−γ
′(tn+1−σ

′)e−γ(σ
′−σ) . (8.151)

Performing the integration over σ′ in (8.151) yields

(I) =

tn∫
0

dσ
∑
n′′

δ(σ − τ ′ − n′′∆)

×e−γ
′tn+1+γσ

[
1

γ′ − γ

(
e(γ

′−γ)tn+1 − e(γ
′−γ)tn

)]
. (8.152)

We introduce a new integration variable by

σ = σ̃ + τ ′ , (8.153)

which transforms (8.152) into

(I) =

tn−τ
′∫

−τ ′

dσ̃
∑
n′′

δ(σ̃ − n′′∆)e−γ
′tn+1+γσ̃+γτ

′
[...] , (8.154)

where the square bracket is the same as in (8.152). Because of the δ-function,
the integral in (8.154) can be immediately evaluated so that

(I) =

(n−1)∑
n′′=0

eγ∆n
′′
e−γ

′tn+1+γτ
′
[...] . (8.155)

The sum in (8.155) is a geometric series that can immediately be evaluated
to yield

(I) =
eγ∆n − 1

eγ∆ − 1
eγτ

′ 1

γ′ − γ

(
e−γtn+1 − e−γtne−γ

′(tn+1−tn)
)
, (8.156)
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from which, in the limit tn, tn+1 →∞, only

(I) =
eγτ

′

eγ∆ − 1

1

γ′ − γ

(
e−γ∆ − e−γ

′∆
)

(8.157)

remains. We now evaluate the second part of (8.150), i.e.

(II) =

tn+1∫
tn

dσ

tn+1∫
σ

dσ′
∑
n′′

δ(σ − τ ′ − n′′∆)e−γ
′(tn+1−σ

′) · e−γ(σ
′−σ) , (8.158)

which can be written as

(II) = e−γ
′tn+1

tn+1∫
tn

dσ
∑
n′′

δ(σ − τ ′ − n′′∆)eγσ
tn+1∫
σ

dσ′ · e(γ
′−γ)σ′ . (8.159)

The evaluation of the second integral yields

(II) = e−γ
′tn+1

tn+1∫
tn

dσ
∑
n′′

δ(σ − τ ′ − n′′∆)eγσ[...] , (8.160)

where the square bracket is defined by

[...] =
1

γ′ − γ

(
e(γ

′−γ)tn+1 − e(γ
′−γ)σ

)
. (8.161)

Observing the limits of integration

tn ≤ σ = τ
′ + n′′∆ ≤ tn+1 , (8.162)

we note that because of the δ-function the only contribution to this integral
stems from

σ = tn + τ
′ . (8.163)

Thus (8.160) is transformed into

(II) = e−γ
′tn+1eγ(tn+τ

′) 1

γ′ − γ

(
e(γ

′−γ)tn+1 − e(γ
′−γ)(tn+τ

′)
)
. (8.164)

In the limit

tn, tn+1 →∞ (8.165)

this reduces to

(II) =
1

γ′ − γ

(
e−γ∆+γτ

′
− e−γ

′∆+γ′τ ′
)
. (8.166)
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With (8.157) and (8.166) our final result reads

(I) + (II) = eγτ
′

eγ∆−1
1

γ′−γ

(
e−γ∆ − e−γ

′∆
)

+ 1
γ′−γ

(
e−γ∆+γτ

′
− e−γ

′∆+γ′τ ′
)
. (8.167)

In the special case

γ∆� 1, γ′∆� 1 (8.168)

and thus

γτ ′ � 1, γ′τ ′ � 1 . (8.169)

(8.167) readily reduces to

(8.167) = 1/γ . (8.170)
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In the following we want to show how to introduce and deal with fractal
derivatives at least as they are needed for the extension of the results of
Chap. 8 to non-integer positive values of α in (8.17). In the following we will
denote non-integers by α and β and we want to define

dα

dxα
f(x) = ? . (8.171)

We require that the result of the differentiation coincides with the usual
results if α is an integer. Furthermore, we require

dα

dxα
dβ

dxβ
f(x) =

dα+β

dxα+β
f(x) . (8.172)

A convenient function for our purposes is

f(x) = e−γx . (8.173)

In accordance with the requirement (8.172), we define

dα

dxα
eγx = (−γ)αe−γx . (8.174)

By means of (8.173), we can construct other functions, e.g.

1

x
=

∞∫
0

e−γxdγ , x > 0 . (8.175)

The application of the rule (8.174) transforms (8.175) into

dα

dxα
1

x
=

∞∫
0

(−γ)αe−γxdγ . (8.176)

Introducing the new variable

y = −γx , (8.177)

(8.176) is transformed into
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dα

dxα
1

x
= x−α−1

0∫
−∞

yαeydy . (8.178)

By partial integration of the integral in (8.178), we obtain for α > 1

0∫
−∞

yαeydy = yαey |0−∞ −α

0∫
−∞

yα−1eydy . (8.179)

Introducing the abbreviation

0∫
−∞

yαeydy = Γ̃ (α) , (8.180)

we thus obtain the recursion relation

Γ̃ (α) = −αΓ̃ (α− 1) . (8.181)

This is strongly reminiscent of the recursion relation for the factorial

n! =

∞∫
0

xne−xdx , (8.182)

where by partial integration we find

n! = −xne−x |∞0 +n

∞∫
0

xn−1e−xdx , (8.183)

or, denoting the r.h.s. of (8.182) by Γ (n) the relation

Γ (n) = nΓ (n− 1) , (8.184)

or for noninteger α

Γ (α) = αΓ (α− 1) . (8.185)

Γ is nothing but the conventional Γ -function. In order to connect (8.181)
and (8.185), we put

Γ̃ (α) = (−1)αΓ (α) . (8.186)

Using (8.186) in (8.178), we find our final formula for the derivatives of 1/x

dα

dxα
1

x
= (−1)αΓ (α)x−α−1 . (8.187)

Note that within our formalism (8.187) may become complex because of
(−1)α. This is, however, a fully consistent formalism for our present purposes.
In this way also derivatives of any negative power of x can be obtained.
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Another fractal derivative needed in Chap. 8 is that of the function

1

x
eλx =

λ∫
−∞

eγxdγ, x > 0 , (8.188)

where the l.h.s. has been expressed by the integral on the r.h.s. Proceeding
as before, we obtain

dα

dxα

(
1

x
eλx
)
=

λ∫
−∞

γαeγxdγ , (8.189)

and using a new integration variable

dα

dxα

(
1

x
eλx
)
= x−α−1

λ/x∫
−∞

yαeydy . (8.190)

The integral of the r.h.s. now obeys the recursion relation

Z(α,Λ) = ΛαeΛ − αZ(α− 1, Λ) (8.191)

as can be checked by partial integration. We have put

Λ = λ/x . (8.192)

By use of (8.191), any function Z for arbitrary α can be reduced to an
expression that only contains

Z(β,Λ), 0 ≤ β < 1 . (8.193)

The recursion relation (8.191) can further be simplified by the hypothesis

Z(α,Λ) = eΛG(α,Λ) (8.194)

that transforms (8.191) into

G(α,Λ) = Λα − αG(α− 1, Λ) . (8.195)

Exercise. Determine the fractal derivatives of

(x− c)−n, n > 0 and an integer,
(x− c)−1e−ax,
(x− c1)−1(x− c2)−1e−ax.

Hints: Write (dα/dxα)(1/xn) as (dα/dxα)(dn/dxn)(1/x)(−1)n.
Decompose the product of the fractions into a sum.



Part III

Phase Locking, Coordination
and Spatio-Temporal Patterns



9. Phase Locking via Sinusoidal Couplings

This chapter deals with biological systems composed of elements whose states
can be described by phase variables. It will be assumed that the coupling
between the elements is determined by sine-functions of their relative phases.
As examples of such systems, we treat two neurons (Sect. 9.1), chains of
neurons in the lamprey (Sect. 9.2), correlated movements between index
fingers (Sect. 9.3) as a paradigm of limb coordination, and, more generally,
quadruped motion (Sect. 9.4). In Sect. 9.5 we return to the neuronal level
dealing with neuronal groups. As we will see, all these cases share a common
mathematical ground.

9.1 Coupling Between Two Neurons

As we outlined in Chap. 2, many types of neurons generate an ongoing spike
train, or a sequence of spike bursts in response to a constant stimulus. In
Chap. 5, we studied the interaction between two such neurons, whereby each
neuron was modelled as a phase oscillator. The formulation for the interaction
between the two neurons took into account the actual spike trains as well as
the dynamics of the dendritic currents. There is a still simpler approach to the
treatment of the coupling between neurons that are again described by phase
oscillators, but where the coupling is a smooth periodic function of the phase
differences between the two neurons. The modelling of coupled nonlinear
oscillators by means of phase oscillators with sinusoidal phase-coupling has
a long history. It appeared in radio engineering, later in laser physics and
was applied to chemical waves by Kuramoto and to the modelling of neurons
by Cohen and others. As has been shown in the literature, such a coupling
can be quite a good approximation for neuronal interaction under specific
circumstances. Here we will consider such a phase-coupling model at two
levels, namely at a level that refers to spiking neurons, and at a level where
we are dealing with spike rates. These latter equations are special cases of
the spike averaged equations we derived in Sect. 8.13. Let us elucidate the
corresponding formalism that applies to both cases in more detail. The phases
of the phase oscillators obey the equations

dφj
dt
= ωj , j = 1, 2 , (9.1)
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where ωj is the rotation speed of the phase. The coupling between the two
oscillators is taken care of by coupling functionsW that depend on the phase
difference. Thus (9.1) has to be replaced by

dφ1
dt
= ω1 +W1(φ2 − φ1) (9.2)

and

dφ2
dt
= ω2 +W2(φ1 − φ2) . (9.3)

Since the processes under consideration are periodic in their phases, we as-
sume

Wj(φ+ 2π) =Wj(φ) . (9.4)

We introduce the phase difference

φ = φ2 − φ1 (9.5)

and subtract (9.2) from (9.3),

dφ

dt
= ω2 − ω1 +W2(φ)−W1(−φ) . (9.6)

Any periodic function can be represented as a Fourier series and in the present
context it has turned out that it is sufficient to use the first term only. Thus
we approximate W by means of

Wj = aj sin(φ+ σj) . (9.7)

Using (9.7), the last two terms of (9.6) can be written as

a2 sin(φ+ σ2)− a1 sin(−φ+ σ1) . (9.8)

By means of the mathematical identity

sin(α+ β) = sinα cosβ + cosα sinβ , (9.9)

and a rearrangement of terms, this expression can be cast into the form

(9.8) = (a2 cosσ2 + a1 cosσ1) sinφ+ (a2 sinσ2 − a1 sinσ1) cosφ . (9.10)

Now we wish to make use of (9.9) in the reverse direction, namely we wish
to write

(9.10) = A cosφ+B sinφ
!
= α sin(φ+ δ) , (9.11)

whereby the coefficients A and B can be immediately found by comparing
the prefactors of sinφ and cosφ. In order to apply (9.9), we put

A = α sin δ , B = α cos δ , (9.12)
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Fig. 9.1. The potential function V (φ̃) = −∆φ̃− α cos φ̃: a) for |α| > ∆, example
∆,α > 0; b) for |α| < ∆, example ∆,α > 0

from which we deduce

α2 = A2 +B2, or α =
√
A2 +B2 , (9.13)

as well as

A/B = tg δ, or δ = arctan(A/B) . (9.14)

Making use of (9.9), (9.12), as well as of (9.11), we can cast (9.6) with (9.7)
into the final form

dφ

dt
= ∆+ α sin(φ+ δ) , (9.15)

where

∆ = ω2 − ω1 . (9.16)

Our final step consists of introducing a new variable according to

φ̃ = φ+ δ . (9.17)

In this way, we cast (9.15) into the final form

dφ̃

dt
= ∆− α sin φ̃ = −

∂V

∂φ̃
. (9.18)

In the last equality, we have introduced a potential function V that allows us
to discuss the behavior of the phase angle φ̃ in a simple manner (see Fig. 9.1).
There are two ranges of behavior of φ̃.
If

| α |> ∆ : phase locking (9.19)

holds, we find a time-independent solution to (9.18), because the term ∆ can
be compensated by the last term α sin φ̃. If, however,

| α |< ∆ : free running (9.20)
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holds, we find a free-running solution in which the phase difference increases
over the course of time (cf. Fig. 9.1b). In the first case we immediately find

φ̃ = arc sin
∆

α
. (9.21)

As is evident from Fig. 9.1a, the phase-locking solution is stable.

9.2 A Chain of Coupled-Phase Oscillators

In this section, we present an example that refers to the spike rate level and
deals with the swimming motion of a lamprey, an eel-like vertebrate. This
problem has been examined by several authors (see references) and we follow
the nice presentation by Wilson (1999). The lamprey swims by generating
travelling waves of neural activity that pass down its spinal cord. The mod-
elling rests on the concept of what is called “a central pattern generator”. It is
defined as a neural network that produces stereotypical limit cycle oscillations
in response to a constant spike rate input. The latter is also called “the
command signal”. The signal triggers the oscillations and determines their
frequency. Its experimental counterpart can be found in the work of Shik et
al. They showed that decerebrate cats could walk or trot when their spinal
cord was excited by a constant electric input signal. Experimentally in the
case of the lamprey, it has been shown that an intact spinal cord isolated
from the rest of the body will generate rhythmic bursts of neural activity
appropriate for swimming in response to constant stimulation.
Further experiments have shown that even small sections of the spinal

cord are capable of generating rhythmic bursts of spikes in which activity
on one side alternates with that on the other. Such oscillatory networks in
the spinal segments cause alternate contraction and relaxation of the body
muscles on opposite sides of the body during swimming. Here we will not
go into the details of the local neural network, rather we wish to model
the occurrence of travelling waves by means of coupled-phase oscillators. We
consider only nearest-neighbor couplings. We then define a travelling wave as
a phase-locked solution of these equations with a constant phase difference
between the adjacent segments. Using a synaptic delay σ and denoting the
phases by Θ, the basic equations are given by

dΘ1
dt
= ω1 + aa sin(Θ2 −Θ1 + σ) , (9.22)

dΘi
dt
= ωi + aa sin(Θi+1 −Θi + σ)

+ ad sin(Θi−1 −Θi + σ) , i = 2, ..., N − 1 , (9.23)

dΘN
dt
= ωN + ad sin(ΘN−1 −ΘN + σ) , (9.24)
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where aa represents the strength of the coupling in an ascending sequence
of neurons (tail → head), whereas ad represents the corresponding couplings
for the descending sequence. A pairwise subtraction of these equations and
using

φi = Θi+1 −Θi (9.25)

leads to the equations

dφ1
dt
= ∆ω1 + aa[sin(φ2 + σ)− sin(φ1 + σ)] + ad sin(−φ1 + σ) , (9.26)

dφi
dt
= ∆ωi + aa[sin(φi+1 + σ)− sin(φi + σ)]

+ad[sin(−φi + σ)− sin(−φi−1 + σ)] , (9.27)

dφN−1
dt

= ∆ωN−1 − aa sin(φN−1 + σ)

− ad[sin(−φN−1 + σ)− sin(−φN−2 + σ)] (9.28)

with the abbreviation

∆ωi = ωi+1 − ωi . (9.29)

It is assumed that ∆ωi is determined by command signals coming from
the brain. In principle, many different states are possible, but here we are
interested in the travelling wave solution that is defined by

dφi
dt
= 0, φi = φ for all i . (9.30)

By this assumption, the equations (9.26)–(9.29) are converted into

∆ω1 + ad sin(−φ+ σ) = 0 , (9.31)

∆ωi = 0, i = 2, ..., N − 2 , (9.32)

∆ωN−1 − aa sin(φ+ σ) = 0 . (9.33)

We note that ∆ω1 and ∆ωN−1 cannot both be zero unless σ = 0 or π.
Therefore, as an example, we choose

∆ωN−1 = 0 (9.34)

and are then left with

∆ω1 = −ad sin(−φ+ σ) (9.35)

as well as

φ = −σ . (9.36)
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From (9.35) we conclude

∆ω1 = ω2 − ω1 = −ad sinσ , (9.37)

i.e. ω1 must be slightly larger than all other ωi. In this way, we obtain forward
swimming. Backward swimming can be achieved using ω1 = 0. One may show
that stability is secured if

aa > 0, ad > 0, 0 < π/4 (9.38)

holds. Thus a constant command signal to all except the first or last segment
generates a travelling wave, and by sending a slightly larger signal to the first
or last the direction of swimming can be determined.
In this analysis we have been interested in deriving travelling waves. There

is yet an additional requirement, namely that the travelling wave of neural
activity in the spinal cord has a wavelength equal to the body length of the
animal. This can be achieved by choosing ∆ω1 and ∆ωN−1 not equal to zero.
Using the fact that the number of segment equationsN is equal to the number
of segments, N = 100, the phase lag between segments must be φ = π/50,
which yields, using (9.31) and (9.33), the relations

∆ω1 = −ad sin(−π/50 + σ) (9.39)

and

∆ωN−1 = +aa sin(π/50 + σ) . (9.40)

Since the coupling strength aa and the phase shift σ are given, the frequencies
can now be determined.

9.3 Coupled Finger Movements

When humans walk or run, or horses walk, trot or gallop, these movements are
characterized by well coordinated movements of the individual limbs so that
we may speak of movement patterns. In one way or another, these patterns
reflect activity patterns of corresponding neurons in the brain, in particular
the cerebellum, and in the spinal cord. A particularly fascinating aspect is
the abrupt change between gaits. Haken (1983) suggested at an early stage
that these changes closely resemble phase transitions of synergetic systems.
In the study of such phase transitions, experiments by Kelso et al. on changes
in coordinated finger movements have played a pivotal role. In the following
we present the corresponding Haken–Kelso–Bunz model. In his experiments,
Kelso asked a subject to move his (or her) index fingers in parallel at
a comparatively slow speed (frequency). When the prescribed frequency was
increased more and more, suddenly and involuntarily, the subject switched
to a symmetric movement (Fig. 9.2).
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parallel antiparallel

Fig. 9.2. Transition from parallel to symmetric index finger movement

We describe the displacement xj of index finger j, j = 1, 2, (Fig. 9.3) by
means of a phase variable φj

xj = rj sinφj , j = 1, 2 . (9.41)

The model, in its most simple form, assumes that the relative phase

φ = φ2 − φ1 (9.42)

obeys the following equation

φ̇ = −a sinφ− b sin 2φ . (9.43)

By analogy with the mechanical example of Sect. 5.3, ((5.24) and (5.25)),
we identify φ with the coordinate of a particle that is subjected to a force
represented by the r.h.s. of (9.43). Introducing the potential function

V (φ) = −a cosφ−
1

2
b cos 2φ , (9.44)

x2x1

Fig. 9.3. Definition of displacements xj
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we cast (9.43) into the form

φ̇ = −∂V/∂φ . (9.45)

To fully exploit the analogy between the “movement” of φ and that of
a particle, we treat the case of overdamped motion. Here we may neglect the
term mẍ in (5.24), so that (5.24) with (5.25) coincides with (9.45), where,
of course, x ↔ φ. Thus, the movement of φ corresponds to that of a ball
(or particle) in a hilly landscape described by V (φ). A further crucial idea is
now lent from synergetics. It is assumed that the prescribed finger movement
frequency ω acts as a control parameter. When such a parameter is changed,
the corresponding potential “landscape” is deformed. In the present case it
is assumed that the ratio b/a in (9.44) depends on ω in such a way that
the sequence of landscapes of Fig. 9.4 results. This model can represent (or
“explain”) or has even predicted a number of experimental findings:

(1) Hysteresis. When at low ω the fingers are moved in parallel, the ball is
located in the upper minimum (“valley”). With increasing ω, this minimum
becomes flatter and flatter and, eventually, disappears. Then the ball rolls
down to the deeper valley corresponding to symmetric finger movement. On
the other hand, when starting at high ω from this position and ω is lowered,
the ball will never “jump up” to its previous higher valley. This means for
subjects: To move their fingers in the symmetric mode. Summarizing we may

V 1.000

−π π
φ

V 0.625

−π π
φ

V 0.250

−π π
φ

V 0.875

−π π
φ

V 0.500

−π π
φ

V 0.125

−π π
φ

V 0.750

−π π
φ

V 0.375

−π π
φ

V 0.000

−π π
φ

Fig. 9.4. Change of potential landscape (9.44) when b/a decreases
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say: For the same frequency ω the finger movement coordination is quite
different depending on the history.

(2) Critical slowing down. Let the prescribed ω be close to its critical value,
ωc, where the transition between one kind of movement to the other occurs.
When the movement is disturbed, e.g. by small kicks, it takes a comparatively
long time until the original, coordinated movement is restored.

(3) Critical fluctuations. According to synergetics, close to the critical control
parameter values, in the present case ωc, the variables of a system may un-
dergo pronounced fluctuations. In the present context, such fluctuations of φ
have been studied by Schöner, Haken and Kelso starting from a Langevin-type
equation by including a fluctuating force F (t) in (9.43) (see also Chap. 4). The
corresponding experiments by Kelso et al. fully demonstrate the existence of
critical fluctuations.
The experimental results (2) and (3) have a fundamental significance for

our understanding of the functioning of neural nets. The finger movement is,
after all, a manifestation of neural activity. On the other hand, the phenomena
(2) and (3) are clear manifestations of self-organization. In other words, we
are led to the conclusion that movement coordination is brought about by
self-organization and not by a motor program in whose frame (2) and (3)
would be absent. This point of view is the basis of my book “Principles of
Brain Functioning”.

9.4 Quadruped Motion

The motion of quadrupeds, such as horses, camels, and so on, has also been
modelled by means of phase oscillators, which are assumed to be located
in the spinal cord. A remarkable feature of quadruped gaits is that there
is quite a variety of them, where walking, trotting and galloping are just
a few examples. Furthermore, spontaneous transitions between such gaits
may occur.
In the following we wish to write down the basic equations and quote

some of the more interesting results. We will assume that all frequencies ω
are equal and put

Θ(t) = ωt+ φ . (9.46)

Furthermore we will introduce indices according to the scheme

right(r), left(l), front(f), hind(h) limbs , (9.47)

and denote the individual phases correspondingly

φrf , φlf , φrh, φlh . (9.48)
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Thus, for instance, φrf is the phase of the right front limb. For later purposes,
we will introduce the abbreviation

φij , i = r, l; j = f, h , (9.49)

where the first index refers to right or left and the second to front or hind.
By analogy with what we have seen before in modelling lamprey motion, it
suggests itself to introduce the following phase-coupling equations

φ̇rf = a sin(φrh − φrf ) + b sin(φlf − φrf ) + c sin(φlh − φrf ) , (9.50)

where we have written down just one equation for the right front limb as an
example. Clearly, three other equations of the same type have to be added
so that one should deal with equations that contain 12 coefficients. As was
shown by Schoener et al., because of symmetry considerations, the number
of coefficients can be reduced quite appreciably. In order to write down the
resulting equations in a concise way, we introduce a “hat notation” by means
of

î : if

{
i = r ,
i = l ,

then
î = l

î = r

ĵ : if

{
j = f ,
j = h ,

then
ĵ = h

ĵ = f .
(9.51)

When diagonal couplings between the limbs are neglected, because of sym-
metry only two coefficients are needed and the equations for the four limbs
can be written in the very concise form

φ̇ij = A1 sin
[
φij − φîj

]
+ C1 sin

[
φij − φiĵ

]
. (9.52)

Here it is assumed that the symmetry holds with respect to planes through
the body of the animal in longitudinal and transverse directions. In order to
take care of transitions between gaits in an appropriate fashion, the formu-
lation (9.52) is not sufficient, however, but must be supplemented with the
succeeding harmonic terms on the r.h.s. of (9.52) by analogy with procedures
introduced by Haken, Kelso and Bunz (see Sect. 9.3) to model changes in
finger movement patterns. The resulting equations then acquire the form

φ̇ij = A1 sin
[
φij − φîj

]
+A2 sin

[
2(φij − φîj)

]
+C1 sin

[
φij − φiĵ

]
+ C2 sin

[
2(φij − φiĵ)

]
. (9.53)

Many gaits, i.e. movement patterns, have been studied by Schoener et al.,
where depending on the numerical values of the coefficients the stability
regions could be identified. Since the whole procedure has been described
in my book “Principles of Brain Functioning”, I will not dwell here longer on
this problem.
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9.5 Populations of Neural Phase Oscillators

The interactions between sets of neural phase oscillators have been studied by
numerous authors, who treated various aspects. My following outline is based
on a recent book by Tass (see references), who had medical applications, in
particular for therapy for Parkinson’s disease, in mind. The effect of phase
couplings on phase oscillators had been extensively treated by Kuramoto,
mainly in the context of chemical waves, but also in the context of neural
populations.

9.5.1 Synchronization Patterns

We denote the time-dependent phase of neuron j with eigenfrequency ωj by
ψj . The equations are assumed to be in the form

ψ̇j = ωj +
1

N

N∑
k=1

M(ψj − ψk) , j = 1, ..., N . (9.54)

In this approach the function M that provides the coupling between the
phases ψk and ψj does not depend on the indices j and k explicitly. This
means that the coupling between different neurons is assumed all the same,
an approach called “mean field approximation”.M is a 2π-periodic function,
and is approximated by the first four Fourier coefficients

M(ψ) = −
4∑
m=1

(Km sin(mψ) + Cm cos(mψ)) , (9.55)

where the use of the sin and cos functions is equivalent to taking into account
a phase shift δ that may depend on the index m. An interesting result is
the fact that, depending on the values of the parameters ωj , and K and
C, frequency locking between the oscillators becomes possible, i.e. where all
oscillators run at the same synchronization frequency

ψ̇j = Ω
∗ synchronization frequency , (9.56)

but may possess constant phase differences. In this way, one cluster of neu-
rons may become phase-locked, but Tass as well as others studied also the
occurrence of up to four clusters and also clustering in the presence of noise.

9.5.2 Pulse Stimulation

Once the possible clusters have been determined, it becomes possible to study
the impact of pulsatile stimulation on noisy cluster states. In the context of
phase resetting in biology, pulses can – but need not – be short compared to
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the period of an oscillation. In the work of Tass, the stimulus is described in
the form

S(ψ) =
4∑
m=1

Im cos(mψ + γm) . (9.57)

After some time with no stimulus, where the clusters have been formed, the
stimulus (9.57) is administered and we study how different types of stim-
uli act on different types of cluster states. This may, in particular, lead to
stimulation-induced desynchronization and spontaneous resynchronization.
More recently, Tass studied the effect of two subsequent stimulations that

seem to be more promising for medical applications, e.g. for a treatment of
Parkinson’s disease.

9.5.3 Periodic Stimulation

The action of a periodic stimulus on a nonlinear oscillator has been studied in
many fields of science, and particularly mathematics, under the title “Forced
Nonlinear Oscillators”. An interesting new feature is the fact that the os-
cillations can become phase-locked to the phase of the stimulus even if both
frequencies are equal or nearly equal, but also if they are in ratio, such as 1:2,
or more generally N : M , where N and M are integers. Thus, for instance,
when the stimulation runs at a frequency NΩ, the resulting oscillation of
the system occurs at a frequency MΩ and the corresponding phases are
locked. The periodic stimulation may serve different purposes, for instance
to annihilate rhythmic synchronized activity, or to modify ongoing rhythms
using a change of frequency, or by reshaping synchronization patterns. In this
way, these mathematical studies are of interest to the therapy of Parkinsonian
resting tremor.
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10.1 Survey

In Sect. 8.13 I have shown how by suitable averages over the equations of
a pulse-coupled neural network, equations for the pulse rates and dendritic
currents can be obtained (see (8.139) and (8.140)). Equations of a similar
type have been derived by Nunez, though along different lines, and we will
discuss them below. By the elimination of the axonal pulse rates, we may
derive equations for the dendritic currents alone. Since dendritic currents lie
at the basis of the formation of electric and magnetic fields of the brain,
such equations are of particular interest. We will discuss these and related
equations later in this chapter. Here we wish to begin with a comparatively
simple case, which has a long history and at the same time reveals highly
interesting features of such networks. In the present case, we use equations in
which the dendritic currents have been eliminated from (8.139) and (8.140).
We then essentially obtain equations that were derived by Wilson and Cowan
who called them cortical dynamics equations. Wilson and Cowan established
their equations directly, i.e. without an averaging procedure as outlined in
Sect. 8.13. They consider two types of neurons, namely
(a) excitatory neurons, whose axonal pulse rate is denoted by E. These are
usually pyramidal cells that provide cortical output, and
(b) inhibitory interneurons with axonal pulse rates I. These neurons have
usually axons that remain within a given cortical area. Among these neurons,
usually all interconnections occur, i.e. E → E,E → I, I → E, I → I. Con-
sistent with anatomy, the recurrent excitations remain relatively localized,
whereas inhibitory interactions extend over a broader range (for more recent
approaches see the references). In order to make contact with our previous
notation in Chap. 8, we note that the pulse rate ω is now interpreted either
as E or I

ω
↗ E
↘ I .

(10.1)

Furthermore, we interpret the discrete index j as the position of the corre-
sponding neuron

j → x . (10.2)

In the following we will ignore time delays.
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10.2 The Wilson–Cowan Equations

Denoting the relaxation time of the axonal pulse rates by τ , and using suitably
scaled saturation functions S, the Wilson–Cowan equations can be written
in the form

τ
dE(x)

dt
+E(x) = SE

(∑
y

wEE(x,y)E(y)

−
∑
y

wIE(x,y)I(y) + P (x)
)

(10.3)

and

τ
dI(x)

dt
+ I(x) = SI

(∑
y

wEI(x,y)E(y)

−
∑
y

wII(x,y)I(y) +Q(x)
)
. (10.4)

P and Q are external inputs. These authors use the Naka–Rushton function
(see Sect. 2.5) in the form

S(X) =

{
rXN

ΘN+XN
for X ≥ 0

0 for X < 0
(10.5)

for the spike rate and make the specific choices

N = 2, M = 100 (10.6)

so that

S(X) =
100X2

Θ2 +X2
, (10.7)

where θ is chosen differently for excitatory and inhibitory neurons, as is in-
dicated by the corresponding indices of S in (10.3) and (10.4). The coupling
between the neurons is assumed to be instantaneous, but depends on the
distance between the neurons so that we write

wij(x,y) = wij(x− y) = bij exp(− | x− y | /σij) . (10.8)

Since the parameters b and σ are not very accessible experimentally, the
choice of reasonable values of parameters rests on some requirements, namely:

1) The resting state E = 0, I = 0 will be asymptotically stable in the
absence of external inputs P,Q. Because of the form of S, this condition
is automatically fulfilled, because the linearization of equations (10.3)
and (10.4) yields

dE/dt = −
1

τ
E, dI/dt = −

1

τ
I . (10.9)
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2) The spread of the recurrent inhibition will be larger than that of the
recurrent excitation; this is fulfilled by the choice

σEI = σIE > σEE (10.10)

in (10.8).
3) If no external stimulation is present, no spatially uniform steady state
will be possible except the resting state. This sets specific limits on the
relations bij · σij .
Before we proceed to discuss some solutions to the (10.3) and (10.4), we
illuminate the properties of the sigmoid function S, which will lead us to
some surprises about the properties of the equations of the type of (10.3)
and (10.4).

10.3 A Simple Example

Let us consider only one type of neuron E and assume that E is constant in
space. Thus we are treating (10.3) with I = 0. By a suitable scaling of E,P
and time t (see Exercise 1), this equation can be cast into the form

dE

dt
= −γE +

(E + P )2

1 + (E + P )2
≡ −γE + S(E) . (10.11)

In the steady state, we have

dE

dt
= 0 . (10.12)

We first consider no external input, i.e. P = 0. Equation (10.11) then acquires
the form

γE0(1 +E
2
0)−E

2
0 = 0 , (10.13)

which, quite evidently, has as one solution

E0 = 0 . (10.14)

The remaining equation

E20 −E0/γ + 1 = 0 (10.15)

possesses two roots

E0 =
1

2γ
±
√
1/(2γ)2 − 1 . (10.16)
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Fig. 10.1. The plot of S(E) (10.11)
and γE versus E allows us to deter-
mine the zeros of (10.11) for various
parameter values

We then readily observe:

(a) no real root for 1/(2γ) < 1 (large damping) ;

(b) one double root for 1/(2γ) = 1 ;

(c) two real roots for 1/(2γ) > 1 (small damping) . (10.17)

Since case (b) is contained in (c) as a special case, we focus our attention on
case (c). In this case, we may approximate (10.16) using

E0 ≈
1

2γ
(1± (1− 2γ2)) =

↗ 1/γ − γ ≈ 1/γ
↘ γ .

(10.18)

These results are illustrated by Fig. 10.1.
An important question is whether the states (10.14) and (10.18) are stable.

To check the stability, we write (10.11) in the form

dE

dt
= −γE + S(E) ≡ f(E) , (10.19)

where for steady states

f(E0) = 0 . (10.20)

Putting

E = E0 + ε , (10.21)

and using (10.20), we transform (10.19) into

dε

dt
= f(E)− f(E0) ≈ αε , (10.22)

where the last term is a good approximation provided f is evaluated for
values of E close to one of the steady states. The function f(E) is plotted
against E in Fig. 10.2. This figure allows us immediately to derive the stability
properties of the individual states as discussed in the figure. The stability of
E0 = 0 is no surprise. However, surprisingly enough, there exists also a stable
state for E0 �= 0 even in the absence of any external input. In order to avoid
such states, inhibitory neurons are needed. We note already here that highly
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Fig. 10.2. The plot of f(E) = dE/dt
allows us to determine the stability
of the fixed points. For f(E) < 0,
the variable E tends to smaller values,
and for f(E) > 0, E tends to larger
values as indicated by the arrows. If
the arrows aim towards a fixed point,
it is stable; unstable otherwise

excited networks can be used as models for epileptic seizures as well as for
visual hallucinations which we will discuss below.
Let us now turn to the case with non-vanishing external signal, P �= 0.

We introduce a new variable E′ by means of

E + P = E′ (10.23)

and consider the steady state. The values of the steady-state solutions can
again be determined by graphical representations (cf. Figs. 10.3 and 10.4).
Here we wish to present an analytic approach. By means of (10.23), the
original (10.11) with (10.12) is transformed into

γ(E′ − P )(1 +E′2)−E′2 = 0 . (10.24)

Figure 10.3 suggests that for small enough P one solution, if any, of (10.24)
will be a small quantity so that we retain only powers up to second order in
E′. Equation (10.24) can then be transformed into

E′2 −
γ

1 + γP
E′ +

Pγ

1 + γP
= γ , (10.25)

which possesses the roots

E′ =
γ

2(1 + γP )

(
1±

√
1−
4P (1 + γP )

γ

)
. (10.26)

Fig. 10.3. Same as Fig. 10.1, but
for S(E′) and γ(E′ − P ). Note the
possibility of three intersections
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We discuss two special cases:

(1) γ small and/orP large. (10.27)

In this case, no real root exists, at least none that is small in accordance with
Fig. 10.3.
Let us consider

(2) γ large (P small or moderate). (10.28)

In this case, (10.26) can be approximated by

E′ ≈
↗ (γ − P (1 + γP )) /(1 + γP )
↘ P ,

(10.29)

where only the lower root is of interest to us, because it agrees with our
original assumption that E′ is small.
Let us now consider the upper cross-section in Fig. 10.3. In this case, we

are in a region called “saturation”. In our analytical approach we assume

E′ � 1 (10.30)

and in order to use small quantities, we introduce the inverse of E′ via

1

E′
= ε� 1 (10.31)

as a new variable. Equation (10.24) can be transformed into

γ − γεP + γε2 − γε3P − ε = 0 , (10.32)

and ignoring the cubic term of ε into

ε2 − ε(1 + γP )/γ + 1 = 0 , (10.33)

which possesses the roots

ε =
1

2γ
(1 + γP )

(
1±

√
1−

(2γ)2

(1 + γP )2

)
. (10.34)

Again we distinguish between γ large and γ small. In the first case, we obtain

γ →∞, γP finite
√
→ i , (10.35)

i.e. no real root exists, at least none that is consistent with (10.30) or (10.31).
If, however, γ is small, we obtain approximately

ε =
↗ (1 + γP )/γ − γ/(1 + γP )2

↘ γ/(1 + γP ) .
(10.36)

Keeping the leading terms and using (10.31), we finally obtain

E′ =
1

ε
≈

{
γ/(1 + γP )
(1 + γP )/γ .

(10.37)
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Fig. 10.4. Same as Fig. 10.2, case
of saturation

The first root is in contradiction with our assumption (10.30) so that the
useful root for us is the second in (10.37). Because of (10.23), we finally
obtain

E ≈
1

γ
. (10.38)

In leading order, E is thus independent of the external signal P . This is
typical for saturation effects (see Fig. 10.4)
Let us summarize the salient results of this section. The steady states E0

depend decisively on the size of the damping constant γ (in reduced units).
Even in the absence of an external signal, a stable highly excited state may
exist. In between the two stable states, there is an unstable steady state that
was not shown here. It persists also for non-vanishing external inputs P .
Let us now return to some typical solutions of the Wilson–Cowan equa-

tions.

Exercise (Rescaling of (10.3)). The original equation reads

τ
dE

dt
= −E +

rE2

Θ2 +E2
. (∗)

We introduce

E = ẼΘ ,

which casts (*) into

τΘ
dẼ

dt
= −ΘẼ +

rẼ2

1 + Ẽ2
.

Division by r leads to

τΘ

r

dẼ

dt
= −
Θ

r
Ẽ +

Ẽ2

1 + Ẽ2
,

which can be cast into the form (10.11) by the choices

r

τΘ
t = t̃,

Θ

r
= γ .
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10.4 Cortical Dynamics
Described by Wilson–Cowan Equations

Here we wish to consider the following behavior as an example. We assume
that a spatially uniform steady state has been produced by constant in-
put values P,Q. In order to study the stability of this steady state, we
linearize the corresponding equations around that state. In this specific ex-
ample, Wilson and Cowan obtained the following equations for the deviations
E′(x, t), I ′(x, t) from the steady states

dE′

dt
= −E′ +

1

4

∞∫
−∞

exp(− | x− x′ |)E′dx′

−
1

4

∞∫
−∞

exp(− | x− x′ | /8)I ′dx′ , (10.39)

dI ′

dt
= −I ′ +

1

8

∞∫
−∞

exp(− | x− x′ |)E′dx′

−
2

3

∞∫
−∞

exp(− | x− x′ | /3)I ′dx′ , (10.40)

where specific numerical values of the constants have been chosen. The au-
thors study specific kinds of spatial dependence, i.e. they put

E′(x, t) = E′(t) cos(kx), I ′(x, t) = I ′(t) cos(kx) . (10.41)

The integrals which occur in (10.39) and (10.40) can be easily evaluated and
yield

+∞∫
−∞

exp(− | x− x′ | /σ) cos(kx′)dx′ =
2σ cos kx

1 + (σk)2
. (10.42)

In this way, (10.39) and (10.40) are transformed into equations for the time-
dependent amplitudes E′, I ′

dE′

dt
= −E′ +

2E′

1 + (4k)2
−

4I ′

1 + (8k)2
, (10.43)

dI ′

dt
= −I ′ +

2E′

1 + (8k)2
−

4I

1 + (3k)2
. (10.44)

These two linear equations can be solved using the hypothesis

E′(t) = E′0e
λt, I ′(t) = I ′0e

λt , (10.45)
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which leads to the eigenvalue equations

λE′ = c1E
′ − c2I

′ (10.46)

and

λI ′ = c3E
′ − c4I

′ , (10.47)

where the coefficients are given by

c1 = −1 +
2

1 + (4k)2
, c2 =

4

1 + (8k)2
, (10.48)

and

c2 =
2

1 + (8k)2
, c4 = 1 +

4

1 + (3k)2
. (10.49)

As usual, the eigenvalues λ are determined by∣∣∣∣ c1 − λ − c2c2 − c4 − λ

∣∣∣∣ = 0 . (10.50)

Quite evidently, λ becomes a function of k, i.e. of the spatial variation (10.41)

λ = λ(k) . (10.51)

Two limiting cases can be readily obtained, namely

k = 0, λ = −1,−3 (10.52)

and

k →∞, λ = −1,−1 , (10.53)

i.e. the steady states are stable. However, in the range 0.085 < k < 0.22 one
value of λ becomes positive, indicating an instability. The authors establish
a relationship between this result and the human visual system that is most
sensitive to intermediate spatial frequencies. In the numerical experiment,
the authors chose a constant spatial input and determined the corresponding
spatially uniform resting state that is, of course, non-vanishing now. Then
they applied short pulses with a spatial distribution proportional to cos(kx)
that were added to P . For small k, the perturbations had no effect and the
system decayed to the uniform equilibrium state and the same was true for
large k. For some intermediate values of k, however, even the tiny pertur-
bations led the system to explode into a spatially inhomogeneous state that
was asymptotically stable. A typical example of this numerical experiment
is shown in Fig. 10.5 from Wilson. An interesting feature of this experiment
was that the perturbation giving rise to the spatially structured state had
been gone long before the instability erupted. It is this spatially structured
instability that gives rise to what is termed a “short-term memory”. These
authors as well as others find several kinds of behavior that quite often depend
critically on parameter values and the initial preparations. Here we quote the
following results:



204 10. Pulse-Averaged Equations

Fig. 10.5. Spatially inhomogeneous steady state triggered by a brief stimulus
0.01 cos(16πx) (after Wilson, 1999)

1. “Active transient mode”. A brief spatial stimulus to a restricted area
of the network gives rise to a delayed, but very large, amplification of
the network response. This effect is explained by the authors as follows:
A local recurrent excitation in the network causes excitatory activity
to flare up, but this in turn triggers a delayed inhibitory pulse that
subsequently extinguishes the network activity.

2. “Spatially localized oscillatory activity”. This activity is produced by
a spatial stimulus of some small width. Each peak of this oscillation
corresponds to a burst of action potentials. More complex oscillations
can be produced by stimuli of greater width.

3. “Travelling waves in response to brief local stimulation”. In this case
the same parameters as in the oscillatory mode (2) are used, but with
a strongly reduced inhibition in effectiveness by providing a constant
inhibitory input to the I cells. Here a pair of travelling waves is generated
that are running apart in response to a brief stimulus to the center
of the network. These waves originate because the reduced inhibitory
activity is not sufficient to counteract the activity generated by recurrent
activation. These travelling waves are followed by a refractory area, where
the inhibition has built up. Because of this trailing refractory zone, two
waves that meet will annihilate one another. The authors argue that
travelling waves such as these may occur in epileptic seizures.

10.5 Visual Hallucinations

Though in this book I carefully avoid telling stories, I cannot help starting this
section with the following reminiscence of mine. During the 1970s and 1980s
I organized a series of meetings on synergetics that brought together scien-
tists from quite different disciplines. The neuromathematician Jack Cowan
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attended such a meeting, where he heard of the spontaneous stripe formation
in fluids under specific non-equilibrium conditions. This triggered in him an
ingenious idea. He remembered that there is a special mapping from the
retina to the visual cortex that can be described by a logarithmic map.
Such a map transforms several stripes depending on their direction into
concentric circles, radial spokes, or spirals. In fact, a variety of drugs can
induce hallucinations involving such patterns that are quite stereotypical and
to which also checkerboard hallucinations can be added. Thus, according to
Ermentraut and Cowan (1979), when a brain is strongly excited, or, in other
words, destabilized, neural activity can develop into roughly parallel stripes.
Because of the mapping, the subject will perceive them as concentric circles,
radial spokes, or spirals. These authors could show that such stripes can be
generated by two-dimensional Wilson–Cowan equations by analogy with the
patterns we have got to know above in one dimension. Again by analogy with
fluid dynamics, where also square patterns are observed, the Wilson–Cowan
network can produce such brain activity patterns.
More recent contributions to such patterns of hallucinations have been

made in the theoretical work of Tass. Ermentraut provides a detailed sum-
mary of the theoretical work on this fascinating phenomenon.

10.6 Jirsa–Haken–Nunez Equations

These equations belong to the class of phase-averaged equations, but in con-
trast to the Wilson–Cowan equations they take into account the dynamics of
axons as well as of dendrites. While Jirsa and Haken interpret the dendritic
activity as done throughout my book, Nunez interprets the corresponding
quantities as synaptic activities. Since the dendrites carry charges and cur-
rents, they are responsible for the generation of the electric and magnetic
fields in the brain. Therefore, it is desirable to derive explicit equations for
the dynamics of the dendritic currents. The equations derived by Jirsa and
Haken on the one hand and Nunez on the other are quite similar, but differ
somewhat in the nonlinearities. In the following we will present the Jirsa and
Haken version. In the following we will assume that excitatory neurons have
only excitatory synapses and inhibitory neurons only inhibitory synapses.
Furthermore, we assume that in ensembles of neurons the conversion of
axonal pulses into dendritic currents at the synapses is linear, whereas the
conversion of dendritic currents into axonal pulses at the somas is sigmoidal,
i.e. nonlinear. The spatial distribution range of the dendrites and intracortical
fibres is assumed to be very short, only the cortical connections may cause
a significant delay via propagation. It is assumed that this delay can be
described by means of a constant propagation velocity and the distance.
Finally, the external input is modelled so that afferent fibers make synaptic
connections. We will distinguish between excitatory and inhibitory dendritic
currents ψ using the indices e and i, respectively, and between the pulse
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rates of excitatory and inhibitory neurons using E and I, respectively. The
connection between the axonal pulse rates and the dendritic currents can
then be written in the form

ψe(x, t) = ae

∫
Γ

fe(x, x
′)E(x′, t− | x− x′ | /ve)dx

′ (10.54)

and

ψi(x, t) = aiI(x, t) , (10.55)

where ae, ai are the corresponding synaptic strengths and fe is a function
that decays with distance

fe(x, x
′) =

1

2σ
exp(− | x− x′ | /σ) . (10.56)

ve is the propagation velocity in the axon of the excitatory neurons. These
equations are understood as referring to ensembles of neurons. The integra-
tion is extended over the area Γ of the neural sheet that in our model we
assume is one-dimensional. The conversion of dendritic currents into axonal
pulse rates is described by the equations

E(x, t) = Se [ψe(x, t)− ψi(x, t) + pe(x, t)] (10.57)

and

I(x, t) = Si [ψe(x, t)− ψi(x, t) + pi(x, t)] , (10.58)

where Se, Si are the corresponding sigmoidal functions. Because of the linear
relationships (10.54) and (10.55), it is a simple matter to eliminate either ψ
or E, I.

(1) Elimination of the dendritic currents.
When we insert the expressions (10.54) and (10.55) into the r.h.s. of (10.57)
and (10.58), we readily obtain

E(x, t) = Se

[
ae

∫
Γ

fe(x, x
′)E(x′, t− | x− x′ | /ve)dx

′

−aiI(x, t) + pe(x, t)

]
(10.59)

and

I(x, t) = Si

[
ae

∫
Γ

fe(x, x
′)E(x′, t− | x− x′ | /ve)dx

′

−aiI(x, t) + pi(x, t)

]
. (10.60)
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These are essentially the Wilson–Cowan equations in their general form,
where delays are taken into account, but where now, in our case, the axonal
decay time is assumed to be very short.

(2) Elimination of the axonal pulse rates.
In this case, we just have to insert the relations (10.57) and (10.58) into the
r.h.s. of (10.54) and (10.55). This yields

ψe(x, t) = ae

∫
Γ

fe(x, x
′)Se

[
ψe(x

′, t− | x− x′ | /ve)

−ψi(x
′, t− | x− x′ | /ve)

+pe(x
′, t− | x− x′ | /ve)

]
dx′ (10.61)

and

ψi(x, t) = aiSi[(ψe(x, t)− ψi(x, t) + pi(x, t)] . (10.62)

Taking into account that the r.h.s. of (10.62) can be well approximated by
a linear function, i.e. Si(X) ≈ αiX, we readily obtain

ψi(x, t) ≈
aiαi
1 + aiαi

(ψe(x, t) + pi(x, t)) . (10.63)

Inserting (10.63) into (10.61), we obtain an equation for the dynamics of the
excitatory synaptic activity

ψe(x, t) = ae

∫
Γ

f(x, x′)Se

[
aψe(x

′, t− | x− x′ | /ve)

+p(x′, t− | x− x′ | /ve)
]
dx′ , (10.64)

where

a = 1−
aiαi
1 + aiαi

, (10.65)

and

p(x, t) = pe(x, t)−
aiαi
1 + aiαi

pi(x, t) . (10.66)

Since the unknown function ψe occurs on the r.h.s. of (10.64) under an inte-
gral, we have to deal with an integral equation, which is usually a rather com-
plicated task. However, it is possible to convert this equation into a differential
equation. To this end, we convert the integral over the spatial coordinates in
(10.64) into an equation over both spatial coordinates and time by means of
the δ-function

δ(t− t′− | x− x′ | /ve) . (10.67)
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This allows us to express the r.h.s. of (10.64) by means of a Green’s function
in the form

ψe(x, t) =

∫
Γ

∞∫
−∞

G(x− x′, t− t′)ρ(x′, t′)dx′dt′ , (10.68)

where the Green’s function is given by

G(x− x′, t− t′) = δ(t− t′− | x− x′ | /ve)
1

2σ
e−|x−x

′|/σ . (10.69)

We used the abbreviation

ρ(x, t) = Se [aψe(x, t) + p(x, t)] . (10.70)

To proceed further, we introduce the Fourier transforms

ψe(x, t) =
1

(2π)2

+∞∫
−∞

+∞∫
−∞

eikx−iωtψ̃e(k, ω)dkdω , (10.71)

ρ(x, t) =
1

(2π)2

+∞∫
−∞

+∞∫
−∞

eikx−iωtρ̃(k, ω)dkdω (10.72)

and

G(ξ, τ) =
1

(2π)2

+∞∫
−∞

+∞∫
−∞

eikξ−iωτ G̃(k, ω)dkdω (10.73)

with the abbreviation

ξ = x− x′, τ = t− t′ . (10.74)

It is well known from the theory of Fourier transforms that a convolution of
the form (10.68) transforms into a simple product of the Fourier transforms
ψ̃e, ρ̃, G̃,

ψ̃e(k, ω) = G̃(k, ω)ρ̃(k, ω) , (10.75)

where

G̃(k, ω) =
ω20 − iω0ω

v2ek
2 − (ω0 − iω)2

(10.76)

with the abbreviation

ω0 =
ve
σe
. (10.77)



10.7 An Application to Movement Control 209

We multiply both sides of (10.75) by the denominator of (10.76). Now again
from the theory of Fourier transformation (see also Exercise 1), multiplication
of the Fourier transform of a time-dependent function by iω corresponds
to a time differentiation, whereas multiplication of the Fourier transform of
a space-dependent function by k2 corresponds to the negative second deriva-
tive. Thus, when taking the reverse transformation of (10.75) from k, ω space
into x, t space, we arrive at the equation

ψ̈e +
(
ω20 − v

2
e∆
)
ψe + 2ω0ψ̇e =

(
ω20 + ω0

∂

∂t

)
ρ(x, t) . (10.78)

This is a typical wave equation, which depends on a source term ρ(x, t).
The difficulty in solving (10.78) arises from the fact that ρ depends on the
unknown variable ψe in a nonlinear fashion. Thus, in order to solve (10.78),
one has to resort to numerical integration. In order to obtain a first insight
into the solutions of (10.78), some approximations are required that we will
discuss in the next section, where contact with experimental results will be
made.

Exercise 1. Show that multiplication of the Fourier transform of a time-
dependent function by iω corresponds to a time differentiation. Multiplication
of the Fourier transform of a space-dependent function by k2 corresponds to
the negative second spatial derivative.
Hint: Use the explicit form of the Fourier transform.

10.7 An Application to Movement Control

In this section, I wish to show how the field (or wave) equation (10.78) of the
preceding section can be used to bridge the gap between processes at the neu-
ronal level and macroscopic phenomena that are observed at the behavioral
level and at the level of MEG (magnetoencephalogram) recordings. This and
related phenomena have been described in extenso in my book “Principles of
Brain Functioning” as well as in Kelso’s book “Dynamic Patterns”.

10.7.1 The Kelso Experiment

Kelso et al. exposed a subject to an acoustic signal that was composed of
equidistant beeps. The subject had to push a button in between each beep,
i.e. in a syncopating manner. The stimulus frequency, i.e. the inverse of the
time interval between the beeps, was set to 1 Hz at the beginning and was
increased by 0.25 Hz after 10 stimulus repetitions up to 2.25 Hz. Around the
frequency of 1.75 Hz, the subject spontaneously and involuntarily switched
to a synchronized motion. This switch is termed the “nonequilibrium phase
transition”. During this experiment, the magnetic field was measured over the
left parieto temporal cortex, namely covering the motor and auditory areas.
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Detailed analysis conducted by Fuchs et al. revealed that in the pretransi-
tion region the registered brain signals oscillate mainly with the stimulus
frequency. The stimulus and the motion response frequencies are locked.
Then, at the phase transition point, a switch in behavior occurs. The brain
signals now oscillate with twice the stimulus frequency in the post-transition
region. Applying a Fourier transformation to the signals and looking at the
components of the same frequency as the stimulus, one observes that the
phase difference between the stimulus signal and the time series is stable
in the pretransition region, but undergoes an abrupt change of π at the
transition point and remains stable again in the post-transition region. Near
the transition point, typical features of non-equilibrium phase transitions like
critical slowing down and critical fluctuations (see Sect. 9.3) are observed in
both the behavioral data and the brain signals. In the present context we
will not be concerned with these phenomena, however. In order to analyze
the spatiotemporal patterns before and after the transition, a basic idea of
synergetics was invoked, namely that close to transition points the dynamics
even of a complex system is governed by a few dynamic variables, the so-
called order parameters. Indeed, a detailed analysis performed by Jirsa et al.
showed that the spatiotemporal patterns are dominated by two basic spatial
patterns v0(x) and v1(x) so that the field pattern over the measured SQUID
area can be written in the form

q(x, t) = ξ0(t)v0(x) + ξ1(t)v1(x) + add. terms , (10.79)

where the additional terms contain so-called enslaved modes and represent
comparatively small corrections to the first two terms on the r.h.s. of (10.79).
The decomposition (10.79) is based on an improvement of the Karhunen–
Loève expansion (principal component analysis, singular value decomposi-
tion). The observed dynamics of the order parameters ξ0, ξ1 and especially
its behavior at the transition point was modelled using dynamic equations
by Jirsa et al.

ξ̈0︸︷︷︸
(1)

+ω20ξ0︸︷︷︸
(2)

+ γ0ξ̇0︸︷︷︸
(3)

+b0 ξ
2
0︸︷︷︸
(4)

ξ̇0 + c0 ξ
2
1︸︷︷︸
(4a)

ξ̇0

+ε0 sin( 2Ω︸︷︷︸
(5)

t)ξ0 + δ0 sin(Ω︸ ︷︷ ︸
(6)

t)ξ21 + d0︸︷︷︸
(8)

ξ̇1 = 0 . (10.80)

The equations were formulated in an entirely symmetric fashion so that the
equation for ξ1 can be obtained from (10.80) by exchanging the indices 0 and
1 everywhere

exchange indices 0↔ 1 . (10.81)

The effect of the acoustic signal at frequency Ω enters (10.80) and (10.81) in
the form of the terms

sin(2Ωt)ξj , sin(Ωt)ξ
2
j . (10.82)
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In other words, we are dealing here with a nonlinear parameteric oscillator.
For practical purposes, it can be shown that two of the coefficients may be
assumed to be vanishing

d0 = δ1 = 0 . (10.83)

The obvious question is whether we can recover the equations (10.80)–(10.81)
starting from the field equation (10.78). To this end, we proceed in two steps,
namely we first study the sensory-motor feedback loop and then study the
field equation and its relations to (10.80) and (10.81).

10.7.2 The Sensory-Motor Feedback Loop

We study how the field equations have to be formulated to take the present
experiment into account. To this end, we have to specify the external stimuli
that enter the field equation. We describe the acoustic stimulus by

pa(x, t) = βa(x) sin(Ωt) . (10.84)

The neural sheet generates a motor signal for the index finger that we write
in the form

ψm(t) =

∫
βm(x)ψe(x, t)dx . (10.85)

This motor signal is now conceived as a driving force of the finger causing its
displacement z(t). Modelling the finger movement as a harmonic oscillator
and assuming the driving force is sinusoidal, we obtain

z(t) = const · ψm(t) . (10.86)

(In an improved version, we might use a Van der Pol oscillator model.) The
displacement is signaled through afferent fibers to the neural sheet so that it
receives an input in the form

psm(x, t) = βsm(x)ssm(t) . (10.87)

The signal s is proportional to the finger displacement z, but with a delay tf
that we will neglect, however. Taking care of the proportionality between s
and z by means of βsm, we may assume

ssm(t) = z(t− tf ) . (10.88)

Putting the feedback loop together, we obtain from (10.87), (10.88), (10.86)
a relation of the form

psm(x, t) = d(x)ψm(t) . (10.89)

Note that ψm is determined by ψe. The factor d is a function of x. Its explicit
form is of no relevance here.
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10.7.3 The Field Equation and Projection onto Modes

We may now insert the expressions for pext. with (10.84) and (10.89) into
the field equation (10.78). To proceed further, we make two approximations,
namely we assume that ψm (10.85) is a small quantity so that it is sufficient
to retain only the linear term on the r.h.s. of the field equation (10.78).
Furthermore, we assume that the acoustic signal is comparatively fast so
that

ω20ψm � ω0
∂

∂t
ψm (10.90)

holds. In this way, the field equation can be cast into the form

ψ̈e +
(
ω20 − v

2
e∆
)
ψe + 2ω0ψ̇e

=

(
ω20 + ω0

∂

∂t

)
Se [αψe(x, t) + pa(x, t)] + d̃(x)ψ̇m(t) . (10.91)

The function d̃(x) is proportional to d(x) in (10.89). To proceed further, we
approximate the threshold function by means of

Se(X) = αX −
4

3
α3X3 . (10.92)

It is now a simple though slightly tedious matter to write down the field
equation explicitly, and I leave it as an exercise to the reader to determine
the coefficients explicitly

ψ̈e︸︷︷︸
(1)

+

⎛
⎜⎝Ω20 − v2e︸︷︷︸

(2)

∆

⎞
⎟⎠ψe + γψ̇e︸︷︷︸

(3)

+A ψ3e︸︷︷︸
(3a)

+B ψ2e︸︷︷︸
(4)

ψ̇e + K1︸︷︷︸
(5)

+ K2︸︷︷︸
(6)

+ K3︸︷︷︸
(7)

+γ1 (x)︸︷︷︸
(8)

ψ̇m = 0 . (10.93)

Some of the linear terms in Se have the same form as terms that are already
present on the l.h.s. of (10.91) so that we may take care of them just by new
constants, for instance using the replacement

ω0 → Ω0, ... . (10.94)

The terms (5), (6) and (7) represent the effect of the acoustic driving signal
on the field ψe and are specific linear combinations of the following terms:

(5) K1 : sin(2Ωt)ψe, cos(2Ωt)ψ̇e, cos(2Ωt)ψe ; (10.95)

(6) K2 : cos(Ωt)ψ2e , sin(Ωt)ψeψ̇e, sin(Ωt)ψ
2
e ; (10.96)

(7) K3 : cos(Ωt), sin(Ωt), cos(3Ωt), sin(3Ωt) . (10.97)
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In order to compare the field equations (10.93) with the phenomenological
equations for the order parameters, we have to make the hypothesis

ψe(x, t) = ξ0(t)v0(x) + ξ1(t)v1(x) . (10.98)

Since the corresponding expressions become rather lengthy, we will discuss
the further procedure in words. The terms (1), (2) and (3) in equations (10.80)
and (10.81) on the one hand, and in (10.93) on the other, are in a one-to-one
correspondence. The role of the term (3a) in (10.93) can best be understood
by the decomposition

Aψ3e = Aψ
2
e · ψe ↔ Ωψe , (10.99)

which means that the frequency Ω has become amplitude dependent. As it
turns out numerically, this effect is negligible. A little analysis reveals that
there is a one-to-one correspondence between the terms (4).
Let us now discuss the further terms (5), (6) and (7). K1 is parametric

excitation at twice the stimulus frequency and corresponding terms can be
found in (10.80) and (10.81). K2 represents a second-order term in ψe multi-
plied by the periodic stimulus. Also this contribution has its correspondence
in (10.80) and (10.81). The term K3 (10.97) is, however, totally absent in the
phenomenological model and would lead to a result that is in disagreement
with the experimental fact, namely such a term would prohibit the phase
transition. The reason is that (10.97) fixes an absolute phase and not a relative
phase between ψe and the stimulus. Thus we must conclude that in the
neural sheet, because of the inhomogeneous distribution of β(x) in (10.84)
and (10.85), the corresponding terms cancel when the decomposition (10.98)
is used. This can be substantiated by a detailed evaluation of the integrals
that occur when (10.93) is projected onto the modes occurring in (10.98).
The term (8) in (10.93) finds its correspondence in the terms (3) and (8) of
(10.80) and (10.81).

10.7.4 Some Conclusions

A number of lessons can be learned from our approach above. First of
all, it shows that basically the field equations can be invoked to model
the experiment at the neuronal level. Furthermore, as is known from the
detailed study of the phenomenological equations (10.80) and (10.81), the
observed phenomena can be reproduced only in specific parameter ranges
of the coefficients in these equations. On the other hand, these parameters
appear in a disguised form in (10.93), where they stem from the microscopic
approach at the neuronal level. In this way in further work microscopic and
macroscopic quantities can be connected. Finally, the experiment shows that
interesting mechanisms that are not yet fully understood exist to suppress
terms like (10.97), mechanisms that probably are connected with the spatial
organization. Surely here further work will be needed.
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11. The Single Neuron

11.1 Hodgkin–Huxley Equations

In our book, the study of neural nets composed of many neurons is in the fore-
ground of our interest. To this end, we had to make a number of simplifying
assumptions on the behavior of individual neurons. In this chapter we want
to get acquainted with more precise models of individual neurons, whereby
we will focus our attention on the generation of axonal pulses. This will also
allow us to judge the approximations we had to make in our network analysis.
The fundamental equations describing the generation of action potentials and
their spiking property had been established by Hodgkin and Huxley as early
as 1952. In Sect. 11.1 we will discuss these equations and some simplifying
approaches to them. In order to elucidate the origin of the spiking behavior of
the solutions, we will discuss the FitzHugh–Nagumo equations in Sect. 11.2
and then return in Sect. 11.3 to the Hodgkin–Huxley equations and especially
to generalizations of them. The axon membrane is a lipid bilayer that may
be considered as a thin insulating sheet that can store electric charges like
a conventional capacitor. According to electrostatics, the capacitance C, the
voltage V across the membrane and the charge on it are related by

CV = Q . (11.1)

When currents flow between the two sides of the capacitor, as happens in the
axon membrane through ion channels, the voltage V changes in the course
of time, where the negative time derivative of Q is just the electric current
across the membrane

C
dV

dt
= −I . (11.2)

The current I is composed of current distributions due to different ions Na,K,
due to leakage, and due to an input current Iinput

I = INa + IK + Ileak + Iinput . (11.3)

The size of the currents is determined by Ohm’s law

I = g(V −E) , (11.4)
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where g is the electric conductance and E the equilibrium potential of the
ion. E is determined by the Nernst equation that can be derived from ther-
modynamics

E =
RT

zF
ln (Cout/Cin) . (11.5)

The quantities in (11.5) have the following meaning: Cout/Cin concentrations
of ions outside/inside the cell; R, thermodynamic gas constant; F , Faraday
constant; T , absolute temperature; at 200 C, RT/F = 25 mV; z, valency of
an ion.
As a result of their experiments, Hodgkin and Huxley concluded that

the conductances are not constant but depend on the membrane potential
V and furthermore that they are dynamic quantities that are determined by
differential equations of first order. All in all, the Hodgkin–Huxley equations
comprise four highly nonlinear differential equations each of first order. In
1985 Rinzel observed that these equations can be reduced to two differential
equations each of first order. According to Wilson (1999), they can be further
simplified, to an excellent degree of approximation, to the following form

C
dV

dt
= −gNa(V )(V −ENa)−R(V −EK) + Iinput (11.6)

and

dR

dt
=
1

τR
(−R+G(V )) , (11.7)

where the individual quantities are numerically given by: C = 0.8 µF/cm2;
gNa(V ) = 17.81+47.71V +32.63V

2; ENa = 0.55 =̂ 55 mV; EK = −0.92 =̂
−92 mV; τR = 1.9 ms; G(V ) = 1.03 + 1.35 V; and R on the r.h.s. of (11.6)
is replaced by 26.0 R, where R is again the gas contant.
Note that the timescale is measured in milliseconds and that the actual

voltages are divided by a factor of 100 so that for example, the equilibrium
potential ENa of 0.55 corresponds to 55 mV, as indicated above.
Looking at the mathematical structure of the r.h.s., we readily note that

the r.h.s. of (11.6) is a polynomial in V up to the third order, while the r.h.s.
of (11.7) is a linear function both in R and V . But why do (11.6) and (11.7),
which describe a fundamental physical process, describe spiking? To this end,
let us consider equations derived later by FitzHugh as well as Nagumo that
have a structure quite similar to (11.6) and (11.7), though in that case the
physicochemical underpinning is not so evident.

11.2 FitzHugh–Nagumo Equations

The FitzHugh–Nagumo equations read

dV

dt
= γV

(
V −

V 3

3
−R+ Iinput

)
, γV = 10 , (11.8)
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and

dR

dt
= γR(−R+ 1.25V + 1.5) , γR = 0.8 , (11.9)

where different authors use somewhat different parameters. In the following
we will use those of Wilson. If there is no input,

Iinput = 0 , (11.10)

one may show that there is only one equilibrium point for which

dV

dt
= 0,

dR

dt
= 0 . (11.11)

Using (11.11), (11.8) and (11.9), one may readily verify that this point lies
at

V = −1.5, R = −
3

8
. (11.12)

The conventional stability analysis by means of linearization reveals that this
point is stable. A key to the understanding of the behavior of the solutions
to (11.8) and (11.9) lies in the time constants that have a large ratio

γV /γR = 12.5 . (11.13)

This implies that V relaxes very quickly, whereas R does so only slowly. In
an extreme case that we will discuss first we may assume

dR

dt
≈ 0 , (11.14)

so that R in (11.8) may be considered as constant. Yet (11.8) remains a non-
linear equation, whose solutions seem to be difficult to discuss. But a little
trick from physics helps a lot, namely we identify the behavior of V as that of
the coordinate x of a particle that is subject to a force and whose damping is
so large that we may ignore the acceleration term occurring in Newton’s law.
Actually, we used the same trick above, e.g. in Sect. 9.1. As is known from
mechanics, the force can be written as the negative derivative of a potential
function W so that we cast (11.8) into the form

dV

dt
= −γV

∂W

∂V
. (11.15)

As one may readily verify by comparison between (11.15) and (11.8), W is
given by

W = −
V 2

2
+
V 4

12
+ (R− Iinput)V . (11.16)

For Iinput = 0 and R = −3/8 (see (11.12)), W is plotted in Fig. 11.1,
where the equilibrium value V = −1.5 is indicated. When Iinput is increased,
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Fig. 11.1. The plot of W (11.16) ver-
sus V shows two valleys

the curve W (V ) is tilted more and more to the right. When will the particle
leave its left position in Fig. 11.1 and slide down to the right minimum? This
requires that the slope

dW

dV
= −V +

V 3

3
+ (R− Iinput) (11.17)

is negative everywhere on the r.h.s. of the left minimum, at least until the
right minimum of W is reached. To this end, let us look at the extrema of
dW/dV . This is a condition on the size of R − Iinput that is considered as
a fixed parameter. Because dW/dV depends also on V , we must proceed in
two steps. Since dW/dV must be < 0 in the required interval of V , we first
determine the value(s) for which dW/dV reaches its maximum.
This maximum (or extremum) lies at (see Fig. 11.2b)

d2W

dV 2
= 0 , (11.18)

from which we deduce

V = ±1 (11.19)

and we find the extremal value

dW

dV
= ∓
2

3
+ (R− Iinput) for V = ±1 . (11.20)

Fig. 11.2. a) For Iinput large enough, only one valley of W (V ) remains. b) For
R− Iinput sufficiently negative, dW/dV < 0 for V < 1
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In the present case, we have to consider

V = −1 ,
dW

dV
=
2

3
+ (R− Iinput) . (11.21)

The instability of the left position of the particle occurs if

dW

dV
< 0 . (11.22)

This implies

2

3
+R− Iinput < 0 , (11.23)

or using the equilibrium value of R (11.12)

R = −
3

8
, (11.24)

so that finally

Iinput >
7

24
≈ 0.3 . (11.25)

A comparison with the exact threshold value of Iinput shows that (11.25) is
of the correct order of magnitude. So let us consider a value of Iinput that is
large enough, and take as an example

Iinput = 1.5 . (11.26)

In this case, we find only one steady state

V = 0 , R = 1.5 (11.27)

that is, however, unstable. This can be easily seen by looking at Fig. 11.3.
Now look what is happening in such a case. While R can be considered as
practically constant, V will quickly move to its equilibrium value that is
denoted by V+ in the figure. As a consequence of this, the r.h.s. of (11.9)
becomes large so that

dR

dt
> 0 . (11.28)

R increases and this implies that, according to Fig. 11.4, the potential
curve is tilted to the l.h.s. V will now move very quickly to V−, in which case
the r.h.s. of (11.9) becomes negative and R decreases

dR

dt
< 0 . (11.29)

As a more detailed analysis shows, the changes of R need not be large so as to
produce the switch from Fig. 11.2a to 11.4 and back again. On the other hand,
the differences between V+ and V− may be large, i.e. the action potential can
show large changes, or, in other words, spikes. Because the changes needed
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Fig. 11.3. W (11.16) for R = Iinput
= 1.5

Fig. 11.4. W (11.16) for R� Iinput

in R need not be large, in spite of the relatively small constant γR, the short
time suffices to switch from Fig. 11.2a to Fig. 11.4 and back gain.
It should be noted that these switching times are different, because (11.9)

is asymmetric with respect to V because of the additive constant 1.5γR. Our
above considerations are surely not an exact derivation of the behavior of
the solution of the FitzHugh–Nagumo equations, but they may provide the
reader with some insight into the origin of that behavior.

11.3 Some Generalizations
of the Hodgkin–Huxley Equations

Equations (11.6) and (11.7) provide an accurate and tractible description
of the Hodgkin–Huxley equations for action potentials in the squid axon.
However, the squid axon is unusual in having only one Na+ and one K+

current. As a consequence, the squid axon cannot fire at rates below about
175 spikes/s. It produces only a modest increase in spike rates with increasing
input current. The vast majority of neurons in other animals also possess
a rapid transient K+ current that permits the cell to fire at very low spike
rates with a long latency to the first spike when the input current is low. This
current known as Ia was first characterized and added to the Hodgkin–Huxley
model by Connor, Walter and McKown (1977). Ia currents are found in a wide
range of neurons, including human and mammalian neocortical neurons.
Mathematically speaking, we must alter the original equations (11.6) and
(11.7) in such a way that there is a pronounced asymmetry in the switching
between Figs. 11.2a and 11.4. It can be shown that this can be achieved by
using a quadratic function G in (11.7). Thus, again following Wilson (1999),
the corresponding equations read

dV

dt
= −

(
17.81 + 47.58V + 33.8V 2

)
(V − 0.48)

−26R(V + 0.95) + I (11.30)



11.4 Dynamical Classes of Neurons 223

and

dR

dt
=
1

τR
(−R+ 1.29V + 0.79 + 0.33(V + 0.38)2) , (11.31)

where the constants are given by

C = 1.0µF/cm2 , τR = 5.6ms . (11.32)

We leave it to the reader as an exercise to discuss the effect of the additional
quadratic term in (11.31) on switching the size of the r.h.s. of (11.31).
An interesting property of another class of neurons is neural bursting.

There is a rapid sequence of spikes that is followed by a refractory period.
Then again the same series of spikes is emitted and so on. Do we have any
idea how to model that? To this end, consider the role of the input Iinput.
As we have seen before, there is a threshold below which there is no spiking,
above which there is spiking. Thus if we let the neuron modulate its effective
input, we would obtain just that behavior. In fact, such a behavior can be
mimicked by adding a new term to the r.h.s. of (11.30)

C
dV

dt
= {11.30} − 0.54H(V + 0.92) , (11.33)

leaving (11.7) for R unchanged

dR

dt
= {11.7} , (11.34)

but introducing a dynamic equation for H in the form

dH

dt
=
1

250
(−H + 9.3(V + 0.70)) . (11.35)

In (11.33), (11.34) we used the abbreviation {X} = r.h.s. of Eq. (X). C in
(11.33) is chosen to be 0.8 and the numerical factors in (11.33) differ slightly
from those of (11.30). Because the relaxation time of H, 250 ms, is very large,
H may change very slowly, which results in the desired slow modulation effect
of the effective threshold.

11.4 Dynamical Classes of Neurons

According to Connors and Gutnick (1990), Gutnick and Crill (1995), as well
as Gray and McCormick (1996) (see also Wilson (1999)), the mammalian
cortex contains four classes of neurons that can be differentiated with respect
to the spiking responses to sustained intercellular current injection.

1. Fast spiking cells that are described by (11.30) and (11.31) with τR =
2.1 ms.
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2. Regular spiking cells. These neurons show spike frequency adaptation,
i.e. the spike rate rapidly decreases during continuous stimulation. This
effect can be taken care of by adding a further term to (11.30) so that
(11.36) results, whereas (11.31) remains unchanged (11.37).

dV

dt
= {11.30} − 13H(V + 0.95) , (11.36)

dR

dt
= {11.31} . (11.37)

However, a new dynamic equation for H is required that has the form

dH

dt
=
1

99.0
(−H + 11(V + 0.754)(V + 0.69)) . (11.38)

Here we used the abbreviation {X} defined above.
3. Neocortical bursting cells.
4. Intrinsic bursting cells. Both (3) and (4) must be described by four first-
order differential equations, where different parameters must be used to
cover (3) or (4). For the purpose of this book it may may suffice to quote
the first model that is due to Chay and Keizer (1983) as shown above
in (11.33)–(11.35). The four first-order differential equations are quite
similar in structure to these equations.

11.5 Some Conclusions on Network Models

The classification of neurons makes it possible, at least to some extent, to
discuss the approximations that we made in devising the model equations for
the neural network. Obviously the fast spiking cells, as described by (11.30)
and (11.31), obey the model assumptions quite well. The dynamics of bursting
cells can be modelled by treating an individual burst as a thick spike that
then in some approximation can be represented again as a thin spike provided
the relaxation rates of the process are large compared to the spike width. It
should be not too hard to mimic also spike frequency adaptation, though this
is beyond the scope of the present book.
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An obvious question for the conclusion may be: What did the reader learn
from this book? At the core of it there were two approaches to pulse-coupled
neural nets: the lighthouse model and integrate and fire models. I tried a sys-
tematic exposition, which made all calculations explicit. So I am sure the
reader could follow step by step. Let us first recapitulate our results on the
lighthouse model. We established the phase-locked state, whereby an impor-
tant issue is the stability of that state when various parameters are changed.
Such parameters are the external (sensory) signals, the synaptic strengths,
which may lead to excitatory or inhibitory interactions, and the various delay
times. The lighthouse model had the advantage that all the calculations could
be done rather easily. In this way, we could discuss the stability limits and
also the effect of pulse shortening. The phase-locked state was established by
means of a specific initial condition that does not seem unrealistic. We then
studied the kind of stability, whether marginal or asymptotic. We recognized
that this feature depends on the kind of perturbations, where we studied those
that lead only to marginal stability as well as those that lead to asymptotic
stability. The integrate and fire models, of which we presented several versions,
are mathematically more involved. We focussed our attention on the phase-
locked or synchronized state that could be evaluated for all the versions
presented. We could also solve the more difficult task of determining the
stability that in the present case was of asymptotic nature. This implies that
once an initial state is close to a synchronized state it will be fully pulled
into that state. We discussed the dependence of the stability on the various
parameters that are essentially the same as those of the lighthouse model.
An interesting outcome of the study of all these models was the fact that

the requirements for the establishment of a steady synchronized state are
rather stringent, in particular the sensory signals must be assumed to be
the same. This makes the system highly sensitive to the detection of such
coincidences. It may also be a reason why in practice no steady states are
observed but only transients. All in all we should bear in mind that in brain
functioning we are mostly dealing with episodes rather than with steady
states.
The reader may further have noted that there is some dichotomy between

synchrony on the one hand and associative memory on the other. In our
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analysis, the associative memory could be shown to act when we averaged over
a number of pulses, i.e. when we looked at pulse rates. While for synchronized
states we needed the same sensory inputs, in the case of associative memory,
at least in general, different inputs are needed to obtain, for instance in the
visual system, a highly informative image.
Future research may focus on the coexistence or cooperation between syn-

chronized states and those of the associative memory. A first step towards this
goal was taken in Sect. 8.12, where we studied the coexistence of synchronized
and unsynchronized neuronal groups.
We then indicated what will happen when the neuronal system passes

the stability limits. Basically, two different kinds of behavior may occur. The
synchronized state is retained, but the pulse intervals are shortened until
saturation sets in. In the other case, the synchronized, or, more generally, the
phase-locked state is destroyed. Then the nonlinearity inherent in the sigmoid
functions S becomes important. While the inclusion of the corresponding
effects at the level of spike-trains has not yet been performed, a number of
effects were discussed in Sects. 10.1–10.4 in the framework of phase-averaged
equations as formulated by Wilson and Cowan. Here spatiotemporal patterns,
e.g. stripe patterns, of neural excitations were found. Surely, future work will
have to study the combined effects of synchronization and nonlinearity of the
sigmoid function, as well as the important role of dendrites.
But let us return to the question of synchronization. Clearly, a central

question concerns the biological significance of synchronization. Some scien-
tists, such as Singer, strongly advocate the idea that synchronization is the
solution to the binding problem that we briefly mentioned at the beginning
of this book. Indeed, the experiments on the moving bars hint at a binding or
grouping of objects moving in the same direction. We may observe binding at
other instances also. For instance, when we wear a blue shirt and a suit with
blue stripes, the blue stripes seem to pop up more strongly as compared to the
case when our shirt has a different color. Whether this effect has a neuronal
underpinning by means of synchronized firing of neurons hasn’t been studied
yet. More generally speaking, the binding of features and the underlying
neuronal processes are parts of a widely unexplored field. Also the interplay
between spike-synchronization and associative memory (including learning)
is widely unexplored. Progress has been made in the study of synchronization
in the case of Parkinson’s disease, where Fig. 12.1 shows some more recent
remarkable results due to Tass et al. (1999).
In conclusion I may state that some important first steps have been taken

towards the exploration of the fascinating phenomenon of spike-synchroniza-
tion, but also that the field is wide open for further experimental and theo-
retical research. We must also be aware of the fact that spike-synchronization
is just one aspect of a wealth of cooperative effects in the neural networks
of human and animal brains and that we still need much wider perspectives.
To this end, I include a few references for further reading.
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– basic equations including delay and
noise 151

ion channels 12
ions 10

Jirsa 6, 205, 210
Jirsa–Haken–Nunez equations 205 ff.

Kandel 16
Kanisza figure 110
Karhunen–Loève expansion 210
Keizer 224
Kelso 6, 188
Kelso experiment 209 ff.
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Langevin equation 54 ff.
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– alternative interpretation 100
– basic equations 103
– many coupled neurons 103 ff.
– two coupled neurons 77 ff.
limit cycle oscillations 186
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lock-in states 34
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dendritic responses 145 ff.

magnetic fields 16
magnetic resonance imaging 5, 23
magnetoencephalograms 5, 16, 24
many ion channels
– many two-state systems 58
McCormick 223
McKown 222
mean field approximation 193
MEG 16, 24
MEG measurements
– during Parkinson tremor 227
membrane 12, 17
membrane channel
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57
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mental activity 23
Mirollo 6, 143
motor cortex 4
motor program 191
movement control 5, 209 ff.
movement coordination 191
movement patterns 188
moving excitations 21
MRI 23
MUA 35

Naka–Rushton relation 14 ff.
Nernst equation 218
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nerve pulse 11, 12
network models 5 ff.
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neuro-transmitters 13
neuronal cooperativity 17 ff.
– mesoscopic 31
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– dynamical classes of 223
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NMR 23
noise 37 ff., 54 ff., 56 ff., 167
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nonequilibrium phase transition 209
Nunez 6, 195, 205
Nyquist theorem 56
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Ohm’s law 217
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optical imaging 24
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oscillatory correlations 33
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Parkinson’s disease 193, 226
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pattern filter 109 ff.
pendulum 60
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Peskin 6, 143
Peskin’s model 143 ff.
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phase 5, 37 ff., 60 ff., 63, 79, 104
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phase-locked state 125 ff., 134 ff., 155,
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– basic equations 80 ff.
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potential landscape 190
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single neuron 77, 217 ff.
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strong coupling limit 130 ff.
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synaptic gap 13
synaptic strengths 103
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synchronization patterns 193
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temporal correlations 25
the command signal 186
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